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We consider the global regularity problem for defocusing nonlinear Schrödinger systems

i@t C�uD .rRmF /.u/CG

on Galilean spacetime R�Rd, where the field u W R1Cd ! Cm is vector-valued, F W Cm! R is a smooth
potential which is positive, phase-rotation-invariant, and homogeneous of order pC 1 outside of the
unit ball for some exponent p > 1, and G W R�Rd ! Cm is a smooth, compactly supported forcing
term. This generalises the scalar defocusing nonlinear Schrödinger (NLS) equation, in which m D 1
and F.v/D 1=.pC 1/jvjpC1. It is well known that in the energy-subcritical and energy-critical cases
when d � 2 or d � 3 and p � 1C 4=.d � 2/, one has global existence of smooth solutions from arbitrary
smooth compactly supported initial data u.0/ and forcing term G, at least in low dimensions. In this paper
we study the supercritical case where d � 3 and p > 1C4=.d �2/. We show that in this case, there exists
a smooth potential F for some sufficiently large m, positive and homogeneous of order pC 1 outside of
the unit ball, and a smooth compactly supported choice of initial data u.0/ and forcing term G for which
the solution develops a finite time singularity. In fact the solution is locally discretely self-similar with
respect to parabolic rescaling of spacetime. This demonstrates that one cannot hope to establish a global
regularity result for the scalar defocusing NLS unless one uses some special property of that equation that
is not shared by these defocusing nonlinear Schrödinger systems.

As in a previous paper of the author (Anal. PDE 9:8 (2016), 1999–2030) considering the analogous prob-
lem for the nonlinear wave equation, the basic strategy is to first select the mass, momentum, and energy
densities of u, then u itself, and then finally design the potential F in order to solve the required equation.

1. Introduction

The (inhomogeneous) nonlinear Schrödinger equation (NLS) takes the form

i@tuC�uD˙juj
p�1uCG;

where u W R�Rd ! C is the unknown field of one time variable t and d spatial variables x1; : : : ; xd ,
p > 1 is an exponent, � D @xj @xj is the spatial Laplacian (with the usual summation conventions),
@t ; @x1 ; : : : ; @xd are the partial derivatives in time and space, G W R�Rd ! C is a forcing term, and ˙ is
either the C sign (defocusing case) or � sign (focusing case). As is well known, in the homogeneous
case G D 0, this equation has (formally, at least) a conserved Hamiltonian

H.u/ WD

Z
Rd

1
2
jruj2˙

1

pC1
jujpC1 dx
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which is nonnegative in the defocusing case; this Hamiltonian plays a crucial role in the large data global
regularity theory for such equations.

In this paper, we will study the following generalisation of the defocusing NLS equation, in which
the unknown field u is allowed to be vector-valued, but for which one continues to have a nonnegative
conserved Hamiltonian in the homogeneous case. Let Cm be a standard finite-dimensional complex vector
space, with the real inner product

h.z1; : : : ; zm/; .w1; : : : ; wm/iCm WD Re
mX
jD1

zj Nwj

and norm kzkCm WD hz; zi
1=2
Cm

.
A function F W Cm! R is said to be phase-rotation-invariant and homogeneous of order ˛ for some

real ˛ if we have

F.�v/D j�j˛F.v/ (1-1)

for all � 2 C and v 2 Cm; thus, for instance, F.ei�v/D F.v/ for all � 2 R and v 2 Cm. In particular,
differentiating (1-1) at �D 1 we obtain Euler’s identity

hv; .rCmF /.v/iCm D ˛F.v/; (1-2)
as well as the variant

hiv; .rCmF /.v/iCm D 0 (1-3)

for all v 2 Cm where a gradient rCmF.v/ 2 Cm exists. Here the gradient rCmF.v/ is defined via duality
by the formula

h.rCmF /.v/; wiCm D
d

dt
F.vC tw/jtD0 (1-4)

for all test directions w 2Cm. When ˛ is not an integer, it is not possible for such homogeneous functions
to be smooth at the origin unless they are identically zero (this can be seen by performing a Taylor
expansion of F around the origin). To avoid this technical issue, we also introduce the notion of F being
phase-rotation-invariant and homogeneous of order ˛ outside of the unit ball, by which we mean that
(1-1) holds for � 2 C and v 2 Cm whenever j�j; kvkCm � 1, or whenever j�j D 1.

Define a potential to be a function F W Cm ! R that is smooth away from the origin; if F is also
smooth at the origin, we call it a smooth potential. We say that the potential is defocusing if F is positive
away from the origin, and focusing if F is negative away from the origin. In this paper we consider
nonlinear Schrödinger systems of the form

i@tuC�uD .rCmF /.u/CG; (1-5)

where the unknown field u W R�Rd ! Cm is assumed to be smooth, F W Cm! R is a smooth potential,
and G W R�Rd ! Cm is a smooth compactly supported forcing term. In the homogeneous case G D 0,
this is (formally, at least) a Hamiltonian evolution equation, with Hamiltonian

H.u/ WD

Z
Rd

1
2
kruk2

Rd˝Cm
CF.u/ dx
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which is nonnegative when F is defocusing, where the quantity kruk2
Rd˝Cm

is given by the formula

kruk2
Rd˝Cm

WD h@xju; @xjuiCm

with the usual summation conventions. By Noether’s theorem, the phase rotation invariance of this
Hamiltonian yields (formally, at least) the conservation of mass

R
Rd
kuk2

Cm
dx, while the translation

invariance of the Hamiltonian similarly yields conservation of the momentum 2
R

Rd
h@ju; iuiCm dx. In

fact one has a conserved (pseudo-)stress-energy tensor T˛ˇ , which we will take advantage of later in the
paper.

Remark 1.1. One could of course consider other generalisations of the scalar NLS equation in which
the nonlinear term .rCmF /.u/ is replaced by other functions of u; for instance, in view of the form
˙jujp�1u of the scalar nonlinearity, one might consider nonlinearities of the form A.u/u for some
scalar-valued or matrix-valued function A.u/ of u. However, such equations would in general fail to have
a conserved Hamiltonian (or a conserved pseudo-stress-energy tensor) and would thus presumably have
worse behaviour at long times starting from large initial data.

We will restrict attention to potentials F which are phase-rotation-invariant and homogeneous outside
of the unit ball of order pC 1 for some exponent p > 1. The scalar NLS equation introduced earlier
then corresponds to the case when mD 1 and F.v/D jvjpC1=.pC 1/ (for defocusing NLS) or F.v/D
�jvjpC1=.pC 1/ (for focusing NLS), with the caveat that one needs to restrict p to be an odd integer if
one wants these potentials to be smooth at the origin.

The natural initial value problem to study here is the Cauchy initial value problem, in which one
specifies a smooth initial position u0 W Rd ! Cm and forcing term G W R�Rd ! Cm, as well as the
potential F, and asks for a smooth solution u to (1-5) with u.0; x/D u0.x/. To avoid ill-posedness issues
relating to the infinite speed of propagation of the Schrödinger equation, we will require the data u0 and G
to be compactly supported in space, and restrict attention to solutions u that are in the Schwartz class.

Standard energy methods (see, e.g., [Cazenave 2003; Tao 2006]) show that for any choice of smooth
compactly supported data u0 WRd!Cm and smooth compactly supported forcing term G WR�Rd!Cm,
one can construct a unique smooth solution u to (1-5) in .�T�; TC/�Rd for some 0 < T�; TC �1
which is Schwartz in space, with T�; TC maximal amongst all such solutions. Furthermore, if TC <1,
then ku.t/kL1 goes to infinity as t ! TC, and similarly for T�. In these latter situations we say that the
initial value problem exhibits finite time blowup.

The global regularity problem for a given choice of potential F asks if the latter situation does not
occur, that is to say, for every choice of smooth, compactly supported data u0; G there is a smooth global
solution.

The answer to this question depends in a somewhat complicated way on the dimension d , the exponent p,
and whether the potential F is focusing or defocusing; the literature here is vast and the following
discussion is not meant to be comprehensive. Readers may consult the texts [Cazenave 2003; Bourgain
1999; Tao 2006] for more complete references. See Table 1 for an oversimplified summary of the situation.

Consider first the mass subcritical case p < 1C 4
d

. It is known in this case from Strichartz estimates
and contraction mapping arguments (see, e.g., [Cazenave 2003]) that the initial value problem is globally
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well-posed in the Sobolev space H 1.Rd /, regardless of whether the potential F is defocusing or not;
in the low-dimensional case d � 3, Strichartz estimates then place the solution locally in the space
L4tL

1
x .R�Rd /, which is sufficient when combined with standard persistence of regularity arguments

based on the energy method (see, e.g., [Tao 2006, Proposition 3.11]) to show that solutions remain smooth
for all time. The case d D 4 can be handled by modifications of the arguments in [Ryckman and Visan
2007]. The global regularity question in higher dimensions d > 4 is still not fully resolved; note that for
the analogous question for the nonlinear wave equation (NLW), it was shown recently in [Tao 2016b] that
global regularity can in fact fail in extremely high dimensions d � 11, even in the “extremely subcritical”
case when the potential F and all of its derivatives are bounded.

Now consider the case when p is mass critical or supercritical in the sense that p � 1C 4
d

, but
is also energy critical or subcritical in the sense that either d < 3, or p � 1C 4

d�2
. In the case of

the focusing NLS, the well-known virial argument of Glassey [1977] shows that finite time blowup
can1 occur (and in fact must occur if the initial data has negative Hamiltonian). If instead the potential
is defocusing, then it is known that the initial value problem is globally well-posed in the energy
space H 1.Rd /. In energy-subcritical situations when d < 3 or p < 1C 4

d�2
, this claim can again

be established from Strichartz estimates and contraction mapping arguments; see, e.g., [Cazenave
2003; Bourgain 1999; Tao 2006]. The energy-critical case when d � 3 and p D 1C 4

d�2
is more

delicate; in the case of scalar NLS (in which mD 1 and F.u/D jujpC1=.pC 1/), the d D 3 case was
established in [Colliander et al. 2008] (after several previous partial results), and the higher-dimensional
cases d D 4 and d > 4 were treated2 in [Ryckman and Visan 2007] and [Visan 2007] respectively.
It is likely that these results can be extended to more general defocusing potentials, though we do
not attempt this here. Again, in low-dimensional cases d � 3, this H 1 local well-posedness can
be used in conjunction with Strichartz estimates to establish global regularity; see, e.g., [Bourgain
1999; Colliander et al. 2004; Tao 2006]; the d D 4 case was treated in [Ryckman and Visan 2007].
As before, the status of the global regularity question in higher dimensions d > 4 is not yet fully
resolved.

Finally, we turn to the energy-supercritical case when d � 3 and p > 1C 4
d�2

, which is the main
focus of this paper. The Glassey virial argument [1977] continues to show that finite time blowup can
occur here in the focusing case. In the defocusing case, the situation is less well understood. There are a
number of results [Burq et al. 2005; 2007; Christ et al. 2003; Carles 2007a; 2007b; Alazard and Carles
2009] that demonstrate that the solution map, if it exists at all, is highly unstable, although one can at
least construct global weak solutions, which are not known to be unique; see [Ginibre and Velo 1985;
Alazard and Carles 2009; Tao 2009].

The main result of this paper is to show that, at least for certain choices of defocusing potential F and
data u0; G, one in fact has blowup in finite time.

1Global regularity can however be restored if one imposes a suitable smallness condition on the data u0; G; see, e.g.,
[Cazenave 2003].

2These papers are primarily concerned with the homogeneous case G D 0, but one can use the stability properties of NLS
(see, e.g., [Tao and Visan 2005]) to extend from the homogeneous case to the inhomogeneous case, at least in the context of H1

global well-posedness.
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mass energy defocusing focusing

subcritical subcritical global well-posedness global well-posedness
critical subcritical global well-posedness finite time blowup
supercritical subcritical global well-posedness finite time blowup
supercritical critical global well-posedness finite time blowup
supercritical supercritical finite time blowup finite time blowup

Table 1. A somewhat oversimplified summary of whether nonlinear Schrödinger systems
are necessarily globally well-posed, or can admit finite time blowup solutions, for
various criticality types of exponents and for both focusing and defocusing nonlinearities.
Theorem 1.2 establishes the bottom entry on the third column.

Theorem 1.2 (finite time blowup). Let d � 3, let p > 1 C 4
d�2

, and let m be a sufficiently large
integer. Then there exists a defocusing smooth potential F W Cm! R that is phase-rotation-invariant
and homogeneous of order pC 1 outside of the unit ball, and a smooth compactly supported choice of
initial data u0 W Rd ! Cm and forcing term G W Rd �R! Cm, such that there is a smooth, compactly
supported solution u W Œ0; 1/�Rd ! Cm to the nonlinear Schrödinger system (1-5) with the property that
ku.t/kL1.Rd / goes to infinity as t ! 1�.

When combined with the known uniqueness theory for (1-5) (see, e.g., [Cazenave 2003; Tao 2006]), we
see that there cannot be any smooth global solution to (1-5) with this data that is Schwartz in space (one
can relax the Schwartz requirement considerably, but we will not attempt to do so here). The presence of
the forcing term G is an unfortunate artefact of our method, which (due to the absence of finite speed of
propagation for Schrödinger equations) requires one to use the forcing term to truncate a solution to a
homogeneous equation that decays too slowly at infinity. It is however reasonable to conjecture that the
above theorem can be strengthened by making G vanish (with u now being Schwartz in space rather than
compactly supported).

We have not attempted to optimise the value of m produced by the arguments in this paper, but it will
grow quadratically in the dimension d : m D O.d2/. It would of course be of great interest to set m
equal to 1 in order to have the blowup result apply to the scalar defocusing NLS; however, our method
requires a lot of “freeness” to the solution u (in particular invoking a version of the Nash embedding
theorem [1956]), and it does not seem possible to adapt it for this purpose. Nevertheless, Theorem 1.2
does construct a “barrier” against any attempt to prove global regularity for the scalar supercritical NLS,
in that any such attempt must crucially rely on some property of the scalar equation that is not enjoyed by
the vector-valued equations considered here. For instance, this theorem rules out any approach to global
regularity for scalar supercritical NLS that relies on somehow manipulating the conservation laws of
mass, momentum and energy to generate new a priori bounds on the solution.

Remark 1.3. We have only stated blowup in the L1 norm in Theorem 1.2; however, the construction
of blowup is locally discretely self-similar, so one can in fact establish blowup of any subcritical norm,
as well as blowup of any critical spacetime norm that involves integration in the time variable (such
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as the Strichartz norm L
.p�1/.dC1/=2
t;x .Œ0; 1/�Rd /). It also blows up in the critical purely spatial norm

PH
d
2
� 2
p�1 .Rd /; see Remark 3.2 below. In particular this rules out the solution being continuable as a

strong solution in a subcritical or critical norm; not coincidentally, these are also the norms which arise
in the well-posedness (and persistence of regularity) results for these equations. Meanwhile, due to
conservation of mass and energy, the solution stays bounded in the supercritical norm H 1.Rd /. It is likely
that one can continue the solution beyond the blowup time as a weak solution without any guarantees
of continuity or uniqueness, for instance, by adding a small dissipative term and taking a weak limit to
create a viscosity solution. We do not pursue these matters here.

Theorem 1.2 is an analogue of the recent finite time blowup result by the author [Tao 2016a] for
vector-valued defocusing NLW equations, and the argument follows broadly similar lines, in particular
performing a sequence of “quantifier elimination” steps, each of which removes one or more of the
unknown fields from the problem.

The first reduction is to reduce matters to constructing a discretely self-similar solution to a homogeneous
NLS system (1-5), in whichG is now zero, the potentialF is homogeneous everywhere (not just outside the
unit ball), and the solution u obeys the discrete self-similarity relationship u.4t; 2x/D ei˛2�

2
p�1u.t; x/

(the phase rotation ˛ is needed for technical reasons, but can be ignored for a first reading). In order to
perform this reduction, it will be important that the self-similar solution u remains smooth all the way up
to the initial time slice t D 0 (except at the spacetime origin .t; x/D .0; 0/ where a singularity occurs).
See Theorem 3.1 for a precise statement of the claim needed.

Now that the forcing termG is eliminated from the problem, the next step is to eliminate the potential F
by first locating a self-similar field u, and then constructing a homogeneous defocusing potential F
to solve (1-5) with that given u. In order for this to be possible, the field u (as well as the “potential
energy” field V D F.u/) have to obey some differential equations (related to the conservation of mass,
momentum, and energy and the Euler identity (1-2)), as well as some positivity and regularity hypotheses;
see Theorem 4.2 for a precise statement. The derivation of Theorem 3.1 from Theorem 4.2 relies on a
classical extension theorem of Seeley [1964] that allows one to extend a smooth function on a submanifold
with boundary to a smooth function on the entire manifold.

The differential equations alluded to in the previous paragraph can be expressed in terms of the potential
energy field V and the “Gram-type matrix” GŒu; u� of u, which is a .2dC4/�.2dC4/ matrix consisting
of inner products hD1u;D2uiCm for various differential operators

D1;D2 2 f1; i; @x1 ; : : : ; @xd ; @t ; i@x1 ; : : : ; i@xd ; i@tg:

The coefficients of the Gram-type matrix GŒu; u� necessarily obey a number of constraints; for instance,
GŒu; u� will be symmetric and positive definite, and one has the Leibniz type identities

@xj hu; uiCm D 2hu; @xjuiCm ;

@xj hiu; @xkuiCm � @xk hiu; @xjuiCm D 2hi@xju; @xkuiCm :

One can then eliminate the field u in favour of the Gram-type matrix by reducing Theorem 4.2 to a
statement about the existence of a certain matrix G of fields (as well as a potential field V ) obeying
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the above-mentioned constraints and differential equations; see Theorem 5.4 for a precise statement.
Conveniently, the constraints and equations are now linear in the fields G; V, in contrast to the nonlinear
nature of the original equation (1-5). In order to reconstruct the field u from the Gram-type matrix G,
one needs a “partially complexified” version of the Nash embedding theorem [1956]; this is the main
reason3 why the target dimension m is required to be large. Unfortunately, the existing forms of the
Nash embedding theorem in the literature are not quite suitable for this application, and we need to
adapt the proof of that theorem to establish the embedding theorem required (which we formalise as
Proposition 5.2). The proof of this embedding theorem is given in the Appendix.

The Gram-type matrix G contains a large number of fields, while simultaneously being required to
obey a large number of constraints. One can cut down the degrees of freedom considerably, as well as the
number of constraints, by requiring the Gram-matrix to be homogeneous with respect to parabolic scaling,
and also to be rotation-invariant in a certain tensorial sense. This reduces the number of independent
components of G and V to seven scalar fields g1;1, g@r ;@r , g@! ;@! , g@r ;@t , g1;i@r , g1;i@t , v which obey
a certain number of conservation laws, positivity hypotheses, and some additional constraints such as
homogeneity; see Theorem 5.4 for a precise statement. The fields gD1;D2 for various differential operators
D1;D2 are supposed to be proxies for the inner products hD1u;D2uiCm , while v is a proxy for the
potential energy V.u/. (Strictly speaking, G contains another scalar field g@t ;@t , a proxy for k@tuk2Cm ,
which is independent of the other fields, but it is essentially unconstrained by any of the conservation
laws, and can be set to be extremely large and then ignored.)

Amongst the various constraints between the remaining scalar fields is the energy conservation law,
which in this notation becomes

@t
�
1
2
g@r ;@r C

1
2
.d � 1/g@! ;@! C v

�
�

�
@r C

d�1

r

�
g@r ;@t D 0: (1-6)

This law can be used in the energy subcritical case to rule out the type of discretely self-similar solutions
we are trying to construct here; with a bit more effort involving an additional Morawetz-type identity
arising from momentum conservation, one can also rule out such solutions in the energy-critical case.
However, in the energy-supercritical case it turns out that the conservation law (1-6) is easy to satisfy,
basically because the scalar field g@r ;@t (representing energy current) that appears in this law has no
presence in any of the other conservation laws, allowing the energy to be transported spatially at an
essentially arbitrary rate. In the energy-supercritical case, the total energy becomes infinite, and so it
becomes possible to eliminate the field g@r ;@t and the energy conservation equation (1-6), reducing one to
a variant of Theorem 5.4 with one fewer scalar field and one fewer constraint equation. One can similarly
use another constraint

g1;i@t C
1
2

�
@2r C

d�1

r
@r

�
g1;1�g@r ;@r � .d � 1/g@! ;@! D .pC 1/v

3It may be possible to cut down the dimension m substantially by restricting attention to solutions that are spherically
symmetric, thus effectively reducing the dimension d to 1. However, we were not able to achieve this, mainly because we could
not construct a stress-energy tensor with the required properties for which the angular stress T!! vanished. On the other hand,
we could not definitively rule out the existence of such a tensor either.
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(which ultimately arises from the Euler identity (1-2)) to easily eliminate the field g1;i@t (which makes
no appearance in any of the other constraints), leaving one with just five remaining scalar fields g1;1,
g@r ;@r , g@! ;@! , g1;i@r , v; see Theorem 6.2 for a precise statement.

