Vol. 11, No. 2, 2018

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 10, 3371–3670
Issue 9, 2997–3369
Issue 8, 2619–2996
Issue 7, 2247–2618
Issue 6, 1871–2245
Issue 5, 1501–1870
Issue 4, 1127–1500
Issue 3, 757–1126
Issue 2, 379–756
Issue 1, 1–377

Volume 16, 10 issues

Volume 15, 8 issues

Volume 14, 8 issues

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1948-206X (online)
ISSN 2157-5045 (print)
 
Author index
To appear
 
Other MSP journals
A sublinear version of Schur's lemma and elliptic PDE

Stephen Quinn and Igor E. Verbitsky

Vol. 11 (2018), No. 2, 439–466
Abstract

We study the weighted norm inequality of (1,q)-type,

GνLq(Ω,dσ) Cν for all ν +(Ω),

along with its weak-type analogue, for 0 < q < 1, where G is an integral operator associated with the nonnegative kernel G on Ω × Ω. Here +(Ω) denotes the class of positive Radon measures in Ω; σ,ν +(Ω), and ν = ν(Ω).

For both weak-type and strong-type inequalities, we provide conditions which characterize the measures σ for which such an embedding holds. The strong-type (1,q)-inequality for 0 < q < 1 is closely connected with existence of a positive function u such that u G(uqσ), i.e., a supersolution to the integral equation

u G(uqσ) = 0,u L locq(Ω,σ).

This study is motivated by solving sublinear equations involving the fractional Laplacian,

(Δ)α 2 u uqσ = 0,

in domains Ω n which have a positive Green function G for 0 < α < n.

Keywords
weighted norm inequalities, sublinear elliptic equations, Green's function, weak maximum principle, fractional Laplacian
Mathematical Subject Classification 2010
Primary: 35J61, 42B37
Secondary: 31B15, 42B25
Milestones
Received: 10 February 2017
Revised: 14 July 2017
Accepted: 5 September 2017
Published: 17 October 2017
Authors
Stephen Quinn
Department of Mathematics
University of Missouri
Columbia, MO
United States
Igor E. Verbitsky
Department of Mathematics
University of Missouri
Columbia, MO
United States