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THE ENDPOINT PERTURBED BRASCAMP–LIEB INEQUALITIES
WITH EXAMPLES

RUIXIANG ZHANG

We prove the folklore endpoint multilinear kj -plane conjecture originating in a paper of Bennett, Carbery
and Tao where the almost sharp multilinear Kakeya estimate was proved. Along the way we prove a more
general result, namely the endpoint multilinear kj -variety theorem. Finally, we generalize our results to
the endpoint perturbed Brascamp–Lieb inequalities using techniques in earlier sections.

1. Introduction

The endpoint multilinear k j -plane theorem. The multilinear kj -plane conjecture was implicitly proved
by Bennett, Carbery and Tao [2006], except for the endpoint case. In the first part of this paper we
formulate and prove the endpoint case. In fact we will prove the endpoint multilinear kj -variety theorem,
which is more general.

The proof uses the polynomial method. We will set up the polynomial like Guth [2010] did in his
proof of the endpoint multilinear Kakeya conjecture. Then we make some crucial new observations
and development of the theory, enabling us to estimate “the quantitative interaction of the polynomial
with itself” in terms of its visibility. As a result, we are able to deal with the codimension difficulty and
complete the proof.

The multilinear kj -plane estimate is a natural generalization of the famous multilinear Kakeya estimate.
Albeit weaker than linear Kakeya, the multilinear Kakeya theorem and the methods it inspired recently
had remarkable applications to classical harmonic analysis problems as well [Bourgain and Guth 2011;
Bourgain 2013a; 2013b; Guth 2016b; 2016c; Bourgain and Demeter 2015]. See the beginning of [Guth
2015] for a good introduction.

The nonendpoint case of the multilinear Kakeya conjecture was proved by Bennett, Carbery and Tao
[Bennett et al. 2006] and later Guth [2010] proved the endpoint case, which we state below.

Theorem 1.1. For 1≤ j ≤ d , let {Tj,a : 1≤ a ≤ A( j)} be a family of unit cylinders in Rd. We set vj,a to be
the direction of the core line of the cylinder Tj,a . Assume the core lines of cylinders from different families
are “quantitatively transversal”; i.e., for any 1≤ aj ≤ A( j), we have v1,a1 ∧ v2,a2 ∧ · · · ∧ vd,ad ≥ θ > 0,
where θ is fixed. Then we have∫

Rd

( d∏
j=1

A( j)∑
a=1

χTj,a

)1/(d−1)

.d θ
−1/(d−1)

d∏
j=1

A( j)1/(d−1). (1-1)

MSC2010: 42B10.
Keywords: Brascamp–Lieb inequality, polynomial method.
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Guth’s approach to proving Theorem 1.1 is very different from the approach of Bennett, Carbery and
Tao. He was able to take a polynomial that approximates the intersection of tubes sufficiently well, along
the way employing some nice tools and lemmas from algebraic topology and integral geometry.

In the Kakeya setting we have cylinders which are neighborhoods of lines. A natural analogue is to
replace lines with higher-dimensional affine subspaces and this will exactly be our multilinear kj -plane
setting. In Remark 5.4 of [Bennett et al. 2006], the authors note that their techniques can be also used to
obtain nonendpoint cases of multilinear k-plane transform estimates considered in [Oberlin and Stein
1982]. There is also a k-plane version of the Kakeya problem [Bourgain 1991] that could be relevant here.

They did not state the result precisely and we will state what we can get from their proof below. If
we go check the proof, similar techniques in [Guth 2015] can also give us the result. Here we allow
subspaces of different dimensions and hence call the theorem a “multilinear kj -plane theorem”.

Before stating the theorem we introduce our terminology to describe a “higher-dimensional” analogue
of cylinders.

Definition 1.2. In a space of dimension d , for any 1≤ b< d define a b-slab to be the Cartesian product of
a b-dimensional ball B1 and a (d−b)-dimensional ball B2 (the spaces spanned by both balls are required
to be orthogonal). The radius of B1 will be called the size of our b-slab and the radius of B2 will be called
the radius of it. The Cartesian product of B1 and the center of B2 is called the core of this b-slab.

By the above definition, a 1-slab is a cylinder. Its length is the size in our language. Our definitions of
radius and core are consistent with familiar definitions for cylinders. As explained above, we call our
theorem a kj -plane theorem because when the size is large, a k-slab looks flat and is like a “fattened”
k-plane.

Theorem 1.3 (multilinear kj -plane theorem with Rε loss [Bennett et al. 2006]). Assume R is a large
positive number. Assume K1, K2, . . . , Kn $ {1, 2, . . . , d} are disjoint and K1 ∪ · · · ∪ Kn = {1, 2, . . . , d}.
Let kj = |K j |.

For 1≤ j ≤ n, let {Tj,a : 1≤ a ≤ A( j)} be a family of kj -slabs of size ≤ R and radius 1. Assume that
for any 1 ≤ aj ≤ A( j), the core of Tj,aj is on a kj -plane that forms an angle < δ against the kj -plane
spanned by all ei , i ∈ K j .

Then when δ > 0 is sufficiently small depending on d, we have∫
Rd

( n∏
j=1

A( j)∑
a=1

χTj,a

)1/(n−1)

.ε,d Rε
n∏

j=1

A( j)1/(n−1). (1-2)

When n = d and K j = { j}, this theorem is the multilinear Kakeya theorem with Rε loss, which is the
main theorem of [Bennett et al. 2006]. In [Guth 2015], a simpler proof of this special case is also given,
and it can be generalized easily to prove the whole Theorem 1.3.

We can obtain various kj -plane theorems by taking different n and K j in Theorem 1.3. As we saw
in Theorem 1.1, Guth [2010] was able to remove the Rε in the multilinear Kakeya case. So in general we
would also expect the removal of Rε. Conceptually, this will allow us to have slabs with “size∞” (that are
actually 1-neighborhoods of kj planes) in the theorem. It turns out to be true and will be proved in this paper.
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Theorem 1.4 (multilinear kj -plane theorem). Take the same assumptions as Theorem 1.3, but with no
restriction on the size of slabs. We have∫

Rd

( n∏
j=1

A( j)∑
a=1

χTj,a

)1/(n−1)

.d

n∏
j=1

A( j)1/(n−1). (1-3)

Theorem 1.4 has an affine-invariant version, just like the multilinear Kakeya case, which was first
pointed out in [Bourgain and Guth 2011]. We will actually prove this version (Theorem 1.5 below).
Theorem 1.4 is a direct corollary of it.

In order to state the theorem, we introduce some notation. For any q ≤ d vectors v1, v2, . . . , vq , we
define |v1 ∧ v2 ∧ · · · ∧ vq | to be the volume of the parallelepiped generated by v1, v2, . . . , vq . Moreover,
for any m (affine) subspaces V1, V2, . . . , Vm with a total dimension d , we can define |V1∧V2∧ · · ·∧Vm |

to be |v1,1 ∧ · · · ∧ v1,d1 ∧ v2,1 ∧ · · · ∧ v2,d2 ∧ · · · ∧ vm,1 · · · ∧ vm,dm |, where {vj,i : 1 ≤ i ≤ dj } form an
orthonormal basis of the linear subspace parallel to Vj .

Theorem 1.5 (affine invariant multilinear kj -plane theorem). Assume the positive integers 1≤k1, . . . , kn≤

d − 1 satisfy
∑n

j=1 kj = d. For 1 ≤ j ≤ n, let {Tj,a : 1 ≤ a ≤ A( j)} be a family of kj -slabs of radius 1.
Assume the core kj -plane of Tj,a is parallel to the linear subspace Hj,a . Then for any real numbers ρj,a j

we have∫
Rd

( A(1)∑
a1=1

· · ·

A(n)∑
an=1

n∏
j=1

ρj,ajχTj,aj
(x) · H1,a1 ∧ · · · ∧ Hn,an

)1/(n−1)

dx .d

n∏
j=1

( A( j)∑
aj=1

|ρj,aj |

)1/(n−1)

. (1-4)

Remark 1.6. We refer the reader to [Bennett and Bez 2010] for an explanation of why the exponents
are as they appear in Theorem 1.5. Also we note that in that paper the authors already observed the
affine-invariant Finner inequality, which is an “unperturbed” version of Theorem 1.5.

Our Theorem 1.5 has some application in the multilinear restriction theorem too. For each 1≤ j ≤ n
assume 6j :Uj →Rd is a smooth parametrization of a subset of a smooth submanifold �j whose closure
is compact. Also assume

∑n
j=1 dim�j = d. Here we assume Uj is a neighborhood of the origin 0. We

can associate the extension operator to 6j as follows:

E j gj (ξ)=

∫
Uj

e2π iξ ·6j (x)gj (x) dx . (1-5)

Assume T61(0)�1∧· · ·∧T6n(0)�n 6= 0. Then just like the classical multilinear restriction case discussed
in [Bennett et al. 2006], we can form the endpoint multilinear restriction conjecture:

Conjecture 1.7 (endpoint multilinear kj -restriction conjecture). Assume we have 6j as above such that
T61(0)�1 ∧ · · · ∧ T6n(0)�n 6= 0. Then when the Uj are sufficiently small, we have∫

Rd

n∏
j=1

|E j gj |
2/(n−1) .d

n∏
j=1

‖gj‖
2/(n−1)
L2(Uj )

. (1-6)
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The methods in [Bennett et al. 2006] yield the following local variant of the conjectured (1-6) with
Rε-loss: ∫

B(0,R)

n∏
j=1

|E j gj |
2/(n−1) .d,ε Rε

n∏
j=1

‖gj‖
2/(n−1)
L2(Uj )

. (1-7)

We can use Theorem 1.4 to slightly improve (1-7). Using exactly the same proof techniques as in the
proof of Theorem 4.2 in [Bennett 2014], from Theorem 1.4 we deduce that there exists a κ = κ(d) > 0
such that ∫

B(0,R)

n∏
j=1

|E j gj |
2/(n−1) .d (log R)κ

n∏
j=1

‖gj‖
2/(n−1)
L2(Uj )

. (1-8)

The endpoint perturbed Brascamp–Lieb inequalities. Everything in the previous section in its unper-
turbed version, including the Loomis–Whitney inequality and the multilinear kj -plane theorem, is a
special case of the Brascamp–Lieb inequalities. In this paper we also generalize the Brascamp–Lieb
inequalities in the same way we do with the multilinear kj -plane theorem, with some new combinatorial
ideas. We state our endpoint perturbed Brascamp–Lieb inequalities in this section.

We first briefly review the Brascamp–Lieb inequalities. We will mostly follow the notational convention
in [Bennett et al. 2008; 2010], which are two important references in the literature. Assume that in Rd we
have n linear surjections Bj : R

d
→ E j . Then for certain positive numbers pj , 1≤ j ≤ n, the following

Brascamp–Lieb inequality holds for any measurable function f j on E j (1≤ j ≤ n) with some C > 0:∫
Rd

n∏
j=1

( f j ◦ Bj )
pj ≤ C

n∏
j=1

(∫
E j

f j

)pj

. (1-9)

If this is the case, we call the minimum possible constant C such that (1-9) holds the Brascamp–Lieb
constant BL(B, p). Here we use B to denote the data (B1, . . . , Bn) and p to denote the data (p1, . . . , pn).
The pair (B, p) is called the corresponding Brascamp–Lieb datum. If (1-9) fails for any finite C , we define
BL(B, p)=+∞. Note that no a priori assumptions are made on the relationship between d and n here.

Lieb [Lieb 1990] showed:

Theorem 1.8. BL(B, p)= BLg(B, p), where

BLg(B, p)= sup
( ∏n

j=1(detE j Aj )
pj

det
(∑n

j=1 pj B∗j Aj Bj
))1/2

(1-10)

with the supremum is taken over all Aj : E j → E j such that Aj is a positive definite linear transform.

An alternative way to state Theorem 1.8 is that the Brascamp–Lieb constant is what one would obtain
by restricting attention to the special case in which each f j is a certain Gaussian function.

Subsequently, Bennett, Carbery, Christ and Tao [Bennett et al. 2008; 2010] determined a necessary and
sufficient condition for BL(B, p)=BLg(B, p) <+∞. They proved that BL(B, p)=BLg(B, p) <+∞
is equivalent to the following two conditions:
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(1) Scaling condition: ∑
j

pj dim E j = d. (1-11)

(2) Dimension condition: for any linear subspace V ⊆ Rd,

dim V ≤
∑

j

pj dim(Bj V ). (1-12)

So we know when we can have the actual Brascamp–Lieb inequality (1-9) thanks to their work.
Inequality (1-9) has an equivalent version that is easier to understand intuitively. We state it in the

following proposition and refer the readers to [Bennett 2012] for this observation.

Proposition 1.9 (combinatorial Brascamp–Lieb). Assume we have a Brascamp–Lieb datum (B, p) in Rd.
Assume kj =dim ker Bj and we have n families of slabs. Assume the j-th family Tj consists of only kj -slabs
of radius 1 whose cores are all parallel to ker Bj . Also assume each |Tj | is finite. Then BL(B, p) <+∞
if and only if we always have ∫

Rd

n∏
j=1

(∑
Tj∈Tj

χTj

)pj

.
n∏

j=1

|Tj |
pj. (1-13)

In light of the last subsection, a perturbed version of this proposition should be true. This can indeed
be proved; recently, Bennett, Bez, Flock and Lee [Bennett et al. 2015, Theorem 1.2] proved the following
(nonendpoint) theorem via generalizations of Guth’s method [2015].

Theorem 1.10 (perturbed Brascamp–Lieb with Rε-loss [Bennett et al. 2015]). Assume we have a
Brascamp–Lieb datum (B, p) in Rd with BL(B, p) < +∞. Let kj = dim ker Bj . Assume we have
n families of slabs and the j-th family Tj consists of only kj -slabs of radius 1 and size ≤ R. Assume each
|Tj | is finite. Also assume that each slab in the j-th family has its core kj -plane within a δ-neighborhood
of ker Bj on the corresponding Grassmannian (with a given standard metric). Then when δ is sufficiently
small depending on (B, p) we have∫

Rd

n∏
j=1

(∑
Tj∈Tj

χTj

)pj

.d, p,BL(B, p),ε Rε
n∏

j=1

|Tj |
pj. (1-14)

They conjectured that Rε can be removed here (see inequalities (7) and (8) of [Bennett et al. 2015])
and we prove their conjecture in the last section of this paper.

Theorem 1.11 (endpoint perturbed Brascamp–Lieb theorem). Assume we have a Brascamp–Lieb datum
(B, p) in Rd with BL(B, p) <+∞. Let kj = dim ker Bj . Assume we have n families of slabs and the j-th
family Tj consists of only kj -slabs of radius 1. Assume each |Tj | is finite. Also assume that each slab in the
j-th family has its core kj -plane within a δ-neighborhood of ker Bj on the corresponding Grassmannian
(with a given standard metric). Then when δ is sufficiently small depending on (B, p) we have∫

Rd

n∏
j=1

(∑
Tj∈Tj

χTj

)pj

.d, p,BL(B, p)

n∏
j=1

|Tj |
pj. (1-15)
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Remark 1.12. Theorem 1.11 formally implies the stability of Brascamp–Lieb constants, which was a
result of Bennett, Bez, Flock, and Lee [Bennett et al. 2015]. However, it is worth noticing (see the proof
later in Section 8) that the main result in [Bennett et al. 2015] is an input rather than an output in our
proof of Theorem 1.11. In particular, we do not have a new proof of the main result in [Bennett et al.
2015] in this paper.

Our proof of Theorem 1.11 will follow the same scheme as the proof of Theorem 1.4. Some new
difficulties present themselves and we deal with them in due course.

Like what we had in the end of last subsection, our perturbed Brascamp–Lieb theorem has some
impact on the endpoint Brascamp–Lieb-type restriction conjecture formulated in [Bennett et al. 2015].
To introduce it, we use the same setup that we did in Conjecture 1.7, but this time we don’t assume that∑

j kj = d or that T61(0)�1 ∧ · · · ∧ T6n(0)�n 6= 0. Instead, we assume that there exists p= (p1, . . . , pn),
pj > 0, such that BL(B(6), p) < ∞, where B(6) = (T61(0)�1, . . . , T6n(0)�n) (here we abuse the
notation a bit and for each component we really mean the linear subspace of Rd parallel to it).

Conjecture 1.13 (endpoint Brascamp–Lieb-type restriction conjecture). With the above setup, when the
Uj are sufficiently small, we have∫

Rd

n∏
j=1

|E j gj |
2pj .d, p,BL(B(6), p)

n∏
j=1

‖gj‖
2pj

L2(Uj )
. (1-16)

In [Bennett et al. 2015] a local variant of (1-16) with Rε-loss is proved:∫
B(0,R)

n∏
j=1

|E j gj |
2pj .d, p,BL(B(6), p),ε Rε

n∏
j=1

‖gj‖
2pj

L2(Uj )
. (1-17)

By Theorem 1.11 and again the same method as in the proof of Theorem 4.2 in [Bennett 2014], we
can slightly improve (1-17): there is a κ = κ(BL(B(6), p)) > 0 such that∫

B(0,R)

n∏
j=1

|E j gj |
2pj .d, p (log R)κ

n∏
j=1

‖gj‖
2pj

L2(Uj )
. (1-18)

Idea of the proofs. When looking to remove the factor Rε in Theorems 1.3 and 1.10, the methods in
[Bennett et al. 2006] or [Guth 2015] do not feel very appealing. Instead we will follow the path led by
Guth [2010] and try to come up with a version of the so-called polynomial method.

However, there is a major difficulty to generalizing Guth’s argument: note that the zero set of one
polynomial has codimension 1. In the setting of [Guth 2010], because a line has dimension 1, a line will
intersect the above zero set at discrete points. And the number of such points is controlled by the degree
of the polynomial. Hence we can do some counting to obtain estimates. In particular, Guth’s proof relies
heavily on the following cylinder estimate.

Lemma 1.14 (cylinder estimate). Let T be a cylinder of radius 1 and P be a polynomial of degree D.
Let v be a unit vector parallel to the core line of T . If we define Z(P) to be the zero set of P, then the
directed volume (see Definition 2.1) satisfies

VZ(P)∩T (v).d D. (1-19)
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In the kj -plane setting, the zero set of a single polynomial no longer interacts well with a kj -plane:
because the latter generally has a smaller codimension, it won’t intersect the former at discrete points in
general. Due to this issue we cannot do counting and seem to lose our main weapon (Lemma 1.14).

In this paper, we deal with this difficulty and obtain our Theorem 1.4. The main idea is the following:
for a k-plane, instead of finding one single polynomial, we would like to take zero sets of k polynomials
to interact with it. Because the codimensions of the k-plane and zero sets of the k polynomials add up
to d, they will intersect at points and it is possible to do counting to estimate the intersection again.

Along this line, we are taking more than one polynomial to approximate an arbitrary set of N cubes.
We would like the zero sets of all the polynomials to be “transverse”; with this requirement we can choose
at most d such polynomials. Like the original polynomial method, we would like to know how low the
degrees of our polynomials can be. Guth [2010] showed that we can always choose the first polynomial to
be of degree .d N 1/d . But for the second polynomial this degree bound may already be no longer valid.
Think about N unit squares lining up on a line in the plane R2. Any polynomial with degree significantly
less than N would have most of its zero set “almost parallel” to the line, see [Guth 2016a], and hence
two such polynomials cannot interact transversely at most of the squares. However, in this example it is
possible to find two transverse polynomials with degree product N. One can also look at examples of
cube grids, or more generally transverse intersections of hypersurfaces, and similar phenomena happen
there. Based on the above discussion, we are willing to ask the following question in the spirit of the
polynomial method.

Question 1.15. Given any N disjoint unit cubes in Rd and Aν > 1 for each given cube Qν , do there
always exist d polynomials P1, P2, . . . , Pd such that

∏d
i=1 deg Pi is roughly

∑
ν Aν , and the zero sets of

all Pi have “quantitative interaction” &d Aν at each of the above cubes?

We notice that it looks like a “continuous version” of the inverse Bézout’s theorem; see for example
[Tao 2012]. The analogue is very difficult in algebraic geometry, see [Tao 2012] for part of the reason,
and is conceivably very hard in its current continuous version too. We believe it can be formulated as an
explicit question with an affirmative answer though. One can make this question rigorous by specifying
the meaning of “quantitative interaction”; see the discussion below and (6-9) for a result of this flavor.

Luckily enough, we find the full power of this hard version is not needed this time. Instead, it will be
equally useful to have a positive answer to the following “softer” question.

Question 1.16. Given any N disjoint unit cubes in Rd and Aν > 1 for each given cube Qν , do there
always exist d polynomials P1, P2, . . . , Pd and positive numbers αν > 1 such that

∏d
i=1 deg Pi is roughly∑

ν αν Aν , and the zero sets of all Pi have quantitative interaction &d αν Aν at each of the above cubes?

This question is weaker than Question 1.15 because there we have the additional requirement that
aν = 1. In other words, we allow polynomials of higher degree here but “with the right multiplicity”. In
general, higher-degree polynomials, even with the right multiplicity, do not necessarily work as well as
ones with lowest possible degree; see for example some estimates in [Guth 2016a]. But in this application
it makes no difference, as we are in a situation similar to what we have in [Guth 2010].
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Surprisingly, it turns out that after some further refinement of the question, we find that we can take
P1, . . . , Pd all to be the same P and that we can obtain P by the refined polynomial method of Guth
involving visibility. Once this is clear we are able to prove our theorem with a great amount of help from
(multi-)linear algebra and geometry.

To be more specific, we find that we can take a single nonzero polynomial (that is complicated enough
to look like the product of several transverse polynomials) such that the following holds: If we define
Z(P) to be the zero set of P , then for each relevant Qν , d copies of Z(P)∩ Qν interact in a sufficiently
transverse manner. Since the d copies of Z(P)∩ Qν interact in a very transverse way, and the copies are
all the same, for any j and any Qν we deduce that kj copies of Z(P)∩Qν interact sufficiently transversely
with the part of the j -th family of slabs inside Qν . But for any j , the j -th family has a limited capacity of
transverse interaction with kj copies of Z(P) by Bézout’s theorem. This gives us an estimate that leads
to Theorem 1.4.

As we saw above, we end up taking one single polynomial d times. Nevertheless, we choose to keep the
entire thought process on “d transverse polynomials” here because after all, it is how we eventually come
up with the solution and the reader might find our thought process useful elsewhere. Also, Question 1.15,
which remains open, is still fundamental, as it’s a general one concerning the polynomial approximation
of any N cubes. For example, it implies the existence of the polynomial in the polynomial method. Its
discrete analogue is also open; see [Tao 2012]. But progress in various subcases has been made.

In the multilinear kj -plane setting, our method actually proves a stronger theorem (multilinear kj -variety
theorem, Theorem 6.1) which largely generalizes Theorem 1.4. We will state its exact form after a bit
more preparation. Here let us briefly describe it.

Let’s take a new viewpoint. Knowing that a point belongs to a slab of radius 1 is equivalent to knowing
the existence of another point on the core of the slab that lies in its 1-neighborhood. Also note that
the union of all cores (kj -planes) of the j-th family of slabs can be viewed as an algebraic variety of
degree A( j) and dimension kj . This variety is a smoothly embedded kj -manifold except some zero-volume
subset. Our Theorem 1.4 is basically saying that the n families of kj -planes have limited capacity of
“transversally interaction”. We will prove that this is the general case for any n algebraic varieties with
total dimension d in Theorem 6.1.

This multilinear kj -variety theorem immediately has interesting special cases. For instance, we have a
theorem about collections of sphere shells in the flavor of Theorem 1.4.

The proof of Theorem 1.11 is with almost the same machine, but we have some new difficulties: When
we use this machine, we want to know how well each kj -plane interacts with our polynomial. However,
the information on the Brascamp–Lieb constant seems to be very hard to use when we try to look at
things “locally”, as we do in the proof of Theorem 1.4. We address this issue in Section 7 and Section 8
by proving a weaker “integral version” of our previous pointwise estimate. Albeit weaker, it already leads
to a proof of Theorem 1.11.

Like the situation of Theorem 1.4, Theorem 1.11 has a generalization to algebraic varieties (Theorem 8.1)
and we prove the latter to automatically imply the former. Again the current form is quite strong and
interesting in its own right.
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Outline of the paper. In Sections 2 and 3 we review Guth’s polynomial method [2010] and develop
all we need in this subject. Section 4 consists of linear algebra preliminaries and Section 5 consists of
integral geometry preliminaries. We prove Theorem 1.4 and Theorem 1.5 in Section 6 and Theorem 1.11
in Section 8 after some preparation (Section 7). We will prove them by generalizing to versions about
algebraic varieties.

2. Polynomial with high visibility

In this section, we review the refined polynomial method by Guth [2010]. We review the definition and
properties of visibility and state Guth’s theorem that we can find a polynomial with reasonable degree
and large visibility in many cubes. Along the way we define a relevant notion, namely the fading zone,
for future convenience.

Definition 2.1. In Rd, for any compact smooth hypersurface Z (possibly with boundary) and any vector v,
define the directed volume

VZ (v)=

∫
Z
|v · n| dVolZ , (2-1)

where n is the normal vector at the corresponding point of Z .

If v is a unit vector, there is a formula for VZ (v) that is geometrically more meaningful. Let πv be
the orthogonal projection of Rd onto the subspace v⊥. Then for almost y ∈ v⊥, we have |Z ∩π−1

v (y)| is
finite and, see [Guth 2010],

VZ (v)=

∫
v⊥
|Z ∩π−1

v (y)| dy. (2-2)

Definition 2.2. The fading zone F(Z) is defined to be the set {v : |v| ≤ 1, VZ (v)≤ 1}. It is a nonempty
convex compact subset of the unit ball; see [Guth 2010]. The visibility Vis[Z ] = 1/|F(Z)|.

First we explain the heuristic meaning of the two concepts. Imagine that it is midnight and we are
looking at a glittering object with exactly the same shape as Z from a fixed distance. To describe the
situation mathematically, we can find a vector v such that its direction is the direction of the object and
its length is the brightness of the object. Then we can intuitively think that Z fades away when v enters
the fading zone. And naturally the less visible the object is, the larger we want the fading zone to be.
Hence we can define the visibility to be the inverse of the volume of the fading zone. See the beginning
of Section 6 in [Guth 2010] for how to intuitively understand visibility and a few simple examples.

It is good to keep in mind that in this paper we will mostly deal with hypersurfaces Z with VZ (v)&d 1
for any unit vector v. For hypersurfaces that don’t satisfy this we will typically fix it by taking its union
with several hyperplanes parallel to coordinate hyperplanes.

Clearly as long as Z has finite volume, F(Z) has a nonempty interior.
We are interested in polynomials and want to use the notions above to study them. Recall that the space

of degree D algebraic hypersurfaces in Rd is parametrized by RPK for K =
(D+d

d

)
− 1 in the following

way: any such hypersurface corresponds to a polynomial P up to a scalar. By viewing P also as the(D+d
d

)
-tuple of its coefficients we find this parametrization [Guth 2010]. We want to think of the directed
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volume and the visibility as functions over RPK. However, as Guth [2010] pointed out, they are bad
functions that may even be discontinuous.

Following [Guth 2010], we get around this difficulty by looking at the mollified versions of them. If we
take the standard metric on RPK, we will mollify those functions over small balls around some P ∈ RPK.
In the rest of this paper, we take ε to be a very small positive number depending on all the constants, and
in application on the set of cubes and visibility conditions. This kind of assumption is often dangerous but
as we can eventually see, here it does no harm at all (mainly because all the algebraic hypersurfaces of
degree D satisfy the same intersection estimate (5-5) uniformly), just like the case of [Guth 2010]. There
instead of the intersection estimate, we have the cylinder estimate (1-19) as a special case counterpart.

For any P ∈ RPK, let B(P, ε) be the ε-neighborhood of P. Let Z(P) denote the zero set of P. Note
that for any P, the set of singular points on Z(P) has zero (d−1)-dimensional Hausdorff measure. And
the rest of Z(P) is a smooth embedded hypersurface by the implicit function theorem.

Definition 2.3. For any bounded open set U and any vector v, define the mollified directed volume

V Z(P)∩U (v)=
1

|B(P, ε)|

∫
B(P,ε)

VZ(P ′)∩U (v)dP ′. (2-3)

Define the mollified fading zone and mollified visibility based on the mollified directional volumes:

F(Z(P)∩U )= {v : |v| ≤ 1 : V Z(P)∩U (v)≤ 1}, (2-4)

Vis[Z(P)∩U ] =
1

|F(Z(P)∩U )|
. (2-5)

Like we had before for F(Z), F(Z(P)∩U ) is a convex compact subset of the unit ball with a nonempty
interior. By John’s ellipsoid theorem [1948], for any convex set 0 with interior, there is an ellipsoid
Ell(0) such that Ell(0) ⊆ 0 ⊆ Cd Ell(0) and |Ell(0)| ∼d |0|. It is easy to see that if the convex set is
symmetric about the origin (which will be the case for all convex sets considered in this paper), then we
may require the ellipsoid to be symmetric about the origin too. We assume so henceforth in the paper.
We call any such Ell(0) an elliptical approximation of 0.

V Z(P)∩U (v) and Vis[Z(P)∩U ] are continuous with respect to P ∈ RPM [Guth 2010]. In the same
paper, Guth also proved the following key lemma.

Lemma 2.4 (large visibility on many cubes [Guth 2010]). For any finite set of cubes Q1, . . . , QN and
nonnegative integers M(Qi ), 1 ≤ i ≤ N, there exists a polynomial P of degree ≤ D (but viewed as a
degree-D polynomial when we mollify) such that Vis(Z(P)∩Qk)≥M(Qk) and D.d

(∑N
i=1 M(Qk)

)1/d.

3. Wedge-product estimate based on visibility

As we are actually dealing with the mollification version of everything, it is convenient to have a
generalized definition of visibility on any space of finite measure. The generalized setup here will also be
cleaner and more flexible in the inductive arguments which are needed.
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Assume we have a measure space (X, µ) with µ(X) <∞ and a vector-valued measurable function
f : X→ Rd. For any vector v ∈ Rd define the total absolute inner product of v and f as

VX, f (v)=

∫
X
|v · f (x)| dµ(x) (3-1)

(the directed volume of the last section being the example we have in mind).
Define the fading zone F(X, f ) = {v ≤ 1 : VX, f (v) ≤ 1} and visibility Vis[X, f ] = 1/|F(X, f )|.

As we had in the end of the last section, we have an elliptical approximation Ell(F(X, f )) such that
Ell(F(X, f ))⊆ F(X, f )⊆ Cd Ell(F(X, f )).

Next we obtain a lower bound of a wedge product integral in terms of visibility.

Theorem 3.1 (wedge product estimate). Assume that for any unit vector v we have VX, f (v)≥ 1. Then∫
· · ·

∫
Xd

∣∣∣∣ d∧
i=1

f (xi )

∣∣∣∣ dµ(x1) dµ(x2) · · · dµ(xd)&d Vis[X, f ]. (3-2)

Proof. We do induction on the dimension d to prove the theorem. First observe that if Ell(F(X, f )) is an
elliptical approximation of F(X, f ), then for any linear subspace W of Rd, we have Ell(F(X, f ))∩W
(an ellipsoid) is also an elliptical approximation of F(X, f )∩W by definition (this may seem problematic
as the Cd will vary, but for the conclusion only finitely many intermediate dimensions are involved in the
whole induction process and we can set Cd of them to all be the same).

For d = 1, by definition we easily see

Vis[X, f ] = 1
2

∫
X
| f (x)| dµ(x) (3-3)

and the conclusion holds. Note that even in the argument here we are using the hypothesis to ensure we
have (3-3).

Assume the conclusion holds for d < d0 and d0 > 1. Now we deal with the case d = d0. Assume
v1, . . . , vd0 are parallel to the semiprincipal axes of any elliptical approximation Ell(F(X, f )), respectively,
and that they form an orthonormal basis (we can arbitrarily choose a set of orthogonal semiprincipal
axes if there is ambiguity defining the semiprincipal axes). Among them we assume v1 is parallel to a
semiminor axis (i.e., a shortest semiprincipal axis) that has length t1. Taking v = λv1, where λ∼d0 t1 in
(3-1), we deduce ∫

X
| f (x)| dµ(x)≥ 1

t1
. (3-4)

Next for any unit vector v ∈ Rd0, we prove∫
· · ·

∫
Xd0−1

∣∣ f (x1)∧ · · · ∧ f (xd0−1)∧ v
∣∣ dµ(x1) dµ(x2) · · · dµ(xd0−1)&d0 t1 ·Vis[X, f ]. (3-5)

Let πv⊥ be the orthogonal projection from Rd0 to its subspace v⊥. Define fv⊥ = πv⊥ ◦ f . If we identify
Rd0−1 with v⊥, then fv⊥ is another (d0−1)-dimensional vector-valued function on X. By definition,
we know VX, f (w) = VX, f

v⊥
(w) for any w ∈ v⊥. Hence F(X, fv⊥) = F(X, f ) ∩ v⊥. By the previous
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discussion, we know we can choose Ell(F(X, fv⊥)) to be Ell(F(X, f ))∩ v⊥. But among all the (d0−1)-
dimensional sections of Ell(F(X, f )) passing through the origin, the section cut by v⊥1 has the largest
volume (see also Lemma 7.4), which is ∼d0 |Ell(F(X, f ))|/t1 = 1/(t1 ·Vis[X, f ]). Hence

Vis[X, fv⊥] =
1

|F(X, fv⊥)|
∼d0

1
|Ell(F(X, fv⊥))|

&d0 t1 ·Vis[X, f ].

By induction hypothesis we have∫
· · ·

∫
Xd0−1

∣∣ f (x1)∧ · · · ∧ f (xd0−1)∧ v
∣∣ dµ(x1) dµ(x2) · · · dµ(xd0−1)

=

∫
· · ·

∫
Xd0−1

∣∣ fv⊥(x1)∧ · · · ∧ fv⊥(xd0−1)
∣∣ dµ(x1) dµ(x2) · · · dµ(xd0−1)

&d0 Vis[X, fv⊥]&d0 t1 ·Vis[X, f ]. (3-6)

This is (3-5).
Combining (3-4) and (3-5), we have∫
· · ·

∫
Xd

∣∣∣∣ d∧
i=1

f (xi )

∣∣∣∣ dµ(x1) dµ(x2) · · · dµ(xd)

=

∫
X
| f (x)|

(∫
· · ·

∫
Xd0−1

∣∣∣∣ f (x1)∧ · · · ∧ f (xd0−1)∧
f (x)
| f (x)|

∣∣∣∣ dµ(x1) dµ(x2) · · · dµ(xd0−1)

)
dµ(x)

&d0 t1 ·Vis[X, f ] ·
∫

X
| f (x)| dµ(x)&d0 Vis[X, f ], (3-7)

which concludes the induction. �

4. Linear algebra preliminaries

Our proof relies heavily on linear algebra. In this section we do the linear algebraic part and prove two
useful lemmas.

Lemma 4.1. Assume V1, . . . , Vn ⊆ Rd and kj = dim Vj satisfies
∑n

j=1 kj = d. Then for any vectors
w1, . . . ,wd ∈ Rd, we have

max
n∏

j=1

∣∣(Vj )
⊥
∧wi j,1 ∧ · · · ∧wi j,kj

∣∣&d |V1 ∧ · · · ∧ Vn| ·

∣∣∣∣ d∧
i=1

wi

∣∣∣∣, (4-1)

where the maximum is taken over 1≤ i j,h ≤ d for 1≤ j ≤ n, 1≤ h ≤ kj , where each 1≤ i ≤ d is chosen
exactly once among all i j,h .

Proof. Assume that {vj,h}1≤h≤kj is an orthonormal basis of Vj . Then by definition we have∣∣∣∣(V1 ∧ · · · ∧ Vn) ·

( d∧
i=1

wi

)∣∣∣∣= |(vj,h ·wi )|. (4-2)
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By the generalized Laplace cofactor expansion, the determinant on the right-hand side of (4-2) is a
sum of terms in the form

± det(v1,h · w̃1,h) det(v2,h · w̃2,h) · · · det(vn,h · w̃n,h) (4-3)

where w̃1,1, w̃1,2, . . . , w̃1,k1, w̃2,1, . . . , w̃2,k2, . . . , w̃n,1, . . . , w̃n,kn is a rearrangement of w1, . . . ,wd . Hence
for some such rearrangement we have

|V1 ∧ · · · ∧ Vn| ·

∣∣∣∣ d∧
i=1

wi

∣∣∣∣.d
∣∣det(v1,h · w̃1,h) det(v2,h · w̃2,h) · · · det(vn,h · w̃n,h)

∣∣. (4-4)

By the properties of the Hodge ∗-operator, we then have

| det(vj,h · w̃j,h)| =
∣∣(∗vj,1 ∧ · · · ∧ vj,kj )∧ w̃j,1 ∧ · · · ∧ w̃j,kj

∣∣= |V⊥j ∧ w̃j,1 ∧ · · · ∧ w̃j,kj |, (4-5)

which concludes the proof. �

The rest of this section is dedicated to the computation of a determinant that will be useful in the next
section.

Lemma 4.2. Assume that 0≤ cj ≤ d are integers, 1≤ j ≤ m, satisfying
∑m

j=1 cj = d. For any j , assume
vj,1, vj,2, . . . , vj,d is an orthonormal basis of Rd (written as column vectors). Then we have∣∣∣∣∣∣∣∣det


v1,c1+1 · · · v1,d v2,c2+1 · · · v2,d 0 · · · 0 · · · 0 · · · 0
v1,c1+1 · · · v1,d 0 · · · 0 v3,c3+1 · · · v3,d · · · 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

v1,c1+1 · · · v1,d 0 · · · 0 0 · · · 0 · · · vm,cm+1 · · · vm,d


∣∣∣∣∣∣∣∣

=
∣∣det

(
v1,1 · · · v1,c1v2,1 · · · v2,c2 · · · vm,1 · · · vm,cm

)∣∣. (4-6)

Proof. For 2 ≤ j ≤ m, let Aj = (v1,1 · · · v1,c10 · · · 0 · · · vj,1 · · · vj,cj · · · 0 · · · 0). The rule here is that its
first c1 columns are v1,1, . . . , v1,c1 and its

(∑
j ′< j cj ′ + 1

)
-th to

(∑
j ′< j cj ′

)
-th columns are vj,1, . . . , vj,cj ,

while its other columns are zero vectors. The left-hand side of (4-6) is equal to∣∣∣∣∣∣∣∣∣∣
det


I 0 0 0 0 0 0 0 0 0 0 0 0 0

A2 v1,c1+1 · · · v1,d v2,c2+1 · · · v2,d 0 · · · 0 · · · 0 · · · 0
A3 v1,c1+1 · · · v1,d 0 · · · 0 v3,c3+1 · · · v3,d · · · 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Am v1,c1+1 · · · v1,d 0 · · · 0 0 · · · 0 · · · vm,cm+1 · · · vm,d


∣∣∣∣∣∣∣∣∣∣
.