An inspection of the remaining constraints reveals that the potential field v and the angular stress
g@! ;@! play almost4 the same roles, and some elementary manipulations allow one to effectively absorb
the potential v into the angular stress g@! ;@! (and also the radial stress g@r ;@r ), allowing one to reduce to
the case vD 0; see Theorem 7.1 for a precise statement. Now there are just four independent scalar fields
g1;1, g@r ;@r , g@! ;@! , g1;i@r that one needs to locate.

One of the remaining constraints is the momentum conservation law, which can be rewritten as

@r.r
d�1g@r ;@r /D .d � 1/r

d�2g@! ;@! CS1;

where S1 is the field

S1 WD
1
4
rd�1

�
@r

�
@2r C

d�1

r
@r

�
g1;1C 2@tg1;i@r

�
:

One can integrate this law to obtain a representation of the radial stress g@r ;@r as a certain integral
involving g@! ;@! and S1. The requirement that g@r ;@r be smooth up to the initial time t D 0 enforces
some asymptotic vanishing conditions on the integrand, while the positive definiteness of the Gram
matrix enforces an additional inequality on the integral. Once these conditions are satisfied, one can then
eliminate the field g@r ;@r from the problem, leaving only three fields g1;1, g@! ;@! , g1;i@r to construct.
See Theorem 8.1 for a precise statement.

The angular stress g@! ;@! is now only constrained by a nonnegativity condition and by the constraints
on the integral involving g@! ;@! and S1 mentioned above. It is then not difficult to eliminate g@! ;@! , and
reduce matters to locating just two fields g1;1, g1;i@r that obey a mass conservation law

@tg1;1 D 2
�
@r C

d�1

r

�
g1;i@r

together with a number of technical additional conditions, mostly involving integrals of the quantity S1
mentioned above. See Theorem 9.1 for a precise statement.

The mass conservation law can be solved explicitly by using the ansatz

g1;1 D 2r
1�d@r.r

dW /;

g1;i@r D r
1�d@t .r

dW /

for a suitable scalar field W. Now that there is only one field W to choose, it becomes possible to write
down an explicit choice of this field that obeys the few remaining constraints required of it; we do so in
Section 11.

4This phenomenon is analogous to the well-known fact that when applying separation of variables in polar coordinates to the
free Schrödinger equation i@tuC�uD 0 in which u.t; r!/D v.t; r/Y`.!/ for some spherical harmonic Y` of degree `, the
effect of the spherical harmonic is identical to that of a (defocusing) Coulomb type potential `.`C 1/=r2.
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2. Notation

Throughout this paper, the spatial dimension d , the target dimension m, and the exponent p will be fixed.
Unless otherwise stated, we will always be assuming the energy supercritical hypotheses

d � 3; p > 1C
4

d�2
: (2-1)

We will also assume that the target dimension m is sufficiently large depending on d . In particular, all the
theorems in subsequent sections will implicitly have these hypotheses present (though from Theorem 5.4
onwards, the target dimension m plays no further role as the field u is eliminated at that point).

We use the asymptotic notation X DO.Y / or X � Y to denote the estimate jX j � CY for some C
depending on the above parameters p; d . In some cases we will explicitly allow the implied constant C
to depend on additional parameters.

Most of our analysis will take place in the spacetime region

Hd WD .Œ0;C1/�Rd /nf.0; 0/g (2-2)

or the one-dimensional variant

H1 WD .Œ0;C1/�R/nf.0; 0/g; (2-3)

that is to say, on the portion of spacetime consisting of the present t D 0 and future t > 0, but with
the spacetime origin .0; 0/ removed. On these regions we introduce the parabolic magnitude function
� WHd ! R or � WH1! R defined by

�.t; x/ WD .t2Cjxj4/
1
4 (2-4)

for .t; x/ 2Hd , or
�.t; r/ WD .t2C r4/

1
4 (2-5)

for .t; r/ 2H1. We also introduce the discrete scaling operator T WHd !Hd by the formula

T .t; x/ WD .4t; 2x/ (2-6)

(thus, for instance, �ıT D 2�) and let T Z WD fT n W n 2Zg be the group of scalings generated by T . A key
point is that the quotient space Hd=T Z of spacetime by discrete scalings is compact; indeed one can view
this space as the set f.t; x/2Hd W1���2gwith the boundaries �D1 and �D2 identified. We have chosen
to use the scaling .t; x/ 7! .4t; 2x/ in (2-6) to generate the discrete self-similarity, but this is an arbitrary
choice, and one could just as well have used another scaling .t; x/ 7! .�20t; �0x/ for some fixed �0 > 1.

3. Reduction to constructing a discretely self-similar solution

We begin the proof of Theorem 1.2. In analogy with the argument in [Tao 2016a], the first step is to reduce
to locating a discretely self-similar solution to a homogeneous nonlinear Schrödinger equation, thus
eliminating the role of the forcing termG. In the previous paper [Tao 2016a], one could use the finite speed
of propagation of nonlinear wave equations to restrict spacetime to a light cone f.t; x/ W t > 0; jxj � tg for
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the purposes of locating this solution. In the current context of nonlinear Schrödinger equations, one has
infinite speed of propagation, and so one can only restrict to the region Hd defined in (2-2). To get from
here to Theorem 1.2, one must now apply a spatial cutoff, which is responsible for the forcing term G

that is present in this paper but not in the previous work [Tao 2016a].
We turn to the details. We will derive Theorem 1.2 from:

Theorem 3.1 (first reduction). There exists a defocusing potential F W Cm! R which is phase-rotation-
invariant and homogeneous of order pC 1 and a smooth function u WHd ! Cmnf0g that solves (1-5)
(with G D 0) on its domain and is nowhere vanishing, and also discretely self-similar in the sense that

u.T .t; x//D ei˛2�
2
p�1u.t; x/ (3-1)

for all .t; x/ 2Hd , and some ˛ 2 R, where T is the scaling (2-6).

A key point here is that u is smooth all the way up to the boundary of the region Hd (except at
the spacetime origin .0; 0/), rather than merely being smooth in the interior. The exponent � 2

p�1
is

mandated by dimensional analysis considerations; the phase shift ˛ is needed for more technical reasons,
representing a “total charge” coming from the nonzero momentum density. It would be natural to consider
solutions that are continuously self-similar in the sense that

u.�2t; �x/D �
� 2
p�1
Ci ˛log2u.t; x/

for all � > 0 (not just powers of 2) but we were unable to construct such a solution. In the analogous
situation for the NLW, such continuously self-similar solutions can be ruled out by ad hoc methods for
some ranges of d; p, as was shown in [Tao 2016a, Proposition 2.2].

Let us assume Theorem 3.1 for the moment, and show how it implies Theorem 1.2. Let F; u be as
in Theorem 3.1. Since u is smooth and nonzero on the compact region f.t; x/ 2Hd W 1 � � � 2g, it is
bounded from below in this region. By replacing u with Cu and F with v 7! C 2F.v=C / for some large
constant C , we may thus assume that

ku.t; x/kCm � 1

whenever .t; x/ 2Hd with 1� � � 2. Using the discrete self-similarity property (3-1), we then have this
bound whenever � � 2; in fact we have a lower bound on ku.t; x/kCm that goes to infinity as .t; x/! 0,
ensuring in particular that ku.t/kL1.Rd / goes to infinity as t ! 0.

Using a smooth cutoff function, one can find a smooth defocusing potential F1 WRm!R that is phase-
rotation-invariant and agrees with F in the region fv 2 Cm W kvkCm � 1g. Then u solves (1-5) with this
potential in the truncated region f.t; x/2Hd W��2g, and in particular in the region f.t; x/2Hd W t; jxj�1g.
Next, let ' W Rd ! Œ0; 1� be a smooth function supported on the ball fx 2 Rd W jxj � 1g that equals 1 on˚
x 2 Rd W jxj � 1

2

	
, and define the functions Qu W Œ0; 1/�Rd ! Cm, zF W Cm! R, zG W Œ0; 1/�Rd ! Cm

by the formulae
Qu.t; x/ WD Nu.1� t; x/'.x/;

zF .v/ WD F1. Nv/;

zG.t; x/ WD i@t Qu.t; x/C� Qu.t; x/� zF . Qu.t; x//:
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It is clear that zF is a smooth defocusing potential that is phase-rotation-invariant and homogeneous
of degree p C 1 outside of the unit ball, while Qu; zG are smooth functions supported on the regions
f.t; x/ 2 Œ0; 1/�Rd W jxj � 1g and

˚
.t; x/ 2 Œ0; 1/�Rd W 1

2
� jxj � 1

	
, with k Qu.t/kL1 going to infinity

as t ! 1. This gives Theorem 1.2 (with u; F;G replaced by Qu; zF ; zG respectively).
It remains to prove Theorem 3.1. This will be the focus of the remaining sections of the paper. We

remark that with the reduction to Theorem 3.1, we have effectively “compactified” spacetime, as the
discretely self-similar solution can be viewed as a solution (interpreted geometrically as a section of an
appropriate vector bundle) on the smooth compact manifold5 with boundary Hd=T Z.

Remark 3.2. From the above construction we see that the solution Qu used to demonstrate Theorem 1.2 will
stay smooth at the blowup time t D 1 away from the spatial origin, though it will be discretely self-similar
near the origin at that time; in particular the critical Sobolev norm PH

d
2
� 2
p�1 .Rd / will be infinite at time

t D 1, so the blowup is of “type I” in nature. This is consistent with the results in [Killip and Visan 2010]
which rule out “type II” blowup for energy supercritical nonlinear Schrödinger equations, at least in dimen-
sions 5 and higher. Beyond the blowup time, one can still continue the solution as a weak solution, although
we have nothing new to say about the uniqueness (or lack thereof) of such a solution, or of its regularity.

4. Eliminating the potential

We now exploit the freedom to select the defocusing potential F from Theorem 3.1 by eliminating it
from the equations of motion. To motivate this elimination, let us formally manipulate the equation

i@tuC�uD .rCmF /.u/;

where F is assumed to be defocusing, phase-rotation-invariant, and homogeneous of order pC1, in order
to derive equations that do not explicitly involve F.

From (1-2), (1-3) we have the identities

hi@tuC�u; uiCm D .pC 1/V; (4-1)

hi@tuC�u; iuiCm D 0; (4-2)

where we define the potential energy density V by

V WD F.u/:

Note that the defocusing nature of F makes V nonnegative. From (1-4) and the chain rule we also have
the additional identities

hi@tuC�u; @xjuiCm D @xjV; (4-3)

hi@tuC�u; @tuiCm D @tV (4-4)

for j D 1; : : : ; d . We have thus obtained d C 3 equations involving the fields u; V that do not directly
involve the nonlinearity F.

5This manifold is diffeomorphic to the solid torus B.0; 1/� .R=Z/, where B.0; 1/ is the closed unit ball in Rd. However, we
will not need to use the diffeomorphism type of the manifold Hd=T Z in this paper.
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Remark 4.1. The equations (4-1)–(4-4) are closely related to the usual conservation laws for the nonlinear
Schrödinger equation. Indeed, if we define the pseudo-stress-energy-tensor

T00 WD kuk
2
Cm ;

T0j D Tj0 WD 2h@xju; iuiCm ;

Tjk WD 4h@xju; @xkuiCm C ıjk2.p� 1/V � ıjk�.kuk
2
Cm/

for j D 1; : : : ; d , where ıjk is the Kronecker delta, and also define the energy density

E WD 1
2
h@xju; @xjuiCm CV

(with the usual summation conventions) and energy current

Jj WD �h@xju; @tuiCm

for j D 1; : : : ; k, then one can easily use (4-2) to deduce the mass conservation law

@tT00C @xj Tj0 D 0

and similarly use (4-1), (4-3) to deduce the momentum conservation law

@tT0kC @xj Tjk D 0

for k D 1; : : : ; d . From (4-1), (4-4) we can also obtain the energy conservation law

@tEC @xj Jj D 0:

Finally, we can rewrite (4-1) in a way that does not explicitly involve second derivatives of u as

hiut ; uiCm C
1
2
�T00� h@xju; @xjuiCm D .pC 1/V: (4-5)

Conversely, if we take (4-5) as a definition of the potential energy density V, then the above conservation
laws can be used to recover (4-2)–(4-4).

Now assume that u obeys the discrete self-similarity hypothesis (3-1) and is nowhere vanishing. We
recall that the complex projective space CPm�1 is the quotient space

CPm�1 WD .Cmnf0g/=C�

of the manifold6 Cmnf0g by the action of the multiplicative complex group C� D Cnf0g by scalar
multiplication. Let � W Cmnf0g! CPm�1 be the projection map; then � ıu WHd ! CPm�1 is a smooth
map which is invariant under the action of T Z, and thus descends to a smooth map � WHd=T Z!CPm�1.
We will derive Theorem 3.1 from:

Theorem 4.2 (second reduction). There exists a smooth nowhere vanishing function u WHd ! Cmnf0g

which is discretely self-similar in the sense of (3-1) for some ˛ 2 R, and a smooth function V WHd ! R

such that the defocusing property
V > 0 (4-6)

6For the purpose of defining tangent spaces, cotangent spaces, differentials, etc., we will view spaces such as Cmnf0g as real
manifolds (of dimension 2m) rather than complex manifolds, although we will certainly also use the complex structure.
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and the equations of motion (4-1)–(4-4) hold on all of Hd . Furthermore, the map � WHd=T Z! CPm�1

defined above is a smooth embedding, that is to say, it is injective and immersed in the sense that the
d C 1 derivatives @t�.t; x/; @x1�.t; x/; : : : ; @xd .t; x/ are linearly independent in the tangent space of
CPm�1 at �.t; x/ for all .t; x/ 2Hd .

Let us assume Theorem 4.2 for now and see how it implies Theorem 3.1. Let d , p, m, u, V , � be as
in Theorem 4.2. To prove Theorem 3.1, it will suffice to produce a defocusing potential F W Cm! R,
phase-rotation-invariant and homogeneous of degree pC 1, such that the identity

i@tuC�uD .rCmF /.u/ (4-7)

holds on all of Hd . Since u never vanishes, we can of course remove the origin 0 from the domain of F,
working instead on the manifold Cmnf0g.

We now consider the subset � of Cmnf0g defined by

� WD fzu.t; x/ W .t; x/ 2Hd ; z 2 C�g

or equivalently

� D ��1.�.Hd=T
Z//:

This is a .dC2/-dimensional C�-invariant smooth submanifold (with boundary) of Cmnf0g. The values
of the potential F and its gradient rCmF on � are determined by the data u; V. Indeed, if F was
phase-rotation-invariant, homogeneous of degree pC 1, and obeyed (4-7), then from (1-2), (4-1) and
homogeneity we must have

F.zu.t; x//D
jzjpC1

pC 1
V.t; x/ (4-8)

and

.rCmF /.zu.t; x//D jzj
p�1z.i@tu.t; x/C�u.t; x// (4-9)

for all .t; x/ 2 Hd and z 2 C�. Conversely, if we can locate a defocusing potential F that is phase-
rotation-invariant, homogeneous of degree pC 1, and obeys the identities (4-8), (4-9) on �, then we of
course have (4-7) after specialising (4-9) to the case z D 1.

It remains to construct such an F. In view of the constraints (4-8), (4-9), it is natural to introduce the
functions F0 W �! R and F1 W �! Cm by the formulae

F0.zu.t; x// WD
jzjpC1

pC 1
V.t; x/; (4-10)

F1.zu.t; x// WD jzj
p�1z.i@tu.t; x/C�u.t; x// (4-11)

for all .t; x/ 2Hd and z 2 C�. As we are assuming � to be injective, we see that zu.t; x/D z0u.t 0; x0/
occurs if and only if .t 0; x0/D T n.t; x/ and z0 D 2

2
p�1

nz for some integer n. On the other hand, from
(3-1), (4-1) we have

V.T n.t; x//D 2�
2.pC1/
p�1

nV.t; x/
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and similarly from (3-1) we have

i@tu.T
n.t; x//C�u.T n.t; x//D 2�

2p
p�1

n.i@tu.t; x/C�u.t; x//

and so we see that the functions F0; F1 are well defined. As � is also a smooth embedding, the functions
F0; F1 are also smooth on �; from (4-6) we know that F0 is strictly positive. By construction we clearly
have the homogeneity relations

F0.zv/D jzj
pC1F0.v/; (4-12)

F1.zv/D jzj
p�1zF1.v/

for all v 2 � and z 2 C�. Our task is to extend F0 W �! R to a defocusing potential F W Cmnf0g ! R

that continues to obey the relation (4-12), and such that rCmF agrees with F1 on �.
At any given point zu.t; x/ of �, the tangent space Tzu.t;x/� is spanned (as a real vector space) by

the vectors zu.t; x/, izu.t; x/, z@tu.t; x/, and z@xju.t; x/ for j D 1; : : : ; d . From (4-1)–(4-4), (4-10),
(4-11) and linearity, we conclude the identity

dF0.v/.w/D hF1.v/; wiCm (4-13)

for any v 2� and w 2Tv�, where dF0.v/2T �v � is the differential of F0 at v, or equivalently dF0.v/.w/
is the directional derivative of F0 at v along the tangent vector w. To put it another way, if we use the
inner product h ; iCm to identify Cm with the dual space .Cm/� D T �v Cm (viewed as real vector spaces),
then dF0.v/ is the projection of F1.v/ to T �v � (using the dual of the inclusion map from Tv� to TvCm).

It will be convenient to normalise out the homogeneity on F, F0, F1. Define the normalised functions
F
.1/
0 W �! R and F .1/1 W �! Cm by the formulae

F
.1/
0 .v/ WD kvk

�p�1
Cm

F0.v/;

F
.1/
1 .v/ WD kvk

�p�1
Cm

F1.v/� .pC 1/kvk
�p�3
Cm

F0.v/v:

Then F .1/0 , F .1/1 are smooth, with the homogeneity relations

F
.1/
0 .zv/D F

.1/
0 .v/;

F
.1/
1 .zv/D jzj�2zF

.1/
1 .v/

for all v 2 � and z 2 C�; also, from (4-13) and the product rule we see that

dF
.1/
0 .v/.w/D hF

.1/
1 .v/; wiCm (4-14)

for any v 2 � and w 2 Tv�. Finally, F .1/0 is clearly everywhere positive.
Since F .1/0 W � ! R is invariant under the action of C�, it descends to a smooth positive function

F
.2/
0 W �.Hd=T

Z/! R on the quotient space �=C� D �.Hd=T
Z/; thus

F
.2/
0 .�.v//D F

.1/
0 .v/

for all v 2 �. For any v 2 �, we define the covector F .2/1 .�.v// 2 T �
�.v/

CPm�1 by the formula

F
.2/
1 .�.v//.��;v.w// WD hF

.1/
1 .v/; wiCm
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for all w 2 TvCm � Cm, where ��;v W TvCm! T�.v/CPm�1 is the projection map. Note from (4-14)
and the C�-invariance of F .1/0 that F .1/1 .v/ is orthogonal to the kernel of ��;v; this and the homogeneity
of F .1/0 , F .1/1 ensure that F .2/1 is well defined and smooth on �.�/D �.Hd=T Z/. From (4-14) we see

dF
.2/
0 . Qv/. Qw/D F

.2/
1 . Qv/. Qw/ (4-15)

for all Qv 2 �.Hd=T Z/ and Qw 2 TQv�.Hd=T Z/; in other words, F .2/1 agrees with dF .2/0 at any point Qv on
the compact manifold with boundary �.Hd=T Z/, after restricting to the tangent space TQv�.Hd=T Z/ of
that manifold.

