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A SUBLINEAR VERSION OF SCHUR’S LEMMA AND ELLIPTIC PDE

STEPHEN QUINN AND IGOR E. VERBITSKY

We study the weighted norm inequality of .1; q/-type,

kG �kLq.�;d�/ � Ck�k for all � 2MC.�/;

along with its weak-type analogue, for 0 < q < 1, where G is an integral operator associated with the
nonnegative kernel G on � ��. Here MC.�/ denotes the class of positive Radon measures in �;
�; � 2MC.�/, and k�k D �.�/.

For both weak-type and strong-type inequalities, we provide conditions which characterize the
measures � for which such an embedding holds. The strong-type .1; q/-inequality for 0 < q < 1 is
closely connected with existence of a positive function u such that u�G .uq�/, i.e., a supersolution to
the integral equation

u�G .uq�/D 0; u 2L
q
loc.�; �/:

This study is motivated by solving sublinear equations involving the fractional Laplacian,

.��/
˛
2 u�uq� D 0;

in domains �� Rn which have a positive Green function G for 0< ˛ < n.

1. Introduction

Let� be a locally compact, Hausdorff space, and MC.�/ denote the class of all positive Radon measures
(locally finite) in �. For a nonnegative, lower semicontinuous kernel G W���! Œ0;C1�, we denote by

G �.x/D

Z
�

G.x;y/ d�.y/; x 2�;

the potential of � 2MC.�/.
Let � 2MC.�/, and let 0< q < 1. We study the weighted norm inequality

kG �kLq.�;�/ � ~k�k for all � 2MC.�/; (1-1)

for some positive constant ~, where we use the notation k�k D �.�/ if � 2MC.�/ is a finite measure.
The main goal of this paper is to show that (1-1) is connected to existence of a measurable function u

such that
u�G .uq�/; 0< u<C1 d� -a.e. in �; (1-2)

under certain assumptions on G.
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The restrictions on the kernel G studied here include that it satisfies a weak maximum principle,
and is quasisymmetric (see the definitions in Section 2 below). These restrictions are satisfied by the
Green kernel associated with the Laplacian, the fractional Laplacian .��/

˛
2 , and kernels associated with

more general elliptic operators, see [Ancona 2002], as well as radially decreasing convolution kernels
G.x;y/D k.jx�yj/ on Rn [Adams and Hedberg 1996, Section 2.6].

For such kernels G, we show that (1-1) holds if and only if there exists u 2Lq.�; �/ which satisfies
(1-2). The additional condition that u 2Lq.�; �/ can be dropped using a weighted modification of (1-1)
discussed below.

This equivalence provides a sublinear version of Schur’s lemma for linear integral operators; see
[Gagliardo 1965]. Without the restriction that G satisfies the weak maximum principle, (1-2) with
u 2 Lq.�; �/ does not imply in general that (1-1) holds even for positive symmetric kernels G. A
counterexample is discussed in Section 7 below.

Under further mild assumptions on G (the nondegeneracy of the kernel; see Section 2), we establish
that there exists a solution u 2Lq.�; �/ to the integral equation

u�G .uq�/D 0; 0< u<C1 d� -a.e. in �: (1-3)

Such integral equations arise from the study of the sublinear elliptic boundary value problem�
��u�uq� D 0; u> 0 in �;
uD 0 on @�;

(1-4)

where 0< q < 1, �� Rn is an open domain, and � 2L1
loc.�/, or more generally � 2MC.�/.

In the following, we will consider the application of our general results to solving the equation involving
the fractional Laplacian �

.��/
˛
2 u�uq� D 0; u> 0 in �,

uD 0 in �c:
(1-5)

Note that .��/
˛
2 is a nonlocal operator for ˛ 6D 2k (k 2 N), and consequently a condition that uD 0 on

@� is ill-posed.
If .��/

˛
2 has a nonnegative Green’s kernel, then applying the Green’s operator G to both sides, we

obtain the equivalent problem (1-3).
It is well known that G satisfies the maximum principle in � in the classical case ˛ D 2 [Maria 1934],

and for 0 < ˛ � 2 [Frostman 1950; Fuglede 1960]. For the case 2 < ˛ < n, we can consider Green’s
kernels G for nice domains �� Rn, such as the balls or half-spaces, where the Green’s kernel is known
to be positive, quasimetrically modifiable, and consequently satisfies the weak maximum principle, which
is enough for our purposes; see [Frazier et al. 2014].

In particular, for the entire space �D Rn, the Green’s kernel is the Newtonian kernel if ˛ D 2, n� 3,
and the Riesz kernel of order ˛ if 0 < ˛ < n. Sublinear equations of the type (1-5) in this case were
treated earlier in [Cao and Verbitsky 2015; 2016; 2017].

For the weighted norm inequality (1-1), we show that it holds if and only if the associated integral
equation has a nontrivial supersolution, and actually a solution in a slightly more specific setup.
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Theorem 1.1. Let � 2MC.�/ and 0 < q < 1. Suppose G is a lower semicontinuous, quasisymmetric
kernel which satisfies the weak maximum principle. Then the following statements are equivalent:

(1) There exists a positive constant ~ D ~.�;G/ such that

kG �kLq.�;�/ � ~ k�k for all � 2MC.�/:

(2) There exists a supersolution u 2Lq.�; d�/ such that (1-2) holds.

(3) There exists a solution u 2Lq.�; d�/ to (1-3) provided additionally that G is nondegenerate with
respect to � .

To some degree, the class of measures � for which (1-1) holds, and consequently those measures for
which there is a positive supersolution u, can be understood in terms of energy norms of the type

kG�ksLs.�;�/ D

Z
�

.G�/s d� <C1 (1-6)

for certain values of s > 0. This condition with sD r=.1�q/ characterizes the existence of supersolutions
u 2Lr .�; �/ satisfying (1-2) in the case r > q, and is equivalent to the corresponding .p; r/-inequality

kG .f d�/kLr .�;�/ � C kf kLp.�;�/ for all f 2Lp.�; �/; (1-7)

if 0< r < p and p > 1; see [Verbitsky 2017].
In the case of Riesz potentials on �D Rn, weighted norm inequalities (1-7) for 0< r < p and p > 1

were studied earlier in [Cascante et al. 2006; Maz’ya 2011; Verbitsky 1999].
This study is concerned in a sense with the end-point case of (1-7) corresponding to p D 1 and

0 < r D q < 1, where it is more natural to use MC.�/ in place of L1.�; �/ as in (1-1). We have the
following result.

Theorem 1.2. Let � 2MC.�/ and 0 < q < 1. Suppose G is a quasisymmetric, nondegenerate kernel
which satisfies the weak maximum principle:

(1) If (1-1) holds, then G� 2L
q

1�q .�; �/.

(2) If G� 2L
q

1�q
;q.�; �/, then (1-1) holds.

Here Ls;q is the corresponding Lorentz space; see [Stein and Weiss 1971].
In Lemma 5.1 below, we will show that, without the assumption that G satisfies the weak maximum

principle, condition (1-6) with sDq=.1�q/ is necessary for the existence of a (super)solution u2Lq.�; �/

only if q 2 .0; q0�, where

q0 D
1
2
.
p

5� 1/D 0:61 : : :

denotes the conjugate golden ratio. In the case q 2 .q0; 1/, the optimal value of s in (1-6) is s D 1C q,
provided � is a finite measure. For general measures � , the existence of a positive solution u 2Lq.�; �/

does not guarantee that (1-6) holds if s D q=.1� q/ and q 2 .q0; 1/, or s 6D q=.1� q/ for all q 2 .0; 1/,
even for symmetric nondegenerate kernels G (see Section 7).
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Another characterization of (1-1) can be deduced from [Maurey 1974] (see also [Pisier 1986]): it is
equivalent to the existence of a nonnegative function F 2L1.�; �/ which satisfies

sup
y2�

Z
�

G.x;y/F.x/1�
1
q d�.x/ <C1:

This is a dual reformulation of (1-1), which does not require G to satisfy the weak maximum principle.
In the discrete case where � consists of a finite number of points, it represents the duality of the two
basic concave programming problems; see [Berge and Ghouila-Houri 1965, Section 5.7].

These characterizations have focused on the sublinear case 0 < q < 1. Note that in the case q � 1,
obviously (1-1) holds if and only if

sup
y2�

Z
�

G.x;y/q d�.x/ <C1:

We also give characterizations of the weak-type .1; q/-inequality

kG �kLq;1.�;d�/ � Ck�k for all � 2MC.�/; (1-8)

for any q > 0, in terms of energy estimates, as well as capacities (see Section 6 below). Some results
of this type were discussed in [Quinn and Verbitsky 2017] under more restrictive assumptions on the
kernel G, along with analogous characterizations of both strong-type and weak-type .1; q/-inequalities
involving fractional maximal operators and Carleson measure inequalities for the Poisson kernel.