We exchange the columns to make it look better. For simplicity let Vj = (vj,1 · · · vj,d). This is an
orthogonal matrix. We also define a matrix Bj = (bj (k, l)), 1≤ k ≤ d , such that bj (k, l)= 1 if l ≤ cj and
k = l+

∑
j ′< j cj ′ , and bj (k, l)= 0 otherwise. Then after rearranging the columns of the matrix above we
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find the determinant (in absolute value) is equal to∣∣∣∣∣∣∣∣∣∣
det


B1 B2 B3 · · · Bm

V1 V2 0 · · · 0
V1 0 V3 · · · 0
· · · · · · · · · · · · · · ·

V1 0 0 · · · Vm


∣∣∣∣∣∣∣∣∣∣
.

We can multiply the j-th column by V−1
j = V t

j on the right, then subtract all the j-th columns,
j > 1, from the first column. This preserves the determinant. Note the definition of Bj , if we define
1= (v1,1 · · · v1,c1 − v2,1 · · · − v2,c2 · · · − vm,1 · · · − vm,cm ), then the determinant is∣∣∣∣∣∣∣∣∣∣

det


1t B2V t

2 B3V t
3 · · · Bm V t

m
0 I 0 · · · 0
0 0 I · · · 0
· · · · · · · · · · · · · · ·

0 0 0 · · · I


∣∣∣∣∣∣∣∣∣∣
.

Equation (4-6) then follows directly. �

5. Integral geometry preliminaries

In this section we prepare some integral geometry tools for our proof of Theorem 1.4. First we generalize
(2-2) to the following lemma.

Lemma 5.1. Assume in Rd we have m smooth compact submanifolds Z1, Z2, . . . , Zm (possibly with
boundary) with codimensions c1, . . . , cm respectively. If

∑m
j=1 cj = d then for any measurable subset

U ⊆ Rd(m−1)
= (Rd)m−1, we have∫

Z1

∫
Z2

· · ·

∫
Zm

χU (
−−→p1 p2, . . . ,

−−−→p1 pm)
∣∣(Tp1 Z1)

⊥
∧ · · · ∧ (Tpm Zm)

⊥
∣∣ dVol1 · · · dVolm

=

∫
v2,...,vm∈Rd, (v2,...,vm)∈U

∣∣(Z1)∩ (Z2+ v2)∩ · · · ∩ (Zm−1+ vm−1)∩ (Zm + vm)
∣∣ dv2 · · · dvm, (5-1)

where pj ∈ Z j , Tpj Z j is the tangent space of Z j at pj , dVolj is the volume element on the j-th submanifold,
and Z j + vj = {pj + vj : pj ∈ Z j } is the translation of Z j along the vector vj . The | · | on the right-hand
side defines cardinality.

This lemma has a lot of information so we pause a bit and go through several examples to understand
it better.

When d = 2, if Z1 and Z2 are two nonparallel line segments and U is the whole R2, the integrand on
the right-hand side of (5-1) is the characteristic function of a parallelogram generalized by Z1 and Z2.
Hence the right-hand side is the area of the parallelogram, which is easily seen to be equal to the left-hand
side. When d = 3, if Z1 is a line segment, Z2 is a parallelogram in a plane and U is the whole R3, the
situation is totally analogous.
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When d = 3, Z1 is a whole line and Z2 is a smooth surface of finite area, and we can take U to be the
point set between two planes orthogonal to Z1 with distance 1. It is a simple exercise to show that (5-1)
then becomes (2-2). Hence it is indeed a generalization of the latter.

Finally let’s look at a more complicated example. Again take d = 3 and U = R6. Take a parallelepiped
� = ABC D− A1 B1C1 D1. Take three parallelograms Z1 = ABC D, Z2 = AB B1 A1, Z3 = ADD1 A1.
Define u =

−→
AB, v =

−→
AD, w =

−−→
AA1. Again the integrand on the right-hand side is a characteristic

function. We find it is plainly equal to Vol(�)2. Now the left-hand side is equal to

|u× v| · |v×w| · |w× u| ·
∣∣∣∣ u× v

|u× v|
∧

v×w

|v×w|
∧

w× u
|w · u|

∣∣∣∣= |(u× v)∧ (v×w)∧ (w× u)|

= |((u× v)× (v×w)) · (w× u)|

= |(v · (u×w))v · (w× u)| = Vol(�)2. (5-2)

Proof of Lemma 5.1. Without loss of generality we can assume U is open and bounded. By the
multilinear feature of both sides of (5-1), we only need to consider this problem locally. Hence we
can assume each Z j is smoothly parametrized by a domain in Rd−cj. In other words we may assume
Z j : xi = f j,i (yj,1, . . . , yj,d−cj ) and that the (d − cj ) vectors wj,l = (∂ f j,i/∂yj,l)1≤i≤d have a nonzero
wedge product at any point pj ∈ Z j . They span the tangent space Tpj Z j and will be written as column
vectors below.

Look at the cartesian product Z = Z1×Z2×· · ·×Zm ⊆ (R
d)m ∼=Rdm. This is a smooth submanifold of

dimension
∑m

j=1(d−cj )= d(m−1). Use x j,i , 1≤ i ≤ d , to denote the standard Euclidean coordinates in
the j -th copy of Rd and let vj,i = x j,i−x1,i , j > 1. For simplicity let xj = (x j,i )1≤i≤d and vj = (vj,i )1≤i≤d .
Notice that the right-hand side of (5-1) is equal to∫

Z
χU ((vj )2≤ j≤m)| dv2 dv3 · · · dvm |.

Define the density form θ = |dv2 dv3 · · · dvm | = |dv2,1∧dv2,2∧· · ·∧dv2,d ∧· · ·∧dvm,1∧· · ·∧dvm,d |.
On the manifold Z it is a multiple of the volume density element

|dV | =
m∏

j=1

∣∣∣∣d−cj∧
l=1

wj,l

∣∣∣∣∣∣∣∣ ∧
1≤ j≤m,1≤l≤d−cj

dyj,l

∣∣∣∣.
Next we find θ/|dV |.

We have
θ

|dV |
=

1∏m
j=1

∣∣∧d−cj
l=1 wj,l

∣∣
∣∣∣∣(∂vj,i

∂yj,l

)∣∣∣∣.
And by change of variable we have

∣∣∣∣(∂vj,i

∂yj,l

)∣∣∣∣=
∣∣∣∣∣∣det

−w1,1 · · · −w1,d−c1 w2,1 · · · w2,d−c2 · · · 0 · · · 0 · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

−w1,1 · · · −w1,d−c1 0 · · · 0 · · · wm,1 · · · vm,d−cm · · · · · · · · ·

∣∣∣∣∣∣ . (5-3)
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This looks very much like the left-hand side of (4-6). Indeed, the extra negative signs do not change the
determinant and can be ignored. The only essential difference here is that for each j , our {wj,l}1≤l≤d−cj is
not a set of orthonormal vectors. If we do a change of variable to make them orthonormal we will extract
a factor of

∣∣∧d−cj
l=1 wj,l

∣∣ from right-hand side of (5-3) for each j . We then apply Lemma 4.2 and get

θ

|dV |
=

∣∣∣∣ m∧
j=1

(Tpj Z j )
⊥

∣∣∣∣. (5-4)

Hence the right-hand side of (5-1) is equal to
∫

Z χU ((vj )2≤ j≤m)
∣∣∧m

j=1(Tpj Z j )
⊥
∣∣ dV. Note that dV is

the product of all dVolj . This can easily be recognized as the left-hand side. �

In application, we want to look at the case where each Vj is the zero set of an algebraic variety of
codimension cj . Such a Vj may contain singular points, but they form a subset of measure 0 when we
take the (d−cj )-dimensional Hausdorff measure. Hence almost all points on Vj are smooth points and
we can apply our Lemma 5.1 to obtain the following theorem.

Theorem 5.2 (intersection estimate). Assume in Rd we have m algebraic subvarieties Z1, Z2, . . . , Zm

with codimensions c1, . . . , cm and degrees s1, . . . , sm respectively. If
∑m

j=1 cj =d then for any measurable
subset U ⊆ Rd(m−1)

= (Rd)m−1, we have∫
Z1

∫
Z2

· · ·

∫
Zm

χU (
−−→p1 p2, . . . ,

−−−→p1 pm)
∣∣(Tp1 Z1)

⊥
∧· · ·∧(Tpm Zm)

⊥
∣∣ dVol1 · · · dVolm≤Vol(U )

m∏
j=1

sj , (5-5)

where dVolj is the (d−cj )-dimensional volume element on the j-th subvariety. Almost all pj ∈ Z j are
smooth points and we define Tpj Z j to be the tangent space of Z j at pj .

Proof. Inequality (5-5) follows directly from Lemma 5.1 and Bézout’s theorem. �

Theorem 5.2 generalizes the cylinder estimate in [Guth 2010], which was recorded as Lemma 1.14 in
our current paper.

6. Proofs of Theorems 1.4 and 1.5

In this section, we prove Theorem 1.5 and deduce Theorem 1.4 as a corollary. As briefly described in the
Introduction, we actually prove a generalized theorem about any n varieties.

Basically, our multilinear kj -variety theorem says that for n algebraic subvarieties of Rd with their
codimension adding up to d, their tubular neighborhoods will provide us with an inequality similar to
Theorem 1.5 if we take their “amount of interaction” into account. In particular, if we take each subvariety
to be a union of kj -planes we obtain Theorems 1.5 and 1.4 (see the end of this section).

Theorem 6.1 (multilinear kj -variety theorem). Assume 1≤ kj ≤ d − 1, 1≤ j ≤ n, satisfy
∑n

j=1 kj = d.
Assume that for 1≤ j ≤ n, Hj ⊆ Rd is part of a kj -dimensional algebraic subvariety of degree A( j). Let
dσj denote the kj -dimensional (Hausdorff ) volume measure of Hj . Then with respect to this measure,
almost all yj ∈ Hj are smooth points. For a smooth point yj ∈ Hj , let Tyj Hj denote the tangent space of
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Hj at yj . Then∫
Rd

(∫
H1×H2×···×Hn

χ{dist(yj ,x)≤1}

∣∣∣∣ n∧
j=1

Tyj Hj

∣∣∣∣ dσ1(y1) · · · dσn(yn)

)1/(n−1)

dx .d

n∏
j=1

A( j)1/(n−1). (6-1)

We give an outline of the proof before we actually do it. For the convenience of the statement, we wrote
Theorem 6.1 in an integral form. However, because of the truncation χ{dist(yj ,x)≤1} it is really of discrete
flavor. In other words, around any unit cube, we only take into account the part of the varieties near this
cube. By Lemma 2.4, we can find a polynomial with large visibility around each relevant cube. In the
lemma, it is possible to assign different weights to different cubes in the above movement. We assign
the weights according to the cubes’ “popularity” among Hj , as done in [Guth 2010] for the multilinear
Kakeya theorem.

We will see it does not matter if we multiply all the weights by the same large positive number
simultaneously. As long as the weights are large enough, we can add hyperplanes to the polynomial
which do not essentially increase its degree and make its zero set satisfy the assumption of Theorem 3.1
at each relevant cube. Then we can invoke Theorem 3.1 for the resulting zero set Z(P) at all relevant
cubes to show that d copies of Z(P) have enough interaction there. Now around each relevant cube we
are ready to assign some copies of Z(P) to each variety Hj and use Lemma 4.1 to show that those “have
enough interaction”. On the other hand, we can use Theorem 5.2 to bound the amount of interaction from
above. Hence we obtain a nontrivial inequality. All quantities there work out as they supposed to and we
obtain our theorem.

Proof of Theorem 6.1. We only need to prove the case where each Hj is compact and take a limiting
argument to complete the proof. Fix a large constant N in terms of d; for example, N = 100ed should be
more than sufficient.

Consider the standard lattice of unit cubes in Rd. For each cube Qν in the lattice, let Oν be its center. Let

G(Qν)=

∫
H1×H2×···×Hn

n∏
j=1

χ{dist(yj ,Oν)≤N }

∣∣∣∣ n∧
j=1

Tyj Hj

∣∣∣∣ dσ1(y1) · · · dσn(yn). (6-2)

Obviously

G(Qν)≥

∫
H1×H2×···×Hn

n∏
j=1

χ{dist(yj ,x)≤1}

∣∣∣∣ n∧
j=1

Tyj Hj

∣∣∣∣ dσ1(y1) · · · dσn(yn) (6-3)

for any x ∈ Qν . Hence it suffices to prove that under assumptions of Theorem 6.1, we have∑
ν

G(Qν)
1/(n−1) .d

m∏
j=1

A( j)1/(n−1). (6-4)

We only have finitely many relevant cubes Qν such that G(Qν) 6= 0. Hence we can choose a huge
cube of side length S containing all of the relevant cubes. By Guth’s lemma, Lemma 2.4, we can find
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a polynomial P of degree .d S such that for each cube Qν ,

Vis[Z(P)∩ Qν] ≥ Sd G(Qν)
1/(n−1)

(∑
ν

G(Qν)
1/(n−1)

)−1

. (6-5)

Adding .d S hyperplanes to P (in other words multiplying P by linear equations of those hyperplanes)
if necessary, we may assume that for all Qν where G(Qν) > 0 we have V Z(P)∩Qν

(v)≥ |v|. Hence we
are in a good position to use the wedge product estimate (3-2).

Before we move on let us remark on a technical issue. If we do have to add hyperplanes at this point,
we need to modify our Definition 2.3 a little bit: Assume all the hyperplanes we added form a zero set
of a polynomial P0. We call the original polynomial in Guth’s lemma Pold and our P is actually Pold P0.
Then when we are talking about the mollified directed volume, mollified visibility, etc. around P, we
want to look at all P ′P0, where P ′ ∈ B(Pold, ε) instead of all P ′ ∈ B(P, ε). For example, the definition
(2-3) should now be modified to

V Z(P)∩U (v)=
1

|B(Pold, ε)|

∫
B(Pold,ε)

VZ(P ′P0)∩U (v) dP ′. (6-6)

We also note that an alternative strategy to “adding hyperplanes” is given in [Carbery and Valdimarsson
2013] (see Lemmas 3 and 6 and the argument on page 1654 there). It is a very detailed and clear account.

For the rest of the section for simplicity of the notation, we deal with the case where no hyperplanes
are added. For the general case the proof is identical except for proper correction of notation.

For any y1 ∈ H1 ∩ B(Oν, N ), . . . , yn ∈ Hn ∩ B(Oν, N ), P1, . . . , Pd ∈ B(P, ε)(see Section 2),
p1 ∈ Z(P1)∩B(Oν, N ), . . . , pd ∈ Z(Pd)∩B(Oν, N ), by Lemma 4.1, we can find some i j,h for 1≤ j ≤ n,
1≤ h ≤ kj such that

n∏
j=1

∣∣(Tyj Hj )
⊥
∧ (Tpi j,1

Z(Pi j,1))
⊥
∧ · · · ∧ (Tpi j,kj

Z(Pi j,kj
))⊥
∣∣&d

∣∣∣∣ n∧
j=1

Tyj Hj

∣∣∣∣ · ∣∣∣∣ d∧
i=1

(Tpi Z(Pi ))
⊥

∣∣∣∣ (6-7)

and all i j,h are distinct and form exactly the set {1, 2, . . . , d}.
Integrating over (H1 ∩ B(Oν, N ))× · · ·× (Hn ∩ B(Oν, N )), we obtain

G(Qν)·

∣∣∣∣ d∧
i=1

(Tpi Z(Pi ))
⊥

∣∣∣∣
.d

∑
(i j,h)

∫
H1∩B(Oν ,N )

· · ·

∫
Hn∩B(Oν ,N )

n∏
j=1

∣∣(Tyj Hj )
⊥
∧(Tpi j,1

Z(Pi j,1))
⊥
∧·· ·∧(Tpi j,kj

Z(Pi j,kj
))⊥
∣∣

dσ1(y1) · · · dσn(yn). (6-8)

Here we sum over all possible choices of {i j,h : 1 ≤ j ≤ n, 1 ≤ h ≤ kj } such that all i j,h are distinct
and form exactly the set {1, 2, . . . , d}.

Integrate (6-8) over P1, . . . , Pd ∈ B(P, ε) and pi ∈ Z(Pi )∩ B(Oν, N ) (we abuse the notation a bit
and write dp = dσ(p) where dσ is the (d−1)-dimensional Hausdorff volume measure on Z(P)). Taking
Definition 2.3 into account, we use wedge product estimate (Theorem 3.1) and (6-5), (6-8) and deduce
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∑
(i j,h)

1
|B(P, ε)|d

∫
· · ·

∫
B(P,ε)d

∫
H1∩B(Oν ,N )

· · ·

∫
Hn∩B(Oν ,N )

∫
Z(P1)∩B(Oν ,N )

· · ·

∫
Z(Pd )∩B(Oν ,N )

n∏
j=1

∣∣(Tyj Hj )
⊥
∧ (Tpi j,1

Z(Pi j,1))
⊥
∧ · · · ∧ (Tpi j,kj

Z(Pi j,kj
))⊥
∣∣

dp1 · · · dpd dσ1(y1) · · · dσn(yn) dP1 · · · dPd

&d G(Qν) ·Vis[Z(P)∩ Qν]

&d Sd G(Qν)
n/(n−1)

(∑
ν

G(Qν)
1/(n−1)

)−1

. (6-9)

Rewrite (6-9) as∑
(i j,h)

n∏
j=1

(
1

|B(P, ε)|kj

∫
· · ·

∫
B(P,ε)kj

1
Skj · A( j)

∫
Hj∩B(Oν ,N )

∫
Z(Pi j,1 )∩B(Oν ,N )

· · ·

∫
Z(Pi j,kj

)∩B(Oν ,N )∣∣(Tyj Hj )
⊥
∧ (Tpi j,1

Z(Pi j,1))
⊥
∧ · · · ∧ (Tpi j,kj

Z(Pi j,kj
))⊥
∣∣

dpi j,1 · · · dpi j,kj
dσj (yj ) dPi j,1 · · · dPi j,kj

)
&d

1∏n
j=1 A( j)

G(Qν)
n/(n−1)

(∑
ν

G(Qν)
1/(n−1)

)−1

. (6-10)

By the arithmetic-geometric mean inequality we deduce

1(∏n
j=1 A( j)

)1/n G(Qν)
1/(n−1)

(∑
ν

G(Qν)
1/(n−1)

)−1/n

.d

∑
(i j,h)

n∑
j=1

1
|B(P, ε)|kj

∫
· · ·

∫
B(P,ε)kj

1
Skj · A( j)

∫
Hj∩B(Oν ,N )

∫
Z(Pi j,1 )∩B(Oν ,N )

· · ·

∫
Z(Pi j,kj

)∩B(Oν ,N )∣∣(Tyj Hj )
⊥
∧ (Tpi j,1

Z(Pi j,1))
⊥
∧ · · · ∧ (Tpi j,kj

Z(Pi j,kj
))⊥
∣∣

dpi j,1 · · · dpi j,kj
dσj (yj ) dPi j,1 · · · dPi j,kj

(6-11)

Sum (6-11) over ν, and then invoke the intersection estimate Theorem 5.2 with U = {(ui )1≤i≤kj+1 :

ui ∈Rd, dist(ui , ui ′)< N 2
} (it suffices to choose U large enough). Note that deg Pj = S and deg Hj = A( j),

we have
1(∏n

j=1 A( j)
)1/n

(∑
ν

G(Qν)
1/(n−1)

)(∑
ν

G(Qν)
1/(n−1)

)−1/n

.d

∑
(i j,h)

n∑
j=1

1
|B(P, ε)|kj

∫
· · ·

∫
B(P,ε)kj

1
Skj ·A( j)

∫
Hj

∫
Z(Pi j,1 )

· · ·

∫
Z(Pi j,kj

)

χU (yj , pi j,1, . . . , pi j,kj
)·
∣∣(Tyj Hj )

⊥
∧(Tpi j,1

Z(Pi j,1))
⊥
∧· · ·∧(Tpi j,kj

Z(Pi j,kj
))⊥
∣∣

dpi j,1 · · · dpi j,kj
dσj (yj ) dPi j,1 · · · dPi j,kj

.d

∑
(i j,h)

n∑
j=1

1
|B(P, ε)|kj

∫
· · ·

∫
B(P,ε)kj

1 dPi j,1 · · · dPi j,kj
.d 1 (6-12)

and (6-4) holds. �



574 RUIXIANG ZHANG

Theorems 1.5 and 1.4 follow easily from Theorem 6.1. To prove Theorem 1.5 it suffices to prove the
case where all ρj,aj are rational numbers. Then without loss of generality we may assume further that they
are integers. By considering multiple copies of the Uj,aj , we can further assume they are all 1. Then one
just takes the j-th variety to be the union of the cores of the j-th family of slabs and apply Theorem 6.1
(after a scaling). Theorem 1.4 is a direct corollary of Theorem 1.5.

7. An analogue of Lemma 4.1

In the rest of this paper, we prove Theorem 1.11. In this section we prove a lemma (Lemma 7.5) analogous
to Lemma 4.1, which will be used in the proof the same way as Lemma 4.1 was used in the proof of
Theorem 1.4. This lemma is weaker in appearance than Lemma 4.1, but it turns out that it serves our
purpose.

Definition 7.1. In Rd, given a convex body 0 centered at the origin, define its dual body 0∗ to be
{v ∈ Rd

: |(v, x)| ≤ 1 for all x ∈ 0}, where ( · , · ) is the Euclidean inner product on Rd.

It is trivial by definition that if two convex bodies 01 and 02 satisfy 01 ⊆ 02 then 0∗1 ⊇ 0
∗

2 .
By John’s ellipsoid theorem, we need to mainly consider ellipsoids as examples of convex bodies.

Next we develop several lemmas concerning ellipsoids. From now on, when we talk about an ellipsoid in
Euclidean space, we always assume the ellipsoid has the same dimension as the background space.

Lemma 7.2. If the 0 in Definition 7.1 is a (closed) ellipsoid centered at O (the origin), then 0∗ is also
an ellipsoid centered at O. We call 0∗ the dual ellipsoid of 0. Choose a set of principal axes of 0 (the
wording is because the choices might not be unique); then they are also a set of principal axes of 0∗.
Moreover, the lengths of the corresponding principal axes of 0 and 0∗, when divided by 2, are reciprocal
to each other. Hence (0∗)∗ = 0 and Vol(0) ·Vol(0∗)= Cd > 0 is a constant depending only on d.

Proof. Trivially the dual body of the unit ball is again the unit ball. Assume 00 has a dual body 0∗0 . Then
for any positive definite linear transform A, we have by definition

(A00)
∗
= {v ∈ Rd

: |(v, Ax)| ≤ 1 for all x ∈ 00}

= {v ∈ Rd
: |(A∗v, x)| ≤ 1 for all x ∈ 00}

= (A∗)−10∗0 = A−10∗0 . (7-1)

Now we can use a positive definite linear transformation A to transform the closed unit ball to our 0;
by the computation above, 0∗ is A−1 acting on the unit ball, so it is an ellipsoid. Also the principal axes
of 0 correspond to an orthonormal basis that diagonalizes A. This basis also diagonalizes A−1. Hence
the principal axes of 0 are also principal axes of 0∗. The rest of the lemma is obvious. �

Lemma 7.3. Suppose we have a subspace V ⊆ Rd and 0 ∈ Rd is an ellipsoid centered at O. Let πV ( · )

be the orthogonal projection onto V. Then πV (0
∗) and 0∩ V are dual to each other (in V with respect to

the induced inner product). Note these two are both ellipsoids.

Proof. If V has dimension 1, then the lemma is true by definition of the dual body (note by Lemma 7.2,
the two ellipsoids are dual to each other).
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For general V, by the last paragraph for any V ′ ⊆ V of dimension 1 we have πV ′(πV (0
∗)) and

(0 ∩ V )∩ V ′ are dual to each other. But given the ellipsoid 0V = 0 ∩ V ⊆ V, apparently there is only
one possible set Y ⊆ V such that for any V ′ ⊆ V of dimension 1, πV ′(0V ) and Y ∩ V ′ are dual to each
other (since Y ∩ V ′ is determined by 0V via this property). Now by last paragraph again, the dual of 0V

in V is this unique Y. Hence πV (0
∗) has to be this dual. �

Lemma 7.4. For any subspace V ⊆ Rd of dimension d ′, we define πV to be the orthogonal projection
onto V as usual. Then for any (closed) ellipsoid 0 ⊆ Rd, we have

|πV (0)||0 ∩ V⊥| = Cd,d ′ |0|, (7-2)

where Cd,d ′ > 0 only depends on d and d ′. Here we use the corresponding standard Lebesgue measures
on V, V⊥ and Rd, respectively.

Proof. It is well known that in Rd, an ellipsoid defined by {x : (x, Ax)≤ 1} has volume Cd/(det A)1/2,
where A is a positive definite linear transform and ( · , · ) is the Euclidean inner product. Assume
0 = {x : ‖T x‖2 ≤ 1}, where T is a nondegenerate linear transform. Since we can multiply T by any
orthogonal transform on the left, we may assume T V⊥ = V⊥. Then by last paragraph,

|0| =
Cd

| det T |
, (7-3)

|0 ∩ V⊥| =
Cd,d ′

| det T |V⊥ |
. (7-4)

Meanwhile, x ∈ V belongs to πV (0) if and only if infv∈V⊥ ‖T (x+ v)‖ ≤ 1. By the method of least
squares, infv∈V⊥ ‖T (x+ v)‖ = ‖π(T V⊥)⊥(T x)‖ = ‖πV (T x)‖. Hence

|πV (0)| =
Cd ′

| det(πV ◦ T |V )|
. (7-5)

Now notice πV⊥=V⊥. Hence when written in matrix form it is easy to verify det T |V⊥ ·det(πV ◦T |V )=
det T. This together with (7-3)–(7-5) implies (7-2). �

Now we are ready to develop an analogue of Lemma 4.1. We recall that in Section 3 we defined
the total absolute inner product VX, f (v), the fading zone F(X, f ), visibility Vis[X, f ], and chose an
elliptical approximation Ell(F(X, f )) for any measurable vector-valued function f : X→ Rd.

Lemma 7.5. Fix positive integers d and 1≤ k1, . . . , kn < d. Let Rd be the standard Euclidean space.
Assume a Brascamp–Lieb datum (B, p) such that all Bj are orthogonal projections from Rd to a

subspace and dim ker Bj = kj . Assume E j = Bj (R
d)= (ker Bj )

⊥. Assume we have the scaling condition∑n
j=1 pj dim E j = d.
For any measurable vector valued function f : X→ Rd on some measure space satisfying VX, f (v)≥ 1

for all v ∈ Rd, we have
n∏

j=1

(∫
X kj
|E j ∧ f (x1)∧ · · · ∧ f (xkj )| dx1 · · · dxkj

)pj

&d, p (BL(B, p))−1(Vis[X, f ])
∑n

j=1 pj−1. (7-6)



576 RUIXIANG ZHANG

Proof. Similar to the proof of Theorem 3.1, we define πker Bj to be the orthogonal projection onto ker Bj

as before and fker Bj = πker Bj ◦ f . Then∫
X kj

∣∣E j ∧ f (x1)∧ · · · ∧ f (xkj )
∣∣ dx1 · · · dxkj =

∫
X kj

∣∣ fker Bj (x1)∧ · · · ∧ fker Bj (xkj )
∣∣ dx1 · · · dxkj . (7-7)

Similar to the proof of Theorem 3.1, we know F(X, fker Bj )= F(X, f )∩ ker Bj . Hence we can take
Ell(F(X, fker Bj )) to be Ell(F(X, f ))∩ ker Bj . By (7-7), Theorem 3.1, Lemma 7.2 and Lemma 7.3,∫

X kj

∣∣E j ∧ f (x1)∧ · · · ∧ f (xkj )
∣∣ dx1 · · · dxkj =

∫
X kj

∣∣ fker Bj (x1)∧ · · · ∧ fker Bj (xkj )
∣∣ dx1 · · · dxkj

&d
1

|Ell(F(X, f ))∩ ker Bj |

&d |(Ell(F(X, f ))∩ ker Bj )
∗
|

= |πker Bj (Ell(F(X, f ))∗)|. (7-8)

Hence it suffices to prove
n∏

j=1

∣∣πker Bj (Ell(F(X, f ))∗)
∣∣pj &d, p (BL(B, p))−1(Vis[X, f ])

∑n
j=1 pj−1. (7-9)

At this point we invoke the definition of BL(B, p). For any ellipsoid 0, we choose f j = χπEj (0
∗) in

(1-9). Then by definition
∏n

j=1( f j ◦ Bj )
pj ≥ χ0∗ . Hence

|0∗| ≤

∫
Rd

n∏
j=1

( f j ◦ Bj )
pj ≤ BL(B, p)

n∏
j=1

(∫
E j

f j

)pj

= BL(B, p)
n∏

j=1

|πE j (0
∗)|pj . (7-10)

In other words,

BL(B, p) · |0| ·
n∏

j=1

|πE j (0
∗)|pj &d 1. (7-11)

By Lemmas 7.2, 7.3 and 7.4, we have

|πE j (0
∗)| ∼kj

1
|0 ∩ E j |

∼kj ,d
|πker Bj (0)|

|0|
. (7-12)

Hence

BL(B, p) · |0| ·
n∏

j=1

(
|πker Bj (0)|

|0|

)pj

&d, p 1. (7-13)

Take 0=Ell(F(X, f ))∗. By Lemma 7.2 again, we have |0|= |Ell(F(X, f ))∗|∼d 1/|Ell(F(X, f ))|=
Vis[X, f ]. This fact and (7-13) imply (7-9), which in turn implies (7-6). �

8. Proof of Theorem 1.11

We are ready to prove Theorem 1.11. Just like the proof of Theorem 1.4, we prove a stronger theorem
concerning algebraic varieties. This theorem can also be considered as an analogue of Theorem 6.1.
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Theorem 8.1 (variety version of Brascamp–Lieb). Assume we have positive integers k1, . . . , kn ≤ d and
rational numbers p1, . . . , pn > 0. Choose a common denominator τ of all pj and assume pj = τj/τ , with
τj ∈ Z+ satisfying the scaling condition

∑
j pj (d − kj )= d.

Assume that for 1≤ j ≤ n, Hj ⊆ Rd is part of a kj -dimensional algebraic subvariety of degree A( j).
Let dσj denote the kj -dimensional (Hausdorff ) volume measure of Hj . Then under this measure, almost
all yj ∈ Hj are smooth points. For a smooth point yj ∈ Hj , let Tyj Hj denote the tangent space of Hj at yj .

For
∑

j τj smooth points y= (y1,1, . . . , y1,τ1, y2,1, . . . , y2,τ2, . . . , yn,τn ), yj,l ∈ Hj , there exists a unique
Brascamp–Lieb datum (B( y), p( y)) with

∑
j τj projections Bj all being orthogonal projections within

Rd as the following: Define (B( y), p( y)) = (B1,1, . . . , B1,τ1, B2,1, . . . , B2,τ2, . . . , Bn,τn , 1/τ, . . . , 1/τ)
such that ker Bj,l = Tyj,l Hj and all components of p are 1/τ . Then∫

Rd

(∫
H
τ1
1 ×···×H τn

n

n∏
j=1

τj∏
k=1

χ{dist(yj,k ,x)≤1}BL(B( y), p( y))−τ dσ1(y1,1) · · · dσ1(y1,τ1) · · · dσn(yn,τn )

)1/τ

dx

.d,τ1,...,τn,τ

n∏
j=1

A( j)pj . (8-1)

Let us explain the motivation of Theorem 8.1 before proving it. If we want to naturally generalize
Theorem 6.1 to the Brascamp–Lieb setting, first of all we have to come up with a reasonable integral like
the left-hand side of (6-1) to put on the left-hand side. However the fact that in (6-1) all pj = 1/(n− 1)
no longer holds in our situation. In fact, the pj might even all be irrational numbers. A natural way would
be approximating (pj ) by rational tuples. This works (see below) but eventually we need all the pj to be
the same to get a quantity analogous to left-hand of (6-1).

Another remark before we move on. It’s good to keep in mind that we may assume τ1 = · · · = τn = 1
in this theorem without loss of generality. This is trivial to see. But we keep the theorem in its current
form here so it is more straightforward to apply.

Proof that Theorem 8.1 implies Theorem 1.11. Note that the conditions (1-11) and (1-12) only have
rational coefficients. Hence it is possible to choose (n + 1) different rational p′ close enough to p
such that the conditions (1-11) and (1-12) are satisfied (that is, BL(B, p′) < +∞), and that p lies
in the convex hull of those p′. By interpolation we only need to prove the case when p is a rational
vector.

Next in order to apply the result of Theorem 8.1 to prove Theorem 1.11, we claim that if a Brascamp–
Lieb datum (B, p) is such that pj = τj/τ , where τ all τj are positive integers, then BL(B, p)=BL(B′, p′),
where B′ = (B1, . . . , B1, . . . , Bn, . . . , Bn) contains τj copies of Bj , and p′ = (1/τ, . . . , 1/τ). In fact,
looking at the definition (1-9) of BL(B, p), we have

BL(B′, p′)= sup
{ f j,l }

∫
Rd

∏n
j=1

∏τj
l=1( f j,l ◦ Bj )

1/τ∏n
j=1

∏τj
l=1

(∫
Hj

f j,l
)1/τ . (8-2)

Since we can always take f j,l = f j for all l, we deduce BL(B′, p′)≥ BL(B, p). On the other hand, in
the definition of BL(B, p) we can take f j = f j,lj for every possible tuple (l1, . . . , ln) satisfying 1≤ lj ≤ τj
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to deduce ∫
Rd

n∏
j=1

( f j,lj ◦ Bj )
τj/τ ≤ BL(B, p)

n∏
j=1

(∫
Hj

f j,lj

)τj/τ

. (8-3)

Then we let (lj ) run through all possible tuples and invoke Hölder to conclude that∫
Rd

n∏
j=1

τj∏
l=1

( f j,l ◦ Bj )
1/τ
≤ BL(B, p)

n∏
j=1

τj∏
l=1

(∫
Hj

f j,l

)1/τ

. (8-4)

Hence BL(B′, p′)≤ BL(B, p). Therefore BL(B′, p′)= BL(B, p).
By Theorem 1.1 in [Bennett et al. 2015], BL is a locally bounded function. It is then not hard to derive

Theorem 1.11 from Theorem 8.1 when p′ is a fixed rational number. �

Proof of Theorem 8.1. It’s plain that we may assume τ1 = · · · = τn = 1. For short we write Bj = Bj,1 and
yj = yj,1.

The proof will be almost identical to that of Theorem 6.1. In the current proof, we omit some details
for familiar manipulations in that proof to reduce redundancy and refer the reader to it.

Take the N and set up the unit cube lattice in Rd as in the proof of Theorem 6.1. Again let Oν be the
center of any cube Qν in the lattice. This time we define

G(Qν)=

∫
H1×···×Hn

n∏
j=1

χdist(yj ,Oν)≤N BL(B( y), p( y))−τ dσ1(y1) · · · dσn(yn). (8-5)

Similar to the proof of Theorem 6.1, it suffices to show∑
ν

G(Qv)
1/τ .d,n

n∏
j=1

A( j)1/τ. (8-6)

Again we may assume for the moment that each Hj is compact and use a limiting argument. Then we
can again choose a large cube of side length S that contains all the relevant cubes. Finally we can find a
polynomial P of degree .d S such that for each Qν ,

Vis[Z(P)∩ Qν] ≥ Sd G(Qν)
1/τ
(∑

ν

G(Qν)
1/τ
)−1

. (8-7)

As before we have to make the technical comment that after adding some hyperplanes and changing
the definition of Vis accordingly, we may assume for all Qν with G(Qν) > 0 we have

V Z(P)∩Qν
(v)≥ |v|

(so that we are allowed to apply (7-6)). We only deal with the case where no hyperplanes are added so
that the notation is simpler.

Similar to what we did in the proof of Theorem 6.1, we choose Bj = Tyj Hj , all pj = 1/τ and integrate
(7-6) over yj ∈ Hj ∩ B(Oν, N ). Then we choose the measure space X in (7-6) to be

{p ∈ Z(P ′)∩ B(Oν, N ) : P ′ ∈ B(P, ε)}
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(the measure is just the surface measure on each Z(P ′) joint with the standard measure on B(P, ε), which
is dp dP ′, where P ′ ∈ B(P, ε) and p ∈ Z(P ′)∩ B(Oν, N )) and deduce

1
|B(P, ε)|(n−τ)d

∫
· · ·

∫
B(P,ε)(n−τ)d

∫
H1∩B(Oν ,N )

· · ·

∫
Hn∩B(Oν ,N )

∫
Z(P1)∩B(Oν ,N )

· · ·

∫
Z(P(n−τ)d )∩B(Oν ,N )

n∏
j=1

∣∣(Tyj Hj )
⊥
∧ (Tpk1+···+kj−1+1 Z(Pk1+···+kj−1+1))

⊥
∧ · · · ∧ (Tpk1+···+kj

Z(Pk1+···+kj ))
⊥
∣∣

dp1 · · · dp(n−τ)d dσ1(y1) · · · dσn(yn) dP1 · · · dP(n−τ)d
&d,n G(Qν) ·Vis[Z(P)∩ Qν]

n−τ

&d,n S(n−τ)d G(Qν)
n/τ
(∑

ν

G(Qν)
1/τ
)−(n−τ)

. (8-8)

As before we rewrite it as
n∏

j=1

(
1

|B(P, ε)|kj

∫
· · ·

∫
B(P,ε)kj

1
Skj · A( j)

∫
Hj∩B(Oν ,N )

∫
Z(P1)∩B(Oν ,N )

· · ·

∫
Z(Pkj )∩B(Oν ,N )∣∣(Tyj Hj )

⊥
∧ (Tp1 Z(P1))

⊥
∧ · · · ∧ (Tpkj

Z(Pkj ))
⊥
∣∣ dp1 · · · dpkj dσj (yj ) dP1 · · · dPkj

)
&d,n

1∏n
j=1 A( j)

G(Qν)
n/τ
(∑

ν

G(Qν)
1/τ
)−(n−τ)

. (8-9)

Here note that since
∑n

j=1(d − kj )= τd by assumption, we have
∑n

j=1 kj = (n− τ)d . We have used
this fact in the above inequality chain (8-9).

