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We study the discrete-to-continuum limit of ferromagnetic spin systems when the lattice spacing tends
to zero. We assume that the atoms are part of a (maybe) nonperiodic lattice close to a flat set in a
lower-dimensional space, typically a plate in three dimensions. Scaling the particle positions by a small
parameter ε > 0, we perform a 0-convergence analysis of properly rescaled interfacial-type energies. We
show that, up to subsequences, the energies converge to a surface integral defined on partitions of the flat
space. In the second part of the paper we address the issue of stochastic homogenization in the case of
random stationary lattices. A finer dependence of the homogenized energy on the average thickness of the
random lattice is analyzed for an example of a magnetic thin system obtained by a random deposition
mechanism.
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1. Introduction

Polymeric magnets are known to be lighter and more flexible than conventional magnets. They can be
easily manufactured to form thin films made of few layers and are currently considered one of the main
building blocks of the future generations of electronic devices. Under external magnetic fields they form
Weiss domains, whose wall energy is influenced by the thickness and the roughness of the film, which
in turn depends on the physical and chemical properties of the specific material at use. A fairly large
amount of experimental results reconstruct the relation between film thickness and interfacial domain wall
energy for different ferromagnetic materials, see [Klein and Smith 1951], but no rigorous explanation has
appeared so far in this direction. Among the reasons for such an unsatisfactory analysis, we single out
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one which has a geometric flavor: depositing magnetic particles on a substrate to obtain a thin film leads
to disordered arrangements of particles and rough film surfaces, which makes it very difficult to formulate
a suitable ansatz leading to the correct (and simpler) continuum model. In this paper we look at this
problem from a different perspective: we single out a simple Ising-type model for a thin film obtained by
random deposition of magnetic particles on a flat substrate, for which the geometric part of the problem is
still nontrivial, and propose an ansatz-free variational analysis of such a film. Combining 0-convergence
and percolation theory, we finally obtain a rigorous explanation of the relation between film thickness
and domain-wall energy in some asymptotic regimes.

A simple way to model thin ferromagnetic polymeric materials at the microscale first requires the
definition of a polymeric matrix made of magnetic cells and then that of an interaction energy between
those cells; see [Vollath 2013] for further details. The polymeric matrix of such a system can be seen as a
random network whose nodes are the cross-linkers molecules of the three-dimensional polymeric magnet,
which are supposed to entail the local magnetic properties of the system and to interact as magnetic
elementary cells via a ferromagnetic Potts-type coupling. The system is supposed to be thin in the sense
that the nodes of the matrix are within a small distance, of the order of the average distance between the
nodes themselves, from a two-dimensional plane. In the presence of an external magnetic field or of
proper boundary conditions, the ferromagnetic coupling induces the system to form mesoscopic Weiss
domains, i.e., regions of constant magnetization.

In this paper we aim at upscaling the system described above from its microscopic description to a
mesoscopic one in a variational setting. This consists in performing the limit of its energy as the average
distance between the magnetic cells, which we denote by ε, goes to zero with respect to the macroscopic
size of the system. Such a limit will have two main effects: it will allow us to describe the original
discrete system as a continuum, while at the same time it will reduce its dimension from three to two (or
more generally from d to k with 2≤ k < d).

The discrete-to-continuum analysis in this paper is also part of a general study of the effects of
discreteness in lattice systems on their macroscopic description. It is directly related to a series of papers
describing the overall behavior of spin energies [Caffarelli and de la Llave 2005; Alicandro et al. 2006;
Braides and Piatnitski 2013; Braides and Cicalese 2017; Alicandro and Gelli 2016]. Moreover, discrete-
to-continuum analyses for thin elastic objects in a deterministic setting have also been considered, e.g., in
[Alicandro et al. 2008; Schmidt 2008; Lazzaroni et al. 2015], and the behavior of full-dimensional random
lattices is dealt with in [Alicandro et al. 2011]; see also [Blanc et al. 2007]. For dimension-reduction
problems for continuum elastic objects we also refer to [Le Dret and Raoult 1995; Braides et al. 2000],
the latter introducing a dimensionally reduced localization argument similar to the one used in the present
paper.

Using the same model as in [Alicandro et al. 2015] we describe the polymeric matrix as a random
network whose nodes L⊂ Rd form a thin admissible stochastic lattice, meaning that the matrix is thin;
i.e., there exist k ∈ N with 2≤ k < d and M > 0 such that, identifying Rk with a linear subspace of Rd,

dist(x,Rk)≤ M for all x ∈ L
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and it is admissible according to the following standard definition; see [Ruelle 1989] and also [Alicandro
et al. 2011; Blanc et al. 2007] in the framework of rubber elasticity. We say that L is an admissible set of
points if the following two requirements are satisfied:

(i) There exists r > 0 such that |x − y| ≥ r for all x 6= y, x, y ∈ L,

(ii) There exists R > 0 such that dist(x,L)≤ R for all x ∈ Rk.

Within this definition we may include “slices” of periodic lattices [Alicandro et al. 2008], and also
aperiodic geometries [Braides et al. 2012].

Given a probability space (�,F,P), a random variable L :�→ (Rd)N is called an admissible stochastic
lattice if L(ω) is an admissible set of points uniformly with respect to ω ∈�.

We assume that the magnetization takes only finitely many values; that is to say, we consider configura-
tions u : εL→ S with a state-space S = {s1, . . . , sq} that we embed in the euclidean space Rq. We have in
mind the case of spin systems, where ui ∈ {1,−1}. Note that even in that case it is sometimes necessary
to use a larger set of parameters S if frustration forces the formation of texture; see [Braides and Cicalese
2017]. Note that if we have more than two parameters, we may have concentration phenomena of a third
phase on the interfaces between two phases. A finer description of this phenomenon can be found in
[Alicandro et al. 2012].

Associating a Voronoi tessellation V(L) to the lattice L, one introduces the set of nearest neighbors
NN (L) as the set of those pairs of points in L whose Voronoi cells share a (d−1)-dimensional edge. This
allows us to distinguish between long-range and short-range interactions, introducing the (L-dependent)
interactions

fε(x, y, si , sj )=

{
f εnn(x, y, si , sj ) if (x, y) ∈NN (L),
f εlr (x, y, si , sj ) otherwise,

which we assume to be nonnegative and to satisfy the following coerciveness and growth assumptions.

Hypothesis 1. There exist c > 0 and a decreasing function Jlr : [0,+∞)→ [0,+∞) with∫
Rk

Jlr (|x |)|x | dx = J <+∞

such that, for all ε > 0, x, y ∈ Rd and si , sj ∈ S,

c|si − sj | ≤ f εnn(x, y, si , sj )≤ Jlr (|x − y|)|si − sj |, f εlr (x, y, si , sj )≤ Jlr (|x − y|)|si − sj |.

We remark that the decay of Jlr is needed to control the effect of long-range interactions and we use
the same bound for short-range interactions only to save notation.

We fix D⊂Rk and denote by Pk :R
d
→Rk the projection onto Rk. For a given configuration u : εL→S

we consider the energy per unit ((k−1)-dimensional) surface of D to have the ferromagnetic Potts form;
see also [Alicandro et al. 2006; 2012; 2015; Braides and Cicalese 2017] given by

Eε(u)=
∑

x,y∈L
εx,εy∈P−1

k D

εk−1 fε(x, y, u(εx), u(εy)).
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Since the sets εL will eventually shrink to a k-dimensional set, we conveniently describe the system in
terms of an average spin order parameter Pu : εPkL→ co(S) defined on the k-dimensional set εPkL by

Pu(z) :=
1

#(P−1
k (z)∩ εL)

∑
εx∈P−1

k (z)∩εL

u(εx).

We then embed the energies Eε in L1(D) by identifying Pu with a function piecewise constant on the cells
of the Voronoi tessellation of PkL, define the convergence uε→ u in D in the sense that the piecewise
constant functions Puε converge to u strongly in L1(D) and perform the 0-convergence analysis with
respect to this notion (see Section 2 for further details).

In Theorem 3.2 we prove a compactness and integral representation result for the 0-limit E of Eε,
stating that, up to subsequences, this is finite only on BV(D,S), where it takes the integral form

E(u)=
∫

Su

φω(x, u+, u−, νu) dHk−1.

In this formula Su is the jump set of u, the functions u+ and u− represent the traces on both sides of
the jump set, νu ∈ Sk−1 is the measure-theoretical normal to Su and Hk−1 is the (k−1)-dimensional
Hausdorff measure. The function φω is interpreted as the domain-wall interaction energy (per unit
(k−1)-dimensional area) between Weiss domains.

The dependence of such an energy on the randomness of the lattice is studied in Section 5 in the
context of stochastic homogenization, assuming the thin random lattice to be stationary (or ergodic) in
the directions of the flat subspace to which it is close and the interaction coefficients to be invariant under
translation in these directions. More precisely we assume that there exists a measure-preserving group
action (τz)z∈Zk on � such that, almost surely in �, we have L(τzω)= L(ω)+ z (if in addition (τz)z∈Zk is
ergodic, then also the lattice L is said to be ergodic) and the following structural assumption:

Hypothesis 2. There exist functions fnn, flr :R
k
×R2(d−k)

×S2
→[0,+∞) such that, setting1k(x, y)=

(y1− x1, . . . , yk − xk, xk+1, yk+1, . . . , xd , yd), it holds that

f εnn(x, y, si , sj )= fnn(1k(x, y), si , sj ), f εlr (x, y, si , sj )= clr (1k(x, y), si , sj ).

In Theorem 5.8 we prove that under Hypotheses 1 and 2 and assuming the stationarity (or ergodicity)
in the sense specified above, the 0-limit of Eε as ε→ 0 exists and is finite only on BV(D,S) where it
takes the form

Eωhom(u)=
∫

Su

φωhom(u
+, u−, νu) dHk−1.

The energy density is given by an asymptotic homogenization formula which is averaged in the proba-
bility space under ergodicity assumptions on L, thus turning the stochastic domain wall energy into a
deterministic one.

The result is proved by the abstract methods of 0-convergence, first showing an abstract compactness
result, and then giving an integral representation of the limit, as described in detail for deterministic bulk
elastic thin films in [Braides et al. 2000]; for other applications of this method in a discrete-to-continuum
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setting see, e.g., [Alicandro and Cicalese 2004; Le Dret and Raoult 2017; Braides and Cicalese 2017].
The proof makes use of two main ingredients: the integral-representation theorem in [Bouchitté et al.
2002] and the subadditive ergodic theorem in [Akcoglu and Krengel 1981]. They are combined following
a scheme introduced in [Alicandro et al. 2011] in the context of random discrete systems with limit
energy on Sobolev spaces, see also [Dal Maso and Modica 1986], and recently extended to sets of finite
perimeter in [Alicandro et al. 2015]. Section 6 is devoted to extending the result above to the case of a
volume constraint on the phases.

An interesting issue in the theory of thin magnetic composite polymeric materials is the dependence of
the domain wall energy on the random geometry of the polymer matrix. We devote the second part of
the paper to this problem. We consider a specific model of a discrete system in which the state-space
is S = {±1} and the stochastic lattice is generated by the random deposition of magnetic particles on
a two-dimensional flat substrate. For simplicity we limit ourselves to a simple deposition model with
vertical order and suppose that the magnetic interactions have finite range. We are interested in the
dependence of the domain wall energy on the average thickness of the thin film. Even though a complete
picture would need a more extended treatment, thanks to percolation arguments we are able to attack the
problem in the asymptotic cases when the thickness of the film is either small or very large.

More specifically, we model the substrate (where the particles are deposited) by taking a two-
dimensional deterministic lattice, which we choose for simplicity as L0

= Z2
×{0}. We then consider an

independent random field {X p
i }i∈Z3 , where the X p

i are Bernoulli random variables with P(X p
i = 1)= p ∈

(0, 1). For fixed M ∈ N we construct the random point set

LM
p (ω) :=

{
(i1, i2, i3) ∈ Z3

: 0≤ i3 ≤
∑M

k=1 X p
(i1,i2,k)(ω)

}
,

which means that we successively deposit particles M times independently onto the flat lattice L0 and
stack them over each other (the point set constructed is stationary with respect to translations in Z2 and
ergodic). Moreover, given u : εLM

p (ω)→ {±1}, we consider an energy of the form

E p
ε,M(ω)(u, A)=

∑
x,y∈LM

p (ω)

εP2(x),εP2(y)∈A

ε c(x − y)|u(εx)− u(εy)|,

where the interaction constant c :R3
→[0,+∞) has finite range, is bounded from above and is coercive on

nearest neighbors, so that the Hypotheses 1 and 2 above are satisfied. As a result Theorem 5.8 guarantees
the existence of a surface tension, say φ p

hom(M; ν), given by an asymptotic cell formula.
The main issue now is the dependence of φ p

hom(M; ν) on p and M.
A first result in this direction is proved in Proposition 7.3, where we show that, for every direction

ν ∈ S1, the wall energy density is linear in the average thickness pM as M→+∞; that is,

lim
M→+∞

φ
p
hom(M; ν)

pM
= φ1(ν), (1-1)

with φ1(ν) given in Lemma 7.2 being the wall energy per unit thickness of the deterministic problem
obtained for p = 1.
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A second and more delicate result is contained in Theorem 7.5 and concerns a percolation-type
phenomenon which can be roughly stated as follows: when the deposition probability p is sufficiently low
(below a certain critical percolation threshold) the domain wall energy is zero for M small enough. At
this stage it is worth noticing that our energy accounts for the interactions between the deposited particles
and the substrate. On one hand this assumption might be questionable from a physical point of view in
the case one assumes to grow thin films on neutral media, thus expecting the properties of the film to be
independent of the substrate. On the other hand removing such an interaction leads to a dilute model
similar to the one considered in [Braides and Piatnitski 2012]. An adaption of this analysis would require
a lot of additional work like the extension of fine percolation results to the (range-1)-dependent case,
which goes far beyond the scope of the present paper (see also Remark 7.4). We prove the percolation
result for nearest-neighbor positive interactions. Setting the interaction with the substrate to be η > 0,
we can prove that if p < 1− psite (here psite is the critical site percolation threshold in Z2), the limit
energy φ p,η

hom(M; ν) is bounded above (up to a constant) by η for M small enough. This result suggests the
absence of a positive domain wall energy in the thin film on a neutral substrate (η= 0 case). In the limit as
M diverges, (1-1) holds with φ p,η

hom(M; ν), which is independent of η, thus showing that the contribution
of the first layer does not affect the asymptotic average domain wall energy as expected. The proof of
these results needs the extension to the dimension reduction framework of a result by Caffarelli and
de la Llave [2005] about the existence of plane-like minimizers for discrete systems subject to periodic
Ising-type interactions at the surface scaling. This is contained in Appendix A.

As a final remark, we mention that we prove all our results in the case when the flat object is at least
two-dimensional. Most of the results can be extended to one-dimensional objects (with the proof being
much simpler), except the ones contained in Section 6, which fail in dimension one as can be seen by
simple examples and the percolation-type phenomenon in Section 7, as no percolation can occur in
(essentially) one-dimensional lattices.

2. Modeling discrete disordered thin sets and spin systems

This section is devoted to the precise description of the model we are going to study. We start with the
notation we are going to use in the sequel.

As we are concerned with dimension-reduction issues, there will be two geometric dimensions k and d
with 2≤ k < d . Given a measurable set A ⊂ Rk, we denote by |A| its k-dimensional Lebesgue measure,
while more generally Hm(A) stands for the m-dimensional Hausdorff measure. We denote by 1A the
characteristic function of A. Given x ∈ Rk and r > 0, we denote by Br (x) the open ball around x with
radius r . By |x | we denote the usual euclidean norm of x . Moreover, we set dH(A, B) to be the Hausdorff
distance between the sets A and B and dimH(A) to be the Hausdorff dimension of A. If it is clear from
the context we will use the same notation as above also in Rd (otherwise we will indicate the dimension
by sub/superscript indices). Given an open set D ⊂ Rk, we denote by A(D) the family of all bounded
open subsets of D and by AR(D) the family of those sets in A(D) with Lipschitz boundary. Given a unit
vector ν ∈ Sk−1, let ν = ν1, . . . , νk be an orthonormal basis. We define the open cube in Rk

Qν =
{

x ∈ Rk
: |〈x, νi 〉|<

1
2 for all i

}
,
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and, for x ∈ Rk, ρ > 0, we set Qν(x, ρ) := x+ρ Qν. We call ν ∈ Sk−1 a rational direction if ν ∈Qk . We
denote by Pk : R

d
→ Rk the projection onto Rk.

For q ∈N we let BV(D,Rq) be the space of Rq -valued functions of bounded variation, that is, those
functions u ∈ L1(D,Rq) such that their distributional derivative Du is a matrix-valued Radon measure.
Given a set S⊂Rq, we denote by BV(A,S) the space of those functions u ∈BV(A,Rq) such that u(x)∈S
almost everywhere. If S is a finite set, then the distributional derivative of u can be represented on any
Borel set B ⊂ D as Du(B)=

∫
B∩Su

(u+(x)− u−(x))⊗ νu(x) dHk−1(x) for a countably Hk−1-rectifiable
set Su in D which coincides Hk−1-almost everywhere with the complement in D of the Lebesgue points
of u. Moreover νu(x) is a unit normal to Su , defined for Hk−1-almost every x and u+(x), u−(x) are the
traces of u on both sides of Su . Here the symbol ⊗ stands for the tensorial product of vectors; that is,
for any a, b ∈ Rk , we have (a⊗ b)i j := ai b j . A measurable set B is said to have finite perimeter in D
if its characteristic function belongs to BV(D). We refer the reader to [Ambrosio et al. 2000] for an
introduction to functions of bounded variation. The letter C stands for a generic positive constant that
may change every time it appears.

We want to describe (possibly nonperiodic) particle systems, where the particles themselves are located
very close to a lower-dimensional linear subspace. To this end we make the following assumptions: Let
L⊂Rd be a countable set. We assume that there exists M > 0 such that, after identifying Rk

∼Rk
×{0}d−k,

we have
dist(x,Rk)≤ M for all x ∈ L. (2-2)

Moreover, adapting ideas from [Alicandro et al. 2011; 2015; Blanc et al. 2007] we assume that the point
set is regular in the following sense:

Definition 2.1. A countable set L⊂ Rd is a thin admissible lattice if (2-2) holds and

(i) there exists r > 0 such that |x − y| ≥ r for all x 6= y, x, y ∈ L,

(ii) there exists R > 0 such that dist(x,L)≤ R for all x ∈ Rk.

We associate to such a lattice a truncated Voronoi tessellation V(L), where the corresponding d-
dimensional cells C ∈ V(L) are defined by

C(x) :=
{
z ∈ Rk

×[−2M, 2M]d−k
: |z− x | ≤ |z− x ′| for all x ′ ∈ L

}
,

and we introduce the set of nearest neighbors accordingly by setting

NN (L) :=
{
(x, y) ∈ L2

: dimH(C(x)∩ C(y))= d − 1
}
.

As usual in the passage from atomistic to continuum theories, we scale the point set L by a small parameter
ε > 0. We assume that the magnetization of the particles takes values in a finite set S = {s1, . . . , sq} ⊂Rq.
Fix a k-dimensional reference set D ∈ AR(Rk). Given A ∈ AR(D) and u : εL→ S, we consider a
localized (on A) pairwise interaction energy

Eε(u, A)=
∑

x,y∈L
εx,εy∈P−1

k A

εk−1 fε(x, y, u(εx), u(εy)),



506 ANDREA BRAIDES, MARCO CICALESE AND MATTHIAS RUF

where the (L-dependent) interactions distinguish between long- and short-range interactions and are of
the form

fε(x, y, si , sj )=

{
f εnn(x, y, si , sj ) if (x, y) ∈NN (L),
f εlr (x, y, si , sj ) otherwise.

