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We study a one-parameter family of eikonal Hamilton–Jacobi equations on an embedded network, and
prove that there exists a unique critical value for which the corresponding equation admits global solutions,
in a suitable viscosity sense. Such a solution is identified, via a Hopf–Lax-type formula, once an
admissible trace is assigned on an intrinsic boundary. The salient point of our method is to associate to
the network an abstract graph, encoding all of the information on the complexity of the network, and to
relate the differential equation to a discrete functional equation on the graph. Comparison principles and
representation formulae are proven in the supercritical case as well.

1. Introduction

Over the last few years there has been an increasing interest in the study of the Hamilton–Jacobi equation
on networks and related questions. These problems, in fact, involve a number of subtle theoretical issues
and have a great impact in the applications in various fields, for example, to data transmission, traffic
management problems, etc. While locally — i.e., on each branch of the network (arcs) — the study
reduces to the analysis of 1-dimensional problems, the main difficulties arise in matching together the
information “converging” at the juncture of two or more arcs, and relating the local analysis at a juncture
with the global structure/topology of the network.

In this article, we provide a thorough discussion of the above issues in the case of eikonal-type
Hamilton–Jacobi equations on embedded networks (in Rn or on a Riemannian manifold, see Remark 3.1).
We show that there exists a unique critical value for which the corresponding equation admits global
solutions, and extend most of the results known in the continuous setting for the critical and supercritical
cases. More specifically: we determine a uniqueness set (the Aubry set) for global solutions and provide
−1-Lax-type representation formulae; we study critical subsolutions, their properties and constraints, and
show the existence of C1 critical subsolutions; we describe −1-Lax representation formulae for maximal
supercritical subsolutions. See the Main Theorem in Section 4 for a more detailed description.

The main rationale behind our approach consists in neatly distinguishing between the local problem on
the arcs and the global analysis on the network. While the former can be solved by means of (classical)
1-dimensional viscosity techniques, the latter is definitely more engaging.
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Our novel idea is to tackle it by associating to the network an abstract graph, encoding all of the
information on the complexity of the network, and to relate the problem to a discrete functional equation
on the graph. This allows us to pursue a global analysis of the equation — that goes beyond what happens
at a single juncture — as well as to prove uniqueness and comparison principles in a simpler way. To
the best of our knowledge, this is the first time that comparison-type results are obtained in the network
setting by completely bypassing the difficulties involved in the Crandall–Lions doubling variable method,
in favor of a more direct analysis of a discrete equation.

In addition to this, by exploiting the simple geometry of the abstract graph we are able to identify an
intrinsic boundary — the Aubry set — on which admissible traces can be assigned in order to get unique
critical solutions on the whole network; these solutions can be represented by means of Hopf–Lax-type
formulae. In the supercritical case we get existence and uniqueness of solutions, on any open subset of
the network, continuously extending admissible data prescribed on the complement.

Let us point out that the problem of formulating boundary problems on the network and accordingly
determining “natural” subsets on which to assign boundary data is a subtle issue, yet not well settled in
the literature; we believe that our approach helps clarify this matter, at least in the class of equations that
we are considering.

The notions of viscosity solution and subsolution that we adopt are very natural in this setting (see
Definitions 3.6 and 3.7). More specifically, the tests we use at vertices are classical in viscosity solutions
theory and consist in (unilateral) state-constraint-type boundary conditions, introduced by Soner [1986] to
study control problems with constraints. In this regard, the notion of solution requires that at each vertex
the state-constraint condition holds for at least one arc ending there: it does not require other mixing
conditions (on the vertices) between equations defined on different incident arcs.

Very recently, the same notion of solution has been also considered by Lions and Souganidis [2016] to
deal with 1-dimensional junction-type problems for nonconvex discounted Hamilton–Jacobi equations
and study its well-posedness (i.e., comparison principle and existence). Global solutions on networks,
however, are not therein studied.

As far as subsolutions are concerned, we only ask that they are continuous on the network and are
(viscosity) subsolutions to the equation on the interior of each arc; no extra conditions are required on
vertices. These assumptions are the minimal requirements that one needs to ask and, at a first sight, it
might seem surprising that they are sufficient to develop a significant global theory. However, the validity
of this approach is supported, among other things, by the fact that the notion of solutions can be recovered
in terms of a maximal subsolution attaining a specific value at a given point (vertex or internal point); see
Theorem 7.1.

We also wish to point out that our hypotheses, both on the topology of network and the Hamiltonians, are
very general. As far as the network is concerned, we only ask it to be made up by finite arcs and connected;
hence, it may well include multiple connections between different vertices, as well as the presence of loops.

The Hamiltonians are assumed continuous in both variables, quasiconvex and coercive in the first-order
variable on any arc. Hamiltonians on different arcs are independent from each other and no compatibility
conditions at the vertices are required. See Section 3B for more details.
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We are confident that this very same set of ideas can be successfully applied to a broad range of other
problems, for example, to the study of the discounted Hamilton–Jacobi equation on networks or to prove
homogenization results for the Hamilton–Jacobi equation on periodic networks (also known as topological
crystals). We plan to address these and other questions in a future work (in preparation).

1A. Previous related literature. There is a huge amount of literature related to differential equations
on networks, or other nonregular geometric structures (ramified/stratified spaces), in various contexts:
hyperbolic problems, traffic flows, evolutionary equations, (regional) control problems, Hamilton–Jacobi
equations, etc. An exhaustive description of all of these areas would go well beyond the aims of this
paper; we mention a few noteworthy papers, [Achdou et al. 2013; Barles et al. 2013; 2014; Bressan
and Hong 2007; Camilli and Marchi 2013; Camilli et al. 2013; Davini et al. 2016; Galise et al. 2015;
Garavello and Piccoli 2006; Imbert and Monneau 2016; 2017; Imbert et al. 2013; Lions and Souganidis
2016; Pokornyi and Borovskikh 2004; Rao et al. 2014; Schieborn and Camilli 2013; Soner 1986].

A model similar to ours has been previously considered by Schieborn and Camilli [2013], however,
just in the supercritical case and under some restriction on the topology of the network. In comparison
with their hypothesis, we do not require continuity of the Hamiltonians at the vertices (and accordingly,
no mixed conditions on the test functions at the vertices) and we do not ask a priori existence of a regular
strict subsolution.

Other relevant recent contributions are [Lions and Souganidis 2016] (which we have already mentioned
above) and [Imbert and Monneau 2017]. In particular, the latter is a substantial work — whose point of
view and techniques are rather different from ours — in which Imbert and Monneau attempt to recover
the doubling variable method to their setting, by introducing an extra parameter (the flux limiter) and a
companion equation (the junction condition) and by using special vertex test functions. See also other
related works by the same authors and collaborators [Galise et al. 2015; Imbert et al. 2013; Imbert and
Monneau 2016].

Our analysis of the discrete functional equation is based on ideas and techniques inspired by the
so-called weak KAM theory, first developed by Fathi [2008] for the study of Tonelli Hamiltonian systems
on closed manifolds; see also [Sorrentino 2015]. Developing a similar approach in the discrete setting is
very natural and has been already exploited in several other works. In [Bernard and Buffoni 2006; 2007],
for example, a discretization of weak KAM theory was applied to investigate the properties of optimal
transport maps; a more systematic development of a discrete weak KAM theory for cost functions was
described by Zavidovique [2010; 2012]; see also [Davini et al. 2016]. In particular, [Zavidovique 2012]
shares ideas similar to ours, although our setting has the peculiarity of this interplay between the discrete
structure and the embedded network.

From a more dynamical systems point of view, a discrete analogue of Aubry–Mather theory and weak
KAM theory was also discussed in [Gomes 2005]; see [Su and Thieullen 2015] for a recent related work.

1B. Organization of the article. The article is organized as follows.
In Section 2, we provide a brief introduction to some topics in graph theory that will be needed in the

following.
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In Section 3, we describe our setting and the main objects involved in our analysis. More specifically:
in Section 3A we introduce the concept of embedded network and its properties; in Section 3B we
define Hamiltonians on a network and we detail which hypotheses we will be imposing thereafter; see
(Hγ 1)–(Hγ 4). Finally, in Section 3C we introduce the eikonal Hamilton–Jacobi equation on a network
(HJa) and provide suitable notions for viscosity solutions and subsolutions (see Definitions 3.6 and 3.7).

Section 4 provides a statement of our main results (see the Main Theorem) and an outline of the
strategy of the proof, in order to guide the reader through Section 5 (local part), Section 6 (global part)
and Section 7 (from global to local part).

2. Preliminaries on graph theory

We recall some basic material on the theory of abstract graphs and on functions defined on them. For a
more detailed presentation of these and other related topics, we refer the interested reader, for instance,
to [Sunada 2013].

2A. Abstract graphs. A (abstract) graph X = (V, E) is an ordered pair of disjoint sets V and E, which
are called, respectively, vertices and (directed) edges, plus two functions

o : E→ V
and

: E→ E,

e 7→ e,

with the latter assumed to be a fixed-point-free involution, namely satisfying

e 6= e and e = e for any e ∈ E.

We give the following geometric picture of the setting: o(e) is the origin (initial vertex) of e and e is its
reversed edge, namely the same edge but with the opposite orientation. Analogously we define

t(e)= o(e),

the terminal vertex of e. The following compatibility condition holds true:

t(e)= o(e)= o(e).

We say that e links o(e) to t(e); observe that it might well happen that o(e)= t(e), and in this case e will
be called a loop. An edge is also said to be incident on o(e) and t(e). Two vertices are called adjacent if
there is an edge linking them or, in other terms, if there is an edge incident on both of them.

We say that the graph is finite if the set E, and consequently V, has a finite number of elements. We
denote by |V | and |E| the number of vertices and edges.

We define a path to be a finite sequence of concatenated edges, namely ξ = (e1, . . . , eM) = (ei )
M
i=1

satisfying
t(ej )= o(e j+1) for any j = 1, . . . ,M − 1.
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We set o(ξ)= o(e1) and t(ξ)= t(eM) and call them the initial and final vertices of the path. We say that ξ
links o(ξ) to t(ξ); we also say that ξ is incident on some vertex if there is some edge composing the path
incident on it.

Given two paths ξ and η, we say that ξ is contained in η, mathematically ξ ⊂ η, if the edges of ξ
make up a subset of the edges of η. If such a subset is proper, we say that ξ is properly contained in η. If
t(ξ)= o(η), we denote by ξ ∪ η the path obtained via concatenation of ξ and η.

We call a path a loop or a cycle if o(ξ)= t(ξ). A path without repetition of vertices except possibly
the initial and terminal ones will be called simple; in other terms ξ = (ei )

M
1 is simple if

t(ei )= t(ej ) =⇒ i = j,

or if there are no cycles properly contained in ξ . Note that there are finitely many simple paths in a finite
graph.

A graph is called connected if any two vertices are linked by some path. All of the graphs we will
consider hereafter are understood to be connected and finite. Observe that the connectedness assumption
implies that the map o (and hence t) is surjective.

Given x ∈ V, we set
Ex = {e ∈ E | o(e)= x}, (1)

which we call Ex , the star centered at x ; it should be considered as a sort of tangent space to the graph
at x . The cardinality of Ex is called the degree (or valence) of the vertex x .

2B. Functions on graphs. In the following we will be interested in functions defined on abstract graphs.
It is useful to introduce the following notions:

• We define the 0-cochain group C0(X,R) as the space of functions from V to R.

• We define the 1-cochain group C1(X,R) as the space of functions from E to R, with the compatibility
condition ω(e)=−ω(e). This space plays the role of 1-forms on the graph. From now on we will
indicate the reverse edge e by −e and we will consider the pairing 〈ω, e〉 := ω(e).

The relation between C0(X,R) and C1(X,R) can be expressed in terms of the so-called coboundary
operator, or differential, d : C0(X,R)→ C1(X,R), which is defined for any f ∈ C0(X,R) and e ∈ E as

d f (e) := f (t(e))− f (o(e)).

We can embed these spaces with the standard topology. A notion of convergence on the cochain spaces
is given via

fn→ f ⇐⇒ fn(x)→ f (x) for any x ∈ V,

ωn→ ω ⇐⇒ ωn(e)→ ω(e) for any e ∈ E.