By the arithmetic-geometric mean inequality we have
n∑

j=1

(
1

|B(P, ε)|kj

∫
· · ·

∫
B(P,ε)kj

1
Skj · A( j)

∫
Hj∩B(Oν ,N )

∫
Z(P1)∩B(Oν ,N )

· · ·

∫
Z(Pkj )∩B(Oν ,N )∣∣(Tyj Hj )

⊥
∧ (Tp1 Z(P1))

⊥
∧ · · · ∧ (Tpkj

Z(Pkj ))
⊥
∣∣ dp1 · · · dpkj dσj (yj ) dP1 · · · dPkj

)
&d,n

1(∏n
j=1 A( j)

)1/n G(Qν)
1/τ
(∑

ν

G(Qν)
1/τ
)−(n−τ)/n

. (8-10)

Like we did in the proof of Theorem 6.1, summing over ν and applying the intersection estimate
Theorem 5.2 with U = {(ui )1≤i≤kj+1 : ui ∈ Rd, dist(ui , u′i ) < N 2

}, we deduce

1(∏n
j=1 A( j)

)1/n

(∑
ν

G(Qν)
1/τ
)(∑

ν

G(Qν)
1/τ
)−(n−τ)/n

.d,n 1, (8-11)

which implies (8-6) and concludes the proof. �

Remark 8.2. For the perturbed Brascamp–Lieb theorem itself, Theorem 1.11, it is conceivable that one
can directly work with the framework of arguments in [Carbery and Valdimarsson 2013], without applying
a rational approximation argument as we did in this section. Nevertheless, we still decided to keep the
current approach as we feel that Theorem 8.1 here may be of independent interest, and that rationality
seems indispensable for us to state the theorem (and prove it).
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SQUARE FUNCTION ESTIMATES FOR DISCRETE RADON TRANSFORMS

MARIUSZ MIREK

We show `p(Zd)-boundedness, for p ∈ (1,∞), of discrete singular integrals of Radon type with the aid
of appropriate square function estimates, which can be thought of as a discrete counterpart of Littlewood–
Paley theory. It is a very robust approach which allows us to proceed as in the continuous case.

1. Introduction

Assume that K ∈ C1(Rk
\ {0}) is a Calderón–Zygmund kernel satisfying the differential inequality

|y|k |K (y)| + |y|k+1
|∇K (y)| ≤ 1 (1-1)

for all y ∈ Rk with |y| ≥ 1 and the cancellation condition

sup
λ≥1

∣∣∣∣∫
1≤|y|≤λ

K (y) dy
∣∣∣∣≤ 1. (1-2)

Let P = (P1, . . . ,Pd0) : Z
k
→ Zd0 be a polynomial mapping, where each component Pj : Z

k
→ Z is a

polynomial of k variables with integer coefficients and Pj (0)= 0. In the present article, as in [Ionescu
and Wainger 2006], we are interested in the discrete singular Radon transform T P defined by

T P f (x)=
∑

y∈Zk\{0}

f (x −P(y))K (y) (1-3)

for a finitely supported function f : Zd0 → R. We prove the following theorem.

Theorem A. For every p ∈ (1,∞) there is C p > 0 such that for all f ∈ `p(Zd0) we have

‖T P f ‖`p ≤ C p‖ f ‖`p . (1-4)

Moreover, the constant C p is independent of the coefficients of the polynomial mapping P .

Theorem A was proven by Ionescu and Wainger [2006]. The operator T P is a discrete analogue of the
continuous Radon transform RP defined by

RP f (x)= p.v.
∫

Rk
f (x −P(y))K (y) dy. (1-5)

The author was partially supported by the Schmidt Fellowship and the IAS School of Mathematics and by the National Science
Centre in Poland, NCN grant DEC-2015/19/B/ST1/01149.
MSC2010: 11L07, 42B20, 42B25.
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Nowadays the operators RP and their L p(Rd0)-boundedness properties for p ∈ (1,∞) are very well
understood. We refer to [Stein 1993] for a detailed exposition, and see also [Christ et al. 1999] for more
general cases. The key ingredient in proving L p(Rd0) bounds for RP is Littlewood–Paley theory. More
precisely, we begin with L2(Rd0) theory which, based on some oscillatory integral estimates for dyadic
pieces of the multiplier corresponding to RP, provides bounds with acceptable decays. Then appealing
to Littlewood–Paley theory and interpolation it is possible to obtain general L p(Rd0) bounds for all
p ∈ (1,∞). Now, one would like to follow the same scheme in the discrete case. However, the situation
for T P is much more complicated due to arithmetic nature of this operator. Although `2(Zd0) theory is
based on estimates for some oscillatory integrals, or rather exponential sums associated with dyadic pieces
of the multiplier corresponding to T P as was shown in [Ionescu and Wainger 2006], `p(Zd0) theory does
not fall under the Littlewood–Paley paradigm as it does in the continuous case.

The main aim of this paper is to give a new proof of Theorem A using square function techniques.
We construct a suitable square function which allows us to proceed as in the continuous case to obtain
`p(Zd0) theory for the operator (1-3). Our square function gives a new insight for these sort of problems,
see especially [Mirek et al. 2015; 2017], and can be thought as a discrete counterpart of Littlewood–Paley
theory.

There is also an interesting open question concerning the estimates of T P at the endpoint for p = 1.
This is unknown even in the continuous case. For instance, if we consider a Radon transform RP along
the parabola P(y)= (y, y2) in R2, i.e.,

RP f (x1, x2)= p.v.
∫

R

f (x1− y, x2− y2)
dy
y
,

then the question about weak-type (1, 1)-estimates for RP is one of the major unsolved problems in
harmonic analysis. The best known result to date belongs to Seeger, Tao and Wright [Seeger et al. 2004].

In view of the recent negative results of [Buczolich and Mauldin 2010] and [LaVictoire 2011], at the end-
point for p= 1, for Bourgain’s maximal functions corresponding to the discrete averaging operators along
n2 or nk with k ≥ 2, we expect that similar phenomena may occur for discrete singular Radon transforms.

Outline of the strategy of our proof. Recall from [Stein 1993, Chapter 6, §4.5, Chapter 13, §5.3] that
given a kernel K satisfying (1-1) and (1-2) there are functions (Kn : n ∈ Z) and a constant C > 0 such
that for x 6= 0,

K (x)=
∞∑

n∈Z

Kn(x), (1-6)

where for each n ∈ Z, the kernel Kn is supported inside 2n−2
≤ |x | ≤ 2n , satisfies

|x |k |Kn(x)| + |x |k+1
|∇Kn(x)| ≤ C (1-7)

for all x ∈ Rk such that |x | ≥ 1, and has integral 0. Thus in view of (1-7), instead of (1-4), it suffices to
show that for every p ∈ (1,∞) there is a constant C p > 0 such that∥∥∥∥∑

n≥0

T P
n f

∥∥∥∥
`p
≤ C p‖ f ‖`p (1-8)
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for all f ∈ `p(Zd), where

T P
n f (x)=

∑
y∈Zk

f (x −P(y))Kn(y) (1-9)

for each n ∈ Z. The summation in (1-8) can be taken over nonnegative integers, since
∑

n<0 T P
n f ≡ 0.

As we mentioned before, the proof of inequality (1-8) will strongly follow the scheme of the proof of
the corresponding inequality from the continuous setup. Now we describe the key points of our approach.
To avoid some technicalities assume that P(x) = (xd , . . . , x) is a moment curve for some d = d0 ≥ 2
and k = 1. Let mn be the Fourier multiplier associated with the operator T P

n ; i.e., T P
n f = F−1(mn f̂ ).

As in [Mirek et al. 2015; 2017], we introduce a family of appropriate projections (4n(ξ) : n ≥ 0) which
will localize the asymptotic behaviour of mn(ξ). Namely, let η be a smooth bump function with a small
support, fix l ∈ N and define for each integer n ≥ 0 the projection

4n(ξ)=
∑

a/q∈Unl

η(E−1
n (ξ − a/q)), (1-10)

where En is a diagonal d × d matrix with positive entries (εj : 1≤ j ≤ d) such that εj ≤ e−n1/5
and

Unl =
{
a/q ∈ Td

∩Qd
: a = (a1, . . . , ad) ∈ Nd

q and gcd(a1, . . . , ad , q)= 1 and q ∈ Pnl
}

for some family Pnl such that Nnl ⊆ Pnl ⊆Nen1/10 . All details are described in Section 2. Exploiting the
ideas of [Ionescu and Wainger 2006], we prove that for every p ∈ (1,∞) there is a constant Cl,p > 0
such that

‖F−1(4n f̂ )‖`p ≤ Cl,p log(n+ 2)‖ f ‖`p . (1-11)

Inequality (1-11) will be essential in our proof. Observe that (1-10) allows us to dominate (1-8) as∥∥∥∥∑
n≥0

T P
n f

∥∥∥∥
`p
≤

∥∥∥∥∑
n≥0

F−1(mn4n f̂ )
∥∥∥∥
`p
+

∥∥∥∥∑
n≥0

F−1(mn(1−4n) f̂ )
∥∥∥∥
`p
, (1-12)

and we can employ the ideas from the circle method of Hardy and Littlewood, which are implicit in the
behaviour of the projections 4n and 1−4n . Namely, the second norm on the right-hand side of (1-12) is
bounded, since the multiplier mn(1−4n) is highly oscillatory. Thus appealing to (1-11) and a variant of
Weyl’s inequality with logarithmic decay, which has been proven in [Mirek et al. 2015], see Theorem 3.1,
we can conclude that there is a constant C p > 0 such that for each n ≥ 0 we have∥∥F−1(mn(1−4n) f̂ )

∥∥
`p ≤ C p(n+ 1)−2

‖ f ‖`p .

Now the whole difficulty lies in proving∥∥∥∥∑
n≥0

F−1(mn4n f̂ )
∥∥∥∥
`p
≤ C p‖ f ‖`p . (1-13)

For this purpose we construct new multipliers of the form

1 j
n,s(ξ)=

∑
a/q∈U

(s+1)l \Usl

(
η(E−1

n+ j (ξ − a/q))− η(E−1
n+ j+1(ξ − a/q))

)
η(E−1

s (ξ − a/q)) (1-14)
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such that
4n(ξ)'

∑
j∈Z

∑
s≥0

1 j
n,s(ξ).

Moreover, we will be able to show in Theorem 3.3, using Theorem 2.2, that for each p ∈ (1,∞) there is
a constant C p > 0 such that∥∥∥∥(∑

n∈Z

|F−1(1 j
n,s f̂ )|2

)1/2∥∥∥∥
`p
≤ C p log(s+ 2)‖ f ‖`p (1-15)

for any s ≥ 0, uniformly in j ∈ Z. Estimate (1-15) can be thought of as a discrete counterpart of the
Littlewood–Paley inequality; see Theorem 3.3. This is the key ingredient in our proof, which combined
with the robust `2(Zd) estimate∥∥∥∥(∑

n∈Z

|F−1(mn1
j
n,s f̂ )|2

)1/2∥∥∥∥
`2
≤ C2−ε| j |(s+ 1)−δl‖ f ‖`2, (1-16)

allows us to deduce (1-13). The last bound follows, since for each a/q ∈ U(s+1)l \Usl we have

mn(ξ)= G(a/q)8n(ξ − a/q)+O(2−n/2),

where G(a/q) is the Gaussian sum and 8n is a continuous counterpart of mn; precise definitions can
be found at the beginning of Section 3. This observation leads to (1-16), because |G(a/q)| ≤ Cq−δ and
q ≥ sl if a/q ∈ U(s+1)l \Usl . The decay in | j | in (1-16) follows from the assumption on the support of
1

j
n,s and the behaviour of 8n(ξ − a/q); see Section 3 for more details.
The ideas of exploiting projection (1-10) were initiated in [Mirek et al. 2015] in the context of

`p(Zd0)-boundedness of maximal functions corresponding to the averaging Radon operators

MP
N f (x)= N−k

∑
y∈Nk

N

f (x −P(y)), (1-17)

where Nk
N = {1, 2, . . . , N }k, and the truncated singular Radon transforms

T P
N f (x)=

∑
y∈BN \{0}

f (x −P(y))K (y), (1-18)

where BN = {x ∈Zk
: |x | ≤ N }. These ideas, on the one hand, resulted in a new proof for Bourgain’s maxi-

mal operators [Bourgain 1988a; 1988b; 1989]. On the other hand, they turned out to be flexible enough to
attack `p(Zd0)-boundedness of maximal functions for operators with signs like in (1-18). In fact, in [Mirek
et al. 2015] we provided some vector-valued estimates for the maximal functions associated with (1-17) and
(1-18). These estimates found applications in variational estimates for (1-17) and (1-18), which were the
subject of [Mirek et al. 2017]. Our approach falls within the scope of a general scheme which was recently
developed in [Mirek et al. 2015; 2017] and resulted in some unification in the theory of discrete analogues
in harmonic analysis. The novelty of this paper is that it provides a counterpart of the Littlewood–Paley
square function, which is useful in the problems with arithmetic flavour. Furthermore, this square function
theory is also an invaluable ingredient in the estimates of variational seminorm in [Mirek et al. 2017].
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The paper is organized as follows. In Section 2 we prove Theorem 2.2, which is essential in our
approach and guarantees (1-11). Ionescu and Wainger [2006] proved this result with (log N )D loss in
norm, where D > 0 is a large power. In [Mirek et al. 2015] we provided a slightly different proof and
showed that log N is possible. Moreover log N loss is sharp for the method which we used. Since
Theorem 2.2 is a deep theorem, which uses the most sophisticated tools developed to date in the field
of discrete analogues, we have decided, for the sake of completeness, to provide necessary details. In
Section 3 we prove Theorem A. To understand more quickly the proof of Theorem A, the reader may
begin by looking at Section 3 first. These sections can be read independently, assuming the results from
Section 2.

Basic reductions. We set
degP =max{degPj : 1≤ j ≤ d0}

and define the set
0 = {γ ∈ Zk

\ {0} : 0< |γ | ≤ degP}

with the lexicographic order. Let d be the cardinality of 0. Then we can identify Rd with the space
of all vectors whose coordinates are labelled by multi-indices γ ∈ 0. Next we introduce the canonical
polynomial mapping

Q= (Qγ : γ ∈ 0) : Z
k
→ Zd,

where Qγ (x)= xγ and xγ = xγ1
1 · · · · · x

γk
k . The canonical polynomial mapping Q determines anisotropic

dilations. Namely, let A be a diagonal d × d matrix such that

(Av)γ = |γ |vγ

for any v ∈ Rd and γ ∈ 0, where |γ | = γ1+ · · ·+ γk . Then for every t > 0 we set

t A
= exp(A log t);

i.e., t Ax = (t |γ |xγ : γ ∈ 0) for x ∈ Rd, and we see that Q(t x)= t AQ(x).
Observe also that each Pj can be expressed as

Pj (x)=
∑
γ∈0

cγj xγ

for some cγj ∈ R. Moreover, the coefficients (cγj : γ ∈ 0, j ∈ {1, . . . , d0}) define a linear transformation
L : Rd

→ Rd0 such that LQ= P . Indeed, it is enough to set

(Lv)j =
∑
γ∈0

cγj vγ

for each j ∈ {1, . . . , d0} and v ∈ Rd. Now instead of proving Theorem A we show the following.

Theorem B. For every p ∈ (1,∞) there is C p > 0 such that for all f ∈ `p(Zd) we have

‖T Q f ‖`p ≤ C p‖ f ‖`p . (1-19)
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In view of [Stein 1993, Section 11] we can perform a lifting procedure, which allows us to replace the
underlying polynomial mapping P from (1-4) by the canonical polynomial mapping Q. Moreover, it shows
that (1-19) implies (1-4) with the same constant C p; see also [Ionescu and Wainger 2006] for more details.
Therefore, the matters are reduced to proving (1-19) for the canonical polynomial mapping. The advantage
of working with the canonical polynomial mapping Q is that it has all coefficients equal to 1, and the
uniform bound in this case is immediate. From now on for simplicity of notation we will write T = T Q.

Notation. Throughout the whole article C > 0 will stand for a positive constant (possibly large constant)
whose value may change from occurrence to occurrence. If there is an absolute constant C > 0 such
that A ≤ C B (A ≥ C B) then we will write A . B (A & B). Moreover, we will write A ' B if A . B
and A & B hold simultaneously, and we will write A .δ B (A &δ B) to indicate that the constant C > 0
depends on some δ > 0. Let N0 = N∪ {0} and for N ∈ N we set

NN = {1, 2, . . . , N }.

For a vector x ∈ Rd we will use the norms

|x |∞ =max{|x j | : 1≤ j ≤ d} and |x | =
( d∑

j=1

|x j |
2
)1/2

.

If γ is a multi-index from Nk
0 then |γ | = γ1+· · ·+γk . Although, we use | · | for the length of a multi-index

γ ∈Nk
0 and the Euclidean norm of x ∈ Rd, their meaning will be always clear from the context and it will

cause no confusions in the sequel.

2. Ionescu–Wainger-type multipliers

For a function f ∈ L1(Rd) let F denote the Fourier transform on Rd defined as

F f (ξ)=
∫

Rd
f (x)e2π iξ ·x dx .

If f ∈ `1(Zd) we set

f̂ (ξ)=
∑
x∈Zd

f (x)e2π iξ ·x.

To simplify the notation, we denote by F−1 the inverse Fourier transform on Rd and the inverse Fourier
transform on the torus Td

≡ [0, 1)d (Fourier coefficients). The meaning of F−1 will be always clear from
the context. Let η : Rd

→ R be a smooth function such that 0≤ η(x)≤ 1 and

η(x)=
{

1 for |x | ≤ 1/(16d),
0 for |x | ≥ 1/(8d).

Remark 2.1. We will additionally assume that η is a convolution of two nonnegative smooth functions φ
and ψ with compact supports contained in (−1/(8d), 1/(8d))d.
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This section is intended to prove Theorem 2.2, which is inspired by the ideas of [Ionescu and Wainger
2006]. Let ρ > 0 and for every N ∈ N define

N0 = bNρ/2
c+ 1 and Q0 = (N0!)

D,

where D = Dρ = b2/ρc+ 1. Let PN = P∩ (N0, N ], where P is the set of all prime numbers. For any
V ⊆ PN we define

5(V )=
⋃

k∈ND

5k(V ),

where for any k ∈ ND

5k(V )= {p
γ1
1 · · · · · p

γk
k : γl ∈ ND and pl ∈ V are distinct for all 1≤ l ≤ k}.

In other words 5(V ) is the set of all products of prime factors from V of length at most D, at powers
between 1 and D. Now we introduce the sets

PN =
{
q = Q ·w : Q | Q0 and w ∈5(PN )∪ {1}

}
.

It is not difficult to see that every integer q ∈NN can be uniquely written as q = Q ·w, where Q | Q0 and
w ∈5(PN )∪ {1}. Moreover, for sufficiently large N ∈ N we have

q = Q ·w ≤ Q0 ·w ≤ (N0!)
D N D2

≤ eNρ

;

thus we have NN ⊆ PN ⊆ NeNρ . Furthermore, if N1 ≤ N2 then PN1 ⊆ PN2 .
For a subset S ⊆ N we define

R(S)= {a/q ∈ Td
∩Qd

: a ∈ Aq and q ∈ S},

where for each q ∈ N

Aq = {a ∈ Nd
q : gcd(q, (aγ : γ ∈ 0))= 1}.

Finally, for each N ∈ N we will consider the sets

UN =R(PN ). (2-1)

It is easy to see, if N1 ≤ N2 then UN1 ⊆ UN2 .
We will assume that 2 is a multiplier on Rd and for every p ∈ (1,∞) there is a constant Ap > 0 such

that for every f ∈ L2(Rd)∩ L p(Rd) we have

‖F−1(2F f )‖L p ≤ Ap‖ f ‖L p . (2-2)

For each N ∈ N we define the new periodic multiplier

1N (ξ)=
∑

a/q∈UN

2(ξ − a/q)ηN (ξ − a/q), (2-3)

where ηN (ξ)= η(E−1
N ξ) and EN is a diagonal d × d matrix with positive entries (εγ : γ ∈ 0) such that

εγ ≤ e−N 2ρ
. The main result is the following.
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Theorem 2.2. Let 2 be a multiplier on Rd obeying (2-2). Then for every ρ > 0 and p ∈ (1,∞) there is a
constant Cρ,p > 0 such that for any N ∈ N and f ∈ `p(Zd) we have

‖F−1(1N f̂ )‖`p ≤ Cρ,p(Ap + 1) log N‖ f ‖`p . (2-4)

The main constructing blocks have been gathered in the next three subsections. Theorem 2.2 is a
consequence of Theorem 2.6 and Proposition 2.7 proved below. To prove Theorem 2.2 we find some
Cρ > 0 and disjoint sets U i

N ⊆ UN such that

UN =
⋃

1≤i≤Cρ log N

U i
N

and we show that 1N with the summation restricted to U i
N is bounded on `p(Zd) for every p ∈ (1,∞).

In order to construct U i
N , we need a suitable partition of integers from the set 5(PN )∪ {1}; see also

[Ionescu and Wainger 2006].

Fundamental combinatorial lemma. We begin with the following definition.

Definition 2.3. A subset 3⊆5(V ) has property O if there is k ∈ ND and there are sets S1, S2, . . . , Sk

with the following properties:

(i) For each 1≤ j ≤ k there is βj ∈ N such that Sj = {qj,1, . . . , qj,βj }.

(ii) For every qj,s ∈ Sj there are pj,s ∈ V and γj ∈ ND such that qj,s = pγj
j,s .

(iii) For every w ∈3 there are unique numbers q1,s1 ∈ S1, . . . , qk,sk ∈ Sk such that w = q1,s1 · · · · · qk,sk .

(iv) If ( j, s) 6= ( j ′, s ′) then (qj,s, qj ′,s′)= 1.

Now three comments are in order.

• The set 3= {1} has property O corresponding to k = 0.

• If 3 has property O, then each subset 3′ ⊆3 has property O as well.

• If a set 3 has property O then each element of 3 has the same number of prime factors k ≤ D.

The main result is the following.

Lemma 2.4. For every ρ > 0 there exists a constant Cρ > 0 such that for every N ∈ N the set UN can be
written as a disjoint union of at most Cρ log N sets U i

N =R(P i
N ), where

P i
N = {q = Q ·w : Q | Q0 and w ∈3i (PN )} (2-5)

and 3i (PN )⊆5(PN )∪ {1} has property O for each integer 1≤ i ≤ Cρ log N.

Proof. We have to prove that for every V ⊆PN the set 5(V ) can be written as a disjoint union of at most
Ck log N sets with property O. Fix k ∈ ND , let γ = (γ1, . . . , γk) ∈ Nk

D be a multi-index and observe that

5k(V )=
⋃
γ∈Nk

D

5
γ

k (V ),

where
5
γ

k (V )= {p
γ1
1 · · · · · p

γk
k : pl ∈ V are distinct for all 1≤ l ≤ k}.
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Since there are Dk possible choices of exponents γ1, . . . , γk ∈ND when k ∈ND , it only suffices to prove
that every 5γ

k (V ) can be partitioned into a union (not necessarily disjoint) of at most Ck log N sets with
property O.

We claim that for each k ∈ N there is a constant Ck > 0 and a family

π = {πi (V ) : 1≤ i ≤ Ck log |V |} (2-6)

of partitions of V such that

(i) for every 1≤ i ≤ Ck log |V |, each πi (V )= {V i
1 , . . . , V i

k } consists of pairwise disjoint subsets of V
and V = V i

1 ∪ · · · ∪ V i
k ;

(ii) for every E ⊆V with at least k elements, there exists πi (V )={V i
1 , . . . , V i

k } ∈π such that E∩V i
j 6=∅

for every 1≤ j ≤ k.

Assume for a moment we have constructed a family π as in (2-6). Then one sees that for a fixed γ ∈Nk
D

we have

5
γ

k (V )=
⋃

1≤i≤Ck log |V |

5
γ

k,i (V ), (2-7)

where

5
γ

k,i (V )= {p
γ1
1 · · · · · p

γk
k : pj ∈ V i

j and V i
j ∈ πi (V ) for each 1≤ j ≤ k}.

Indeed, the sum on the right-hand side of (2-7) is contained in 5γ

k (V ) since each 5γ

k,i (V ) is. For the
opposite inclusion take pγ1

1 · · · · · p
γk
k ∈5

γ

k (V ) and let E = {p1, . . . , pk}; then property (ii) for the family
(2-6) ensures that there is πi (V )= {V i

1 , . . . , V i
k } ∈π such that E∩V i

j 6=∅ for every 1≤ j ≤ k. Therefore,
pγ1

1 · · · · · pγk
k ∈ 5

γ

k,i (V ). Furthermore, we see that for each 1 ≤ i ≤ Ck log N, the sets 5γ

k,i (V ) have
property O.

The proof will be completed if we construct the family π as in (2-6) for the set V. We assume, for
simplicity, that V = NN but the result is true for all V ⊆ NN containing at least k elements. Now it will
be more comfortable to work with surjective mappings f :NN 7→Nk rather than with partitions of NN

into k nonempty subsets. It will cause no changes to us, since every surjection f : NN 7→ Nk determines
a partition { f −1

[{m}] : 1≤ m ≤ k} of NN into k nonempty subsets.
For the proof we employ a probabilistic argument. Indeed, let f : NN 7→ Nk be a random surjective

mapping. Assume that for every n ∈NN and m ∈Nk we have P({ f (n)=m})= 1/k independently of all
other n ∈ NN . For every E ⊆ NN with k elements we have P({| f [E]| = k})= k!/kk. It suffices to show
that for some r 'k log N and f1, . . . , fr random surjections we have

P
(
{∀E⊆NN |E | = k ∃1≤l≤r | fl[E]| = k}

)
> 0.

In other words, for each E ⊆NN with cardinality k it is always possible to find, with a positive probability,
among at most Ck log N random surjections at least one f : NN 7→ Nk such that | f [E]| = k. Then the
set { f −1

[{m}] : 1≤ m ≤ k} is a partition of NN and E ∩ f −1
[{m}] 6=∅ for every 1≤ m ≤ k.
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The task now is the determine the exact value of r 'k log N. Take now 1≤ r ≤ N independent random
surjections f1, . . . , fr and observe that

P
({
∃E⊆NN |E | = k ∀1≤l≤r | fl[E]|< k

})
≤

∑
E⊆NN :|E |=k

P
(
{∀1≤l≤r | fl[E]|< k}

)
=

∑
E⊆NN :|E |=k

(
1−

k!
kk

)r

=

(
N
k

)(
1−

k!
kk

)r

≤

(
eN
k

)k

e−rk!/kk
= ek log(eN/k)−rk!/kk

.

Therefore

P
(
{∃E⊆NN |E | = k ∀1≤l≤r | fl[E]|< k}

)
< 1

if and only if

r >
kk+1

k!
log
(

eN
k

)
.

Thus taking

r =
⌈

kk+1

k!
log
(

eN
k

)⌉
+ 1' Ck log N,

we see that it does the job. This completes the proof of Lemma 2.4. �

Further reductions and square function estimates. Now we can write

1N =
∑

1≤i≤Cρ log N

1i
N ,

where for each 1≤ i ≤ Cρ log N

1i
N (ξ)=

∑
a/q∈U i

N

2(ξ − a/q)ηN (ξ − a/q) (2-8)

with U i
N as in Lemma 2.4. The proof of Theorem 2.2 will be completed if we show that for every

p ∈ (1,∞) and ρ > 0, there is a constant C > 0 such that for any N ∈ N and 1≤ i ≤ Cρ log N we have

‖F−1(1i
N f̂ )‖`p ≤ C(Ap + 1)‖ f ‖`p (2-9)

for every f ∈ `p(Zd).
Let

3⊆5(PN )∪ {1} (2-10)

be a set with property O; see Definition 2.3. Define

U 3
N =R

(
{q = Q ·w : Q | Q0 and w ∈3}

)
and WN =R(3), and we introduce

13N (ξ)=
∑

a/q∈U 3
N

2(ξ − a/q)ηN (ξ − a/q). (2-11)
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We show that for every p ∈ (1,∞) and ρ > 0, there is a constant C > 0 such that for any N ≥ 8max{p,p′}/ρ

and for any set 3 as in (2-10) and for every f ∈ `p(Zd) we have

‖F−1(13N f̂ )‖`p ≤ C(Ap + 1)‖ f ‖`p . (2-12)

For N ≤ 8max{p,p′}/ρ the bound in (2-12) is obvious, since we allow the constant C > 0 to depend on p
and ρ. Moreover, by the duality and interpolation, it suffices to prove (2-12) for p = 2r , where r ∈ N. If
3=3i (PN ), as in Lemma 2.4, for some 1≤ i ≤ Cρ log N, then we see that U 3

N = U i
N and 13N =1

i
N ,

and consequently (2-12) implies (2-9) as desired.
The function 2(ξ)ηN (ξ) is regarded as a periodic function on Td ; thus

13N (ξ)=
∑

a/q∈U 3
N

2(ξ − a/q)ηN (ξ − a/q)=
∑

b∈Nd
Q0

∑
a/w∈WN

2(ξ − b/Q0− a/w)ηN (ξ − b/Q0− a/w),

where we have used the fact that if (q1, q2)= 1 then for every a ∈ Zd, there are unique a1, a2 ∈ Zd, such
that a1/q1, a2/q2 ∈ [0, 1)d and

a
q1q2
=

a1

q1
+

a2

q2
(mod Zd). (2-13)

Since 3 has property O, according to Definition 2.3 there is an integer 1≤ k ≤ 2/ρ+1 and there are sets
S1, . . . , Sk such that for any j ∈ Nk we have Sj = {qj,1, . . . , qj,βj } for some βj ∈ N.

Now for each j ∈ Nk we introduce

U{ j} =
{
aj,s/qj,s ∈ Td

∩Qd
: s ∈ Nβj and aj,s ∈ Aqj,s

}
and for any M = { j1, . . . , jm} ⊆ Nk let

UM =
{
u j1 + · · ·+ u jm ∈ Td

∩Qd
: u jl ∈ U{ jl } for any l ∈ Nm

}
.

For any sequence σ = (sj1, . . . , sjm ) ∈ Nβj1
× · · ·×Nβjm

determined by the set M, let us define

V σM =
{
aj1,sj1

/qj1,sj1
+ · · ·+ ajm ,sjm

/qjm ,sjm
∈ Td
∩Qd

: ajl ,sjl
∈ Aqjl ,sjl

for any l ∈ Nm
}
.

Note that V σM is a subset of UM with fixed denominators qj1,sj1
, . . . , qjm ,sjm

. If M = ∅ then we have
UM = VM = {0}. Let

χ(ξ)= 13(ξ) and �N (ξ)=2(ξ)ηN (ξ).

Then again by (2-13) we obtain

13N (ξ)=
∑

a/w∈WN

∑
b∈Nd

Q0

2(ξ − b/Q0− a/w)ηN (ξ − b/Q0− a/w)

=

∑
s1∈Nβ1

∑
a1,s1∈Aq1,s1

· · ·

∑
sk∈Nβk

∑
ak,sk∈Aqk,sk

ma1,s1/q1,s1+···+ak,sk /qk,sk
(ξ)=

∑
u∈UNk

mu(ξ), (2-14)
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where

mu(ξ)= ma1,s1/q1,s1+···+ak,sk /qk,sk
(ξ)= χ(q1,s1 · · · · · qk,sk )

∑
b∈Nd

Q0

�N

(
ξ − b/Q0−

k∑
j=1

aj,sj /qj,sj

)
(2-15)

for u = a1,s1/q1,s1 + · · ·+ ak,sk/qk,sk .
From now on we will write, for every u ∈ UNk ,

fu(x)= F−1(mu f̂ )(x) (2-16)

with f ∈ `2r (Zd) and r ∈ N. Therefore,

F−1(13N f̂ )(x)=
∑

u∈UNk

fu(x) (2-17)

and the proof of inequality (2-12) will follow from the theorem below.

Theorem 2.5. Suppose that ρ > 0 and r ∈N are given. Then there is a constant Cρ,r > 0 such that for
any N > 82r/ρ and for any set 3 as in (2-10) and for every f ∈ `2r (Zd) we have∥∥∥∥ ∑

u∈UNk

fu

∥∥∥∥
`2r
≤ Cρ,r‖ f ‖`2r . (2-18)

Moreover, the integer k ∈ ND, the set UNk and consequently the sets S1, . . . , Sk are determined by the
set 3 as it was described above.

The estimate (2-18) will follow from Theorem 2.6 and Proposition 2.7 formulated below. Let us
introduce a suitable square function which will be useful in bounding (2-18). For any M ⊆ Nk and
L = { j1, . . . , jl} ⊆ M and any sequence σ = (sj1, . . . , sjl ) ∈ Nβj1

× · · · ×Nβjl
determined by the set L ,

let us define the square function S σL ,M( fu : u ∈ UNk ) associated with the sequence ( fu : u ∈ UNk ) of
complex-valued functions as in (2-16) by setting

S σL ,M( fu(x) : u ∈ UNk )=

( ∑
w∈UMc

∣∣∣∣ ∑
u∈UM\L

∑
v∈VσL

fw+u+v(x)
∣∣∣∣2)1/2

, (2-19)

where Mc
= Nk \M. For some sji ∈ {sj1, . . . , sjl } we will write

‖S σL ,M( fu : u ∈ UNk )‖`2
sji
=

( ∑
sji ∈Nβji

∣∣S(sj1 ,...,sjl )

L ,M ( fu(x) : u ∈ UNk )
∣∣2)1/2

, (2-20)

which defines some function which depends on x ∈ Zd and on each sjn ∈ {sj1, . . . , sjl } \ {sji }.
For the proof of (2-18) we have to exploit the fact that the Fourier transform of fu is defined as a

sum of disjointly supported smooth cut-off functions. Then appropriate subsums of
∑

u∈UNk
fu should be

strongly orthogonal to each other.
Theorem 2.5 will be proved as a consequence of Theorem 2.6 and Proposition 2.7 below.



SQUARE FUNCTION ESTIMATES FOR DISCRETE RADON TRANSFORMS 595

Theorem 2.6. Suppose that ρ > 0 and r ∈N are given. Then there is a constant Cρ,r > 0 such that for
any N > 82r/ρ and for any set 3 as in (2-10) and for every f ∈ `2r (Zd) we have∥∥∥∥ ∑

u∈UNk

fu

∥∥∥∥2r

`2r
≤ Cρ,r

∑
M⊆Nk

M={ j1,..., jm}

∑
σ∈Nβj1

×···×Nβjm

‖SσM,M( fu : u ∈ UNk )‖
2r
`2r . (2-21)

Moreover, the integer k ∈ ND, the set UNk and consequently the sets S1, . . . , Sk are determined by the
set 3 as it was described above the formulation of Theorem 2.5.

Proof. Under the assumptions of Theorem 2.5, there is a constant Cr > 0 such that for any M ⊆Nk and
L = { j1, . . . , jl} ⊆ M and jn ∈ M \ L and for any σ = (sj1, . . . , sjl ) ∈ Nβj1

× · · · ×Nβjl
determined by

the set L we have

‖S σL ,M( fu : u ∈ UNk )‖`2r ≤ Cr
∥∥‖Sσ⊕sjn

L∪{ jn},M( fu : u ∈ UNk )‖`2
sjn

∥∥
`2r , (2-22)

where σ⊕sjn = (sj1, . . . , sjl , sjn )∈Nβj1
×· · ·×Nβjl

×Nβjn
is the sequence determined by the set L∪{sjn }.

Moreover, the right-hand side in (2-22) can be controlled in the following way:∥∥‖Sσ⊕sjn
L∪{ jn},M( fu : u ∈ UNk )‖`2

sjn

∥∥2r
`2r

≤ Cr

∑
sjn∈Nβjn

‖Sσ⊕sjn
L∪{ jn},M( fu : u ∈ UNk )‖

2r
`2r +Cr‖SσL ,M\{ jn}( fu : u ∈ UNk )‖

2r
`2r . (2-23)

The proofs of (2-22) and (2-23) can be found in [Mirek et al. 2015]. Therefore, (2-22) combined with
(2-23) yields

‖S σL ,M( fu :u∈UNk )‖
2r
`2r ≤Cr

∑
sjn∈Nβjn

‖Sσ⊕sjn
L∪{ jn},M( fu :u∈UNk )‖

2r
`2r+Cr‖SσL ,M\{ jn}( fu :u∈UNk )‖

2r
`2r . (2-24)

Applying (2-24) recursively we obtain∥∥∥∥ ∑
u∈UNk

fu

∥∥∥∥2r

`2r
= ‖S∅,Nk ( fu : u ∈ UNk )‖

2r
`2r

.r

∑
sk∈Nβjk

‖S(sk)
{k},Nk

( fu : u ∈ UNk )‖
2r
`2r +‖S∅,Nk−1( fu : u ∈ UNk )‖

2r
`2r

.r

∑
sk−1∈Nβjk−1

∑
sk∈Nβjk

‖S(sk−1,sk)

{k−1,k},Nk
( fu : u ∈ UNk )‖

2r
`2r +

∑
sk∈Nβjk

‖S(sk)
{k},Nk\{k−1}( fu : u ∈ UNk )‖

2r
`2r

+

∑
sk−1∈Nβjk−1

‖S(sk−1)

{k−1},Nk−1
( fu : u ∈ UNk )‖

2r
`2r +‖S∅,Nk−2( fu : u ∈ UNk )‖

2r
`2r

.r · · ·.ρ,r
∑

M⊆Nk
M={ j1,..., jm}

∑
σ∈Nβj1

×···×Nβjm

∑
x∈Zd

( ∑
w∈UMc

∣∣∣∣∑
v∈VσM

fw+v(x)
∣∣2)r

. (2-25)

The proof of (2-21) is completed. �
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Concluding remarks and the proof of Theorem 2.5. Now Theorem 2.6 reduces the proof of inequality
(2-18) to showing the estimate∑

M⊆Nk
M={ j1,..., jm}

∑
σ∈Nβj1

×···×Nβjm

‖SσM,M( fu : u ∈ UNk )‖
2r
`2r .r ‖ f ‖2r

`2r (2-26)

for any f ∈ `2r (Zd) which is a characteristic function of a finite set in Zd. Firstly, we prove the following.