One can viewHd=T Z as a smooth compact submanifold (with smooth boundary) of .R�Rdnf0; 0g/=T Z.
The function � W Hd=T Z ! CPm�1 can be extended smoothly to an open neighbourhood of this
submanifold using a classical theorem of Seeley [1964]; the embedded copy �.Hd=T Z/ of Hd=T Z in
CPm�1 can then similarly be extended to a slightly larger open manifold of the same dimension d C 1.
A further application of Seeley’s theorem allows one to smoothly extend F .2/0 to this enlargement of
�.Hd=T

Z/. Using this extension as well as (4-15) and Fermi normal coordinates (using, for instance,
the Fubini–Study metric on CPm�1), one can then obtain a smooth extension F .3/0 of F .2/0 to an open
neighbourhood U of the embedded copy �.Hd=T Z/ of Hd=T Z in CPm�1 in such a fashion that
dF

.3/
0 D F

.2/
1 on �.Hd=T Z/. By shrinking U if necessary one can ensure that F .3/0 is positive on all

of U . If one then sets F .4/0 W CPm�1! R to be the function defined by

F
.4/
0 WD 'F

.3/
0 C .1�'/

for some smooth cutoff ' W CPm�1! Œ0; 1� that is supported on U that equals 1 on a neighbourhood of
�.Hd=T

Z/, we see that F .4/0 WCPm�1!R is a positive smooth extension of F .2/0 such that dF .4/0 DF
.2/
1

on �.Hd=T Z/.
If we now set F W Cmnf0g ! R to be the function

F.v/ WD kvk
pC1
Cm

F
.4/
0 .�.v//

then F is a defocusing potential that is phase-rotation-invariant and homogeneous of degree pC 1. By
construction, F agrees with F0 on �, and

d.kvk
�p�1
Cm

F /.v/.w/D hF
.1/
1 .v/; wiCm

for all v 2 � and w 2 TvCm � Cm. By the product rule and construction of F .1/1 , this implies

dF.v/.w/D hF1.v/; wiCm

for all v 2 � and w 2 TvCm, and thus

rCmF D F1

on �, as desired.
It remains to establish Theorem 4.2. This will be the focus of the remaining sections of the paper.



398 TERENCE TAO

operator D parabolic order ord.D/

1, i 0

@xj , i@xj , @r , i@r , @! 1

@t , i@t 2

Table 2. The parabolic order ord.D/ of various differential operators D (or formal
differential operators) used in this paper. Some of the operators in this table will only be
defined in subsequent sections.

5. Eliminating the field

In view of Remark 4.1, the constraints (4-1)–(4-4) that need to be satisfied in Theorem 4.2 can be expressed
in terms of the pseudo-stress-energy tensor T00, T0j , Tjk , as well as the energy density E and the energy
current Jj . These quantities in turn depend linearly on the potential energy density V and the components
of the .2d C 4/� .2d C 4/ Gram-type matrix GŒu; u�, where we define

GŒu; v� WD .hD1u;D2viCm/D1;D22D (5-1)

for any smooth u; v WHd ! Cm, where D is the finite set of differential operators

D WD f1; i; @x1 ; : : : ; @xd ; @t ; i@x1 ; : : : ; i@xd ; i@tg:

For our later arguments, it will be crucial to observe that the component h@tu; @tuiCm D hi@tu; i@tuiCm
of the Gram-type matrix GŒu; u� is not used to determine the quantities T00, T0j , Tjk , E, Jj , and in
particular will be allowed to be extremely large compared to the other components of this matrix.

As in [Tao 2016a], the strategy of proof of Theorem 4.2 will be to eliminate the role of the field u by
reformulating the problem in terms of V and the Gram-type matrixGŒu; u� (or on closely related quantities
such as T00, T0j , Tjk , E, Jj ). To do this, it is natural to ask what constraints a .2d C 4/� .2d C 4/
matrix-valued function G onHd has to obey in order to be expressible as a Gram-type matrix GŒu; u� of a
smooth field u WHd !Cm obeying the homogeneity condition (3-1). Certainly we will have homogeneity
relations of the form

hD1u.4t; 2x/;D2u.4t; 2x/iCm D 2
� 4
p�1
�ord.D1/�ord.D2/hD1u.t; x/;D2u.t; x/iCm ;

where the parabolic order ord.D/ of a differential operator D 2 D is defined by Table 2. Also, it is clear
that the matrix GŒu; u� is real symmetric and positive semidefinite, with the additional constraint

hiD1u; iD2uiCm D hD1u;D2uiCm (5-2)

for D1;D2 D 1; @x1 ; : : : ; @xd ; @t . From the product rule we also have the additional constraints

hu;D1uiCm D
1
2
D1hu; uiCm (5-3)

and
D1hu; iD2uiCm �D2hu; iD1uiCm D 2hD1u; iD2uiCm (5-4)
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for D1;D2 D @x1 ; : : : ; @xd ; @t . Finally we have

hiD1u;D2uiCm D�hD1u; iD2uiCm (5-5)

for D1;D2 D 1; @x1 ; : : : ; @xd ; @t . One could then hope that these were essentially the complete list
of constraints on the Gram-type matrix GŒu; u�. In the real case, in which u takes values in the real
Euclidean space Rm (with the usual inner product h ; iRm), and the set of operators D is reduced to the
d C 2 operators

DR WD f1; @x1 ; : : : ; @xd ; @tg;

one can obtain such a claim using the Nash embedding theorem [1956]:

Proposition 5.1. Let .GD1;D2/D1;D22DR
be a .d C 2/� .d C 2/ matrix of smooth functions GD1;D2 W

Hd ! R obeying the following hypotheses:

(i) For each .t; x/ 2Hd , the matrix .GD1;D2.t; x//D1;D22DR
is symmetric and strictly positive definite.

(ii) One has the scaling law

GD1;D2.4t; 2x/D 2
� 4
p1
�ord.D1/�ord.D2/GD1;D2.t; x/ (5-6)

for all D1;D2 2 DR and .t; x/ 2Hd .

(iii) We have the identity
G1;D1.t; x/DGD1;1.t; x/D

1
2
G1;1.t; x/ (5-7)

for all .t; x/ 2Hd and D1 2 DRnf1g.

Suppose also that m is an integer that is sufficiently large depending on d . Then there exists a smooth
function u WHd ! Rm that is nowhere vanishing and obeys the discrete self-similarity (3-1) with ˛ D 0
such that

GD1;D2.t; x/D hD1u.t; x/;D2u.t; x/iRm (5-8)

for all D1;D2 2 DR and .t; x/ 2Hd . Furthermore, the function � W .t; x/ 7! u.t; x/=ku.t; x/kRm , when
descended to the quotient space Hd=T Z, is a smooth embedding.

Proof. Observe from the chain and quotient rules that if u is smooth and obeys (5-8), then u is nowhere
vanishing (since G1;1 is strictly positive) and the direction map � W .t; x/ 7! u.t; x/=ku.t; x/kRm obeys
the identity

gD1;D2.t; x/D hD1�.t; x/;D2�.t; x/iRm (5-9)

for .t; x/ 2Hd and D1;D2 2 DRnf1g, where the functions gD1;D2 WHd ! R are given by the formula

gD1;D2 WD
GD1;D2
G1;1

�
G1;D1G1;D2

G21;1
:

Motivated by this, our strategy will be to construct the direction map � obeying (5-9) first, and use this to
then reconstruct u.
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Since G1;1 is strictly positive, the .d C 1/ � .d C 1/-matrix g D .gD1;D2/D1;D22DRnf1g is smooth
and symmetric; from the hypothesis (ii), the matrix g is T Z-invariant, and can thus (by slight abuse of
notation) be viewed as a function on the quotient space Hd=T Z. From the identityX

D1;D22DRnf1g

gD1;D2 aD1 aD2 D
X

D1;D22D

GD1;D2 bD1 bD2

for all reals aD;D 2 DRnf1g, where

bD WD
aD

G
1=2
1;1

and b1 WD �

P
D2DRnf1g

aDG1;D

G
3=2
1;1

;

and the hypothesis (i), we see that the matrix g is strictly positive. Thus .Hd=T Z; g/ can be viewed as
a smooth compact .dC1/-dimensional Riemannian manifold with smooth boundary. If m0 is a large
enough integer, we may then apply the Nash embedding theorem [1956] (see also [Günther 1991]) and
find a smooth isometric embedding of .Hd=T Z; g/ into a Euclidean space Rm0. As observed in [Tao
2016a, §4], any compact region of Rm0 may be isometrically embedded into the unit sphere Sm�1 of Rm

if m� 2m0C 2. Thus, for m large enough, we may find an isometric embedding � WHd=T Z! Sm�1

of .Hd=T Z; g/ into unit sphere Sm�1 of Rm (with the induced Euclidean metric); thus � is a smooth
embedding and obeys the identity (5-9) (after lifting up from Hd=T

Z to Hd ). If one then defines the
function u WHd ! Rm by the formula

u.t; x/ WD �.t; x/G1;1.t; x/
1
2

then u is smooth, nowhere vanishing, and obeys (3-1) with ˛ D 0, and from a routine calculation
using the product and chain rules (as well as hypothesis (iii)) we have the required identity (5-8) for all
D1;D2 2 DRnf1g; it is also clear that (5-8) holds when D1 DD2 D 1. Differentiating the latter identity
in space or time using (iii) and the product rule, we obtain the remaining cases of (5-8), and the claim
follows. �

One could use the literature on the Nash embedding theorem to extract an explicit value of m as
a function of d in the above proposition, but we will not seek to optimise this value here. For future
reference, we observe that the above argument also gives the variant of Proposition 5.1 in which the
half-space Hd is replaced by the punctured spacetime R�Rdnf.0; 0/g.

In view of the above proposition, one could conjecture a complex analogue of the proposition, in which
one uses D in place of DR and Cm in place of Rm, with the additional constraints (5-4), (5-5) imposed.
This conjecture may well be false in full generality (note that the complex version of the Nash embedding
theorem is false; for instance, Liouville’s theorem prevents compact complex manifolds without boundary
from being holomorphically embedded into Cm). Nevertheless we could adapt the proof of the Nash
embedding theorem to obtain a partial complex analogue of Proposition 5.1, in which we do not seek
to control the h@tu; @tuiCm component of the Gram-like matrix (5-1), and in which we also have an
additional curl-free property of a certain combination of components of this matrix. While this falls well
short of a true complex version of Proposition 5.1, it will suffice for our purposes. Specifically, we have:
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Proposition 5.2. Let G D .GD1;D2/D1;D22D be a .2d C 4/ � .2d C 4/ matrix of smooth functions
GD1;D2 WHd ! R obeying the following hypotheses:

(i) For each .t; x/ 2Hd , the matrix .GD1;D2.t; x//D1;D22D is symmetric and strictly positive definite.

(ii) One has the scaling law (5-6) for all D1;D2 2 D and .t; x/ 2Hd .

(iii) We have the identity (5-7), as well as the additional identities

D1G1;iD2.t; x/�D2G1;iD1.t; x/D 2GD1;iD2.t; x/ (5-10)

for all .t; x/ 2Hd and D1;D2 2 DRnf1g, and

GiD1;iD2.t; x/DGD1;D2.t; x/; (5-11)

GD1;iD2.t; x/D�GD2;iD1.t; x/ (5-12)

for all .t; x/ 2Hd and D1;D2 2 DR (in particular we have GD1;iD1 D 0).

(iv) The vector field .G1;i@xj =G1;1/
d
jD1 is curl-free; that is to say,

@xk

G1;i@xj

G1;1
.t; x/� @xj

G1;i@xk
G1;1

.t; x/D 0

for all j; k 2 1; : : : ; d and .t; x/ 2Hd .

Suppose also that m is an integer that is sufficiently large depending on d . Then there exists a smooth
function u WHd ! Cm that is nowhere vanishing and obeying the discrete self-similarity (3-1) for some
˛ 2 R such that

GD1;D2.t; x/D hD1u.t; x/;D2u.t; x/iCm (5-13)

for all .t; x/ 2 Hd and all D1;D2 2 D other than .D1;D2/ D .@t ; @t /; .i@t ; i@t /. Furthermore, the
function � WHd=T Z! CPm�1, formed by descending the map � ı u WHd ! CPm�1 to Hd=T Z, is a
smooth embedding.

Remark 5.3. The condition (iv) differs from the other hypotheses in that it is not necessitated by
the conclusions of this theorem. However, this condition turns out to be convenient in the proof of
Proposition 5.2, as it will allow us to “gauge transform away” theG1;i@xj components; see Proposition A.1.
However, this additional constraint (iv) will end up not being harmful to our argument, because we will
eventually reduce to the case where the matrix G is spherically symmetric in the sense that G1;1.t; x/D
g.t; jxj/ and G1;i@xj .t; x/D .xj =jxj/h.t; jxj/ for some functions g; h, in which case the condition (iv)
is automatically satisfied.

The proof of Proposition 5.2 is rather lengthy, and the methods of proof (based on the proof of the Nash
embedding theorem) are not used elsewhere in the paper. We therefore defer this proof to the Appendix.
Combining Proposition 5.2 with Remark 4.1, we thus see that Theorem 4.2 will now follow from the
following theorem in which the field u has been eliminated.
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Theorem 5.4 (third reduction). There exists a smooth .2dC3/�.2dC3/ matrixGD .GD1;D2/D1;D22D
of smooth functions GD1;D2 W Hd ! R and an additional smooth function V W Hd ! R obeying the
following properties:

(i) For each .t; x/ 2Hd , the matrix .GD1;D2.t; x//D1;D22D is symmetric and strictly positive definite.

(ii) One has the scaling law (5-6) for all D1;D2 2 D and .t; x/ 2Hd .

(iii) We have the identities (5-7), (5-10) for all .t; x/ 2Hd and D1;D2 2DRnf1g, and (5-11), (5-12) for
all .t; x/ 2Hd and D1;D2 2 DR.

(iv) The vector .G1;i@xj =G1;1/
d
jD1 is curl-free on Hd .

(v) One has the defocusing property (4-6).

(vi) If one defines the pseudo-stress-energy tensor

T00 WDG1;1;

T0j D Tj0 WD �2Gi@xj ;1
;

Tjk WD 4G@xj ;@xk
C ıjk2.p� 1/V � ıjk�G1;1

for j; k D 1; : : : ; d , as well as the energy density

E WD 1
2
G@xj ;@xj

CV

(with the usual summation conventions) and energy current

Jj WD �G@xj ;@t

for j D 1; : : : ; d , then one has the identity

Gi@t ;1C
1
2
�G1;1�G@xj ;@xj

D .pC 1/V (5-14)

and the conservation laws

@tT00C @xj Tj0 D 0; (5-15)

@tT0kC @xj Tjk D 0; (5-16)

@tEC @xj Jj D 0 (5-17)

for k D 1; : : : ; d .

Note carefully that the components G@t ;@t , Gi@t ;i@t of G are not used in the hypotheses (ii)–(vi) above
(and only influence (i) through the requirement of being positive definite). The scaling law (5-6) only
applies directly to the components of G, but from the potential identity (5-14) we see that we also have a
corresponding scaling law

V.T .t; x//D 2�
4
p�1
�2V.t; x/

for the potential V.
It remains to prove Theorem 5.4. This will be the objective of the remaining sections of the paper.
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6. Spherical symmetry and scale invariance

At first glance, the hypotheses required in Theorem 5.4 of the unknown fields G; V appear to be more
complicated than those in previous formulations of the problem, such as Theorem 3.1. However, there
is one notable way in which the hypotheses of Theorem 5.4 are much better than those in previous
formulations: as they only involve linear equalities and inequalities (as well as claims of positive
definiteness), the constraints determine a convex set in the phase space of possible values for the fieldsG; V.
This can be compared to previous formulations in which the conditions on the unknown field u were
quadratic or otherwise nonlinear in nature.

One consequence of this convexity is that if there is at least one solution G; V to Theorem 5.4, then
there is a solution G; V which is spherically symmetric in a tensorial sense, or more precisely that

G1;1.t; x/D g1;1.t; jxj/;

G@xj ;@xk
.t; x/D

xjxk

jxj2
g@r ;@r .t; jxj/C

�
ıjk �

xjxk

jxj2

�
g@!@! .t; jxj/;

G@xj ;@t
.t; x/D

xj

jxj
g@r ;@t .t; jxj/;

G1;i@xj
.t; x/D

xj

jxj
g1;i@r .t; jxj/;

G1;i@t .t; x/D g1;i@t .t; jxj/;

V .t; x/D v.t; jxj/

for some functions g11, g@r ;@r , g@! ;@! , g@r ;@t , g1;i@r , g1;i@t ; we omit here for brevity some analogous
constraints on the remaining components of G which are either constrained completely by the fields
already listed, or (in the case of G@t ;@t and Gi@t;i@t ) are not relevant for the theorem. This is basically
because we can average the original solution G; V over rotations (letting the orthogonal group SO.d/
act on tensors in an appropriate fashion) and use convexity to obtain a spherically symmetric solution.
For similar reasons (averaging now over dilations rather than rotations), one can assume without loss
of generality that the solution G; V is not only discretely self-similar in the sense of (5-6), but is in fact
continuously self-similar in the sense that the identity

GD1;D2.�
2t; �x/D �

� 4
p1
�d1�d2GD1;D2.t; x/

holds for allD1;D2 2D, .t; x/2Hd , and �>0, where d1; d2 denotes the degrees ofD1;D2 respectively
as before.

Remark 6.1. Note that the reduction to spherical symmetry of the fields G; V in Theorem 5.4 does not
mean that we can reduce to spherically symmetric u in the original formulation (Theorem 1.2) of the
results in this paper, because it is possible for a nonspherically symmetric field u to have a spherically
symmetric Gram matrix (e.g., if d D 2 and u is equivariant rather than invariant with respect to rotations).
Indeed, a spherically symmetric u would have a vanishing g@! ;@! field, whereas in our construction
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we will insist instead that this field be positive. Similarly, we cannot necessarily reduce to solutions in
Theorem 1.2 that are continuously self-similar.

We now perform these reductions by showing that Theorem 5.4 is a consequence of (and is in fact
equivalent to) the following spherically symmetric, continuously self-similar version. Recall that the
domainH1 is given by (2-3). It will be convenient to make the following definition: we say that a function
F WH1! R scales like �˛ for some ˛ 2 R if one has

F.�2t; �r/D �˛F.t; r/ (6-1)

for all .t; x/ 2H1 and �> 0. Here we recall � WH1!R was defined in (2-5). We also note the following
“factor theorem” on H1: if F WH1! R is a smooth function that vanishes on the time axis r D 0, then
the quotient F.t; r/=r has a removable singularity at r D 0, in the sense that there is a smooth function
G W H1 ! R such that F.t; r/ D rG.t; r/ for all .t; r/ 2 H1 (so that G can be viewed as the smooth
completion of F.t; r/=r . Indeed, from the fundamental theorem of calculus, one can take

G.t; r/ WD

Z 1

0

.@rF /.t; sr/ ds:

Iterating this, we see that if k is a positive integer, and F WH1! R is smooth and vanishes to order k
on the time axis r D 0 (in the sense that F.t; r/ D O.rk/ as r ! 0 for any fixed t), then F=rk has a
removable singularity on the time axis.

Theorem 6.2 (fourth reduction). There exist smooth fields g1;1; g@r ;@r ; g@! ;@! ; g@r ;@t ; g1;i@r ; g1;i@t ; v W
H1! R obeying the following properties:

(i) One has the “positive definite” inequalities�
1
2
@rg1;1

�2
Cg21;i@r < g1;1g@r ;@r ; (6-2)

g1;1; g@r ;@r ; g@! ;@! > 0 (6-3)

pointwise on H1.

(ii) For each .D1;D2/D .1; 1/; .@r ; @r/; .@! ; @!/; .@r ; @t /; .1; i@r/; .1; i@t /, the field gD1;D2 scales
like ��

4
p�1
�ord.D1/�ord.D2/, where we recall the parabolic order ord.D/ of a differential operator

D 2 f1; @r ; i@r ; @! ; @t ; i@tg is given by Table 2. Similarly, we require that v scales like ��
4
p�1
�2.

See Table 3 for a summary of these scaling requirements.

(v) One has the defocusing property v > 0 pointwise on H1.