A sequence fn is said to be equibounded if

| fn(x)| ≤ β for any x ∈ V and some β > 0;
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similarly ωn is said equibounded if

|〈ωn, e〉| ≤ β for any e ∈ E and some β > 0.

It is clear that any equibounded sequences fn and ωn are convergent, up to subsequences.
We directly deduce from the above definitions:

Proposition 2.1. Let fn and f be in C0(X,R):

(i) If fn→ f , then d fn→ d f .

(ii) If d fn is equibounded and the sequence fn(x0) is bounded for some vertex x0, then fn is convergent,
up to subsequences.

3. Setting

In this section we first explain our setting, namely what is an embedded network and what we mean by
Hamiltonian on a network. Then we introduce the class of Hamilton–Jacobi equations on a network we
are interested in, and specify the notions of solutions and subsolutions.

3A. Embedded networks. An embedded network, or continuous graph, is a subset 0 ⊂ RN of the form

0 =
⋃
γ∈E

γ ([0, 1])⊂ RN,

where E is a finite collection of regular (i.e., C1 with nonvanishing derivative) simple oriented curves,
called arcs of the network, that we assume, without any loss of generality, to be parametrized on [0, 1].
We denote by E∗ the subset of arcs γ which are closed, namely with γ (0)= γ (1).

Remark 3.1. Our setting can be easily extended to the case in which 0 is embedded in a Riemannian
manifold (M, g), for example by means of Nash embedding theorem [1956]. Moreover, the results are
independent of the chosen parametrizations of the arcs. In this regard, one could also choose a more
intrinsic approach and consider arcs as 1-dimensional submanifolds, and the whole network as a stratified
space. Hereafter we do not adopt this point of view.

Observe that on the support of any arc γ, we also consider the inverse parametrization defined as

γ̃ (s)= γ (1− s) for s ∈ [0, 1].

We call γ̃ the inverse arc of γ . We assume

γ ((0, 1))∩ γ ′([0, 1])=∅ whenever γ 6= γ ′ and γ 6= γ̃ ′. (2)

We call vertices the initial and terminal points of the arcs, and denote by V the sets of all such vertices.
Note that (2) implies

γ ((0, 1))∩ V =∅ for any γ ∈ E .

We assume that the network is connected; namely given two vertices there is a finite concatenation of
arcs linking them.
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The network 0 inherits a geodesic distance, denoted by d0, from the Euclidean metric of RN. Hence,
hereafter the notions of continuity and Lipschitz continuity, when referring to functions defined on 0,
must be understood with respect to such distance (which is indeed equivalent to the Euclidean one) and
the induced topology.

We can also consider a differential structure on 0 by defining the tangent space at any x ∈ 0 \ V as

T0(x)= {λ γ̇ (t) | λ ∈ R, γ ∈ E, t ∈ (0, 1) and x = γ (t)}

and the cotangent space T ∗0 (x) as the dual space (T0(x))∗; namely, it is the set of linear functionals
p : T0(x)→ R.

We will say that a function f : 0→ R is of class C1(0 \ V ) if it is continuous in 0 and

t 7→ f (γ (t)) is of class C1 in (0, 1) for any γ ∈ E .

For such a function we define D0 f (x), where x = γ (t0) for some γ ∈ E and t0 ∈ (0, 1), as the unique
covector in T ∗0 (x) satisfying

(D0 f (x), γ̇ (t0))=
d
dt

f (γ (t))|t=t0,

where ( · , · ) denotes the pairing between covectors and vectors.
Notice that this definition is invariant for a change of parametrization from γ to γ̃ .

We can associate to any continuous network0 an abstract graph X= (V, E)with the same vertices as the
network and edges corresponding to the arcs. More precisely, we consider an abstract set E with a bijection

9 : E→ E . (3)

This induces maps o : E→ V and : E→ E via

o(e)=9(e)(0) and e =9−1(9̃(e))

satisfying the properties in the definition of graph. Intuitively, in the passage from the embedded network
to the underlying abstract graph X , the arcs become immaterial edges.

3B. Hamiltonians on networks. A Hamiltonian on a network 0 is a collection of Hamiltonians H =
{Hγ }γ∈E , where

Hγ : [0, 1]×R→ R,

(s, p) 7→ Hγ (s, p),
satisfies

Hγ̃ (s, p)= Hγ (1− s,−p) for any γ ∈ E . (4)

Notice that we are not assuming any periodicity on Hγ when γ is a closed curve.

We require any Hγ to be

(Hγ 1) continuous in (s, p);

(Hγ 2) coercive in p;
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(Hγ 3) quasiconvex in p; i.e., for every a ∈ R the set {p ∈ R | Hγ (x, p) ≤ a} is convex (provided it is
nonempty). Moreover, we assume that

Int
(
{p | Hγ (x, p)≤ a}

)
= {p | Hγ (x, p) < a} for any a ∈ R,

where Int( · ) denotes the interior of a set.

We point out that, throughout the paper, the term (sub-)solution to Hamilton–Jacobi equations involving
the Hγ , must be understood in the viscosity sense; see for example [Bardi and Capuzzo-Dolcetta 1997;
Barles 1994] for a comprehensive treatment of viscosity solutions theory.

We set for any γ ∈ E

aγ := max
s∈[0,1]

min
p∈R

Hγ (s, p), (5)

cγ :=min{a : Hγ = a admits periodic subsolutions}. (6)

By periodic subsolution, we mean subsolution to the equation in (0, 1) taking the same value at the
endpoints.

Remark 3.2. The definition of cγ is indeed well-posed. In fact, given γ ∈ E , because of the compactness
of [0, 1], we can choose a large enough to have

H(s, 0)≤ a for any s ∈ (0, 1).

This shows that any constant function is a subsolution and, consequently, the set in the definition of
cγ is nonempty. It is also bounded from below since for a < aγ the corresponding equation does not
admit subsolutions and, therefore, it does not admit periodic ones. Finally, by basic stability properties in
viscosity solution theory, there exists a periodic subsolution at the level cγ , which justifies the minimum
appearing in the definition.

We will essentially use cγ for γ ∈ E∗, but in principle the definition and the above considerations hold
for any γ.

We stress that
aγ ≤ cγ for any γ ∈ E .

We further define
a0 :=max

{
max
γ∈E\E∗

aγ , max
γ∈E∗

cγ
}
. (7)

We require a further condition:

(Hγ 4) Given any γ ∈ E with aγ = a0, the map s 7→minp∈R Hγ (s, p) is constant in [0, 1].

Remark 3.3. The main role of (Hγ 4) is to ensure uniqueness of solutions to the Dirichlet problem
associated to the equation Hγ = aγ , at least for the γ with aγ = a0. The uniqueness property for such
kind of problems holds in general when the equation admits a strict subsolution, which is not the case at
the level aγ . The relevant consequence of condition (Hγ 4) is that the family of subsolutions to Hγ = aγ
reduces to a singleton, up to additive constants; see Proposition 5.3.

Finally, condition (Hγ 4) is automatically satisfied if the Hγ are independent of the state variable.
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3C. The eikonal Hamilton–Jacobi equation on networks. We define a notion of subsolution and solu-
tion to an equation of the form

H(x, Du)= a on 0, (HJa)

where a ∈ R. This notation synthetically indicates the family (for γ varying in E) of Hamilton–Jacobi
equations

Hγ (s, (u ◦ γ )′)= a on (0, 1). (HJγ a)

We start by recalling some terminology of viscosity solutions theory.

Definition 3.4. Given a continuous function w in [0, 1] and a function ϕ ∈ C1([0, 1], we say that:

• ϕ is subtangent to w at s ∈ (0, 1) if

w = ϕ at s and w ≥ ϕ in (s− δ, s+ δ) for some δ > 0.

The notion of supertangent is given by just replacing “≥” by “≤” in the above formula.

• ϕ is a constrained subtangent to w at 1 if

w = ϕ at 1 and w ≥ ϕ in (1− δ, 1) for some δ > 0.

A similar notion, with obvious adaptations, can be given at t = 0.

Definition 3.5. Given a continuous function w in [0, 1] and a point s0 ∈ {0, 1}, we say that w satisfies
the state-constraint boundary condition for (HJγ a) at s0 if

Hγ (s0, ϕ
′(s0))≥ a

for any ϕ that is a constrained C1 subtangent to w at s0.

Definition 3.6. We say that u : 0→ R is a subsolution to (HJa) if

(i) it is continuous on 0;

(ii) s 7→ u(γ (s)) is a subsolution to (HJγ a) in (0, 1) for any γ ∈ E .

We say that u is solution to (HJa) if

(i) it is continuous;

(ii) s 7→ u(γ (s)) is a solution of (HJγ a) in (0, 1) for any γ ∈ E ;

(iii) for every vertex x there is at least one arc γ, having x as terminal point, such that u(γ (s)) satisfies
the state-constraint boundary condition for (HJγ a) at s = 1.

Compare also this definition with the one in [Lions and Souganidis 2016]. As far as we know, the
idea of imposing a supersolution condition on just one arc incident to a given vertex first appeared in
[Schieborn and Camilli 2013].

We do not provide a notion of supersolution. This could be done straightforwardly but we will not
need it in the remainder of the paper.
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Definition 3.7. Given an open (in the relative topology) subset 0′ ⊂ 0, we say that a continuous function
u : 0→ R is solution to (HJa) in 0′ if for any x ∈ 0′ \ V, x = γ (s0) with γ ∈ E , s0 ∈ (0, 1), the usual
viscosity solution condition holds true for u ◦ γ at s0. If instead x ∈ 0′ ∩ V, we require condition (iii) in
Definition 3.6 to hold.

Remark 3.8. The definition of (sub-)solutions on 0 requires u ◦ γ to be a (sub-)solution of the corre-
sponding equation in (0, 1) on any arc γ. If, in particular γ is a closed curve, we must have in addition
u(γ (0)) = u(γ (1)). This explains why on any arc γ ∈ E∗ we are solely interested in periodic (sub-
)solutions, namely (sub-)solutions in (0, 1) taking the same value at 0 and 1. This also explains the role
of cγ .

Remark 3.9. Let us point out that if the network is augmented by changing the status of a finite number
of intermediate points of arcs in 0, which become new vertices, then the notion of solution to (HJa) is
not affected. More specifically, if a function is a solution with respect to the original network, then it is
still a solution for the augmented one; the converse property holds as well. This issue will be discussed
more in detail in Remark 5.16.

Given a continuous function u defined in [0, 1], it is apparent that a C1 function ϕ is supertangent
(resp. subtangent) to u at s0 ∈ (0, 1) if and only if ϕ̃(s) := ϕ(1− s) is supertangent (resp. subtangent) to
s 7→ u(1− s) at 1− s0. Taking into account (4), we derive the following result.

Proposition 3.10. Given an arc γ, a function u(s) is a subsolution (resp. solution) to (HJγ a) if and only
if s 7→ u(1− s) is a subsolution (resp. solution) to the same equation with Hγ̃ in place of Hγ .

It is not difficult to see that Lipschitz-continuity of subsolutions on any arc, coming from the coercivity
condition in (Hγ 2), implies Lipschitz-continuity in 0 with respect to the geodesic distance. We provide a
proof in the Appendix for the reader’s convenience.

Proposition 3.11. The family of subsolutions to (HJγ a), provided it is not empty, is equi-Lipschitz
continuous on 0 with respect to the geodesic distance d0.

We derive from the previous result, plus basic properties of viscosity solutions, the existence of the
maximal subsolution attaining a given value at a given point of the network.

Proposition 3.12. Let a be such that the equation (HJa) admits subsolution in 0. Given y ∈ 0, α ∈ R,
the function

w(x)=max{u(x) | subsolution to (HJa) with u(y)= α}

is still a subsolution.

4. Main results and strategy of the proof

The remainder of the article consists of the proof of our results on existence, uniqueness and regularity of
global (sub-)solutions to the eikonal Hamilton–Jacobi equation on 0.
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Main Theorem. Let 0 be an embedded network (finite, connected, possibly including loops and more
arcs connecting two vertices) and let X = (V, E) be the underlying abstract graph. Let us consider a
Hamiltonian H= {Hγ }γ∈E on the network, satisfying conditions (Hγ 1)–(Hγ 4) for any γ ∈ E and let a0

denote the value defined in (7).

