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ANALYTIC TORSION, DYNAMICAL ZETA FUNCTIONS,
AND THE FRIED CONJECTURE

SHU SHEN

We prove the equality of the analytic torsion and the value at zero of a Ruelle dynamical zeta function
associated with an acyclic unitarily flat vector bundle on a closed locally symmetric reductive manifold.
This solves a conjecture of Fried. This article should be read in conjunction with an earlier paper by
Moscovici and Stanton.
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1. Introduction

The purpose of this article is to prove the equality of the analytic torsion and the value at zero of a
Ruelle dynamical zeta function associated with an acyclic unitarily flat vector bundle on a closed locally
symmetric reductive manifold, which completes a gap in the proof given by Moscovici and Stanton [1991]
and solves a conjecture of Fried [1987].

Let Z be a smooth closed manifold. Let F' be a complex vector bundle equipped with a flat
Hermitian metric g¥. Let H*(Z, F) be the cohomology of sheaf of locally flat sections of F. We
assume H*(Z, F)=0.

The Reidemeister torsion, introduced in [Reidemeister 1935], is a positive real number one obtains via
the combinatorial complex with values in F associated with a triangulation of Z, which can be shown
not to depend on the triangulation.

Let g7Z be a Riemannian metric on 7' Z. Ray and Singer [1971] constructed the analytic torsion T'(F)
as a spectral invariant of the Hodge Laplacian associated with g7Z and g¥. They showed that if Z is an

MSC2010: 587120, 58752, 11F72, 11M36, 37C30.
Keywords: index theory and related fixed point theorems, analytic torsion, Selberg trace formula, dynamical zeta functions.
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2 SHU SHEN

even-dimensional oriented manifold, then 7(F) = 1. Moreover, if dim Z is odd, then T (F) does not
depend on the metric data.

Ray and Singer [1971] conjectured an equality between the Reidemeister torsion and the analytic
torsion, which was later proved by Cheeger [1979] and Miiller [1978]. Using the Witten deformation,
Bismut and Zhang [1992] gave an extension of the Cheeger—Miiller theorem which is valid for arbitrary
flat vector bundles.

From the dynamical side, Milnor [1968b, Section 3] pointed out a remarkable similarity between
the Reidemeister torsion and the Weil zeta function. A quantitative description of their relation was
formulated by Fried [1986] when Z is a closed oriented hyperbolic manifold. Namely, he showed that
the value at zero of the Ruelle dynamical zeta function, constructed using the closed geodesics in Z and
the holonomy of F, is equal to 7'(F)?2. Fried [1987, p. 66, Conjecture] suggested that a similar result
holds true for general closed locally homogeneous manifolds.

In this article, we prove the Fried conjecture for odd-dimensional! closed locally symmetric reductive
manifolds. More precisely, we show that the dynamical zeta function is meromorphic on C, holomorphic
at 0, and that its value at 0 is equal to 7'(F)2

The proof of the above result by Moscovici and Stanton [1991], based on the Selberg trace formula
and harmonic analysis on reductive groups, does not seem to be complete. We give the proper argument
to make it correct. Our proof is based on the explicit formula given by Bismut [2011, Theorem 6.1.1] for
semisimple orbital integrals.

The results contained in this article were announced in [Shen 2016]. See also Ma’s talk [2017] at
Séminaire Bourbaki for an introduction.

Now, we will describe our results in more detail, and explain the techniques used in their proofs.

1A. The analytic torsion. Let Z be a smooth closed manifold, and let F* be a complex flat vector bundle
on Z.

Let g7Z be a Riemannian metric on 7 Z, and let g¥ be a Hermitian metric on F. To g7 and g, we
can associate an L2-metric on Q*(Z, F), the space of differential forms with values in F. Let O< be the
Hodge Laplacian acting on Q°(Z, F'). By Hodge theory, we have a canonical isomorphism

kerO% ~ H*(Z, F). (1-1)

Let (O%)~! be the inverse of (12 acting on the orthogonal space to ker 0%. Let N AYT*Z) pe the
number operator of A*(T*Z), i.e., multiplication by i on Q' (Z, F). Let Tr, denote the supertrace. For
s € C, Re(s) > %dim Z, set

0(s) = — Tr[NA T2 (@%) ™), (1-2)
By [Seeley 1967], 6(s) has a meromorphic extension to C, which is holomorphic at s = 0. The analytic
torsion is a positive real number given by

T(F) = exp(6(0)/2). (1-3)

1The even-dimensional case is trivial.
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Equivalently, T(F') is given by the following weighted product of the zeta regularized determinants:
dimZ )
T(F)= 1_[ det(0% |gi(z, ) TV"/2 (1-4)
i=1
1B. The dynamical zeta function. Let us recall the general definition of the formal dynamical zeta
function associated to a geodesic flow given in [Fried 1987, Section 5].

Let (Z, gT%) be a connected manifold with nonpositive sectional curvature. Let I' = 71 (Z) be the
fundamental group of Z, and let [I'] be the set of the conjugacy classes of I'. We identify [I'] with the
free homotopy space of Z. For [y] € [I'], let B, be the set of closed geodesics, parametrized by [0, 1],
in the class [y]. The map x. € B[,,] = (xo, Xo/|Xo|) induces an identification between [ [ 1e[rj—¢13 Bly]
and the fixed points of the geodesic flow at time 7 = 1 acting on the unit tangent bundle SZ. Then, By, is
equipped with the induced topology, and is connected and compact. Moreover, all the elements in B[,
have the same length [[,,;. Also, the Fuller index ind (By,)) € Q is well defined [Fried 1987, Section 4].
Given a finite-dimensional representation p of I', for o € C, the formal dynamical zeta function is then
defined by

Ry(0) = exp( Z Tr[p(y)]ind (B[y])e_"l[l’]). (1-5)
[yle[l'l—{1}
Note that our definition is the inverse of the one introduced by Fried [1987, p. 51].

The Fuller index can be made explicit in many case. If [y] € [[]—{1}, the group S! acts locally freely on
B[y by rotation. Assume that the B[} are smooth manifolds. This is the case if (Z, g7#%) has a negative
sectional curvature or if Z is locally symmetric. Then Sl\B[y] is an orbifold. Let Xorb(Sl\B[y]) € Q be
the orbifold Euler characteristic [Satake 1957]. Denote by

mpy) = |ker(S' — Diff(Bp,)))| € N* (1-6)
the multiplicity of a generic element in Bp,]. By [Fried 1987, Lemma 5.3], we have
Xorn(S'\Bpy))

indF (B[y]) = (1'7)
Mmiy]
By (1-5) and (1-7), the formal dynamical zeta function is then given by
SN\B
Ro@ =ewp( Y Trlp 2O o) (1-8)

Ylelr)—(1} ]
We will say that the formal dynamical zeta function is well defined if R, (0’) is holomorphic for Re(o) > 1
and extends meromorphically to o € C.
Observe that if (Z, g7 %) is of negative sectional curvature, then By ~ S! and

Xon(S'\Bp) = 1. (1-9)

In this case, R, (o) was recently shown to be well defined by Giulietti, Liverani and Pollicott [Giulietti et al.
2013] and Dyatlov and Zworski [2016]. Moreover, Dyatlov and Zworski [2017] showed that if (Z, gTZ )
is a negatively curved surface, the order of the zero of R,(0) at o = 0 is related to the genus of Z.
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1C. The Fried conjecture. Let us briefly recall the results in [Fried 1986]. Assume Z is an odd-
dimensional connected orientable closed hyperbolic manifold. Take r € N. Let p: I' — U(r) be a unitary
representation of the fundamental group I'. Let F' be the unitarily flat vector bundle on Z associated to p.

Using the Selberg trace formula, Fried [1986, Theorem 3] showed that there exist explicit constants
C, € R* and rj, € Z such that as 0 — 0,

R,y(0) = C,T(F)*0™ + O(c" ). (1-10)
Moreover, if H*(Z, F) = 0, then
Co=1, 1,=0, (1-11)
so that
R,(0) = T(F)~ (1-12)

Fried [1987, p. 66, Conjecture] suggested that the same holds true when Z is a general closed locally
homogeneous manifold.

1D. The V-invariant. In this and in the following subsections, we give a formal proof of (1-12) using
the V-invariant of Bismut and Goette [2004].

Let S be a closed manifold equipped with an action of a compact Lie group L, with Lie algebra [. If
a €1, let a® be the corresponding vector field on S. Bismut and Goette [2004] introduced the V-invariant
Va(S) e R.

Let f be an ¢ -invariant Morse—Bott function on S. Let B r C S be the critical submanifold. Since
as|p - € TBy, V4(By) is also well defined. By [Bismut and Goette 2004, Theorem 4.10], V,(S) and
Va(By) are related by a simple formula.

1E. Analytic torsion and the V-invariant. Let us argue formally. Let L Z be the free loop space of Z
equipped with the canonical S!-action. Write LZ = ]_[[y]e[I‘] (LZ)y as a disjoint union of its connected
components. Let a be the generator of the Lie algebra of S! such that exp(a) = 1. As explained in
[Bismut 2005, Equation (0.3)], if F is a unitarily flat vector bundle on Z such that H*(Z, F) = 0, at
least formally, we have
log T(F) ==Y Trlp()Va((LZ)py))- (1-13)
[vlelT]

Suppose that (Z, g7 #) is an odd-dimensional connected closed manifold of nonpositive sectional
curvature, and suppose that the energy functional

1
E:x.eLZ—>%/ 155 |2 ds (1-14)
0

on LZ is Morse-Bott. The critical set of E is just [ [[,1e[ry Bly]> and all the critical points are local
minima. Applying [Bismut and Goette 2004, Theorem 4.10] to the infinite-dimensional manifold (L Z)y
equipped with the S!-invariant Morse—Bott functional E, we have the formal identity

Va(LZ)(y) = Va(Bly))- (1-15)
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Since B[j) = Z is formed of the trivial closed geodesics, by the definition of the V-invariant,
Va(Bp1y) = 0. (1-16)

By [Bismut and Goette 2004, Proposition 4.26], if [y] € [['] — {1}, then

Xorn(S'\ Bpy))
Va(Bp)) = —T”. (1-17)
[¥]
By (1-13), (1-15)—(1-17), we get a formal identity
1 Xorn(S'\ Bpy))
logT(F)=75 Y. Trlp()]="———L, (1-18)

[ylelTl-{1} "yl

which is formally equivalent to (1-12).

1F. The main result of the article. Let G be a linear connected real reductive group [Knapp 1986, p. 3],
and let 6 be the Cartan involution. Let K be the maximal compact subgroup of G of the points of G that
are fixed by 6. Let ¢ and g be the Lie algebras of K and G, and let g = p & € be the Cartan decomposition.
Let B be a nondegenerate bilinear symmetric form on g which is invariant under the adjoint action of G
and 6. Assume that B is positive on p and negative on £. Set X = G/ K. Then B induces a Riemannian
metric g7 on the tangent bundle 7X = G x p such that X is of nonpositive sectional curvature.

Let I' C G be a discrete torsion-free cocompact subgroup of G. Set Z = I'\ X. Then Z is a closed
locally symmetric manifold with 71(Z) = I'. Recall that p : I' — U(r) is a unitary representation of I,
and that F' is the unitarily flat vector bundle on Z associated with p. The main result of this article gives
the solution of the Fried conjecture for Z. In particular, this conjecture is valid for all the closed locally
symmetric spaces of noncompact type.

Theorem 1.1. Assume dim Z is odd. The dynamical zeta function R,(0) is holomorphic for Re(o) > 1
and extends meromorphically to o € C. Moreover, there exist explicit constants C, € R* and r, € Z, see
(7-75), such that, when o — 0,

R,y(0) = C,T(F)*0™ + O(c" ). (1-19)
If H*(Z, F) =0, then
Co=1, rp=0, (1-20)
so that
R,(0) =T(F)% (1-21)

Let §(G) be the nonnegative integer defined by the difference between the complex ranks of G and K.
Since dim Z is odd, §(G) is odd. For §(G) # 1, Theorem 1.1 is originally due to Moscovici and Stanton
[1991] and was recovered by Bismut [2011]. Indeed, it was proved in [Moscovici and Stanton 1991,
Corollary 2.2, Remark 3.7] or [Bismut 2011, Theorem 7.9.3] that T(F) = 1 and Xorb(§1\B[y]) =0 for

all [y] € [T']—{1}.
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Remark that both of the above two proofs use the Selberg trace formula. However, in the evaluation of
the geometric side of the Selberg trace formula and of orbital integrals, Moscovici and Stanton relied
on Harish-Chandra’s Plancherel theory, while Bismut used his explicit formula [2011, Theorem 6.1.1]
obtained via the hypoelliptic Laplacian.

Our proof of Theorem 1.1 relies on Bismut’s formula.

1G. Our results on R,(0). Assume that §(G) = 1. To show that R,(c0) extends as a meromorphic
function on C when Z is hyperbolic, Fried [1986] showed that R,(0’) is an alternating product of certain
Selberg zeta functions. Moscovici and Stanton’s idea was to introduce the more general Selberg zeta
functions and to get a similar formula for R, (o).

Let us recall some facts about reductive group G with §(G) = 1. In this case, there exists a unique (up
to conjugation) standard parabolic subgroup O C G with Langlands decomposition Q = Mg AgNg
such that dim Ag = 1. Let m, b, n be the Lie algebras of Mo, Ag, No. Let & € b* be such that, for
a € b, ad(a) acts on n as a scalar {«, a) € R (see Proposition 6.3). Let M be the connected component of
identity of M. Then M is a connected reductive group with maximal compact subgroup Ky = M N K
and with Cartan decomposition m = p,,, @ £,,. We have the identity of real Kjs-representations

pPpndbdn. (1-22)

An observation due to Moscovici and Stanton is that yomp(S* \B[y1) # 0 only if y can be conjugated
by an element of G into Ag K. For o € C, we define the formal Selberg zeta function by

1 Aj(n*) _
Zj(a)zexp(_ T Ty SN B TG

— le_al“’]), (1-23)
[ylelT]—{1} 1 |det(1 — Ad(e®k ™)) ngon |

where a € b, k € Kj are such that y can be conjugated to e“k~!. We remark that lty1 = |a|. To show
the meromorphicity of Z; (o), Moscovici and Stanton tried to identify Z; (o) with the geometric side of
the zeta regularized determinant of the resolvent of some elliptic operator acting on some vector bundle
on Z. However, the vector bundle used in [Moscovici and Stanton 1991], whose construction involves
the adjoint representation of K3s on A’ (p¥) ® A’ (n*), does not live on Z, but only on T'\G/ K.

We complete this gap by showing that such an object exists as a virtual vector bundle on Z in the sense
of K-theory. More precisely, let RO(K), RO(Kjy) be the real representation rings of K and Kps. We can
verify that the restriction RO(K) — RO(Kjy) is injective. Note that p,,, n € RO(Kps). In Section 6C,
using the classification theory of real simple Lie algebras, we show py,, n are in the image of RO(K). For
0<j<dimnletE; =F ;r - F ;€ RO(K) such that the following identity in RO(K}ps) holds:

dim p,
( ) (—D"Al’(p:;)) ® A (n%) = Ejlky - (1-24)

i=0

Let £ = G xg Ej be a Z-graded vector bundle on X. It descends to a Z,-graded vector bundle F;
on Z. Let C; be a Casimir operator of G action on C*°(Z, F; ®g F). In Theorem 7.6, we show that
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there are 0; € R and an odd polynomial P; such that if Re(o) > 1, Z; (o) is holomorphic and
Zj(0) =dety(Cj +0; + o2) exp(r vol(Z) P;j(0)), (1-25)

where dety, is the zeta regularized Z5-graded determinant. In particular, Z; (0') extends meromorphically
to C.
By a direct calculation of linear algebra, we have

dimn

Rp@) =[] Zi(o + (j — L dimm)la)) V", (126)
j=0

from which we get the meromorphic extension of R,(c). Note that the meromorphic function

dim Z
T(U) = 1_[ det(cr + DZ|Qi(Z’F))(_1)Il (1-27)
i=1
has a Laurent expansion near 0 = 0,
T(0) = T(F)?>cX X:F) L (g KF)+1y, (1-28)

where y'(X, F) is the derived Euler number; see (2-8). Note also that the Hodge Laplacian 0% coincides
with the Casimir operator acting on Q2°(Z, F'). The Laurent expansion (1-19) can be deduced from
(1-25)—(1-28) and the identity in RO(K),

dimp dimn

DDA ) =) (-1 E;. (1-29)
j=0

i=1

1H. Proof of (1-20). To understand how the acyclicity of F is reflected in the function R,(0’), we need
some deep results of representation theory. Let p : I'\G — Z be the natural projection. The enveloping
algebra of U(g) acts on C*°(I'\G, p* F). Let Z(g) be the center of U(g). Let V° C C*®(T'\G, p*F)
be the subspace of C>°(I'\G, p* F) on which the action of Z(g) vanishes, and let V' be the closure of
V> in L2(I'\G, p*F). Then V is a unitary representation of G. The compactness of I'\G implies that
V is a finite sum of irreducible unitary representations of G. By standard arguments [Borel and Wallach
2000, Chapter VII, Theorem 3.2, Corollary 3.4], the cohomology H*(Z, F) is canonically isomorphic to
the (g, K)-cohomology H*(g, K; V) of V.

In [Vogan and Zuckerman 1984; Vogan 1984], the authors classified all irreducible unitary repre-
sentations with nonzero (g, K)-cohomology. On the other hand, Salamanca-Riba [1999] showed that
any irreducible unitary representation with vanishing Z(g)-action is in the class specified by Vogan and
Zuckerman, which means that it possesses nonzero (g, K)-cohomology.

By the above considerations, the acyclicity of F is equivalent to V' = 0. This is essentially the algebraic
ingredient in the proof of (1-20). Indeed, in Corollary 8.18, we give a formula for the constants C, and 7,
obtained by Hecht—Schmid formula [1983] with the help of the n-homology of V.
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11. The organization of the article. This article is organized as follows. In Section 2, we recall the
definitions of certain characteristic forms and of the analytic torsion.

In Section 3, we introduce the reductive groups and the fundamental rank §(G) of G.

In Section 4, we introduce the symmetric space. We recall basic principles for the Selberg trace formula,
and we state formulas by Bismut [2011, Theorem 6.1.1] for semisimple orbital integrals. We recall the
proof, given in Theorem 7.9.1 of the same paper, of a vanishing result of the analytic torsion 7'(F) in the
case 8(G) # 1, which is originally due to Moscovici and Stanton [1991, Corollary 2.2].

In Section 5, we introduce the dynamical zeta function R, (o), and we state Theorem 1.1 as Theorem 5.5.
We prove Theorem 1.1 when §(G) # 1 or when G has noncompact center.

Sections 68 are devoted to establishing Theorem 1.1 when G has compact center and when §(G) = 1.

In Section 6, we introduce geometric objects associated with such reductive groups G.

In Section 7, we introduce Selberg zeta functions, and we prove that R,(0") extends meromorphically,
and we establish (1-19).

Finally, in Section 8, after recalling some constructions and results of representation theory, we prove
that (1-20) holds.

Throughout the paper, we use the superconnection formalism of [Quillen 1985] and [Berline et al.
2004, Section 1.3]. If A is a Z,-graded algebra and if a, b € A, the supercommutator [a, b] is given by

[a,b] = ab — (—1)%eedeebpy (1-30)

If B is another Z,-graded algebra, we denote by A ® B the super tensor product algebra of A and B. If
E = Et @ E~ is a Z,-graded vector space, the algebra End(E) is Z,-graded. If r = 1 on E¥ and if
a € End(E), the supertrace Trg[a] is defined by

Trs[a] = Tr[zal. (1-3D)

We make the convention that N ={0,1,2,...} and N* = {1,2,...}.

2. Characteristic forms and analytic torsion

The purpose of this section is to recall some basic constructions and properties of characteristic forms
and the analytic torsion.

This section is organized as follows. In Section 2A, we recall the construction of the Euler form, the
A-form and the Chern character form.

In Section 2B, we introduce the regularized determinant.

Finally, in Section 2C, we recall the definition of the analytic torsion of flat vector bundles.

2A. Characteristic forms. If V is a real or complex vector space of dimension 7, we denote by V* the
dual space and by A*(V) =>"7_, A (V) its exterior algebra. Let Z be a smooth manifold. If V is a
vector bundle on Z, we denote by Q°(Z, V') the space of smooth differential forms with values in V.
When V = R, we write Q°(Z) instead.
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Let E be a real Euclidean vector bundle of rank m with a metric connection VE. Let RE = VE:2 pe
the curvature of VE. It is a 2-form with values in antisymmetric endomorphisms of E.

If A is an antisymmetric matrix, denote by Pf[A] the Pfaffian [Bismut and Zhang 1992, Equation (3.3)]
of A. Then Pf[A] is a polynomial function of A which is a square root of det[A]. Let o(E) be the
orientation line of E. The Euler form e(E, VE) of (E, VE) is given by

RE
e(E, VE) = Pf|:2—] e Q"™(Z,0(E)). -1

T

If m is odd, then e(E, VE) = 0.
For x € C, set /
~ x/2

A = ' 2-2
*) sinh(x/2) 2-2)

The form /T(E, VE) of (E,VE) is given by

E\\72
/Y(E,VE)z[det(/f(—;—n))] €Q*(2). (2-3)

If E’ is a complex Hermitian vector bundle equipped with a metric connection VE " with curvature RE’,
the Chern character form ch(E’, VE') of (E’, VE') is given by

E/
ch(E', VE'y =Tr [exp(—fi—n)} €Q*(2). (2-4)

The differential forms e(E, VE), Al (E,VE) and ch(E’, VE') are closed. They are the Chern—Weil
representatives of the Euler class of E, the /T—genus of E and the Chern character of E’.

2B. Regularized determinant. Let (Z, g7 %) be a smooth closed Riemannian manifold of dimension .
Let (E, gE) be a Hermitian vector bundle on Z. The metrics g7 %4, g€ induce an L2-metric on C®°(Z, E).
Let P be a second-order elliptic differential operator acting on C°°(Z, E). Suppose that P is formally
self-adjoint and nonnegative. Let P! be the inverse of P acting on the orthogonal space to ker(P). For

Re(s) > m/2, set
Op(s) = —Tr[(P~")’]. (2-5)

By [Seeley 1967] or [Berline et al. 2004, Proposition 9.35], 6(s) has a meromorphic extension to s € C
which is holomorphic at s = 0. The regularized determinant of P is defined as

det(P) = exp(6p(0)). (2-6)

Assume now that P is formally self-adjoint and bounded from below. Denote by Sp(P) the spectrum
of P. For A € Sp(P), set
mp(A) = dime ker(P — A) 2-7)

to be its multiplicity. If o € R is such that P + o > 0, then det(P + o) is defined by (2-6). Voros [1987]
has shown that the function 6 — det(P + o), defined for o > 1, extends holomorphically to C with zeros
at 0 = —A of the order mp (1), where A € Sp(P).
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2C. Analytic torsion. Let Z be a smooth connected closed manifold of dimension m with fundamental
group I'. Let F' be a complex flat vector bundle on Z of rank r. Equivalently, F' can be obtained via a
complex representation p : ' = GL, (C).
Let H*(Z,F) = @;’;0 H!(Z, F) be the cohomology of the sheaf of locally flat sections of F. We
define the Euler number and the derived Euler number by
m m
X(Z. F)y=> (-1)'dim¢ H(Z.F). x(Z.F)=) (-1)'idim¢ H (Z. F). (2-8)
i=0 i=1
Let (Q*(Z, F), d?) be the de Rham complex of smooth sections of A*(T*Z) Qr F on Z. We have
the canonical isomorphism of vector spaces

H*(Q*(Z,F),d?)~ H*(Z.F). (2-9)

In the sequel, we will also consider the trivial line bundle R. We denote simply by H*(Z) and y(Z) the
corresponding objects. Note that, in this case, the complex dimension in (2-8) should be replaced by the
real dimension.

Let g7Z be a Riemannian metric on 7Z, and let g be a Hermitian metric on F. They induce an L2-
metric (-,-)qe(z,F) on Q*(Z, F). Let d?>* be the formal adjoint of dZ with respect to (-, )aez,F)-
Put

D% =d? +d%* 0% =D%%=[d? d*"]. (2-10)

Then, 04 is a formally self-adjoint nonnegative second-order elliptic operator acting on 2*(Z, F). By
Hodge theory, we have the canonical isomorphism of vector spaces

kerO% ~ H*(Z, F). (2-11)

Definition 2.1. The analytic torsion of F is a positive real number defined by

m
T(F.gT% g") =[] det(@Z|gi(z, 7)) "2 (2-12)

i=1
Recall that the flat vector bundle F carries a flat metric g if and only if the holonomy representation p
factors through U(r). In this case, F is said to be unitarily flat. If Z is an even-dimensional orientable
manifold and if F is unitarily flat with a flat metric g%, by Poincaré duality, T'(F, g7 %, g ) =1. If dim Z
is odd and if H*(Z, F) = 0, by [Bismut and Zhang 1992, Theorem 4.7], then T'(F, g7 %, g¥') does not

depend on g7 or gF. In the sequel, we write instead

T(F)=T(F,g"% ¢"). (2-13)
By Section 2B,
dim Z -
T(o) = [] det(o +O%|gi¢z r) " (2-14)

i=1
is meromorphic on C. When o — 0, we have

T(0) = T(F)20X ZF) L o(gX(ZD+1), (2-15)
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3. Preliminaries on reductive groups

The purpose of this section is to recall some basic facts about reductive groups.

This section is organized as follows. In Section 3A, we introduce the reductive group G.

In Section 3B, we introduce the semisimple elements of G, and we recall some related constructions.

In Section 3C, we recall some properties of Cartan subgroups of G. We introduce a nonnegative
integer §(G ), which has paramount importance in the whole article. We also recall Weyl’s integral formula
on reductive groups.

Finally, in Section 3D, we introduce the regular elements of G.

3A. The reductive group. Let G be a linear connected real reductive group [Knapp 1986, p. 3]; that is,
G is a closed connected group of real matrices that is stable under transpose. Let 6 € Aut(G) be the
Cartan involution. Let K be the maximal compact subgroup of G of the points of G that are fixed by 6.

Let g be the Lie algebra of G, and let £ C g be the Lie algebra of K. The Cartan involution 6
acts naturally as a Lie algebra automorphism of g. Then ¢ is the eigenspace of 8 associated with the
eigenvalue 1. Let p be the eigenspace with the eigenvalue —1, so that

g=pot 3-1)
Then we have
[t.¢]CE  [p.p]CE [Ep]Cp. (3-2)
Put
m=dimp, n=dim¢t. (3-3)

By [Knapp 1986, Proposition 1.2], we have the diffeomorphism
(Y.k)yepx K —e¥k eG. (3-4)

Let B be a real-valued nondegenerate bilinear symmetric form on g which is invariant under the adjoint
action Ad of G on g, and also under 8. Then (3-1) is an orthogonal splitting of g with respect to B. We
assume B to be positive on p and negative on £. The form (-, ) = —B(-, 0 -) defines an Ad(K)-invariant
scalar product on g such that the splitting (3-1) is still orthogonal. We denote by | - | the corresponding norm.

Let Zg C G be the center of G with Lie algebra 34 C g. Set

Bp =3P, se=35NE (3-5)
By [Knapp 1986, Corollary 1.3], Z¢ is reductive. As in (3-1) and (3-4), we have the Cartan decomposition
3g=3 D3e. Zg =exp(3p)(Zg N K). (3-6)

Let gc = g ®gr C be the complexification of g and let u = ~/—1p @ £ be the compact form of g. Let
G¢ and U be the connected group of complex matrices associated with the Lie algebras gc and u. By
[Knapp 1986, Propositions 5.3 and 5.6], if G has compact center, i.e., its center Zg is compact, then G¢
is a linear connected complex reductive group with maximal compact subgroup U.
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Let U(g) be the enveloping algebra of g, and let Z(g) C U(g) be the center of U(g). Let CY9 € U(g) be
the Casimir element. If ey, ..., ey, is an orthonormal basis of p, and if e;,41, . . . , €m+n 1 an orthonormal
basis of £, then

m n+m
C'==) e+ > e (3-7)
i=1 i=m+1

Classically, C9 € Z(g).
We define C* similarly. Let 7 be a finite-dimensional representation of K on V. We denote by C%" or
C%? € End(V) the corresponding Casimir operator acting on V, so that

m+n
ct=ct = Y r(e). (3-8)
i=m+1
3B. Semisimple elements. 1If y € G, we denote by Z(y) C G the centralizer of y in G, and by 3(y) C g
its Lie algebra. If a € g, let Z(a) C G be the stabilizer of a in G, and let 3(a) C g be its Lie algebra.
An element y € G is said to be semisimple if y can be conjugated to ek~ such that

acyp, kekK, Adk)a=a. (3-9)
Let y = e%k~! be such that (3-9) holds. By [Bismut 2011, Equations (3.3.4), (3.3.6)], we have

Z(y)=Z@)NZ(k), j3(y)=3a)Njk). (3-10)
Set
p(y)=3(y)Np, y) =3(y)NtL (3-11)

From (3-10) and (3-11), we get
3(y) =p(y) ®E(y). (3-12)

By [Knapp 2002, Proposition 7.25], Z(y) is a reductive subgroup of G with maximal compact subgroup
K(y) = Z(y) N K, and with Cartan decomposition (3-12). Let Z%(y) be the connected component of the
identity in Z(y). Then Z°(y) is a reductive subgroup of G, with maximal compact subgroup Z°(y) N K.
Also, Z%(y) N K coincides with K°(y), the connected component of the identity in K(y).

An element y € G is said to be elliptic if y is conjugated to an element of K. Let y € G be semisimple
and nonelliptic. Up to conjugation, we can assume y = e“k ! such that (3-9) holds and that a # 0. By
(3-10), a € p(y). Let 321 (y), p®L(y) be respectively the orthogonal spaces to a in 3(y), p(y), so that

) =) @ Ey). (3-13)

Moreover, 3% (y) is a Lie algebra. Let Z%1(y) be the connected subgroup of Z%(y) that is associated
with the Lie algebra 341 (y). By [Bismut 2011, Equation (3.3.11)], Z%19(y) is reductive with maximal
compact subgroup K°(y) with Cartan decomposition (3-13), and

Z%(y) = Rx 240y, (3-14)

so that e’® maps into ¢|a].
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3C. Cartan subgroups. A Cartan subalgebra of g is a maximal abelian subalgebra of g. A Cartan
subgroup of G is the centralizer of a Cartan subalgebra.

By [Knapp 1986, Theorem 5.22], there is only a finite number of nonconjugate (via K) 8-stable Cartan
subalgebras b1, ..., b,. Let Hy, ..., Hj, be the corresponding Cartan subgroups. Clearly, the Lie algebra
of H; is ;. Set

bip =biNp, bhie=hiNEL (3-15)

We call dim b;;, the noncompact dimension of h;. By [Knapp 1986, Theorem 5.22(c); 2002, Proposi-
tion 7.25], H; is an abelian reductive group with maximal compact subgroup H; N K, and with Cartan
decomposition

bi =bip ®bie. H; =exp(hip)(H; NK). (3-16)

Note that in general, H; is not necessarily connected.
Let W(H;, G) be the Weyl group. If Nx(h;) C K and Zg(h;) C K are the normalizer and centralizer
of h; in K, then

W(H;,G) = Nk(b;)/ Zk (b;). (3-17)

Throughout, we fix a maximal torus 7" of K. Let t C £ be the Lie algebra of 7. Set

b={Y ep:[Y,t|=0}. (3-18)
By (3-5) and (3-18), we have
3p Cb. (3-19)
Put
h=badt. (3-20)

By [Knapp 1986, Theorem 5.22(b)], b is the 6-stable Cartan subalgebra of g with minimal noncompact
dimension. Also, every 0-stable Cartan subalgebra with minimal noncompact dimension is conjugated
to b by an element of K. Moreover, the corresponding Cartan subgroup H C G of G is connected, so that

H = exp(b)T. (3-21)

We may assume that h; = § and H; = H.

Note that the complexification h;c = h; ®r C of h; is a Cartan subalgebra of gc. All the h;¢c are
conjugated by inner automorphisms of gc. Their common complex dimension dimg h;¢ is called the
complex rank rke(G) of G.

Definition 3.1. Put
8(G) =1ke(G) —1ke(K) € N, (3-22)

By (3-18) and (3-22), we have
3(G) =dimb. (3-23)

Note that m — §(G) is even. We will see that §(G) plays an important role in our article.
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Remark 3.2. If g is a real reductive Lie algebra, then §(g) € N can be defined in the same way as in
(3-23). Since g is reductive, by [Knapp 2002, Corollary 1.56], we have

9=3 9[99, (3-24)
where [g, g] is a semisimple Lie algebra. By (3-6) and (3-24), we have
8(g) = dim 3 +5([g, g])- (3-25)

Proposition 3.3. The element y € G is semisimple if and only if vy can be conjugated into Ufozl H;. In

this case,
8(G) <8(Z°(y)). (3-26)
The two sides of (3-26) are equal if and only if y can be conjugated into H.

Proof. If y € H;, by the Cartan decomposition (3-16), there exist a € h;, and k € K N H; such that
y = ek 1. Since H; is the centralizer of b;, we have Ad(y)a = a. Therefore, Ad(k)a = a, so that y is
semisimple.

Assume that y € G is semisimple and is such that (3-9) holds. We claim that

tke(G) = tke(Z° (). (3-27)
Indeed, let b’ C g be a f-invariant Cartan subalgebra of g containing a. Then, b’ C 3(a). It implies
ke (G) = tke(Z%(a)). (3-28)
By choosing a maximal torus T containing k, by (3-20), we have h C 3(k). Then
ke (G) = ke (Z°(k)). (3-29)
If we replace G by Z°(a) in (3-29), by (3-10), we get
tke(Z°(a)) = tke (Z°(1))- (3-30)

By (3-28) and (3-30), we get (3-27).

Let h(y) C 3(y) be the f-invariant Cartan subalgebra defined as in (3-20) when G is replaced by Z°(y).
By (3-27), h(y) is also a Cartan subalgebra of g. Moreover, y is an element of the Cartan subgroup of G
associated to h(y). In particular, y can be conjugated into some H;.

By the minimality of noncompact dimension of , we have

§(G) =dimhNp <dimh(y) Np =8(Z°(y)), (3-31)

which completes the proof of (3-26).

It is obvious that if y can be conjugated into H, the equality in (3-31) holds. If the equality holds in
(3-31), by the uniqueness of the Cartan subalgebra with minimal noncompact dimension, there is k' € K
such that

Ad(k")b(y) = b, (3-32)
which implies that k’yk"~! € H. O
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Now we recall the Weyl integral formula on G, which will be used in Section 8. Let dvg; and dvg,\g
be respectively the Riemannian volumes on H; and H;\G induced by —B(-,6 ). By [Knapp 2002,
Theorem 8.64], for a nonnegative measurable function f on G, we have

lo

S@dig=Y :

e W(H,. Q)| en (/gEH - fg lve) dUH,-\G) |det(1 —Ad(¥)lg/s; } dvy; .
i=1 ’ i i

(3-33)

3D. Regular elements. For 0 < j <m+n—r1kc(G), let D; be the analytic function on G such that, for

t e Rand y € G, we have
m+n—rkc(G)

det(r + 1 — Ad(y))|g = szC(G)( > D, (y)zf). (3-34)
=0
If y € H;, then ’
Do(y) = det(l — Ad(y))|g/; - (3-35)

We call y € G regular if Do(y) # 0. Let G’ C G be the subset of regular elements of G. Then G’ is
open in G such that G — G’ has zero measure with respect to the Riemannian volume dvg on G induced
by —B(-,0-). For 1 <i <, set

H =H NG, Gj=|])¢'Hg. (3-36)
geG
By [Knapp 1986, Theorem 5.22(d)], G/ is open, and we have the disjoint union

¢'= ] qi (3-37)

1<i<ly
4. Orbital integrals and Selberg trace formula

The purpose of this section is to recall the semisimple orbital integral formula of [Bismut 2011, Theorem
6.1.1] and the Selberg trace formula.

This section is organized as follows. In Section 4A, we introduce the Riemannian symmetric space
X = G/K, and we give a formula for its Euler form.

In Section 4B, we recall the definition of semisimple orbital integrals.

In Section 4C, we recall Bismut’s explicit formula for the semisimple orbital integrals associated to
the heat operator of the Casimir element.

In Section 4D, we introduce a discrete torsion-free cocompact subgroup I' of G. We state the Selberg
trace formula.

Finally, in Section 4E, we recall Bismut’s proof of a vanishing result on the analytic torsion in the case
8(G) # 1, which is originally due to Moscovici and Stanton [1991].

4A. The symmetric space. We use the notation of Section 3. Let w? be the canonical left-invariant
1-form on G with values in g, and let @, ® be its components in p, €, so that

w® = o’ + o' 4-1)
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Let X = G/K be the associated symmetric space. Then
p:G—-X=G/K (4-2)

is a K-principle bundle, equipped with the connection form w®. By (3-2) and (4-1), the curvature of w* is
given by
Q' = 1w 0. (4-3)

Let 7 be a finite-dimensional orthogonal representation of K on the real Euclidean space E;. Then
& = G xk E7 is a real Euclidean vector bundle on X, which is naturally equipped with a Euclidean
connection V7. The space of smooth sections C®(X, £;) on X can be identified with the K-invariant
subspace C®(G, E;)X of smooth E.-valued functions on G. Let C%%T be the Casimir element of G
acting on C*®(X, &). Then C¥%7 is a formally self-adjoint second-order elliptic differential operator
which is bounded from below.

Observe that K acts isometrically on p. Using the above construction, the tangent bundle 7X = G xg p
is equipped with a Euclidean metric g7% and a Euclidean connection VX, Also, VTX is the Levi-Civita
connection on (TX, gTX) with curvature RTX. Classically, (X, g7%) is a Riemannian manifold of
nonpositive sectional curvature. For x, y € X, we denote by dy (x, y) the Riemannian distance on X.

If E; = A*(p*), then C®(X, &) = Q*(X). In this case, we write C%X = C%%-7. By [Bismut 2011,
Proposition 7.8.1], C%X coincides with the Hodge Laplacian acting on Q°(X).

Let us state a formula for e(TX, VIX). Let o(TX) be the orientation line of TX. Let dvy be the
G-invariant Riemannian volume form on X. If & € Q°(X, 0(TX)) is of maximal degree and G-invariant,
set [a]™** € R such that

o = [a]"™ dvy. (4-4)

Recall that if G has compact center, then U is the compact form of G. If §(G) = 0, by (3-25), G
has compact center. In this case, T is a maximal torus of both U and K. Let W(T,U), W(T, K) be
the respective the Weyl groups. Let vol(U/K) be the volume of U/ K with respect to the volume form
induced by —B.

Proposition 4.1. If §(G) # 0, then [e(TX, VIX)|™* = 0. If §(G) = 0, then

TXymax _ (__ %|W(T,U)|/|W(T,K)| )
[e(TX, V'™ = (=1) vol(U/K) . 4-5)

Proof. If G has noncompact center (thus §(G) # 0), it is trivial that [e(TX, VI X)]™ = (. Assume now,
G has compact center. By Hirzebruch proportionality [1966] (see Theorem 22.3.1 of that paper for a
proof for Hermitian symmetric spaces; the proof for general case is identical), we have

m x(U/K)

TXymax _ (1% _
[e(TX, VI = (=1) vol(U/K)’ (4-6)

Proposition 4.1 is a consequence of (4-6), Bott’s formula [1965, p. 175], Theorem II of the same paper
and of the fact that §(G) = rkc(U) —rkc(K). d
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Let y € G be a semisimple element as in (3-9). Let

X(y)=Z(y)/K(y) (4-7)
be the associated symmetric space. Clearly,
X()=Z(n/K (). (4-8)

Suppose that y is nonelliptic. Set
Xhy) =290/ KO(). (4-9)
By (3-14), (4-8) and (4-9), we have
X(y) =RxX“H(p), (4-10)
so that the action e¢’? on X(y) is just the translation by #|a| on R.

4B. The semisimple orbital integrals. Recall that 7 is a finite-dimensional orthogonal representation of
K on the real Euclidean space E, and that C%%7 is the Casimir element of G acting on C®°(X, &;).

Let pf( T (x, x’) be the smooth kernel of exp(—t C #%>7 /2) with respect to the Riemannian volume dvy
on X. Classically, for ¢ > 0, there exist ¢ > 0 and C > 0 such that, for x, x’ € X,

|PtX’I(X,X/)| < Cexp(—c d)%(x,x’)). 4-11)
Set
Pt (9) = pF(pl. pg). (4-12)

For g € G and k,k’ € K, we have

P (kgky = (k) pX T (g)T (k). (4-13)

Also, we can recover pf(’r(x, x") by

P x) = pte ), (4-14)

where g, g’ € G are such that pg = x, pg’ = x’.

In the sequel, we do not distinguish th *T(x,x’) and p,X ’'(g). We refer to both of them as being the
smooth kernel of exp(—tC %7 /2).

Let dvgo(,)\ x and dvzo(,)\ g be the Riemannian volumes on K°%()\K and Z°(y)\G induced by
—B(-,0-). Let vol(K°(y)\K) be the volume of K°(y)\K with respect to dvgo)\ k-
Definition 4.2. Let y € G be semisimple. The orbital integral of exp(—t C%%>7/2) is defined by

1
Tt exp(—1C9 %7 /2)| = ——— TrEe [pX’t(g_I)/g)] dvzo . (4-15)
vol(KO(P\K) JgezopnG ’ ZING

Remark 4.3. Definition 4.2 is equivalent to [Bismut 2011, Definition 4.2.2], where the volume forms are
normalized such that vol(K°(y)\K) = 1.
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Remark 4.4. As the notation Tr"] indicates, the orbital integral only depends on the conjugacy class
of y in G. However, the notation [y] (see Section 4D) will be used later for the conjugacy class in the
discrete group T

Remark 4.5. We will also consider the case where E; is a Z,-graded or virtual representation of K. We
will use the notation Tr,["] [g] when the trace on the right-hand side of (4-15) is replaced by the supertrace
on E;.

4C. Bismut’s formula for semisimple orbital integrals. Let us first recall the explicit formula for
Trl" ) [exp(—¢ C9X-7 /2)] for any semisimple element y € G, obtained by Bismut [2011, Theorem 6.1.1].
Let y = e?k~! € G be semisimple as in (3-9). Set

30=3(), po=j3@np, to=j3()Nt (4-16)
Then
30 = po D Lo. 4-17)

By (3-10), (3-11) and (4-16), we have p(y) C po and £(y) C €. Let pg(y), € (¥), 35 (y) be the
orthogonal spaces of p(y), £(y), 3(y) in po, €0, 30. Let py, €5, 54 be the orthogonal spaces of po, £o, 30
in p, €, 3. Then we have

p=p()®py(y) ®py. E=Et(1) Dt (y) By (4-18)
Recall that A is the function defined in (2-2).

Definition 4.6. For Y € £(y), put

|det(1 —Ad(y))], 1| A( ad(Y) e(y))
| det(1 —exp(~i ad(¥)) Ad(k™))e1 ) 2 o
X -
det(1 — Ad(k_l))|3é(y) det(1 —exp(—i ad(Y)) Ad(k‘l))|pé(y)

As explained in [Bismut 2011, Section 5.5], there is a natural choice for the square root in (4-19).
Moreover, Jy is an Ad(K°(y))-invariant analytic function on £(y), and there exist ¢, > 0, C, > 0, such
that, for Y € £(y),

[y (Y)] < Cy exp (ey|Y). (4-20)

By (4-19), we have
_AG ad(Y)lp)

M) = Rl

(4-21)

For Y € £(y), let dY be the Lebesgue measure on £(y) induced by —B. Recall that C*F and C®* are
defined in (3-8). The main result of [Bismut 2011, Theorem 6.1.1] is the following.
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Theorem 4.7. Fort > 0, we have
lal> | 1

@rr)dms()72 P (_7 T 16

X/; o )JJ/(Y) TrEr [T(k_l)exp(—ir(Y))] exp(_|Y|2/(2[))dY, (4-22)
ety

T fexp(—C#%7/2)] = TrP[C*] + 4t—8 Trf [CE’W)

4D. A discrete subgroup of G. Let I' C G be a discrete torsion-free cocompact subgroup of G. By
[Selberg 1960, Lemma 1], I' contains the identity element and nonelliptic semisimple elements. Also, I"
acts isometrically on the left on X. This action lifts to all the homogeneous Euclidean vector bundles &;
constructed in Section 4A, and preserves the corresponding connections.

Take Z =T\ X =T'\G/K. Then Z is a connected closed orientable Riemannian locally symmetric
manifold with nonpositive sectional curvature. Since X is contractible, 71(Z) = I" and X is the universal
cover of Z. We denote by p : I'\G — Z and 7 : X — Z the natural projections, so that the diagram

G —=T\G
jp l 5 (4-23)
X .7

commutes.

The Euclidean vector bundle £; descends to a Euclidean vector bundle F; = I'\&; on Z. Take r € N*,
Let p: ' — U(r) be a unitary representation of I'. Let (F, VF, ¢F) be the unitarily flat vector bundle
on Z associated to p. Let C%%>%P be the Casimir element of G acting on C*®(Z, F; ®g F). As in
Section 4A, when E; = A*(p*), we write C9%* = C%Z-%, Then,

DZ — Cg,Z,,O. (4_24)
Recall that pf(’r(x, x’) is the smooth kernel of exp(—t C 9%-7 /2) with respect to dvy.

Proposition 4.8. There exist c > 0, C > 0 such that, fort > 0 and x € X, we have

Z |th,r(x’ yx)|<C exp(—; + Ct). (4-25)
yel—{1}

Proof. By [Milnor 1968a, Remark p. 1, Lemma 2] or [Ma and Marinescu 2015, Equation (3.19)], there is
C > 0 such that, for all r = 0, x € X, we have

[{y € T idx(x,yx) <r}| < CeC™. (4-26)

We claim that there exist ¢ >0, C > 0 and N € N such that, for > 0 and x, x’ € X, we have
C d2(x,x’
P < oy eXP(—c# + Ct). (4-27)

Indeed, if t =1, then th’l(x, x") is the heat kernel for the Laplace-Beltrami operator. In this case, (4-27)
is a consequence of the Li—Yau estimate [1986, Corollary 3.1] and of the fact that X is a symmetric space.
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For general 7, using the It6 formula as in [Bismut and Zhang 1992, Equation (12.30)], we can show that
there is C > 0 such that
[P (x. XN < € p (x x), (4-28)

from which we get (4-27).2
Note that there exists ¢g > 0 such that, forall y e I' — {1} and x € X,
dy (x,yx) = co. (4-29)
By (4-27) and (4-29), there exist ¢; > 0, ¢3 > 0 and C > 0 such that, for >0, x € X and y € I' — {1},

we have

d2(x,
|th’r(x, yx)|<C exp(—ct—1 —CzM + Ct). (4-30)

By (4-26) and (4-30), for t > 0 and x € X, we have

d2(x,yx
Z |pf(’t(x’ )/X)| < C Z exp(—c—l _CZM +Cl)
yell—{1} yer t t
[e%e}

=c,C exp(—ct—1 + Ct) Z /;12 exp(—car)dr

st G oyt

o0
=c,C exp(—ct—1 + Ct) /0 {{y el:dyx(x,yx) < \/ﬁ}| exp(—car)dr

o0
< C’exp(—ct—1 + Ct) / exp(—car + C/rt)dr. (4-31)
0
From (4-31), we get (4-25). O
For y € T, set
'y)=Z@)nT. (4-32)

Let [y] be the conjugacy class of y in I'. Let [I'] be the set of all the conjugacy classes of T
The following proposition is [Selberg 1960, Lemma 2]. We include a proof for the sake of completeness.

Proposition 4.9. If y € I, then I'(y) is cocompact in Z(y).

Proof. Since I is discrete, [y] is closed in G. The inverse image of [y] by the continuous map g €
G —gyg 'eGisT-Z(y). Then T -Z(y) is closed in G. Since I'\G is compact, the closed subset
I'\I'- Z(y) C I'\G is then compact.

The group Z(y) acts transitively on the right on I'\I" - Z(y). The stabilizer at [1] € '\I"- Z(y) is
I'(y). Hence I'(y)\Z(y) ~ T'\I" - Z(y) is compact. O

Let vol(I'(y)\ X (y)) be the volume of I (y)\ X (y) with respect to the volume form induced by dvyy).
Clearly, vol(I"(y)\ X (y)) depends only on the conjugacy class [y] € [T].

2See [Ma and Marinescu 2015, Theorem 4] for another proof of (4-27) using finite propagation speed of solutions of
hyperbolic equations.
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By the property of heat kernels on compact manifolds, the operator exp(—tC%%%P /2) is trace class.
Its trace is given by the Selberg trace formula:

Theorem 4.10. There exist ¢ > 0, C > 0 such that, for t > 0, we have
[y] 0. X, ¢
Z vol(T'(Y)\ X (y)) ‘Tr [exp(—tC /2)]} <C exp(—; + Ct). (4-33)
[yle[l']-{1}
Fort > 0, the following identity holds:
Trlexp(—1C¥# 5P /2)] = 3 vol(TC(W\X () Tr[p()] Tr [exp(—1C¥47/2)]. (4-34)
[ylell]

Proof. Let F C X be a fundamental domain of Z in X. By [Bismut 2011, Equations (4.8.11), (4.8.15)],
we have

> / TeE [p7 (x. ') dx = vol(T ()\ X () Tt [exp(—1 €+ X7 /2)]. (4-35)

yrely] V¥ <F
By (4-25) and (4-35), we get (4-33). The proof of (4-34) is well known; see, for example, [Bismut 2011,
Section 4.8]. O

4E. A formula for Tr"IINA*T*X) exp(—tC9X /2)]. Let y = e?k~! € G be semisimple such that
(3-9) holds. Let t(y) C €(y) be a Cartan subalgebra of £(y). Set

b(y)={Y ep:Adk)Y =Y, [Y,t(y)]=0}. (4-36)
Then,
acb(y). 4-37)

By definition, dim p — dim b(y) is even.
Since k centralizes t(y), by [Knapp 1986, Theorem 4.21], there is k” € K such that

Ktk ct, kKkk''eT (4-38)
Up to a conjugation on y, we can assume directly that y = e%k~! with
tiy)ct, keT (4-39)

By (3-18), (4-36), and (4-39), we have
bCb(y). (4-40)

Proposition 4.11. A semisimple element y € G can be conjugated into H if and only if
dim b = dim b(y). (4-41)

Proof. If y € H, then t(y) = t. By (4-36), we get b = b(y), which implies (4-41).
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Recall that h(y) C 3(y) is defined as in (3-20), when G is replaced by Z°(y) and t is replaced
by t(y). It is a f-invariant Cartan subalgebra of both g and 3(y). Let h(y) = bh(y), @ b(y )¢ be the Cartan
decomposition. Then,

by ={Y e p(y) : [ t(M]=0} =b(y) Np(y), bH(y)e =ty). (4-42)
From (3-26) and (4-42), we get
dimb < dimb(y), < dimb(y). (4-43)

By (4-43), if dimb = dimb(y), then dimb = dimh(y),. By Proposition 3.3, y can be conjugated
into H. O

The following theorem extends [Bismut 2011, Theorem 7.9.1].
Theorem 4.12. Let y € G be semisimple such that dim b(y) = 2. For Y € ¥(y), we have
Tr A CPOINACD Ad(k™!) exp(—i ad(Y))] = 0. (4-44)
In particular, fort > 0, we have
Tr NN AT exp(—1C %X /2)] = 0. (4-45)
Proof. Since the left-hand side of (4-44) is Ad(K°(y))-invariant, it is enough to show (4-44) for Y € t(y).
If Y € {(y), by [Bismut 2011, Equation (7.9.1)], we have

[ ] * o * a
Tr, A CO[NACT) Ad(k~") exp(—i ad(Y))] = = det(1 —e? Ad(k) exp(i ad(Y)))| ,o (4-46)
b=0
Since dim b(y) = 2, by (4-46), we get (4-44) for Y € {(y).
By (4-22) and (4-44), we get (4-45). O
In this way, [Bismut 2011, Theorem 7.9.3] recovered [Moscovici and Stanton 1991, Corollary 2.2].

Corollary 4.13. Let F be a unitarily flat vector bundle on Z. Assume that dim Z is odd and §(G) # 1.
Then for any t > 0, we have
Tro[N2" T2 exp(—t0% /2)] = 0. (4-47)
In particular,
T(F)=1. (4-48)
Proof. Since dim Z is odd, 6(G) is odd. Since 6(G) # 1, we have §(G) = 3. By (4-40), dimb(y) =
8(G) = 3, so (4-47) is a consequence of (4-24), (4-34) and (4-45). O
Suppose §(G) = 1. Up to sign, we fix an element a; € b such that B(ay,a1) = 1. Asin Section 3B, set

M =ZE0), Ky = K°(e™), (4-49)
and
m=;""1(),  pu=ptE®), b =te™). (4-50)
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As in Section 3B, M is a connected reductive group with Lie algebra m, with maximal compact sub-
group Ky, and with Cartan decomposition m = p, P &,,. Let

Xy =M/Ky (4-51)

be the corresponding symmetric space. By definition, 7 C M is a compact Cartan subgroup. Therefore
8(M) =0, and dim p, is even.

Assume that 6(G) = 1 and that G has noncompact center, so that dim 3, = 1. By (3-19), we find that
ai € 3p, so that Z%ay) = G. By (3-14) and (4-10), we have

G=RxM, K=Ky, X=RxXuy. (4-52)

Let y € G be a semisimple element such that dim b(y) = 1. By Proposition 4.11, we may assume that
y =e% ! withacbandk € T.

Proposition 4.14. We have

L] * 1
Tr N A T X) oxn(—r X /2)] = — e(TXpy, VX ymax (4-53)
Sl p( /2)] @[ (TXm )]
If y=e*k ' withachb, a#0,and k €T, then
. 1 a2 a.
TN AT X) exp(—1C8X /2)] = — e 5 [e(TX L (p), VIX“H0)ypmax (4-54)
wt

Proof. By (4-52), for y = e%k ™! with a € b and k € T, we have
Tr£y] [NA.(T*X) exp(—th’X/2)] =— Tr[ea][exp(tAR/2)] Trgkil][exp(—tCm’XM/2)], (4-55)

where AR is the Laplace-Beltrami operator acting on C *°(R).

Clearly,
a 1 lal2
Trleexp(r AR /2)] = e~ ar. (4-56)
[exp(tA™/2)] N

By [Bismut 2011, Theorem 7.8.13], we have

TrlUfexp(—t C™XM /2)] = [e(TXpy, VXM )2 (4-57)
and

Tl Texp(—1C™XM /2)] = [e(TX L (y), VX" 0)ymax (4-58)
By (4-55)—(4-58), we get (4-53) and (4-54). O

5. The solution to Fried conjecture

We use the notation in Sections 3 and 4. Also, we assume that dimp is odd. The purpose of this section
is to introduce the Ruelle dynamical zeta function on Z and to state our main result, which contains the
solution of the Fried conjecture in the case of locally symmetric spaces.

This section is organized as follows. In Section 5A, we describe the closed geodesics on Z.
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In Section 5B, we define the dynamical zeta function and state Theorem 5.5, which is the main result
of the article.
Finally, in Section 5C, we establish Theorem 5.5 when G has noncompact center and §(G) = 1.

5A. The space of closed geodesics. By [Duistermaat et al. 1979, Proposition 5.15], the set of nontrivial
closed geodesics on Z consists of a disjoint union of smooth connected closed submanifolds

IT Bur (5-1)
[yle[I)-1]

Moreover, By, is diffeomorphic to I'(y)\ X (y). All the elements of B[,} have the same length |a| > 0 if
y can be conjugated to e“k~! as in (3-9). Also, the geodesic flow induces a canonical locally free action
of S! on B[y, so that SI\B[J,] is a closed orbifold. The S!-action is not necessarily effective. Let

mpy) = |ker(S' — Diff(Bp,)))| € N* (5-2)

be the generic multiplicity.
Following [Satake 1957], if S is a closed Riemannian orbifold with Levi-Civita connection VTS then
e(TS,VTS) e QimS(§ o(TS)) is still well defined, and the Euler characteristic xom(S) € @ is given by

fon(S) = [ e(T5.975) (5-3)
Proposition 5.1. For y € I' — {1}, the following identity holds:

Xorb (S \ B[y _ vl (\X ()

[e(TX L (y), VTX 00y ™ (5-4)
My |al

Proof. Take y € T'—{1}. We can assume that y = e%k~! as in (3-9) with a # 0. By (3-10) and (4-32), for
t € R, we know e’? commutes with elements of I'(y). Thus, e’® acts on the left on I'(y)\ X(y). Since
e =yk, y € T(y), k € K(y) and k commutes with elements of Z(y), we see that ¢ acts as identity
on I'(y)\ X(y). This induces an R/Z ~ S! action on I'(y)\ X(y) which coincides with the S!-action
on By,]. Therefore,

Ko(S"\Bpy)) = vol(S'\ Byp) [e(TX 4 (), vTX ()™ (5-5)
and
vol(S"\Bpy) _ vol(P()\X (7)) 56
Miy) |al
By (5-5) and (5-6), we get (5-4). O
Corollary 5.2. Lety € T' —{1}. If dimb(y) = 2, then
Xorb(gl\B[y]) =0. (5-7)

Proof. By Propositions 4.1 and 5.1, it is enough to show that

§(Z4H0(y)) = 1. (5-8)
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By (3-14) and (3-26), we have
§(Z4H0(y) = 8(Z%(y) —1=8(G) - 1. (5-9)

Recall dimp is odd, therefore §(G) is odd. If §(G) = 3, by (5-9), we get (5-8). If §(G) = 1, then
dim b(y) =2 > §(G). By Propositions 3.3 and 4.11, the inequality in (5-9) is strict, which implies (5-8). O

Remark 5.3. By Theorem 4.12 and Corollary 5.2, we know both Tr, 1[N A* (T X) exp(—r C %X /2)] and
Xorn(S'\ By]) vanish when dim b(y) = 2.

5B. Statement of the main result. Recall that p : ' — U(r) is a unitary representation of I" and that
(F,VF, ¢F) is the unitarily flat vector bundle on Z associated with p.

Definition 5.4. The Ruelle dynamical zeta function R,(o) is said to be well defined, if the following
properties hold:

(1) For o € C, Re(o) > 1, the sum

Xorb(gl\B[y])

bleml-y W]

Ep(0) = Tr[p(y)]e ! (5-10)

converges to a holomorphic function.

(2) The function R,(0) = exp(E,(0)) has a meromorphic extension to o € C.

If 3(G) # 1, by Corollary 5.2,
Ry(0)=1. (5-11)

The main result of this article is the solution of the Fried conjecture. We restate Theorem 1.1 as follows.

Theorem 5.5. The dynamical zeta function R,(0) is well defined. There exist explicit constants C, € R*
and r, € Z, see (7-75), such that, when o — 0 we have

R,(0) = C,T(F)?*a" + O(c" ). (5-12)
If H*(Z,F) =0, then
Co=1, r,=0, (5-13)
so that
R,(0) = T(F)~ (5-14)

Proof. When §(G) # 1, Theorem 5.5 is a consequence of (4-48) and (5-11). When §(G) = 1 and when
G has noncompact center, we will show Theorem 5.5 in Section 5C. When 6(G) = 1 and when G has
compact center, we will show that R, (o) is well defined such that (5-12) holds in Section 7, and we will
show (5-13) in Section 8. O
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5C. Proof of Theorem 5.5 when G has noncompact center and §(G) = 1. We assume that §(G) = 1
and that G has noncompact center. Let us show the following refined version of Theorem 5.5.

Theorem 5.6. There is og > 0 such that

Z Me_"0|a|<oo. (5-15)
Mel—y W

The dynamical zeta function R,(0) extends meromorphically to o € C such that
R, (0) = exp(r vol(Z)[e(T Xpr, VIXM)M5) T (02). (5-16)
If '(Z, F) =0, then R,(0) is holomorphic at 6 = 0 and
R,(0) = T(F)?. (5-17)
Proof. Following (2-5), for (s,0) € C x R such that Re(s) > m /2 and ¢ > 0, put

Op(s,0) = — T[NV (€20 4 0)7]

1 o0 ok (5_18)
=—— TrS[NA (T*Z) exp(—1(CH%P + (7))]ts_1 dt.
I'(s) Jo
Let us show that there is o¢ > 0 such that (5-15) holds true and that for ¢ > o¢, we have
= _ 3 2 T X pr \1max
Ep(o) = 5 0p(0,0%) + 7 vol(Z)[e(TXp, V )" a. (5-19)
N
By (4-53), for (s,0) € C x R such that Re(s) > % and o > 0, the function
1(Z) [*° o
Op,1(s,0) = . \{_?(() ) Trs[l][NA (T"X) exp(—t(C¥X + G))]ts_l dt (5-20)
S 0
is well defined so that
rvol(Z) TX P(s—3) 1_
0 ,0) = TXp, VIAM)M&X 225275, 5-21
(5,0 = T e (T Xy, VI (5-21)

Therefore, for o > 0 fixed, the function s — 0, 1(s, 0) has a meromorphic extension to s € C which is
holomorphic at s = 0 so that

0
3-0p.1(0.0) = —r vol(Z)[e(TXpy, VI ¥0)™0 2. (5-22)
N

For (s,0) € C x R such that Re(s) > m/2 and o > 0, set
0p2(5,0) = 0,(s,0) —0,,1(5,0). (5-23)

By (4-45), (4-54), (5-4), and (5-7), for [y] € [I'] — {1}, we have

o (T 1 Xorb(SI\B[ ]) |a|2
vol(I" X Tr, INATX) exp(—1CO %) = — YI21a) ex (——) 5-24
C\X() [ p( )] adat mp lal exp{ —= (5-24)
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By (4-33) and (5-24), there exist C; > 0, C2 > 0, and C3 > 0 such that, for ¢ > 0, we have
ob(S'\ B 2 C
Z MM exp(—%) <(C; exp(—T2 + C3t). (5-25)
m
[yle[l]—{1} 1

Take o9 = +/2C3. Since p is unitary, by (4-34), (5-18), (5-23), and (5-25), for (s,0) € C x R such that
Re(s) > m/2 and 0 = 09, we have

)(orb(S \ [)/]) |a|2 2.\, s—3
0,2(s,0%) = / > Trle(y )]—| | ex — o2t )52 dr. (5-26)
2“/_F(S) [y]ellI—{1} ] a
Moreover, for o = 0y fixed, the function s — 6, > (s, 02) extends holomorphically to C, so that
d Xoro(ST\By1) al? dt
+-0,2(0.07 ff 3 Trloly )°m—[”|a| %—ozr S 62
[yle[T]-(1} V] t2

Using the formula? that for By > 0, B, =0,

/ exp (—BT _B, ) t _ | Bi exp(—2+/B1 Ba), (5-28)
0 1

3
by (5-25), (5-27), and by Fubini’s theorem, we get (5-15). Also, for o = 0, we have

J 2 -

gep,z(O,a )= E,(0). (5-29)

By (5-22), (5-23), and (5-29), we get (5-19). By taking the exponentials, we get (5-16) for o = oy.
Since the right-hand side of (5-16) is meromorphic on o € C, we know R, has a meromorphic extension
to C. By (2-15) and (5-16), we get (5-17). O

6. Reductive groups G with compact center and §(G) =1

In this section, we assume that 6(G) = 1 and that G has compact center. The purpose of this section is to
introduce some geometric objects associated with G. Their properties are proved by algebraic arguments
based on the classification of real simple Lie algebras g with §(g) = 1. The results of this section will be
used in Section 7, in order to evaluate certain orbital integrals.

This section is organized as follows. In Section 6A, we introduce a splitting g = b dm b n P n,
associated with the action of b on g.

In Section 6B, we construct a natural compact Hermitian symmetric space Yy, which will be used in
the calculation of orbital integrals in Section 7A.

In Section 6C, we state one key result, which says that the action of Kjs on n lifts to K. The purpose
of the following subsections is to prove this result.

3We give a proof of (5-28) when B = B, = 1. Indeed, we have /3 exp( ),{41/12 =3 fooo exp(—%—t)(ﬁ%—i-ﬂ%) dt.
Using the change of variables u = 12 47172 e get (5-28).
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In Section 6D, we state a classification result of real simple Lie algebras g with §(g) = 1, which
asserts that they just contain sl3(R) and so(p, g) with pg > 1 odd. This result has already been used by
Moscovici and Stanton [1991].

In Sections 6E and 6F, we study the Lie groups SL3(R) and SO°(p, ¢) with pg > 1 odd, and the
structure of the associated Lie groups M, Kjy.

In Section 6G, we study the connected component G of the identity of the isometry group of X = G/ K.
We show that G has a factor SL3(R) or SO%(p, ¢) with pg > 1 odd.

Finally, in Sections 6H-6L, we show several unproven results stated in Sections 6A—6C. Most of the
results are shown case by case for the groups SL3(R) and SO°(p, ¢) with pg > 1 odd. We prove the
corresponding results for general G using a natural morphism ig : G — Gy.

6A. A splitting of g. We use the notation in (4-49)—(4-51). Let Z(b) C G be the stabilizer of b in G,
and let 3(b) C g be its Lie algebra.
We define p(b), £(b), pL(b), £L(b), 31(b) in an obvious way as in Section 3B. By (4-50), we have

p(b) =bDpm. E£(b) = ty. (6-1)
Also,
P=0@pn@pT(b), E=tu®E(D). (6-2)
Let Z%(b) be the connected component of the identity in Z(b). By (3-14), we have
Z%b) =R x M. (6-3)
The group Kz acts trivially on b. It also acts on py, p(b), & and £-(b), and preserves the splittings
(6-2).
Recall that we have fixed a; € b such that B(ay,a1) = 1. The choice of a; fixes an orientation of b.

Let n C 37(b) be the direct sum of the eigenspaces of ad(a;) with the positive eigenvalues. Set it = 6n.
Then n is the direct sum of the eigenspaces with negative eigenvalues, and

35(6) =n@i. (6-4)

Clearly, Z°(b) acts on n and @ by adjoint action. Since Kjs is fixed by 6, we have isomorphisms of
representations of Ky

Xen—>X—0Xept(b), Xen—X+0X ctl(b). (6-5)

In the sequel, if / € n, we define f = 6f €.
By (6-2) and (6-5), we have dimn = dim p — dim p,, — 1. Since dim p is odd and since dim p, is even,
dimn is even. Set

[ = 1dimn. (6-6)
Note that since G has compact center, we have b ¢ 34. Therefore, 5(b) #0and [ > 0.

Remark 6.1. Let q C g be the direct sum of the eigenspaces of ad(a;) with nonnegative eigenvalues.
Then q is a proper parabolic subalgebra of g, with Langlands decomposition ¢ = m & b @& n [Knapp 2002,
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Section VIL7]. Let Q C G be the corresponding parabolic subgroup of G, and let Q = Mg AgNg be
the corresponding Langlands decomposition. Then M is the connected component of the identity in Mg,
and b, n are the Lie algebras of Ag and Ng.

Proposition 6.2. Any element of b acts on n and © as a scalar; i.e., there exists a € b* such that, for
acb, f en,wehave

la. f1=(@.a)f. [a, fl=—(a.a)f. (6-7)

Proof. The proof of Proposition 6.2, based on the classification theory of real simple Lie algebras, will be
given in Section 6H. O

Let ag € b be such that

(o,a0) = 1. (6-8)
Proposition 6.3. We have
[n,n] C3(b), [n,n]=[nn]=0. (6-9)
Also,
Blaxn=0, Blaxi =0. (6-10)

Proof. By (6-7), a € b acts on [n,n], [n,n], and [n, n] by multiplication by 0, 2(«, a), and —2(«, a).
Equation (6-9) follows.
If f1, f> € n, by (6-7) and (6-8), we have

B(f1. f2) = B(lao. f1]. f2) = —B(f1.lao. f2]) = —B(f1. f2). (6-11)

From (6-11), we get the first equation of (6-10). We obtain the second equation of (6-10) by the same
argument. O

Remark 6.4. Clearly, we have

[3(b),3(0)] C 3(b). (6-12)
Since 3(b) preserves B and since 5-(b) is the orthogonal space to 3(b) in g with respect to B, we have
[5(0). 5™ (0)] € 5™ (b). (6-13)

By (6-4) and (6-9), we get
57 (®).57(®)] C3(0). (6-14)

We note the similarity between (3-2) and (6-12)—(6-14). In the sequel, We call such a pair (3, 3(b)) a
symmetric pair.

For k € Ky, let M(k) C M be the centralizer of k in M, and let m(k) be its Lie algebra. Let M (k)
be the connected component of the identity in M (k). Let p, (k) and & (k) be the analogues of p(y) and
£(y) in (3-11), so that

m(k) = pm(k) @ tw(k). (6-15)
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Since k is elliptic in M, we know M°(k) is reductive with maximal compact subgroup KI(\)/I (k) =
MO (k)N K and with Cartan decomposition (6-15). Let

Xp (k) =M°(k)/ Ky (k) (6-16)

be the corresponding symmetric space. Note that §(M°(k)) = 0 and dim X7 (k) is even.
Clearly, if y = e*k~ ! € H witha € b, a #0, k € T, then

PO =pulk), Ey)=tak), Z%0()=MK), K°(y) = Kpy(k). (6-17)

Proposition 6.5. Fory = e“k~' € H withacb, a #0, k € T, we have

, A . - ‘
}det(l —Ad()/))|304 | 2 = Z(_l)l A (0 )[Ad(k—l)]e(l—J)(a,a)
Jj=0
21 . ' .
— Z(_l)j TrAJ ("*)[Ad(k_l)]e(l_l)lallal, (6—18)
j=0
Proof. We claim that
1
|det(1 —Ad(y) 1 |2 = ¢! ®) det(1 — Ad(y)) 5. (6-19)

Indeed, since dimn is even, the right-hand side of (6-19) is positive. By (6-4), we have
det(1 — Ad(y))[;1 = det(1 — Ad(y))ln det(1 — Ad(y)) 5. (6-20)
Since n = On, we have
det(1 — Ad(y))|n = det(1 — Ad(0y)) |z = det(Ad(By))|7 det(Ad(Fy) ™! — 1)z (6-21)

Since dim ft = 2/ is even, and since (fy)~! = ek and k acts unitarily on n, by (6-7) and (6-21), we have

det(1 — Ad(y))|n = €219 det(1 — Ad(e%k)) |z = 2% det(1 — Ad(y)) i (6-22)
By (6-20) and (6-22), we get (6-19).
Classically,
21 . o ‘
det(1—Ad()|z = Y (=17 TrA ®[Ad(k™1)le™/ (), (6-23)
=0

Using the isomorphism of Kj-representations n* ~ n, by (6-19), (6-23), we get the first equation of
(6-18) and the second equation of (6-18) if a is positive in b. For the case a is negative in b, it is enough
to remark that replacing y by 8y does not change the left-hand side of (6-18). O

6B. A compact Hermitian symmetric space Y,. Let u(b) C u and u,, C u be the compact forms of 3(b)
and m. Then,

uwb) =v—-16@un, uUy=~v—1pn D . (6-24)
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Since §(M) = 0, we know M has compact center. By [Knapp 1986, Proposition 5.3], let Ups be the
compact form of M.