In Section 3, we demonstrate how to remove the extra assumption imposed in Theorem 1.1 that a
(super)solution u is in Lq.�; �/ globally. We prove the following theorem where we only assume that
u 2L

q
loc.�/, or equivalently, 0< u<C1 d�-a.e., provided the kernel G satisfies a weak form of the

complete maximum principle, or alternatively if G is a quasimetric kernel (see definitions in Sections 2
and 3).

With a special function m satisfying 0 <m <C1 d�-a.e., known as a modifier, see, e.g., [Frazier
et al. 2014; Hansen and Netuka 2012], we can modify the kernel G, so that the modified kernel

K.x;y/D
G.x;y/

m.x/m.y/
; x;y 2�; (1-9)

satisfies the weak maximum principle. This makes it possible to apply Theorem 1.1 with K in place of G,
and consider u 2L

q
loc.�/. A typical modifier that works for general kernels G which satisfy the complete

maximum principle is given by

g.x/Dminf1;G.x;x0/g; x 2�; (1-10)

where x0 is a fixed pole in � [Hansen and Netuka 2012, Section 8].

Theorem 1.3. Let � 2MC.�/ and 0 < q < 1. Suppose G is a quasisymmetric nondegenerate kernel,
continuous in the extended sense on ���, which either (A) satisfies the complete maximum principle,
or (B) is quasimetrically modifiable with modifier given by (1-10). Then the following statements are
equivalent:
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(1) There exists a positive constant ~ such that the weighted norm inequality

kG �kLq.g d�/ � ~

Z
�

g d� for all � 2MC.�/; (1-11)

holds, where the modifier g.x/ is given by (1-10) for some x0 2�.

(2) There exists a positive (super)solution u to the equation uD G .uq d�/ such that u 2 L
q
loc.�/ (or

equivalently 0< u<C1 d� -a.e.)

Theorem 1.3 yields a characterization of the existence of weak solutions u 2L
q
loc.�/ to the fractional

Laplacian equation (1-5) in general domains � with positive Green’s function G for 0< ˛ � 2, or nice
domains (the entire space Rn, or balls or half-spaces in Rn) for 0 < ˛ < n as discussed above. In the
classical case ˛ D 2, such solutions are the so-called very weak solutions to the boundary value problem
(1-4) for bounded C 2-domains �; see, e.g., [Frazier and Verbitsky 2017; Marcus and Véron 2014].

2. Background on integral kernels

Let G WX�Y ! Œ0;C1� be a lower semicontinuous nonnegative kernel, where following the framework of
Fuglede [1960; 1965], we will assume that X;Y are locally compact Hausdorff spaces. Every kernel in this
paper will be assumed to be of this type, even if not stated explicitly. For most of the following, in particular
in the context of strong-type .1; q/-weighted norm inequalities, we will be working in the case X DY D�.

We denote by MC.X / the collection of all nonnegative, locally finite, Borel measures on X, and we
write S� for the support of � 2MC.X / and k�k WD �.X / when � is a finite measure.

For � 2MC.Y /, we define the potential of � by

G �.x/ WD

Z
Y

G.x;y/ d�.y/ for all x 2X;

and for � 2MC.X / we have the potential with the adjoint kernel

G��.y/ WD

Z
X

G.x;y/ d�.x/ for all y 2 Y:

Let X D Y D�, where � is a locally compact Hausdorff space with countable base. The operator G

with kernel G on ��� is said to satisfy the weak maximum principle (with constant h� 1) provided that

G �.x/�M for all x 2 S� ;

implies
G �.x/� h M for all x 2�;

for any constant M > 0 and � 2MC.�/.
When hD 1, we say that G satisfies the strong maximum principle.
We say that a kernel G satisfies the complete maximum principle with constant h � 1 if, for any

�; � 2MC.�/, and constant c � 0, the inequality

G�.x/� h ŒG �.x/C c�; (2-1)
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for all x 2 S�, implies that this inequality holds for all x 2�, provided G� <1 d�-a.e. This is a form
of the domination principle, see [Doob 1984, Section 1.V.10], which holds for Green’s kernel associated
with .��/

˛
2 in the case 0< ˛ � 2 with constant hD 1.

A kernel G W���! .0;C1� is quasisymmetric provided there exists a positive constant a such that

a�1G.y;x/�G.x;y/� a G.y;x/ for all x;y 2�:

If G is a quasisymmetric kernel, note that we can construct a symmetric kernel Gs given by

Gs.x;y/ WDG.x;y/CG.y;x/

which is both symmetric and comparable to G. Indeed,�
1C

1

a

�
G.y;x/�Gs.x;y/� .1C a/G.y;x/; x;y 2�:

We denote the integral operator with kernel Gs by Gs.

Remark 2.1. The inequality

kG �kLq.�;�/ � ~ k�k for all � 2MC.�/

is equivalent to
kGs�kLq.�;�/ � ~a k�k for all � 2MC.�/;

with only a change in the constant, so that ~a depends only on ~ and a.
Similarly, there is a supersolution u to the inequality

u�G .uq�/

if and only if there is a supersolution us to the symmetrized inequality

us �Gs.uq
s �/:

Indeed, the first equivalence of the remark follows directly from the equivalence of G and Gs. The
second equivalence can be shown by scaling u appropriately.

When 0< q< 1, G is a kernel on�, and � 2MC.�/, we are interested in positive solutions u2Lq.�/

to the integral equation
uDG .uq�/; u> 0 d� -a.e. in �; (2-2)

and positive supersolutions u 2Lq.�/ to the integral inequality

u�G .uq�/; u> 0 d� -a.e. in �: (2-3)

In Section 3, we will discuss how to find solutions u 2L
q
loc.�/ instead of u 2Lq.�/ in the case that the

kernels are quasimetrically modifiable, or satisfy the complete maximum principle. This corresponds
to the so-called “very weak” solutions to the sublinear boundary value problem (1-4); see [Frazier and
Verbitsky 2017; Marcus and Véron 2014].
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Lemma 2.2. Let G be a lower semicontinuous kernel on ���, which is nonzero along the diagonal.
Let � 2MC.�/. Suppose that (2-2) or (2-3) holds, where u<C1 d� -a.e. Then u 2L

q
loc.�; �/.

Proof. We consider the case where (2-3) holds. Let K �� be a compact set. Then K0DK\fu<C1g

is a compact set in �0 D � \ fu < C1g. For each x 2 K0, set cx WD minf1;G.x;x/g. By lower
semicontinuity, there exists an open neighborhood Ux ��0 such that G.x;y/ > 1

2
cx > 0 for y 2 Ux .

Since K0 is compact, there exists a finite refinement of the collection fUxg which covers K0, denoted by
fUxi
gN
iD1

. ThenZ
K

uq d� D

Z
K0

uq d� �

NX
iD1

Z
Uxi

uq d� �

NX
iD1

2

ci

Z
Uxi

G.xi ;y/uq.y/ d�.y/�

NX
iD1

2

ci
u.xi/ <C1;

and thus u 2L
q
loc.�; �/. �

For a measure � 2MC.�/, the energy of � is given by

E .�/ WD

Z
�

G� d�:

The value of the energy of an extremal measure will be shown to be connected with the capacity. Following
the convention of Fuglede [1960], we say that a kernel G W���! .�1;C1� is positive if G.x;y/� 0

for every pair .x;y/ 2���. A kernel G is strictly positive if G is positive and additionally G.x;x/ > 0

for every x 2 �. We say a kernel is pseudopositive if E .�/ � 0 for every measure � 2MC.�/ with
compact support. A kernel is strictly pseudopositive if E .�/ > 0 for every � ¤ 0, � 2MC.�/ with
compact support. A positive kernel is obviously pseudopositive, and a kernel is strictly positive if and
only if it is strictly pseudopositive [Fuglede 1960, p. 150].

The kernel G is said to be degenerate with respect to � 2MC.�/ provided there exists a set A��

with �.A/ > 0 and
G. � ;y/D 0 d� -a.e. for y 2A.

Otherwise, we will say that G is nondegenerate with respect to � . (The notion of nondegeneracy
appeared in special conditions in [Sinnamon 2002] in the context of .p; q/-inequalities for positive
operators T WLp!Lq in the case 1< q � p <C1.) We will sometimes rule out degenerate kernels
from study since the corresponding integral equations (1-3) cannot have positive solutions.