I. Global solutions:

(i) (existence) There exists a unique value c = c(H)≥ a0 — called the Mañé critical value — for which
the equation H(x, Du)= c admits global solutions. In particular, these solutions are Lipschitz continuous
on 0.

(ii) (uniqueness) There exists a uniqueness set AX =AX(H)⊆ V, called the (projected) Aubry set of H,
such that the following holds. Let Sc : V × V → R be the function defined in (34); then, given any
admissible trace g on AX , i.e., a function g :AX → R such that for every x, y ∈AX

g(x)− g(y)≤ Sc(y, x),

there exists a unique global solution u ∈ C(0,R) to H(x, Du)= c agreeing with g on AX . Conversely,
for any solution u to H(x, Du)= c, the function g = u|AX gives rise to an admissible trace on AX .

(iii) (Hopf–Lax-type formula 1) Let g :AX→R be an admissible trace and u ∈C(0,R) the corresponding
solution to H(x, Du)= c. Then, on the support of any arc γ ∈ E , u is given by

u(γ (s))=min{A, B},

where

A :=min{g(y)+ Sc(y, γ (0)) | y ∈AX}+

∫ s

0
σ+c (t) dt,

B :=min{g(y)+ Sc(y, γ (1)) | y ∈AX}−

∫ 1

s
σ−c (t) dt,

with s ∈ [0, 1] and σ+c , σ−c defined as in (8), (9) with Hγ in place of H.

(iv) (Hopf–Lax-type formula 2): Let 0′ be a closed subset of 0 with

0′ ∩ γ ([0, 1]) 6=∅ for any γ with 9−1(γ ) ∈A∗X .

For any admissible trace g on 0′, in the sense of (65) with c in place of a, there exists a unique solution
u ∈ C(0,R) to H(x, Du)= c agreeing with g on 0′, which is given by

u(x)=min{g(y)+ S0c (y, x) | y ∈ 0′},

where S0c ( · , · ) denotes the intrinsic (semi-)distance defined in (63).

II. Subsolutions:

(i) (maximal subsolutions) For a ≥ c and y ∈ 0, the maximal subsolution to (HJa) taking an assigned
value at y is a solution in 0 \ {y}.
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(ii) (PDE characterization of the Aubry set) Let A0 =A0(H)⊂ 0 be the Aubry set on the network, as
defined in (49). The maximal subsolution to (HJc) taking a given value at a point y ∈ 0 is a critical
solution on the whole network if and only if y ∈A0.

(iii) (regularity of critical subsolutions) Any subsolution v :0→R to H(x, Du)= c is of class C1(0 \V )
and they all possess the same differential on A0 \ V. More specifically, if x0 ∈ A0 and x0 = γ (s0) for
some γ ∈ E and s0 ∈ (0, 1), then its differential at x0 is uniquely determined by the relation

(D0v(x0), γ̇ (s0))= σ
+

c (s0),

where σ+c was defined in (8), and therefore

v(γ (s))= v(γ (0))+
∫ s

0
σ+c (t) dt for any s ∈ [0, 1].

We infer from this that any pair of critical subsolutions differs by a constant on the support of γ .

(iv) (existence of C1 critical subsolutions) Given a function g : V → R such that

g(x)− g(y)≤ Sc(y, x) for all x, y ∈ V,

there exists a critical subsolution v on 0, with v = g on V, which is of class C1 on 0 \V. In addition, there
exists a critical subsolution v of class C1(0 \ V ) satisfying

Hγ (s, Dv(γ (s))) < c

for all s ∈ (0, 1) and γ ∈ E with γ ((0, 1))∩A0 =∅.

(v) (Hopf–Lax formula for maximal supercritical subsolutions 1) Let a> c and V ′⊂V. For any g :V ′→R

satisfying

g(x)− g(y)≤ Sa(y, x) for all x, y ∈ V ′,

where Sa( · , · ) was defined in (34), there exists a unique solution u to H(x, Du)= a in 0 \ V ′ agreeing
with g on V ′; in addition, u is also a subsolution to H(x, Du)= a on the whole of 0. In particular, on
the support of any arc γ ∈ E , u is given by

u(γ (s))=min{C, D},

where

C := g̃(γ (0))+
∫ s

0
σ+a (t) dt,

D := g̃(γ (1))−
∫ 1

s
σ−a (t) dt,

g̃(x) :=
{

g(x) if x ∈ V ′,
min{g(y)+ Sa(y, x) | y ∈ V ′} if x 6∈ V ′,

with s ∈ [0, 1] and σ+a , σ−a defined as in (8), (9).
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(vi) (Hopf–Lax formula for maximal supercritical subsolutions 2) Let a> c and 0′ be a closed subset of 0.
Let g be an admissible trace on 0′, in the sense of (65), then there exists a unique solution u ∈ C(0,R) to
(HJa) on 0 \0′ agreeing with g on 0′, which is given by

u(x)=min{g(y)+ S0a (y, x) | y ∈ 0′},

where S0a ( · , · ) denotes the intrinsic (semi-)distance defined in (63).

4A. Organization of the remaining sections and proof of the Main Theorem. For the sake of clarity,
we provide here an outline of the forthcoming discussion and of the main steps involved in the proof.

In Section 5, we focus on the local problem on each arc of the network. Namely, for each γ ∈ E we
study the existence of (sub-)solutions to the 1-dimensional eikonal Hamilton–Jacobi equation (HJγ a)
with boundary conditions. In particular:

• We show that under suitable admissibility conditions on the boundary data, see (17), there exists a
unique solution and we provide a representation formula (Proposition 5.5).

• We derive a characterization of condition (iii) in Definition 3.6 in terms of this representation formula
(Proposition 5.6).

In Section 6 we concentrate on the global aspects of the problem:

• We introduce a discrete functional equation (DFEa) on the abstract graph X and provide the
corresponding notions of solutions and subsolutions. The crucial result linking solutions to this
equation and solutions to (DFEa) is proven in Proposition 6.2.

• In (30) we define the Mañé critical value c(H). We first prove that this is the unique value for which
solutions to the discrete functional equation may exist (Proposition 6.5), and then that the critical
equation (DFEc) indeed admits solutions (Theorem 6.16).

• In (39) and (40) we define the Aubry set A∗X and the projected Aubry set AX , which are nonempty
(Lemma 6.20). We prove in Theorem 6.21 that AX is a uniqueness set and provide a Hopf–Lax-type
representation formula for the solutions to (DFEc) in terms of its values on AX .

The supercritical case will be discussed in parallel to the critical one (see Propositions 6.3 and 6.6 and
Theorem 6.23).

Finally, in Section 7 we switch our attention back to the immersed network:

• We prove in Theorem 7.1 that the notion of solution can be recovered in terms of maximal subsolution
attaining a specific value at a given point.

• We introduce the analogue of the Aubry set on the network, we show in Theorem 7.5 that all critical
subsolutions are of class C1 on it and they all have the same differential on this set.

• We show the existence of C1 critical subsolutions that are strict outside of the Aubry set (Theorem 7.6).

• We provide representation formulae and uniqueness results with traces that are not necessarily defined
on vertices (Theorem 7.9).

For the reader’s convenience, we provide here some references to the proof of each claim.
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Proof of the Main Theorem.

(I) (i) Existence follows from Theorem 6.16 and Proposition 6.2; Lipschitz continuity follows from
Proposition 3.11.

(ii) This part is obtained by combining Proposition 6.2 and Theorem 6.21.
(iii) This representation formula is proved in Proposition 5.5.
(iv) See Theorem 7.9(i).

(II) (i) See Theorem 7.1.
(ii) See Proposition 7.4.

(iii) See Theorem 7.5.
(iv) See Theorem 7.6.
(v) These results are obtained by combining Propositions 6.3 and 6.6 and Theorem 6.23 and using

the representation formula in Proposition 5.5.
(vi) See Theorem 7.9(ii). �

5. Local part: the eikonal Hamilton–Jacobi equation with boundary conditions on arcs

In this section we focus on a single arc γ and study the family of equations (HJγ a) in (0, 1), plus suitable
boundary conditions. We assume

a ≥ a0 =max
{

max
γ∈E\E∗

aγ , max
γ∈E∗

cγ
}
.

Our aim is to find admissible conditions on boundary data at s = 0 and s = 1 to get solutions of
the corresponding Dirichlet problem, to show uniqueness of such solutions and, finally, to provide a
characterization of maximal subsolutions taking a given value at s = 0 via state-constraint boundary
conditions.

We need specific results when γ is a closed curve because in this case we are solely interested in periodic
(sub-)solutions, as explained in Remark 3.8. We address the issue in Section 5C. In Subsections 5A and 5B
we will not distinguish between γ closed or not, and provide an unified presentation of the material.

The results are not new; we write down nevertheless the 1-dimensional representation formulae, which
are easy to handle and allow a direct and simplified treatment of the matter. We recall that, due to
coercivity and quasiconvexity assumptions, all subsolutions to (HJγ a) are Lipschitz-continuous in [0, 1],
and, in addition the notion of viscosity and a.e. subsolution are equivalent. Also notice that the subsolution
property is not affected by addition of constants.

To ease notation, we write H(s, p) instead of Hγ (s, p), and accordingly we consider equation (HJγ a)
with H in place of Hγ . We recall that the assumptions (Hγ 1)–(Hγ 4) are in force.

5A. Setting of the local problem. We set, for s ∈ [0, 1],

σ+a (s)=max{p | H(s, p)= a}, (8)

σ−a (s)=min{p | H(s, p)= a}. (9)
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If a > aγ , we have by (Hγ 3)

(σ−a (s), σ
+

a (s))= {p | H(s, p) < a} for s ∈ [0, 1]. (10)

We deduce from assumption (Hγ 4) that if aγ = a0

σ+aγ (s)= σ
−

aγ (s) for any s ∈ [0, 1]. (11)

Proposition 5.1. The functions s 7→ σ+a (s) and s 7→ σ−a (s) are continuous in [0, 1] for any a ≥ aγ .

Proof. It follows directly from the continuity and the coercivity of H that the function s 7→σ+aγ (s)=σ
−
aγ (s)

is continuous. If a > aγ , the assertion follows from the fact that σ+a (s) and σ−a (s) are univocally
determined for any s by the conditions H(s, σ+a (s))= H(s, σ−a (s))= a and, respectively, σ+a (s) > σ

+
aγ (s)

or σ−a (s) < σ
+
aγ (s). �

Notice that
u subsolution =⇒ σ−(s)≤ u′(s)≤ σ+(s) for a.e. s. (12)

We introduce four relevant functions:

s 7→
∫ s

0
σ+a (t) dt, (13)

s 7→
∫ s

0
σ−a (t) dt, (14)

s 7→ −
∫ 1

s
σ−a (t) dt, (15)

s 7→ −
∫ 1

s
σ+a (t) dt. (16)

Remark 5.2. According to (12), the function in (13) is the maximal (sub-)solution to (HJγ a) vanishing at
s= 0, and the one in (14) the minimal (sub-)solution vanishing at s= 0. Analogously, the function defined
in (15) is the maximal (sub-)solution vanishing at s = 1, and the one in (16) the minimal (sub-)solution
vanishing at s = 1. All of these functions are of class C1 because of Proposition 5.1.

We remark that when we write maximal (sub-)solution and the like, we mean it is maximal in the class
of subsolution to (HJγ a) with a given property and it is, in addition, a solution to the equation.

If a = aγ , it follows from (11) that all of the above functions coincide up to an additive constant. We
can state the following result.

Proposition 5.3. The (sub-)solution to (HJγ a), with a = aγ , is unique up to additive constants.

From the properties of the solutions in (13) and (14), we directly derive a necessary condition (admis-
sibility condition) that two boundary data at 0 and 1 must satisfy in order to correspond to the values at
the endpoints of a subsolution to (HJγ a).

