Vol. 11, No. 1, 2018

Download this article
Download this article For screen
For printing
Recent Issues

Volume 13
Issue 6, 1605–1954
Issue 5, 1269–1603
Issue 4, 945–1268
Issue 3, 627–944
Issue 2, 317–625
Issue 1, 1–316

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
ISSN: 1948-206X (e-only)
ISSN: 2157-5045 (print)
Author Index
To Appear
Other MSP Journals
Hardy–Littlewood inequalities on compact quantum groups of Kac type

Sang-Gyun Youn

Vol. 11 (2018), No. 1, 237–261

The Hardy–Littlewood inequality on the circle group T compares the Lp-norm of a function with a weighted p-norm of its sequence of Fourier coefficients. The approach has recently been explored for compact homogeneous spaces and we study a natural analogue in the framework of compact quantum groups. In particular, in the case of the reduced group C -algebras and free quantum groups, we establish explicit Lp p inequalities through inherent information of the underlying quantum groups such as growth rates and the rapid decay property. Moreover, we show sharpness of the inequalities in a large class, including G a compact Lie group, Cr(G) with G a polynomially growing discrete group and free quantum groups ON+, SN+.

Hardy–Littlewood inequality, quantum groups, Fourier analysis
Mathematical Subject Classification 2010
Primary: 20G42, 43A15, 46L51, 46L52
Received: 16 February 2017
Revised: 16 June 2017
Accepted: 24 July 2017
Published: 17 September 2017
Sang-Gyun Youn
Department of Mathematical Sciences
Seoul National University
South Korea