For our analysis we make the following assumptions on the measurable functions f εnn, f εlr :R
d
×Rd
×S2
→

[0,+∞):

Hypothesis 1. There exist c > 0 and a decreasing function Jlr : [0,+∞)→ [0,+∞) with∫
Rk

Jlr (|x |)|x | dx = J <+∞

such that, for all ε > 0, x, y ∈ Rd and si , sj ∈ S,

c ≤ cεnn(x, y)≤ Jlr (|x − y|), cεlr (x, y)≤ Jlr (|x − y|).

Since the sets εL shrink to a k-dimensional set as ε vanishes, we want to define a convergence of
discrete variables on shrinking domains.To that end, denoting by co(S) the convex hull of S, we define
the averaged and projected spin variable Pu : εPkL→ co(S) via

Pu(εz) :=
1

#(P−1
k (z)∩L)

∑
x∈P−1

k (z)∩L

u(εx). (2-3)

The projected lattice PkL⊂Rk inherits property (ii) from Definition 2.1, but (i) might fail after projection.
Nevertheless, due to (2-2) the projected lattice is still locally finite and the following uniform bound on
the number of points holds true: there exists a constant C = CL > 0 such that, given a set A ∈A(D) with
|∂A| = 0, we have

εk#{εz ∈ εPkL∩ A} ≤ C |A| (2-4)

for ε small enough. We now associate the corresponding k-dimensional Voronoi tessellation V(PkL)=
{Ck(z)} in Rk to the lattice PkL and we identify Pu with a piecewise-constant function belonging to the
class

PCε(L) := {v : Rk
→ (S) : v|εCk(z) is constant for all z ∈ PkL}

Note that we can embed PCε(L) in L1(D) since the intersection of two Voronoi cells always has zero
k-dimensional Lebesgue measure.

For the sake of illustration, in Figure 1 we picture the construction in the simple case d = 2, k = 1
and S = {±1}. In the picture above, we draw a portion of the truncated Voronoi diagram of the lattice L
represented by the dots, black for u =−1 and white for u =+1. At the bottom of the Voronoi diagram we
include the projected points P1L and the values of the variable Pu ∈ [−1, 1] (range reflected by the gray
scale in the figure). The dashed lines indicate the exceptional set of projection points where |Pu| 6= 1. The
picture below represents the piecewise-constant function on the Voronoi intervals subordinated to P1L.

To deal with convergence of sequences uε : εL→ S, we adopt the idea of [Braides et al. 2012]. We
will see in Section 6 that this notion of convergence is indeed meaningful for variational problems in a
random environment.
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1

1
3
0

−1

Figure 1. Construction of the piecewise-constant interpolation for d = 2, k = 1 and S = {±1}.

Definition 2.2. Let A ∈A(D). We say that a sequence uε : εL→ S converges in A to u : A→ Rq if the
piecewise-constant functions Puε converge to u strongly in L1(A).

For our variational analysis we introduce the lower and upper 0-limits E ′, E ′′ : L1(D,Rq)×AR(D)→
[0,+∞] setting

E ′(u, A) := inf
{
lim inf
ε→0

Eε(uε, A) : uε→ u in D
}
,

E ′′(u, A) := inf
{
lim sup
ε→0

Eε(uε, A) : uε→ u in D
}
.

(2-5)

Remark 2.3. The functionals E ′, E ′′ are not 0-lower/upper limits in the usual sense since they are not
defined on the same space as Eε. However, if we define the functionals Ẽε : L1(D,Rq)×AR(D)→
[0,+∞] as

Ẽε(u, A) :=
{

infv Eε(v, A) if u = Pv for some v : εL→ S,
+∞ otherwise,

then E ′, E ′′ agree with the 0-lower/upper limit of Ẽε in the strong L1(D)-topology. Therefore we will
refer to the equality of E ′ and E ′′ as 0-convergence. Moreover, one can show that

E ′(u, A)= inf
{
lim inf
ε→0

Eε(uε, A) : uε→ u in A
}
,

E ′′(u, A)= inf
{
lim sup
ε→0

Eε(uε, A) : uε→ u in A
}
.

By the properties of 0-convergence, this implies that both functionals u 7→ E ′(u, A) and u 7→ E ′′(u, A)
are L1(A)-lower semicontinuous and hence local in the sense of Theorem 3.1(ii).
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We now prove several properties of the convergence introduced in Definition 2.2. We start with an
equicoercivity property.

Lemma 2.4. Assume Hypothesis 1 holds. Let A ∈A(D) and let uε : εL→ S be such that

supε Eε(uε, A) <+∞.

Then, up to subsequences, the functions Puε defined as in (2-3) converge strongly in L1(A) to some
u ∈ BV(A,S).

Proof. Fix A′ b A such that A′ ∈AR(D). We start by estimating the measure of the set {Puε /∈ S} ∩ A′.
Note that if Puε(εz) /∈S for some z ∈ PkL such that ε Ck(z)∩ A′ 6=∅, then there exist x1, x2 ∈ P−1

k (z)∩L
such that uε(εx1) 6= uε(εx2). As a preliminary step we show that we can find a path of nearest neighbors
in L joining x1 and x2, that is, a finite collection of points {x1, . . . , xm

}⊂L such that x1
= x1 and xm

= x2

and (x i , x i+1) ∈ NN (L) for all i = 1, . . . ,m − 1. Moreover this path will be chosen such that it does
not vary too much from the segment between x1 and x2. To this end, fix 0 < δ � 1 and consider the
collection of segments

Gδ(x1, x2)= {x + λ(x2− x1) : x ∈ Bδ(x1), 0≤ λ≤ 1}. (2-6)

We argue that there exists a segment g∗ = {x∗+ λ(x2− x1) : 0≤ λ≤ 1} ⊂ Gδ satisfying the implication

g∗ ∩ C(x)∩ C(x ′) 6=∅ =⇒ (x, x ′) ∈NN (L). (2-7)

Indeed, assume by contradiction that the implication is false for all x∗ ∈ Bδ(x1). Since the number of
d-dimensional Voronoi cells C(x) ∈ V(L) such that C(x)∩ Gδ 6= ∅ is uniformly bounded, we can then
find finitely many Voronoi facets of dimension less than d − 1 whose projection onto the hyperplane
containing x1 and orthogonal to x2−x1 covers a (d−1)-dimensional set. Since projections onto hyperplanes
are Lipschitz continuous, we obtain a contradiction.

The path connecting x1 and x2 is then given by the set G(x1, x2) :={x ∈L : g∗∩C(x) 6=∅}, provided that
δ is small enough. Observe that there exist x, y∈G(x1, x2) such that (x, y)∈NN (L) and uε(εx) 6=uε(εy).
From the coercivity assumption in Hypothesis 1, we thus deduce that each path contributes to the energy.
Moreover, by (2-2) and the local construction of the paths, for any pair (x, y) ∈NN (L) it holds that

#
{
z ∈ PkL : G(x1, x2)∩ {x, y} 6=∅

}
≤ C.

From these two facts we infer that

εk−1#
{
εz : εCk(z)∩ A′ 6=∅, Puε(εz) /∈ S

}
≤ C Eε(uε, A)≤ C, (2-8)

where we have used that εG(x1, x2)⊂ (P−1
k A)∩ εL for ε small enough. Since the measure of a Voronoi

cell in PkL can be bounded uniformly by a constant, by rescaling we deduce that

|{Puε /∈ S} ∩ A′| ≤ Cε. (2-9)

We continue bounding the total variation |D Puε|(A′). Since Puε is equibounded and piecewise constant,
it is enough to provide a bound for Hk−1(SPuε ∩ A′). Note that the jump set SPuε is contained in the
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facets of the Voronoi cells of the lattice εPkL. Since L is thin admissible in the sense of Definition 2.1
and property (ii) is preserved by projection, for each such facet F it holds that

Hk−1(F)≤ Cεk−1.

For ε small enough, we conclude that

Hk−1(SPuε ∩ A′)≤ Cεk−1#
{
(z, z′) ∈NN (PkL) : Puε(εz) 6= Puε(εz′), εz, εz′ ∈ A′+ BRε(0)

}
.

Given εz, εz′ ∈ A′+ BRε(0) such that (z, z′) ∈NN (PkL) and Puε(εz) 6= Puε(εz′), again we may find a
path of nearest neighbors

G(z, z′)= {x0
∈ P−1

k (z), x1, . . . , xm
∈ P−1

k (z′)}

with uε(εx0) 6= uε(εxm) and the paths are local in the sense that

#
{
(z, z′) ∈NN (PkL) : G(z, z′)∩ {x, y} 6=∅

}
≤ C

for all (x, y) ∈NN (L). Reasoning as in the first part of the proof we find that

εk−1#
{
(z, z′) ∈NN (PkL) : Puε(εz) 6= Puε(εz′), εz, εz′ ∈ A′+ BRε(0)

}
≤ C Eε(uε, A)≤ C.

By well-known compactness properties of BV-functions (see, for example, [Ambrosio et al. 2000,
Corollary 3.49]) and (2-9), there exists a subsequence (not relabeled) such that Puε→ u in L1(A′) for
some u ∈ BV(A′,S). Since A′ was arbitrary, the claim follows by a diagonal argument combined with
equiboundedness, which rules out concentrations close to the boundary. �

We will also use the following auxiliary result about the convergence introduced in Definition 2.2.

Lemma 2.5. Let A ∈A(D) be such that |∂A| = 0 and let uε, vε : εL→ S both converge in A to u in the
sense of Definition 2.2 and assume both have equibounded energy on A. Then

lim
ε→0

∑
εx∈εL
εPk(x)∈A

εk
|uε(εx)− vε(εx)| = 0.

Proof. Fix a set A′ b A such that A′ ∈AR(D). By (2-4) and equiboundedness of uε and vε it is enough
to show that

lim
ε→0

∑
εx∈εL

εPk(x)∈A′

εk
|uε(εx)− vε(εx)| = 0.

Using the fact that uε, vε both have finite energy in A, we can argue as in the derivation of (2-8) to show

#
{
εx ∈ εL : εPk(x) ∈ A′, Puε(εPk(x)) 6= uε(εx) or Pvε(εPk(x)) 6= vε(εx)

}
≤ Cε1−k.

Inserting this estimate and using that L satisfies (2-2) we obtain∑
εx∈εL

εPk(x)∈A′

εk
|uε(εx)− vε(εx)| ≤ C

∑
εz∈εPkL
εz∈A′

εk
|Puε(εz)− Pvε(εz)| +Cε.
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Thus it is enough to control the last sum. Since the Voronoi cells in the projected lattice may become
degenerate, we can only use bounds on the number of cells. To this end fix L > 1 large enough such that,
for all zL ∈ LZk, we have

1≤ #
(
εPkL∩ (εzL + [0, Lε)k)

)
≤ C. (2-10)

Define Iε := {zL ∈ LZk
: (εzL + [0, Lε)k)∩ A′ 6=∅} and subdivide this set again as

I 1
ε := {zL ∈ Iε : Puε is not constant on εzL + [0, Lε)k},

I 2
ε := {zL ∈ Iε : Pvε is not constant on εzL + [0, Lε)k},

I 3
ε := Iε\(I 1

ε ∪ I 2
ε ).

Since every scaled k-dimensional Voronoi cell εCk(z) can only intersect finitely many cubic cells
εzL + [0, Lε)k with a uniform bound on the cardinality, we can again use the energy bound in A
and argue as for (2-8) to conclude

#(I 1
ε ∪ I 2

ε )≤ Cε1−k. (2-11)

Combining (2-10) and (2-11) we infer from the definition of the set I 3
ε that∑

εz∈εPkL
εz∈A′

εk
|Puε(εz)−Pvε(εz)| ≤Cε+

∑
zL∈I 3

ε

∑
εz∈εPkL

εz∈εzL+[0,Lε)k

εk
|Puε(εz)−Pvε(εz)|

≤Cε+C
∑

zL∈I 3
ε

∫
εzL+[0,Lε)k

|Puε(s)−Pvε(s)|ds

≤Cε+C‖Puε−Pvε‖L1(A).

This concludes the proof, since the last term tends to 0 by assumption. �

Following some ideas in [Alicandro et al. 2011] we introduce an auxiliary deterministic square lattice
on which we will rewrite the energies Eε. This lattice, shown in Figure 2, will turn out to be a convenient
way to control the long-range interactions.

On setting r ′ = r/
√

d it follows that #{L∩ {α+ [0, r ′)d}} ≤ 1 for all α ∈ r ′Zd. We now set

Zr ′(L) :=
{
α ∈ r ′Zd

: #
(
L∩ {α+ [0, r ′)d}

)
= 1

}
,

xα := L∩ {α+ [0, r ′)d}, α ∈ Zr ′(L),

and, for ξ ∈ r ′Zd, U ⊂ Rk and ε > 0,

Rξε (U ) := {α : α, α+ ξ ∈ Zr ′(L), εxα, εxα+ξ ∈ P−1
k U }.

Note that by (2-2), enlarging M if necessary, it is enough to consider

ξ ∈ r ′Zd
M := r ′Zd

∩ (Rk
×[−2M, 2M]d−k).
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r ′

2M

Figure 2. The particles in L (circles) and the auxiliary lattice r ′Zd (black dots).

We can then rewrite the localized energy as

Eε(u, A)=
∑
ξ∈r ′Zd

M

∑
α∈Rξε (A)

εk−1 fε(xα, xα+ξ , u(εxα), u(εxα+ξ )).

Remark 2.6. Observe that we can write

{ξ ∈ r ′Zd
M} =

⋃
z∈r ′Zd−k

|z|∞≤2M

{ξ = (ξk, z1, . . . , zd−k) : ξk ∈ r ′Zk
}.

Hence the monotonicity assumption from Hypothesis 1 allows to transfer the decay of long-range
interactions to the discrete environment as follows: given δ > 0, there exists Lδ > 0 such that∑

ξ∈r ′Zd
M

|ξ |>Lδ

Jlr (|ξ̂ |)|ξ | ≤ δ, (2-12)

where ξ̂ ∈ ξ + [−r ′, r ′]d is such that |ξ̂ | = dist
(
[0, r ′)d, [0, r ′)d + ξ

)
. This decay property along with

Lemma 2.7 below will be crucial to control the long-range interactions. However note that Lδ in general
depends on M.

The following lemma asserts that on convex domains we can essentially control the long-range
interactions by considering only nearest neighbors.

Lemma 2.7. Let B ⊂A(Rk) be convex and Bε = {x ∈ Rk
: dist(x, B) < 3(R+M)ε}. Then there exists a

constant C depending only on r, R,M in Definition 2.1 such that for every ξ ∈ r ′Zd
M and every u : εL→ S

it holds that∑
α∈Rξε (B)

fε(xα, xα+ξ , u(εxα), u(εxα+ξ ))≤ C Jlr (|ξ̂ |)|ξ |
∑

(x,y)∈NN (L)
εx,εy∈P−1

k Bε

fε(x, y, u(εx), u(εy)).

Proof. Let α ∈ Rξε (B). As in the proof of Lemma 2.4 we consider the collection of segments Gδ(xα, xα+ξ )
defined as in (2-6). By the same argument, there exists a segment g∗ ⊂ Gδ(xα, xα+ξ ) satisfying (2-7).
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Consider then the set G(α, ξ) = {x ∈ L : g∗ ∩ C(x) 6= ∅}. By construction we can number G(α, ξ) =
{xα = x0, . . . , x N

= xα+ξ } such that (x i , x i+1) ∈NN (L). By the bounds of Hypothesis 1 it holds that

fε(xα, xα+ξ , u(εxα), u(εxα+ξ ))≤ Jlr (|ξ̂ |)|u(εxα)− u(εxα+ξ )| ≤ Jlr (|ξ̂ |)
∑

(x,y)∈NN (L)
x,y∈G(α,ξ)

|u(εx)− u(εy)|

≤ C Jlr (|ξ̂ |)
∑

(x,y)∈NN (L)
x,y∈(1/ε)P−1

k Bε∩G(α,ξ)

fε(x, y, u(εx), u(εy)), (2-13)

where we used that by convexity we have G(α, ξ)⊂ 1
ε

P−1
k Bε provided δ is small enough. Now given

(x, y) ∈NN (L)∩ 1
ε

P−1
k Bε we set

T ξ
ε (x, y) :=

{
α ∈ Rξε (B) : {x, y} ∩G(α, ξ) 6=∅

}
.

Note that if α ∈ T ξ
ε (x, y), then

xα ∈ {z+ tξ : |z− x | ≤ C, |t | ≤ C}

for some C > 0, and hence #T ξ
ε (x, y) ≤ C |ξ | by Definition 2.1. The claim now follows by summing

(2-13) over all α ∈ Rξε (B). �

3. Integral representation on the flat set

Our first aim is to characterize all possible variational limits of energies Eε that satisfy Hypothesis 1. As
for the case k = d and S = {±1} treated in [Alicandro et al. 2015], the following version of Theorem 3 in
[Bouchitté et al. 2002] will be the key ingredient:

Theorem 3.1. Let F : BV(D,S)×A(D)→ [0,+∞) satisfy the following hypotheses:

(i) F(u, · ) is the restriction to A(D) of a Radon measure.

(ii) F(u, A)= F(v, A) whenever u = v a.e. on A ∈A(D).

(iii) F( · , A) is L1(D) lower semicontinuous for every A ∈A(D).

(iv) There exists c > 0 such that

1
c
Hk−1(Su ∩ A)≤ F(u, A)≤ c Hk−1(Su ∩ A)

for every (u, A) ∈ BV(D,S)×A(D).

Then for every u ∈ BV(D,S) and A ∈A(D),

F(u, A)=
∫

Su∩A
g(x, u+, u−, νu) dHk−1,

with

g(x0, si , sj , ν)= lim sup
ρ→0

m(ui j
x0,ν, Qν(x0, ρ))

ρk−1 ,
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where, for all si , sj ∈ S,

ui j
x0,ν
:=

{
si if 〈x − x0, ν〉 ≥ 0,
sj otherwise,

and for any (v, A) ∈ BV(D,S)×A(D) we set

m(v, A)= inf
{
F(u, A) : u ∈ BV(A,S), u = v in a neighborhood of ∂A

}
.

The following theorem is the main result of this section.

Theorem 3.2. Let L be a thin admissible lattice and let f εnn and f εlr satisfy Hypothesis 1. For every
sequence of ε→ 0+ there exists a subsequence εn such that the functionals Eεn 0-converge with respect
to the convergence of Definition 2.2 with A = D to a functional E : L1(D,Rq)→ [0,+∞] of the form

E(u)=
{∫

Su
φ(x, u+, u−, νu) dHk−1 if u ∈ BV(D,S),

+∞ otherwise.

Moreover, a local version of the statement above holds: for all u ∈ BV(D,S) and all A ∈AR(D),

0- lim
n

Eεn (u, A)=
∫

Su∩A
φ(x, u+, u−, νu) dHk−1,

with respect to the same convergence as above.

Remark 3.3. If k = 1, then a similar result holds. In this case we obtain a limit energy finite for
u ∈ BV(D,S) and of the form

E(u)=
∑
x∈Su

φ(x, u+, u−).

The proof of Theorem 3.2 will be given later and it is based on Theorem 3.1. We now start proving
several propositions that allow us to apply Theorem 3.1.

We start with the growth condition (iv) of Theorem 3.1. Using the lower semicontinuity of the perimeter
of level sets in BV(D,S), one can use the same argument as for Lemma 2.4 to prove the following lower
bound for E ′(u, A) defined in (2-5):

Proposition 3.4. Assume that Hypothesis 1 holds. Then E ′(u, A) <+∞ only if u ∈ BV(A,S) and there
exists a constant c > 0 independent of A such that

1
c
Hk−1(Su ∩ A)≤ E ′(u, A).

In the next step we provide a suitable upper bound for E ′′(u, A) defined in (2-5).

Proposition 3.5. Assume Hypothesis 1 holds. Then there exists a constant c > 0 such that, for all
A ∈AR(D) and all u ∈ BV(D,S),

E ′′(u, A)≤ c Hk−1(Su ∩ A).