3. Modified kernels and L
q

loc.� / solutions

In this section, we wish to describe how to find local solutions u 2L
q
loc.�/ to the equation�

uDG .uq�/ d� -a.e. in �;
u 2L

q
loc.�/

(3-1)

from global solutions v 2Lq.!/DLq.�; !/ to the equation�
v DK .vq!/ d!-a.e. in �;
v 2Lq.!/:

(3-2)
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Here, K is the modified kernel (1-9) with modifier (1-10) denoted by

g.x/Dminf1;G.x;x0/g;

where x0 2� is a fixed pole, v WD u=g, and d! WD g.x/1Cq d� .
In this case, we introduce the relevant .1; q/-weighted norm inequalities for this section:

kG �kLq.g d�/ � ~

Z
�

g d� for all � 2MC.�/; (3-3)

kK�kLq.!/ � ~k�k for all � 2MC.�/: (3-4)

Note that (3-4) is simply (3-3) restated with K and ! in place of G and � .
In this section, we consider two classes of kernels — quasimetrically modifiable kernels and kernels

satisfying the complete maximum principle — and show that if these kernels are modified, the modified
kernels then satisfy the weak maximum principle and thus Theorem 1.1 applies when (1-1) holds with K

and ! in place of G and � . For domains � � Rn satisfying the boundary Harnack principle, such as
bounded Lipschitz domains and NTA domains, the Green’s kernels G for the Laplacian and fractional
Laplacian (in the case 0< ˛ � 2) are quasimetrically modifiable. Examples of quasimetric kernels and
quasimetrically modifiable kernels can be found in [Frazier et al. 2014].

We say that d.x;y/ W���! Œ0;C1/ satisfies the quasimetric triangle inequality with quasimetric
constant � > 0 provided

d.x;y/� �Œd.x; z/C d.z;y/� (3-5)

for any x;y; z 2 �, and d.x;y/ 6D 0 for some x;y 2 �. Without loss of generality we may assume
� � 1

2
. We say that G is a quasimetric kernel with quasimetric constant � provided G is symmetric and

d.x;y/ WD 1=G.x;y/ satisfies (3-5).
We say the kernel G is quasimetrically modifiable with constant � if there exists a measurable function

m W�! .0;C1/, called a modifier, such that

K.x;y/ WD
G.x;y/

m.x/m.y/
(3-6)

defines a quasimetric kernel with quasimetric constant �.

Remark 3.1. The two modifiers we will primarily work with are Gx0.x/ WD G.x;x0/ and g.x/ WD

minf1;Gx0.x/g for some fixed pole x0 2�. Further development and discussion of quasimetric kernels
can be found in [Frazier et al. 2014; Hansen 2005; Hansen and Netuka 2012; Kalton and Verbitsky 1999].

Remark 3.2. Since we wish to apply our existence theorems for supersolutions to the modified kernel K,
we will sometimes require additionally that either G.x;y/ is continuous off the diagonal, or continuous
on ��� in the extended sense, so that K.x;y/ will be lower semicontinuous.

We recall the so-called Ptolemy’s inequality for quasimetric spaces [Frazier et al. 2014]: if d is a
quasimetric with constant � on �, then

d.x; z/d.y; w/� 4�2
�
d.x;y/d.z; w/C d.y; z/d.x; w/

�
(3-7)
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for any w;x;y; z 2�. The following lemma is immediate from (3-7); see also [Hansen and Netuka 2012,
Proposition 8.1 and Corollary 8.2].

Lemma 3.3. If G is a quasimetric kernel on � with quasimetric constant �, then

K.x;y/D
G.x;y/

Gx0.x/Gx0.y/

is a quasimetric kernel on � n fx WG.x;x0/DC1g with quasimetric constant 4�2.

We will need an analogous statement for modifiers g in place of Gx0. (See [Hansen and Netuka 2012,
Corollary 8.4], where a similar result is proved for Green’s functions associated with a Brelot space.)

Lemma 3.4. Let x0 2 �, and let g.x/ D minf1;G.x;x0/g. If G is a quasimetric kernel on � with
quasimetric constant �, then

K.x;y/D
G.x;y/

g.x/g.y/

is a quasimetric kernel on � n fx WG.x;x0/DC1g with quasimetric constant 4�2.

Proof. By (3-7), we have

1

G.x;y/

1

G.z;x0/
� 4�2

�
1

G.x; z/

1

G.y;x0/
C

1

G.x;x0/

1

G.z;y/

�
;

from which it follows that
g.x/g.y/

G.x;y/
� 4�2

�
g.x/

G.x; z/
C

g.y/

G.z;y/

�
G.z;x0/:

Now we wish to consider several cases in order to replace G.z;x0/ with g.z/. If G.z;x0/� 1, then we
are done. We focus on the case where G.z;x0/ > 1, which implies g.z/D 1.

First, consider the subcase where G.y;x0/ > 1 and G.x;x0/ > 1. Then g.x/ D g.y/ D 1 and our
desired result is precisely the quasimetric triangle inequality for G.

We now consider the case where G.y;x0/ < 1 and G.y;x0/�G.x;x0/ (the case G.x;x0/ < 1 and
G.x;x0/�G.y;x0/ is similar). In this case, g.y/DG.y;x0/ and g.y/�g.x/. This reduces to showing

g.x/g.y/

G.x;y/
� 4�2

�
g.x/

G.x; z/
C

g.y/

G.y; z/

�
:

Since g.x/� 1, using the quasimetric triangle inequality for d.x;y/, we deduce

g.x/g.y/

G.x;y/
�

g.y/

G.x;y/
� �

�
g.y/

G.x; z/
C

g.y/

G.y; z/

�
� 4�2

�
g.x/

G.x; z/
C

g.y/

G.y; z/

�
;

which is the desired inequality. �

Note that, under the assumptions of Lemma 3.4, when G is finite off the diagonal, then K is a
quasimetric kernel on the punctured domain � n fx0g.

Lemma 3.5. Let K be a quasimetric kernel with quasimetric constant �. Then K satisfies the weak
maximum principle with constant hD 2�.
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Proof. For x;y 2�, let d.x;y/D 1=K.x;y/. Suppose � 2MC.�/ and K�.x/� 1 on S�, where we
may assume without loss of generality that S� is a compact set in �. Suppose x 2�nS�. Let x0 2S� be
a point which “minimizes” (up to an � > 0) the quasidistance between x and S�. For all y 2 S�, note that

d.y;x0/� �Œd.y;x/C d.x0;x/�� .2�C �/ d.x;y/:

This implies that K.x;y/� .2�C �/K.x0;y/, and consequently

K�.x/� .2�C �/K�.x0/� 2�C �:

Letting �! 0, we deduce that K satisfies the weak maximum principle with constant hD 2�. �

Lemma 3.6. Let G be a positive kernel on � and let K be the modified kernel

K.x;y/D
G.x;y/

g.x/g.y/
:

If G satisfies the complete maximum principle (2-1) with constant h � 1, then K satisfies the weak
maximum principle with the same constant.

Proof. Let � 2MC.�/. First, we claim that d� WD d�=g 2MC.�/. Let F �� be a compact set. By
lower semicontinuity of g, it follows that 1� g.x/� c > 0 on F, and so �.F /� .1=c/�.F /. This shows
that � is locally finite, and S� D S� .

Now suppose K� � 1 on S�. We wish to show that K� � h on �. Notice that G � � g.x/ on S� ,
where d� D d�=g. Consequently, G � � 1 and G � �G ıx0

on S� . By the complete maximum principle
with constant h � 1, it follows that G � � h on �, and at the same time G � � h G ıx0

on �. Hence,
G � � h g.x/ on �. Converting our expression back to terms of K and � proves the claim. �

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let d! D g1Cq d� . It is easy to see by the definitions of G, K, u, v, and ! that
(3-3) and (3-4) are equivalent. If (3-3) holds, then, by Theorem 1.1, there exists a solution v 2Lq.!/ to
(3-2). Then by Lemma 2.2, we have u WD gv 2L

q
loc.�/, and u is a solution to (3-1).