Proposition 2.7. Under the assumptions of Theorem 2.5, there exists a constant Cρ,r > 0 such that for
any M = { j1, . . . , jm} ⊆ Nk , any σ = (sj1, . . . , sjm ) ∈ Nβj1

× · · · ×Nβjm
determined by the set M and

f ∈ `2r (Zd) we have

‖SσM,M( fu : u ∈ UNk )‖`2r ≤Cρ,r Ar

∥∥∥∥SσM,M(F−1
( ∑

b∈NQ0

ηN (ξ−b/Q0−u) f̂ (ξ)
)
: u ∈ UNk

)∥∥∥∥
`2r
. (2-27)

Proof. We assume, without of loss of generality, that N ∈N is large. Let Bh =qj1,sj1
· · · · ·qjm ,sjm

·Q0≤ eNρ

and observe that according to the notation from (2-16) and (2-14), we have

‖SσM,M( fu : u ∈ UNk )‖
2r
`2r

=

∑
x∈Zd

( ∑
w∈UMc

∣∣∣∣∑
v∈VσM

fw+v(x)
∣∣∣∣2)r

≤

∑
x∈Zd

( ∑
w∈UMc

∣∣∣∣F−1
( ∑
v∈VσM

∑
b∈NQ0

2(ξ − b/Q0− v−w)ηN (ξ − b/Q0− v−w) f̂ (ξ)
)
(x)
∣∣∣∣2)r

=

∑
n∈Nd

Bh

∑
x∈Zd

( ∑
w∈UMc

|F−1(2ηN G(ξ ; n, w))(Bh x + n)|2
)r

,

(2-28)

where

G(ξ ; n, w)=
∑
v∈VσM

∑
b∈Nd

Q0

f̂ (ξ + b/Q0+ v+w)e−2π i(b/Q0+v)·n. (2-29)

We know that for each 0< p<∞ there is a constant C p>0 such that for any d ∈N and λ1, . . . , λd ∈Cd

we have (∫
Cd
|λ1z1+ · · ·+ λd zd |

pe−π |z|
2

dz
)1/p

= C p(|λ1|
2
+ · · ·+ |λd |

2)1/2. (2-30)

By Proposition 4.5 from [Mirek et al. 2015], with the sequence of multipliers 2N =2 for all N ∈ N

and 2 as in (2-2), we have∥∥F−1(2ηN G(ξ ; n, w))(Bh x + n)
∥∥
`2r (x) ≤ Cρ,r A2r

∥∥F−1(ηN G(ξ ; n, w))(Bh x + n)
∥∥
`2r (x) (2-31)

since infγ∈0 ε−1
γ ≥ eN 2ρ

≥ 2e(d+1)Nρ

≥ Bh for sufficiently large N ∈ N.
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Therefore, combining (2-31) with (2-30), we obtain∑
n∈Nd

Bh

∑
x∈Zd

( ∑
w∈UMc

∣∣F−1(2ηN G(ξ ; n, w))(Bh x + n)
∣∣2)r

= C2r
2r

∫
Cd

∑
n∈Nd

Bh

∑
x∈Zd

∣∣∣∣F−1
(
2ηN

( ∑
w∈UMc

zwG(ξ ; n, w)
))
(Bh x + n)

∣∣∣∣2r

e−π |z|
2

dz

.r

∫
Cd

∑
n∈Nd

Bh

∑
x∈Zd

∣∣∣∣F−1
( ∑
w∈UMc

zwηN G(ξ ; n, w)
)
(Bh x + n)

∣∣∣∣2r

e−π |z|
2

dz

.r

∑
n∈Nd

Bh

∑
x∈Zd

( ∑
w∈UMc

∣∣F−1(ηN G(ξ ; n, w))(Bh x + n)
∣∣2)r

.r

∑
x∈Zd

( ∑
w∈UMc

∣∣∣∣F−1
( ∑
v∈VσM

∑
b∈NQ0

ηN (ξ − b/Q0− v−w) f̂ (ξ)
)
(x)
∣∣∣∣2)r

. (2-32)

This completes the proof of Proposition 2.7. �

Now we are able to finish the proof of Theorem 2.5.

Proof of Theorem 2.5. It remains to show that there exists a constant Cρ,r > 0 such that for any
M = { j1, . . . , jm} ⊆ Nk any σ = (sj1, . . . , sjm ) ∈ Nβj1

× · · · × Nβjm
determined by the set M and

f ∈ `2r (Zd) we have∑
σ∈Nβj1

×···×Nβjm

∥∥∥∥SσM,M(F−1
( ∑

b∈NQ0

ηN (ξ − b/Q0− u) f̂ (ξ)
)
: u ∈ UNk

)∥∥∥∥2r

`2r
≤ C2r

ρ,r‖ f ‖`2r . (2-33)

Since there are 2k possible choices of sets M ⊆ Nk and k ∈ ND, (2-26) will follow and the proof of
Theorem 2.5 will be completed. If r = 1 then Plancherel’s theorem does the job since the functions
ηN (ξ − b/Q0 − v − w) are disjointly supported for all b/Q0 ∈ NQ0 , w ∈ UMc , v ∈ VσM and σ =
(sj1, . . . , sjm ) ∈ Nβj1

× · · · ×Nβjm
. For general r ≥ 2, since ‖ f ‖2r

`2r = ‖ f ‖2
`2 because we have assumed

that f is a characteristic function of a finite set in Zd, it suffices to prove for any x ∈ Zd that∑
w∈UMc

∣∣∣∣F−1
( ∑
v∈VσM

∑
b∈NQ0

ηN (ξ − b/Q0− v−w) f̂ (ξ)
)
(x)
∣∣∣∣2 ≤ Cρ,r . (2-34)

In fact, since ‖ f ‖`∞ = 1, it is enough to show∥∥∥∥F−1
( ∑
w∈UMc

α(w)
∑
v∈VσM

∑
b∈NQ0

ηN (ξ − b/Q0− v−w)

)∥∥∥∥
`1
≤ Cρ,r (2-35)

for any sequence of complex numbers (α(w) : w ∈ UMc) such that∑
w∈UMc

|α(w)|2 = 1. (2-36)
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Computing the Fourier transform we obtain

F−1
( ∑
w∈UMc

α(w)
∑
v∈VσM

∑
b∈NQ0

ηN (ξ − b/Q0− v−w)

)
(x)

=

( ∑
w∈UMc

α(w)e−2π i x ·w
)
· det(EN )F−1η(EN x) ·

( ∑
v∈VσM

∑
b∈NQ0

e−2π i x ·(b/Q0+v)

)
.

(2-37)

The function ∑
v∈VσM

∑
b∈NQ0

e−2π i x ·(b/Q0+v) (2-38)

can be written as a sum of 2m functions∑
b∈NQ

e−2π i x ·(b/Q)
=

{
Qd if x ≡ 0 (mod Q),
0 otherwise,

(2-39)

where possible values of Q are products of Q0 and pγi
ji ,sji

or pγi−1
ji ,sji

for i ∈ Nm . Therefore, the proof of
(2-35) will be completed if we show that∥∥∥∥( ∑

w∈UMc

α(w)e−2π i Qx ·w
)
· Qd det(EN )F−1η(QEN x)

∥∥∥∥
`1(x)
≤ Cρ,r (2-40)

for any integer Q ≤ eNρ

such that (Q, qj,s)= 1, for all j ∈ Mc and s ∈ Nβj .
Recall that, according to Remark 2.1, in our case η= φ ∗ψ for some smooth functions φ,ψ supported

in (−1/(8d), 1/(8d))d. Therefore, by the Cauchy–Schwarz inequality we only need to prove that

Qd/2 det(EN )
1/2
‖F−1φ(QEN x)‖`2(x) ≤ Cρ,r (2-41)

and

Qd/2 det(EN )
1/2
∥∥∥∥( ∑

w∈UMc

α(w)e−2π i Qx ·w
)
·F−1ψ(QEN x)

∥∥∥∥
`2(x)
≤ Cρ,r . (2-42)

Since (Q, qj,s)= 1, for all j ∈ Mc and s ∈Nβj , we know Qw 6∈ Zd for any w ∈ UMc and its denominator
is bounded by N D. We can assume, without of loss of generality, that Qw ∈ [0, 1)d by the periodicity
of x 7→ e−2π i x ·Qw. Inequality (2-41) easily follows from Plancherel’s theorem. In order to prove (2-42),
observe that by the change of variables one has( ∑
w∈UMc

α(w)e−2π i x ·Qw
)
·F−1ψ(QEN x)= Q−d det(EN )

−1
∑
w∈UMc

α(w)F−1(ψ(Q−1E−1
N ( · −Qw))

)
(x).

Therefore, Plancherel’s theorem and the last identity yield

Qd det(EN )

∥∥∥∥( ∑
w∈UMc

α(w)e−2π i Qx ·w
)
·F−1ψ(QEN x)

∥∥∥∥2

`2(x)

=

∑
w∈UMc

|α(w)|2
∫

Rd

∣∣ψ(ξ−E−1
N w)

∣∣2 dξ+
∑

w1,w2∈UMc
w1 6=w2

α(w1)α(w2)

∫
Rd
ψ(ξ)ψ(ξ−E−1

N (w1−w2))dξ. (2-43)
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The first sum on the right-hand side of (2-43) is bounded in view of (2-36). The second one vanishes
since the function ψ is supported in (−1/(8d), 1/(8d))d and |E−1

N (w1 −w2)|∞ ≥ eN 2ρ
N−2D > 1 for

sufficiently large N. The proof of Theorem 2.5 is completed. �

3. Proof of Theorem B

To prove inequality (1-19) in Theorem B, in view of the decomposition of the kernel K into dyadic
pieces as in (1-6), it suffices to show that for every p ∈ (1,∞) there is a constant C p > 0 such that for all
f ∈ `p(Zd) we have ∥∥∥∥∑

n≥0

Tn f
∥∥∥∥
`p
≤ C p‖ f ‖`p , (3-1)

where
Tn f (x)=

∑
y∈Zk

f (x −Q(y))Kn(y) (3-2)

with the kernel Kn as in (1-6) for each n ∈ Z.

Exponential sums and `2(Zd) approximations. Recall that for q ∈ N

Aq =
{
a ∈ Nd

q : gcd(q, (aγ : γ ∈ 0))= 1
}
.

Now for q ∈ N and a ∈ Aq we define the Gaussian sums

G(a/q)= q−k
∑
y∈Nk

q

e2π i(a/q)·Q(y).

Let us observe that there exists δ > 0 such that

|G(a/q)|. q−δ. (3-3)

This follows from the multidimensional variant of Weyl’s inequality; see [Stein and Wainger 1999,
Proposition 3].

Let P be a polynomial in Rk of degree d ∈ N such that

P(x)=
∑
γ∈0

ξγ xγ.

Given N ≥ 1, let �N be a convex set in Rk such that

�N ⊆ {x ∈ Rk
: |x − x0| ≤ cN }

for some x0 ∈ Rk and c > 0. We define the Weyl sums

SN =
∑

n∈�N∩Zk

e2π i P(n)ϕ(n), (3-4)

where ϕ : Rk
7→ C is a continuously differentiable function which for some C > 0 satisfies

|ϕ(x)| ≤ C and |∇ϕ(x)| ≤ C(1+ |x |)−1. (3-5)
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In [Mirek et al. 2015] we proved Theorem 3.1, which is a refinement of the estimates for the multidimen-
sional Weyl sums SN , where the limitations N ε

≤ q ≤ N k−ε from [Stein and Wainger 1999, Proposition 3]
are replaced by the weaker restrictions (log N )β ≤ q ≤ N k(log N )−β for appropriate β. Namely:

Theorem 3.1. Assume that there is a multi-index γ0 such that 0< |γ0| ≤ d and∣∣∣∣ξγ0 −
a
q

∣∣∣∣≤ 1
q2

for some integers a, q such that 0≤ a ≤ q and (a, q)= 1. Then for any α > 0 there is βα > 0 so that, for
any β ≥ βα, if

(log N )β ≤ q ≤ N |γ0|(log N )−β (3-6)

then there is a constant C > 0 such that

|SN | ≤ C N k(log N )−α. (3-7)

The implied constant C is independent of N.

Let (mn : n ≥ 0) be a sequence of multipliers on Td, corresponding to the operators (3-2). Then for
any finitely supported function f : Zd

7→ C we see that

Tn f (x)= F−1(mn f̂ )(x),

where
mn(ξ)=

∑
y∈Zk

e2π iξ ·Q(y)Kn(y).

For n ≥ 0 we set

8n(ξ)=

∫
Rk

e2π iξ ·Q(y)Kn(y) dy.

Using multidimensional version of van der Corput’s lemma, see [Stein and Wainger 2001, Proposition 2.1],
we obtain

|8n(ξ)|.min{1, |2n Aξ |−1/d
∞
}. (3-8)

Moreover, if n ≥ 1 we have

|8n(ξ)| =

∣∣∣∣8n(ξ)−

∫
Rk

Kn(y) dy
∣∣∣∣.min{1, |2n Aξ |∞}. (3-9)

The next proposition shows relations between mn and 8n .

Proposition 3.2. There is a constant C > 0 such that for every n ∈N and for every ξ ∈
[ 1

2 ,
1
2

)d satisfying∣∣∣∣ξγ − aγ
q

∣∣∣∣≤ L−|γ |1 L2

for all γ ∈ 0, where 1≤ q ≤ L3 ≤ 2n/2, a ∈ Aq , L1 ≥ 2n and L2 ≥ 1 we have∣∣mn(ξ)−G(a/q)8n(ξ − a/q)
∣∣≤ C

(
L32−n

+ L2L32−n
∑
γ∈0

(2n/L1)
|γ |

)
≤ C L2L32−n. (3-10)
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Proof. Let θ = ξ − a/q. For any r ∈ Nk
q , if y ≡ r (mod q) then for each γ ∈ 0

ξγ yγ ≡ θγ yγ + (aγ /q)rγ (mod 1);

thus

ξ ·Q(y)≡ θ ·Q(y)+ (a/q) ·Q(r) (mod 1).

Therefore, ∑
y∈Zk

e2π iξ ·Q(y)Kn(y)=
∑
r∈Nk

q

e2π i(a/q)·Q(r)
∑
y∈Zk

e2π iθ ·Q(qy+r)Kn(qy+ r).

If 2n−2
≤ |qy+ r |, |qy| ≤ 2n then by the mean value theorem we obtain∣∣θ ·Q(qy+ r)− θ ·Q(qy)

∣∣. |r |∑
γ∈0

|θγ | · 2n(|γ |−1) . q
∑
γ∈0

L−|γ |1 L22n(|γ |−1) . L2L32−n
∑
γ∈0

(2n/L1)
|γ |

and ∣∣Kn(qy+ r)− Kn(qy)
∣∣. 2−n(k+1)L3.

Thus∑
y∈Zk

e2π iξ ·Q(y)Kn(y)= G(a/q) · qk
∑
y∈Zk

e2π iθ ·Q(qy)Kn(qy)+O
(

L32−n
+ L2L32−n

∑
γ∈0

(2n/L1)
|γ |

)
.

Now one can replace the sum on the right-hand side by the integral. Indeed, again by the mean value
theorem we obtain∣∣∣∣∑

y∈Zk

e2π iθ ·Q(qy)Kn(qy)−
∫

Rk
e2π iθ ·Q(qt)Kn(qt) dt

∣∣∣∣
=

∣∣∣∣∑
y∈Zk

∫
[0,1)k

(
e2π iθ ·Q(qy)Kn(qy)− e2π iθ ·Q(q(y+t))Kn(q(y+ t)) dt

)∣∣∣∣
=O

(
q−k L32−n

+ q−k L2L32−n
∑
γ∈0

(2n/L1)
|γ |

)
. �

Discrete Littlewood–Paley theory. Fix j, n ∈ Z and N ∈ N and let EN be a diagonal d × d matrix with
positive entries (εγ : γ ∈ 0) such that εγ ≤ e−N 2ρ

with ρ > 0 as in Section 2. Let us consider the
multipliers

�
j,n
N (ξ)=

∑
a/q∈UN

8j,n(ξ − a/q)ηN (ξ − a/q) (3-11)

with ηN (ξ)= η(E−1
N ξ) and 8j,n(ξ)=8(2n A+ j I ξ), where 8 is a Schwartz function such that 8(0)= 0.

If UN = {0} then � j,n
N (ξ) can be treated as a standard Littlewood–Paley projector. Now we formulate

an abstract theorem which can be thought of as a discrete variant of Littlewood–Paley theory. Its proof
will be based on Theorem 2.2. Here we obtain a square function estimate which will be used in the proof
of inequality (3-1).
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Theorem 3.3. For every p ∈ (1,∞) there is a constant C p > 0 such that for all −∞≤ M1 ≤ M2 ≤∞,
j ∈ Z and N ∈ N and every f ∈ `p(Zd) we have∥∥∥∥( ∑

M1≤n≤M2

|F−1(�
j,n
N f̂ )|2

)1/2∥∥∥∥
`p
≤ C p log N‖ f ‖`p . (3-12)

Proof. By Khintchine’s inequality, (3-12) is equivalent to(∫ 1

0

∥∥∥∥ ∑
M1≤n≤M2

εn(t)F−1(�
j,n
N f̂ )

∥∥∥∥p

`p
dt
)1/p

. log N‖ f ‖`p . (3-13)

Observe that the multiplier from (3-13) can be rewritten as∑
M1≤n≤M2

εn(t)�
j,n
N (ξ)=

∑
a/q∈UN

∑
M1≤n≤M2

mn(ξ − a/q)ηN (ξ − a/q)

with the functions
mn(ξ)= εn(t)8(2n A+ j I ξ).

We observe that
|mn(ξ)|.min

{
|2n A+ j I ξ |∞, |2n A+ j I ξ |−1

∞

}
.

The first bound follows from the mean value theorem, since

|8(2n A+ j I ξ)| =
∣∣8(2n A+ j I ξ)−8(0)

∣∣. |2n A+ j I ξ | sup
ξ∈Rd
|∇8(ξ)|. |2n A+ j I ξ |∞.

The second bound follows since8 is a Schwartz function. Moreover, for every p ∈ (1,∞) there is C p > 0
such that ∥∥sup

n∈Z

|F−1(mnF f )|
∥∥

L p ≤ C p‖ f ‖L p

for every f ∈ L p(Rd). Therefore, by [Stein 1993], the multiplier∑
M1≤n≤M2

mn(ξ)

corresponds to a continuous singular integral; thus it defines a bounded operator on L p(Rd) for all
p ∈ (1,∞) with the bound independent of j ∈ Z and −∞≤ M1 ≤ M2 ≤∞. Hence, Theorem 2.2 applies
and the multiplier ∑

M1≤n≤M2

εn(t)�
j,n
N (ξ)

defines a bounded operator on `p(Zd) with the log N loss, and (3-13) is established. �

Remark 3.4. If the function 8 is a real-valued function then we have∥∥∥∥ ∑
M1≤n≤M2

F−1(�
j,n
N f̂n)

∥∥∥∥
`p
≤ C p log N

∥∥∥∥( ∑
M1≤n≤M2

| fn|
2
)1/2∥∥∥∥

`p
. (3-14)



SQUARE FUNCTION ESTIMATES FOR DISCRETE RADON TRANSFORMS 603

This is the dual version of inequality (3-12) for any sequence of functions ( fn : M1 ≤ n ≤ M2) such that∥∥∥∥( ∑
M1≤n≤M2

| fn|
2
)1/2∥∥∥∥

`p
<∞.

We have gathered all necessary ingredients to prove inequality (3-1).

Proof of inequality (3-1). Let χ > 0 and l ∈N be the numbers whose precise values will be adjusted later.
As in [Mirek et al. 2015], we will consider for every n ∈ N0 the multipliers

4n(ξ)=
∑

a/q∈Unl

η(2n(A−χ I )(ξ − a/q))2 (3-15)

with UN as defined in Section 2. Theorem 2.2 yields, for every p ∈ (1,∞), that

‖F−1(4n f̂ )‖`p . log(n+ 2)‖ f ‖`p . (3-16)

The implicit constant in (3-16) depends on ρ > 0 from Theorem 2.2. From now on we will assume that
l ∈ N and ρ > 0 are related by the equation

10ρl = 1. (3-17)

Assume that f : Zd
7→ C has finite support and f ≥ 0. Observe that∥∥∥∥∑

n≥0

Tn f
∥∥∥∥
`p
≤

∥∥∥∥∑
n≥0

F−1(mn4n f̂ )
∥∥∥∥
`p
+

∥∥∥∥∑
n≥0

F−1(mn(1−4n) f̂ )
∥∥∥∥
`p
. (3-18)

Without of loss of generality we may assume that p ≥ 2; the case 1< p ≤ 2 follows by the duality then.

The estimate of the second norm in (3-18). It suffices to show that∥∥F−1(mn(1−4n) f̂ )
∥∥
`p . (n+ 1)−2

‖ f ‖`p . (3-19)

For this purpose we define for every x ∈ Zd the Radon averages

MN f (x)= N−k
∑

y∈Nk
N

f (x −Q(y)).

From [Mirek et al. 2015] follows that for every p ∈ (1,∞) there is a constant C p > 0 such that for every
f ∈ `p(Zd) we have ∥∥sup

N∈N

|MN f |
∥∥
`p ≤ C p‖ f ‖`p . (3-20)

Then for every 1< p <∞, by (3-16) and (3-20) we obtain∥∥F−1(mn(1−4n) f̂ )
∥∥
`p ≤ ‖ sup

N∈N

MN f ‖`p +
∥∥sup

N∈N

MN (|F−1(4n f̂ )|)
∥∥
`p . log(n+ 2)‖ f ‖`p (3-21)

since we have a pointwise bound

|F−1(mn f̂ )(x)| = |Tn f (x)|. M2n f (x). (3-22)



604 MARIUSZ MIREK

We show that it is possible to improve estimate (3-21) for p = 2. Indeed, by Theorem 3.1 we will show
that for big enough α > 0, which will be specified later, and for all n ∈ N0 we have∣∣mn(ξ)(1−4n(ξ))

∣∣. (n+ 1)−α. (3-23)

By Dirichlet’s principle, we have for every γ ∈ 0

|ξγ − aγ /qγ | ≤ q−1
γ nβ2−n|γ |,

where 1≤ qγ ≤ n−β2n|γ |. In order to apply Theorem 3.1 we must show that there exists some γ ∈ 0 such
that nβ ≤ qγ ≤ n−β2n|γ |. Suppose for a contradiction that for every γ ∈ 0 we have 1≤ qγ < nβ ; then for
some q ≤ lcm(qγ : γ ∈ 0)≤ nβd we have

|ξγ − a′γ /q| ≤ nβ2−n|γ |,

where gcd(q, gcd(a′γ : γ ∈ 0))= 1. Hence, taking a′ = (a′γ : γ ∈ 0) we have a′/q ∈ Unl provided that
βd < l. On the other hand, if 1−4n(ξ) 6= 0 then for every a′/q ∈ Unl there exists γ ∈ 0 such that

|ξγ − a′γ /q|> (16d)−12−n(|γ |−χ).

Therefore
2χn < 16dnβ

but this is impossible when n ∈ N is large. Hence, there is γ ∈ 0 such that nβ ≤ qγ ≤ n−β2n|γ |. Thus by
Theorem 3.1,

|mn(ξ)|. (n+ 1)−α

provided that 1−4n(ξ) 6= 0. This yields (3-23) and we obtain∥∥F−1(mn(1−4n) f̂ )
∥∥
`2 . (1+ n)−α log(n+ 2)‖ f ‖`2 . (3-24)

Interpolating (3-24) with (3-21) we obtain∥∥F−1(mn(1−4n) f̂ )
∥∥
`p . (1+ n)−cpα log(n+ 2)‖ f ‖`p . (3-25)

for some cp > 0. Choosing α > 0 and l ∈ N appropriately large, one obtains (3-19).

The estimate of the first norm in (3-18). Note that for any ξ ∈ Td such that

|ξγ − aγ /q| ≤ 2−n(|γ |−χ)

for every γ ∈ 0 with 1≤ q ≤ en1/10
, we have

mn(ξ)= G(a/q)8n(ξ − a/q)+ q−δE2n (ξ), (3-26)
where

|E2n (ξ)|. 2−n/2. (3-27)

Proposition 3.2, with L1= 2n, L2= 2χn and L3= en1/10
, establishes (3-26) and (3-27), since for sufficiently

large n ∈ N we have

qδ|E2n (ξ)|. qδL2L32−n . (e−n((1−χ) log 2−2n−9/10)). 2−n/2
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provided χ > 0 is sufficiently small. Now for every j, n ∈ N0 we introduce the multiplier

4 j
n(ξ)=

∑
a/q∈Unl

η(2n A+ j I (ξ − a/q))2 (3-28)

and we note that∥∥∥∥∑
n≥0

F−1(mn4n f̂ )
∥∥∥∥
`p

≤

∥∥∥∥∑
n≥0

F−1
( ∑
−bχnc≤ j<n

mn(4
j
n −4

j+1
n ) f̂

)∥∥∥∥
`p
+

∥∥∥∥∑
n≥0

F−1(mn(4
−χn
n −4−bχnc

n ) f̂ +mn4
n
n f̂
)∥∥∥∥
`p

= I 1
p + I 2

p. (3-29)

We will estimate I 1
p and I 2

p separately. For this purpose observe that by (3-26) and (3-27), for every
a/q ∈ Unl we have

|mn(ξ)|. q−δ|8n(ξ − a/q)| + q−δ|E2n (ξ)|

. q−δ
(
min

{
1, |2n A(ξ − a/q)|∞, |2n A(ξ − a/q)|−1/d

∞

}
+ 2−n/2), (3-30)

where the last inequality follows from (3-8) and (3-9). Therefore by (3-30) we get∣∣mn(ξ)
(
η(2n A−χnI (ξ − a/q))2− η(2n A−bχncI (ξ − a/q))

)2∣∣. q−δ(2−χn/d
+ 2−n/2) (3-31)

since η(2n A−χnI (ξ − a/q))≥ η(2n A−bχncI (ξ − a/q). Moreover, for any integer −χn ≤ j < n we get∣∣mn(ξ)
(
η(2n A+ j I (ξ − a/q))2− η(2n A+( j+1)I (ξ − a/q))2

)∣∣. q−δ(2−| j |/d + 2−n/2). (3-32)

Bounding I 2
p . It will suffice to show, for some ε = εp > 0, that∥∥F−1(mn(4

−χn
n −4−bχnc

n ) f̂ +mn4
n
n f̂
)∥∥
`p . 2−εn‖ f ‖`p . (3-33)

Observe that for any 1< p <∞, by (3-22), (3-20) and (3-16) we have∥∥F−1(mn4
n
n f̂ )

∥∥
`p ≤

∥∥sup
N∈N

MN (|F−1(4n
n f̂ )|)

∥∥
`p .

∥∥F−1(4n
n f̂ )

∥∥
`p . log(n+ 2)‖ f ‖`p (3-34)

and in a similar way we obtain∥∥F−1(mn(4
−χn
n −4−bχnc

n ) f̂
)∥∥
`p . log(n+ 2)‖ f ‖`p . (3-35)

For p = 2, by Plancherel’s theorem and (3-30) we obtain∥∥F−1(mn4
n
n f̂ )

∥∥
`2 =

(∫
Td

∑
a/q∈Unl

|mn(ξ)|
2η(2n A+nI (ξ−a/q))4| f̂ (ξ)|2 dξ

)1/2

. 2−n/(2d)
‖ f ‖`2 . (3-36)

By (3-31) we obtain∥∥F−1(mn(4
−χn
n −4−bχnc

n ) f̂
)∥∥
`2

=

(∫
Td

∑
a/q∈Unl

|mn(ξ)|
2(η(2n A−χnI (ξ − a/q))2− η(2n A−bχncI (ξ − a/q))2

)2
| f̂ (ξ)|2 dξ

)1/2

. 2−χn/(2d)
‖ f ‖`2 . (3-37)
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Therefore, by interpolation (3-34) with (3-36) and (3-35) with (3-37) we obtain for every p ∈ (1,∞) that∥∥F−1(mn(4
−χn
n −4−bχnc

n ) f̂ +mn4
n
n f̂
)∥∥
`p . 2−εn‖ f ‖`p ,

which in turn implies (3-33) and I 2
p . ‖ f ‖`p .

Bounding I 1
p . Define for any 0≤ s < n the new multiplier

1 j
n,s(ξ)=

∑
a/q∈U

(s+1)l \Usl

(
η(2n A+ j I (ξ − a/q))2− η(2n A+( j+1)I (ξ − a/q))2

)
η(2s(A−χ I )(ξ − a/q))2

and we observe that by the definition (3-28) we have

4 j
n(ξ)−4

j+1
n (ξ)=

∑
0≤s<n

1 j
n,s(ξ).

Moreover,

η(2n A+ j I ξ)2−η(2n A+( j+1)I ξ)2=
(
η(2n A+ j I ξ)2−η(2n A+( j+1)I ξ)2

)
·
(
η(2n A+( j−1)I ξ)−η(2n A+( j+2)I ξ)

)
.

Thus we see
1 j

n,s(ξ)=1
j,1
n,s(ξ) ·1

j,2
n,s(ξ),

where

1 j,1
n,s(ξ)=

∑
a/q∈U

(s+1)l \Usl

(
η(2n A+( j−1)I (ξ − a/q))− η(2n A+( j+2)I (ξ − a/q))

)
η(2s(A−χ I )(ξ − a/q))

and

1 j,2
n,s(ξ)=

∑
a/q∈U

(s+1)l \Usl

(
η(2n A+ j I (ξ − a/q))2− η(2n A+( j+1)I (ξ − a/q))2

)
η(2s(A−χ I )(ξ − a/q)).

Moreover, 1 j,1
n,s and 1 j,2

n,s are the multipliers which satisfy the assumptions of Theorem 3.3. Therefore,

I 1
p =

∥∥∥∥∑
n≥0

F−1
( ∑
−χn≤ j<n

∑
0≤s<n

1 j,1
n,smn1

j,2
n,s f̂

)∥∥∥∥
`p

≤

∑
s≥0

∑
j∈Z

∥∥∥∥ ∑
n≥max{ j,− j/χ,s}

F−1(1 j,1
n,smn1

j,2
n,s f̂ )

∥∥∥∥
`p

.
∑
s≥0

∑
j∈Z

log s
∥∥∥∥( ∑

n≥max{ j,− j/χ,s}

∣∣F−1(mn1
j,2
n,s f̂ )

∣∣2)1/2∥∥∥∥
`p
. (3-38)

In the last step we used (3-14). The task now is to show that for some ε = εp > 0∥∥∥∥( ∑
n≥max{ j,− j/χ,s}

∣∣F−1(mn1
j,2
n,s f̂ )

∣∣2)1/2∥∥∥∥
`p
. s−22−ε j

‖ f ‖`p . (3-39)

This in turn will imply I 1
p . ‖ f ‖`p and the proof will be completed. We have assumed that p≥ 2; then for

every g ∈ `r (Zd) such that g ≥ 0 with r = (p/2)′ > 1 we have by (3-22), the Cauchy–Schwarz inequality
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and (3-20) that∑
x∈Zd

∑
n∈Z

∣∣F−1(mn1
j,2
n,s f̂ )(x)

∣∣2g(x).
∑
x∈Zd

∑
n∈Z

M2n
(∣∣F−1(1 j,2

n,s f̂ )
∣∣)(x)2g(x)

≤

∑
x∈Zd

∑
n∈Z

M2n
(∣∣F−1(1 j,2

n,s f̂ )
∣∣2)(x)g(x)

=

∑
x∈Zd

∑
n∈Z

∣∣F−1(1 j,2
n,s f̂ )(x)

∣∣2 M∗2n g(x)

.

∥∥∥∥(∑
n∈Z

∣∣F−1(1 j,2
n,s f̂ )

∣∣2)1/2∥∥∥∥2

`p

∥∥sup
N∈N

M∗N g
∥∥
`r

.

∥∥∥∥(∑
n∈Z

∣∣F−1(1 j,2
n,s f̂ )

∣∣2)1/2∥∥∥∥2

`p
‖g‖`r . (3-40)

Therefore, by Theorem 3.3 we have∥∥∥∥(∑
n∈Z

∣∣F−1(mn1
j,2
n,s f̂ )

∣∣2)1/2∥∥∥∥
`p
.

∥∥∥∥(∑
n∈Z

∣∣F−1(1 j,2
n,s f̂ )

∣∣2)1/2∥∥∥∥
`p
. log s‖ f ‖`p . (3-41)

We refine the estimate in (3-41) for p = 2. Indeed, define

%n, j (ξ)=
(
η(2n A+ j I ξ)2− η(2n A+( j+1)I ξ)2

)
η(2s(A−χ I )ξ),

9n(ξ)=min
{
|2n Aξ |∞, |2n Aξ |−1/d

∞
, 1
}
.

By Plancherel’s theorem we have∥∥∥∥( ∑
n≥max{ j,− j/χ,s}

∣∣F−1(mn1
j,2
n,s f̂ )

∣∣2)1/2∥∥∥∥
`2

=

(∫
Td

∑
n≥max{ j,− j/χ,s}

∑
a/q∈U

(s+1)l \Usl

|mn(ξ)|
2%n, j (ξ − a/q)2| f̂ (ξ)|2 dξ

)1/2

. (s+ 1)−δl2−| j |/(2d)
‖ f ‖`2 . (3-42)

The last estimate is implied by (3-30). Namely, by (3-30) we may write∑
n≥max{ j,− j/χ,s}

∑
a/q∈U

(s+1)l \Usl

|mn(ξ)|
2%n, j (ξ − a/q)2

.
∑

n≥max{ j,− j/χ,s}

∑
a/q∈U

(s+1)l \Usl

q−2δ(9n(ξ − a/q)+ 2−n/2)(2−| j |/d + 2−n/2)η(2s(A−χ I )(ξ − a/q))2

. (s+ 1)−2δl2−| j |/(2d). (3-43)

The last line follows, since we have used the lower bound for q ≥ sl if a/q ∈ U(s+1)l \Usl . Moreover,∑
n≥0

(9n(ξ − a/q)+ 2−n/2). 1 and
∑

a/q∈U
(s+1)l \Usl

η(2s(A−χ I )(ξ − a/q)). 1
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by the disjointness of the supports of the η(2s(A−χ I )(ξ −a/q)) whenever a/q ∈U(s+1)l \Usl . Since l ∈N

can be as large as we wish, interpolating (3-42) with (3-41) we obtain (3-39) and the proof of (3-1) and
consequently Theorem A is completed. �
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ON THE KATO PROBLEM AND
EXTENSIONS FOR DEGENERATE ELLIPTIC OPERATORS

DAVID CRUZ-URIBE, JOSÉ MARÍA MARTELL AND CRISTIAN RIOS

We study the Kato problem for divergence form operators whose ellipticity may be degenerate. The
study of the Kato conjecture for degenerate elliptic equations was begun by Cruz-Uribe and Rios (2008,
2012, 2015). In these papers the authors proved that given an operator Lw D�w�1div.Ar/, where w
is in the Muckenhoupt class A2 and A is a w-degenerate elliptic measure (that is, AD wB with B.x/
an n�n bounded, complex-valued, uniformly elliptic matrix), then Lw satisfies the weighted estimate
k
p
Lwf kL2.w/ � krf kL2.w/. In the present paper we solve the L2-Kato problem for a family of

degenerate elliptic operators. We prove that under some additional conditions on the weight w, the
following unweighted L2-Kato estimates hold:

kL1=2w f kL2.Rn/ � krf kL2.Rn/:

This extends the celebrated solution to the Kato conjecture by Auscher, Hofmann, Lacey, McIntosh,
and Tchamitchian, allowing the differential operator to have some degree of degeneracy in its ellipticity.
For example, we consider the family of operators L
 D�jxj
div.jxj�
B.x/r/, where B is any bounded,
complex-valued, uniformly elliptic matrix. We prove that there exists " > 0, depending only on dimension
and the ellipticity constants, such that

kL1=2
 f kL2.Rn/ � krf kL2.Rn/; �" < 
 <
2n

nC 2
:

The case 
 D 0 corresponds to the case of uniformly elliptic matrices. Hence, our result gives a range of

 ’s for which the classical Kato square root proved in Auscher et al. (2002) is an interior point.

Our main results are obtained as a consequence of a rich Calderón–Zygmund theory developed for
certain operators naturally associated with Lw . These results, which are of independent interest, establish
estimates on Lp.w/, and also on Lp.v dw/ with v 2 A1.w/, for the associated semigroup, its gradient,
the functional calculus, the Riesz transform, and vertical square functions. As an application, we solve
some unweighted L2-Dirichlet, regularity and Neumann boundary value problems for degenerate elliptic
operators.
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1. Introduction

We study the degenerate elliptic operators Lw D�w�1 divAr, where w is in the Muckenhoupt class A2
and A.x/ is an n�n complex-valued matrix that satisfies the degenerate ellipticity condition

�w.x/j�j2 � RehA.x/�; �i; jhA.x/�; �ij �ƒw.x/j�jj�j; �; � 2 Cn; a.e. x 2 Rn:

Equivalently, A.x/D w.x/B.x/, where B is an n�n complex-valued matrix that satisfies the uniform
ellipticity conditions

�j�j2 � RehB.x/�; �i; jhB.x/�; �ij �ƒj�jj�j; �; � 2 Cn; a.e. x 2 Rn:

Such operators were first studied (with A a real symmetric matrix) by Fabes, Kenig and Serapioni [Fabes
et al. 1982]. When A is complex-valued and uniformly elliptic (i.e., w � 1), a landmark result was
the proof by Auscher, Hofmann, Lacey, McIntosh, and Tchamitchian [Auscher et al. 2002] of the Kato
conjecture, which states that for all f 2H 1,

kL1=2f k2 � krf k2:

The proof of this long-standing conjecture led naturally to the study of the operators associated with L:
the semigroup e�tL, its gradient

p
tre�tL, the Riesz transform rL�1=2, the H1 functional calculus and

square functions; for details and complete references, see [Auscher 2007]. These estimates are interesting
in themselves; moreover, it is well known that Lp estimates for these operators yield regularity results
for boundary value problems for L; for details, see the introduction to [Auscher and Tchamitchian 1998].

In [Cruz-Uribe and Rios 2015] (see also [Cruz-Uribe and Rios 2008; 2012; Auscher et al. 2015]), the
first and third authors solved the Kato problem for degenerate elliptic operators: they showed that if
w 2 A2 and A satisfies the degenerate ellipticity conditions, then for all f 2H 1.w/,

kL1=2w f kL2.w/ � krf kL2.w/: (1.1)

In this paper we consider the problem of determining those A2 weights such that the classical Kato
problem can be solved for Lw , that is, finding weights such that Lw satisfies the unweighted estimate

kL1=2w f kL2.Rn/ � krf kL2.Rn/
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for f in a class of nice functions (a posteriori, by standard density arguments, the estimate can be extended
to all f 2H 1.Rn/). We solve this problem in two steps. The first is to prove weighted Lp estimates
for some operators associated with Lw (the semigroup, its gradient, the Riesz transform, the functional
calculus, and square functions). These results, which are of interest in their own right, are analogous to
those obtained in the uniformly elliptic case. However, a significant technical obstruction is that given
a weight w 2 A2, while it is the case that there exists " > 0 such that w 2 A2�", it is easy to construct
examples to show that " may be arbitrarily small. Therefore, our bounds in the range 1 < p < 2 need to
take this into account.

The second step is to find conditions on the weight w so that these operators satisfy unweighted L2

estimates. Both steps are carried out simultaneously, and the proofs are intertwined. Our approach
is to apply the theory of off-diagonal estimates on balls developed by Auscher and the second author
[Auscher and Martell 2006; 2007a; 2007b; 2008]. We will in fact prove weighted estimates on Lp.v dw/,
where v satisfies Muckenhoupt and reverse Hölder conditions with respect to the measure dw D w dx;
Lp.w/ estimates are then obtained by taking v D 1, and unweighted estimates by taking v D w�1.

The unweighted L2 estimates are delicate, since they require a careful estimate of the constants that
appear. Nevertheless, we are able to give useful sufficient conditions; e.g., w 2 A1 \RHn=2C1. (For
definitions of these classes, see Section 2 below.) For example, we have the following result that is a
special case of one of our main results (cf. Theorem 11.11).