Proof. First, assume that u is a polyhedral function on Rk, which means that all level sets have boundaries
that coincide (up to Hk−1-null sets) with a finite union of (k−1)-dimensional simplexes. We define a
sequence uε : εL→ S by setting

uε(εx) := u(εPk(x)).
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Note that uε→ u in the sense of Definition 2.2. Given δ > 0, we choose Lδ > 0 such that (2-12) holds.
We further set Aδ = A+ Bδ(0). For |ξ | ≤ Lδ, we can argue as in the proof of Lemma 2.7 to show that,
for ε small enough, it holds that∑
α∈Rξε (A)

εk−1 fε
(
xα, xα+ξ , uε(εxα), uε(εxα+ξ )

)
≤ C Jlr (|ξ̂ |)|ξ |

∑
(x,y)∈NN (L)
εx,εy∈P−1

k Aδ

εk−1
|uε(εx)− uε(εy)|

≤ C Jlr (|ξ̂ |)|ξ |Hk−1(Su ∩ Aδ), (3-14)

where the last estimate follows from the regularity of Su . Next we consider the interactions where |ξ |> Lδ .
Let u be a polyhedral function; applying Lemma 2.7 we deduce for any ε > 0 the weaker bound∑
α∈Rξε (A)

εk−1 fε(xα, xα+ξ , uε(εxα), uε(εxα+ξ ))≤
∑

α∈Rξε (Rk)

εk−1 fε(xα, xα+ξ , uε(εxα), uε(εxα+ξ ))

≤ C Jlr (|ξ̂ |)|ξ |Hk−1(Su). (3-15)

Combining (3-14),(3-15) and (2-12) and the integrability assumption from Hypothesis 1, we deduce that

E ′′(u, A)≤ lim sup
ε

Eε(uε, A)≤ CHk−1(Su ∩ Aδ)+CδHk−1(Su).

As δ > 0 was arbitrary we obtain

E ′′(u, A)≤ CHk−1(Su ∩ A). (3-16)

Now we use locality and a density argument. Indeed, for every u ∈ BV(D,S) we can find a function
ũ ∈ BVloc(R

k,S) such that u = ũ on A and Hk−1(Sũ ∩ ∂A)= 0; see Lemma 2.7 in [Braides et al. 2017].
From Remark 2.3 it follows that E ′′(u, A) = E ′′(ũ, A). Then, by [Braides et al. 2017, Corollary 2.4]
there exists a sequence un ∈ BVloc(R

k,S) of polyhedral functions such that un → ũ in L1(D) and
Hk−1(Sun ∩ D)→Hk−1(Sũ ∩ D). By the L1(D)-lower semicontinuity of E ′′( · , A) stated in Remark 2.3
and (3-16), we obtain

E ′′(u, A)≤ lim inf
n

E ′′(un, A)≤ C lim sup
n

Hk−1(Sun ∩ A)≤ CHk−1(Sũ ∩ A)= CHk−1(Su ∩ A),

where the last inequality is a consequence of the L1(D)-lower semicontinuity of u 7→Hk−1(Su ∩ D\A)
for u ∈ BV(D,S). �

As is usual for applying integral-representation theorems, we next establish a weak subadditivity
property of A 7→ E ′′(u, A).

Proposition 3.6. Let f εnn and f εlr satisfy Hypothesis 1. Then, for every A, B ∈AR(D), every A′⊂AR(D)
such that A′ b A and every u ∈ BV(D,S),

E ′′(u, A′ ∪ B)≤ E ′′(u, A)+ E ′′(u, B).

Proof. We may assume that E ′′(u, A) and E ′′(u, B) are both finite. Let uε, vε : εL→ S both converge to
u in the sense of Definition 2.2 such that

lim sup
ε→0

Eε(uε, A)= E ′′(u, A), lim sup
ε→0

Eε(vε, B)= E ′′(u, B). (3-17)



CONTINUUM LIMIT AND STOCHASTIC HOMOGENIZATION OF DISCRETE FERROMAGNETIC THIN FILMS 515

Step 1: extensions to convex domains. Let Q D be a cube containing D. Since D ∈ AR(D), we can
extend u (without relabeling) to a function u ∈ BVloc(R

k,S). We first show that we can modify uε
and vε on εL\A and εL\B respectively, such that they converge to u on L1(Q D) and such that they have
equibounded energy on the larger set Q D . We will show the argument for uε. Take another cube Q′ such
that Q D b Q′. Arguing as in the proof of Proposition 3.5, we find a sequence ũε : εL→ S such that
ũε→ u on Q′ and lim supε→0 Eε(ũε, Q′)≤ CHk−1(Su ∩ Q′). We then set ū ∈ PCε(L) as

ū(εx)= 1A(Pk(εx))uε(εx)+ (1−1A(Pk(εx)))ũε(εx).

Then ūε→ u on Q D and applying Lemma 2.7 combined with Hypothesis 1 and (2-2) yields

Eε(ūε, Q D)≤ C
∑
ξ∈r ′Zd

M

Jlr (|ξ̂ |)|ξ |
∑

(x,y)∈NN (L)
εx,εy∈Q′

εk−1 fε(x, y, ūε(εx), ūε(εy))

≤ C
(

Eε(uε, A)+ Eε(ũε, Q′\A)+ 1
ε
|∂A+ B4Rε(0)|

)
.

The first and second terms remain bounded by construction, while the third term converges to a multiple
of the Minkowski content of ∂A which agrees with Hk−1(∂A) as A ∈AR(D).

Step 2: energy estimates. Again, given δ > 0 we choose Lδ such that (2-12) holds. Fix d ′≤ 1
2 dist(A′, ∂A)

and let
Nε :=

⌊
d ′

ε(Lδ + 2r)

⌋
,

where b · c denotes the integer part. For j ∈ N we define

Aε, j := {x ∈ A : dist(x, A′) < jε(Lδ + 2r)}.

We let w j
ε ∈ PCε(L) be the interpolation defined by

w j
ε (εx)= 1Aε, j (Pk(εx))uε(εx)+ (1−1Aε, j (Pk(εx)))vε(εx).

Note that for each fixed j ∈ N, we have w j
ε → u on D in the sense of Definition 2.2. We set

Sξ,εj :=
{

x= y+ t Pk(ξ
′) : y ∈ ∂Aε, j , |t | ≤ ε, ξ ′ ∈ ξ + [−r ′, r ′]d

}
∩ (A∪ B).

For j ≤ Nε we have

Eε(w j
ε , A′∪B)≤ Eε(uε, Aε, j )+Eε(vε, B\Aε, j )+

∑
ξ∈r ′Zd

M

∑
α∈Rξε (S

ξ,ε
j )

εk−1 fε(xα, xα+ξ ,w j
ε (εxα),w j

ε (εxα+ξ ))︸ ︷︷ ︸
=:ρ

ξ,ε
j (α)

≤ Eε(uε, A)+Eε(vε, B)+
∑
ξ∈r ′Zd

M

∑
α∈Rξε (S

ξ,ε
j )

ρ
ξ,ε
j (α). (3-18)

We now distinguish between two types of interactions depending on Lδ . If |ξ |> Lδ , we use Lemma 2.7.
Since A∪ B b Q D , we deduce that∑

|ξ |>Lδ

∑
α∈Rξε (S

ξ,ε
j )

ρ
ξ,ε
j (α)≤ C

∑
|ξ |>Lδ

Jlr (|ξ̂ |)|ξ |
∑

(x,y)∈NN (L)
εx,εy∈P−1

k Q D

εk−1 fε(x, y, w j
ε (εx), w j

ε (εy)).
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We have P−1
k Q D ⊂ P−1

k Aε, j ∪ P−1
k (Q D\Aε, j ). Nearest-neighbor interactions between those two sets

are contained in P−1
k Sξ,εk for some ξ ∈ r ′Zd

M with |ξ | ≤ 4R. Therefore, we can further estimate the last
inequality via∑

|ξ |>Lδ

∑
α∈Rξε (S

ξ,ε
j )

ρ
ξ,ε
j (α)≤ Cδ

(
Eε(uε, A)+ Eε(vε, Q D)+

∑
|ξ |≤Lδ

∑
α∈Rξε (S

ξ,ε
j )

ρ
ξ,ε
j (α)

)
. (3-19)

Now we treat the interactions when |ξ | ≤ Lδ. Consider any points εx, εy ∈ εL. If w j
ε (εx) 6= w j

ε (εy)
then εx, εy ∈ Aε, j , εx, εy /∈ Aε, j or εx ∈ Aε, j but εy /∈ Aε, j (the reverse case can be treated similarly).
In the last case we have a contribution only if uε(εx) 6= vε(εy). Then either uε(εy) = vε(εy) or
fε(x, y, uε(εx), vε(εy))≤ C |uε(εy)− vε(εy)|. Summarizing all cases we obtain the inequality

ρ
ξ,ε
j (α)≤ εk−1 fε(x, y, uε(εx), uε(εy))+ εk−1 fε(x, y, vε(εx), vε(εy))+Cεk−1

|uε(εy)− vε(εy)|.

By our construction we have Sε,ξj ⊂ (Aε, j+1\Aε, j−1)=: Sεj . We deduce that∑
|ξ |≤Lδ

∑
α∈Rξε (S

ξ,ε
j )

ρ
ξ,ε
j (α)≤ Eε(uε, Sεj )+ Eε(vε, Sεj )+Cδ

∑
y∈L

εPk(y)∈Sεj

εk−1
|uε(εy)− vε(εy)|,

where Cδ depends only on Lδ. Observe that by definition every point can only lie in at most two sets
Sεj1, Sεj2 . Thus averaging combined with (3-19), Step 1 and the last inequality yields

Iε :=
1

Nε

Nε∑
j=1

∑
ξ∈r ′Zd

M

∑
α∈Rξε (S

ξ,ε
j )

ρ
ξ,ε
j (α)≤

2
Nε

Nε∑
j=1

∑
|ξ |≤Lδ

∑
α∈Rξε (S

ξ,ε
j )

ρ
ξ,ε
j (α)+Cδ

≤
4

Nε

(
Eε(uε, Q D)+ Eε(vε, Q D)

)
+Cδ

∑
y∈L

εPk(y)∈D

εd
|uε(εy)− vε(εy)| +Cδ

≤
C
Nε
+Cδ

∑
y∈L

εPk(y)∈D

εd
|uε(εy)− vε(εy)| +Cδ.

Due to Step 1 we can apply Lemma 2.5 to deduce that lim supε→0 Iε ≤ Cδ. For every ε > 0, let
jε ∈ {1, . . . , Nε} be such that ∑

ξ∈r ′Zd
M

∑
α∈Rξε (S

ξ,ε
jε )

ρ
ξ,ε
jε (α)≤ Iε (3-20)

and set wε :=w
jε
ε . Note that, as a convex combination, wε still converges to u on D. Hence, using (3-18)

and (3-20), we conclude that

E ′′(u, A′ ∪ B)≤ lim sup
ε→0

Eε(wε, A′ ∪ B)≤ E ′′(u, A)+ E ′′(u, B)+C δ.

The arbitrariness of δ proves the claim. �
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Proof of Theorem 3.2. From Propositions 3.5 and 3.6 it follows by standard arguments that E ′′(u, · ) is
inner regular on AR(D); see, for example, Proposition 11.6 in [Braides and Defranceschi 1998]. Therefore,
given a sequence εn→ 0+ we can use Remark 2.3 and the compactness property of 0-convergence, see
[Braides 2002, Section 1.8.2], to construct a subsequence εn (not relabeled) such that

0- lim
n

Eεn (u, A)=: Ẽ(u, A)

exists for every (u, A) ∈ L1(D)×AR(D). By Proposition 3.4 we know that Ẽ(u, A) is finite only if
u ∈ BV(A,S). We extend Ẽ(u, · ) to A(D) setting

E(u, A) := sup{Ẽ(u, A′) : A′ b A, A′ ∈AR(D)}.

To complete the proof, it is enough to show that E satisfies the assumptions of Theorem 3.1. Again
by standard arguments E(u, · ) fulfills the assumptions of the De Giorgi–Letta criterion [Braides 2002,
Section 16] so that E(u, · ) is the trace of a Borel measure. By Proposition 3.5, it is indeed a Radon
measure. The locality property follows from Remark 2.3. By the properties of 0-limits and again
Remark 2.3 we know that Ẽ( · , A) is L1(D)-lower semicontinuous and so is E( · , A) as the supremum of
lower semicontinuous functions. The growth conditions (iv) in Theorem 3.1 follow from Propositions 3.4
and 3.5, which still hold for E in place of Ẽ . The local version of the theorem is a direct consequence of
our construction. �

4. Convergence of boundary value problems

In this section we consider the convergence of minimum problems with Dirichlet-type boundary data. In
order to model boundary conditions in our discrete setting we need to introduce a suitable notion of trace,
taking into account possible long-range interactions; see also [Alicandro et al. 2015]. In what follows
we will further assume a continuous spatial dependence of the integrand of the limit continuum energy.
Without such a condition we can still obtain a weaker result stated in Lemma 4.3. On the other hand
continuity assumptions are always fulfilled in the case of the homogenization problem that we are going
to treat in Section 5.

Consider A ∈AR(D) and fix boundary data u0 ∈ BV(Rk
loc,S). We assume the boundary data are well-

prepared in the sense that, setting uε,0 ∈ PCε(L) as uε,0(εx)= u0(Pk(εx)), we have uε,0→ u0 on D and

lim sup
ε→0

Eε(uε,0, B)≤ CHk−1(Su0 ∩ B), Hk−1(Su0 ∩ ∂A)= 0, (4-21)

with C independent of B ∈AR(Rk). Observe that as in the proof of Proposition 3.5 we may allow for
any polyhedral function such that Hk−1(Su0 ∩ ∂A)= 0, but more generally it suffices that all level sets
are Lipschitz sets.

We define a discrete trace constraint as follows: let lε > 0 be such that

lim
ε→0

lε =+∞, lim
ε→0

lεε = 0. (4-22)
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We set PClεε
ε,u0
(L, A) as the space of those u that agree with u0 at the discrete boundary of A, by setting

PClεε
ε,u0
(L, A) :=

{
u : εL→ S : u(εx)= u0(Pk(εx)) if dist(Pk(εx), ∂A)≤ lεε

}
.

For ε>0 and lε>0 we consider the restricted functional E lε
ε,u0( · , A) :PClεε

ε,u0
(L, A)→[0,+∞] defined as

E lε
ε,u0
(u, A) := Eε(u, A). (4-23)

We need some further notation. Given u ∈ BV(D,S), we set u A,0 : R
k
→ S as

u A,0(x) :=
{

u(x) if x ∈ A,
u0(x) otherwise.

Since A is regular we have u A,0 ∈ BVloc(R
k,S). The following convergence result holds:

Theorem 4.1. Let L be a thin admissible lattice and let f εnn and f εlr satisfy Hypothesis 1. For every
sequence converging to 0, let εn and φ be as in Theorem 3.2. Assume that the limit integrand φ is
continuous on D × S2

× Sk−1. Then, for every set A ∈ AR(D), A b D, the functionals E lεn
εn,u0( · , A)

defined in (4-23) 0-converge with respect to the convergence on A in Definition 2.2 to the functional

Eu0( · , A) : L1(D,Rq)→ [0,+∞]

that is finite only for u ∈ BV(A,S), where it takes the form

Eu0(u, A)=
∫

Su A,0∩A
φ(x, u+A,0, u−A,0, νu A,0) dHk−1.

Proof. By Proposition 3.4 we know that the limit energy is finite only for u ∈BV(A,S). To save notation,
we replace the subsequence εn again by ε.

Lower bound: Without loss of generality let uε→ u on A in the sense of Definition 2.2 be such that

lim inf
ε

E lε
ε,u0
(uε, A)≤ C. (4-24)

Passing to a subsequence, we may assume uε ∈ PClεε
ε,u0
(L, A). We define a new sequence vε : εL→ S by

vε(εx)= 1A(Pk(εx))uε(εx)+ (1−1A(Pk(εx)))u0(εPk(x)).

Note that by our assumptions on u0 we have vε→ u A,0 on D in the sense of Definition 2.2. Now fix
A1 b A b A2 such that A1, A2 ∈AR(D). Setting

Sξ,ε := {α ∈ Rξε (A2) : εxα ∈ P−1
k A, εxα+ξ /∈ P−1

k A or vice versa},

it holds that

Eε(vε, A2)≤ E lε
ε,u0
(uε, A)+Eε(uε,0, A2\A1)+

∑
ξ∈r ′Zd

M

∑
α∈Sξ,ε

εk−1 fε(xα, xα+ξ ,vε(εxα),vε(εxα+ξ )), (4-25)
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Given δ > 0, let Lδ > 0 be such that (2-12) holds. To bound the long-range interactions, we fix again a
large cube Q D containing D. Then Lemma 2.7 and the coercivity assumption in Hypothesis 1 yield∑
|ξ |>Lδ

∑
α∈Sξ,ε

εk−1 fε(xα, xα+ξ , vε(εxα), vε(εxα+ξ ))

≤ C
∑
|ξ |>Lδ

Jlr (|ξ̂ |)|ξ |
∑

(x,y)∈NN (L)
εx,εy∈P−1

k Q D

εk−1 fε(x, y, vε(εx), vε(εy))

≤ Cδ
(

Eε(uε, A)+ Eε(uε,0, Q D)+
∑
|ξ |≤Lδ

∑
α∈Sξ,ε

εk−1 fε(xα, xα+ξ , vε(εxα), vε(εxα+ξ ))
)
. (4-26)

For interactions with |ξ | ≤ Lδ and ε small enough, we have Sξ,ε ⊂ A2\A1. Moreover, if lε > Lδ + 2r ,
then by the boundary conditions on uε we get∑

|ξ |≤Lδ

∑
α∈Sξ,ε

εk−1 fε(xα, xα+ξ , vε(εxα), vε(εxα+ξ ))≤ Eε(uε,0, A2\A1).

From the local version of Theorem 3.2, (4-21), (4-24), (4-25) and (4-26) we infer

E(u A,0, A2)≤ lim inf
ε

E lε
ε,u0
(uε, A)+C δ(1+Hd−1(Su0 ∩ Q D))+CHd−1(Su0 ∩ A2\A1).

The lower bound follows by letting A2 ↓ A and A1 ↑ A combined with (4-21) and the arbitrariness of δ.

Upper bound: We first provide a recovery sequence in the case when u = u0 in a neighborhood of ∂A.
Let uε : εL→ S converge to u on D in the sense of Definition 2.2 and be such that

lim
ε→0

Eε(uε, A)= E(u, A). (4-27)

Again, given δ >0 we let Lδ>0 be such that (2-12) holds. Now choose regular sets A1b A2b A such that

u = u0 on A\A1. (4-28)

The remaining argument is similar to the proof of Proposition 3.6 and therefore we only sketch it. Fix
d ′ ≤ 1

2 dist(A1, ∂A2) and set Nε = bd ′/(ε(Lδ + 2r))c. For j ∈ N we define the sets

Aε, j := {x ∈ A : dist(x, A1) < jε(Lδ + 2r)}.

We further define u j
ε : εL→ S setting

u j
ε(εx)=

{
u0(εx) if Pk(εx) /∈ Aε, j ,
uε(εx) otherwise.

It holds that

Eε(u j
ε , A)≤ Eε(uε, A)+ Eε(uε,0, A\A1)+

∑
ξ∈r ′Zd

M

εk−1
∑

α∈Rξε (S
ξ,ε
j )

fε(xα, xα+ξ , u j
ε(εxα), u j

ε(εxα+ξ )),

where the set Sξ,εj is defined as

Sξ,εj :=
{

x= y+ t Pk(ξ
′) : y ∈ ∂Aε, j , |t | ≤ ε, ξ ′ ∈ ξ + [−r ′, r ′]d

}
∩ A.
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As for (4-26), using (4-21) and (4-27) we can show that∑
ξ∈r ′Zd

M

εk−1
∑

α∈Rξε (S
ξ,ε
j )

fε(xα, xα+ξ , u j
ε(εxα), u j

ε(εxα+ξ ))

≤ Cδ+C
∑
|ξ |≤Lδ

∑
α∈

ξ
ε (S

ξ,ε
j )

εk−1 fε(xα, xα+ξ , u j
ε(εxα), u j

ε(εxα+ξ )).