Lemma 5.4. Assume that there is a subsolution to (HJγ a) taking the values α and β at 0 and 1. Then∫ 1

0
σ−a (t) dt ≤ β −α ≤

∫ 1

0
σ+a (t) dt. (17)
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The above condition is actually also sufficient:

Proposition 5.5. Given boundary data α, β satisfying (17), the function w,

s 7→ w(s) :=min
{
α+

∫ s

0
σ+a (t) dt, β −

∫ 1

s
σ−a (t) dt

}
, (18)

is the unique solution to (HJγ a) taking the values α at s = 0 and β at s = 1.

The proof is in the Appendix.

5B. Maximal subsolutions. The main result of this section is:

Proposition 5.6. Assume that w is a solution in (0, 1) to (HJγ a) for a ≥ aγ , continuously extended up to
the boundary. If

H(1, ϕ′(1))≥ a for any C1 supertangent ϕ to w constrained to [0, 1], (19)

then w is the maximal (sub-)solution taking the value w(0) at 0. Namely,

w(s)= w(0)+
∫ s

0
σ+a (t) dt for s ∈ [0, 1]. (20)

Conversely, if a solution w is of the form (20), then condition (19) holds true.

The proof is in the Appendix.

We fix s0 ∈ (0, 1). By slightly generalizing the formulae provided in the previous result and arguing
separately in the two subintervals [0, s0] and [s0, 1], we get:

Corollary 5.7. Let s0 ∈ (0, 1). For any α ∈ R, the function

s 7→

{
α−

∫ s0
s σ−a (t) dt for s ≤ s0,

α+
∫ s

s0
σ+a (t) dt for s > s0

is the maximal subsolution to (HJγ a) taking the value α at s0. It is, in addition, a solution in (0, 1) \ {s0},
but the solution property fails at s0, unless a = aγ .

Remark 5.8. In light of Proposition 3.10 and Remark 5.2, it is apparent that the maximal solution to
H(s,−u′)= a vanishing at s = 0 is given by

s 7→ −
∫ 1

1−s
σ−a (t) dt.

This function satisfies the state-constraint boundary condition at s = 1.

5C. Closed arcs. In this subsection we assume that γ is a closed curve. Keeping in mind Remark 3.8, we
aim to show the existence of a periodic (sub-)solution for any a or, in other terms, that periodic boundary
conditions at s = 0 and s = 1 are admissible in the sense of (17).

Recall that a ≥ a0 ≥ cγ . We derive further information in the case where a = a0 = cγ . We will exploit
the existence of periodic subsolutions at the level cγ in (0, 1), say, to fix ideas, vanishing at 0 and 1, as
pointed out in Remark 3.2. These periodic subsolutions are sandwiched in between the function in (13)
and the one in (14), according to Remark 5.2. We derive:
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Lemma 5.9. We have ∫ 1

0
σ−a (t) dt ≤ 0≤

∫ 1

0
σ+a (t) dt, (21)

and both the inequalities are strict if a > cγ .

This, in view of (17), in turn implies:

Corollary 5.10. There are periodic solutions to (HJγ a) in (0, 1).

Moreover:

Proposition 5.11. min
{
−

∫ 1

0
σ−cγ (t) dt,

∫ 1

0
σ+cγ (t) dt

}
= 0.

The proof is in the Appendix.

From the previous result plus Proposition 5.6 and Remark 5.8, we derive the following.

Corollary 5.12. Let a = cγ and α ∈ R; then, either the maximal solution to H = a taking the value α at
s = 0 or the maximal solution to H(s,−u′)= a taking the value α at s = 0 is periodic.

In the final result of the section we provide a characterization for the maximal periodic subsolution
taking a given value at s0 ∈ (0, 1). This corresponds, in the case of nonclosed arcs, to Corollary 5.7.

Corollary 5.13. Let s0 ∈ (0, 1) and α ∈ R. We set

β =min
{
−

∫ s0

0
σ−a (t) dt,

∫ 1

s0

σ+a (t) dt
}
.

(i) The maximal periodic subsolution to (HJγ a) taking the value α at s0, denoted by u, is uniquely
determined by the condition of being solution of the equation in (0, s0) and (s0, 1) taking the values α
at s0 and α+β at 0 and 1.

(ii) If β =−
∫ s0

0 σ−a (t) dt , then

u(s)= α−
∫ s0

s
σ−a (t) dt for s ∈ [0, s0]. (22)

If instead β =
∫ 1

s0
σ+a(t) dt , then

u(s)= α+
∫ s

s0

σ+a (t) dt for s ∈ [s0, 1]. (23)

The proof is in the Appendix.

5D. From local to global. The subsequent step in our analysis will be to transfer the Hamilton–Jacobi
equation from 0 to the underlying graph X, where it will take the form of a discrete functional equation.
In doing this, the relevant information we derive from the above study is the value at s = 1 of the maximal
solution to H = a vanishing at s = 0. It is given, in accordance with Proposition 5.6, by∫ 1

0
σ+a (t) dt.
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Therefore, if γ =9(e) and a ≥ aγ , we define

σa(e) :=
∫ 1

0
σ+a (t) dt. (24)

(recall that a ≥ a0 ≥ cγ ).

Accordingly, we have

σa(−e) := −
∫ 1

0
σ−a (t) dt. (25)

If e is a loop, or equivalently γ = 9(e) a closed curve, we summarize the information gathered in
Propositions 5.9 and 5.11 as follows:

Proposition 5.14. If e is a loop then σa(e) > 0 for a > cγ and

min{σcγ (e), σcγ (−e)} = 0.

Moreover, we directly deduce from the definition of σa and (10) that:

Lemma 5.15. The function
a 7→ σa(e)

is continuous and strictly increasing in [aγ ,+∞).

Remark 5.16. As already announced in Remark 3.9, we conclude this section with a remark on the
invariance of the definition of solution to (HJa) with respect to the addition of extra vertices to the
network (augmented network). We discuss this issue in the case of a single extra vertex x0 = γ (s0) for
some s0 ∈ (0, 1) and γ a nonclosed arc.

We first prove that a solution u on 0 is also a solution for the augmented network. According to
Proposition 5.5,

u(x0)=min
{

u(γ (0))+
∫ s0

0
σ+a (t) dt, u(γ (1))−

∫ 1

s
σ−a (t) dt

}
.

If u(x0) is equal to the first term in the parentheses, then, by Proposition 5.6, u satisfies the state-constraint
boundary condition with respect to the arc γ |[0,s0], having the new vertex x0 as terminal point. Whereas, if
u(x0) equals the second term in the above formula, then the same property holds true for the arc γ̃ |[0,1−s0].
This shows the claim.

To prove the converse, we start with a solution v to (HJa) on the augmented network, with x0 as the
extra vertex, and consider the arcs γ1 = γ |[0,s0] and γ2 = γ |[s0,1], both parametrized on [0, 1]. The point
is to show that the function v ◦ γ is a solution to (HJγ a) in (0, 1). It is apparently a subsolution in the
whole interval and a solution in (0, 1) \ {s0}. It also satisfies the state-constraint boundary condition at
s = 1 either for the arc γ1 or for γ̃2. Since any subtangent to v ◦ γ at s0 is a constrained subtangent at
s = 1 for both γ1 and γ̃2, we deduce the supersolution property for v ◦ γ at s0.

Arguing along the same lines, one can also check that the forthcoming notions of critical value and
Aubry set are not affected by additions of new vertices.
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6. Global part: the discrete functional equation on the abstract graph

In this section we push our analysis beyond the local existence of solutions to (HJγ a) on each arc γ, and
study the global existence of solutions to (HJa) on the whole network 0.

Let us start by noticing that if we consider V, the set of vertices of 0, it is easy to check that any
solution w to (HJa) has a well-defined trace u =w|V on V, simply because of the continuity assumption.
The following uniqueness result is straightforward. We provide a proof in the Appendix for reader’s
convenience.

Proposition 6.1. Let u be a function defined on V. Then there exists at most one solution to (HJa) on 0
agreeing with u on V.

A converse property is by far more interesting, namely to find conditions on a function defined on V
in order to (uniquely) extend it on the whole network as solution to (HJa).

This issue — which is profoundly related to the global structure of the network — will be carefully
addressed in this section.

More precisely, we study the problem of the admissibility, with respect to the fullref (HJa), of a trace
g : V → R defined on the global network and characterize all traces g that can be continuously extended
to solutions to (HJa) on the whole of 0 as solutions to an appropriate discrete functional equation on the
underlying abstract graph X = (V, E).

6A. The discrete functional equation. Given a ≥ a0, the cochain σa ∈ C
1(X,R) is defined as in (24),

where e =9−1(γ ) and 9 has been defined in (3).

If we recall the admissibility condition introduced in (17) plus (24) and (25), it is clear that the trace
on V of a function g : 0→ R admissible for the equations on any arc satisfies

−σa(−e)≤ dg(e)= g(t(e))− g(o(e))≤ σa(e) for any e ∈ E, (26)

which in particular implies

g(x)≤ min
e∈Ex

(
g(t(e))+ σa(−e)

)
for x ∈ V,

where Ex denotes the star centered at x , as defined in (1).

Inspired by this, we introduce the following discrete functional equation:

u(x)= min
e∈Ex

(
u(t(e))+ σa(−e)

)
for x ∈ V. (DFEa)

Observe that the formulation of the discrete problem takes somehow into account the backward
character of viscosity solutions.

A function v is a solution to (DFEa) in some subset V ′ of V if (DFEa) holds true with v in place of u
and x ∈ V ′.

A function u : V → R is a subsolution to (DFEa) if

u(x)≤ min
e∈Ex

(
u(t(e))+ σa(−e)

)
for x ∈ V (27)
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or, equivalently, if for each e ∈ E we have

du(e)≤ σa(e), (28)

which is equivalent to asking that u(t(e))≤ u(o(e))+ σa(e) for each e ∈ E.

A subsolution is qualified as strict at x0 ∈ V if a strict inequality prevails in (27) when x is replaced
by x0. We say that u is strict on a set A ⊆ V if it is strict at every x ∈ A. We say that u is strict if it is
strict everywhere on V.

It is apparent that the property of being a solution or a subsolution is not affected by the addition of
constants.

Our goal is to prove the existence of a solution to (DFEa) (see Theorem 6.16). In fact, there is a crucial
relation between the functional equation (DFEa) and (HJa):

Proposition 6.2. Given a ≥ a0:

(i) Any solution to (DFEa) in V can be (uniquely) extended to a solution of (HJa) in 0; conversely the
trace on V of any solution of (HJa) in 0 is a solution to (DFEa).

(ii) Any subsolution to (DFEa) in V can be extended to a subsolution of (HJa) in 0; conversely the
trace on V of any subsolution of (HJa) in 0 is a subsolution to (DFEa).

Proof. Assume that u solves (DFEa). Let x and y be two adjacent vertices, and e an edge with initial
vertex x and final vertex y. We set γ =9(e) and consequently γ̃ =9(−e); then γ (0)= γ̃ (1)= x and
γ (1)= γ̃ (0)= y. By the very definition of (sub-)solution to (DFEa), we have

u(γ (1))− u(γ (0))≤ σa(e),

u(γ (1))− u(γ (0))= u(γ̃ (0))− u(γ̃ (1))≥−σa(−e).

Taking into account (17), we derive that the values u(γ (0)) and u(γ (1)) are admissible for (HJγ a) in
(0, 1). We therefore deduce from Proposition 5.5 that there is a unique solution, say w : [0, 1] → R, to
(HJγ a) taking precisely these values at the boundary. We define

v(z)= w(γ−1(z)) for z ∈ γ ((0, 1)).

Since γ ((0, 1))= γ̃ ((0, 1)), one needs to check that this definition is well-posed, performing the same
construction for γ̃ , but this is a direct consequence of Proposition 3.10.

So far, we have successfully checked conditions (i) and (ii) in the definition of solution to (HJa) (see
Definition 3.6). It is left to show (iii). Since u is a solution to (DFEa), for any x ∈ V there is an edge e0

with x as terminal vertex such that

u(x)− u(o(e0))= σa(e0).