Theorem 1.2. Let Lw D�w�1 divAr be a degenerate elliptic operator as above. If w 2A1\RHn=2C1,
then the Kato problem can be solved for Lw : for every f 2H 1.Rn/,

kL1=2w f kL2.Rn/ � krf kL2.Rn/:

The implicit constants depend only on the dimension, the ellipticity constants, and the A1 and RHn=2C1
constants of w.

Furthermore, if we define L
 D�jxj
 div.jxj�
B.x/r/, where B is an n�n complex-valued matrix
that satisfies the uniform ellipticity condition, then there exists 0 < " < 1

2
small enough (depending only

on the dimension and the ratio ƒ=�) such that

kL1=2
 f kL2.Rn/ � krf kL2.Rn/; �" < 
 <
2n

nC 2
:

Remark 1.3. In Theorem 1.2 the operator L1=2w is a priori only defined on H 1.w/; however, this means
that it is defined on C10 .R

n/ and so by a standard density argument we can extend our results to all
f 2H 1.Rn/. Hereafter we will make this extension without further comment.

We emphasize that in Theorem 1.2, when 
 D 0 we are back at the uniformly elliptic case, which is
the celebrated solution to the Kato square root problem by Auscher, Hofmann, Lacey, McIntosh, and
Tchamitchian [Auscher et al. 2002]. Here we are able to find a range of 
 ’s for which the same estimates
hold and the classical Kato square root problem (i.e., 
 D 0) is an interior point in that range.
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These unweighted L2 estimates have important applications to boundary value problems for degenerate
elliptic operators. Consider, for example, the following Dirichlet problem on RnC1

C
D Rn � Œ0;1/:�

@2t u�LwuD 0 on RnC1
C

;

uD f on @RnC1
C
D Rn:

If f 2 L2.Rn/, then u.x; t/ D e�tL
1=2
w f .x/ is a solution, and if Lw has a bounded H1 functional

calculus on L2, then supt>0 ku. � ; t /k2 . kf k2: Similar results hold for the corresponding Neumann and
regularity problems.

Our proofs are unavoidably technical, and the results for each operator considered build upon what
was proved previously for other operators. We have organized the material as follows. In Section 2 we
gather some essential definitions and results about weights, degenerate elliptic operators, and off-diagonal
estimates. Central to all of our subsequent work are Theorems 2.35 and 2.39, which were proved in
[Auscher and Martell 2006].

In Sections 3, 4, and 5 we prove estimates for the semigroup e�tLw, t > 0, the H1 functional calculus
(i.e., operators '.Lw/ where ' 2H1), the vertical square function associated to the semigroup,

gLwf .x/D

�Z 1
0

ˇ̌
.tLw/

1=2e�tLwf .x/
ˇ̌2 dt
t

�1=2
;

and its discrete analog. Here and in subsequent sections we prove both Lp.w/ estimates and weighted
Lp.v dw/ estimates. In many cases these results are proved simultaneously, with the unweighted results
(i.e., in Lp.w/) following from the weighted results (i.e., in Lp.v dw/) by taking v D 1.

In Section 6 we prove the so-called reverse inequality, kL1=2w kLp.w/ . krf kLp.w/, that generalizes
the L2.w/ estimate in (1.1). We note that while the equivalence in (1.1) follows at once from the reverse
inequality for p D 2 by duality, the two inequalities behave differently when p ¤ 2.

In Sections 7 and 8 we prove estimates for the gradient of the semigroup,
p
tre�tLw. The proof that

there exists qC > 2 such that this operator satisfies Lp.w/ estimates for 2 < p < qC is quite involved as it
requires preliminary estimates for the Riesz transform and the Hodge projection. We note that, as opposed
to the nondegenerate case, here we cannot use “global” embeddings, nor can we rescale. Also we cannot
expect to obtain that the gradient of the semigroup maps globally L2.w/ into Lp.w/ for p¤ 2. All these
difficulties arise naturally from the lack of isotropy of the natural underlying measure w.x/ dx and make
the typical arguments used in the uniformly elliptic case (see [Auscher 2007, Chapter 4]) unusable. We
also note that in some sense our result is the best possible: even in the nondegenerate case it is known
[Auscher 2007] that given any p > 2 there exists a matrix A and operator L such that gradient of the
semigroup is not bounded on Lp.

In Section 9 we prove Lp.w/ estimates for the Riesz transform rL�1=2, and in Section 10 we prove
Lp.w/ estimates for the square function associated to the gradient of the semigroup,

GLwf .x/D

�Z 1
0

jt1=2re�tLwf .x/j2
dt

t

�1=2
:
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In Section 11 we prove unweighted L2 inequalities for the operators we have considered in previous
sections. These are a consequence of the weighted estimates and are obtained by taking v D w�1. The
main problem is determining conditions on w for these to hold. We essentially have two different kinds
of estimates, one for operators that do not involve the gradient, and one for those that do. The latter
are more delicate as they involve careful bounds for the parameter qC from Section 8 in terms of the
weight w. We also show that we get unweighted Lp estimates for p very close to 2.

Finally, in Section 12 we describe in more detail the application of our results to L2 boundary value
problems for degenerate elliptic operators. The results in this section are the culmination of our work, as
they depend on all the estimates derived in previous sections.

As we were completing this project, we learned that related results had been obtained independently
by other authors. Le [2015] studied (among other things) the Lp.w/ theory for some of the operators
considered here and proved estimates for values of p in the range .2� "; 2C "/. His proofs differ from
ours in a number of details. Hofmann, Le and Morris [Hofmann et al. 2015] established some Carleson
measure estimates and considered the Dirichlet problem for degenerate elliptic operators. Also, very
recently we learned that Yang and Zhang [2017] proved Kato-type estimates in Lp.w/ for p in the range
.p0; 2�. Finally, we note that the paper [Chen et al. 2016] complements our work here as it considers the
conical square functions associated to the operator Lw .

2. Preliminaries

Throughout, n will denote the dimension of the underlying space Rn and we will always assume n� 2. If
we write A.B we mean that there exists a constant C such that A�CB. We write A�B if A.B and
B . A. The constant C in these estimates may depend on the dimension n and other (fixed) parameters
that should be clear from the context. All constants, explicit or implicit, may change at each appearance.

Given a ball B , let r.B/ denote the radius of B. Let �B denote the concentric ball with radius
r.�B/D �r.B/.

Weights. By a weight w we mean a nonnegative, locally integrable function. For brevity, we will often
write dw forw dx. We will use the following notation for averages: given a setE such that 0<w.E/<1,

�

Z
E

f dw D
1

w.E/

Z
E

f dw;

or, if 0 < jEj<1,

�

Z
E

f dx D
1

jEj

Z
E

f dx:

We state some definitions and basic properties of Muckenhoupt weights. For further details, see
[Duoandikoetxea 2001; García-Cuerva and Rubio de Francia 1985]. We say that w 2 Ap , 1 < p <1, if

Œw�Ap D sup
Q

�

Z
Q

w.x/ dx

�
�

Z
Q

w.x/1�p
0

dx

�p�1
<1:
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When p D 1, we say that w 2 A1 if

Œw�A1 D sup
Q

�

Z
Q

w.x/ dx ess sup
x2Q

w.x/�1 <1:

We say that w 2 RHs , 1 < s <1, if

Œw�RHs D sup
Q

�
�

Z
Q

w.x/ dx

��1�
�

Z
Q

w.x/s dx

�1=s
<1;

and we say that w 2 RH1 if

Œw�RH1 D sup
Q

�
�

Z
Q

w.x/ dx

��1
ess sup
x2Q

w.x/ <1:

Let
A1 D

[
1�p<1

Ap D
[

1<s�1

RHs:

Weights in the Ap and RHs classes have a self-improving property: if w 2 Ap, there exists " > 0 such
that w 2 Ap�", and similarly if w 2 RHs , then w 2 RHsCı for some ı > 0. Hereafter, given w 2 Ap , let

rw D inffp W w 2 Apg; sw D supfq W w 2 RHqg:

An important property of Ap weights is that they are doubling: given w 2 Ap, for all � � 1 and any
ball B ,

w.�B/� Œw�Ap�
pnw.B/:

In particular, hereafter let D � pn be the doubling order of w, that is, the smallest exponent such that
this inequality holds.

As a consequence of this doubling property, we have that with the ordinary Euclidean distance j � j,
.Rn; dw; j � j/ is a space of homogeneous type. In this setting we can define the new weight classes Ap.w/
and RHs.w/ by replacing Lebesgue measure in the definitions above with dw; e.g., v 2 Ap.w/ if

Œv�Ap.w/ D sup
Q

�

Z
Q

v.x/ dw

�
�

Z
Q

v.x/1�p
0

dw

�p�1
<1:

It follows at once from these definitions that there is a “duality” relationship between the weighted and
unweighted Ap and RHs conditions: vDw�1 2Ap.w/ if and only if w 2 RHp0 and vDw�1 2 RHs.w/
if and only if w 2 As0 .

Weighted Poincaré–Sobolev inequalities were proved in [Fabes et al. 1982].

Theorem 2.1. Given w 2 Ap, p � 1, let p�w D pnrw=.nrw �p/ if p < nrw , and p�w D1 otherwise.
Then for every p � q < p�w , ball B and f 2 C10 .B/,�

�

Z
B

jf .x/jq dw.x/

�1=q
� Cr.B/

�
�

Z
B

jrf .x/jp dw

�1=p
: (2.2)
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Moreover, if f 2 C1.B/, then�
�

Z
B

jf .x/�fB;w j
q dw.x/

�1=q
� Cr.B/

�
�

Z
B

jrf .x/jp dw

�1=p
; (2.3)

where fB;w D �
R
B f dw.

Remark 2.4. In the special case when w 2 A1 and 1 < p < n we can also take q D p�w D p
�, i.e., the

regular Sobolev exponent. See [Pérez 1999, Theorem 2.5.2].

Remark 2.5. If we let qD np=.n�1/ < p�w , then we can get a sharp estimate for the constant C in (2.2)
and (2.3): it is of the form C.p; n/Œw��Ap , where � D .np� 1/=.np.p� 1//. This follows from the sharp
weighted estimates for the fractional integral operator due to Alberico, Cianchi and Sbordone [Alberico
et al. 2009] and the standard pointwise estimates used to prove Poincaré–Sobolev inequalities; see [Fabes
et al. 1982] for details.

Remark 2.6. By a standard density argument, once we know that (2.3) holds for smooth functions in B
we can easily extend that estimate to any function f 2 Lq.w/ with rf 2 Lp.w/. Details are left to the
reader.

Degenerate elliptic operators. Given w 2 A2 and constants 0 < � � ƒ <1, let En.w; �;ƒ/ denote
the class of n�n matrices AD .Aij .x//ni;jD1 of complex-valued, measurable functions satisfying the
degenerate ellipticity condition

�w.x/j�j2 � RehA�; �i; jhA�; �ij �ƒw.x/j�jj�j; �; � 2 Cn: (2.7)

Given A 2 En.w; �;ƒ/, we define the degenerate elliptic operator in divergence form

Lw D�w
�1divAr:

These operators were developed in [Cruz-Uribe and Rios 2008] and we refer the reader there for complete
details. Here we sketch the key ideas.

Given a weight w 2A2, the space H 1.w/ is the weighted Sobolev space that is the completion of C1c
with respect to the norm

kf kH1.w/ D

�Z
Rn

�
jf .x/j2Cjrf .x/j2

�
dw

�1=2
:

Note that the space defined above would usually be denoted by H 1
0 .w/. The space H 1.w/ is defined

as the set of distributions for which both f and jrf j belong to L2.w/. However, since the underlying
domain is Rn, this definition implies that the “boundary” values vanish in the L2.w/-sense, and both
definitions agree [Miller 1982].

Given a matrix A 2 En.w; �;ƒ/, define a.f; g/ to be the sesquilinear form

a.f; g/D

Z
Rn
A.x/rf .x/ � rg.x/ dx: (2.8)
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Since w 2 A2 and A satisfies (2.7), a is a closed, maximally accretive, continuous sesquilinear form.
Therefore, there exists an operator Lw whose domain D.Lw/�H 1.w/ is dense in L2.w/ and such that
for every f 2 D.Lw/ and every g 2H 1.w/,

a.f; g/D hLwf; giw D

Z
Rn
Lwf .x/g.x/ dw: (2.9)

We note that the operator Lw is one-to-one. Indeed, if u; v 2D.Lw/ are such that LwuDLwv, then for
all g 2H 1.w/

0D

Z
Rn
A.x/r.u.x/� v.x// � rg.x/ dx:

Taking g D u� v implies ru.x/Drv.x/ and so uD v.
The properties of the sesquilinear form guarantee that on L2.w/ there exists a bounded, strongly

continuous semigroup e�tLw. Further, it has a holomorphic extension. Let

†! D fz 2 C W z ¤ 0; jarg.z/j< !g

and define #; #� 2
�
0; �
2

�
by

# D supfjarghLf; f iw j W f 2 D.Lw/g; #� D arctan

r
ƒ2

�2
� 1:

Then there exists a complex semigroup e�zLw on †�=2�# of bounded operators on L2.w/. By the
weighted ellipticity condition (2.7), we have 0� # � #� < �

2
.

Holomorphic functional calculus. Our operator Lw is “an operator of type !” with ! D # , as defined
in [McIntosh 1986]. Indeed, the ellipticity conditions imply that Lw is closed and densely defined, its
spectrum is contained in †# , and its resolvent satisfies standard decay estimates [Cruz-Uribe and Rios
2008]. Therefore, we can define an L2.w/ functional calculus as in [McIntosh 1986].

Given � 2 .#; �/, let H1.†�/ be the collection of bounded holomorphic functions on †�. To define
'.Lw/ for ' 2H1.†�/ we first consider a smaller class: we say that ' 2H10 .†�/ if for some c; s > 0
it satisfies

j'.z/j � cjzjs.1Cjzj/�2s; z 2†�:

We then have an integral representation of '.Lw/. Let �� be the boundary of†� with positive orientation,
and let # < � < � <min

�
�; �

2

�
; then

'.Lw/D

Z
��=2��

e�zLw�.z/ dz; (2.10)

where
�.z/D

1

2�i

Z

�.z/

e�z'.�/ d� (2.11)

and 
�.z/D RCei sign.Im.z//�. Note that

j�.z/j.minf1; jzj�s�1g; z 2 ��=2�� ;
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so the representation (2.10) converges in L2.w/, and we have the bound

k'.Lw/f kL2.w/ � Ck'k1kf kL2.w/; f 2H10 .†�/: (2.12)

Now, sinceLw is a one-to-one operator of type !, it has dense range [Cowling et al. 1996, Theorem 2.3],
and so the results in [McIntosh 1986] (see also [Cowling et al. 1996, Corollary 2.2]) imply that Lw has an
H1 functional calculus and (2.12) extends to all of H1.†�/. Moreover, in [McIntosh 1986, Section 8]
the equivalence between the existence of this H1 functional calculus and square function estimates for
Lw and L�w is established:�Z 1

0

k'.tLw/k
2
L2.w/

dt

t

�1=2
� Ck'k1kf kL2.w/; ' 2H10 .†�/; (2.13)

with similar estimates for L�w .
The operators '.Lw/ also have the following properties:

� If ' and  are bounded holomorphic functions, then we have the operator identity '.L/ .L/D
.' /.L/.

� Given any sequence f'kg of bounded holomorphic functions converging uniformly on compact
subsets of †� to ', we have that 'k.Lw/ converges to '.Lw/ in the strong operator topology (of
operators on L2.w/).

Remark 2.14. The H1 functional calculus can be extended to more general holomorphic functions,
such as powers, for which the operators '.Lw/ can be defined as unbounded operators; see [Haase 2006;
McIntosh 1986].

Gaffney-type estimates. The semigroup and its gradient satisfy Gaffney-type estimates on L2.w/. Be-
low, we will see that these are a particular case of what we will call full off-diagonal estimates; see
Definition 2.33.

Theorem 2.15. Given w 2 A2 and A 2 En.w; �;ƒ/, for any closed sets E and F, for f 2 L2.w/ and
for all z 2†� , where 0 < � < �

2
�# ,

(1) ke�zLw .f �E /�F kL2.w/ � Ce
�cd.E;F /2=jzjkf �EkL2.w/,

(2) k
p
zre�zLw .f �E /�F kL2.w/ � Ce

�cd.E;F /2=jzjkf �EkL2.w/,

(3) kzLwe�zLw .f �E /�F kL2.w/ � Ce
�cd.E;F /2=jzjkf �EkL2.w/.

Proof. The semigroup estimate (1) was proved in [Cruz-Uribe and Rios 2008, Theorem 1.6] for real z,
but the same proof can be readily modified to prove the analytic version. Alternatively, estimates (1)
and (2) follow from the resolvent bounds

k.1C z2Lw/
�1.f �E /�F kL2.w/ � Ce

�cd.E;F /=jzj
kf �EkL2.w/; (2.16)

kzr.1C z2Lw/
�1.f �E /�F kL2.w/ � Ce

�cd.E;F /=jzj
kf �EkL2.w/; (2.17)
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obtained in [Cruz-Uribe and Rios 2015, Lemma 2.10] for z 2 †�=2C� , together with the integral
representation of the semigroup

e�zLwf D
1

2�

Z
�

ez� .�CLw/
�1f d�;

where � is the boundary of †� with positive orientation and �
2
< � < �

2
C � � arg.z/.

Finally, from (2.16) and (2.17) we obtain the estimate

kz2Lw.1C z
2Lw/

�1.f �E /�F kL2.w/ � Ce
�cd.E;F /=jzj

kf �EkL2.w/;

and then by the same kind of argument we get (3). �

The Kato estimate. The starting point for all of our estimates is the L2.w/ Kato estimates for the square
root operator L1=2w proved in [Cruz-Uribe and Rios 2015] (see also [Auscher et al. 2015] for a different
proof). This operator is the unique, maximal accretive operator such that L1=2w L

1=2
w D Lw . It has the

integral representation

L1=2w D
1
p
�

Z 1
0

p
tLwe

�tLw dt

t
:

(For further details, see [Auscher and Tchamitchian 1998; McIntosh 1986].)

Theorem 2.18 [Cruz-Uribe and Rios 2015, Theorem 1.1]. Given w 2 A2 and A 2 En.w; �;ƒ/, the
domain of Lw is H 1.w/ and there exist constants c and C , depending on n, ƒ=� and Œw�A2 , such that
for all f 2H 1.w/,

ckrf kL2.w/ � kL
1=2
w f kL2.w/ � Ckrf kL2.w/: (2.19)

The Riesz transform associated to Lw is the operator rL�1=2w . Formally, by (2.19) we have that the
Riesz transform is a bounded operator on L2.w;Cn/. To legitimize this, we define

rL�1=2w D
1
p
�

Z 1
0

p
tre�tLw

dt

t
: (2.20)

However, it is not immediate that this integral converges at 0 or1. To rectify this, for " > 0 define

S" D S".Lw/D
1
p
�

Z 1="

"

p
te�tLw

dt

t
: (2.21)

Since S".z/ is a uniformly bounded holomorphic function on the right half-plane for all 0 < " < 1, by the
L2.w/ functional calculus described above, S".Lw/ is uniformly bounded on L2.w/ for that range of ".
Further, for f 2 L1c , we have S"f 2 D.Lw/� D.L1=2w /, and so by inequality (2.19) and the functional
calculus,

krS"f kL2.w/ . kL1=2S"f kL2.w/ D k'".Lw/f kL2.w/; (2.22)

where

'".z/D
1
p
�

Z 1="

"

p
t
p
ze�tz

dt

t
:
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The sequence f'"g is uniformly bounded and converges uniformly to 1 on compact subsets of the sector†�,
0 < � < �

2
. Therefore, L1=2S"f ! f strongly in L2.w/. If we combine this fact with (2.22) we see

that frS"f g is Cauchy and so it converges in L2.w/. We therefore define

rL�1=2f D lim
"!0
rS"f;

where the limit is in L2.w/.
Given this definition, hereafter, when we are proving L2.w/ estimates for the Riesz transform, we

should actually prove estimates for rS" that are independent of ". These arguments will remain implicit
unless there are details we need to emphasize.

Off-diagonal estimates. Off-diagonal estimates as we define them were introduced in [Auscher and
Martell 2007b] and we will refer repeatedly to this paper for further information and results. Throughout
this section we will assume that given a weight w, we have w 2 A2.

Given a ball B , for j � 2 we define the annuli Cj .B/D 2jC1B n 2jB. We let C1.B/D 4B. By a
slight abuse of notation, we will define

�

Z
Cj .B/

h dw D
1

w.2jC1B/

Z
Cj .B/

h dw:

If w 2 A2 (as it will be hereafter), then w.2jC1B/� w.Cj .B//, so this definition is equivalent to the
one given above up to a constant. Finally, for s > 0 we set ‡.s/Dmaxfs; s�1g.

Definition 2.23. Given 1�p� q �1, a family fTtgt>0 of sublinear operators satisfies Lp.w/�Lq.w/
off-diagonal estimates on balls, denoted by

Tt 2O.Lp.w/! Lq.w//;

if there exist constants �1; �2 > 0 and c > 0 such that for every t > 0 and for any ball B , setting r D r.B/,�
�

Z
B

jTt .�B f /j
q dw

�1=q
. ‡

�
r
p
t

��2 �
�

Z
B

jf jp dw

�1=p
; (2.24)

and for all j � 2,�
�

Z
B

jTt .�Cj .B/f /j
q dw

�1=q
. 2j�1‡

�
2j r
p
t

��2
e�c4

j r2=t

�
�

Z
Cj .B/

jf jp dw

�1=p
; (2.25)�

�

Z
Cj .B/

jTt .�Bf /j
q dw

�1=q
. 2j�1‡

�
2j r
p
t

��2
e�c4

j r2=t

�
�

Z
B

jf jp dw

�1=p
: (2.26)

If the family of sublinear operators fTzgz2†� is defined on a complex sector †�, we say that it satisfies
Lp.w/�Lq.w/ off-diagonal estimates on balls in †� if (2.24)–(2.26) hold for z 2†� with t replaced
by jzj in the right-hand terms. We denote this by Tz 2O.Lp.w/! Lq.w/;†�/.

We give some basic properties of off-diagonal estimates on balls as a series of lemmas taken from
[Auscher and Martell 2007b, Section 2.2]. The first follows immediately by real interpolation, the second
by Hölder’s inequality, and the third by duality.
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Lemma 2.27. Given 1�pi �qi �1, iD1; 2, if Tt 2O.Lp1.w/!Lq1.w// and Tt WLp2.w/!Lq2.w/

is uniformly bounded, then Tt 2O.Lp� .w/! Lq� .w//, 0 < � < 1, where

1

p�
D

�

p1
C
1� �

p2
;

1

q�
D
�

q1
C
1� �

q2
:

Lemma 2.28. If 1� p � p1 � q1 � q �1, then

O.Lp.w/! Lq.w//�O.Lp1.w/! Lq1.w//:

Lemma 2.29. If for some 1� p � q �1, we have Tt 2O.Lp.w/!Lq.w//, and the operators Tt are
linear, then T �t 2O.Lq

0

.w/!Lp
0

.w//. (Here T �t is the dual operator for the inner product
R

Rn
fg dw.)

Lemma 2.30 [Auscher and Martell 2007b, Theorem 2.3]. (1) If Tt 2O.Lp.w/!Lp.w//, 1�p�1,
then Tt W Lp.w/! Lp.w/ is uniformly bounded.

(2) If 1 � p � q � r �1, Tt 2 O.Lq.w/! Lr.w//, and St 2 O.Lp.w/! Lq.w//, then Tt ıSt 2
O.Lp.w/! Lr.w//.

Remark 2.31. If p < q, then Tt 2 O.Lp.w/! Lq.w// does not guarantee that Tt is bounded from
Lp.w/ to Lq.w/.

Remark 2.32. Since complex sectors†�, 0��<� , are closed under addition, the proof of Lemma 2.30
extends to give off-diagonal estimates on complex sectors O.Lp.w/! Lq.w/;†�/.

Definition 2.33. Given 1� p � q �1, a family of operators fTtg satisfies full off-diagonal estimates
from Lp.w/ to Lq.w/, denoted by

Tt 2 F.Lp.w/! Lq.w//;

if there exist constants C; c; � > 0 such that given any closed sets E, F,

kTt .f �E /�F kLq.w/ � Ct
��e�cd

2.E;F /=t
kf�EkLp.w/:

The connection between full off-diagonal estimates and off-diagonal estimates on balls is given in the
following lemma from [Auscher and Martell 2007b, Section 3.1].

Lemma 2.34. Given 1� p � q �1:

(1) if Tt 2 F.Lp.w/! Lq.w//, then Tt W Lp.w/! Lq.w/ is uniformly bounded;

(2) Tt 2 F.Lp.w/! Lp.w// if and only if Tt 2O.Lp.w/! Lp.w//.

The importance of off-diagonal estimates is that they will let us prove weighted norm inequalities
for the operators we are interested in. To do so we will make repeated use of two results first proved in
[Auscher and Martell 2007a]; however, we will use special cases of these results as given in [Auscher
and Martell 2006, Theorems 2.2 and 2.4].
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Theorem 2.35. Given w 2 A2 and 1� p0 < q0 �1, let T be a sublinear operator acting on Lp0.w/,
fArgr>0 a family of operators acting from a subspace D of Lp0.w/ into Lp0.w/, and S an operator from
D into the space of measurable functions on Rn. Suppose that for every f 2 D and ball B with radius r ,�

�

Z
B

jT .I �Ar/f jp0 dw
�1=p0

�

X
j�1

g.j /

�
�

Z
2jC1B

jSf jp0 dw

�1=p0
; (2.36)

�
�

Z
B

jTArf jq0 dw
�1=q0

�

X
j�1

g.j /

�
�

Z
2jC1B

jTf jp0 dw

�1=p0
; (2.37)

where
P
g.j / <1. Then for every p, p0 < p < q0, and weights

v 2 Ap=p0.w/\RH.q0=p/0.w/;

there is a constant C such that for all f 2 D,

kTf kLp.v dw/ � CkSf kLp.v dw/:

Remark 2.38. In Theorem 2.35 and Theorem 2.39 below, the case q0 D1 is understood in the sense
that the Lq0.w/-average is replaced by the essential supremum. Also in Theorem 2.35, if q0 D1, then
the condition on v becomes v 2 Ap=p0 .

Theorem 2.39. Given w 2A2 with doubling order D, and 1� p0 < q0 �1, let T WLq0.w/!Lq0.w/

be a sublinear operator, and fArgr>0 a family of linear operators acting from L1c into Lq0.w/. Suppose
that for every ball B with radius r , f 2 L1c with supp.f /� B and j � 2,�

�

Z
Cj .B/

jT .I �Ar/f jp0 dw
�1=p0

� g.j /

�
�

Z
B

jf jp0 dw

�1=p0
: (2.40)

Suppose further that for every j � 1,�
�

Z
Cj .B/

jArf jq0 dw
�1=q0

� g.j /

�
�

Z
B

jf jp0 dw

�1=p0
; (2.41)

where
P
g.j /2Dj <1. Then for all p, p0 <p < q0, there exists a constant C such that for all f 2L1c ,

kTf kLp.w/ � Ckf kLp.w/:

3. Off-diagonal estimates for the semigroup e�tLw

In this section we consider off-diagonal estimates for the semigroup associated to Lw . Throughout this
and subsequent sections, let w 2 A2 and A 2 En.w;ƒ; �/ be fixed. Our goal is to characterize the set of
pairs .p; q/, p � q, such that these operators are in O.Lp.w/! Lq.w//. By Theorem 2.15 we have

e�tLw 2 F.L2.w/! L2.w//�O.L2.w/! L2.w//:

We will show that in the .p; q/-plane this set contains a right triangle; see Figure 1.
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.p; q/

p

q

Figure 1. .p; q/ such that e�tLw 2O.Lp.w/! Lq.w//

Let zJ .Lw/ � Œ1;1� be the set of all exponents p such that e�tLw W Lp.w/! Lp.w/ is uniformly
bounded for all t >0. By Theorem 2.15 and Lemma 2.34, 22 zJ .Lw/, and if it contains more than one point,
then by interpolation zJ .Lw/ is an interval. The set of pairs .p; q/ such that e�tLw 2O.Lp.w/!Lp.w//

is completely characterized by the next result.

Proposition 3.1. There exists an interval J .Lw/� Œ1;1� such that p; q 2J .Lw/ if and only if e�tLw 2
O.Lp.w/! Lq.w//. Furthermore, J .Lw/ has the following properties:

(1) J .Lw/� zJ .Lw/.

(2) IntJ .Lw/D Int zJ .Lw/.

(3) If p�.Lw/ and pC.Lw/ are respectively the left and right endpoints of J .Lw/, then p�.Lw/� .2�w/
0

and pC.Lw/� 2�w , where 2�w is as in Theorem 2.1. In particular, 2 2 Int.J .Lw//.

Remark 3.2. The smaller the value of rw , the better our bounds on the size of the set J .Lw/. In the
limiting case when w 2 A1, we have p�.Lw/ � 2n=.nC 2/ and pC.Lw/ � 2n=.n� 2/. These values
should be compared to the estimates in [Auscher 2007, Corollary 4.6] for the nondegenerate case that
corresponds to the case w D 1.

We get two corollaries to Proposition 3.1. The first gives us weighted off-diagonal estimates.

Corollary 3.3. Let p�.Lw/ < p � q < pC.Lw/. If v 2 Ap=p�.Lw/.w/ \ RH.pC.Lw/=q/0.w/, then
e�tLw 2O.Lp.v dw/! Lq.v dw//.

Proof. By Proposition 3.1, if p�.Lw/<p� q <pC.Lw/, then e�tLw 2O.Lp.w/!Lq.w//. Therefore,
by [Auscher and Martell 2007b, Proposition 2.6], if v 2 Ap=p�.Lw/.w/\RH.pC.Lw/=q/0.w/, then we
have e�tLw 2O.Lp.v dw/! Lq.v dw//. �

As our second corollary we get off-diagonal estimates for the holomorphic extension of the semigroup.
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Corollary 3.4. For any �, 0 < � < �
2
�# , and for any p � q such that e�tLw 2 O.Lp.w/! Lq.w//,

then for all m 2 N[f0g, .zLw/me�zLw 2O.Lp.w/! Lq.w/;†�/.

Proof. This follows from [Auscher and Martell 2007b, Theorem 4.3] and the fact that, by Theorem 2.15,
e�zLw 2 F.L2.w/! L2.w// for these values of z. �

Proof of Proposition 3.1. Fix 2 < q < 2�w . (If w 2 A1 we let q D 2�w D 2
�.) We will show that e�tLw 2

O.L2.w/! Lq.w//. Given this, then we also have e�tLw 2 O.Lq0.w/! L2.w//. For if L�w is the
adjoint ofLw (with respect toL2.w/), thenL�wD�w

�1 div.A� rf / and the same estimates hold forL�w .
Hence, e�tL

�
w 2 O.L2.w/! Lq.w//, and so by Lemma 2.29, e�tLw 2 O.Lq0.w/! L2.w//. Since

e�tLw is a semigroup, by Lemma 2.30 we have e�tLw 2O.Lq0.w/! Lq.w//. Therefore, by [Auscher
and Martell 2007b, Proposition 4.1], we have that there exists an interval J .Lw/ and properties (1) and (2)
hold. Moreover, we have Œq0; q�� J .Lw/, so if we let q! 2�w , then we immediately get property (3).

It therefore remains to prove that e�tLw 2 O.L2.w/! Lq.w//. We first show (2.24). Fix B and
for brevity write r D r.B/ and Cj D Cj .B/. By our choice of q, the Poincaré inequality (2.3) holds.
Moreover, as we noted above, e�tLw;

p
t re�tLw 2O.L2.w/! L2.w//; we may assume that the same

exponents �1, �2 hold for both operators. We thus get that�
�

Z
B

je�tLw .�Bf /j
q dw

�1=q
� j.e�tLw .�B f //B;w jC

�
�

Z
B

ˇ̌
e�tLw .�Bf /.x/� .e

�tLw .�Bf //B;w
ˇ̌q
dw.x/

�1=q
.
�
�

Z
B

je�tLw .�Bf /j
2 dw

�1=2
C r

�
�

Z
B

jr e�tLw .�Bf /j
2 dw

�1=2
.
�
1C

r
p
t

�
‡

�
r
p
t

��2�
�

Z
B

jf j2 dw

�1=2
. ‡

�
r
p
t

�1C�2�
�

Z
B

jf j2 dw

�1=2
:

The proof that (2.25) holds is gotten by nearly the same argument:�
�

Z
B

je�tLw .�Cj f /j
q dw

�1=q
� j.e�tLw .�Cj f //B;w jC

�
�

Z
B

ˇ̌
e�tLw .�Cj f /.x/� .e

�tLw .�Cj f //B;w
ˇ̌q
dw.x/

�1=q
.
�
�

Z
B

je�tLw .�Cj f /j
2 dw

�1=2
C r

�
�

Z
B

jre�tLw .�Cj f /j
2 dw

�1=2
. 2j�1

�
1C

r
p
t

�
‡

�
2j r
p
t

��2
e�c4

j r2=t

�
�

Z
Cj

jf j2 dw

�1=2
. 2j�1 ‡

�
2j r
p
t

�1C�2
e�c4

j r2=t

�
�

Z
Cj

jf j2 dw

�1=2
:
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Finally, to prove that (2.26) holds we use a covering argument. Fix j � 2; then we can cover the
annulus Cj by a collection of balls fBkgNkD1, r.Bk/D2j�2 r , with centers xBk 2Cj . The number of balls
required, N, depends only on the dimension. For any such ball, since dw is a doubling measure, we have�
�

Z
Bk

je�tLw .�Bf /j
q dw

�1=q
� j.e�tLw .�B f //Bk ;w jC

�
�

Z
Bk

ˇ̌
e�tLw .�Bf /.x/� .e

�tLw .�Bf //Bk ;w
ˇ̌q
dw.x/

�1=q
.
�
�

Z
Bk

je�tLw .�Bf /j
2 dw

�1=2
C r.Bk/

�
�

Z
Bk

jre�tLw .�Bf /j
2 dw

�1=2
.
�
�

Z
2jC2Bn2j�1B

je�tLw .�Bf /j
2 dw

�1=2
C 2j r

�
�

Z
2jC2Bn2j�1B

jre�tLw .�Bf /j
2 dw

�1=2
:

If j � 3, then 2jC2B n 2j�1B D CjC1[Cj [Cj�1; then to estimate the last two terms we use the
fact that e�tLw;

p
t re�tLw 2O.L2.w/!L2.w// and apply (2.26) with pD q D 2 in each annulus Ci ,

j � 1� i � j C 1. (These annuli have comparable measure since dw is a doubling measure, so we can
divide the average up into three averages). If j D 2, then 24B n 2B D C3[C2[ .4B n 2B/. On C3 and
C2 we argue as before using (2.26). On 4B nB we apply [Auscher and Martell 2007b, Lemma 6.1]. (We
note that in the notation there, yC1.B/D 4B n 2B.)

If we combine all of these estimates, we get that for every j � 2,�
�

Z
Bk

je�tLw .�Bf /j
q dw

�1=q
. 2j�1

�
1C

2j r
p
t

�
‡

�
2j r
p
t

��2�
�

Z
B

jf j2 dw

�1=2
. 2j�1 ‡

�
2j r
p
t

�1C�2
e�c4

j r2=t

�
�

Z
B

jf j2 dw

�1=2
:

Since Cj �
S
k Bk , we can sum in k to get�
�

Z
Cj .B/

je�tLw .�Bf /j
q dw

�1=q
.

NX
kD1

�
�

Z
Bk

je�tLw .�Bf /j
q dw

�1=q

. 2j�1‡
�
2j r
p
t

�1C�2
e�c4

j r2=t

�
�

Z
B

jf j2 dw

�1=2
: �

This completes the proof that e�tLw 2O.L2.w/! Lq.w//.

4. The functional calculus

In this section we show that the operator Lw has an Lp.w/ holomorphic functional calculus. As we
discussed in Section 2 above, we know already that if ' is a bounded holomorphic function on †�,
� 2 .#; �/, then '.Lw/ is a bounded operator on L2.w/. Recall that for any � 2 .#; �/, we say that
' 2H10 .†�/ if for some c; s > 0,

j'.z/j � cjzjs.1Cjzj/�2s; z 2†�: (4.1)
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We say that Lw has a bounded holomorphic functional calculus on Lp.w/ if for any such ',

k'.Lw/f kLp.w/ � Ck'k1kf kLp.w/; f 2 Lp.w/\L2.w/; (4.2)

where C depends only on p, w, # and � (but not on the decay of '). By a standard density argument,
(4.2) implies that '.Lw/ extends to a bounded operator on all of Lp.w/. Furthermore, we then have this
inequality holds if ' is any bounded holomorphic function. For the details of this extension, see [Haase
2006; McIntosh 1986].

Proposition 4.3. Let p�.Lw/ < p < pC.Lw/ and � 2 .#; �/. Then for any ' 2H10 .†�/,

k'.Lw/f kLp.w/ � Ck'k1kf kLp.w/; (4.4)

with C independent of ' and f . Hence, Lw has a bounded holomorphic functional calculus on Lp.w/.
Moreover, if v2Ap=p�.Lw/.w/\RH.pC.Lw/=p/0.w/ thenLw also has a bounded holomorphic functional
calculus on Lp.v dw/:

k'.Lw/f kLp.v dw/ � Ck'k1kf kLp.v dw/; (4.5)

with C independent of ' and f .

Proof. For brevity, let p� D p�.Lw/ and pC D pC.Lw/. By density it will suffice to assume that
f 2 L1c . Fix ' 2H10 .†�/; by linearity we may assume that k'k1 D 1.

We divide the proof into two steps. We first obtain (4.4) for p� < p < 2 by applying Theorem 2.39
and following the ideas in [Auscher 2007]. To do so, we will pick q0 D 2 and p0 > p� arbitrarily close
to p�. In the second step, using some ideas from [Auscher and Martell 2006], we will use Theorem 2.35
to get (4.5); in particular this yields (4.4) for every 2 < p < pC by taking v � 1. To apply Theorem 2.35
we will choose p0 >p� arbitrarily close to p� and q0 <pC arbitrarily close to pC. We will also use the
fact that '.Lw/ is bounded on Lp0.w/; this follows from the first step choosing p� < p0 < 2.