(vi) If one defines the mass density
T00 WD g1;1;

the radial momentum density
T0r WD �2g1;i@r ;

the radial stress

Trr WD 4g@r ;@r C 2.p� 1/v�
�
@2r C

d�1

r
@r

�
g1;1; (6-4)
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exponent fields parity

2 t even
1 � even
1 r odd

�
4
p�1
C d � 4 S1, S2 same as d

�
4
p�1

g1;1, T00, W even

�
4
p�1
� 1 g1;i@r , T0r odd

�
4
p�1
� 2 g@r ;@r , g@! ;@! , g1;i@t , v, Trr , T!! , E, Z even

�
4
p�1
� 3 g@r ;@t , Jr odd

Table 3. The scaling exponent of various fields on H1 used in this paper, as well as their
parity in r (even or odd). Some of the fields in this table will only be defined in subsequent
sections.

the angular stress

T!! WD 4g@! ;@! C 2.p� 1/v�
�
@2r C

d�1

r
@r

�
g1;1; (6-5)

the energy density
E WD 1

2
g@r ;@r C

1
2
.d � 1/g@! ;@! C v; (6-6)

and radial energy current
Jr WD �g@r ;@t ; (6-7)

then one has the potential identity

g1;i@t C
1
2

�
@2r C

d�1

r
@r

�
g1;1�g@r ;@r � .d � 1/g@! ;@! D .pC 1/v (6-8)

and the conservation laws

@tT00C
�
@r C

d�1

r

�
T0r D 0; (6-9)

@tT0r C
�
@r C

d�1

r

�
Trr �

d�1

r
T!! D 0; (6-10)

@tEC
�
@r C

d�1

r

�
Jr D 0: (6-11)

with a removable singularity at r D 0 (see Remark 6.3 below).

(vii) The functions g1;1, g@r ;@r , g@! ;@! , g1;i@t , v are even in r , while g@r ;@t , g1;i@r are odd in r (see
Table 3). Furthermore, g@r ;@r �g@! ;@! vanishes on the time axis r D 0.

Remark 6.3. At first glance, the quantities Trr ; T!;! , as well as (6-8)–(6-11), appear to have singularities
on the time axis r D 0, due to the factors of 1

r
. However, these factors are removable due to the symmetry

hypotheses in (vii). Indeed, for each fixed time t , one can Taylor expand the even function g1;1 as
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g1;1 D aC br
2C � � � , and then one sees that the quantity

�
@2r C

d�1
r
@r
�
g1;1 extends smoothly across

r D 0 (which is unsurprising given that this operator is nothing more than the Laplacian on spherically
symmetric functions). Thus Trr and T!! extend smoothly to r D 0. Also, the difference Trr � T!!
vanishes at r D 0, so the singularity for (6-10) is also removable. Finally, the functions T0r ; Jr are odd
in r and so the singularity in (6-9), (6-11) is also removable.

Remark 6.4. It is not difficult to use Table 3 to perform a “dimensional analysis” to verify that the require-
ments in Theorem 6.2(vi) are consistent with the scaling and parity requirements in Theorem 6.2(ii), (vii).
One can use the continuous self-similarity (ii) to eliminate the time variable, so that Theorem 6.2 becomes
an ODE assertion about the existence of some scalar functions on R. However, it will be convenient
(and more physically natural) to continue to work with both the time variable t and the spatial variable r ,
rather than with just one of these variables. It is also worth noting that the components g@r ;@t and g1;i@t
have only a small role to play in the above theorem, basically appearing only in the constraints (6-11) and
(6-8) respectively; crucially, they do not appear at all in the positive definite constraints in (i), thanks to
the previously observed absence of the fields g@t ;@t or gi@t;i@t . As such, we will be able to eliminate
these fields from the problem in the next section.

Let us now see how Theorem 6.2 implies Theorem 5.4. Let the fields

g1;1; g@r ;@r ; g@! ;@! ; g@r ;@t ; g1;i@r ; g1;i@t ; v

be as in Theorem 6.2. Let A > 0 be a large quantity to be chosen later. We then define the functions
GD1;D2 for D1;D2 2 D WHd ! R and V WHd ! R by the formulae in Table 4.

It is a classical result of Whitney [1943] that a smooth function g.t; r/ that is even in r can be
thought of as a smooth function of .t; r2/ (where the latter is viewed on the half-line Œ0;C1/), while
an odd function of t; r that is odd in r can be thought of as r times a smooth function of .t; r2/;
see, e.g., [Tao 2016b, Corollary 2.2]. In particular, we see that g1;1.t; jxj/, g1;i@t .t; jxj/, v.t; jxj/,
g@r ;@r .t; jxj/�g@! ;@! .t; jxj/ are smooth functions of t; x, while g@r ;@t .t; jxj/, g1;i@r .t; jxj/ are jxj times
a smooth function of t; x. Finally, g@r ;@r .t; jxj/�g@! ;@! .t; jxj/ is jxj2 times a smooth function of t; x,
due to the hypothesis that g@r ;@r �g@! ;@! vanishes on the time axis. From this and Table 4, we can check
that all of the functions GD1;D2 , V have removable singularities on the time axis and thus define smooth
functions on Hd .

From tedious direct calculation using Table 4, we can verify the symmetry GD2;D1 DGD1;D2 and the
properties claimed in Theorem 5.4(ii), (iii). Since

G1;i@xj

G1;1
.t; x/D

xj

jxj

g1;i@r
g1;1

.t; jxj/

(away from the time axis at least), we have

@xk

G1;i@xj

G1;1
.t; x/D

�
ıjk

jxj
�
xjxk

jxj3
C
xjxk

jxj2
@r

�
g1;i@r
g1;1

.t; jxj/I

as the right-hand side is symmetric in j and k, we have the curl-free property in Theorem 5.4(iv) (after
removing the singularity at the time axis). The positivity property in Theorem 5.4(v) is clear. For in
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fields value at .t; x/

G1;1, Gi;i g1;1.t; jxj/

G1;i , Gi;1 0

G1;@xj
, G@xj ;1, Gi;i@xj , Gi@xj ;i

1
2
@xjG1;1.t; x/

G1;i@xj
, Gi@xj ;1, �Gi;@xj , �G@xj ;i .xj =r/g1;i@r .t; jxj/

G1;@t , G@t ;1, Gi;i@t , Gi@t;i
1
2
@tG1;1.t; x/

G1;i@t , Gi@t;1, �Gi;@t , �G@t;i g1;i@t .t; jxj/

G@xj ;@xk
, Gi@xj ;i@xk .xjxk=jxj

2/g@r ;@r .t; jxj/C.ıjk�xjxk=jxj
2/g@! ;@! .t; jxj/

G@xj ;i@xk
, Gi@xk;@xj 0

G@xj ;@t
, G@t;@xj , Gi@xj ;i@t , Gi@t;i@xj .xj =jxj/g@r ;@t .t; jxj/

G@xj ;i@t
, Gi@t;@xj , �Gi@xj ;@t , �G@t;i@xj

1
2
.@xjG1;i@t .t; x/�@tG1;i@xj

.t; x//

G@t;@t , Gi@t;i@t A�.t; x/�
4
p�1
�4

G@t;i@t , Gi@t;@t 0

V v.t; jxj/

Table 4. Components of G and V , and their values at a given point .t; x/ ofHd ; thus, for
instance, G1;1.t; x/ and Gi;i .t; x/ are both set equal to g1;1.t; jxj/. Here j; k D 1; : : : ; d
are arbitrary.

Theorem 5.4(vi), we observe from the constructions of the various fields that

T00.t; x/D T00.t; jxj/;

T0j .t; x/D Tj0.t; x/D
xj

jxj
T0r.t; jxj/;

Tjk.t; x/D
xjxk

jxj2
Trr.t; jxj/C

�
ıjk �

xjxk

jxj2

�
T!!.t; jxj/;

E.t; x/DE.t; jxj/;

Jj .t; x/D
xj

jxj
Jr.t; jxj/

and then it is a routine matter to derive (5-14)–(5-17) from (6-8)–(6-11), again working away from the
time axis and then using smoothness to remove the singularity.

The only remaining task is to check Theorem 5.4(i); that is to say, we need to verify that for .t; x/2Hd ,
the matrix .GD1;D2.t; x//D1;D22D is strictly positive definite. In view of (5-6), it suffices to do so in a
fundamental domain for Hd=T Z, such as f.t; x/ W 1� � < 2g. By continuity, we can also avoid the time
axis x D 0 as long as our positive definiteness is uniform in t; x. Henceforth we fix .t; x/ in this region
and suppress dependence on t; x. If we let Ea WD .aD/D2D be a tuple of real numbers, not all zero, our
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task is to show that X
D1;D22D

aD1aD2GD1;D2 > "jEaj
2

for some " > 0 uniform in t; x. The left-hand side can be expanded out as

.a21C a
2
i /G1;1C 2.a1a@xj

C aiai@xj
/G1;@xj

C 2.a1ai@xj
� aia@xj

/G1;i@xj

C 2.a1a@t C aiai@t /G1;@t C 2.a1ai@t � aia@t /G1;i@t

C 2.a@xj
a@xk
C ai@xj

ai@xk
/G@xj ;@xk

C 2.a@xj
a@t C 2ai@xj

ai@t /G@xj ;@t
C .a@xj

ai@t � ai@xj
a@t /G@xj ;i@t

C .a2@t C a
2
i@t
/G@t ;@t ;

where we use the usual summation conventions. If we define

Eb D .a1; ai ; a@x1
; : : : ; a@xd

; ai@x1
; : : : ; ai@xd

/

to be the spatial components of Ea, then all the cross-terms in the above expression involving one copy of
a@t or ai@t and one term from Eb can be controlled via Cauchy–Schwarz as

O
�
jEbj.a2@t C a

2
i@t
/
1
2

�
;

where the implied constants can depend on G but are uniform in t; x in the fundamental domain. On
the other hand, from construction of G@t ;@t , the term .a2

@t
C a2

i@t
/G@t ;@t is bounded from below by

cA.a2
@t
Ca2

i@t
/ for some absolute constant c > 0. By the inequality of arithmetic and geometric means, it

will thus suffice (for A large enough) to obtain the bound

.a21C a
2
i /G1;1C 2.a1a@xj

C aiai@xj
/G1;@xj

C 2.a1ai@xj
� aia@xj

/G1;i@xj
C .a@xj

a@xk
C ai@xj

ai@xk
/G@xj ;@xk

� 2"jEbj2 (6-12)

for some " > 0 independent of A.
If we set a@r ; ai@r 2 R and a@! ; ai@! 2 Rd to be the quantities

a@r WD
xj

jxj
a@xj

;

ai@r WD
xj

jxj
ai@xj

;

a@! WD

�
a@xj
�
xj

jxj
a@r

�d
jD1

;

ai@! WD

�
ai@xj

�
xj

jxj
ai@r

�d
jD1

then the left-hand side of (6-12) can be written as

.a21C a
2
i /g1;1C 2.a1a@r C aiai@r /g1;@r C 2.a1ai@r � aia@r /g1;i@r

C .a2@r C a
2
i@r
/g@r ;@r C .ja@! j

2
Cjai@! j

2/g@! ;@! ;
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where we suppress the dependence on t and jxj in the g-terms. The claim now follows from the
Cauchy–Schwarz inequality, the Legendre identity

.a1a@r C aiai@r /
2
C .a1ai@r � aia@r /

2
D .a21C a

2
i /.a

2
@r
C a2i@r /

and the hypotheses (6-2), (6-3).
It remains to prove Theorem 6.2. This will be the objective of the remaining sections of the paper.

7. Eliminating the energy conservation law and the potential energy identity

To motivate the next reduction, assume for the moment that the fields

g1;1; g@r ;@r ; g@! ;@! ; g@r ;@t ; g1;i@r ; g1;i@t ; v

obey the hypotheses and conclusions of Theorem 6.2, and let T00; T0r ; Trr ; T!! ; E; Jr be as in that
theorem. The pointwise conservation laws (6-9)–(6-11) can then be written in a familiar integral form.
For instance, multiplying the pointwise mass conservation law (6-9) by rd�1 and then integrating on a
fixed interval Œ0; R�, one obtains the integral mass conservation identity

@t

Z R

0

T00.t; r/ r
d�1 dr D�Rd�1T0r.t; R/;

and similarly the pointwise energy conservation law (6-11) gives the integral energy conservation identity

@t

Z R

0

E.t; r/ rd�1 dr D�Rd�1Jr.t; R/: (7-1)

Applying the same manipulations to (6-10) gives a more complicated identity

@t

Z R

0

T0r.t; r/ r
d�1 dr D�Rd�1Trr.t; R/C .d � 1/

Z R

0

T!!.t; r/ r
d�2 dr I

if one sets d D 3 for sake of discussion, applies (6-4), (6-5), and integrates by parts, one obtains the local
Morawetz identity

@t

Z R

0

T0r.t; r/ r
2 dr D�R2Trr.t; R/� 2R@rg1;1.t; R/� 2g1;1.t; R/C 2g1;1.t; 0/

C

Z R

0

.8g@!;@!.t; r/C 4.p� 1/V .t; r//r dr:

These sorts of identities are often used in subcritical situations to help establish global regularity of
solutions to NLS. For instance, suppose we are in the energy-subcritical situation where d < 3, or d � 3
and p < 1C 4

d�2
, rather than in the energy supercritical situation (2-1) that is the focus of this paper. We

apply (7-1) with R D 1 (say) to conclude that
R 1
0 E.t; r/ r

d�1 dr stays bounded as t ! 0C. But from
the scaling hypothesis (ii) and (6-6), the energy density E scales like ��

4
p�1
�2, and hence (on setting

�D t�
1
2 and integrating r from 0 to 1)Z t�1=2

0

E.1; r/ rd�1 dr D t
2
p�1
�d�2

2

Z 1

0

E.t; r/ rd�1 dr:
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In the energy-subcritical case, the exponent 2
p�1
�
d�2
2

is positive, and hence
R t�1=2
0 E.1; r/ rd�1 dr

goes to zero as t ! 0C. In the defocusing setting v > 0, the energy density E is strictly positive, giving a
contradiction.

Now we return to the energy-supercritical situation of Theorem 6.2. In this case, the local energy
conservation law (7-1) does not lead to a contradiction, but still manages to impose a one-dimensional
linear constraint on the energy density E. (Note that the energy current Jr is almost arbitrary, since there
are almost no constraints on the field g@r ;@t in Theorem 6.2 other than through the energy conservation
law.) Namely, from (7-1), the smoothness of Jr on H1, Taylor expansion, and the fundamental theorem
of calculus we have the asymptoticZ 1

0

E.t; r/ rd�1 dr D Pk.t/CO.t
kC1/

as t ! 0, where k � 0 is an integer to be chosen later, Pk is a polynomial of degree at most k, and the
implied constant in the O. / notation is allowed to depend on k and on the data in Theorem 6.2. As E
scales like ��

4
p�1
�2, we can then conclude the asymptoticZ R

0

E.1; r/ rd�1 dr DRd�2�
4
p�1 .Pk.1=R

2/CO.R�2k�2// (7-2)

as R!1. Again using the fact that E scales like ��
4
p�1
�2, we also have the asymptotic

E.1; r/rd�1 D rd�3�
4
p�1 .Qk.1=r

2/CO.r�2k�2// (7-3)

as r!1, for some polynomial Qk of degree at most k.
Now take k to be the largest integer such that

d � 2�
4

p�1
� 2k � 0I (7-4)

note from the energy-supercriticality hypothesis (2-1) that k is nonnegative. If strict inequality holds in
(7-4), then the error term Rd�2�

4
p�1O.R�2k�2/ in (7-2) goes to zero at infinity, while the error term

rd�3�
4
p�1O.r�2k�2/ in (7-3) is absolutely integrable in r (for r near zero this follows from the local

integrability of rd�3�
4
p�1Qk.1=r

2/ and the triangle inequality). Integrating (7-3) and comparing with
(7-2), we see thatRd�2�

4
p�1Pk.1=R

2/must be a primitive of rd�3�
4
p�1Qk.1=r

2/, and one has vanishing
renormalised total energy in the sense that

lim
R!1

Z R

0

�
E.1; r/rd�1� rd�3�

4
p�1Qk.1=r

2/
�
dr D 0 (7-5)

since otherwise there would have to be a constant term in Rd�2�
4
p�1Pk.1=R

2/, which is not possible
when strict inequality occurs in (7-4). If instead equality holds in (7-4), then the same analysis yields
instead that the degree k coefficient of Qk must vanish (that is to say, Qk in fact has degree at most
k� 1), since otherwise there would have to be a logR term present in (7-2), which is not the case.

As it turns out, though, in the energy-supercritical case the linear constraint that we have just obtained
is “dense” rather than “closed”, in the sense that data that does not obey this constraint can be perturbed
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(in a natural topology) to obey the constraint. (In other words, the linear functional that defines the
constraint is unbounded with respect to a certain natural norm.) Informally speaking, this will be because
for self-similar solutions to an energy-supercritical problem there will be an infinite amount of energy
near spatial infinity that is available to “spend” to perform such a perturbation. As such, the constraint
can be eliminated entirely; we can also easily eliminate the potential identity (6-8) due to the fact that the
field g1;i@t appearing in that identity is almost completely unconstrained outside of that identity. More
precisely, we can deduce Theorem 6.2 from:

Theorem 7.1 (fifth reduction). There exist smooth fields g1;1, g@r ;@r , g@! ;@! , g1;i@r , v W H1 ! R

obeying the following properties:

(i) One has the positive definite inequalities (6-2), (6-3) pointwise on H1.

(ii) For .D1;D2/D.1; 1/; .@r ; @r/; .@! ; @!/; .1; i@r/, the field gD1;D2 scales like ��
4
p�1
�ord.D1/�ord.D2/.

Similarly, we require that v scales like ��
4
p�1
�2.

(v) One has the defocusing property v > 0 pointwise on H1.

(vi) If one defines the mass density
T00 WD g1;1;

the radial momentum density
T0r WD �2g1;i@r ;

the radial stress
Trr WD 4g@r ;@r C 2.p� 1/v�

�
@2r C

d�1

r
@r

�
g1;1;

and the angular stress

T!! WD 4g@! ;@! C 2.p� 1/v�
�
@2r C

d�1

r
@r

�
g1;1;

then one has the conservation laws (6-9), (6-10) with removable singularity at r D 0.

(vii) The functions g1;1, g@r ;@r , g@! ;@! , v are even in r , while g1;i@r is odd in r . Furthermore, the function
g@r ;@r �g@! ;@! vanishes on the time axis r D 0.

Let us now see how Theorem 7.1 implies Theorem 6.2. By Theorem 7.1, we may find fields g1;1,
g@r ;@r , g@! ;@! , g1;i@r , v obeying the conclusions of that theorem. Define the energy density E WHd!R

by the formula (6-6). Clearly E is smooth and scales like ��
4
p�1
�2. As in the previous discussion, we let

k be the largest integer obeying (7-4), so that k � 0; then E.1; r/ has an asymptotic expansion of the
form (7-3) as r !1 for some polynomial Qk of degree at most k. Let us call the energy density E
good if one of the following conditions is satisfied:

� If strict inequality holds in (7-4), we call E good if we have the asymptotic vanishing property (7-5).
(Note that the limit in (7-5) exists because the integrand will be absolutely integrable, thanks to
(7-3).)

� If instead equality holds in (7-4), we call E good if the degree k component of Qk vanishes, or
equivalently that Qk has degree at most k� 1.
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Let us suppose first that E is good, and conclude the proof of Theorem 6.2. Using the data provided by
Theorem 7.1, and comparing the conclusions of that theorem with that of Theorem 6.2, we see that it will
suffice to produce smooth fields g@r ;@t ; g1;i@t WH1! R scaling like ��

4
p�1
�3 and ��

4
p�1
�2 respectively

obeying the potential identity (6-8) and the energy conservation law (6-11), where Jr is defined by (6-7);
also, we require g@r ;@t to be odd in r , and g1;i@t to be even in r .

It is clear from (6-8) how one should construct g1;i@t ; namely one should set

g1;i@t WD .pC 1/v�
1
2

�
@2r C

d�1

r
@r

�
g1;1Cg@r ;@r C .d � 1/g@! ;@! :

Clearly g1;i@t is smooth on H1 and even in r , thanks to (vii). It is clear from the scaling laws for v, g1;1,
g@r ;@r , g@! ;@! that the field g1;i@t scales like ��

4
p�1
�2 as required, and the identity (6-8) is clear from

construction.
In a similar fashion, after using (6-7) to rewrite (6-11) as

@t .r
d�1E/D @r.r

d�1g@r ;@t /

it is clear from the fundamental theorem of calculus that we should define g@r ;@t by the formula

g@r ;@t .t; R/ WD
1

Rd�1

Z R

0

@tE.t; r/ r
d�1 dr (7-6)

in the interior .0;C1/ � R of H1, where we adopt the convention
R R
0 D �

R 0
R when R is negative.