Taking into account (24) and Proposition 5.6, for γ =9(e0), we deduce that v ◦ γ actually satisfies the
state-constraint boundary condition in (iii) with respect to (HJγ a).
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Conversely, let u be a real function on V which is the trace on 0 of a solution to (HJa). It follows
from the compatibility condition (17), and the notations (24)–(25), that u is a subsolution to (DFEa); i.e.,

u(x)≤ min
e∈Ex

(
u(t(e))+ σa(−e)

)
for x ∈ V. (29)

In order to show that it is a solution to (DFEa), we need to prove that equality holds in (29) for every
x ∈ V. In fact, since u is the trace of a solution to (HJa), it follows from condition (iii) in Definition 3.6,
that for every vertex x there is at least one arc γ having x as terminal point such that u(γ (s)) satisfies the
state-constraint boundary condition for (HJγ a) at s = 1. In particular, in light of Proposition 5.6, see
(24), this implies that there exists e with t(e)= x , or in other terms −e ∈ Ex , such that

u(x)− u(o(e))= σa(e)

or equivalently
u(x)= u(t(−e))+ σa(e).

Hence, equality holds in (29), and this completes the proof of item (i). Item (ii) can be proven arguing
along the same lines. �

The same argument as in the above proof allows also showing the following:

Proposition 6.3. Given a ≥ a0 and V ′ ⊂ V, a function u : V → R which is a subsolution to (DFEa) in V
and solution in V \V ′ can be (uniquely) extended to a function v : 0→R which is a subsolution of (HJa)
in 0 and a solution in 0 \ V ′. Conversely, the trace on V of a function v : 0→ R which is a subsolution
to (HJa) in 0 and a solution in 0 \ V ′ is a subsolution to (DFEa) in V and a solution in V \V ′.

6B. Existence of solutions to (DFEa) and critical value. We want to introduce a notion of critical
value for (DFEa) and prove the existence of solutions.

Let us start by proving the following stability properties of solutions and subsolutions.

Proposition 6.4. (i) Let an be a sequence in R converging to some a. Let un be subsolution to (DFEan)
for every n, with un(x0) bounded for some x0 ∈ V ; then un converges, up to subsequences, to a
subsolution to (DFEa).

(ii) Let vn be a sequence of solutions to (DFEa) for some a ∈ R, with vn(x0) bounded for some x0 ∈ V ;
then vn converges, up to a subsequence, to a solution to (DFEa).

Proof. Owing to the definition of subsolution and Lemma 5.15, we see that

〈dun, e〉 ≤ σb(e) for every e ∈ E,

where b= sup an . This implies that the dun are equibounded. We therefore get, exploiting the boundedness
assumption on x0 and Proposition 2.1(ii), that un is convergent, up to subsequences, to some u. By
Lemma 5.15 we have

u(t(e))− u(o(e))− σa(e)= lim
n

(
un(t(e))− un(o(e))− σan (e)

)
≤ 0

for any e, showing that u is a subsolution to (DFEa).
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Let now vn be a sequence of solutions to (DFEa); because of the previous point, vn converges, up to
subsequences, to a subsolution v of the same equation. It is left to show that v is indeed a solution. Given
x ∈ V, we find en ∈ Ex with

vn(t(en))− vn(x)− σa(−en)= 0.

Since the edges are finite, we deduce that there exists e0 ∈ Ex such that

en = e0 for infinitely many n.

Up to extracting a subsequence, passing to the limit as n goes to infinity, we obtain

v(t(e0))− v(x)− σa(−e0)= 0. �

We define the critical value for (DFEa) (also called the Mañé critical value) as

c = c(H) :=min{a ≥ a0 | (DFEa) admits subsolutions}. (30)

First of all, notice that it is well-defined. In fact, because of the coercivity of the Hγ , we know σa is
strictly positive for every e, when a is large enough, so that any constant function is a subsolution to
(DFEa). This shows that c is finite. Note the minimum in the definition of c is justified by Proposition 6.4,
showing the existence of critical subsolutions (namely, subsolutions to (DFEa) with a = c).

The relevance of the critical value is apparent from the following result.

Proposition 6.5. If there exists a solution to (DFEa), then a = c.

Proof. Clearly a ≥ c, since every solution is also a subsolution. If a > c, then there exists a strict
subsolution u to (DFEa). Let us assume, by contradiction, that there exists also a solution v. Let x0 be
point at which u− v achieves its maximum; then

v(x0)− v(t(e))≤ u(x0)− u(t(e)) for any e ∈ Ex0 . (31)

By the very definition of solution applied to v, there is e0 ∈ Ex0 such that

v(x0)= v(t(e0))+ σa(−e0).

We derive, taking into account (31),

u(x0)≥ u(t(e0))+ σa(−e0),

which is in contrast with the very definition of strict subsolution. �

We further deduce a uniqueness result in the supercritical case.

Proposition 6.6. Let a > c and V ′ ⊂ V. For any given function u defined on V ′ there is at most one
solution v of (DFEa) in V \V ′ agreeing with u on V ′.

Proof. Assume by contradiction that there are two distinct solutions u1 and u2 both satisfying the statement.
Since a > c, we know that there is a strict subsolution w to (DFEa). Therefore, given λ ∈ (0, 1) we have

λw(x)+ (1− λ) u1(x) < min
e∈Ex

(
λw(t(e))+ (1− λ) u1(t(e)) + σa(−e)

)
(32)
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for any x ∈ V \V ′. Up to interchanging the roles of u1 and u2, we can assume that maxV (u1−u2) > 0, so
that any maximizer is outside V ′. For λ sufficiently close to 0, we still have that [λw+ (1− λ) u1]− u2

achieves its maximum in V\V ′. Let x0 be one of these points of maximum; then, for every e∈ Ex0 we have

[λw(x0)+ (1− λ) u1(x0)] − u2(x0)≥ [λw(t(e))+ (1− λ) u1(t(e))] − u2(t(e))

or
u2(x0)≤ u2(t(e))+ λw(x0)+ (1− λ) u1(x0)− λw(t(e))− (1− λ) u1(t(e)).

Using (32) we can deduce
u2(x0) < min

e∈Ex0

(
u2(t(e))− σa(−e)

)
in contrast with x0 6∈ V ′ and u2 being solution to (DFEa) in V \V ′. �

Given a ≥ a0, we define for any path ξ = (e1, . . . , eM)= (ei )
M
i=1,

σa(ξ)=

M∑
i=1

σa(ei ), (33)

and
Sa(x, y) := inf{σa(ξ) | ξ is a path linking x to y}. (34)

The following triangle inequality is a direct consequence of the definition:

Sa(x, y)≤ Sa(x, z)+ Sa(z, y) for any x , y, z in V. (35)

The next result starts unveiling the major role of cycles in the forthcoming analysis.

Lemma 6.7. Sa 6≡ −∞ if and only if

σa(ξ)≥ 0 for any cycle ξ,

which is equivalent to saying that Sa(x, x)≥ 0 for any x ∈ V.

Proof. If σa(ξ) < 0 for some cycle ξ , then going through it several times, we deduce that Sa ≡ −∞.
Conversely, if σa(ξ)≥ 0 for any cycle ξ , then

Sa(x, x)≥ 0 for any x ∈ V

and therefore Sa 6≡ −∞. �

From the very definition of subsolution we derive the following result.

Proposition 6.8. A function u is a subsolution to (DFEa) if and only if

u(x)− u(y)≤ Sa(y, x) for any x, y ∈ V.

Proof. It follows easily from the definitions of subsolution in (28) and σa in (33) that

u(x)− u(y)≤ σa(ξ) for any path ξ linking y to x .
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Taking the minimum over all such paths, we get the inequality in the statement. The converse is trivial,
observing that

Sa(o(e), t(e))≤ σa(e) for every e ∈ E. �

The previous result implies:

Corollary 6.9. If a ≥ c then Sa 6≡ −∞.

Moreover:

Corollary 6.10. Given a ≥ c and x , y in V, there exists a simple path η with o(η)= x and t(η)= y such
that σa(η)= Sa(x, y).

Proof. Let ξ = (ei )
M
i=1 be any path linking x to y. If ξ is not simple there are indices k > j such that

t(ei )= t(ej ). We assume, to ease notation, that k < M ; the case k =M can be treated with straightforward
modifications.

We have that (ei )
k
i= j+1 is a cycle and the paths (ei )

j
i=1 and (ei )

M
i=k+1 are concatenated. We get,

according to Lemma 6.7, that

σa(ξ)= σa((ei )
j
i=1)+ σa((ei )

k
i= j+1)+ σa((ei )

M
i=k+1)≥ σa((ei )

j
i=1)+ σa((ei )

M
i=k+1)

and (ei )
j
i=1∪(ei )

M
i=k+1 is still a path linking x to y. By iterating the above procedure, we remove all cycles

properly contained in ξ and end up with a simple curve ξ0 with o(ξ0)= x , t(ξ0)= y and σa(ξ0)≤ σa(ξ).
This shows that Sa(x, y) can be realized as the infimum of simple paths from x to y. Since there are
finitely many such paths, we get the assertion. �

The condition in Corollary 6.9 is actually necessary and sufficient, as shown by the next result. In the
proof we will use a form of the basic Bellman optimality principle adapted to our frame. It can be stated
as follows: if ξ = (ei )

M
i=1 is a path with

σa(ξ)= Sa(o(e), t(e))

and 1≤ j < k ≤ M , then η := (ei )
k
i= j satisfies σa(η)= Sa(o(ej ), t(ek)).

Proposition 6.11. Assume Sa 6≡ −∞. Given y ∈ V, the function u = Sa(y, · ) is a solution to (DFEa) in
V \ {y} and a subsolution to (DFEa) in V.

Proof. The subsolution property comes from Proposition 6.8 and the triangle inequality (35). We proceed
by showing that u is a solution in V \ {y}. Let x 6= y; then, by Corollary 6.10, there is a path ξ = (ei )

M
i=1

linking y to x with
σa(ξ)= Sa(y, x).

By the Bellman optimality principle, the path η := (ei )
M−1
i=1 satisfies

σa(η)= Sa(y, t(η))= u(t(η)).
Consequently

u(x)= σa(η)+ σa(eM)= u(t(η))+ σa(eM)

with −eM ∈ Ex . Hence

u(x)− u(t(−eM))= u(x)− u(t(η))= σa(eM). �



GLOBAL RESULTS FOR EIKONAL HAMILTON–JACOBI EQUATIONS ON NETWORKS 195

Using Proposition 6.8 and the triangle inequality (35), we also obtain

Corollary 6.12. The function
x 7→ −Sc(x, y)

is a critical subsolution for any fixed y ∈ V.

Combining Corollary 6.9 and Proposition 6.11 we get:

Corollary 6.13. Sa 6≡ −∞ if and only if a ≥ c.

We further have:

Proposition 6.14. Given y ∈ V, the function x 7→ Sa(y, x) is a solution to (DFEa) if and only if there
exists a cycle ξ incident on y with σa(ξ)= 0.

Proof. (=⇒) We will prove in Proposition 6.15 a more general property, namely that if the equation
(DFEa) admits a solution, then there is a cycle ξ with σa(ξ)= 0.

( =⇒) Assume the existence of a cycle, say ξ = (ei )
M
i=1, with σa(ξ)= 0 incident on y. Up to relabelling

the ei , we can set y = o(ξ) = t(ξ). We claim that u := Sa(y, · ) is a solution on the whole of V. By
Proposition 6.11, it is enough to prove the assertion at y. We have

0≤ Sa(y, y)= u(y)≤ σa(eM)+ Sa(y, o(eM))≤ σa(ξ),

and since σa(ξ)= 0, all the inequalities in the above formula must indeed be equalities; in particular

u(y)− u(t(−eM))− σa(eM)= u(y)− Sa(y, o(eM))− σa(eM)= 0

with −eM ∈ Ey . This proves the claim. �

As announced, we complete the above proof by showing:

Proposition 6.15. If the equation (DFEa) admits a solution, then there is a cycle ξ with σa(ξ)= 0.

Proof. Let us assume that v is a solution to (DFEa). Take any x ∈ V ; by the definition of solution, we
can find an edge e with terminal vertex x such that

v(x)− v(o(e))= σa(e).