Let U(b) C U, Ag C U be the connected subgroups of U associated with Lie algebras 1(b), ~/—1b.
By (6-24), Ay is in the center of U(b), and

Ub) =AoUpy. (6-25)
By [Knapp 2002, Corollary 4.51], the stabilizer of b in U is a closed connected subgroup of U, and so it
coincides with U(b).
Proposition 6.6. The group Ay is closed in U, and is diffeomorphic to a circle S,

Proof. The proof of Proposition 6.6, based on the classification theory of real simple Lie algebras, will be
given in Section 6H. U

Set
Yo =U/U(b). (6-26)

We will see that Yy is a compact Hermitian symmetric space.
Recall that the bilinear form — B induces an Ad(U )-invariant metric on u. Let u(b) be the orthogonal
space to u(b) in u such that

u=u(b) ®ut(b). (6-27)
Also, we have
ut(6) = V=1pt(b) ® £ (b). (6-28)
By (6-12)—(6-14), we have
[u(b), u(b)] Cu(b), [u(b), u=(®)] Cut(b). [ut(b). ut(b)] C u(b). (6-29)
Thus, (u, (b)) is a symmetric pair.
Set
J = v/—1lad(ao)|, 1 ) € End(u™(b)). (6-30)

By (6-7)—(6-10), J is a U(b)-invariant complex structure on u-(b) which preserves the restriction B |yt ()

Moreover, ng = n®g C and ng = n ®p C are the eigenspaces of J associated with the eigenvalues +/—1
and —+/—1 such that
ut(b) ®r C = ng @ fic. (6-31)

The bilinear form — B induces a Hermitian metric on n¢ such that, for f1, f» € ne,

(f1. fahne = —B(f1. f2). (6-32)

Since J commutes with the action of U(b), we know U(b) preserves the splitting (6-31). Therefore,
U(b) acts on n¢ and nc. In particular, U(b) acts on A*(ng). If S () i the spinor of (ut(b), —B), by
[Hitchin 1974], we have the isomorphism of representations of U(b),

A*@E) ~ §* 0 @ det(ng)?. (6-33)
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Note that M has compact center Zjy. By [Knapp 1986, Proposition 5.5], M is a product of a connected
semisimple Lie group and the connected component of the identity in Z4. Since both of these two groups
act trivially on det(n), the same is true for M. Since the action of Ups on n¢ can be obtained by the
restriction of the induced action of M¢ on n¢, we know Uy acts trivially on det(ng). By (6-33), we have
the isomorphism of representations of Upy,

INGSER (6-34)

As in Section 4A, let w" be the canonical left invariant 1-form on U with values in u, and let w"®)
and 0" ® be the u(b) and ut(b) components of @, so that

' = "® vt ®) (6-35)

Then, U — Y, is a U(b)-principle bundle, equipped with a connection form w®. Let Q"®) be the
curvature form. As in (4-3), we have

QU® — _1[pe © O] (6-36)
The real tangent bundle
TYs = U Xy ut(b) (6-37)

is equipped with a Euclidean metric and a Euclidean connection V7Y, which coincides with the Levi-
Civita connection. By (6-30), J induces an almost complex structure on 7' Y. Let 7(1,0) Yy and T(O’l)YE,
be the holomorphic and antiholomorphic tangent bundles. Then

THOY, = U xygyne, TOVY = U xy) ic. (6-38)

By (6-9) and (6-38), J is integrable.
The form —B(-, J -) induces a Kihler form w¥® € Q2(Y}) on Yp. Clearly, Y is closed, and therefore
(Ys, @¥?) is a Kihler manifold. Let f1,..., f»; € n be such that

—B(fi. f;) =bij. (6-39)
Then f1,..., fo; is an orthogonal basis of ng with respect to (-, - )nc. Let f1,. .., £ be the dual base
of n¢. The Kihler form w¥® on Yy is given by
o =— " B IS ==V-1 Y S (6-40)
1<i,j<2l 1<i<2l

Let us give a more explicit description of Yy, although this description will not be needed in the
following sections.

Proposition 6.7. The homogenous space Yy is an irreducible compact Hermitian symmetric space of
type Alll or BDI.

Proof. The proof of Proposition 6.7, based on the classification theory of real simple Lie algebras, will be
given in Section 6J. O
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Since Uy, acts on u, and Ag acts trivially on iy, by (6-25), we have U(b) acts on uy,. Put
Nb =U XU(b) Um- (6—41)

Then, Ny is a Euclidean vector bundle on Y, equipped with a metric connection V¢, We equip the
trivial connection VY=1® on the trivial line bundle /=16 on Y;. Since U(b) preserves the first splitting
in (6-24), we have

V=1b& N, = U xy, U(b). (6-42)

Moreover, the induced connection is given by
YYIeeN: — g1t gy, (6-43)
By (6-27), (6-37), and (6-42), we have
TYy ®V—1b® Ny =, (6-44)
where u stands for the corresponding trivial bundle on Y.
Proposition 6.8. The following identity of closed forms holds on Yy:
A(TYy, VIYo) A(Ny, VVo) = 1. (6-45)

Proof. Proceeding as in [Bismut 2011, Proposition 7.1.1], by (6-27), (6-37), and (6-42), we have

AT Yy, VIY) A(V=Tb @ Ny, VV100Ne) — | (6-46)

By (6-43), we have
A(V=Tb & Ny, VVT00Ne) — A(,, V7o), (6-47)
By (6-46) and (6-47), we get (6-45). O

Recall that the curvature form 2% is a 2-form on Y}, with values in U Xy () W(b). Recall that ag € b
is defined in (6-8). Let Q" be the uy,-component of Qu®). By (6-8), (6-36) and (6-40), we have

Qu® — N/—1|a—°|2 ® 0’ + QU (6-48)
ao

By (6-48), the curvature of (N, V) is given by
RN = ad(Q"®) |, = ad(Q"™) |y, (6-49)

Also, B("® Qu(®) and B(QU, Q=) are well defined 4-forms on Y. We have an analogue of [Bismut
2011, Equation (7.5.19)].

Proposition 6.9. The following identities hold:

a)Yb,Z
B(Qu(b), Qu(b)) =0, B(Qum’ Qum) = —F

a2 (6-50)
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Proof. If ey, ..., e4; is an orthogonal basis of ul(b), by (6-36), we have

B(Qu(b), Qu(b)) — % Z B([el-, ej], [ei/, ej/])eiejei/ej/

1<i,j,i',j/ <4l
= % Z B([[e,-,ej],e,-/],ej/)eiejei/ej/. (6-51)
1<i,j,i',j/ <4l

Using the Jacobi identity and (6-51), we get the first equation of (6-50).
The second equation of (6-50) is a consequence of (6-48) and the first equation of (6-50). O

6C. Auxiliary virtual representations of K. Let RO(Kjs) and RO(K) be the real representation rings
of Kjr and K. Lett: Kjy — K be the injection. We denote by

* :RO(K) — RO(Kyy) (6-52)
the induced morphism of rings. Since K37 and K have the same maximal torus 7', we know ¢* is injective.

Proposition 6.10. The following identity in RO(Kpz) holds:

m dimpy, 2/
L*(Z(—l)"‘li/\"(p*>) = D DDA @A (). (6-53)
i=1 i=0 j=0

Proof. For a representation V' of Ky, we use the multiplication notation introduced by Hirzebruch. Put

Ay (V)= ¥ A (V). (6-54)

1

a polynomial of y with coefficients in RO(K3s). In particular,

A(V) =) (D'A(V), AL (V) =) (=D)THAN(V). (6-55)

Denote by 1 the trivial representation. Since Aj(1) =0and A’ (1) =1, we get
AL (V&1 = A (V). (6-56)
By (6-2), (6-5), and the fact that K acts trivially on b, we have the isomorphism of Ky -representations
P1@pn @, (6-57)
Taking V = p,, @ n, by (6-56) and (6-57), we get (6-53). O
The following theorem is crucial.

Theorem 6.11. The adjoint representation of Kps on n has a unique lift in RO(K).

Proof. The injectivity of (* implies the uniqueness. The proof of the existence of the lifting of n, based
on the classification theorem of real simple Lie algebras, will be given in Section 61. O

Corollary 6.12. For i, j € N, the adjoint representations of Kps on A’.(p;;) and A7 (n*) have unique
lifts in RO(K).
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Proof. As before, it is enough to show the existence of lifts. Since the representation of Kjs on n lifts
to K, the same is true for the A/ (n*). By (6-57), this extends to the A (p}). O

Denote by 7n; the adjoint representation of M on A7 (n*). Recall that by (6-31), U(b) acts on nc.
Recall also that C'=" € End(A’ (n})), CH®1(®) ¢ End(ul (b)) are defined in (3-8).

Proposition 6.13. For 0 < j < 21, the operator C*™" is a scalar such that
Cimti = L O [cv®@ut O (1)) (6-58)

Proof. Equation (6-58) was proved in [Moscovici and Stanton 1991, Lemma 2.5]. We give here a more
conceptual proof.

Recall that (u, u(b)) is a compact symmetric pair. Let S* 1(®) pe the uJ-(b) spinors [Bismut 2011,
Section 7.2]. Let C4(®)-5* o be the C351m1r element of u(b) acting on S* () defined as in (3-8). By
(7.8.6) of the same paper, C(®)-S w " is a scalar such that

CUOST L pyu®act @) (6-59)

Let C*A*(0) pe the Casimir element of iy, acting on A*(ng). By (3-7), (6-33) and (6-34), we have

Cu(b),sui(w — CumATGY) _ (Ad(al)|A'(ﬁg)®der1/2(nc))2- (6-60)

By (6-7), we have
Ad(a1)|Aj(ﬁE)@det_l/z(nC) =(j = Dle|. (6-61)
By (6-59)—(6-61), we get (6-58). O

Let y = e?k~! € G be such that (3-9) holds. Since A*(p}) € RO(K), for Y € £(y), we know
Tr A (0m) [k~ ! exp(—iY)] is well defined. We have an analogue of (4-44).

Proposition 6.14. If dim b(y) = 2, then for Y € £(y), we have
Tr2* ¢tn) [k~ exp(—iY)] = 0. (6-62)

Proof. The proof of Proposition 6.14, based on the classification theory of real simple Lie algebras, will
be given in Section 6L. O

6D. A classification of real reductive Lie algebra g with §(g) = 1. Recall that G is a real reductive
group with compact center such that §(G) = 1.

Theorem 6.15. We have a decomposition of Lie algebras
g9=9g1D 92, (6-63)

where
g1 =s3(R) or so(p,q), (6-64)

with pq > 1 odd, and g3 is real reductive with 5(g) = 0.
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Proof. Since G has compact center, by (3-6), 3, = 0. By (3-25), we have
§([g. g]) = 1. (6-65)
As in [Bismut 2011, Remark 7.9.2], by the classification theory of real simple Lie algebras, we have
[0.9] = 01 @ 05. (6-66)

where
g1 =sB(R) or so(p.q). (6-67)

with pg > 1 odd, and where g/, is semisimple with §(g},) = 0. Take
g2 =5 D05 (6-68)
By (3-24), (6-66)—(6-68), we get (6-63). O
6E. The group SL3(R). In this subsection, we assume that G = SL3(R), so that K = SO(3). We have
X ai as 0 a1 ap
p= {(al y as ) 1X,y,d1,d2,a3 € [RR} , t= {(—al 0 a3) tdy,ds,a3 € R} . (6-69)
ap az —x—y —ap —asz 0
Let
A0 .
Tz{(o 1).AeSO(z)}cK (6-70)

be a maximal torus of K.
By (3-18), (6-69) and (6-70), we have

By (6-71), we get

x a1 O 0 0 ap
Pm = a; —x 0 ):x,a;1€eRy, pl(b): 0 0 a3):az,a3€eR}. (6-72)
0 00 a az 0

S O =

0 O
x 0 )ZXER§ Cp. (6-71)
0 —2x

Also,

A0

b=t Ky =T. M:{(O |

) Ae SLZ(R)}. (6-73)

By (6-71), we can orient b by x > 0. Thus,

00612
n= 00as):az,a3€eR;. (6-74)
000
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By (6-71) and (6-74), since for x € R, a3 € R, a3z € R,

x 0 O 00 as 00 ap
0O0x 0 },{00 as =3x| 00 asz|, (6-75)
00 —2x 000 000

we find that b acts on n as a scalar.
Denote by Isom”(G/K) the connected component of the identity of the isometric group of X = G/K.
Since G acts isometrically on G/ K, we have the morphism of groups

ig : G — Isom’(G/K). (6-76)
Proposition 6.16. The morphism ig is an isomorphism; i.e.,
SL3(R) ~ Isom®(SL3(R)/ SO(3)). (6-77)

Proof. By [Helgason 1978, Theorem V.4.1], it is enough to show that K acts on p effectively. Assume
that k € K acts on p as the identity. Thus, k fixes the elements of b. As in (6-73), there is A € GL,(R)
such that

A 0
k= (O det_l(A))' (6-78)
Since k fixes also the elements of p=(b), by (6-72) and (6-78), we get A = 1. Therefore, k = 1. O

6F. The group G = SOO(p, q) with pq > 1 odd. In this subsection, we assume that G = SO°(p, ¢),
so that K = SO(p) x SO(g), with pg > 1 odd.

In the sequel, if /,!” € N*, let Mat; ;/(R) be the space of real matrices of / rows and /" columns. If
L C Mat; ;(R) is a matrix group, we denote by o; the standard representation of L on R!. We have

0 B A0
p:{(B, 0);BeMat,,,q(R)}, ez{(o D):Aeso(p),Deso(q)}. (6-79)
Let
A1 00
Ty q = (0 .0 ):Al,...,A(p_l)/zeSOQ) CcSO(p—1) (6-80)
0 0 Ap-n/
be a maximal torus of SO(p — 1). Then,
A 0 0
10 ,
T=10(y]) 0|eK:AeTpr BeTyip CK (6-81)
0O 0 B

is a maximal torus of K.
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By (3-18) and (6-81), we have

b=

Pm =

p(b) =

SHU SHEN

0 0 0
x 0

0 0 0

0 0 B
00

0 (pg) 0

Bt 0 0)

(0 0Ov; O

0 (00) vh

vt 00/ 0

\0 v 0 0)

0 (0 ) o|epixert,

ep:Be Matp_l,q_l([R{) ,

eEpivg

where vy, v, are considered as column vectors. Also,

eRP7 pyyeRITLY

A 0 0
B 00 : _ _
b = 0(00) 0|et:Adeso(p—1), Deso(qg—1)
0 0 D
By (6-82) and (6-83), we get
(A 0 B
3 10 (A B o
m=1lo (01) 0 eG.(C D)eSO(p Lg—nb,
C 0 D)
/A 0\
10
Ku=1]0 (01) 0|ek:4eS0(p—1),D eSO 1)
0O 0 D

By (6-82), we can orient b by x > 0. Then,

n—

0 —V1 VU1 0
vi (OO) vh
i Loo) g

0 V) —VUp 0

€g:v €RP7L vy e RIT!

By (6-82) and (6-85), since for x € R, vy e RP~1, vy e R,

0 0

(03] [

x 0
0 0

0 0—1)11)10

t
Uy

t
t
Uy

0 01)2 —V2 0

we find that b acts on n as a scalar.

0—1)1 1)10
_ v] (00) vh
i Loo) g

0 Uy —Up 0

(6-82)

(6-83)

(6-84)

(6-85)

(6-86)
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Proposition 6.17. We have the isomorphism of Lie groups
S0°(p.q) ~ Isom®(SO°(p. q)/ SO(p) x SO(q)). (6-87)
where pq > 1 is odd.

Proof. As in the proof of Proposition 6.16, it is enough to show that K acts effectively on p. The
representation of K ~SO(p)xSO(q) on p is equivalent to 0, Ko,. Assume that (k1, k2) € SO(p)xSO(q)
acts on R? XIRY as the identity. If A is any eigenvalue of k; and if u is any eigenvalue of k5, then

=1, (6-88)
By (6-88), both k1 and k» are scalars. Using the fact that det(k;) = det(k2) = 1 and that p, g are odd,
we deduce k1 =1 and kp = 1. O

6G. The isometry group of X. We return to the general case, where G is only assumed to have compact
center and be such that §(G) = 1.

Proposition 6.18. The symmetric space G/ K is of noncompact type.

Proof. Let Z ?; be the connected component of the identity in Zg, and let Gg¢ C G be the connected
subgroup of G associated with the Lie algebra [g, g]. By [Knapp 1986, Proposition 5.5], G is closed
in G such that

G = Z2Gys. (6-89)

Moreover, G is semisimple with finite center, with maximal compact subgroup Kss = G5 N K. Also,
the imbedding Ggs — G induces the diffeomorphism

Gss/Kss ~ G/K. (6-90)

Therefore, X is a symmetric space of noncompact type. O
Put

Gy = Isom®(X), (6-91)

and let K, C G be the stabilizer of pl € X fixed. Then G« is a semisimple Lie group with trivial center,
and with maximal compact subgroup K«. We denote by g« and £, the Lie algebras of G« and K. Let

O« = Px DLy (6-92)
be the corresponding Cartan decomposition. Clearly,
Gy«/Ks >~ X. (6-93)

The morphism ig : G — G« defined in (6-76) induces a morphism i : g — g« of Lie algebras. By
(3-4) and (6-93), iy induces an isomorphism of vector spaces

PPy (6-94)
By the property of £, and by (6-94), we have
B = [Px, P = ig[p, p] Cigt. (6-95)

Thus i, iy are surjective.
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Proposition 6.19. We have
Gy« =G X Gy, (6-96)

where G1 = SL3(R) or G; = SO°(p, q) with pq > 1 odd, and where G, is a semisimple Lie group with
trivial center with §(G,) = 0.

Proof. By [Kobayashi and Nomizu 1963, Theorem IV.6.2], let X = ]_[flzl X; be the de Rham de-
composition of (X, g7%X). Then every X; is an irreducible symmetric space of noncompact type. By
Theorem VI1.3.5 of the same paper, we have
I
Gw = [ [ Isom®(Xy). (6-97)
i=1

By Theorem 6.15, (6-77), (6-87) and (6-97), Proposition 6.19 follows. O
6H. Proof of Proposition 6.2. By (6-63) and by the definitions of b and n, we have

b,nCg. (6-98)
Proposition 6.2 follows from (6-75) and (6-86). O

61. Proof of Theorem 6.11. The case G = SL3(R). By (6-73) and (6-74), the representation of Kjs >~
SO(2) on n is just 0. Note that K = SO(3). We have the identity in RO(Kjz)

(o3 —1) = 09, (6-99)

which says n lifts to K.

The case G = SO°(p, q) with pq > 1 odd. By (6-84) and (6-85), the representation of Kps ~ SO(p—1) x
SO(g—1) onnisjusto,—1 1@ 1Xo,1. Note that K = SO(p) x SO(g). We have the identity in
RO(Km)

F(op—1DR1D1R (0y—1)) =0p—1 K1 D 1R 0y_1, (6-100)
which says n lifts to K.
The case for G«. This is a consequence of Proposition 6.19 and (6-98)—(6-100).

The general case. Recall that ig : G — G is a surjective morphism of Lie groups. Therefore, the
restriction ig : K — Ky of ig to K is surjective. By (6-94), we have the identity in RO(K)

p=ig(ps). (6-101)
Set
te = ig(t) C by (6-102)

Since ik is surjective, by [Brocker and tom Dieck 1985, Theorem 1V.2.9], t, is a Cartan subalgebra of ..
Let by C ps« be the analogue of b defined by t.. Thus,

dimbs =1, by =ig(b). (6-103)
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We denote by K ar, pi(b4), 1y the analogues of Kz, p(b), n. By (6-94), Iy induces an isomorphism
of vector spaces

p(6) = py (by). (6-104)
Letig,, : Ky — K« m be the restriction of ig to Kps. We have the identity in RO(Kpz)

pr(b) = ik, (b (bs)). (6-105)
Let ' : K« p — K« be the imbedding. Then the diagram
Ky ——K

jiKM LiK (6-106)

L
K*,M — K«

commutes. It was proved in the previous step that there is £ € RO(K«) such that the following identity
in RO(K, pr) holds:
U*(E) = ny. (6-107)

By (6-5) and (6-105)—(6-107), we have the identity in RO(K}ps),
n=pt(b) =ig, (hx(be) =ig, () =ig, *(E)=1ig(E), (6-108)
which completes the proof of our theorem. O

6J. Proof of Proposition 6.7. 1f n € N, consider the following closed subgroups:

AcUQ) — (6‘ det—ol ( A)) € SUQ),

(6-109)
A0

(A, B) € SO(n) x SO(2) — ( o 3

) € SO(n +2).

We state Proposition 6.7 in a more exact way.

Proposition 6.20. We have the isomorphism of symmetric spaces
Yy ~SUB3)/U(2) or SO(p+¢q)/SO(p+q—2)xS0O(2), (6-110)
with pg > 1 odd.

Proof. Let Uy and Ux(b) be the analogues of U and U(b) when G and b are replaced by G and bx. It
is enough to show that

Yo ~ Uy / Ug (by). (6-111)

Indeed, by the explicit constructions given in Sections 6E and 6F, by Proposition 6.19, and by (6-109),
(6-111), we get (6-110).
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Let Zy C U be the center of U, and let Z ?] be the connected component of the identity in Zy. Let
Uss C U be the connected subgroup of U associated to the Lie algebra [u, u] C u. By [Knapp 1986,
Proposition 4.32], Uy is compact, and U = Uss ZJ).

Let Usg(b) be the analogue of U(b) when U is replaced by Uys. Then U(b) = Usg(b)Z?, and the
imbedding Uss — U induces an isomorphism of homogeneous spaces

Uss/ Uss(b) ~ U/ U(b). (6-112)

Let ﬁss be the universal cover of Uss. Since Uy is semisimple, ﬁss is compact. We define ﬁss(b)
similarly. The canonical projection Ugs — Uyg induces an isomorphism of homogeneous spaces

Uss/Uss (b) = Uss / Ugs (b). (6-113)

Similarly, since Uy is semisimple, if U, is a universal cover of Uy, and if we define ﬁ*(b) in the same
way, we have
Us/Ux(b) = Us/ Ux(b). (6-114)

The surjective morphism of Lie algebras iy : g — g« induces a surjective morphism of the compact
forms i, : u — u4. Since uy is semisimple, the restriction of i, to [u, u] is still surjective. It lifts to a
surjective morphism of simply connected Lie groups

Uss — U, (6-115)

Since any connected, simply connected, semisimple compact Lie group can be written as a product of
connected, simply connected, simple compact Lie groups, we can assume that there is a connected and
simply connected semisimple compact Lie group U’ such that Uss = Uy x U’, and that the morphism
(6-115) is the canonical projection. Therefore,

Uss/Ugs (b) ~ Uy /Uy (by). (6-116)
From (6-26), (6-112)—(6-114) and (6-116), we get (6-111). O

Remark 6.21. The Hermitian symmetric spaces on the right-hand side of (6-110) are irreducible and
respectively of type AIIl and type BDI in the classification of Cartan [Helgason 1978, p. 518, Table V].

6K. Proof of Proposition 6.6. We use the notation in Section 6J. By definition, Ag C Uys. Let fTo cU 55
and Ao C U, be the analogues of A9 when U is replaced by Uss and Us. Asin the proof of Proposition 6.7,
we can show that /To is a finite cover of Ag and A«g.

On the other hand, by the explicit constructions given in Sections 6E, 6F, and by Proposition 6.19,
Ay is a circle S'. Therefore, both /TO, Ay are circles.

6L. Proof of Proposition 6.14. We use the notation in Section 4E. Let y € G be such that dim b(y) = 2.
As in (4-39), we assume that y = e*k~! is such that

t(y)ct, keT (6-117)
It is enough to show (6-62) for Y € t(y).
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For Y € t(y), since kY exp(—iY) € T and T C KM, we have

Te A ) [k~ exp(—i¥)] = det(1 — Ad(k) exp(i ad(Y)))| o (6-118)
It is enough to show
dimb(y) Npm = 1. (6-119)
Note that a # 0, otherwise dim b(y) = 1. Let
a=a'+a’>+a>cb®pn dpt(b). (6-120)

Since the decomposition b @ pr, @ p(b) is preserved by ad(t) and Ad(T), it is also preserved by ad(t(y))
and Ad(k). Since a € b(y), the a;, 1 <i <3, all lie in b(y). If a® # 0, we get (6-119). If a> = 0 and
a3 =0, we have a € b. Since a # 0, we have b(y) = b, which is impossible since dimb(y) = 2.

It remains to consider the case

a’?=0, a®+#0. (6-121)
We will follow the steps in the proof of Theorem 6.11.
The case G = SL3(R). By (6-70) and (6-72), the representation of T~ SO(2) on p=(b) is equivalent
to 0». A nontrivial element of 7' never fixes a>. Therefore,
k=1. (6-122)

Since a ¢ b, we know a does not commute with all the elements of t. From (6-117), we get

dimt(y) <dimt= 1. (6-123)
Therefore,
t(y) = 0. (6-124)

By (4-36), (6-122) and (6-124), we see that b(y) = p. Therefore,
dim b(y) N pm = dim py,. (6-125)

By (6-72) and (6-125), we get (6-119).

The case G = SO°(p, q) with pq > 1 odd. By (6-82) and (6-84), the representations of Kps ~
SO(p —1) xSO(g — 1) on py, and p-(b) are equivalent to op—1Xoy—1and o, 1 X1P1XKo,—1. We
identify a3 € pL(b) with

v eRPTIgRITL (6-126)

Then v! and v? are fixed by Ad(k) and commute with £(y).

If v! # 0 and v? # 0, by (4-36), the nonzero element v! K v? € RP7! RIRI~ ~ p,, is in b(y). Tt
implies (6-119).

If v2 =0, we will show that y can be conjugated into H by an element of K, which implies dim b(y) =1
and contradicts dim b(y) = 2. (The proof for the case v! = 0 is similar.) Without loss of generality,
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assume that there exist s € N with 1 <s < (p —1)/2 and nonzero complex numbers As, ..., A(p—1)/2 €C
such that
vl =(0,...,0, A, ..., A(p_1y/2) € CP™V/2 ~ gP7L (6-127)
Then there exists x € R such that
0 o0v' o
1 0 (0x)\0
a=|1 (3 9) oler (6-128)
0 00 O

A4 0 0
B 10
k=10 (01) oler (6-129)
0 0 D

If we identify 7)1 =~ U(l)(p_l)/z, there are 61, ..., 6,—1)/2 € R such that

A= (Y170 2V 1m00n)2), (6-130)

Since k fixes a, by (6-127)—(6-130), fori =s,...,(p —1)/2, we have

2V 1mb (6-131)
If W eso(p—2s+2),set
col.
el
000
Iwy=[owo|et (6-132)
00O
By (6-129)-(6-132), we have
kI(W) =1(W)k. (6-133)

Putw = (As,..., A(p—1)/2:X) € C(P=25+1)/2 R ~ RP~25F2 There exists W € so(p —2s +2) such
that
exp(W)w = (0,...,0,|w|), (6-134)

where |w| is the Euclidean norm of w.
Put
k' =exp(l(W)) € K. (6-135)

By (6-82), (6-133) and (6-134), we have
Ad(k"yaeb, Kkk'™'=k. (6-136)

Thus, y is conjugated by k’ into H.
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The general case. By (6-63), g = g1 @ g with g; = sl3(R) or g; = so(p, g) with pg > 1 odd. By
(6-98) and (6-121), we have a € g;. The arguments in (6-122)—(6-126) extend directly. We only need
to take care of the case g; = so(p,q) and a®> =0, v! # 0 and vZ = 0. In this case, the arguments in
(6-128)—(6-134) extend to the group of isometries G«. In particular, there is Wi € £ such that

Ad(exp(Wx))ig(a) € by, Ad(ig(k)) Wi = Ws. (6-137)
By (6-94), ker(iy) C £. Let ker(ig)l be the orthogonal space of ker(iy) in €. Then,
t = ker(iy) @ ker(ig)h, ker(ig)’ ~ &.. (6-138)

Take W = (0, Wy) € £. Put
k' =exp(W) € K. (6-139)

By (6-94), (6-137) and (6-139), we get (6-136). Thus, y is conjugate by k” into H. The proof of (6-62) is
completed. O

7. Selberg and Ruelle zeta functions

In this section, we assume that §(G) = 1 and that G has compact center. The purpose of this section is to
establish the first part of our main result, Theorem 5.5.

In Section 7A, we introduce a class of representations 1 of M such that n|g,, lifts as an element of
RO(K). In particular, 7; is in this class. Take fj = A®*(p}) ® n € RO(K). Using the explicit formulas
for orbital integrals of Theorem 4.7, we give an explicit geometric formula for Tr, Y] [exp(—t C &% /2)],
whose proof is given in Section 7B.

In Section 7C, we introduce a Selberg zeta function Z; , associated with 7 and p. Using the result in
Section 7A, we express Z , in terms of the regularized determinant of the resolvent of C 9% .0 and we
prove that Z, , is meromorphic and satisfies a functional equation.

Finally, in Section 7D, we show that the dynamical zeta function R, (o) is equal to an alternating
product of Z;) ,, from which we deduce the first part of Theorem 5.5.

7A. An explicit formula for Trs["][exp(—tC 9. X, /2)]. We introduce a class of representations of M.
Assumption 7.1. Let n be a real finite-dimensional representation of M such that

(1) the restriction n|k,, on Ky can be lifted into RO(K);

(2) the action of the Lie algebra uyy C m @ C on Ey Qg C, induced by complexification, can be lifted to

an action of Lie group Uyy;
(3) the Casimir element C*™ of uy acts on Ey @ C as the scalar C*™" € R.
By Corollary 6.12, let fj = 4T — i~ € RO(K) be the virtual real finite-dimensional representation of K

on Ej = E: — En_ such that the following identity in RO(Kjs) holds:

dimpy,

Ejlky = Y (=D'A'(p}) ® Eylky,- (7-1)
i=0
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By Corollary 6.12 and by Proposition 6.13, n; satisfies Assumption 7.1, so that the following identity

in RO(K) holds
dim p

21
DDA ) =D (-1 Ep,. (7-2)
i=1 j=0

As in Section 4A, let & = G xg Ej be the induced virtual vector bundle on X. Let C 0. X1 pe
the corresponding Casimir element of G acting on C*°(X, &;). We will state an explicit formula for
Tryexp(—t C9-X1/2)].

By (6-25), the complex representation of Ups on E; @r C extends to a complex representation of U(b)
such that A acts trivially. Set

F[,’T, =U XU(b) (E77 QR C) (7-3)

Then Fy 5 is a complex vector bundle on Y. It is equipped with a connection VFen induced by o*®),
with curvature RFe.n,

Remark 7.2. When 1 = n;, the above action of U(b) on A/ (n¢) is different from the adjoint action of
U(b) on A/ (n}) induced by (6-31).

Recall that 7" is the maximal torus of both K and Uyy. Put

m=t1 |W(T, Upr)| vol(K/Knr)

cg=(-1)"T" . (7-4)
|[W(T, K)| vol(Up/Km)
Recall that X3y = M/Kjy. By Bott’s formula [1965, p. 175],
|W(T, K)|
K/Ky)= —7-7—7"—"-, (7-5)
HRIEM) = 7 K
and by (4-5) and (7-4), we have a more geometric expression
e(TXM,VTXM max
= (1) ] e (-6)
[e(T(K/Kpr), VT K/ Kar))|max
Note that dim ut(b) = 2dimn = 41. If B € A*(u*(b)), let [8]™* € R be such that
Yy,21
w
_ max 7_7
BB @-7)

is of degree smaller than 4/.

Theorem 7.3. Fort > 0, we have

Tr,exp(—t C 9% /2)] =

cG t L 1 t
— e @ rcu®,us ) _ L cumn
N eXp(m e I=3

x |exp Lot A(T Yy, VTT%) ch(Fy . VFo) "o
8m2|ag|?t ’
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Ify=e%% '€ Hwithachb, a#0, k€T, fort >0, we have

Tl exp(—1 €9 /2)] = e Xy (), VX O
Xexp(_% n % TruL(b)[Cu(b),uL(b)]_% Cum,n) TePn[n(kh) (79
[det(1-Ad())],. |
If dimb(y) = 2, for t > 0, we have
TryM[exp(—tC#%7 /2)] = 0. (7-10)

Proof. The proof of (7-8) and (7-9) will be given in Section 7B. Equation (7-10) is a consequence of
(4-22), (6-62) and (7-1). O

7B. The proof of (7-8) and (7-9). Let us recall some facts about Lie algebras. Let A(t,€) C t* be
the real root system [Brocker and tom Dieck 1985, Definition V.1.3]. We fix a set of positive roots

AT (t,€) C A(t, €). Set
e 1
aeAT(L,E)
By Kostant’s strange formula [1976] or [Bismut 2011, Proposition 7.5.1], we have
47| p*|* = — 55 TIF[CHY). (7-12)
Let ¢ : t — C be the polynomial function such that, for ¥ € ¢,
m(Y)= [] 2imY). (7-13)
aeAT(t,0)
Let o¢ : t = C be the denominator in the Weyl character formula. For Y € t, we have
)= [ (" *1)—cimler)) (7-14)
aceAT(t,0)
The Weyl group W(T, K) acts isometrically on t. For w € W(T, K), set €, = det(w)|¢. The Weyl

denominator formula asserts for Y € t, we have

oe(Y) = Z €w exp(im (pt, wY)). (7-15)
weW(T,K)

Let K be the set of equivalence classes of complex irreducible representations of K. There is a bijection
between K and the set of dominant and analytic integral elements in t* [Brocker and tom Dieck 1985,
Section VI, (1.7)]. If A € t* is dominant and analytic integral, the character y, of the corresponding
complex irreducible representation is given by the Weyl character formula: for Y € t,

or(V)alexp(Y) = > ewexpim(p’ + A, wY)). (7-16)
weW(T,K)
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Let us recall the Weyl integral formula for Lie algebras. Let dvg,7 be the Riemannian volume on
K/ T induced by —B, and let d Y be the Lebesgue measure on ¢ or t induced by —B. By [Knapp 1986,
Lemma 11.4], if f € C.(£), we have

— 1 2
iy = [ mone( [ o 1A dugjr)dv. @)

Clearly, the formula (7-17) extends to L1 (£).
Proof of (7-8). By (3-3), (4-22) and (7-17), we have
TryMexp(— C&X-1/2)]

t t
- - T proter o L o ott
= Gamn exp(16 TP [C™P] + 18 Tr'[C ])
vol(K/T)

W(T. K)]| Yet|7TB(Y)|2J1(Y)TrsEﬁ[exp(—if](Y))] exp(—|Y |2/ (2t))dY. (7-18)

As 6(M) = 0, we have t is also a Cartan subalgebra of u,,. We will use (7-17) again to write the integral
on the last line of (7-18) as an integral over uy,.
By (6-5), we have the isomorphism of representations of Kyy,

pt(b) ~ e (b). (7-19)
By (4-21) and (7-19), for Y € t, we have

A ad(Y)ly,)

)= )

(7-20)
By (7-1), for Y € t, we have

Tr, 7 [exp(—i A(Y))] = det(1 — exp(i ad(Y)))|p,, Tr"[exp(—in(Y))]. (7-21)
By (7-13), (7-20) and (7-21), for Y € t, we have

(V) ?

mh(y) e, [exp(—i (Y )]

dimpm

= (1) 2" det(ad(Y))[er o)A~ (i ad(¥)|u,,) TrE7[exp(=in(Y))]. (7-22)

Using (6-5), for Y € t, we have
det(ad(Y))lpL (o) = det(ad(Y))[nc- (7-23)

By the second condition of Assumption 7.1 and by (7-23), the function on the right-hand side of (7-22)
extends naturally to an Ad(Ujpy)-invariant function defined on u,. By (7-4), (7-17), (7-18), (7-22) and
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(7-23), we have

Tr,Mexp(—t &%+ /2)]

_ (=Dleg ! tpr . Lo obe
_(2]”)(—m+n)/2exp ETrp[C ]—I—&Tr[C ]

X/Y det(ad(¥)lnc A" (i ad(Y)|w,) Tr7lexp(—in(Y))] exp(=|Y */(21)) dY. (7-24)

It remains to evaluate the integral on the last line of (7-24). We use the method in [Bismut 2011,
Section 7.5]. For Y € u,,, we have

|Y|? =—B(Y.,Y). (7-25)
By (6-32), (6-36) and (6-48), for Y € u,,, we have

B(Y,Q'")=— Y B@Y)fi, NS A= D (adM)fi, filac S AF (7-26)

1<i,j<2l 1<i,j<2l

By (6-40), (7-7) and (7-26), for Y € uy,, we have

det(ad(Y))|ne 1 Qum \\ T
e = (50))] "

As dimuy, = dimm =m +n —2[ — 1, from (7-24) and (7-27), we get

Tr,M[exp(—t C X1 /2)]

¢G ¢ Er bt
= ex TP [CYP] + — Tr*[CY )
- exp( 1 TP+ 4 THICH
t . -~ E ' 1 Qlim max
xexp| zA"™ |J A7 ({ ad(Y)ly,,) Tr™"[exp(—in(Y))] exp| —B| Y, . (7-28)
2 t 2 Y=0
Using
B(r. 2 L iy =ty + 20y 4 & 1B @i Qi (7-29)
T 2w 272 2’ 2 2 A
by (6-50) and (7-28), we have
Tr,Mexp(—t C X1 /2)]
cG 4 ¢ Lo epbt
=— — TP[CHP]+—Tr[C"
\/z_mexp(m [ ]+48 r'[C™]
th,Z ¢ ) ~ £ . max
xiexp| —=————- |exp| zA"™ ) (A" (i ad(Y)|y,,) Tr="[exp(—in(Y))]) . (7-30)
87T2|a0|2t 2 Y —_ Qum

2

We claim that the Ad(Ujy)-invariant function

Y €up — AL ad(Y)|y, ) TrE7 [exp(—in(Y))] (7-31)
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is an eigenfunction of A'm with eigenvalue
mos 1 m moe¥m
—Clml — 2 Trtm [C o], (7-32)

Indeed, if f is an Ad(Ujyy)-invariant function on u,, when restricted to t, it is well known, for example
[Bismut 2011, Equation (7.5.22)], that

1

Al f = Almy, f. (7-33)
Um
Therefore, it is enough to show that the function
Y €t 1y, (V) A7 (G ad (V) T fexp(—in (V)] (7-34)

is an eigenfunction of A' with eigenvalue (7-32). For Y € t, we have

~ oy (1Y)
A~ ad(Y = tm> 7-35
(i ad(Y))lu,, e (1Y) (7-35)
By (7-35), for Y € t, we have
T (VYA ad(Y )], = ilAT Gl (—iY). (7-36)

If £, ®g C is an irreducible representation of Ups with the highest weight A € t*, by the Weyl character
formula (7-16), we have

Oun (1Y) TrsPrfexp(=in(Y )] = Y ew expu(p*™ + A, wY)). (7-37)
weW (T, Up)

By (7-36) and (7-37), the function (7-34) is an eigenfunction of A' with eigenvalue
42| p" + A (7-38)
By Assumption 7.1, the Casimir of uy, acts as the scalar C"»". Therefore,
—CUl = 472 (|t 4 A2 — | ptm ). (7-39)

By (7-12) and (7-39), the eigenvalue (7-38) is equal to (7-32). If E; ®g C is not irreducible, it is enough
to decompose E; ®p C as a sum of irreducible representations of Upy.

Since the function (7-34) and its derivations of any order satisfy estimations similar to (4-20), by (6-49)
and (7-30), we get

Try M [exp(—tC# % /2)]

cG ! 4 ! Erott 4 u Uy U l u
e _TpCap —T Ca — T mCmam __C m»7]
exp( 5 TPIC] 4 4 THICH] - o T fCt)

2wt
My . RNe £ RFbn max
X ——— AT — | Tr7" — . (740
) A Ce i O |
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Since 4 is an even function, by (2-3), we have

~f RNv ~
A( : ) = A(Np, V). (7-41)
2im
We claim that
TP[CH] + L T [CHY — LTt [Ctmotn] = T O [CH©@ O], (7-42)

Indeed, by [Bismut 2011, Proposition 2.6.1], we have
TP [CHP] + L Te'[CHY) = L Tet[C™Y,

Trui(h) [Cu(h),ui(b)] + 1 Tru(b)[cu(b),u(b)] — %Tru[cu,u]' (7-43)
By (6-24), it is trivial that
Tru(b) [C u(b):u(b)] — Trum [C umaum]‘ (7_44)
From (7-43) and (7-44), we get (7-42).
By (2-4), (6-45) and (7-40)—(7-42), we get (7-8). O
Let Ups (k) be the centralizer of k in Upy, and let u, (k) be its Lie algebra. Then
U (k) = V—Ipm(k) & twm(k). (7-45)

Let U 1\04 (k) be the connected component of the identity in Ups (k). Clearly, U 1\04 (k) is the compact form
of M°(k).

Proof of (7-9). Since y € H, we know t C £(y) is a Cartan subalgebra of £(y). By (4-22), (6-17) and (7-17),
Trexp(—rC %1 /2)]

1 2
:WGXP( " +1 T”[C“’]+ T [c”])
I(Ky, (k)/T
X% @ (NP (DT KD exp(=iAY )] exp([Y[*/@0)dY.  (7-46)

M €

Since t is also a Cartan subalgebra of uy, (k), as in the proof of (7-8), we will write the integral on the last
line of (7-46) as an integral over uy (k).
Ask eT and T C Ky, by (7-1), for Y € ¢, we have

Tr %7 [(k™") exp(—i H(Y))] = det(1 — Ad(k) exp(i ad(Y))) Lo, TP [n(k~") exp(=in(Y))].  (7-47)
By (4-19), (7-13) and (7-47), for Y € t, we have

|7, ) (Y )12

e o O T [k exp(— ()]

dim Pm(k)

(—1)
\det(l —Ad(y))| } e
x TrEn[n(k™ l)eXp(—in(Y))]- (7-48)

det(1 — exp(—i ad(¥)) Ad( ™)1 T

—1
(i ad(Y)Ium<k>)[ det(l = Ad(k~")[;1 )
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Let ufn- (k) be the orthogonal space to uy (k) in . Then

(k) = V=1pp () @ Eg (). (7-49)
By (7-49), for Y € t, we have

det(1 —exp(—i ad(Y)) Ad(k~1)) }33 o det(l—exp(=i ad(¥)) Ad(k™)], 1 1)

(7-50)
det(1 = Ad(k—1)] 1 ) det(1 — Ad(k1)) [, 1 o)

By Assumption 7.1 and (7-50), the right-hand side of (7-48) extends naturally to an Ad(U 181 (k))-invariant
function defined on uy (k). By (4-5), (7-17), (7-46) and (7-48), we have

Tr, M exp(— C %7 /2)]

1 TX s (k), VT X (k)ymax 2 g t {
270 Jdet(1-Ad()] 3 |2 f

det(l—exp(—i ad(Y)) Ad(k_l)) }ui(k)
det(1-=Ad(k~1)ly1 k)

} TrE"[n(k_l)eXp(—in(Y))]}

AN ad<Y>|um<k>){
Y=0
(7-51)

As before, we claim that the function

det(1 —exp(~i ad(¥)) Ad(k ™) | .1 1) :
det(1 —Ad(k_l))|uﬂn-(k) :|

x TrE (k™) exp(—in(Y))] (7-52)

Y e um(k) — 121\_1(1. ad(Y)lum(k))|:

is an eigenfunction of A'm (k) with eigenvalue (7-32). Indeed, it is enough to remark that, as in (7-37), up
to a sign, if k = exp(0;) for some 6; € t, we have
o . _ 1
Ty (¥ AT ad(Y) |y, [det(1 —exp(—i ad(Y)) Ad(k™H))] #(k)] 2
= £ ATl iy —6y). (7-53)

Also, if E;, ®r C is an irreducible representation of Ups with the highest weight A € t¥,

Ou (—1Y = 0D TeFr [k exp(—in(Y) = D ewexp(2m{py, + A, w(¥ —i61))). (7-54)
weW (T, Upr)

Proceeding as in the proof of (7-8), we get (7-9). O
7C. Selberg zeta functions. Recall that p: " — U(r) is a unitary representation of I' and that (F, V¥, g©')
is the unitarily flat vector bundle on Z associated with p.
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Definition 7.4. For o € C, we define a formal sum

Xon(S'\Bp)  TrEr[n(k=1)] o—olal

Enp@)== ) T~ . (7-55)
[ylell]—{1} [¥] !det(l —Ad()/))laé‘z
and a formal Selberg zeta function
Zy,p(0) =exp(Ey,p(0)). (7-56)

The formal Selberg zeta function is said to be well defined if the same conditions as in Definition 5.4
hold.

Remark 7.5. When G = SO°(p, 1) with p > 3 odd, up to a shift on o, we know Z; , coincides with
Selberg zeta function in [Fried 1986, Section 3].

Recall that the Casimir operator C %% o71:p acting on C*°(Z, F3 Q¢ F) is a formally self-adjoint
second-order elliptic operator, which is bounded from below. For A € C, set

my.p(A) = dime ker(CZ1% — 2) — dime ker(C®Z17 — 3. (7-57)
Write
I'n,p = Mn,p(0). (7-58)
As in Section 2B, for 0 € R and o > 1, set

det(Cg’Z”ﬁp +0)

det Cgazaﬁ:p + o) = - X
ar( ) det(C#Z:15P 4 o)

(7-59)

Then, dety (C 8.Z:1:P 4 i) extends meromorphically to o € C. Its zeros and poles belong to the set
{—A:A € Sp(CQ’Z’ﬁ’p)}. IfAe Sp(Cg’Z’ﬁ’p), the order of the zero at o = —A is my ,(A).
Set
oy = LT @ [Cu® O] _ ot (7-60)
Set

l . 1

. I'(—7—= N .

Py(0)=cg Yy (1) ( / 12) [w¥o2) A(T Yy, VIY0) ch(Fo p, Vo) ™02 1 (7-61)
j=0 J4m)* *2ag|?

Then Py (o) is an odd polynomial function of o. As the notation indicates, 07 and P; (o) do not depend
on I or p.

Theorem 7.6. There is o9 > 0 such that

| Xorb (S"\ By 1
1
pleri-ay "D |det(1— Ad(y))] 1 |2

eo0lal < oo (7-62)

The Selberg zeta function Zy, ,(0) has a meromorphic extension to o € C such that the following identity
of meromorphic functions on C holds:

Zn.p(0) = detg(CEZ1P 4 6, + 62) exp(r vol(Z) Py (0)). (7-63)
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The zeros and poles of Z, ,(0) belong to the set {ﬂ:i m NS Sp(Cg’Z’ﬁ’p)}. If A € Sp(C#Z:1:p)
and A # —oy, the order of zero at 0 = %i \/m is my,p(A). The order of zero at 0 =0 is 2my, ,(—0y).
Also,

Zy,0(0) = Zn,p(—0) exp(2r vol(Z) Py (0)). (7-64)

Proof. Proceeding as in the proof of Theorem 5.6, by Proposition 5.1, Corollary 5.2, and Theorem 7.3, we
get the first two statements of our theorem. By (7-63), the zeros and poles of Z; ,(o’) coincide with that
of detg (C 8.Z.0.p 4 oy +02), from which we deduce the third statement of our theorem. Equation (7-64)
is a consequence of (7-63) and of the fact that P, (o) is an odd polynomial. O

7D. The Ruelle dynamical zeta function. We now consider the Ruelle dynamical zeta function R, (o).

Theorem 7.7. The dynamical zeta function R,(0) is holomorphic for Re(o) > 1 and extends meromor-
phically to o € C such that
21

Ry(@) = [ | Zn;p(o + (j = DIV (7-65)
Jj=0

Proof. Clearly, there is C > 0 such that, forall y € ',
1
|det(1 — Ad())]+ |2 < Cexp(Clal). (7-66)

By (7-62) and (7-66), for 0 € C and Re(o) > 0¢ + C, the sum in (5-10) converges absolutely to a
holomorphic function. By (5-4), (5-7), (5-10), (6-18) and (7-55), for o € C and Re(o) > 09 + C, we have

21
Ep(0) =Y (1)) "By, o0 + (j — D). (7-67)
j=0

By taking exponentials, we get (7-65) for Re(o) > g¢9 + C. Since the right-hand side of (7-65) is
meromorphic, R,(0) has a meromorphic extension to C such that (7-65) holds. O

Remark that for 0 < j < 2/, we have the isomorphism of Kz -representations of 7; >~ 15;_;. By (7-1),
we have the isomorphism of K-representations,

Nj ~Mai—j- (7-68)
Note that by (6-58) and (7-60), we have
oy, == =Dl (7-69)

By (7-63), (7-68) and (7-69), we have

Z’U:P(_\/GZ + (! —j)2|Ol|2)Z,,2,__,-,p(\/02 +( _j)2|0‘|2)
= Zy p(—Vo2 + (= j)Pal?) Zy; p(Vo? + (= j)?|a]?)

= detg (CTZ 7P 4 62)2 = dety (C¥Z:17P 4 62) dety (C#Z:121-)P 4 52).
(7-70)




ANALYTIC TORSION, DYNAMICAL ZETA FUNCTIONS, AND THE FRIED CONJECTURE 55
Recall that T'(0) is defined in (2-14).
Theorem 7.8. The following identity of meromorphic functions on C holds:

Ry(0) = T(0?) exp((—1)'"1r vol(Z) Py, (0))

I— . . (—1)/~1
Xfi( Znyp 0+ (=Dl Zyy—; p(0 + (= J)ler) ) 271
j=0\Zn;.p(=Vo2 + (U= 21aPR) Zyy_; p(VO2 + (= j)]el?)
Proof. By (2-14), (4-24), and (7-59), we have the identity of meromorphic functions,
21 ) -
T(0) = [ [ detge(C¥# 7P + ) D" (7-72)
j=0
By (7-63), (7-70), and (7-72), we have
—_1)/—1
T(02) = Zy, p(0) TV exp((=1)r vol(Z) Py, (0))
1-1
. . -1)/ 1
x [1(Zn, o(~Vo? + U = )2eP) Zny_, o (Vo2 + (1= j)a?)) T (7-73)
j=0
By (7-65) and (7-73), we get (7-71). O
For 0 < j <2/, as in (7-58), we write r; = rn;.p- By (7-68) and (7-72), we have
-1 ‘
X(Z.F)=2) (=)' + (=)' (7-74)
j=0
Set
-1 . I
. —1)/— . j —
Co=[[ 4=V, rp=2 (=) 7y (7-75)
j=0 j=0

Proof of (5-12). By Proposition 6.13 and Theorem 7.6, for 0 < j <[ — 1, the orders of the zeros at
o = 0 of the functions Zy; ,(0 + (j —1)|e|) and Zy,,_; (0 + (I — j)|e|) are equal to r;. Therefore,
for 0 < j </ —1, there are A; # 0, B; # 0 such that, as o — 0,

Zn; oo+ (j—Dlal) = Ajc" + 0" 1),

. . _— (7-76)
Zny_;.00+ (U= j)la]) = Bjo™/ +0(c™7™7),
and
Zny p(—Vo2 + (= j)2|al?) = 4; A LI REN
i ! Naa=lal |
2 2,12 > " orit2 7-17)
Z??zz—j,p(\/a + (=) || ):Bj(m) + O(c?7i 12,
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By (7-76) and (7-77), as 0 — 0,
Zn; o0+ (=Dl Zyy_; 00 + (1= j)la))
Zn; o(—V02+ (= )?) Znyy_; o (Vo2 + (L= j)?|ef?)
— (=4 = j)*|«|?) 072 + O(c 2. (7-78)

By (7-61), (7-71), (7-74), (7-75) and (7-78), we get (5-12). O
Remark 7.9. When G = SO°%(p, 1) with p = 3 odd, we recover [Fried 1986, Theorem 3.

Remark 7.10. If we scale the form B with the factor a > 0, then R,(0) is replaced by R,(y/ao). By
(5-12),as 0 — 0,
R,(vao) =a? C,T(F)*c" + O(c"*"). (7-79)

On the other hand, C, should become azﬁ;lo(_l)jr 7 Cp, and T (F) should scale by aX'(Z-F)/2 This is

only possible if
-1

rp=2Y (=1)/rj +24(Z.F), (7-80)
j=0

which is just (7-74).

8. A cohomological formula for r ;

The purpose of this section is to establish (5-13) when G has compact center and is such that §(G) = 1.
We rely on some deep results from the representation theory of reductive Lie groups.

This section is organized as follows. In Section 8A, we recall the constructions of the infinitesimal and
global characters of Harish-Chandra modules. We also recall some properties of (g, K)-cohomology and
n-homology of Harish-Chandra modules.

In Section 8B, we give a formula relating r; with an alternating sum of the dimensions of Lie algebra
cohomologies of certain Harish-Chandra modules, and we establish (5-13).

8A. Some results from representation theory. In this section, we do not assume that §(G) = 1. We use
the notation in Section 3 and the convention of real root systems introduced in Section 7B.

8A1. Infinitesimal characters. Let Z(gc) be the center of the enveloping algebra U(gc) of the complexi-
fication g¢ of g. A morphism of algebras y : Z(gc) — C will be called a character of Z(gc¢).

Recall that by, ..., b, form all the nonconjugated 6-stable Cartan subalgebras of g. Let h;c = bh; g C
and h;p = «/—_lhip @ b;e be the complexification and real form of b;. For o € b7, we extend « to a
C-linear form on b;¢ by C-linearity. In this way, we identify b, to a subset of b7

For 1 <i <, let S(h;c) be the symmetric algebra of h;¢c. The algebraic Weyl group W(h;R, 1) acts
isometrically on h;r. By C-linearity, W(h;r, t) acts on h;c. Therefore, W(h;g, ut) acts on S(h;¢c). Let
S(hic)Vhirt) = §(h;c) be the W(h;g, u)-invariant subalgebra of S(h;c). Let

vi : Z(gc) = S(hic) " i) (8-1)
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be the Harish-Chandra isomorphism [Knapp 2002, Section V.5]. For A € b7, we can associate to it a
character y Ao of Z(gc) as follows: for z € Z(gc¢),

XA (2) = (yi(2), 24/ =17A). (8-2)

By [Knapp 2002, Theorem 5.62], every character of Z(gc) is of the form y o for some A € b.. Also, A is
uniquely determined up to an action of W(h;r. ). Such an element A € b is called the Harish-Chandra
parameter of the character. In particular, y o = 0 if and only if there is w € W(h;r, u) such that

wA = p!, (8-3)
where p} is defined as in (7-11) with respect to (hjr, u).

Definition 8.1. A complex representation of g¢ is said to have infinitesimal character y if z € Z(g¢) acts
as a scalar y(z) € C.

A complex representation of g is said to have generalized infinitesimal character y if z — y(z) acts
nilpotently for all z € Z(ge), i.e., (z — x(2))" acts like 0 for i > 1.

If A € b}, is algebraically integral and dominant, let ¥ be the complex finite-dimensional irreducible
representation of the Lie algebra gc with the highest weight A. Then V) possesses an infinitesimal
character with Harish-Chandra parameter A + p}' € b.

8A2. Harish-Chandra (gc, K)-modules and admissible representations of G. We follow [Hecht and
Schmid 1983, pp. 54-55] and [Knapp 1986, p. 207].

Definition 8.2. We will say that a complex U(gc)-module V, equipped with an action of K, is a Harish-
Chandra (gc, K)-module, if the following conditions hold:

(1) The space V is finitely generated as a U(gc)-module.
(2) Every v € V lies in a finite-dimensional, £c-invariant subspace.
(3) The actions of gc and K are compatible.

(4) Each irreducible K-module occurs only finitely many times in V.

Let V' be a Harish-Chandra (gc, K)-module. For a character y of Z(gc), let V;, C V be the largest
submodule of V' on which z — y(z) acts nilpotently for all z € Z(g¢). Then V) is a Harish-Chandra
(g¢c, K)-submodule of V' with generalized infinitesimal character y. By [Hecht and Schmid 1983,
Equation (2.4)], we can decompose V' as a finite sum of Harish-Chandra (gc, K)-submodules

V= (8-4)
X

Any Harish-Chandra (gc, K)-module V has a finite composition series in the following sense: there
exist finitely many Harish-Chandra (gc, K)-submodules

V:anDan_lD"'DVoDV_lzo (8-5)
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such that each quotient V;/V;_q, for 0 < i < ny, is an irreducible Harish-Chandra (g¢c, K)-module.
Moreover, the set of all irreducible quotients and their multiplicities are the same for all the composition
series.

Definition 8.3. We say that a representation = of G on a Hilbert space is admissible if the following
hold:

(1) When restricted to K, |k is unitary.

(2) Each 7 € K occurs with only finite multiplicity in |-

Let 7 be a finitely generated admissible representation of G on the Hilbert space V. If T € K, let
Vz(t) C V be the t-isotopic subspace of V. Then V;(7) is the image of the evaluation map

(f,v) e Homg (V;, Vz) @ Ve — f(v) € Vy. (8-6)
Let
Vik =P Va(r) C Vi (8-7)
tek

be the algebraic sum of representations of K. By [Knapp 1986, Proposition 8.5], V; g is a Harish-Chandra
(gc, K)-module. It is explained in [Vogan 2008, Section 4] that, by results of Casselman, Harish-Chandra,
Lepowsky and Wallach, any Harish-Chandra (g¢, K)-module V' can be constructed in this way and the
corresponding V7 is called a Hilbert globalization of V. Moreover, V is an irreducible Harish-Chandra
(gc, K)-module if and only if V}; is an irreducible admissible representation of G. In this case, V or V
has an infinitesimal character.

We note that a Hilbert globalization of a Harish-Chandra (g¢, K)-module is not unique.

8A3. Global characters. We recall the definition of the space of rapidly decreasing functions S(G) on G
[Wallach 1988, Section 7.1.2].

For z € U(g), we denote by z7, and zg respectively the corresponding left and right invariant differential
operators on G. Forr =0, z1 € U(g), z2 € U(g) and f € C°°(G), put

1/ lz1.2 = sup erx(PLr8) |21 2ok f(9)). (8-8)
g€

Let S(G) be the space of all f € C°°(G) such that, for all » = 0, z; € U(g), z2 € U(g), we have
| f 17,2,z < o00. We endow S(G) with the topology given by the above seminorms. By [Wallach 1988,
Theorem 7.1.1], S(G) is a Fréchet space which contains C2°(G) as a dense subspace.

Let 7 be a finitely generated admissible representation of G on the Hilbert space V. By [Wallach
1988, Lemma 2.A.2.2], there exists C > 0 such that, for g € G, we have

|7 (g)]| < CeCdx(PL.PE) (8-9)

where || - || is the operator norm. By (8-9), if f € S(G),

n(f) = /G F(g)m(g) dg (8-10)
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is a bounded operator on V. By [Wallach 1988, Lemma 8.1.1], 7(f) is trace class. The global
character @,? of 7 is a continuous linear functional on S(G) such that, for f € S(G),

Tr[z(f)] = (8F. f). (8-11)

If V is a Harish-Chandra (gc, K)-module, we can define the global character ®I€ of V by the global
character of its Hilbert globalization. We note that the global character does not depend on the choice of
Hilbert globalization [Hecht and Schmid 1983, p. 56].

By Harish-Chandra’s regularity theorem [Knapp 1986, Theorems 10.25], there is an LllOC and Ad(G)-
invariant function @g (g) on G, whose restriction to the regular set G’ is analytic, such that, for f €
C°(G), we have

©9.1)= [ %) f(e) dv. (8-12)
geG
Proposition 8.4. If f € S(G), then ©S (g) f(g) € L' (G) such that
©9.1)= [ 0% f(e)dv. (8-13)
geG
Proof. It is enough to show that there exist C > 0 and a seminorm || - || on S(G) such that
L 1e¢@ r@idg<cisi (8-14)

Recall that H' is defined in (3-36). By (3-33), we need to show that there exist C > 0 and a seminorm
Il -]l on S(G) such that, for 1 <i <[y, we have

[ egw ( [ el de,.\G) det(1 — Ad() oo
)/GHZ-/ geH;\G

dvg; < C| f]. (8-15)

By [Knapp 1986, Theorem 10.35], there exist C > 0 and ro > 0 such that, for y = e%k~! € H] with
a € bip, k € Hi N K, we have

108 (y)]|det(1 — Ad(y)) g/,

We claim that there exist r; > 0 and C > 0, such that, for y € Hl./ , we have

5 < cerolal (8-16)

1
det(1 = Ay |* [ Pl g g ) dog <€ D)
ge

Indeed, let E(g) be the Harish-Chandra E-function [Varadarajan 1977, Section I1.8.5]. By Section I1.12.2
and Corollary 5 of the same paper, there exist r, > 0 and C > 0, such that, for y € Hl.’ , we have

|det(1 — Ad())lg/s,

1 _
2/ E(g 'ye) (1 +dx(pl.g 'yg- p1)) “dogpg <C.  (8-18)
gEH\G

By [Knapp 1986, Proposition 7.15(c)] and by (8-18), we get (8-17).
By [Bismut 2011, Equation (3.1.10)], for g € G and y = e*k~! € H;, we have

dx(pl,g 'yg-pl) = |al. (8-19)
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Take r = 2rg + 11, z1 = z2 = 1 € U(g). Since f € S(G), by (8-8) and (8-19), for y = e%k~' € H/, we

i’
have . .
| f (&7 v < | fllrz1,2, exp(—rdx (pl.g " yg - p1))

<1/ llrz1.22 exp(—2rolal) exp(—ridx (pl. g~ yg - p1)). (8-20)
By (8-16), (8-17) and (8-20), for y € H/, we have

108 (7)) ( / g D) de,.\G) ldet(1 = AdODg/s, | < ClLF Irey s exp(—rolal).  (8-21)
g i

By (8-21), we get (8-15). O

Let V' be a Harish-Chandra (g¢, K)-module, and let t be a real finite-dimensional orthogonal repre-
sentation of K on the real Euclidean space E. Then the invariant subspace (V ®r E;)X C V ®g E; has
a finite dimension. We will describe an integral formula for dime(V ®g E¢)X, which extends [Barbasch
and Moscovici 1983, Corollary 2.2].

Recall that p,X ’*(g) is the smooth integral kernel of exp(—tC %> /2). By the estimation on the heat
kernel or by [Barbasch and Moscovici 1983, Proposition 2.4], pf( '"(g) € S(G) ® End(E-). Recall that
dvg is the Riemannian volume on G induced by —B(-, 6 -).

Proposition 8.5. Let f € C®(G, E;)X. Assume that there exist C > 0 and r > 0 such that

| (&)l < Cexp(rdx (pl. pg)). (8-22)
The integral

/ . P (9) f(g) dvg € Eq (8-23)
ge

is well defined so that

0

X,t _ 1 Xt
i | @r@we=—3 [ cott@rwa,

| g€ (8-24)
. X,t _
i m [ P @ dve = 1)
Proof. By (8-22), by the property of S(G) and by %ptx’r(g) = —%Cgptx’t(g), the left-hand side of
(8-23) and the right-hand side of the first equation of (8-24) are well defined so that the first equation of
(8-24) holds true.
It remains to show the second equation of (8-24). Let ¢y € C2°(G)X be such that 0 < ¢1(g) < I and

1, dx(pl,pg) <1,

(8-25)
0, dx(pl,pg)=2.

$1(8) Z{

Set pp = 1—¢1.
Since ¢ f has compact support, it descends to an L2-section on X with values in G xg E. We have

1 X.o B
vol(K) Ay /g o (&)$1(8) f(g) dvg = f(1). (8-26)
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By (4-27), there exist ¢ > 0 and C > 0 such that, for g € G with dy(pl, pg) = 1 and for ¢ € (0, 1],
we have

d2(pl, dz(pl,
Pl <C exp(—cw) <Ce 2 exp(—c%), (8-27)
By (8-22) and (8-27), there exist ¢ > 0 and C > 0 such that, for ¢ € (0, 1], we have
/ P77 (9)¢2(2) £ () dvg | < Ce™ 2. (8-28)
geG
By (8-26) and (8-28), we get the second equation of (8-24). O

Proposition 8.6. Let V be a Harish-Chandra (gc, K)-module with generalized infinitesimal character y.
Fort > 0, we have

tx(C9)

dime(V &g E)X =vol(k) 1“5 [ 06 T (@) dve. (8-29)
geG

Proof. Let V5 be a Hilbert globalization of V. Then,
(V ®p E0)* = (Vx ®r Eo)". (8-30)
As in (8-10), set

w(p") = 7(g) ®r p;7 (g) dvg. (8-31)

VOI(K) geG

Then, n(pf(’r) is a bounded operator acting on V,; ®g E-.
We follow [Barbasch and Moscovici 1983, pp. 160-161]. Let (V; Qr ET)K L be the orthogonal space
to (Vi Qr ET)K in V; ®r E; such that

Ve ®r Ex = (Vo ®r ED)X ® (Vy @r Eo) KL (8-32)

Let O . be the orthogonal projection from V; ®r E; to (V; Qr E-)X. Then,

Qn,r

= Vol (&) Jrex T ®t(k)dvg. (8-33)

By (4-13), (8-31) and (8-33), we get

Qn,tn(ptx’r)Qn,r = ”(Pf(’r)- (8-34)

In particular, (p;*"%) is of finite rank.
Take u € (V; Qr Ez)X and v € Vy;. Define (u, v) € E; to be such that, for any w € Ex,

({u,v), w) = (U, v Qr w). (8-35)

By (8-9), the function g € G — (n(g) ®rid-u,v) € E; is of class C®°(G, E;)X such that (8-22) holds.
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By (8-31), we have

1 .
(e v) = s | P @) Brid-u.v)dv. (8-36)
By Proposition 8.5 and (8-36), we have
ad 1 .
g(n(ptx’t)u, V) = —§<H(Cg)7[(ptx’r)u, v),  lim (7 (pEFyu, v) = (u, v). (8-37)
t—0

Since C® € Z(g) and since 7 (C?) preserves the splitting (8-32), by (8-34) and (8-37), under the
splitting (8-32), we have

—tn(C9)/2 0
7(p;F) = (e 0 o) (8-38)
Since V has a generalized infinitesimal character y, by (8-38), we have
e[z (p;)] = e X CD/2 dime (Ve ®m Eo) K. (8-39)
Let (§)92, and (n; )dlm E be orthogonal bases of Vy and E;. Then
oo dim E
X (@my. s &) d 8-40
() = 3D [ @ res b @40
o0
X,T
= Tr[p;* L&) dvg. 8-41
e > [ T @t 0 v (8-41)
Since Tr[p** (g)] € S(G), by (8-13) and (8-40), we have
X,t X,t G
T )| = T ’ ® dvg. 8-42
= iy | T @10% ) dvg (3-42)
From (8-30), (8-39) and (8-42), we get (8-29). O
Proposition 8.7. For 1 <i < ly, the function
y € H! — T exp(—1C# X7 /2)]08 ()|det(1 — Ad()) /s, | (8-43)

is almost everywhere well defined and integrable on H! so that
| mleenede v
geG

Z vol(K N H;\K)

T [exp(—1 €857 /2)|0F (g)|det(1 — Ad | dvm,. (8-44)
WH G yery O /2165 (9)|det(1 = Ad(y)lgs | dvas

Proof. Since Tr[p; ’r(g)]G)g(g) € L'(G), by (3-33) and by Fubini’s theorem, the function

yeH > ( / e T o) dei\G) 0% (1)[det(1 — Ad(Y) oo | (8-45)
S

is almost everywhere well defined and integrable on H,.
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Take y € H/. Since H; is abelian, we have
Z%y)=H? C H; C Z(y). (8-46)
We have a finite covering space H l.O\G — H;\G. Note that
[H;: H]=[KNH;: KN H]. (8-47)
By (4-15), (8-46) and (8-47), if y € H/, we have

_ Vol(K°()\K)

B [pF P (¢ ye) dvgg = — oo Tt fexp(—1C# %7 /2)]
/I;I,'\G t i\ [Hi :HiO]

= vol(K N Hj\K) Tt [exp(—tC¥%7 /2)]. (8-48)
Since H; — Hl.’ has zero measure, and by (8-45) and (8-48), the function (8-43) defines an L-function
on Hl.’. By (3-33) and (8-48), we get (8-44). O

8Ad4. The (g, K)-cohomology. 1f V is a Harish-Chandra (gc, K)-module, let H*(g, K; V) be the (g, K)-
cohomology of V' [Borel and Wallach 2000, Section I.1.2]. The following two theorems are the essential
algebraic ingredients in our proof of (5-13).

Theorem 8.8. Let V be a Harish-Chandra (gc, K)-module with generalized infinitesimal character y.
Let W be a finite-dimensional gc-module with infinitesimal character. Let )(W* be the infinitesimal
character of W*. If y # xW~, then

H*(g,K;V@W)=0. (8-49)

Proof. If x is the infinitesimal character of V, then (8-49) is a consequence of [Borel and Wallach 2000,
Theorem 1.5.3(ii)].
In general, let
V=V, DVyy-1 DDV DV_1=0 (8-50)

be the composition series of V. Then for 0 <i < ny, we have V;/V;_1 is an irreducible Harish-Chandra
(g¢c, K)-module with infinitesimal character y. Therefore, for all 0 <i <nj, we have

H*(g. K; (Vi Vi-1) @ W) = 0. (8-51)
We will show by induction that, for all 0 <i < ny,
H*(g,K:Vi@W) =0, (8-52)

By (8-51), equation (8-52) holds for i = 0. Assume that (8-52) holds for some i with 0 <i < nj. Using
the short exact sequence of Harish-Chandra (g¢, K)-modules

0—)V[—>V[+1—)Vl’+1/Vl‘ —)0, (8-53)
we get the long exact sequence of cohomologies

e HI (g, K Vi®W) — H (0. K; Vig1 @ W) — HY (g, K; (Vig1/ V) @W) — -+ . (8-54)
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By (8-51), (8-54) and by the induction hypotheses, (8-52) holds for i 4 1, which completes the proof
of (8-52). O

We denote by Gy the unitary dual of G, that is, the set of equivalence classes of complex irreducible
unitary representations 7 of G on Hilbert spaces V. If (7, V) € Gu, by [Knapp 1986, Theorem 8.1],
is irreducible admissible. Let y, be the corresponding infinitesimal character.