To estimate the interactions where |ξ | ≤ Lδ, note that due to (4-28) we can use the averaging technique
like in Step 2 of Proposition 3.6 to obtain jε ∈ {1, . . . , Nε} and the corresponding sequence u jε

ε satisfying
the boundary conditions, at least for small ε because of (4-22), such that

lim sup
n

E lε
ε,u0
(u jε
ε , A)≤ E(u, A)+CHk−1(Su0 ∩ (A\A1))+Cδ,

where we used (4-21). Moreover, due to the assumptions on u0 and (4-28) we know that u jε
ε → u on A.

Letting first δ→ 0 and then A1 ↑ A we finally get

0- lim sup
ε

E lε
ε,u0
(u, A)≤ E(u, A)= Eu0(u, A).

For a general function u ∈ BV(A,S) we argue by approximation. To this end we take any B ∈AR(D)
such that Ab B. By Lemma B.1 we obtain a sequence un ∈BV(D,S) such that un=u0 in a neighborhood
of ∂A and moreover un → u A,0 in L1(B) and Hk−1(Sun ∩ B) → Hk−1(Su ∩ B). By L1(A)-lower
semicontinuity and the previous argument we obtain

0- lim sup
ε

E lε
ε,u0
(u, A)≤ lim inf

n
E(un, A)≤ lim inf

n
E(un, B)= E(u A,0, B).

In the last step we used the continuity assumption on the integrand and a Reshetnyak-type continuity result
for functionals defined on partitions that is proven in [Ruf 2017]. Letting B ↓ A we obtain the claim. �

Remark 4.2. (i) It is a direct consequence of our proof, that if we have only finite range of interactions,
that is f εlr (x, y)= 0 for |x − y| ≥ L , then it is enough to take lε ≥ L .

(ii) By Remark 2.3 the above Theorem 4.1 implies the usual convergence of minimizers in the spirit of
0-convergence.

Finally we prove an auxiliary result about convergence of boundary value problems that holds without
any continuity assumptions. This result will be useful to treat homogenization problems as in Section 5.
To this end we replace the discrete width lε by a macroscopic value η and then take first the limit when
ε→ 0 and let η→ 0 in a second step. Given η > 0 and A ∈AR(D), we set

∂Aη = {x ∈ A : dist(x, ∂A)≤ η}.

We let u0 be as before. Using a similar notation to that in Theorem 3.1 we define the quantities

mη
ε(u0, A)= inf{Eε(v, A) : v ∈ PCηε,u0

(L, A)},

m(u0, A)= inf{E(v, A) : v = u0 in a neighborhood of ∂A},

where the limit functional E is given (up to subsequences) by Theorem 3.2. Note that the mapping
η 7→ mη

ε(u0, A) is nondecreasing. Then we have the following weak version of Theorem 4.1.



CONTINUUM LIMIT AND STOCHASTIC HOMOGENIZATION OF DISCRETE FERROMAGNETIC THIN FILMS 521

Lemma 4.3. Let εn and E be as in Theorem 3.2. Then it holds that

lim
η→0

lim inf
n

mη
εn
(u0, A)= lim

η→0
lim sup

n
mη
εn
(u0, A)= m(u0, A).

Proof. First note that by monotonicity the limits for η→ 0 are well-defined. Moreover, by the first
assumption in (4-21) we have that mη

ε(u0, A) is equibounded. Now for any n ∈ N let un ∈ PCηεn,u0(L, A)
be such that mη

εn (u0, A)= Eεn (un, A). By Lemma 2.4 we know that, up to a subsequence (not relabeled),
un→ u on A and by the assumptions on u0 it follows that u = u0 on ∂Aη. Extending u we can assume
that u is admissible in the infimum problem defining m(u0, A) and using Theorem 3.2 we obtain

m(u0, A)≤ E(u, A)≤ lim inf
n

Eεn (un, A)≤ lim inf
n

mη
εn
(u0, A).

Since η is arbitrary, we conclude that m(u0, A)≤ limη→0 lim infn mη
εn (u0, A).

In order to prove the remaining inequality, given γ > 0 we let u ∈ BV(A,S) be such that u = u0 in a
neighborhood of ∂A and E(u, A)≤ m(u0, A)+ γ . Now let un : εL→ S be a recovery sequence for u.
Repeating the argument for the upper bound in Theorem 4.1, given δ > 0 we can modify un to a function
ūn ∈ PCηεn,u0(L, A) for some η = η(δ) > 0 such that

lim sup
n

Eεn (ūn, A)≤ E(u, A)+ δ.

By the choice of u we obtain

lim
η→0

lim sup
n

mη
εn
(u0, A)≤ lim sup

n
Eεn (ūn, A)+ δ ≤ m(u0, A)+ γ + δ.

The claim now follows letting first δ→ 0 and then γ → 0. �

5. Homogenization results for stationary lattices

We now replace the deterministic lattice L by a random point set. In what follows we introduce the
probabilistic framework. To this end let (�,F,P) be a probability space with a complete σ -algebra F.

Definition 5.1. We say that a family (τz)z∈Zk , τz :�→�, is an additive group action on � if

τz1+z2 = τz2 ◦ τz1 for all z1, z2 ∈ Zk.

Such an additive group action is called measure preserving if

P(τz B)= P(B) for all B ∈ F, z ∈ Zk.

Moreover (τz)z∈Zk is called ergodic if, in addition, for all B ∈ F we have the implication

(τz(B)= B for all z ∈ Zk) =⇒ P(B) ∈ {0, 1}.

For general m ∈N we denote by [a, b) := {x ∈Rm
: ai ≤ xi < bi for all i} the m-dimensional coordinate

parallelepiped with opposite vertices a and b, and we set Im = {[a, b) : a, b ∈ Zm, a 6= b}. Next, we
introduce the notion of regular families and discrete subadditive stochastic processes:
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Definition 5.2. Let {In} ⊂ Im be a family of sets. Then {In} is called regular if there exists another family
{I ′n} ⊂ Im and a constant C > 0 such that

(i) In ⊂ I ′n for all n,

(ii) I ′n1
⊂ I ′n2

whenever n1 < n2,

(iii) 0<Hm(I ′n)≤ C Hm(In) for all n.

Moreover, if {I ′n} can be chosen such that Rm
=
⋃

n I ′n , then we write limn→∞ In = Rm.

Definition 5.3. A function µ : Im→ L1(�) is said to be a discrete subadditive stochastic process if the
following properties hold P-almost surely:

(i) For every I ∈ Im and for every finite partition (Ij ) j∈J ⊂ Im of I we have

µ(I, ω)≤
∑
j∈J

µ(Ij , ω).

(ii) inf
{
(Hm(I ))−1

∫
�
µ(I, w) dP(ω) : I ∈ Im

}
>−∞.

One of the key ingredients for our stochastic homogenization result will be the following pointwise
ergodic theorem; see Theorem 2.7 in [Akcoglu and Krengel 1981].

Theorem 5.4. Let µ : Im→ L1(�) be a discrete subadditive stochastic process and let In be a regular
family in Im . If µ is stationary with respect to a measure-preserving group action (τz)z∈Zm , that is,

for all I ∈ Im, z ∈ Zm, µ(I + z, ω)= µ(I, τzω) almost surely,

then there exists µ∞ :�→ R such that, for P-almost every ω,

lim
n→+∞

µ(In, ω)

Hm(In)
= µ∞(ω).

The statement is written for a generic m since in this section we will use Theorem 5.4 for m = k− 1,
while in the next one we use it for m = k. We require some geometric and probabilistic properties of the
random point set.

Definition 5.5. A random variable L :�→ (Rd)N, ω 7→L(ω)= {L(ω)i }i∈N, is called a stochastic lattice.
We say that L is a thin admissible lattice if L(ω) is a thin admissible lattice in the sense of Definition 2.1
and the constants M, r , R can be chosen independent of ω P-almost surely. The stochastic lattice L is said
to be stationary if there exists a measure-preserving group action (τz)z∈Zk on � such that, for P-almost
every ω ∈�,

L(τzω)= L(ω)+ z.

If in addition (τz)z∈Zk is ergodic, then L is called ergodic, too.

In order to prove a homogenization result we make the following structural assumption:
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Hypothesis 2. There exist functions fnn, flr : R
k
×R2(d−k)

→ [0,+∞) such that, setting 1k(x, y) =
(y1− x1, . . . , yk − xk, xk+1, yk+1, . . . , xd , yd), it holds that

f εnn(x, y)= fnn(1k(x, y)), f εlr (x, y)= flr (1k(x, y)).

Note that nearest-neighbor and long-range interaction coefficients are deterministic, but the set of
nearest neighbors becomes now random. In the following we let Eε(ω) be the discrete energy defined in
the previous section, with the stochastic lattice L(ω) in place of L. As a general rule we will replace L
by ω to indicate the dependence on the stochastic lattice L(ω).

In view of Theorem 3.1 and Lemma 4.3 we can further characterize the 0-limits of the family Eε(ω)
by investigating the quantities mη

ε(u0, Q) for suitable oriented cubes and u0 = ui j
x,ν . Due to the decay

assumptions of Hypothesis 1 it will be enough to consider truncated interactions. To this end, for fixed
L ∈ N we will replace the long-range coefficients by

f L
lr (x, y) := flr (1k(x, y))1|x−y|≤L

and denote the corresponding energy by E L
ε (ω)(u, A). By Remark 4.2 the 0-limit of the truncated

energies is characterized by the minimum problem defined below: for si , sj ∈ S, ν ∈ Sk−1 and a cube
Qν(x, ρ) we set

mη,L
1 (ω)(ui j

x,ν, Qν(x, ρ)) := inf
{

E L
1 (ω)(u, Qν(x, ρ)) : u ∈ PCη1,ui j

x,ν
(ω, Qν(x, ρ))

}
. (5-29)

The following technical auxiliary result will be used several times.

Lemma 5.6. Let Q = Qν(z, ρ)⊂ Rk be a cube and let {Qn = Qν(zn, ρn)}n be a finite family of disjoint
cubes with the following properties:

(i) minn ρn ≥ 4L.

(ii) zn − z1 ∈ {ν}
⊥.

(iii) dist(z1, {ν}
⊥
+ z)≤ 1

4 minn ρn .

(iv)
⋃

n Qn ⊂ Q.

(v) Either dist
(
∂
⋃

n Qn, ∂Q
)
> η or z1− z ∈ {ν}⊥.

Then there exists C = CL > 0 such that for all η ≥ L ,

mη,L
1 (ω)(ui j

z,ν, Q)≤
∑

n

mη,L
1 (ω)(ui j

zn,ν
, Qn)+CHk−1

((
Q\

⋃
n

Qn

)
∩ ({ν}⊥+ z)

)
+C

∑
n

(
Hk−2((∂Qn\∂Q)∩ ({ν}⊥+ z1)

)
+Hk−1(∂Qn ∩ Sν(z, z1))

)
,

where Sν(z, z1) is the infinite (possibly, flat) stripe enclosed by the two hyperplanes {ν}⊥+z and {ν}⊥+z1.

Proof. During this proof, given y ∈ Rk, we denote by Pν,y the projection onto the affine space {ν}⊥+ y.
For each n let un be a minimizer for the problem in (5-29) with Qν(x, ρ) = Qn . By assumptions (ii)
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and (v), the function v : L(ω)→ S defined as

v(x)=
{

un(x) if Pk(x) ∈ Qn for some n,

ui j
z,ν(Pk(x)) otherwise

is well-defined and belongs to PCη
1,ui j

z,ν
(ω, Q). For x, y ∈ L(ω)∩ Q with |x − y| ≤ L , we say that

• (I) holds if Pk(x) ∈ Qn and Pk(y) ∈ Qm for n 6= m or if Pk(x), Pk(y) ∈ ∂Qn ,

• (II) holds if Pk(x) ∈ Q\
⋃

n Qn and Pk(y) ∈ Qn for some n.

By (iv) and Hypothesis 1 we can estimate

mη,L
1 (ω)(ui j

z,ν, Q)≤ E L
1 (ω)(v, Q)

≤

∑
n

mη,L
1 (ω)(ui j

zn,ν
, Qn)+E L

1 (ω)
(
v, Q\

⋃
n

Qn

)
+C

∑
|x−y|≤L

(I) or (II) hold

|v(x)−v(y)|. (5-30)

We start with estimating the contribution of x, y ∈ Q\
⋃

n Qn . Suppose v(x) 6= v(y). Then Pk(x) and
Pk(y) lie on different sides of the hyperplane {ν}⊥+ z. Then it holds true that Pν,z(Pk(x)) ∈ Q\

⋃
n Qn;

otherwise assumptions (i) and (iii) would imply

L ≥ |Pk(x)− Pk(y)| ≥ |Pk(x)− Pν,z(Pk(x))| ≥ 1
2ρn −

1
4ρn ≥ 2L .

Thus dist
(
Pk(x), (Q\

⋃
n Qn)∩ ({ν}

⊥
+ z)

)
≤ L and, using the properties of Definition 2.1, it follows

that
E L

1 (ω)
(
v, Q\

⋃
n

Qn

)
≤ CHk−1

((
Q\

⋃
n

Qn

)
∩ ({ν}⊥+ z)

)
. (5-31)

Next we have to control the interactions in Case (I). Given such x, y with |x− y| ≤ L , we know that by the
definition of v, the boundary conditions on the smaller cubes and (ii) that v(x)= ui j

z1,ν(Pk(x)) and v(y)=
ui j

z1,ν(Pk(y)), so that if they contribute to the energy we conclude from assumption (ii) that Pk(x) and Pk(y)
must lie on different sides of the hyperplane {ν}⊥+z1. We deduce that |Pν,z1(Pk(x))−Pk(x)|≤ L . Since by
(iv) the segment [Pν,z1(Pk(x)), Pν,z1(Pk(y))] intersects the (k−2)-dimensional set (∂Qn\∂Q)∩({ν}⊥+z1),
it follows that

dist
(
Pk(x), (∂Qn\∂Q)∩ ({ν}⊥+ z1)

)
≤ 2L .

Again, by Definition 2.1 and the above inequality we derive the estimate∑
|x−y|≤L
(I) holds

|v(x)− v(y)| ≤ C
∑

n

Hk−2((∂Qn\∂Q)∩ ({ν}⊥+ z1)
)
. (5-32)

It remains to estimate the contributions coming from Case (II). For such x, y with |x − y| ≤ L , due
to the boundary conditions on the smaller cubes, a positive energy contribution implies ui j

z,ν(Pk(x)) 6=
ui j

z1,ν(Pk(y)). Thus the segment [Pk(x), Pk(y)] intersects ∂Qn in (at least) one point xn and also Sν(z, z1)

in (at least) one point xS . Denote by xn,S the projection of xS onto the facet of the cube Qn containing xn .
Since this facet cannot be parallel to {ν}⊥ by (i) and (iii), it holds that xn,S ∈ ∂Qn ∩ Sν(z, z1) and

|Pk(x)− xn,S| ≤ |Pk(x)− xS| + |xS − xn,S| ≤ L + |xS − xn| ≤ 2L ,
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which yields the estimate
dist(Pk(x), ∂Qn ∩ Sν(z, z1))≤ 2L . (5-33)

This set may not be (k−1)-dimensional in the second possibility of (v). In this case one can bound the
interactions by the right-hand side of (5-31). Otherwise, using (5-33) we obtain the estimate∑

|x−y|≤L
(II) holds

|v(x)− v(y)| ≤ C
∑

n

Hk−1(∂Qn ∩ Sν(z, z1)). (5-34)

In any case the claim now follows from (5-30), (5-31), (5-32) and (5-34). �

Remark 5.7. Lemma 5.6 still holds if we replace cubes by k-parallelepipeds of the type Iν(z, {ρm}m)=

z+
{

x ∈Rk
: |〈x, νm〉|<

1
2ρm

}
. Then the cubes Qn are replaced by the collection In = Iν(zn, {ρ

n
m}m) and

in the assumptions (i) and (iii) we have to replace ρn by minm ρ
n
m .

The next theorem is the main result of this section.

Theorem 5.8. Let L be a stationary, thin admissible stochastic lattice and let fnn and flr satisfy Hypothe-
ses 1 and 2. For P-almost every ω and for all si , sj ∈ S and ν ∈ Sk−1 there exists

φhom(ω; si , sj , ν) := lim
η→0

lim sup
t→+∞

1
tk−1 inf

{
E1(ω)(u, Qν(0, t)) : u ∈ PCηt

1,ui j
0,ν
(ω, Qν(0, t))

}
.

The functionals Eε(ω) 0-converge with respect to the convergence of Definition 2.2 to the functional
Ehom(ω) : L1(D,Rq)→ [0,+∞] defined by

Ehom(ω)(u)=
{∫

Su
φhom(ω; u+, u−, νu) dHk−1 if u ∈ BV(D,S),

+∞ otherwise.

If L is ergodic, then ω 7→ φhom(ω, si , sj , ν) is almost-surely constant.

Proof. Fix any sequence ε→ 0. According to Theorem 3.2, for all ω ∈� such that L(ω) is admissible,
there exists a (ω-dependent) subsequence εn such that

0- lim
n

Eεn (ω)(u, A)=
∫

Su∩A
φ(ω; x, u+, u−, ν) dHk−1

for all u ∈ BV(D,S) and every A ∈AR(D). According to Theorem 3.1 and Lemma 4.3, for any x ∈ D,
si , sj ∈ S and ν ∈ Sk−1 it holds that

φ(ω; x, si , sj , ν)= lim sup
ρ→0

1
ρk−1 m(ω)(ui j

x,ν, Qν(x, ρ))

= lim sup
ρ→0

1
ρk−1 lim

η→0
lim sup

n
mη
εn
(ω)(ui j

x,ν, Qν(x, ρ)).

If we change the variables via tn = ε−1
n and v(x)= u(t−1

n x), the above characterization reads as

φ(ω; x, si , sj , ν)= lim sup
ρ→0

lim
η→0

lim sup
n

1
(ρtn)k−1 mηtn

1 (ω)(ui j
tn x,ν, tn Qν(x, ρ)).
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Except for the claim on ergodicity, due to the Urysohn property of 0-convergence (recall Remark 2.3)
it is enough to show that for a set of full probability the limit in ρ can be neglected and the remaining
limits do not depend on x or the subsequence tn . We divide the proof into several steps.

Step 1: truncating the range of interactions. First we show that it is enough to consider the case of finite
range interactions. We argue that it is enough to prove that there exists φL

hom(ω; ν) and a set �L of full
probability such that for allω∈�L , x ∈D, every cube Qν(x, ρ) and every sequence tn→+∞ it holds that

φL
hom(ω; si , sj , ν)= lim

η→0
lim sup

n

1
(ρtn)k−1 mηtn,L

1 (ω)(ui j
tn x,ν, tn Qν(x, ρ)), (5-35)

where mηtn,L
1 (ω) is defined in (5-29). Indeed, if (5-35) is proven, then for all ω ∈

⋂
L �L we find a

configuration vL
n : L(ω)→ S with the correct boundary conditions (extended to the whole space) that

minimizes E L
1 (ω)( · , tn Qν(x, ρ)) in (5-29). Using Lemma 2.7 we obtain the estimate

0≤
mηtn

1 (ω)(ui j
tn x,ν, tn Qν(x, ρ))−mηtn,L

1 (ω)(ui j
tn x,ν, tn Qν(x, ρ))

(ρtn)k−1

≤
E1(ω)(v

L
n , tn Qν(x, ρ))− E L

1 (ω)(v
L
n , tn Qν(x, ρ))

(ρtn)k−1

≤
C

(ρtn)k−1

∑
2|ξ |>L

Jlr (|ξ̂ |)|ξ |
∑

(x,y)∈NN (ω)
x,y∈(tn Qν(x,ρ))3(R+M)

fnn(x, y, vL
n (x), v

L
n (y)).