By iterating backward the procedure, we can construct for any M a path ξ = (ei )
M
i=1 such that

v(t(ej ))− v(o(ek))= σa((ei )
j
i=k) for any j ≥ k. (36)

Since the graph is finite, taking M large enough, we have that for suitable indices j > k, the path (ei )
j
i=k

is a cycle, so that v(t(ej ))− v(o(ek))= 0, and the relation (36) provides the assertion. �

The argument of the next proof is reminiscent of the one used for the existence of critical solutions of
Hamilton–Jacobi equations in compact manifolds; see [Fathi and Siconolfi 2005].

Theorem 6.16. The critical equation (DFEc) admits solutions.
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Proof. We break up the argument according to whether c = a0 or c > a0. Let us first discuss the first
instance. If in addition c=aγ for some arc γ, and we set e=9−1(γ ), then we get from (11), (24), (25) that

σc(e∪ (−e))= 0.

If instead a0 = cγ for some closed arc γ of the network, then e =9−1(γ ) is a loop and we obtain, by
Proposition 5.14,

σc(e)= 0 or σc(−e)= 0.

In both cases, we infer the existence of a critical solution in light of Proposition 6.14.
We proceed considering the case c > a0. Let us assume by contradiction that there are no critical

solutions. For any y ∈ V, setting u y = Sc(y, · ), we can therefore find by Proposition 6.11 a positive
constant δy with

max
e∈Ey

(
u y(y)− u y(t(e))− σc(−e)

)
=−δy . (37)

We define u =
∑

y λy u y , where the λy are positive coefficients summing to 1, and set

δ =min
y
λy δy .

Exploiting that all the u y are subsolutions on the whole of V and using (37), we conclude that for any e∈ E

u(t(e))−u(o(e))−σc(e)=
∑

y 6=t(e)

λy
(
u y(t(e))−u y(o(e))−σc(e)

)
+λt(e)

(
ut(e)(t(e))−ut(e)(o(e))−σc(e)

)
≤−λt(e) δt(e)≤−δ. (38)

Owing to Lemma 5.15 and the fact that c > a0, there is a0 < b < c with

σb(e) > σc(e)− δ for every e ∈ E;

then we deduce from (38) that

u(t(e))− u(o(e))− σb(e)≤ 0 for every e.

This proves that u is a subsolution to (DFEa) with a = b, which is impossible because b < c. Therefore
the maximum in (37) must be 0 for some y0, which in turn implies that Sc(y0, · ) is a critical solution,
as was claimed. �

Remark 6.17. Let u be a solution to (DFEc). Let e be a loop with o(e) = t(e) = x , and γ = 9(e) is
hence a closed curve. If c < cγ , then, according to Proposition 5.14

0= u(o(e))− u(t(e)) < σc(e), 0= u(o(−e))− u(t(−e)) < σc(−e),

which shows that neither e nor −e realizes

min
e∈Ex

(
u(t(e))+ σa(−e)

)
.

This in turn implies that the edge e, and consequently −e, can be removed from the edges of X without
affecting the status of solution for u or any other critical solution.
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Things are different if c = cγ because in this case, see Proposition 5.14,

0=min{σc(e), σc(−e)} = u(o(e))− u(t(e))= u(o(−e))− u(t(−e)).

6C. The Aubry set and some structural properties of solutions. Inspired by what was discussed in the
previous subsection, we introduce the following definition.

Definition 6.18. The Aubry set is defined as

A∗X =A∗X(H)= {e ∈ E | belonging to some cycle with σc(ξ)= 0}. (39)

The projected Aubry set is given by

AX =AX(H)= {y ∈ V | ∃ ξ cycle incident on y with σc(ξ)= 0}. (40)

The projected Aubry set is partitioned into static classes, defined as the equivalence classes with respect
to the relation

Sc(x, y)+ Sc(y, x)= 0.

Equivalently x and y belong to the same static class if there is a cycle ξ with σc(ξ)= 0 incident on both
of them; in particular, the whole cycle ξ is then contained in this static class.

Remark 6.19. Clearly, x ∈AX if and only if x = o(e)= t(e′) for some e, e′ in A∗X ; moreover, if e ∈A∗X ,
then o(e) and t(e) belong to AX . The converse of this last property is not true because, for instance, if
e ∈A∗X then −e might not belong to A∗X . It is also possible to have a pair of adjacent vertices belonging
to different static classes of AX linked by an edge not in A∗X , or even vertices of the same static classes
linked by multiple edges not all belonging to A∗X .

We immediately derive from Proposition 6.15 and Theorem 6.16 the following result.

Lemma 6.20. The Aubry sets are nonempty. Moreover,

AX = {y ∈ V | Sc(y, y)= 0} = {y ∈ V | Sc(y, · ) is a solution to (DFEc)}.

We have a structural result on critical solutions. By admissible trace g on V ′ ⊂ V (for the critical
equation), we mean a function satisfying

g(x)− g(y)≤ Sc(y, x) for any x , y in V ′. (41)

Theorem 6.21. Given an admissible trace g on AX , the unique solution to (DFEc) taking the value g on
AX is

v(x) :=min{g(y)+ Sc(y, x) | y ∈AX}. (42)

In particular, AX represents a uniqueness set for the equation.

Proof. Taking into account (41) and the fact that Sc(y, y)= 0 for any y ∈AX , we deduce that g and v
coincide on AX . The function v is a critical solution, since it is the pointwise minimum of a finite family
of solutions. This property can be easily derived from the definition of solution.
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Assume now that w is another solution agreeing with g on AX . Given any x ∈ V, we construct, arguing
as in Proposition 6.15, a path ξ = (ei )

M
i=1 with t(ξ)= x and such that

w(t(ej ))−w(o(ek))= σc((ei )
j
i=k) for any j ≥ k.

If M is sufficiently large, there must exist j0 ≥ k0 such that (ei )
j0
i=k0

is a cycle. We deduce that there are
y ∈AX and a path η linking y to x with

w(x)= w(y)+ σc(η)≥ g(y)+ Sc(y, x)≥ v(x).

Since the converse inequality holds true by Proposition 6.8, we get w(x)= v(x). �

We record for later use an immediate consequence of the above result:

Corollary 6.22. Given V ′ ⊂AX , and an admissible trace g on it, the function

v(x) :=min{g(y)+ Sc(y, x) | y ∈ V ′} (43)

is the maximal solution to (DFEc) taking the value g on V ′.

We can also derive a representation formula for solutions at a > c in some subset of V. To help in
understanding the next statement, we recall that Sa(x, x) > 0 for any x ∈ V whenever a > c.

Theorem 6.23. Let a > c and V ′ ⊂ V. Let g be a function defined on V ′ satisfying (41) with Sa in place
of Sc. Then the function

v(x)=
{

g(x) if x ∈ V ′,
min{g(y)+ Sa(y, x) | y ∈ V ′} if x 6∈ V ′

is the unique solution to (DFEa) in V \V ′ agreeing with g on V ′. It is in addition a subsolution on the
whole of V.

Proof. We claim that

v(z)− v(x)≤ Sa(x, z) for any z, x in V. (44)

The property is true by assumption if both z and x are in V ′; if instead z and y are in V \V ′ we have

v(z)− v(x)≤ g(y)+ Sa(y, z)− g(y)− Sa(y, x)≤ Sa(x, z),

where y ∈ V ′ is optimal for v(x) and we have exploited the triangle inequality (35). If z 6∈ V ′ and x ∈ V ′,
then (44) directly comes from the very definition of v. Finally, if z ∈ V ′ and x 6∈ V ′, we denote by y an
optimal element in V ′ and use the triangle inequality to write

v(z)− v(x)= g(z)− g(y)− Sa(y, x)≤ Sa(y, z)− Sa(y, x)≤ Sa(x, z).

This concludes the proof of claim (44) and therefore shows, according to Proposition 6.8, that v is a
subsolution in V. Taking into account that Sa(y, · ) is a solution in V \V ′, we also get, arguing as in
Theorem 6.21, that v is a solution in V \V ′. Uniqueness follows from Proposition 6.6. �
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7. Back to the network

In this section we switch our attention back to the network 0, or in other terms, we give again visibility,
besides the vertices, to the interior points of the arcs. We combine the global information gathered on the
abstract graph with the outputs of the local analysis on the arcs of the network. We define an appropriate
notion of Aubry set and provide a PDE characterization of its points.

Exploiting the richer (differentiable) structure of 0, we establish, on the basis of our findings in the
previous section, some regularity properties for critical subsolutions and solutions. This will generalize
what is known for the continuous case in the framework of weak KAM theory; see for example [Fathi 2008].
Finally, we give specific uniqueness results and representation formulae for solutions on the network.

7A. Subsolutions and solutions on 0. The next result shows, as pointed out already in the Introduction,
how the notion of solution to (HJa) can be recovered from the notion of subsolution. The relevance
of the issue is that the latter just requires the usual subsolution property on any arc and continuity at
the junctures. The argument significantly illustrates the interplay between the immersed network and
underlying abstract graph.

Theorem 7.1. Let a ≥ c and y ∈ 0; then the maximal subsolution to (HJa) attaining a given value at y
is a solution in 0 \ {y}.

Proof. We can assume y ∈ 0 \ V ; otherwise the assertion is a consequence of Propositions 6.8 and 6.11
and Proposition 6.3 with V ′ = {y}. It is not restrictive to take 0 as the value assigned at y. We therefore
denote by v the maximal subsolution vanishing at y; see Proposition 3.12. We select γ ∈ E such that
y = γ (s0) for some s0 ∈ (0, 1), and set e =9−1(γ ). We first assume that γ is not a closed arc. Since v
must be in particular a subsolution in the arc γ, we have by Corollary 5.7

v(γ (1))≤
∫ 1

s0

σ+a (t) dt =: β,

v(γ (0))≤−
∫ s0

0
σ−a (t) dt =: α,

where σ+a , σ−a are defined as in (8), (9). The maximal admissible trace g, in the sense of (41), on
V ′ := {o(e), t(e)} dominated by α at o(e)= γ (0), and β at t(e)= γ (1), is

α∗ :=min{α, β + Sa(t(e), o(e))},

β∗ :=min{β, α+ Sa(o(e), t(e))}.

According to Proposition 6.8, Theorem 6.23 and Corollary 6.22, the function w : V → R, defined as

w(x)=


α∗ if x = o(e),
β∗ if x = t(e)
min{α∗+ Sa(o(e), x), β∗+ Sa(t(e), x)} if x 6= o(e) and x 6= t(e),

is the maximal subsolution to (DFEa) on V agreeing with α∗ and β∗ at the vertices of e. It is in addition
a solution in V \ {γ (0), γ (1)}. By Proposition 6.3 it can thus be extended to a subsolution of (HJa)
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in 0, denoted by w, which is in addition a solution in 0 \ {γ (0), γ (1)}. The function w is the maximal
subsolution to (HJa) taking the values α∗ and β∗ on the vertices of γ, but it does not necessarily vanish
at y. We have in any case

v ≤ w in 0. (45)

To complete the proof, we need to suitably adjust w inside γ in order to attain the value 0 at y. To this
end, we proceed by showing that the boundary data α∗, 0 and 0, β∗ are admissible, in the sense of (17),
for (HJγ a) restricted to the subintervals [0, s0] and [s0, 1], respectively. In fact,

α∗ ≤ α =−

∫ s0

0
σ−a (t) dt, (46)

and if a strict inequality prevails in the above formula, we get

α∗ =

∫ 1

s0

σ+a (t) dt + Sa(t(e), o(e)). (47)

Let us consider a cycle in X of the form ξ ∪ e, where ξ is a path linking t(e) to o(e) with σa(ξ) =

Sa(t(e), o(e)); see Corollary 6.10. Then σa(ξ ∪ e) ≥ 0 and consequently Sa(t(e), o(e)) ≥ −σa(e). By
plugging this relation into (47) and recalling the definition of σa(e), we get

α∗ ≥

∫ 1

s0

σ+a (t) dt −
∫ 1

0
σ+a (t) dt =−

∫ s0

0
σ+a (t) dt. (48)

By combining (46) and (48) we have∫ s0

0
σ−a (t) dt ≤−α∗ ≤

∫ s0

0
σ+a (t) dt,

proving the claimed admissibility property in [0, s0]. A straightforward modification of the previous
argument shows the same in [s0, 1]. Thus, there exists a function u on γ ([0, 1]) uniquely determined by
requiring u ◦ γ to be a solution to (HJγ a) in (0, s0) and (s0, 1), and in addition taking the values α∗, 0
and β∗ at γ (0), y and γ (1), respectively. This is also the maximal subsolution of (HJγ a) in (0, 1) taking
such values at the boundary points and at s = s0. The function

w(x)=
{
w in 0 \ γ ([0, 1]),
u in γ ([0, 1])

is a subsolution to (HJa) in 0 and by the maximality property of u on γ and (45),

v ≤ w in 0,

which immediately implies v = w.
The function v is by construction a solution to (HJa) in 0 \ {γ (0), y, γ (1)}. Moreover, taking into

account Remark 5.2 and Proposition 5.6 applied to the subinterval [0, s0], we see that if w(γ (0)) = α
then w satisfies condition (iii) in the definition of solution to (HJa) at γ (0) with respect to the arc γ̃ . If
instead w(o(e)) = α+ Sa(t(e), o(e)) then again condition (iii) of the definition of solution is satisfied
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with respect to some arc different from γ, γ̃ because of Propositions 6.11 and 6.3. Similarly, we prove
that v is a solution at γ (1). This concludes the proof if γ is not a closed arc.