Note that the expression .t; R/ 7!
R R
0 @tE.t; r/ r

d�1 dr is smooth and vanishes to order at least d on
the time axis R D 0 when t > 0, so the above definition of g@r ;@t .t; R/ extends smoothly to the entire
interior of H1 (including the time axis). Since E is even in r and scales like ��

4
p�1
�2, we know g@r ;@t

is odd in r and scales like ��
4
p�1
�3 in the interior of H1. After defining Jr by (6-7), we see from the

fundamental theorem of calculus that (6-11) is obeyed in the interior of H1. To complete the list of
requirements stated in Theorem 6.2, it will suffice to show that g@r ;@t extends smoothly to the boundary
component f.0; r/ W r ¤ 0g of H1. As g@r ;@t is odd in r and scales like ��

4
p�1
�3, it suffices to show that

t 7! g@r ;@t .t; 1/ can be smoothly extended to t D 0. From (7-6) we have

g@r ;@t .t; 1/D @t

Z 1

0

E.t; r/ rd�1 dr;

so it will suffice to show that the function f W t 7!
R 1
0 E.t; r/ r

d�1 dr for t > 0 can be smoothly extended
to t D 0.

From (6-1) one has

E.t; r/D t�
2
p�1
�1E

�
1;

r
p
t

�
; (7-7)

so from a change of variables we have

f .t/D t
d�2
2
� 2
p�1

Z t�1=2

0

E.1; r/ rd�1 dr:
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Recalling the polynomial Qk introduced previously, we thus have f .t/D U1.t/CU2.t/, where

U1.t/ WD t
d�2
2
� 2
p�1

Z t�1=2

0

rd�3�
4
p�1Qk.1=r

2/ dr;

U2.t/ WD t
d�2
2
� 2
p�1

Z t�1=2

0

�
rd�1E.1; r/� rd�3�

4
p�1Qk.1=r

2/
�
dr:

Since Qk has degree at most k, and at most k � 1 when equality occurs in (7-4), the expression
rd�3�

4
p�1Qk.1=r

2/ is a linear combination of monomials rd�3�
4
p�1
�2j where 0�j �k, or 0�j �k�1

when equality occurs in (7-4). In particular, from (7-4) we see that the exponent in these monomials is
strictly greater than �1, so the integral is absolutely convergent. Performing the integral, we see that
U1.t/ is a polynomial in t and thus clearly smoothly extendible to t D 0. It thus remains to show that U2
is also smoothly extendible to t D 0.

First suppose that strict inequality occurs in (7-4). From (7-3) we know that the integrand rd�1E.1; r/�
rd�3�

4
p�1Qk.1=r

2/ is absolutely integrable near r D1; from the smoothness of E and the absolute
integrability of the U1 integrand we also have absolute integrability near r D 0. From (7-5) we thus have

U2.t/D�t
d�2
2
� 2
p�1

Z 1
t�1=2

�
rd�1E.1; r/� rd�3�

4
p�1Qk.1=r

2/
�
dr: (7-8)

Making the change of variables r D 1=
p
st and noting from (7-7) that

E

�
1;

1
p
st

�
DE.st; 1/.st/

2
p�1
C1;

this becomes

U2.t/D�
1

2

Z 1

0

E.st; 1/�Qk.st/

skC1
s

2
p�1
�d
2
Ck ds:

The function .s; t/ 7!E.st; 1/�Qk.st/ is smooth and vanishes to order kC 1 at s D 0 thanks to (7-3)
and rescaling, so the factor .E.st; 1/�Qk.st//=skC1 is smooth in t 2 Œ0; 1�, uniformly in s 2 Œ0; 1�. By
definition of k, the weight s

2
p�1
�d
2
Ck is absolutely integrable on Œ0; 1�. From repeated differentiation

under the integral sign we conclude that U2 extends smoothly to Œ0; 1� as desired.
Now suppose that equality occurs in (7-4). Now we do not necessarily have the vanishing property

(7-5), so we need to adjust (7-8) to

U2.t/D At
d�2
2
� 2
p�1 � t

d�2
2
� 2
p�1

Z 1
t�1=2

�
rd�1E.1; r/� rd�3�

4
p�1Qk.1=r

2/
�
dr

for some quantity A depending on E; d; p but not on t . But in this case d�2
2
�

2
p�1

is an integer, so the
monomial At

d�2
2
� 2
p�1 clearly extends smoothly to t D 0. Repeating the previous arguments we then

obtain the smooth extension of U2 to t D 0 as required.
We have completed the derivation of Theorem 6.2 from Theorem 7.1 under the hypothesis that E is

good. It remains to handle the situation in which the energy density E produced by Theorem 7.1 is not
good. In this case, we will perturb the data g1;1, g@r ;@r , g@! ;@! , g1;i@r , v provided by Theorem 7.1 to
make the energy density E good, without losing any of the properties listed in Theorem 7.1.
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More precisely, we will consider perturbations of the form

Qg1;1 WD g1;1;

Qg@r ;@r WD g@r ;@r � .p� 1/Z;

Qg@! ;@! WD g@! ;@! � .p� 1/Z;

Qg1;i@r WD g1;i@r ;

Qv WD vC 2Z;

where Z WH1! R is a smooth function, even in r , which vanishes on the time axis r D 0, and which
scales like ��

4
p�1
�2 to be chosen later. It is clear that this perturbed data Qg1;1, Qg@r ;@r , Qg@! ;@! , Qg1;i@r , Qv

continues to obey the scaling properties (ii) and symmetry properties (vii) of Theorem 7.1; the conservation
laws (vi) are also maintained since the densities T00; T0r ; Trr ; T!! are completely unchanged by this
perturbation. The positive definite inequalities (i) and the defocusing property (v) might not be preserved
in general, but will be maintained if the perturbation Z is sufficiently small in a suitable (scale-invariant)
sense which we will make precise later. Finally, from (6-6) we see that the perturbed energy density zE is
related to the original energy density E by the formula

zE DEC
�
2� 1

2
d.p� 1/

�
Z: (7-9)

In the energy-critical situation p > 1C 4
d�2

, we avoid the mass-critical exponent p D 1C 4
d

and so
the expression 2� d.p�1/

2
appearing in (7-9) is nonzero (in fact it is positive). This gives us substantial

flexibility to modify the energy density E, and in particular to perturb it to be good.
We turn to the details. First suppose that strict inequality occurs in (7-4). We let B denote the quantity

B WD

Z 1
0

�
rd�1E.1; r/� rd�3�

4
p�1Qk.1=r

2/
�
dr; (7-10)

which is well-defined since the integrand is absolutely integrable. We introduce a smooth nonnegative
even function  W R! R, supported in Œ�2;�1�[ Œ1; 2�, and normalised so thatZ 1

0

 .r/ rd�1 dr D 1:

We let R > 1 be a large quantity to be chosen later, and use the perturbation

Z.t; r/ WD �
B

2� 1
2
d.p� 1/

R�d t�
2
p�1
�1 

�
r

Rt
1
2

�
for t > 0, with Z.t; r/ vanishing at t D 0. By construction, Z WH1! R is smooth, even, and scales like
��

4
p�1
�2, with the function r 7!Z.1; r/ supported on Œ�2R;�R�[ŒR; 2R� and obeying the normalisationZ 1

0

Z.t; r/ rd�1 D
B

2� d.p�1/
2

:

Comparing this with (7-9) and (7-10) we see thatZ 1
0

�
rd�1 zE.1; r/� rd�3�

4
p�1Qk.1=r

2/
�
dr D 0
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so that zE is good (note that zE obeys the same asymptotics (7-3) as E with the same polynomial Qk). It
remains to choose the parameter R so that the perturbed fields Qg1;1; Qg@r ;@r ; Qg@! ;@! ; Qg1;i@r ; Qv continue to
obey the properties (i), (v).

We begin with (v) for Qv. By hypothesis, the original field v is continuous, scales like ��
4
p�1
�2, and

everywhere positive, which (by the compactness of H1=T Z) implies a pointwise bound

v.t; r/ > "��
4
p�1
�2

on H1 for some " > 0. In order for zV to also obey (v), it thus suffices to obtain the pointwise bound

B

2� d.p�1/
2

R�d t�
2
p�1
�1 

�
r

Rt
1
2

�
� "��

4
p�1
�2:

On the support of  .r=.Rt
1
2 //, we know t is comparable to .R�1�/2; thus the left-hand side is

O.AR
4
p�1
�dC2��

4
p�1
�2/. As we are in the energy-supercritical situation, the exponent 4

p�1
� d C 2 is

negative, and so we obtain the required bound if R is large enough.
Similarly, from (i), scaling and compactness, we obtain the pointwise bounds

g@r ;@r ; g@! ;@! > "
0��

4
p�1
�2;

g@r ;@r �

�
1
2
@rg1;1

�2
Cg2

1;i@r

g1;1
> "0��

4
p�1
�2

on H1 for some "0 > 0, and by arguing as before we see that these properties will be preserved by the
perturbation if R is large enough. The claim follows.

Now suppose instead that (7-4) holds with equality; from energy-supercriticality this implies that k is
positive. We write

Qk.s/DQk�1.s/CCs
k (7-11)

for all s 2 R and some real number C , where Qk�1 is a polynomial of degree at most k � 1. We let
� W R! R be a smooth nonnegative even function, vanishing near the origin and equal to 1 near ˙1, let
R � 1 be a large parameter to be chosen later, and set

Z.t; r/ WD �
C

2� 1
2
d.p� 1/

jr j�d tk�

�
r

Rt
1
2

�
(7-12)

on H1, with the convention that �.r=.Rt
1
2 //D 1 when t D 0. It is clear that Z WH1!R is smooth, even

in r , and vanishing near the time axis, and as (7-4) holds with equality we have Z scaling like ��
4
p�1
�2

as required. From (7-9), (7-3), (7-11), and (7-12) we have

zE.1; r/D r�2�
4
p�1 .Qk�1.1=r

2/CO.r�2k�2//

as r!1, where the implied constant in the O. / notation can depend on R. In particular, zE is good. It
remains to show that the properties in (i) and (v) are maintained by the perturbation. By repeating the



416 TERENCE TAO

previous arguments, it suffices to ensure that one has the pointwise bound

C

2� 1
2
d.p� 1/

jr j�d tk�

�
r

Rt
1
2

�
� "��

4
p�1
�2;

where " > 0 is a quantity not depending on R. But on the support of �.r=.Rt
1
2 //, we know jr j is

comparable to � and t is O.r2=R2/, so the right-hand side is O.CR�2k��
4
p�1
�2/ (since (7-4) holds with

equality), and the claim follows by taking R large enough. This completes the derivation of Theorem 6.2
from Theorem 7.1.

It remains to prove Theorem 7.1. This will be the objective of the remaining sections of the paper.

8. Eliminating the potential

We now make an easy reduction by eliminating the role of the potential energy density v.
Let d � 1 and p > 1, and suppose we have fields g1;1; g@r ;@r ; g@! ;@! ; g1;i@r ; v obeying the properties

claimed in Theorem 7.1. If we then define the modified fields Qg1;1, Qg@r ;@r , Qg@! ;@! , Qg1;i@r , Qv by

Qg1;1 WD g1;1;

Qg@r ;@r WD g@r ;@r C
1
2
.p� 1/v;

Qg@! ;@! WD g@! ;@! C
1
2
.p� 1/v;

Qg1;i@r WD g1;i@r ;

Qv WD 0;

then one easily verifies that these new fields also obey the claims of Theorem 7.1, except with the
defocusing property v > 0 replaced by v D 0 (note that the new fields have exactly the same stresses
Trr ; T!! as the original fields). In the converse direction, it turns out that we can replace the defocusing
property v > 0 in Theorem 7.1(v) by v D 0. More precisely, we can deduce Theorem 7.1 from:

Theorem 8.1 (sixth reduction). Then there exist smooth fields g1;1; g@r ;@r ; g@! ;@! ; g1;i@r W H1 ! R

obeying the following properties:

(i) One has the positive definite inequalities

g1;1; g@! ;@! > 0; (8-1)

g@r ;@r >

�
1
2
@rg1;1

�2
Cg2

1;i@r

g1;1
(8-2)

pointwise on H1.

(ii) The fields g1;1; g@r ;@r ; g@! ;@! ; g1;i@r scale like ��
4
p�1 , ��

4
p�1
�2, ��

4
p�1
�2, and ��

4
p�1
�1 respec-

tively.

(vi) One has the mass conservation law

@tg1;1 D 2
�
@r C

d�1

r

�
g1;i@r (8-3)
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and momentum conservation law

4
�
@r C

d�1

r

�
g@r ;@r D 4

d�1

r
g@! ;@! C @r

�
@2r C

d�1

r
@r

�
g1;1C 2@tg1;i@r (8-4)

with removable singularity at r D 0.

(vii) The functions g1;1; g@r ;@r ; g@! ;@! are even in r , while g1;i@r is odd in r . Furthermore, g@r ;@r�g@! ;@!
vanishes on the time axis r D 0.

Let us now see how Theorem 8.1 implies Theorem 7.1. Suppose that g1;1; g@r ;@r ; g@! ;@! ; g1;i@r ; v
obeys the properties claimed by Theorem 8.1. Let " > 0 be a small quantity to be chosen later, and
introduce the modified fields

Qg1;1 WD g1;1

Qg@r ;@r WD g@r ;@r �
p� 1

2
"��

4
p�1
�2

Qg@! ;@! WD g@! ;@! �
p� 1

2
"��

4
p�1
�2

Qg1;i@r WD g1;i@r

Qv WD "��
4
p�1
�2:

The properties (ii), (v), (vii) of Theorem 7.1 are easily verified to be obeyed by these new fields. Using
(8-3), (8-4) and the definitions of T00; T0r ; Trr ; Tr! in Theorem 7.1(vi), we see that the conservation
laws (6-9), (6-10) are obeyed by the original fields g1;1; g@r ;@r ; g@! ;@! ; g1;i@r (with v D 0), and hence
by the new fields Qg1;1; Qg@r ;@r ; Qg@! ;@! ; Qg1;i@r ; Qv since the stress-energy densities T00; T0r ; Trr ; T!! for
these new fields are identical to those for the original fields. By using compactness as in the previous
section, we also see that the positive definite inequalities (i) will also be obeyed if " is small enough, and
the claim follows.

It remains to prove Theorem 8.1. This will be the objective of the remaining sections of the paper.

Remark 8.2. The reduction to the case v D 0 does not mean that the finite time blowup in Theorem 1.2
is arising from a vanishing potential F D 0, and indeed such a vanishing is not possible since the linear
Schrödinger equation will not create singularities in finite time from smooth, compactly supported data.
Instead, the vD 0 case roughly speaking corresponds to the case where F.x/ is very close to zero when x
lies in the range of the solution map u WHd ! Cm, but is allowed to be much larger than zero elsewhere;
in particular, rF.x/ does not need to vanish or be small on the range of u.

9. Eliminating the radial stress

Having eliminated the potential energy density v from the problem, we now turn our attention to
eliminating the radial stress g@r ;@r . To motivate this reduction, assume for the moment that the hypotheses
and conclusions of Theorem 8.1 hold. Multiplying the momentum conservation law (8-4) by 1

4
rd�1, we

arrive at the identity
@r.r

d�1g@r ;@r /D S2 (9-1)
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where S2 WH1! R is the function

S2 WD .d � 1/r
d�2g@! ;@! CS1 (9-2)

and S1 WH1! R is the function

S1 WD
1
4
rd�1

�
@r

�
@2r C

d�1

r
@r

�
g1;1C 2@tg1;i@r

�
: (9-3)

As rd�1g@r ;@r vanishes on the time axis r D 0, we can therefore solve for g@r ;@r .t; R/ for .t; R/ in the
interior of H1 by the formula

g@r ;@r .t; R/ WD
1

Rd�1

Z R

0

S2.t; r/ dr;

noting that the right-hand side has a removable singularity at RD 0 since the integral vanishes to order
at least d � 1 there; a Taylor expansion at R D 0 then also reveals that g@r ;@r � g@! ;@! vanishes at
RD 0. However, it is not immediately clear that the right-hand side will extend smoothly to the boundary
f.0; R/ WR¤ 0g of H1, due to the singularity of the integrand at the spacetime origin. As in Section 7,
this requires an additional “good” hypothesis on the asymptotic expansion of the right-hand side of (9-1).
More precisely, we can deduce Theorem 8.1 from

Theorem 9.1 (seventh reduction). Then there exist smooth fields g1;1; g@! ;@! ; g1;i@r WH1! R obeying
the following properties:

(i) One has the positive definite inequalities (8-1) pointwise on H1.

(ii) The fields g1;1, g@! ;@! , g1;i@r scale like ��
4
p�1, ��

4
p�1
�2, and ��

4
p�1
�1 respectively.

(vi) One has the conservation law (8-3) with removable singularity at r D 0.

(vii) The functions g1;1, g@! ;@! are even in r , while g1;i@r is odd in r .

(viii) There is an " > 0 such that one has the pointwise inequality

1

Rd�1

Z R

0

S2.1; r/ dr �

�
1
2
@rg1;1

�2
Cg2

1;i@r

g1;1
.1; R/C "�.1;R/�

4
p�1
�2

for all R > 0, where S2 WH1! R is the function defined by (9-2).

(ix) Let k � �1 be the largest integer such that

d � 3�
4

p�1
� 2k � 0: (9-4)

As S2 is smooth and scales like ��
4
p�1
Cd�4, there is an asymptotic of the form

S2.1; r/D r
d�4� 4

p�1 .Rk.1=r
2/CO.r�2k�2// (9-5)

as r!1 for some polynomial Rk of degree at most k .this forces R to vanish in the case k D�1,
where we adopt the convention that 0 has degree �1/. If strict inequality holds in (9-4), we require
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that Z 1
0

�
S2.1; r/� r

d�4� 4
p�1Rk.1=r

2/
�
dr D 0 (9-6)

.note that the integrand is absolutely integrable by (9-4), (9-5), and the smoothness of S2/. If instead
equality holds in (9-4) .which can only occur if k � 0/, we require that the degree k coefficient of
Rk vanishes, so that Rk actually has degree at most k� 1.

Let us now see how Theorem 9.1 implies Theorem 8.1. Let d � 3 and p > 1 C 4
d�2

, and let
g1;1; g@! ;@! ; g1;i@r W H1 ! R be as in Theorem 9.1. The function S2 defined in (9-2) scales like
��

4
p�1
Cd�4, vanishes to order at least d �2 at r D 0, and has the same parity in r as rd�2. We may then

define

g@r ;@r .t; R/ WD
1

Rd�1

Z R

0

S2.t; r/ dr (9-7)

for .t; R/ in the interior ofH1. The integral
R R
0 S1.t; r/ dr vanishes to order at least d�1 at the time axis

RD 0, so there is a removable singularity on that axis; by Taylor expansion we see that g@r ;@r �g@! ;@!
vanishes. It is also easy to see that g@r ;@r is even in r and scales like ��

4
p�1
�2, and from the fundamental

theorem of calculus we see that g@r ;@r obeys (9-1). If we could show that g@r ;@r extends smoothly to the
boundary f.0; R/ W R ¤ 0g of H1, then from Theorem 9.1(viii) we obtain (8-2) at .1; R/ for all R > 0
(with a gap of at least "��

4
p�1
�2); using scaling, symmetry and a limiting argument we would obtain

(8-2) throughout H1, and we would obtain all the requirements for Theorem 8.1.
Thus the only remaining difficulty is to ensure the smooth extension. We argue as in Section 7. By

scaling and symmetry it suffices to show that the function t 7! g@r ;@r .t; 1/ extends smoothly to t D 0. If
strict inequality occurs in (9-4), then from (9-6), (9-7) we can write

g@r ;@r .1; R/D
1

Rd�1

Z R

0

rd�4�
4
p�1Rk.1=r

2/ dr �
1

Rd�1

Z 1
R

.S2.1; r/� r
d�4� 4

p�1Rk.1=r
2// dr;

and hence by rescaling

g@r ;@r .t; 1/D t
� 2
p�1
�1g@r ;@r .1; t

� 1
2 /D Y1.t/CY2.t/;

where the functions Y1; Y2 W .0;C1/! R are defined by the formulae

Y1.t/ WD t
d�3
2
� 2
p�1

Z t�1=2

0

rd�4�
4
p�1Rk.1=r

2/ dr;

Y2.t/ WD �t
d�3
2
� 2
p�1

Z 1
t�1=2

.S2.1; r/� r
d�4� 4

p�1Rk.1=r
2// dr:

The function Y1 is a polynomial and thus smoothly extends to t D 0. As for Y2, we make the change of
variables r D .st/�

1
2 to write

Y2.t/D�
1

2

Z 1

0

S2.st; 1/�Rk.st/

skC1
s

2
p�1
�d�3

2
Ck ds:
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As in Section 7, .S2.st; 1/�Rk.st//=skC1 is smooth in t 2 Œ0; 1� uniformly in s 2 Œ0; 1�, and the weight
s

2
p�1
�d�3

2
Ck is absolutely integrable, so we obtain a smooth extension to tD0 as required. The case when

equality occurs in (9-4) is treated by adding a monomial term At
d�3
2
� 2
p�1 to Y2 precisely as in Section 7.