The inner sum can be bounded by the energy plus interactions close to ∂tn Qν(x, ρ). Due to the boundary
conditions, these are of order (ρtn)k−2. Using the trivial a priori bound mη

1(ω)(u
i j
tn x,ν, tn Qν(x, ρ)) ≤

C(ρtn)k−1 we deduce that

0≤
mηtn

1 (ω)(ui j
tn x,ν, tn Qν(x, ρ))−mηtn,L

1 (ω)(ui j
tn x,ν, tn Qν(x, ρ))

(ρtn)k−1 ≤ C
∑

2|ξ |>L

Jlr (|ξ̂ |)|ξ |.

Due to the integrability assumption of Hypothesis 1, we infer that φL
hom(ω; si , sj , ν) is a Cauchy sequence

with respect to L and moreover, in combination with (5-35), we deduce that

lim
L
φL

hom(ω; si , sj , ν)= lim
η→0

lim sup
n

1
(ρtn)k−1 mηtn

1 (ω)(ui j
tn x,ν, tn Qν(x, ρ))

exists and is independent of x, ρ and the sequence tn . Therefore it remains to show (5-35). For clarity
of the argument we first consider an auxiliary problem where we replace the varying boundary width ηtn
by L . As an intermediate result we show that there exists

φL
i j (ω; ν)= lim

n

1
(ρtn)k−1 mL ,L

1 (ω)(ui j
tn x,ν, tn Qν(x, ρ)) (5-36)

and this limit does not depend on x, ρ or the sequence tn .
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Step 2: existence of φL
i j for x = 0 and rational directions. Fix L ∈N. We have to show that, for P-almost

every ω ∈� and every si , sj ∈ S and ν ∈ Sk−1, there exists the limit in (5-36). We start with the case x = 0
and ν ∈ Sk−1

∩Qk. For this choice we can use the subadditive ergodic theorem in (k−1)-dimensions.

Substep 2.1: defining a stochastic process. We need a few preliminaries: given ν ∈ Sk−1 there exists an
orthogonal matrix Aν ∈ Rk×k such that Aνek = ν, the mapping ν 7→ Aνei is continuous on Sk−1

\{−ek}

and if ν ∈Qk then Aν ∈Qk×k (it suffices to consider the orthogonal transformation that keeps the vector
ν + ek fixed and reverses the orthogonal complement). We now fix a rational direction ν ∈ Sk−1

∩Qk.
Then there exists an integer N = N (ν) > 4L such that N Aν(z, 0) ∈ Zk for all z ∈ Zk−1. We now define a
discrete stochastic process (see Definition 5.3). To I = [a1, b1)× · · ·× [ak−1, bk−1) ∈ Ik−1 we associate
the set Q I ⊂ Rk defined by

Q I := N Aν
(
int I ×

(
−

1
2 smax,

1
2 smax

))
,

where smax =maxi |bi −ai | is the maximal side length. Then we define the process µ : Ik−1→ L1(�) as

µ(I, ω) := inf
{

E L
1 (ω)(v, Q I ) : v ∈ PCL

1,ui j
0,ν
(ω, Q I )

}
+CµHk−2(∂ I ), (5-37)

where Cµ is a constant to be chosen later. We first have to show that µ(I, · ) is an L1(�)-function. Testing
the L(ω)-interpolation of u0,ν as a candidate in the infimum problem, one can use the growth assumptions
from Hypothesis 1 and Definition 2.1 to show that there exists a constant C > 0 such that

µ(I, ω)≤ C N k−1Hk−1(I ) (5-38)

for all I ∈ Ik−1 and almost every ω ∈� so that µ(I, · ) is essentially bounded. F-measurability can be
proven similar to [Alicandro et al. 2015, Lemma A.2].

We continue with proving lower-dimensional stationarity of the process. Let z∈Zd−1. Note that Q I−z=

Q I − zN
ν , where zN

ν := N Aν(z, 0)∈ {ν}⊥∩Zk. By the stationarity of L it holds that v ∈PCL
1,ui j

0,ν
(ω, Q I−z)

if and only if u( · )= v( · − zN
ν ) ∈ PCL

1,ui j
0,ν
(τzN

ν
ω, Q I ). Moreover, by the definition of nearest neighbors,

Hypothesis 2 and again the stationarity of L, we obtain E L
1 (ω)(v, Q I−z) = E L

1 (τzN
ν
ω)(u, Q I ). By the

shift invariance of the Hausdorff measure we conclude that µ(I − z, ω)= µ(I, τzN
ν
ω). Setting τ̃z = τ−zN

ν

we obtain a measure-preserving group action on Zk−1 such that µ(I, τ̃zω)= µ(I + z)(ω), which yields
stationarity.

To show subadditivity, let I ∈ Ik−1 and let {In}n ⊂ Ik−1 be a finite disjoint family such that I =
⋃

n In .
Note that Q I and the family {Q In }n fulfill the assumptions of Lemma 5.6 (in the sense of Remark 5.7).
We conclude

mL ,L
1 (ω)(ui j

0,ν, Q I )≤
∑

n

mL ,L
1 (ω)(ui j

0,ν, Q In )+C
∑

n

Hk−2((∂Q In\∂Q I )∩ {ν}
⊥).

Applying the definition of µ(I, ω) yields

µ(I, ω)= mL ,L
1 (ω)(ui j

0,ν, Q I )+CµHk−2(∂Q I ∩ {ν}
⊥)

≤

∑
n

µ(In, ω)+ (C −Cµ)
∑

n

Hk−2((∂Q In\Q I )∩ {ν}
⊥),
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which yields subadditivity if we choose Cµ > C . Property (ii) in Definition 5.3 is trivial since µ(I, ω) is
always nonnegative. By Theorem 5.4 there exists φL

i j (ω; ν) such that almost surely, for rational directions
ν ∈ Sk−1, it holds that

φL
i j (ω; ν)= lim

n→+∞

1
(2Nn)k−1 mL ,L

1 (ω)(ui j
0,ν, Qν(0, 2Nn)),

where we used that the term CµHk−2(∂ I ) is negligible for the limit.

Substep 2.2: from integer sequences to all sequences. Next we consider an arbitrary sequence tn→+∞.
From the previous step we know that

φL
i j (ω; ν)= lim

n→+∞

1
(2Nbtnc)k−1 mL ,L

1 (ω)(ui j
0,ν, Qν(0, 2Nbtnc))

exists almost surely. To shorten notation we set 3n = 2Ntn and λn = 2Nbtnc. For n large enough, we
can apply Lemma 5.6 to the cube Qν(0,3n) and singleton family {Qν(0, λn)} and obtain

mL ,L
1 (ω)(ui j

0,ν, Qν(0,3n))

≤ mL ,L
1 (ω)(ui j

0,ν, Qν(0, λn))+Hk−2(∂(Qν(0, λn))∩ {ν}
⊥
)
+CHk−1((Qν(0,3n)\Qν(0, λn))∩ {ν}

⊥
)

≤ mL ,L
1 (ω)(u0,ν, Qν(0, λn))+C3k−2

n ,

which yields

lim sup
j→+∞

1
3k−1

n
mL ,L

1 (ω)(ui j
0,ν, Qν(0,3n))≤ φ

L
i j (ω; ν). (5-39)

Similarly, one can prove that

φL
i j (ω; ν)≤ lim inf

n→+∞

1
3k−1

n
mL ,L

1 (ω)(ui j
0,ν, Qν(0,3n)). (5-40)

Combining (5-39) and (5-40) yields almost surely the existence of the limit for arbitrary sequences.

Substep 2.3: shift invariance in the probability space. Up to neglecting a countable union of null sets,
we may assume that the limit defining φL

i j (ω; ν) exists for all rational directions ν. We next prove that
the function ω 7→ φL

i j (ω; ν) is invariant under the entire group action {τz}z∈Zk . This will be important
to treat the ergodic case but also for the shift invariance in the physical space. Given z ∈ Zk there exists
R = R(L , z) > 0 such that for all t > 0

Qν(0, t)⊂ Qν(−z, R+ t), 2L ≤ dist
(
∂Qν(0, t), ∂Qν(−z, R+ t)

)
. (5-41)

Similar to the stationarity of the stochastic process we have

φL
i j (τzω; ν)≤ lim sup

t→+∞

1
(R+t)k−1 mL ,L

1 (ω)(ui j
−z,ν, Qν(−z, R+ t))

= lim sup
t→+∞

1
tk−1 mL ,L

1 (ω)(ui j
−z,ν, Qν(−z, R+ t)).
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Due to (5-41) we can apply Lemma 5.6 to the cube Qν(−z, R+ t) and the singleton family {Qν(0, t)}
and deduce that there exists a constant C = C(R, z) such that

mL ,L
1 (ω)(ui j

−z,ν, Qν(−z, R+ t))≤ mL ,L
1 (ω)(ui j

0,ν, Qν(0, t))+Ctk−2.

Hence we get φL
i j (τzω; ν) ≤ φ

L
i j (ω; ν). The other inequality can be proven similarly so that the limit

indeed exists (which we implicitly assumed with our notation) and, for P-almost every ω ∈�,

φL
i j (τzω; ν)= φ

L
i j (ω; ν). (5-42)

Step 3: shift invariance in the physical space. In this step we prove the existence of the limit defining
φL

i j (ω; ν) when we blow up a cube not centered in the origin. We further show that it agrees with the
one already considered. We start with considering a cube Qν(x, ρ) with rational direction ν, x ∈ Zk

\{0}
and ρ ∈Q. Given ε > 0 and N ∈ N (not the same one of Step 2.1) we define the events

QN :=
{
ω ∈� : sup

t≥N/2

∣∣(tρ)1−kmL ,L
1 (ω)(ui j

0,ν, Qν(0, tρ))−φL
i j (ω; ν)

∣∣≤ ε}.
By Step 2 we know that the function 1QN converges almost surely to 1� when N →+∞. Denote by
Jx the σ -algebra of invariant sets for the measure-preserving map τx . Fatou’s lemma for the conditional
expectation yields

1� = E[1�|Jx ] ≤ lim inf
N→+∞

E[1QN |Jx ]. (5-43)

By (5-43), given δ > 0, almost surely we find N0 = N0(ω, δ) such that

1≥ E[1QN0
|Jx ](ω)≥ 1− δ.

Now due to Birkhoff’s ergodic theorem, almost surely, there exists n0=n0(ω, δ) such that, for any n≥ 1
2 n0,∣∣∣∣1n

n∑
l=1

1QN0
(τlxω)− E[1QN0

|Jx ](ω)

∣∣∣∣≤ δ.
Note that the set we exclude will be a countable union of null sets provided ε ∈Q.

For fixed n ≥max{n0, N0} we denote by R the maximal integer such that for all l = n+ 1, . . . , n+ R
we have τlx(ω) /∈QN0 . In order to bound R, let ñ be the number of ones in the sequence {1QN0

(τlx(ω))}
n
l=1.

By the definition of R we have

δ ≥

∣∣∣∣ ñ
n+ R

− E[1QN0
|Jx ](ω)

∣∣∣∣= ∣∣∣∣1− E[1QN0
|Jx ](ω)+

ñ− n− R
n+ R

∣∣∣∣≥ R+ n− ñ
n+ R

− δ.

Since n− ñ ≥ 0 and without loss of generality δ ≤ 1
4 , this provides an upper bound by R ≤ 4nδ.

So for any n ≥max{n0, N0} and R̃ = 6nδ, we find ln ∈ [n+ 1, n+ R̃] such that τln x(ω) ∈QN0 . Then
by (5-42) and stationarity we have for all t ≥ 1

2 N0 that∣∣(tρ)1−kmL ,L
1 (ω)(ui j

−ln x,ν, Qν(−lnx, tρ))−φL
i j (ω; ν)

∣∣≤ ε. (5-44)
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Define βn = n + cLρ
−1
|x |(ln − n), where cL ∈ N is chosen such that Qν(−nx, nρ) ⊂ Qν(−lnx, βnρ)

and dist
(
∂Qν(−nx, nρ), ∂Qν(−lnx, βnρ)

)
> L . Observe that such cL exists as ln − n ≥ 1. Then each

face of the cube Qν(−nx, nρ) has at most distance (βn − n)ρ = cL |x |(ln − n) to the corresponding face
in Qν(−lnx, βnρ). Then, for n large enough, we can apply Lemma 5.6 to the cube Q(−lnx, βnρ) and
the singleton family {Qν(−nx, nρ)} to obtain

mL ,L
1 (ω)(ui j

−ln x,ν, Qν(−lnx, βnρ))

(βnρ)k−1 ≤
mL ,L

1 (ω)(ui j
−nx,ν, Qν(−nx, nρ))
(βnρ)k−1 +C R̃(βnρ)

−1

≤
mL ,L

1 (ω)(ui j
−nx,ν, Qν(−nx, nρ))
(nρ)k−1 + 6Cδ. (5-45)

On the other hand we can define θn = n − c′Lρ
−1
|x |(ln − n) for a suitable c′L ∈ N and deduce from a

similar reasoning that

mL ,L
1 (ω)(ui j

−nx,ν, Qν(−nx, nρ))
(nρ)k−1 ≤

mL ,L
1 (ω)(ui j

−ln x,ν, Qν(−lnx, θnρ))

(θnρ)k−1 + 6Cδ. (5-46)

Now if δ is small enough (depending only on x, L and ρ) we have βn ≥ θn ≥
1
2 n ≥ 1

2 N0. Combining
(5-45),(5-46) and (5-44) we infer

lim sup
n→+∞

∣∣∣∣mL ,L
1 (ω)(ui j

−nx,ν, Qν(−nx, n))
nk−1 −φL

i j (ω; ν)

∣∣∣∣≤ 6Cδ+ ε,

which yields the claim in (5-36) for Qν(x, ρ) with x ∈ Zk and rational ν and ρ. The extension to arbitrary
sequences tn→+∞ (and thus to rational centers x) can be achieved again by Lemma 5.6, comparing
first the minimal energy on the two cubes Qν(btncx, btncρ) and Qν(btncx, tnρ), similar to Substep 2.2,
and then the energy on the latter cube with the one on Qν(tnx, tnρ), as in Substep 2.3. Eventually the
convergence of irrational ρ follows from the estimate

mL ,L
1 (ω)(ui j

tn x,ν, Qν(tnx, tnρ))≤ mL ,L
1 (ω)(ui j

tn x,ν, Qν(tnx, tn(ρ− δ))+Ctnδ(tnρ)k−2,

which is a consequence of Lemma 5.6 applied to the cube Qν(tnx, tnρ) and {Qν(tnx, tn(ρ− δ))}, when
one neglects lower-order terms. Choosing 0< δl→ 0 such that ρ− δl ∈Q then yields

lim sup
n

mL ,L
1 (ω)(ui j

tn x,ν, Qν(tnx, tnρ))
(tnρ)k−1 ≤ φL

i j (ω; ν).

Using the same argument for the cube Qν(tnx, tn(ρ + δ)) and the family {Qν(tnx, tnρ)}, we find that
the limit exists and agrees with φL

i j (ω; ν). Finally, for irrational centers we can again use a perturbation
argument based on Lemma 5.6 as we did for proving (5-45) and (5-46). We omit the details.

Step 4: from rational to irrational directions. Now we extend the convergence from rational directions to all
ν ∈ Sk−1. As the argument is purely geometric similar to Lemma 5.6, we assume without loss of generality
that x = 0. First note that the set of rational directions is dense in Sk−1 (as the inverse of the stereographic
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projection maps rational points to rational directions). Given ν ∈ Sk−1 and a sequence tn→+∞ we define

φL
i j (ω; ν)= lim sup

n→+∞

1
tk−1
n

mL ,L
1 (ω)(ui j

0,ν, Qν(0, tn)),

φL
i j (ω; ν)= lim inf

n→+∞

1
tk−1
n

mL ,L
1 (ω)(ui j

0,ν, Qν(0, tn)).

Let ν ∈ Sk−1
\Qk. By the construction of the matrix Aν in Substep 2.1 we can assume that there exists

a sequence of rational directions νl such that Aνl → Aν . Therefore, given δ > 0 we find l0 ∈ N such that
for all l ≥ l0 the following properties hold:

(i) Qν(0, (1− 2δ))b Qνl (0, 1− δ)b Qν(0, 1).

(ii) 0< dH({ν}
⊥
∩ B2(0), {νl}

⊥
∩ B2(0))≤ δ.

For a fixed l ≥ l0 and n ∈ N, we let un,l : L(ω) → S be an admissible minimizer for the problem
mL ,L

1 (ω)(ui j
0,νl
, Qνl (0, (1− δ)tn)). We define a test function vn : L(ω)→ S setting

vn(x) :=
{

un,l(x) if x ∈ Qνl (0, (1− δ)tn),
u0,ν(x) otherwise.

Note that if Pk(x), Pk(y) ∈ Qν(0, tn)\Qνl (0, (1− δ)tl) are such that |x− y| ≤ L and vn(x) 6= vn(y), then
by the choice of l0 and (i), for l large enough we have

dist
(
Pk(x),

(
Qν(0, tn)\Qν(0, (1− 2δ)tn)

)
∩ {ν}⊥

)
≤ L . (5-47)

If Pk(x) ∈ Qν(0, tn)\Qνl (0, (1−δ)tn) and Pk(y) ∈ Qνl (0, (1−δ)tn) with |x− y| ≤ L and vn(x) 6= vn(y),
then, for l large enough one can show that by (ii) either Pk(x) or Pk(y) must lie in the cone

K(ν, νl)= {x ∈ Rk
: 〈x, ν〉 · 〈x, νl〉 ≤ 0}.

As the segment [Pk(x), Pk(y)] intersects ∂Qνl (0, (1− δ)tn), we conclude that

dist
(
Pk(x), (K(ν, νl)+ BL(0))∩ ∂Qνl (0, (1− δ)tn)

)
≤ L . (5-48)

By (i) it holds that vn ∈ PCL
1,ui j

0,ν
(ω, Qν(0, tn)) for n large enough. From (5-47), (5-48) and the choice

of l0 we deduce that for l large enough

mL ,L
1 (ω)(ui j

0,ν, Qν(0, tn)≤ mL ,L
1 (ω)

(
ui j

0,νl
, Qνn (0, (1− δ)tn)

)
+Cδtk−1

n .

Dividing the last inequality by tk−1
n and taking the lim sup as n→+∞, we deduce

φL
i j (ω; ν)≤ φ

L
i j (ω; νl)+Cδ.

Letting first l→+∞ and then δ→ 0 yields φL
i j (ω; ν) ≤ lim infl φ

L
i j (ω; νl). By a similar argument we

can also prove that lim supl φ
L
i j (ω; νl)≤ φ

L
i j (ω; ν). Hence, we get almost surely the existence of the limit

in (5-36) for all directions ν and the limit does not depend on x, ρ or the sequence tn .
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Step 5: proof of (5-35). We claim that φL
i j (ω; ν)=φ

L
hom(ω; si , sj , ν). By the preceding steps this concludes

the proof. First observe that by monotonicity it is enough to show that φL
hom(ω; si , sj , ν)≤ φ

L
i j (ω; ν). Let

tn→+∞ and fix a cube Qν(x, ρ). By a trivial extension argument, for η small enough (depending on ρ)
it holds that

mηtn,L
1 (ω)(ui j

tn x,ν, Q(tnx, tnρ))≤ mL ,L
1 (ω)(ui j

tn x,ν, Q(tnx, tnρ− ηtn))+Cηtk−1
n .

Dividing by (tnρ)k−1 and letting first n→+∞ and then η→ 0 we obtain the claim.
When the group action is ergodic, the additional statement in Theorem 5.8 follows from (5-42) since

in this case all the functions ω 7→ φL
i j (ω; ν) are constant and so is the pointwise limit when L→+∞. �

Remark 5.9. One can show that the surface tension can be obtained by one single limit procedure. Indeed,
referring to (4-22) and repeating Steps 1 and 5 of the proof of Theorem 5.8, it follows that

φhom(ω; si , sj , ν)= lim
t→+∞

1
tk−1 inf

{
E1(ω)(u, Qν(0, t)) : u ∈ PC l1/t

1,ui j
0,ν
(ω, Qν(0, t))

}
.