Conversely, suppose u 2L
q
loc.�/ is a supersolution to (3-1). Note that v 2Lq.!/ if and only ifZ

�

u.x/qg.x/ d�.x/ <C1 (3-8)

holds. Since u 2L
q
loc.�/, we have u.x/ <C1 d� -a.e. Further,Z

�

g.x/u.x/q d�.x/�

Z
�

G.x;x0/u.x/q d�.x/� u.x0/;

which establishes that v 2 Lq.!/ provided u.x0/ < C1. Since (A) or (B) holds, by Lemma 3.5 and
Lemma 3.6 it follows that K satisfies the weak maximum principle. Therefore, by Theorem 1.1, inequality
(3-4) holds and so (3-3) holds as well. �

Remark 3.7. It follows from the proof of Theorem 1.3 that statement (1) holds for the weight g.x/D

minfG.x;x0/; 1g with any x0 2� provided u.x0/ <C1, where u is the supersolution in statement (2).
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Consequently, if statement (1) holds for at least one x0 2�, then it holds for every x0 2�, except possibly
a set of � -measure zero. In the case of Green’s kernel associated with .��/

˛
2 in the case 0< ˛ � 2, it is

easy to see that we can use any x0 2�, since otherwise u�C1 in �.

4. Summary of potential theory

A major tool in the proofs of both the strong-type and weak-type results will be the notions of capacity of
a set and the associated equilibrium measure. We will start by describing potentials of kernels on X �Y

used in the context of weak-type inequalities; then we will narrow our focus to kernels on ��� in the
case X D Y D� having in mind applications to strong-type counterparts.

For a kernel G WX �Y ! Œ0;C1�, we will be using several related notions of capacity. Let K �X

be a compact set. The initial two capacities we consider,

cap0.K/ WD supf�.K/ W � 2MC.K/; G��.y/� 1 for all y 2 Y g; (4-1)

cont.K/ WD inff�.Y / W � 2MC.Y /; G�.x/� 1 for all x 2Kg; (4-2)

are discussed by Fuglede [1965] and Brelot [1960].
In fact, Fuglede [1965] showed that these two notions of capacity (content) coincide with the use

of von Neumann’s minimax theorem. The study of capacities provides characterizations of weak-type
inequalities like (1-8), as we will see in Section 6.

In the case G W���! Œ0;C1�, we consider the Wiener capacity

cap1.K/ WD supf�.K/ W � 2MC.K/; G��.y/� 1 for all y 2 S�g

for compact sets K ��.
The extremal measure � which attains the capacity will be referred to as the equilibrium measure; it

exists under certain assumptions on G (see Theorem 4.3 below).
Unless otherwise noted, we will work with this capacity. Note that cap0.K/ � cap1.K/, and in the

case where G satisfies the weak maximum principle we have cap1.K/� h cap0.K/. Capacity can also
be computed via an extremal energy problem:

cap1.K/D .wŒK�/
�1

where
wŒK� WD inffE .�/ W � 2MC.K/; �.K/D 1g:

We say that a property holds nearly everywhere (or n.e.) on K when the exceptional set Z �K has
capacity cap1.Z/D 0. The following lemmas will help us to work with sets of zero capacity.

Lemma 4.1. If � 2MC.K/, � 6� 0, and cap1.K/D 0, then G��DC1 d�-a.e. in K.

Proof. Set
E D fx 2K WG��.x/ <C1g:

Notice that ED
S1

nD1 Fn, where FnDfx 2K WG��.x/� ng is a closed set by the lower semicontinuity
of G, and consequently is a compact subset of K. In particular, E is a Borel set.
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Suppose that cap1.K/D 0. Then cap1.Fn/D 0, and hence �.Fn/D 0, for every nD 1; 2; : : : , in view
of the definition of cap1.Fn/. It follows that

�.E/�

1X
nD1

�.Fn/D 0:

This proves that G��DC1 d�-a.e. on K. �

Lemma 4.2. Let q > 0. Suppose � 2MC.K/, and G�.uq�/ � u d�-a.e., where
R

K uq d� <C1 for
every compact set K � �. Then d! WD uq d� is absolutely continuous with respect to capacity; i.e.,
cap1.K/D 0 yields !.K/D 0. If in addition u> 0 d� -a.e. on K, where cap1.K/D 0, then �.K/D 0.

Proof. Suppose K is a compact set subset of �. Since

G�! � u d� -a.e.;

we deduce Z
K

.G�!/q d� �

Z
K

uq d� D !.K/ <1:

Hence �.fx 2K WG�! DC1g/D 0. Since ! is absolutely continuous with respect to � , it follows that
!.fx 2K W G�! DC1g/D 0. If cap1.K/D 0, then by the previous lemma, !.K/D 0. This yields
�.K/D 0, unless uD 0 d� -a.e. on K. �

The following result of [Fuglede 1960] will be important in deriving the inequality (1-1) from a known
positive supersolution for (2-3).

Theorem 4.3. Let G denote a symmetric, pseudopositive kernel, and K a compact set with cap1 K<C1.
The two maxima problems

�.K/D maximum .where � 2MC.K/; G�� 1 on S�/;

2�.K/� E .�/D maximum .where � 2MC.K//;

have precisely the same solutions, and the value of each of the two maxima is the Wiener capacity
cap1 K. The class of all solutions is compact in the vague topology on MC and consists of all measures
� 2MC.K/ for which

E .�/D �.�/D cap1 K:

The potential of any solution has the following properties:

(1) G�.x/� 1 nearly everywhere in K.

(2) G�.x/� 1 on S�.

(3) G�.x/D 1 d�-a.e. in �.

Note that the extremal measure � in Theorem 4.3 is the equilibrium measure for the set K. We observe
that the previous theorem requires the capacity of the compact set K to be finite. To deal with this
requirement, we will make sure that the kernel is strictly pseudopositive.
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Remark 4.4. Let G be a kernel on �. Then cap1 K <C1 for every compact K �� if and only if G is
strictly pseudopositive.

Indeed, see [Fuglede 1960, p. 162], since K is compact, the minimization problem

w.K/D inf E .�/;

taken over all unit measures � 2 MC.K/, attains its minimum. Therefore, w.K/ > 0 by the strict
pseudopositivity of the kernel, and thus cap1.K/D 1=w.K/ <C1.

Conversely, if cap1 K <C1 for every compact K ��, then for each x0 2�, we see that the point
mass ıx0

is the extremal measure for w.K/, with G.x0;x0/D w.fx0g/D 1=cap1 K > 0. This shows
that the kernel is strictly positive, and therefore is strictly pseudopositive.

5. Proof of strong-type results

The proof of Theorem 1.1 is broken in parts contained within the following subsections. As shown in
Section 3, we can find solutions u 2L

q
loc.�/ by passing to a modified kernel and determining solutions

v 2Lq.!/. Going from the inequality (1-1) to supersolution (2-3) follows from a lemma due to Gagliardo
[1965], see also [Szeptycki 1984], and does not require G to be quasisymmetric or to satisfy the weak
maximum principle. However, the converse statement does not hold without the weak maximum principle.
Indeed, we provide an example of such a kernel in Section 7.

Proof of Theorem 1.1. That .1/D) .2/ follows from Lemma 5.7 and Remark 5.5. That .2/D) .3/ follows
from Lemma 5.8. The implication .3/D) .2/ is trivial, and .2/D) .1/ follows from Lemma 5.11. �

Energy estimates. Important to our study of the strong-type inequality (1-1) are energy conditions of the
type Z

�

.G�/s d� <1 (5-1)

for some s > 0. Note that when s D 1, we are computing the energy E .�/ introduced above. We first
start with providing a proof of Theorem 1.2.

Proof of Theorem 1.2. (1) First, suppose that the strong-type inequality (1-1) holds, where G is a
quasisymmetric kernel with quasisymmetry constant a. (Notice that the weak maximum principle is
not used in the proof of this statement.) By Maurey’s theorem [1974], (1-1) yields the existence of
a nonnegative function F 2 L1.�/, F > 0 d�-a.e., so that kG �.F1� 1

q d�/kL1.d�/ � 1. Hence, by
quasisymmetry of G it follows that kG .F1� 1

q d�/kL1.d�/�a, and by Hölder’s inequality with exponents
1=q and 1=.1� q/, we deduce

G�.x/D

Z
�

F.y/�1G.x;y/F.y/ d�.y/

� ŒG .F1� 1
q d�/.x/�q ŒG .F d�/.x/�1�q

� aq ŒG .F d�/.x/�1�q d� -a.e.
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Using the preceding inequality, Hölder’s inequality, and Fubini’s theorem, we estimateZ
�

.G�/
q

1�q d� � a
q2

1�q

Z
�

ŒG .F d�/�qF�1F d�

� a
q2

1�q

�Z
�

G .F d�/F1� 1
q d�

�q

kFk
1�q

L1.�/

D a
q2

1�q

�Z
�

G �.F1� 1
q d�/F d�

�q

kFk
1�q

L1.�/
� a

q2

1�q kFkL1.d�/ <1:

Thus we have established G� 2L
q

1�q .�/ provided (1-1) holds for q 2 .0; 1/.