To apply Theorem 2.39, fix p� < p0 < p < 2 and let q0 D 2, T D '.Lw/, and

Arf .x/D .I � .I � e�r
2Lw /m/f .x/; (4.6)

where m is a positive integer that will be chosen below. We first show that inequality (2.41) holds. By
Proposition 3.1 we have e�tLw 2O.Lp0.w/! L2.w//. Using

Ar D
mX
kD1

�m
k

�
.�1/kC1e�kr

2Lw; (4.7)

and that for each fixed m and 1� k �m

‡

�
r
p
kt

�
�
p
m‡

�
r

t

�
and exp

�
�
c

k

4j r2

t2

�
� exp

�
�
c

m

4j r2

t2

�
;

Proposition 3.1 implies

Ar 2O.Lp.w/! Lq.w// for all p�.Lw/ < p � q < pC.Lw/: (4.8)
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In particular, we have Ar 2O.Lp0.w/!L2.w//. Thus, given any ball B with radius r , if supp.f /�B ,
then for all j � 1,�

�

Z
Cj .B/

jArf j2 dw
�1=2
. 2j�1‡.2j /�2e�c4

j

�
�

Z
B

jf jp0 dw

�1=p0
: (4.9)

This establishes (2.41) with g.j /D C 2j.�1C�2/e�c4
j

, for in this case we haveX
j�1

2j.�1C�2CD/e�c4
j

<1;

where D is the doubling constant of w.

We next prove that (2.40) holds. Since '.z/.1� e�r
2z/m 2 H10 .†fminf�;�=2gg/, by the functional

calculus representation (2.10) we have

'.Lw/.I �Ar/f D
Z
�

e�zLwf �.z/ dz;

where � D @†�=2�� , with 0 < # < � < � < min
˚
�; �

2

	
, and we choose � so that the hypotheses of

Corollary 3.4 are satisfied for z 2 � . Moreover, we have the estimate

j�.z/j.
r2m

jzjmC1
I

see [Auscher 2007, Section 5.1] for details.
We can now argue as follows: given a ball B with radius r , for each j � 2, by Minkowski’s inequality

and Corollary 3.4 (since p0 2 IntJ .Lw/),�
�

Z
Cj .B/

j'.Lw/.I �Ar.B//f jp0 dw
�1=p0

D

�
�

Z
Cj .B/

ˇ̌̌̌Z
�

e�zLwf �.z/ dz

ˇ̌̌̌p0
dw

�1=p0
.
Z
�

�
�

Z
Cj .B/

je�zLwf jp0 dw

�1=p0 r2m
jzjmC1

jdzj

.
�
�

Z
B

jf jp0 dw

�1=p0Z
�

r2m

jzjmC1
2j�1‡

�
2j rp
jzj

��2
e�c.r

2=jzj/4j
jdzj

D

�
�

Z
B

jf jp0 dw

�1=p0
2j.�1�2m/

Z 1
0

�2m‡.�/�2e�c�
2 d�

�

. 2j.�1�2m/
�
�

Z
B

jf jp0 dw

�1=p0
I (4.10)

the final inequality holds (i.e., the integral in � converges) provided 2m > �2. Moreover, if we choose
2m > �1CD, we have that (2.40) holds with g.j /D C 2.j�1/.�1�2m/ andX

j�2

g.j /2jD .
X
j�2

2j.�1CD�2m/ <1:
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We have shown that inequalities (2.40) and (2.41) hold, and so by Theorem 2.39 inequality (4.4) holds
for all p such that p� < p � 2.

We will now apply Theorem 2.35 to show that (4.5) holds for p� < p < pC. (Inequality (4.4) then
follows for 2 < p < pC if we take v � 1.) Fix p, p� < p < pC, and v 2 Ap=p�.w/\RH.pC=p/0.w/.
By the openness properties of the Aq and RHs classes there exist p0, q0 such that

p� < p0 <minfp; 2g � p < q0 < pC; v 2 Ap=p0.w/\RH.q0=p/0.w/:

Let T D '.Lw/, Ar D I � .I � e�r
2Lw /m, S D I , and fix the above values of p0 and q0. By the

previous argument we have that '.Lw/ is bounded on Lp0.w/.
We first show that (2.36) holds. Fix a ball B and decompose f as

f D
X
j�1

f�Cj .B/ WD
X
j�1

fj : (4.11)

Then, by the same functional calculus argument as given above, we have that for each j ,�
�

Z
B

ˇ̌
'.Lw/.I �Ar/fj

ˇ̌p0 dw�1=p0
D

�
�

Z
B

ˇ̌̌̌Z
�

e�zLwfj�.z/ dz

ˇ̌̌̌p0
dw

�1=p0
.
Z
�

�
�

Z
B

je�zLwfj j
p0 dw

�1=p0 r2m

jzjmC1
jdzj

.
�
�

Z
Cj .B/

jf jp0 dw

�1=p0
2j.�1�2m/

Z
�

�
2j rp
jzj

�2m
‡

�
2j rp
jzj

��2
e�c4

j r2=jzj jdzj

jzj

. 2j.�1�2m/
�
�

Z
Cj .B/

jf jp0 dw

�1=p0
I

the last inequality holds provided 2m > �2. Hence, since 2jC1B � Cj , by Minkowski’s inequality we
have (since the sum

P
fj is finite for f 2 L1c )�

�

Z
B

j'.Lw/.I �Ar/f jp0 dw
�1=p0

�

X
j�1

�
�

Z
B

ˇ̌
'.Lw/.I �Ar/fj

ˇ̌p0 dw�1=p0

.
X
j�1

2j.�1�2m/
�
�

Z
2jC1B

jf jp0 dw

�1=p0
:

This establishes (2.36) with g.j /D C 2j.�1�2m/. If we take 2m >maxf�1; �2g, then
P
g.j / <1.

We now show that (2.37) holds. Fix a ball B and j � 1. Since Ar 2O.Lp0.w/!Lq0.w// (see (4.8)),�
�

Z
B

ˇ̌
Ar
�
�Cj .B/'.Lw/f

�ˇ̌q0 dw�1=q0 . 2j�1‡.2j /�2e�c4j��Z
Cj .B/

j'.Lw/f j
p0 d�

�1=p0
:
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Therefore, since '.Lw/ and Ar commute, by Minkowski’s inequality we obtain�
�

Z
B

j'.Lw/Arf jq0 dw
�1=q0

.
X
j�1

2j.�1C�2/e�c4
j

�
�

Z
Cj .B/

j'.Lw/f j
p0 d�

�1=p0
:

This establishes (2.37) with g.j / D C 2j.�1C�2/e�c4
j

; again,
P
g.j / <1. Therefore, our proof is

complete. �

5. Square function estimates for the semigroup

In this section we prove Lp.w/ norm inequalities for the vertical square function associated to the
semigroup e�tLw :

gLwf .x/D

�Z 1
0

j.tLw/
1=2e�tLwf .x/j2

dt

t

�1=2
:

Proposition 5.1. Let p�.Lw/ < p < pC.Lw/. Then

kgLwf kLp.w/ � kf kLp.w/: (5.2)

Conversely if for some p the equivalence (5.2) holds, then p 2 zJ .Lw/— i.e., the interior of the interval
on which (5.2) holds is .p�.Lw/; pC.Lw//.

Moreover, if v 2 Ap=p�.Lw/.w/\RH.pC.Lw/=p/0.w/, then

kgLwf kLp.v dw/ � kf kLp.v dw/: (5.3)

We note that the upper bounds in the previous result could be obtained by combining Proposition 4.3
with the operator theory methods developed in [Cowling et al. 1996]. To reach a wider audience we
present a self-contained harmonic analysis proof. We will use an auxiliary Hilbert space related to
square functions, following the approach in [Auscher and Martell 2006]. Let H denote the Hilbert space
L2
�
.0;1/; dt

t

�
with norm

jkhkj D

�Z 1
0

jh.t/j2
dt

t

�1=2
:

In particular, we have

gLwf .x/D jk'.L; � /f .x/kj;

where '.z; t/D .tz/1=2e�tz. Furthermore, we define LpH.w/ to be the space of H-valued functions with
the norm

khkLpH .w/
D

�Z
Rn
jkh.x; � /kjp dw.x/

�1=p
:

The following lemma lets us extend scalar-valued inequalities to H-valued inequalities. For a proof, see
[Auscher and Martell 2006, Lemma 7.4].
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Lemma 5.4. Given a Borel measure � on Rn, let D be a subspace of M, the space of measurable
functions in Rn, and let S , T be linear operators from D into M. Fix 1� p � q <1 and suppose there
exists C0 > 0 such that for all f 2 D,

kTf kLq.�/ � C0
X
j�1

j̨ kSf kLp.Fj;�/;

where the Fj are measurable subsets of Rn and j̨ � 0. Then there is an H-valued inequality with the
same constant: for all f W Rn � .0;1/! C such that for almost all t > 0, f . � ; t / 2 D,

kTf kLqH.�/
� C0

X
j�1

j̨ kSf kLpH .Fj ;�/
:

The extension of a linear operator T on C-valued functions to H-valued functions is defined for x 2Rn

and t > 0 by .T h/.x; t/D T .h. � ; t //.x/; that is, t can be considered as a parameter and T acts only on
the variable in Rn.

Proof of Proposition 5.1. We shall first prove the upper bound inequalities. We first claim that the upper
bound inequality in (5.2) holds for p D 2. Indeed, since '.z/D z1=2e�z 2 H10 .†�/, it follows from
(2.13) that we have the bound

kgLwf kL2.w/ . kf kL2.w/:

For brevity, let p� D p�.Lw/ and pC D pC.Lw/. As in previous proofs, we divide our proof into
two steps. We will first prove the upper bound in (5.2) for p� < p < 2 by applying Theorem 2.39. Fix
p� <p < q0D 2, and let Ar D I � .I � e�r

2Lw /m, where m will be chosen below. Notice that, by (4.8),
Ar is bounded on Lq0.w/ for each m. Fix f 2 L1c ; the result for general f 2 Lp.w/ then follows by a
density argument.

We have .tLw/1=2e�tLw .I �Ar/f D '.Lw ; t /f , where

'.z; t/D.tz/1=2e�tz.1� e�r
2z/m:

Moreover, since '. � ; t / 2H10 .†fminf�;�=2gg/, by the functional calculus representation (2.10) we have

.tLw/
1=2e�tLw .I �Ar/f D

Z
�

�.z; t/e�zLwf dz;

where � D @†�=2�� , with 0 < # < � < � < min
˚
�; �

2

	
, and we choose � so that the hypotheses of

Corollary 3.4 are satisfied for z 2 �. Moreover, we have the estimate [Auscher 2007; Auscher and Martell
2006]

j�.z; t/j.
t1=2r2m

.jzjC t /mC3=2
; z 2 �:

Therefore,

jk�.z; � /kj D

�Z 1
0

j�.z; t/j2
dt

t

�1=2
.

r2m

jzjmC1
: (5.5)
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Now let f 2 L1c with supp.f /� B. For j � 2, we have�
�

Z
Cj .B/

jgLw .I�Ar/f j
p dw

�1=p
D

�
�

Z
Cj .B/

ˇ̌̌̌�Z 1
0

ˇ̌̌̌Z
��=2��

�.z; t/e�zLwf dz

ˇ̌̌̌2
dt

t

�1=2 ˇ̌̌̌p
dw

�1=p
�

�
�

Z
Cj .B/

ˇ̌̌̌Z
��=2��

je�zLwf jjk�.z; �/kjd jzj

ˇ̌̌̌p
dw

�1=p
.
Z
��=2��

�
�

Z
Cj .B/

je�zLwf jp dw

�1=p r2m

jzjmC1
d jzj

. 2j�1
�
�

Z
B

jf jp dw

�1=p Z
��=2��

‡

�
2j rp
jzj

��2
e�c4

j r2=jzj r
2m

jzjm
d jzj

jzj

. 2j�14�mj
�
�

Z
B

jf jp dw

�1=p
I (5.6)

in the second inequality we applied (5.5) and the off-diagonal estimates for e�zLw from Corollary 3.4,
and the last inequality holds provided 2m > �2. Thus, if we take m> �1CD, where D is the doubling
order of w, the operator gLw satisfies (2.40) in Theorem 2.39 with g.j /DC 2j.�1�2m/. Since we already
established (2.41) in (4.9) with g.j /D C 2j.�1C�2/4�mj, the hypotheses of Theorem 2.39 are satisfied if
m> �1C �2CD. Therefore, for each p� < p < 2 there exists a constant C such that

kgLwf kLp.w/ � Ckf kLp.w/: (5.7)

In the second part of the proof we will show that if p� <p <pC and v 2Ap=p�.w/\RH.pC=p/0.w/,
then the upper bound inequality in (5.3) holds. If we take v� 1, then we immediately get (5.2). To do so,
first note that if we fix p and v, then by the openness properties of weights there exist p0, q0 such that

p� < p0 <minfp; 2g �maxfp; 2g< q0 < pC

and v 2 Ap0=p�.w/\RH.q0=p/0.w/.
We will apply Theorem 2.35 with T D gLw , S D I and DD Lp0.w/ (again, note that by (4.8), Ar is

bounded on Lp0.w/). We first prove that inequality (2.36) holds. For each j � 1, let fj D f�Cj .B/; then
we can argue exactly as we did in the proof of (5.6), exchanging the roles of B and Cj .B/, to get�

�

Z
B

jgLw .I �Ar/fj jp dw
�1=p
. 2j�14�mj

�
�

Z
2jC1B

jf jp dw

�1=p
:

Inequality (2.36) follows if we sum over all j and take g.j /D 2j�14�mj.
We will now show that inequality (2.37) holds. To do so, we need to prove a vector-valued version

of a key inequality. By Proposition 3.1, given a ball B with radius r , we have for all j � 1, g with
supp.g/� Cj .B/, and 1� k �m,�

�

Z
B

je�kr
2Lwgjq0 dw

�1=q0
� C0 2

j.�1C�2/e�˛4
j

�
�

Z
Cj .B/

jgjp0 dw

�1=p0
: (5.8)
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We now apply Lemma 5.4 with S D I and T W Lp0.w/! Lq0.w/ given by

Tg D .C02
j.�1C�2/e�˛4

j

/�1
w.2jC1B/1=p0

w.B/1=q0
�Be

�kr2Lw .g�Cj .B//:

This yields the H-valued extension of (5.8): for all g 2 Lp0H .w/ with supp.g. � ; t //� Cj .B/, t > 0, we
have �

�

Z
B

jke�kr
2Lwg.x; � /kjq0 dw

�1=q0
� C02

j.�1C�2/e�˛4
j

�
�

Z
Cj .B/

jkg.x; � /kjp0 dw

�1=p0
: (5.9)

Given an arbitrary g 2 Lp0H .w/, decompose it as

g.x; t/D
X
j�1

g.x; t/�Cj .B/.x/D
X
j�1

gj .x; t/:

Then inequality (5.9) yields�
�

Z
B

jke�kr
2Lwg.x; � /kjq0 dw

�1=q0
�

X
j�1

�
�

Z
B

jke�kr
2Lwgj .x; � /kj

q0 dw

�1=q0

.
X
j�1

2j.�1C�2/e�˛4
j

�
�

Z
2jC1B

jkg.x; � /kjp0 dw

�1=p0
: (5.10)

Define g.x; t/D .tLw/1=2e�tLwf .x/. Then gLwf .x/D jkg.x; � /kj; by our choice of p0 and the first
step of the proof we have g 2Lp0H .w/. Moreover, since for each t > 0 we know that .tLw/1=2e�tLw and
e�kr

2Lw commute,
gLw .e

�kr2Lwf /.x/D jke�kr
2Lwg.x; � /kj:

We can now use (4.7) and (5.10) to get�
�

Z
B

jgLwArf j
q0 dw

�1=q0
.

mX
kD1

�
�

Z
B

jke�kr
2Lwg.x; � /kjq0 dw

�1=q0
.
X
j�1

2j.�1C�2/e�˛4
j

�
�

Z
2jC1B

jgLwf j
p dw

�1=p0
:

This proves (2.37) with g.j /D C 2j.�1C�2/e�c4
j

. Therefore, by Theorem 2.35 we get

kgLwf kLp.v dw/ . kf kLp.v dw/:

It remains to show the reverse inequalities. We will prove the lower bound in (5.3); then the lower
bound in (5.2) holds if we take v� 1. Fix p�<p<pC and v 2Ap=p�.Lw/.w/\RH.pC.Lw/=p/0.w/. By
the duality properties of weights [Auscher and Martell 2007a, Lemma 4.4] and since p˙.Lw/0Dp�.L�w/,
where L�w is the adjoint (on L2.w/) of Lw ,

v1�p
0

2 Ap0=p�.L�/.w/\RH.pC.L�/=p0/0.w/: (5.11)
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We now proceed as in the proof of [Auscher and Martell 2006, Theorem 7.3]. Given F 2 LpH.v dw/\
L2H.w/ and x 2 Rn, we set

TLwF.x/D

Z 1
0

.t Lw/
1=2 e�tLwF.x; t/

dt

t
: (5.12)

Recall that .t Lw/1=2 e�tLwF.x; t/D .t Lw/1=2 e�tLw .F. � ; t //.x/. Hence, TLw maps H-valued func-
tions to C-valued functions. For h 2 Lp

0

.v1�p
0

dw/\L2.w/ with khkLp0 .v1�p0 dw/ D 1, we haveˇ̌̌̌Z
Rn
TLwF

Nh dw

ˇ̌̌̌
D

ˇ̌̌̌Z
Rn

Z 1
0

F.x; t/.t L�w/
1=2 e�tL

�
wh.x/

dt

t
dw.x/

ˇ̌̌̌
�

Z
Rn
jkF.x; �/kjgL�wh.x/ dw.x/

. kF kLpH .v dw/kgL�whkLp0 .v1�p0 dw/ . kF kLpH .v dw/;

where the last estimate uses the fact that gL�w is bounded on Lp
0

.v1�p
0

dw/. This follows from the upper
bound in (5.3) (with L�w in place of Lw ), which we proved above, and (5.11). Taking the supremum over
all such functions h and using a standard density argument we have obtained that TLw is bounded from
L
p
H.v dw/ to Lp.v dw/.
Next, given f 2 Lp.v dw/ \ L2.dw/, if we define F.x; t/ D .tLw/

1=2e�tLwf .x/, then F 2
L
p
H.v dw/\L

2
H.w/ since kF kLpH .v dw/ D kgLwf kLp.v dw/ and analogously for L2.w/. Also, by the

L2.w/ functional calculus we have

f .x/D 2

Z 1
0

.tLw/
1=2e�tLwF.x; t/

dt

t
D 2TLwF.x/: (5.13)

Therefore,

kf kLp.v dw/ D 2kTLwF kLp.v dw/ . kF kLpH .v dw/ D kgLwf kLp.v dw/;

and this completes the proof of (5.3).

To finish the proof of Proposition 5.1 we need to show that the equivalence of norms in (5.2) implies
that the semigroup is uniformly bounded. However, this follows immediately from the definition of gLw
and the semigroup property: for any s > 0,

gLw .e
�sLwf /.x/D

�Z 1
0

jL1=2w e�.sCt/Lwf .x/j2 dt

�1=2
� gLwf .x/: �

We conclude this section by proving a version of Proposition 5.1 for the “adjoint” of a discrete square
function. We will need this estimate in the proof of Proposition 6.1 below.

Proposition 5.14. Define the holomorphic function  on the sector †�=2 by

 .z/D
1
p
�

Z 1
1

ze�tz
dt
p
t
: (5.15)
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If p�.Lw/ < p < pC.Lw/, then for any sequence of functions fˇkgk2Z,



X
k2Z

 .4kLw/ ˇk






Lp.w/

.




�X

k2Z

jˇkj
2

�1=2




Lp.w/

: (5.16)

Proof. By duality and since p˙.Lw/0 D p�.L�w/, it will suffice to show that for every p�.L�w/ < p <
pC.L

�
w/, 



�X

k2Z

j N .4kL�w/hj
2

�1=2




Lp.w/

. khkLp.w/: (5.17)

The function  satisfies j .z/j � C jzj1=2e�cjzj uniformly on subsectors †�, 0 � � < �
2

. Thus the
operator on the left-hand side of (5.17) is a discrete analog of the square function gL�w , changing continuous
times t to discrete times 4k and z1=2e�z to N .z/. Since N .z/ has the same quantitative properties as
z1=2e�z (decay at 0 and at infinity), we can repeat the previous argument and obtain the desired estimates
as in the proof of Proposition 5.1. �

Remark 5.18. In Proposition 5.14 we can also get Lp.v dw/ estimates, but in the proof of Proposition 6.1
below we will only need the unweighted estimates. Further details and the precise statements are left to
the interested reader.

6. Reverse inequalities

In this section we will prove Lp.w/ estimates of the form kL1=2w f kLp.w/ � Ckrf kLp.w/, which
generalize the L2.w/ Kato estimates in Theorem 2.18. These are referred to as reverse inequalities since
if we replace f by L�1=2w f , then formally we get a reverse-type inequality for the Riesz transform:
kf kLp.w/ � CkrL

�1=2
w f kLp.w/.

Since these estimates involve the gradient, in proving them we will rely (implicitly and explicitly) on
the weighted Poincaré inequality (2.3). This will require an additional assumption on p when p < 2. To
state it simply, define

.p�.Lw//w;� D
nrwp�.Lw/

nrw Cp�.Lw/
< p�.Lw/:

Proposition 6.1. Let maxfrw ; .p�.Lw//w;�g< p < pC.Lw/. Then for all f 2 S,

kL1=2w f kLp.w/ � Ckrf kLp.w/; (6.2)

with C independent of f . Furthermore, if

maxfrw ; p�.Lw/g< p < pC.Lw/ and v 2 Ap=maxfrw;p�.Lw/g.w/\RH.pC.Lw/=p/0.w/;

then for all f 2 S,
kL1=2w f kLp.v dw/ � Ckrf kLp.v dw/: (6.3)

Remark 6.4. The quantity maxfrw ; .p�.Lw//w;�g can be equal to either term. For instance, it equals
rw if p�.Lw/� n0rw . From Proposition 3.1 we know that p�.Lw/ < .2�w/

0D 2nrw=.nrwC2/, but this
only implies the previous inequality for some values of n and rw .
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Proof. As before, let p� D p�.Lw/ and pC D pC.Lw/. Fix p, maxfrw ; .p�/w;�g< p < 2, and f 2 S.
We will first show

kL1=2w f kLp;1.w/ . krf kLp.w/: (6.5)

First note that since p>rw , we have w 2Ap . Therefore, given ˛ >0 we can form the Calderón–Zygmund
decomposition given in [Auscher and Martell 2006, Lemma 6.6]. There exist a collection of balls fBigi ,
smooth functions fbigi and a function g 2 L1loc.w/ such that

f D gC
X
i

bi (6.6)

and the following properties hold:

jrg.x/j � C˛ for w-a.e. x; (6.7)

supp.bi /� Bi and
Z
Bi

jrbi j
p dw � C˛pw.Bi /; (6.8)

X
i

w.Bi /�
C

˛p

Z
Rn
jrf jp dw; (6.9)X

i

�Bi �N; (6.10)

�
�

Z
Bi

jbi j
q dw

�1=q
. C˛r.Bi / for 1� q � p�w ; (6.11)

where C and N depend only on n, p, q and the doubling constant of w.
To prove (6.5) we will prove the corresponding weak-type estimates with f replaced by g and bi .

For g, we use the L2.w/ Kato estimate (2.19), (6.7), and the fact that p < 2 to get

w

��
jL1=2w gj>

˛

3

��
.
1

˛2

Z
Rn
jL1=2w gj2 dw

.
1

˛2

Z
Rn
jrgj2 dw

.
1

˛p

Z
Rn
jrgjp dw

.
1

˛p

Z
Rn
jrf jp dwC

1

˛p

Z
Rn

ˇ̌̌̌X
i

rbi

ˇ̌̌̌p
dw

.
1

˛p

Z
Rn
jrf jp dw;

where the last estimate follows from (6.10), (6.8), and (6.9).
To prove a weak-type estimate for L1=2w

�P
i bi

�
, let ri D 2k if 2k � r.Bi / < 2kC1. Then for all i ,

ri � r.Bi /. Write

L1=2w D
1
p
�

Z r2
i

0

Lwe
�tLw

dt
p
t
C

1
p
�

Z 1
r2
i

Lwe
�tLw

dt
p
t
D Ti CUi I
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then we have

w

��ˇ̌̌̌X
i

L1=2w bi

ˇ̌̌̌
>
2˛

3

��
� w

�[
i

4Bi

�
Cw

��ˇ̌̌̌X
i

Uibi

ˇ̌̌̌
>
˛

3

��
Cw

��
Rn n

[
i

4Bi

�\�ˇ̌̌̌X
i

Tibi

ˇ̌̌̌
>
˛

3

��
.

1

˛p

Z
Rn
jrf jp dwC I1C I2;

where the last inequality follows from (6.9).
We first estimate I2. Since p > .p�/w;� we have p�w > ..p�/w;�/

�
w D p�, and we can choose

q 2 J .Lw/ such that (6.11) is satisfied. By Corollary 3.4, tLwe�t Lw 2O.Lq.w/! Lq.w//, and so

I2 .
1

˛

X
i

X
j�2

Z
Cj .Bi /

jTibi j dw

. 1
˛

X
i

X
j�2

w.2jBi /

Z r2
i

0

�

Z
Cj .Bi /

jtLwe
�t Lwbi j dw

dt

t3=2

. 1
˛

X
i

X
j�2

2jD w.Bi /

Z r2
i

0

2j�1‡

�
2j ri=

p
t

��2
e�c 4

j r2
i
=t dt

t3=2

�
�

Z
Bi

jbi j
q dw

�1=q
.
X
i

X
j�2

2jD e�c4
j

w.Bi /

.
X
i

w.Bi /.
1

˛p

Z
Rn
jrf jp dw;

where we have used (6.11) and (6.9), and D is the doubling order of dw.
We will now estimate I1. For q as above, by Proposition 4.3 we have an Lq.w/ functional calculus

for Lw . Therefore, we can write Ui as r�1i  .r2i Lw/ with  defined by (5.15). Let ˇk D
P
iriD2k

bi=ri ;
then, X

i

Ui bi D
X
k2Z

 .4k Lw/

� X
iriD2k

bi

ri

�
D

X
k2Z

 .4k Lw/ˇk :

Therefore, by Proposition 5.14, (6.10), (6.11), the fact that ri � r.Bi / and (6.9), we have

I1 .
1

˛q





X
i

Uibi





q
Lq.w/

.
1

˛q





�X
k2Z

jˇkj
2

�1=2



q
Lq.w/

.
1

˛q

Z
Rn

X
i

jbi j
q

r
q
i

dw .
X
i

w.Bi /.
1

˛p

Z
Rn
jrf jp dw:

If we combine all of the estimates we have obtained, we get (6.5) as desired.

To prove (6.2) from the weak-type estimate (6.5) we will use an interpolation argument from [Auscher
and Martell 2006]. Fix p and r such that maxfrw ; .p�/w;�g< r < p < 2. Then by (6.5) and (2.19) we
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have that for every f 2 S,

kL1=2w f kLr;1.w/ . krf kLr .w/; kL1=2w f kL2.w/ . krf kL2.w/: (6.12)

Formally, to apply Marcinkiewicz interpolation, we let g D rf to get a weak .r; r/ and strong .2; 2/
inequality; this would immediately yield a strong .p; p/ inequality. To formalize this we must justify
this substitution.

For every q > rw , by [Auscher and Martell 2006, Lemma 6.7] we have that

E D
˚
.��/1=2f W f 2 S; supp Of � Rn n f0g

	
is dense in Lq.w/, where Of denotes the Fourier transform of f . Moreover, since r > rw , we have w 2Ar
and the Riesz transforms, Rj D @j .��/�1=2, are bounded on Lr.w/ [García-Cuerva and Rubio de Francia
1985]. It follows from this and the identity �I DR21C � � �CR

2
n that for g 2 Lr.w/,

kgkLr .w/ � kr.��/
�1=2gkLr .w/:

Thus, for g 2 E , we know L1=2w .��/�1=2gDL
1=2
w f if f D .��/�1=2g and krf kLr .w/�kgkLr .w/ for

r > rw . Thus (6.12) becomes weighted weak .r; r/ and strong .2; 2/ inequalities for T DL1=2w .��/�1=2,
and this operator is defined a priori on E . Since E is dense in each Lq.w/, we can extend T by density in
both cases and their restrictions to the space of simple functions agree. Hence, we can apply Marcinkiewicz
interpolation and conclude, again by density, that (6.2) holds for all p with r < p < 2. Since r is arbitrary,
we get (6.2) in the range maxfrw ; .p�/w;�g< p < 2.

For the second step of the proof we will prove (6.3) using Theorem 2.35. Inequality (6.2) for its full
range of exponents then follows by letting v D 1. Define Qp� Dmaxfrw ; p�g< 2, and fix Qp� < p < pC
and v 2 Ap= Qp�.w/\ RH.pC=p/0.w/. By the openness properties of Aq and RHs weights, there exist
p0; q0 such that

Qp� < p0 <minfp; 2g � p < q0 < pC; v 2 Ap=p0.w/\RH.q0=p/0.w/:

To apply Theorem 2.35, let T D L1=2w , S Dr, and Ar D I � .I � e�r
2Lw /m, where the value of m

will be fixed below. We will first show that (2.37) holds. By (4.8) we have Ar 2O.Lp0.w/! Lq0.w//

since p0, q0 2 J .Lw/. Let hD L1=2w f and decompose h as we decomposed f in (4.11). Then, since
L
1=2
w and Ar commute, it follows that�

�

Z
B

jL1=2w Arf jq0 dw
�1=q0

.
X
j�1

�
�

Z
B

jArhj jq0 dw
�1=q0

.
X
j�1

2j�1‡.2j /�2e�c4
j

�
�

Z
Cj

jhjp0 dw

�1=p0

�

X
j�1

2j.�1C�2/e�c4
j

�
�

Z
2jC1B

jL1=2w f jp0 dw

�1=p0
:

This gives us (2.37) with g.j /D C 2j.�1C�2/e�c4
j

; clearly,
P
g.j / <1.
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We now prove that (2.36) holds. Fix f 2 S and let '.z/D z1=2.1� e�r
2z/m so that

'.Lw/f D L
1=2
w .I � e�r

2Lw /mf :

By the conservation property [Cruz-Uribe and Rios 2015; Auscher 2007, Section 2.5],

'.Lw/ f D '.Lw/ .f �f4B;w/D
X
j�1

'.Lw/ hj ; (6.13)

where hj D .f � f4B;w/ �j , �j D �Cj .B/ for j � 3, �1 is a smooth function with support in 4B ,
0� �1 � 1, �1 D 1 in 2B and kr�1k1 � C=r , and �2 is chosen so that

P
j�1 �j D 1.

We estimate each term in the right-hand side of (6.13) separately. When j D 1, since p�<p0<pC, by
the bounded holomorphic functional calculus on Lp0.w/ (Proposition 4.3) and the fact that '.Lw/ h1 D
.I � e�r

2Lw /mL
1=2
w h1, we have

k'.Lw/ h1kLp0 .w/ . kL1=2w h1kLp0 .w/

uniformly in r . By the above argument we have that (6.2) holds for p D p0 since Qp� < p0 < 2. Further,
since f 2S, we have h1 2S by our choice of �1. This, together with the Lp0.w/-Poincaré inequality (2.3)
(since p0 > rw , w 2 Ap0) and the definition of h1 yield

kL1=2w h1kLp0 .w/ . krh1kLp0 .w/
. k.rf /�4BkLp0 .w/C r�1 k.f �f4B;w/�4BkLp0 .w/ . k.rf /�4BkLp0 .w/:

Therefore, �
�

Z
B

j'.Lw/ h1j
p0 dw

�1=p0
.
�
�

Z
4B

jrf jp0 dw

�1=p0
:

When j � 3, the functions � associated with ' by (2.11) satisfy

j�.z/j.
r2m

jzjmC3=2
; z 2 ��=2�� :

Since p0 2 J .Lw/, by Corollary 3.4, e�zLw 2 O.Lp0.w/! Lp0.w/;†�/. This, together with the
representation (2.10), gives us that�
�

Z
B

j'.Lw/hj j
p0 dw

�1=p0
�

Z
��=2��

�
�

Z
B

je�zLhj j
p0 dw

�1=p0
j�.z/jjdzj

. 2j�1
Z
��=2��

‡

�
2j rp
jzj

��2
e�˛4

j r2=jzj r2m

jzjmC3=2
jdzj

�
�

Z
Cj .B/

jhj j
p0 dw

�1=p0
. 2j.�1�2m�1/r�1

�
�

Z
2jC1B

jf �f4B;w j
p0 dw

�1=p0
. 2j.�1�2m�1/

jX
lD1

2l
�
�

Z
2lC1B

jrf jp0 dx

�1=p0
;
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provided 2mC 1 > �2. The last estimate follows from the Lp0.w/-Poincaré inequality (2.3) (here we
again use that p0 > rw and so w 2 Ap0):�
�

Z
2jC1B

jf �f4B;w j
p0 dw

�1=p0
�

�
�

Z
2jC1B

jf �f2jC1B;w j
p0 dw

�1=p0
C

jX
lD2

jf2lB;w �f2lC1B;w j

.
jX
lD1

�
�

Z
2lC1B

jf �f2lC1B j
p0 dx

�1=p0

. r
jX
lD1

2l
�
�

Z
2lC1B

jrf jp0 dx

�1=p0
: (6.14)

When j D 2 we can argue similarly, using the fact that

jh2j � jf �f4B;w j�8Bn2B � jf �f2B;w j�8Bn2B Cjf4B;w �f2B;w j�8Bn2B :

If we combine these estimates, then by (6.13) and Minkowski’s inequality we get�
�

Z
B

j'.Lw/hj
p0 dw

�1=p0
.
X
j�1

�
�

Z
B

j'.Lw/hj j
p0 dw

�1=p0
�

X
j�1

g.j /

�
�

Z
B

jrf jp0 dw

�1=p0
with g.j /DCm 2j.�1�2m/ provided 2mC1> �2. If we further assume that 2m>�1, then

P
j g.j /<1.

This proves that (2.36) holds. Therefore, by Theorem 2.35 we get (6.3) as desired. �

7. The gradient of the semigroup
p

tre�tLw

Let zK.Lw/� Œ1;1� be the set of all exponents p such that
p
tre�tLw W Lp.w/! Lp.w/ is uniformly

bounded for all t > 0. By Theorem 2.15 and Lemma 2.34, 2 2 zK.Lw/ and if it contains more than one
point, then by interpolation zK.Lw/ is an interval. In this section we give a partial description of the set of
.p; q/ such that

p
tre�tLw 2O.Lp.w/! Lq.w//.

Proposition 7.1. There exists an interval K.Lw/ such that if p; q 2 K.Lw/, p � q, then
p
t re�tLw 2

O.Lp.w/! Lq.w//. Moreover, K.Lw/ has the following properties:

(1) K.Lw/� zK.Lw/.

(2) If q�.Lw/ and qC.Lw/ are the left and right endpoints of K.Lw/, then q�.Lw/ D p�.Lw/,
2� qC.Lw/� .qC.Lw//

�
w � pC.Lw/. In particular, 2 2 K.Lw/ and K.Lw/� J .Lw/.

(3) If q � 2 and p < q, and if
p
t re�tLw 2O.Lp.w/! Lq.w//, then p; q 2 K.Lw/.

(4) sup zK.Lw/D qC.Lw/.

Remark 7.2. Unlike in the unweighted case [Auscher and Martell 2007b], we are unable to give a
complete characterization of K.Lw/. More precisely, if we have an off-diagonal estimate and p < q < 2,
then we cannot prove that p; q 2 K.Lw/.

Remark 7.3. In Section 8 below we will show that qC.Lw/>2; in particular, this gives that 22 IntK.Lw/.
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As an immediate consequence of Proposition 7.1 we get weighted inequalities for the gradient of the
semigroup. The proof is identical to the proofs of Corollaries 3.3 and 3.4.

Corollary 7.4. Let q�.Lw/ < p � q < qC.Lw/. If v 2 Ap=q�.Lw/.w/ \ RH.qC.Lw/=q/0.w/, then
p
t re�tLw 2O.Lp.v dw/!Lq.v dw// and

p
z re�zLw 2O.Lp.v dw/!Lq.v dw/;†�/ for all �,

0 < � < �
2
�# .

The proof of Proposition 7.1 requires two lemmas.

Lemma 7.5. Given w 2 A1 and a family of sublinear operators fTtgt>0 such that Tt 2 O.Lp.w/!
Lq.w//, with 1 � p < q �1, there exist ˛, ˇ > 0 such that for any ball B with radius r and for any
t > 0, �

�

Z
B

jTt .�B f /j
q dw

�1=q
.max

��
r
p
t

�̨
;

�
r
p
t

�̌ ��
�

Z
B

jf jp dw

�1=p
: (7.6)

Proof. This result is implicit in [Auscher and Martell 2007b, Proof of Proposition 2.4, p. 306]; here we
reprove it with a small improvement in the constant. There it was shown that in Definition 2.23 it is
sufficient to consider the case where r �

p
t . But in this case we get that ‡.r=

p
t /� 1 and for all j � 2,

‡.2j r=
p
t /� 2j. The argument in [loc. cit., p. 306] shows that if we assume that (2.24)–(2.26) hold

when r �
p
t , then (2.24) holds in general with constant maxf1; .r=

p
t /˛g for some ˛ > 0 depending on

p, q and w. In this maximum the 1 occurs when r �
p
t ; therefore, to prove (7.6) we need to show that

if r �
p
t , then we can replace 1 by the better constant .r=

p
t /ˇ for some ˇ > 0.

Fix r �
p
t . If B D B.x; r/, then B � Bt D B.x;

p
t /. As in [loc. cit., p. 306] we apply (2.24) to Tt

and Bt ; this yields�
�

Z
B

jTt .�B f /j
q dw

�1=q
�

�
w.Bt /

w.B/

�1=q�
�

Z
Bt

jTt .�B f /j
q dw

�1=q
.
�
w.Bt /

w.B/

�1=q�
�

Z
Bt

j�Bf j
p dw

�1=p
�

�
w.B/

w.Bt /

�1=p�1=q�
�

Z
B

jf jp dw

�1=p
:

Since w 2 A1, we have that for some � > 0,

w.B/

w.Bt /
.
�
jBj

jBt j

��
D

�
r
p
t

��n
:

Since p < q we have�
�

Z
B

jTt .�B f /j
q dw

�1=q
.
�
r
p
t

�.1=p�1=q/�n�
�

Z
B

jf jp dw

�1=p
:

Therefore, if we combine this with the argument from [loc. cit., p. 306] described above, we get that (7.6)
holds with ˇ D .1=p� 1=q/ �n. �

The second lemma gives the close connection between off-diagonal estimates for e�tLw and
p
t re�tLw

for p < 2.
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Lemma 7.7. Given 1� p < 2 the following are equivalent:

(1) e�tLw 2O.Lp.w/! L2.w//.

(2)
p
t re�tLw 2O.Lp.w/! L2.w//.

(3) tLw e�tLw 2O.Lp.w/! L2.w//.