6. Volume constraints in the stationary case

In this section we will discuss the variational limit of the energies Eε(ω) when, for all i = 1, . . . , q , we
fix the number of lattice points where the configuration takes the value si . For general thin admissible
lattices this energy might not converge without passing to a further subsequence, so we treat only the case
of stationary lattices in the sense of Definition 5.5. In order to formulate the result, given A ∈AR(D) and
a family Vε = {Vi,ε}

q
i=1 ∈ Nq , we introduce the class

PCVε
ε (ω) :=

{
u : εL(ω)→ S : #{εx ∈ εL(ω)∩ P−1

k D : u(εx)= si } = Vi,ε
}
.

Beside the natural compatibility condition
∑

i Vi,ε=#(εL(ω)∩P−1
k D), we assume that for all i =1, . . . , q

there exists Vi > 0 such that

lim
ε→0

Vi,ε

#(εL∩ P−1
k D)

= Vi .

Note that we exclude the case Vi = 0 for some i . This case contains some nontrivial aspects which are
related to the concept of (B)-convexity studied in [Ambrosio and Braides 1990b]. Such conditions are
not necessarily satisfied by our discrete energies. Of course the extreme case Vi,ε = 0 for all ε > 0 can be
treated by changing the set S and thus the whole model.

The following lemma describes how the volume constraint behaves for sequences with finite energy.

Lemma 6.1. For P-almost all ω ∈� the following statement holds true: for all u ∈ BV(D,S) such that
there exists a sequence uε : εL(ω)→ S with uε→ u in the sense of Definition 2.2 and

sup
ε>0

Eε(ω)(uε)≤ C, lim
ε→0

#{εx ∈ εL(ω)∩ P−1
k D : uε(εx)= si }

#{εx ∈ εL(ω)∩ P−1
k D}

= V ′i ,

we have

|{u = si }| = V ′i |D|.
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Proof. Up to the transformation T (si )= ei we may assume that the vectors si form a basis. For ω ∈�
we consider the sequence of nonnegative Borel measures γε(ω) on D defined as

γε(ω)=
∑

z∈Pk(L(ω))∩D/ε

εk#(P−1
k (z)∩L(ω))δεz.

As γε(ω)(D)≤C |D|, up to subsequences we know that γε(ω) ∗⇀γ(ω) in the sense of measures. We now
identify the limit measure. To this end we define a discrete stochastic process γ : Ik→ L1(�) as

γ (I )(ω) :=
∑

y∈Pk(L(ω))∩I

#(P−1
k (y)∩L(ω))= #(x ∈ L(ω) : Pk(x) ∈ I ). (6-49)

It follows from (2-4) that γ (I ) is essentially bounded for every I ∈ Ik . In addition it can be checked that
γ (I ) is F-measurable; thus we infer that γ (I ) ∈ L∞(�). Upon redefining the group action as τ̃z = τ−z ,
the process γ is stationary and (sub)additive. By Theorem 5.4 there exists γ0(ω) such that for almost
every ω ∈� and all I ∈ Ik we have

lim
n→+∞

γ (nI )(ω)
nk |I |

= γ0(ω).

It is straightforward to extend this result to all sequences tn →+∞ and then to all cubes in Rk by a
continuity argument. Now let a, b ∈ Rk and let Q = [a, b). Then by definition

lim
ε→0

γε(ω)(Q)= lim
ε→0

∑
z∈Pk(L(ω))∩(1/ε)Q

εk#(P−1
k (z)∩L(ω))= γ0(ω)|Q|. (6-50)

Given any open set A ∈A(D), for δ > 0 we consider the following interior approximation:

Aint(δ)=
⋃

z∈δZk :z+[0,δ)k⊂A

z+ [0, δ)k.

It can be checked by monotone convergence that limδ→0 |A(δ)| = |A|. By (6-50) and additivity we obtain

lim inf
ε→0

γε(ω)(A)≥ lim inf
ε→0

γε(ω)(A(δ))= γ0(ω)|A(δ)|.

Letting δ→ 0 we obtain lim infε γε(ω)(A)≥ γ0(ω)|A|. By the portmanteau theorem we conclude that
γ (ω)(B)= γ0(ω)|B| for all Borel sets B ⊂ D. In particular the whole sequence converges in the sense
of measures. On the other hand, if A ∈A(D) is such that |∂A| = 0, then the outer approximation

Aout(δ)=
⋃

z∈δZk :z+[0,δ)k∩A 6=∅

z+ [0, δ)k

also fulfills limδ→0 |A(δ)| = |A|; hence

lim
ε→0

γε(ω)(A)= γ0(ω)|A| (6-51)

for all A ∈A(D) such that |∂A| = 0. Given now δ > 0, we take any polyhedral function uδ ∈BVloc(R
k,S)

such that ‖u− uδ‖L1(D) ≤ δ. As uδ is Borel-measurable, we have∫
D

Puε dγε(ω)=
∫

D
(Puε − uδ) dγε(ω)+

∫
D

uδ dγε(ω).
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Since uδ is a polyhedral function, we can use (6-51) to obtain

lim
ε→0

∫
D

uδ dγε(ω)= γ0(ω)

∫
D

uδ dx . (6-52)

Concerning the first term, by (2-2) and the regularity of Suδ and ∂D we have∣∣∣∣∫
D
(Puε − uδ) dγε(ω)

∣∣∣∣≤ C
∑

z∈Pk(L(ω))∩D/ε

εk
|Puε(εz)− uδ(εz)|. (6-53)

Now using the fact that uε has equibounded energy, one can reason as in the proof of Lemma 2.5 to show
that

lim sup
ε→0

∑
z∈Pk(L(ω))∩D/ε

εk
|Puε(εz)− uδ(εz)| ≤ C‖u− uδ‖L1(D) ≤ Cδ.

Combining the above inequality with (6-52) and (6-53) we finally obtain by the arbitrariness of δ that

lim
ε→0

∫
D

Puε dγε(ω)= γ0(ω)

∫
D

u dx = γ0(ω)

q∑
i=1

si |{u = si }|

On the other hand, plugging in the definition and using again (6-51), it holds

lim
ε→0

∫
D

Puε dγε(ω)= lim
ε→0

q∑
i=1

si #
{
εx ∈ εL(ω)∩ D : uε(εx)=si

}
εk
=

q∑
i=1

si V ′i |D|γ0(ω).

Since we assumed the si form a basis, we conclude the proof. �

In order to include the volume constraint in the functional, for almost every ω ∈ � we introduce
E Vε
ε (ω) : PCε(ω)→ [0,+∞] as

E Vε
ε (ω)(u)=

{
Eε(ω)(u) if u ∈ PCVε

ε (ω),
+∞ otherwise.

With the help of Lemma 6.1 we can now prove the following theorem.

Theorem 6.2. Let L be a stationary stochastic lattice and let fnn and flr satisfy Hypotheses 1 and 2. For
P-almost every ω the functionals E Vε

ε (ω) 0-converge with respect to the convergence of Definition 2.2 to
the functional E V

hom(ω) : L
1(D,Rq)→ [0,+∞] defined by

E V
hom(ω)(u)=

{∫
Su
φhom(ω; u+, u−, νu) dHk−1 if u ∈ BV(D,S) and |{u = si }| = Vi |D| for all i,

+∞ otherwise.

Proof. The lower bound follows from Theorem 5.8 and Lemma 6.1. In order to prove the upper bound,
for the moment assume that u ∈ BV(D,S) satisfies the volume constraint and that each level set {u = si }

contains an interior point. In particular, in each level set we find q disjoint open balls Bη(x l
i )b {u = si }

with η� 1. By Theorem 5.8 we can find a sequence uε : εL(ω)→ S such that uε converges to u in the
sense of Definition 2.2 and

lim
ε→0

Eε(ω)(uε)= Ehom(ω)(u). (6-54)



CONTINUUM LIMIT AND STOCHASTIC HOMOGENIZATION OF DISCRETE FERROMAGNETIC THIN FILMS 535

Repeating the argument used for proving Proposition 3.6, one can show that without loss of generality we
may assume that uε(εx)= si for all εx ∈ εL(ω)∩ Bη(x l

i ) and that uε has equibounded energy on a large
cube Q D containing D. For each i set Ṽi,ε = #{εx ∈ εL(ω)∩ P−1

k D : uε(εx)= si }. Applying Lemma 6.1
we deduce that

lim
ε→0

Ṽi,ε − Vi,ε

#{εx ∈ εL(ω)∩ P−1
k D}

= 0. (6-55)

We now adjust the sequence uε so that it belongs to PCVε
ε (ω). This will be done locally on the balls

Bη(x l
i ). First we change the values on Bη(x1

1) and Bη(x1
2) so that the sequence satisfies the constraint

for i = 1. In general, for i < q we change the sequence on Bη(x i
i ) and Bη(x i

i+1) so that it satisfies the
constraints for all j ≤ i . At the end the constraint for i = q follows by the compatibility assumption.
Each modification will be such that L1-convergence and convergence of the energies is conserved. We
will provide the construction only for the first step. In what follows we consider the case Ṽ1,ε > V1,ε. We
set hε = (Ṽ1,ε− V1,ε)

1/k. Up to modifying uε on a set of lattice points contained in the complement of
the union of the balls Bη(x l

i ) and with diverging cardinality much less than ε1−k, we may assume that
hε→+∞. Note that such a modification still yields a recovery sequence.

Observe that (6-55) and the properties of a thin admissible lattice imply

lim
ε→0

hεε = 0. (6-56)

We already know from the proof of Lemma 6.1 that, almost surely, we can write

qω(x1
1 , hε) := #

{
x ∈ L(ω) : Pk(x) ∈ Qe1(x

1
1 , γ0(ω)

−1hε)
}
= hk

ε + hk−1
ε γε

for some sequence γε = γε(ω, x1
1) such that limε→0(γε/hε)= 0. In the following we assume that γε ≤ 0,

but with a similar argument we can also treat the case γε > 0. As L(ω) is thin admissible in the sense of
Definition 2.1, one can show that for some appropriate c = c(R) > 0 it holds true that

1
C

hk−1
ε ≤ qω(x0, hε + n+ c)− qω(x0, hε + n)≤ Chk−1

ε

for any 0≤ n ≤ hε. In particular, there exist nε =O(γε) and nonnegative equibounded cε such that

qω(x0, hε + nε)= hk
ε + cεhk−1

ε . (6-57)

Now choose any set Gε ⊂ Rd such that Pk Gε ⊂ Bη(x1
2) and #(Gε ∩L(ω))= cεhk−1

ε . To reduce notation,
set Qε := Qe1(x

1
1 , γ0(ω)

−1ε(hε + nε)). We define

ūε(εx)=


s2 if εPk(x) ∈ Qε,
s1 if εx ∈ Gε,
uε(εx) otherwise.

Note that by (6-56) we have Qε b Bη(x1
1) for ε small enough and therefore

#{εx ∈ εL(ω)∩ P−1
k D : ū(εx)=s1} = V1,ε.
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Again by (6-56) we still have ūε→ u in the sense of Definition 2.2. From Hypothesis 1 we deduce

Eε(ω)(ūε)≤ Eε(ω)(uε)+C
∑
ξ∈r ′Zd

M

Jlr (|ξ̂ |)#(Gε ∩ εL(ω))εk−1

+

∑
ξ∈r ′Zd

M

∑
α∈Rξε (D)

εPk([xα,xα+ξ ])∩∂Qε 6=∅

εk−1 fε(xα, xα+ξ , ūε(εxα), ūε(εxα+ξ )).

It remains to bound the last term since the second one vanishes by (6-56) and the integrability of Jlr . We
split the interactions according to (2-12). By Lemma 2.7 and Hypothesis 1, for ε small enough we have
by construction∑
|ξ |≤Lδ

∑
α∈Rξε (D)

εPk([xα,xα+ξ ])∩∂Qε 6=∅

εk−1 fε(xα, xα+ξ , ūε(εxα), ūε(εxα+ξ ))

≤ C
∑
|ξ |≤Lδ

Jlr (|ξ̂ |)|ξ |
∑

(x,y)∈NN (ω)
εx,εy∈Bη(x1

1 )

εk−1 fε(x, y, ūε(εx), ūε(εy))≤ CHk−1(∂Qε)≤ C(εhε)k−1, (6-58)

so that the left-hand side vanishes when ε→ 0. To control the remaining interactions, recall that uε has
finite energy on the larger cube Q D . Hence Lemma 2.7 and Hypothesis 1 yield∑
|ξ |>Lδ

∑
α∈Rξε (D)

εPk([xα,xα+ξ ])∩∂Qε 6=∅

εk−1 fε(xα, xα+ξ , ūε(εxα), ūε(εxα+ξ ))

≤ Cδ
∑

(x,y)∈NN (ω)
εx,εy∈Q D

εk−1 fε(x, y, ūε(εx), ūε(εy))

≤ Cδ
(
Eε(ω)(uε, Q D)+Hk−1(∂Qε)+ #(Gε ∩ εL(ω))εk−1)

≤ Cδ.

As δ > 0 was arbitrary, we infer from (6-54), (6-58) and (6-58) that

lim sup
ε→0

Eε(ω)(ūε)= lim sup
ε→0

Eε(ω)(uε)= Ehom(ω)(u).

The case when V ′ε ≤ Vε can be treated by an almost symmetric argument. Repeating this construction for
the remaining phases as described at the beginning of this proof, we obtain

0- lim sup
ε→0

E Vε
ε (ω)(u)= Ehom(ω)(u).

Now for a general u ∈ BV(D,S) such that |{u = si }| = Vi |D|, the statement follows by density. This
procedure is classical, see [Ambrosio and Braides 1990a], and therefore we omit the details. �

7. A model for random deposition

The general homogenization result proved in Section 5 describes only the qualitative phenomenon that
interfaces may form on the flat subspace. In this final section we investigate the asymptotic behavior of the
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limit energy as a function of the average thickness. To simplify matters, we consider a three-dimensional
to two-dimensional dimension-reduction problem in which magnetic particles are deposited with vertical
order on a two-dimensional flat substrate and interact via finite-range ferromagnetic interactions of
Ising-type, which means in particular that S = {±1}. We obtain information on the dependence of the
limit energy on the average thickness when the latter is very small or very large.

In order to model the substrate where the particles are deposited, we take a two-dimensional deterministic
lattice, which we choose for simplicity to be L0

= Z2
×{0}. We then consider an independent random

field {X p
i }i∈Z3 , where the X p

i are Bernoulli random variables with P(X p
i = 1)= p ∈ (0, 1) and, for fixed

M ∈ N, we define the random point set

LM
p (ω) :=

{
(i1, i2, i3) ∈ Z3

: 0≤ i3 ≤
∑M

k=1 X p
(i1,i2,k)(ω)

}
, (7-59)

which means that we successively deposit particles M times independently on the flat lattice L0 and stack
them over each other (see Figure 3). Note that the point set constructed in (7-59) is stationary with respect
to integer translations in Z2 and ergodic by the independence assumption. Given u : εLM

p (ω)→ {±1},
we consider an energy of the form

E p
ε,M(ω)(u, A)=

∑
x,y∈LM

p (ω)

P2(x),P2(y)∈A/ε

εc(x − y)|u(εx)− u(εy)|, (7-60)

where the interaction c : R3
→ [0,+∞) fulfills

(i) c(z)≤ C for all z ∈ R3,

(ii) c(z)= 0 if |z| ≥ L ,

(iii) c(z)≥ c0 > 0 if |z| = 1.

Remark 7.1. The coefficients above satisfy Hypothesis 2, but in general are not coercive, as required in
Hypothesis 1. However, the results obtained in the first part of this paper still hold true. This is due to the
vertical order of the deposition model, which makes the proof of coercivity much simpler. However, note
that, for instance, the constant in Lemma 2.7 now depends strongly on M.

Due to Remark 7.1 we can apply Theorem 5.8 and thus we know that there exists the effective
(deterministic) surface tension

φ
p
hom(M; ν) := lim

t→+∞

1
t

inf
{

E p
1,M(ω)(v, Qν(0, t)) : v(x)= u0,ν(P2(x)) if dist(P2(x), ∂Qν(0, t))≤ 2L

}
,

where we used the alternative formula in Remark 5.9 and Remark 4.2. Note that, due to symmetry reasons,
the surface tension does not depend on the traces; see also [Alicandro et al. 2015].

We are interested in the asymptotic behavior of φ p
hom(M; ν) when M→+∞. First, we define some

auxiliary quantities. Given p ∈ (0, 1], 0≤ N < M and u : Z3
→ {±1}, we set

E p
[N ,M](ω)(u, O) :=

∑
x,y∈LM

p (ω)

x,y∈O×[N ,M]

c(x − y)|u(x)− u(y)|
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Figure 3. Three successive deposition steps (black, gray and white) in the construction
of LM

p (ω). The dashed bonds connect nearest neighboring particles.

and omit the dependence on ω of E p
[N ,M] when p = 1. In that case, given ν ∈ S1 we further introduce the

corresponding surface tension

φ1,M(ν)= lim
t→+∞

1
t

inf
{

E1
[0,M](u, Qν(0, t)) : v(x)= u0,ν(P2(x)) if dist(P2(x), ∂Qν(0, t))≤ 2L

}
.

Note that the existence of this limit follows by standard subadditivity arguments. The next lemma shows
that the auxiliary surface tensions converge when M→+∞.

Lemma 7.2. For any ν ∈ S1 there exists the limit

φ1(ν) := lim
M→+∞

1
M
φ1,M(ν).

Proof. We define a sequence ak = φ
1,k−1(ν). It is enough to show that ak is superadditive. To reduce

notation, similar to (5-29) we introduce

m[N ,M](u0,ν, Qν(x, ρ)) := inf
{

E1
[N ,M](u, Qν(x, ρ)) : u ∈ PC2L

1,u0,ν
(Qν(x, ρ))

}
.

Note that by periodicity, m[N ,M](u0,ν, Qν(x, ρ)) = m[N+k,M+k](u0,ν, Qν(x, ρ)) for every k ∈ N. For
fixed t � 1 one can take any admissible configuration for m[0,M+M ′−1](u0,ν, Qν(0, t)) and restrict it to
the sets Qν(0, t)×[0,M − 1] and Qν(0, t)×[M,M +M ′− 1] to obtain the inequality

1
t

m[0,M+M ′−1](u0,ν, Qν(0, t))≥ 1
t

m[0,M−1](u0,ν, Qν(0, t))+ 1
t

m[M,M+M ′−1](u0,ν, Qν(0, t))

=
1
t

m[0,M−1](u0,ν, Qν(0, t))+ 1
t

m[0,M ′−1](u0,ν, Qν(0, t)),

where we neglected the interactions between the two cubes and used periodicity in the last equality.
Letting t→+∞, we obtain superadditivity of the sequence ak . �
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The next result shows the asymptotic behavior of the surface tension when the average number of
layers pM diverges.

Proposition 7.3. Let φ1 be defined as in the previous lemma. For ν ∈ S1 it holds that

lim
M→+∞

φ
p
hom(M; ν)

pM
= φ1(ν).

Proof. Throughout this proof we assume without loss of generality that L ∈ N and we set Z2
M =

Z2
×{0, . . . ,M}. Fix ν ∈ S1 (we will drop the dependence on ν for several quantities). We separately

show two inequalities. For the moment we also fix M. Consider a sequence of minimizing configurations
uN such that limN (1/N )E1

[0,M](uN , Qν(0, N ))= φ1,M(ν). As we show now, we can assume that uN is a
plane-like configuration, as given by Theorem A.3. Indeed, applying that theorem we find a plane-like
ground state uν for the energy

EM(u, Qν(0, N )) :=
∑

x∈Z2
M

P2(x)∈Qν(0,N )

∑
y∈Z2

M

c(x − y)|u(x)− u(y)|.