(2) Now, suppose that G� 2L
q

1�q
;q.�/. We note that � is absolutely continuous with respect to capacity.

Indeed, suppose this were not the case; then by Lemma 4.1, G� DC1 on a set of positive � measure.
This contradicts kG�kLq=.1�q/;q.�/ <C1. By nondegeneracy, we know G� 6� 0 on a set of positive �
measure, and hence division by G� is well defined. By duality we find

kG �k
q

Lq.�/
D

�G �

G�

�q
.G�/q


L1.�/

�

�G �

G�

�q
L1=q;1.�/

k.G�/qkL1=.1�q/;1.�/

D

G �

G�

q

L1;1.�/
kG�k

q

Lq=.1�q/;q.�/
� Ck�kq;

where the last inequality holds by Lemma 5.10. Thus we have established the strong-type inequality (1-1). �
As the above proof shows, the energy condition is closely related to the existence of the strong-type

inequality. The following lemma shows that knowing only that a supersolution exists allows us to obtain
similar energy estimates. These estimates will allow us later to construct solutions to our integral equation
from supersolutions.

In the next lemma, we deduce (5-1) for various values of s without assuming that (1-1) holds, and
without using the weak maximum principle, for general quasisymmetric kernels G.

Let q0 D
1
2
.
p

5� 1/D 0:61 : : : denote the conjugate golden ratio.

Lemma 5.1. Suppose G is a quasisymmetric kernel on � �� with quasisymmetry constant a. Let
� 2MC.�/. Suppose there is a positive supersolution u 2Lq.�; �/ to (2-3).

(a) Let 0< q � q0. Then (5-1) holds with s D q=.1� q/, andZ
�

.G�/
q

1�q d� � c

Z
�

uq d�; (5-2)

where c D a
q2

1�q .

(b) If q0 < q < 1, and � is a finite measure, then (5-1) holds for 0< s � 1C q, andZ
�

.G�/s d� � c

�Z
�

uq d�

� s.1�q/
q

Œ�.�/�1�
s.1�q/

q ; (5-3)

where c D a
s

1Cq .

For symmetric kernels G, both (5-2) and (5-3) hold with c D 1.
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Remark 5.2. For q0 < q < 1, statement (a) generally fails. More precisely, there exists a strictly positive
symmetric kernel G and measure � such that there is a positive solution u 2 Lq.�; �/ to (2-2), butR
�.G�/

q
1�q d� DC1; see Section 7.

Remark 5.3. The exponents sD q=.1�q/ and sD 1Cq in statements (a) and (b) respectively are sharp;
i.e., there exist symmetric kernels G for which (5-1) fails if s 6D q=.1�q/ in the case of general measures � ,
and if s >minfq=.1� q/; 1C qg in the case of finite measures � ; see Section 7 and [Verbitsky 2017].

Proof. Suppose u is a positive supersolution satisfying (2-3). Suppose

q � s �min
�

q

1� q
; 1C q

�
:

Let r D s=q. By Hölder’s inequality with exponents r and r 0 D r=.r � 1/,

G�.x/D

Z
�

u
q
r u�

q
r G.x;y/ d�.y/� ŒG .uq d�.x/�

1
r ŒG .u�

q
r�1 d�/.x/�

1
r 0

� Œu.x/�
1
r ŒG .u�

q
r�1 d�/.x/�

1
r 0:

Suppose r 0 � s. Using the preceding inequality, Hölder’s inequality with exponents r 0=s D 1=.s� q/ and
.r 0=s/0 D 1=.1C q� s/, and Fubini’s theorem, we estimateZ

�

.G�/s d� �

Z
�

uq ŒG .u�
q

r�1 d�/�s�q d�

�

�Z
�

G .u�
q

r�1 d�/uq d�

�s�q�Z
�

uq d�

�1Cq�s

D

�Z
�

G �.uq d�/u�
q

r�1 d�

�s�q�Z
�

uq d�

�1Cq�s

� as�q

�Z
�

u1� q
r�1 d�

�s�q�Z
�

uq d�

�1Cq�s

:

Here

1�
q

r � 1
D

s� .qC q2/

s� q
:

Setting s D q=.1� q/ where qC q2 � 1, so that r D 1=.1� q/, r 0 D 1=q � s and 1� q=.r � 1/D q, we
obtain Z

�

.G�/
q

1�q d� � a
q2

1�q

Z
�

uq d�

for all 0< q � q0.
If � is a finite measure, q0< q<1, sD1Cq, and r D1=qC1, using the preceding estimates we deduceZ

�

.G�/1Cq d� � a

Z
�

u1�q2

d� � a

�Z
�

uq d�

� 1�q2

q

Œ�.�/�
qCq2�1

q :

Hence, for 0< s � 1C q, by Jensen’s inequality,Z
�

.G�/s d� �

�Z
�

.G�/1Cq d�

� s
1Cq

Œ�.�/�1�
s

1Cq � a
s

1Cq

�Z
�

uq d�

� s.1�q/
q

Œ�.�/�1�
s.1�q/

q : �
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Remark 5.4. Inequality (5-1) with sDq=.1�q/ is known for quasimetric kernels provided a supersolution
u satisfying (2-3) exists.

Construction of supersolutions. In the following, we construct a supersolution � 2 L1.�; �/ to the
problem

� � ŒG .� d�/�q > 0 d� -a.e. in �:

Remark 5.5. If � solves the above inequality, then uD �
1
q solves (2-3).

We then are able to use the energy estimates shown above to construct positive solutions to the integral
equation (2-2) when the kernel G is nondegenerate.

The existence of supersolutions will follow from a lemma due to [Gagliardo 1965]; see also [Szeptycki
1984]. Let B be a Banach space. A convex cone P � B is strictly convex at the origin if the convex
combination of two elements of P equals zero only if both of those elements are zero; i.e., ˛�1Cˇ�2D 0

implies �1 D �2 D 0, whenever ˛; ˇ > 0 and ˛Cˇ D 1.

Lemma 5.6 [Gagliardo 1965]. Let B be a Banach space and let P �B be a convex cone which is strictly
convex at the origin. Let S W P ! P be a continuous mapping. Assume the following conditions hold:

(1) If .�n/� P, �nC1��n 2 P, and if k�nkB �M for all nD 1; 2; : : : , then there exists � 2 P such
that k�n��kB! 0.

(2) For �; 2 P such that � � 2 P, we have S� �S 2 P.

(3) If k�kB � 1 and if � 2 P, then kSukB � 1.

Then for every � > 0 there exists � 2 P such that .1C�/� �S� 2 P and 0< k�kB � 1. Moreover, for
every  2 P such that 0< k kB � �=.1C�/, we can pick � so that � D  C .1=.1C�//S�.

We will apply this lemma to B DL1.�/ and P WD f� 2L1.�/ W � � 0 d� -a.e.g. In our case, it is easy
to see that Lemma 5.6 gives not only that k�kB > 0, but further that � > 0 d� -a.e.

Lemma 5.7. Let .�; �/ be a sigma-finite measure space. Suppose the strong-type inequality (1-1) holds.
Then, for every � > 0, there is a positive supersolution � 2L1.�/ such that

� � ŒG .� d�/�q

with k�kL1.�/ � .1C�/
1

1�q ~
q

1�q .

Proof. The supersolution �0 can be constructed using Lemma 5.6. Indeed, let S W L1.�/! L1.�/ be
given by

S� WD
1

~q
ŒG .� d�/�q

for all � 2 L1.�/. Inequality (1-1) gives that S is a continuous operator. Moreover, by (1-1) we can
establish condition (3) of Lemma 5.6. Suppose that k�kL1.�/ � 1; then

kS.�/kL1.�/ D
1

~q

Z
�

ŒG .� d�/�q d� �
1

~q
~q

�Z
�

� d�

�q

� 1:
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Therefore, by Lemma 5.6, there exists � 2L1.�/ such that

.1C�/� �
1

~q
ŒG .� d�/�q;

k�kL1.�/ � 1, and � > 0 d� -a.e. We can renormalize with �0 WD a�, with the choice

a WD

�
1

.1C�/~q

� 1
1�q

;

and see that �0 satisfies
�0 � ŒG .�0 d�/�q;

with
k�0kL1.�/ � .1C�/

1
1�q ~

q
1�q ;

and �0 > 0 d� -a.e. �

Lemma 5.8. If there exists a positive supersolution u0 2 Lq.�; �/ satisfying (2-3), then there exists a
positive solution v 2Lq.�; d�/ such that v DG .vq d�/ d�-a.e., unless G is degenerate. In the latter
case of the degenerate kernel, the equation vDG .vq d�/ does not have a positive solution v 2Lq.�; �/.