Proof. We follow the proof of [Auscher and Martell 2007b, Lemma 5.3]. To prove that .1/ implies .2/, note
that by Theorem 2.15,

p
t re�tLw 2O.L2.w/!L2.w//. If we compose this with .1/, by Lemma 2.30

and the semigroup property, we get .2/.
To prove that .2/ implies .3/, define St Ef D

p
te�tLw .w�1 div.A Ef //. By duality, we have

hSt Ef ; giL2.w/ D hw
�1 div.A Ef //;

p
te�tL

�
wgiL2.w/ D hdiv.A Ef //;

p
te�tL

�
wgiL2

D�h Ef ;A�
p
t re�tL

�
wgiL2 D h

Ef ;w�1A�
p
t re�tL

�
wgiL2.w/:

The matrix w�1A� is uniformly elliptic, and so multiplication by it is bounded on L2.w/. Furthermore,
p
t re�tL

�
w 2O.L2.w/!L2.w//. Therefore, it follows that St 2O.L2.w/!L2.w//. If we combine

this with .2/, we get that �tLw e�2tLw D St ı
p
tre�tLw 2O.Lp.w/! L2.w//. This proves .3/.

Finally we show that .3/ implies .1/. We first prove (2.24). FixB and f; g such that
�
�
R
B jf j

p dw
�1=p
D�

�
R
B jgj

2 dw
�1=2
D 1, and assume also that f 2 L2.B; dw/. Define

h.t/D�

Z
B

e�tLw .�Bf /.x/g.x/ dw.x/:

By duality it will suffice to show that jh.t/j.‡.r=
p
t /�. (Note that our assumption implies that th0.t/

satisfies such a bound.) First, we claim that

lim
t!1

h.t/D 0:

To see this we use the fact (discussed in Section 2) that Lw has a bounded holomorphic functional calculus
on L2.w/. Given this, since z 7! e�tz converges to 0 uniformly on compact subsets of Re z > 0, we get
the desired limit.

Hence, we can write h.t/D�
R1
t h0.s/ ds: Notice that jth0.t/j. ‡.r=

p
t /�2 but this does not give a

convergent integral. However, if we apply Lemma 7.5 to tLw e�tLw 2O.Lp.w/!L2.w//, we get that
jth0.t/j. z‡.r=

p
t / with z‡.s/Dmaxfs˛; sˇ g. It follows from this estimate that

jh.t/j �

Z 1
t

jh0.s/j ds .
Z 1
t

z‡

�
r
p
s

�
ds

s
�

Z r=
p
t

0

z‡.s/
ds

s
. z‡

�
r
p
t

�
. ‡

�
r
p
t

�̨ Cˇ
:

To prove (2.25) we argue as before, but with
�
�
R
Cj .B/

jf jp dw
�1=p
D
�
�
R
B jgj

2 dw
�1=2
D 1 and

h.t/D�

Z
B

e�tLw .�Cj .B/f /.x/g.x/ dw.x/:
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Since d.B;Cj .B// > 0, by Theorem 2.15 and Hölder’s inequality, h.t/ ! 0 as t ! 0. Therefore,
h.t/D

R t
0 h
0.s/ ds. Since tLw e�tLw 2O.Lp.w/! L2.w//, we have

h.t/�

Z t

0

jh0.s/j ds . 2j�1
Z t

0

‡

�
2j r
p
s

��2
e�c4

j r2=s ds

s

� 2j�1
Z 1
2j r=
p
t

‡.s/�2e�c s
2 ds

s
. 2j�1‡

�
2j r
p
t

��2
e�c4

j r2=t :

This is (2.25).
Finally, the proof of (2.26) is essentially the same and we omit the details. This completes the proof

that .3/ implies .1/. �

Proof of Proposition 7.1. Define the sets K�.Lw/ and KC.Lw/ to be

K�.Lw/D fp 2 Œ1; 2� W
p
t re�tLw 2O.Lp.w/! L2.w//g;

KC.Lw/D fp 2 Œ2;1� W
p
t re�tLw 2O.L2.w/! Lp.w//g;

and let K.Lw/ D K�.Lw/ [ KC.Lw/. The set is nonempty, since 2 2 K.Lw/. By Lemma 2.28 it
is an interval. Now fix p; q 2 K.Lw/ with p < q. If p < q � 2 or 2 � p < q, then by Lemma 2.28,
p
t re�tL2O.Lp.w/!Lq.w// since p; q2K�.Lw/ or p; q2KC.Lw/. If p�2<q, then

p
t re�tL2

O.L2.w/! Lq.w// and by Lemma 7.7, e�tL 2 O.Lp.w/! L2.w//. Hence, by Lemma 2.30 and
the semigroup property,

p
t re�tL 2 O.Lp.w/ ! Lq.w//. Thus, in every case we get the desired

off-diagonal estimate.
We now prove (1)–(4). By Lemma 2.30, off-diagonal estimates on balls imply uniform boundedness,

and so K.Lw/� zK.Lw/. This proves (1).
To prove (2), we first note that if p < 2, then by Lemma 7.7, p 2 J .Lw/ if and only if p 2 K�.Lw/.

Thus J .Lw/\ Œ1; 2�D K�.Lw/ and so q�.Lw/D p�.Lw/. To show that .qC.Lw//�w � pC.Lw/, first
note that if qC.Lw/D 2, then by Proposition 3.1 we have .qC.Lw//�w D 2

�
w � pC.Lw/. If qC.Lw/ > 2,

then we proceed as in the proof of this proposition. Let 2 < p < qC.Lw/ and p < q < p�w . Then by (2.3),
and the facts that e�tLw 2O.L2.w/! L2.w// and

p
t re�tLw 2O.L2.w/! Lp.w//, we get�

�

Z
B

je�tLw .�Bf /j
q dw

�1=q
.
�
�

Z
B

je�tLw .�Bf /j
2 dw

�1=2
C r

�
�

Z
B

jre�tLw .�Bf /j
p dw

�1=p
. ‡

�
r
p
t

�1C�2�
�

Z
B

jf j2 dw

�1=2
:

This gives us inequality (2.24). The other two inequalities in Definition 2.23 can be proved in exactly the
same way. Thus e�tLw 2O.L2.w/! Lq.w//, which implies q � pC.Lw/. Letting p% qC.Lw/ and
q% p�w , we conclude that .qC.Lw//�w � pC.Lw/.

The last estimate implies in particular that qC.Lw/ � pC.Lw/. If qC.Lw/ <1, we clearly have
qC.Lw/ < pC.Lw/ and so KC.Lw/� J .Lw/. Otherwise, pC.L/D1 and again we have KC.Lw/�
J .Lw/. This completes the proof of (2).



642 DAVID CRUZ-URIBE, JOSÉ MARÍA MARTELL AND CRISTIAN RIOS

To prove (3), suppose first that 2� p < q and
p
t re�tL 2O.Lp.w/! Lq.w//. We will show that

p; q 2 K.Lw/. Since we also have
p
t re�tL 2 O.L2.w/! L2.w//, by interpolation (Lemma 2.27),

p
t re�tL 2 O.Lp� .w/! Lq� .w//, where 1=p� D .1� �/=pC �=2, 1=q� D .1� �/=q C �=2 and

� 2 .0; 1/. If p … KC.Lw/, then q > supKC.Lw/. We can choose � such that p� < supKC.Lw/ < q� .
Since KC.Lw/ � J .Lw/, we have p� 2 J .Lw/; i.e., e�tL 2 O.L2.w/! Lp� .w//. By composition
and the semigroup property,

p
t re�tLw 2O.L2.w/! Lq� .w//; hence, q� 2 KC.Lw/, a contradiction.

Therefore, p 2 KC.Lw/. As we have
p
t re�tLw 2O.Lp.w/! Lq.w// by assumption and e�tLw 2

O.L2.w/! Lp.w// since p 2 J .Lw/, by composition and the semigroup property,
p
t re�tLw 2

O.L2.w/! Lq.w//. Hence, q 2 KC.Lw/.
The case p < 2� q is straightforward. Since

p
t re�tLw 2O.Lp.w/!Lq.w//, by Lemma 2.28 we

have
p
t re�tLw 2O.L2.w/!Lq.w// and

p
t re�tLw 2O.Lp.w/!L2.w//. Hence, p 2K�.Lw/

and q 2 KC.Lw/.

Finally, we prove (4). Suppose to the contrary that sup zK.Lw/ > qC.Lw/. Then there exist p, q
such that qC.Lw/ < p < q < sup zK.Lw/. Fix r such that p�.Lw/D q�.Lw/ < r < 2. Then we have
that
p
t re�tLw is uniformly bounded on Lq.w/ and in O.Lr.w/! L2.w//. By Lemma 2.27 we can

interpolate between these to get that
p
t re�tLw 2 O.Ls.w/! Lp.w// for some s < p. But then by

the above converse, we have p 2 K.Lw/, which is a contradiction. �

8. An upper bound for K.Lw/

In this section we will prove that qC.Lw/ > 2; that is, the set K.Lw/ contains 2 in its interior. In general,
all we can say is that qC.Lw/ > 2; as noted in [Auscher 2007, Section 4.5], even in the unweighted
case this is the best possible bound, since given any " > 0 it is possible to find an operator L such that
qC.L/ < 2C ". In Section 11 below we will give some estimates for qC.Lw/ in terms of Œw�A2 .

We have broken the proof that qC.Lw/ > 2 into a series of discrete steps where we borrow some
ideas from [Auscher and Coulhon 2005]. We first prove a reverse Hölder inequality and use Gehring’s
inequality to get a higher-integrability estimate. We then prove that the Hodge projection is bounded
on Lq.w/ for a range of q > 2 and use this to prove the Riesz transform is also bounded for exponents
greater than 2. (In Section 9 we give a more complete discussion of the Riesz transform.) From this we
deduce that qC.Lw/ > 2.

A reverse Hölder inequality. Fix a ball B0 and let u 2H 1.w/ be any weak solution of LwuD 0 in 4B0.
Then for any ball B such that 3B � 4B0, we can again prove via a standard argument a Caccioppoli
inequality: �

�

Z
B

jruj2 dw

�1=2
�
C1

r

�
�

Z
2B

ju�u2B;w j
2 dw

�1=2
;

where C1 D C.n;ƒ=�/Œw�
1=2
A2
� 1. Fix q such that

max
�
2.n� 1/

n
; rw ;

2nrw

2Cnrw

�
< q < 2I (8.1)
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such a q exists since rw < 2. Our choice of q guarantees that 2 < q�w and also that 2 < nq=.q�1/. Then,
by the weighted Poincaré inequality, Theorem 2.1,

1

r

�
�

Z
2B

ju�u2B;w j
2 dw

�1=2
� C2

�
�

Z
2B

jrujq dw

�1=q
; (8.2)

where C2 D C.n/Œw��A2 � 1 and � D .nq � 1/=.nq.q � 1//. (By our choice of q we can get this sharp
estimate; see Remark 2.5. Since q < 2 we could write Œw�Aq , but we use that Œw�Aq � Œw�A2 .) If we
combine these inequalities, we get a reverse Hölder inequality:�

�

Z
B

jruj2 dw

�1=2
� C1C2

�
�

Z
2B

jrujq dw

�1=q
:

We now apply Gehring’s lemma in the setting of spaces of homogeneous type [Björn and Björn 2011,
Theorem 3.22] to get that there exists p0 > 2 such that for every such B ,�

�

Z
B

jrujp0 dw

�1=p0
� C0

�
�

Z
2B

jruj2 dw

�1=2
: (8.3)

Moreover, we can take the values C0 D 8C 21C
2
2 Œw�

31
A2

and

p0 D 2C
2� q

24=qC1C 21C
2
2 Œw�

6=qC17
A2

: (8.4)

In Section 11 below we will need these precise values. Here, it suffices to note that in inequality (8.3)
we have p0 > 2.

The Hodge projection. Define the Hodge projection operator by

T DrL�1=2w .r.L�w/
�1=2/�;

where the adjoint operators are defined with respect to the inner product in L2.w/. As we noted in
Section 2, the Riesz transform is bounded on L2.w/; hence, the Hodge projection is also bounded. By
duality, .r.L�w/

�1=2/� Ef D�L
�1=2
w .w�1 div.w Ef //, and so

T Ef D�rL�1=2w L�1=2w .w�1 div.w Ef /D�rL�1w .w�1 div.w Ef //:

Now fix Ef 2 L2.w;Cn/\Lp0.w;Cn/ such that supp. Ef /� Rn n 4B0. Let u 2H 1.w/ be a solution
to the equation

LwuD w
�1 div.w Ef /I

by a standard Lax–Milgram argument because A satisfies (2.7) [Fabes et al. 1982, Theorem 2.2], we
know u exists. Then

T Ef D�rL�1w LwuD�ru;
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where equality is in the sense of distributions. In particular, since f D 0 on 4B0, we know LwuD 0 on
4B0. Therefore, we can apply (8.3) to u: on any ball B such that 3B � 4B0,�

�

Z
B

jT Ef jp0 dw

�1=p0
D

�
�

Z
B

jrujp0 dw

�1=p0
� C0

�
�

Z
2B

jruj2 dw

�1=2
D

�
�

Z
2B

jT Ef j2 dw

�1=2
:

As a consequence of this inequality, by [Auscher and Martell 2007a, Theorem 3.14] (see also Section 5
of the same paper), for all q, 2� q < p0, we have T W Lq.w;Cn/! Lq.w;Cn/.

Boundedness of the Riesz transform. To show that the Riesz transform rL�1=2w is bounded, fix q such
that

maxfp�.L�w/; rw ; p
0
0g Dmax

�
p�.L

�
w/; rw ; p

0
0;

nrwp�.L
�
w/

nrw Cp�.L�w/

�
< q0 < 2:

(The reason for including p�.L�w/ will be made clear below.) By the above argument we have that T �

is bounded on Lq
0

.w/, where T � Ef D�r.L�w/
�1.w�1 div.w Ef //. Furthermore, by Proposition 6.1, we

have
k.L�w/

1=2f kLq0 .w/ � Ckrf kLq0 .w/:

Therefore,
k.rL�1=2w /� Ef kLq0 .w/ D k.L

�
w/
�1=2.w�1 div.w Ef //kLq0 .w/

D k.L�w/
1=2.L�w/

�1.w�1 div.w Ef //kLq0 .w/

. kr.L�w/
�1.w�1 div.w Ef //kLq0 .w/

D kT � Ef kLq0 .w/ . k Ef kLq0 .w/:

Hence, by duality we have rL�1=2w W Lq.w/! Lq.w/ for all q such that

2 < q <minfpC.Lw/; r 0w ; p0g D qw I

here we have used the fact that by duality, p�.L�w/
0 D pC.Lw/.

Boundedness of the gradient of the semigroup. Finally, we show that if 2 < q < qw , then
p
tre�tLw W

Lq.w/! Lq.w/. The desired estimate for qC.Lw/ follows from this: by Proposition 7.1, part (4),

qC.Lw/D sup zK.Lw/� qw > 2:

Fix such a q; then by the above estimate for the Riesz transform,

k
p
tre�tLwf kLq.w/ D krL

�1=2
w .tLw/

1=2e�tLwf kLq.w/

. k.tLw/1=2e�tLwf kLq.w/ D k't .Lw/f kLq.w/;

where 't .z/D .tz/1=2e�tz. For all t > 0, this is a uniformly bounded holomorphic function in the right
half-plane. Therefore, since 2 < q < pC.Lw/, by Proposition 4.3 we have

k
p
tre�tLwf kLq.w/ . k'tk1kf kLq.w/ . kf kLq.w/

and the bound is independent of t . This completes the proof that qC.Lw/ > 2.



ON THE KATO PROBLEM AND EXTENSIONS FOR DEGENERATE ELLIPTIC OPERATORS 645

9. Riesz transform estimates

In this section we prove Lp.w/ norm inequalities for the Riesz transform rL�1=2w . We have already
proved such inequalities for a small range of values q > 2 in Section 8. Here we prove the following result.

Proposition 9.1. Let q�.Lw/ < p < qC.Lw/. Then there exists a constant C such that

krL�1=2w f kLp.w/ � Ckf kLp.w/: (9.2)

Furthermore, if v 2 Ap=q�.Lw/.w/\RH.qC.Lw/=p/0.w/, then

krL�1=2w f kLp.v dw/ � Ckf kLp.v dw/: (9.3)

To prove Proposition 9.1 we would like to follow the same outline as the proof of Proposition 4.3.
The first step (i.e., proving (9.2) holds when q�.Lw/ < p < 2) does work with the appropriate changes.
However, the second step (i.e., the proof that (9.3) holds) runs into difficulties since rL�1=2w and the
auxiliary operators Ar do not commute. One approach to overcoming this obstacle would be to adapt
the proof in [Auscher and Martell 2006]; see also [Auscher 2007]. In this case we would need to use an
Lp0.w/-Poincaré inequality, which may not hold unless we assume w 2Ap0 . This would yield estimates
in the range maxfrw ; q�.Lw/g< p < qC.Lw/, analogous to those in Proposition 6.1.

There is, however, an alternative approach. In [Auscher and Martell 2008] the authors considered
Riesz transforms associated with the Laplace–Beltrami operator of a complete, noncompact Riemannian
manifold. Their proof avoids Poincaré inequalities for p close to 1 as these may not hold. Instead, they
use a duality argument based on ideas in [Bernicot and Zhao 2008]; this requires that they first prove that
the Riesz transform is bounded for p > 2 in the appropriate range of values. This reverses the order used
in the proof of Proposition 4.3.

Proof of Proposition 9.1. For brevity, let q� D q�.Lw/ and qC D qC.Lw/. To implement the approach
sketched above, we divide the proof in two steps. First we will prove that (9.2) holds when 2 < p < qC.
We do so using Theorem 2.35 and some ideas from [Auscher 2007; Auscher and Martell 2006]. We
note that since the Riesz transform and Ar do not commute, we will use an L2.w/-Poincaré inequality.
This holds since w 2 A2; the problem with using the Poincaré inequality only occurs with exponents
less than 2. The second step is to prove that (9.3) holds by adapting the proof in [Auscher and Martell
2008]. Here we will use duality and a result from [Auscher and Martell 2007a] that is based on good-�
inequalities. Inequality (9.2) then holds when q� < p < 2 by taking v � 1.

To apply Theorem 2.35, fix 2 < p < qC and let T DrL�1=2w , S D I and DD L1c . Let p0 D 2 and
fix q0 such that 2 < p < q0 < qC. As before we take Ar D I � .I � e�r

2Lw /m, where m will be chosen
below. We first show that (2.36) holds. Let f 2 L1c and decompose it as in (4.11); then we have�

�

Z
B

ˇ̌
rL�1=2w .I � e�r

2Lw /mf
ˇ̌2
dw

�1=2
�

X
j�1

�
�

Z
B

ˇ̌
rL�1=2w .I � e�r

2Lw /mfj
ˇ̌2
dw

�1=2
:
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To estimate the first term, note that rL�1=2w and e�r
2Lw are bounded on L2.w/ by Theorems 2.15

and 2.18. Hence, �
�

Z
B

ˇ̌
rL�1=2w .I � e�r

2Lw /mf1
ˇ̌2
dw

�1=2
.
�
�

Z
4B

jf j2 dw

�1=2
: (9.4)

Fix j � 2; to get the desired L2 estimates we will use the L2 bounds for the gradient of the square
function. If h 2 L2.w/, by (2.20)

rL�1=2w .I � e�r
2Lw /mhD

1
p
�

Z 1
0

p
t r'.Lw ; t /h

dt

t
; (9.5)

where '.z; t/D e�tz .1� e�r
2z/m 2H10 .†�/. We can therefore use the integral representation (2.10)

for '. � ; t /. The function �. � ; t / in this representation satisfies

j�.z; t/j.
r2m

.jzjC t /mC1
; z 2 �; t > 0:

By Theorem 2.15,
p
z re�zLw 2O.L2.w/! L2.w//; hence,�

�

Z
B

ˇ̌̌̌Z
�

�.z/
p
t re�zLwfj dz

ˇ̌̌̌2
dw

�1=2
�

Z
�

�
�

Z
B

j
p
z re�zLwfj j

2 dw

�1=2 ptp
jzj
j�.z/jjdzj

. 2j�1
Z
�

‡

�
2j rp
jzj

��2
e�˛ 4

j r2=jzj

p
tp
jzj
j�.z/jjdzj

�
�

Z
Cj .B/

jf j2 dw

�1=2
. 2j�1

Z 1
0

‡

�
2j r
p
s

��2
e�˛4

j r2=s

p
t
p
s

r2m

.sC t /mC1
ds

�
�

Z
Cj .B/

jf j2 dw

�1=2
:

(9.6)

When 2m > �2, Z 1
0

Z 1
0

‡

�
2j r
p
s

��2
e�˛ 4

j r2=s

p
t
p
s

r2m

.sC t /mC1
ds
dt

t
D C 4�jm: (9.7)

If we insert this into the representation (2.10) we get�
�

Z
B

ˇ̌
re�tLw .I � e�r

2Lw /mfj
ˇ̌2
dw

�1=2
.
Z 1
0

�
�

Z
B

j
p
t r'.Lw ; t /fj j

2 dw

�1=2
dt

t

. 2j.�1�2m/
�
�

Z
Cj .B/

jf j2 dw

�1=2
: (9.8)

If we now combine (9.4) and (9.8) we get (2.36) with g.j /D Cm 2j.�1�2m/; if we also fix 2m > �1, we
get that

P
g.j / <1.

We now show that (2.37) holds. As we remarked above, the Riesz transform does not commute with Ar .
To overcome this obstacle, we will prove an off-diagonal estimate for the gradient of the semigroup (using
the L2.w/-Poincaré inequality), and then use an approximation argument to get the desired estimate for
the Riesz transform.
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More precisely, we claim that for every f 2H 1.w/ and 1� k �m,�
�

Z
B

jre�k r
2Lwf jq0 dw

�1=q0
�

X
j�1

g.j /

�
�

Z
2jC1B

jrf j2 dw

�1=2
; (9.9)

where g.j /DCm 2j
P
l�j 2

l � e�˛ 4
l

. Assume for the moment that (9.9) holds. Then for every " > 0 we
can apply this estimate to S"f , defined by (2.21), since S"f 2H 1.w/. Moreover, we have that Ar and
S" commute, and so if we expand Ar D I � .I � e�r

2L/m and apply (9.9), we get�
�

Z
B

jrS"Arf jq0 dw
�1=q0

� Cm
X
j�1

g.j /

�
�

Z
2jC1B

jrS"f j
2 dw

�1=2
:

If we let " go to 0, we obtain (2.37). (The justification of this uses the observations made in Section 2
after (2.21) and is left to the reader.) Moreover, we have

P
j�1 g.j / <1, and so by Theorem 2.35 with

v � 1, which trivially satisfies v 2 Ap=2.w/\RH.q0=p/0.w/, we have that (9.2) holds for f 2 L1c and
for every 2 < p < qC.

To complete this step we need to prove (9.9). Fix 1 � k �m and f 2H 1.w/. Let hD f � f4B;w ,
where f4B;w D �

R
4B f dw. Then by the conservation property (see [Cruz-Uribe and Rios 2015], or the

proof in [Auscher 2007, Section 2.5]), e�tLw1D 1 for all t > 0, and so

re�k r
2Lwf Dre�k r

2Lw .f �f4B;w/Dre
�k r2LwhD

X
j�1

re�k r
2Lwhj ;

where hj D h�Cj .B/. Hence,�
�

Z
B

jre�k r
2Lwf jq0 dw

�1=q0
�

X
j�1

�
�

Z
B

jre�k r
2Lwhj j

q0 dw

�1=q0
:

Since 2 < q0 < qC, by Proposition 7.1,
p
t re�tLw 2 O.L2.w/! Lq0.w//. If we apply this and the

L2.w/-Poincaré inequality (see Remark 2.6 with p D q D 2), then for each j � 1 we get�
�

Z
B

jre�k r
2Lwhj j

q0 dw

�1=q0
.
2j.�1C�2/ e�˛ 4

j

r

�
�

Z
Cj .B/

jhj j
2 dw

�1=2
�
2j.�1C�2/ e�˛ 4

j

r

�
�

Z
2jC1B

jf �f4B;w j
2 dw

�1=2
�
2j.�1C�2/ e�˛ 4

j

r

��
�

Z
2jC1B

jf �f2jC1B;w j
2 dw

�1=2
C

jX
lD2

jf2lB;w �f2lC1B;w j

�

.
2j;.�1C�2/ e�˛ 4

j

r

jX
lD1

�
�

Z
2lC1B

jf �f2lC1B;w j
2 dw

�1=2

. 2j.�1C�2/ e�˛ 4
j

jX
lD1

2l
�
�

Z
2lC1B

jrf j2 dw

�1=2
:
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If we combine these two estimates and exchange the order of summation we get (9.9) with � D �1C �2.
This completes the proof that (9.2) holds when 2 < p < qC.

For the second step of our proof we show that (9.3) holds for all p, q� <p < qC, and v 2Ap=q�.w/\
RH.qC=p/0.w/. Fix such a p and v; then by the openness properties of Aq and RHs weights, there exist
p0; q0 such that

q� < p0 <minfp; 2g �maxfp; 2g< q0 < qC and v 2 Ap=p0.w/\RH.q0=p/0.w/:

By the duality properties of weights [Auscher and Martell 2007a, Lemma 4.4],

uD v1�p
0

2 Ap0=q00
.w/\RH.p00=p0/0.w/:

Let T D rL�1=2w ; then T is bounded from Lp.Rn; v dw/ to Lp.RnICn; v dw/ if and only if T � is
bounded from Lp

0

.RnICn; u dw/ to Lp
0

.RnIudw/. (Note that T takes scalar-valued functions to vector-
valued functions and T � does the opposite.)

Therefore, it will suffice to prove the boundedness of T �. We will do so using a particular case of
[Auscher and Martell 2007a, Theorem 3.1]. This result is stated there in the Euclidean setting but it
extends to spaces of homogeneous type. Here we give the weighted version we need; see [loc. cit.,
Section 5].

Theorem 9.10. Fix 1 < q <1, a � 1 and u 2 RHs0.w/, 1 < s <1. Then there exists C > 1 with the
following property: suppose F 2 L1.w/ and G are nonnegative measurable functions such that for any
ball B there exist nonnegative functions GB and HB with F.x/ �GB.x/CHB.x/ for a.e. x 2 B and,
for all x 2 B , �

�

Z
B

H
q
B dw

�1=q
� aMwF.x/; �

Z
B

GB dw �G.x/; (9.11)

where Mw is the Hardy–Littlewood maximal function with respect to dw. Then for 1 < t < q=s,

kMwF kLt .udw/ � CkGkLt .udw/: (9.12)

To apply Theorem 9.10, fix Ef 2 L1c .R
nICn/, and let hD T � Ef and F D jhjq

0
0 . Then F 2 L1.w/; by

the argument above, since 2 < q0 < qC, we have that T is bounded from Lq0.Rn; w/ to Lq0.RnICn; w/,
thus, T � is bounded from Lq

0
0.RnICn; w/ to Lq

0
0.Rn; w/.

Now let Ar D I � .I � e�r
2Lw /m, where m> 0 will be fixed below. Given a ball B with radius r , we

define

F � 2q
0
0�1 j.I �Ar/�hjq

0
0 C 2q

0
0�1 jA�r hj

q00 �GB CHB ;

where, as before, the adjoint is with respect to L2.w/. To complete the proof, suppose for the moment that
we could prove (9.11) with q D p00=q

0
0 and G DMw.j Ef j

q00/. Since u 2 RH.p00=p0/0.w/, by the openness
property of reverse Hölder weights, u 2 RHs0.w/ for some s < p00=p

0. Then if we let t D p0=q00 D
.p00=q

0
0/=.p

0
0=p
0/ < q=s, we have u 2At .w/, and so Mw is bounded on Lt .u dw/. Therefore, by (9.12),

kT � Ef k
q00
Lp
0
.udw/

� kMwF kLt .udw/ � CkGkLt .udw/ D CkMw.j Ef j
q00/kLt .udw/ . k Ef k

q00
Lp
0
.udw/

:
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To complete the proof we need to show that (9.11) holds. We first estimate HB. By duality there exists
g 2 Lp0.B; dw=w.B// with norm 1 such that for all x 2 B ,�
�

Z
B

H
q
B dw

�1=.q q00/
. w.B/�1

Z
Rn
jhjjArgj dw

.
1X
jD1

2jD
�
�

Z
Cj .B/

jhjq
0
0 dw

�1=q00�
�

Z
Cj .B/

jArgjq0 dw
�1=q0

.MwF.x/
1=q00

1X
jD1

2j.DC�1C�2/e�˛ 4
j

�
�

Z
B

jgjp0 dw

�1=p0
.MwF.x/

1=q00 ;

where in the second-to-last inequality we used the fact that by our choice of p0; q0, we have e�tLw 2
O.Lp0.w/! Lq0.w//, and so Ar is as well.

We now estimate GB. Again by duality there exists g 2 Lq0.B; dw=w.B// with norm 1 such that for
all x 2 B ,�

�

Z
B

GB dw

�1=q00
. w.B/�1

Z
Rn
j Ef jjT .I �Ar/gj dw

.
1X
jD1

2jD
�
�

Z
Cj .B/

j Ef jq
0
0 dw

�1=q00�
�

Z
Cj .B/

jT .I �Ar/gjq0 dw
�1=q0

�Mw.j Ef j
q00/.x/1=q

0
0

1X
jD1

2jD
�
�

Z
Cj .B/

jT .I �Ar/gjq0 d�
�1=q0

: (9.13)

To estimate each term in the sum, we argue as in the first half of the proof. When j D 1, we know that
rL
�1=2
w and e�r

2Lw are bounded on Lq0.w/ by the first part of the proof and Theorem 2.15. Hence,�
�

Z
4B

jrL�1=2w .I � e�r
2Lw /mgjq0 dw

�1=q0
.
�
�

Z
B

jgjq0 dw

�1=q0
D 1: (9.14)

For j � 2 we use the integral representation (9.5). If we estimate as in (9.6), with the roles of B and
Cj .B/ switched and using the fact that

p
z re�zLw 2O.Lq0.w/!Lq0.w// since 2 < q0 < qC, we see

that�
�

Z
Cj .B/

ˇ̌̌̌Z
�

�.z/
p
t re�zLwg dz

ˇ̌̌̌q0
dw

�1=q0
�

Z
�

�
�

Z
Cj .B/

j
p
zre�zLwgjq0 dw

�1=q0 ptp
jzj
j�.z/jjdzj

. 2j�1
Z
�

‡

�
2j rp
jzj

��2
e�˛4

j r2=jzj

p
tp
jzj
j�.z/jjdzj

�
�

Z
B

jgjq0 dw

�1=2
. 2j�1

Z 1
0

‡

�
2j r
p
s

��2
e�˛4

j r2=s

p
t
p
s

r2m

.sC t /mC1
ds:
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If we take 2m>�2, we can combine this with (9.7). We can then insert this estimate into the representation
(2.10) to get that for every j � 2,�
�

Z
Cj .B/

jre�tLw .I � e�r
2Lw /mgjq0 dw

�1=q0
.
Z 1
0

�
�

Z
Cj .B/

ˇ̌p
t r'.Lw ; t /g

ˇ̌q0 dw�1=q0 dt
t
. 2j.�1�2m/: (9.15)

Taken together, (9.13)–(9.15) yield�
�

Z
B

GB dw

�1=q00
.Mw.j Ef j

q00/.x/1=q
0
0

1X
jD1

2j.DC�1�2m/ .Mw.j Ef j
q00/.x/1=q

0
0 DG.x/1=q

0
0 ;

provided we take m large enough so that DC �1� 2m < 0. This completes the estimate of HB and GB
and so completes our proof. �

10. Square function estimates for the gradient of the semigroup

In this section we prove Lp.w/ estimates for the vertical square function

GLwf .x/D

�Z 1
0

jt1=2re�tLwf .x/j2
dt

t

�1=2
:

Proposition 10.1. Let q�.Lw/ < p < qC.Lw/. Then

kGLwf kLp.w/ . kf kLp.w/: (10.2)

Furthermore, if v 2 Ap=q�.Lw/.w/\RH.qC.Lw/=p/0.w/, then

kGLwf kLp.v dw/ . kf kLp.v dw/: (10.3)

We can also prove a reverse inequality for GLw . To do so we need to introduce an auxiliary operator.
Define the weighted Laplacian by �w D �w�1 divwr; i.e., �w is the operator Lw if we take the
matrix A to be wI, where I is the identity matrix.

Proposition 10.4. Let qC.�w/0 < p <1. Then

kf kLp.w/ . kGLwf kLp.w/: (10.5)

Furthermore, if v 2 Ap=qC.�w/0.w/, then

kf kLp.v dw/ . kGLwf kLp.v dw/: (10.6)

Proof of Proposition 10.1. The proof could be done in a way similar to those for the square function gLw
in Section 5. However, we will give a shorter proof that uses the Riesz transform estimates from Section 9.

Let q� D q�.Lw/ and qC D qC.Lw/. Fix p,

q� D p�.Lw/ < p < qC � pC.Lw/;
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and v 2 Ap=q�.w/ \ RH.qC=p/0.w/. Then by Proposition 9.1, the Riesz transform is bounded on
Lp.v dw/, and so by Lemma 5.4 it has a bounded extension to LpH.v dw/; i.e., if g.x; t/ 2 LpH.v dw/,
then krL�1=2w gkLpH .v dw/

. kgkLpH .v w/, where the extension of rL�1=2w to H-valued functions is defined
for x 2 Rn and t > 0 by .rL�1=2w g/.x; t/DrL

�1=2
w .g. � ; t //.x/.

Define gf .x; t/ D .tLw/
1=2e�tLwf .x/ and Gf .x; t/ D t1=2re�tLwf .x/; then we clearly have

kgLwf kLp.v dw/ D kgf kLpH .v dw/
and kGLwf kLp.v dw/ D kGf kLpH .v dw/. Furthermore, Gf .x; t/ D

rL
�1=2
w .gf . � ; t //.x/D .rL

�1=2
w gf /.x; t/. Hence,

kGLwf kLp.v dw/ D kGf kLpH .v dw/
D krL�1=2w gf kLpH .v dw/

. kgf kLpH .v dw/ D kgLwf kLp.v dw/ . kf kLp.v dw/:

To prove the last inequality, we used Proposition 5.1; we also used the fact that q�Dp�.Lw/<p<qC�
pC.Lw/ and v2Ap=q�.w/\RH.qC=p/0.w/, which together imply v2Ap=p�.Lw/.w/\RH.pC.Lw/=p/0.w/.
This proves (10.3). To prove inequality (10.2), we take v � 1. �

To prove Proposition 10.4 we need the following identity relating GLw and �w . It is a straightforward
extension of a similar unweighted result given in [Auscher 2007, Section 7.1]. For completeness we
include the proof.

Lemma 10.7. If f; g 2 L1c .w/ thenˇ̌̌̌Z
Rn
f .x/g.x/ dw

ˇ̌̌̌
� .ƒC 1/

Z
Rn
GLwf .x/G�wg.x/ dw:

Proof. By the definition and properties of the operators Lw and �w we haveZ
Rn
f .x/g.x/ dw D lim

"#0

Z
Rn
e�"Lwf .x/e�"�wg.x/ dw� lim

R"1

Z
Rn
e�RLwf .x/e�R�wg.x/ dw

D�

Z 1
0

d

dt

Z
Rn
e�tLwf .x/e�t�wg.x/ dw dt

D

Z 1
0

Z
Rn

�
Lwe

�tLwf .x/e�t�wg.x/C e�tLwf .x/�we�t�wg.x/
�
dw dt

D

Z 1
0

Z
Rn
.A.x/w.x/�1C I /

�
re�tLwf .x/ re�t�wg.x/

�
dw dt:

Since kAw�1k1 �ƒ, if we apply Hölder’s inequality in the t variable we get the desired result. �

Proof of Proposition 10.4. As a consequence of the Gaussian estimate for weighted operators with real
symmetric coefficients that were proved in [Cruz-Uribe and Rios 2008], we have that �w 2O.L1.w/!
L1.w//. In particular, q�.�w/Dp�.L�w /D1. Further, by the results in Section 8 we have qC.�w/>2.

Therefore, by Proposition 10.1, if 1 < p0 < qC.�w/, and

u 2 Ap0.w/\RH.qC.�w/=p0/0.w/; (10.8)

then
kG�wf kLp0 .udw/ . kf kLp0 .udw/: (10.9)
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We want to apply inequality (10.9) with uD v1�p
0

. By [Auscher and Martell 2007a, Lemma 4.4], the
condition (10.8) is equivalent to v 2 Ap=qC.w/0.w/.

Now fix f; g 2 L1c , and a weight v 2 Ap=qC.w/0.w/. Then by Lemma 10.7, for qC.�w/0 < p <1,ˇ̌̌̌Z
Rn
f .x/g.x/ dw

ˇ̌̌̌
� .ƒC 1/

Z
Rn
GLwf .x/G�wg.x/ dw

D .ƒC 1/

Z
Rn
GLwf .x/G�wg.x/v

1=p v�1=p dw

� .ƒC 1/kGLwf kLp.v dw/kG�wgkLp0 .v1�p0 dw/

. kGLwf kLp.v dw/kgkLp0 .v1�p0 dw/I

the last inequality follows from (10.9). If we take g D sign.f /jf jp�1v, we get

kf k
p

Lp.v dw/
. kGLwf kLp.v w/



jf jp�1v


Lp
0
.v1�p

0
dw/
D kGLwf kLp.v dw/kf k

p=p0

Lp.v dw/
:

This immediately gives us the desired inequality. �

11. Unweighted L2 Kato estimates

In this section we prove unweighted L2 estimates for the operators we have considered in the previous
sections. These will all be consequences of the weighted Lp.v dw/ estimates we have already proved:
it will only be necessary to find further conditions on w 2 A2 so that the weight v D w�1 satisfies the
requisite conditions.

We are particularly interested in power weights and we recall some well-known facts about them. Define
w˛.x/D jxj

˛, ˛ >�n; this restriction guarantees that w˛ is locally integrable. We can exactly determine
the Muckenhoupt Ap and reverse Hölder RHs classes of these weights in terms of ˛: if �n < ˛ � 0,
then w 2 A1; for 1 < p <1, we have w 2 Ap if �n < ˛ < n.p� 1/. Furthermore, if 0� ˛ <1, then
w 2 RH1; for 1 < q <1, we have w 2 RHq if �n=q < ˛ <1. Hence, we easily see that

rw˛ Dmaxf1; 1C˛=ng; sw˛ D .maxf1; .1C˛=n/�1g/0: (11.1)

We first consider the semigroup e�tLw, the functional calculus, and the square function gLw , since
these estimates will depend on p�.Lw/ and pC.Lw/ and we have good estimates for these quantities.