To reduce notation, we set

Sν(N , λ)=
{

x ∈ R2
: x ∈ Qν(0, N ), dist(x, {ν}⊥)≤ 4(λ+ L)

}
so that the energy of uν is concentrated on Sν(N , λ)×[0,M] with λ≤ C M (see Theorem A.3). For any
N ∈ N we define two configurations ūN , ũN : Z

2
M → {±1} via

ūN (x)=
{

u0,ν(P2(x)) if dist(P2(x),R2
\Qν(0, N ))≤ 2L ,

uν(x) otherwise,

ũN (x)=
{

uν(x) if dist(P2(x),R2
\(Qν(0, N ))≤ L ,

uN (x) otherwise.

Then ūN is a plane-like configuration whose energy is again concentrated on Sν(N , λ)×[0,M]. Using
the boundary conditions and the finite-range assumptions one can prove that

E1
[0,M](uN , Qν(0, N ))≤ E1

[0,M](ūN , Qν(0, N ))≤ EM(uν, Qν(0, N ))+C M2

≤ EM(ũN , Qν(0, N ))+C M2
≤ E1

[0,M](uN , Qν(0, N ))+ 2C M2.

Dividing by N and letting N →+∞ we see that asymptotically we can replace uN by the plane-like
configuration ūN . From now on we denote by uN ,M a plane-like minimizer whose energy is concentrated
on Sν(N , λ)×[0,M] with λ≤ C M and such that

φ1,M(ν)= lim
N

1
N

E1
[0,M](uN ,M , Qν(0, N )).

We extend uN ,M to Z3 setting uN ,M(x)= u0,ν(P2(x)) for x3 /∈ {0, . . . ,M}. For δ > 0 small enough, we
separate the contribution of the bottom and the first M p

δ := d(p+ δ)Me random layers and estimate the
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remaining interactions. This leads to

1
M
φ

p
hom(M; ν)≤

1
M

lim inf
N→+∞

1
N

E
[
E p

1,M(ω)(uN ,M p
δ
, Qν(0, N ))

]
≤

1
M

lim inf
N→+∞

1
N

E
[
E1
[0,M p

δ ]
(uN ,M p

δ
, Qν(0, N ))

]
+

C
M

lim sup
N→+∞

1
N

E
[
#
{

x ∈ LM
p (ω) : x ∈ Sν(N , λ)× (M

p
δ − L ,M]

}]
≤

1
M
φ1,M p

δ (ν)+CE
[
#
{

x ∈ LM
p (ω) : x ∈ {(0, 0)}× (M p

δ − L ,M]
}]

≤
1
M
φ1,M p

δ (ν)+C
M∑

k=M p
δ −L

(k−M p
δ + L)

(M
k

)
pk(1− p)M−k,

where in the last step we have used that the probability of having k points in {(0, 0)}× (M p
δ − L ,M] is

the same as having k+M p
δ − L successes out of M trials in a Bernoulli experiment. In order to bound

the last sum, we use Hoeffding’s inequality, which yields, for M large enough depending on L , δ,

P

( M∑
i=1

X p
(0,0,i) ≥ k+M p

δ − L
)
≤ P

( M∑
i=1

X p
(0,0,i) ≥ k+

(
p+ δ

2

)
M
)
≤ exp

(
−2M

(
δ

2
+

k
M

)2)
.

From this bound we infer the estimate

M∑
k=M p

δ −L

(k−M p
δ + L)

(M
k

)
pk(1− p)M−k

≤

M∑
k=1

k exp
(
−

1
2 Mδ2) exp(−2δk).

Since the right-hand side vanishes when M→+∞, by Lemma 7.2 we deduce limsupM(1/M)φ p
hom(M;ν)≤

(p+δ)φ1(ν). Since δ was arbitrary, the first inequality is proven.
It remains to show the reverse inequality. Given any admissible function vN : LM

p (ω)→ {±1}, we can
neglect the interactions coming from Qν(0, N )×[M p

−δ + 1,M], which yields the estimate

E p
1,M(ω)(vN , Qν(0, N ))≥ E p

[0,M p
−δ]
(ω)(vN , Qν(0, N )).

Minimizing on both sides and dividing by N , we obtain in the limit that

1
M
φ

p
hom(M; ν)≥

1
M
φ p,M p

−δ (ν). (7-61)

Now the idea is to estimate the error when we replace φ p,M p
−δ (ν) by φ1,M p

−δ (ν). Let uN be a sequence
of plane-like configurations as in the first part of the proof. We also consider an optimal sequence
u p,δ

N = u p,δ
N (ω) such that

φ p,M p
−δ (ν)= lim

N→+∞

1
N

E[E p
[0,M p

−δ]
(ω)(u p,δ

N , Qν(0, N ))].
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Since the deterministic surface tension dominates the random one, we have

0≤ φ1,M p
−δ (ν)−φ p,M p

−δ (ν)= lim
N

1
N

E
[
E1
[0,M p

−δ]
(uN , Sν(N , λ))− E p

[0,M p
−δ]
(ω)(u p,δ

N (ω), Qν(0, N ))
]

≤ lim sup
N

1
N

E
[
E1
[0,M p

−δ]
(u p,δ

N , Sν(N , λ))− E p
[0,M p

−δ]
(ω)(u p,δ

N (ω), Sν(N , λ))
]

≤ C lim sup
N

1
N

E
[
#
{

x ∈
(
Sν(λ, N )×[1,M p

−δ]
)
∩Z3
: x /∈ LM

p (ω)
}]

≤ C ME

[
max

{
M p
−δ −

M∑
i=1

X p
(0,0,i), 0

}]
≤ C M

M p
−δ∑

k=1

k P

(
M p
−δ −

M∑
i=1

X p
(0,0,i) ≥ k

)
.

Here we used that the number of missing interactions can be estimated by the number of missing lattice
points since each point can only interact with finitely many others. Now we apply again Hoeffding’s
inequality, which yields

P

(
M p
−δ −

M∑
i=1

X p
(0,0,i) ≥ k

)
≤ P

(
M
(

p− δ
2

)
− k ≥

M∑
i=1

X p
(0,0,i)

)
≤ exp

(
−2M

(
δ

2
+

k
M

)2)
.

We conclude the bound
M p
−δ∑

k=1

kP

(
M p
−δ −

M∑
i=1

X p
(0,0,i) ≥ k

)
≤

M p
−δ∑

k=1

k exp
(
−

1
2 Mδ2) exp(−2δk).

Again the right-hand side vanishes when M→+∞ and thus limM(1/M)|φ1,M p
−δ (ν)−φ p,M p

−δ (ν)| = 0,
so that Lemma 7.2 and (7-61) imply the estimate

lim inf
M→+∞

1
M
φ

p
hom(M; ν)≥ lim

M→+∞

1
M
φ1,M p

−δ (ν)= (p− δ)φ1(ν).

Again the desired estimate follows by the arbitrariness of δ > 0. �

Remark 7.4. If we had not included the initial layer L0, then Proposition 7.3 would still hold. However,
then the surface tension may not be related to an appropriate 0-limit since the compactness of sequences
with bounded energy becomes a nontrivial issue. We refer to [Braides and Piatnitski 2012] for a possible
approach to this problem in the case of nearest-neighbor interactions and bond-percolation models.

A percolation-type phenomenon. We close this final section with a result on the growth of the averaged
surface tension when the number of layers increases. We let LM

p (ω) be defined as in (7-59) but restrict
the analysis to nearest-neighbor interactions and make them nonperiodic in the sense that their magnitude
is very small when one of the particles belongs to the initial layer L0. More precisely, given 0< η� 1
we consider functions of the form

cη(12(x, y))=


0 if |x − y|> 1,
η if |x − y| = 1 and x3 · y3 = 0,
c(x − y) otherwise,
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where 12 is defined in Hypothesis 2 and x 7→ c(x) is strictly positive on the unit circle. Then the
coefficients satisfy Hypothesis 2 and fulfill (a slightly weaker version of) Hypothesis 1. We define E p,η

ε,M
as in (7-60) with c replaced by cη. According to Theorem 5.8, again there exists the limit

φ
p,η
hom(M; ν) := lim

t→+∞

1
t

inf
{

E p,η
1,M(ω)(v, Qν(0, t)) : v(x)= u0,ν(P2(x)) if dist(P2(x), ∂Qν(0, t))≤ 2

}
.

In contrast to Proposition 7.3, for this model we also consider the case of small M. We will show that if
p < 1− psite, where psite is the critical site percolation probability on Z2, then it holds that

φ
p,η
hom(1; ν)≤ C p η,

where C p may blow up only for p→1− psite. Note that we do not claim here that psite is the optimal bound.
We can actually improve the result in the sense that for all M ∈ N such that (1− p)M > psite, we have

φ
p,η
hom(M; ν)≤ C p η.

This shows that when the probability is very small but finite, the surface tension can be arbitrary small
depending on the strength of the interaction in the substrate layer, on the other hand we will establish
an analogue of Proposition 7.3 asserting that if the average number of layers increases further, even the
normalized surface tension approaches a value independent of η. This result can be interpreted as the
equivalent to the percolation phenomenon described in the introduction of the paper for the model without
initial layer (η = 0). Before proving this result, we introduce the typical energy of one slice. Given
q ∈ (0, 1] and u : Z2

→ {±1}, we set

Eq
sl(ω)(u, A) :=

∑
x,y∈L1

q (ω)\L0

P2(x),P2(y)∈A

c(x − y)|u(x)− u(y)|

and omit the dependence on ω if q = 1. We further introduce the corresponding surface tension

φ
q
sl(ν)= lim

t→+∞

1
t

inf
{

Eq
sl(ω)(u, Qν(0, t)) : v(x)= u0,ν(x) if dist(x, ∂Qν(0, t))≤ 2

}
.

Note that the existence of this deterministic limit follows again from the subadditive ergodic theorem as
in the proof of Theorem 5.8, since we used the coercivity only for passing from finite range to decaying
interactions in Step 4. In general the random variables ω 7→ Eq

sl(ω)(u, A) are not defined on the same
probability space but we will use them only for slices of the large set LM

p (ω).

Theorem 7.5. Let p ∈ (0, 1) and M ∈ N be such that (1− p)M > psite. There exists a constant C p,M

locally bounded for (1− p)M
∈ (psite, 1) such that

φ
p,η
hom(M; ν)≤ C p,Mη.

On the other hand, for any p ∈ (0, 1) it holds that

lim
M→+∞

1
M
φ

p,η
hom(M; ν)= 2p

(
(c(e1)+ c(−e1))|ν1| + (c(e2)+ c(−e2))|ν2|

)
.
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∼ N

∼
√

N

Figure 4. The different sets in the construction of uN . R+N and R−N correspond to the
white regions above and below the bold line, respectively. In the light gray region, uN (x)
agrees with u0,e2(P2(x)).

Proof. In order to prove the first statement, we start with the case ν = e2 and use results from percolation
theory which show that the contribution from the random layers is negligible: for q := (1− p)M > psite,
we consider the so-called Bernoulli site percolation on Z2; that is, we assign independently a weight
X i (ω) ∈ {±1} to all the vertices i ∈ Z2 such that P(X i = 1)= q. We say that i0, . . . , ik is an occupied
path if |in − in+1| = 1 and X in (ω)= 1 for all n = 0, . . . , k. Theorem 11.1 in [Kesten 1982] yields that
there exist universal constants cj , dj such that

P
(
at least c1(q−psite)

d1n disjoint occupied paths from

{0}×[0,n] to {m}×[0,n] and contained in [0,m]×[0,n] exist
)
≥ 1−c2(m+1)exp(−c3(q−psite)

d2n).

Given N ∈ N, we first combine this estimate with the Borel–Cantelli lemma and, using stationarity, we
obtain that for almost every ω ∈ � there exists N0 = N0(ω) such that for all N ≥ N0 we find at least
c1(q − psite)

d12
√

N disjoint occupied paths connecting the vertical boundary segments of the rectangle

RN :=
[
−
⌊ 1

2 N
⌋
+ 2,

⌊ 1
2 N
⌋
− 2

]
×
[
−d
√

Ne, d
√

Ne
]
.

As the paths are disjoint and are contained in RN , at least one of them uses at most (2/c1)(q− psite)
−d1 N

vertices. Now we come back to the actual proof. By the definition of the random lattice in (7-59), using
the above considerations in the layer Z2

× {1}, for N ≥ N0 we can find a path connecting the vertical
boundary segments of the rectangle RN ×{1}, contained in RN ×{1}, using at most cp,M N vertices with
none of them belonging to LM

p (ω). This path separates RN × {1} into two subregions R−N × {1} and
R+N ×{1}. As depicted in Figure 4, for N ≥ N0 we define a (random) configuration uN : LM

p (ω)→ {±1}
as

uN (x)=


u0,e2(P2(x)) if P2(x) /∈ RN ,
+1 if P2(x) ∈ R+N ,
−1 otherwise.

Up to possibly exchanging the roles of R±N , we can assume that uN ∈ PC2
1,u0,e2

(ω, Qe2(0, N )). Hence
by the definition of φ p,η

hom(e2) and the fact that uN does not depend on the z-direction, it holds that
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φ
p,η
hom(e2)≤ lim inf

N→+∞

1
N

E p,η
1,M(ω)(uN , Qe2(0, N ))

≤ lim sup
N→+∞

1
N

∑
x,y∈Qe2 (0,N )∩Z2

|x−y|=1

η|uN (x)− uN (y)|

+ lim sup
N→+∞

1
N

M∑
k=1

∑
x,y∈LM

p (ω)

x,y∈Qe2 (0,N )×{k}

c(x − y)|uN (x)− uN (y)|. (7-62)

We now estimate each of the two terms on the right-hand side. Concerning the second one, we observe
that if x, y ∈ (Qe2(0, N )× {k}) ∩ LM

p (ω) are such that |x − y| = 1 and uN (x) 6= uN (y), then either
P2(x), P2(y) ∈ ±1

2 Ne1 +
(
[−4, 4] × [−2

√
N , 2
√

N ]
)

or, without loss of generality, P2(x) ∈ R−N and
P2(y) ∈ R+N . In the second case, we note that either (P2(x), 1) or (P2(y), 1) has to be a vertex of the
path constructed above; hence either x /∈ LM

p (ω) or y /∈ LM
p (ω). We then rule out the existence of such

interactions and we may bound the second term via

lim sup
N→+∞

1
N

M∑
k=1

∑
x,y∈LM

p (ω)

x,y∈Qe2 (0,N )×{k}

c(x − y)|uN (x)− uN (y)| ≤ lim sup
N→+∞

C M
√

N
= 0. (7-63)

Applying the same arguments for the first term, we may use the fact that the separating path uses at most
cp,M N vertices and we deduce that

lim sup
N→+∞

1
N

∑
x,y∈Qe2 (0,N )∩Z2

|x−y|=1

η|uN (x)− uN (y)| ≤ 4cp,Mη.

From this estimate, the first claim in the case ν = e2 follows by (7-62) and (7-63). The above argument
can be adapted to the cases ν =−e2 and ν =±e1. By L1-lower semicontinuity, the one-homogeneous
extension of φ p,η

hom must be convex; see [Ambrosio and Braides 1990b]. For general ν ∈ S1 the claim then
follows upon multiplying the constant by a factor

√
2.

In order to prove the second claim, we need to show two inequalities. Given a sequence of admissible
configurations uN such that

lim
N

1
N

E1
sl(uN , Qν(0, N ))= φ1

sl(ν),

we define an admissible configuration ūN : LM
p (ω)→ {±1} via

ūN (x)= uN (P2(x)).

Arguing as in the proof of Proposition 7.3, we may assume that uN is a plane-like configuration and its
energy is concentrated in a stripe

Sν(N , λ)= {x ∈ R2
: x ∈ Qν(0, N ), dist(x, {ν}⊥)≤ 4(λ+ 1)},
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where now λ is independent of N,M. By definition and the fact that ūN gives no interaction in the
z-direction, we obtain that for any δ > 0 small enough

φ
p,η
hom(M; ν)

M
≤

1
M

lim inf
N→+∞

1
N

E[E p,η
1,M(ω)(ūN , Qν(0, N ))]

≤

(
lim inf
N→+∞

1
M

M∑
k=1

1
N

E[E pk
sl (ω)(uN , Qν(0, N ))]

)
+

C
M

lim sup
N→+∞

1
N

#{z ∈ Z2
∩Sν(N , λ)}

≤ lim inf
N→+∞

1
N

(
(p+δ)E1

sl(uN , Qν(0, N ))+ 1
M

M∑
k>b(p+δ)Mc

E[E pk
sl (ω)(uN , Qν(0, N ))]

)
+

Cλ
M

= (p+δ)φ1
sl(ν)+ sup

k>b(p+δ)Mc
lim inf
N→+∞

1
N

E[E pk
sl (ω)(uN , Qν(0, N ))]+Cλ

M
,

where pk =
∑M

l=k

(M
l

)
pl(1− p)M−l is the probability of having at least k successes out of M trials in a

Bernoulli experiment. Note that here the new random variables are indeed defined on the same probability
space and are coupled to the variables generating the stochastic lattice LM

p (ω). As λ is independent of M,
the third term vanishes when M→+∞, so that we are left to show that also the second one converges to
zero. In order to estimate the second term we use the fact that uN is a plane-like configuration, so that

1
N

E[E pk
sl (ω)(uN , Qν(0, N ))] = 1

N
E[E pk

sl (ω)(uN , Sν(N , λ))] ≤ pkCλ.

For any k > b(p+ δ)Mc, by the law of large numbers it holds that pk→ 0 when M→+∞. Hence we
deduce lim supM(1/M)φ p,η

hom(M; ν)≤ (p+ δ) φ
1
sl(ν). As δ > 0 was arbitrary, we finally obtain

lim sup
M

1
M
φ

p,η
hom(M; ν)≤ p φ1

sl(ν).

We next show the reverse inequality. Given any admissible function ūN : LM
p (ω)→ {±1} we can

neglect the interactions in the z-direction and the lowest layer L0 and obtain the estimate

E p,η
1,M(ω)(ūN , Qν(0, N ))≥

M∑
k=1

E pk
sl (ω)(ūN ( · , k), Qν(0, N ))≥

d(p−δ)Me∑
k=1

E pk
sl (ω)(ūN ( · , k), Qν(0, N )).

Since ūN ( · , k) fulfills the correct boundary condition in every layer, we deduce that

1
M
φ

p,η
hom(M; ν)≥ (p− δ) inf

k≤d(p−δ)Me
φ

pk
sl (ν).

Again by the law of large numbers for an independent Bernoulli experiment it remains to show that the
function q 7→ φ

q
sl(ν) is continuous in q = 1, which means we can pass from a random to a deterministic

lattice. This will be the last step.
In order to prove continuity let uN be a plane-like sequence of configurations as in the first part of the

proof and consider an optimal sequence uq
N (ω) such that

φ
q
sl(ν)= lim

N→+∞

1
N

E[Eq
sl(ω)(u

q
N (ω), Qν(0, N ))].
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Similar to the proof of Proposition 7.3 we obtain

0≤ φ1
sl(ν)−φ

q
sl(ν)= lim

N

1
N

E
[
E1

sl(uN , Sν(λ, N ))− Eq
sl(ω)(u

q
N (ω), Qν(0, N ))

]
≤ lim sup

N

1
N

E
[
E1

sl(u
q
N (ω), Sν(λ, N ))− Eq

sl(ω)(v
q
N (ω), Sν(λ, N ))

]
≤ C lim

N

1
N

E
[
#
{
z ∈ (Sν(λ, N )∩Z2)×{1} : z /∈ L1

q( · )
}]
= C(1− q)λ.

The estimate above clearly implies convergence of the surface tensions when q→ 1, which shows that
lim supM(1/M)φ p,η

hom(M; ν)≥ p φ1
sl(ν).