Theorem 8.9. If (rr, Vi) € Gy, then
I #£0 & H*(g.K:Vpk)=0. (8-55)

Proof. The direction “=>"" of (8-55) is (8-49). The direction “«<=" of (8-55) is a consequence of
[Vogan and Zuckerman 1984; Vogan 1984; Salamanca-Riba 1999]. Indeed, the irreducible unitary
representations with nonvanishing (g, K)-cohomology are classified and constructed in [Vogan and
Zuckerman 1984; Vogan 1984]. By [Salamanca-Riba 1999], the irreducible unitary representations with
vanishing infinitesimal character are in the class specified by Vogan and Zuckerman, which implies that
their (g, K)-cohomology are nonvanishing. O

Remark 8.10. The condition that 7 is unitary is crucial in (8-55). See [Wallach 1988, Section 9.8.3] for
a counterexample.

8AS. The Hecht—Schmid character formula. Let us recall the main result of [Hecht and Schmid 1983].
Let Q C G be a standard parabolic subgroup of G with Lie algebra q C g. Let

Q=MpAgNg, q=m;Da;dn, (8-56)

be the corresponding Langlands decompositions [Knapp 1986, Section V.5].
Put A% (ag, ng) to be the set of all linear forms o € ay such that there exists a nonzero element ¥ € ng
such that, for all a € ag,
ad(a)Y = (a,a)Y. (8-57)
Set
a; ={a€ay:{a.a) <0 foralla € A (a,n)}. (8-58)

Put (Mg Ap)~ to be the interior in Mg A of the set
{g € MgAg :det(1 —Ad(ge?))ln, =0 foralla € a;}. (8-59)

If V' is a Harish-Chandra (gc, K)-module, let H,(ng, V') be the ng-homology of V. By [Hecht and
Schmid 1983, Proposition 2.24], H,(ng, V') is a Harish-Chandra (mqc @ aqc, K N Mp)-module. We
denote by @Z.Q(i?v) the corresponding global character. Also, Mg A acts on ny. We denote by @?{I,%:)Q
the character of A®(ny). By [Hecht and Schmid 1983, Theorem 3.6], the following identity of analytic
functions on (Mg Ap)~ N G’ holds:

dimn, i AMoAop
Zi=0 ! (_l)l ®H,’ (ng,V)

dimn . MQAQ :
Zi:oq(_l)lG)Ai(nq) (Mo Apo)~ NG’

Ol mpa0)-n = (8-60)
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Take a 0-stable Cartan subalgebra h™ of m,. Set hy = h™s @ a,. Then b is a 0-stable Cartan subalgebra
of both my ® a4 and g. Put u, to be the compact form of my & a4. Then hgg, the real form of b, is a
Cartan subalgebra of both 1y and u. The real root system of A(hggr, 1q) is a subset of A(hgr, 1) consisting
of the elements whose restrictions to aq vanish. The set of positive real roots A (hqr, 1) C A(hgr, )
determines a set of positive real roots A"'(f)qR, ug) C A(bqr, ug). Let py and p;l“ be the corresponding
half sums of positive real roots.

If V possesses an infinitesimal character with Harish-Chandra parameter A € b: , by [Hecht and
Schmid 1983, Corollary 3.32], H,(ng, V') can be decomposed in the sense of (8-4), where the generalized
infinitesimal characters are given by

XAt pi—pit (8-61)

for some w € W(hgr, u).
Also, H,(n,V) is a Harish-Chandra (myc, K N Mg)-module. For v € an, let H,(n, V), be the
largest submodule of H,(n, V') on which z — (24/—17mv, z) acts nilpotently for all z € aqc. Then,

H,n, V)= @ Ho(n, V), (8-62)

where v = (WA + py — pqq)|aqc for some w € W(th,u) Let OH % and @H V)] be the corre-

sponding global characters. We have the identities of L! -functions: for m € M o and a € qaq,

loc

Mo

MQAQ _ 24/= _
(me®) = Ze ”<”“®H 1)y (1) @H oy (m) = O vy M) (8-63)
v

H n,V)

where v = (WA + pg —,O:q)|cqu for some w € W(hqr, u).

Suppose now G has compact center and is such that §(G) = 1. Use the notation in Section 6A.
Take q =m@ b®dn, and let Q = Mg AgNg C G be the corresponding parabolic subgroup. Then M
is the connected component of the identity in Mp. Since K N Mg has a finite number of connected
components, H,(n, V) is stlll a Harish-Chandra (m¢ @ b, Kpr)-module. Also, it is a Harish-Chandra
(mgc, Kpr)-module. Let @ ( ) and @Y Ho(m.V) be the respective global characters.

Recall that H = exp(b)T C M Ay is the Cartan subgroup of MAg.

Proposition 8.11. We have

| gH'g™' c(MgAg)™ NG’ (8-64)
gEMAQ

Proof. Put L' = UgeMAQ gH'g™! C MAg NG'. Then L' is an open subset of MAg. It is enough to
show that L’ is a subset of (8-59).

By (6-19) and (6-22), for y = e?k~! € H with a € b and k € T, we have det(1 — Ad(y))|» = 0
Therefore, L’ is a subset of (8-59). O

8B. Formulas for ry , and rj. Recall that p: I'\G — Z is the natural projection. The group G acts
unitarily on the right on L2(I'\G, p* F). By [Gel’fand et al. 1969, p. 23, Theorem], we can decompose
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L?(I'\G, p* F) into a direct sum of unitary representations of G,
Hil
L*(T\G.p*F) = @P np(m)Vx. (8-65)
neGy
with n,() < c0.
Recall that 7 is a real finite-dimensional orthogonal representation of K on the real Euclidean space E,
and that C%%-%¢ is the Casimir element of G acting on C*®°(Z, F; ®c F). By (8-65), we have

ker C¥% = B  np(n)(Va,x ®r E0)¥. (8-66)

neGy
x=(C9=0

By the properties of elliptic operators, the sum on right-hand side of (8-66) is finite.
We will give two applications of (8-66). In our first application, we take E; = A®(p*).

Proposition 8.12. We have
H*(Z.F) = P no(m)H* (9. K: Va.5). (8-67)

neG,
X7z=0

If H*(Z,F) =0, then for any w € Gy such that Xz =0, we have

np(mw) =0. (8-68)
Proof. By Hodge theory, and by (4-24) and (8-66), we have
HYZ.F)= D np(m)(Vax ®r A (p")". (8-69)
7elGy
X7 (C%)=0

By Hodge theory for Lie algebras [Borel and Wallach 2000, Proposition I1.3.1], if y, (C?%) = 0, we have

(Va,k ®r A (p*)X = H* (9. K: Vi k). (8-70)
From (8-69) and (8-70), we get
HYZ.F)= D np(m)H"(g.K:Va k). (8-71)
vy
X7 (C%=0

By (8-49) and (8-71), we get (8-67).

By Theorem 8.9, and by (8-67), we get (8-68). O
Remark 8.13. Equation (8-67) is [Borel and Wallach 2000, Proposition VII.3.2]. When p is a trivial
representation, (8-71) is originally due to Matsushima [1967].

In the rest of this section, G is assumed to have compact center and satisfy 6(G) = 1. Recall that n is

a real finite-dimensional representation of M satisfying Assumption 7.1, and that 7 is defined in (7-1). In
our second application of (8-66), we take T = 7).
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Theorem 8.14. If (,Vy) € Gy, then

dime (Vi x ®r 17X —dime (Vi xk ®@r 77)K

dimpy, 2/
1
= Y(K/Kn) Y Y (=) dime H' (m, Kars Hj(n, Ve ) @ En).  (8-72)
i=0 j=0

Proof. Let A(mr) € b be the Harish-Chandra parameter of the infinitesimal character of 7. By (8-29), for
t > 0, we have

dime (Ve x ®r 177)X —dime (Ve x ®r 77)X

— vol(K)~eXn (€2 / 0% (¢) Try[p X ()] dvg.  (8-73)
geG

By (7-10), by Proposition 8.7 and by H N K = T, we have
X5
| eS@mip @l dve

(T\K .
=|Vv;<(H,\G>)| yeH/®g(”Trs[”[exP(—ng’X’"/zﬂ}detﬂ—Ad(w)lg/h}dvﬂ- (8-74)

Since y = e%k~! € H implies T = Kjps (k) = M°(k), by (7-9), (8-73) and (8-74), we have
dime(Ver,k ® A11)X —dime (Ve x @ 77X

1 1 ul n t
T @ 7cu®).u (b) Cuman v C9
= W(H. G)[vol(T) amt ( = I- 32w (C%)

1—A
< 08 (1) exp(—|al2/(20) TeEn [y (k)] ‘det( Aaps| g, (375
y=etk~leH’ |det(1— Ad(y))| L|2
By (6-19), for y = e%k~! € H’, we have
}det(l — Ad(y))|g/h} _ e—l((x,a) ‘det(l _ Ad(k_l))|m/t|~ (8-76)

1
det(1—Ad(y))|n |det(1 — Ad(y) L |2
By (8-60), (8-64), (8-75) and (8-76), we have
dime (Vi x ®r 717X —dime (Ve x ®r ﬁ_)K

1 1 u 1 t

T (6) 1~ u(b),u—(b) Um,® 4 5 g
o r C 1- C + 2X7r(C )
IW(H G)|vol(T) /27

; MA
S /H Ol 0 ) X0/ 20) = o)
Jj=0 =
TrE[n(k™)]|det(1 — Ad(k ™)) || dve.  (8-77)
By (8-16), there exist C > 0 and ¢ > 0 such that, for y = ek~ € H’, we have

| MAo

1
O, () (V) [det(l = AdT) oy |* < Ce (8-78)
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By (8-63), (8-77), (8-78), and by letting t — 0, we get

dime (Vi x ®r 17X —dime (Ve xk ®@r 77)X
21

_ 1 N M E, _ )
= |W(H,G)|vol(T);)( 1)/ /;/eT/®H/(“’V”’K)(V)Tr [n(y)]|det(1 — Ad(y))|wm/¢| dvT. (8-79)

where T is the set of the regular elements of M in T.
We claim that, for 0 < j < 2/, we have

dim py,

S (1) dime(Hj (0, V) @5 Al (03) ®5 Ey) <
=0
1

—W(T, M)|vol(T) J,er

O (V1) @) TP ()] [det(1 — Ad(Y))lse| dvr. (8-80)

Indeed, consider H;(n, Vz k) as a Harish-Chandra (mc, Kps)-module. We can decompose H; (n, Vz k)
in the sense of (8-4), where the generalized infinitesimal characters are given by

XA G)+ps—pH ) (8-81)
for some w € W(hg,u). Therefore, it is enough to show (8-80) when H;(n, V; k) is replaced by
any Harish-Chandra (mc, Kpr)-module with generalized infinitesimal character y A ()4 pu—pu®)|¢c-
Let (7™, V, ) be a Hilbert globalization of such a Harish-Chandra (m¢, Kj7)-module. As before,
let C™Xa:A*(m)®Ey pe the Casimir element of M acting on C®(M, A*(pm) & E;)&M, and let
thM A% ) ®Ey (g) be the smooth integral kernel of the heat operator exp(—tC™XM-A*(m)®Ey /7y,
Remark that by [Bismut et al. 2017, Proposition 8.4], C™XmA*(em)®Ey _ cm.En i the Hodge Laplacian
on X acting on the differential forms with values in the homogeneous flat vector bundle M xg,, Ej.
Proceeding as in [Bismut 2011, Theorem 7.8.2], if y € M is semisimple and nonelliptic, we have

Tl [exp(—t (C™Xm A Pm)®En _ omEny 12)] = . (8-82)
Also, if y =k~ € Ky, then
Tl [exp(—t (C™Xm A Gm)®En _ cmEny 19)] = TeEn (k)] (Xag (k), VT XM ®)), (8-83)

Using (8-82), proceeding as in (8-73) and (8-74), we have

dimpp,
37 (1) dime (Vw @Al () ®r Ey)
i=0
_ X1, A*(p5)®F
= vol(Ky) ™ expltten (C™/2) | O () Trlpy ™ ®nEn ()] dupg
ge
_exp(ty,m(C™)/2)

oM, () Tr,M [exp(—t C™Xn- A" Gm)®En 1) ]| det(1—-Ad(y)) i | dV7 -
(8-84)

—W(T,M)|vol(T) J,er

By (8-83), (8-84), proceeding as in (8-75), and letting ¢ — 0, we get the desired equality (8-80).
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The Euler formula asserts

dim py
P . i K
Z (—1)" dime (Hj (0, Vi, k) ®r A’ (p1) ®r Ey) Y
= dimpn .
= Y (=)' dimc H' (m. Kp; Hj(n. Vo k) ®n Ey).  (8-85)
i=0
By (3-17), we have
W(H,G)=W(T,K), W(T , M)=W(T, Ky). (8-86)
By (7-5), (8-79), (8-80) and (8-85)—(8-86), we get (8-72). O
Corollary 8.15. The following identity holds:
1 dimpy, 2/ o )
Fnp=——— Y. np(m) > > (=1)'*/ dimc H' (m, Kpr: Hj (0, Vir, k) ®r Ey).  (8-87)
W(K/Ky) 4= L L
neGy ! J
Xz (C9)=0
Proof. This is a consequence of (7-58), (8-66) and (8-72). O

Remark 8.16. When G = SO%(p, 1) with p = 3 odd, the formula (8-87) is compatible with [Juhl 2001,
Theorem 3.11].

We will apply (8-87) to ;. The following proposition allows us to reduce the first sum in (8-87) to the
one over € CA?M with y, =0.

Proposition 8.17. Let (r, V) € Gy. Assume xz(C%) =0and
H*(m, Kpr: Ho(n, Vi) ®a A/ (n*)) # 0. (8-88)
Then the infinitesimal character yr vanishes.

Proof. Recall that A(rr) € hi is a Harish-Chandra parameter of 7. We need to show that there is
w € W(Hr, u) such that
wA () = p*. (8-89)

Let B* be the bilinear form on g* induced by B. It extends to g¢ and u* in an obvious way. Since
Xz (C%7) =0, we have
B*(A(m), A(m)) = B*(p". p"). (8-90)

We identify by = ~/—1b* @ t*. By definition,

)
ot = (—“,pum) e VoIb* @t and  p'® = (0, p'n) € VZIb* @ £ (8-91)
24/ —1rm
By (8-49), (8-81) and (8-88), there exist w € W(hg,u), w’ € W(t,uy,) C W(hg, u) and the highest real
weight p; € t* of an irreducible subrepresentation of m¢ on A (ng) ~ A/ (ng) such that

WA ()| = w'(uj + p"). (8-92)
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By (6-58), (8-90) and (8-92), there exists w” € W(hr, u) such that

" (l ])a U ( (l ])Ol ) u(b)
J— _ . m B —— P . 8'9
w A(J‘[)—(:l: \/_1 » Mj +/O ) + \/_1 s M +,O ( 3)

In particular, w” A(r) € b.

Clearly, (( j—=Da/2v—1n), j) € by, is the highest real weight of an irreducible subrepresentation of
me @ be on A/ () ®c (det(n@))_f By (6-33), ((j —l)oc/(2 V—=l1n), p,J) € by, is the highest real weight
of an irreducible subrepresentation of m¢ @ be on S (o), By [Borel and Wallach 2000, Lemma I1.6.9],
there exists w1 € W(bhg, 1t) such that

(j l)C( ) u u(b)
_—, . =w _ i 8_94
(2«/_1 Wil =wip" —p ( )

Similarly, ((l — /N —1m), u j) € b, is the highest real weight of an irreducible subrepresentation of
me @ be on both A2—/ (") ®c (det(n@))_% and S*" ®. Therefore, there exists wy € W(hg, u) such that

(gl;g%i:’ﬂj):=1UZPu“Puw)- (8-95)
By (8-93)—(8-95), we get (8-89). O
Corollary 8.18. For 0 < j <2[, we have
1 dimp,, 2/ Pk
= KK Do) ZO ];)( D dime H' (m, Kpr: Hie (v, Ve, k) ®5 A (07)). - (8-96)

u

er—O
If H*(Z,F) =0, then forall 0 < j <21,
=0, (8-97)

Proof. This is a consequence of Proposition 8.12, Corollary 8.15 and Proposition 8.17. O
Remark 8.19. By (7-75) and (8-97), we get (5-13) when G has compact center and 6(G) = 1.
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EXISTENCE THEOREMS OF THE FRACTIONAL YAMABE PROBLEM

SEUNGHYEOK KIM, MONICA MUSSO AND JUNCHENG WEI

Let X be an asymptotically hyperbolic manifold and M its conformal infinity. This paper is devoted
to deducing several existence results of the fractional Yamabe problem on M under various geometric
assumptions on X and M. Firstly, we handle when the boundary M has a point at which the mean curvature
is negative. Secondly, we re-encounter the case when M has zero mean curvature and satisfies one of
the following conditions: nonumbilic, umbilic and a component of the covariant derivative of the Ricci
tensor on X is negative, or umbilic and nonlocally conformally flat. As a result, we replace the geometric
restrictions given by Gonzélez and Qing (2013) and Gonzalez and Wang (2017) with simpler ones. Also,
inspired by Marques (2007) and Almaraz (2010), we study lower-dimensional manifolds. Finally, the
situation when X is Poincaré—FEinstein and M is either locally conformally flat or 2-dimensional is
covered under a certain condition on a Green’s function of the fractional conformal Laplacian.

1. Introduction and the main results

Given n € N, let X1 be an (n+1)-dimensional smooth manifold with smooth boundary M”". A
function p in X is called a defining function of the boundary M in X if p>0in X and p =0, dp #0
on M. A metric g™ in X is conformally compact if there exists a boundary-defining function p such that
the conformal metric g := p?g™ extends to M and the closure (X, g) of X is compact. This induces the
conformal class [fz] of the metric / := Z|m, which is referred to as the conformal infinity of (X, g7). A
manifold (X, g1) is called asymptotically hyperbolic if g is conformally compact and |dp| g—~>1lasp—0.
Also if (X, g) is conformally compact and Einstein, then it is said to be Poincaré—Einstein or conformally
compact Einstein. All Poincaré—Einstein manifolds can be shown to be asymptotically hyperbolic.
Suppose an asymptotically hyperbolic manifold (X, g*) with the conformal infinity (M7, [l;]) is
given. Also, for any y € (0, 1), let Pg = P [gt, ﬁ] be the fractional conformal Laplacian whose
principle symbol is equal to that of (—A ﬁ)y; see [Mazzeo and Melrose 1987; Joshi and Sa Barreto 2000;
Graham and Zworski 2003; Chang and Gonzalez 2011; Gonzélez and Qing 2013] for its precise definition.
In this article, we are interested in finding a conformal metric h on M with constant fractional scalar
curvature QZ =P Iz/ (1). This problem is called the fractional Yamabe problem or the y-Yamabe problem,
and it was introduced and investigated by Gonzdlez and Qing [2013] and Gonzdlez and Wang [2017]. By
imposing some restrictions on the dimension and geometric behavior of the manifold, the authors obtained
existence results when M is nonumbilic or M is umbilic but not locally conformally flat. Here we relieve
the hypotheses made in [Gonzdlez and Qing 2013; Gonzélez and Wang 2017] and examine when the
bubble (see (1-13) below for its precise definition) cannot be used as an appropriate test function.

MSC2010: primary 53C21; secondary 35R11, 53A30.
Keywords: fractional Yamabe problem, conformal geometry, existence.
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As its name alludes, the fractional conformal Laplacian P}%’ has the conformal covariance property: it
holds that
y —atZr oy
P;; (u) =w n=2v Pﬁ (wu) (1-1)

for a conformal change of the metric h w =w* (n=2v) ;. Hence the fractional Yamabe problem can be
formulated as looking for a positive solution of the nonlocal equation

n+2y
Pyu =cun-2r onM (1-2)
for some ¢ € R provided n > 2y. On the other hand, if (X, gT) is Poincaré—Einstein, then P} and
0¥ withy =1 premsely match with the classical conformal Laplacian L, and a constant multiple of the
scalar curvature R[] on (M, h):

n—2 A n—2
Pl=L..=—A-+—"_R[h d 1
i = it g and Qp =20
If y = 2, they coincide with the Paneitz operator [2008] and Branson’s Q-curvature [1985] (see [Graham
and Zworski 2003, Proposition 4.3] for its proof). Hence, in this case, the 1- and 2-Yamabe problems are

reduced to the classical Yamabe problem and the Q-curvature problem, respectively.

R[A]. (1-3)

Thanks to the efforts of various mathematicians, a complete solution of the Yamabe problem is known.
After Yamabe [1960] raised the problem and suggested an outline of the proof, Trudinger [1968] first
obtained a least energy solution to (1-2) under the setting that the scalar curvature of (M, ﬁ) is nonpositive.
Successively, Aubin [1976] examined the case when n > 6 and M is nonlocally conformally flat, and
Schoen [1984] gave an affirmative answer when n = 3,4, 5 or M is locally conformally flat by using the
positive mass theorem [Schoen and Yau 1979a; 1979b; 1988]. Lee and Parker [1987] provided a new
proof which unified the local proof of Aubin and the global proof of Schoen, introducing the notion of
the conformal normal coordinates.

There also have been lots of results on the Q-curvature problem (y = 2) for 4-dimensional manifolds
(M*, [h]). By the Chern-Gauss—Bonnet formula, the total Q-curvature

kp Z=/ dev};,

where dvj is the volume form of (M, h) is a conformal invariant. Gursky [1999] proved that if a manifold
M* has the positive Yamabe constant A (M, [h]) > 0, see (1-10), and satisfies kp > 0, then its Paneitz
operator P};2 has the properties

ker P?=R and P?=0. (1-4)

Also Chang and Yang [1995] proved that any compact 4-manifold such that (1-4) and kp < 872 hold has
a solution to

Pgu —|—2qu =2ce* on M, c €R,

where Q% is the Q-curvature. This result was generalized by Djadli and Malchiodi [2008] where only
ker P? = [R{ and kp # 8mmn? for all m € N are demanded. For other dimensions than 4, Gursky and
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Malchiodi [2015] recently discovered the strong maximum principle of P2 for manifolds M" (n > 5)
with nonnegative scalar curvature and semipositive Q-curvature. Motivated by this result, Hang and Yang
developed the existence theory of (1-2) for a general class of manifolds M", including ones such that
ALY (M, [ﬁ]) > 0 and there exists /' € [l;] with Ql%’ > 0, provided n > 5 [Hang and Yang 2015; 2016b]
or n = 3 [Hang and Yang 2004; 2015; 2016a]. In [Hang and Yang 2016b], the positive mass theorem for
the Paneitz operator [Humbert and Raulot 2009; Gursky and Malchiodi 2015] was used to construct a test
function. We also point out that a solution to (1-2) was obtained in [Qing and Raske 2006] for a locally
conformally flat manifold (n > 5) with positive Yamabe constant and Poincaré exponent less than (n—4)/2.

In addition, when y = %, the fractional Yamabe problem has a deep relationship with the boundary
Yamabe problem proposed by Cherrier [1984] and Escobar [1992a], which can be regarded as a general-
ization of the Riemann mapping theorem: It asks if a compact manifold X with boundary is conformally
equivalent to one of zero scalar curvature whose boundary M has constant mean curvature. It was solved
by the series of works by Escobar [1992a; 1996], Marques [2005; 2007] and Almaraz [2010] who used a
minimization argument. See also [Chen 2009; Mayer and Ndiaye 2015a], in which different approaches are
pursued. It is worthwhile to mention that there is another type of boundary Yamabe problem also suggested
by Escobar [1992b]: find a conformal metric such that the scalar curvature of X is constant and the
boundary M is minimal. It was further studied by Brendle and Chen [2014] and Mayer and Ndiaye [2015b].

Chang and Gonzalez [2011] observed that the fractional conformal Laplacian, defined through scattering
theory (see, e.g., [Mazzeo and Melrose 1987; Joshi and Sa Barreto 2000; Graham and Zworski 2003]),
can be described in terms of Dirichlet-Neumann operators; see also [Case and Chang 2016]. Specifically,
(1-2) has an equivalent extension problem, which is degenerate elliptic but local.

Theorem A. Suppose thatn > 2y, y € (0, 1), and (X, g%) is an asymptotically hyperbolic manifold with
conformal infinity (M, [l;]) Assume also that p is a defining function associated to M such that |dp|z =1
near M (such p is called geodesic), and g = p*>g™ is a metric of the compact manifold X. In addition, we
let the mean curvature H on (M, ﬁ) C(X,8)beOifyce (%, 1), and set

E(p)=p """ (=Ag+ —s(n—s))p"* inX, (1-5)

where s :=n/2 + y. It can be shown that (1-5) is reduced to

n—2y
4n

E(p) = [R[g] — (n(n + 1)+ RlgT])p *]p' "> near M, (1-6)

where R[g] and R[g™] are the scalar curvature of (X, g) and (X, g ™), respectively.

(1) If a positive function U satisfies

—divg (p!"*VU) + E(p)U =0 in (X, g), (-7
U=u on M
and
n+2y
oU n—2 1 1
8L’U - _Ky( lim p1—2y_) — Cun_,’_z); for)/ € (O, )\{2}7 (1-8)
p—0+ dp cur=2 —($(n—1))Hu fory={3}
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on M, then u solves (1-2). Here ky, > 0 is the constant whose explicit value is given in (1-23) below and v
stands for the outward unit normal vector with respect to the boundary M.

(2) Assume further that the first L?-eigenvalue A1(—A ¢+) of the Laplace-Beltrami operator —A 4+
satisfies

AM(=Ag+) > fn>—y2 (1-9)

Then there is a special defining function p* such that E(p*) = 0 in X and p*(p) = p (1 + 0(p?"))
near M. Furthermore the function U := (p/p*)"=2V)/2U solves a degenerate elliptic equation of pure

divergent form
—divg«((p*)172*VU) =0 in(X,8%),
~ 8(7 n+2y
Yir — : NI=2y "~ V\— pYy —_0Yy = n—2y — (O7
U Ky (p*h_r)l(l)JF(p ) ap*) Ph u Qhu cun=2v Qhu on M,

where g* 1= (p*)?g™ and Q}: is the fractional scalar curvature.
Notice that in order to seek a solution of (1-2), it is natural to introduce the y-Yamabe functional

fMuP}%'udv};

foru € HY (M) \ {0}, (1-10)

n—2y

(fyr 1|75 dvy)

where HY (M) denotes the standard fractional Sobolev space, and its infimum AY (M, [ﬁ]), called the
y-Yamabe constant. By the previous theorem and the energy inequality due to Case [2017, Theorem 1.1],

I}:[u]z

it follows under the assumption (1-9) that if one defines the functionals

Ky fX(p1_2y|VU|§+E(p)U2) dvg B Ky fX(p*)1_2V|VU|Z-, dvg—l—fM QthU2 dv};
n=2y ’ - n=2y

_2n h _2n
([ U727 dvj) " ([ U7 dvj) "
(1-11)

for each element U of the weighted Sobolev space W1:2(X, p!=27) such that U # 0 on M (in view of
(1-8), a suitable modification is necessary if y = %), and values

)= U]

AY(X,[h]) = inf{iﬁV[U] U e WH2(X, p172),U # 0 on M},
AY(X,[h]) = inf{iﬁy[U] U e WH2(X, p1™2),U # 0 on M},
then
A (M, [h]) = A7 (X.[h]) = AV (X.[h]) > —occ.
Besides it was shown in [Gonzélez and Qing 2013] that the sign of ¢ in (1-2) is the same as that of

AY (M, [ﬁ]), as in the local case y = 1.
On the other hand, the Sobolev trace inequality

n—2y

n [e'e)
(/ U(%, 0)| =27 d)"c) gsn,y[ / Xyt IVUE, xn) 2 d % dxXny1 (1-12)
R7 0 Rn
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is true for all functions U which belong to the homogeneous weighted Sobolev space D 1’2([R'_’|rJr ! x;fly).
In addition, the equality is attained by U = cW), , forany c € R, A >0and 0 € R" = 8[R§’:L+1, where
W), o are the bubbles defined as

2y

= _ Xnt1 = =
WaioEoxns0) = Py [ 0o (7)d
R (|)E_)7|2+x,%+1) 2
/ 1 "5 5y d (1-13)
=&n,y 2, W yyay -
R" (|)E—)7|2+x,3+1)% ho
with nny
_ A 2 B
LUA’O—(X) = Oln’y (m) = WA,O—(X,O). (1-14)

The values of the positive numbers p; y, gn,y and a,), can be found in (1-23). Particularly, it holds that

—div(x, ;3 VW 4) =0 in R
A nt2y (1-15)
8VW - _ li 1-2y ,0 = (=AY — n—2y R".
viRe v (x’H_}IE(H_ xn+1 aXn—i-l ( ) Wi,o w/l ,0 on

(In light of the equation that W), , solves, we say that W) , is y-harmonic. Refer to [Caffarelli and
Silvestre 2007]. For future use, let W) = W, ¢ and wy = w, o.) Moreover, if Sy , > 0 denotes the best
constant one can achieve in (1-12) and (S”, [g.]) is the standard unit n-dimensional sphere, then

2y
2n n
AY(S",[ge]) = Siy ey = (/R wy d)'c) . (1-16)

Related to this fact, we have the following compactness result.

Proposition B. Letn > 2y, y € (0,1) and (X", g7) be an asymptotically hyperbolic manifold with
the conformal infinity (M", [h]). Also, assume that (1-9) is true. Then

—00 < AV(M.[h]) < AV (S". [gc]), (1-17)
and the fractional Yamabe problem (1-7)—(1-8) has a positive solution if the strict inequality holds.

Refer to [Gonzélez and Qing 2013, Sections 5 and 6] for its proof. Moreover since (1-17) automatically
holds if the y-Yamabe constant AY (M, [h]) is negative or 0, we assume that AY (M, [h]) > 0 from now on.

The purpose of this paper is to construct a proper nonzero test function ® € W1-2(X, p!=27) such that
0<1 }31/ [®] < AY(S", [gc]) when y € (0, 1), (X" gT) is an asymptotically hyperbolic manifold, (1-9)
holds and

e M" has a point where the mean curvature H is negative, n > 2 and y € (O, %), or
e M" is the nonumbilic boundary of X ntl 5 >4 and assumption (1-18) holds; or

e M" is the umbilic boundary of X" the covariant derivative R,:,[g] of the Ricci tensor R,,[g]
on (X, g) is negative at a certain point of M, n > 3 4 2y and hypothesis (1-18) holds (where p is
the geodesic defining function associated to (M, h) and g = p?g™); or
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e M" is the umbilic but nonlocally conformally flat boundary of X**1 n > 4 4+ 2y and condition
(1-19) is satisfied; or

o X"*1 is Poincaré-Einstein, either M" is n > 3 and locally conformally flat or n = 2, the expansion
(1-21) of the Green’s function G (-, y) holds in a neighborhood of an arbitrarily chosen point y € M
and the constant-order term A of G (-, y) is positive.

Once it is achieved, Proposition B will imply the existence of a positive solution to (1-2) automatically.
The natural candidate for a positive test function is certainly the standard bubble, possibly truncated.
Indeed, this is a good choice for the first and third cases mentioned above. Nevertheless, to cover lower-
dimensional manifolds or locally conformally flat boundaries, it is necessary to find more accurate test
functions than the truncated bubbles; cf. [Gonzdlez and Qing 2013; Gonzalez and Wang 2017]. To take into
account the second and fourth situations, we shall add a correction term on the bubble by adapting the idea
of Marques [2007] and Almaraz [2010]. For the fifth case, we will construct an appropriate test function
by utilizing the Green’s function G (-, y). In the local situation y = 1, such an approach was successfully
applied by Schoen [1984]. His idea was later extended by Escobar [1992a] in the work on the boundary
Yamabe problem, which has close relationship to the fractional Yamabe problem with y = %, as discussed.

Let 7 be the second fundamental form of (M, l;) C (X, g). The boundary M is called umbilic if the
tensor 7 := w — H g vanishes on M. Also M is nonumbilic if it possesses a point at which 7" 7 0. Our
first main result reads as follows:

Theorem 1.1. Suppose that (X", g%) is an asymptotically hyperbolic manifold, (M, [ﬁ]) is its con-
formal infinity and (1-9) holds. Assume also that p is a geodesic defining function of (M, h) and
g=p%gt =dp?> ®hpnear M = {p = 0}. If either

en>2 ye (O, %) and M"™ has a point at which the mean curvature H is negative; or

en>4,yc(0,1), M" is the nonumbilic boundary of X"*! and
RlgT]+nm+1)=0(p?) asp— 0uniformly on M, (1-18)
then the y-Yamabe problem is solvable —namely, (1-2) has a positive solution.

Remark 1.2. (1) As pointed out in [Gonzalez and Qing 2013], we are only permitted to change the
metric on the conformal infinity M. Once the boundary metric h is fixed, the geodesic boundary-defining
function p and a compact metric g on X are automatically determined by the relations |dp|,2,+ = 1 and
g = p?g™. This is a huge difference between the fractional Yamabe problem (especially, with y = %)
and the boundary Yamabe problem, in that one has a freedom of conformal change of the metric in the
whole manifold X when he/she is concerned with the boundary Yamabe problem.

Due to this reason, while it is possible to make the “extrinsic” metric H vanish at a point by a conformal
change in the boundary Yamabe problem, one cannot do the same thing in the setting of the fractional
Yamabe problem. This forced us to separate the cases in the statement of Theorem 1.1.
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(2) As a particular consequence of the previous discussion, the Ricci tensor R,,[g](y) of (X, g) evaluated
at a point y on M is governed by h and (1-18) (see Lemma 2.4). In the boundary Yamabe problem,
Escobar [1992a] could choose a metric in X such that R;; [fz] (¥) =0and R,p[g](y) = 0 simultaneously.
Moreover, by putting (1-6) and (1-18) together, we get
Ep)=""
n

Hence, on account of the energy expansion, (1-18) is the very condition that makes the boundary Yamabe

R[Z] p'™% +0(p'™?") near M.

problem and the %—Yamabe problem identical modulo the remainder. Refer to Subsections 2C and 2D.

(3) The sign of the mean curvature at a fixed point on M and (1-18) are “intrinsic” curvature conditions
of an asymptotically hyperbolic manifold in the sense that these properties are independent of the choice
of a representative of the class [A]. Refer to Lemma 2.1 below for its proof. Also Lemma 2.3 claims that
(1-18) implies H =0 on M.

(4) Note also that 242y e N and y € (0, 1) if and only if y = % and the boundary Yamabe problem on

nonumbilic manifolds in dimension n = 2 + 2y = 3 was covered in [Marques 2007]. We expect that the
strategy suggested in that paper can be applied for %—Yamabe problem in the same setting.

We next consider the case when the boundary M is umbilic but either R,p;p[g] < O at some point
on M or it is nonlocally conformally flat.

Theorem 1.3. Suppose that (X", g7) is an asymptotic hyperbolic manifold such that (1-9) holds and
the boundary (M", [h)]) is umbilic. If either

en>3+42y, ye€(0,1), that is, eithern > 5and y € (0,1) orn =4 and y € (O, %), the tensor
Ryp;plg] is negative at a certain point of M and (1-18) is valid; or

e n>4+42y, ye(0,1), thatis, eithern >6andy € (0,1) orn=5andy € (0, %) there is a point
y € M such that the Weyl tensor W[h] on M is nonzero at y and

R[gt]+n(n+1) =o0(ph,
M (R[gT]+n(n+1)=0(p*) (m=1,2), (1-19)
I (RlgT]+n(n+1) =0(p?) (m=1,2)

as p — 0 uniformly on M,
then the y-Yamabe problem is solvable. Here X is a coordinate on M.

Remark 1.4. (1) As we will see later, the main order of the energy for the fractional Yamabe problem (1-2)
is € on an umbilic but nonlocally conformal flat boundary M, while it is €2 on a nonumbilic boundary;
see (2-11), (2-14), (3-14) and (3-16). This explains why the necessary decay rate of R[gT]+n(n + 1)
to 0 as p — 0 in Theorem 1.3 should be p?-times as fast as that in Theorem 1.1.

On the other hand, (1-19) is responsible for determining all the values of quantities which emerge in
the coefficient of €* in the energy (such as R ;;[g](y) and Ryy,;;[g](y) — see Lemma 3.2) and making

the term (n(n 4+ 1) + R[gT])p~2 in E(p) to be ignorable.
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(2) Owing to Lemmas 2.1 and 2.3, condition (1-19) is again intrinsic and sufficient to deduce that H =0
on M. Moreover every Poincaré—Einstein manifold satisfies (1-19).

In [Gonzélez and Wang 2017, Lemma 2.3], it is proved that the sign of the tensor R;,[g] at a fixed
point on M is intrinsic.

(3) Itis notable that 4 42y € N and y € (0, 1) if and only if y = 5, and the boundary Yamabe problem
forn =4 + 2y =5 was studied in [Almaraz 2010]. We believe that Theorem 1.3 can be extended to the
casey— ,n=>5 Wlh ]#OonMand(l 19) is valid.

In order to describe the last result, we first have to take into account of the existence of a Green’s
function under our setting.

Proposition 1.5. Suppose that all the hypotheses of Theorem A hold true, including (1-9), and H =0
on M. In addition, assume further that AY (M, [h]) > 0. Then for each y € M, there exists a Green’s
function G(x, y) on X \ {y} which satisfies

—divg(p''VG(-,y) + E(p) G(-,y) =0 in (X, §),

. 1-20
WG(-y) =5, on (M. h) (120

in the distribution sense, where 8y, is the Dirac measure at y. The function G is unique and positive on X.

The proof is postponed until Section 4A. The readers may compare the above result with [Guillarmou
and Qing 2010] Based on standard elliptic regularity and the facts that if (X, g) is the Poincaré half-plane

([R{"Jrl n+1 dx), then

8ny
|()E -, Xn—l—l)ln_zy

G(x,7) = for all (¥,x,41) € R and j € R”,

and that the compactified metric g on X of a Poincaré—Einstein manifold (X, g*) can be assumed to
be Euclidean up to order |x|" in its coordinate x € [RR'}FH (refer to Lemma 4.3 below), we expect the
following.

Conjecture 1.6 (expansion of the Green’s function). Assume that y € (0,1), n > 2y and (X", gT)
is Poincaré—Einstein. Also, suppose that AY (M, [ﬁ]) > 0 and that either (M", [ﬁ]) has n > 3 and is
locally conformally flat or n = 2. Fix any y € M. Then there exists a local coordinate x of the compact
manifold (X, g) around y (identified with 0 € R") defined in a small closed neighborhood A/ C @Trl
of 0 such that

G(x.0) = gny|x| 72 L A4+ W(x) forxeN. (1-21)
Here g, , > 0 is a number that appeared in (1-13), A € R and W is a function in A satisfying
|W(x)| < C|x|™™127} and |V (x)| < C|x|™™%2r=1 for x e /7 (1-22)
for some constant C > 0.

Now we can state our third main theorem.
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Theorem 1.7. Suppose that y € (0,1), n > 2y and (X"t g7) is a Poincaré—Einstein manifold with
conformal infinity (M", [h]). Let p be a geodesic defining function for (M, h) and g = p*g™. If (1-9)
holds, Conjecture 1.6 is valid, A > 0, and either M™ has n > 3 and is locally conformally flat or n = 2,

then the fractional Yamabe problem is solvable.

Remark 1.8. (1) Let us set a 2-tensor
F = p(Ric[gT] +ngT) in X,

which is identically 0 if (X, g*) is Poincaré—Einstein. As a matter of fact, if M is locally conformally flat,
the only property of the tensor F necessary to derive Theorem 1.7 is that 7' F | p=0 =0 form =0,...,n—1
(refer to Lemma 4.3). We guess that (1-21) and (1-22) are still valid under this assumption. Similarly, for
the case n = 2, the assumption 97 F'|p=o = 0 for m = 0, 1 would suffice.

(2) Since (X" 11 g*) is Poincaré—Einstein, the second fundamental form on M is trivial. Particularly,
the mean curvature H on M vanishes and M is umbilic.

(3) Suppose that we are in the local case y = 1, and either n > 7 or M is locally conformally flat. Then,
as shown in [Lee and Parker 1987, Lemma 6.4], the expansion (1-21) is valid. Furthermore, the classical
positive mass theorem of Schoen and Yau [1979a; 1979b; 1988] states that A > 0, and the positivity
condition A > 0 holds if and only if (M, l;) is not conformally diffeomorphic to the standard sphere S”.
Determining the sign of A at each point y € M is a still natural problem for y € (0, 1). However, it is
difficult to perform, because A may be a nonlocal quantity, namely, one depending on the whole geometry
of (X, g ™) and (M, [h]).

This paper is organized as follows: In Section 2, we establish Theorem 1.1 by intensifying the ideas of
Marques [2007] and Gonzélez and Qing [2013]. Section 3 provides the proof of Theorem 1.3, which further
develops the approach of Almaraz [2010] and Gonzélez and Wang [2017]. In Section 4, Theorem 1.7
is achieved, which can be understood as a sort of generalization of the results of Schoen [1984] and
Escobar [1992a]. In particular, Section 4A is devoted to investigating the existence and some qualitative
properties of a Green’s function (i.e., Proposition 1.5). Then we are concerned with the case that M
is locally conformally flat (in Section 4B) and 2-dimensional (in Section 4C). Finally, we examine the
asymptotic behavior of the bubble W ¢ near infinity in Appendix A, and compute some integrations
regarding Wi o, which are needed in the energy expansions in Appendix B.

Notation. * The Einstein convention is used throughout the paper. The indices i, j, k and / always take
values from 1 to n, and a and b range over values from 1 to n + 1.

e For a tensor T, notations 7’4 and T, indicate covariant differentiation and partial differentiation of 7,
respectively.

¢ For a tensor 7' and a number g € N, we use
1
Symi1~-~iq Ti1~-~iq = a Z ﬂc(l)"'io(q)’
‘oeSy

where S, is the group of all permutations of g elements.
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e Welet N =n+1. Also,forxe[RR]_i\_’::{(xl,...,xn,xN)e[RRN:xN >0}, we write X = (x1,...,X,,0) €
B[RRIX ~ R" and r = |X|.
e Forn >2y,weset p=(n+2y)/(n—2y).

e For any o > 0, let B"(0, 0) and Bi’ (0, o) be the n-dimensional ball and the N -dimensional upper
half-ball centered at O whose radius is o, respectively.

e |S™71| is the surface area of the (n—1)-dimensional unit sphere "1,
e Forany r € R, let £y = max{0,¢#} > 0 and z— = max{0,—t} >0sothatt =¢4 —¢_.

e For y € (0, 1), the space HY (M) is the completion of C (M) with respect to the norm which one
obtains by pulling back

1
2 - u@ —u@? o \?
ueCcoo([Ri”)H(/Rnu dx—i—/n/n Tty dxdy

to M through coordinate charts.

¢ The space Dl’z(Rﬂ\r’ , x]lv_zy) denotes the completion of C° (@ﬂ\r’ ) with respect to the norm

1

2

U (/N x}v‘2y|VU|2dx) ,
R

+

and the space W12(X, p!=27) denotes the completion of C2°(X) with respect to the norm

2
U (/ P! T (IVUIZ +U?) dvg) .
X

In light of Theorem A, W12(X, p1=27) is the natural functional space for the fractional Yamabe problem.
¢ The following positive constants are given in (1-8), (1-13) and (1-14):
L(y) r(*5%)

Ky = 3=, =
YT -y T )
12 (1-23)

7 )4
r n—2y e r n+2y 4y
gn,)/:—n( 2 ) . “n,y:2% 1( : ) :
m222YT(y) ['3(n—2y)

e C > 0 is a generic constant which may vary from line to line.

2. Nonminimal and nonumbilic conformal infinities

2A. Geometric background. We begin this section by proving that the sign of the mean curvature, (1-18)
and nonumbilicity of a point on M are intrinsic conditions.

Lemma 2.1. Suppose that (X, g™m) is an asymptotically hyperbolic manifold with conformal infinity
(M, [h]). Moreover, let p and p be the geodesic boundary-defining functions associated to two repre-
sentatives h and h of the class [h)], respectively. We also define § = p>g™ and g := p*g™, denote by
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7w =—g n/2and 7 the second fundamental forms of (M, /;) C (X.g) and (M, h) C (X, g), respectively,
and set H = g ;; /n and H = g 77 /n. Then we have

c'<P<c inx and H=L| A onm (2-1)
p o =0
for some C > 1. Furthermore if H =0 on M, then
P .
T== T onM. (2-2)
1Y =0

Proof. The assertion on H in (2-1) is proved in [Gonzélez and Qing 2013, Lemma 2.3]. For the first
inequality in (2-1), it suffices to observe that p/p is bounded above and bounded away from O near M.
Indeed, this follows from the fact that

~\2 ~\2
=l = e = (2) 2l = (2) - on
o p
Let us define tensors T = 7w — Hg and T=7-H g on M. Then we see from [Escobar 1992b,
Proposition 1.2] that
ﬁ=T=ET=En on M
P P
provided H = 0 on M, which confirms (2-2). O

Given any fixed point y € M, let X = (x1, ..., X,) be normal coordinates on M at y (identified with 0)
and xy = p. In other words, let x = (x, x) be Fermi coordinates. The following lemma provides the
expansion of the metric g near y = 0. See [Escobar 1992a, Lemma 3.1] for its proof.

Lemma 2.2. Let (X, §) be a compact manifold with boundary (M, i;) and y € M. Then, in terms of Fermi
coordinates around y, it holds that

VIgl(x) =1—-nHxy + 3(n*H?> — |7 |* — Ryn[g])xy — Hixixn — L Ry; [A]xix; + O(|x|?)
and
g (x) = 8ij +2mijxn + S Rigjlhlxex; + gi{NkXka + (3mikmkj + Rinjn[8])xy + O(x|)

near y (identified with a small half-ball Bﬁ’ (0,2n9) near 0 in Rﬁ). Here ||7||* = f;ikﬁjlmj ] IS the
square of the norm of the second fundamental form mw on (M, h) C (X, &), R;kji[h] is a component
of the Riemannian curvature tensor on M, R;n;n|[g] is that of the Riemannian curvature tensor in X,
R;j [ﬁ] = Rikjk [ﬁ] and Ryn|[g] = RiniN[g]. Every tensor in the expansions is computed at y = 0.

Now notice that the transformation law of the scalar curvature [Escobar 1992a, (1.1)] implies

dp+/ 2]
vzl

It readily shows that (1-18) and (1-19) indicate H = 0 on M.

Rig 1 +n(n+1)=2n p+ R[g]p% (2-3)
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Lemma 2.3. Suppose that (X, g™m) is an asymptotically hyperbolic manifold with conformal infinity
(M, [h]). If R[gT]+n(n+1)=o0(p)asp— 0, then H=0on M.

Proof. Fix any y € M. By (2-3), we have

9p/121(»)
Vgl

as a point tends to y. This implies H(y) = 0, and therefore the assertion follows. O

o(1) =2n + R[Z](»)p+o(1) = —2n*H(y) + o(1)

We next select a good background metric on X under the validity of hypothesis (1-18).

Lemma 2.4. Let (X, g") be an asymptotically hyperbolic manifold such that condition (1-18) holds.
Then the conformal infinity (M [h]) admits a representative h € [h], the geodesic boundary-defining
function p and the metric § = p*>g™ satisfying

H=0 onM, Ryhl))=0 and pol2l () = "z (2-4)

( )
for a fixed point y € M.

Proof. According to [Lee and Parker 1987, Theorem 5.2], one may choose a representative h of the
conformal class [h] such that R;;[h](y) = 0. Additionally Lemmas 2.3 and 2.1 ensure that / = 0 on M
for any & € [h]. Hence assumption (1-18) can be interpreted as

o(1) =20 N'_g' RIE1= 2% Zasp + RIE =1 Zasp + 8 Fatps) + RIE] + (1)

= —2n(Rppl8] + |7 1%) + (2Rppl3] + |7 |1 + R[A] — H?) + 0(1)

as p — 0, where we used H =0 on M for the third equality and the Gauss—Codazzi equation for the fourth
equality; see the proof of Lemmas 3.1 and 3.2 of [Escobar 1992a]. Taking the limit to y € M, we get

0=2(1=n)Rpp[81(y) + (1 = 2n) ()|
The third equality of (2-4) is its direct consequence. O

Lastly, we recall the function £ in (1-5) and (1-6). In a collar neighborhood of M where p = xp, it
can be seen that

n—2y
4n

Iy V12l @29

[R[g]— (n(n + 1) + R[g T Dxy? ]y Y = —1(n—2p)—=> x 7,

E(xn) =
12|

where the second equality holds because of (2-3).

2B. Nonminimal conformal infinity. Let y € M be a point identified with 0 € R” such that H(y) <0 and
B i\’ (0,2n9) C [R{i\f be its neighborhood which appeared in Lemma 2.2. Also, we select any smooth radial
cut-off function ¥ € C °°([RN ) such that ¢ = 1 in BY (0, n0) and 0 in [RN \BN (0,2n0). In this subsection,
we shall show that I [WwWe] < AY(S", [g¢]) forany n > 2 and y € (0 ) where W, = W o as before.
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Before starting the computation, let us make one useful observation: Assume that n > m + 2y for a
certain m € N. Then we get from (A-3) and (A-4) that

/N x}v_zy|x|m+1|VW€|2dx:n(1)_§/ le\,_2y|x|m+§|VWE|2dx:0(em+¢)=0(em) (2-6)
B (0,10) BY(0,10)
by choosing a small number ¢ > 0 such that n > m + 2y + C.
Proposition 2.5. Suppose that (X" 1, gT) is an asymptotically hyperbolic manifold with conformal
infinity (M, [h]) and y € M is a point such that H(y) < 0. Then for any € > 0 small,n > 2 and y € (0, %),
we have
2-2
P —on+1-dy? v Jay ¥y IVWI[2dx
2(1-2 +1 n-2y
A (A A

>0 (2'7)
where 1! is the y-Yamabe functional given in (1-11), and A (S", [g.]) and i, are positive constants
introduced in (1-16) and (1-23).

L[y Wel < AV (S" [ge])+e H(y)+o(e) <A(S".[gc).

Proof. Since the proof is essentially the same as that of [Choi and Kim 2017, Proposition 6.1], we briefly
sketch it. By Lemma 2.2 and (2-6), we discover

1-2y 2
Xy |VWelz dvg
/Bf(o,no) &

= /BN( )x}v‘2V|VW1|2 dx +eH (2/N xx V|V Wi |? dx —n/N X vwy? dx) + 0(€)
+(0,m0 RY rRY
and

/M(wWe)”“ dvj, = /B vy e L+ OUF) di 4+ 0(e") = [R wi T dx +o(e).
9 0

Moreover, according to Lemma 2.2 and (2-5), we have
/ E(xy)W2 dvg = %n(n—Zy)eH/ x;’2yW12 dx + o(e).
B (0,70) RY

Thus the above estimates and Lemma B.3 confirm (2-7). O

Unlike the other existence results to be discussed later, we need to assume that y € ((), %) for

1
_2 ’ 5

for the function x ,; lez to be integrable in [RRI_?_’ . Secondly the mean curvature H should vanish for

Proposition 2.5. Such a restriction is necessary in two reasons: First of all, y € (O ) is necessary

y € (3. 1) to guarantee the validity of the extension theorem (Theorem A).

2C. Nonumbilic conformal infinity: higher-dimensional cases. We fix a nonumbilic point y =0 € M.
Let also Bij (0,2n0) C Rﬁ be a small neighborhood of 0 and ¢ € C° (Bi] (0,2n0)) a cut-off function
chosen in the previous subsection.
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Lemma 2.6. Let J I%/ be the energy functional defined as

7W:x] = / (P VU + E(p)U?) dvg  forany U € W2(X, p1=27). (2-8)
X
Assume also that (2-4) holds. Then for any € > 0 small, n > 2 42y and y € (0, 1), it is valid that

J,{[wWe;BiV(O, n0)] =/ xy Y|V |2 dx
Biv(orno)

+El T IP[-A+b0)F+ LB+ b)Fs + F(n—2y) (1 + b)Fi] + 0(e?), (2-9)

where b := (1 —2n)/(2n —2), ||| is the norm of the second fundamental form at y = 0 € M, and the
values F1, F, and F3 are given in Lemma B.4.

Proof. We borrow the argument presented in [Gonzalez and Qing 2013, Theorem 1.5]. According to
Lemma 2.2 and (2-4), it holds that

Vgl xn) = 1= 31 +b) |7 |*xy + O((x xn)*)  in BY(0, no). (2-10)

Hence we obtain from (2-6) that

1-2y 2
X |VWelz dv;
/Bﬁm,no) N e

= AN x}v_2y|VWe|2 dx + €2 |:(37rik7rkj + Rinjn(g]) /l;gN xf’\,_z”a,- W10, Wy dx
+ ¥

—La+p)|x)? / X Y |V 2 dx] + 0(€?).
RY
Also, by means of (2-5) and (2-10),
E(xy) =3 —=2p) 1+ D)7 [>xy 2 + O(Ix]Pxy"")

for x > 0 small, so

[ E(xy)W2dvg = €21 (n—2y)(1 + b)||7r||2/ Xy VW2 dx +o(€?).
B(0,n0) RY

Collecting every calculation, we discover (2-9). O

The previous lemma ensures the existence of a positive solution to (1-2) for nonumbilic conformal
infinity M” with n € N sufficiently high.

Corollary 2.7. Assume that (X", g7) is an asymptotically hyperbolic manifold and h is the represen-
tative of the conformal infinity M found in Lemma 2.2. If n > 2+ 2y and y € (0, 1), we have

YW < AV (S", [ge]) = €2C(n, ) AV (8", [ge) ™ iy 18" | As Ball|® +0(€3),  (2-11)
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where the positive constants A (S", [g¢]), ky, A3z and By are introduced in (1-16), (1-23) and (B-3),
respectively, and C'(n, y) is the number given by
, 3n2 4+ n(16y2 —22) +20(1 — y?)
Cn,y) =

8n(n—1)(1—y?)
Proof. Estimate (2-11) comes from Lemmas 2.6 and B.4 and the computations made in the proof of
[Gonzélez and Qing 2013, Theorem 1.5]. The details are left to the reader. O

(2-12)

By (2-2), we still have that 7 # 0 at y € M, even after picking a new representative of the conformal
infinity. Furthermore, the number C’(n, y) is positive when n > 4 for y > \/g ~0.674, n>5for y > %,
n>6fory > \/g ~ (0.229 and n > 7 for any y > 0. Hence, in this regime, one is able to deduce
the existence of a positive solution of (1-2) by testing the truncated standard bubble into the y-Yamabe
functional.

2D. Nonumbilic conformal infinity: lower-dimensional cases. We recall the nonumbilic point y € M
identified with the origin of RY, the small number 79 > 0 and the cut-off function ¥ € CCOO(RZX ).
Furthermore, we introduce

Y (X,xny) = Mlmjxiner_larWe = e-e_n_lzy U (e71x, e xw) (2-13)

for each € > 0, where M; € R is a number to be determined later, the 7;; are the coefficients of the
second fundamental form at y and r = |x|. Our ansatz to deal with lower-dimensional cases is defined by

O =y (W, +Ye) in X.
The definition of @ is inspired by [Marques 2007].

The main objective of this subsection is to prove:

Proposition 2.8. Suppose that (X", g©) is an asymptotically hyperbolic manifold and h is the repre-
sentative of the conformal infinity M satisfying 2-4). If n > 2+ 2y and y € (0, 1), we have

TY[@] < AV(S", [ge]) — €2C(n.y) AV (S [ge)) ™% &y [S" M AsBall [P +0(e),  (2-14)
where C(n,y) is the number defined by
Cln.y) = 3n% + n(16y2 —22) +20(1 — y?) 16(n —1)(1 —y?)
V= 8n(n — 1)(1— y2) n(GnZ +n(2—8y2) + 4y2—4)°

It can be checked that C(n, y) > 0 whenever n > 4 and y € (0, 1). Thus the above proposition, along
with Proposition 2.5, justifies the statement of Theorem 1.1. We have C(3,y) > 0 for y > 1, but it also
holds that n > 2 4 2y > 3. Therefore we get no result for n = 3.

Proof of Proposition 2.8. The proof consists of three steps.
Step 1: energy in the half-ball Biv (0, no). Since ¢y =1 in Bi’ (0, no), we discover

JL T (Wet-We): BY (0.170)]

= J [y We; BY(0,m0)]+2 / Xy VW, VW) g dog+ / xy 7 |VWPdxto(e?), (2-15)
h BY (0.n0) RY
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where the functional J! is defined in (2-8). Moreover, we note from Lemma 2.2 that the mean curvature
H = m;; /n vanishes at the origin, which yields

/ x]lv_zyVWG-V\IIG dx
BY (0,10)

= eM1/ xlz\,_zymjx,'xj [2r_2(8r W1)2+r8r (r_1 0y Wl)] dx
BY (0,n0/€)

+€M1/ xllv_zymjxinr_l(aNWl)[(arWl)—i-xN(aNrWl)]dx=O. (2-16)
B:}X(OsnO/e)

Hence we obtain from the definition (2-13) of W and (2-16) that
z/ Xy V(YW VW) dvg
B (0,70)

:2/ le\,_zyVI/I/e~V\Ile dx+471,-,-[ xi,‘zya,-ma,-qfe dx + o(€?)
B4 (0,m0) CJRY '

= 624M1Hij/N x?v_zyxi [ankxkr_z(ar w1)? + TRIXEX] X 20, W) 8, (r o, Wl)] dx + o(€?)
R
+

2 2
2 2 2
=AM | = F3+ ————(=F3 + F.
4| 2+ 2R I o)
4
= () a8 s Ballrl? o) @17)
where the constants F3, F4 as well as F1, F», Fs5, ..., Fg, are defined in Lemma B.4. In a similar fashion,

it can be found that

/ x}v_2y|VlIJ€|2 dx = €2
R

N (F3 —2F4 + Fs + Fo + 2F7 + Fg) | 7||* + o(?)
+

7
nn+2)
3?4 2n(1—4y?) —4(1—y?)
- dn(n—1)(1—y2)

Step 2: energy in the half-annulus Bi’ (0,2n0) \ Bf (0,1n0). According to (A-1), (A-3) and (A-4), see
(2-6), it holds that

MZ|S" A3 By || |? +o(€?).  (2-18)

JLY (We +We): X \ BY (0.10)] = (). (2-19)
Consequently, one deduces from (2-15), (2-17)—(2-19) and Lemma B.4 that

J]%’[w(We + W) X] < /N le\l_2y|VW1|2 dx —e2C(n, V)|§”_1|A3Bz||7r||2 +o(e?) (2-20)
RY
by choosing the optimal M; € R.

Step 3: completion of the proof. Lemma 2.2 and the fact that W, = 0 on M tell us that
| woneworrttan = [ rugrtias oty dsz [ wftas o). @on
M B'(0,2n0) R”

Combining (2-20) and (2-21) gives estimate (2-14). O
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3. Umbilic conformal infinities

3A. Geometric background. For a fixed point y € M identified with 0 € R”, let X = (x1,...,X,) be
the normal coordinate on M at y and x = p. The following expansion of the metric is borrowed from
[Marques 2005].

Lemma 3.1. Let (X, §) be a compact manifold with boundary (M, l;) andy € M such that 1 = m;; =
mij = m.ijk = 0, R;j[h] = 0and Ryn([g] = 0 at y. Then, in terms of Fermi coordinates around y, it
holds that
VIgI(%, xn) = 1—75 Ry [h]xi xj xp— 2 Ryn:i [8]x % xi— & Ruw: N [8)x 3
—6 (3 Rij:ki (M) + 5 Rmigqj M) Rmieqr [h]) xi X xie X1 — 5 RN ()X R Xi )
—LRNN;Ni [B1X Xi— 5 [RNN: N [8]H2(Ri NN [ ]xy + O (R . xn) ) (3-1)
and - A A
g7 (x,xN) =8ij+ 3 Rikjilhlxixi+ Rinjn (8155 + £ Rikjr;m ) xkx1 Xm~+ Ri v e (815 % Xk
+%RiNjN;N [g]x?\l +(%Rikjl;mq [h]'i‘%Riksl [h]ijsq [h])xkxlxqu
+(3Rinjn:k1 (8145 Sym;; (Riksi [MRen N [8))) X3 Xk X1+ 5 Rinjv: kv (81X 7 Xk
+75 (RinjN; NN [81+8RinsN (] Rsnjn (8D x5 + O ((R, xn)1°) (3-2)

near y (identified with a small half-ball B f (0,2n9) near 0 in [F\Rﬁ ). Here all tensors are computed at y
and the indices m, q and s run from 1 to n as well.

To treat umbilic but nonlocally conformally flat boundaries, we also need the following extension of
Lemma 2.4.

Lemma 3.2. Forn > 3, let (X", g%) be an asymptotically hyperbolic manifold such that the conformal
infinity (M", [h]) is umbilic and (1-19) holds. For a fixed point y € M, there exist a representative h of the
class [h), the geodesic boundary-defining function p (= xn near M) and the metric g = p*>g™ such that

(1) Rij:x A7) + Rk [h(») + Ry [A](y) =0,
) Symy i (Rijset ] + 2 Romigj ] Rmieg1[R]) () = 0,

(3) m=00nM, Rnn:N[ZI(¥) = Ran[g](y) =0,

W% w12
g(lllq_lll)’ Rin:ii[8](y) = WP Rinin[2](Y) = Rij [2](9),

C12(n—1)
3
(5) Ryn:anI[81(y) = ER;NN [Z1(») —2(Ri; [] ()%

4 R;ii[gl(y)=—

(6) Rinymss [E109) = o R [£1) — (Ry [E)? — A
Y an MW Y 12(n— 1)
if normal coordinates around y € (M, h) are assumed. Here |W || is the norm of the Weyl tensor of

(M, h) at y.
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Note that the first partial derivatives of h and the Christoffel symbols Fl.kj [/;] = szj [¢] at y vanish. Also
a simple computation utilizing 7 = 0 on M shows that Fé’a [g] =Tjy[g]=0o0n M.

Proof of Lemma 3.2. Theorem 5.2 of [Lee and Parker 1987] guarantees the existence of a representative
h € [h] on M such that (1), (2) and R;;[h](y) = 0 hold. Furthermore, [Escobar 1992b, Proposition 1.2]
shows that umbilicity is preserved under the conformal transformation, and so & = 0 on M. The proof of
the remaining identities in (3)—(6) is presented in two steps.
Step 1: By differentiating (2-3) in xy and using the assumption that d 5 (R[gT] +n(n +1)) = o(xlzv) as
xy — 0, see (1-19), we obtain
_ Townlgl | anwvlgl (Onlgh?T , 2R[g]
o(l)y=n|—= > _ -5
glxy  18lxn [gPxw
Also, since we supposed that the mean curvature H vanishes on the umbilic boundary M, we get from (2-4)
that Ryn [g](y) = 7(y) =0. This in turn gives that |g[(y) =1 and dn |g[(y) = NN [8](¥) = R[g](y) =0.
Consequently, by taking the limit to y in (3-3), we find that
0=n[3dnnn12|(») + dnnn|E1(») — 0] + 2R N [2](») + R N [Z](Y)

=ndnNnN|81(y) + 2R N [8](y). (3-4)
Now we observe from Lemma 3.1 that dyyn |g|(¥) = —2Rnn;n[g](y). In addition, by the second
Bianchi identity, the Codazzi equation and the fact that 7 = 0 on M, one can achieve

+ R N[g] asxy — 0. (3-3)

R n[g] = R;n[g] =2Rnn;N (8] + Rijij;n (8] = 2RNN;N (8] + (Rijin; (8] — Rijjn;ilg])
=2RnNN;N (8] + 2(mii; jj — mijiij) = 2RNN:N (8] (3-5)
and
Rin[gl =mjj;i —mij;j; =0

at y € M. Combining (3-4) and (3-5), we get
0=(2—n)Rnn;N([g](Y)-
Since n > 3, it follows that Ryn:n ([g](y) = 0, as we wanted.

Step 2: It is well known that R ;; [h(y) = R.;i [h(y) = —é |[W(»)||? in the normal coordinate around
y € M. Therefore the Gauss—Codazzi equation and the fact that H =7 =0 on M imply

R ii[8)(y) = 2RNNii[8](0) — gl W) and  Rinjn[81(y) = Rij[8](3). (3-6)

Moreover, since Az(R[gT]+n(n+1)) = o(sz\,) near y € X, refer to (1-19), by differentiating (2-3) in
x; twice, dividing the result by x]zv and then taking the limit to y, one obtains

Rii[g](y) =2nRnnN,ii[g](y). (3-7)

As a result, putting (3-7) into (3-6) and applying the relations at y

R;;i[g] = R,ii[g] and Rnn;ii[8] = Rwn,iil8] —2(0; FfN[E])RaN[é]b =(3)RNN,ii[§]
Yy
allow one to find (4).
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On the other hand, arguing as before but using the hypothesis that dyy (R[gT] +n(n + 1)) = O(XIZV)
near y € X at this time, one derives equalities

3R NN [21(y) = —n Inwww 181(y) = 2n[ Run:an [81(0) + 2(Rinjn [8](0)?]-
Because R.nn [g](¥) = R nn[g](y), it is identical to (5). Hence the contracted second Bianchi identity,
the Ricci identity and (3)—(5) give
R (8] = 2Rin;in 8] + 2Rwn:ww [8] = 2[ Riw;ni (8] + (Rif [8])% — (Ran [8D)*] + 2Rww;ww (8]
=2(Rin;nilg] + (Rij[8D?) + (2 R.ww [8] — 4(Rij[])%)
at y. Now assertion (6) directly follows from the above equality and

Rin;Ni[8](Y) = Rnjij;ni[8](Y)
1wz
12(n—1)

3B. Umbilic conformal infinity having the property R,p.,[g] <0. Like the previous section, we fix a
smooth radial cut-off function ¥ € CCOO(Rf) such that = 1 in Bﬁ'(O, no) and O in [R{i\f \ Bi’ (0,2n0).
Also, assume that W = W o denotes the bubble defined in (1-13). Let y € M be any fixed point identified
with 0 € R™.

= —Rinjn;ij[8](¥) + Ran;ii[8](y) = —Rinjn;ij (8] () — O

Lemma 3.3. Suppose J }%’ is the functional given in (2-8). If (2-4) is valid and w = 0 on M, then
J Ty We: BY (0.n0)]

+U,7m0

orany € > 0 small,n >3+ 2y and y € (0, 1). Here the values F\, F) and F} are given in Lemma B.5.
1 3

Proof. Since H = Ryn[g] =0 at y and the bubbles W, depend only on the variables | x| and x 5, we have

/ xy Y IVWel2 dvg
BY(0,70)

_ [ xSV 2 dx
B (0,70)

_ 1 - 1 —
Rwnl@l0) (5 [ IR = [ IV dx) o). 69
+ +

In addition, utilizing (2-5) and (3-1), we obtain

E(xn) = 101 =29) (Rwn;i [8)(0)xi + S Rawsn [8](0)xw ) xy 2 + O(Ix[2xy,

for xy > 0 small enough. Therefore

- n—2 _
[ o Eenowdv = RmanB0) (") [T WEdxro(). G-10)
BY(0,70) 4 JJry

Combining (3-9) and (3-10), we deduce (3-8). O
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As a consequence of the previous lemma, we obtain the following result.

Proposition 3.4. Suppose that (X", g %) is an asymptotically hyperbolic manifold with umbilic confor-

A

mal infinity (M, [h]). If (2-4) is valid and y € M is a point such that Ryy:n (y) < 0, then for any € > 0
small and n > 3 + 2y, we have

4-2y 2
4n2—12n+9—4y2 Ky Jary Xy IV dx
24n(3-2 +1 , 52
C72) (fpwl*d)

LYW < AY(S" [ge])+e ’ Ryw;n () +0(€) <AV(S" [gc]),

>0

where I is the y-Yamabe functional given in (1-11), and AY (S™, [g¢]) and ky are the positive constants
introduced in (1-16) and (1-23), respectively.

Proof. By (A-1), (A-3) and (A-4), see (2-6), it is true that
T W X\ BY(0.10)] = 0(€).

Moreover, we infer from (3-1) and radial symmetry of the function ¥ w, in R” that

/ YWo)P* dv, = / w’t dx +o(e3).
M R7
Hence Lemmas 3.3 and B.5 give the desired estimate. O

3C. Umbilic nonlocally conformally flat conformal infinity. We now study the case when the boundary
M is umbilic, nonlocally conformally flat and (1-19) holds. In view of Lemma 3.2(3), the tensor R .y [g]
has no role and one needs to expand the energy up to one higher order in €.

Lemma 3.5. Ler y = 0 € M be any fixed point and J }:’ the functional given in (2-8). If (2-4) and
Lemma 3.2(1)—(6) are valid, then

YTy We: BY (0.170)]

_ 4% 2 F F —2V)F"

:/ xb 2V|VW1|2dx+e4[” ” ( s __ s (=) 4)
BY(0,10) 4n \12(n—1) 2(n—-1)(n+2) 12(n—1)
R;NN[g-]( By F (-3)F, +(n—2y)f{') | (Ry12)? (f_;/_ 7

T C8n n 2 n+42

4
8n 4n2_n2(n—|—2) 4n )]+0(€) (3-11)

for any € > 0 small, n > 4 + 2y and y € (0,1). Here the tensors are computed at y and the values
Fi, ..., F¢ are given in Lemma B.6.

Proof. Step 1: estimate on the second- and third-order terms. To begin with, we ascertain that

J [ We: BY (0.10)] = / xy Y IVWIP dx + O(eh). (3-12)
B (0,m0)
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In fact, thanks to (1-19), (2-5) and R[g](y) = R n[g](y) = 0, it holds that

/ E(XN)I/VEZ dvg
BY(0,70)

= [ Eemar o[ g i)
BY(0,n0) BY(0,n0)

n—2 - - _ -
=(7) /B oy N (RIEI) + R algl(0)5a + 36 R aplg10)s) W dx -+ 0(e)
+ 9”0 €

-2
= (550) [ Retl810) 7 + 5 R (1) 7] + o€, (-13)

where ¢ > 0 is a sufficiently small number. Because Ryn:n [g](y) = 0 by Lemma 3.2(3), we see from
(3-9) and (3-13) that estimate (3-12) is true.