Proof. Let u0 2 Lq.�; �/ be the positive supersolution to (2-3). We can define by induction the
nonincreasing sequence of supersolutions fung

1
nD0

given by

unC1 WDG Œuq
n d��; nD 0; 1; 2; : : : ;

where un # v, and v 2Lq.�; d�/ is a nonnegative solution by the dominated convergence theorem.
It remains to check that the solution v is positive d�-a.e. provided the kernel is nondegenerate. This

can be done by finding a lower bound on the supersolutions un by using Lemma 5.1 with un in place of
u and �K in place of � for an arbitrary compact set K ��. Notice that by induction each un > 0 d� -a.e.
since G is nondegenerate. Consequently,Z

K

.G�K /
s d� � CK

�Z
K

uq
n d�

�r

;

where sDminfq=.1�q/; 1Cqg, r > 0, and CK does not depend on n. Letting n!C1 in the preceding
inequality, we deduce Z

K

.G�K /
s d� � CK

�Z
K

vq d�

�r

:

Thus, if v D 0 on K then G�K D 0 d�-a.e. on K, and hence G. � ;y/ D 0 d�-a.e. for y 2K. Hence,
�.K/D 0; that is, v > 0 d� -a.e.

If the kernel is degenerate, then clearly a positive solution does not exist. Indeed, if G were degenerate,
then there would exist a set K such that �.K/ > 0 and G.x; � /D 0 d� -a.e. for x 2K. This implies that,
for every solution u, we have u.x/D

R
�G.x;y/uq d�.y/D 0 for x 2K d�-a.e., which shows that a

positive solution u does not exist. �

Corollary 5.9. If inequality (1-1) holds, and there exists a solution u 2Lq.�; �/ to (2-2), it follows that

kukLq.�;�/ � ~
1

1�q :
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Proof. By applying (1-1) to � WD uq� , we get

�.�/D

Z
�

.G �/q d� � ~q�.�/q: �

Derivation of inequality. In establishing a converse result, we appeal to potential theory, and in particular
some results due to [Fuglede 1960]. The necessary definitions and results are summarized in Section 4.

We will need the following weak-type inequality.

Lemma 5.10. Let G be a symmetric, nonnegative kernel satisfying a weak maximum principle. Suppose
! 2MC.�/ is absolutely continuous with respect to capacity. ThenG �

G!


L1;1.�;!/

� hk�k (5-4)

for any � 2MC.�/.

Proof. Let t > 0. Define

Et WD

�
x 2� W

G �

G!
.x/ > t

�
:

We claim that compact subsets K�Et have finite capacity. This requires that G.x;x/ > 0 on Et . Letting
A WD fx 2 � W G.x;x/ D 0g, we claim A\Et D ∅. Indeed, by the weak maximum principle, since
G ıx.x/D 0 for any x 2A, we have G ıx.y/D 0 for every y 2�. Thus, G.x;y/D 0 on A��. Further,
for any measure � 2MC.�/, we have G �.x/D 0 for x 2 A. Adapting the convention 0

0
D 0, we see

then that Et \AD∅ as claimed.
Let K �� be a compact set. We can find an equilibrium measure � 2MC.K/ such that G� � 1

n.e. on K and G�� 1 on S�. Thus, if N WD fx 2K WG�.x/ < 1g, then we have !.N /D 0, since ! is
absolutely continuous with respect to capacity. By the weak maximum principle, G�� 1 on S� yields
G�� h on �.

We deduce the estimate

!.K/�

Z
K

G� d! D

Z
K

G!K d��

Z
K

G �

t
d�D

1

t

Z
�

G� d� �
1

t

Z
�

h d� D
h

t
�.�/:

Therefore we have !.K/� h�.�/=t for any compact set K �Et . Taking the supremum over all such K,
we find

!.Et /�
h

t
�.�/

for all t > 0. This establishes (5-4). �
Lemma 5.11. Let G be a quasisymmetric kernel which satisfies the weak maximum principle. Suppose
there is a positive supersolution u to (2-2) such that u 2Lq.�; �/. Then (1-1) holds.

Proof. Without loss of generality we may assume that G is symmetric (see Remark 2.1). Let u2Lq.�; �/

be a positive supersolution; i.e., G .uq�/�u. Let the measure ! be given by d! WDuq d� . By Lemma 4.2,
we know that ! is absolutely continuous with respect to capacity. Suppose � 2MC.�/. If �.�/DC1,
there is nothing to prove. In the case that �.�/ <C1, we can normalize the measure and work with the
case �.�/D 1.
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Since u is a positive supersolution, we have .G!/q d� � d!. We estimateZ
�

.G �/q d� D

Z
�

�
G �

u

�q

uq d� �

Z
�

�
G �

G!

�q

d!

D q

Z ˇ

0

!

��
G �

G!
> t

��
tq�1 dt C q

Z 1
ˇ

!

��
G �

G!
> t

��
tq�1 dt D I C II

for any ˇ > 0.
For integral I, we see that I � ˇq!.�/D ˇq

R
� uq d� .

By Lemma 5.10, we have the weak-type bound

!

��
G �

G!
> t

��
�

h�.�/

t
D

h

t
:

With this estimate, we find II � q=.1� q/hˇq�1. Thus, with the choice of ˇ D h=.!.�//, we deduceZ
�

.G �/q d� �
hq

1� q

�Z
�

uq d�

�1�q

:

Therefore, in the general case with � 2MC.�/, we obtain the desired inequalityZ
�

.G �/q d� �
hq

1� q

�Z
�

uq d�

�1�q

�.�/q:

It is important to note that in the above inequality, we have the constant on the right-hand side in terms of
the norm kukLq.�;�/. This implies that (1-1) holds with

~ �
h

.1� q/
1
q

kuk
1�q

Lq.�;�/
;

where ~ is the least constant in (1-1). �

6. Weak-type results

In addition to characterizing the strong-type inequality (1-1), we study in this section the analogous
weak-type .1; q/-inequality

kG �kLq;1.X ;�/ � C k�k for all � 2MC.Y / (6-1)

in a more general setting where G is a kernel on X�Y and � 2MC.X /. We give various characterizations
of (6-1) using capacities, as well as noncapacitary terms, for all 0< q <1.

A complete characterization of (6-1) in terms of the capacity cap0. � / (see Section 4 above) is given in
the following proposition. Note that this result does not require G to satisfy the weak maximum principle
on �, does not restrict to the case X D Y , and does not place any restriction on the range of q > 0.

Proposition 6.1. Let G be a kernel on X �Y . Suppose 0< q <C1 and � 2MC.X /. Then there exists
a positive constant C such that (6-1) holds if and only if

�.K/� C q .cap0.K//
q for all compact sets K �X; (6-2)

where C is the same between both statements.
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Proof. ()) Without loss of generality we may assume that C D 1. Let K � X be a compact set. If
cap0 KDC1, there is nothing to show, so we assume cap0 K <C1. Then for every � > 0, there exists
a measure � 2MC.Y / so that G�.x/� 1 on K and �.Y /� cap0.K/C �. Then by (6-1),

�.K/� kG�k
q

Lq;1.K ;�/
� �.Y /q � .cap0.K/C �/

q:

Letting �! 0, we establish the capacity inequality (6-2).

(() Suppose �.K/ � .cap0.K//
q for any compact K � X. For t > 0, let Et WD fx 2 X WG �.x/ > tg.

Let K ��t be a compact set. For � > 0, by the dual definition of capacity (4-2), we can find a measure
� 2MC.K/ such that G��.y/� 1 for all y 2 Y and cap0.K/� �.K/C �.

Then by Fubini’s theorem,

�.K/
1
q � �.K/C � �

1

t

Z
K

G �.x/ d�.x/C � D
1

t

Z
Y

G��.y/ d�.y/C � �
�.Y /

t
C �:

By exhausting over all compact sets K�Et and letting �!0, we establish the weak-type .1; q/-inequality

�.Et /
1
q �

�.Y /

t

for all t > 0, which proves (6-1). �
In the case q > 1 we can use the duality Lq;1.X; �/ D ŒLq0;1.X; �/��, 1=q C 1=q0 D 1, to show

that it suffices to verify (6-1) on point masses � D ıx , x 2 X. This leads to a simple noncapacitary
characterization of (6-1).