It remains to prove Theorem 9.1. This will be the objective of the remaining sections of the paper.

10. Eliminating the angular stress

Now we turn to eliminating the angular stress g@! ;@! from the problem. It will be natural to divide into the
stress-subcritical case d�3� 4

p�1
<0, the stress-critical case d�3� 4

p�1
D 0, and the stress-supercritical

case d �3� 4
p�1

> 0 (note that all three of these cases can occur in the energy-supercritical regime (2-1)).
Assume that all the conclusions of Theorem 9.1 are satisfied. In the stress-subcritical case d�3� 4

p�1
<0,

the exponent k in Theorem 9.1(ix) is equal to �1; thus Rk vanishes, S2 is absolutely integrable, and the
condition (9-6) becomes Z 1

0

S2.1; r/ dr D 0:

From Theorem 9.1(viii) we thus have

1

Rd�1

Z 1
R

S2.1; r/ dr � �

�
1
2
@rg1;1

�2
Cg2

1;i@r

g1;1
.1; R/� "�.1;R/�

4
p�1
�2

for any R > 0. Applying (9-2), (8-1), we obtain the constraint

1

Rd�1

Z 1
R

S1.1; r/ dr � �

�
1
2
@rg1;1

�2
Cg2

1;i@r

g1;1
.1; R/� "�.1;R/�

4
p�1
�2

on the fields g1;1, g1;i@r for all R > 0. By scale invariance, we then have

1

Rd�1

Z 1
R

S1.t; r/ dr � �

�
1
2
@rg1;1

�2
Cg2

1;i@r

g1;1
.t; R/� "�.t; R/�

4
p�1
�2 (10-1)

for all t; R > 0.
Now suppose we are in the stress-critical case d �3� 4

p�1
D 0. Then kD 0, and from Theorem 9.1(ix)

we have
lim
r!1

rS2.1; r/D 0:

As S1 scales like �
4
p�1
Cd�4

D ��1, the limit limr!1 rS1.1; r/ exists; from (9-2), (8-1), we conclude
the constraint

lim
r!1

rS1.1; r/� 0:

Finally, in the stress-supercritical case d �3� 4
p�1

> 0, there is no obvious way to extract a constraint
on g1;1, g1;i@r from the properties in Theorem 9.1 that involve g@! ;@! .

As it turns out, the obstructions listed above to eliminating g@! ;@! are essentially the only ones. More
precisely, Theorem 9.1 is a consequence of:
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Theorem 10.1 (eighth reduction). Then there exist smooth fields g1;1; g1;i@r W H1 ! R obeying the
following properties:

(i) One has the positive definite inequality g1;1 > 0 pointwise on H1.

(ii) g1;1 and g1;i@r scale like ��
4
p�1 and ��

4
p�1
�1 respectively.

(vi) One has the conservation law (8-3) on H1 with removable singularity at r D 0.

(vii) The function g1;1 is even in r , while g1;i@r is odd in r .

(x) In the stress-subcritical case, we have the constraint (10-1) for all R; t > 0 and some " > 0, where
S1 is defined by (9-3). In the stress-critical case, we have the constraint

lim
r!1

rS1.1; r/ < 0:

In the stress-supercritical case, we impose no constraint here.

In the remainder of this section we show how Theorem 9.1 implies Theorem 8.1. Let g1;1, g1;i@r , be
as in Theorem 9.1. It will suffice to locate a smooth field g@! ;@! WH1! R, scaling like ��

4
p�1
�2, even

in r , and vanishing at r D 0, which is strictly positive and such that the function S2 WH1! R defined by
(9-2) obeys the properties claimed in Theorem 9.1(viii), (ix).

We begin with the stress-critical case d � 3� 4
p�1
D 0, which is the simplest. From Theorem 9.1(x)

we can write
lim
r!1

rS1.1; r/D�c (10-2)

for some c > 0. Let  W R! Œ0; 1� be a smooth even function, supported on Œ�2; 2�, that equals 1 on
Œ�1; 1�, and choose

g@! ;@! .t; r/ WD
c

d � 1
�1�d CAt

1�d
2  .r=t2/

for some large A > 0 to be chosen later. Clearly g@! ;@! is strictly positive, smooth, even in r , and scales
like ��

4
p�1
�2
D �1�d. From (9-2), (10-2) we see that

lim
r!1

rS1.1; r/D 0:

It remains to establish the property in Theorem 9.1(viii) with (say) "D 1. That is to say, we need to show

A
1

Rd�1

Z R

0

rd�2 .r/ dr � f .R/ (10-3)

for all R > 0, where

f .R/ WD

�
1
2
@rg1;1

�2
Cg2

1;i@r

g1;1
.1; R/C �.1;R/�

4
p�1
�2
�

1

Rd�1

Z R

0

.S1.1; r/C cr
d�2�1�d / dr:

The function S1.1; r/C crd�2�1�d scales like ��1, and by (10-2) we have

lim
r!1

r.S1.1; r/C cr
d�2�1�d /D 0;



422 TERENCE TAO

so we have an asymptotic of the form

S1.1; r/C cr
d�2�1�d DO.1=r3/

as r!1. In particular, the integral
R R
0 .S1.1; r/Ccr

d�2�1�d / dr is bounded in R. The first two terms
in the definition of f .R/ come from evaluating smooth functions scaling like ��

4
p�1
�2
D �1�d at .1; R/.

As such we conclude a bound of the form

f .R/DO..1CR/1�d /

for all R> 0, where the implied constant does not depend on A. On the other hand, from the construction
of  , the expression 1

Rd�1

R R
0 rd�2 .r/ dr is bounded below by 1

d�1
when R � 1 and by 1

.d�1/Rd�1

for R � 1, so we obtain the required bound (10-3) by choosing A large enough.
A similar argument lets us treat the stress-supercritical case in which d � 3� 4

p�1
D 2k for some

positive integer k, as follows. The function S1 is smooth and scales like �d�4�
4
p�1 D �2k�1, and thus

we have an asymptotic of the form

S1.1; r/D r
2k�1

�
Rk�1.1=r

2/C ck=r
2k
CO.r�2k�2/

�
(10-4)

as r ! C1, for some real number ck and some polynomial Rk�1 of degree at most k � 1. Let
 W R! Œ0; 1� be a smooth cutoff as before, let A > 0 be a large parameter to be chosen later, and set

g@! ;@! .t; r/ WD

�
�

ck

d � 1
jr j1�d tkCAjr j1�dC2k

�
.1� .r=t2//CCAt

1�d
2
Ck .r=t2/:

If A is large enough, it is easy to verify that g@! ;@! is strictly positive, smooth, even in r , and scales like
��

4
p�1
�2
D �1�dC2k. From (9-2), (10-4) we have the asymptotic

S1.1; r/D r
2k�1

�
ACRk�1.1=r

2/CO.r�2k�2/
�

as r!C1.
It remains to establish the property in Theorem 9.1(viii) with (say) "D 1. As before, we rewrite this

desired inequality as

A
1

Rd�1

Z R

0

�
rd�2 .r/C r2k�1.1� .r//

�
dr � fk.R/ (10-5)

for all R > 0, where

fk.R/ WD

�
1
2
@rg1;1

�2
Cg2

1;i@r

g1;1
.1; R/C �.1;R/�

4
p�1
�2
�

1

Rd�1

Z R

0

�
S1.1; r/� ck

1� .r=t2/

r

�
dr:

As before, the first two terms fk.R/ come from evaluating a smooth function scaling like ��
4
p�1
�2
D

�1�dC2k at .1; R/, while the integrand S1.1; r/� ck.1� .r=t2//=r is of size O..1C r/2k�1/. We
conclude that

fk.R/DO..1CR/
1�dC2k/
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(with implied constant independent of A), while from direct computation we have

1

Rd�1

Z R

0

�
rd�2 .r/C r2k�1.1� .r//

�
dr � c.1CR/1�dC2k

for all R > 0 and some quantity c > 0 depending on d; k;  . The claim then follows by taking A large
enough.

It remains to prove Theorem 10.1. This will be the objective of the final section of the paper.

11. Conclusion of the argument

The mass conservation law (8-3) can be rewritten as

@t .r
d�1g1;1/D 2@r.r

d�1g1;i@r /:

It is thus clear that this law will be satisfied for r ¤ 0 (with removable singularity at r D 0) if one uses
the ansatz

g1;1 D 2r
1�d@r.r

dW /D 2r@rW C 2dW; (11-1)

g1;i@r D r
1�d@t .r

dW /D r@tW (11-2)

for some smooth function W WH1! R. In order to obey the conditions (i), (ii), (vii) of Theorem 10.1,
we should impose the following conditions on W :

(i) One has @r.rdW.t; r// > 0 for all r > 0 and t � 0. Furthermore, W.1; 0/ > 0.

(ii) W scales like ��
4
p�1.

(vii) W is even in r .

It is clear that if W is smooth and obeys the above properties (i), (ii), (vii), and g1;1, g1;i@r are then
defined by (11-1), (11-2), then the properties (i), (ii), (vi), (vii) of Theorem 10.1 are satisfied. Such a
function W is easy to construct, indeed one can just take W.t; r/ WD ��

4
p�1 (noting from the energy

supercriticality hypothesis (2-1) that d � 4
p�1

> 2 > 0; hence the derivative

@r.r
dW /D

�
d

r
�

4

p� 1

r3

�4

�
rdW

is positive for r >0). This already establishes Theorem 10.1 in the stress-supercritical case d�3� 4
p�1

>0.
It remains to handle the stress-critical case d�3� 4

p�1
D0 and the stress-subcritical case d�3� 4

p�1
<0.

Here the difficulty is that there is an additional constraint in Theorem 10.1(x) that needs to be satisfied. If
one sets W 0 WD ��

4
p�1 and defines the initial fields g01;1, g0

1;i@r
by the formulae (11-1), (11-2), that is to

say,
g01;1 D 2r@rW

0
C 2dW 0; (11-3)

g01;i@r D r@tW
0; (11-4)
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and then defines the initial field S01 by the analogue of (9-3), namely

S01 WD
1
4
rd�1

�
@r

�
@2r C

d�1

r
@r

�
g01;1C 2@tg

0
1;i@r

�
;

then there is no guarantee that the constraint in Theorem 10.1(x) will be obeyed for these choices of g1;1,
g1;i@r . Instead, we select a smooth function  W R! R supported on Œ�1; 1�, such that  00.t/� 0 for all
t � 0 and  00.t/D 1 for 0� t � 1

2
, let ı > 0 be an even smaller parameter, and let W WH1! R be the

function defined for all .t; r/ 2H1 by the formula

W.t; r/ WDW 0.t; r/� ı
3
2��

4
p�1 

�
t

ı�

�
;

and then define g1;1, g1;i@r , S1 by (11-1), (11-2), (9-3). Clearly W obeys the required properties (ii) and
(vii). We now claim that the property (i) also holds if ı is small enough. Note that W.t; r/ is equal to
W 0.t; r/ unless t DO.ı�/; thus it suffices to verify (i) in the regime t DO.ı�/. By rescaling we may
normalise r D 1 and t DO.ı/. In this regime we have

@r.r
dW.t; r//D @r.r

dW 0.t; r//CO.ı
1
2 /;

and from the fact that W 0 obeys (i), the quantity @r.rdW 0.t; r// is bounded away from zero uniformly
in ı in the regime r D 1, t DO.ı/, so the claim follows.

We now claim that Theorem 10.1(x) holds for ı small enough. In the stress-supercritical case there is
nothing to prove. In the remaining cases, we need to study the quantity S1.t; r/. By construction, this
quantity is equal to S01 .t; r/ except in the regime r DO.ı�/. Now we rescale and study S1.t; 1/ in the
regime r DO.ı/. From (11-1), (11-2) we have

g1;1 D g
0
1;1� 2rı

3
2 @r

�
��

4
p�1 

�
t

ı�

��
C 2dı

3
2��

4
p�1 

�
t

ı�

�
and

g1;i@r D g
0
1;i@r
C rı

3
2 @t

�
��

4
p�1 

�
t

ı�

��
:

Using the identities @t�D t=.2�3/, @r�D r
3=�3 we can obtain the bounds

@jr g1;1 D @
j
r g
0
1;1CO.ı

3
2 /; (11-5)

g1;i@r D g
0
1;i@r
CO.ı

1
2 /; (11-6)

@tg1;i@r D�2ı
� 1
2��

4
p�1
�2 00

�
t

ı�

�
CO.1/ (11-7)

for j D 0; 1; 2; 3 in the regime r D 1, t DO.ı/. In particular, from (9-3) we have the bounds

S1.1; t/D�ı
� 1
2��

4
p�1
�2 00

�
t

ı�

�
CO.1/ (11-8)
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in the region r D 1, t DO.ı/; this bound is also true in the larger range r D 1, t DO.1/ since S1 D S01
and  00 D 0 when t is much larger than ı. In particular, for ı small enough we have

lim
t!0C

S1.t; 1/ < 0I

as S1 scales like ��
4
p�1
Cd�2, this is equivalent to which by rescaling is equivalent to

lim
r!1

�
4
p�1
�dC2S1.1; r/ < 0:

In the stress-critical case d � 3� 4
p�1
D 0, this gives Theorem 10.1(x). Now suppose we are in the

stress-subcritical case d � 3� 4
p�1

< 0. From (11-8), we have the bounds

�
1

t

Z t

0

S1.t
0; 1/

�
t 0

t

� 2
p�1
�d�1

2

dt 0� ı�
1
2

�
1C

t

ı

�d�3
2
� 2
p�1

�O.1/

for all 0 < t � 1; note in the stress-subcritical case that the exponent 2
p�1
�
d�1
2

is at least �1. We have

ı�
1
2

�
1C

t

ı

�d�3
2
� 2
p�1

� ı
2
p�1
�d�2

2 :

By energy supercriticality (2-1), the exponent here is negative, and thus if ı is small enough we have

�
1

t

Z t

0

S1.t
0; 1/

�
t 0

t

� 2
p�1
�d�1

2

dt 0� ı
2
p�1
�d�2

2

for all 0 < t � 1. As S1 scales like ��
4
p�1
Cd�2, this bound is equivalent to

�
1

Rd�1

Z 1
R

S1.1; r/ dr � ı
2
p�1
�d�2

2 ��
4
p�1
�2

for 1 � R <1; since S1.1; r/D S01 .1; r/D O.1/ when 0 � R � 1, we conclude that this bound also
holds for 0 < R < 1 if ı is small enough. Meanwhile, from (11-5), (11-6) we have�

1
2
@rg1;1

�2
Cg2

1;i@r

g1;1
.t; 1/DO.1/

for 0 < t � 1, and hence by rescaling�
1
2
@rg1;1

�2
Cg2

1;i@r

g1;1
.1; R/DO.��

4
p�1
�2/

for 1�R <1; since
g1;1.1; R/D g

0
1;1.1; R/� 1;

g1;i@r .1; R/D g
0
1;i@r

.1; R/DO.1/;

@rg1;1.1; R/D @rg
0
1;1.1; R/DO.1/
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for 0�R � 1, this bound also holds for 0 < R � 1. We conclude that for ı small enough, the conclusion
of Theorem 10.1(x) holds (with "D 1) in the stress subcritical case. This covers all the cases required for
Theorem 10.1, and thus (finally!) completes the proof of Theorem 1.2.

Appendix: Proof of Nash-type embedding theorem

The purpose of this appendix is to prove Proposition 5.2.
We can use the hypothesis in Proposition 5.2(iv) to make a “gauge transformation” to reduce to the

case when the components G1;i@xj vanish:

Proposition A.1. In order to prove Proposition 5.2, it suffices to do so under the additional hypothesis
that G1;i@xj vanishes identically for all j D 1; : : : ; d , and in which we now require ˛ D 0 in (3-1).

We remark from (5-10) that the vanishing of G1;i@xj also implies the vanishing of G@xj;i@xk .

Proof. Let the hypotheses be as in Proposition 5.2, and let Eg WHd ! Rd denote the vector field

Eg WD

�G1;i@xj
G1;1

�d
jD1

:

From hypothesis (iv) we know that Eg is curl-free, so in particularZ



Eg.t; x/ � ds D 0

for all t > 0 and all closed curves 
 in Rd, where ds is the length element. Taking limits as t ! 0, we
conclude that Z




Eg.0; x/ � ds D 0

for all t > 0 and all closed curves 
 in Rdnf0g. In particular, Eg.0; � / is exact, and so we can find a smooth
function P0 W Rdnf0g ! R such that

Eg.0; x/DrP0.x/ (A-1)

for all x 2 Rdnf0g. Observe from (5-6) that the vector field Eg has the homogeneity

Eg.4t; 2x/D 1
2
Eg.t; x/ (A-2)

for all .t; x/2Hd . In particular, (A-1) continues to hold when P0 is replaced by the rescaling x 7!P0.2x/.
Integrating, we conclude that

P0.2x/D P0.x/C˛ (A-3)

for all x 2 Rdnf0g and some ˛ 2 R.
From (A-2) and the smoothness of Eg up to the boundary of Hd , we see for fixed t � 0 that one has the

asymptotic
Eg.t; x/� Eg.0; x/DO.1=jxj2/
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as x!1, and similarly for all spacetime derivatives of Eg (in fact one gains additional powers of jxj
with each derivative). If we then define the function P WHd ! R by

P.t; x/ WD P0.x/�

Z



.Eg.t; x/� Eg.0; x// � ds

where 
 is an arbitrary curve from x to1 in Rdnf0g that is eventually linear, then we see from Stokes’
theorem that P is well-defined, and it is clear from construction that P is smooth and obeys the identity

Eg.t; x/DrP.t; x/

for all .t; x/ 2Hd. Furthermore, from (5-6) and (A-3) we see that

P.4t; 2x/D P.t; x/C˛ (A-4)
for all .t; x/ 2 Rd .

We now introduce the “gauge transformed” matrix G0 D .G0D1;D2/D1;D22D by setting

G01;1 DG
0
i;i WDG1;1;

G01;i DG
0
i;1 WD 0;

G01;D1 DG
0
D1;1
DG0i;iD1 DG

0
iD1;i

WDG1;D1 ;

G01;iD1 DG
0
iD1;1

D�Gi;D1 D�GD1;i WDG1;D1�G1;1D1P;

G0D1;D2 DG
0
iD1;iD2

WDGD1;D2�G1;iD2D1P�G1;iD1D2PC.D1P /.D2P /G1;1;

G0D1;iD2 DGiD2;D1 WDGD1;iD2�.D2P /G1;D1C.D1P /G1;D2

for D1;D2 2 DRnf1g. The motivation for this matrix is that the requirement (5-13) can be seen to be
equivalent to the requirement

G0D1;D2.t; x/D
˝
D1.ue

iP /.t; x/;D2.ue
iP /.t; x/

˛
Cm

(A-5)

for D1;D2 2 D, as can be seen from many applications of the product and Leibniz rules.
It is easy to see that G0 is smooth and real symmetric and obeys the scaling relation (5-6). We observe

the identity X
D1;D22D

G0D1;D2 aD1 aD2 D
X

D1;D22D

GD1;D2 bD1 bD2

for all real numbers aD;D 2 D, where

b1 WD a1�
X
D2DR

aiDDP;

bi WD a1C
X
D2DR

aDDP;

bD1 WD aD1 ;

biD1 WD aiD1 :

From this we see that G0 is strictly positive definite, and thus obeys the property (i). Routine calculation
shows that it also obeys the conditions (ii), (iii), (iv), and that the components G0

1;i@xj
vanish for j D
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1; : : : ; d . By hypothesis, we may thus find a smooth function u0 WHd ! Cm that is nowhere vanishing
and obeys the discrete self-similarity (3-1) with ˛ replaced by 0, such that

G0D1;D2.t; x/D hD1u
0.t; x/;D2u

0.t; x/iCm

for all .t; x/ 2 Hd and all D1;D2 2 D other than .D1;D2/ D .@t ; @t /; .i@t ; i@t /. Furthermore, the
function � WHd=T Z! CPm�1, formed by descending the map � ıu0 WHd ! CPm�1 to Hd=T Z, is a
smooth embedding. If we then set u WD u0eiP, one checks from the equivalence of (5-13) and (A-5) that
u obeys all the properties required for Proposition 5.2. �

It remains to prove Proposition 5.2 under the additional hypothesis that G1;i@xj D 0 and with the
requirement ˛ D 0. It will be convenient to work with a reduced “basis” of components of G, in order to
eliminate the various constraints between the components of G. Let P � D2 denote the following set of
pairs in D:

P WD
˚
.1;D/ WD D 1; i@x1 ; : : : ; i@xd ; i@t

	
[
˚
.@xj ; @xk / W 1� j � k � d

	
[
˚
.@xj ; @t / W 1� j � d

	
and then define the reduction GP WHd ! RP of the matrix G as

GP WD .GD1;D2/.D1;D2/2P (A-6)

and the Gram-type matrix GP Œu; v� WHd !RP of two smooth functions u; v WHd !Cm for some m� 1
by the formula

GP Œu; v� WD .hD1u;D2viCm/.D1;D2/2P :

Observe from the hypotheses (5-7), (5-11)–(5-12) (as well as the symmetry GD1;D2 DGD2;G1) on the
matrix G, as well as the analogous identities (5-2)–(5-5) (as well as the symmetry hD1u;D2uiCm D
hD2u;D1iCm) on the Gram-type matrix GŒu; u�, that if u obeyed the equations

GP Œu; u�DGP (A-7)

(that is to say, (5-13) holds for all .D1;D2/ 2 P) then in fact one has (5-13) for all pairs .D1;D2/ in D2

other than .@t ; @t / and .i@t ; i@t /. Thus, our task reduces to that of locating a smooth, nowhere vanishing
map u WHd ! Cm which obeys the discrete self-similarity (3-1) and the equation (A-7).