4 ..
Step 2: estimate on the fourth-order terms. Let /| §|( ) and (3"/)® be the fourth-order terms in

the expansions (3-1) and (3-2) of /|g| and gij . In view of (2-6), Lemma 3.2(2) and [Brendle 2008,
Corollary 29], one can show that

1-2 —(4)
f 29w 2 izl dx
BY(0,n0)

= —*[ L Rww:ii[81(0) F& + 55 (Ran:an [81(0) + 2(Rinin [81(0) D) FS ] + o (e*)
and

/;N(O )X}lv_zy (é_”])(4)8, Wgaj W€ dx = €4|: (RNN;ii [g](y)+2RleN,lj [g_](y))fé/
+ 10

2n(n+-2)

o (R B10)+8(Rin [§](J’))2)]:3”:|—|—o(e4);

see [Gonzdlez and Wang 2017, Section 4]. Therefore (2-4), (3-9) and Lemma 3.2(4)—(6) yield
1-2y 2
x VW |5 dvz
/Bﬁ ©10) gE

_ W 2 ]_—// ]_-// R - ]_-// ]_-// _3 .F”
=f X 2y|VW1|2dx+e4|:u(—5— 6 )+ NN (8] (__2+_3_%)
BY(0.m0) 8qn(n—1)\ 6 n+2 2n 8 4n  n(n+2)

(Rij[2)? (F§ Fd 4
+ ;. > ni2 +o(€”).
Now (3-13) and the previous estimate lead us to (3-11). O

Corollary 3.6. Assume that (X", g) is an asymptotically hyperbolic manifold, h is the representative
of the conformal infinity M in Lemma 3.1 and I Z is the y-Yamabe functional in (1-11). If n > 4 4 2y,
y € (0, 1) and Lemma 3.2(1)—(6) hold, we have

n—2y

T W < A (S [ge]) + € A7 (8™ [ge) ™ iy 1877|435

x (=IIWI*Di(n,y) + RN [g]D5(n.y) — (Rij [g])*Dh(n.y)) + o(e?), (3-14)
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where NV (S", [g¢]), ky, A3 and By are the positive constants introduced in (1-16), (1-23) and (B-3),
respectively. Furthermore

Dl (n.y) = 15n% — 12013 +20n2(17 — 2y2) — 80n(5 — 2y2) + 48(4 — 592 + y*)
480n(n—1(n—4)(n—4-2y)(n—4+2y)(1 —y2)

5n2 —4n(13 —2y?) +28(4 —y?)
S5nin—4)(n—4-2y)(n—4+2y)
Proof. By Lemmas 3.1 and 3.2(1)—(2), it holds that

/ (WP + du,
M
= A o )wé’“[l—ﬁ(&j,m[ﬁ]+%Rmiqj[ﬁ]Rmqu[/%])xix,-xkxz+0(|2|5)] dx + O(")
"(0,m0

=/ PHLA% +o(e%).
Rn

Thus the conclusion follows from an easy estimate,

JL Y We: X\ BY (0.70)] = o(e")
with Lemmas 3.5 and B.6 at once. O

O’
(3-15)

Dy(n,y) =0 and Din,y)=

It is interesting to see that the quantity R.nyn[g](y) does not contribute to the existence of a least
energy solution, since the coefficient of R, yy[g](y), denoted by D, (1, y), is always zero for any n and y.
Such a phenomenon has been already observed in the boundary Yamabe problem [Marques 2005]. W
also note that the number D} (n, y) has a nonnegative sign in some situations: whenn =7 and y € [% 1),
orn > 8and y € (0, 1). In order to cover lower-dimensional cases, we need a more refined test function.

Let y € M be a point such that W [h A] () # 0. Motivated by [Almaraz 2010], we define functions
Ve = We(F.x) = MaRonjn By xdr 10, We = €22 Ty (715, e L)
for some M, € R and

e =YW +T) inX.

Proposition 3.7. Suppose that (X", g %) is an asymptotically hyperbolic manifold. Moreover h is the
representative of the conformal infinity M satisfying (2-4) and Lemma 3.2(1)—~(6). If n > 4 4+ 2y and
y € (0, 1), we have
— o~ n—2
T[] < A7 (" [ge]) + €AV (S [ge]) ™" ke 1S |43 B,

X (=IWIPDi(n,y) + RN [g]D2(n, y) — (Ri;[8)*D3(n, y)) + o(e*), (3-16)
where

Di(n,y) =Di(n,y), Da(n,y)=0
see (3-15) for the definition of the positive constant D) (n,y), and
2513 —20n%(9 —y?) + 100n(4 — y2) — 16(4 — y?)?

5n(n—4-2y)(n—4+ 2)/)(5112 —4n(1+y?)—8(4— )/2)) ’

D3(n,y) =
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Proof. Since Ryn|[2](y) = 0, we obtain

J!1®e: BY (0.n0)]

=T [y We: BY(0.10)] —|—2/Nx]1v_2y(gij — 817 3; W0, W dx +/Nx}v‘2y|v€if€|2dx +o(eh). (3-17)
Ry RY

Also a tedious computation with Lemmas 3.1 and 3.2(4) reveals that the second term of the right-hand

side of (3-17) is equal to

Rikjl[};] /RN lev_zyxkxl aimaj\hpe dx +2RiNjN[g] /;QN xi,_zyaiWeale!E dx +0(64)
+ e

(=73 + }'7”)} (Ri;18])% +o(e*),

1 1
=0+eMMy| ~F) + ———
n nn+2)

and it holds that

L2y 2M} _
/R NIV dox = €T (Y = 0 o B AR+ AT+ T (R (8D + ()
+

see (2-17) and (2-18). Here the constants F|', ..., F}|, are defined in Lemma B.6.
On the other hand, we have

J/1®e: X\ BY (0.10)] = 0(€?).

and since ¢ = 0 on M, the integral of |<RI’>6 |7*1 over the boundary M does not contribute to the fourth-
order term in the right-hand side of (3-16). By combining all information, employing Lemma B.6 and
selecting the optimal M> € R, we complete the proof. O

One can verify that D3(n,y) > 0 whenever n > 4 + 2y and y € (0, 1). Consequently we deduce
Theorem 1.3 from Propositions 3.7 and 3.4.

4. Locally conformally flat or 2-dimensional conformal infinities

4A. Analysis of the Green’s function. In this subsection, we prove Proposition 1.5. By Theorem A,
solvability of problem (1-20) for each y € M is equivalent to the existence of a solution G* to the equation

—divg=((p*)!72VG*(-,y)) =0 in(X,g*).
8yG*(-. ) =8 = Q1G*(-.y)  on(M.h),
and we have [g/y | + |gNN — 1| = 0(p?”). We also recall [Gonzélez and Qing 2013, Corollary 4.3]

which states that if AY (M, [h ]) > 0, then M admits a metric ho € [h] such that Qy > 0 on M. Thanks to
the following lemma, it suffices to show Proposition 1.5 for ho € [h] o

Lemma 4.1. Let (X, g) be any conformally compact Einstein manifold with conformal infinity (M, [fz]),
p the geodesic defining function of M in X and § = p*>g™. For any positive smooth function w on M,
define a new metric hy = w* " =2V} denote the corresponding geodesic boundary-defining function
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by py and set g, = ,oi g™ Suppose that G = G(x, y) solves (1-20). Then the function

p(x)
pw (x)

Gw(x,y):=( ) WS (1) Gx.y) for(r.y) € X x M. x #y

again satisfies (1-20) with (g, };w) and py, substituted for (g, l;) and p, respectively.

Proof. By (1-5), the first equality in (1-20) is re-expressed as

3+2y

Le(p 2 G(.y) + (2 =1)pTFIG(-.3) =0 in(X. 7). @1

where Lz is the conformal Laplacian in (X, g) defined in (1-3). Therefore one observes from (1-1) that G,
is a solution of (4-1) if g and p are replaced with g, and py,, respectively. Also, since w = (py, / ,o)("_zy)/ 2
on M, we see

n—2
2

9 Gu(-.3) = P Gu(-.) =i () P, ((p/pw) F" G(-.3)

wh—2vh

n42y . n+2y _n+2y
=w (NP, (WG y)=wr (w2 PYG(-, )

wn—2v h

n

n+2y _n+42y n+2y _n+2y
=wr=2v (y)w =2 (G(-,y)) =wr2 (y)w =28, =8, onM,

where we have applied Theorem A and (1-1) for the first, fourth and fifth equalities. O

For brevity, we write h= l;(), g=2g* p=p*and G = G* here and henceforth. Further, recalling
that Q;lf > 0 on M, let us define a norm

1
U ey otz = [ | o2 |VU[Ldvs + | 0YU%dv: )
wiaxp-2n = | [ gdvg + | QU dy;

for any ¢ > 1 and set a space W14 (X, p1=27) as the completion of C2°(X) with respect to the above
norm.

Given any bounded Radon measure f (such as the Dirac measures), a function U € W4 (X, pl=27)
is said to be a weak solution of

—divg(p172’VU) =0 in (X, g),
MU+ QLU = f on (M, h) (4-2)
if it satisfies that
/ pl—ZV(VU, VV¥)z dvg +/ Qh}:U\DdU}; = / A% 4-3)
X M M

for any ¥ € C1(X).

The W'2(X, p'~2¥)-norm is equivalent to the standard weighted Sobolev norm ||U ||y 1.2(x, p1—2vy;
see [Choi and Kim 2017, Lemma 3.1]. Thus for any fixed f € (HY (M))*, the existence and uniqueness
of a solution U € W12(X, p!=27) to (4-2) are guaranteed by the Riesz representation theorem.
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Lemma 4.2. Assume thatn > 2y, f € (HY(M))* and 1 <a < min{n_"zy, %Z:ﬁ} Then there exists a

constant C = C(X, g™, p,n, y, a) such that

1U e x,pr-2vy < CILf i (4-4)
for a weak solution U € W12(X, p=27) to (4-2). As a result, if f is the Dirac measure §y at y € M,
then (4-2) has a unique nonnegative weak solution G(-,y) € Wh(X, p1=27),
Proof. Step 1: We are going to verify estimate (4-4) by suitably modifying the argument in [Brézis and
Strauss 1973, Section 5]. To this aim, we consider the formal adjoint of (4-2): Given any hg € L4(M)
and Hy, ..., Hy € LY(X, p'~27) for some ¢q > max{zn—y, 2(n + 1)}, we study a function V' such that
N
/ P! T2V (VV, VW) dug + / QYVWdv; = / hoW dv; + Z / ' T Hy0,W dvg  (4-5)
X M h M = x

forany W e C 1 (X). Indeed, by the Lax—Milgram theorem, (4-5) has a unique solution Ve W12 (X, p1=27),
Moreover, employing Moser’s iteration technique, we observe that V' satisfies

N
VllLoeary + 1V IiLoex)y =C (||h0||Lq(M) + Z ||Ha“L‘1(X,p‘—2V))- (4-6)

a=1
Therefore taking ¥ = V in (4-3) and U in (4-5) respectively (which is allowed thanks to the density
argument) and then employing (4-6), we find

N
f Uho dv; + Z/ p' 2 3,UH, dvg =/ SVidv, < fllovanVIiLe )
M = x M
N
<Clflian (||ho||Lq<M) s ||Ha||Lq(X,p1—2y))-

a=1
This implies the validity of (4-4) with « = ¢’, where ¢’ designates the Holder conjugate of g.

Step 2: Assume now that f = §, for some y € M. Then one is capable of constructing a sequence
{ fmtmen C C1(M) with an approximation to the identity or a mollifier so that f,, >0 on M,

sup || fmllpiomy <Cs fm —>0in CLl.(M\{y}) and f — 8, in the distributional sense.
meN

Denote by {Un tmen C WH2(X, p1=27) a sequence of the corresponding weak solutions to (4-2). By (4-4)
and elliptic regularity, there exist a function G(-, y) and a number &g € (0, 1) such that U, — G(-, y)
weakly in WH¥ (X, p1=2¥) and U,, — G(-, y) in Cl‘f)(c’()?\{y}). It is a simple task to confirm that G( -, y)
satisfies (4-3).

Also, putting (Up,)— € WL2(X, p'=27) into (4-3) yields Uy, > 0 in X, which in turn gives G(-, y) >0
in X. Finally, the uniqueness of G (-, y) comes as a consequence of (4-4). O
Completion of the proof of Proposition 1.5. The existence and nonnegativity of the Green’s function G is

deduced in the previous lemma. Owing to Hopf’s lemma, see [Gonzdlez and Qing 2013, Theorem 3.5], G
is positive on the compact manifold X. Recall that the coercivity of (4-3) implies the uniqueness of G. [
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4B. Locally conformally flat case. This subsection is devoted to provide the proof of Theorem 1.7,
which treats locally conformally flat conformal infinities M.

Pick any point y € M. Since it is supposed to be locally conformally flat, we can assume that y is the
origin in R” and identify a neighborhood ¢/ of y in M with a Euclidean ball B”(0, o) for some o1 > 0

A

small, namely, h;; = 6;; inid = B"(0, 01). Write xp to denote the geodesic defining function p for the

boundary M near y. Then we have smooth symmetric n-tensors AV, ..., h®*=1 on B"(0, ¢1) such that
n—1

§=huy ®dx},  where (hxy )iy (Foxn) =85 + 3 K@ +OGY), @)
m=1

for (¥, xy) € RY(01.02) := B™(0,01) x [0,02) C X, where ¢, > 0 is a number small enough. In
fact, as the next lemma indicates, the local conformal flatness on M and the assumption that X is
Poincaré-Einstein together imply that all low-order tensors 1 should vanish. In particular, the second
fundamental form 2" on M (up to a constant factor) is 0, which implies Remark 1.8(2).

Lemma 4.3. If (X, g 1) is Poincaré—Einstein, we have h'™ = 0 in (4-7) foreachm =1,...,n—1.

Proof. Follow the argument of [Graham 2000], which starts from the paragraph after (2.4). Due to the condi-
tion h;; = J;;, the right-hand side of (2.6) in that paper becomes 0, from which one can deduce the result. [

Therefore (4-7) is reduced to
gij(x.xn) =8 + O(x}) and [g|=1+40(x}) for(¥.xy)eRN(01.02) CX. (4-8)

Choose any smooth function y : [0, 00) — [0, 1] such that y(¢) =1 for 0 <¢ <1 and y(¢) = 0 for
t > 2. Recall the bubble W, defined in (1-13) and (1-14), the Green’s function G( -, 0), its regular part
W given in (1-21), and the numbers «;,, and g5, , given in (1-23). Then we construct a nonnegative,
continuous and piecewise smooth function ®¢ p, on X by

We(x) if x € X N BN(0, 00),
Pe,00(X) = 1 Ve,00 () (G (x,0) = 200 (X)W (x)) if x € X N (BN (0,200) \ BY (0, 00)), (4-9)
Ve,00(x)G(x,0) if x € X \ BY(0,200).

where 0 < € < 09 <min{o1, 02}/5 sufficiently small, y,,(x) := x(|x|/00) and

n—2y n—2y

€ 2 € 2 —(n— _
Vego(¥) := [an,y(ﬂ)+XQO(X)(VV6(X)_anyV|x|n—_2y):|-(gn’y "M )L (4-10)
0

We remark that the main block V¢ o, of the test function ®¢ o, is different from the function W in (4.2)
of [Escobar 1992a], but they share common characteristics such as decay properties, as proved in the next
lemma.

Lemma 4.4. There are constants C, ny, 12 > 0 depending only on n and y such that

n—2y

Veoo(X)| < Ce 2 forany x € X \ BY (0, 00) (4-11)
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and

+2np

—p, =2 _ n—2y+2 1 n+
|V Ve,00(x)] < Cop ™€ 5 and AN Ve, 0o (X)] < Cpy " (€ 5 "2+x12Vy 125

) @-12)

forx = (¥, xy5) € X N (BN (0,200) \ BN (0, 00)). Also we have VVe oo =0in X\ BN (0,200).
Proof. We observe from (A-1) and (4-10) that

n—2y+29q
n—2y € 2 n—2y
e+ i) e
1
Qo

for all g9 < |x| <200 and some 1 € (0, 1), so (4-11) follows. One can derive (4-12) by making the use
of (A-1), (A-3) and (A-4). We leave the details to the reader. O

n—2y n—2y

-2 € 2 € 2
Ve.oo(X) < Coy 7| | =55 | + [We(®) —atny ——
%o Y |x| 14

Now we assert the following proposition, which suffices to conclude that the fractional Yamabe problem
is solvable in this case.

Proposition 4.5. For n > 2y and y € (0,1), let (X", gT) be a Poincaré—Einstein manifold with
conformal infinity (M ™, [h]) such that (1-9) has the validity. Assume also that M is locally conformally
flat. If Conjecture 1.6 holds and A > 0, then

0 < 1Y [@e gl < AV (S", [gc),

where T }l/ is the y-Yamabe functional defined in (1-11), and AY (S", [gc]) > O is the constant defined in
(1-16).

Proof. The proof is divided into three steps.

Step 1: estimation in X N BN (0, 09). Applying (1-15), (1-16), (4-8), (A-3), (A-4), Lemma A.2 and
integrating by parts, we obtain

1-2y 2
Ky/ xy TIVWelz dvg
XNBN(0,00)
n—2y

< AV(S", [gc])( / wPH! dfc) ’
B"(0,00)
oW,

+io [ xy W 6dS+0(/ x}’v“‘zﬂvweﬁdX), (4-13)
XN3BN (0,00) v B"(0,00)

=0(gy €"27)

where v is the outward unit normal vector and d.S is the Euclidean surface measure. On the other hand, if
we write gt = x]:,z(dxlzv + hxy ), then

E(xn) ==+ —2p)x 3y (b dnhyy) = O 172) (4-14)

inXnN BN(O, 200); see (2-5). Therefore

o E(xn)W2 dvg = 062 "), (4-15)
XNBN(0,00)
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Step 2: estimation in X \ BY (0, 0g). By its own definition (4-9) of the test function D¢ o, its energy on
X can be evaluated as

(0" 72|V g |2 + E(p) D7 ,,) dvg

[X\BN(O,QO)

f (p' 7 (V(V2G).VG)g + E(p)V2, G 4 p 72 [V Ve 0o |2 (G — 200 W)?) dug
X\BN (0,00)

XN(BN(0,200)\B (0,00)) (2< Qo o Qo0 )g) g

P V2, IV (oo W) = 2(VG. V(X ¥))g) dvg

)
XN(BN(0,200)\BN (0,00))

E(p)V2

€,00

+/ (2 W2 —2G o0 V) dvg.
XN(BN (0.200)\ BN (0.00)) @0 °

where G = G(-,0). From (1-20), (1-22), (4-14) and Lemma 4.4, we see that

1-2y 2 2 _
K (p VO o0l5 + E(p)PL ) dv
Y /X\BN(O,QQ) ©e0's ©e07 8

< —K

_ G ey
xy V2, G S+ 0GR)dS + Cen 2y +2m g (1=2y=242m)

! /XHBBN(O,QO)
i CEn—Zy—i—nglin{l,Z)/}-i-l—m + CenQI(;lin{l,ZV}+2V—771 + Cen—ZVlein{l,ZV}’ (4-16)

where C > 0 depends only on 7, y, 01 and g,. For instance, we have
/ P [V Ve 00 (G — o W) dvg
X\BN(O:QO)

—2m 1-2y . n—2y+2 2Q2y—1) _n+2 1
=ce / Xy (TR 4 € y)'(——l-l)dx
0 BN (0,200)\B" (0,00) N N |x|2(—2)

_ —(n—2y—2+2 - —(n—2y—2+2
EC(G” 2y+2n2Q0(’1 y—2+ 7ll)+6n+2y <Cé" 2y+2n2Q0(n y—2+2n1)

—n+6
00" "llogool)
for 0 < € <« g¢ small. The other terms can be managed in a similar manner.

Step 3: conclusion. By combining (4-13), (4-15) and (4-16), we deduce

Ky /X(Pl_zywq)eg)o@ —i—E(p)CDiQO) dvg

n—2y

" _ W, 3G
< A (S"[g ])(/ w”“dfc) + K / xh 2V(W R 7 G—) ds
“\Un0.00) " JxnaBN 0,000 " Cav S0 gy

) =:I
+ Cen 2y giinil2v}, (4-17)
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Let us compute the integral of I over the boundary X N dB™ (0, g¢) in the right-hand side of (4-17).
Because of Lemma A.1 and (1-22), one has

n—2y n—2y
oWe G Oln,y(” —2y)e 2 —(n—2y) —1%.,y 8n,y (n—2y)e 2
v eeg, =T e +(8ny 09 +4) 2
0

n—2y —(n— n—2y H _
T +1}1Q0(n 2)/+1—i—191)_i_cE = ann{O,Zy 1}

n—2y
n—2y

= :
< —Qpn,y g;j, (n —2)/)AET + Ce 2 ann{O,Zy—l} +Ce

n—2y —(n—
+ ,—(n—2y+1+791)
2 IQO

on {|x| = o} for some #; € (0, 1). Therefore using the fact that Wy (x) > %an,yen?y Q(;("_zy) on

{|x| = 00}, we discover

_ AW G G
/ 1dS = / xy [W (—e —~ Ve,go—) - Vﬁgo—\p] ds
XN3IBN (0,00) XN3BN (0,00) v v 200 9y

2
< _Oln_,y(n — 2)/) (/ x}lv—Z)/ dS)Ae”_zy + Cen—Znglin{l,Zy}
8n,y 4 BN (0,1)

+ Cén_2y+l9190_(n_2)/+19]).

Now the previous estimate, (4-17), (1-16) and the assumption A > 0 yield that

_ O[2 S 7”;5)/ Sn—l
I [®e go] = A7 (S [ge]) - g"’y (_:y) (L(n—2y))- | ~ |3(1 S I
n,y Y
4 CEn_znglin{l’zy} + Cen—2y+l?1Q0—(n—2V+l91)

< AV(S" [gcD).

where B is the beta function. Additionally the last strict inequality holds for 0 < € < g¢ small enough. [J

4C. 2-dimensional case. We are now led to treat the case when (M, [ﬁ]) is a 2-dimensional closed
manifold.

Fix an arbitrary point p € M and let X = (x1, x2) be normal coordinates at p. Since X is Poincaré—
Einstein, it holds that 2" = 0 in (4-7), whence we have

gij (%, xN) =68ij + O(x|*) and |g]=1+0(|x[*) for (%, xy)eRY(01,020) C X, (4-18)

where the rectangle R™ (01, 02) is defined in the line following (4-7).

With Proposition B in the Introduction, the next result will give the validity of Theorem 1.7 if n = 2.

Proposition 4.6. For y € (0, 1), let (X3, g%) be a Poincaré—Einstein manifold with conformal infinity
(M?, [h]) such that (1-9) holds. If Conjecture 1.6 holds and A > 0, then

0 < I [®e o] < A7 (S [gc])

for the test function ®c o, introduced in (4-9).
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Proof. We compute the error in X N B jf (0, 09) due to the metric. As in (4-13) and (4-15), one has

x}v_2y|VWe|§dvg:/

x}v‘27|vm|2dx+o(/
XNBN(0,00) X

o PV )

/XnBN (0,00) NBN(0,00)

=0(03"€2727)

/ E(en)W2 dvg = O (/ xy W2 dx) = 0(0y"*™)
XNBN(0,00) XNBN(0,00)

from (4-18). Therefore the error arising from the metric is ignorable, and the same argument in proof of

and

Proposition 4.5 works. O

Appendix A: Expansion of the standard bubble W ¢ near infinity

This appendix is devoted to finding expansions of the function W; = Wj o, defined in (1-13), and its
derivatives near infinity. Specifically we improve [Choi and Kim 2017, Lemma A.2] by pursuing a new
approach based on conformal properties of Wj.

For the functions W; and x - VW;, we have:
Lemma A.1. Suppose that n > 2y and y € (0, 1). For any fixed large number Ry > 0, we have

on,y(n—2y) - C
|x|n—2y — |x|n—2y+191

(04
Wl(x)—lxl,’j—’_yzy + [x - VI (x) + (A-1)

for |x| = Ry, where numbers 91 € (0,1) and C > 0 rely only on n, y and Ry.
Proof. Given any function F in Rf , let F* be its fractional Kelvin transform defined as

1 b
*pon N
F*(x)= 2y F(|x|2) for x e RY.

Then it is known that W* = W. Let us claim that (x - VW1)*(0) = —o,p (n — 2y) and (x - VW)™ is
C® in the X-variable and Holder continuous in the x-variable. Since

Xy VoNN Wy =—(1=2y)xy Y ON WL —xy Y AzW1 inRY,
we have
—div(xy ' V(x-VW)) =0 in RY,
Y (x- VW) = Y7y xi0x, ) Wi + 3 W1 —limyy o x5 7 dnw Wi
=p Yoy xidy (w]) +2ywf on R”.

Employing [Fall and Weth 2012, Proposition 2.6; Caffarelli and Silvestre 2007] and doing some computa-
tions, we obtain that

—div(xy ' V(x-VW)*) =0 in RY,

n+2y+2

2y|xX? —
az(x-vwl)*:(—A)V(x-VWI)*:a,f,y< yIXIm—n )onR”.
(I+[x) =2
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Therefore (x - VIW;)* has regularity stated above, and according to Green’s representation formula,

1 2y[5)* —n -
I ((1 RO A

(x- VW)™ (0) = of  &n,y /
R

This proves the assertion.

Now we can check (A-1) with the above observations. By standard elliptic theory, there exist constants
ci,...,cN > 0 such that

n
(WP () = amy |+ | (- VWD) * () + iy (0 =29)| < cilxi| + enxly (A-2)
i=1
for any [x| < Ry 1 and some ¥ € (0, 1). Hence, by taking the Kelvin transform in (A-2), we see that the
desired inequality (A-1) is valid for all |x| > Ry. O
Additionally we have the following decay estimate of the derivatives of Wj.

Lemma A.2. Assume thatn > 2y and y € (0, 1). For any fixed large number Ry > 0, there exist constants
C > 0 and 9, € (0, min{1, 2y}) depending only on n, y and Ro such that

i on,y(n—2y)x C
Vi Wi (x) + |x|n—2y+2 - |x|n—2y+1+192 (A-3)
and
2y—1
Qn,y(n—2y)xN 1 Xy
‘aNWl(x) + x[—27+2 = x[=2rv+2 T |2y (A-4)
for |x| = Ro.

Proof. The precise values of the constants py, y, @x,, and «,, which will appear during the proof, are
found in (1-23).

Step 1: By (1-13), (1-14) and Taylor’s theorem, it holds that

1 _ o
9 Wi (x) = Pn,y/ —————y w1 (X —xNy)dy
w (512 + )5
1 _ _ _ _
= Dny / L [dwi(—xn F) + By (—xy ) + O(F)] dF
R (512 + )" F
1 _ _ _ _
=y / — L [0wi O + O(Gen 7D IF) + O(5P)] d
w (512 + )5

=~y (n —2y)x; + O(|x|'192)

for x| < Ry 1. Here we also used the facts that the C2(R")-norm of w; and the C?2(R")-norm of
d;jw; are bounded for some ¥, € (0, min{1, 2y}). On the other hand, the uniqueness of the y-harmonic
extension yields that (d; W1)* = 9; W; fori = 1,...,n. Therefore

On,y (n—2y)x;

C
x[i—2r+2 | (3 W1)* (x) + any (n —2y)x] | < C(Ix]' TP2)* <

;i Wi(x)+ - W

for |x| > Ro, which is the desired inequality (A-3).
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Step 2: If y = %, it is known that

n—1

1 =
) for all (x,xy) € RY,

X% + (xn +1)?

Wi(x,xn) = an’é(

from which (A-4) follows. Therefore it is sufficient to consider when y € (0, 1) \ {%} In light of duality
[Caffarelli and Silvestre 2007, Section 2.3], we have

{ —divey 2TV P oy W) =0 inRY,

1-2y _ -1,,DP n
X 8NW1——Ky wj on R”.

Hence if we define

1 X
*k _ N
F™7™(x) = X [20=7) F(|x|2) for x € R
for an arbitrary function F in [R{ﬁ , then
—div(xy 2TV Oy W) =0 in RY,
212
(x}v‘ZVaN Wy)** = —oz,’,’,y/c;l—m 5, on R”.
(1+132)"
This implies
_ 3 _ _ 1 1 _ . 5
(i AN W) (% xn) =—al iy ppiy Xa 2"/ — ——— dy+0(xy V|x|+]x[*)
v ny Sy PN o R () !
=~y (1=2y)x3 7 +O0 ey x|+ x ) (A-5)

for all [x| < Ry 1. Accordingly, we have
o,y (n— 2)/)x]2\,_2y

1-2y
Xy INW(x) + |x[p—2r+2

22y
X
<Cc|—X -
- |x|n—2y+3 |x|n+2y

for |x| > Ry. Dividing the both sides by x}v_zy finishes the proof of (A-4). O

Appendix B: Some integrations regarding the standard bubble W; ¢ on [F\RIJ_'

The following lemmas are due to Gonzdlez and Qing [2013, Section 7] and the authors [Kim et al. 2015,
Section 4.3].

Lemma B.1. Suppose that n > 4y — 1. For each xy > 0 fixed, let 124 (&, xN) be the Fourier transform
of Wi(x, xn) with respect to the variable X € R". In addition, we use K, to signify the modified Bessel

function of the second kind of order y. Then we have

Wit xn) = 01(8) p(€lxn) forall§ € R" and xy > 0,

where ¢(t) = dit” K, (t) is the solution to

8O+ L0 -9 =0. $(0)=1and 9(o0) =0, (B-1)
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and w1 (1) := w1(§]) = d2[§]77 Ky (|§]) solves
7 1+2y , ) . +1 ¢
")+ —¢'t)—p(t)=0 and 1lim V() + lim ¥ 2e'¢p(t) <C (B-2)
t t—0 t—00

for some C > 0. The numbers dy, d» > 0 depend only on n and y.

Lemma B.2. Let

o o0
Aq =/ 1727 92(1) dt, Ba=/ 1Tty dt,
0 0
o0

o0
AL, =/ " o(t) ¢’ (1) dt, B&:/ 7T (1) W ()" dt, (B-3)
0 0

o0 [e.°]
Al = / V(g ())2dt, Bl = / (=2 () (1)) 2" di
0 0

fora e NU{0}. Then

o+2 o+1 2 5 -1 oa+1 -1 oa+1 oa—1 -1
Ay = . — A =— — A — _ A"
o (oz—i—l) |:( > ) 14 ] a+2 ( 2 14 a+1 ( 5 V) > ‘H/) o

fora odd, a > 1 and

o _ 4(n—a + 1)Bas 2B
T m—a)n+2y—a)(n—2y —a) n+2y—ao
(n—2y—-a)B_,

n+2y—oa+2

By—2 =

for a even, o > 2.

Proof. Apply (B-1), (B-2) and the identity

o0 o — 1 o0
f " luu' () dt = ——— f 1 2u()? dt,
0 2 Jo

which holds for any o > 1 and u € C'(R) decaying sufficiently fast. d

Utilizing the above lemmas, we compute some integrals regarding the standard bubble W; and its
derivatives. The next identities are necessary in the energy expansion when nonminimal conformal
infinities are considered. See Section 2B.

Lemma B.3. Suppose thatn > 2 and y € ((), %) Then

1-2

2-2y 2 2-2y 2 4 =2y 11,2

VWil“dx = W) dx = —— W= dx < oo.
/[MXN | 117 dx 1_+_2y/R]¥xN (0, W1)“dx ) RﬁxN 1 dX <00
Proof. Refer to [Choi and Kim 2017, Lemma 6.3]. O

The following is used in the energy expansion for the nonumbilic case. Refer to Sections 2C and 2D.
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Lemma B.4. Forn > 2+ 2y, it holds that

_ 3
ey N TR0
_ 3
. 32y 2 n—1
2/$XN| dx = 18" s B
F3: :/ xi]_zy(arwl)z dx = |Sn_1|A3BZ’
7Y
Fai= / LN @ W) @ W) dx = —3n|S" | 43 B,
RY
_ 5n3 —dn(1+y?) +4(1—4y?)
L 3-2y 2 2 5. n—1
Fg.—[RN ¥ P20, Wh) dx = T 5”438y,
+
2)(3n? — 6n + 4 —4y?
f6: :/ 1-2y 2(8 W) dx (f’l+ )( n n—+ 14 )|Sn_1|A3B2,
Y 8(1—1)(1—y?)
_ (n+2)(Bn?—6n+4—4y?)
Foi = 2 29, W1) @rxy W) dx = — S"7!|438,,
7 /I%ﬁ N r(r 1)( rxXy 1) x 8(”—1)(1+)/) | | 352

_ 2-y)(5n® —4n(2 -2y +y?) +8(1—y —2y?))
N 20(n —1)(1+y)

Fg: = /N Xy V12 (g W1)2d S"~|43B,.
R

+

Here r = |X|, and the positive constants A3 and By are defined by (B-3).

Proof. The values F1, F,, F3 and Fg were computed in [Gonzédlez and Qing 2013; Kim et al. 2015], so
it suffices to consider the others.

Step 1: calculation of F4. Integration by parts gives

o0
]—“4—/ (0, W) (@r, Wh) dx = |S" 1|/ 3 2?(;/ r”Br(B,Wl)zdr) dxn
0

o0
= |S"™ 1|f 3— zy( 2/ r”_l(arWl)zdr) de=—%}‘3=—%|§”_1|A3Bz.
0

Step 2: calculation of Fs. Since AzW; = W'+ (n — 1)r~W/ (where ’ stands for the differentiation
in r), it holds that

/N X?V_ZVVZ(A;E Wi)?dx = Fs +2(n—1)Fs + (n — 1)>Fs. (B-4)
Ry

By the Plancherel theorem, Lemma B.1 and the relation

Ag ([P (IEDe(E]xn)
— 21+ (1 +2—2)[E[D}¢ + (1 42+ 2)[Ed1¢ xy + [EP1g + 20 P xw + [EPD1oxY
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where the variable of 1 and W] is ||, that of ¢ and ¢” is |§|x, and " represents the differentiation with
respect to the radial variable |¢|, we see

3=2y 2/ A _ 2
[RIXN re(AzWi)“dx

=/0 o 2y/ (—Ag)(IEPD1(ED@(EIxN)) - (1EPD1(1ED@(€lxN)) dE dxn
= |S"7'|[2nA3By + (n +2—2y)A3B| + (n + 2+ 2y) A} By + A3Bo + 24, B| + AsB>].

Therefore Lemma B.2 implies

/N Xy Vi (Az W) dx =
R

+

5n3 —20n2 4 4n(9 —y?) —16(1 + y?)
20(n —1)

IS"" 1|43 B>.

Now (B-4) and the information on F3 and F4 yield the desired estimate for Fs.

Step 3: calculation of F7 and Fg. Since the basic strategy is similar to Step 2, we will just sketch the
proof. We observe

o0 (o) n
Fy= %/ Xy (/ r2(8,W1)2d5c) dxy = %f va‘ZVaN(Z/ 171205, Wl)zdx) dxn
0 R 0 )

=3 / N yaN( / <—As)(siw1(|s|><o(|s|xzv))-(s,-w1<|s|)go<|s|xN))dg) dxn.
0 =1 R”

=D

Owing to Lemmas B.1, B.2 and the expansion

(1) =—m+1) | In(E1aD1bDED 9> (Elxn) + IE1DTUED (pe")(Elxn)xn) dE
Rﬂ
—/Rn o (1€ D10])(1E]) 9> (11xn) + 206> D107 (E]) (0@ ) ([ |xw)xn) d§
—/Rn on (IEPDT(ED (09" (IElxn)xT) dE,

foo 22y

one can compute the integral 77 = % o Xy  (I)dxn to getits value given in the statement of the

lemma. Moreover,

I8 =/ 13:]21/(/ |)_C|2|V)E(3NW1)|2d)_c) dxy
0

=/0°° 3— ZV(Z/ (—Ag) (N W) - (S,BNWI)dg) dxy.

The rightmost term is computable with Lemmas B.1 and B.2. O

The next lemmas list the values of several integrals which are needed in the energy expansion for the
umbilic case (see Sections 3B and 3C).
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Lemma B.5. Forn >3+ 2y, let

F| = /N szv_zlez dx, Fj:= /N x?v_2V|VW1|2dx and Fj:= /N x;t,_zy(f)rWl)2 dx,

where r = |x|. Then

33-2y) 8
Fp= Fi= T
2 ) 1= 342,73

Proof. One can argue as in [Gonzélez and Qing 2013, Lemma 7.2] or [Choi and Kim 2017, Lemma 6.3]. [

Lemma B.6. Forn > 44 2y, we have
4(n-73)
X =
n—4)(n—4=-2y)(n—4+2y)
— 16(n—3)2—
]—"2“::/ |\ VW2 dx = (n=3)2=y) 1S""!| 43 B5,
RN m—4(n—-4-2y)(n—4+2y)

_ 16(n —3)(4—y?
]—'é’::/ X5 (0, Wh)2 dx = (n—3HE-v7) S| 43 Ba.
R

1S" 143 By,

N - S5(n—4)y(n—4-2y)(n—4+2y)
_ 3n2 — 18n + 28 — 4y?
]_-4/ :/ x]lv 2Vr2W12dx: l’l( n n—+ )4 ) 5 |§n_1|A3Bz,
RY 2(n—=4)(n—4=2y)(n—4+2y)(1 -y?)
_ 3n2 4+ 2n(=7+2y)—4(—4+3 2
Fi= [ v rrwwpax = DA ETE IR ST )) gt 4,
RY n—4Hn—4-2y)(n—4+2y)(1+vy)
_ 2)(51n2% —20n + 16 — 492
Fii= [ PR emdy = o DO TR i g,
RY S5n—4)y(n—4-2y)(n—4+2y)
_ 8n(n—3)(4—y?) _
]—'”::/ 272V (3, Wh) (0yr Wh) dx = — S"!|43By,
7 R_’XXN r(0, W1)(0,,W1) dx 5(n—4)(n—4—2y)(n—4+2)/)| |A3 B2
_ 44— y2)(Tn3 = 14n2 —4n(5+ y2) +4—16y2
Fi= [ xR0, dx = T A SO Y I g4,
RY 35(n—4)(n—4-=-2y)(n—4+2y)
_ +2)2—y)(5n% —=20n + 16 —4y?)
}'”:=/ 2 120, W) By W) i = — S""!|43Ba,
o RﬁxN r0r W) @rxy 1) dx S5(n—4)(n—4-2y)(n—4+2y) | 14382
and
5-2
Flly = /M X3 12 Oy W)? dix
42—-y)B—y)(In3 —14n% —dn(6—2y +y?) + 82 =3y —2¥?)) , cn_1
= |S" ™| A3 B2,

35(n—4)(n—4-2y)(n—4+2y)
where r = |X|, and the positive constants Az and By are defined by (B-3).

Proof. The proof is analogous to those of Lemma B.4 and [Kim et al. 2015, Lemma 4.4], so we skip it. [
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Note added in the proof

(1) During the submission process, [Mayer and Ndiaye 2017] was posted on the arXiv. It proposes a
proof of Theorem 1.7 without the positivity assumption on the constant A. In particular, they computed
the expansion of a Green’s function (compare our Conjecture 1.6 and their Corollary 6.1) and applied the
Bahri—Coron-type topological argument in order to bypass the issue on A.

(2) Recently, Remarks 1.2(4) and 1.4(3) were confirmed affirmatively by the first author of this paper
[Kim 2017].

(3) Suppose that n € N and y € (0, 1) satisfy C'(n, y) > 0, where C'(n, y) is the quantity defined in (2-12).
Moreover assume that (M™", [l;]) is the conformal infinity of an asymptotic hyperbolic manifold (X, g©)
such that (1-9) and (1-18) hold, and the second fundamental form 7 never vanishes on M. Then the
solution set of (1-2) (with ¢ > 0) is compact in C?(M), as shown in [Kim et al. > 2018].
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ON THE FOURIER ANALYTIC STRUCTURE OF THE BROWNIAN GRAPH

JONATHAN M. FRASER AND TUOMAS SAHLSTEN

In a previous article (Int. Math. Res. Not. 2014:10 (2014), 2730-2745) T. Orponen and the authors proved
that the Fourier dimension of the graph of any real-valued function on R is bounded above by 1. This
partially answered a question of Kahane (1993) by showing that the graph of the Wiener process W,
(Brownian motion) is almost surely not a Salem set. In this article we complement this result by showing
that the Fourier dimension of the graph of W, is almost surely 1. In the proof we introduce a method
based on Itd calculus to estimate Fourier transforms by reformulating the question in the language of Itd
drift-diffusion processes and combine it with the classical work of Kahane on Brownian images.

1. Introduction and results

1A. Geometric properties of Brownian motion. Gaussian processes are standard models in modern
probability theory and perhaps the most well-studied example is the Wiener process (or standard Brownian
motion) W = W, : R*® — R characterised by the properties Wy = 0, the map ¢ > W, is almost surely
continuous, and W, has independent increments such that W, — W; for ¢ > s is normally distributed:

Wi —Ws~N(@O,t—5s).

The Wiener process has far-reaching importance throughout mathematics and it is a topic of particular
interest to understand its geometric structure. This can be achieved by studying several random fractals
associated to the process such as images W(K) := {W, : t € K} of compact sets K C [0, 00), level sets
L. (W):={teR:W,=c}forceR, graphs G(W) :={(t, W;) :t € R} (see Figure 1) and other more
delicate constructions such as SLE, -curves.

The basic properties of Brownian motion mean that these random fractals enjoy a certain “statistical
self-similarity”, which facilitates computation of their Hausdorff dimensions dimy. Classical results
include McKean’s proof [1955] that dimyg W (K) = min{1, 2 dimyg K} almost surely for each compact
K C [0, 00). Moreover, for the level sets, dimyg L.(W) = % almost surely for ¢ = 0 by [Taylor 1955] and
for all ¢ € R by [Perkins 1981] conditioned on L.(W) being nonempty. For the Brownian graph G (W),
Taylor [1953] proved that dimy G(W) = % almost surely and Beffara [2008] computed the Hausdorff
dimensions of SLE,-curves. Moreover, Hausdorff dimensions for similar sets given by many other
Gaussian processes, such as fractional Brownian motion, have been also considered; see, for example,
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Wi

Figure 1. Three realisations of the graph G (W) for the Brownian motion W;.

Adler’s classical results [1977] for fractional Brownian graphs and the recent work [Peres and Sousi
2016] concerning variable drift.

1B. Fourier analytic properties of Brownian motion. The Hausdorff dimension is the most commonly
used tool for measuring the size of a set A but there is also another fundamental notion based on Fourier
analysis which reveals more arithmetic and geometric features of A, including curvature, which are not
seen by the Hausdorff dimension. This is based on studying the Fourier coefficients of a probability
measure  on A C RY which are defined by

) = / eTE gLy, & e R

Now the size of A can be linked to the existence of probability measures ¢ on A with decay of Fourier
coefficients (i(§) when |&| — oo. The following connection between Hausdorff dimension and decay of
Fourier coefficients is well known and goes back to Salem and Kaufman, but we refer the reader to [Mattila
2015] for the details. If dimy A > s, then A supports a probability measure p with |/1(§)| = O (|&]|7*/?)
“on average”, that is, fRd |A(E)?|E]°~? d& < oo, and vice versa the Hausdorff dimension can be bounded
from below if such a measure i can be found. It is possible, however, that dimy A = s > 0 but no
measure ;1 on A has Fourier decay at infinity; this happens for example when A is the middle-third Cantor
set in R. Therefore, one defines the notion of Fourier dimension dimg A of a set A C R? as the supremum
of s € [0, d] for which there exists a probability measure  supported on A such that

IAE)| = 0(EI™?) as [&] - oc. (1-1)

Then by this definition we always have dimg A < dimy A and if the two dimensions coincide then A
is called a Salem set or a round set after [Kahane 1993]. In general Fourier dimension and Hausdorff
dimension have no relationship other than this; in fact, Kdrner [2011] established that for any 0 <s < < 1
it is possible to construct examples A C R with dimp A = s and dimy A = ¢. Further properties of Fourier
dimension were recently developed by Ekstrom, Persson and Schmeling [Ekstrom et al. 2015]. For a
more in depth account of Fourier dimension, the reader is referred to [Mattila 1995; 2015].
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Finding measures 1 on A with polynomially decaying Fourier transform (i.e., (1-1) for some s > 0)
has deep links to absolute continuity, arithmetic and geometric structure, and curvature. If A supports a
measure p such that (1-1) holds with s > 1, then Parseval’s identity yields that u is absolutely continuous
to Lebesgue measure and A must contain an interval. An application of Weyl’s criterion known as the
Davenport-Erdds—-LeVeque criterion [Davenport et al. 1963] yields that in R polynomial decay of [
guarantees that © almost every number is normal in every base and an interesting result of Laba and
Pramanik [2009] shows that if the s in (1-1) is sufficiently close to 1 for a Frostman measure « on A C R
and there is a suitable control over the constants, see the recent work [Shmerkin 2017], then A contains
nontrivial 3-term arithmetic progressions. Moreover, an analogous result also holds for higher dimensions
with arithmetic patches [Chan et al. 2016].

On the curvature side, if A is a line-segment in R2 then A cannot contain any measure with Fourier
decay at infinity so A cannot be a Salem set. However, if A is an arc of a circle or more generally a
1-dimensional smooth manifold with nonvanishing curvature then the 1-dimensional Hausdorff measure u
on A satisfies (1-1) with s = 1; see [Mattila 2015]. In particular, A is a Salem set. In these examples
of A one can observe that the important arithmetic or curvature features present are not seen from the
Hausdorff dimension.

Constructing explicit Salem sets (which are not manifolds), or just sets A supporting a measure i
satisfying (1-1) for some s > 0, can be achieved through, for example, Diophantine approximation by
[Kaufman 1980; 1981; Bluhm 1998; Queffélec and Ramaré 2003] or via thermodynamical tools by [Jordan
and Sahlsten 2016]. However, for random sets it has been observed in many instances that A is either almost
surely Salem or at least supports a measure u with (1-1) for some s > 0. This was first done for random
Cantor sets by Salem [1951], where Salem sets were also introduced. Later in his classical papers, Kahane
[1966a; 1966b] found out that the Wiener process and other Gaussian processes provide natural examples.

Since Kahane and Salem, the study of Fourier analytic properties of natural sets derived from Gaussian
processes and more general random fields has been an active topic. For the Brownian images, Kahane
[1985b] proved that for any compact K C R the image W (K) is almost surely a Salem set of Hausdorff
dimension min{1, 2dim K}. Kahane also established a similar result for fractional Brownian motion.
F.aba and Pramanik [2009] then applied these to the additive structure of Brownian images. Later Shieh
and Xiao [2006] extended Kahane’s work to very general classes of Gaussian random fields. However,
understanding the Fourier analytic properties of the level sets and graphs remained an important problem
for some time. Kahane [1993] outlined the problem explicitly.

Problem 1.1 (Kahane). Are the graph and level sets of a stochastic process, such as fractional Brownian
motion, Salem sets?

This precise formulation of the problem was given by Shieh and Xiao [2006, Question 2.15], but they
attribute the problem to Kahane. For the Wiener process Kahane [1985a] had already established that the
level sets L.(W) are Salem almost surely for any fixed ¢ € R conditioned on L.(W) being nonempty. The
fractional Brownian motion case has recently been considered for ¢ = 0 by Fouché and Mukeru [2013].

Kahane’s problem for graphs, even in the case of the standard Brownian motion W;, however, remained
open for quite a while until, together with T. Orponen, we established that the Brownian graph G (W) is
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almost surely not a Salem set [Fraser et al. 2014]. It turned out that the reason for this is purely geometric:
the proof was based on the following application of a Fourier-analytic version of Marstrand’s slicing lemma.

Theorem 1.2 [Fraser et al. 2014, Theorem 1.2]. For any function f : [0, 1] — R the Fourier dimension
of the graph G (f) cannot exceed 1.

Indeed, since dimyg G(W) = % > 1 almost surely [Taylor 1953], this answers Kahane’s problem in
the negative for the Wiener process. Note that this also gives a negative answer for fractional Brownian
motion since the Hausdorff dimension in that case is also strictly larger than 1 almost surely.

The methods in [Fraser et al. 2014] are purely geometric and involve no stochastic properties of
Brownian motion. They also do not shed any light on the precise value for the Fourier dimension of G(W).
Note that even though dimyg G(f) > 1 for any continuous f : [0, 1] — R, the Fourier dimension of a
graph may take any value in the interval [0, 1]; see [loc. cit.]. For example, dimp G(f) = 0 if f is affine
and, moreover, dimg G (f) = 0 for the Baire generic f € C|[0, 1]; see [loc. cit., Theorem 1.3].

The main result of this paper is to complete the work initiated by Kahane’s problem in the case of
Brownian motion by establishing the precise almost sure value of the Fourier dimension of G(W).

Theorem 1.3. The graph G (W) has Fourier dimension 1 almost surely.

Moreover, the random measure ¢ we use to realise the Fourier dimension is Lebesgue measure df on
[0, 1] lifted onto the graph G (W) via the mapping ¢t — (¢, W;). The precise estimate we obtain is that
almost surely

@& = 072 /log |€]) as [§] — oo, (1-2)

which combined with Theorem 1.2 yields Theorem 1.3.
A natural direction in which to continue this line of research would be to study other Gaussian processes
with different covariance structure, such as the fractional Brownian motion.

1C. Methods: Ité calculus and reduction to Brownian images. The key method we introduce to esti-
mate the Fourier transform of the graph measure u is based on It6 calculus, which has previously been a
natural framework in the theory of stochastic differential equations. As far as we know, Itd calculus has
not been previously considered in this Fourier analytic context. Here we discuss this method and give a
brief summary of the main steps in the proof. When written in polar coordinates, (1-2) asks about the rate
of decay for the integral

1
wE) = f exp(—2miu(t cos6 + W, sin6)) dt
0

for £ =u(cosf, sinf) € R2 u=>0,0¢[0, 27), as u — oo. There are two distinct cases we will consider
depending on the direction of &£, which we give a heuristic description of here.

If we ignore the random component W, sin 8, that is, set & = 0 or 7, then standard integration using the
chain rule shows that /t(&) equals the Fourier transform of Lebesgue measure dt at u, which decays to 0
with the polynomial rate u~' = |£|~!, so we are done for these directions. However, if 6 is not equal to 0
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or i, we still have a small random (nonsmooth) term W; sin 8, so a classical change of variable formula
or other tools from classical analysis cannot be used.
The key observation is that we can write (1(§) = f exp(i X;) dt, where the stochastic process X, satisfies
the stochastic differential equation
dX;=bdt+odW;,

identifying it as a so-called It6 drift-diffusion process, where b := —2mu cos 9 is the drift coefficient
of X; and o := —2mu sin 0 is the diffusion coefficient of X,. Such processes have many useful analytic
tools from Itd calculus (see Section 2) associated to them, in particular [t0’s lemma, which works as an
analogue for the chain rule. The price we pay is that Itd’s lemma introduces some multiplicative error
terms involving stochastic integrals, but they can be estimated with other tools from It calculus using
moment analysis.

The estimates we obtain from Itd calculus allow us to obtain the correct Fourier decay (1-2) for
when @ is close to 0 or 7 with respect to ! (more precisely, |sin6| < u~!/?), in other words, when &
is close to pointing in the horizontal directions. Thus another estimate is needed for 8 bounded away
from 0 and . This is where the classical work [Kahane 1985b] on Brownian images comes into play.
If we completely ignore the deterministic component 7 cos 6, by setting 6 = 5 or 37”, then [i(§) is the
Fourier transform of the Brownian image measure v, that is, the ¢ — W, push-forward of the Lebesgue
measure dt on [0, 1] at u. Kahane [1985b] in fact already established that the decay of |0 (u)] is almost
surely of the order u=ly logu = |& =1,/ log |&] so (1-2) holds for these directions. A modification of
Kahane’s argument reveals that whenever 6 # 0 or 7, then almost surely

A& = 0(sin0] &~ /log |€]);

see the discussion in Section 3C. Now one notices that when 6 approaches O or 7, this estimate blows
up, and so one cannot obtain a uniform estimate over all directions from this. However, this gives (1-2)
if |sin6| > u~'/2, so combining with the estimates we obtained through Itd calculus, we are done. See
Section 3 for more details on the main steps of the proof.

1D. Other measures on the Brownian graph. Theorem 1.3 and (1-2) give Fourier decay for the push-
forward of the Lebesgue measure on [0, 1] onto the graph G (W). It would be an interesting problem to see
if one can have similar results for other, possibly fractal, measures on [0, 1]. A possible problem could be:

Problem 1.4. Classify measures T on [0, 1] such that for some 0 < s < 1 we have
12E)1=0(EI™%), 1€l = oo,

and their lift 1, onto the graph of G(W) under t — (t, W;) satisfies
(&) = O(EI™7),  [E] > o0

forany s’ <s.

This is motivated by the fact that in [Kahane 1985b] it is possible to transfer information on the Fourier
decay (or Frostman properties) of t onto the image measure. Thus for directions 6 bounded away from 0
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and 7 we could still bound i, (&) using Kahane’s work. The main problem in generalising our approach
to fractal measures t on [0, 1] comes from the lack of an appropriate analogue of Ito calculus.

1E. Organisation of the paper. In Section 2 we give the necessary background from It calculus. In
Section 3 we will give the proof of our main result Theorem 1.3. The key estimates are obtained in
Section 3B and Section 3C, corresponding to the two cases discussed above.

2. Ito calculus

2A. Stochastic integration. In the proof of the main result Theorem 1.3, we end up studying integrals
of the form f f(X;)dt for some stochastic processes X; and smooth scalar functions f. As standard
analysis methods cannot be applied to these integrals, we need theory from stochastic analysis. Stochastic
analysis provides a pleasant framework to deal with nonsmooth processes, such as the Wiener process W;,
and still preserves many of the classical features present in the smooth setting. In this section we discuss
the specific tools from It6 calculus which we will rely on. The main references for this section are given
in the book [Karatzas and Shreve 1991].

Let (2, F, (Ft)r>0, P) be a filtered probability space; that is, F; C F is an increasing filtration in ¢. Let
W = W, be the Wiener process adapted to this filtered probability space; that is, W; is F; measurable and
for each ¢, s > 0 the increment W, ; — W, is independent of ;. We say that an R- or C-valued stochastic
process Z; is adapted if it is F; measurable for all r > 0. We will say that a real- or complex-valued
adapted process Z; is W,-integrable if the quadratic variation fOT|Z,|2 dt is finite for any time 7 > 0.
Given a real-valued adapted W;-integrable stochastic process X;, we have P almost surely for any time
T > 0 it is possible to construct a stochastic integral

T
| xeaw
0

of X, with respect to W, in the sense of 1td; see [Karatzas and Shreve 1991, Chapter 3.2]. We use the
differential notation dU; = X, d W, to mean that PP almost surely Uy — Uy is the stochastic integral of X,
with respect to W, at time T > 0.

We mainly deal with complex-valued stochastic processes, so for the sake of convenience we will also
introduce the complex-valued stochastic integral for a C-valued W;-integrable adapted process Z;, defined
coordinatewise using real integrals:

T T T
/ Z[dW[ :zf ReZ;dW[‘i‘l/ ImZ[dW[,
0 0 0

where the real integrals are standard R-valued stochastic integrals with respect to the Wiener process W;.
We write dZ, :=dX, +idY, for a complex-valued process Z; = X, +iY; with R-valued X, and Y;.

2B. Ito drift-diffusion processes. The main class of adapted processes to which we apply It6 calculus is
given by Wiener processes with drift and diffusion coefficients. These are called It drift-diffusions:

Definition 2.1 (Itd drift-diffusion process). A real- or complex-valued adapted stochastic process X; is
called an It6 drift-diffusion process if there exists a Lebesgue integrable adapted b, and W;-integrable
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adapted o, such that X, satisfies the stochastic differential equation
dX[ = bt dt +O'[ dW[

For It6 drift-diffusion processes there exists the following important analogue of the change of variable
formula, which follows from robustness of Taylor expansions for stochastic differentials:

Lemma 2.2 (Itd’s lemma). Let X; be an It6 drift-diffusion process and f : R — R twice differentiable.
Then f(X,) is an Ito drift-diffusion process such that P almost surely for any T > 0 we have

T

T
FOXr) = f(Xo) = f (b f' (X)) + Lo2 F7(X,)) di + /0 o f(X,) dW,.

0

Itd’s lemma was given in this pathwise form in [Karatzas and Shreve 1991, Theorem 3.3]. By using the
definition of the complex-valued stochastic integral, we can also obtain a complex-valued It6’s lemma:

Lemma 2.3 (complex Itdo’s lemma). Let X, be an It6 drift-diffusion process and f : R — C twice
differentiable. Then f(X,) is an Ito drift-diffusion process such that for P almost surely for any T > 0

we have
T

T
F(X7) = f(Xo) = / (b f' (X)) + Lo2 £7(X,)) di + /0 o f'(X0) dW,.

0

Proof. We can write f = f) +if, for real-valued twice differentiable f, f> : R — R. Then the derivatives
satisfy f' = f{ +if, and f” = f"+if;. Moreover, by Itd’s lemma (Lemma 2.2) we obtain for each
j=1,2 that

dfj(X;) = (b f{(X0) + 50, [{(X0)) dt + 01 f(X,) dW,.

Then by the convention df (X;) = dfi(X;) +idf>(X;) this gives

df (X)) = (b f' (X)) + 2o f (X)) dt + o1 f (X)) AW,

as required. (]

2C. Moment estimation. 1t6’s lemma allows us to pass from integrals of the form fOT f(Xy)dt to
fOTg(X 1) dW; for functions g obtained from derivatives of f. In our case we will end up trying to
understand the higher moments of the stochastic integrals fOTg(X ;) dW,, which will tell us about the
distribution of these integrals. A very standard tool to compute the moments in Itd calculus are the It6
isometry and more general Burkholder—Davis—Gundy inequalities [Burkholder et al. 1972], which allow
us to pass from stochastic integrals to their quadratic variations (that just involve Lebesgue integral).

Lemma 2.4 (Burkholder—Davis—Gundy inequality). Let X; be a real-valued W;-integrable adapted
process. Then for all 1 < p < oo we have

E[(sup / X,dW,) ]gz,/lop[EK/ X,zdt) ]
0<s<11J0 0

This version with the constant 2,/10p was given by Peskir [1996].
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3. Proof of the main result

3A. Preliminaries and overview of the proof. Let us now review how we will prove (1-2) and thus
Theorem 1.3. Fix & = u(cos 6, sin@) € R? with modulus u > 0 and argument 6 € [0, 27r). Notice that by
the definition of the graph measure u, the Fourier transform has the form

1
i) = | expix) .
0
where X; is the real-valued stochastic process
X, = —2mu(t cosd + W, sinb). 3-1)

The first observation is that X, is an adapted W;-integrable process and in fact an Itd drift-diffusion
process (recall Definition 2.1) satisfying

for deterministic and time independent coefficients b = —2mu cos§ and 0 = —27u sin6. The proof of
bounding /1(¢) will heavily depend on the value of the angle 6 we have for & and in particular how close
the determining angle 0 is to 0, 77 or 277 with respect to u~!/2 For this purpose, we define the notions of
horizontal and vertical angles:

Definition 3.1 (horizontal and vertical angles). Define the threshold angle
0, = min{uil/z, %}
Partition the angles [0, 27) using 6, into the horizontal angles

H,:=[0,0,]U[r —0,, 7 +6,]U[21r — 0, 277)
and the vertical angles
V. :=10,2m)\ H,.

In other words H, contains the 6, neighborhoods of 0 and 7 on the circle mod 27 and V,, the % —0,
T

neighborhoods of 5

and 37” respectively; see Figure 2.

The proof will split into two cases in Sections 3B and 3C for bounding the Fourier transform [ (§)
depending on whether 8 € H, or 0 € V,,:

(1) Section 3B concerns angles 6 € H,, that is, close to horizontal directions 0 or 77, and as mentioned
in the Introduction our main hope here is that the smallness (with respect to u~'/?) of the diffusion
component bW, will help us in transferring the decay of Lebesgue measure to the decay of fi. This
is where Itd’s lemma (see Lemma 2.3) becomes crucial as it can be applied to the process f(X;)
with the function f(x) =exp(ix).

(2) Section 3C handles the angles 6 € V, and here the plan is to use the fact that we are u~!/?-bounded
away from horizontal angles to ignore the drift component bt of the drift-diffusion process X, and
apply Kahane’s bound for these directions. This turns out to be possible due to a representation of
the higher moments Kahane obtained in his result on Brownian images.
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ENE

u-12

3
2

Figure 2. Splitting of [0, 277) to horizontal angles H,, and the vertical angles V,,.

It turns out that in both Sections 3B and 3C we only obtain decay of the Fourier transform /i(k) for k
in an e-grid eZ? for all small & > 0. Here the randomness will depend on & > 0 but thanks to an argument
also used by Kahane [1985b], one can pass from this information to the full decay almost surely. See
Section 3D for the details.

Let us now proceed to bound |1 (£)|. In both Sections 3B and 3C below we will end up bounding
trigonometric functions with respect to 6, and for this purpose we will need the following standard bounds,
which we record here for convenience:

Lemma 3.2 (trigonometric bounds). We have the following bounds:

(1) If 6 € H,, then
. —1/2 1
[sinf] < u and |cosf| > 7
2) If 6 € V,, then

i inl 2,12 1L
|sm9|>mln{nu ’ﬁ]‘

Proof. For o € [0, %] we have that both cosine and sine are nonnegative. Moreover, here %oz <sina < «.
Thus for 6 € [0, 6,] we have

sind <0 <60, < u %2 and cos® > cos 6, 2005% =

-

and for 6 € (0,, 5] as sin§ = % we obtain

ind >minl 2,12 L ]
sm9/mminu 5
This gives the claim as we may reduce the estimates back to the estimates for 6 € [0, %] by using standard
invariance identities for sine and cosine. U
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3B. Horizontal angles. When 6 € H,, we will first obtain the following estimate on g-grids:

Lemma 3.3. Fix ¢ > 0. Almost surely there exists a random constant C,, > 0 such that for any k =
u(cos 0, sin0) € 72\ {0} with ® € H, we have

f1(k)| < Colk| V2

Given £ = u(cos#, sin6) € R? \ {0} and a realisation (W;), define a random variable T = T,,(¢) € [0, 1],
to be the minimum value of ¢ € [0, 1] such that
|27 [u(cos® + Wysin0)] if X; >0,
"7 | =27 lu(cos 6 + Wy sin)] if X, <O0.

Such a time T exists almost surely since Xo = 0 and X, is almost surely continuous (since W; is almost
surely continuous). Splitting the integral of Z, up into “complete rotations” and “what is left over”, one

1 T 1
/ tht:/ tht+/ tht.
0 0 T

For the integral over [T, 1] we get the following estimate.

obtains

Lemma 3.4. Almost surely there exists a random constant C,, > 0 such that for any & = u(cos 6, sinf) €
R2\ {0} with 6 € H, we have
1
/ Z,di
T

Proof. Since W, is almost surely continuous, there almost surely exists a random constant M, > 1 such
that W, € [-M,,, M,,] for all ¢ € [0, 1]. Define the real-valued process

< CulEI7V2

Y, :=u(t cosf + W; sinb),

so X, = —2mY,. Suppose X| > 0. In this case Y7 = [Y;] <0and so Y| +1 > Yr > Y;. Moreover, when
X1 <0wehave Yr = Y] >0and Y| > Yr > Y| — 1. Thus no matter what the sign of X is, we always
have almost surely

u(cosd 4+ Wysinf) +1 = u(T cos0 + Wy sinf) > u(cosd + Wy sinf) — 1.

Therefore, in the case cos 6 > 0 we obtain

TS1+W sin @ sin @ 1
- Lcoso T cos®  ucosd’
and when cos§ < 0 we have
sin @ sin @ 1
T>14+W - Wr + .
cos 6 cos® ucosb

Since u € H,, Lemma 3.2 together with W, € [-M,,, M,,] yields

2
T>1-2V2Mu'? - £
u
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1
| zas
T

as required. U

Recalling M, > 1 this gives

1
< f |Zdt =1—T <4Mu~'/?
T

We now estimate the integral over [0, T'], which is where It6 calculus comes into play.

Lemma 3.5. Fix ¢ > 0. Almost surely there exists a random constant C,, > 0 such that for any k =
u(cos 9, sinf) € 72 \ {0} with 6 € H, we have

T
| zar
0

To prove Lemma 3.5, we first need to compute the higher-order moments of the random variable
T
Jo Z; dt.
o <t

< Cylk| ™12

Lemma 3.6. For any p € N and & = u(cos 6, sinf) € R?\ {0} with 6 € H,, the (2p)-th moment satisfies

T
| zar
0

X; = —2mu(tcosd + W, sinb)

2p

E < 13p'24r1g7P.

Proof. Recall that

is an Itd drift-diffusion process satisfying the stochastic differential equation
dX;=bdt+odW,
for deterministic and time-independent coefficients b = —27u cos 9 and o = —2mu sinf. Writing
f(x):=exp(ix), xeR,

we have Z; = f(X;), f'(x) =iexp(ix) and f”(x) = —exp(ix). Thus by complex It6’s lemma (see
Lemma 2.3) we have P almost surely

T T
f(XT)—f(Xo)=(bi—02/2)/O f(Xt)dt+Ui/0 f(X)dW;. (3-2)

Note that 7, < 1 is random and only F; measurable; thus it is not a stopping time. However, as Lemma 2.3
is given pathwise, that is, P almost surely It6’s lemma holds for any time 7 > 0, then as T, is P almost
surely well-defined, we have (3-2) almost surely. Since Xo and X7 are 27 multiples of integers by
definition, we have f(X71) = f(Xo) = 1. Thus (3-2) gives

T oi T
/of(Xt)dt:_m/o f(X)dW,

Since b and o are deterministic, this yields that the (2 p)-th moment satisfies

2p 2p

ol

E S
bi—02)2

2p
_‘ E

T
/ f (X)) dW;
0

T
/ f(Xy)dt
0
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Applying the Burkholder-Davis—Gundy inequality (see Lemma 2.4) for the process cos X, gives

2p 2p 1 p
E[ ]gm[(sup ) ]<2 10p[E(/ cos2X,dt) <2y/10p
0<s<1 0

since cos? < 1. Similar application for the process sin X; gives

2p
[E[ i| <2y10p.

By Euler’s formula, we can write f(X;) = cos X; 4+ sin X, and so

T
f cos X;dW,
0

S
f cos X, dW,
0

T
/ SinXtth
0

T T T
f f(Xt)th:/ COSX[th+i/ SinXtth.
0 0 0

Hence
T 2p T 2 T 2\r
[Ef f(X)dWw, :E[(/ cos X, dW;| + f sin X; dW; )]
0 0 0
T 2p T 2p
<[E|:21’/ cos X; dW,; +21’/ sin X, dW; :|
0 0
T 2p T 2p
:2”([E|:/ cos X;dW; ]+E[/ sin X; dW; i|)<2”4‘/10p.
0 0

Moreover, as 6 € H, we have by Lemma 3.2 that cos?6 > % and sin® 6 < u~!. Hence

oi 2 o? o o  4n*u’sin’6  sin’6 -
= X 5 = = S u
bi —o02/2 b2+0o%/4 " b*  4m2u’cos?®  cos?o
Therefore,
T 2p
[E‘/ F(X)dt| <4J/10p4Pe*r < 13p'/24py >
0
as required. (I

Proof of Lemma 3.5. Fix & > 0. Then for all k € £Z?\ {0} define the random variable

T
1(k) := </ Z dt) - xa(k),
0

where x4 is the indicator function on the set
A:={E=u(cosf,sind) € R*\ {0} : 0 € H,}.

Note that / (k) is well-defined and finite since | fOTZ, dt| < 1 by |exp(ix)| = 1. Lemma 3.6 now yields
for any k € €7°\ {0} and p € N that

El1 (k)|*? < 13p'/2 4P|k |~P
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as when k ¢ A we have I (k) =0. Write p = |log |k|]. Then

_ |1 (k)| P _
E Y k7P 7 < Y kT <o

kesZ2\{0} 13p)/ = 4Pelk| =Pk 20

This means that the summands tend to 0 almost surely as |k| — oo and so we can find a random constant
C,, > 0 such that for all k € ¢Z>\ {0} we have
1 (k) |?Px
k|3 |1 (k)|

< Co.
13ph/2 arik|-m

Therefore, by possibly making C,, bigger we obtain
|1 (k)| < Colk|™2,

This holds for each k € £Z?\ {0}, so by the definition of I (k) we have whenever k = u(cos 6, sin) €
eZ?\ {0} with 0 € H, that
T
/ Z,di
0

as claimed. |

<Cyu~\?

We are now in position to complete the proof of Lemma 3.3.

Proof of Lemma 3.3. Fix ¢ > 0. By the splitting

1 T 1
ﬁ(g):/ Z,dt:/ Z,dt+f Z; dt
0 0 T

and Lemmas 3.4 and 3.5, we have that almost surely there exists a constant C,, > 0 such that for all
k =u(cos0, sinf) € ¢Z>\ {0} with 6 € H, we have
1
/ Z, dt
T

T
TACIIES /szf
0

as required. (]

+ < Colk| 712

3C. Vertical angles. In this section we apply Kahane’s work to obtain Fourier decay estimates when
6eV,.

Lemma 3.7. Fix ¢ > 0. Almost surely there exists a random constant C,, > 0 such that for any k =
u(cos 0, sin@) € 72\ {0} with 0 € V, we have

11(k)| < C,lk| ™12 /1og |K|.

Let us discuss a few estimates obtained in [Kahane 1985b]. Let v be the push-forward of Lebesgue
measure on [0, 1] under the map ¢ — W;; that is, v is the Brownian image of Lebesgue measure. Kahane
established the following:

Theorem 3.8 [Kahane 1985b, page 255]. Almost surely
D) < O(lv|~'Vlogv]) as |v] — oo.
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The key ingredient for the proof of Theorem 3.8 was based on establishing the following bound for the
higher moments:

Lemma 3.9 [Kahane 1985b, page 254, estimate (2)]. There exists a constant C > 0 such that for any
v e R\ {0} and any p € N we have

ElD(u)|*P < CP pPlu|~2P.

We can use Lemma 3.9 to give a bound on the higher moments in our setting, but with the price that
the exponent will increase from —2p to —p.

Lemma 3.10. There exists a constant C > 0 such that for any p € N and & = u(cos 0, sin6) € R?\ {0}
with 0 € V, the (2p)-th moment satisfies

E|fu(&)*P < CPpPlE|~P.