Proposition 6.2. Let G be a kernel on X�Y . Suppose 1< q<C1, and � 2MC.X /. Then the following
statements are equivalent:

(1) There exists a positive constant C such that (6-1) holds.

(2) The following condition holds:

sup
y2Y

kG. � ;y/kLq;1.X ;�/ <C1: (6-3)

(3) There exists a positive constant C such that, for all measurable sets E �X,

sup
y2Y

G��E.y/� C �.E/
1
q0 : (6-4)

Proof. By duality, statement (1) is equivalent toZ
X

.G �/� d� � ck�kk�kLq0;1.�/ for all � 2Lq0;1.X; �/; � 2MC.Y /:

Equivalently, by Fubini’s theorem,Z
Y

G�.��/ d� � ck�kk�kLq0;1.�/ for all � 2Lq0;1.X; �/; � 2MC.Y /:

Clearly, the preceding inequality holds if and only it holds for all � D ıy ; that is,

G�.��/.y/D

Z
X

G.x;y/ �.x/ d�.x/� ck�kLq0;1.�/ for all � 2Lq0;1.X; �/; y 2 Y :
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Using duality again, we see that the preceding inequality is equivalent to

kG. � ;y/kLq;1.�/ � c for all y 2 Y : (6-5)

This establishes .1/() .2/.
The equivalence .2/() .3/ follows from the well-known fact that, for q > 1, we have kf kLq;1.X ;�/

is equivalent to the norm

sup
E�X

1

�.E/
1
q0

Z
E

jf j d�.x/:

Applying this to f . � /DG.y; � /, for a fixed y 2 Y , we see that

G��E.y/D

Z
E

G.y;x/ d�.x/� C �.E/
1
q0;

where C does not depend on y 2 Y and E �X, if and only if (6-5) holds. �

Remark 6.3. For Riesz kernels I˛.x/ D jxj
˛�n .0 < ˛ < n/ on Rn, condition (6-3) means that

�.B.x; r// � C r .n�˛/q for all balls B.x; r/ in Rn. This condition was used by D. Adams in the
context of .p; q/-inequalities for q > p > 1; the capacitary condition (6-2) was introduced by V. Maz’ya
[2011]; see also [Adams and Hedberg 1996].

There are more direct characterizations of the weak-type .1; q/-inequality in the case 0 < q � 1 if
X D Y D�, and additionally if G is quasisymmetric and satisfies the weak maximum principle. Notice
that in this case cap0. � / is equivalent to the Wiener capacity cap1. � /.

Theorem 6.4. Let � 2MC.�/, and 0< q <1. Suppose G is a quasisymmetric kernel on ��� which
satisfies the weak maximum principle. Then the following statements are equivalent:

(1) There exists a positive constant c such that

kG �kLq;1.�;�/ � c k�k for all � 2MC.�/:

(2) There exists a positive constant C such that

�.K/� C .cap1.K//
q for all compact sets K ��:

(3) G� 2L
q

1�q
;1.�; �/, when 0< q < 1.

The details of this theorem can be found in [Quinn and Verbitsky 2017].
We finally consider (6-1) in the case q D 1, i.e., the weak-type .1; 1/-inequality, along with its

.p;p/-analogues for 1< p <C1, under the same assumptions as in Theorem 6.4.

Theorem 6.5. Let � 2MC.�/. Suppose G is a quasisymmetric kernel on ��� which satisfies the
weak maximum principle. Then the following statements are equivalent:

(1) There exists a positive constant c such that

kG �kL1;1.�/ � c k�k for all � 2MC.�/: (6-6)
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(2) If 1< p <C1, then there exists a positive constant c such that

kG .f d�/kLp.�/ � c kf kLp.�/ for all f 2Lp.�; �/: (6-7)

(3) There exists a positive constant c such that“
K�K

G.x;y/ d�.x/ d�.y/� c �.K/ for all compact sets K ��: (6-8)

(4) If G is a quasimetric kernel then“
B�B

G.x;y/ d�.x/ d�.y/� c �.B/ (6-9)

for all quasimetric balls BDB.x; r/, where B.x; r/Dfy 2� W d.x;y/ < rg, d.x;y/D 1=G.x;y/

.x;y 2�; r > 0/.

Remark 6.6. The equivalence of statements (2) and (4) of Theorem 6.5 in the case of quasimetric
kernels G is due to F. Nazarov; see [Nikolski and Verbitsky 2017, Theorem 4.6]. It can be deduced
from more general results on operators with nonpositive kernels in the framework of nonhomogeneous
harmonic analysis; see [Hytönen 2010]. The weak-type .1; 1/-inequality in Theorem 6.5 may be new.

Proof. As above in the case of strong-type .1; q/-inequalities, we may assume without loss of generality
that G is a symmetric kernel such that G.x;x/ > 0 for all x 2 �. The latter condition ensures that
cap1.K/ <1 for any compact set K 2�. By Proposition 6.1, the weak-type .1; 1/-inequality (6-6) is
equivalent to the condition

�.K/� C cap1.K/ for all compact sets K ��: (6-10)

From the discussion in Section 4 it follows that, for any compact set K ��,

cap1.K/D sup
�
�.K/ W

1

�.K/

“
K�K

G.x;y/ d�.x/ d�.y/� 1

�
;

where the supremum is taken over all �2MC.K/ such that �.K/ > 0. Taking �D .1=C / � , where C is
the constant in (6-10), we see that (6-8) implies (6-10), and consequently, (6-6). This proves .3/D) .1/.

Conversely, suppose that (6-10) holds. Let 1< p <C1. We first prove the corresponding weak-type
.p;p/-inequality

kG .g d�/kLp;1.�/ � c kgkLp.�/; (6-11)

where c is independent of g. Here without loss of generality we may assume that g 2Lp.�; �/, g � 0,
is compactly supported. For a fixed t > 0, denote by Et the set

Et D fx 2� WG .g d�/.x/ > tg:

Notice that

G .g d�Ec
t
/�G .g d�/� t on Ec

t :
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Consequently, by the weak maximum principle

G .g d�Ec
t
/� h t on �:

Denote by K an arbitrary compact subset of the set Ft defined by

Ft D fx 2� WG .g d�/.x/ > .hC 1/ tg:

We observe that by the preceding estimates,

Ft � fx 2� WG .g d�Et
/ > tg:

We denote by � the equilibrium measure � associated with cap1.K/, which is supported on K, and has
the property G�� 1 on K. Hence G�� h on � by the weak maximum principle.

Since K � Ft , by (6-10) we estimate

�.K/� C cap1.K/D C �.K/�
C

t

Z
K

G .g d�Et
/ d�D

C

t

Z
�

.G�/g d�Et
�

C h

t

Z
Et

g d�:

From this, by Jensen’s inequality we deduce

�.K/�
C h

t
�.Et /

1
p0 kgkLp.�/:

Taking the supremum over all K � Ft , we see that

�.Ft /�
C h

t
�.Et /

1
p0 kgkLp.�/:

Multiplying both sides of the preceding inequality by tp and taking the supremum over all t 2 .0; t0/we get

sup
0<t<t0

Œtp �.Ft /�� C h sup
0<t<t0

Œtp �.Et /�
1

p0 kgkLp.�/:

Here the right-hand side is finite for any t0 > 0 since g is compactly supported, and consequently
g 2L1.�; �/, so that

sup
0<t<t0

Œtp �.Et /�� t
p�1
0

sup
0<t<1

Œt �.Et /�� t
p�1
0
kgkL1.�/ <1:

Notice that

sup
0<t<t0

Œtp �.Ft /�D
1

.hC 1/p
sup

0<�<.hC1/t0

Œ�p �.E� /��
1

.hC 1/p
sup

0<�<t0

Œ�p �.E� /�:

Combining the preceding estimates we deduce

sup
0<�<t0

Œ�p �.E� /�
1
p � C h .hC 1/p kgkLp.�/:

Letting t0!C1, we obtain

sup
0<�<C1

Œ�p �.E� /�
1
p � C h.hC 1/p kgkLp.�/:
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This proves the weak-type .p;p/-inequality (6-11) for all 1 < p <C1, which by the Marcinkiewicz
interpolation theorem yields (6-7) for all 1< p <C1.