If instead γ is a closed arc, then we indicate by w the maximal periodic subsolution of (HJγ a) in
(0, 1) vanishing at s = s0; see Corollary 5.13. Arguing as in the first part of the proof, we see that the
maximal subsolution v to (HJa) in 0 vanishing at y is given by

v(x)=
{
w(γ−1(x)) in γ ([0, 1]),
w(γ (0))+ Sa(γ (0), x) in 0 \ γ ([0, 1]).

Taking into account the representation formulae for w provided in item (ii) of Corollary 5.13 and arguing
again as in the first part of the proof, we show that v is a solution to (HJa) in 0 \ {y}, as was claimed. �

7B. Aubry set in 0. We define the Aubry set A0 on the network as

A0 :=
{

x ∈ RN
∣∣ x =9(e)(t) for some e ∈A∗X , t ∈ [0, 1]

}
. (49)

One could also consider a lift of A0 to the tangent bundle T0, as in the continuous case. For example,
this could be useful to study the analogues in this setting of Mather’s measures, Mather sets, minimal
average actions, etc. (see for example [Fathi 2008; Sorrentino 2015] for precise definitions); this discussion,
however, would go beyond our current objectives, so we decided to postpone it to a future investigation.

Remark 7.2. We point out for later use that the support of an arc γ belongs to A0 if and only if γ =9(e)
and at least one between e or −e is in A∗X .

The first lemma regards subsolutions to the critical equation on X . Briefly, it says that — analogously
to what happens in the continuous case, see [Fathi 2008] — the differential of a critical subsolution is
prescribed on the Aubry set and that critical subsolutions are never strict on the Aubry set. On the other
hand, it is always possible to find critical subsolutions that are strict outside the Aubry set. This will be
used in the next subsection to obtain the same results on networks. See Theorems 7.5 and 7.6.

Lemma 7.3. Given a subsolution u to (DFEc), one has

〈du, e〉 = σc(e) for any e ∈A∗X . (50)

Furthermore, there exists a subsolution w to (DFEc) with

〈dw, e〉< σc(e) for any e ∈ E \A∗X . (51)

Proof. Let u be a critical subsolution and assume for purposes of contradiction that

〈du, e〉< σc(e) for some e ∈A∗X .

By the very definition of Aubry set, we can find a cycle ξ = (ei )
M
i=1 such that e= ej for some j = 1, . . . ,M

and σc(ξ)= 0. Taking into account that u is a subsolution, we have

〈du, ei 〉 ≤ σc(ei ) for i 6= j and 〈du, ej 〉< σc(ej ).
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This implies

0=
∑

i

〈du, ei 〉<
∑

i

σc(ei )= σc(ξ)= 0,

which is impossible. We pass to the second part of the statement. We start constructing for any e0 ∈ E\A∗X
a critical subsolution ue0 with

〈 due0, e0〉< σc(e0). (52)

The argument will be organized taking into account the classification of edges in A∗X provided in
Remark 6.19. If t(e0) 6∈AX , then we set ue0 = Sc(t(e0), · ); according to Lemma 6.20, ue0 is not a critical
solution at t(e0) which implies (52). If t(e0) ∈AX , we consider the critical subsolutions Sc(t(e0), · ) and
−Sc( · , t(e0); see Proposition 6.11 and Corollary 6.12. Taking into account the characterization of AX

given in Lemma 6.20, we have

− Sc(t(e0), o(e0))= Sc(t(e0), t(e0))− Sc(t(e0), o(e0)) ≤ σc(e0),

Sc(o(e0), t(e0))= − Sc(t(e0), t(e0))+ Sc(o(e0), t(e0))≤ σc(e0).

If equality prevails in both above formulae, we get

Sc(o(e0), t(e0))+ Sc(t(e0), o(e0))= 0,

which is possible if and only if both o(e0) and t(e0) are in the Aubry set and belong to the same static
class. If this is not the case, we satisfy (52) up to choosing ue0 equal to Sc(t(e0), · ) or −Sc( · , t(e0)). If
instead the two vertices are in the same static class, we claim that

Sc(t(e0), t(e0))− Sc(t(e0), o(e0))=−Sc(t(e0), o(e0)) < σc(e0). (53)

In fact, we know, by the very definition of static class, that there is a path ξ linking t(e0) to o(e0) with all
the edges belonging to A∗X . Therefore, using Lemma 6.20 and the first part of the statement that we have
just proven, applied to the critical subsolution −Sc( · , o(e0)), we have that

Sc(t(e0), o(e0))=−Sc(o(e0), o(e0))+ Sc(t(e0), o(e0))= σc(ξ).

Were (53) false, we should further have

0=−Sc(t(e0), o(e0))+ Sc(t(e0), o(e0))= σc(ξ ∪ e0)

and consequently e0 ∈A∗X , which is impossible. Formula (52) is therefore satisfied with ue0 = Sc(t(e0), · ).
This completes the proof of (52).

We conclude arguing along the same lines as Theorem 6.16. Given e ∈ E \A∗X , we denote by ue a
critical subsolution satisfying (52) with e in place of e0. We choose positive constants λe for e ∈ E \A∗X ,
summing to 1, and define a critical subsolution via

w =
∑

e∈E\A∗X

λe ue.
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Given e0 ∈ E \A∗X , we have

〈dw, e0〉 =
∑
e 6=e0

λe 〈due, e0〉+ λe0 〈due0, e0〉< σc(e0),

as we wished to prove. �

We derive a PDE characterization of points in the Aubry set, generalizing a property of the continuous
case.

Proposition 7.4. The maximal subsolution to (HJc) taking a given value at a point y ∈ 0 is a critical
solution on the whole network if and only if y ∈A0.

Proof. If y ∈ V, the assertion comes from Lemma 6.20; we can then assume from now on that y ∈ 0 \ V.
We prescribe, without loss of generality, the value 0 at y, and denote by v the maximal subsolution
vanishing at y; see Proposition 3.12. We denote by γ an arc whose support contains y.

We first assume that γ is not a closed curve. Taking into account Theorem 7.1, it is enough to show
that v is a solution at y if and only if y ∈A0. Looking at the proof of Theorem 7.1 (we adopt the same
notations), we see that the solution property at y is in turn equivalent to the following: the solution of
(HJγ c) in (0, 1) taking the values v(γ (0)), v(γ (1)) at 0, 1, respectively, vanishes at s = s0. In light of
Proposition 5.5, this boils down to showing

min{v(γ (0))+ A, v(γ (1))− B} = 0, (54)

where σ+c , σ−c are defined as in (8), (9), respectively, and

A=
∫ s0

0
σ+c (t) dt, B =

∫ 1

s0

σ−c (t) dt.

Taking into account the proof of Theorem 7.1, we know that

v(γ (0))=min{−D, C + Sc(γ (1), γ (0))}, (55)

v(γ (1))=min{C, −D+ Sc(γ (0), γ (1))}, (56)

where

C =
∫ 1

s0

σ+c (t) dt, D =
∫ s0

0
σ−c (t) dt.

Then

v(γ (0))+ A=

{∫ s0
0 [σ

+
c (t)− σ

−
c (t)] dt if v(γ (0))=−D,∫ 1

0 σ
+
c (t) dt + Sc(γ (1), γ (0)) if v(γ (0))= C + Sc(γ (1), γ (0))

(57)

and

v(γ (1))− B =

{∫ 1
s0
[σ+c (t)− σ

−
c (t)] dt if v(γ (1))= C,

−
∫ 1

0 σ
−
c (t) dt + Sc(γ (0), γ (1)) if v(γ (1))=−D+ Sc(γ (0), γ (1)).

(58)
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Exploiting the property that σc(ξ)≥ 0 for any cycle ξ in X , we see that

Sc(γ (0), γ (1))≥−σc(−e)=
∫ 1

0
σ−c (t) dt,

Sc(γ (1), γ (0))≥−σc(e)=−
∫ 1

0
σ+c (t) dt.

Equality holds in the first formula if and only if there is a cycle ξ with −e ⊂ ξ and σc(ξ)= 0, and in the
second one if and only if there a cycle η with e ⊂ ξ and σc(η)= 0. We in addition have that∫ s0

0
[σ+c (t)− σ

−

c (t)] dt = 0 or
∫ 1

s0

[σ+c (t)− σ
−

c (t)] dt = 0

if and only if c = aγ , and in this case both e and −e belong to A∗X . In light of the above remarks, (57)
and (58), we conclude that (54) holds if and only if y ∈A0.

This concludes the proof when γ is not a closed arc. The argument for γ a closed arc goes along the
same lines just adapting the representation formulae for solutions of (HJγ c) and taking into account
Corollary 5.13. �

7C. Regularity results for critical subsolutions. We state and prove the main regularity results of this
section. They can be considered as a generalization to the network setting of the results in [Fathi and
Siconolfi 2004].

Theorem 7.5. Any critical subsolution u : 0→ R is of class C1 in A0 \ V, and all such subsolutions
possess the same differential in A0 \ V.

Proof. Let u be a critical subsolution on 0 and γ =9(e) an arc with e ∈A∗X . According to Lemma 7.3
and formula (50),

u(γ (1))− u(γ (0))= σc(e).

Therefore u ◦ γ is the maximal subsolution taking the value u(γ (0)) at s = 0 and, according to
Proposition 5.6, has the form

u(γ (s))=
∫ s

0
σ+c (t) dt,

where σ+c is as in (8) with Hγ in place of H and c in place of a. We deduce that s 7→ u(γ (s)) is of class C1

for t ∈ (0, 1) and for any x = γ (t0), with t0 ∈ (0, 1), the differential D0u(x) is uniquely determined
among the elements of T ∗0 (x) by the condition

(D0u(x), γ̇ (t0))=
d
dt

u(γ (t))|t=t0 = σ
+

c (t0). �

Moreover:

Theorem 7.6. For any critical subsolution w on X , there exists a critical subsolution u on 0, with w = u
on V, which is of class C1 in 0\V. There exists in addition a critical subsolution v on 0 of class C1(0\V )
satisfying

H(x, D0v(x)) < c for x ∈ 0 \ (A0 ∪ V ).
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Proof. Let w be a critical subsolution in X . Given any arc γ =9(e), we know, see Proposition 6.2, that
w(γ (0)) and w(γ (1)) satisfy the compatibility condition (17), so that

w(γ (0))+
∫ 1

0
σ−c (t) dt ≤ w(γ (1))≤ w(γ (0))+

∫ 1

0
σ+c (t) dt, (59)

where σ+c , σ−c are defined as in (8), (9) with Hγ , c in place of H , a, respectively. We can therefore find
λ ∈ [0, 1] with

w(γ (1))= w(γ (0))+
∫ 1

0
[λ σ−c (t)+ (1− λ) σ

+

c (t)] dt, (60)

and the function

s 7→ w(γ (0))+
∫ s

0
[λ σ−c (t)+ (1− λ) σ

+

c (t)] dt (61)

is a subsolution of class C1 to Hγ = c in (0, 1) taking the values w(γ (0)) and w(γ (1)) at s = 0 and s = 1,
respectively. This shows the first part of the assertion.