In order to avoid technicalities involving elliptic theory for manifolds with boundary, it will be
convenient to replace the half-space Hd with the punctured spacetime R � Rdnf.0; 0/g, so that the
quotient

M WD .R�Rdnf.0; 0/g/=T Z

is now a smooth compact manifold without boundary. More precisely, we will show:

Proposition A.2. Let GP D .GD1;D2/.D1;D2/2P be a tuple of smooth functions

GD1;D2 W R�Rdnf.0; 0/g ! R
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obeying the scaling law (5-6). Suppose also that the fields G1;i@xj vanish for j D 1; : : : ; d , and that the
.d C 1/� .d C 1/ matrix

.GD1;D2/D1;D22f1;@x1 ;:::;@xd g
(A-8)

is strictly positive definite on all of R�Rdnf0g, where we define

G1;@xj
DG@xj ;1

WD
1
2
@xjG1;1

for j D 1; : : : ; d and
G@xk ;@xj

WDG@xj ;@xk

for 1� j < k � d . Then, if m is an integer that is sufficiently large depending on d, there exists a smooth
nowhere vanishing function u W R�Rdnf.0; 0/g ! Cm obeying (3-1) with ˛ D 0 such that the map � ıu
is a smooth embedding of M into CPm�1, and such that

GP Œu; u�DGP

on all of R�Rdnf.0; 0/g.

We now explain why Proposition A.2 gives us Proposition 5.2. Let GD1;D2 , D1;D2 2 D be as in
Proposition A.2, withG1;i@xj D0. For eachD1;D2 2D, the function �

4
p�1
Cord.D1/Cord.D2/GD1;D2 is T -

invariant and may thus be viewed as a smooth function on the quotient spaceHd=T Z. Using the extension
theorem7 of Seeley [1964], we may smoothly extend this function to the larger space .R�Rdnf.0; 0/g/=T Z;
lifting this extension back up to R�Rdnf.0; 0/g and dividing by �

4
p�1
Cord.D1/Cord.D2/, we obtain a smooth

extension of GD1;D2 for .D1;D2/ 2 P from Hd to R�Rd !f.0; 0/g that continues to obey the scaling
properties (5-6). Of course we can arrange matters so that one retains the symmetry property GD1;D2 D
GD2;D1 with this extension, as well as the vanishing property G1;i@xj D 0. By continuity, the matrix
(A-8) will remain strictly positive definite in an open neighbourhood of Hd . By smoothly interpolating
theGD1;D2 with another set of functions for which the matrix (A-8) is strictly positive definite everywhere
(while also still obeying (5-6); this is easily achieved by keeping the diagonal terms G1;1, G@xj ;@xj large
and positive), one can assume without loss of generality that (A-8) is in fact positive definite on all of
R�Rdnf.0; 0/g. If one now applies Proposition A.2 and then restricts back to Hd , one obtains the claim.

It remains to establish Proposition A.2. If we knew that the component G1;i@t of G vanished (in
addition to the vanishing of G1;i@xj that is already assumed), one could obtain this claim immediately
from Proposition 5.1, by embedding Rm into Cm and noting that the inner products hu; i@xjuiCm and
hu; i@tuiCm automatically vanish if u takes values in Rm. (In this case, we could also recover the .@t ; @t /
case of (5-13).) Thus the only obstacle to address is the nonvanishing of G1;i@t . Our strategy, inspired by
the usual proofs of the Nash embedding theorem, will be to modify GP by subtracting the contribution
of a suitable “short map” that is designed to mostly eliminate the G1;i@t -component (while creating
only small perturbations in the remaining components of GP ), and then use the perturbative argument8

[Günther 1991] to construct a solution u for this perturbative version of GP .

7One can also use the classical extension theorem of Whitney [1934].
8One could also use the Nash–Moser iteration scheme here, although this would be more complicated technically.
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We turn to the details. The map u 7! GP Œu; u� defined by (A-6) is quadratic in u, rather than
linear. Nevertheless, it does have the following very convenient additivity property: given two maps
u1 WR�Rdnf.0; 0/g!Cm1 and u2 WR�Rdnf.0; 0/g!Cm2 into two finite-dimensional complex vector
spaces, one has the identity

GP Œ.u1; u2/; .u1; u2/�DGP Œu1; u1�CGP Œu2; u2�; (A-9)

where the pairing .u1; u2/ W R�Rdnf.0; 0/g ! Cm1Cm2 of u1; u2 is the map defined by the formula

.u1; u2/.t; x/ WD .u1.t; x/; u2.t; x//

where we identify Cm1 �Cm2 with Cm1Cm2 in the obvious fashion. Note also that if u1; u2 are smooth
and obey (3-1) with ˛ D 0, then the pairing .u1; u2/ does also; and if one of u1; u2 is an embedding
and nowhere vanishing and the other is merely a smooth map that is allowed to vanish, then the pairing
.u1; u2/ will be an embedding that is nowhere vanishing.

Next, we (again inspired by the usual proofs of the Nash embedding theorem) define a smooth map
u W R�Rdnf.0; 0/g ! Cm to be free if, for any .t; x/ 2 R�Rdnf.0; 0/g, the vectors u.t; x/, @xju.t; x/
(for 1 � j � d ), @tu.t; x/, @xj @xku.t; x/ (for 1 � j � k � d ), and @xj @tu.t; x/ (for 1 � j � d ) are
all linearly independent over the complex numbers C in Cm. We observe that if m is sufficiently large
(depending only on d ), then there is at least one free map into Cm that obeys the discrete self-similarity
(3-1). Indeed, from the Whitney embedding theorem there is a smooth embedding v WM!Rm0 whenever
m0 is sufficiently large depending on d . If we then define the map w WM !R1Cm0C.

m0
2
/ by the formula

w WD
�
1; .vj /1�j�m0 ; .vj vk/1�j�k�m0

�
;

where v1; : : : ; vm0 W R�Rdnf.0; 0/g=T Z! R are the components of v, then one verifies from the chain
rule and the immersed nature of v that w is free over R, and hence free over C if one embeds R1Cm0C.

m0
2
/

into C1Cm0C.
m0
2
/. If one then defines the map u0 WHd ! C1Cm0C.

m0
2
/ by the formula

u0.t; x/ WD �
� 2
p�1w.�.t; x//;

we see from a further application of the chain rule that u0 is smooth, free, nowhere vanishing, and obeys
the discrete self-similarity relation (3-1). By multiplying u0 by a sufficiently small positive constant
(which does not affect the properties of u stated above), and using the compactness of M and the positive
definiteness of the .d C 2/� .d C 2/ matrix-valued function .GD1;D2/D1;D22DR

, we can also assume
that u0 is a short map in the sense that the .d C 2/� .d C 2/ matrix-valued function�

GD1;D2 � hD1u0;D2u0i
C
1Cm0C.

m0
2
/
�
D1;D22DR

is strictly positive definite on all of R�Rdnf.0; 0/g. Applying Proposition 5.1, we see (for m1 sufficiently
large depending on d ) we may find a smooth nowhere vanishing map u1 W R � Rdnf.0; 0/g ! Rm1

obeying the discrete self-similarity property (3-1) with ˛ D 0, with u1=ku1kRm a smooth embedding of
M into Sm1�1, such that

GD1;D2 � hD1u0;D2u0i
C
1Cm0C.

m0
2
/ D hD1u1;D2u1iCm1 (A-10)
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on R�Rdnf.0; 0/g for all D1;D2 2 DR. This identity also is obeyed when .D1;D2/ D .1; i@xj / for
some j D 1; : : : ; d , since all three terms in the identity vanish in this case. On the other hand, (A-10)
can fail when .D1;D2/D .1; i@t /, since G1;i@t is not assumed to vanish. In particular, the vector-valued
function

GP �GP Œu0; u0��GP Œu1; u1�

has all components vanishing except for the .1; i@t /-component, which is equal to G1;i@t . To address this
remaining component, we proceed by the following argument. Using a smooth partition of unity, we can
find a finite number a1; : : : ; ak W R�Rdnf.0; 0/g ! R of smooth functions, each of which is supported
in a ball of radius 1

1000
in the region

˚
.t; x/ 2Hd W

1
2
� � � 2

	
, such that

1D
X
n2Z

kX
lD1

a2l .T
�n.t; x// (A-11)

for all .t; x/ 2 Hd , where k depends only on d . Meanwhile, the function �
4
p�1
C2G1;i@t .t; x/ is T -

invariant and thus descends to a smooth function ofHd=T Z. This function can be written as the difference
of two squares f 2

C
� f 2� for some smooth f˙ WHd=T Z! R (e.g., by setting f� to be a large positive

constant and then solving for fC); thus

G1;i@t .t; x/D �
� 4
p�1
�2fC.�.t; x//

2
� ��

4
p�1
�2f�.�.t; x//

2:

Multiplying this with (A-11), we obtain the decomposition

G1;i@t .t; x/D
X
n2Z

kX
lD1

2�.
4
p�1
C2/nb2l;C.T

�n.t; x//� 2�.
4
p�1
C2/nb2l;�.T

�n.t; x//;

where

bl;˙.t; x/ WD al.t; x/�
� 2
p�1
�1f˙.�.t; x//:

Note that for fixed l , the functions b2
l;C
.T �n.t; x// have disjoint supports as n varies, and similarly for

b2
l;�
.T �n.t; x//.

Next, let " > 0 be a small parameter to be chosen later, and let u2;" WHd ! C2k be the map

u2;".t;x/ WD

 �X
n2Z

"2�
2n
p�1 bl;C.T

�n.t;x//ei.
t
"4n
/
2
�k
lD1

;�

�X
n2Z

"2�
2n
p�1 bl;�.T

�n.t;x//ei.
t
"4n
/
2
�k
lD1

!
:

One can check that u2;" is smooth and obeys the discrete self-similarity property (3-1). Direct computation
using (A-9) and the chain and product rules gives the identity

GP �GP Œu0; u0��GP Œu1; u1��GP Œu2;"; u2;"�D "
2HP ;

where HP D .HD1;D2/.D1;D2/2P is a smooth function from Hd to CP that is independent of " and obeys
the scaling property (5-6). The precise value of HP is not important for our purposes, but for sake of
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explicitness we can evaluate the components of this matrix to be given by the formulae

H1;1.t; x/D�
X
˙

X
n2Z

kX
lD1

2�
4
p�1

nb2l;˙.T
�n.t; x//;

H1;i@xj
.t; x/D 0;

H1;i@t .t; x/D 0;

H@xj ;@xj 0
.t; x/D�

X
˙

X
n2Z

kX
lD1

2�.
4
p�1
C2/n.@xj bl;˙@xj 0bl;˙/.T

�n.t; x//;

H@xj ;@t
.t; x/DH@t ;@xj

.t; x/D�
X
˙

X
n2Z

kX
lD1

2�.
4
p�1
C3/n.@xj bl;˙@tbl;˙/.T

�n.t; x//

for j; j 0 D 1; : : : ; d . It is important here that the pairs .@t ; @t /, .i@t ; i@t / do not appear in P , as these
would introduce terms in HP that are of order 1="4, which is unacceptably large for our purposes.

Proposition A.2 (and hence Proposition 5.2) may now be deduced from the following perturbative
claim:

Proposition A.3. Let the notation and hypotheses be as above. If " > 0 is sufficiently small, then there
exists a smooth map u0;" W R�Rdnf.0; 0/g ! C1Cm0C.

m0
2
/ obeying the discrete self-similarity property

(3-1) with ˛ D 0, such that
GP Œu0;"; u0;"�DGP Œu0; u0�C "

2HP :

Indeed, one can now take u to be the tuple u WD .u0;"; u1; u2;"/ for a sufficiently small ", giving the
claim (for m large enough). Note that as u1 was already a smooth nonvanishing embedding, u will be
also, regardless of how badly u0;" and u2;" vanish or fail to be an embedding.

It remains to prove Proposition A.3. In order to be able to work on the compact manifold M rather
than the noncompact space R�Rdnf.0; 0/g, it will be convenient to normalise u0 and the differential
operators in D and P to be T -invariant. More precisely, let us introduce the T -invariant vector fields

Xj WD �@xj ; Xt WD �
2@t

on R�Rdnf.0; 0/g (or the quotient space M ) for j D 1; : : : ; d , where we identify vector fields with
first-order differential operators in the usual fashion. We also introduce the pairs of rescaled differential
operators

P 0 WD
˚
.1; 1/

	
[
˚
.Xj ; Xk/ W 1� j �k�d

	
[
˚
.Xj ; Xt / W 1� j �d

	
[
˚
.1; iXj / W 1� j �d

	
[
˚
.1; iXt /

	
and then define

GP0 Œu; v� WD .hD1u;D2viCm/.D1;D2/2P0

for smooth u; v W R � Rdnf.0; 0/g ! Cm. Note that the operators in P 0 commute with the dilation
operator T ; in particular, if u is T -invariant, then so is GP0 Œu; u�.

Proposition A.3 is then a consequence of:
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Proposition A.4. Let m be a positive integer. Let u W R�Rdnf.0; 0/g ! Cm be a smooth map which is
T -invariant and free, and let HP0 W R�Rdnf.0; 0/g ! R be smooth and T -invariant. Then, if " > 0 is
small enough, there exists a smooth map u" W R�Rdnf.0; 0/g ! Cm that is smooth and T -invariant such
that

GP0 Œu"; u"�DGP0 Œu; u�C "
2HP0 : (A-12)

To see why Proposition A.4 implies Proposition A.3, we observe that if u0 W R�Rdnf.0; 0/g ! Cm is
smooth and obeys (3-1) with ˛ D 0, and we set u W R�Rdnf.0; 0/g ! Cm to be the map u WD �

2
p�1u0,

then u is T -invariant, and we have the linear relation

GP0 Œu; u�.t; x/D St;xGP Œu0; u0�.t; x/

for some invertible linear transformation St;x W RP ! RP0. The exact form of St;x is not important, but
for sake of explicitness we can compute St;x.GD1;D2/.D1;D2/2P WD .G

0
D1;D2

/.D1;D2/2P0 , where

G01;1 WD �
4
p�1G1;1;

G0Xj ;Xk WD �
4
p�1

�
�2G@xj ;@xk

C
2

p�1
�.@xj �/G1;@xk

C
2

p�1
�.@xk�/G@xj ;1

C
4

.p�1/2
.@xj �/.@xk�/G1;1

�
;

G0Xj ;Xt WD �
4
p�1

�
�3G@xj ;@t

C
2

p�1
�2.@xj �/G1;@tC

2

p�1
�2.@t�/G@xj ;1

C
4

.p�1/2
�.@xj �/.@t�/G1;1

�
;

G01;iXj WD �
4
p�1�G1;i@xj

;

G01;iXt WD �
4
p�1�2G1;i@t :

Also, from the product rule we see that u0 is free if and only if u is free. If one then applies Proposition A.4
with

HP0.t; x/ WD St;xHP.t; x/

(which one verifies to be T -invariant), then for " small enough, one can find a map u" WR�Rdnf.0; 0/g!

Cm that is smooth and T -invariant, such that

GP0 Œu"; u"�.t; x/D St;xGP Œu; u�.t; x/C "
2St;xHP.t; x/ (A-13)

for all .t; x/ 2 R�Rdnf.0; 0/g. If we then define u0;" W R�Rdnf.0; 0/g ! Cm to be the map u0;" WD
��

2
p�1u", then GP 0 Œu"; u"�.t; x/ D St;xGP Œu0;"; u0;"�.t; x/, so on applying S�1t;x to (A-13) we obtain

Proposition A.3 as claimed.
It remains to prove Proposition A.4. Henceforth the reference solution u will be held fixed, as well as

the range dimension m. If we write u" D uC v, then we can rewrite (A-12) as

Luv D "
2HP0 �GP 0 Œv; v�; (A-14)

where Lu is the linear operator defined on smooth functions u WM ! Cm by setting Luv WM ! RP0 to
be the function

Luv WDGP0 Œu; v�CGP0 Œv; u�:
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Our task is now to find a smooth solution v WM ! Cm to (A-14). In coordinates, we can expand
Luv D ..Luv/D1;D2/.D1;D2/2P0 as

.Luv/1;1 WD 2hv; uiCm ;

.Luv/Xj ;Xk WD hXj v;XkuiCm ChXju;XkviCm

DXj hv;XkuiCm CXkhv;XjuiCm � hv; .XjXkCXkXj /uiCm ;

.Luv/Xj ;Xt WD hXj v;XtuiCm ChXju;XtviCm

DXj hv;XtuiCm CXt hv;XjuiCm � hv; .XjXt CXtXj /uiCm ;

.Luv/1;iXj WD hv; iXjuiCm Chu; iXj viCm

D 2hv; iXjuiCm �Xj hv; iuiCm ;

.Luv/1;iXt WD hv; iXtuiCm Chu; iXtviCm

D 2hv; iXtuiCm �Xt hv; iuiCm :

Observe that the components of Luv are expressed in terms of the coefficients hv;DuiCm , where D
ranges over the collection

F WD
˚
1; i; Xt ; iXt

	
[
˚
Xj W 1� j � d

	
[fiXj W 1� k � dg[

˚
XjXkCXkXj W 1� j � k � d

	
of T -invariant differential operators (which may thus be viewed as differential operators on M ). As u is
free, we see at each point in M that the vectors Du;D 2F are linearly independent over R. By Cramer’s
rule, we may thus find smooth dual fields wD WM ! Cm (depending on u), which are pointwise real
linear combinations of the Du;D 2 F , such that

hwD1 ;D2uiCm D ıD1;D2 (A-15)

pointwise onM , where ıD1;D2 is the Kronecker delta (equal to 1whenD1DD2, and zero otherwise). This
provides a zeroth-order right-inverseZu toLu, defined on any smooth collectionF D .FD1;D2/.D1;D2/2P0
of functions FD1;D2 WM ! R by setting ZuF WM ! Cm to be the function

ZuF WD
1
2
F1;1w1�

X
1�j�k�d

FXj ;XkwXjXkCXkXj

�

dX
jD1

FXj ;XtwXjXtCXtXj �

dX
jD1

F1;iXjwiXj �F1;iXtwiXt :

One can easily check from (A-15) and the expansion of Lu in coordinates that Zu is indeed a right-inverse
for Lu; that is to say,

LuZuF D F

for all smooth F WM ! Cm.
One could now try to locate a solution to (A-14) using this left-inverse by solving the equation

v DZu"
2HP0 �ZuGP0 Œv; v�;



FINITE TIME BLOWUP FOR A SUPERCRITICAL DEFOCUSING NONLINEAR SCHRÖDINGER SYSTEM 435

which would imply (A-14). Here we face the familiar problem of loss of derivatives, since the Gram-type
operator GP0 is first-order whereas Zu is zeroth-order. It is possible to recover this loss of derivative
problem for " small enough using the technique of Nash–Moser iteration as in [Nash 1956]. However, we
instead follow the simpler approach of [Günther 1991], by obtaining a decomposition of the form

GP0 Œv; v�D LuQ0Œv; v�CQ1Œv; v�; (A-16)

where Q0;Q1 are “zeroth-order” operators. We will then be able to use a contraction mapping argument
to obtain a solution to the equation

v DZu"
2HP 0 �Q0Œv; v��ZuQ1Œv; v� (A-17)

for " small enough; applying Lu to both sides, we obtain a solution to (A-14) as desired.
It remains to obtain the decomposition (A-16) and solve (A-17). We will need an elliptic second-order

operator �� on M. The precise choice of �� is not important, but for the sake of concreteness we will
take � to be the Laplace–Beltrami operator on M with the Riemannian metric

ds2 WD

dX
jD1

�2dx2j C �
4dt2

(noting that the right-hand side is T -invariant and thus descends to a metric on M ), with the sign chosen
so that �� is positive semidefinite; in particular, one can define the resolvent operator .1��/�1 on
smooth functions on M. We can then expand

GP0 Œv; v�D�.1��/
�1F C .1��/�1Q2Œv; v�; (A-18)

where
F WDGP0 Œ�v; v�CGP0 Œv;�v�;

Q2Œv; v� WDGP0 Œv; v���GP0 Œv; v�CGP 0 Œ�v; v�CGP 0 Œv;�v�:

Observe from the Leibniz rule that Q2Œv; v� takes the schematic form

Q2Œv; v�D
X

0�a;b�2

O.ravrbv/;

where the gradient r is with respect to the Riemannian metric ds2 (and the implied coefficients in the
O. / notation are smooth on M ); the point is that the “carré du champ”-type expression

��GP0 Œv; v�CGP0 Œ�v; v�CGP0 Œv;�v�

does not have any terms involving third or higher derivatives after cancelling out the top-order terms.
Thus, Q2 is a “zeroth-order operator”; for instance, it is a bounded bilinear operator on the Hölder space
C 2;˛.M/ for any 0 < ˛ < 1, as can be seen by classical Schauder estimates.