Proof. Write t = (11, ...,1,) € [0, 1]” and dt as the Lebesgue measure on [0, 1]7. Given ¢, s € [0, 1]7,
we define

p 14
ot s) =Y (t—s0). YEt.8):=) (W, —W,), and W(t,s):=Elp s~

k=1 k=1

By the definition of g, u and the Fourier transform, and using the fact that the multivariate process
X(t,s):=—2mcos(B)p(t,s) —2msin(@)Y(t,s)

is Gaussian with mean —2 cos(6)¢(t, s) and variance 47> sinz(Q)\IJ(t, s), we have through Fubini’s
theorem and the formula for the characteristic function that

E|LE))?? =E / exp(—2miu(cos(@)e(t, s) +sin(@)y (¢, s))) dt ds
[0,1]7 J[0,1]”

=/ / Eexp(iuX(t,s))dtds

[0,1]7 J[0,1]”

=/ / exp(—27i cos()ug(t, s) — 27 |u sin(0)|*W (¢, 5)) dt ds.
[0,1]7 J[0,1]7

Thus by taking absolute values inside the integrals, and observing that |exp(ix)| =1 for any x € R, we
obtain

E|L(€)]*P < f exp(—272|u sin(9)|*W (¢, 5)) dt ds. (3-3)
[0,1]7 J[0,1]»

On the other hand, by doing the expansion again for the Fourier transform » of the image measure v at
v:=usin(@) € R\ {0} we see that

E[D(v)|*” =E / exp(—2mivy (¢, s)) dt ds =
[0,1]7

/ exp(—272v>W(t, s)) dt ds,
[0,1]7 [0,11»

[0,1]7

which is equal to (3-3). Thus by Lemma 3.9 we have

El(£)1*? < CPpPlv| 2P,
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Since 6 € V,, we have |sin6| > min{%u_l/z, %] When |sinf| > \/% we obtain
CPpPu| 727 < 2C) pPu? < 20)! pPu".
On the other hand, if [sin 6| > %u_l/ 2 we have
CPpPlv| ™ < CPpP@u~" 2 /) 2Pu™>P < (Cr?/4)P pPu™". O
Now we can complete the proof of Lemma 3.7 for vertical directions:
Proof of Lemma 3.7. Fix ¢ > 0. Then for all k = u(cos @, sin@) € £Z>\ {0} define the random variable
F(k) := (k) xp k),

where
B:=|t=u(cosf,sind) e R*\ {0} : 0 € V, }.

Now F (k) is a well-defined finite random variable as |fi(k)| < 1 for any k. From Lemma 3.10 we obtain
for any k € €72\ {0} and p € N that
EIF (k)7 < CP p?|k|™".
Write py = |log |k|]. Then
F (k)| Pk
EY PO S e

Pk Pk — Pk
kee72\(0) CPxpicP ke keeZ2\(0)

This means that the summands tend to 0 almost surely as |k| — oo and so we can find a random constant
C., > 0 such that for all k € ¢Z*\ {0} we have

|F (k)P

-3
k| CPx ppPr|k|=pr

w-*

Thus possibly making C,, bigger, this yields

|F (k)| < Cylk|~*\/log |k|.
ow this holds tor eac ee , SO yt e definition o we nhave, whenever K = u(cos v, Sin (S
N his holds fi hk es7? {0} by the definiti f F (k) h h k ( 0, sin )

eZ*\ {0} with 0 € V,, that

|1(k)| < Colk|™'/2/log |K]
as claimed. ]
3D. From lattices to R%. We can now complete the proof of the main theorem. For this purpose, we

need the following comparison lemma used by Kahane that allows us to pass from convergence on lattices
for Fourier transforms to the whole space:

Lemma 3.11 [Kahane 1985b, Lemma 1, page 252]. Suppose T is a measure on R> with support in
(=1, )% Suppose ¢, ¥ : (0, 00) — (0, 00) are decreasing as t — oo with the doubling properties

@(t/2) = 0(p(1)) and Y(t/2) =0 (1)) ast— oo.
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If the Fourier transform of © along the integer lattice 7* satisfies

12(n)] = 0(1‘;((“';"))) as [n| — oo,

2(8)] = 0(—1‘2(('?'))) as || — oo,

Proof of Theorem 1.3. Combining Lemmas 3.7 and 3.3 we have that for any ¢ > 0, almost surely, there
exists some random constant C,, > 0 such that for any k = u(cos#, sinf) € e7*\ {0} we have

11(k)| < C,lk|™1%/1og |K|. (3-4)

then

Define a measure 7, on R? such that

2.(8) := u(ek), £ eR>

By the almost sure continuity of W;, we have that there exists a random constant M,, > 0 such that the
diameter of the support of w is at most M, almost surely. Taking an intersection of the events that (3-4)
holds for ¢ = 1/n over all n € N allows us to find a random & = ¢, > 0 such that u is supported on a
set of diameter strictly less than 1/¢ and (3-4) holds almost surely with this ¢. This guarantees that the
measure T is supported on (—1, 1)? and so applying Lemma 3.11 with the measure 7 = 7, and the maps

(t) ;= /logt and ¥ (¢) := 172 gives the claim. O
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NODAL GEOMETRY, HEAT DIFFUSION AND BROWNIAN MOTION

BOGDAN GEORGIEV AND MAYUKH MUKHERJEE

We use tools from n-dimensional Brownian motion in conjunction with the Feynman—Kac formulation of
heat diffusion to study nodal geometry on a compact Riemannian manifold M. On one hand we extend
a theorem of Lieb (1983) and prove that any Laplace nodal domain 2 € M almost fully contains a
ball of radius ~ 1/4/11(£2;), and such a ball can be centred at any point of maximum of the Dirichlet
ground state g, (q,)- This also gives a slight refinement of a result by Mangoubi (2008) concerning the
inradius of nodal domains. On the other hand, we also prove that no nodal domain can be contained in a
reasonably narrow tubular neighbourhood of unions of finitely many submanifolds inside M.

1. Introduction

We consider a compact n-dimensional smooth Riemannian manifold M, and the Laplacian (or the Laplace—
Beltrami operator) —A on M. We use the analyst’s sign convention; namely, —A is positive semidefinite.
For an eigenvalue A of —A and a corresponding eigenfunction ¢, , recall that a nodal domain 2 is a
connected component of the complement of the nodal set Ny, := {x € M : ¢, (x) = 0}. In this paper, we
are interested in the asymptotic geometry of a nodal domain 2, as A — oo.

In this note we address the following two questions.

First, we start by discussing the problem of whether a nodal domain can be squeezed in a tubular
neighbourhood around a certain subset ¥ € M. A result of Steinerberger [2014, Theorem 2] states that
for some constant rg > 0, a nodal domain €, cannot be contained in an (ro/ ﬁ) -tubular neighbourhood
of the hypersurface X, provided that ¥ is sufficiently flat in the following sense: ¥ must admit a unique
metric projection in a wavelength (i.e., ~ 1/+/A) tubular neighbourhood. The proof involves the study of
a heat process associated to the nodal domain, where one also uses estimates for Brownian motion and
the Feynman—Kac formula.

We relax the conditions imposed on . Our first result is a direct extension of [Steinerberger 2014,
Theorem 2]. Before stating the result, we begin with the following definition:

Definition 1.1 (admissible collections). For each fixed eigenvalue A, we consider a natural number
m) € N and a collection X, := U:nle Zi, where Ei is an embedded smooth submanifold (without
boundary) of dimension k (1 <k <n—1).

We call ¥, admissible up to a distance r if the following property is satisfied: for any x €¢ M
with dist(x, X,) < r there exists a unique index 1 < ix(A) < m, and a unique point y € ZQX(A)
realizing dist(x, X, ), that is, dist(x, y) = dist(x, X,).

MSC2010: primary 35P20, 53B20, 53Z05; secondary 35K05.
Keywords: Laplace eigenfunctions, nodal domains, Brownian motion.
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We note that if ¥ consists of one submanifold which is admissible up to distance r, then Definition 1.1
means that r is smaller than the normal injectivity radius of ¥,;. Moreover, if ¥, consists of more
submanifolds, then these submanifolds must be disjoint and the distance between every two of them must
be greater than r.

Let us also remark that, [Steinerberger 2014, Theorem 2] holds true when the hypersurface X is
allowed to vary with respect to A in a controlled way, which is made precise by Definition 1.1. With that
clarification in place, our Theorem 1.2 is an extension of that result.

Theorem 1.2. There is a constant ro depending only on (M, g) such that if a submanifold ¥, C M is
admissible up to distance 1/~/A, then no nodal domain 2, can be contained in an (ro/~/A)-tubular
neighbourhood of X.

Further, it turns out that we can select X to be a union of submanifolds of varying dimensions, having
relaxed admissibility conditions.

Elaborating on this, we observe that getting entirely rid of the admissibility condition, as in Definition 1.1,
allows situations where Ei is dense in M, for example, M = T? and E}L being a generic geodesic. By
assuming X is compact, we avoid such situations. Also, since we are considering unions of surfaces, the
restriction of “unique projection” of nearby points, as in Definition 1.1, makes no sense anymore, and
one can see that the approach of the proof of Theorem 1.2 does not work.

First, for ease of presentation, we adopt the following notation.

Definition 1.3. Given a compact subset K of M, let ¥ (¢, x) denote the probability that a particle
undergoing a Brownian motion starting at the point x will reach K within time z.

We now introduce the following relaxed notion of admissibility.

Definition 1.4 (¢-admissible collections). Let 0 < o < 1 be a constant. For each fixed eigenvalue A, we
my,
i=1
smooth submanifold (without boundary) of dimension k;, (1 <k; <n —1). Denote the respective tubular
neighbourhoods by Ng () := {x € M : dist(x, T}) < &}, and let Ne(Z,) = U/, No(Z5).

We say that the collection X is a-admissible if for each sufficiently small € > 0 and each x € N (X))

consider a natural number m ) € N and a collection X, :={J Ea, where Ei is a compact embedded

VOB (x.26)\Na (55) (462 X) > aWap(x 2¢) (467 X). ()

Intuitively, using the above implicit formulation via Brownian motion hitting probabilities, we wish to
ensure that N.(X ) does not occupy too large a proportion of each B(x, 2¢) for x € N.(2,); see Figure 2.

In other words, we allow the family ¥, to intersect, but the intersections should not be “too dense”.
To illustrate the idea, let us for simplicity assume that M = R” and let us suppose that each member Ei
of the collection X is a line passing through the origin. If the collection of these lines gets sufficiently
close together or in other words “dense”, then no matter how small an ¢ > 0 we take, the tubular
neighbourhood N, (X)) will contain the ball B(0, 2¢). In particular, the left-hand side of (1) is vanishing
and so, there is no o > 0 for which the collection X} is a-admissible. Clearly, in the above example,
replacing the lines Ei by linear subspaces of varying dimensions will deliver a similar example of a
collection, which is not o-admissible.
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Having this intuition in mind, we have the following result.

Theorem 1.5. Given an a-admissible collection Xy, there exists a constant C, independent of A, such
that Nc/ﬁ(zk) cannot fully contain a nodal domain 2.

Theorem 1.5 gives a strong indication as to the “thickness” or general shape of a nodal domain in
many situations of practical interest. For example, in dimension 2, numerics show nodal domains to look
like a tubular neighbourhood of a tree. We also note that our proof of Theorem 1.5 reveals a bit more
information, but for aesthetic reasons, we prefer to state the theorem this way. Heuristically, the proof
reveals that the nodal domain €2 is thicker at the points where the eigenfunction @), attains its maximum,
or at points where

@a(x) > B max |p; ()]
yeQ,

for a fixed constant 8 > 0.
Second, we study the problem of how large a ball one may inscribe in a nodal domain €2 at a point
where the eigenfunction achieves extremal values on €2,. We show:

Theorem 1.6. Let dim M > 3, &9 > 0 be fixed and xo € 2, be such that |@; (xo)| = maxg, |¢a|. There

exists ro = ro(go) such that
Vol(B(xo, 7oA /2) N Q
B0 AN o
Vol(B(xg, roA~1/2))

A celebrated theorem of Lieb [1983] considers the case of a domain £ C R” and states that there

exists a point xo €  where a ball of radius C/+/A1(£2) can almost be inscribed (in the sense of our

Theorem 1.6). A further generalization was obtained in [Maz’ya and Shubin 2005] (see, in particular,

Theorem 1.1 and Section 5.1 of that paper). However, the point x¢ was not specified. Physically, one
expects that xg is close to the point where the first Dirichlet eigenfunction of €2 attains extremal values.
This is in fact the essential statement of Theorem 1.6 above. Also, in this context, it is illuminating to
compare the main theorem from [Croke and Derdzifiski 1987].

We reiterate that the proof of Theorem 1.6 uses estimates from [Grigor’yan and Saloff-Coste 2002],
see (31), and a certain isocapacitary estimate, see (32), that work only in dimensions n > 3. As far as
dimension n =2 is concerned, it is known due to [Mangoubi 2008b, Theorem 1.2], see also [Hayman 1978],
that any nodal domain has wavelength inradius; see further discussion on this at the beginning of Section 4.

As a corollary of Theorem 1.6, we derive the following:

Corollary 1.7. Let M be a closed manifold of dimension n > 3, and 2, C M be a nodal domain upon
which the corresponding eigenfunction @, is positive. Let xo be a point of maximum of ¢, on 2). Then
there exists a ball B(xq, C /A% C Q; with a(n) = %(n -1+ % and a constant C = C(M, g).

This recovers Theorem 1.5 of [Mangoubi 2008a], with the additional information that the ball of
radius C/ 22 ig centred around the max point of the eigenfunction ¢, (for more discussion on this, see
Section 4). We also point out that using Theorem 1.6, the first author has established in [Georgiev 2016]
using results from [Jakobson and Mangoubi 2009], the following inner radius bounds for real analytic
manifolds:
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Theorem 1.8 [Georgiev 2016]. Let (M, g) be a real-analytic closed manifold of dimension at least 3. Let
@), be a Laplacian eigenfunction and 2, be a nodal domain of ¢). Then, there exist constants c1, 2
depending only on (M, g) such that

a <inrad(£2)) < C—2

A NG
Moreover, if ¢, is positive (resp. negative) on 2, then a ball of this radius can be inscribed within a
wavelength distance to a point where @), achieves its maximum (resp. minimum) on 2.

For another improvement of inner radius estimates in the smooth setting under certain conditional
bounds on ||y [|Loo(g,), see Theorem 1.7 of [Georgiev and Mukherjee 2016].

A few assorted remarks: as advertised, in Section 3 we address the problem of inscribing a nodal
domain €2 in a tubular neighbourhood around X. In this context, an interesting subcase one might also
consider is X having conical singularities: at its singular points ¥ looks locally like R*=1=k »x 3C* for
some k = 1,...,n— 1, where 3C¥ denotes the boundary of a generalized cone, i.e., the cone generated
by some open set D € S~ L,

In this situation a useful tool is an explicit heat kernel formula for generalized cones C € R”. One denotes
the associated Dirichlet eigenfunctions and eigenvalues of the generating set D by m;, [; respectively.
Using polar coordinates x = p6, y = rn, one has that the heat kernel of Pc (¢, x, y) of the generalized
cone C is given by

242

e~ 2 > pr

PC(I’X’J’)—W;I lj+(g—1)2(7)mj(9)mf(n)’ 3)
where [, (z) denotes the modified Bessel function of order v. For more on the formula (3) we refer to
[Bafiuelos and Smits 1997]. An even more general formula can be found in [Cheeger 1983].

The expression for Pc(t, x, y) provides means for estimating p;(x) from below, as in Section 3.
However, some features of the conical singularity (i.e., the eigenvalues and eigenfunctions /;, m; of the gen-
erating set D) enter explicitly in the estimate. Such considerations appear promising in discussing theorems
of the following type, for example, and their higher-dimensional analogues; see also [Steinerberger 2014]:

Theorem 1.9 (Bers, Cheng). Let n = 2. If —Au = Au, then any nodal set satisfies an interior cone
condition with opening angle o 2 A71/2,

1A. Basic heuristics. We outline the main idea behind Theorems 1.2, 1.5 and 1.6.

First, one considers a point xg € €23 where the eigenfunction achieves a maximum on the nodal domain
(without loss of generality we assume that the eigenfunction is positive on €2 ). One then considers the
quantity p(t, xp), i.e., the probability that a Brownian motion started at x¢ escapes the nodal domain
within time .

The main strategy is to obtain two-sided bounds for p(¢, x¢).

On one hand, we have the Feynman—Kac formula (see Section 2A), which provides a straightforward
upper bound only in terms of ¢ (see (13) below).
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On the other hand, depending on the context of the theorems above, we provide a lower bound for
p(t, xo) in terms of some geometric data. To this end, we take advantage of various tools, some of which
are: formulas for hitting probabilities of spheres and the parabolic scaling between the space and time
variables, comparability of Brownian motions on manifolds with similar geometry (see Section 2B),
bounds for hitting probabilities in terms of 2-capacity (see [Grigor’yan and Saloff-Coste 2002]), etc.

1B. Outline of the paper. In Section 2, we recall tools from n-dimensional Brownian motion and the
Feynman—Kac formulation of heat diffusion, and discuss the parabolic scaling technique we referred to
above. We include some background material on stochastic analysis on Riemannian manifolds, some of
which (to our knowledge) is not widely known, but is important to our investigation. We also believe such
results to be of independent interest to the community. Worthy of particular mention is Theorem 2.2, which
roughly says that if the metric is perturbed slightly, hitting probabilities of compact sets by Brownian
particles are also perturbed slightly. This allows us to apply Brownian motion formulae from R” to
compact manifolds, on small distance and time scales.

In Section 3, we begin by proving Theorem 1.2. As mentioned before, we then take the generalization
one step further, by considering intersecting surfaces of different dimensions. Our main result in this
direction is Theorem 1.5, which gives a quantitative lower bound on how “thin” or “narrow” a nodal
domain can be.

In Section 4, we take up the investigation of inradius estimates of 2. As mentioned before, our main
result in this direction is Theorem 1.6. We also establish Corollary 1.7.

2. Preliminaries: heat equation, Feynman-Kac and Bessel processes

2A. Feynman-Kac formula. We begin by stating a Feynman—Kac formula for open connected domains
in compact manifolds for the heat equation with Dirichlet boundary conditions. Such formulas seem to
be widely known in the community, but since we were unable to find out an explicit reference, we also
indicate a line of proof.

Theorem 2.1. Let M be a compact Riemannian manifold. For any open connected @ C M, f € L*(R),
we have

A f(x) = Ex(f(@(®)pg(w, 1)), >0, xeQ, (4)

where w(t) denotes an element of the probability space of Brownian motions starting at x, Ey is the
expectation with regard to the measure on that probability space, and

I if o([0.1]) C €,

0 otherwise.

¢Q(wvt) =

A proof of Theorem 2.1 can be constructed in three steps. First, one proves the corresponding statement
when = M. This can be found, for example, in [Bér and Pfiffle 2011, Theorem 6.2]. One can then com-
bine this with a barrier potential method to prove a corresponding statement for domains €2 with Lipschitz
boundary. Lastly, the extension to domains with no regularity requirements on the boundary is achieved by
a standard limiting argument. For details on the last two steps, see [Taylor 1996, Chapter 11, Section 3].
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2B. Euclidean comparability of hitting probabilities. Implicit in many of our calculations is the fol-
lowing heuristic: if the metric is perturbed slightly, hitting probabilities of compact sets by Brownian
particles are also perturbed slightly, provided one is looking at small distances r and at small time scales
t = 0(r?).

To describe the set up, let (M, g) be a compact Riemannian manifold and cover M by charts (U, ¢y)
such that in these charts g is bi-Lipschitz to the Euclidean metric. Consider an open ball B(p,r) C M,
where r is considered small, and in particular, smaller than the injectivity radius of M. Let B(p, r) sit
inside a chart (U, ¢) and let ¢(p) = q and ¢(B(p,r)) = B(g,s) C R™. Let K be a compact set inside
B(p.r) and let K' := ¢(K) C B(q, s).

Now, let wljé’l (T, p) denote the probability that a Brownian motion on (M, g) started at p and killed

at a fixed time 7" hits K within time 7. The probability ¥% (¢, q) is defined similarly for the standard
Brownian motion in R” started at ¢ and killed at the same fixed time 7. Now, we fix the time T = cr?
where c is a constant. The following is the comparability result:

Theorem 2.2. There exist constants c1, ¢z depending only on ¢ and M such that

i (T.q) < Y (T. p) = 2V (T q). )
The proof uses the concept of Martin capacity; see [Benjamini et al. 1995, Definition 2.1]:

Definition 2.3. Let A be a set and B a o-field of subsets of A. Given a measurable function F : A x A —
[0, o] and a finite measure p on (A, B), the F-energy of u is

10 = [ [ Feey) dnto dut.
A JA
The capacity of A in the kernel F is

Cappe(A) = [inf Ir (11)] . (©)

where the infimum is over probability measures  on (A, B), and by convention, co™! = 0.
Now we quote the following general result, which is Theorem 2.2 in [Benjamini et al. 1995].

Theorem 2.4. Let { X} be a transient Markov chain on the countable state space Y with initial state p
and transition probabilities p(x, y). For any subset A of Y, we have

3 Cappr(A) <Pp{3n > 0: X, € A} < Capyy(A), (7
where M is the Martin kernel M (x, y) = G(x,y)/G(p, y), and G(x, y) denotes the Green’s function.

For the special case of Brownian motions, this reduces to (see Proposition 1.1 of [Benjamini et al.
1995] and Theorem 8.24 of [Morters and Peres 2010]):

Theorem 2.5. Let {B(t) : 0 <t < T} be a transient Brownian motion in R" starting from the point p, and
A C D be closed, where D is a bounded domain. Then,

1 Capy(A) <P,{B(1) € A for some 0 <t < T} < Capyy(A). (8)
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An inspection of the proofs reveals that they go through with basically no changes on a compact
Riemannian manifold M, when the Brownian motion is killed at a fixed time 7 = ¢r2, and the Martin
kernel M(x, y) is defined as G(x, y)/G(p, ¥), with G(x, y) being the “cut-oft” Green’s function defined
as follows: if sips (2, x, y) is the heat kernel of M,

T
G(x,y) = /O iag (1, %, y) d.

Now, to state it formally, in our setting, we have
Theorem 2.6. 1 Capp(K) <y (T, p) < Capyy (K). )

Now, let hgn (¢, x, y) denote the heat kernel on R”. To prove Theorem 2.2, it suffices to show that for
y € K, and y' = ¢(y) € K’, we have constants C, C, (depending on ¢ and M) such that

T T T
C1/ hgn(t.q,y") dt 5/ hy (2, p,y)dt §C2/ hgn(t,q,y’) dt. (10)
0 0 0

In other words, we need to demonstrate comparability of Green’s functions “cut off” at time T = cr?.

Recall that we have the following Gaussian two-sided heat kernel bounds on a compact manifold (see, for
example, Theorem 5.3.4 of [Hsu 2002] for the lower bound and Theorem 4 of [Cheng et al. 1981] for the
upper bound, also (4.27) of [Grigor’yan and Saloff-Coste 2002]): for all (¢, p, y) € (0,1) x M x M, and
positive constants c1, ¢2, ¢3, ¢4 depending only on the geometry of M,

c3 fcld(p,y)z Cc4 fczd(p,y)z
e 4 Zhy(t.py)<—ye #
t2 12

where d denotes the distance function on M. Then, using the comparability of the distance function
on M with the Euclidean distance function (which comes via metric comparability in local charts), for
establishing (10), it suffices to observe that for any positive constant c¢5, we have

2
cr n cs5r2 2n—2 1 n c
[ t_ge_ 4t dl=n— ZF ——1,—5 s
0 2t 2 4c
5

where I'(s, x) is the (upper) incomplete Gamma function. Since r is a small constant chosen independently

of A, we observe that Cy, Cy are constants in (10) depending only on ¢, ¢y, ¢2, 3, c4, c5,  and M, which
finally proves (5).

Remark 2.7. Theorem 2.2 is implicit in [Steinerberger 2014], but it was not precisely stated or proved
there. Since we are unable to find an explicit reference, here we have given a formal statement and
indicated a proof. We believe that the statement of Theorem 2.2 will also be of independent interest for
people interested in stochastic analysis on manifolds.

2C. Brownian motion on a manifold and Euclidean Bessel processes. Using the probabilistic formu-
lation of the heat equation for the study of nodal geometry, we are largely inspired by the methods in
[Steinerberger 2014]. Of course, such ideas have appeared in the literature before; for example, they are
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implicit in [Grieser and Jerison 1998]. Here we extend some ideas of Steinerberger with the help of tools
from n-dimensional Brownian motion.
Given an open subset V' C M, consider the solution p;(x) to the following diffusion process:

(0: —A)pi(x) =0, x€V,
pi(x)=1, xeadl,
po(x)=0, xeV.

By the Feynman—Kac formula (see Section 2A), this diffusion process can be understood as the
probability that a Brownian motion particle started in x will hit the boundary within time ¢. Now, fix an
eigenfunction ¢ (corresponding to the eigenvalue A) and a nodal domain €2, so that ¢ > 0 on £ without loss
of generality. Calling A the Dirichlet Laplacian on  and setting ®(z, x) := e?2¢(x), we see that ® solves

(0 —AN)D(t,x) =0, x €,
d(r,x) =0, on {¢ = 0}, (11)
®(0,x) =¢(x), xeQ.

Using the Feynman—Kac formula given by Theorem 2.1, we have,

' f(x) = Ex(f(0(t)pa(®.1), >0, (12)

where w(t) denotes an element of the probability space of Brownian motions starting at x, Fy is the
expectation with regard to the measure on that probability space, and

1 ifw([0,t]) C R,
1t =
Pa (@.1) 0 otherwise.

Now, consider a nodal domain €2 corresponding to the eigenfunction ¢, and consider the heat flow (11).
Let xo € 2 such that ¢(xo) = [|¢| Lo (q). We use the following upper bound derived in [Steinerberger
20141]:

D(t, x) = e Mo(x) = Ex (p(w(1))pa (@, 1))
< llpllLoo(@) Ex (pa (@, 1)) = llo]lLos(@y (1 — pr(x)). (13)

Setting t = A~! and x = x¢, we see that the probability of the Brownian motion starting at an extremal
point xo leaving Q within time A~! is < 1 —e~L. A rough interpretation is that maximal points x are
situated deeply into the nodal domain. Using the notation introduced in the Introduction, the last derived
upper estimate translates to ¥\ o A Lx)y<l—eL

Now, we consider an m-dimensional Brownian motion of a particle starting at the origin in R”, and
calculate the probability of the particle hitting a sphere {x € R™ : ||x|| < r} of radius r within time 7. By
a well-known formula first derived in [Kent 1980], we see that such a probability is given as

1 o0 JV;I jl%kl
P( sup [|B(s)|=r) =1~ L T AT (14)
(05s2t ) 21T (v + 1) 2 Jo+10vk)

k=1
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where v = (m —2)/2 is the “order” of the Bessel process, J, is the Bessel function of the first kind of
order v, and 0 < j, 1 < jy 2 <--- is the sequence of positive zeros of J,.

Choose x = xg, f = A~L, as before, and let r = C1/21~1/2 where C is a constant to be chosen later,
independently of A. Plugging this in (14) then reads as

o] v—1 2
P( sup [|B(s)|| = CA7Y2) =1~ ! Tok =Tk ) (15)
0<s<A—1 B 27T+ 1) = Jotr1 (k)

We need to make a few comments about the asymptotic behaviour of j, ; here. For notational
convenience, we write o ~ By as k — oo if we have oy /B — 1 as k — co. The asymptotic expansion

jv’kz(k—l—%v—i—%)n—i—o(l) as k — oo, (16)
given in [Watson 1944, p. 506], tells us that j, x ~ k. Also, from p. 505 of the same paper, we have
V2 1
7 Jk

These asymptotic estimates, in conjunction with (15), tell us that keeping v bounded, and given a small

Jot1 (v ge) ~ (=DF! (17)

n > 0, one can choose the constant C small enough (depending on 1) such that

P( sup [B(s)|>CA7Y2)>1-p. (18)

0<s<A—!

This estimate plays a role in Section 3. In this context, see also Proposition 5.1.4 of [Hsu 2002].

3. Admissibility conditions and intersecting surfaces

Proof of Theorem 1.2. If @, attains its maximum within €2 at xo, we already know from (13) that

t
VYM\Q, (xo,xo) <l-e™. (19)

By the admissibility condition on X, we know that x¢ has a unique metric projection on one and only
one E;xo from the collection X .

Now, suppose the result is not true. Choose R, o small such that Theorem 2.2 applies. Choos-
ing ro sufficiently smaller than R, we can find a A such that € is contained in an (r¢/~/A)-tubular
neighbourhood of ¥;, denoted by N, ;-1/2(X;). From the remarks after Definition 1.1, it follows that
Q) S N,s1/2(25).

We start a Brownian motion at x¢ and, roughly speaking, we see that locally the particle has freedom
to wander in n —k “bad directions”, namely the directions normal to E;xo, before it hits d€2 . That means,
we may consider a (n—k)-dimensional Brownian motion B(¢) starting at xo; see Figure 1.

More formally, we choose a normal coordinate chart (U, ¢) around xo adapted to E;XO, where the
metric is comparable to the Euclidean metric. We have ¢(E;x°) = ¢(U) N{R* x {01k} and

. n—k
DM (Z) =g fRéx |- D DT,
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Brownian motion
in n — k “bad directions”

n . P

Figure 1. A Brownian motion at xq.

We take a geodesic ball B C U C M at x¢ of radius R/~/A. Using the hitting probability notation from
Section 2 and monotonicity with respect to set inclusion we have

fo fo fo
) > ) 2 X P 9 20
WM\QA(A xo)_wg\m(k XO) wB\N e 0)()L xO) (20)

and the comparability lemma implies that, if ¢ = f9/ R?, then there exists a constant C, depending on ¢
and M, such that

to

to
ix = i ) ) 21
WB\N oa—1/2(Z; 0)(/\ ) 1/’ ¢(B\N, ;- 1/2(2"0))(/\ ¢(x0)) b

ix
where ¢ denotes the hitting probability in Euclidean space. We define N A-1/2 = ¢ (Nypor-172(Z7°)).
Let us consider the “solid cylinder” S = B, PR Bro IR A product of k and (n—k)-dimensional
Euclidean balls centred at ¢(xg). S is clearly the largest cylinder contained in Nreo 5—1/2 N B. We set
S = Bj x B for convenience. By monotonicity,

v - (%0 ¢(Xo)) > VB, 3B, (%0’¢(x0))' @2)

$(B\N, ,—1/2(2;)

If B(¢t) = (B1(t),..., Bn(t)) is an n-dimensional Brownian motion, the components B;(¢) are inde-
pendent Brownian motions; see, for example, Chapter 2 of [Morters and Peres 2010]. Denoting by By (¢)
and B,,_ (¢) the projections of B(¢) onto the first k and last n —k components respectively, it follows that

fo
g -, >P B By—
Uisans(§-900) 22( s I = ) p( s 1scol= )

zckP( swp 1Bk ()] = )
0<s<toA—l " \/_

where ¢y, is a constant depending on k and the ratio #9/R?, and can be calculated explicitly from (15).



NODAL GEOMETRY, HEAT DIFFUSION AND BROWNIAN MOTION 143

Using the estimate in Section 2, we may take r¢o < R sufficiently small so that
P s B0l )1 23)
0<s<toA—1 \/x
where ¢ is sufficiently small. Keeping ¢ = #o/R? and (hence) C fixed, we take #o small enough and
ro < R appropriately, so that (23) contradicts (20) and the fact that
Vg, (oA~ x) <1—e77. O

Remark 3.1. Note that the constant r¢ above is independent of X ; in other words, the same constant rq
will work for Theorem 1.2 as long as the surface is admissible up to a wavelength distance. Indeed, this
results from the fact that ro depends only on the diffusion process associated to the Brownian motion,
and is an inherent property of the manifold itself.

Now we address the generalizations of Theorem 1.2 for collections ¥, which are more complicated;
namely, we assume X is an ¢-admissible collection in the sense of Definition 1.4.

Proof of Theorem 1.5. By assumption, we have an a-admissible collection X, := U:"z*l Ei.

Let us assume the contrary — if the statement is not true, we may select an arbitrarily small ro > 0 and
find a corresponding inscribed nodal domain 23 C N, 3-1/2(Z}).

As before, we choose a point xg € €2 such that
¢ (x0) = max |g;|.
xX€eN)
Monotonicity of the hitting probability function g (-, ) with respect to set inclusion in K, as well as
the o-admissibility, imply that (see Figure 2)
WM\Q,\ (t,x0) = WB(Xo,ZrOA_l/Z)\QA (t, x0)

z wB(xo,ZrOA*I/Z)\NrOA_I/z(EA)(ts X0)

= wa(B(onroA*'/2)\1\’,0,1—1/2(EA)) (. x0)

> waB(xo,ZroA_l/2)\Nr0A_1/2 (Zy) (t’ XO)

> QVyB(xo,2r0a—1/2) (15 X0), (24)

where we introduce the constant o > 0 coming from the «-admissibility condition. Moreover, following
Definition 1.4 of a-admissibility, in (24) we also assume that the radius r¢o/ VA is sufficiently small and
that 7 := 19/A with tg := 4rd.

The latter estimate (24) implies, in particular, that

Vm\e; (1, Xo) B Vm\e; (1, Xo)
UM\ B(xo,2ror—1/2) (1, X0)  YaB(xo,2r0r—1/2)(t, X0) ~

(25)

We now observe that by setting ¢ = f9/A we still have the freedom to choose z9. We show that we can
select #¢ such that (25) is violated. To this end we observe that the upper bound (19) along with (15) and
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Figure 2. Nodal domain within a tubular neighbourhood of an admissible collection.

Theorem 2.2 give

'v—l _fg.k’O -1
VM\B(xo,2ror—1/2)(10/ A, X) 2 F(V + 1)/ Jv+1 (]v k)

1 o) Jvkl ) —1
=(1-— —to v _zju.k
=(l—e )( P To D) 2_: e )

v—i—l(]v k)

=(1—e")CL, (26)

Now, we choose 79 = 4r§ small enough, so the last estimate yields a contradiction with (25). This
proves the theorem. O

Remark 3.2. We wish to comment that in the above proof, it is not essential to look at the nodal domain
only around the maximum point xo. Given a predetermined positive constant 8, choose a point y € 3
such that ; (y) > B, (xo). Arguing similarly as in (13), we see that Y1\, (f, ¥) < 1—Be ™. Following
the computations in (26), we get a constant ro (depending on ) such that (1 — e~%)/C < «, giving a
contradiction. Also, it is clear that in Definitions 1.1 and 1.4, we do not actually need the submanifolds in
the family X, to be smooth, and the proofs of Theorems 1.2 and 1.5 work with submanifolds of much
lower regularity (for example, C! submanifolds).

4. Large ball at a max point

In this section we discuss the asymptotic thickness of nodal domains around extremal points of eigenfunc-
tions. More precisely, let us consider a fixed nodal domain €2 corresponding to the eigenfunction ¢ .
Let xo € 2 be such that

@ (x0) = max |, |. (27)
xeQ)
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In the case dim M = 2, it was shown in Section 3 of [Mangoubi 2008b] that at such maximal points x¢
one can fully inscribe a large ball of wavelength radius (i.e ~ 1/ V1) into the nodal domain. In other
words for Riemannian surfaces, one has that

C
=1 < inrad(£2;) <

Vi T «/_

where C; are constants depending only on M. Note that the proof for this case, as carried out in

(28)

[Mangoubi 2008b] by following ideas in [Nazarov et al. 2005], makes use of essentially 2-dimensional
tools (conformal coordinates and quasiconformality), which are not available in higher dimensions.

To our knowledge, in higher dimensions the sharpest known bounds on the inner radius of a nodal
domain appear in [Mangoubi 2008a, Theorem 1.5] and state that

<inrad(R2,) < % (29)

where a(n) := ; Lin—1)+ ﬁ A question of current investigation is whether the last lower bound on

Cq
ran) —

inrad(€2y ) in higher dimensions is optimal.

Here we exploit heat equation and Brownian motion techniques to show that at least, one can expect
to “almost” inscribe a large ball having radius to the order of 1/+/, in all dimensions. Now we prove
Theorem 1.6:

Proof. We define 1’ := 19/, and thus ¥\ q, (t', x) < 1 —e™7, where 19 is a small constant to be chosen
suitably later.
Now, choosing #y small enough, and using monotonicity, we have

VB(xo,roA-1/2\@, (I, X0) < ¥an\g, (7, X0) <é&. (30)

For convenience, let us define E,, := B(xo, roA~Y2)\Q;, a relatively compact set. Observe that
Theorem 2.2 applies to open balls and compact subsets contained in open balls. To adapt to the setting of
Theorem 2.2, choose a number r{, < ro such that B(xo, r(’))t_l/ 2) satisfies

Vol(B(xo, roA~1/2)\ B(xo, rjA~1/2))
Vol(B(xg.roA~1/2))

<é.

Call E,; := Er, N B(xo. roA~1/2). Observe that proving

Vol(E, )
Vol(B(xg, roA~ 1/2))

will imply
Vol(Er,)
Vol(B(xq, roA~1/2))

< 2e,

which is what we want.
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Now, we would like to compare the volumes of the two sets Er(/) and B(xo, ro)&_l/ 2). Letr =ro/ V.
Recall from [Grigor’yan and Saloff-Coste 2002, Remark 4.1] the following inequality:

cap(E,)r?
c 0 e
Vol(B(xg, roA™1/2))

)
T < yg, (1 x0) <, (31)

where cap(K) denotes the 2-capacity of the set K C M, and 0 < ¢’ < 2r?; see also equation (3.20) of
[Grigor’yan and Saloff-Coste 2002]. Recall that the 2-capacity of a set K C M is defined as

cap(K) = inf / |Vn|?dM.
nk=1 Jym
neC>(M)

Formally, (31) holds on complete noncompact nonparabolic manifolds, which includes R”, n > 3. For
bringing in our comparability result Theorem 2.2, we fix the ratio t'/r? = % say, and then choose ¢
small enough that (30) still works. Now (31) applies, albeit with a new constant ¢ as determined by the
ratio ¢ /r? and Theorem 2.2.

Now, to rewrite the capacity term in (31) in terms of volume, we bring in the following “isocapacitary
inequality” [Maz’ya 2011, Section 2.2.3]:

cap(Ey,) > C/Vol(ErO)nT_z, n>3, (32)

where C’ is a constant depending only on the dimension n. We note that the isocapacitary inequality
(in combination with a suitable Poincaré inequality) lies at the heart of the currently optimal inradius
estimates, as derived in [Mangoubi 2008a].

Clearly, (31) and (32) together give

n—2
( Vol(E,) ) o cap(Er,)r?

~ < t,x)<e. 33
Vol(B(xo.70A~1/2)) Vol(B(xo. roA=172y) ~ VEro(1:) (33)
The last inequalities contain constants depending only on M, so by taking ¢ even smaller we can arrange

Vol(Ey,) <
Vol(B(xg, roA~1/2))

€0

for any initially given &g. O

Remark 4.1. We note that the heat equation method does not distinguish between a general domain and a
nodal domain. This means that we cannot rule out the situation where B(xg, 1o/ ﬁ) \ 2, is a collection of
“sharp spikes” entering into B(xg, ro/ V1). Indeed the probability of a Brownian particle hitting a spike,
no matter how “thin” it is, or how far from xy it is, is always nonzero, a fact related to the infinite speed of
propagation of heat diffusion. This is consistent with the heuristic discussed in [Hayman 1978; Lieb 1983].

Now we establish Corollary 1.7. First, we recall the following result, which gives a bound on the
asymmetry between the volumes of positivity and negativity sets:
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Theorem 4.2 [Mangoubi 2008a]. Let B be a geodesic ball, so that (1B N {g; = 0}) # @ with 3B
denoting the concentric ball of half radius. Then

Vol({¢y >0} N B) - C
Vol(B) AT

(34)

Proof of Corollary 1.7. 1t suffices to combine the estimate (33) with (34).
Let r :=ro/ V/A be the radius of the largest inscribed ball in the nodal domain at xo. Noting that
{px <0} € E;, and combining Theorem 4.2 for By, (2r) with (33), we get

n=2 n=2
(—f_l ) "< ( VoltEr) ) L1V (35)
A2 Vol(B(xo, roA~1/2))
Expanding the right-hand side in Taylor series and rearranging finishes the proof. O

Remark 4.3. An inspection of the proof of Theorem 1.6 reveals that one can take ¢ = rg /1=2) 14 other
words, the relative volume of the error set £, decays as rg /(=2 o5 ro — 0. This is slightly better than

the scaling prescribed by Corollary 2 of [Lieb 1983].

Remark 4.4. There is a sizable literature around optimizing the fundamental frequency of the complement
of an obstacle inside a domain; for example, see [Harrell et al. 2001]. As an explicit special case, consider
a convex domain  C R” and a small ball B C 2. The question is to find possible placements of translate
x + B inside €2 such that 11 (2 \ (x + B)) is maximized. For certain applications of Theorem 1.6 towards
such questions, we refer to [Georgiev and Mukherjee 2017].
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A NORMAL FORM A LA MOSER FOR DIFFEOMORPHISMS AND
A GENERALIZATION OF RUSSMANN’S TRANSLATED CURVE THEOREM
TO HIGHER DIMENSIONS
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We prove a discrete time analogue of Moser’s normal form (1967) of real analytic perturbations of
vector fields possessing an invariant, reducible, Diophantine torus; in the case of diffeomorphisms too,
the persistence of such an invariant torus is a phenomenon of finite codimension. Under convenient
nondegeneracy assumptions on the diffeomorphisms under study (a torsion property for example), this
codimension can be reduced. As a by-product we obtain generalizations of Riissmann’s translated curve
theorem in any dimension, by a technique of elimination of parameters.

1. Introduction and results 149
2. The normal form operator 153
3. Difference equations 155
4. Inversion of the operator ¢ 159
5. A generalization of Riissmann’s theorem 163
Appendix A. The inverse function theorem and regularity of ¢ 166
Appendix B. Inversion of a holomorphism of T7 167
Appendix C. Fourier norms 168
Acknowledgments 169
References 169

1. Introduction and results
Let T=R/2nZ, a,b e R, a < b, and consider the twist map
P:Tx[a,bl->TxR, @,r)r> @+a(r),r),

where o'(r) > 0; this map preserves circles r = rg, ro € [a, b], and rotates them by an angle which
increases as r does (this is the twist property).

Moser [1962] proved that for any r¢ € (a, b) such that «(rg) is Diophantine, if Q is an exact-area-
preserving diffeomorphism sufficiently close to P, it has an invariant curve near r = ro on which the
dynamics is conjugated to the rotation 6 — 6 + «(r).

Riissmann [1970] generalized this fundamental result to nonconservative twist diffeomorphisms of the
annulus; see also [Bost 1986; Yoccoz 1992]. He showed that the persistence of a Diophantine invariant
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circle is a phenomenon of codimension 1; in general the invariant curve does not persist but it is translated
in the normal direction. It is the “theorem of the translated curve” (see below for a precise statement).

As in Kolmogorov’s theorem [1954], see also [Herman and Sergeraert 1971], the dynamics on the
translated curve can be conjugated to the same initial Diophantine rotation because of the nondegeneracy
(twist) of the map. Herman [1983] gave a proof of the translated curve theorem for diffeomorphisms
with rotation number of constant type, then generalized Riissmann’s result in higher dimensions to
diffeomorphisms of T” x R (T" =R"* /27 Z") close enough to the rotation (6, r) — (6 +«, r), where « is a
Diophantine vector, without assuming any twist hypothesis but introducing an external parameter in order
to tune the frequency on the translated torus, yet breaking the dynamical conjugacy to the Diophantine
rotation; see [ Yoccoz 1992].

To our knowledge no further generalization in T" x R™ of Riissmann’s theorem has been given so far.

The first purpose of this work is to prove a discrete-time analogue of Moser’s normal form [1967] of
real analytic perturbations of vector fields on T" x R™ possessing a quasiperiodic Diophantine, reducible,
invariant torus. The normal form will then be used to deduce “translated torus theorems” under convenient
nondegeneracy assumptions. As a by-product, Riissmann’s classical theorem will be a particular case of
small dimension. While Riissmann and Herman consider smooth or finite differentiable diffeomorphisms,
we focus here on the analytic category. Let us state the main results.

A normal form for diffeomorphisms. Let T" = R"/2n 7" be the n-dimensional torus. Let V be the

space of germs along T" x {0} in T" x R™ = {(0, r)} of real analytic diffeomorphisms. Fix « € R" and

A € GL,,(R), assuming that A is diagonalizable with (possibly complex) eigenvalues ay, ..., a, € C.
Let U(«, A) be the affine subspace of V of diffeomorphisms of the form

PO, r)=0+a+0@), A-r+0@?h), (1-1)

where O (r*) are terms of order > k in » which may depend on 6. For these diffeomorphisms, Ty =T"x{0}
is an invariant, reducible, «-quasiperiodic torus whose normal dynamics at the first order is characterized

by ay, ..., a,. We will collectively refer to oy, ..., o, and ay, . .., a,, as the characteristic frequencies
or characteristic numbers of T.
Let now ay, ..., a, € C be the pairwise distinct eigenvalues of A. We will impose the following
Diophantine conditions for some y > 0 and 7 > 1:
vVi=1,...,q, la;| =1, |k~a+arga,~—2nl|z# V(k,l) e 7"\{0}xZ,
) (1-2)
Vi,j=1,...,q, lail=|ajl, |k-a+arga; —arga; —2ml| > W Y(k,l) e Z"\{0}xZ,

where arg a; € [0, 2 [ denotes the argument of the i-th eigenvalue a; = |a; |ef aredi,

Remark 1.1. Since A is in GL,, (R), the possible complex eigenvalues come in couples, and conditions
(1-2) imply the classical Diophantine condition on & when i = j.

Let G be the space of germs of real analytic isomorphisms of T" x R™ of the form

GO,r) =(90), Ro(0) + R1(0) - 1), (1-3)
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where ¢ is a diffeomorphism of the torus fixing the origin and Ry, R are functions defined on the torus T"
with values in R and GL,, (R) respectively and such that Iker(a—7)Ro(0) =0 and Tgera,.1(R1(0)—1) =0,
where [ is the identity matrix in Mat,, (R) and IT is the projection on the indicated subspace.

Let us define the “correction map”

T, T"xR"—->T"xR", @O,r)—~B+60,b+{+B)-r),
where 8 € R", b € R™ and B € Mat,,(R) are such that
(A-I)-b=0, [A,B]=0. (1-4)

We will refer to translating parameters A = (8, b+ B - r) as corrections or counter terms, and denote by
A the space of such A’s:

A={r=B.b+B-r):(A—1)-b=0, [A, B]=0}.

Theorem A (normal form). Let («, A) satisfy the Diophantine condition (1-2). If Q is sufficiently close
to PV € U(a, A), there exists a unique triplet (G, P, A) € G x U(a, A) x A close to (id, PY.0), such that

Q=TAoGoPoG_1.

In the neighborhood of (id, P, 0), the G-orbit of all P € U(«, A) has finite codimension. The proof is
based on a relatively general inverse function theorem in analytic class (Theorem A.1 of the Appendix).

The idea of proving the finite codimension of a set of conjugacy classes of a diffeomorphism or of a
vector field has been successfully exploited by many authors. Arnol’d [1961] first proved a normal form
for diffeomorphisms of T"; this was followed by Moser’s normal forms for vector fields [Moser 1966;
1967; Wagener 2010; Massetti 2015a; 2015b]. Among others, we recall the work of Calleja, Celletti and
de la Llave [Calleja et al. 2013] on conformally symplectic systems, Chenciner’s study [1985a; 1985b;
1988] on the bifurcation of elliptic fixed points, Herman’s twisted conjugacy for Hamiltonians [Féjoz
2004; 2010] (a generalization of [Arnol’d 1961]) and the work of Eliasson, Fayad and Krikorian [Eliasson
et al. 2015] around the stability of KAM tori.

This technique allows us to study the persistence of an invariant torus in two steps: first, prove a
normal form that does not depend on any nondegeneracy hypothesis (but that contains the hard analysis);
second, reduce or eliminate the (finite-dimensional) corrections by the usual implicit function theorem,
using convenient nondegeneracy assumptions on the system under consideration. This second step was
probably not deeply understood before the 80s [Sevryuk 1999].

A generalization of Riissmann’s theorem. From the normal form of Theorem A, we see that when A =0,
Q0 =GoPoG™!; the torus G(Ty)) is invariant for Q and the first-order dynamics is given by P € U(a, A).
Conversely, whenever A = (8, b), the torus is translated and the a-quasiperiodic tangential dynamics is
twisted by the correction 8:

Q(@(0), Ro(0)) = (B+ 9O +a), b+ Ro(0 +)).
We will loosely say that the torus T
— persists up to twist-translation when A = (8, b),

— persists up to translation when A = (0, b).
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We stress the fact that Theorem A not only gives the tangential dynamics to the torus, but also the
normal one, of which Riissmann’s original statement is regardless:

Theorem (Riissmann). Let o € R be Diophantine and PY:T x[—rp, ro]l = T x R be of the form
PO, r)= (0 +a+1t(r)+0@?), A% + 0(r?)),

where A € R\ {0}, t(0) =0andt'(r) > 0.
If Q is close enough to PP, there exists a unique analytic curve y : T — R close to r = 0, an analytic
diffeomorphism ¢ of T fixing the origin close to the identity, and b € R close to 0, such that

00, 7@®) = (poRyop ' (0),b+y(poRy0p™'(6))).

Note that 7(r) may depend on the angles as well. In the original statement, A° = 1; to consider this
case with general A° does not add any difficulty to the proof.

We will generalize Riissmann’s theorem on T" x R”". At the expense of losing control on the final
normal dynamics and conjugating Tx_l o Q to a diffeomorphism P whose invariant torus has a normal
dynamics given by a different A, under convenient nondegeneracy conditions we can prove the existence
of a twisted-translated or translated «-quasiperiodic Diophantine torus by application of the classical
implicit function theorem in finite dimension. The following results will be proved in Section 5, where a
more functional statement will be given (Theorems 5.1 and 5.4).

OnT" x R", let P € U(a, A), defined in expression (1-1), be such that A is invertible and has simple,
real eigenvalues ay, . .., a,. This hypothesis clearly implies that the only frequencies that can cause small
divisors are the tangential ones «j, ..., o, so that we only need to require the standard Diophantine
hypothesis on «.

Theorem B. Let o be Diophantine and let A € GL,(R) have simple, real eigenvalues. If Q is sufficiently
close to PY e U (e, A), there exists A’ close to A such that the torus T(’)’ persists up to twist-translation
and its final normal dynamics is given by A'.

If, in addition, Q has a torsion property, we can prove the following theorem.

Theorem C. Let @ be Diophantine and let A be invertible with simple, real eigenvalues. Let also

PO, r)=(0+a+pi@) -r+00*, A-r+0@?))

det (/ p1(0)d0) £0.
'|]')1

If Q is sufficiently close to P, there exists A’ close to A such that the torus Tg persists up to translation

be such that

and the final normal dynamics is given by A'.

The paper is organized as follows: in Sections 2—-3 we introduce the normal form operator, define
conjugacy spaces and present the difference equations that will be solved to linearize the dynamics on the
perturbed torus; in Section 4 we will prove Theorem A, while in Section 5 we will prove Theorems B and C.
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2. The normal form operator

We will show that the operator
$:GxU(, A)xA—V, (G,P,A)+—>T,0oGoPoG ',

is a local diffeomorphism (in the sense of scales of Banach spaces) in a neighborhood of (id, PY 0). Note
that ¢ is formally defined on the whole space but ¢ (G, P, A) is analytic in the neighborhood of T only
if G is close enough to the identity with respect to the width of analyticity of P. See the subsection on
page 155.

Although the difficulty to overcome in the proof is rather standard for conjugacy problems of this
kind (proving the fast convergence of a Newton-like scheme), the procedure relies on a relatively general
inverse function theorem (Theorem A.1 of the Appendix), following a strategy different from Zehnder’s
[1975]. Both Zehnder’s approach and ours rely on the fact that the fast convergence of the Newton scheme
is somewhat independent of the internal structure of the variables.

Complex extensions. Let us extend the tori
T"=R"/2r7" and Ty=T"x{0}CT" xR",
as
Te=C"/2n7" and T¢=T¢ xC"
respectively, and consider the corresponding s-neighborhoods defined using £°°-balls (in the real normal
bundle of the torus):

T ={0eT¢: lrg}ai(nllméﬂfs} and T ={(0,r) €T¢: [Im6,r)| <s},

where [(Im 6, r)| := max (max<;<,|Im6;|, max<;<u|r;l).

Let now f : T{ — C be holomorphic on the interior of T}, continuous on T}, and consider its Fourier
expansion f(0,7) =Y .z fe(r) " where k-0 =k\6; + - - - + k,0,. In this context we introduce the
so-called weighted norm:

1Fls =D 1fel e (k= lkyl+ - + [kl
kez"
where | fi| = sup|,| ;[ fk(r)|. Whenever f:T{ — C", we have | f|; = maxi<j<,(| fjls), where f; is the
Jj-th component of f(@,r).
It is a trivial fact that the classical sup-norm is bounded from above by the weighted norm:

sup | f ()| =1 fls

z€T?
and that | f|; < +oo whenever f is analytic on its domain, which necessarily contains some T}, with
s’ > s. In addition, the following useful inequalities hold if f, g are analytic on T7;:

|fls <|fly for0<s <y,

and

|fels < 1flsgls -
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Moreover, one can show that if f is analytic on T¢, , and G is a diffeomorphism of the form (1-3)
sufficiently close to the identity, then | f o G|y < Cg| f|s+o, Where Cg is a positive constant depending
on |G —id|; (see Appendix C). For more details about the weighted norm, see for example [Meyer 1975;
Chierchia 2003].
In general for complex extensions U; and Vy, we will denote by A(Uy, Vi) the set of holomorphic
functions from U; to Vy and by A(U;), endowed with the s-weighted norm, the Banach space A(Us, C).
Finally, let E and F be two Banach spaces:

— We indicate contractions with a dot ““ - ”, with the convention thatif /1, ..., [y ,€ E* and x1, ..., x € E,

Q@ ®liyp) X1®---®xp) =1 ® -+ ®lillig1, x1) -+ - (lgtps Xp)-

In particular, if [ € E*, we simply write [" =]/ ®Q - - - Q1.

— If f is a differentiable map between two open sets of E and F, then f’(x) is considered as a linear
map belonging to F ® E*, f'(x): ¢ +— f'(x)-¢; the corresponding norm will be the standard
operator norm

lf'l= sup [f'(x)-¢lp.

CeE, |¢|g=1

Spaces of conjugacies. — We consider the neighborhood of the identity G in the space of germs of real
holomorphic diffeomorphisms on T;, defined by

|(p_id|s <o

and
[Ro+(Ry—1)-r|y <o,

where go(O) = 0, and R() and R] satisfy err(A_])RO(O) =0 and err([A,~])(Rl (0) — I) =0.
The tangent space at the identity 734Gy consists of maps Ge A(TZ, Crtmy,

G@#.1r) = (9(), Ro®) + Ri(9) - 1),

where ¢ € A(T", C"), Ry A(T”,C™) and R; € A(T", Mat,,(C)). We endow it with the norm

Gl = max (IG;ly).
— Let V; be the subspace of A(Ty, T x C™) of diffeomorphisms

Q:(0,r— (fO,r),8,r)),

where f e A(T},C"), g € A(T}, C™), endowed with the norm

|Qls =max (| s, [gls)-
— Let Us(a, A) be the affine subspace of Vi of those diffeomorphisms P of the form

PO, r)=@+a+0(@),A-r+0?).

We will indicate by p; and P; the coefficients of the order-i term in r, in the 8- and r-directions respectively.
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Tn

s+o

T . | ——__ o

Ty L— A GT
/—\_/

Figure 1. Deformed complex domain.

— If G € G7 and P is a diffeomorphism over G(T}') we define the deformed norm
|PlGg.s :=|PoGls,

depending on G; this is in order not to shrink artificially the domains of analyticity. See Figure 1. The
problem, in a smooth context, may be solved without changing the domain, by using plateau functions.

The normal form operator. By Theorem B.1 and Corollary B.2 the operator

¢ 167" X Upro (ot A) x A — V,

(-1
(G,P, M )> T, 0GoPoG™!,

is now well defined. It would be more appropriate to write ¢; , but, since these operators commute with
source and target spaces, we will refer to them simply as ¢. We will always assume that0 <s <s+o < 1
and o < s.

3. Difference equations

We present here three lemmata that we will use in the following in order to linearize the tangent and the
normal dynamics of the torus (see Section 4).

Let « € R" and let M € GL,,(R) have pairwise distinct eigenvalues uy, ..., i,. We assume the
following Diophantine conditions on o and M:

k-a—27l| > V;T Vk € 7"\ {0}, VI € Z, (3-1)
ko —arg p; — 27| > VZ"I V) eZ\O)xZ, Yj=1,....m: || =1,  (3-2)
y .
ot arg u —argpy =2l = e VD) €2\ (O} X Z Vi j =L sl = gl ()

llwil =l =y Yi,j=1,....m, i#j:lwl#lwl
. (3-4)
1= wil| =y if [l #1,
{Im—wlzr Vij=1,om, i # il =1l (3-5)
I1—p;l =y if|pjl=1and u; #1,

lg}igm (Ilpjl) = y. (3-6)
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We first prove the following fundamental lemma, which is the heart of the proof of Theorem A and,
more generally, of many stability results related to Diophantine rotations on the torus.
Lemma 3.1. Let o € R" be Diophantine in the sense of (3-1) and let a, b € C\ {0}.

(1) If a=band |a| =y, forany g € A(T}, ), there exists a unique f of zero average which is complex
analytic on T} and a unique A € R such that

Ataf®+a)—af@®)=g®),

=)
= dao,
Qo Ji 8

Cc
|fls = W|g|s+a,

satisfying

where C is a constant depending only on n and .
(2) Leta #b.
(@) If la| = |b| and
la—b| =y,
lal =y, (3-7)
|k-o+arga —argh —2xl| > y/lk|* V(k,1)eZ"\{0} xZ,
forany g € A(T], ), there exists a unique f which is complex analytic on T] such that
af(@+a)—bf () =g(®), (3-8)
satisfying

|f|s = )/20’7""" |g|s+(7,

where C is a constant depending only on n, t.
(ii) If |a| # |b| and ||a| — |b|| >y, forany g € A(TY, ), there exists a unique [ which is complex

analytic on T{, . such that

af(@+a)—bf©®) =g®),
satisfying
| flsto <7 glsto-

Proof. (1) Developing in Fourier series the equation yields
k+az(6ik~a 1) frelk? = ngeiké;
k k

letting A = go we formally have

1 Z 8k i
f(g) — = Tel k9‘
a e —1
k#0

First note that the coefficients g; decay exponentially, that is,

o do
/ g(e)e—l k-6 =7
n 2

by deforming the path of integration to Im6; = — sgn(k;)(s + o).

lgk| = =< |g|s+a€_|k‘(s+0),
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Second, remark that for any x, y € RT, ¢ € [0, 27|,

|xei¢—y|2=(x—y)zcos —+(x—|—y)2s1n 2®
2 (3-9)
2 y . o —2ml
>x+y) sin’ =(x+y) sin® ———,
with [ € Z. By choosing [ € Z such that —7 < %(gp 2711) < 7. we get
. — 27l
e~y > ;(x+y)%, (3-10)

s
5.
In our case x =y =1, ¢ =k-a and for all k, by choosing / € Z such that —7 < %(k ca—2ml) <%, we get

. . . . 2
by the classical inequality |sin 8| > =8|, whenever —7 < § <

4 lk-a—27ll 2y
Nzo——% =3 1k|T
by inequality (3-10) and the Diophantine condition (3-1).

We thus have

|€i ko

2n
1Fls < T ||j||;+a Z|k|re—|kla < 2" gls4o Z<€+Vé+l)e—£a£t

laly 5

T4 8ls+o gt -
|a|y(n "'1)‘2( +£ )n 1+‘Ee Lo

- T 4"gls4o / (C4n—1)yr+T=le==Do gp
laly (n —1)!

The integral is equal to

00 o0
G—t—nemr/ Er-ﬁ-n—le—ﬁ dl < O_—r—nena/ €t+n—le—£ dt = O,—r—nenal—w(,[ _{_n).
n 0

o

Hence f, of zero average, is complex analytic on T{ and, since |a| > y, it satisfies the claimed estimate.

(2i) Leta =|ale’ ™&¢ and b = |b|e’ ™2 with the convention that arg z = 7 (arg z =0) if z € R~ (if z € RY).
The Fourier expansion gives

and for all k 20

fo= 8k ol ko
el argb(lalei(kot-i—arga—argb) _ |b|)

In order to bound the divisors we apply the same inequalities as in (3-9)—(3-10), with ¢ =k-a+arga—arg b.
Since |a| = |b|, by conditions (3-7) we proceed as in the proof of point (1) to get the stated estimate. In
the case where a (or b) is real and arga (or arg b) is equal to r, we shall choose [=21—1 (or [=20+ 1)
such that —7 < 5 Lk -a+arga — nl ) < 7 to conclude the estimate as in (3-10).

(2ii) This follows directly from the trlangular inequality.

We direct the reader interested to optimal estimates (with o' ¥ instead of o **") to [Riissmann 1976]. [J
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Let now @ € R"” and M € GL,,(R) have simple eigenvalues such that! p; # 1foralli=1,...,m, and
consider the operator

Liy: AT, C") — AT, CY),  f fO+a)—M-f(O).

Lemma 3.2 (relocating the torus). Let a € R" and M € GL,,(R), a diagonalizable matrix with simple
eigenvalues distinct from 1, satisfy the Diophantine conditions (3-1)—(3-2) and (3-4)—(3-6). For every
g € A(TY, ., C"), there exists a unique preimage f € A(T},C") by Ly . Moreover, the following
estimate holds:

Gy
Ifls = V2 gt 18s+o

where C, is a constant depending only on the dimension n and the exponent t.

Proof. In the scalar case, m = 1 and M = € R. By expanding both sides of L j f = g, the formal

preimage is given by
_ 8k
fie= elka _ m
and the proof is recovered from Lemma 3.1(2ii). The diagonal case follows readily by working compo-
nentwise and taking into account condition (3-4).

Finally, if M is diagonalizable, let P € GL,,(C) be the diagonalizing matrix such that PM P~ =

diag(p1, ..., m), ui € C. By left multiplying both sides of f(60 +«) — M - f(0) = g by P, we get
fO+a)—PMP'f0) =3¢,

where we have set g = Pg and f = Pf. By Lemma 3.1(2) and the Diophantine conditions (3-1)—(3-2)
and (3-5)—(3-6), f satisfies the wanted estimates, and f = p-! f O

n
s+o

Loy - AT, Mat,, (C)) — A(T", Mat,,(C)),
Fi>F@+a)-M—M-F®).

Finally, consider a holomorphic function F on T, = with values in Mat,, (C) and define the operator

Lemma 3.3 (straighten the first order dynamics). Let o € R" and M € GL,,(R), a diagonalizable matrix
with simple eigenvalues distinct from 1, satisfy the Diophantine conditions (3-1) and (3-3)—(3-6). For
every G € A(TY, ., Mat,,(C)) such that fw Gf/(ZTr)” dO® = 0 there exists a unique F € A(TY, Mat,, (C)),
having zero-average diagonal elements, such that the matrix equation

FO+a)-M—M-F(@)=G®)

is satisfied; moreover, the following estimate holds:
Fl. < G 1
|Fls < ﬁa”ﬁl ls+os

where C3 is a constant depending only on the dimension n and the exponent t.

!1n order not to burden the following statements, we suppose that M has simple spectrum and 1 does not belong to it. Just note
that in the general case, one should introduce the correction A meant to absorb the average of the given term in the homological
equations when it is the case, as in Lemma 3.1(1); cf. conditions (1-4).



A NORMAL FORM A LA MOSER FOR DIFFEOMORPHISMS 159

Proof. Let M = diag(uy, ..., um) € R™ and F € Mat,, (C) be given; expanding L, yyF = G we get
m equations of the form

wi(FlO+a)—Fl@O)=G, j=1.....m,
and m? — m equations of the form
WiFj@+a) =W FiO0)=Gj@), Vi#j i j=1,...m,

where we denoted by Fj" the element corresponding to the i-th line and j-th column of the matrix F(6).
Taking into account the Diophantine conditions (3-1)—(3-4), the thesis follows from the same computations
as Lemma 3.1(1) for the m-diagonal equations and point (2ii) for the (m*—m)-out diagonal ones.

Finally, to recover the general case, we consider the transition matrix P € GL,,(C) such that PM P~ =
diag(wy, ..., wm), u; € C, and the equation

(PFO+a)P~'PMPHY—PMP'PFOP ' =PGP;

letting F=PFP 'and G = PGP\, the equation is of the previous kind and by the Diophantine
conditions (3-1) and (3-3)-(3-6), F satisfies the wanted estimates, and F = P! FP. U

Remark 3.4. The real analytic character of the solutions in Lemmata 3.2 and 3.3 follows from their
uniqueness and the fact that the matrix M has real entries.

4. Inversion of the operator ¢

The following theorem represents the main result of this first part, from which the normal form theorem,
Theorem A, follows.
Let us fix P° € Uy(a, A) and note V7 ={Q € V; : |Q — P°|; < o}, the ball of radius o centered at P°.

Theorem 4.1. The operator ¢ is a local diffeomorphism in the sense that forany) <n <s <s+o <1
there exists € > 0 and a unique C*-map Vr,

Vi Vi, = Gl xUs(a, A) x A,
such that ¢ oy =id. Moreover,  is Whitney-smooth with respect to («, A).

This result will follow from the inverse function theorem, Theorem A.1, and regularity propositions,
Propositions A.2-A.4.

In order to solve locally ¢ (x) = y, we use the remarkable idea of Kolmogorov and find the solution by
composing infinitely many times the operator

x=(gu, ) > x+¢ 7 (x) (y —p(x))

on extensions T,  of shrinking width.

At each step of the induction, it is necessary that ¢'~!(x) exists at an unknown x (not only at x)
in a whole neighborhood of x( and that ¢'~! and ¢” satisfy a suitable estimate, in order to control the
convergence of the iterates.
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The main step is to check the existence of a right inverse for
’ o/n 7
¢ (G, P,A): TGgsJ,_a X Us—i—a XA — VG,S
if G is close to the identity. We denote by U the vector space directing U (a, A).

Proposition 4.2. If (G, P, 1) is close enough to (id, P°, 0) for all $Q € V. g1 = G*A(TY,,., crtmy,
there exists a unique triplet (G, § P, 5A) € TgGs x Us X A such that

¢'(G, P,A)-(8G,8P,81) =68Q. 4-1)

Moreover, we have the estimate

/

C
max([8Gls, [8Pls, [0A]) = —710Q1G.s+0 (4-2)

where C' is a constant possibly depending on |((G —id), P — (@ + o, A-r))|s10-
Proof. Let a vector field 6 Q € Vi s+, be given. Differentiating with respect to x = (G, P, 1), we have
8(T,oGoPoG ) =T50(GoPoG )+T/o(GoPoG 1)-8(GoPoG™);
hence
M-8GoP+G oP-8P—G oP-P -G '.8G)oG'=80—-Ts550(GoPoG™Y,

where M = ((I) IJ(:B).

The data is §Q, while the unknowns are the “tangent vectors” § P € O(r) x O(r?), §G (geometrically,
a vector field along G) and §A € A.

Precomposing by G, we get the equivalent equation between germs along the standard torus Ty (as
opposed to G(T))):

M~(8GoP—i—G/oP~5P—GloP-P/-G/_1 -6G)=6Q0oG—Ts,0Go P;
multiplying both sides by (G'~! o P)M~!, we finally obtain
GoP—P -G+8P=G"'oP M '600G+G 'oP - M 'T5; 0Go P, (4-3)

where G = G~ - 5G.
Note that the term containing Ty, is not constant; expanding along r = 0, it reads as

T, =G'"oP M T 0GoP=B+0@),b+B-r+0@?).
The vector field G (geometrically, a germ along T of tangent vector fields) reads as
GO,r) = (@(0), Ro(®) + R1(6) -1).

The problem is now: G, A, P, Q being given, find G, 8P and ), and hence 8 and §G.
We are interested in solving the equation up to the 0-order in r in the #-direction, and up to the first
order in r in the action direction; hence we consider the Taylor expansions along T up to the needed order.
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We remark that since 8P = (O (r), O(r?)), it will not intervene in the cohomological equations given
out by (4-3), but will be uniquely determined by identification of the reminders.
Let us proceed to solve (4-3); taking its jet at the wanted order, it splits into the following three
equations:
@0 +a)—¢0)+ p1-Ro=qo+ B,
Ro(6 +a) — A-Ro(0) = Qo +b, (4-4)
RO +a)-A—A-Ri(0)= Q) — (2P, - Ry+ Ry(0 +a) - p1) + B.

The first equation is the one straightening the tangential dynamics, while the second and the third ones
are meant to relocate the torus and straighten the normal dynamics.

For the moment we solve the equations “modulo A”; eventually 81 will be uniquely chosen to kill the
average of the equation determining ¢ and the constant component of the given terms in the second and third
equation that belong to the kernels of A— 1 and [A, - ] respectively, and solve the cohomological equations.

In the following we will repeatedly apply Lemmata 3.1-3.3 and Cauchy’s inequality. Furthermore, we
do not keep track of constants — just note that they may only depend on n and 7 (from the Diophantine
condition) and on |G —id|s4, and |P — ((6 + @), A - 7)|s+o, and refer to them as C.