It remains to identify φ1
sl(ν). We just sketch the argument. Any admissible configuration asymptotically

has an interface containing at least |ν1| interactions along the two directions ±e1 and |ν2| interactions
along the directions ±e2. Since any pair of interacting points is counted twice with reversing direction
and |u(x)− u(y)| ∈ {0, 2}, we find that φ1

sl(ν)≥ 2(c(e1)+ c(−e1))|ν1| + 2(c(e2)+ c(−e2))|ν2|. On the
other hand, a suitable discretization of a plane attains this value; hence

φ1
sl(ν)= 2(c(e1)+ c(−e1))|ν1| + 2(c(e2)+ c(−e2))|ν2|. �

Appendix A: Plane-like minimizers for one-periodic dimension-reduction problems

We prove that the results about plane-like minimizers for periodic interactions in [Caffarelli and de la
Llave 2005] can be extended to dimension-reduction problems. We restrict the analysis to one-periodic
interactions, which is the case when the coefficients depend only on the difference, as in Hypothesis 2.
Moreover, we focus on the physical case of reducing from three dimensions to two dimensions. To fix
notation, for any set 0 ⊂ Z2, we write 0M = 0× (Z∩ [0,M]). In contrast to the main part of this paper,
here we consider an interaction energy that takes into account also interactions outside the domain. To be
more precise, given u : Z2

M → {±1} we investigate finite-range energies of the form

EM(u, 0)=
∑

x∈0M

∑
y∈Z2

M

c(x − y)|u(x)− u(y)|,

where the coefficients fulfill the following assumptions:

(i) 0≤ c(z)≤ C for all z ∈ R3 and mini c(±ei )≥ c0 > 0.

(ii) There exists L > 0 such that c(z)= 0 for all |z| ≥ L .

Before stating and proving the main theorem we need some definitions.

Definition A.1. We say that u : Z2
M → {±1} is a ground state for the energy EM whenever EM(u, 0)≤

EM(u, 0) for all finite sets 0 ⊂ Z2 and all v : Z2
M → {±1} such that u = v on {z ∈ Z2

M : ∃z
′
∈ (Z2

\0)M

with |z− z′| ≤ L}.

Remark A.2. When u and 0 are such that EM(u, 0)≤ EM(v, 0) for all v such that u = v on {z ∈ Z2
M :

∃z′ ∈ (Z2
\0)M with |z− z′| ≤ L}, the same conclusion holds for every subset 0′ ⊂ 0. Indeed, take any v
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such that u = v on {z ∈ Z2
M : ∃z

′
∈ (Z2

\0′)M with |z − z′| ≤ L}. Then for any two points x, y with
x ∈ (0\0′)M and y ∈Z2

M with |x−y|≤ L , it holds that u(x)= v(x) and u(y)= v(y). Hence it follows that

EM(u, 0′)− EM(v, 0
′)= EM(u, 0)− EM(v, 0)≤ 0.

Using the same notation as for the stochastic group action, for k ∈Z2 we denote by τk the shift operator
acting on sets 0 and configurations u : Z2

M → {±1} via

τk0 = 0+ k, τku(x)= u(x − (k, 0)).

Then the following formula holds true:

EM(τku, τk0)= EM(u, 0). (A-64)

The remaining part of this appendix will be devoted to the proof of the next theorem.

Theorem A.3. There exists λ > 0 such that for all ν ∈ S1 there exists a ground state uν of EM such that
u(x) 6= u(y) implies dist(x, {ν}⊥)≤ λ. Such a ground state is called plane-like. Moreover we can choose
λ≤ C M for some constant C independent of ν,M.

The proof of this theorem is very similar to [Caffarelli and de la Llave 2005; Cozzi et al. 2017]. We first
construct a particular minimizer among periodic configurations that enjoys several geometric properties.
To this end, we need further notation; see [Caffarelli and de la Llave 2005] for more details. Fix a rational
direction ν ∈ S1

∩Q2. We define the Z-module Zν = {z ∈ Z2
: 〈z, ν〉 = 0} and, given m ∈ N, we let Fm,ν

be any fundamental domain of the quotient Z2
/mZν

; that is, for every z ∈ Z2 there exist unique z1 ∈ mZν

and z2 ∈ Fm,ν such that z = z1+ z2. Given real numbers θ and λ, with θ < λ, we further introduce

F θ,λ
m,ν = {z ∈ Fm,ν : 〈ν, z〉 ∈ [θ, λ]}.

Now we define an admissible class of periodic configurations: A function u : Z2
M → {±1} is called

(m, ν)-periodic if u(x)= u(x +m(z, 0)) for every x ∈ Z2
M and every z ∈ Zν . We set

Aθ,λm,ν =
{
u : u is (m, ν)-periodic, u =+1 if 〈P2(z), ν〉< θ, u(z)=−1 if 〈P2(z), ν〉> λ

}
.

We start with a very elementary lemma that shows how for periodic functions any translation gives the
same energy.

Lemma A.4. Let u be (m, ν)-periodic and k ∈ Z2. Then it holds that

EM(τku,Fm,ν)= EM(u,Fm,ν).

Proof. Given x ∈ (τ−kFm,ν)M , we find z1(x) ∈ mZν and z2(x) ∈ Fm,ν such that P2(x)= z1(x)+ z2(x).
By (m, ν)-periodicity, for any y ∈ Z2

M it holds that

|u(x)− u(y)| = |u(x − (z1(x), 0))− u(y− (z1(x), 0))|,

c(x − y)= c(x − (z1(x), 0)− y+ (z1(x), 0)).
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Now assume that there exist another x ′ ∈ (τ−kFm,ν)M\{x} with 〈x− x ′, e3〉 = 0 and z2(x)= z2(x ′). Then
τk P2(x)− τk P2(x ′) = z1(x)− z1(x ′) ∈ mZν\{(0, 0)}. As τk P2(x), τk P2(x ′) ∈ Fm,ν , this contradicts the
fact that Fm,ν is a fundamental domain. Using (A-64) we conclude by comparison that

EM(τku,Fm,ν)= EM(u, τ−kFm,ν)≤ EM(u,Fm,ν).

Applying the above inequality to τ−k and ũ := τku, which is also (m, ν)-periodic, we obtain the claim. �

We define the class of minimizers for the energy EM( · ,Fm,ν) on Aθ,λm,ν via

Mθ,λ
m,ν =

{
u ∈Aθ,λm,ν : EM(u,Fm,ν)≤ EM(v,Fm,ν) for all v ∈Aθ,λm,ν

}
.

As the set Aθ,λm,ν is finite, the class of minimizers is nonempty. Next we define the so-called infimal
minimizer, which has several useful properties:

uθ,λm,ν =min{u ∈Mθ,λ
m,ν} ∈A

θ,λ
m,ν .

We next show that the infimal minimizer also belongs to the class of minimizers. This follows from the
following elementary observation; see Lemma 2.1 and also Lemma 2.3 in [Cozzi et al. 2017].

Lemma A.5. Given any u : Z2
M → {±1} and 0 ∈ Z2 finite, it holds that

EM(min{u, v}, 0)+ EM(max{u, v}, 0)≤ EM(u, 0)+ EM(v, 0).

Iterating the above lemma finitely many times we find that uθ,λm,ν ∈Mθ,λ
m,ν .

We now turn to the first property of the infimal minimizer. This is the so-called absence of symmetry
breaking, which says that the infimal minimizer does not depend on the length m of the period.

Lemma A.6. For any m ∈ N it holds that uθ,λm,ν = uθ,λ1,ν .

Proof. We define an auxiliary configuration via u =min{τkuθ,λm,ν : k ∈ Zν}. By elementary arguments it
follows that u ∈ Aθ,λ1,ν , while Lemma A.4 implies that τkuθ,λm,ν ∈Mθ,λ

m,ν and by iterating Lemma A.5 we
obtain u ∈Mθ,λ

m,ν . Since u ≤ uθ,λm,ν , by the definition of infimal minimizer we obtain u = uθ,λm,ν . Moreover,
as u and uθ,λ1,ν are both (1, ν)-periodic it follows that

EM(u,F1,ν)=
1
m

EM(u,Fm,ν)≤
1
m

EM(u
θ,λ
1,ν ,Fm,ν)= EM(u

θ,λ
1,ν ,F1,ν). (A-65)

In particular we deduce that u ∈Mθ,λ
1,ν and thus u ≥ uθ,λ1,ν . On the other hand, (A-65) must be an equality,

so that uθ,λ1,ν ∈M
θ,λ
m,ν and therefore uθ,λ1,ν ≥ u. This proves the claim. �

We next establish the so-called Birkhoff property of the infimal minimizer, which will be the main
ingredient for the proof of Theorem A.3.

Lemma A.7. Let k ∈ Z2. Then τkuθ,λ1,ν ≤ uθ,λ1,ν if 〈k, ν〉 ≤ 0 and τkuθ,λ1,ν ≥ uθ,λ1,ν if 〈k, ν〉 ≥ 0.

Proof. We start with the case 〈k, ν〉 ≤ 0 and define the two configurations m = min{uθ,λ1,ν , τkuθ,λ1,ν } and
M =max{uθ,λ1,ν , τkuθ,λ1,ν }. By elementary considerations one can prove m ∈Aθ+〈k,ν〉,λ+〈k,ν〉1,ν and M ∈Aθ,λ1,ν .
Using Lemma A.5 we obtain

EM(m,F1,ν)+ EM(u
θ,λ
1,ν ,F1,ν)≤ EM(m,F1,ν)+ EM(M,F1,ν)≤ EM(τkuθ,λ1,ν ,F1,ν)+ EM(u

θ,λ
1,ν ,F1,ν),
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which yields

EM(m,F1,ν)≤ EM(τkuθ,λ1,ν ,F1,ν).

We claim that τkuθ,λ1,ν = uθ+〈k,ν〉,λ+〈k,ν〉1,ν . Indeed, as τkuθ,λ1,ν ∈A
θ+〈k,ν〉,λ+〈k,ν〉
1,ν , this configuration is admissible

and minimality follows by Lemma A.4. Now assume it is not the infimal minimizer; then also uθ,λ1,ν is not
the infimal minimizer, as we could construct a smaller one by translation of the other infimal minimizer.

By definition of the infimal minimizer we infer that m ≥ τkuθ,λ1,ν , which proves the claim by definition
of m. The case 〈k, ν〉 ≥ 0 follows upon applying the translation τk to the inequality τ−kuθ,λ1,ν ≤ uθ,λ1,ν , which
holds by the first part of the proof. �

In the next lemma we deduce a powerful property of configurations fulfilling the Birkhoff property.

Lemma A.8. Let u : Z2
M → {±1} satisfy the Birkhoff property with respect to ν ∈ S1

∩Q2; that is,
τku ≤ u if 〈k, ν〉 ≤ 0, and τku ≥ u if 〈k, ν〉 ≥ 0. Assume further that u(x0)=−1 for some x0 ∈ Z2

M. Then
u(x)=−1 for all x ∈ Z2

M such that 〈x − x0, e3〉 = 0 and 〈P2(x − x0), ν〉 ≥ 0.

Proof. Every such x can be written as x = x0− (k, 0) with k ∈ Z2 such that 〈k, ν〉 ≤ 0. Hence Lemma A.7
implies that u(x)= τku(x0)≤ u(x0)=−1, so that u(x)=−1. �

We are now in a position to prove that the infimal minimizer becomes unconstrained when we take
θ = 0 and λ large enough. To reduce notation, from now on we set uλν := u0,λ

1,ν .

Lemma A.9. There exists λ0 > 0 (depending on M in such a way that λ0 ≤ C M) such that for all λ≥ λ0

it holds that uλν(x)=−1 for all x ∈ Z2
M such that 〈P2(x), ν〉 ≥ λ−

√
2.

Proof. By Lemma A.8 it is enough to show that for large enough λ, in every layer Z2
× {l} with

l ∈ {0, . . . ,M} there exists some xl such that 〈P2(xl), ν〉 ≤ λ−
√

2 and uλν(xl)=−1. We will show that
this is always the case provided λ is large enough.

Assume that there exists a layer Z2
×{l} such that uλν(x)=1 for all x ∈Z2

×{l}with 〈P2(x), ν〉≤λ−
√

2.
We argue that in this case there must exists a second layer Z2

× {l ′} and a point xl ′ ∈ Z2
× {l ′} with

〈P2(xl ′), ν〉 ≤
√

2 and uλν(xl ′) = −1. Indeed, if this would be false, then the function τkuλν with any
k ∈ {0,±1}2 such that 〈k, ν〉 < 0 fulfills τkuλν ∈ A

0,λ
1,ν . By Lemma A.7 we further know that τkuλν ≤ uλν .

On the other hand, by Lemma A.4 we have τkuλν ∈M
0,λ
1,ν ; hence by the definition of infimal minimizer we

obtain τkuλν = uλν . This contradicts the boundary conditions by the choice of k. Now applying Lemma A.8
in the second layer Z2

×{l ′}, we obtain uλν(x)=−1 for all x ∈ Z2
×{l ′} such that 〈P2(x), ν〉 ≥

√
2. As

we will see now, for fixed M this will cost too much energy.
Without loss of generality we assume that l > l ′, the other case can be treated almost the same way.

For every r ∈ {1, . . . ,M} there exists x ∈ Z2
×{r} such that uλν(xr )=−1. Let xr be one of such points

that minimizes 〈P2(x), ν〉 among all such points. According to Lemma A.8 we obtain uλν(x)=−1 for all
x ∈ Z2

×{r} with 〈P2(x), ν〉 ≥ 〈P2(xr ), ν〉 =: pr . Note that∣∣∣∣ l−1∑
r=l ′
(pr+1− pr )

∣∣∣∣≥ λ− 2
√

2. (A-66)
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On the other hand, just counting the interactions between neighboring layers, we obtain by the coercivity
of the interactions and (A-66) that

EM(uλν ,F1,ν)≥ c
M∑

r=1

|pr − pr−1| ≥ c(λ− 2
√

2).

Testing a discretized plane as a possible minimizer, by the finite-range assumption we know an a priori
bound of the form EM(uλν ,F1,ν) ≤ C M. Hence our assumption can only hold as long as λ ≤ C M for
some constant C depending neither on ν nor on M and the claim follows upon setting λ0 = 2C M. �

The next (and last) lemma bounds the oscillation of the jump set of the infimal minimizer uλ0
ν .

Lemma A.10. Let λ0 be as in Lemma A.9. Then uλ0
ν ∈M

−n,λ0+n
m,ν for any n,m ∈ N.

Proof. We first claim that uλ0
ν = uλ0+l

ν for any l ∈N. This will be done iteratively. First note that for any
λ≥ λ0 it holds that uλν ∈A

0,λ+1
1,ν and by Lemma A.9 it also holds that uλ+1

ν ∈A0,λ
1,ν . Then

EM(uλ+1
ν ,F1,ν)= EM(uλν ,F1,ν)

and both are infimal minimizers. Hence they must agree. This proves the first claim.
Give an arbitrary configuration v ∈ A−n,λ0+n

m,ν , we choose a vector k ∈ Z2 such that 〈k, ν〉 ≥ n and
〈k, ν〉 ∈ N. Then

τkv ∈A−n+〈k,ν〉,λ0+n+〈k,ν〉
m,ν ⊂A0,λ0+n′

m,ν

with n′ ∈ N. Using the first claim and Lemmata A.4 and A.6 we obtain

EM(uλ0
ν ,Fm,ν)≤ EM(τkv,Fm,ν)= EM(v,Fm,ν).

As uλ0
ν ∈A

−n,λ0+n
m,ν we proved the claim. �

Proof of Theorem A.3. First assume that ν ∈ S1
∩Q2. We show that uλ0

ν is a ground state. To this end let
0⊂Z2 be finite and let v :Z2

M→{±1} be such that v= uλ0
ν on {z ∈Z2

M : ∃z
′
∈ (Z2

\0)M with |z−z′| ≤ L}.
Then we find m ∈ N such that, for a suitable fundamental domain, 0 ⊂ Fm,ν . By Lemma A.10 we have
EM(uλ0

ν ,Fm,ν)≤ EM(v,Fm,ν) and the claim then follows by Remark A.2.
For general directions ν ∈ S1 we argue by approximation. Take a sequence νj→ ν of rational directions

and consider the sequence u j := uλj
νj , where λj is uniformly bounded in j . By Tychonoff’s theorem we

can assume that u j → u for some u : Z2
M → {±1}. It holds that u is a plane-like configuration. By the

definition of the topology, given any finite set 0 ⊂ Z2 we can find an index j0 such that u j (x) = u(x)
for all x ∈ 0M and all j ≥ j0. Since we assume a finite range of interaction, the previous convergence
property implies that u is also a ground state. �

Appendix B: Density results for trace-constraints on partitions

In this second appendix we show the density result needed in the proof of Theorem 4.1.

Lemma B.1. Let A b B both be bounded open sets with Lipschitz boundary. Given v,w ∈ BV(B,S)
such that Hk−1(Sw ∩ ∂A) = 0, we set u = 1Av + (1− 1A)w. Then there exists a sequence An b A of
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sets of finite perimeter such that un := 1Anv + (1− 1An )w converges to u in L1(B) and additionally
Hk−1(Sun ∩ B)→Hk−1(Su ∩ B).

Proof. We define the mapping T : S→Rq by T (si )= ei . As a special case of Proposition 4.1 in [Schmidt
2015], applied to the bounded BV-function α := T (w)− T (v), for every ε > 0 we find an open set Aε of
finite perimeter such that Aε b A, |A\Aε| ≤ ε and∫

∂Aε
|α+
|∂Aε | dH

k−1
≤

∫
∂A
|α+
|∂A| dH

k−1
+ ε. (B-67)

With the same arguments as in [Schmidt 2015], the sets Aε can be constructed in such a way that for all
δ > 0 there exists ε0 > 0 such that for all ε < ε0

{x ∈ A : dist(x, ∂A) > δ} ⊂ Aε. (B-68)

We show that the sets Aε fulfill the required properties. As a first step we claim that T (uε) converges
strictly to T (u). We have that T (uε) converges to T (u) in L1(B). By lower semicontinuity of the total
variation it is enough to show that

lim sup
ε→0

|DT (uε)|(B)≤ |DT (u)|(B). (B-69)

By definition we have |DT (uε)|(B\A)= |DT (u)|(B\A), so that we can reduce the analysis to A. By
Theorem 3.84 in [Ambrosio et al. 2000] it holds that

DT (uε)= DT (v)x A(1)ε + DT (w)x A(0)ε + (T (v)
+

|∂Aε − T (w)−
|∂Aε)⊗ νH

k−1x ∂Aε,

where in general A(t)ε is defined for t ∈ [0, 1] via

A(t)ε =
{

x ∈ Rk
: lim
ρ→0

|Aε ∩ Bρ(x)|
|Bρ(x)|

= t
}
.

Since Aε b A and Aε is open we infer A(1)ε ⊂ A and A(0)ε ⊂ Rk
\Aε, so that

|DT (uε)|(A)≤ |DT (v)|(A)+ |DT (w)|(A\Aε)+
∫
∂Aε
|T (v)+

|∂Aε − T (w)−
|∂Aε | dH

k−1

≤ |DT (v)|(A)+ |DT (w)|(A\Aε)+
∫
∂Aε
|T (w)+

|∂Aε − T (w)−
|∂Aε | dH

k−1

+

∫
∂Aε
|T (v)+

|∂Aε − T (w)+
|∂Aε | dH

k−1.

By the assumption on w we have |DT (w)|(∂A) = 0, so that by (B-68) the second and the third terms
vanish when ε→ 0. For the fourth one we use (B-67) and infer

lim sup
ε→0

|DT (uε)|(A)≤ |DT (v)|(A)+
∫
∂A
|T (v)+

|∂A− T (w)+
|∂A| dH

k−1

= |DT (v)|(A)+
∫
∂A
|T (v)+

|∂A− T (w)−
|∂A| dH

k−1
= |DT (u)|(A),
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where we used that inner and outer trace of T (w) agree for Hk−1-almost every x ∈ ∂A. By the structure
of the set T (S), strict convergence implies that

Hk−1(ST (uε) ∩ B)= 1
√

2
|DT (uε)| →

1
√

2
|DT (u)| =Hk−1(ST (u) ∩ B).

As for every u ∈ BV(B,S) it holds that Hk−1(Su ∩ B) =Hk−1(ST (u) ∩ B) and also L1-convergence is
conserved, we conclude the proof. �
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