For any measurable set E �� and 1 < p <C1, letting g D �E in (6-7), or (6-11), we deduce by
Jensen’s inequality“

E�E

G.x;y/ d�.x/ d�.y/� kG .�E �/kLp.�/ �.E/
1

p0 � C �.E/: (6-12)

In particular, (6-8) and (6-9) hold. This proves .1/D) .2/D) .3/D) .1/.
If G is a quasimetric kernel, then .4/D) .2/ for p D 2; see Remark 6.6. Conversely, (6-7) for p D 2

yields (6-12) for any measurable E ��, so that .2/D) .4/. �

7. Breaking the inequality: a counterexample

In this section, we provide some examples which demonstrate that our main results may fail in the absence
of the weak maximum principle, first for nonnegative symmetric kernels G, and then for strictly positive
kernels. More specifically, we justify the following remarks.

Remark 7.1. Without the weak maximum principle, for a symmetric kernel G there can be a positive
solution to uDG .uq d�/ with u2Lq.�; �/ but there is no constant 0<~ <C1 such that the inequalityR
�.G �/

q d� � ~q�.�/q holds for all � 2MC.�/.

First, we present some minor computations for 2�2 matrices which we will employ extensively below.
Suppose that we have a discrete kernel G.xi ;xj / D gij (i D 1; 2) on � D fx1;x2g, where x1;x2 are
distinct points, and

G D Œgij �D

�
0 1

1 0

�
:

Note that this kernel does not satisfy the weak maximum principle.
Suppose we have the measure � D .�1; �2/ on �, and uD .u1;u2/, where ui ; �i � 0 (i D 1; 2). Then,

if u is a solution to the equation uDG .uqd�/, we have the system of equations

u1 D u
q
2
�2; u2 D u

q
1
�1;

which we can solve explicitly for u in terms of q and � :

u1 D .�
q
1
�2/

1

1�q2 ; u2 D .�
q
2
�1/

1

1�q2 :

We compute the norm of u in Lq.�/ to be

kuk
q

Lq.�/
D u

q
1
�1Cu

q
2
�2 D .�

q
1
�2/

q

1�q2 �1C .�1�
q
2
/

q

1�q2 �2:

Now suppose we have a kernel G on the discrete set of distinct points �D fxkg
1
kD1

. This kernel will
consist of the above blocks placed along the diagonal and zeros elsewhere:
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G D

26666666664

0 1

1 0

0 1

1 0

0 1

1 0
:::

37777777775
: (7-1)

Then we find that for � D .�k/
1
kD1

, as above, the equation uDG .uq d�/ has a solution

uD .u1;u2; : : : ;u2k�1;u2k ; : : : /

D
�
.�

q
1
�2/

1

1�q2 ; .�1�
q
2
/

1

1�q2 ; : : : ; .�
q

2k�1
�2k/

1

1�q2 ; .�2k�1�
q

2k
/

1

1�q2 ; : : :
�
; (7-2)

with norm

kuk
q

Lq.�/
D

1X
kD1

u
q

k
�k D

1X
kD1

�
.�

q

2k�1
�2k/

q

1�q2 �2k�1C .�2k�1�
q

2k
/

q

1�q2 �2k

�
: (7-3)

We would now like to create a measure � for which kukLq.�/ <C1. Set �2k�1D ak and �2k D b�k.
Then the k-th pair of terms in the sum are

.�
q

2k�1
�2k/

q

1�q2 �1C .�2k�1�
q

2k
/

q

1�q2 �2k D .a
kqb�k/

q

1�q2 ak
C .akb�kq/

q

1�q2 b�k

D

��
aq

b

� q

1�q2

a

�k

C

��
a

bq

� q

1�q2
1
b
�k

D

��
a

bq

� 1

1�q2
�k

C

��
aq

b

� 1

1�q2
�k

:

We wish to choose a; b > 0 so that
a< bq; aq < b:

Note that this reduces down to choosing 1 < a < bq. If this holds, then aq < a < bq < b, so aq < b.
Therefore, with appropriate choices of a; b, we have kukLq.�/ <C1.

Now we wish to show that

sup
�2MC.�/

R
�.G �/

q d�

�.�/q
DC1: (7-4)

Note that the ratio on the left-hand side can be written asR
�.G �/

q d�

�.�/q
D

P1
kD1.�

q

2k
�2k�1C �

q

2k�1
�2k/�P1

kD1 �k

�q :

Setting �2k�1 D �
1

1�q

2k
, �2k D �

1
1�q

2k�1
for k D 1; 2; : : : ; n, and �k D 0 for k > 2n, we obtainR

�.G �/
q d�

�.�/q
D

P2n
kD1 �

1
1�q

k�P2n
kD1 �

1
1�q

k

�q D
� 2nX

kD1

�
1

1�q

k

�1�q

:
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Since 0 < q < 1, and �2k�1 D ak where a > 1, the partial sums on the right go to C1 as n!C1,
which yields (7-4). This justifies Remark 7.1.

Remark 7.2. The preceding example employs a block matrix kernel which fails to satisfy the weak
maximum principle based on a construction with zeros along the diagonal. We have seen that such kernels
allow for compact sets K 2 � to have infinite capacity, i.e., cap1 K D C1, which we would like to
rule out. With this in mind, we can adapt the above construction so that (7-4) holds for a symmetric
kernel G such that G.x;x/ > 0 for all x 2�, i.e., G is strictly positive, but nevertheless the equation
uDG .uq d�/ has a positive solution u 2Lq.�; �/.

Specifically, we adjust each block along the diagonal so that we have kernel zG in place of G. Let

zG D

�
a 1

1 1=a

�
;

where a> 0 is a constant to be specified. Note that G � � zG �, so we can invoke the above computations
to see that (7-4) holds for zG as well. We decompose zG as

zG DGCGa D

�
0 1

1 0

�
C

�
a 0

0 1=a

�
:

As shown above, there is a positive solution u 2Lq.�; �/ to uDG .uq d�/. By scaling, for QuD 2
1

1�q u,
we have 1

2
QuDG . Quq d�/. Following the appropriate choice of a, we can then ensure that 1

2
QuDGa. Qu

q d�/.
This establishes that Qu is a solution, since we have

QuD 1
2
QuC 1

2
QuDG . Quq d�/CGa. Qu

q d�/D zG . Quq d�/:

The choice of a should be so that

a Qu
q
1
�1 D

1
2
Qu1;

1
a
Qu

q
2
�2 D

1
2
Qu2;

where a is uniquely determined by aD .�2=�1/
1

1Cq .
With this choice of a, let aD ak for each block, where ak depends on q and the values of �2k�1 and

�2k defined for the k-th block, as specified above. Thus, we have a positive solution Qu D zG . Quq d�/,
where Qu 2Lq.�; �/, but (7-4) holds with zG in place of G , which justifies Remark 7.2.

The following example shows that the restriction on q 2 .0; q0�, where q0D
1
2
.
p

5�1/, in Lemma 5.1(a)
is sharp.

Remark 7.3. Let q 2 .q0; 1/. Without the weak maximum principle, for a symmetric kernel G there can
be a positive solution to uDG .uq d�/ with u 2Lq.�; �/, butZ

�

.G�/
q

1�q d� DC1:

To construct such an example we employ the above construction of the block matrix kernel G given
by (7-1). Then there exists a positive solution u 2Lq.�; �/ to uDG .uq d�/ given by (7-2) with finite
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norm (7-3) provided

kuk
q

Lq.�/
D

1X
kD1

�
.�

q

2k�1
�2k/

q

1�q2 �2k�1C .�2k�1�
q

2k
/

q

1�q2 �2k

�
<1:

At the same time we can pick �k so that, for q 2 .q0; 1/, we haveZ
�

.G�/
q

1�q d� D

1X
kD1

.�2k�1�
q

1�q

2k
C �

q
1�q

2k�1
�2k/DC1:

Indeed, setting �2k�1 D 1 and �2k D 1=k, we see that

kuk
q

Lq.�/
D

1X
kD1

.k
�

q

1�q2 C k
� 1

1�q2 / <1;

since both q=.1� q2/ > 1 and 1=.1� q2/ > 1. On the other hand,Z
�

.G�/
q

1�q d� D

1X
kD1

.k�
q

1�q C k�1/DC1:

A slight modification of this example as in Remark 7.2 produces a strictly positive kernel G with the
same properties.

Remark 7.4. There are analogous examples that show that the exponents s D q=.1� q/ (for general
measures � ) and s D 1C q (for finite measures � ) in statements (a) and (b) of Lemma 5.1, respectively,
are sharp as well. We omit the details.
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