— First, the second equation has a solution
Ro=L{,(Qo+b—b),
where b = [Tger u_) Jn Qo+ b/(2m)" d6, and

. C . .
|Rols = W|Qo+b|s+a-
— Second, we have
9O +a) —p@O) +pi-Ro=do+p — B,
where B = [}, Go — p1- Ro+ B/(27)" d6; hence
¢=L;"(Go+B—P).
satisfying
. C . .
|(p|s—a =< mmo + ﬂ|x+a-
— Third, the solution of the equation in R is
R = Lz_,]A(él +B—B),
where él =0,—QP,-Ry+ R6(0 +a)-p1),and B = HKer[A,-] fvn él + B/(er)" do. It satisfies

. C ~ .
|R1|s—20 = WlQl + Bls-i—cr-

We now handle the unique choice of the correction 61 = (58, 6b + §B - r) given by Ty,. Letting
A= (,3, b+ B- r),themap f: A — A, A+ —X, is well defined in the neighborhood of §A = 0.
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In particular f' = —id when G = id, and it will remain bounded away from 0 if G stays sufficiently
close to the identity. In particular, 81 — —A is affine: the system in A to solve A = 0 is linear of the
form fvn a(G, Q) + A(G) - 81 = 0, with diagonal close to 1 when G is close to the identity; hence f is
invertible. Thus, there exists a unique §A such that f(61) = 0, satisfying

|6A] < W|8Q|G,s+a-
We finally have

|Gls—20 = ? WMQM,HG-

Now, from the definition of G = G'~! - §G, we get 8G = G’ - G. The unique solutions such that
3p(0) =0, 6Rp(0) =0 and §R;(0) = 0 are easily determined, since G is close to the identity and similar
estimates hold for §G:

_ . C
6Gly-20 <0 ' (1+]G — ldls)om|8Q|G,.v+a-

Finally, (4-3) uniquely determines § P.
Letting v/ = 2(t +n) + 2, up to redefining 0’ = 0/3 and s’ = s + o, we have the stated estimates for
all s', 0/, where s’ < "+ 0. O

Proposition 4.3 (boundedness of ¢). The bilinear map ¢” (x),
¢"(x) : (TG X Ugyo x M) — AT, TP,

satisfies the estimates
C//
/" ®2 2
|¢ (x)ax |G,S S 07|5x|s+gs
where t” > 1 and C" is a constant depending on |x|s1 4.

Proof. Differentiating ¢ (x) twice yields

—M{[(SG/OP-SP—HSG’OP-6P+G”oP-3P2—(8G’oP+G”oP-3P)-P’-G”l 8G
~G'oP-(8P'-(-G"7'-8G'-G'7)-8G)]oG™!
+[8G'oP 8P +8G' oP-8P+G"oP-5P*
—(8G'oP+G"oP-8P)-P'-G!.8G
—G'oP- (8P (=G -8G'-G"")-6G)] oG - (=G -5G)oG—1}.

Once we precompose with G, the estimate follows. (I

The hypotheses of Theorem A.1 are satisfied; hence the existence of (G, P, A) with Q =T, 0GoPoG~!
is proved. Uniqueness and smoothness of the normal form follows from Propositions A.2—A.4. Theorem 4.1
follows, and hence Theorem A.
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5. A generalization of Riissmann’s theorem

Theorem A provides a normal form that does not rely on any nondegeneracy assumption; thus, the
existence of a translated Diophantine, reducible torus will be subordinated to eliminating the “parameters
in excess” (B, B) using a nondegeneracy hypothesis. We will implicitly solve B =0 and g = 0 by using
the normal frequencies as free parameters and a torsion hypothesis respectively. Riissmann’s classical
result will be the immediate small-dimensional case.

Elimination of B. Let A}, (R) C GL,,(R) be the open set of invertible matrices with simple, real eigen-
values. On T" x R™, let us define

U= U Ua, A).

AeAs, (R)
We recall that those P € U(«a, A) are diffeomorphisms of the form
PO.1=0+a+0@F),A-r+03?),

on a neighborhood of T" x {0}.
The following theorem is an intermediate, yet fundamental result to prove the translated torus theorem,
Theorem C, and holds without requiring any torsion assumption on the class of diffeomorphisms.

Theorem 5.1 (twisted torus of codimension 1). For every P° € U, (, A®) with a Diophantine and
A% e A? (R), there is a germ of C*°-maps
¥ Viro = Ge x Uy x A(B,b), QO (G, P, }),
at P°+— (id, P% 0) such that Q =T, 0 Go P o G~\, where > = (B, b) € R*t1,
Corollary 5.2 (twisted torus). If 1 does not belong to the spectrum of A%, the translation correction b is 0.

Proof. Denote by ¢4 the operator ¢, as now we want A to vary. Let us define the map
Ui ALR) X Vipo = Gs x Uy x A, (A, Q) = P14(0) := ¢, (Q) = (G, P, 1),

in the neighborhood of (A%, P% suchthat Q =T, 0GoPoG~!, where A= (B8,b, B-r), B €R", beR™,
such that (A — 1) - b = 0 and B € Mat,,(R) satisfies [B, A] = 0. Equivalently, B is simultaneously
diagonalizable with A, since A has simple spectrum; we can thus restrict our analysis to a neighborhood
of A in the subspace of those matrices commuting with A®. Note that we can choose such a neighborhood
so that it is contained in A} (R). Then we study the dependence of B on A in their diagonal forms.

Without loss of generality, let A? be in its canonical form, and let A 40 be the subspace of diagonal
matrices, namely the matrices which commute with A%. Consider the restriction of tﬁ to Ago. Let Ae Ayo
be close to AY, let §A := AY — A and write P° as

PO, r)=(0+a+0@r), (A°—8A)-r +8A-r+0@?));
we remark that P° = T o P4, where

A= (0,B(A)=(A"—A)-A7"), [B(A),A]=0,
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and P =@ +a+0), A-r+0(@1?), A= A" —8A.> Note that, since A € A 4o has simple spectrum,
B is indeed in A 4o.
According to Theorem A, ¢4 (id, Pa, 1) = PY; thus locally for all A € A 4o close to AY we have

U (A, P%) =(d, P4, B-r), B(A,PO)=(A"—A)- A '=65A-(A"—s4)"",

and, in particular B(AY, P%) =0 and

0B -
= =

8A A=A"
which is invertible, since A° is so. Hence A — B(A) is a local diffeomorphism on A 40 and by the
implicit function theorem (in finite dimension) locally for all Q close to P there exists a unique A such

that B(A, Q) = 0. It remains to define v(Q) = @(A, 0). U
The proof of Corollary 5.2 is immediate, by conditions (1-4).

Remark 5.3. This twisted-torus theorem relies on the peculiarity of the normal dynamics of the torus Tj;.
The direct applicability of the implicit function theorem is subordinated to the fact that no arithmetic
condition is required on the characteristic (normal) frequencies so that the correction A? + A is well
defined; beyond that, since having simple, real eigenvalues is an open property, the needed counter
term B is indeed a diagonal matrix, so that the number of free frequencies (parameters) is enough to solve,
implicitly, B(A) =0. The generic case of complex eigenvalues is more delicate since one should guarantee
that corrections A® + 8 A at each step satisfy the Diophantine condition (1-2). It seems reasonable to think
that one would need more parameters to control this issue, using the Whitney smoothness of ¢ on A, and
verify that the measure of such stay positive; see [Féjoz 2004].

Elimination of 8. If Q satisfies a torsion hypothesis, the existence of a translated Diophantine torus can
be proved.

Theorem 5.4 (translated Diophantine torus). Let o be Diophantine. On a neighborhood of T" x {0} C
T" x R, let P° € U(a, A%) be a diffeomorphism of the form

PO, 1) =0 +a+pi©)-r+00?, A% r+00?),

where A is invertible and has simple, real eigenvalues and such that

det (/ p1(9)d9> £0.
-l]—n

If Q is close enough to PO there exists a unique A’, close to A% and a unique (G, P,b)eGx U (a, A') xR"
suchthat Q =T,0GoPoG~L.

Phrasing the thesis, the graph of y = Ryo¢p ™!

is a translated torus on which the dynamics is conjugated
to R, by ¢ (remember the form of G € G given in (1-3)). Before proceeding with the proof of Theorem 5.4,

let us consider a parameter ¢ € BY (0) (the unit ball in R") and the family of maps defined by Q (6, r) :=

2The terms O(rz) contain a factor (1 +38A - Al )7].
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Q (0, c +r) obtained by translating the action coordinates. Considering the corresponding normal form
operators ¢., the parametrized version of Theorem A follows readily.
Now, if Q. is close enough to PCO, Theorem 5.1 asserts the existence of (G, P, A.) € G x U(a, A) x
A (B, b) such that
Q.=T,0G.0P.0G, .

Hence we have a family of tori parametrized by ¢ = ¢ + fw y/(2m)*do,

Q0,¢+70) = (Blc)+@oRy 00 1 (0),b(c) +E+TF(poRy0op™ ' (H))),
where y := Ryogp ' andy =y — [; y/(27) d6.

Proof. Let ¢ be the function defined on T”" taking values in Mat, (R) that solves the (matrix of) difference

equation
do

Q)
andlet F: (6,r) — (0 +@(0)-r, r). The diffeomorphism F restricts to the identity at Tj. At the expense
of substituting P° and Q with F o P%o F~! and F o Q o F~! respectively, we can assume that

deo
Qmym

PO +a)—9@O)+ pi1(6) = /T p1(0)

PO(G,r)z(9+a+p1-r+0(r2),A0-r+O(r2)), P1=/ p1(9)
Tﬂ

The germs so obtained from the initial P° and Q are close to one another.

The proof will follow from Theorem 5.1 and the elimination of the parameter 8 € R" obstructing the
rotation conjugacy.

In line with the previous reasoning, we want to show that the map ¢ — B(c) is a local diffeomorphism.
It suffices to show this for the trivial perturbation PL(.). The Taylor expansion of PL(.) directly gives the
normal form. In particular b(c) = AV ¢+ O(c?), while the map c— B(c)=p1-c+ O (c?) is such that
B(0) =0 and B'(0) = p;, which is invertible by twist hypothesis, and thus a local diffeomorphism. Hence,
the analogous map for Q., which is a small C'-perturbation, is a local diffeomorphism too and, together
with Theorem 5.1, there exists unique ¢ € R" and A € Mat, (R) such that (8, B) = (0, 0). U

Remark 5.5. The theorem holds also on T" x R™, with m > n, requiring that

rank (/ p1(0) d@) =n.
‘[fn

This guarantees that ¢ + fB(c) is submersive, but ¢ solving f(c) = 0 would no more be uniquely
determined.

Remark 5.6. Theorem 5.4 generalizes the classical translated curve theorem of Riissmann in higher
dimension, in the case of normally hyperbolic systems such that A has simple, real, nonzero eigenvalues,
for general perturbations.

We stress the fact that if PY was of the form

PO, 1) =0 +a+0@0),I-r+0@F?),
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like in the original frame studied by Riissmann, we would need a whole matrix B € Mat, (R) in order to
solve the homological equations, and, having just n characteristic frequencies at our disposal, it is hopeless
to completely solve B = 0 and eliminate the whole obstruction. The torus would not be just translated.

Appendix A: The inverse function theorem and regularity of ¢

We state here the implicit function theorem we use to prove Theorem A as well as the regularity statements
needed to guarantee uniqueness and smoothness of the normal form. These results follow from [Féjoz
2010; 2017]. Note that we endowed functional spaces with weighted norms, and bounds appearing in
Propositions 4.2-4.3 may depend on |x|; (as opposed to the analogous statements in [Féjoz 2010; 2017]);
for the corresponding proofs taking into account these (slight) differences, we send the reader to [Massetti
2015a; 2015b] and the proof or Moser’s theorem therein.

Let E = (Es)o<s<1 and F = (F;)o<s<1 be two decreasing families of Banach spaces with increasing
norms | - |y and let BSE(O') = {x € E : |x|; < o} be the ball of radius o centered at 0 in E;.

On account of composition operators, we additionally endow F with some deformed norms which
depend on x € BSE (s) such that

|y|0,s = |y|s and |y|)?,s =< |Y|x,s+|x—)ﬂs-

Consider then operators commuting with inclusions ¢ : Bﬁrg
#(0)=0.
We then suppose that if x € BSEJrU (0) then ¢’ (x) : Es4o — F; has aright inverse ¢'~!(x) : Fypg — E,

(0) > F;, with0 <s <s+4o0 < 1, such that

(for the particular operators ¢ of this work, ¢’ is both left- and right-invertible).
Suppose ¢ is at least twice differentiable.
Lett:=17"+7"and C:=C'C".

Theorem A.1 (inverse function theorem). Assume

_ o
¢ () 8yl = —18¥ a5t (A-1)

C//
19" (x) - 8x%2|, s < F|8x|§+a Vs,0:0<s<s+o <1, (A-2)

where C' and C" depend on |x |1y, and v/, 7" > 1.
Foranys, o, nwithn <s and e < 7702’/(28’C2) (C>1, 0 <3C), ¢ has aright inverse \ : BSFJFU(E) —
BSE(n). In other words, ¢ is locally surjective:

BE, (&) c ¢(BE ().

Proposition A.2 (Lipschitz continuity of ¥). Leto <s. If y,y € BSF Yo (&) withe = 34T 1674567 (43,

the following inequality holds:

IW(y) _W()A)”s = L|y_j}|x,s+(7»

with L = 2C’/0’/. In particular, W being the unique local right inverse of ¢, it is also its unique left
inverse.
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Proposition A.3 (smooth differentiation of ). Let 0 < s < s + o and € be as in Proposition A.2. There
exists a constant K such that for every y, y € Bs‘ia () we have

W =) —¢ T @G = s K ©@IF = y13 540

and the map ' : Bf, (¢) — L(Fy4o, Es) defined locally by ¥'(y) = &'~ (W () is continuous. In
particular W has the same degree of smoothness as ¢.

It is sometimes convenient to extend i to non-Diophantine characteristic frequencies (o, A). Whitney
smoothness guarantees that such an extension exists. Let suppose that ¢ (x) = ¢, (x) depends on some
parameter v € B¥ (the unit ball of R¥) and that it is C' with respect to v and that estimates on ¢! and
¢! are uniform with respect to v over some closed subset D of RX.

Proposition A.4 (Whitney differentiability). Let us fix €, 0, s as in Proposition A.2. The map ¥ :
D x BSFJFU () > Bf(n) is C'-Whitney differentiable and extends to a map r : R x BSFM () > BSE(n)
of class CL. If ¢ is C*, 1 < k < oo, with respect to v, this extension is CX.

Appendix B: Inversion of a holomorphism of T}

We present here a classical result and a lemma that justify the well-definedness of the normal form
operator ¢ defined in Section 1.

Complex extensions of manifolds are defined with the help of the £*°-norm.

Let

Te=C"2n7" and T¢=T¢xC",
T/ ={0eTL:10]:= [max Imé;| <s}, Ti={©®,r)eT¢: |dmb,r)| <s},
=J=n

where [(Im 6, r)| ;= max<;<, max(|Im6;|, |r;|).

Let also define R} := R" x (—s, s) and consider the universal covering of T}, p: Ry — T7.
Theorem B.1. Let v : T{ — C" be a vector field such that |v|; < o/n. The map id+v : T{_ — R}
induces a map ¢ =id+v : T7_  — T7 which is a biholomorphism and there is a unique biholomorphism
Vi T¢ ,, = 1§, suchthat g oy =idy»_, .

s—20

—0

In particular the following hold:
% —id|s—20 < |V]s—o
Clnd, l‘f |v|S < 6/(2’1)’
. 2
Ilﬁ/ —id[s_2s < ;|v|s-
For the proof we again direct readers to [Massetti 2015a; 2015b].

Corollary B.2 (well-definedness of the normal form operator ¢). Forall s, o if G € G2/, then G~ €
AT, T )

Proof. We recall the form of G € g;’iﬁ:

GO,r)=(p(0), Ro(0) + R1(6) - ).
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G~ ! reads as
GO, = (¢ @), R op™ (0)-(r —Ryo ™' (8))).

Up to rescaling norms by a factor of %, like x|l := %Ix [, the statement is straightforward and follows
from Theorem B.1. By abuse of notations, we keep on denoting || x| by |x|s. O

Appendix C: Fourier norms

Let A(T}, C) be the space of holomorphic functions on T with values in C, endowed with the norm

1Al = suplfi(r)l e, k= lki|+ - + [knl.

i Irl<s

If f € A(T}, Mat,,(C)), the definition of the norm is adapted in the obvious way and the expression | fi (r)|
denotes the standard operator norm sups | fi (NE|. If f: T} — C", then || f||, = maxi<j<, (I f71,)-

Lemma C.1. Let f € A(T{,,,C) and let h € A(T{, C") be such that ||h|; < o/e, then

1
I f @, r+h@, )l < W”f”ﬁ—a'

Proof. Let f(0,r +h(0,r))=)_, D" f(6,r)h"(0, r)/n! be the Taylor expansion of f. Then

1F@. 7 +h@. )l <Y sup (Z > |D"fz<r)||hk.(r>|---|hkn<r>|)e"'s,

ko rlss N T ek

where k' € 7", i =1, ..., n, are the Fourier indexes. Since |k| < |[€]| + [k'|+-- -+ |k"],

| f@,r+h@, r)ll; < sup <Z > D" £, (r) e | (r) e 1s - - |hkn(r)|e|knls)

ko Irss N T k=i

= Z (Z Yo supID” fe)lel g ()l g <r>|e"‘"'s)

no ek pepkn=g 1SS

< Z (Z Z sup |D”f£(r)|elflslhkI (r)lelkl\s e g (r)|e|k”|s)

no ek pepkn=g 1SS

<Z _Zsupm"fz(rne"'“Zsup g ()17 sup g ()|

) |r|<s ! |r|<s ) |r|<s

<Z(Z— sup A0 )el65)

n! |r|<s+o

where the last estimate follows from the fact that (D" ), = D" ( f;) and the classical Cauchy’s estimate by
observing that for all |r| < s letting RY, ; 5 & # 0, the analytic function ¢(z) = f(r +&) on the complex
disc |t| < o/|&| satisfies d" ¢ /dt"|,—9 = D" f (r)&". The factor n” comes from the classical bound on the
norm of a symmetric multilinear mapping by the associated homogeneous polynomial; see for example
[Harris 1975].
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It thus follows that

n h n
Lf 6, r +h@, )l szzl sup | fg(mmz (” ||s> SIEIG50)
rl<s+o \/

T2 —elhll /o)
hence the stated bound. |

=2/l

Lemma C.2. Let f € A(T{,,,C) and h € A(T}, C) be such that ||h||; < o then

If©O+hO), )y <l flls1o-
For the proof, see [Chierchia 2003, Appendix B] for example.
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GLOBAL RESULTS FOR EIKONAL HAMILTON-JACOBI EQUATIONS
ON NETWORKS

ANTONIO SICONOLFI AND ALFONSO SORRENTINO

We study a one-parameter family of eikonal Hamilton—Jacobi equations on an embedded network, and
prove that there exists a unique critical value for which the corresponding equation admits global solutions,
in a suitable viscosity sense. Such a solution is identified, via a Hopf—Lax-type formula, once an
admissible trace is assigned on an intrinsic boundary. The salient point of our method is to associate to
the network an abstract graph, encoding all of the information on the complexity of the network, and to
relate the differential equation to a discrete functional equation on the graph. Comparison principles and
representation formulae are proven in the supercritical case as well.

1. Introduction

Over the last few years there has been an increasing interest in the study of the Hamilton—Jacobi equation
on networks and related questions. These problems, in fact, involve a number of subtle theoretical issues
and have a great impact in the applications in various fields, for example, to data transmission, traffic
management problems, etc. While locally —i.e., on each branch of the network (arcs) —the study
reduces to the analysis of 1-dimensional problems, the main difficulties arise in matching together the
information “converging” at the juncture of two or more arcs, and relating the /local analysis at a juncture
with the global structure/topology of the network.

In this article, we provide a thorough discussion of the above issues in the case of eikonal-type
Hamilton—Jacobi equations on embedded networks (in R” or on a Riemannian manifold, see Remark 3.1).
We show that there exists a unique critical value for which the corresponding equation admits global
solutions, and extend most of the results known in the continuous setting for the critical and supercritical
cases. More specifically: we determine a uniqueness set (the Aubry ser) for global solutions and provide
—1-Lax-type representation formulae; we study critical subsolutions, their properties and constraints, and
show the existence of C! critical subsolutions; we describe —1-Lax representation formulae for maximal
supercritical subsolutions. See the Main Theorem in Section 4 for a more detailed description.

The main rationale behind our approach consists in neatly distinguishing between the local problem on
the arcs and the global analysis on the network. While the former can be solved by means of (classical)
1-dimensional viscosity techniques, the latter is definitely more engaging.

MSC2010: primary 35F21, 35R02; secondary 35B51, 49L.25.
Keywords: Hamilton—Jacobi equation, embedded networks, graphs, viscosity solutions, viscosity subsolutions, comparison
principle, discrete functional equation on graphs, Hopf-Lax formula, discrete weak KAM theory.
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Our novel idea is to tackle it by associating to the network an abstract graph, encoding all of the
information on the complexity of the network, and to relate the problem to a discrete functional equation
on the graph. This allows us to pursue a global analysis of the equation — that goes beyond what happens
at a single juncture — as well as to prove uniqueness and comparison principles in a simpler way. To
the best of our knowledge, this is the first time that comparison-type results are obtained in the network
setting by completely bypassing the difficulties involved in the Crandall-Lions doubling variable method,
in favor of a more direct analysis of a discrete equation.

In addition to this, by exploiting the simple geometry of the abstract graph we are able to identify an
intrinsic boundary — the Aubry set— on which admissible traces can be assigned in order to get unique
critical solutions on the whole network; these solutions can be represented by means of Hopf—Lax-type
formulae. In the supercritical case we get existence and uniqueness of solutions, on any open subset of
the network, continuously extending admissible data prescribed on the complement.

Let us point out that the problem of formulating boundary problems on the network and accordingly
determining “natural” subsets on which to assign boundary data is a subtle issue, yet not well settled in
the literature; we believe that our approach helps clarify this matter, at least in the class of equations that
we are considering.

The notions of viscosity solution and subsolution that we adopt are very natural in this setting (see
Definitions 3.6 and 3.7). More specifically, the tests we use at vertices are classical in viscosity solutions
theory and consist in (unilateral) state-constraint-type boundary conditions, introduced by Soner [1986] to
study control problems with constraints. In this regard, the notion of solution requires that at each vertex
the state-constraint condition holds for at least one arc ending there: it does not require other mixing
conditions (on the vertices) between equations defined on different incident arcs.

Very recently, the same notion of solution has been also considered by Lions and Souganidis [2016] to
deal with 1-dimensional junction-type problems for nonconvex discounted Hamilton—Jacobi equations
and study its well-posedness (i.e., comparison principle and existence). Global solutions on networks,
however, are not therein studied.

As far as subsolutions are concerned, we only ask that they are continuous on the network and are
(viscosity) subsolutions to the equation on the interior of each arc; no extra conditions are required on
vertices. These assumptions are the minimal requirements that one needs to ask and, at a first sight, it
might seem surprising that they are sufficient to develop a significant global theory. However, the validity
of this approach is supported, among other things, by the fact that the notion of solutions can be recovered
in terms of a maximal subsolution attaining a specific value at a given point (vertex or internal point); see
Theorem 7.1.

We also wish to point out that our hypotheses, both on the topology of network and the Hamiltonians, are
very general. As far as the network is concerned, we only ask it to be made up by finite arcs and connected;
hence, it may well include multiple connections between different vertices, as well as the presence of loops.

The Hamiltonians are assumed continuous in both variables, quasiconvex and coercive in the first-order
variable on any arc. Hamiltonians on different arcs are independent from each other and no compatibility
conditions at the vertices are required. See Section 3B for more details.
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We are confident that this very same set of ideas can be successfully applied to a broad range of other
problems, for example, to the study of the discounted Hamilton—Jacobi equation on networks or to prove
homogenization results for the Hamilton—Jacobi equation on periodic networks (also known as topological
crystals). We plan to address these and other questions in a future work (in preparation).

1A. Previous related literature. There is a huge amount of literature related to differential equations
on networks, or other nonregular geometric structures (ramified/stratified spaces), in various contexts:
hyperbolic problems, traffic flows, evolutionary equations, (regional) control problems, Hamilton—Jacobi
equations, etc. An exhaustive description of all of these areas would go well beyond the aims of this
paper; we mention a few noteworthy papers, [Achdou et al. 2013; Barles et al. 2013; 2014; Bressan
and Hong 2007; Camilli and Marchi 2013; Camilli et al. 2013; Davini et al. 2016; Galise et al. 2015;
Garavello and Piccoli 2006; Imbert and Monneau 2016; 2017; Imbert et al. 2013; Lions and Souganidis
2016; Pokornyi and Borovskikh 2004; Rao et al. 2014; Schieborn and Camilli 2013; Soner 1986].

A model similar to ours has been previously considered by Schieborn and Camilli [2013], however,
just in the supercritical case and under some restriction on the topology of the network. In comparison
with their hypothesis, we do not require continuity of the Hamiltonians at the vertices (and accordingly,
no mixed conditions on the test functions at the vertices) and we do not ask a priori existence of a regular
strict subsolution.

Other relevant recent contributions are [Lions and Souganidis 2016] (which we have already mentioned
above) and [Imbert and Monneau 2017]. In particular, the latter is a substantial work — whose point of
view and techniques are rather different from ours — in which Imbert and Monneau attempt to recover
the doubling variable method to their setting, by introducing an extra parameter (the flux limiter) and a
companion equation (the junction condition) and by using special vertex test functions. See also other
related works by the same authors and collaborators [Galise et al. 2015; Imbert et al. 2013; Imbert and
Monneau 2016].

Our analysis of the discrete functional equation is based on ideas and techniques inspired by the
so-called weak KAM theory, first developed by Fathi [2008] for the study of Tonelli Hamiltonian systems
on closed manifolds; see also [Sorrentino 2015]. Developing a similar approach in the discrete setting is
very natural and has been already exploited in several other works. In [Bernard and Buffoni 2006; 2007],
for example, a discretization of weak KAM theory was applied to investigate the properties of optimal
transport maps; a more systematic development of a discrete weak KAM theory for cost functions was
described by Zavidovique [2010; 2012]; see also [Davini et al. 2016]. In particular, [Zavidovique 2012]
shares ideas similar to ours, although our setting has the peculiarity of this interplay between the discrete
structure and the embedded network.

From a more dynamical systems point of view, a discrete analogue of Aubry—Mather theory and weak
KAM theory was also discussed in [Gomes 2005]; see [Su and Thieullen 2015] for a recent related work.

1B. Organization of the article. The article is organized as follows.
In Section 2, we provide a brief introduction to some topics in graph theory that will be needed in the
following.
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In Section 3, we describe our setting and the main objects involved in our analysis. More specifically:
in Section 3A we introduce the concept of embedded network and its properties; in Section 3B we
define Hamiltonians on a network and we detail which hypotheses we will be imposing thereafter; see
(Hy 1)-(Hy4). Finally, in Section 3C we introduce the eikonal Hamilton—Jacobi equation on a network
(HJa) and provide suitable notions for viscosity solutions and subsolutions (see Definitions 3.6 and 3.7).

Section 4 provides a statement of our main results (see the Main Theorem) and an outline of the
strategy of the proof, in order to guide the reader through Section 5 (local part), Section 6 (global part)
and Section 7 (from global to local part).

2. Preliminaries on graph theory

We recall some basic material on the theory of abstract graphs and on functions defined on them. For a
more detailed presentation of these and other related topics, we refer the interested reader, for instance,
to [Sunada 2013].

2A. Abstract graphs. A (abstract) graph X = (V, E) is an ordered pair of disjoint sets V and E, which
are called, respectively, vertices and (directed) edges, plus two functions

o:E—>V

and
“:E— E,

e—e,
with the latter assumed to be a fixed-point-free involution, namely satisfying

e#e¢ and e=e¢ foranyecE.

We give the following geometric picture of the setting: o(e) is the origin (initial vertex) of e and e is its
reversed edge, namely the same edge but with the opposite orientation. Analogously we define

t(e) = o(e),
the terminal vertex of e. The following compatibility condition holds true:
t(e) = o(e) = o(e).

We say that e links o(e) to t(e); observe that it might well happen that o(e) = t(e), and in this case e will
be called a loop. An edge is also said to be incident on o(e) and t(e). Two vertices are called adjacent if
there is an edge linking them or, in other terms, if there is an edge incident on both of them.

We say that the graph is finite if the set E, and consequently V, has a finite number of elements. We
denote by |V| and |E| the number of vertices and edges.
We define a path to be a finite sequence of concatenated edges, namely & = (ey, ..., ey) = (ei)i"i 1
satisfying
ttej) =o(ejq1) forany j=1,...,M—1.
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We set 0(§) = o(e;) and t(§) =t(eyr) and call them the initial and final vertices of the path. We say that &
links o(£) to t(£); we also say that £ is incident on some vertex if there is some edge composing the path
incident on it.

Given two paths & and 7, we say that £ is contained in 1, mathematically & C n, if the edges of &
make up a subset of the edges of n. If such a subset is proper, we say that & is properly contained in n. If
t(§) = o(n), we denote by £ U n the path obtained via concatenation of £ and 7.

We call a path a loop or a cycle if o(§) = t(§). A path without repetition of vertices except possibly
the initial and terminal ones will be called simple; in other terms & = (e[)llu is simple if

te)) =tlej)) = i=],
or if there are no cycles properly contained in £. Note that there are finitely many simple paths in a finite
graph.

A graph is called connected if any two vertices are linked by some path. All of the graphs we will
consider hereafter are understood to be connected and finite. Observe that the connectedness assumption
implies that the map o (and hence t) is surjective.

Given x € V, we set

E.={ec E|o(e) =x}, (D

which we call E,, the star centered at x; it should be considered as a sort of tangent space to the graph
at x. The cardinality of E, is called the degree (or valence) of the vertex x.

2B. Functions on graphs. In the following we will be interested in functions defined on abstract graphs.
It is useful to introduce the following notions:

« We define the 0-cochain group €°(X, R) as the space of functions from V to R.

o We define the 1-cochain group €' (X, R) as the space of functions from E to R, with the compatibility
condition w(e) = —w(e). This space plays the role of 1-forms on the graph. From now on we will
indicate the reverse edge e by —e and we will consider the pairing (w, e) := w(e).

The relation between ¢°(X, R) and ¢! (X, R) can be expressed in terms of the so-called coboundary
operator, or differential, d : €°(X, R) — ¢! (X, R), which is defined for any f € €°(X,R) and e € E as

df(e) := f(t(e)) — f(o(e)).

We can embed these spaces with the standard topology. A notion of convergence on the cochain spaces
is given via
fh—>f &= fulx) > f(x) foranyx eV,

wp > w <= wyle) >w() foranyeeckE.

A sequence f;, is said to be equibounded if

|fn(x)] < B forany x € V and some § > 0;
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similarly w, is said equibounded if
[{wn, e)] < B forany e € E and some 8 > 0.

It is clear that any equibounded sequences f,, and w, are convergent, up to subsequences.
We directly deduce from the above definitions:
Proposition 2.1. Let f, and f be in €°(X, R):
@) If fu — f,thendf, — df.

(1) If df, is equibounded and the sequence f, (xo) is bounded for some vertex xg, then f, is convergent,
up to subsequences.

3. Setting

In this section we first explain our setting, namely what is an embedded network and what we mean by
Hamiltonian on a network. Then we introduce the class of Hamilton—Jacobi equations on a network we
are interested in, and specify the notions of solutions and subsolutions.

3A. Embedded networks. An embedded network, or continuous graph, is a subset I' C RV of the form

r={Jr@o 1) crv
ye&
where £ is a finite collection of regular (i.e., C! with nonvanishing derivative) simple oriented curves,
called arcs of the network, that we assume, without any loss of generality, to be parametrized on [0, 1].
We denote by £* the subset of arcs y which are closed, namely with y (0) = y (1).

Remark 3.1. Our setting can be easily extended to the case in which I is embedded in a Riemannian
manifold (M, g), for example by means of Nash embedding theorem [1956]. Moreover, the results are
independent of the chosen parametrizations of the arcs. In this regard, one could also choose a more
intrinsic approach and consider arcs as 1-dimensional submanifolds, and the whole network as a stratified
space. Hereafter we do not adopt this point of view.

Observe that on the support of any arc y, we also consider the inverse parametrization defined as
y(s)=y(1—s) forsel0,1].
We call y the inverse arc of y. We assume

y (0, D)Ny'([0,1]) =2 whenever y # y" and y # 7" 2
We call vertices the initial and terminal points of the arcs, and denote by V the sets of all such vertices.
Note that (2) implies
y((0,1)NV =g foranyy ef.

We assume that the network is connected; namely given two vertices there is a finite concatenation of
arcs linking them.
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The network I inherits a geodesic distance, denoted by dr, from the Euclidean metric of RN. Hence,
hereafter the notions of continuity and Lipschitz continuity, when referring to functions defined on T,
must be understood with respect to such distance (which is indeed equivalent to the Euclidean one) and
the induced topology.

We can also consider a differential structure on I' by defining the tangent space at any x € ' \ V as
Ir(x)={Ay@® |2eR, y €& 1€(0,1) and x =y (1)}

and the cotangent space T{*(x) as the dual space (7T (x))*; namely, it is the set of linear functionals
p:Tr(x) — R.
We will say that a function f : ' — R is of class C!(T"\ V) if it is continuous in I" and

t— f(y(t)) is of class C!in (0,1) forany y € £.

For such a function we define Dr f(x), where x = y(#) for some y € £ and ty € (0, 1), as the unique
covector in T}*(x) satisfying
. d
(Dr f(x), y(10) = Zf()’(f))h:to»
where (-, -) denotes the pairing between covectors and vectors.
Notice that this definition is invariant for a change of parametrization from y to y.
We can associate to any continuous network I" an abstract graph X = (V, E) with the same vertices as the
network and edges corresponding to the arcs. More precisely, we consider an abstract set E with a bijection
V:.E—¢&. 3)
This induces maps o : E — V and ™ : E — E via

o(e) = W(e)0) and &= W~ (W(e)

satisfying the properties in the definition of graph. Intuitively, in the passage from the embedded network
to the underlying abstract graph X, the arcs become immaterial edges.

3B. Hamiltonians on networks. A Hamiltonian on a network I" is a collection of Hamiltonians H =
{H,},ce, where
H,:[0,1] xR — R,

(S, P) = H]/(S’ p)’
satisfies

H;(s,p)=H,(1—s,—p) foranyy ef. @
Notice that we are not assuming any periodicity on H, when y is a closed curve.
We require any H, to be
(Hy 1) continuous in (s, p);
(Hy?2) coercive in p;
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(Hy3) quasiconvex in p; i.e., for every a € R the set {p € R | H, (x, p) < a} is convex (provided it is
nonempty). Moreover, we assume that

Int({p | H,(x, p) <a})={p| H,(x, p) <a} foranya €R,
where Int( -) denotes the interior of a set.

We point out that, throughout the paper, the term (sub-)solution to Hamilton—Jacobi equations involving
the H,,, must be understood in the viscosity sense; see for example [Bardi and Capuzzo-Dolcetta 1997,
Barles 1994] for a comprehensive treatment of viscosity solutions theory.

We set forany y € £

a, ‘= max min H, (s, p), 5
Y se[0.1] peR y(s, p) )
¢y :=min{a : H, = a admits periodic subsolutions}. (6)

By periodic subsolution, we mean subsolution to the equation in (0, 1) taking the same value at the
endpoints.

Remark 3.2. The definition of ¢, is indeed well-posed. In fact, given y € £, because of the compactness
of [0, 1], we can choose a large enough to have

H(s,0) <a foranyse(0,1).

This shows that any constant function is a subsolution and, consequently, the set in the definition of
¢y is nonempty. It is also bounded from below since for a < a, the corresponding equation does not
admit subsolutions and, therefore, it does not admit periodic ones. Finally, by basic stability properties in
viscosity solution theory, there exists a periodic subsolution at the level c,,, which justifies the minimum
appearing in the definition.

We will essentially use c,, for y € £% but in principle the definition and the above considerations hold
for any y.

We stress that
a, <c, foranyyef.
‘We further define

dp :=max| max d,, maxc, f{. 7
0 {)/65\5* V? o egr ) @

We require a further condition:
(Hy4) Given any y € £ with a,, = ag, the map s — min,er H, (s, p) is constant in [0, 1].

Remark 3.3. The main role of (Hy4) is to ensure uniqueness of solutions to the Dirichlet problem
associated to the equation H, = a,, at least for the y with a,, = ag. The uniqueness property for such
kind of problems holds in general when the equation admits a strict subsolution, which is not the case at
the level a,,. The relevant consequence of condition (Hy4) is that the family of subsolutions to H, = a,
reduces to a singleton, up to additive constants; see Proposition 5.3.

Finally, condition (Hy4) is automatically satisfied if the H,, are independent of the state variable.
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3C. The eikonal Hamilton—Jacobi equation on networks. We define a notion of subsolution and solu-

tion to an equation of the form
H(x,Du)=a onT, (HJa)

where a € R. This notation synthetically indicates the family (for y varying in £) of Hamilton—Jacobi

equations
H,(s,woy))=a on(0,1). (HJ,a)
We start by recalling some terminology of viscosity solutions theory.
Definition 3.4. Given a continuous function w in [0, 1] and a function ¢ € C ([0, 11, we say that:
e ¢ is subtangent to w at s € (0, 1) if

w=¢ ats and w>¢ in(s—23J,s+4d) for some § > 0.

The notion of supertangent is given by just replacing “>" by “<” in the above formula.

e @ is a constrained subtangent to w at 1 if
w=¢ atl and w>¢ in(1—4,1) for some § > 0.

A similar notion, with obvious adaptations, can be given at t = 0.
Definition 3.5. Given a continuous function w in [0, 1] and a point sy € {0, 1}, we say that w satisfies
the state-constraint boundary condition for (HJ,a) at sq if

H,, (s0, ¢'(s0)) > a
for any ¢ that is a constrained C' subtangent to w at so.
Definition 3.6. We say that u : I' — R is a subsolution to (HJa) if
(i) it is continuous on I';
(i1) s = u(y(s)) is a subsolution to (HJy,a) in (0, 1) for any y € £.
We say that u is solution to (HJa) if
(i) it is continuous;
(i1) s = u(y(s)) is a solution of (HJ,a) in (0, 1) for any y € &;

(iii) for every vertex x there is at least one arc y, having x as terminal point, such that u(y (s)) satisfies
the state-constraint boundary condition for (HJ,a) at s = 1.

Compare also this definition with the one in [Lions and Souganidis 2016]. As far as we know, the
idea of imposing a supersolution condition on just one arc incident to a given vertex first appeared in
[Schieborn and Camilli 2013].

We do not provide a notion of supersolution. This could be done straightforwardly but we will not

need it in the remainder of the paper.
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Definition 3.7. Given an open (in the relative topology) subset I’ C T, we say that a continuous function
u:T — Ris solution to (HJa) in T if for any x e I\ 'V, x = y(sp) with y € &, 509 € (0, 1), the usual
viscosity solution condition holds true for u o y at sq. If instead x € I'’ NV, we require condition (iii) in
Definition 3.6 to hold.

Remark 3.8. The definition of (sub-)solutions on I" requires u o y to be a (sub-)solution of the corre-
sponding equation in (0, 1) on any arc y. If, in particular y is a closed curve, we must have in addition
u(y(0)) = u(y(1)). This explains why on any arc y € £* we are solely interested in periodic (sub-
)solutions, namely (sub-)solutions in (0, 1) taking the same value at 0 and 1. This also explains the role
of ¢,.

Remark 3.9. Let us point out that if the network is augmented by changing the status of a finite number
of intermediate points of arcs in I', which become new vertices, then the notion of solution to (HJa) is
not affected. More specifically, if a function is a solution with respect to the original network, then it is
still a solution for the augmented one; the converse property holds as well. This issue will be discussed
more in detail in Remark 5.16.

Given a continuous function u defined in [0, 1], it is apparent that a C! function ¢ is supertangent
(resp. subtangent) to u at sg € (0, 1) if and only if ¢(s) := (1 — s) is supertangent (resp. subtangent) to
s u(l —s) at 1 —so. Taking into account (4), we derive the following result.

Proposition 3.10. Given an arc y, a function u(s) is a subsolution (resp. solution) to (HJ, a) if and only
if s = u(1 —s) is a subsolution (resp. solution) to the same equation with H; in place of H,.

It is not difficult to see that Lipschitz-continuity of subsolutions on any arc, coming from the coercivity
condition in (Hy2), implies Lipschitz-continuity in I with respect to the geodesic distance. We provide a
proof in the Appendix for the reader’s convenience.

Proposition 3.11. The family of subsolutions to (HJ,a), provided it is not empty, is equi-Lipschitz
continuous on I" with respect to the geodesic distance dr.

We derive from the previous result, plus basic properties of viscosity solutions, the existence of the
maximal subsolution attaining a given value at a given point of the network.

Proposition 3.12. Let a be such that the equation (HJ a) admits subsolution in I'. Given y € I, a € R,
the function

w(x) = max{u(x) | subsolution to (HJa) with u(y) = o}

is still a subsolution.

4. Main results and strategy of the proof

The remainder of the article consists of the proof of our results on existence, uniqueness and regularity of
global (sub-)solutions to the eikonal Hamilton—Jacobi equation on I'.
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Main Theorem. Let I be an embedded network (finite, connected, possibly including loops and more
arcs connecting two vertices) and let X = (V, E) be the underlying abstract graph. Let us consider a
Hamiltonian H = {H, }, c¢ on the network, satisfying conditions (Hy 1)-(Hy4) for any y € £ and let ay
denote the value defined in (7).

L. Global solutions:

(1) (existence) There exists a unique value ¢ = c(H) > ay— called the Maiié critical value — for which
the equation H(x, Du) = c admits global solutions. In particular, these solutions are Lipschitz continuous
onT.

(ii) (uniqueness) There exists a uniqueness set Ax = Ax(H) C V, called the (projected) Aubry set of H,
such that the following holds. Let S, : V x V — R be the function defined in (34); then, given any
admissible trace g on Ay, i.e., a function g : Ax — R such that for every x, y € Ax

g(x) —g(y) < S:(y, x),

there exists a unique global solution u € C(I', R) to H(x, Du) = c agreeing with g on Ax. Conversely,
for any solution u to H(x, Du) = c, the function g = u| 4, gives rise to an admissible trace on Ax.

(iii) (Hopf-Lax-type formula 1) Let g : Ax — R be an admissible trace and u € C (", R) the corresponding
solution to H(x, Du) = c. Then, on the support of any arc y € £, u is given by

u(y(s)) = min{A, B},
where

A :=min{g(y) + S.(y, ¥(0)) | yeAx}+/ ol (t)dt,
0

1
B :=min{g(y) + Sc(y, (1)) | y € Ax} — / o. (1) dt,
N
with s € [0, 1] and o7, 0 defined as in (8), (9) with H, in place of H.
(iv) (Hopf—Lax-type formula 2): Let T'' be a closed subset of T with
I'Ny([0,11) # @ foranyy with W~ (y) € A%.

For any admissible trace g on T, in the sense of (65) with ¢ in place of a, there exists a unique solution
u e C(I',R) to H(x, Du) = c agreeing with g on I, which is given by

u(x) =min{g(y) + S, (v,x) | y € I},

where S CF (-, ) denotes the intrinsic (semi-)distance defined in (63).
II. Subsolutions:

(1) (maximal subsolutions) For a > ¢ and y € T, the maximal subsolution to (HJa) taking an assigned
value at y is a solution in T \ {y}.
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(i1) (PDE characterization of the Aubry set) Let Ar = Ar(H) C I" be the Aubry set on the network, as
defined in (49). The maximal subsolution to (HJc) taking a given value at a point y € I is a critical
solution on the whole network if and only if y € Ar.

(iii) (regularity of critical subsolutions) Any subsolution v :T' — R to H(x, Du) = c is of class C'(T'\ V)
and they all possess the same differential on Ar \ V. More specifically, if xo € Ar and xo = y (so) for
some y € & and sg € (0, 1), then its differential at xq is uniquely determined by the relation

(Dru(xo), y (50)) = 0, (50),

where o was defined in (8), and therefore

v(y () =v(y(0)) +/Sdc+(f)df forany s € [0, 1].
0

We infer from this that any pair of critical subsolutions differs by a constant on the support of y.

(iv) (existence of C' critical subsolutions) Given a function g : V — R such that

g(x)—g(y) <S.(y,x) forallx,yeV,

there exists a critical subsolution v on T', with v = g on V, which is of class C' on T'\ V. In addition, there
exists a critical subsolution v of class C'(I'\ V) satisfying

H, (s, Dv(y(s))) <c

foralls € (0,1) andy € £ with y((0,1)) N Ar = @.

(v) (Hopf-Lax formula for maximal supercritical subsolutions 1) Leta >cand V' C V. Forany g: V' - R
satisfying
§(x) —g(y) < Su(y,x) forallx,yeV,

where S, (-, -) was defined in (34), there exists a unique solution u to H(x, Du) = a in I' \ V' agreeing
with g on V'; in addition, u is also a subsolution to H(x, Du) = a on the whole of T. In particular, on
the support of any arc y € &, u is given by

u(y (s)) =min{C, D},
where

C=3(rO)+ f o (0) d,
0

1
D= §(V(1))—/ o, (1 dt,

g(x) if xeV/,
min{g(y) + S.(y,x) |ye V'} ifx &V,

with s € [0, 1] and o}, 0, defined as in (8), (9).

g(x):= {
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(vi) (Hopf-Lax formula for maximal supercritical subsolutions 2) Let a > ¢ and I’ be a closed subset of T.
Let g be an admissible trace on I, in the sense of (65), then there exists a unique solution u € C(T', R) to
(HJa) on T\ T agreeing with g on T, which is given by

u(x) = min{g(y) + S, (v, x) | y € T},
where S ar (-, ) denotes the intrinsic (semi-)distance defined in (63).

4A. Organization of the remaining sections and proof of the Main Theorem. For the sake of clarity,
we provide here an outline of the forthcoming discussion and of the main steps involved in the proof.

In Section 5, we focus on the local problem on each arc of the network. Namely, for each y € £ we
study the existence of (sub-)solutions to the 1-dimensional eikonal Hamilton—Jacobi equation (HJ, a)
with boundary conditions. In particular:

o We show that under suitable admissibility conditions on the boundary data, see (17), there exists a
unique solution and we provide a representation formula (Proposition 5.5).

o We derive a characterization of condition (iii) in Definition 3.6 in terms of this representation formula
(Proposition 5.6).

In Section 6 we concentrate on the global aspects of the problem:

e We introduce a discrete functional equation (DFEa) on the abstract graph X and provide the

corresponding notions of solutions and subsolutions. The crucial result linking solutions to this
equation and solutions to (DFEa) is proven in Proposition 6.2.

« In (30) we define the Marié critical value c(H). We first prove that this is the unique value for which
solutions to the discrete functional equation may exist (Proposition 6.5), and then that the critical
equation (DFEc) indeed admits solutions (Theorem 6.16).

e In (39) and (40) we define the Aubry set A% and the projected Aubry set Ax, which are nonempty
(Lemma 6.20). We prove in Theorem 6.21 that Ay is a uniqueness set and provide a Hopf-Lax-type
representation formula for the solutions to (DFEc) in terms of its values on Ay.

The supercritical case will be discussed in parallel to the critical one (see Propositions 6.3 and 6.6 and
Theorem 6.23).
Finally, in Section 7 we switch our attention back to the immersed network:

e We prove in Theorem 7.1 that the notion of solution can be recovered in terms of maximal subsolution
attaining a specific value at a given point.

» We introduce the analogue of the Aubry set on the network, we show in Theorem 7.5 that all critical
subsolutions are of class C! on it and they all have the same differential on this set.

o We show the existence of C! critical subsolutions that are strict outside of the Aubry set (Theorem 7.6).

o We provide representation formulae and uniqueness results with traces that are not necessarily defined
on vertices (Theorem 7.9).

For the reader’s convenience, we provide here some references to the proof of each claim.



184 ANTONIO SICONOLFI AND ALFONSO SORRENTINO

Proof of the Main Theorem.

(D (@) Existence follows from Theorem 6.16 and Proposition 6.2; Lipschitz continuity follows from
Proposition 3.11.
(i1) This part is obtained by combining Proposition 6.2 and Theorem 6.21.
(iii) This representation formula is proved in Proposition 5.5.
(iv) See Theorem 7.9(i).

(I) (i) See Theorem 7.1.
(i1) See Proposition 7.4.
(iii) See Theorem 7.5.
(iv) See Theorem 7.6.
(v) These results are obtained by combining Propositions 6.3 and 6.6 and Theorem 6.23 and using
the representation formula in Proposition 5.5.
(vi) See Theorem 7.9(ii). O

5. Local part: the eikonal Hamilton-Jacobi equation with boundary conditions on arcs

In this section we focus on a single arc y and study the family of equations (HJ, a) in (0, 1), plus suitable
boundary conditions. We assume

a>ag= max{yrer}Saé* ay, f/rgx cy}.
Our aim is to find admissible conditions on boundary data at s = 0 and s = 1 to get solutions of
the corresponding Dirichlet problem, to show uniqueness of such solutions and, finally, to provide a
characterization of maximal subsolutions taking a given value at s = 0 via state-constraint boundary
conditions.

We need specific results when y is a closed curve because in this case we are solely interested in periodic
(sub-)solutions, as explained in Remark 3.8. We address the issue in Section 5C. In Subsections 5A and 5B
we will not distinguish between y closed or not, and provide an unified presentation of the material.

The results are not new; we write down nevertheless the 1-dimensional representation formulae, which
are easy to handle and allow a direct and simplified treatment of the matter. We recall that, due to
coercivity and quasiconvexity assumptions, all subsolutions to (HJ, a) are Lipschitz-continuous in [0, 1],
and, in addition the notion of viscosity and a.e. subsolution are equivalent. Also notice that the subsolution
property is not affected by addition of constants.

To ease notation, we write H (s, p) instead of H, (s, p), and accordingly we consider equation (HJ, a)
with H in place of H, . We recall that the assumptions (Hy 1)-(Hy4) are in force.

5A. Setting of the local problem. We set, for s € [0, 1],

o, (s) =max{p | H(s, p) = a}, (®)
o, (s) =min{p | H(s, p) = a}. ®
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If a > a,, we have by (Hy3)
(0, (). 0 () =(p | H(s. p) <a} forsel0,1]. (10)
We deduce from assumption (Hy4) that if a,, = ag
a;; (s) = %_y (s) foranys €0, 1]. (11)

Proposition 5.1. The functions s — o' (s) and s — o (s) are continuous in [0, 1] for any a > a,,.

Proof. 1t follows directly from the continuity and the coercivity of H that the function s — a;; (s)= o, (s)

is continuous. If a > a,, the assertion follows from the fact that o, (s) and o, (s) are univocally

determined for any s by the conditions H (s, o, (s)) = H (s, o, (s)) = a and, respectively, o, (s) > a; (s)

oro, (s) < oj; (). O
Notice that

u subsolution = o~ (s) <u'(s) <ot (s) for ae. s. (12)

We introduce four relevant functions:

. /0 ot dr, (13)
. /O o) dt, (14)
S —/loa_(t)dt, (15)
5> — /la;(t)dt. (16)

Remark 5.2. According to (12), the function in (13) is the maximal (sub-)solution to (HJ, a) vanishing at
s =0, and the one in (14) the minimal (sub-)solution vanishing at s = 0. Analogously, the function defined
in (15) is the maximal (sub-)solution vanishing at s = 1, and the one in (16) the minimal (sub-)solution
vanishing at s = 1. All of these functions are of class C! because of Proposition 5.1.

We remark that when we write maximal (sub-)solution and the like, we mean it is maximal in the class
of subsolution to (HJ, a) with a given property and it is, in addition, a solution to the equation.

If a = a,, it follows from (11) that all of the above functions coincide up to an additive constant. We
can state the following result.

Proposition 5.3. The (sub-)solution to (HJ, a), with a = a,,, is unique up to additive constants.

From the properties of the solutions in (13) and (14), we directly derive a necessary condition (admis-
sibility condition) that two boundary data at 0 and 1 must satisfy in order to correspond to the values at
the endpoints of a subsolution to (HJ, a).

Lemma 5.4. Assume that there is a subsolution to (HJ, a) taking the values a and B at 0 and 1. Then

1 1
/aa(t)dtfﬂ—asf ol (t)dt. (17)
0 0
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The above condition is actually also sufficient:

Proposition 5.5. Given boundary data «, B satisfying (17), the function w,

s 1
s w(s) = min{a—i—/ G;_(t) dt, B —/ o, (t) dt}, (18)
0 s

is the unique solution to (HJ, a) taking the values a at s =0 and B at s = 1.

The proof is in the Appendix.

5B. Maximal subsolutions. The main result of this section is:

Proposition 5.6. Assume that w is a solution in (0, 1) to (HJ, a) for a > a,,, continuously extended up to
the boundary. If

H(,¢'(1)) >a forany c! supertangent ¢ to w constrained to [0, 1], (19)

then w is the maximal (sub-)solution taking the value w(0) at 0. Namely,

w(s) = w(0) + / ‘oFWydr fors €0, 1] 20)
0

Conversely, if a solution w is of the form (20), then condition (19) holds true.
The proof is in the Appendix.

We fix so € (0, 1). By slightly generalizing the formulae provided in the previous result and arguing
separately in the two subintervals [0, so] and [sg, 1], we get:

Corollary 5.7. Let sg € (0, 1). For any a € R, the function

a— [Poy(t)dt fors <so,
s> ’
oz—l—fSOaj(t)dt fors > s

is the maximal subsolution to (HJ, a) taking the value a at so. It is, in addition, a solution in (0, 1) \ {so},
but the solution property fails at sy, unless a = a,,.

Remark 5.8. In light of Proposition 3.10 and Remark 5.2, it is apparent that the maximal solution to
H (s, —u’) = a vanishing at s = 0 is given by
1
S — o, (t)dt.

1—s

This function satisfies the state-constraint boundary condition at s = 1.

5C. Closed arcs. In this subsection we assume that y is a closed curve. Keeping in mind Remark 3.8, we
aim to show the existence of a periodic (sub-)solution for any a or, in other terms, that periodic boundary
conditions at s = 0 and s = 1 are admissible in the sense of (17).

Recall that a > ag > c,,. We derive further information in the case where a = ag = ¢,,. We will exploit
the existence of periodic subsolutions at the level ¢, in (0, 1), say, to fix ideas, vanishing at 0 and 1, as
pointed out in Remark 3.2. These periodic subsolutions are sandwiched in between the function in (13)
and the one in (14), according to Remark 5.2. We derive:
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Lemma 5.9. We have

1 1
/a;(t)dthg/ o.f (1) dt, (21)
0 0

and both the inequalities are strict if a > c,.
This, in view of (17), in turn implies:
Corollary 5.10. There are periodic solutions to (HJ,a) in (0, 1).

Moreover:
1 1
Proposition 5.11. min{—/ o, () dt, / JCJ; (1) dt} =0.
0 0

The proof is in the Appendix.

From the previous result plus Proposition 5.6 and Remark 5.8, we derive the following.

Corollary 5.12. Let a = ¢, and a € R; then, either the maximal solution to H = a taking the value o at
s = 0 or the maximal solution to H (s, —u’) = a taking the value a at s = 0 is periodic.

In the final result of the section we provide a characterization for the maximal periodic subsolution
taking a given value at sy € (0, 1). This corresponds, in the case of nonclosed arcs, to Corollary 5.7.

Corollary 5.13. Let sy € (0, 1) and o € R. We set

k) 1
B =min{—/ o, (t)dt, / O';_(l‘) dt}.
0 k)

(1) The maximal periodic subsolution to (HJ,a) taking the value o at s, denoted by u, is uniquely
determined by the condition of being solution of the equation in (0, so) and (sg, 1) taking the values o
at so and o+ B at 0 and 1.

(i) If B = — [ o () dt, then
u(s) =o — /soaa (t)dt fors € [0, sol. (22)
If instead B = fsi) oTa(t)dt, then

u(s) =o+ /xaj(t) dt fors € [sg, 1]. (23)

0

The proof is in the Appendix.

5D. From local to global. The subsequent step in our analysis will be to transfer the Hamilton—Jacobi
equation from I' to the underlying graph X, where it will take the form of a discrete functional equation.
In doing this, the relevant information we derive from the above study is the value at s = 1 of the maximal
solution to H = a vanishing at s = 0. It is given, in accordance with Proposition 5.6, by

1
/ of(t)dt.
0
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Therefore, if y = W(e) and a > a,, we define

1
o4(e) = / of(t)dt. (24)
0
(recall that a > ag > c,).

Accordingly, we have
1
oy.(—e) := —/ o, (t)dt. (25)
0

If e is a loop, or equivalently y = W(e) a closed curve, we summarize the information gathered in
Propositions 5.9 and 5.11 as follows:

Proposition 5.14. If e is a loop then o,(e) > 0 for a > ¢, and
min{o, (€), oc, ()} =0.
Moreover, we directly deduce from the definition of o, and (10) that:

Lemma 5.15. The function

ar o,(e)

is continuous and strictly increasing in [a,, , +00).

Remark 5.16. As already announced in Remark 3.9, we conclude this section with a remark on the
invariance of the definition of solution to (#Ja) with respect to the addition of extra vertices to the
network (augmented network). We discuss this issue in the case of a single extra vertex xo = y (sg) for
some s € (0, 1) and y a nonclosed arc.

We first prove that a solution # on I is also a solution for the augmented network. According to
Proposition 5.5,

S0 1
u(xp) =min{u(y(0))+f oj(t) dt, u(y(l))—/ o, (1) dt}.
0 K

If u(xp) is equal to the first term in the parentheses, then, by Proposition 5.6, u satisfies the state-constraint
boundary condition with respect to the arc y |o.5,], having the new vertex xg as terminal point. Whereas, if
u(xp) equals the second term in the above formula, then the same property holds true for the arc y|jo,1—,]-
This shows the claim.

To prove the converse, we start with a solution v to (HJa) on the augmented network, with xg as the
extra vertex, and consider the arcs y; = y[0,5,) and y2 = ¥ |[4,1], both parametrized on [0, 1]. The point
is to show that the function v o y is a solution to (HJ,a) in (0, 1). It is apparently a subsolution in the
whole interval and a solution in (0, 1) \ {so}. It also satisfies the state-constraint boundary condition at
s = 1 either for the arc y; or for y». Since any subtangent to v o y at s¢ is a constrained subtangent at
s = 1 for both y; and y,, we deduce the supersolution property for v o y at sg.

Arguing along the same lines, one can also check that the forthcoming notions of critical value and
Aubry set are not affected by additions of new vertices.
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6. Global part: the discrete functional equation on the abstract graph

In this section we push our analysis beyond the local existence of solutions to (HJ, a) on each arc y, and
study the global existence of solutions to (Ja) on the whole network I'.

Let us start by noticing that if we consider V, the set of vertices of I, it is easy to check that any
solution w to (HJa) has a well-defined trace u = w|y on V, simply because of the continuity assumption.
The following uniqueness result is straightforward. We provide a proof in the Appendix for reader’s
convenience.

Proposition 6.1. Let u be a function defined on V. Then there exists at most one solution to (HJa) on T’

agreeing withu on V.

A converse property is by far more interesting, namely to find conditions on a function defined on V
in order to (uniquely) extend it on the whole network as solution to (H#Ja).

This issue — which is profoundly related to the global structure of the network — will be carefully
addressed in this section.

More precisely, we study the problem of the admissibility, with respect to the fullref (#Ja), of a trace
g : V — R defined on the global network and characterize all traces g that can be continuously extended
to solutions to (#Ja) on the whole of I' as solutions to an appropriate discrete functional equation on the
underlying abstract graph X = (V, E).

6A. The discrete functional equation. Given a > ay, the cochain o, € ¢! (X, R) is defined as in (24),
where ¢ = W~!(y) and W has been defined in (3).

If we recall the admissibility condition introduced in (17) plus (24) and (25), it is clear that the trace
on V of a function g : I' — R admissible for the equations on any arc satisfies

—0a(—e) =dg(e) = g(t(e)) —g(o(e)) <ou(e) foranyec E, (26)
which in particular implies
g(x) = min(3(1(e)) +0u(~e)) forx e V.
ecE,
where E, denotes the star centered at x, as defined in (1).
Inspired by this, we introduce the following discrete functional equation:
u(x) = m‘ign (u(t(e)) + 04(—e)) forxeV. (DFEa)
ecE,
Observe that the formulation of the discrete problem takes somehow into account the backward
character of viscosity solutions.
A function v is a solution to (DFEa) in some subset V' of V if (DFEa) holds true with v in place of u

andx € V'
A function u : V — R is a subsolution to (DFEa) if

u(x) < m}gn(u(t(e)) +04(—e)) forxeV 27)
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or, equivalently, if for each e € E we have
du(e) < aq(e), (28)

which is equivalent to asking that u(t(e)) < u(o(e)) + o,(e) foreach e € E.

A subsolution is qualified as strict at xo € V if a strict inequality prevails in (27) when x is replaced
by x9. We say that u is strict on a set A C V if it is strict at every x € A. We say that u is strict if it is
strict everywhere on V.

It is apparent that the property of being a solution or a subsolution is not affected by the addition of
constants.

Our goal is to prove the existence of a solution to (DFEa) (see Theorem 6.16). In fact, there is a crucial
relation between the functional equation (DFEa) and (HJ a):
Proposition 6.2. Given a > ag:
(i) Any solution to (DFEa) in V can be (uniquely) extended to a solution of (HJa) in I'; conversely the
trace on 'V of any solution of (HJa) in T is a solution to (DFEa).
(i) Any subsolution to (DFEa) in V can be extended to a subsolution of (HJa) in T'; conversely the

trace on 'V of any subsolution of (HJa) in I' is a subsolution to (DFEa).

Proof. Assume that u solves (DFEa). Let x and y be two adjacent vertices, and e an edge with initial
vertex x and final vertex y. We set y = W(e) and consequently y = W (—e); then y(0) = y (1) = x and
y (1) = y(0) = y. By the very definition of (sub-)solution to (DFEa), we have

u(y (1)) —u(y(0)) < oule),
u(y (1) —u(y (0)) =u(y(0)) —u(y (1)) = —ou(—e).

Taking into account (17), we derive that the values u(y (0)) and u(y (1)) are admissible for (HJ,a) in
(0, 1). We therefore deduce from Proposition 5.5 that there is a unique solution, say w : [0, 1] — R, to
(HJ, a) taking precisely these values at the boundary. We define

v(z) =w(y ' (z)) forzey((0,1)).

Since v ((0, 1)) = 7 ((0, 1)), one needs to check that this definition is well-posed, performing the same
construction for y, but this is a direct consequence of Proposition 3.10.

So far, we have successfully checked conditions (i) and (ii) in the definition of solution to (HJa) (see
Definition 3.6). It is left to show (iii). Since u is a solution to (DFEa), for any x € V there is an edge ¢y
with x as terminal vertex such that

u(x) —u(o(ep)) = oq(ep).

Taking into account (24) and Proposition 5.6, for y = W(ep), we deduce that v o y actually satisfies the
state-constraint boundary condition in (iii) with respect to (H/J, a).
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Conversely, let u be a real function on V which is the trace on I" of a solution to (HJa). It follows
from the compatibility condition (17), and the notations (24)—(25), that u is a subsolution to (DFEa); i.e.,

u(x) < min (u(t(e)) +04(—e)) forx e V. (29)

In order to show that it is a solution to (DFEa), we need to prove that equality holds in (29) for every
x € V. In fact, since u is the trace of a solution to (#Ja), it follows from condition (iii) in Definition 3.6,
that for every vertex x there is at least one arc y having x as terminal point such that u(y (s)) satisfies the
state-constraint boundary condition for (HJ,a) at s = 1. In particular, in light of Proposition 5.6, see
(24), this implies that there exists e with t(e) = x, or in other terms —e € E, such that

u(x) —u(o(e)) =aa(e)
or equivalently

u(x) =u(t(—e)) +oq(e).

Hence, equality holds in (29), and this completes the proof of item (i). Item (ii) can be proven arguing
along the same lines. O

The same argument as in the above proof allows also showing the following:

Proposition 6.3. Given a > agand V' C V, a function u : V.— R which is a subsolution to (DFEa) in V
and solution in VA\V' can be (uniquely) extended to a function v : ' — R which is a subsolution of (HJa)
in T and a solution in T\ V. Conversely, the trace on V of a function v : T — R which is a subsolution
to (HJa) in T and a solution in T\ V' is a subsolution to (DFEa) in V and a solution in V\V'.

6B. Existence of solutions to (DFEa) and critical value. We want to introduce a notion of critical
value for (DFEa) and prove the existence of solutions.
Let us start by proving the following stability properties of solutions and subsolutions.

Proposition 6.4. (i) Let a, be a sequence in R converging to some a. Let u,, be subsolution to (DFEa,,)
for every n, with u,(xo) bounded for some xo € V; then u, converges, up to subsequences, to a
subsolution to (DFEa).

(i1) Let v, be a sequence of solutions to (DFEa) for some a € R, with v, (xy) bounded for some xo € V;
then v, converges, up to a subsequence, to a solution to (DFEa).

Proof. Owing to the definition of subsolution and Lemma 5.15, we see that
(duy, e) <op(e) foreveryeeE,

where b =sup a,,. This implies that the du,, are equibounded. We therefore get, exploiting the boundedness
assumption on xo and Proposition 2.1(ii), that u, is convergent, up to subsequences, to some u. By
Lemma 5.15 we have

u(t(e)) —u(o(e)) —oq(e) = li;}l(un(t(e)) —un(0(€)) —04,(e)) <0

for any e, showing that u is a subsolution to (DFEa).
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Let now v, be a sequence of solutions to (DFEa); because of the previous point, v, converges, up to
subsequences, to a subsolution v of the same equation. It is left to show that v is indeed a solution. Given
x €V, we find ¢, € E, with

Un(t(en)) — vn(x) — 04(—e,) = 0.
Since the edges are finite, we deduce that there exists eg € E, such that
en =eo for infinitely many n.
Up to extracting a subsequence, passing to the limit as n goes to infinity, we obtain
v(t(eo)) — v(x) —04(—ep) = 0. U
We define the critical value for (DFEa) (also called the Maiié critical value) as
¢ = c(H) := min{a > ag | (DFEa) admits subsolutions}. 30)

First of all, notice that it is well-defined. In fact, because of the coercivity of the H,,, we know o, is
strictly positive for every e, when a is large enough, so that any constant function is a subsolution to
(DFEa). This shows that c is finite. Note the minimum in the definition of c is justified by Proposition 6.4,
showing the existence of critical subsolutions (namely, subsolutions to (DFEa) with a = ¢).

The relevance of the critical value is apparent from the following result.
Proposition 6.5. If there exists a solution to (DFEa), then a = c.

Proof. Clearly a > c, since every solution is also a subsolution. If a > ¢, then there exists a strict
subsolution u to (DFEa). Let us assume, by contradiction, that there exists also a solution v. Let x( be
point at which u — v achieves its maximum; then

v(x0) —v(t(e)) <u(xp) —u(t(e)) foranyee Ey,. 3D
By the very definition of solution applied to v, there is ¢y € E,, such that
v(xo) = v(t(eo)) + 0a(—eo).
We derive, taking into account (31),
u(xo) = u(t(eo)) +oq(—eo),
which is in contrast with the very definition of strict subsolution. ]

We further deduce a uniqueness result in the supercritical case.

Proposition 6.6. Let a > ¢ and V' C V. For any given function u defined on V' there is at most one
solution v of (DFEa) in V\V' agreeing withu on V',

Proof. Assume by contradiction that there are two distinct solutions | and u, both satisfying the statement.
Since a > ¢, we know that there is a strict subsolution w to (DFEa). Therefore, given A € (0, 1) we have

Aw(x)+ (1 =2 u(x) < erreljign(?L w(t(e)) + (1 = A) ui (t(e)) + oa(—e)) (32)
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for any x € V\V". Up to interchanging the roles of u; and u,, we can assume that maxy (u; —u;) > 0, so
that any maximizer is outside V. For A sufficiently close to 0, we still have that [A w + (1 — A) u1] — us
achieves its maximum in V\V". Let xo be one of these points of maximum; then, for every e € E,,, we have

[A w(xo) + (1 —2A) u1(x0)] —u2(xo) = [A w(t(e)) + (1 — 1) ui(t(e))] —ua(t(e))
or
uz(xo) < uz(t(e)) + 1 w(xo) + (1 — 1) ui(xo) — A w(t(e)) — (1 —A) ui(te)).

Using (32) we can deduce

u2(xo) < min (u2(t(e)) — 0a(—e))

in contrast with xo ¢ V' and u, being solution to (DFEa) in V\V'. O
Given a > ag, we define for any path & = (e, ..., eyn) = ()M,
M
0a(§) =) 0aler), (33)
i=1
and
Sq(x, y) :=1inf{o,(§) | £ is a path linking x to y}. (34)

The following triangle inequality is a direct consequence of the definition:
Sa(x,y) <84(x,2) +S.(z,y) foranyx,y,zin V. (35)
The next result starts unveiling the major role of cycles in the forthcoming analysis.
Lemma 6.7. S, # —oo if and only if
04(§) =0  forany cycle §,
which is equivalent to saying that S,(x, x) > 0 for any x € V.

Proof. 1f 0,(§) < 0 for some cycle &, then going through it several times, we deduce that S, = —oc.
Conversely, if 0,(§) > 0 for any cycle &, then

Sa(x,x)>0 foranyx eV
and therefore S, # —o0. O
From the very definition of subsolution we derive the following result.
Proposition 6.8. A function u is a subsolution to (DFEa) if and only if
u(x) —u(y) < Sa(y,x) foranyx,yeV.

Proof. 1t follows easily from the definitions of subsolution in (28) and o, in (33) that

u(x) —u(y) <o,() forany path & linking y to x.
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Taking the minimum over all such paths, we get the inequality in the statement. The converse is trivial,
observing that
Sq(o(e), t(e)) <o,(e) foreveryec E. O

The previous result implies:
Corollary 6.9. If a > c then S, % —o0.
Moreover:

Corollary 6.10. Given a > c and x, y in V, there exists a simple path n with o(n) = x and t(n) = y such
that o4(n) = Sa(x, y).

Proof. Let & = (e,-)i"i | be any path linking x to y. If & is not simple there are indices k > j such that
t(e;) =t(e;). We assume, to ease notation, that k < M; the case k = M can be treated with straightforward
modifications.

We have that (ei)f.‘: it is a cycle and the paths (ei){zl and (ei)i"i 4+ are concatenated. We get,
according to Lemma 6.7, that

0a(&) = 0a((e)]_) +oa((ef_ ;1) +0a(eN i) = oal(e)) +oa (e iyy)

and (e; 'ii=1 U (e; l"i 441 18 still a path linking x to y. By iterating the above procedure, we remove all cycles
properly contained in & and end up with a simple curve &y with 0(§y) = x, t(§y) = y and 0,(&) < 0,(§).
This shows that S, (x, y) can be realized as the infimum of simple paths from x to y. Since there are

finitely many such paths, we get the assertion. U

The condition in Corollary 6.9 is actually necessary and sufficient, as shown by the next result. In the
proof we will use a form of the basic Bellman optimality principle adapted to our frame. It can be stated
as follows: if & = (¢;)!, is a path with

0a(§) = Sa(0(e), t(e))
and 1 < j <k <M, then n:= (e[)f.‘:j satisfies o, (1) = Sq(0(e;), t(er)).
Proposition 6.11. Assume S, # —oo. Given y € V, the function u = S,(y, -) is a solution to (DFEa) in
V \ {y} and a subsolution to (DFEa) in V.