The components of F can be expanded using the Leibniz rule as

F1;1 D 2h�v; viCm ;

FXj ;Xk DXj h�v;XkviCm CXkh�v;Xj viCm � h�v; .XjXkCXkXj /viCm ;
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FXj ;Xt DXj h�v;XtviCm CXt h�v;Xj viCm � h�v; .XjXt CXtXj /viCm ;

F1;iXj D�Xj h�v; iviCm C 2h�v; iXj viCm ;

F1;iXt D�Xt h�v; iviCm C 2h�v; iXtviCm :

Comparing this with (A-15) and the components of Lu, we can then write

F D LuQ3Œv; v�CQ4Œv; v�; (A-19)

where Q3Œv; v� WM ! Cm is the function

Q3Œv; v� WD h�v; viCmw1C

dX
kD1

h�v;XkviCmwXk Ch�v;XtviCmwXt Ch�v; iviCmwi

and Q4Œv; v� WM ! RP0 is given in components as

Q4Œv; v�1;1 WD 0;

Q4Œv; v�Xj ;Xk WD �h�v; .XjXkCXkXj /viCm ;

Q4Œv; v�Xj ;Xt WD �h�v; .XjXt CXtXj /viCm ;

Q4Œv; v�1;iXj WD 2h�v; iXj viCm ;

Q4Œv; v�1;iXt WD 2h�v; iXtviCm :

Observe that, as with Q2Œv; v�, the expressions Q3Œv; v� and Q4Œv; v� both take the schematic formP
0�a;b�2O.r

avrbv/, as they does not contain any terms involving third or higher derivatives.
Using the identity

.1��/�1Lu D Lu.1��/
�1
C .1��/�1ŒLu; 1���.1��/

�1

D Lu.1��/
�1
� .1��/�1ŒLu; ��.1��/

�1;

where ŒA; B� D AB �BA denotes the commutator of A;B , as well as (A-18), (A-19), we obtain an
expansion of the form (A-16) with

Q0Œv; v� WD �.1��/
�1Q3Œv; v�;

Q1Œv; v� WD .1��/
�1.Q2Œv; v��Q4Œv; v�/C .1��/

�1ŒLu; ��.1��/
�1Q3Œv; v�:

Observe that the commutator ŒLu; �� is a second-order differential operator onM with smooth coefficients.
From Schauder theory we then conclude that (after depolarisation) Q0;Q1 are bounded bilinear operators
on the Hölder space C 2;˛.M/ for any fixed 0 < ˛ < 1. As such, the contraction mapping theorem then
guarantees a solution v to (A-17) in the function space C 2;˛.M/ if " is sufficiently small (depending
on u and ˛). We are almost done, except that we have not established that v is smooth. However, from
further application of Schauder theory one can establish estimates of the form

kQi Œv; v�kCk;˛.M/ � Cu;˛kvkCk;˛.M/kvkC2;˛.M/CCk;u;˛kvk
2
Ck�1;˛.M/
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for any k � 2 and i D 1; 2, where the quantities Cu;˛; Ck;u;˛ depend only on the subscripted parameters.
Crucially, the leading constant Cu;˛ is independent of k. As such, a routine induction argument shows that
if " is sufficiently small (depending on u and ˛, but not on k) that all the iterates used in the contraction
mapping theorem to construct v, and hence v itself, are bounded in C k;˛.M/ for any given k � 2, and so
v is smooth as required. This (finally!) completes the proof of Proposition 5.2.

Acknowledgements

The author is supported by NSF grant DMS-1266164 and by a Simons Investigator Award. We thank
Nikolay Tzvetkov for some remarks, and the anonymous referee for helpful suggestions and corrections.

References

[Alazard and Carles 2009] T. Alazard and R. Carles, “Loss of regularity for supercritical nonlinear Schrödinger equations”,
Math. Ann. 343:2 (2009), 397–420. MR Zbl

[Bourgain 1999] J. Bourgain, Global solutions of nonlinear Schrödinger equations, American Mathematical Society Colloquium
Publications 46, American Mathematical Society, Providence, RI, 1999. MR Zbl

[Burq et al. 2005] N. Burq, P. Gérard, and N. Tzvetkov, “Multilinear eigenfunction estimates and global existence for the three
dimensional nonlinear Schrödinger equations”, Ann. Sci. École Norm. Sup. .4/ 38:2 (2005), 255–301. MR Zbl

[Burq et al. 2007] N. Burq, S. Ibrahim, and P. Gérard, “Instability results for nonlinear Schrödinger and wave equations”,
preprint, 2007.

[Carles 2007a] R. Carles, “Geometric optics and instability for semi-classical Schrödinger equations”, Arch. Ration. Mech. Anal.
183:3 (2007), 525–553. MR Zbl

[Carles 2007b] R. Carles, “On instability for the cubic nonlinear Schrödinger equation”, C. R. Math. Acad. Sci. Paris 344:8
(2007), 483–486. MR Zbl

[Cazenave 2003] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics 10, Courant Inst. Math.
Sci., New York, 2003. MR Zbl

[Christ et al. 2003] M. Christ, J. Colliander, and T. Tao, “Ill-posedness for nonlinear Schrödinger and wave equations”, preprint,
2003. arXiv

[Colliander et al. 2004] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, “Global existence and scattering for rough
solutions of a nonlinear Schrödinger equation on R3”, Comm. Pure Appl. Math. 57:8 (2004), 987–1014. MR Zbl

[Colliander et al. 2008] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, “Global well-posedness and scattering for
the energy-critical nonlinear Schrödinger equation in R3”, Ann. of Math. .2/ 167:3 (2008), 767–865. MR Zbl

[Ginibre and Velo 1985] J. Ginibre and G. Velo, “The global Cauchy problem for the nonlinear Schrödinger equation revisited”,
Ann. Inst. H. Poincaré Anal. Non Linéaire 2:4 (1985), 309–327. MR Zbl

[Glassey 1977] R. T. Glassey, “On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations”, J.
Math. Phys. 18:9 (1977), 1794–1797. MR Zbl

[Günther 1991] M. Günther, “Isometric embeddings of Riemannian manifolds”, pp. 1137–1143 in Proceedings of the Interna-
tional Congress of Mathematicians, II (Kyoto, 1990), edited by I. Satake, Math. Soc. Japan, Tokyo, 1991. MR Zbl

[Killip and Visan 2010] R. Killip and M. Visan, “Energy-supercritical NLS: critical PH s-bounds imply scattering”, Comm.
Partial Differential Equations 35:6 (2010), 945–987. MR Zbl

[Nash 1956] J. Nash, “The imbedding problem for Riemannian manifolds”, Ann. of Math. .2/ 63 (1956), 20–63. MR Zbl

[Ryckman and Visan 2007] E. Ryckman and M. Visan, “Global well-posedness and scattering for the defocusing energy-critical
nonlinear Schrödinger equation in R1C4”, Amer. J. Math. 129:1 (2007), 1–60. MR Zbl

[Seeley 1964] R. T. Seeley, “Extension of C1 functions defined in a half space”, Proc. Amer. Math. Soc. 15 (1964), 625–626.
MR Zbl

http://dx.doi.org/10.1007/s00208-008-0276-6
http://msp.org/idx/mr/2461259
http://msp.org/idx/zbl/1161.35047
http://dx.doi.org/10.1090/coll/046
http://msp.org/idx/mr/1691575
http://msp.org/idx/zbl/0933.35178
http://dx.doi.org/10.1016/j.ansens.2004.11.003
http://dx.doi.org/10.1016/j.ansens.2004.11.003
http://msp.org/idx/mr/2144988
http://msp.org/idx/zbl/1116.35109
http://dx.doi.org/10.1007/s00205-006-0017-5
http://msp.org/idx/mr/2278414
http://msp.org/idx/zbl/1134.35098
http://dx.doi.org/10.1016/j.crma.2007.03.006
http://msp.org/idx/mr/2324482
http://msp.org/idx/zbl/1350.35179
http://dx.doi.org/10.1090/cln/010
http://msp.org/idx/mr/2002047
http://msp.org/idx/zbl/1055.35003
http://msp.org/idx/arx/math/0311048
http://dx.doi.org/10.1002/cpa.20029
http://dx.doi.org/10.1002/cpa.20029
http://msp.org/idx/mr/2053757
http://msp.org/idx/zbl/1060.35131
http://dx.doi.org/10.4007/annals.2008.167.767
http://dx.doi.org/10.4007/annals.2008.167.767
http://msp.org/idx/mr/2415387
http://msp.org/idx/zbl/1178.35345
http://dx.doi.org/10.1016/S0294-1449(16)30399-7
http://msp.org/idx/mr/801582
http://msp.org/idx/zbl/0586.35042
http://dx.doi.org/10.1063/1.523491
http://msp.org/idx/mr/0460850
http://msp.org/idx/zbl/0372.35009
http://www.mathunion.org/ICM/ICM1990.2/Main/icm1990.2.1137.1144.ocr.pdf
http://msp.org/idx/mr/1159298
http://msp.org/idx/zbl/0745.53031
http://dx.doi.org/10.1080/03605301003717084
http://msp.org/idx/mr/2753625
http://msp.org/idx/zbl/1200.35289
http://dx.doi.org/10.2307/1969989
http://msp.org/idx/mr/0075639
http://msp.org/idx/zbl/0070.38603
http://dx.doi.org/10.1353/ajm.2007.0004
http://dx.doi.org/10.1353/ajm.2007.0004
http://msp.org/idx/mr/2288737
http://msp.org/idx/zbl/1160.35067
http://dx.doi.org/10.2307/2034761
http://msp.org/idx/mr/0165392
http://msp.org/idx/zbl/0127.28403


438 TERENCE TAO

[Tao 2006] T. Tao, Nonlinear dispersive equations: local and global analysis, CBMS Regional Conference Series in Mathematics
106, American Mathematical Society, Providence, RI, 2006. MR Zbl

[Tao 2009] T. Tao, “Global existence and uniqueness results for weak solutions of the focusing mass-critical nonlinear
Schrödinger equation”, Anal. PDE 2:1 (2009), 61–81. MR Zbl

[Tao 2016a] T. Tao, “Finite-time blowup for a supercritical defocusing nonlinear wave system”, Anal. PDE 9:8 (2016), 1999–
2030. MR Zbl

[Tao 2016b] T. Tao, “Finite time blowup for high dimensional nonlinear wave systems with bounded smooth nonlinearity”,
Comm. Partial Differential Equations 41:8 (2016), 1204–1229. MR Zbl

[Tao and Visan 2005] T. Tao and M. Visan, “Stability of energy-critical nonlinear Schrödinger equations in high dimensions”,
Electron. J. Differential Equations 2005 (2005), art. id. 118. MR Zbl

[Visan 2007] M. Visan, “The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions”, Duke Math. J.
138:2 (2007), 281–374. MR Zbl

[Whitney 1934] H. Whitney, “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc.
36:1 (1934), 63–89. MR Zbl

[Whitney 1943] H. Whitney, “Differentiable even functions”, Duke Math. J. 10 (1943), 159–160. MR Zbl

Received 1 Dec 2016. Revised 23 Jun 2017. Accepted 5 Sep 2017.

TERENCE TAO: tao@math.ucla.edu
Department of Mathematics, UCLA, Los Angeles, CA, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1090/cbms/106
http://msp.org/idx/mr/2233925
http://msp.org/idx/zbl/1106.35001
http://dx.doi.org/10.2140/apde.2009.2.61
http://dx.doi.org/10.2140/apde.2009.2.61
http://msp.org/idx/mr/2561171
http://msp.org/idx/zbl/1187.35244
http://dx.doi.org/10.2140/apde.2016.9.1999
http://msp.org/idx/mr/3599524
http://msp.org/idx/zbl/1365.35111
http://dx.doi.org/10.1080/03605302.2016.1186695
http://msp.org/idx/mr/3532392
http://msp.org/idx/zbl/1353.35254
https://ejde.math.txstate.edu/Volumes/2005/118/tao.pdf
http://msp.org/idx/mr/2174550
http://msp.org/idx/zbl/1245.35122
http://dx.doi.org/10.1215/S0012-7094-07-13825-0
http://msp.org/idx/mr/2318286
http://msp.org/idx/zbl/1131.35081
http://dx.doi.org/10.2307/1989708
http://msp.org/idx/mr/1501735
http://msp.org/idx/zbl/60.0217.01
http://dx.doi.org/10.1215/S0012-7094-43-01015-4
http://msp.org/idx/mr/0007783
http://msp.org/idx/zbl/0063.08235
mailto:tao@math.ucla.edu
http://msp.org


Analysis & PDE
msp.org/apde

EDITORS

EDITOR-IN-CHIEF

Patrick Gérard
patrick.gerard@math.u-psud.fr

Université Paris Sud XI
Orsay, France

BOARD OF EDITORS

Nicolas Burq Université Paris-Sud 11, France
nicolas.burq@math.u-psud.fr

Massimiliano Berti Scuola Intern. Sup. di Studi Avanzati, Italy
berti@sissa.it

Sun-Yung Alice Chang Princeton University, USA
chang@math.princeton.edu

Michael Christ University of California, Berkeley, USA
mchrist@math.berkeley.edu

Charles Fefferman Princeton University, USA
cf@math.princeton.edu

Ursula Hamenstaedt Universität Bonn, Germany
ursula@math.uni-bonn.de

Vaughan Jones U.C. Berkeley & Vanderbilt University
vaughan.f.jones@vanderbilt.edu

Vadim Kaloshin University of Maryland, USA
vadim.kaloshin@gmail.com

Herbert Koch Universität Bonn, Germany
koch@math.uni-bonn.de

Izabella Laba University of British Columbia, Canada
ilaba@math.ubc.ca

Gilles Lebeau Université de Nice Sophia Antipolis, France
lebeau@unice.fr

Richard B. Melrose Massachussets Inst. of Tech., USA
rbm@math.mit.edu

Frank Merle Université de Cergy-Pontoise, France
Frank.Merle@u-cergy.fr

William Minicozzi II Johns Hopkins University, USA
minicozz@math.jhu.edu

Clément Mouhot Cambridge University, UK
c.mouhot@dpmms.cam.ac.uk

Werner Müller Universität Bonn, Germany
mueller@math.uni-bonn.de

Gilles Pisier Texas A&M University, and Paris 6
pisier@math.tamu.edu

Tristan Rivière ETH, Switzerland
riviere@math.ethz.ch

Igor Rodnianski Princeton University, USA
irod@math.princeton.edu

Wilhelm Schlag University of Chicago, USA
schlag@math.uchicago.edu

Sylvia Serfaty New York University, USA
serfaty@cims.nyu.edu

Yum-Tong Siu Harvard University, USA
siu@math.harvard.edu

Terence Tao University of California, Los Angeles, USA
tao@math.ucla.edu

Michael E. Taylor Univ. of North Carolina, Chapel Hill, USA
met@math.unc.edu

Gunther Uhlmann University of Washington, USA
gunther@math.washington.edu

András Vasy Stanford University, USA
andras@math.stanford.edu

Dan Virgil Voiculescu University of California, Berkeley, USA
dvv@math.berkeley.edu

Steven Zelditch Northwestern University, USA
zelditch@math.northwestern.edu

Maciej Zworski University of California, Berkeley, USA
zworski@math.berkeley.edu

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2018 is US $275/year for the electronic version, and $480/year (+$55, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Uni-
versity of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and
additional mailing offices.

APDE peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2018 Mathematical Sciences Publishers

http://msp.org/apde
mailto:patrick.gerard@math.u-psud.fr
mailto:nicolas.burq@math.u-psud.fr
mailto:berti@sissa.it
mailto:chang@math.princeton.edu
mailto:mchrist@math.berkeley.edu
mailto:cf@math.princeton.edu
mailto:ursula@math.uni-bonn.de
mailto:vaughan.f.jones@vanderbilt.edu
mailto:vadim.kaloshin@gmail.com
mailto:koch@math.uni-bonn.de
mailto:ilaba@math.ubc.ca
mailto:lebeau@unice.fr
mailto:rbm@math.mit.edu
mailto:Frank.Merle@u-cergy.fr
mailto:minicozz@math.jhu.edu
mailto:c.mouhot@dpmms.cam.ac.uk
mailto:mueller@math.uni-bonn.de
mailto:pisier@math.tamu.edu
mailto:riviere@math.ethz.ch
mailto:irod@math.princeton.edu
mailto:schlag@math.uchicago.edu
mailto:serfaty@cims.nyu.edu
mailto:siu@math.harvard.edu
mailto:tao@math.ucla.edu
mailto:met@math.unc.edu
mailto:gunther@math.washington.edu
mailto:andras@math.stanford.edu
mailto:dvv@math.berkeley.edu
mailto:zelditch@math.northwestern.edu
mailto:zworski@math.berkeley.edu
mailto:production@msp.org
http://msp.org/apde
http://msp.org/
http://msp.org/


ANALYSIS & PDE
Volume 11 No. 2 2018

263Concentration et randomisation universelle de sous-espaces propres
RAFIK IMEKRAZ

351Asymptotic limits and stabilization for the 2D nonlinear Mindlin–Timoshenko system
FÁGNER DIAS ARARUNA, PABLO BRAZ E SILVA and PAMMELLA QUEIROZ-SOUZA

383Finite time blowup for a supercritical defocusing nonlinear Schrödinger system
TERENCE TAO

439A sublinear version of Schur’s lemma and elliptic PDE
STEPHEN QUINN and IGOR E. VERBITSKY

467Radial Fourier multipliers in R3 and R4

LAURA CLADEK

499Continuum limit and stochastic homogenization of discrete ferromagnetic thin films
ANDREA BRAIDES, MARCO CICALESE and MATTHIAS RUF

A
N

A
LY

SIS
&

PD
E

Vol.11,
N

o.2
2018


	1. Introduction
	2. Notation
	3. Reduction to constructing a discretely self-similar solution
	4. Eliminating the potential
	5. Eliminating the field
	6. Spherical symmetry and scale invariance
	7. Eliminating the energy conservation law and the potential energy identity
	8. Eliminating the potential
	9. Eliminating the radial stress
	10. Eliminating the angular stress
	11. Conclusion of the argument
	Appendix: Proof of Nash-type embedding theorem
	Acknowledgements
	References
	
	