As far as the second claim is concerned, we proceed by taking a critical subsolution w satisfying (51).
This implies that strict inequalities prevail in formula (59) whenever γ =9(e) with e, −e not in A∗X . The
λ appearing in (60) can be consequently taken in (0, 1), so that the function defined in (61) is a strict
subsolution to Hγ = c. This concludes the proof in light of Remark 7.2. �

Remark 7.7. Notice that if we apply the procedure of the first part of the previous result starting with a
critical solution rather than a critical subsolution, then the property of being a solution could be possibly
false for the regularized function.

7D. Representation formulae and uniqueness results on the network. In this section, we want to pro-
vide representation formulae and uniqueness results with traces that are not necessarily defined on vertices,
but on a general subset of the network 0. To this aim, we extend Sa , for a ≥ c, from V to the whole
of 0 defining a semidistance intrinsically related to H and the level a. This is basically the same object
introduced in [Schieborn and Camilli 2013]. We do not develop here any further the metric point of
view, but just use it to establish an admissibility condition for data assigned on subsets of 0, and provide
representation formulae.

Given a portion of arc γ |[s1,s2], for 0≤ s1 ≤ s2 ≤ 1, we define

`a(γ |[s1,s2])=

∫ s2

s1

(σ+a )
γ
(t) dt,

where (σ+a )
γ is defined as in (8). We get in particular, for the whole arc, the relation

`a(γ )= σa(9
−1(γ )) for any γ ∈ E . (62)

We define `a for a curve on 0 given by a finite number of concatenated arcs or portions of arcs as the sum
of the lengths of the arcs or portion of arcs making it up. We introduce the related geodesic (semi-)distance
on 0 via

S0a (x, y)=min{`a(ξ) | ξ a union of concatenated arcs linking x to y}. (63)
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We deduce from the results on σa and (62) the following lemma.

Lemma 7.8. (i) If x 6= y are in V, then Sa(x, y)= S0a (x, y).

(ii) If ξ is a closed curve on 0, then `a(ξ)≥ 0.

It is easy to check that the maximal subsolution v to (DFEa) vanishing at y ∈ 0 given in Theorem 7.1
and Proposition 7.4 is

v(x)= S0a (y, x) for any a ≥ c, x ∈ 0.

We derive, taking also into account Proposition 6.8, that for a continuous function u :0→R, the condition

u(x)− u(y)≤ S0a (y, x) for any pair x , y in 0′ (64)

is necessary and sufficient for being a subsolution to (HJa). Given a function g defined on a subset 0′

of 0, we therefore introduce the following admissibility condition for (DFEa):

g(x)− g(y)≤ S0a (x, y) for any x , y in 0′. (65)

We give in the next theorem a couple of examples of uniqueness results for solutions to (DFEa), and
corresponding representation formulae, one can obtain prescribing values on subsets not necessarily
contained in V. Further results are reachable along the same lines. Similar formulae, even if for subsets
of vertices and just in the supercritical case, have been already obtained in [Schieborn and Camilli 2013].

Theorem 7.9. Let 0′ be a closed subset of 0 and g an admissible trace defined on it, in the sense of (65).
We set

v(x)=min{g(y)+ S0a (y, x) | y ∈ 0′}.

(i) Critical case: if a = c and 0′ ⊂A0 with

0′ ∩ γ ([0, 1]) 6=∅ for any γ with 9−1(γ ) ∈A∗X , (66)

then v is the unique solution in 0 to H(x, Du)= c agreeing with g on 0′.

(ii) Supercritical case: if a > c, then v is uniquely characterized by the properties of being in C(0,R),
being a solution of (HJa) in 0 \0′, and agreeing with g on 0′.

Proof. The solution property of v in both cases, in 0 and 0 \0′ respectively, follows directly from being
a subsolution in 0, in light of (64), and satisfying the subtangent test as a minimum of solutions, in 0 and
0 \0′ respectively. In addition v is the maximal solution (in 0 or 0 \0′) agreeing with g on 0′ in light
of Theorem 7.1, Proposition 7.4, and the admissibility condition (65).

Now, assume u to be another solution taking the value g on 0′; by adapting the backward procedure
explained in Proposition 6.15 and Theorem 6.21, we construct, for any x ∈ 0 \0′, a curve ξ made up by
concatenated arcs or portion of arcs starting at some point y ∈ 0′ and ending at x with

u(x)= g(y)+ `a(ξ)≥ v(x).

In the critical case, condition (66) plays a crucial role for this. The maximality property of v then implies
that equality must hold in the above formula. �
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Appendix

Proof of Proposition 3.11. Taking into account that for any γ ∈ E (which is a finite set) w ◦γ is Lipschitz-
continuous in [0, 1], thanks to the coercivity condition (Hγ 2), we deduce that there exists L > 0 such
that, for any given subsolution w,

|w(γ (s2))−w(γ (s1))| ≤ L `(γ |[s1,s2]) for all γ ∈ E , and s1 ≤ s2 ∈ [0, 1]; (67)

hereafter ` indicates the Euclidean length of curves in RN.
We proceed by considering x and y in 0 and a finite sequence of concatenated arcs γ1, . . . , γM , for

some index M , that realize the geodesic distance d0(x, y). More specifically, we assume that x = γ1(tx),
y = γM(ty) with tx , ty in [0, 1] and that

d0(x, y) = `(γ1|[tx ,1])+

M−1∑
i=2

`(γi )+ `(γM |[0,ty ]).

In the remainder of the proof we assume that M > 2 in order to ease the notation (the other cases can be
treated analogously).

We deduce from (67) that

|w(y)−w(x)| ≤ |w(γ1(1))−w1(γ1(tx))| +

M−1∑
i=2

|w(γi (1))−w(γi (0))| + |w(γM(ty))−w1(γM(0))|

≤ L
[
`(γ1|[tx ,1])+

M−1∑
i=2

`(γi )+ `(γM |[0,ty ])

]
= L d0(x, y). �

Proof of Proposition 5.5. We denote by w the function appearing in the statement. If a = aγ , the assertion
comes from (11) and Proposition 5.3. Instead, if a > aγ , the function w is an a.e. subsolution, being
the minimum of two C1 (sub-)solutions. Using a basic property in viscosity solutions theory, it is also a
supersolution, as a minimum of supersolutions. Moreover, w(0)= α and w(1)= β hold thanks to (17).

Finally, the function s 7→
∫ s

0 σ
+
aγ is a strict subsolution to (HJγ a), and this implies by an argument

going back to [Ishii 1987] that the Dirichlet problem with admissible data α, β is uniquely solved. �

Proof of Proposition 5.6. If a = aγ , then, as already pointed out in Proposition 5.3, the solution is unique
up to additive constants; hence it is automatically given by (20) once the value w(0) is assigned.

Therefore, from now on we can assume that a > aγ . By Proposition 5.5,

w(s)=min
{
w(0)+

∫ s

0
σ+a (t) dt, w(1)−

∫ 1

s
σ−a (t) dt

}
for any s.

We claim that if

w(s0)= w(1)−
∫ 1

s0

σ−a (t) dt (68)

for some s0 ∈ (0, 1), then

w(s)= w(1)−
∫ 1

s
σ−a (t) dt for any s ∈ (s0, 1].
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Assume by contradiction that there exists s1 > s0 such that

w(0)+
∫ s1

0
σ+a (t) dt = w(0)+

∫ s0

0
σ+a (t) dt +

∫ s1

s0

σ+a (t) dt <w(1)−
∫ 1

s1

σ−(t) dt;

this implies

w(0)+
∫ s0

0
σ+a (t) dt <w(1)−

∫ 1

s1

σ−a (t) dt −
∫ s1

s0

σ+a (t) dt. (69)

It is apparent that ∫ s1

s0

σ+a (t) dt >
∫ s1

s0

σ−a (t) dt

and we can consequently deduce from (69) that

w(0)+
∫ s0

0
σ+a (t) dt <w(1)−

∫ 1

s1

σ−a (t) dt −
∫ s1

s0

σ−a (t) dt = w(1)−
∫ 1

s0

σ−(t) dt,

in contrast with (68). We assume, for purposes of contradiction, that (68) holds true for some s0 ∈ (0, 1).
Since a > aγ , we can take p0 with H(1, p0) < a. If w is not of the form (20), then, owing to the previous
claim, we can fix s0 in such a way that

w(s)= w(1)−
∫ 1

s
σ−a (t) dt and H(s, p0) < a

for s ∈ [s0, 1]. This implies

ϕ(s) := w(1)+ p0(s− 1)≤ w(1)−
∫ 1

s
σ−a (t) dt = w(s)

for s ∈ [s0, 1], and consequently ϕ is a constrained subtangent to w at 1 with

H(1, ϕ′(1))= H(1, p0) < 1,

contradicting (19). We deduce that w is of the form (20) showing the first part of the assertion.
Conversely, if w is of the form (20), then it is of class C1 in (0, 1) with w′(s)= σ+a (s). Consequently,

any constrained subtangent ϕ at t = 1 must satisfy

w(1)−
∫ 1

s
ϕ′ dt = ϕ(s)≤ w(s)= w(1)−

∫ 1

s
σ+a dt

for s sufficiently close to 1. This implies ∫ 1

s
ϕ′ dt ≥

∫ 1

s
σ+a dt

and shows the existence of a sequence sn contained in (0, 1) and converging to 1 as n goes to infinity,
with ϕ′(sn)≥ σ

+
a (sn). Passing to the limit as n goes to infinity, we get ϕ′(1)≥ σ+a (1). We deduce from

this the inequality (19) and conclude the proof. �
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Proof of Proposition 5.11. If a = cγ = aγ then the integrals in (21) coincide in light of (11); then they
must both vanish, and this shows the assertion. Assume now that cγ > aγ and also assume for purposes
of contradiction that strict inequalities prevail instead in (21). Then, we can find λ ∈ (0, 1) with∫ 1

0
[λ σ+cγ (t)+ (1− λ) σ

−

cγ (t)] dt = 0.

Taking into account that σ+cγ (t) > σ
−
cγ (t) for any t , this implies

s 7→
∫ s

0
[λ σ+cγ (t)+ (1− λ) σ

−

cγ (t)] dt

is a strict periodic subsolution to H = cγ . This is impossible by the very definition of cγ . �

Proof of Corollary 5.13. The unique point to check is that the values α+β at s = 0 and α at s = s0 are
admissible, in the sense of (17), for (HJγ a) in (0, s0), and the same holds true in (s0, 1) for the values α at
s= s0 and α+β at s= 1. The argument is the same for the two subintervals. We therefore focus on (s0, 1).

If u(1)− u(s0)= β =
∫ 1

s0
σ+a (t) dt , the compatibility property is immediate and the solution in (s0, 1)

is given by (23), as asserted in item (ii) of the statement. Let us instead assume

u(1)− u(s0)= β =−

∫ s0

0
σ−a (t) dt <

∫ 1

s0

σ+a (t) dt. (70)

We have by Lemma 5.9,
∫ 1

0 σ
−
a (t) dt ≤ 0 and consequently

u(1)− u(s0)≥

∫ 1

s0

σ−a (t) dt.

The last inequality plus (70) shows the claimed admissibility property. �

Proof of Proposition 6.1. Letw be a solution to (HJa) with trace u on V. By the very definition of solution,
given any arc γ, we know w ◦ γ is a solution to Hγ = a in (0, 1) taking the values u(γ (0)) and u(γ (1))
at 0 and 1, respectively. This implies that such boundary values are admissible with respect to Hγ , in the
sense of formula (17) with Hγ in place of H. By the uniqueness property showcased in Proposition 5.5,
the values of w on the support of γ are therefore uniquely determined by u(γ (0)), u(γ (1)) and Hγ .
Since the arc γ has been arbitrarily chosen, we can hence conclude the asserted uniqueness. �
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