Proof. The subsolution property comes from Proposition 6.8 and the triangle inequality (35). We proceed
by showing that u is a solution in V' \ {y}. Let x # y; then, by Corollary 6.10, there is a path § = (e[)f‘i |
linking y to x with

04(8) = Su(yv X).
By the Bellman optimality principle, the path n := (e,-)l.Ai Il satisfies

oa (1) = Sa(y, t(n) = u(t(n)).
Consequently

u(x) =o0,(n) +oq(em) = u(t(n)) +oq(em)
with —ey; € E,. Hence

u(x) —u(t(—ep)) =u(x) —ut(n) = oalem). O
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Using Proposition 6.8 and the triangle inequality (35), we also obtain
Corollary 6.12. The function
X = —=Sc(x,y)
is a critical subsolution for any fixed y € V.
Combining Corollary 6.9 and Proposition 6.11 we get:
Corollary 6.13. S, # —oo if and only if a > c.
We further have:

Proposition 6.14. Given y € V, the function x +— S,(y, x) is a solution to (DFEa) if and only if there
exists a cycle & incident on y with 0,(§) = 0.

Proof. (=) We will prove in Proposition 6.15 a more general property, namely that if the equation
(DFEa) admits a solution, then there is a cycle & with o,(§) = 0.

(«<=) Assume the existence of a cycle, say & = (e,-)l.ﬁi 1» wWith 0, (§) = 0 incident on y. Up to relabelling
the e;, we can set y = o(§) = t(§). We claim that u := S,(y, -) is a solution on the whole of V. By
Proposition 6.11, it is enough to prove the assertion at y. We have

0=S.(y,y) =u(y) <oalem) +Sa(y, 0len)) < 0a(§),

and since o,(§) = 0, all the inequalities in the above formula must indeed be equalities; in particular

u(y) —u(t(—en)) —oq(em) = u(y) = Sa(y, olem)) —oalen) =0
with —ey; € E,. This proves the claim. O
As announced, we complete the above proof by showing:
Proposition 6.15. If the equation (DFEa) admits a solution, then there is a cycle & with 0,(§) = 0.

Proof. Let us assume that v is a solution to (DFEa). Take any x € V; by the definition of solution, we
can find an edge e with terminal vertex x such that

v(x) —v(o(e)) = au(e).

By iterating backward the procedure, we can construct for any M a path & = (ei)i"i | such that
v(t(e;)) — v(0(er)) = oa((e)];) forany j = k. (36)

Since the graph is finite, taking M large enough, we have that for suitable indices j > k, the path (el-){:k
is a cycle, so that v(t(e;)) — v(o(ex)) = 0, and the relation (36) provides the assertion. O

The argument of the next proof is reminiscent of the one used for the existence of critical solutions of
Hamilton—Jacobi equations in compact manifolds; see [Fathi and Siconolfi 2005].

Theorem 6.16. The critical equation (DFEc) admits solutions.
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Proof. We break up the argument according to whether ¢ = ag or ¢ > ag. Let us first discuss the first

instance. If in addition ¢ =a,, for some arc y, and we set e = (7t (y), then we get from (11), (24), (25) that
o.(eU(—e)) =0.

If instead ap = ¢,, for some closed arc y of the network, then e = W~!(y) is a loop and we obtain, by
Proposition 5.14,

o.(e)=0 or o.(—e)=0.

In both cases, we infer the existence of a critical solution in light of Proposition 6.14.

We proceed considering the case ¢ > ag. Let us assume by contradiction that there are no critical
solutions. For any y € V, setting u, = S.(y, -), we can therefore find by Proposition 6.11 a positive
constant 8, with

max (uy (y) — uy (t(e)) — oc(—e)) = =35, (37)
eckE,
We define u =) y Ay tty, where the Ay are positive coefficients summing to 1, and set
d =minA, d,.
y
Exploiting that all the u, are subsolutions on the whole of V and using (37), we conclude that for any e € E

u(t(e))—u(o(e))—o.(e) = Z )‘y (”y(t(e))_uy(o(e))_o'c(e))'i')\t(e) (”t(e) (t(e))_ut(e) (O(e))_ac(e))
y#t(e)
< —At(e) Ot(e) < —6. (38)

Owing to Lemma 5.15 and the fact that ¢ > aqg, there is agp < b < ¢ with
op(e) > o.(e) —6 foreverye e E;
then we deduce from (38) that
u(t(e)) —u(o(e)) —op(e) <0 for every e.

This proves that u is a subsolution to (DFEa) with a = b, which is impossible because b < ¢. Therefore
the maximum in (37) must be O for some yg, which in turn implies that S.(yo, -) is a critical solution,
as was claimed. O

Remark 6.17. Let u be a solution to (DFEc). Let e be a loop with o(e) =t(e) = x, and y = W(e) is
hence a closed curve. If ¢ < ¢, then, according to Proposition 5.14

0=u(o(e)) —u(t(e)) <oc(e), 0=u(o(—e))—u(t(—e)) <oc(-e),

which shows that neither e nor —e realizes
min (u(t(e)) + ou(—e)).

This in turn implies that the edge e, and consequently —e, can be removed from the edges of X without
affecting the status of solution for # or any other critical solution.
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Things are different if ¢ = ¢,, because in this case, see Proposition 5.14,
0 =min{o.(e), oc(—e)} = u(o(e)) — u(t(e)) = u(o(—e)) —u(t(—e)).
6C. The Aubry set and some structural properties of solutions. Inspired by what was discussed in the
previous subsection, we introduce the following definition.

Definition 6.18. The Aubry set is defined as

Ay = A% (H) = {e € E | belonging to some cycle with o.(§) = 0}. (39)
The projected Aubry set is given by

Ax = Ax(H) ={y € V | 3£ cycle incident on y with o.(§) = 0}. (40)

The projected Aubry set is partitioned into static classes, defined as the equivalence classes with respect
to the relation

Se(x, ¥)+ Sc(y,x) =0.

Equivalently x and y belong to the same static class if there is a cycle £ with o.(§) = 0 incident on both
of them; in particular, the whole cycle & is then contained in this static class.

Remark 6.19. Clearly, x € Ay if and only if x = o(e) = t(¢’) for some e, ¢’ in A% ; moreover, if e € A%,
then o(e) and t(e) belong to .Ay. The converse of this last property is not true because, for instance, if
e € Ay then —e might not belong to Ay . It is also possible to have a pair of adjacent vertices belonging
to different static classes of Ay linked by an edge not in A%, or even vertices of the same static classes
linked by multiple edges not all belonging to A%.

We immediately derive from Proposition 6.15 and Theorem 6.16 the following result.

Lemma 6.20. The Aubry sets are nonempty. Moreover,
Ax ={y eV |S.(y,y)=0}={y e V| S.(y, -) is a solution to (DFEc)}.

We have a structural result on critical solutions. By admissible trace g on V' C V (for the critical
equation), we mean a function satisfying

g(x)—g(y) <Sc(y,x) foranyx, yinV" (41)

Theorem 6.21. Given an admissible trace g on Ay, the unique solution to (DFEc) taking the value g on
Ax is
v(x) :=min{g(y) + Sc(y, x) | y € Ax}. (42)

In particular, Ax represents a uniqueness set for the equation.

Proof. Taking into account (41) and the fact that S.(y, y) =0 for any y € Ay, we deduce that g and v
coincide on Ay. The function v is a critical solution, since it is the pointwise minimum of a finite family
of solutions. This property can be easily derived from the definition of solution.
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Assume now that w is another solution agreeing with g on Ayx. Given any x € V, we construct, arguing
as in Proposition 6.15, a path £ = (e,-)i"i , with t(§) = x and such that
w(t(e;) —wloler)) = oe((e)]_y) forany j = k.

If M is sufficiently large, there must exist jy > ko such that (el-)lj0

1, 1s @ cycle. We deduce that there are
y € Ax and a path 7 linking y to x with

w(x) =w(y) +0oc(n) = g(y) + Sc(y, x) = v(x).
Since the converse inequality holds true by Proposition 6.8, we get w(x) = v(x). (I
We record for later use an immediate consequence of the above result:

Corollary 6.22. Given V' C Ay, and an admissible trace g on it, the function
v(x) :=min{g(y) + Sc(y,x) | y € V'} (43)
is the maximal solution to (DFEc) taking the value g on V.

We can also derive a representation formula for solutions at a > ¢ in some subset of V. To help in
understanding the next statement, we recall that S, (x, x) > O for any x € V whenever a > c.

Theorem 6.23. Let a > ¢ and V' C V. Let g be a function defined on V' satisfying (41) with S, in place
of S¢. Then the function

- e
~ |min{g(») + Sa(y, ) [y eV} ifx gV’

is the unique solution to (DFEa) in V\V' agreeing with g on V'. It is in addition a subsolution on the
whole of V.

Proof. We claim that
v(z) —v(x) < S,(x,z) foranyz, xinV. (44)

The property is true by assumption if both z and x are in V'; if instead z and y are in V\V’ we have

v(z) —v(x) <g(y) +Su(y, 2) —g(y) — Sa(y, x) < Salx, 2),

where y € V’ is optimal for v(x) and we have exploited the triangle inequality (35). If z ¢ V' and x € V/,
then (44) directly comes from the very definition of v. Finally, if z € V' and x ¢ V', we denote by y an
optimal element in V' and use the triangle inequality to write

v(z) —v(x) = 8(2) —8(y) = Sa(y, x) < Sa(y, 2) = Saly, x) < Salx, 2).

This concludes the proof of claim (44) and therefore shows, according to Proposition 6.8, that v is a
subsolution in V. Taking into account that S,(y, -) is a solution in V \ V/, we also get, arguing as in
Theorem 6.21, that v is a solution in V\ V" Uniqueness follows from Proposition 6.6. ]
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7. Back to the network

In this section we switch our attention back to the network I', or in other terms, we give again visibility,
besides the vertices, to the interior points of the arcs. We combine the global information gathered on the
abstract graph with the outputs of the local analysis on the arcs of the network. We define an appropriate
notion of Aubry set and provide a PDE characterization of its points.

Exploiting the richer (differentiable) structure of I, we establish, on the basis of our findings in the
previous section, some regularity properties for critical subsolutions and solutions. This will generalize
what is known for the continuous case in the framework of weak KAM theory; see for example [Fathi 2008].
Finally, we give specific uniqueness results and representation formulae for solutions on the network.

7A. Subsolutions and solutions on T'. The next result shows, as pointed out already in the Introduction,
how the notion of solution to (#Ja) can be recovered from the notion of subsolution. The relevance
of the issue is that the latter just requires the usual subsolution property on any arc and continuity at
the junctures. The argument significantly illustrates the interplay between the immersed network and
underlying abstract graph.

Theorem 7.1. Let a > c and y € I'; then the maximal subsolution to (HJ a) attaining a given value at y
is a solution in T \ {y}.

Proof. We can assume y € ' \ V; otherwise the assertion is a consequence of Propositions 6.8 and 6.11
and Proposition 6.3 with V' = {y}. It is not restrictive to take 0 as the value assigned at y. We therefore
denote by v the maximal subsolution vanishing at y; see Proposition 3.12. We select y € £ such that
y =y (s0) for some s € (0, 1), and set e = W~ (). We first assume that y is not a closed arc. Since v
must be in particular a subsolution in the arc y, we have by Corollary 5.7

1
v(V(l))if o, (1) dt =: B,

S0

v(y(0)) < — /socfa_(t) dt =:a,
0

where o o, are defined as in (8), (9). The maximal admissible trace g, in the sense of (41), on

V= {oa(e,), t(e)} dominated by o at o(e) = y(0), and B at t(e) = y (1), is
o ;= min{e, B+ S,(t(e), o(e))},
B* :=min{B, o+ S,(o(e), t(e))}.
According to Proposition 6.8, Theorem 6.23 and Corollary 6.22, the function w : V — R, defined as

ot if x = o(e),

wx)={p* if x =t(e)
min{a* + S,(0(e), x), B*+ S.(t(e), x)} if x Zo(e) and x #t(e),
is the maximal subsolution to (DFEa) on V agreeing with o* and B* at the vertices of e. It is in addition
a solution in V' \ {y(0), y(1)}. By Proposition 6.3 it can thus be extended to a subsolution of (HJa)
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in I, denoted by w, which is in addition a solution in I" \ {y(0), y (1)}. The function w is the maximal
subsolution to (HJa) taking the values o™ and B8* on the vertices of y, but it does not necessarily vanish
at y. We have in any case

v<w inT. (45)

To complete the proof, we need to suitably adjust w inside y in order to attain the value O at y. To this
end, we proceed by showing that the boundary data «*, 0 and 0, 8* are admissible, in the sense of (17),
for (HJ, a) restricted to the subintervals [0, so] and [so, 1], respectively. In fact,

a*

IA

o=— /so%_ (1) dt, (46)
0

and if a strict inequality prevails in the above formula, we get

1
ot = / o F (1) dt + Sa(t(e), o(e)). 47)

50
Let us consider a cycle in X of the form & U e, where £ is a path linking t(e) to o(e) with o,(§) =
S.(t(e), o(e)); see Corollary 6.10. Then o,(§ Ue) > 0 and consequently S, (t(e), o(e)) > —o,(e). By
plugging this relation into (47) and recalling the definition of o,(e), we get

1 1 S0
a*z/ o—;(t)dt—f oj(t)dr:—/ o (t)dt. (48)
0 0

S0

By combining (46) and (48) we have

50 S0
/ o, (t)dt < —a* < / o (t)dt,
0 0

proving the claimed admissibility property in [0, so]. A straightforward modification of the previous
argument shows the same in [sg, 1]. Thus, there exists a function u# on y ([0, 1]) uniquely determined by
requiring u o y to be a solution to (HJ,a) in (0, so) and (sp, 1), and in addition taking the values o*, O
and B* at ¥ (0), y and y (1), respectively. This is also the maximal subsolution of (HJ,a) in (0, 1) taking
such values at the boundary points and at s = sg. The function

= w inT\y(0, 1D,
w(x) = .
u i y([0,1])
is a subsolution to (#Ja) in I' and by the maximality property of u on y and (45),
v<w inT,

which immediately implies v = w.

The function v is by construction a solution to (#Ja) in I\ {y(0), y, y(1)}. Moreover, taking into
account Remark 5.2 and Proposition 5.6 applied to the subinterval [0, sg], we see that if w(y (0)) = «
then w satisfies condition (iii) in the definition of solution to (HJa) at y (0) with respect to the arc y. If
instead w(o(e)) = o + S, (t(e), o(e)) then again condition (iii) of the definition of solution is satisfied
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with respect to some arc different from y, y because of Propositions 6.11 and 6.3. Similarly, we prove
that v is a solution at y (1). This concludes the proof if y is not a closed arc.

If instead y is a closed arc, then we indicate by w the maximal periodic subsolution of (HJ,a) in
(0, 1) vanishing at s = sp; see Corollary 5.13. Arguing as in the first part of the proof, we see that the
maximal subsolution v to (#Ja) in I" vanishing at y is given by

o(x) = {w()/l(X)) in y ([0, 1],
w(y(0) + Sa(y(0), x) inI"\ y([0, 1]).
Taking into account the representation formulae for w provided in item (ii) of Corollary 5.13 and arguing
again as in the first part of the proof, we show that v is a solution to (HJa) in I" \ {y}, as was claimed. [
7B. Aubry setin I'. We define the Aubry set Ar on the network as
Ar = {x e RN | x = W(e)(t) for some e € A%, t €0, 11}. (49)

One could also consider a lift of Ar to the tangent bundle 7T, as in the continuous case. For example,
this could be useful to study the analogues in this setting of Mather’s measures, Mather sets, minimal
average actions, etc. (see for example [Fathi 2008; Sorrentino 2015] for precise definitions); this discussion,
however, would go beyond our current objectives, so we decided to postpone it to a future investigation.

Remark 7.2. We point out for later use that the support of an arc y belongs to Ar if and only if y = W (e)
and at least one between e or —e is in A%.

The first lemma regards subsolutions to the critical equation on X. Briefly, it says that— analogously
to what happens in the continuous case, see [Fathi 2008] — the differential of a critical subsolution is
prescribed on the Aubry set and that critical subsolutions are never strict on the Aubry set. On the other
hand, it is always possible to find critical subsolutions that are strict outside the Aubry set. This will be
used in the next subsection to obtain the same results on networks. See Theorems 7.5 and 7.6.

Lemma 7.3. Given a subsolution u to (DFEc), one has
(du, e) =o0.(e) foranye e Ax. (50)
Furthermore, there exists a subsolution w to (DFEc) with
(dw,e) <oc(e) foranyee E\ Ay. (51)
Proof. Let u be a critical subsolution and assume for purposes of contradiction that

(du,e) < o.(e) forsomee e Ay.

By the very definition of Aubry set, we can find a cycle & = (ei)lM , such thate =¢; forsome j=1,..., M

and o.(§) = 0. Taking into account that u is a subsolution, we have

(du, e;) <o.(e;) fori #j and (du, ej) < oc(ej).
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This implies
0="> (du,e;) < Y oee)) =0c(§) =0,
i i

which is impossible. We pass to the second part of the statement. We start constructing for any ey € E\ Ay
a critical subsolution u,, with

( dME()s eO) < OC(eO)‘ (52)

The argument will be organized taking into account the classification of edges in A% provided in
Remark 6.19. If t(eg) & Ay, then we set u,, = Sc(t(ep), - ); according to Lemma 6.20, u,, is not a critical
solution at t(eg) which implies (52). If t(eg) € Ax, we consider the critical subsolutions S, (t(egp), - ) and
—S¢(-, t(eg); see Proposition 6.11 and Corollary 6.12. Taking into account the characterization of Ay
given in Lemma 6.20, we have

— Sc(t(ep), 0(ep)) = Sc(t(ep), tleg)) — Sc(t(eo), o(ep)) = oc(eo),
Sc(o(ep), tlen)) = — Sc(t(ep), t(en)) + Sc(0(ep), tleg)) < oc(eo).

If equality prevails in both above formulae, we get

Sc(0(eo), t(e)) + Sc(t(en), 0(ep)) =0,

which is possible if and only if both o(ep) and t(eg) are in the Aubry set and belong to the same static
class. If this is not the case, we satisfy (52) up to choosing u,, equal to S.(t(ep), - ) or —S.(-, t(ep)). If
instead the two vertices are in the same static class, we claim that

Sc(t(eo), t(eo)) — Sc(t(eo), 0(eo)) = —Sc(teo), 0(en)) < oc(ep). (53)

In fact, we know, by the very definition of static class, that there is a path & linking t(eg) to o(eg) with all
the edges belonging to A% . Therefore, using Lemma 6.20 and the first part of the statement that we have
just proven, applied to the critical subsolution —S.( -, o(eg)), we have that

Sc(t(eo), 0(ep)) = —Sc(0(ep), 0(eo)) + Sc(t(en), 0(e)) = ac(§).

Were (53) false, we should further have

0= —S.(t(eo), o(en)) + Sc(t(eo), o(en)) = o (5§ Ueo)

and consequently eg € A%, which is impossible. Formula (52) is therefore satisfied with u,, = S.(t(eo), - ).
This completes the proof of (52).

We conclude arguing along the same lines as Theorem 6.16. Given ¢ € E \ A%, we denote by u, a
critical subsolution satisfying (52) with e in place of ey. We choose positive constants A, for e € E \ A%,
summing to 1, and define a critical subsolution via

w= Z Ae Ue.

ecE\ A%
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Given ¢g € E \ A%, we have

(dw, ) = Y A (dute, €0) + Ae, (ditey. €0) < 0c(ep),
eFeq

as we wished to prove. U

We derive a PDE characterization of points in the Aubry set, generalizing a property of the continuous
case.

Proposition 7.4. The maximal subsolution to (HJ c) taking a given value at a point y € I is a critical
solution on the whole network if and only if y € Ar.

Proof. If y € V, the assertion comes from Lemma 6.20; we can then assume from now on that y e "'\ V.
We prescribe, without loss of generality, the value O at y, and denote by v the maximal subsolution
vanishing at y; see Proposition 3.12. We denote by y an arc whose support contains y.

We first assume that y is not a closed curve. Taking into account Theorem 7.1, it is enough to show
that v is a solution at y if and only if y € Ar. Looking at the proof of Theorem 7.1 (we adopt the same
notations), we see that the solution property at y is in turn equivalent to the following: the solution of
(HJy,c) in (0, 1) taking the values v(y (0)), v(y (1)) at O, 1, respectively, vanishes at s = so. In light of
Proposition 5.5, this boils down to showing

min{v(y (0)) + A, v(y(1)) = B} =0, (54)

where oj , 0. are defined as in (8), (9), respectively, and

S0 1
A=/ ol (t)dt, B:/ o (t)dt.
0 S0

Taking into account the proof of Theorem 7.1, we know that

v(y(0)) =min{—D, C + S.(y(1), y(0))}, (55)
v(y(1)) =min{C, —D + S.(y(0), y (1))}, (56)
where
1 S0
C:/ ol (1) dt, D:/ oo (1) dt.
S0 0
Then
v(y(0) + A= { o'loc (0 = o (]dr vy () =D, (57)
fo1 o) dt+S:.(y(1), y(0)) ifv(y(0))=C+S.(y(1),y(0))
and
"ot @t) —o-()1d if v(y(1)) = C,
U(y(l))_B:{fm[c{C (t) =0 (]dt vy (1) 55)
— Jo o5 () dt 4+ Sc(y(0), y(1)) if v(y(1)) =—D+S.(y(0), y(1)).
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Exploiting the property that o.(§) > O for any cycle & in X, we see that
1
Sc(y(0), y (1)) = —oc(—e) = f o. (1) dt,
0

1
Sc(y (1), y(0)) = —oc(e) = —/0 o () dr.

Equality holds in the first formula if and only if there is a cycle & with —e C & and 0,.(§) =0, and in the
second one if and only if there a cycle n with e C £ and o.(n) = 0. We in addition have that

K 1
/ [of(t) —o (1)]dt =0 or f [0 (t) —o (1)]dt =0
0

50
if and only if ¢ = a,, and in this case both e and —e belong to A%. In light of the above remarks, (57)
and (58), we conclude that (54) holds if and only if y € Ar.

This concludes the proof when y is not a closed arc. The argument for y a closed arc goes along the
same lines just adapting the representation formulae for solutions of (HJ,c) and taking into account
Corollary 5.13. O

7C. Regularity results for critical subsolutions. We state and prove the main regularity results of this
section. They can be considered as a generalization to the network setting of the results in [Fathi and
Siconolfi 2004].
Theorem 7.5. Any critical subsolution u : T — R is of class C' in Ar \ V, and all such subsolutions
possess the same differential in Ar \ V.
Proof. Let u be a critical subsolution on I" and y = W(e) an arc with e € Ay. According to Lemma 7.3
and formula (50),

u(y (1)) —u(y(0)) = oc(e).

Therefore u o y is the maximal subsolution taking the value u(y(0)) at s = O and, according to
Proposition 5.6, has the form

u(y (5)) = / ot () dt,
0

where ac+ is as in (8) with H,, in place of H and c in place of a. We deduce that s — u(y (s)) is of class C!
for t € (0, 1) and for any x = y (ty), with 79 € (0, 1), the differential Dru(x) is uniquely determined
among the elements of 77 (x) by the condition

d
(Dru(x), y (1)) = Eu()’([))h:to =0, (19). O
Moreover:

Theorem 7.6. For any critical subsolution w on X, there exists a critical subsolution u on T, with w = u
on V, which is of class C' in '\ V. There exists in addition a critical subsolution v on T of class C1/(T'\ V)
satisfying

H(x, Drv(x)) <c forx e T\ (ArUV).
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Proof. Let w be a critical subsolution in X. Given any arc y = W (e), we know, see Proposition 6.2, that
w(y(0)) and w(y (1)) satisfy the compatibility condition (17), so that
1

1
w(y(0)) +/ o, (1)dt <w(y(1)) <w(y(0)) +/ ol (t)dt, (59)
0 0
where o*j, o, are defined as in (8), (9) with H,,, ¢ in place of H, a, respectively. We can therefore find
A € [0, 1] with
1

w(y (1) =w(y(0)) +f0 (Lo, 1)+ (1—2) oS ®)]dt, (60)

and the function S
5> w<y<0>>+/ Doos () + (1 - by o ()] dr (61)

0

is a subsolution of class C' to H, =cin (0, 1) taking the values w(y (0)) and w(y (1)) ats =0and s =1,
respectively. This shows the first part of the assertion.

As far as the second claim is concerned, we proceed by taking a critical subsolution w satisfying (51).
This implies that strict inequalities prevail in formula (59) whenever y = W (e) with e, —e not in A%.. The
A appearing in (60) can be consequently taken in (0, 1), so that the function defined in (61) is a strict
subsolution to H,, = c. This concludes the proof in light of Remark 7.2. U

Remark 7.7. Notice that if we apply the procedure of the first part of the previous result starting with a
critical solution rather than a critical subsolution, then the property of being a solution could be possibly
false for the regularized function.

7D. Representation formulae and uniqueness results on the network. In this section, we want to pro-
vide representation formulae and uniqueness results with traces that are not necessarily defined on vertices,
but on a general subset of the network I'. To this aim, we extend S,, for a > ¢, from V to the whole
of I' defining a semidistance intrinsically related to # and the level a. This is basically the same object
introduced in [Schieborn and Camilli 2013]. We do not develop here any further the metric point of
view, but just use it to establish an admissibility condition for data assigned on subsets of I, and provide
representation formulae.
Given a portion of arc ¥ |[s,.s,], for 0 < s; < s <1, we define

52
Ca i) = f (@) (1) dt,
S

where (cr;r )" is defined as in (8). We get in particular, for the whole arc, the relation
a(y) =0a(¥"'(y)) foranyy €€, (62)

We define £, for a curve on I' given by a finite number of concatenated arcs or portions of arcs as the sum
of the lengths of the arcs or portion of arcs making it up. We introduce the related geodesic (semi-)distance
on I via

S}; (x, y) =min{f,(§) | £ a union of concatenated arcs linking x to y}. (63)
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We deduce from the results on o, and (62) the following lemma.
Lemma7.8. (i) If x #yareinV, then S,(x,y) = Sg(x, y).
(i1) If &€ is a closed curve on T, then £,(£) > 0.

It is easy to check that the maximal subsolution v to (DFEa) vanishing at y € I" given in Theorem 7.1
and Proposition 7.4 is
v(x) = S;(y, x) foranya>c, x el

We derive, taking also into account Proposition 6.8, that for a continuous function u : I' — R, the condition
u(x) —u(y) < S*(y,x) for any pair x, y in I’ (64)

is necessary and sufficient for being a subsolution to (HJa). Given a function g defined on a subset I'’
of I', we therefore introduce the following admissibility condition for (DFEa):

g(x)—g(y) <8 (x,y) foranyx,yinT" (65)

We give in the next theorem a couple of examples of uniqueness results for solutions to (DFEa), and
corresponding representation formulae, one can obtain prescribing values on subsets not necessarily
contained in V. Further results are reachable along the same lines. Similar formulae, even if for subsets
of vertices and just in the supercritical case, have been already obtained in [Schieborn and Camilli 2013].

Theorem 7.9. Let I' be a closed subset of T' and g an admissible trace defined on it, in the sense of (65).
We set

v(x) =min{g(y) + S (v,x) |y e "}
(i) Critical case: if a =c and "' C Ar with
I'Ny(0,1) # @ foranyy with W~ (y) e A%, (66)

then v is the unique solution in T to H(x, Du) = c agreeing with g on I"".

(ii) Supercritical case: if a > c, then v is uniquely characterized by the properties of being in C (", R),
being a solution of (HJa) in T' \ T, and agreeing with g on T"'.

Proof. The solution property of v in both cases, in I and I' \ I'" respectively, follows directly from being
a subsolution in I, in light of (64), and satisfying the subtangent test as a minimum of solutions, in I" and
" \ IV respectively. In addition v is the maximal solution (in I" or I" \ I'’) agreeing with g on I'” in light
of Theorem 7.1, Proposition 7.4, and the admissibility condition (65).

Now, assume u to be another solution taking the value g on I'’; by adapting the backward procedure
explained in Proposition 6.15 and Theorem 6.21, we construct, for any x € I' \ I/, a curve & made up by
concatenated arcs or portion of arcs starting at some point y € I'" and ending at x with

u(x) =g(y) +4£a(§) = v(x).

In the critical case, condition (66) plays a crucial role for this. The maximality property of v then implies
that equality must hold in the above formula. U
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Appendix

Proof of Proposition 3.11. Taking into account that for any y € £ (which is a finite set) w o y is Lipschitz-
continuous in [0, 1], thanks to the coercivity condition (Hy2), we deduce that there exists L > 0 such
that, for any given subsolution w,

lw(y (s2)) —w(y () = L €(ylis,.5p) forally €€, ands; <s; €[0, 1] (67)

hereafter ¢ indicates the Euclidean length of curves in R".

We proceed by considering x and y in I" and a finite sequence of concatenated arcs yy, ..., yu, for
some index M, that realize the geodesic distance dr (x, y). More specifically, we assume that x = y,(¢,),
y = yum(ty) with z,, ¢, in [0, 1] and that

M1
dr(x.y) = L0l )+ ) L) + Lyl
i=2
In the remainder of the proof we assume that M > 2 in order to ease the notation (the other cases can be
treated analogously).
We deduce from (67) that
M—-1
lw(y) —w)| < [wyi(1) —wi(yi1 ()| + Z lw(yi (1) —w i ()] + [w(ymty)) —wi(ym(0))]
i=2
M—1
<L [ﬁ(yl )+ >, ) +€(J/M|[o,z,])] = Ldr(x, ). U
i=2
Proof of Proposition 5.5. We denote by w the function appearing in the statement. If a = a,,, the assertion
comes from (11) and Proposition 5.3. Instead, if a > a,, the function w is an a.e. subsolution, being
the minimum of two C! (sub-)solutions. Using a basic property in viscosity solutions theory, it is also a
supersolution, as a minimum of supersolutions. Moreover, w(0) = « and w(1) = 8 hold thanks to (17).

Finally, the function s fos a;; is a strict subsolution to (HJ,a), and this implies by an argument

going back to [Ishii 1987] that the Dirichlet problem with admissible data «, 8 is uniquely solved. [

Proof of Proposition 5.6. If a = a,,, then, as already pointed out in Proposition 5.3, the solution is unique
up to additive constants; hence it is automatically given by (20) once the value w(0) is assigned.
Therefore, from now on we can assume that a > a,. By Proposition 5.5,

K 1
w(s) :min{w(O)-i—/ a;(t)dt, w(l)—/ oa_(t)dt} for any s.
0 K
We claim that if 1
w(so) = w(l) —f o, (t)dt (68)

S0

for some sg € (0, 1), then

1
w(s) =w(l) —f o, (t)dt forany s € (so, 1].
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Assume by contradiction that there exists s; > s such that

51 S0 51 1
w(O)—i—[ oj(r)dt:w(O)Jr/ a;(z)dt+/ a;(z)dr<w(1)—/ o (t)dt;
0 0

50 1

this implies

S0 1 S1
w(O)—i—/ a;(t)dt<w(1)—/ oa_(t)dt—/ oF (1) dt. (69)
0

51 S0

S1 S1
/ o (t)dt > / o, (t)dt
S0 S0

and we can consequently deduce from (69) that

It is apparent that

S0 1 S1 1
w(0)+/ O’;—(l)dt < w(l)—/ aa_(t)dt—f o, (t)dt =w(1) —/ o~ (1) dt,
0

S1 50 S0
in contrast with (68). We assume, for purposes of contradiction, that (68) holds true for some sy € (0, 1).
Since a > a,,, we can take po with H (1, po) < a. If w is not of the form (20), then, owing to the previous
claim, we can fix so in such a way that

1
w(s):w(l)—/ o, (t)dt and H(s, py) <a

for s € [so, 1]. This implies

1
@(s) :=w() + po(s — 1) = w(l) —/ o, (1) dt =w(s)
S
for s € [sp, 1], and consequently ¢ is a constrained subtangent to w at 1 with

H(1,¢'(1)) =H(1, po) <1,

contradicting (19). We deduce that w is of the form (20) showing the first part of the assertion.
Conversely, if w is of the form (20), then it is of class C Uin (0, 1) with w'(s) = Jj (s). Consequently,
any constrained subtangent ¢ at t = 1 must satisfy

1 1
w(l)—f (p/dt:go(s)fw(s):w(l)—/ ol dt

for s sufficiently close to 1. This implies

1 1
/ go/dtzf ol dt
N N

and shows the existence of a sequence s, contained in (0, 1) and converging to 1 as n goes to infinity,
with ¢’ (s,) > a; (s,). Passing to the limit as n goes to infinity, we get ¢’(1) > 0a+ (1). We deduce from
this the inequality (19) and conclude the proof. ]
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Proof of Proposition 5.11. If a = ¢, = a,, then the integrals in (21) coincide in light of (11); then they
must both vanish, and this shows the assertion. Assume now that ¢, > a, and also assume for purposes
of contradiction that strict inequalities prevail instead in (21). Then, we can find A € (0, 1) with

1
f Aol )+ =10 (]dt =0.
0

Taking into account that JCJ; (1) > o, (¢) for any ¢, this implies

S
5 > / Aol @)+ (1 =1 o (D]dt
0
is a strict periodic subsolution to H = ¢,,. This is impossible by the very definition of c,,. ]

Proof of Corollary 5.13. The unique point to check is that the values o + 8 at s =0 and o at s = s5¢ are
admissible, in the sense of (17), for (HJ, a) in (0, so), and the same holds true in (so, 1) for the values « at
s =sp and o« + B at s = 1. The argument is the same for the two subintervals. We therefore focus on (s, 1).

fu(l)—u(so)=8= fs l o f (1) dt, the compatibility property is immediate and the solution in (so, 1)
is given by (23), as asserted in item (ii) of the statement. Let us instead assume

S0 1
u(l) —u(sg) = = —/ o, (t)dt < / aj(t) dt. (70)
0 S0
We have by Lemma 5.9, fol o, (t)dt <0 and consequently

1
u(l) —u(so) 2/ o, (t)dt.

S0

The last inequality plus (70) shows the claimed admissibility property. (]

Proof of Proposition 6.1. Let w be a solution to (# Ja) with trace u on V. By the very definition of solution,
given any arc y, we know w o y is a solution to H, = a in (0, 1) taking the values u(y (0)) and u(y (1))
at 0 and 1, respectively. This implies that such boundary values are admissible with respect to H,,, in the
sense of formula (17) with H, in place of H. By the uniqueness property showcased in Proposition 5.5,
the values of w on the support of y are therefore uniquely determined by u(y (0)), u(y (1)) and H,,.
Since the arc y has been arbitrarily chosen, we can hence conclude the asserted uniqueness. (I
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HIGH-FREQUENCY APPROXIMATION OF
THE INTERIOR DIRICHLET-TO-NEUMANN MAP AND
APPLICATIONS TO THE TRANSMISSION EIGENVALUES

GEORGI VODEV

We study the high-frequency behaviour of the Dirichlet-to-Neumann map for an arbitrary compact
Riemannian manifold with a nonempty smooth boundary. We show that far from the real axis it can
be approximated by a simpler operator. We use this fact to get new results concerning the location
of the transmission eigenvalues on the complex plane. In some cases we obtain optimal transmission
eigenvalue-free regions.

1. Introduction and statement of results

Let (X, G) be a compact Riemannian manifold of dimension d = dim X > 2 with a nonempty smooth
boundary 0 X and let Ax denote the negative Laplace—Beltrami operator on (X, G). Denote also by Ay
the negative Laplace—Beltrami operator on (3 X, Gp), which is a Riemannian manifold without boundary
of dimension d — 1, where Gy is the Riemannian metric on d X induced by the metric G. Given a function
f e H"1(8X), let u solve

{(Ax +A2n()u=0 inX, (L-1)

u=f onoX,

where L € C, 1 < |[ImA| < ReA and n € C*®(X) is a strictly positive function. Then the Dirichlet-to-
Neumann (DN) map

N n): H™0X) > H"(0X)
is defined by
N n) f = 0ulax,

where v is the unit inner normal to d X. One of our goals in the present paper is to approximate the operator
N(x; n) when n(x) =1 in X by a simpler one of the form p(—Ajyx) with a suitable complex-valued
function p(o), o > 0. More precisely, the function p is defined as

po)=+vo—A%, Rep<O.

Our first result is the following:

MSC2010: 35P15.
Keywords: Dirichlet-to-Neumann map, transmission eigenvalues.
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Theorem 1.1. Let O < € < 1 be arbitrary. Then, for every 0 < § < 1 there are constants Cs, Cc s > 1
such that we have

N 1) = p(=Asx)l L2(0x)—L2(0x) < SIA| (1-2)
for Cs <|ImA| < (ReA)!~¢, Re A > C,.

Note that this result has been previously proved in [Petkov and Vodev 2017b] in the case when X is a
ball in R? and the metric is the Euclidean one. In fact, in this case we have a better approximation of the
operator N'(A; 1). In the general case when the function » is arbitrary, the DN map can be approximated
by h-WDOs, where 0 < h < 1 is a semiclassical parameter such that Re(hr)? = 1. To describe this
more precisely let us introduce the class of symbols S§(8 X), 0<d8< % as being the set of all functions
a(x’, &) € C*(T*3X) satisfying the bounds

9%08a(x’, )| < Cuph =2 0+18D (&)

for all multi-indices o and B with constants Cy g independent of 1. We let OPS§(8 X) denote the set of
all 2-¥DOs, Op;,(a), with symbol a € S§(8X), defined by

(Opy, (@) f)(x") = Quh) 4T / e~ WM q(x! EN F () dy' dE.
T*0X

It is well known that for this class of symbols we have a very nice pseudodifferential calculus; e.g., see
[Dimassi and Sjostrand 1999]. It was proved in [Vodev 2015] that for [ImA| > |1/, 0 < € « 1, the
operator AN (A; n) is an h-WDO of class OPSl1 - . (0X) with a principal symbol

p(x ) =Vro(x, &) — (h)?no(x),  Rep <0, ng:=nlyx.

ro > 0 being the principal symbol of —A,x. Note that it is still possible to construct a semiclassical
parametrix for the operator AN (A; n) when [Im A| > |A|¢, 0 <€ <« 1, if one supposes that the boundary 9 X
is strictly concave; see [Vodev 2016]. This construction, however, is much more complex and one has
to work with symbols belonging to much worse classes near the glancing region £ = {(x/,§’) € T*3X :
ry(x’, &) = 1}, where ry = n; 1ro. On the other hand, it seems that no parametrix construction near
Y is possible in the important region 1 <« const. < [Im A| < |A|¢. Therefore, in the present paper we
follow a different approach which consists of showing that, for arbitrary manifold X, the norm of the
operator AN (A; n)Op,, ( X(?) is O(6) for every 0 < § <« 1 independent of A, provided |Im A| and Re A
are taken big enough (see Proposition 3.3 below). Here the function X(? € Cy°(T*0X) is supported in
{(x, ) eT*dX :|rs(x', ') — 1| <28%} and Xl? =1lin{(x,&)eT*X :|rs(x', ') —1| < 8%} (see Section 3
for the precise definition of x g ). Theorem 1.1 is an easy consequence of the following semiclassical version.

Theorem 1.2. Let O < € < 1 be arbitrary. Then, for every 0 < § < 1 there are constants Cs, Cc s > 1
such that we have

for Cs < |ImA| < (Re MI7E, Rex > Ces, where C > 0 is a constant independent of A and §, and
be Sg (0X) is independent of A and the function n.
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Here H}: (0X) denotes the Sobolev space equipped with the semiclassical norm (see Section 3 for
the precise definition). Thus, to prove (1-3), as well as (1-2), it suffices to construct a semiclassical
parametrix outside a 82-neighbourhood of X, which turns out to be much easier and can be done for
an arbitrary X. In the elliptic region {(x',&') € T*3X : ry(x’, ') > 1+ 8} we use the same parametrix
construction as in [Vodev 2015] with slight modifications. In the hyperbolic region {(x’, £') € T*3X :
re(x, €Y <1— 82}, however, we need to improve the parametrix construction of that paper. We do this in
Section 4 for 1 < const. < [Im A| < |A|'~¢. Then we show that the difference between the operator AN (A; 1)
microlocalized in the hyperbolic region and its parametrix is O(e #"™*y + O, 1, (|A|=™), where g > 0
is some constant and M > 1 is arbitrary. So, we can make it small by taking [ImA| and |A| big
enough.

These kinds of approximations of the DN map are important for the study of the location of the complex
eigenvalues associated to boundary-value problems with dissipative boundary conditions; e.g., see [Petkov
2016]. In particular, Theorem 1.2 leads to significant improvements of the eigenvalue-free regions in
that paper. In the present paper we use Theorem 1.2 to study the location of the interior transmission
eigenvalues (see Section 2). We improve most of the results in [Vodev 2015], as well as those in [Petkov
and Vodev 2017b; Vodev 2016], and provide simpler proofs. In some cases we get optimal transmission
eigenvalue-free regions (see Theorem 2.1). Note that for the applications in the anisotropic case it suffices
to have a weaker analogue of the estimate (1-3) with the space th replaced by L2 in which case the
operator Op,, (hb) becomes negligible. In the isotropic case, however, it is essential to have in (1-3) the
space H, }3 and that the function b does not depend on the refraction index n.

Note finally that Theorem 1.2 can be also used to study the location of the resonances for the exterior
transmission problems considered in [Cardoso et al. 2001; Galkowski 2015]. For example, it allows us to
simplify the proof of the resonance-free regions in [Cardoso et al. 2001] and to extend it to more general
boundary conditions.

2. Applications to the transmission eigenvalues

Let Q C R4, d > 2, be a bounded, connected domain with a C* smooth boundary I' = 9Q2. A complex
number A € C, ReA > 0, will be said to be a transmission eigenvalue if the following problem has a

nontrivial solution:
(Vei(x)V+ 22 00)Du; =0 in ,

(Ver(0)V + 22 (x)Du, =0 in €, (2-1)
ui=1ujp, C1 8vu1 = 3,)142 on F,

where v denotes the Euclidean unit inner normal to I, ¢;,n; € C °°(§_2), j =1,2, are strictly positive
real-valued functions. We will consider two cases:

cilx)=c(x)=1 in Q, ni(x) #na(x) onI (isotropic case), (2-2)
(c1(x) — (X)) (c1(x)n1(x) —cp(x)na(x)) #0 onI' (anisotropic case). (2-3)

In Section 6 we will prove the following:
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Theorem 2.1. Assume either the condition (2-2) or the condition
(c1(x) = ca(x)) (c1(x)n1(x) — c2(¥)n2(x)) <O onT. (2-4)
Then there exists a constant C > 0 such that there are no transmission eigenvalues in the region
{LeC:Rei>1, [ImA|>C}. (2-5)

Remark. It is proven in [Vodev 2015] that under the condition (2-2) (as well as the condition (2-6) below)
there exists a constant C > 0 such that there are no transmission eigenvalues in the region

{(AeC:0<Reir<1, |ImA|>C}.

This is no longer true under the condition (2-4), in which case there exist infinitely many transmission
eigenvalues very close to the imaginary axis.

Note that the eigenvalue-free region (2-5) is optimal and cannot be improved in general. Indeed, it
follows from the analysis in [Leung and Colton 2012] (see Section 4) that in the isotropic case when
the domain €2 is a ball and the refraction indices n1 and n; are constant, there may exist infinitely many
transmission eigenvalues whose imaginary parts are bounded from below by a positive constant. Note
also that the above result has been previously proved in [Petkov and Vodev 2017b] in the case when the
domain €2 is a ball and the coefficients are constant. In the isotropic case, the eigenvalue-free region
(2-5) has been also obtained in [Sylvester 2013] when the dimension is 1. In the general case of arbitrary
domains, the existence of transmission eigenvalue-free regions has been previously proved in [Hitrik et al.
2011; Lakshtanov and Vainberg 2013; Robbiano 2013] in the isotropic case, and [Vodev 2015, 2016] in
both cases. For example, it has been proved in [Vodev 2015] that, under the conditions (2-2) and (2-4),
there are no transmission eigenvalues in

{LeC:Rer>1, ImA| > Cc(Rer)/>*}, €. >0,

for every 0 < € <« 1. This eigenvalue-free region has been improved in [Vodev 2016] under an additional
strict concavity condition on the boundary I" to

{(L,eC:Rel>1, |[ImA|>C.(Re))}, C.>0,

for every 0 < € < 1. When the function in the left-hand side of (2-3) is strictly positive, the existence of
parabolic eigenvalue-free regions has been proved in [Vodev 2015] for arbitrary domains, which however
are worse than the eigenvalue-free regions we have under the conditions (2-2) and (2-4). In Section 7
we will prove:

Theorem 2.2. Assume the conditions

(c1(x) —c2(x)) (c1(X)n1(x) —c2(x)n2(x)) >0 onT (2-6)

and
ni(x)  na(x)

ci1(x) © cx)

nT. 2-7)
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Then there exists a constant C > 0 such that there are no transmission eigenvalues in the region
{reC:Rel>1, [ImA|> Clog(Rei+ 1)}. (2-8)

Note that in the case when (2-6) is fulfilled but (2-7) is not, the method developed in the present paper
does not work and it is not clear if improvements are possible compared with the results in [Vodev 2015].
To the best of our knowledge, no results exist in the degenerate case when the function in the left-hand
side of (2-3) vanishes without being identically zero.

It has been proved in [Petkov and Vodev 2017a] that the counting function

N(r)=#A—trans.eig.: |[A| <r}, r>1,

satisfies the asymptotics
N() = (@ +w)r! +0.07) Vo<e<1,
where 0 < « <1 is such that there are no transmission eigenvalues in the region

{AeC:Rer>1, |ImA| > C(Re)»)lf"}, C >0,

()
T, = dx,
T2y Jo\o(x)

where wy is the volume of the unit ball in R Using this we obtain from the above theorems the following:

and

Corollary 2.3. Under the conditions of Theorems 2.1 and 2.2, the counting function of the transmission
eigenvalues satisfies the asymptotics

NP =@ +)rf+0.0%71% Vo<ex 1. (2-9)

This result has been previously proved in [Vodev 2016] under an additional strict concavity condition
on the boundary I'. In the present paper we remove this additional condition to conclude that in fact the
asymptotics (2-9) holds true for an arbitrary domain. We also expect that (2-9) holds with € = 0, but this
remains an interesting open problem. In the isotropic case asymptotics for the counting function N (r) with
remainder o(r?) have been previously obtained in [Faierman 2014; Pham and Stefanov 2014; Robbiano
2016].

3. A priori estimates in the glancing region

Let L eC, ReA>1, 1 <|ImA| <6yRe A, where 0 < 6y < 1 is a fixed constant, and set h = M_l, where

Im 2\
mw=Reiy/1———=] ~Rer~|A|.
Re A

Clearly, we have Re(hr)? =1 and

A=t +izh), z=2u"'ImiRei~2ImA.
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Given an integer m > 0, denote by H;"(X) the Sobolev space equipped with the semiclassical norm

lvllae o) = Z RN98 vl 2 x) -

loe|<m

We define similarly the Sobolev space H,"(0X). It is well known that

vl @x) ~ 110p, ((E)Y vl 2ax) ~ IVl 2ax) + 0P, (1 = MIE TV 1205 x)

for any function n € C3°(T*3X) independent of . Hereafter, (§') = (1 + |§’ 12)172,
Given functions V € L2(X) and f € L?(3X), we let the function u solve

(Ax +22n(x)u=AV in X,
u=f on dX,
and set g = h d,u|yx. We will first prove:
Lemma 3.1. There is a constant C > 0 such that the following estimate holds:

1/2 1/2

leell g1 xy < CHM AL IV |20y + Cllm A2 £
Proof. By Green’s formula we have

G2 lIn2ul g ) = IRV, 1) 1200 + Im(@uulax, f)r2x)
which implies
[Im A| ”“”iZ(x) SV I2oo lull2oo + 1 l2ex gl 2@ x)-

On the other hand, we have

IVxulFa, = ReGD)In'2ullZs ) = —Re(WV, u) 12(x) — Re(dutlax, f)r2x)s

which yields

1AV xull72 ) S M2y + OV 11725, + O£l 2030 l€ N 2 03) -

Since h < [Im A| !, the estimate (3-2) follows from (3-3) and (3-4).

Lz(BX) ||g||L2(3X)'

(3-1)

(3-2)

(3-3)

(3-4)
]

We now equip X with the Riemannian metric nG. We will write the operator n~' Ay in the normal

coordinates (x, x’) with respect to the metric nG near the boundary 9 X, where 0 < x; < 1 denotes the
distance to the boundary and x” are coordinates on 3 X. Set I'(x1) = {x € X :dist(x, dX) =x;}, ['(0)=0X.
Then I'(x;) is a Riemannian manifold without boundary of dimension d — 1 with a Riemannian metric

induced by the metric nG, which depends smoothly in x;. It is well known that the operator n~! Ay can

be written as
n~'Ax =07 + Q(x1) +R,

where Q(x1) = Ar(y,) is the negative Laplace—Beltrami operator on I'(x1) and R is a first-order differential

operator. Clearly, Q(x;) is a second-order differential operator with smooth coefficients and Q(0) = Ag’;

is the negative Laplace—Beltrami operator on d X equipped with the Riemannian metric induced by the

metric ng.
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Let x € CP(R). 0= x(1) <1, x(t) =1 for |r| = 1 and x(r) = O for |f| = 2. Given a parameter
0 <8) < 1 independent of A and an integer k > 0, set i.(x1) = X (2~*x1/81). Given integers 0 < s1 <,
we define the norm |[ul, s, x by

s1 s2—4

(@]
2 2 0 2
IR = W+ 3 3 [ 8 o, IR

£1=0 £,=0
Clearly, we have
”u”Hl‘:l(X) < llullsy,50.k S ”u”H}fZ(x)-
Throughout this paper n € Ci°(T*9X), 0<n<1, n=1in[§'| <A, n=01in |§'| > A+1, will be a function
independent of A, where A > 1 is a parameter we may take as large as we want. We will now prove:

Lemma 3.2. Let u solve (3-1) with V. € H~Y(X) and f € H*(3X) for some integer s > 1. Then the
following estimate holds:

1/2 1/2
el S Ml gg o+ 1V Bos—tiers—1 + 10D, =1 F a1 181 5 (3-5)

Proof. Note that
Nl s+16 ||M||H/11(X) + ||uS»k||Hh](X)’
where the function u; x = Op, ((1 —n)|&'|*) (¢ru) satisfies the equation
(92 +h*Q(x) + 1 +ih2)ug i = Uy g
with
Us.x = [h*Q(x1), Op, (1 = mI&'1) ] (dru) + Opy, (1 — ) [&'1)[A*5, . dilps1u
— h*0p,, (1 = &' )r Ry 11 + h*A0p;, (1 = ) |E'1¥) (9 V).

‘We also have
fs = tsklx,=0 = Op, (A — &) £,

8s = h a)mus,kl)c]:O = Oph((l - 77)|~§/|S)gb,
where g, := h 0y, u|y,=0. Integrating by parts the above equation and taking the real part, we get
1 By e k117 250y = (00° Q)+ Dt g, s k) £2x)
< {Us.k, us,k)Lz(X) [+h|{fs, gs)Lz(BX)|
S Mot el g oy NV Hlo,s v+ lluell 151

+[ Op;, (A=m)1E1")*Op;, (A=mIE"1) | 125 180l L20x)- (3-6)

The principal symbol r of the operator —Q (x1) satisfies r (x, £') > C'|£’|%, C’ > 0, on supp ¢, provided &;
is taken small enough. Therefore, we can arrange by taking the parameter A big enough that r — 1 > C(¢')
on supp(1 — n)¢y, where C > 0 is some constant. Hence, by Garding’s inequality we have

—((h* Q(x1) + Dits s s k) 12(x) = CIIOP, (& Dt 172, (3-7)
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with possibly a new constant C > 0. Since the norms of g and g, are equivalent, by (3-6) and (3-7) we get

1/2 1/2
litsl gy S IV o1+ Dl gy + s gy + 10P3 L= F 12 o B850 (3-8)

We may now apply the same argument to u_ 4. Thus, repeating this argument a finite number of times
we can eliminate the term involving u;_1 x4 in the right-hand side of (3-8) and obtain the estimate (3-5). [

Let the functions x; € C*(R), 0< x;(t) <1, j=1,2,3, besuch that x; + o+ x3 =1, x2 = x,
x1(@)=1fort <=2, yy(t) =0fort > —1, x3(t) =0forr <1, x3(t) =1 for t > 2. Given a parameter
0 < § « 1 independent of A, set

X5 &8 = (0 (', §) = 1)/8%),

X5 (¢ 8 = xa((rs (¥, &) = 1)/8%),

X5 (0L ED) = x3((re (6 € = 1)/8%),
where ry =n 1ro is the principal symbol of the operator —Ag’;g. Since (r; — ¥ 50 = O(8%), we have

(h2AY) + 1)%0p, (x)) = 0(8%) : L2(9X) — L*(8X) (3-9)
for every integer k > 0. Clearly, we also have
Op,(x) =O(1) : L*(3X) — H"(3X) VYm >0,

uniformly in 6. Using (3-9) we will prove:

Proposition 3.3. Let u solve (3-1) with f =0and V € H*(X) for some integer s > 0. Then the function
g = h dyulyx satisfies the estimate

Il ez ox) < CNIm A~ ([ V]lo,g. (3-10)

with a constant C' > 0 independent of .
Let u solve (3-1) with f replaced by Oph(xg))f and V € H'T2(X) for some integer s > 0. Then the
function g = h o,u|yx satisfies the estimate

gl azox) < CE+ImMAI N Fll20x) + CE2 + ImAI™$) [V [l0.612.542 (3-11)
for 1 <|ImA| <82Rei, Red > Cs>> 1, with a constant C > 0 independent of A and §.

Proof. Set w = ¢o(x1)u. We will first show that the estimates (3-10) and (3-11) with s > 1 follow from
(3-10) and (3-11) with s = 0, respectively. This follows from the estimate

gl ox) S lIglz2ex) + |7 ax|vs|x1=0||L2(aX)a (3-12)
where the function vy = Op,, ((1 — n)|&’|*)w satisfies (3-1) with V replaced by
Vs = nOp; (1= n)I§"Non™ 'V + 1~ n[n~" Ax, Op, (1 = m)I§'|)o]u.
We can write the commutator as

[87, + R, ¢o(x1)10p, (1 = n)|&"")1 (x1) + po[ Q(x1) + R, Op;, (1 = )& )] 1 (x1).
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Therefore, if f =0, in view of Lemmas 3.1 and 3.2, the function V; satisfies the bound
Vsllo.o.o S TV llos.o + lellsra S Null g oxy + 11V loses S IV llo.s.s- (3-13)

Clearly, the assertion concerning (3-10) follows from (3-12) and (3-13). The estimate (3-11) can be
treated similarly. Indeed, in view of Lemma 3.2, the function V; satisfies the bound

1 Vsllo,22 SV os+2,0 + llell1,54+3,1

1/2 1/2

<l 0+ IV o252 10D (1= mOP (X f s g 18113505 (3-14)
Taking the parameter A big enough we can arrange that supp X{? Nsupp(l —n) = . Hence
Op, (1 —MOp;,(x) = Oh™) : L>(3X) — H"(3X) VYm >0. (3-15)

By (3-14) and (3-15) together with Lemma 3.1 we conclude

1/2 1/2
IVello2.2 S Mull gy oy + 1V o252+ O F Il oy o 181 ot

_ 1/2 1/2
SV lost2.s42 +OUmM AT+ B%) £1l oty 1€l o v

We now apply (3-11) with s = O to the function v; and note that

Vs |10 = Op,, (1 = MIE'1")Op,, (x3) f = Oh™) f.
Hence
782,05 1120 25, < OB | 20030 +OG 2 HImA =5 Vi lo,2.2

_ _ 1/2 1/2
<O PHImAIT )V llo 512,542+ O ImA ™ 248) [ £ 11 5t 181 oy (3-16)

Therefore, the assertion concerning (3-11) follows from (3-12) and (3-16).
We now turn to the proofs of (3-10) and (3-11) with s = 0. In view of Lemma 3.1, the function
U:= h(n_lAX + Az)w = h[n_lAX, ¢o(x1)]u + h)»n_l(poV

satisfies the bound

_ 172 1/2
U200y S Ml gy oy + 1V 2 S IV g + OAmMAT™ A FIS glary)- (3-17)
Observe now that the derivative of the function
E(x1) = [|hdgwl® + ((B*Q(x1) + Dw, w),
where || - || and (-, - ) are the norm and the scalar product in L?(3X), satisfies

E'(x1) = 2Re((h?3] + 1> Q(x1) + Dw, 3y, w)+ (B> Q' (xpw, w)
=2Re((U —izw — hRw), h 3y, w)+ (B> Q' (x))w, w).



222 GEORGI VODEV

If we put g, := h 0y, u|x,=0, We have
llgol1 + ((A* A§Y + 1O, (x9).f. Opy, (x5 f)
o0
=E(0) = —/ E'(x1)dx
0

S (||U||L2(X) + lzl lwllz2x) + ||th||L2(X))||h A wlp2x) + ||w||§{h1(x)

< O(zDllh 8x1w||L2(X)||w”L2(X) + O(|Imk|_l)F2, (3-18)
where we have used Lemma 3.1 together with (3-17) and we have put

F=171"20812 + 1V Il 2

Clearly, (3-10) with s = 0 follows from (3-18) applied with f = 0 and Lemma 3.1. To prove (3-11) with
s = 0, observe that (3-9) and (3-18) lead to

12 1/2

gl < O£ +OIm A2 F +O(Im AV [1h dx wll 5y 1wl -

(3-19)

We now need a better bound on the norm || 3y, wl;2(x) in the right-hand side of (3-19) than what the
estimate (3-2) gives. To this end, observe that integrating by parts yields

I 8x1w”%2(x) - ((th(xl) + Dw, w)2x) = —h Re((U —hRw), w)2(x) — h Re(f, &)
< OW[wilf x, + OWIU 720, +OWIFI ]
< O(h)F>. (3-20)
By (3-19) and (3-20), together with Lemma 3.1, we get

Igll < 0@ I+O(m A ) w1V wl?s +0R A Im Al FY 2 w2 +0(m A~/ F

L2(X) L2(X) L2(X)
1/4 _
< OB FI+OIm A ) [will oy, FY4+O(tm a2 404 Im 2] 74) F, (3-21)

where we have put w; := (h?Q(x1) + 1)w. We need now the following:
Lemma 3.4. The function w, satisfies the estimate
m A2 w200 SO@GHImA| "+ [ £ 1gl2+0 02| F1+0(ImA )V lo2.2- (3-22)
Let us show that this lemma implies the estimate (3-11) with s = 0. Set

F=f1"21gl >+ 1V lo22 > F.
By (3-21) and (3-22),
gl < OGN £Il + 0@+ Mm A"+ r)F + 0GR (1 £1l + F) + O(Itm A~ 24+ 4 tm A V4) F
<OG+RBFI+0(8"% 4+ [tma| =8 4 118 4 14 Im A V4 F. (3-23)

Since by assumption R4 Im A4 = ©(81/?), one can easily see that (3-11) with s = O follows from
(3-23). [l
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Proof of Lemma 3.4. Observe that the function w; satisfies the equation

(h*3 +h*Q(x)) + 1 +ihz)wy = hUj,
where
Uy = (h*Q(x1) + D(U — hRw) + 2> Q' (x1) 8, w + h* Q" (x1)w.

We also have
fi:= wily=0 = (K*Q(0) + DOp, (x) f,

g1 1= hdx,wilx,=0 = (h*Q(0) + Dgy +h> Q"(0)Op, (x;) .
Integrating by parts the above equation and taking the imaginary part, we get
2l w122, < U wid 20| + 141 81)]

< Ul 2o lwill 20 + OD(R*Q(0) + D?Op, (x) f 1l 1 g
+ O 0P, () f 1l 23 (B> Q(0) + DOP, (x3) f |

< U200 lwill 200 + O@EH I FHIgl+ O 17,
where we have used (3-9). Hence
2llwil7ax) < OU2I™ DU ) + O fIlllg + OM I £117. (3-24)

Recall that the function U is of the form (24 9y, +a(x))¢1(x1)u + han~'¢yV, where a is some smooth
function. Hence the function U; satisfies the estimate

10200y S Nl s+ 1V 02,0 S ltll gt oy + 1V 022 + OB F I oy 81 gy (3-25)
where we have used Lemma 3.2 together with (3-15). By (3-24) and (3-25),
2l lwillZ2 g, < O™l )+ OUIDIVIG 22+ OG* +A®)If I8+ OMIfI (3-26)

Clearly, (3-22) follows from (3-26) and Lemma 3.1. U

4. Parametrix construction in the hyperbolic region

Let A be as in Theorems 1.1 and 1.2, and let h, z, 8, ro, no, rz, x and x; be as in the previous sections.
Set 0 =Im(hA)? = hz = O(h¢), |0] > h, and

p(x, &) =/ro(x’, €') — (1 +i0)no(x'), Rep <O.
It is easy to see that px; € Sg(aX ). In this section we will prove:

Proposition 4.1. There are constants C, Cy > 0 depending on § but independent of A such that

|2N (25 n)OP, (x5 — Op,(ox;) | L2ex)—mox = C1+ o—Clm2l). (4-1)

Proof. To prove (4-1) we will build a parametrix near the boundary of the solution to (1-1) with f replaced
by Op,, (x5 ) f- Let x = (x1, x), x1 > 0, be the normal coordinates with respect to the metric G, which of
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course are different from those introduced in the previous section. In these coordinates the operator Ay
is given by
Ax =032 +0+R,

where é < 0 is a second-order differential operator with respect to the variable x" and R is a first-order
differential operator with respect to the variable x, both with coefficients depending smoothly on x.
Let (x% £° e supp x5 and let { C T*3X be a small open neighbourhood of (x% £%) contained in
{rps <1- 82/2). Take a function ¥ € Cy°U). We will construct a parametrix 5‘1; of the solution of
(1-1) with ft;lxl:o = Op,(¥) f in the form ft; =¢(x))K™ f, where ¢ (x1) = x(x1/61), 0 < K 1,isa
parameter independent of A to be fixed later on depending on 4, and

06 ) = ey @1 [ [ O Mgy, 0 £ e’y
The phase ¢ is complex-valued such that ¢|,,—o = —(x’, &’) and satisfies the eikonal equation mod OOM):

(3r,9)* + (B(x)Vyg, Vog) — (1 +i0)n(x) = 0M Ry, (4-2)

where M >> 1 is an arbitrary integer, the function Ry, is bounded uniformly in 6, and B is a matrix-valued
function such that r(x, &') = (B(x)&’, §'), r(x, ") > 0, is the principal symbol of the operator — 0. We
clearly have ro(x, &) = r(0, x', €"). Let us see that for (x, &) e U, 0 < x; < 381, (4-2) has a smooth
solution satisfying

O, ¢lx=0 = —ip+ OO 4-3)

provided §; and U/ are small enough. We will be looking for ¢ in the form
M—1
9= (i0)g;(x,8&),
j=0

where ¢; are real-valued functions depending only on the sign of 6 and satisfying the equations

(3,90)> + (B@) Vo, Vo) = n(x). (4-4)
k k
> 00,0 i + D (B Vag) Vogrj) =en(x), 1<k<M-—1, 4-5)
j=0 j=0

@olx,=0 = —(x", &), @jlx,=0 =0for j > 1, where €; =1, ¢ =0 for k > 2. It is easy to check that with
this choice the function ¢ satisfies (4-2) with Ry being polynomial in 6.

Clearly, if ¢y is a solution to (4-4), then we have (3, @o|x,0)> = no(x’) — ro(x’, ') > C’ with some
constant C’ > 0 depending on 8. It is well known that (4-4) has a local (that is, for §; and ¢/ small enough)
real-valued solution goSE such that 9, gogcl x1=0 = £4/ng — ro. We now define the function ¢o by ¢o = ¢
if & > 0 and g9 = ¢, if & <0. Hence |0y, po(x, &’)| > const. > 0 for x; small enough. Therefore, the
equations (4-5) can be solved locally. Taking x; = 0 in (4-5) with k = 1, we find

091,01 1x,20 = On0(20x, @0l x,=0) ' = 3101no(ng —r)~'/* > 10| (4-6)
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on U, where C = min \/no(x"). Hence
Im 3y, ¢l =0 = 03y, 115,20 + O(6%) = 3C16)] @7
if |@] is taken small enough. On the other hand, taking x; = 0 in (4-2) we find
(B 9lu=0)> = (ip)? + 0OY) = (ip)*(1 +0©E™M)), (4-8)

where we have used that |p| > const. > 0 on 4. Since Re p < 0, we get (4-3) from (4-7) and (4-8). By
(4-6) we also get

01 (x1, x', E") = 0x19,,01(0, X', &) + O0x7) = $Cx110] — O(10]x]) > $Cx, 16|

provided x; is taken small enough. This implies

Imo(x,&,0) =00 (x1,x', §') + OOx1) > 1Cx116). (4-9)
The amplitude a is of the form
m
a= thak(x, £.0),
k=0

where m > 1 is an arbitrary integer and the functions a; satisfy the transport equations mod O(8™):

200y, 90y, ar + 2i(B(x)Vy @, Vyar) +i(Ax@)ay + Axag—1 = GMQES), 0<k=<m, (4-10)
aolx,=0 = V¥, arly,=0 =0 for k > 1, where a_; = 0. Let us see that the transport equations have smooth

solutions for (x’, &) e U, 0 < x; < 38, provided §; and U are taken small enough. As above, we will be

looking for a in the form
M—1

ar=Y_((i0)a;(x,&).
j=0
We let ay ; satisfy the equations

J J
2 > 00,00 Oy v +20 Y (B, Voar j—) +i(Axg)acj+ Axac1,; =0, (4-11)
v=0 v=0

0<j=<M-—1, apoly,=0 =V, ak,jlx,=0 =0 for k+ j > 1. Then the functions gy satisfy (4-10) with
Qg(fl) polynomial in 6. As in the case of (4-5) one can solve (4-11) locally. Then we can write

Vo= 0T (P Ax + (L +i0n(0))ity, = K7 f +K; f,

where
K f=hlAx, 1K™ f =h(2¢'(x1)0y, +c(x)@"(x1))K™ f

— Q) / / QI E e D AT (7 3) F(') dE' |
¢ being some smooth function and

A =2i¢'ady, ¢+ heo' 0y,a,
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and
(K5 f)(x) = (2nh)_d+1// LI 10 E D A= (&7 2) F () dE dy,

where

AZ_ = ¢(X1)(—h19MRMa +9M thQ%([) —I—hmHAxam).
k=0

We claim that Proposition 4.1 follows from:
Lemma 4.2. The function V_ satisfies the estimate

V-l S € ™ MF I+ On "= DIF Il + Ou M= £1 (4-12)
with some constant C > 0.

Indeed, if u,, denotes the solution to (1-1) with f replaced by Op,, () f and 121; is the parametrix built
above, then the function v = Uy — 5‘1/7 satisfies (3-1) with f = 0. Therefore, by the estimates (3-10) and
(4-12) we have

AN G m)YOPL () = Ty 2oy i) o) S € M A+ O (B0 + Oy (REM9), (4-13)
where the operator 7, is defined by

Ty f=hduK™ fly=o.
Hence, in view of (4-3),

(TI//_f)(xl) = (27T]’l)‘d+l// e(i/h)(y/_x/’é’) (lwamq)(o’ X/, 5/9 0) +h Bxla(O, X/, 5/’ )\))f(y/) ds/dy/

= Op;, (0¥ +O@") f + > " 1+ 0p, (35,a(0, X, ', 6)) f.
k=0
Since

Op;, (8x,a (0, x', £',0)) = O(1) : L*(3X) — H}'(3X)
uniformly in 6, it follows from (4-13) that

HhN()\" ”l)oph (W) - Oph (Pw) HLZ(BX)—>Hh1 0X) 5 e_Cllm)Ll + O(h) (4'14)

On the other hand, using a suitable partition of the unity we can write the function x; as 2121 ¥, where
each function v; has the same properties as the function v above. In other words, we have (4-14) with v
replaced by each v;, which after summing up leads to (4-1). U

Proof of Lemma 4.2. Let « be a multi-index such that |«| < 1. Since
ilalA7 3%+ (h3)* A7 = Op(W"*1) + Oy (B

and Im ¢ > 0, the kernel of the operator (1 3,)*KC; : L*(3X) — L*(X) is Op(h"™™9) + Op (hM~4), and
hence so is its norm. Since the function A; is supported in the interval [§;/2, 381] with respect to the
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variable x1, to bound the norm of the operator K := (h 9,)*K; : L2(dX) — L*(X) it suffices to show that
p 1,a 1
KT o 23— 200 S €V +O(0™) (4-15)

uniformly in x; € [§;/2, 3581]. Since 0|/ h ~ |Im A|, (4-15) will imply (4-12). We would like to consider
K| . as an h-FIO with phase Re ¢ and amplitude

Ay = e "™ (i a| AT 9% + (h 3,)*AY).
To do so, we need to have that the phase satisfies the condition
3’ R
det €9
dx'9&’

for |#] small enough, where C is a constant independent of 6. Since Rep = ¢y + O(]6]), it suffices

>C>0 (4-16)

to show (4-16) for the phase ¢g. This, however, is easy to arrange by taking x; small enough because
wo = —(x’, &') + O(x1) and (4-16) is trivially fulfilled for the phase —(x’, £’). On the other hand, using
that Im ¢ = O(]0]) together with (4-9) we get the following bounds for the amplitude:

001002 Aal = Cprpe ) (@fe_c‘s"““h) < Gy ppe™COIONOD (4-17)

0=k=|Bil+IB21
for all multi-indices B; and B;. It follows from (4-16) and (4-17) that, mod O(h*°), the operator
(K1 o)*K1, is an h-WDO in the class OPSJ(dX) uniformly in 6 with a symbol which is O(e=2¢10I/ ")
together with all derivatives, where C > 0 is a new constant. Therefore, its norm is also O(e=2C101/ 1y,

which clearly implies (4-15). (]

5. Parametrix construction in the elliptic region

We keep the notations from the previous sections and note that p x 5+ € Sé (0X). Itis easy also to see that
0<Ci{&") <|p| < Cr(&') on supp X5+ , where C| and C, are constants depending on §. In this section we
will prove:

Proposition 5.1. There is a constant C > 0 depending on § but independent of A such that
[N G )0, (657 = OPw (P Xs” + D) L2550 41 3x) = CPs (5-1)
where b € 58(8 X) does not depend on M\ or the function n.

Proof. The estimate (5-1) is a consequence of the parametrix built in [Vodev 2015]. In what follows we
will recall this construction. We will first proceed locally and then we will use partition of the unity to
get the global parametrix. Fix a point x° € X and let Uy C X be a small open neighbourhood of x°.
Let (x1, x"), x; >0, x"€ Up, be the normal coordinates used in the previous section. Take a function
VA= Co°(Up) and set ¥ = Yo X5+ . As in the previous section, we will construct a parametrix ﬂ$ of
the solution of (1-1) with ftwlxlzo = Op,,(¥) f in the form zﬁ = ¢ (x1)KT f, where ¢ (x1) = x(x1/81),
0 < §; <« 1, is a parameter independent of A to be fixed later on, and

(6 ) = ey @1 [ [ MO Dy, ) £ e dy
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The phase ¢ is complex-valued such that ¢|,,—o = —(x’, §’) and satisfies the eikonal equation mod (’)(x{” ):
(04,9)” + (BX) Vg, Vog) — (1 +i0)n(x) = x}' R, (5-2)

where M >> 1 is an arbitrary integer, and the function R is smooth up to the boundary x; = 0. It is
shown in [Vodev 2015, Section 4] that for (x/, &”) € supp ¥, (5-2) has a smooth solution of the form

M—1
Q= Zx]f(pk(x/7s/’9)v (p():_(x/! %./)’
k=0
satisfying
Ox, @lx;=0 = @1 = —ip. (5-3)

Moreover, taking §; small enough we can arrange that
Img > —3x;Rep > Cxi(€'), C>0, (5-4)
for 0 < x; <3681, (x,&") € supp . The amplitude a is of the form
a= ihfaj(x, £.0),
j=0

where m > 1 is an arbitrary integer and the functions a; satisfy the transport equations mod (’)(xf” ):

2, 00y, aj + 2 (B(x) Ve, Vo)) +i(Axp)a; + Axaj =x{10) . 0<j<m, (5-5)
aply,=0 =¥, ajlx,=0 =0 for j > 1, where a_; = 0 and the functions é;j/ are smooth up to the boundary

x1 = 0. It is shown in [Vodev 2015, Section 4] that the equations (5-5) have unique smooth solutions of
the form

M—1
k
aj= xfa;(x, & 0)
k=0

with functions gy ; € SO_ J (0X) uniformly in 6. We can write

Vi i=h™ (B Ax + (1 +i0)n(0))iy = KT £ +K f,

where
K f=hlAx, 1K f=h(2¢'(x1)0y, +c(x)@"(x))KTF f
— Quhy-d+! / / QUMW EVH 800 A% (£ 1) £ (y') dE
with
Al =2i¢'ade, o+ hed"dy,a,
and
K F)(x) = Qeh) 4+ / / LI &0 E O AL (¢ £ ) £(5') dE' dy

where

m
AT = ¢<x1)(—h—‘x{”7~zMa +x! > higy) +h’”+1Axam).
j=0
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As in the previous section, we will derive Proposition 5.1 from (5-3) and the following:

Lemma 5.2. The function V. satisfies the estimate
IVall gt x) < On ™D F I+ Ou M= £1]. (5-6)
Proof. Let a be a multi-index such that || < 1. In view of (5-4) we have

|/ ilal AT 0% + (h3)*AD| S sup MM <OV = 0 ((h)E DY)
81/2§x1§361

for every integer M > 1. Therefore, the kernel of the operator (A 8)5)"‘1Cfr c L2(0X) —> L*(X) is
Oy (WM~4+1) and hence so is its norm. By (5-4) we also have

xfem Mo/l < xMem & = Oy ((h/(ENM).
This implies
I (ila| AT Y9 + (h 9 AT) = Om ((h/(ENM ™) + Ou((h/(E'N™),
which again implies the desired bound for the norm of the operator (A Eix)"‘lC;r . ]
By the estimates (3-10) and (5-6) we have

[N G m)Op, () = T | 2y 3 3y = Om (A" =) + Oaa (M), (5-7)

where the operator TJ is defined by
Ty f =h3yK" fly=o-

In view of (5-3), we have

(T (') = @)~ / / M= (10, 0(0. X', &, 0) + h ,,a(0, X', €', 1)) £ () dE' dy’
= Op,(p¥) [+ ) W' Opj(ar j(x, &, 6) .
j=0

where a1 ; € S(;j(BX). Hence
Op, (a1 ;) = O(1) : L*(3X) — H} (8X).

Therefore it follows from (5-7) that
We need now the following:

Lemma 5.3. There exists a function b° € Sg(a X)), independent of ) and n, such that

aio—b°e Sy (3X). (5-9)
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Proof. We will calculate the function aj o explicitly. Note that this lemma (as well as Proposition 5.1) is
also used in [Vodev 2015], but the proof therein is not correct since a; ¢ is calculated incorrectly. Therefore
we will give here a new proof. Clearly, it suffices to prove (5-9) with a; o replaced by (1 —n)a; o with some
function n € Cg°(T*dX) independent of /. Since p = —,/ro(1 +(’)(r0_1)) as ro — 00, it is easy to see that

(I=mp~* = (1 =) (—ro) ™ e 55 1(3X) (5-10)

for every integer k > 0, provided 7 is taken such that n = 1 for |£'| < A with some A > 1 big enough.
We will now calculate the function ¢, from the eikonal equation. To this end, write

B(x) = Bo(x") +x1 B (x) + O(x]),  n(x) =no(x) +x1n1(x) + O(x7)
and observe that the left-hand side of (5-2) is equal to
x1(4p192 + 2(BoVego, Vepr) + (B Vo, Vo) — (1 +i0)n1) + O(x}).
Hence, taking into account that g9 = —(x’, &’) and ¢ = —ip, we get
@2 = (2p) " (Bo&', Vi p) + (4ip) 1 (B1&', &) — (1 +i0)(@ip) .
Using the identity
2pVyp =Vyrog—(1+i0)Vyng
we can write ¢; in the form
@2 = (20) H(Bo&', Vro) + (4ip) " (B1E' &) — (1 +16)(2p) *(Bo', Vang) — (1 +i0)(dip)~'n;.

By (5-10) we conclude that, mod S; ' (8X),
(1- n)% = —id7 (1 = n)rg 2 (Bog', Viorg) + (1 — ) (4ro) " (B, £). (5-11)
Write now the operator Ay in the form
Ax =3 + (BoVy, Var) +q1(x)dy, + (92(x"), Vi) + O(x1)
and observe that

Axp =20+ qi1p1 — (g2(x"), §) + O(x1).
We now calculate the left-hand side of (5-5) with j = 0 modulo O(x;). Recall that ag o = . We obtain
2ip1a1,0+2i (BoVygo, Veaoo)+i(Axe)aoo=2igia1,0+2i (Bo&', Vo) +i (202+q1901—(q2(x), §)) .

Since the right-hand side is O(x{), the above function must be identically zero. Thus we get the following
expression for the function a; g:

ar0=—¢; (Bo&', Vorr) — (o7 "0 +27 g1 — 1) Hga(x)), £)) . (5-12)
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Taking into account that ¢ = ¥ on supp(1l — n), we find from (5-10)—(5-12) that (5-9) holds with
bO = i(1—nyry " (Bog’, V)

—47' (1= O(=irg P (Bok, Vuro) +ry (BIE ) +2q1 +2ry Pgn(x), §)). (5-13)
Clearly, b° € Sg (0X) is independent of A and n, as desired. O

Lemma 5.3 implies that
Opj (a0 —b%) = O(1) : L*(3X) — H(8X). (5-14)

Now, using a suitable partition of the unity on d X we can write 1 = ij-zl 1/1}). Hence, we can write the
function y 5+ as ZJJ: | ¥, where ¢ = WJQ X3+ . Since we have (5-8) and (5-14) with v replaced by each v,
we get (5-1) by summing up all the estimates. U

It follows from the estimate (3-11) applied with V = 0 that
AN (A; n)Op, (x9) = O) : L*>(3X) — H} (3X) (5-15)

provided [ImA| > §~* and Re A > Cs > 1. Now Theorem 1.2 follows from (5-15) and Propositions 4.1
and 5.1. Let us now see that Theorem 1.1 follows from Theorem 1.2. Since the operator —h?Ayx > 0is
self-adjoint, we have the bound

1 (= 2ax) x2((—h* Agx — 18| = |V —=h2Asx —1—i0x (—h* Agx—1)5 72 ||
< sup|Vo—1-ifx((c—1)872)|

>0

< sup  o—1|+8] < OE+10]"?) = OB+h?). (5-16)

82<|o—1|<252

On the other hand, it is well known that the operator hp(—Ayx)(1 — x2)((=h>Ayx —1)872) is an h-WDO
in the class OPSé (0X) with principal symbol p(1 — Xé))- This implies the bound

hp(—=Ayx)(1 = x2)((=h*Agx — 1)87%) = Op,(p(1 — x§)) = O(h) : L*(3X) — L*B3X).  (5-17)

It is easy to see that Theorem 1.1 follows from (1-3) together with (5-16) and (5-17). [l

6. Proof of Theorem 2.1
Define the DN maps N;(1), j =1, 2, by
N;(W) f = dvulr,
where v is the Euclidean unit normal to I' and u; is the solution to the equation

{(ch(x)v—i-)»znj(x))uj =0 ingQ, (6-1)
uj=f on I,

and consider the operator

T(A) =caNi() — 2 Na ().
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Clearly, X is a transmission eigenvalue if there exists a nontrivial function f such that T(1)f = 0.
Therefore Theorem 2.1 is a consequence of the following:

Theorem 6.1. Under the conditions of Theorem 2.1, the operator T (\) sends H A+0/2(TY into H—0/2(T),
where k = —1 if (2-2) holds and k =1 if (2-4) holds. Moreover, there exists a constant C > 0 such that
T (A) is invertible for Re A > 1 and |Im A| > C with an inverse satisfying in this region the bound

1T )™ w2y moson) S 14D, (6-2)
where the Sobolev spaces are equipped with the classical norms.

Proof. We may suppose that A € Ac ={L € C:Rer>Cc> 1, |[ImA| <|A|}, 0 <€ « 1, since the case
when A € {Re A > 1}\ A, follows from the analysis in [Vodev 2015]. We will equip the boundary I" with
the Riemannian metric induced by the Euclidean metric gg in €2 and will denote by rg the principal symbol
of the Laplace—Beltrami operator —Ar. We would like to apply Theorem 1.2 to the operators N (1).
However, some modifications must be done coming from the presence of the function ¢; in (6-1). Indeed,
in the definition of the operator AV(1; n) in Section 1, the normal derivative is taken with respect to the
Riemannian metric g; = cj_1 gk, while in the definition of the operator \; (1) it is taken with respect to
the metric gg. The first observation to be done is that the glancing region corresponding to the problem
(6-1) is defined by X; :={(x", &") € T*T :r;(x', £') = 1}, where r; :=mj_1r0, mj = (nj/c;)|r. We define
now the cut-off functions X(?, j by replacing in the definition of Xé’ the function ry by r;. Secondly, the
function p must be replaced by

p;(x', € = /ro(x, ") — (1 +i0)m;(x'), Rep; <O.

With these changes, the operator (1) satisfies the estimate (1-3). Set

s =cipi(l— x5 ) —cama(l— x9,) =1 —c1p1x 1 + 20245 5

where
e (co(xNro(x’, €y —1—1i0)
T=Clp1 —C02= ) (6-3)
c1p1+c202
where ¢ and ¢ are the restrictions on I'" of the functions
ci—c
ciny —cynp and ———MM=—
cinyp —cny

respectively. Clearly, under the conditions of Theorem 2.1, we have ¢(x") # 0 for all x’ € I". Moreover,
(2-2) implies ¢y = 0, while (2-4) implies co(x") < 0 for all x” € T". Hence,

0<Ci=Z|egro—1—-1i0| <C,

if (2-2) holds, and
0 < Ci{ro) =< |coro — 1 —i0] =< Ca(ro)

if (2-4) holds. Using this, together with (6-3), and the fact that p; ~ —,/r¢ as ro — oo, we get
0 < CH{EN" < C1{ro)*/? < || < Cafro)*? < C (€Y, (6-4)
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where k = —1if (2-2) holds and k = 1 if (2-4) holds. Let n € C3°(T*T") be such that =1 on |&'] < A and
n=0on |§'| > A+ 1, where A > 1 is a big parameter independent of A and §. Taking A big enough we
can arrange that (1 — )75 = (1 — )7. On the other hand, we have 175 = nt + O(8 + |0|'/?). Therefore,
taking 6 and |6| small enough, we get from (6-4) that the function ts satisfies the bounds

Ciig)* < lwsl < Ca (" (6-5)

with positive constants Cand C, independent of § and 6. Furthermore, one can easily check that (1—n)t €
Sé‘ (') and nts € Sy 2(F). Hence, 75 € S(’)‘(F), which in turn implies that the operator Op,,(75) sends

HU+P/2(T) into HI~H/2(T"). Moreover, it follows from (6-5) that the operator Op,, (ts) : H}EHWZ(F) —

H,fl_k)/ 2(I“) is invertible with an inverse satisfying the bound

10p;, (zs)~"! =072y gr+o2 @y < € (6-6)

with a constant C > 0 independent of A and 8. We now apply Theorem 2.1 to the operators ;(1). We
get, for A € A, |ImA| > Cs > 1, ReA > C¢ 5> 1, that

12T (&) — Opy, (zs)|l 2(ry— r2(ry < €6 (6-7)
in the anisotropic case, and
AT () — Oph(TS)HLZ(r‘)HH}}([‘) <Céo (6-8)

in the isotropic case, where C > 0 is a constant independent of A and §. We introduce the operators
A1(A) = (AT (1) — Op,,(15))O0p;, (ts) ™",
Az (1) = Opy (15) ™' (hT (M) — Opy, (1))
It follows from (6-6)—(6-8) that in the anisotropic case we have the bound
AT M) L2y 22y < C'8, (6-9)
while in the isotropic case we have the bound
AW 21y L2y < €8, (6-10)

where C’ > 0 is a constant independent of A and §. Hence, taking § small enough we can arrange that the
operators 1+ A;(A) are invertible on L?(I") with inverses whose norms are bounded by 2. We now write
the operator AT (1) as

hT () = (14 A1(2))Op(1s)
in the anisotropic case, and as
hT (1) = Opy,(z5) (1 + A2(2))

in the isotropic case. Therefore, the operator 27 (A) is invertible in the desired region and by (6-6) we get
the bound

(T ()~ g7y 4072y < 2C. (6-11)

Passing from semiclassical to classical Sobolev norms, one can easily see that (6-11) implies (6-2). [
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7. Proof of Theorem 2.2
We keep the notations from the previous section. Theorem 2.2 is a consequence of the following:

Theorem 7.1. Under the conditions of Theorem 2.2, there exists a constant C > 0 such that the operator
T :HY () — L*() is invertible for Re . > 1 and [Im A| > C log(Re A + 1) with an inverse satisfying
in this region the bound

17D M2y 2y S 1 (7-1)

Proof. As in the previous section we may suppose that A € A.. We will again make use of the identity
(6-3) with the difference that under the condition (2-6) we have co(x’) > 0 for all x’ € I". This means
that |7| can get small near the characteristic variety ¥ = {(x/, §’) € T*I" : r(x/, ') = 1}, where r := cqro.
Clearly, the assumption (2-7) implies that 31 N X, = @. This in turn implies that ¥ N%; =&, j=1,2.
Indeed, if we suppose that there is a ;‘0 € XNXjfor j=1or j =2, thenitis easy to see that ;0 € X1 Ny,
which however is impossible in view of (2-7). Therefore, we can choose a cut-off function x? e C®(T*T)
such that x° = 1 in a small neighbourhood of ¥, x° = 0 outside another small neighbourhood of X, and
supp x°N'E ; =4, j=1,2. This means that supp % belongs either to the hyperbolic region {ri<l-— 82}
or to the elliptic region {r; > 1 + 82}, provided § > 0 is taken small enough. Therefore, we can use
Propositions 4.1 and 5.1 to get the estimate

|2 0P, (x™) = Opy (1 x ") | oyo 2y SH+ e ClmA,
which implies
[T (1)0P, (X" = OPL (T X )| L2y 2y S H €™M (7-2)

It follows from (6-3) that near ¥ the function 7 is of the form 7 = 75(r — 1 — i0) with some smooth
function 79 # 0. We now extend 7( globally on 7*I" to a function 7y € Sg (") such that 7y = 7 on supp XO
and |7p| > const.> 0 on T*T". Hence, we can write the operator Opj, (t x°) as

Op;,(1x") = Op;,(x")Op,, (70) (B — i6) + O(h).
where B = %Oph r—D+ %Oph (r — 1)* is a self-adjoint operator. Hence
B-io) '=06™"H: L*(") — L*(I).
Since T is globally elliptic, we also have

Op, (F0) ' = O1) : L*(T") — L*(I).
This implies
Ky = 0p;, (x*)(B—i6)~'0p, (7)) ™' = O(I6|™) : L*(I) — L*(T")

and (7-2) leads to the estimate

IRT (WK1 —Op, (Xl 2y 220y S 1017 (R4 e~y S Im A~ +Rere €M <5 (7-3)
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for any 0 < § < 1, provided [Im 1| > Cslog(Re 1), Re A > 55 with some constants Cs, 55 > 0. On the
other hand, by Theorem 1.2 we have, for A € A, |[ImA|>Cs > 1, ReA > Ccs > 1,

|AT (1)Op, (1 = x*) = Opy (zs(1 = XN | 120y 12y < € (7-4)

As in the proof of (6-5), one can see that the function t; satisfies
CiE) < Il < Ca(&") on supp(l — x°) (7-5)

with positive constants c 1 and C » independent of § and 6. Moreover, t5 € S(% (I"). We extend the function
on the whole of T*I" to a function 75 € Sé (I") such that 75(1 — x%) = 75(1 — x°) and

~

Ci(g) < |15 < C5(&") on T'T. (7-6)
Hence
10p;, () Nl 2 ry— 12r) < C (7-7)

with a constant C > 0 independent of A and §. By (7-4) and (7-7) we obtain
|AT (K2 = Op, (1= X0 2 ry s 12y < €8 (7-8)
with a new constant C > 0 independent of A and §, where

K3 :=O0p;,(1 — x)0p,(F) "' = O(1) : L*(T") — L*(T).
By (7-3) and (7-8),

|nT Q) (K + K2) — <(C+Ds. (7-9)

1 H L2(T)—L%(I)

It follows from (7-9) that if § is taken small enough, the operator AT (A) is invertible with an inverse
satisfying the bound

IRT ) N 2yo 22y < 20K 12y 220y + 21 Kol 20y 2oy S 10171+ 1. (7-10)

It is easy to see that (7-10) implies (7-1). U
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HARDY-LITTLEWOOD INEQUALITIES
ON COMPACT QUANTUM GROUPS OF KAC TYPE

SANG-GYUN YOUN

The Hardy-Littlewood inequality on the circle group T compares the L?-norm of a function with a
weighted £7-norm of its sequence of Fourier coefficients. The approach has recently been explored for
compact homogeneous spaces and we study a natural analogue in the framework of compact quantum
groups. In particular, in the case of the reduced group C *-algebras and free quantum groups, we establish
explicit L? — £? inequalities through inherent information of the underlying quantum groups such as
growth rates and the rapid decay property. Moreover, we show sharpness of the inequalities in a large
class, including G a compact Lie group, C*(G) with G a polynomially growing discrete group and free
quantum groups 0;, S]‘VF.

1. Introduction

Hardy and Littlewood [1927] showed that there exists a constant C,, for each 1 < p <2 such that

1

1 A P
(ZZ T for) =Gl (1-)

for all f € L?(T), where ( f (n))nez is the sequence of Fourier coefficients of f.
This implies the multiplier
1
2=p
(I+n]) 7

is bounded. Moreover, this is a stronger form of the Hardy—Littlewood—Sobolev embedding theorem

Fu : LP(T) = 2@), [+ (wn)f()nez, with w(n):=

9’

1_1
Hy “(T)cLY(T) foralll<p<g <oo,

where H3(T):={f € LP(T): (1— A)32 (f) € LP(T)} is the Bessel potential space [Bényi and Oh 2013].

The Hardy-Littlewood inequality (1-1) has been studied on compact abelian groups by Hewitt and
Ross [1974] and was recently extended to compact homogeneous manifolds by Akylzhanov, Nursultanov
and Ruzhansky [Akylzhanov et al. 2015; 2016]. For compact Lie groups G with real dimension 7, the

The author is supported by the TJ Park Science Fellowship and the Basic Science Research Program through the National
Research Foundation of Korea (NRF), grant NRF-2015R1A2A2A01006882.
MSC2010: 20G42, 43A15, 46L51, 46L.52.

Keywords: Hardy-Littlewood inequality, quantum groups, Fourier analysis.
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2015 paper’s result can be rephrased thus: for each 1 < p <2, there exists a constant C, > 0 such that
1

(X a1 @IE) <Gl Iy orall f€L7@).
welr(G) (I+kz) 2

Here, Irr(G) denotes a maximal family of mutually inequivalent irreducible unitary representations
of G, ||Allgs := tr(A*A)% and the Laplacian operator A on G satisfies A : m; ; = —kgzm; ; for all
= (7, j)1<i,j<n, €Irr(G) and all 1 <i,j <ny.

The left-hand side of the inequality (1-2) can be shown to dominate a more familiar quantity, which is

a natural weighted £7-norm of its sequence of Fourier coefficients:
1

( — @I, ) <Gl f e, (13)
reim(G) (1 +Kx) 2 "
Here, [|A[|gr = tr(|A|? )% is called the Schatten p-norm with respect to the (unnormalized) trace.

A notable point is that the Hardy—Littlewood inequalities on compact Lie groups (1-2) are determined
by inherent geometric information, namely the real dimension and the natural length function on Irr(G).
Indeed, 7 +— ,/k5 is equivalent to the natural length || - || on Irr(G) (see Remark 6.1).

The main purpose of this paper is to establish new Hardy-Littlewood inequalities on compact quantum
groups of Kac type by utilizing geometric information of the underlying quantum groups. As part of such
efforts, we will present some explicit inequalities on important examples and such examples are listed
as follows. The reduced group C*-algebras C*(G) of discrete groups G, the free orthogonal quantum
groups O; and the free permutation quantum groups S;\; are main targets. Of course, noncommutative
L? analysis on quantum groups is widely discussed from various perspectives [Caspers 2013; Franz et al.
2017; Junge et al. 2014; 2017; Wang 2017]. For the details of an operator algebraic approach to quantum
groups themselves, see [Kustermans and Vaes 2000; 2003; Timmermann 2008; Woronowicz 1987].

In order to clarify our intention, let us show the main results of this paper on compact matrix quantum
groups, which can be known to admit the natural length function | - | : Irr(G) — {0} UN (see Definition 3.3
and Proposition 3.4). The following inequalities are determined by inherent information of the underlying
quantum groups, namely growth rates and the rapid decay property.

Theorem 1.1. Let G be a compact matrix quantum group of Kac type and denote by | - | the natural
length function on Irr(G).

(1) Let G have a polynomial growth with Zaem(@:|a|5k n2 < (1+k)” and y > 0. Then, for each
1 < p <2, there exists a universal constant K = K(p) such that

§> | |

a€lr(G)

~ P 1 _D A 2
nauf(a)nglfa) 5( D — 2||f<a>||ﬁs) <KIf o)

1
_ n
(2-p) @-pyy ¢
(I+a)@PY L, (@
(1-4)
forall f~3 et na r(f(@)u®) € LP(G).
(2) Let G have the rapid decay property with universal constants C, § > 0 such that

| fllLeoe) < C(1 +k)ﬂ”f||L2(G)
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forall f e span({u?fj ol =k, 1 <i,j <ngy}). Define

Sk = Z ng.

aclr(G)
lo|=k

Then, for each 1 < p <2, there exists a universal constant K = K(p) such that
1

(Z D — nanf(a)ng’ga)”

k=0 a€lr(G) s, 2 (14 k)C—pnB+D

la|=k
1 ~
(E rpmmr( X mali@ik)

k>0 aelr(G)
la|=k

(NS

)” <Kl flre (-5

forall f~3 e na t(f (@u®) € LP(G).

In particular, it is known that the rapid decay property of Fn can be strengthened in a general
holomorphic setting [Kemp and Speicher 2007]. The improved result is called the strong Haagerup
inequality. Based on these data, it can be shown that we can improve the Hardy—Littlewood inequality on
C} (Fy) by focusing on holomorphic forms. Theorem 5.3 justifies the claim and it seems appropriate to
call the improved result a “strong Hardy—Littlewood inequality”.

A natural perspective on the Hardy-Littlewood inequalities on compact Lie groups is that a properly
chosen weight function w : Irr(G) — (0, o) makes the corresponding multiplier

Fu:LP(G) = tP(G). givenby f > (w(x) [ (1)rem()-
bounded for each 1 < p < 2. Indeed, our newly derived Hardy-Littlewood inequalities on compact
quantum groups will give a specific pair (r, s) whose corresponding multiplier 7, , is bounded, where
1
rlel(1+ far)s
Moreover, in Section 6, we will show that there is no better pair (r/,s”) in that Frs 1s unbounded

Wrs(@) =

whenever (1) r’ <ror (2) r' =r, s’ <s if G is one of the following: G a compact Lie group, C;*(G)
with polynomially growing discrete groups or one of the free quantum groups 01'{,', SI'\','. See Theorem 6.6.

This approach is quite natural because it is strongly related to Sobolev embedding properties. We will
explore how they are related in Sections 6 and 7B. Indeed, for G =T¢, we have Fuwos: LP (T9) > ¢2(79)
is bounded if and only if

ps (1_1

HZ 7 @)y c L™ (T9) foralll <g <r < oo,

where H; (T?) is the Bessel potential space.

Lastly, in Section 7, we present some remarks that follow from this approach. We show that many free
quantum groups do not admit infinite (central) Sidon sets and give a Sobolev embedding theorem-type
interpretation of our results to C(G) with compact Lie groups and C;*(G) with polynomially growing
discrete groups G. Also, we present an explicit inequality on quantum torus Tg , which is not a quantum
group [Sottan 2010].
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2. Preliminaries

2A. Compact quantum groups. A compact quantum group G is given by a unital C *-algebra A4 and a
unital x-homomorphism A : A — A ®nin A satisfying

(1) (A®id)ocA=(1d® A) o A;
(2) span{A(a)(b® 14) :a,b € A} and span{A(a)(14 ® b) : a,b € A} are dense in A.

Every compact quantum group admits a unique Haar state # on A such that

(h®id)(A(x)) =h(x)l4 = (d®h)(A(x)) forall x € A.

A finite-dimensional representation of G is given by an element u = (¥; ;)1<i,j<n € Mn(A) such
that A(u ;) = Y pey Uik @ ug,; forall 1 <i,j <n. We say that the representation u is unitary if
u*u =uu* =1d, ® 14 € M, (A) and irreducible if {X € M,, : Xu = uX} = C-1Id,, where Id, is the
identity matrix in M,,.

We say that finite-dimensional unitary representations %1 and u, are equivalent if there exists a unitary
matrix X such that u1 X' = Xuy and let {u® = (u7 ;)1<i,j<n, faeim(c) be a maximal family of mutually

inequivalent finite-dimensional unitary irreducible representations of G. It is well known that there is a
unique positive invertible matrix Q4 € M, for each o € Irr(G) such that tr(Qy) = tr(Q, ') and

80.887,6(03Vis

h((uf,t)*u?’j = forall o, B €Irr(G), 1 <i,j <ng, 1 <s,t <ng,
tr(Qq)
8. 80i '
h(uf,t(uffj)*) = —a’ﬂtrl(’sQ(Q)a)j’t foralla, B €Irr(G), 1 <i,j <ng, 1 <s,t <ng.
o

We say that G is of Kac type if Q =1d,, € M, forall « € Irr(G). In this case, the Haar state / is tracial.
Lastly, we define C, (G) as the image of A4 in the GNS representation with respect to the Haar state &
and L°°(G) := C,(G)". The Haar state /& has a normal faithful extension to L*°(G).

2B. Noncommutative LP-spaces. Let M be a von Neumann algebra with a normal faithful tracial state ¢.
Note that the von Neumann algebra M admits the unique predual M. We define L' (M, ¢) := My and
L% (M, ¢) := M, and then consider a contractive injection j : M — My, given by [j(x)](y) := h(yx)
for all y € M. The map j has dense range.

Now (M, M) is a compatible pair of Banach spaces and for all 1 < p < oo, we can define noncom-
mutative L?-space LP (M, ¢) := (M, M) 1, where (-,-)1 is the complex interpolation space. For
any x € L°°(M, ¢), its L?-norm, for all 1 §pp < 00, is giveﬁ by

1
IxllLr gy = @(x|7)7.
In particular, for all 1 < p < oo, we denote by L?(G) the noncommutative L?-space associated with

the von Neumann algebra L°°(G) of a compact quantum group G of Kac type and the tracial Haar state /.
Then the space of polynomials

Pol(G) := span({uf"j ca €lr(G), 1 <i,j <ng})
is dense in C,-(G) and L?(G) forall 1 < p < co.
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Under the assumption that G is of Kac type, for 1 < p < oo,
gp(@) = {(Aa)aelrr(ﬁ) € 1_[ My, : Z ng tr(|Aq|?) < OO}
a€lr(G) aclr(G)

and the natural £7-norm of (A )gemr(c) € €¥ (@) is defined by
1

»
||(Aa)aelrr(6)||gp(@) 3:( Z natr(|Aa|p)) :( Z ”a“Aa“grfa) .

aclr(G) a€lr(G)

N =

Also,

@) :={(Aa>aem<@)e [T Ma: sup ||Aa||<oo}
a€lr(G) a€lrr(G)

and the £°°-norm of (Ag)yem(G) € Koo(@) is defined by

|(A)aetn(@) oo = sup Il 4all.
aclr(G)
It is known that Zl(@) = (Koo(@))* and Zp(@) = (Zw(@),ﬁl(@))l for all 1 < p < oco. For details
and more general framework of noncommutative L? theory, see [Haa’;gerup 1979; Pisier and Xu 2003;
Xu 2007].

2C. Fourier analysis on compact quantum groups. For a compact quantum group (G, the Fourier trans-
form F : LY(G) — £°°(G), ¥ — ¥, is defined by

(P (@) =¥ (@S)*) foralla € (), 1 <i.j < nq.

It is also known that F is an injective contractive map and it is an isometry from L?(G) onto 62(@)
[Wang 2017, Propositions 3.1 and 3.2]. Then, by the interpolation theorem, we are able to induce the
Hausdorff-Young inequality again; i.e., F is a contractive map from L? (G) into 24 (@) foreach1 < p <2,
where p’ is the conjugate of p.

We define theAFourier series of f € L1(G) by Zaem(G) d tr( f () Qqu®*) and denote it by f ~
> wenn(G) de tr(f (@) Qqu®). In particular, if G is of Kac type, the Fourier series is of the form f ~

Zaelrr(@) g tr(f(a)ua)'

2D. The reduced group C*-algebras. The reduced group C*-algebra C;*(G) can be defined for all
locally compact groups, but we only consider discrete groups in this paper since we aim to regard it as a
compact quantum group.

Definition 2.1. Let G be a discrete group and define Az € B(£2(G)) for each g € G by

[(Ag)()](x) = f(g7'x) forallx €G.
Then the reduced group C *-algebra C;*(G) is defined as the norm-closure of the space span({A¢ : g € G})
in B(£2(G)). Moreover, we define a comultiplication A : C*(G) = C;¥(G)®@minCF (G) by Ag > g ® A4
for all g € G. Then (C;F(G), A) forms a compact quantum group.

Note that, for G = (C;*(G), A) of a discrete group G, it is of Kac type and L°°(G) is nothing but the
group von Neumann algebra VN(G) and Irr(G) = {Ag }geG can be identified with G. In this case, we
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use the notation L?(VN(G)) = L?(G) conventionally. In particular, L!(VN(G)) is called the Fourier
algebra, denoted by A(G). It is well known that A(G) embeds contractively into Cy(G), so that A(G)
can be considered as a function space on G.

2E. Free quantum groups of Kac type.

Definition 2.2 (free orthogonal quantum group [Wang 1995]). Let N > 2 and A be the universal unital
C *-algebra, which is generated by the N2 self-adjoint elements u;, j with 1 <i, j < N satisfying the

relations
N

N
Z U iUk, ] = Z ujgujr =298,; foralll <i,j<N.

Also, we define a comultiplication A : A — A ®min A by u;,j - lecv=1 Uik @ug, ;. Then (A, A)
forms a compact quantum group called the free orthogonal quantum group. We denote it by 01'\’,'.

Definition 2.3 (free permutation quantum group [Wang 1998]). Let N > 2 and A4 be the universal unital
C *-algebra generated by the N2 self-adjoint elements u;, j with 1 <1i, j < N satisfying the relations

N N

2 . — g F P - 7

uj j=ui; =u; ; and E “z,k—z ug,j =14 foralll <i,j <N.
k=1 k=1

Also, we define a comultiplication A : A — A Qmin 4 by u;,; — Z,](\;l Uik @ug, ;. Then (A4, A)
forms a compact quantum group called the free permutation quantum group. We denote it by S]'\‘,'.

These free quantum groups are of Kac type, so that the Haar states are tracial states. Also, for all
N > 2, the families Irr(OJ"\,") and Irr(SI"\," ) can be identified with {0} UN. Moreover,

ng=k+1 ifG=o0;,

ng=2k+1 ifG=35;,

ng ~ry if G = Of or S}, with N >3,
where rq is the largest solution of the equation X2 — NX + 1 = 0 [Banica and Vergnioux 2009].
2F. The noncommutative Marcinkiewicz interpolation theorem. The classical Marcinkiewicz interpo-
lation theorem [Folland 1999, Theorem 6.28] has a natural noncommutative analogue for semifinite von

Neumann algebras. Throughout this paper, we say that amap T : L?(M) — L9(N) is sublinear if for
any x,y € LP(M) anda € C

T+ =T +IT()] and |T(ax)| = |af[T(x)].

The following theorem is a special case of [Bekjan and Chen 2012, Theorem 2.1]. Denote by L°(M)
the topological *-algebra of measurable operators with respect to (M, ¢).

Theorem 2.4 (the noncommutative Marcinkiewicz interpolation theorem). Let M and N be von Neumann
algebras equipped with normal semifinite faithful traces ¢ and \ respectively andlet 1 < p1 < p < pa <o0.
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Assume that a sublinear map A: L°(M) — L°(N) satisfies the following conditions: there exist C1, Cy >0
such that for any Ty € LPY (M), T, € LP2(M) and any y > 0,

Cl D1 C2 D2
#00000ATD) = (S 1T gy W00 04720) = (2) 1Tl @D

Then A: L?(M) — LP(N) is a bounded map.

Proof. Choose a specific Orlicz function ®(¢) = ¢t?. Then pgp = g = p under the notation of [Bekjan
and Chen 2012, Theorem 2.1]. O

If the sublinear operator A satisfies the left condition of the inequality (2-1), then we say that A is of
weak type (p1, p1). Also, the boundedness of A : LP (M) — L?(N) implies A is of weak type (p, p).

Now denote the space of all functions on the discrete space Irr(G) by c(Irr(G), v) with a positive
measure v. Then the theorem above is reformulated as follows:

Corollary 2.5. Let G be a compact quantum group of Kac type and let 1 < p1 < p < pa < 00. Assume
that A : L*°(G) — c(Irr(G), v) is sublinear and satisfies the following conditions: there exist C1,Cy > 0
such that for any T, € LPY(G), T, € LP2(G) and any y > 0,

C pP1 C, D2
3 v(a)s(;) T e 3 ”(“)5(7) 12122,

a: [(AT) (@) =y a: [(AT2)(@)|=y

Then A : L?(G) — £P (Irr(G), v) is a bounded map.

3. Paley-type inequalities

3A. General approach. In this subsection, a Paley-type inequality is derived for compact quantum
groups of Kac type by employing fundamental techniques such as the Hausdorff—Young inequality, the
Plancherel theorem and the noncommutative Marcinkiewicz interpolation theorem.

We prove the following theorem by adapting techniques used in [Akylzhanov et al. 2015].

Theorem 3.1. Let G be a compact quantum group of Kac type and let w : Irr(G) — (0, 00) be a function
such that Cy, := Supt>0{t DI w(a)>t ng[} < 00. Then, for each 1 < p < 2, there exists a universal
constant K = K(p) > 0 such that

( ) w(a)z—l’ni‘5||f<a)||§s)p < KIf lor (3-1)

aelr(G)

Jorall f~3 ,cinc) N tr( f (0)u®) € LP(G).

Proof. Put v(e) := w(a)?n2. We will show that the sublinear operator

. 1 (@) lus
A: L (G) = c(Ir(G),v), fr (m)aem(@)’

is a well-defined bounded map from L?(G) into £? (Irr(G), v) forall 1 < p <2.
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First of all,

Yo AN @lEsv@ = Y nall S @l = 1172

aclr(G) a€lr(G)
This implies 4 : L?(G) — £%(Irr(G), v) is an isometry.

Second, for all y > 0, since

I/ @llns _ (tr(f(a)*f(a))

)2 <1 @I <1/ L1

NI o
we have
w(@)?
Z V(o) < Z w(a)znﬁ = Z / ni dx
a: [|[Af(@)llus=y o wia)< L o wie)< 1L

y y

(140)?
= / v ( Z ng dx (by the Fubini theorem)
0

1 )
o x2 Sw(a)S%

) t( Z ng) dt (by substituting x to 12)

o tfw(ot)fnful

y
o, /1

Yy

This shows that A4 is of weak type (1, 1) with C; = 2Cy,.
Now, by Corollary 2.5,

N

( )3 w(a)z—f’nﬁ("'z)||f(a)||ﬁs) <1 flro.

a€lr(G)

O

The left-hand side of the inequality (3-1) dominates a more familiar quantity, which is a natural weighted
£P-norm of the sequence of Fourier coefficients (f («))qenr(s)- Recall that the natural noncommutative

£P-norm on £%°(G) = (> — Daein(G) Mn, is given by

N =

||(Aa)aelrr<@)||gp(@)=( > nallAaHZ,g;)

a€lrr(G)

under the condition where G is of Kac type.

Corollary 3.2. Let 1 < p <2 and w be a function which satisfies the condition of Theorem 3.1. Then we

have that

N =

( ) w(a)z—pnauf(a)ng;a) <K/ e

aclr(G)

forall f ~ Y yein(c) e r(f (@)u®) € LP(G).
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Proof. First of all,
(| f(@)|?) = ||f(06)||§’¢a-

Put%z%—%.Then2<r§ooand

(SIS}

A A 1_ A
(£ @17) = 1f @lls 11dng 15y =10 > £ @)]fis- O
Now we discuss an important subclass of compact quantum groups, namely compact matrix quantum
groups which admit the natural length function on Irr(G).

Definition 3.3. A compact matrix quantum group is given by a triple (A4, A, u), where A is a unital C*-
algebra A, A:A— A®minA is a x-homomorphism and u = (4;,; )1<i,j<n € My (A) is a unitary such that
(D) Atujj> Y poq Uik Qug j,
2) u= (u;“,j)lfi,jfn is invertible in M, (A),
(3) {ui,j}1<i,j<n generates A as a C *-algebra.

By definition, the free orthogonal quantum groups O;\; and the free permutation quantum groups S;;
are compact matrix quantum groups. Also, in the class of compact quantum groups, the subclass of
compact matrix quantum groups is charalcterized lby the following proposition. The conjugate & € Irr(G)
of a € Irr(G) is determined by u® := QZu%Q, >
Proposition 3.4 [Timmermann 2008]. A compact quantum group is a compact matrix quantum group if

and only if there exists a finite set S := {a1,...,a,} C Irr(G) such that any a € Irr(G) is contained in
some iterated tensor product of elements a1, a1, . .., 0y, &y and the trivial representation.

Then there is a natural way to define a length function on Irr(G) [Vergnioux 2007]. For nontrivial
a € Irr(G), the natural length |«| is defined by

min{m eN:3B1,....Bmsuchthata CB1 @@ Bm, Bj € {ak,&k}zzl}.

The length of the trivial representation is defined by O.

Then it becomes possible to extract explicit inequalities from Theorem 3.1 and Corollary 3.2 by
inserting geometric information of the underlying quantum groups, namely growth rates that are estimated
by the quantities by := )<k n2 [Banica and Vergnioux 2009].

Corollary 3.5. Let a compact matrix quantum group G of Kac type satisfy
b= Y ng<CA+k) forallk=O0withC.y>0

aelr(G)
lo|<k

with respect to the natural length function. Then, for each 1 < p <2, there exists a universal constant
K = K(p) such that

1 A ] 1 _p .
(X mmmmredi@n,) <( © qraamm 1@lk) <Kiflee

aelr(G) a€lr(G) (3-2)
forall f ~ Y yetns) e tr(f (@u®) € L?(G).

N =
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Proof. Consider the weight function w(«) := 1/(1 + |«|)?. Then

sup{t- Z nﬁ% = sup {t- Z nﬁ} <C sup t-(t_%)y:C.

<1 <1
>0 a:la|<t—1/v—1 O<t= a:la|<t—1/v—1 O<t=

Now the conclusion is reached by Theorem 3.1 and Corollary 3.2. O

3B. A Paley-type inequality under the rapid decay property. In this subsection, we still assume that G
is a compact matrix quantum group of Kac type. One of the major observations of this paper is that
more detailed geometric information improves Theorem 3.1 and Corollary 3.2 in various “exponentially
growing” cases. A more refined Paley-type inequality can be obtained under the condition that G has the
rapid decay property in the sense of [Vergnioux 2007].

Definition 3.6 [Vergnioux 2007]. Let G be a compact matrix quantum group of Kac type. Then we say
that G has the rapid decay property with respect to the natural length function on Irr(G) if there exist
C, B > 0 such that

Ry Ny
D D atuly <CA+RP| 37 > atuf; . (3-3)
aeln(G) i,j=1 Le(G) a€ln(G) i,j=1 L2(G)
loe|=F loe|=k

for any k£ > 0 and scalars af‘j e C.

Notation. (1) When the natural length function on Irr(G) is given, we use the notation

Sy i={aelr(G):|a|=k} and s;:= Z ng

€S

(2) We denote by py the orthogonal projection from L?(G) to the closure of
span({uf; € S, 1 <i,j <ng}).

Proposition 3.7. Suppose a compact matrix quantum group G is of Kac type and G has the rapid decay
property with respect to the natural length function on Irt(G) and with inequality (3-3). Then we have

~ 1
(Zaelrr(G):Iod:k nall f (o) ”%s) 2
sup

h>0 k + 1)P <C|flpi@ forall feL(G). (3-4)

Proof. Since L!(G) is isometrically embedded into the dual space M(G) := C,(G)* and Pol(G) is dense
in C(G), we have

”f”Ll(G) = sup (. x)Ll(G),LOO(G) = sup (. X*)Ll(@),LOO(G)
x€Pol(G) x€Pol(G)
lxllLoo @) =1 Xl Loc @) =1

= sup Y natr(f(@)F(@)")
x€Pol(G) a€lr(G)
Ixl oo ) =1
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> sulz ) Z Ny tr(f(a)fc(a)*)
x€Pol(G
50 COHD( St @) 221 ¥
n o ~

> sup sup Z C(k—il)ﬁtr(f(a)x(a)*)

k20 (3 ek nall£@)12)'*<1 acln(6)

la|=k
A 1
~ sup (X getn(ylal=k el f (@) Fs) (3-5)
This completes the proof. O

Theorem 3.8. Let a compact matrix quantum group G be of Kac type and G have the rapid decay property
with respect to the natural length function on Irr(G) and with inequality (3-3). Also, suppose that a weight
Sunction w : {0} UN — (0, 00) satisfies

Cy = sup{y~ Z (k + 1)2‘3} < 0. (3-6)
y>0

Then, for each 1 < p <2, there exists a universal constant K = K(p) > 0 such that

SIS
S =

(Zw(k)z—f’( ) nanf(a)nés) ) <Kl e (3-7)
k>0 a;llr;(}?)

forall f~73 4, ecin) Na tr(f(@)u®) € LP(G).
Proof. Put v(k) := w(k)? We will show that the sublinear operator

Il Pre(f) ||L2(G))
kzo,

.7l
A:L(G) — c({0} UN,v), f'_>( w (k)

is a well-defined bounded map from L?(G) into £7 ({0} UN, v) forall 1 < p <2.
First of all,

5 2
Z(%) V) = S 1P By = 1/ ey

k>0 k>0

Therefore, A : L?(G) — ¢2({0} UN, v) is an isometry.
Secondly, for all y > 0,

Y. vk < > w(k)?

k>0 _wiy M1
Af)Gk)>y kG B <>

by Proposition 3.7.
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Now put (k) := w(k)/(k 4+ 1)B. Then

CULN, 1 (g2

B (k)2 !
) (k+1)*f dx 5/ > (k+1)*Pdx
k:u?(k)<% 0 0 k:/x<w(k)
VAT
:2/ S Z (k+1)?2 dr  (by substituting x = 12)
0 kit<w (k)
_ 2CuCllf e
< . .

Therefore, by Corollary 2.5, we can obtain

N =

(X 0@ 1) =1 1r =

k>0

Corollary 3.9. Let a compact matrix quantum group G be of Kac type and G have the rapid decay
property with respect to the natural length function on Irr(G) and with inequality (3-3). Then, for each
1 < p <2, there exists a universal constant K = K(p) > 0 such that

y4

1
1 . 2\7
(Z(1+k)(2—17)(ﬂ+1)( > "allf(a)llﬁs) ) < K| fllLr@) (3-8)
k=0 a€lr(G)
jor|=k

forall f ~Y yetnc) Na tr(f (@u®) € L?(G).
Proof. Take w(k) :=1/(1 + k)P*1. Then

Cw:sup{y- > (1+k)2ﬂ}
YO kso:asi <L
(%)1/(2[3-&-1)_’_1 (2.(l)ﬁ)2ﬂ+1

28 y
t“Pdty < su .
} - 0<yI;1 Y 2,3 +1

2/3+1
T28+1 %

< sup O

0<y<l1

Corollary 3.10. Let a compact matrix quantum group G be of Kac type and G have the rapid decay
property with respect to the natural length function on Irr(G) and with inequality (3-3). Then, for each
1 < p <2, there exists a universal constant K = K(p) > 0 such that

1 X >

(Z Z P ”a”f(a)llg’f ) < K||f||Lp(@) (3-9)
k>0 aclr(G) (1+ |“|)(2_p)(’3+1)(2ﬁesk n;)T o

k

loe|=

forall f ~ Y yeine) e r(f (@)u®) € LP(G).
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1 1
. 2_ — A —_a A
Proof. Since % = % + 2_pp and ny ||f(0‘)||s,fa <ng?| f(@)|us, we have

~ _D A 1 . 2_1
Yo nall f @5, < Y na 2 1/ @l = [ (a1 f @llus 1 ges, [ris,)

aEeSK aESK
07 p 2 2 p 2
< |21 @ lhis)yes, Hﬂ(sk)-( Z”a) - ( Zna) ( Znallf(a)lle) -
aE€SK aE€SK €Sy
Then we can obtain the conclusion above. O

4. Hardy-Littlewood inequalities

This section is dedicated to establishing explicit Hardy—Littlewood inequalities for the main targets: the
reduced group C *-algebras C,* (G ) with finitely generated discrete groups G, the free orthogonal quantum
groups O;\,r and the free permutation quantum groups S]Jvr.

4A. The reduced group C *-algebras C,*(G). In this subsection, we deal with finitely generated discrete
groups G. As expected, we find clear evidence that the geometric information of the underlying group is
important for understanding noncommutative L?-spaces L? (VN(G)).

Definition 4.1. A discrete group with a fixed finite symmetric generating set .S is said to be polynomially
growing if there exist C > 0 and k > 0 such that

#geG:|gl<n<CA+n)¥ foralln>0.

In this case, the polynomial growth rate kg is defined as the minimum of such k. Then k¢ becomes a
natural number and independent of the choice of generating set S.

Theorem 4.2. (1) Let G be a finitely generated discrete group which has the polynomial growth rate k.

Then, for each 1 < p <2, there exists a universal constant K = K(p) such that
1

1 »
(Z (1+ |g|)(2—P)ko|f(g)|p) < K[A()Lrvney) (4-1)

geG

forall A(f) ~ deG f(g)Ag € LP(VN(G)).
(2) Let G be a finitely generated discrete group with

by =#geG:|g|<ky<Cr* forallk >0,

where |- | is the natural length function with respect to a finite symmetric generating set S. Then, for

each 1 < p <2, there exists a universal constant K = K(p, S) > 0 such that
1

(Z S If(g)lp)p < KAl vy (42)

geG
forall A(f) ~ deG f(g)Ag € LP(VN(G)).
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Proof. (1) This is clear from Corollary 3.5.
(2) Consider w(g) := 1/r!¢l. Then

sup{t- > l}zsup {t- > 1}50

t>0 0<t<l1
lg|<log, (1) = gl<log, (1)

Then the conclusion is derived from Theorem 3.1 O

Remark 4.3. (1) For every finitely generated discrete group, there exist C, r > 0 such that by < C rk
for all k£ > 0 by Fekete’s subadditivity lemma. Therefore, Theorem 4.2 covers all finitely generated
discrete groups.

(2) In fact, we shall see that (4-1) is sharp because of Theorem 6.6.

Although we can always find inequality (4-2) for every finitely generated discrete group, we can
achieve a better result by adding more detailed geometric information of the underlying groups. Indeed,
if we assume hyperbolicity of a group, then the inequality is considerably improved.

Theorem 4.4. Let G be any nonelementary word hyperbolic group with by < Cr¥ for all k > 0 with
respect to a finite symmetric generating set S. Then, for each 1 < p <2, there exists a universal constant
K = K(S, p) such that

(2 r@r) s(Zm(gmgW)

scor B ghe2

[

Sl
=

k>0
lgl=k
< KA L ovneoy) (4-3)
Sforall A(f) ~ deG f(g)Ag € LP(VN(G)).
Proof. The conclusion comes from Corollary 3.10 and [de la Harpe 1988]. O

4B. Free quantum groups. Let us begin with the investigation of “genuine” quantum examples: the
free orthogonal quantum groups 01’\7 and the free permutation quantum groups S;\,r - Moreover, we
will find a subclass of L? (O;) where the Hardy-Littlewood inequalities (4-4) and (4-5) on O;; become
equivalence (4-7), as for the result of SU(2) [Akylzhanov et al. 2015, Theorem 2.10].

Theorem 4.5. (1) Let G be the free orthogonal quantum group O;‘ or the free permutation quantum
group S j . Then, for each 1 < p <2, there exists a universal constant K = K(p) such that

1 A~ % 1 Z_g N D
(X Gl g, ) f(kZWk 17 @lEs) " <KLl @4

k>0

forall f ~3 oonit(f(k)uk) e L?(G).
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(2) Let G be a free orthogonal quantum group 0; or a free permutation quantum group SI—V’_ 4o With
N > 3. Then, for each 1 < p <2, there exlsts a universal constant K = K(p) such that

(Z 2—p)k : )4—2pnk”f(k)”§fl’) (Z G=p)k _12;”];(]()”11;5)

k>0 To (1 k>0 To (1+k)4 2p
=Kl flrr@ (4-5)

forall f ~ o ongte(f (k)uk) € LP(G), where ro = (N + v/N2—4).
Proof. (1) In this case, ny = k + 1 (resp. 2k + 1) for all k. Thus, the conclusion comes from Corollary 3.5.

N =

(2) It is known that 6; and SA‘;\? iy With N > 3 have the rapid decay property with 8 = 1 [Vergnioux
2007; Brannan 2013]. Also, s; = n? P rok for all k € {0} UN. Therefore, Corollaries 3.9 and 3.10
complete the proof. O

Remark 4.6. All results of this paper for S ]'v'r can be extended to quantum automorphism group Gy (B, ¥)
with a §-trace ¥ and dim(B) = N by repeating the same proofs. See [Brannan 2012a; 2013].

An important observation for the free orthogonal quantum groups O;\; is that the inequalities (4-4) and
(4-5) become equivalences (4-7) under several assumptions. Essentially, this is based on the result of
SU(2) [Akylzhanov et al. 2015, Theorem 2.10] and the following lemma moves the result to 0;.

Lemma 4.7. Let G = O?\,' or S;+2 with N > 2 and consider G = SU(2) or SO(3) for each case. Then,
Jor [~ ,50¢n 1) € LP(G), the associated function ®(f) ~ > n>0Cn 12 € LP(G) has the same norm.
More precisely,

forall1 < p <oo.
L?(G)

If e @) = Hq>(f) ~Y eatn

n>0

Here, yL = tr(u™) and y2 = tr(v"), where u™ and v" are the n-th irreducible unitary representations of
G and G, respectively.

Proof. In the cases above, it is known that G and G share the same fusion rule. In [Wang 2017,
Proposition 6.7], it was pointed out that the restricted map ®|py(g) is a trace-preserving *-isomorphism.
Now, for any x = 5 ck)(}c € Pol(G) and m € N,

B ™) =h(( ) c'kcz(x,i)*x}) )
k, >0

— 1 1 1 1
= Z Cki """ ChknCly "‘Clmh((Xkl)*Xll "‘(ka)*)(lm)
kl:ll ----- km,lmZO

= 52 2 )
= Z ckl'--ckmCll-.-Clm/Xk]Xll...kale
klslls"'akm,lmzo G

2m_ /12m
/(chcl)(k)(l) —/;;|x| )

k,1>0
where x" =) k>0 Ck )(i € Pol(G). Then the Stone—Weierstrass theorem completes the proof. O
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Corollary 4.8. Let N > 2, § < p <2andfix D > 0. Also, assume f ~ Zk>0 Ck Xk € L%(O;\,r) satisfies

Ck>Cr+1 >0 and Z +1§D cr fork >0. (4-6)
m=>k
Then we have 1
- 2p—4 p\”
1 luaop) = (X0 + 027 cf)" @7
k>0
Proof. 1t is sufficient to combine the Lemma 4.7 and [Akylzhanov et al. 2015, Theorem 2.10]. O

5. A strong Hardy-Littlewood inequality

The studies of Hardy—Littlewood inequalities in [Akylzhanov et al. 2015; Hardy and Littlewood 1927;
Hewitt and Ross 1974] dealt with general L?-functions, but plenty of classical results of harmonic analysis
on T show that a theorem on a function space can have a stronger form when restricted to a holomorphic
setting [Kemp and Speicher 2007].

Evidence of these phenomena in the noncommutative setting is the strong Haagerup inequality on the
reduced group C *-algebras C*(Fx). More precisely, it was shown that the rapid decay property can
be strengthened in a general holomorphic setting [Kemp and Speicher 2007]. Such a phenomenon also
occurs on the free unitary quantum groups [Brannan 2012b; 2012a].

Let g1,...,gnN be canonical generators of [y and denote by [F]"\", the set of elements of the form
8i18iyr " 8i,, Withm € {0}UNand 1 <ip < N forall 1 <k <m.

Theorem 5.1 (strong Haagerup inequality on C,* (Fy)). Consider a subset E := [F]J\r, and Ey :=={ge E:
|g| = k}. Then, for any k € {0} UN, we have

> f(9)Ae

gEeEy

< veviri( 2 If(g)lz)%-

C:([FN) g€eEy,

Based on this information, we can modify the inequality (3-4) as follows.

Proposition 5.2. Let N > 2. Then we have

(Saer, 110 2)2

(k+1) 2
Proof. We can use the proof of Proposition 3.7 again in this case. The only difference is the improvement
of (1+k)? to (1+ k)% in inequality (3-5). Then we are able to reach a conclusion by restricting support

1
I fllacy) = «/Eliz% forall f € A(Fn). (5-1)

of x € C.(G) to [F]J(, in the proof. O
Theorem 5.3. Let N > 2. Then, for each 1 < p <2, there exists a universal constant K = K(p) > 0

such that | N .

p D

) If(g)lp) < (Z ( ) If(g)lz) )
2=plzl
(ge[FN (1+1g)2CPN =2 o 1+ 3P\
lgl=k

< KA Le (vNEN)) (5-2)

forall \(f) ~Y o5, f(&)Ag € LP(VN(Fy)) with supp(f) S F3.
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Proof. It can be obtained by repeating the proofs of Theorem 3.8 and Corollary 3.10. The only difference
is that it the operator A should be replaced with

||f'XEk||eZ([FN))
A
e (s -

and (1 + k)# with (1 + k)%. Also, we choose a weight function w on {0} UN by w(k) :=1/(1 + k)%.
Then we can get a new inequality for general A( f) € L?(VN(Fy)), but our consideration is in the case
supp(f) < Fy - O

6. Sharpness

Hardy-Littlewood inequalities discussed in Section 4 give a specific pair (r, s) such that the multiplier

Fury : LP(G) = L7 (G),  f > (wrs(@) f (@))acin(s),

is bounded for each case, where w, s(o) =1/r lel(1 4 ||)® with respect to the natural length |-| on Irr(G).
Here is the list of such pairs:

J (0, @) for G a compact Lie group,
J (O, W) for C;¥(G) with a polynomially growing discrete group G,
. (0, @) for O or S, and

2—p

e (rg”

Remark 6.1 [Lee and Youn 2017; Wallach 1973]. If G is a compact Lie group, then /k is equivalent to
the natural length function || - || s generated by the fundamental generating set S of Irr(G). Equivalently,

B
(1+kz)? ~ (1+||7]ls)P.

, @) for O;\,r or SIJ\§+2 with N > 3.

In order to claim that the established inequalities are sharp, we will show that there is no (r’, s”) better
than the given specific pair in that 7y, , is unbounded whenever (1) rr<rorQr' =r, s <s.

This viewpoint is different from the spirit of [Akylzhanov et al. 2015, Theorem 2.10] or Corollary 4.8,
which requires finding an equivalence in a subclass. However, our approach is quite natural since it is
strongly related to the Sobolev embedding theorem. In this section and Section 7B, we will discuss how
they are related. For example, Fy, , : L? (T?) — £2(Z?) is bounded if and only if H i (T?) c LP'(T9)
and it is equivalent to

ps ;_%)

qu—p q (-H-d) c Lr(-l]—d)

forall 1 < g <r < oo, where H;; (Td ) is the Bessel potential space.

In addition, this view has a definite advantage over looking for equivalence because we can cover a
much larger class.

Our first strategy is to handle an ultracontractivity problem on C(G) with compact Lie groups and
CX(G) with polynomially growing discrete groups. In fact, ultracontractivity problems are strongly
related to Sobolev embedding properties [Xiong 2016].
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Let M be the von Neumann subalgebra generated by { x4 }genr(s) in L°°(G) and consider L? (M),
the noncommutative L?-space associated with the restriction of the Haar state on M. Now suppose that
[ :Trr(G) — (0, 00) is a positive function and there exist 1 < p <2 and a universal constant C > 0 such that

. (6-1)
LP(M)

fC“f~ Y. cata

LP (M) a€lr(G)

HJ(f) ~ Y e

aetr(G) L(&) 7
B
where J is a densely defined positive operator on L?(M) Whchh maps yq to 1/1(a) 7 yo for all @ € Irr(G),
1 <i,j <ng. Indeed, JB K*K, wher%K Xa F> 1/l(a)2p)(a
Now take ¢(¢) :=t2=7,¥(z):=z2=7 and L :=J 75, Then [Xiong 2016, Theorem 1.1] suggests
that there exists a universal constant C’ > 0 such that

—tL Ca
e H )~ D i) e

a€lr(G)

I/ L cary
<C' =7

Lo (M) t2-p

(6-2)

forall 0 <z <ooandall f ~ 3 crs) CaXe € LY(M).
The next thing to do is to prove that the following result (6-3) is achieved by combining (6-2),
Lemma 6.2 and Lemma 6.3 below:

28 n2
sup t2-r Z W =:C< o0, (6-3)

O<t<o0 a€lr(G)
if G is G a compact Lie group or C*(G) with a polynomially growing discrete group.
Lemma 6.2 [Dasgupta and Ruzhansky 2014, Lemma 4.1; Lee and Youn 2017, Proposition 5.7].

(1) Let G be a compact Lie group with the dimension n. Then

2
D .
reimc) (1 1 #x)2
if and only if s > n.

(2) Let G be a finitely generated discrete group with the polynomial growth rate kgy. Then

2 Ty (I+ Igl)s

if and only if s > k.
Lemma 6.3. (1) Let G be a compact Lie group. Then there exist probability measures {v; }¢~q such that
Dy () = 1/e"™*=1dy, for all & € Irr(G). Moreover, {v;};>0 € L1(G).
(2) Let G be a compact Lie group and let f ~ Znelrr(G) Ny tr(f(n)n) € L°°(G) be such that f(n) >0
for all w € Irr(G). Then
| fllzesey = Y nante(f ().

relr(G)
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(3) Let G be a discrete group. Then the Fourier algebra A(G) has a bounded approximate identity if
and only if G is amenable. In this case, the bounded approximate identity can be chosen as positive
and compactly supported functions on G.

(4) If G is an amenable discrete group, we have

Af)~ Y f(@Ag

geG

=>" f(®

geG
for any positive function f € L1(G).

Proof. (1) Since
2

> e
otk
relr(G)
by Lemma 6.2, we know that v, € A(G) € C(G) € L'(G). The family {v;};>¢ is called the heat
semigroup of measures.

(2) Since f + u; * f is a contractive map on L°°(G) for all # > 0, where * is the convolution product,

fie 3

relr(G)

we have

| fllLoo(G) = sup
>0 Cc(G)

Here, since

Ny
2 Gier
T
by Lemma 6.2, the Fourier series of f; uniformly converges to f; € C(G). Therefore,

1/ lzee(@) = sup fi(1) = sup > > ngte(f ().

>0 i) © reln(G)

The other direction is trivial.

(3) See [Runde 2002, Theorem 7.1.3] and its proof. We may also assume the compact supportness by
considering fe := f - X({¢eG: f(g)>¢} fOr positive [ € LY(G).

(4) This is Kesten’s condition, which is equivalent to amenability. O

Now we can prove that the claim is true.

Proposition 6.4. Let G be G a compact Lie group or C(G) with a polynomially growing discrete group.
Also, suppose that the inequality (6-1) holds. Then

28 n2 .
sup {127 Z i = C < 0. (6-4)

0<t<o0 a€lr(G)

Proof. For G a compact Lie group, by Lemma 6.3, for all 0 < ¢ < oo,

1’12 I’l2 L Cl /
2. i =S D it = ST 0L < g sup vl < 5
relm(G) € >0 o ein(G) € r>0 t2=p r>0 125
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Now, for G a polynomially growing discrete group, there exists a bounded approximate identity (e;);
in A(G) that consists of positive and compactly supported functions since polynomially growing discrete
groups are always amenable. Then (6-2) implies

1 . ei(g) . el(g)
; i)z 5P ; 02 Z )2
g g

since lim; e;(g) = 1 for all g € G. O

C//
— 2‘3
Cr*(G) t2-r

Proposition 6.4 allows us to extract a quantitative observation.

Proposition 6.5. Let G be G a compact Lie group or C(G) with a polynomially growing discrete group.
Also, suppose that the inequality (6-1) holds. Then we have

n2 28
Z 7 < 0o for all natural numbers m > 3 (6-5)
aetn(c) | (@) 2 —P
Proof. Choose y € (max{%, m — 1}, m). Then we have
y ng
sup st —} =:Cp <0
from (6-4), so that
1
1
f 3 <G [ s
I 1/2 14
! getm©) € (a) X
forallO0 <t <1.
This implies
2
sup {ty_l ln—alz} ::C1<OO,
0<t<1 wein(G) l(a)2etl@"

so that we can inductively see that

(m—1) .
sup {t” } =:Cy—1 < 00.
0<t<1 ae%%G) 1(a) etl(a)‘/2 "

Then there exist D1, D, > 0 such that
2
n—“ m—y
(@) Fetl@? < Dit + D, forallO<t <1

aelr(G)
through similar reasoning.
Lastly, taking the limit + — 0 completes the proof. O

Theorem 6.6. Let 1 < p <2.
(1) Let G be a compact Lie group with dimension n. Then

1
> ol f ol ) 51 )
(n'elrr(G) (l+ ”)

holds if and only if s > n(2— p).

N =
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(2) Let G be a finitely generated discrete group with polynomial growth rate k. Then

(Z 1+ g |)s|f(g)|p)p S IAH) L (vneey)

holds if and only if s > ko(2 — p).
(3) Let G be O;‘ or S:‘. Then

1 o
S”k”f(k)”pp) SIS llLr )
(Zazmmiion,

holds if and only if s > 3(2 — p).
(4) Let G be O3 or Sy, with N > 3. Then

1
A p
(- = g k)snknf(k)ng,fk) <1 e

k>0

=

holds if and only if s > 4—2p, where ro = %(N + VN2 —4).

Proof. One direction is obtained from the discussed Hardy—Littlewood inequalities (1-3), (4-1), (4-4) and
(4-5). To prove the converse direction, firstly, define /() by (1) (1 + Kﬂ)% and (2) 1 + |g| respectively.
Then the assumed inequality

N

(X

a€lrr(G)

i@l ) <17l

implies the inequality (6-1) for 8 =s. Then, by Proposition 6.5 and Lemma 6.2, we can get (1) 2n < %,
(2) 2k < 2ﬂ respectively

In (3) and (4) let G =SUR)if G = 0+ and G =SO3) if G = SN+2 for each case. Also, denote by
X} € Pol(G) the character corresponding to yx € Pol(G), as in Lemma 4.7. Define /(k) := 1+ k.

First of all, in (3), for each f ~ } ;- cx xx € L?(G), we have

(X grperstad?) 1o = |7/~ e

L7 (G) k>0 k>0

Y U+ Pk

k>0

L?(G)

by Lemma 4.7 and the Hausdorff-Young inequality. On the other hand, in (4), for each f ~ )" k>0 Ck Xk €
L?(G), we have

S+

k>0

1
D
l?)” 517 o) = Hf <Y ek

k>0

L7 (G) (,;0 (1+k)s

LP(G)

by similar arguments.
Now we can apply Proposition 6.5 and Lemma 6.2 for compact Lie groups again, so that (3) s > 6—3p
and (4) s —p+2>6—-3p(& s >4 —2p) respectively. d
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7. Some remarks about Sidon sets, the Sobolev embedding theorem and quantum torus

The methods of this paper, combined with a lacunarity result for compact quantum groups, give a Sobolev-
embedding-theorem-type interpretation for G compact Lie groups and for C,*(G) with polynomially
growing groups. Also, we show an explicit inequality on the quantum torus Tg .

7A. Sidon sets on compact quantum groups. The study of lacunarity, particularly Sidon sets, is one
of the major subjects in harmonic analysis and recently the notion has been extended to the setting of
compact quantum groups [Wang 2017].

Definition 7.1. Let G be a compact quantum group.

(1) A subset E C Irr(G) is called a Sidon set if there exists K > 0 such that
1£ln@ = Kl /sy forall f € Polg(B),
where Polg (G) := {f € Pol(G) : f(a) =0forall « ¢ E}.
(2) A subset E C Irr(G) is called a central Sidon set if there exists K > 0 such that

1/ i@y < KIf L@ forall f = > caxa €Polg(G).
a€lr(G)

Let G= (A, A) be of Kac type and E C Irr(G) be a central Sidon set. Then [Wang 2017, Proposition 6.4]
implies there exists u € M(G) = C,(G)™* such that (o) = (/L((u;’.‘,i)*))lﬁi,jfna =1d,, foralla € E.
Since Pol(G) is dense in C,(G), Proposition 3.7 still holds for u € M(G).

Now, if G satisfies the assumptions of Proposition 3.7 and if £ C Irr(G) is a central Sidon set, we get

1
(ZaeE ¢ né) : |Ek|% Mingeg, No
00 > sup ———~ " > sup k
k=0 (1+ k)P k>0 (1+k)B
where Ey :={a € E : |a| = k}.
Thus, the conditions | E| = oo and ng > r1¢! for all & € Irr(G) with r > 1 cannot hold true simultaneously.

’

Remark 7.2. (1) The argument above shows that there is no infinite (central) Sidon set in U IC,L with
N > 3, which is not explained in [Wang 2017].

(2) Shortly after this research, the author of [Wang 2017] personally informed me of a simple idea to
further explain the U Xlr cases. Under the identification Irr(U ;,r )= I]:;r , the fact that

lxalle = (1+|a)? forallaeF}
implies there is no infinite A(4) set, so that there is no infinite Sidon set on U 1;," with N > 2.

7B. Sobolev embedding properties. The content of Section 6 can be interpreted in terms of Sobolev
embedding properties by [Xiong 2016, Theorem 1.1].
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For G a compact Lie group whose real dimension is #, the computations in Section 6 suggest that

H(l—A>—§<f)~ Y T w(f )

remm(G) (1 +kx)2

S fllLr )
L7 (G)

if and only if 8 > @ for each 1 < p < 2. Moreover, it is equivalent to

if and only if > n foreach 1 < p <g <oo. If we define the space H;(G):={f € L¥(G): (1-A)2(f)e
LP?(G)} as an analogue of the Bessel potential space, then the result above is interpreted as
Hy(G) S LY(G) ifandonlyif s> n(% — 5) (7-1)
foreach 1 < p < g < 0.
On the other hand, if G is a finitely generated discrete group with polynomial growth rate k¢, then we
can define an infinitesimal generator L on C,*(G) by Ag = —|g|Ag¢ for all g € G. Then we are able to
induce the Sobolev embedding property of noncommutative spaces L? (VN(G)) as follows:

[0 =P AN ooy S MDD ILrny  ifandonlyif p=ko  (7-2)

foreach 1 < p < g < o0.
The reader may consider another natural infinitesimal generator L' : 14 > —| g|*A g» but the result is
essentially the same when (1 — L) is replaced with (1 — L’ )%.

7C. Hardy-Littlewood inequality on quantum torus. The quantum torus Tg is a widely studied example
of quantum space, but it is not a quantum group [Sottan 2010]. Nevertheless, we can establish Hardy—
Littlewood inequalities on Tg , which is of the same form as the case for T%. A proof can be given by
repeating the proof of Theorem 3.1. See [Xiong et al. 2015] for Fourier analysis on the quantum torus.

Remark 7.3. For a quantum torus Té ,foreach 1 < p <2, we have

1

1 . »
(T armmisaas ) <1l (73)

mez9
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