Theorem 11.2. Given a weightw2A2, suppose 1� rw <1C 2
n

and sw > n
2
rwC1. Then e�tLw WL2!L2

is uniformly bounded for all t > 0. Similarly, '.Lw/ W L2! L2, where ' is any bounded holomorphic
function on †�, � 2 .#; �/, and gLw W L

2! L2.
In particular, these L2 estimates hold if we assume that w 2 A1 \ RH1Cn=2, or more generally if

w 2 Ar \RH.n=2/rC1 for 1 < r � 1C 2
n

, or if we take the power weights

w˛.x/D jxj
˛; �

2n

nC 2
< ˛ < 2:

Proof. Let p D q D 2, p0 D .2�w/
0, q0 D 2�w , and let v D w�1. Then by Proposition 3.1, Corollary 3.3

and the nesting properties of weights, e�tLw 2 O.L2 ! L2/ if w�1 2 A2=p0.w/\ RH.q0=2/0.w/; in
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particular, by Lemma 2.30, e�tLw W L2! L2 is uniformly bounded. However, this weight condition is
equivalent to

w 2 RH.2=p0/0 \Aq0=2:

A straightforward computation shows that

q0

2
D

nrw

nrw � 2
;

�
2

p0

�0
D
n

2
rw C 1:

Since rw < 1C 2
n

, we have rw < nrw=.nrw � 2/, so we automatically have w 2 Aq0=2. Therefore, the
desired bounds hold if we have sw > n

2
rwC1. If w 2Ar \RH.n=2/ rC1 with 1� r � 1C 2

n
, then rw � r

and sw > n
2
r C 1� n

2
rw C 1. The desired conclusion for power weights follows at once from (11.1).

The same argument holds for '.Lw/ and gLw , using Proposition 4.3 or Proposition 5.1, respectively. �

It is straightforward to construct weights more general than power weights that satisfy the conditions
on rw and sw in the above theorems. For instance, w 2 A1C2=n\RH2Cn=2

�
which corresponds to the

choice r D 1C 2
n

�
if and only if there exist u1; u2 2 A1 such that

w D u
2=.nC4/
1 u

�2=n
2 :

This follows from the Jones factorization theorem and the properties of A1 weights; see [Cruz-Uribe and
Neugebauer 1995].

Remark 11.3. We can modify the proof of Theorem 11.2 to get unweighted Lp estimates for values
of p close to 2. We leave the details to the interested reader.

For the reverse inequalities we must take into account the slightly stronger hypotheses in Proposition 6.1;
otherwise, the proof of the following result follows exactly as in the proof of Theorem 11.2.

Theorem 11.4. Given a weight w 2 A2, suppose that

1� rw < 1C
2

n
and sw >max

��
2

rw

�0
;
n

2
rw C 1

�
:

Then
kL1=2w f kL2 � Ckrf kL2 ; f 2 S: (11.5)

In particular, this is the case if we either assume that w 2 A1 \ RH1Cn=2, or more generally that
w 2 Ar \RHmaxf.2=r/0;.n=2/rC1g, with 1 < r � 1C 2

n
, or for power weights if we take

w˛.x/D jxj
˛; �

2n

nC 2
D�min

�
n

2
;
2n

nC 2

�
< ˛ < 2:

Remark 11.6. Note that max
˚�
2
r

�0
; n
2
rC1

	
D
n
2
rC1 provided r � 2� 2

n
and this always holds if n� 4

as 1C 2
n
� 2� 2

n
. In this case, the conditions in the second part of Theorem 11.4 simplify to the same

conditions as in Theorem 11.2.

Remark 11.7. We note that in Theorems 11.2 and 11.4 we can replace 1� rw < 1C 2
n

with the possibly
weaker condition 1� rw < pC.Lw/=2. The proof only requires us to take q0 D pC.Lw/.
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For the gradient of the semigroup
p
tre�tLw, the Riesz transformrL�1=2w , and the square functionGLw ,

our estimates depend on qC.Lw/.

Theorem 11.8. Given a weight w 2 A2, suppose 1 � rw < qC.Lw/=2 and sw > n
2
rw C 1. Then

p
tre�tLw W L2! L2 is uniformly bounded for all t > 0. Similarly, we have rL�1=2w W L2! L2 and

GLw W L
2! L2.

In particular, this is the case if we assume that w 2 A1\RHn=2C1. Furthermore, these L2 estimates
hold if the following is true: given ‚ � 1 there exists "0 D "0.‚; n;ƒ=�/, 0 < "0 �

1
2n

, such that
w 2 A1C"\RH.n=2/.1C"/C1, 0� " < "0, and Œw�A2 �‚.

For power weights, there exists "1 D "1.n;ƒ=�/, 0 < "1 � 1
2

, such that these estimate holds for

w˛.x/D jxj
˛; �

2n

nC 2
< ˛ < "1:

Proof. We will prove this result for
p
tre�tLw using Proposition 7.1. The proof for rL�1=2w or GLw is

exactly the same, using Proposition 9.1 or Proposition 10.1.
By Proposition 7.1,

p
tre�tLw W L2! L2 if w�1 D v 2 A2=q�.Lw/.w/\RHqC.Lw/=2/0.w/, which

is equivalent to

w 2 RH.2=q�.Lw//0 \AqC.Lw/=2:

Therefore, we need rw < qC.Lw/=2. Furthermore, since we have q�.Lw/D p�.Lw/� .2�w/
0, we can

take

sw >

�
2

.2�w/
0

�0
D
n

2
rw C 1:

To get the particular examples stated in the theorem, note first that if we let rw D 1, then it clearly
suffices to assume w 2A1\RHn=2C1, since we showed in Section 8 that qC.Lw/ > 2 for every w 2A2.

We now prove the condition for weights w 2 A1C". In this case it is more difficult to satisfy the
condition rw < qC.Lw/=2 since the right-hand side can be very close to 1, depending on w. Assume
then that w 2 A1C" \RH.n=2/ .1C"/C1, with 0 � " < "0 � 1

2n
, Œw�A2 �‚, and with "0 > 0 to be fixed

below. Then we have

sw >
n

2
.1C "/C 1�

n

2
rw C 1:

Therefore, in order to apply the first half of the theorem we need to show that we can choose "0 sufficiently
small so that rw < qC.Lw/=2. To do so we will use the notation and computations from Section 8. There
we showed that qC.Lw/� qw , and so it will suffice to show that

2rw < qw Dminfr 0w ; pC.Lw/; p0g: (11.9)

We will compare rw to each term in the minimum in turn.
The first two terms are straightforward. First, we have rw < 1C " < 1C 1

2n
< 3
2

and so 2rw < r 0w .
Second, rw < 1C 1

2n
< 1C 2

n
, and it follows at once from this that 2rw < 2�w . By Proposition 3.1,

2�w � pC.Lw/ and so 2rw < pC.Lw/.



ON THE KATO PROBLEM AND EXTENSIONS FOR DEGENERATE ELLIPTIC OPERATORS 655

Finally, we estimate p0, the exponent from the higher-integrability condition (8.3). We will use the
formula (8.4). First, we need to fix the exponent q from the Poincaré inequality (8.2). Let q D 2� 1=n;
this value satisfies (8.1) since rw < 1C 1

2n
< 1C 1

n
. With this choice of q (that only depends on n), we

have

p0 D 2C
2� q

24=qC1C 21C
2
2 Œw�

6=qC17
A2

D 2C
1

nC.n;ƒ=�/ Œw�
�n
A2

;

where C.n;ƒ=�/� 1 depends only on n and the ratio ƒ=� of the ellipticity constants of the matrix A
used to define Lw , and where �n � 1 depends only on n. Then, since we also assumed that Œw�A2 �‚,
we get that

p0 D 2C
1

nC.n;ƒ=�/ Œw�
�n
A2

� 2C
1

nC.n;ƒ=�/‚�n
D 2C 2"0;

and "0 D .2nC.n;ƒ=�/‚�n/�1 is such that 0 < "0 � 1
2n

. Thus 2rw < 2.1C "/ < 2.1C "0/ � p0 and
so 2rw < p0. This completes the proof that (11.9) is satisfied, and so the L2 estimates hold for weights
that satisfy w 2 A1C"\RH.n=2/.1C"/C1.

Finally, we consider power weights. First, it is easy to see that

w˛.x/D jxj
˛;

�2n

nC 2
< ˛ � 0

yields the desired estimates, since in this case rw D 1 and sw > n
2
C 1D n

2
rw C 1.

Now consider the case ˛ > 0. If we assume that ˛ < 1
2

, then w 2 A1C1=.2n/\RH1. Moreover, it is
straightforward to show that for all such ˛, there exists ‚, depending only on n, such that Œw˛�A2 �‚.
Now apply the above argument to find "0 2

�
0; 1
2n

�
; this value will only depend on n and the ratio ƒ=�.

If we let "1D n"0 and assume that 0 < ˛ < "1, then ˛ < 1
2

and w˛ 2A1C" for some " < "0 as desired. �

To find examples of weights other than power weights to which Theorem 11.8 apply, we argue as
before. If u1 2 A1, then

w D u
2=.nC2/
1 2 A1\RHn=2C1:

To get weights that are not in A1, take u 2 A2 and let w D u�. If � is sufficiently small (depending on n,
the ratio ƒ=� and Œu�A2), we can show that w satisfies the final conditions given in Theorem 11.8. Details
are left to the interested reader.

Remark 11.10. To get the unweighted lower estimate

kf kL2 � CkGLwf kL2 ;

we note that by (10.6) we need w�1 2 A2=qC.�w/0.w/, or equivalently, w 2 RH.2=qC.�w/0/0 . Hence, it
suffices to assume

sw > 1C
qC.�w/

qC.�w/� 2
:

Arguing as above we can construct weights that satisfy this condition; details are left to the interested
reader.
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If we combine Theorems 11.4, 11.8, and Remark 11.7 we solve the Kato square root problem for
degenerate elliptic operators.

Theorem 11.11. Let Lw D�w�1 divAr be a degenerate elliptic operator with w 2 A2. If

1� rw <
qC.Lw/

2
and sw >max

��
2

rw

�0
;
n

2
rw C 1

�
;

then the Kato problem can be solved for Lw ; that is, for every f 2H 1.Rn/,

kL1=2w f kL2.Rn/ � krf kL2.Rn/; (11.12)

where the implicit constants depend only on the dimension, the ellipticity constants �, ƒ, and w.
In particular, (11.12) holds if w 2A1\RHn=2C1. Further, (11.12) holds if the following is true: given

‚�1 there exists "0D"0.‚; n;ƒ=�/, 0<"0� 1
2n

, such thatw2A1C"\RHmaxf.2=.1C"//0;.n=2/ .1C"/C1g,
0� " < "0, and Œw�A2 �‚.

For power weights, there exists "1 D "1.n;ƒ=�/, 0 < "1 � 1
2

, such that inequality (11.12) holds (with
w˛ in place of w) if

w˛.x/D jxj
˛; �

2n

nC 2
< ˛ < "1:

We can restate the final part of Theorem 11.11 as follows: consider the family of operators L
 D
�jxj
 div.jxj�
B.x/r/, where B is an n�n complex-valued matrix that satisfies the uniform ellipticity
condition

�j�j2 � RehB.x/�; �i; jhB.x/�; �ij �ƒj�jj�j; �; � 2 Cn; a.e. x 2 Rn:

Then,

kL1=2
 f kL2.Rn/ � krf kL2.Rn/; �"1 < 
 <
2n

nC 2
: (11.13)

When 
 D 0 we get the classical Kato square root problem solved by Auscher, Hofmann, Lacey, McIntosh,
and Tchamitchian [Auscher et al. 2002]. Inequality (11.13) shows that we can find an open interval
containing 0 such that if 
 is in this interval, the same estimate holds.

12. Applications to L2 boundary value problems

In this section we apply the results from the previous section to some L2 boundary value problems
involving the degenerate elliptic operator Lw . We follow the ideas in [Auscher and Tchamitchian 1998]
and consider semigroup solutions: for the Dirichlet or regularity problems we let u.x; t/D e�tL

1=2
w f .x/;

for the Neumann problem we let u.x; t/D�L�1=2w e�tL
1=2
w f .x/. In each case, for t > 0 fixed, Lwu. � ; t /

makes sense in a weak sense since u. � ; t / is in the domain of Lw . Further, derivatives in t are well-defined
because of the semigroup properties. Finally, note that by the strong continuity of the semigroup and
the off-diagonal estimates, in the context of the following results we have e�tL

1=2
w f ! f as t ! 0C in

L2; see [Auscher and Martell 2007b, Section 4.2]. Further details are left to the interested reader.
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We first consider the Dirichlet problem on RnC1
C
D Rn � Œ0;1/:(

@2t u�LwuD 0 on Rn;

uj
@R
nC1
C

D f on @RnC1
C
D Rn:

(12.1)

Theorem 12.2. Given a weight w 2 A2, suppose 1 � rw < 1C 2
n

and sw > n
2
rw C 1. Then for any

f 2L2.Rn/, we have that u.x; t/D e�tL
1=2
w f .x/ is a solution of (12.1) with convergence to the boundary

data as t ! 0C in the L2-sense. Furthermore, we have

sup
t>0

ku. � ; t /kL2 � Ckf kL2 : (12.3)

In particular, this is the case if we assume that w 2 A1 \ RH1Cn=2, or w 2 Ar \ RHn=2 rC1 with
1 < r � 1C 2

n
, or if we take the power weights

w˛.x/D jxj
˛; �

2n

nC 2
< ˛ < 2:

Proof. Formally, it is clear that u is a solution to (12.1), and this formalism can be justified by appealing
to the theory of maximal accretive operators; see [Kato 1966]. Alternatively, the weighted estimates for
the functional calculus in Proposition 4.3 show that both .@2=@t2/u. � ; t / and Lwu. � ; t / belong to L2

for each t > 0 and that they are equal in the L2-sense. To see that inequality (12.3) holds, it suffices to let
't .z/D e

�t
p
z. Then 't is a bounded holomorphic function on †�, and so by Theorem 11.2 we get the

desired bound. �

Remark 12.4. Note that as observed in Remark 11.7, in the previous result we can replace 1� rw <1C 2
n

with the possibly weaker condition 1� rw < pC.Lw/=2. Also, by Proposition 4.3 we also have that for
u as in Theorem 12.2 and all k � 1,

sup
t>0





tk @k@tk u. � ; t /





L2
D sup
t>0



.tk L1=2w /ke�tL
1=2
w f . � /




L2
� Ckf kL2 : (12.5)

For the regularity problem we have the following.

Theorem 12.6. Given a weight w 2 A2, suppose

1� rw <
qC.Lw/

2
and sw >max

��
2

rw

�0
;
n

2
rw C 1

�
:

Then for any f 2H 1.Rn/, we have u.x; t/D e�tL
1=2
w f .x/ is a solution of (12.1) with convergence to

the boundary data as t ! 0C in the L2-sense. Furthermore, we have

sup
t>0

krx;tu. � ; t /kL2 � Ckrf kL2 : (12.7)

In particular, (12.7) holds if we assume that w 2 A1 \ RH1Cn=2. Furthermore, it holds if the
following is true: given ‚ � 1 there exists "0 D "0.‚; n;ƒ=�/, 0 < "0 � 1

2n
, such that w 2 A1C" \

RHmaxf.2=.1C"//0;.n=2/ .1C"/C1g, 0� " < "0, and Œw�A2 �‚.
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For power weights, there exists "1 D "1.n;ƒ=�/, 0 < "1 � 1
2

, such that (12.7) holds if

w˛.x/D jxj
˛; �

n

2
< ˛ < "1:

Proof. Arguing as before, it suffices to prove that (12.7) holds. For any t > 0 we have, by Theorem 11.11,

krx;tu. � ; t /kL2 � krL
�1=2
w L1=2w e�tL

1=2
w f kL2 CkL

1=2
w e�tL

1=2
w f kL2

. kL1=2w e�tL
1=2
w f kL2 D ke

�tL
1=2
w L1=2w f kL2 . kL1=2w f kL2 . krf kL2 : �

Note that under the hypothesis of Theorem 12.6, and as observed in Remark 12.4, we have that
u. � ; t /D e�tL

1=2
w f satisfies (12.3) and (12.5). Additionally, from the functional calculus estimates on

L2 it follows that

sup
t>0

ktrx;tu. � ; t /kL2 . ktL1=2w e�tL
1=2
w f kL2 . kf kL2 : (12.8)

Finally, we consider the Neumann problem(
@2t u�LwuD 0 on Rn;

@tuj@R
nC1
C

D f on @RnC1
C
D Rn:

(12.9)

Theorem 12.10. Given a weight w 2 A2, suppose 1 � rw < qC.Lw/=2 and sw > n
2
rw C 1. Then for

any f 2 L2.Rn/, we have u.x; t/ D �L�1=2w e�tL
1=2
w f .x/ is a solution of (12.9) with convergence of

@tu. � ; t /! f as t ! 0C in the L2-sense. Furthermore, we have

sup
t>0

krx;tu. � ; t /kL2 � Ckf kL2 : (12.11)

In particular, (12.11) holds if we assume that w 2A1\RH1Cn=2. Furthermore, it holds if the following
is true: given‚� 1 there exists "0D "0.‚; n;ƒ=�/, 0< "0� 1

2n
, such that w 2A1C"\RH.n=2/.1C"/C1,

0� " < "0, and Œw�A2 �‚.
For power weights, there exists "1 D "1.n;ƒ=�/, 0 < "1 � 1

2
, such that (12.11) holds if

w˛.x/D jxj
˛; �

2n

nC 2
< ˛ < "1:

Proof. Again, u is clearly a formal solution of (12.9); see [Kato 1966]. The proof that (12.11) holds is
similar to the proof of (12.7):

krx;tu. � ; t /kL2 � krL
�1=2
w e�tL

1=2
w f kL2 Cke

�tL
1=2
w f kL2 . ke�tL

1=2
w f kL2 . kf kL2 ;

where we have used Theorem 11.8 (for the Riesz transform) and Theorem 11.2 (for the functional calculus
with '.z/D e�t

p
z). �

Remark 12.12. As we noted in Remark 11.3, we can also get unweighted Lp bounds for these operators
for values of p close to 2. As a consequence we can also get estimates for Lp boundary value problems
for the same values of p. Details are left to the reader.
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SMALL DATA GLOBAL REGULARITY FOR HALF-WAVE MAPS

JOACHIM KRIEGER AND YANNICK SIRE

We formulate the half-wave maps problem with target S2 and prove global regularity in sufficiently high
spatial dimensions for a class of small critical data in Besov spaces.

1. The problem

Let u W RnC1! S2 ,! R3 be smooth, and assume that it converges to some p 2 S2 at spatial infinity.
Further, assume that on each fixed time slice rt;xu 2 Lp.Rn/ for some p 2 .1;1/. Denote by � the
standard vectorial product in three dimensions. We call this a half-wave map, provided it satisfies the
relation

@tuD u� .�4/
1
2u: (1-1)

Here we define the operator .�4/
1
2 via

.�4/
1
2uD�

nX
jD1

.�4/�
1
2 @j .@ju/;

a specification necessary on account of the fact that u does not vanish at infinity, but instead approaches
some p 2S2, while ru does vanish at infinity. In fact, the expression .�4/

1
2u under our current definition

is then well-defined since rt;xu.t; � / 2 Lp.Rn/ for some p 2 .1;1/, for all t .
We note that the model (1-1) appears formally related to the much-studied Schrödinger maps problem,

which can be written in the form
@tuD u�4u;

and moreover, we shall see shortly that (1-1) also appears closely related to the classical wave maps
problem with target S2. We also note that we have a formally conserved quantity

E.t/ WD

Z
Rn
j.�4/

1
4uj2 dx; (1-2)

where we let .�4/
1
4uD�

Pn
jD1.�4/

� 3
4 @j .@ju/. Such kinds of quantities have been considered in

the works of Da Lio and Rivière in the study of fractional harmonic maps; see for instance [Da Lio and
Rivière 2011a; 2011b; Da Lio 2013]. We also note that on account of the results on fractional harmonic
maps previously mentioned, this model moreover displays a very rich class of static solutions; see also
[Millot and Sire 2015].
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On the other hand, (1-1) scales just like wave maps, which means that in all dimensions n � 2 the
problem (1-1) is formally supercritical.

We formulated the model (1-1) as a nonlocal wave analogue to Schrödinger maps in 2014, but have
since learned from E. Lenzmann1 that it already exists in the physics literature. We learned from
Lenzmann that the half-wave map equation arises as the continuum version of the so-called integrable
spin Calogero–Moser systems, which in turn comes from the completely integrable quantum spin systems
called Haldane–Shastry systems.2 Recent work by Schikorra and Lenzmann [2017] completely classifies
the travelling wave solutions for this model in the critical case nD 1.

In the present note, our goal is to approach the issue of global solutions corresponding to small data,
attempting to parallel the developments in [Tataru 1998; Tao 2001a]. We will see that (1-1) can be
reformulated as a nonlinear wave-type equation of the schematic form

�uD F.u/rt;xu � rt;xu; (1-3)

although this is an oversimplification as the true underlying wave equation displays nonlocal expressions.
It has been known now for a while, see [Sterbenz 2004], that (1-3) admits global solutions corresponding
to initial data of small critical, i.e., scaling invariant, Besov PB

n
2
;1

2 norms, provided one restricts oneself
to spatial dimensions n � 6, and that passing to lower dimensions appears to require some sort of
null-structure. Here, we show that (1-1) does have enough of an intrinsic null-structure to allow for the
following.

Theorem 1.1. Let n� 5. Let

uŒ0�D .u.0; � /; ut .0; � //D .u0; u1/ W R
n
! S2 �TS2

be a smooth data pair with u1D u0� .�4/
1
2u0, and such that u0 is constant outside of a compact subset

of Rn (this condition in particular ensures that .�4/
1
2u0 is well-defined). Also, assume the smallness

condition

kuŒ0�k PBn=2;12 � PB
n=2�1;1
2

< �;

where �� 1 is sufficiently small. Then problem (1-1) admits a global smooth solution.

To prove this theorem, we shall have to reformulate (1-1) as a wave equation, which we do next.

Remark 1.2. We note that the restriction n � 5 comes from the fact that we use the L2tL
4
x-Strichartz

estimate, which is not available in spatial dimension n D 4. However, it is quite likely that this can
be circumvented, and that the structures exhibited in this paper suffice to push the result to n D 4.
However, both the issue of passing to the critical space PH

n
2, as well as going to lower spatial dimensions

n� 3, appear nontrivial, as there are novel trilinear terms which no longer seem to have the same strong
null-structure as the leading term coming from the wave maps equation.

1The name of half-wave map was suggested by Lenzmann.
2Lenzmann provided us with the references [Haldane 1988; Shastry 1988; Hikami and Wadati 1993; Blom and Langmann

1998] and we refer to his work for an account on the passage from the physics to the mathematical model.
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2. Passage to a wave equation

Departing from (1-1), we compute

@2t uD @tu� .�4/
1
2uCu� .�4/

1
2 @tu

D .u� .�4/
1
2u/� .�4/

1
2uCu� .�4/

1
2 .u� .�4/

1
2u/:

Then using the basic formula a� .b � c/D b.a � c/� c.a � b/, a; b; c 2 R3, we rewrite the first term on
the right as

.u� .�4/
1
2u/� .�4/

1
2uD�u..�4/

1
2u � .�4/

1
2u/C .�4/

1
2u.u � .�4/

1
2u/:

For the second term on the right above, introducing a commutator term, we write it in the form

u� .�4/
1
2 .u� .�4/

1
2u/D u� .�4/

1
2 .u� .�4/

1
2u/�u� .u� .�4/u/Cu� .u� .�4/u/

D u� .�4/
1
2 .u� .�4/

1
2u/�u� .u� .�4/u/Cu.u � .�4/u/C4u:

Using the fact that u �uD 1, whence

u � 4uCru � ruD 0;

we arrive at the equation

.@2t �4/uD�u..�4/
1
2u � .�4/

1
2u/C .�4/

1
2u.u � .�4/

1
2u/Cu� .�4/

1
2 .u� .�4/

1
2u/

�u� .u� .�4/u/Cu.ru � ru/:

Carefully note that ru here only involves the spatial derivatives. In order to make this appear closer to
the wave maps equation and introduce better null-structure, we have to also make the time derivatives
visible on the right-hand side, for which the first line on the right-hand side is pivotal. In fact, we get�

�u..�4/
1
2u � .�4/

1
2u/C .�4/

1
2u.u � .�4/

1
2u/

�
�uD�

ˇ̌
u� .�4/

1
2u
ˇ̌2
D�j@tuj

2;

and so the equation becomes

.@2t �4/uD u.ru � ru� @tu � @tu/C…u?..�4/
1
2u/.u � .�4/

1
2u/

Cu� .�4/
1
2 .u� .�4/

1
2u/�u� .u� .�4/u/; (2-1)

where …u? denotes projection onto the orthogonal complement of u. Thus we see that formally the
nonlinearity involves the precise wave maps source term, as well as two error terms, which formally
behave like

uru � ru:

3. Technical preliminaries

Our main tools shall be the classical Strichartz estimates, combined with some Xs;b-space technology.
Specifically, we let Pk , k 2 Z, be standard Littlewood–Paley multipliers on Rn (acting on the spatial vari-
ables), and furthermore, we denote byQj , j 2Z, multipliers which localise a space-time function F.t; x/
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to dyadic distance � 2j from the light cone j� j D j�j on the Fourier side. Specifically, letting zF .�; �/
denote the space time Fourier transform of F, while Of .�/ denotes the Fourier transform with respect to
the spatial variables, and letting � 2 C10 .RC/ be a smooth cutoff satisfyingX

k2Z

�

�
x

2k

�
D 1 for all x 2 RC;

we set

bPkf .�/D �
�
j�j

2k

�
Of .�/; AQjF D �

�ˇ̌
j� j � j�j

ˇ̌
2j

�
zF .�; �/:

Using these ingredients one can then define the norms

kuk PXn=2;1=2;1 WD sup
j2Z

2
j
2 kr

n
2
x QjukL2t;x

; kF k PXn=2�1;�1=2;1 WD
X
j2Z

2�
j
2 kr

n
2
�1

x QjF kL2t;x
:

In addition to these, we rely on the classical Strichartz norms, which are the mixed-type Lebesgue norms
k � kLpt L

q
x

, 1
p
C

n�1
2q
�

n�1
4

, p � 2, where we shall always restrict to n � 5. Call such pairs .p; q/
admissible.

We shall freely use the fact that Fourier localisers of the form PkQj act in bounded fashion on spaces
of the form L

p
t L

2
x , 1�p�1; see e.g., [Tao 2001b]. We can now define a norm controlling our solutions

as follows:

kukS WD
X
k2Z

sup
.p;q/ admissible

2.
1
p
Cn
q
�1/k
krt;xPkukLpt L

q
x
Ckrt;xPkuk PXn=2�1;1=2;1 DW

X
k2Z

kPkukSk :

(3-1)
We also introduce

kF kN WD
X
k2Z

kPkF kL1t PHn=2�1C PXn=2�1;�1=2;1
; (3-2)

as well as the norms

kuk PBr;12
WD

X
k2Z

kPkuk PH r :

Then the following inequality is by now completely standard; see e.g., [Krieger 2008; Tao 2001a;
Tataru 1998]:

Proposition 3.1. kukS . kuŒ0�k PBn=2;12 � PB
n=2�1;1
2

Ck�ukN : (3-3)

Sketch of proof. The fact thatX
k2Z

sup
.p;q/ admissible

2.
1
p
Cn
q
�1/k
krt;xPkukLpt L

q
x
.
X
k2Z

�
kPkuŒ0�k PHn=2� PHn=2�1 Ck�PkukL1t PHn=2�1

�
is a direct consequence of the Strichartz estimates; see, e.g., [Shatah and Struwe 1998]. The fact that

krt;xPkuk PXn=2�1;1=2;1 . k�PkukL1t PHn=2�1
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follows by localising the modulation and applying Holder’s inequality: setting k D 0, as we may by
scaling invariance,

2
j
2 krt;xP0QjukL2t;x

� 2
j
2 .1C 2j /



�.j�j/bQju.t; �/

L2tL2�
. 2j .1C 2j /



�.j�j/bQju.t; �/

L2
�
L1t
. k�P0QjukL1tL2x :

Furthermore, the fact that

sup
.p;q/ admissible

2.
1
p
Cn
q
�1/k
krt;xPkQjukLpt L

q
x
. k�PkQjuk PXn=2�1;�1=2;1 (3-4)

is a consequence of the fact that the function PkQju may be represented as a weighted average of free
waves, in conjunction with the standard Strichartz estimates: putting k D 0 as we may, write

BP0Qju.�; �/D �.j�j/�
�ˇ̌
j� j � j�j

ˇ̌
2j

�
Qu.�; �/

D �.j�j/
X
˙;˙

Z
�

�̇
a

2j

�
Qu.j�jC a; �/ı.˙� � j�j � a/ da

D �.j�j/
X
˙;˙

Z
a�˙2j

D
e˙itau˙;˙a .�; �/ da:

Here each u˙;˙a is a free wave and we have

X
˙;˙

Z
a�˙2j

ku˙;˙a kL1t L
2
x
da . 2

j
2

X
˙;˙

�Z
a�˙2j

ku˙;˙a k
2
L1t L

2
x
da

�1
2

. 2
j
2 kP0QjukL2t;x

;

where we have used Plancherel’s theorem in the last step. This gives the case j � k in (3-4) as a direct
consequence of the Strichartz estimates, while the case j � k follows directly from Bernstein’s inequality.

The fact that

krt;xPkuk PXn=2�1;1=2;1 . k�Pkuk PXn=2�1;�1=2;1

is immediate. This concludes our sketch of the proof of the proposition. �

In order to deal with the nonlocal expressions such as .�4/
1
2 .u� .�4/

1
2u/, the following simple

lemma shall be useful:

Lemma 3.2. Consider the bilinear expression (where �kj . � / smoothly localises to the annulus j�j � 2kj )

F.u; v/.x/ WD

Z
Rn

Z
Rn
m.�; �/ eix�.�C�/�k1.�/ Ou.�/ �k2.�/ Ov.�/ d� d�

where the multiplier m.�; �/ is C1 with respect to the coordinates on the support of �k1.�/ ��k2.�/, and
satisfies the pointwise bounds

jm.�; �/j � 
 . 1;
ˇ̌
.2k1r�/

i .2k2r�/
jm.�; �/

ˇ̌
.i;j 1 for all i; j:
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Then if k � kZ , k � kY , k � kX are translation invariant norms with the property that

ku � vkZ � kukX � kvkY ;

then it follows that
kF.u; v/kZ . 
 .1�/kPk1ukX kPk2vkY ;

where the implied constant only depends on the size of finitely many derivatives of m.

Proof. This follows by Fourier expansion of the multiplier m.�; �/: write

m.�; �/ �k1.�/ �k2.�/D
X
m2Zn

X
p2Zn

amp e
i.2�k1m��C2�k2p��/;

where we have

jam1m2 j � .2
�k1 jmjC 2�k2 jpj/�Mn



rMn
�;�

�
m.�; �/�k1.�/�k2

�


L1
�;�

.M;n ŒjmjC jpj��Mn;

while we also get the trivial bound jam1m2 j � 
 . It follows that

F.u; v/.x/D
X

m;p2Zn

jmjCjpj<
�1=.nM/

amp

Z
Rn

Z
Rn
Ou.�/ Ov.�/ ei.Œ2

�k1mCx���CŒ2�k2pCx���/ d� d�

C

X
m;p2Zn

jmjCjpj�
�1=.nM/

amp

Z
Rn

Z
Rn
Ou.�/ Ov.�/ ei.Œ2

�k1mCx���CŒ2�k2pCx���/ d� d�

and so

kF.u; v/kZ . kukX kvkY
� X

m;p2Zn

jmjCjpj<
�1=.nM/


 C
X

m;p2Zn

jmjCjpj�
�1=.nM/

.jmjC jpj/�Mn

�
. kukX kvkY 
1�

1
M :

Here the constant M may be chosen arbitrarily large (with implied constant depending on M ). �

4. Multilinear estimates

Here we gather the multilinear estimates which allow us to obtain a solution for (2-1) by means of a
suitable iteration scheme:

Proposition 4.1. Assume that u takes values in S2 and converges to p 2 S2 at spatial infinity. Then using
the norms k � kS , k � kN introduced in the previous section, we have the bounds

Pk�u.ru � ru� @tu � @tu/�

N . .1CkukS /kukS�X

k12Z

2�� jk�k1jkPk1ukSk1

�
: (4-1)

Furthermore, if Qu maps into a small neighbourhood of S2 and k QukS . 1, we have the similar bound

Pk�… Qu?..�4/ 12u/.u � .�4/ 12u/�

N . Y
vDu; Qu

.1CkvkS /kukS

�X
k12Z

2�� jk�k1jkPk1ukSk1

�
; (4-2)
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as well as

Pk�… Qu?�u� .�4/ 12 .u� .�4/ 12u/�u� .u� .�4/u/��

N
.

Y
vDu; Qu

.1CkvkS /kukS

�X
k12Z

2�� jk�k1jkPk1ukSk1

�
: (4-3)

We also have corresponding difference estimates: assuming that u.j /, j D 1; 2, map into S2, while Qu.j /

map into a small neighbourhood of S2, then using the notation

41;2F
.j /
D F .1/�F .2/

we have

41;2Pk�u.j /.ru.j / � ru.j /� @tu.j / � @tu.j //�

N
.
�
1Cmax

j
ku.j /kS

��
max
j
ku.j /kS

��X
k12Z

2�� jk�k1jkPk1u
.1/
�Pku

.2/
kSk1

�
C
�
1Cmax

j
ku.j /kS

��
ku.1/�u.2/kS

��
max
j

X
k12Z

2�� jk�k1jkPk1u
.j /
kSk1

�
; (4-4)

and similarly

Pk41;2�… Qu.j/
?

..�4/
1
2u.j //.u.j / � .�4/

1
2u.j //

�


N

.max
j

Y
vDu.j/; Qu.j/

.1CkvkS /ku
.j /
kS

�X
k12Z

2�� jk�k1jkPk1u
.1/
�Pk2u

.2/
kSk1

�

Cmax
j

Y
vDu.j/; Qu.j/

.1CkvkS /ku
.1/
�u.2/kS

�
max
j

X
k12Z

2�� jk�k1jkPk1u
.j /
kSk1

�

Cmax
j
.1Cku.j /kS /k Qu

.1/
� Qu.2/kS

�
max
j

X
k12Z

2�� jk�k1jkPk1u
.j /
kSk1

�
: (4-5)

The analogous difference estimate for (4-3) is similar. In fact, in all these estimates the choice � D 1
works.

Proof. We shall only deal in detail with the case nD 5, since the case n� 6 is simpler due to the better
decay with respect to large frequencies. Also, we note that then the desired estimates follow for a slightly
different functional framework from [Sterbenz 2004]. We observe that the proof of (4-1) is really quite
standard and follows for example from [Tataru 1998]. For completeness’s sake, we include a simple
version here.

Before giving the proof, we note that the Xs;b-type components of our spaces are only used to prove
(4-1), and not (4-2), (4-3). The key fact behind the proof of (4-1) is the identity

2Œut � vt �rxu � rxv�D�.uv/��uv�u�vI

see for example [Krieger 2008] for further discussion and earlier references.
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On the other hand, the estimates (4-2), (4-3) only use Strichartz norms; there the idea is to move a
derivative from a high- to a low-frequency factor, using algebraic relations such as

a� .b � c/D b.a � c/� c.a � b/; a; b; c 2 R3:

Proof of (4-1) To achieve it, we localise the second and third factors to frequencies� 2k1 ; 2k2, respectively,
and we shall restrict the output logarithmic frequency k to size 0. This is possible on account of the
scaling invariance of the estimate. We shall obtain exponential gains in terms of these frequencies in
certain cases, and summation over all allowed frequencies will result in the desired bound (4-1).

(1) High-high interactions maxfk1; k2g> 10. This is schematically written as

P0Œurt;xuk1rt;xuk2 �:

Then if k1 D k2CO.1/, we estimate this by

P0Œurt;xuk1rt;xuk2 �

L1tL2x . krt;xuk1kL2tL4x krt;xuk2kL2tL4x . 2� 32k1 Y
jD1;2

kukj kSkj
:

If k2 > k1C 10, say then we estimate it by

P0Œurt;xuk1rt;xuk2 �

L1tL2x D 

P0ŒPk2CO.1/urt;xuk1rt;xuk2 �

L1tL2x
. kPk2CO.1/ukL2tL4x krt;xuk2kL2tL4x krt;xuk1kL1t L2xCL1t;x
. 2�

5
2
k2kuk2kSk2 kuk2CO.1/kSk2CO.1/ kuk1kSk1 :

The case k1 > k2C 10 is of course the same. Summation over the suitable ranges of k1, k2 implies (4-1)
in this case with � D 3

2
.

(2) High-low interactions maxfk1; k2g < �10. Here one places rt;xukj , j D 1; 2, into L2tL
1
x and

uD PO.1/u into L1t L
2
x .

(3) Low-high interactions maxfk1; k2g 2 Œ�10; 10�. This is the most delicate case. We may assume that
k1 < k2� 10, since else we argue as in (1). Thus k2 2 Œ�10; 10�. Note that then

P0Œu�k1�10 rt;xuk1rt;xuk2 �

L1tL2x . ku�k1�10kL2tL1x krt;xuk1kL2tL1x krt;xuk2kL1t L2x

. kukS kuk2kSk2 kuk1kSk1 ;

which can be summed over k1 < k2� 10. One similarly estimates

P0ŒQ�k1�10 u<k1�10rt;xuk1rt;xuk2 �:

We have now reduced to estimating

P0ŒQ<k1�10 u<k1�10 @˛uk1 @
˛uk2 �:

Here note that

P0�Q<k1�10 u<k1�10 @˛uk1 @˛Q>k1�10 uk2�

L1tL2x . k@˛uk1kL2tL1x k@˛Q>k1�10 uk2kL2t;x
. kuk1kSk1 kuk2kSk2 ;
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again summable over k1 < k2� 10. Also, we get

P0�Q<k1�10 u<k1�10 @˛Q�k1C10uk1 @˛Q<k1�10 uk2�

X n
2
�1;� 1

2
;1

.
X

j�k1C10

2�
j
2 kQjrt;x ; uk1kL2tL

1
x
k@˛Q<k1�10 uk2kL1t L

2
x
. kuk1kSk1 kuk2kSk2 ;

and hence it is summable over k1 <k2�10. Finally, we expand the expression out using its null-structure:

2P0ŒQ<k1�10 u<k1�10 @˛Q<k1C10 uk1 @
˛Q<k1�10 uk2 �

D P0
�
Q<k1�10 u<k1�10�.Q<k1C10 uk1Q<k1�10 uk2/

�
�P0

�
Q<k1�10 u<k1�10�Q<k1C10 uk1Q<k1�10 uk2

�
�P0

�
Q<k1�10 u<k1�10Q<k1C10 uk1 �Q<k1�10 uk2

�
:

Then we bound each of these:

P0
�
Q<k1�10 u<k1�10�.Q<k1C10 uk1Q<k1�10 uk2/

�
D�P0

�
Q<k1�10 u<k1�10.Q<k1C10 uk1Q<k1�10 uk2/

�
�P0

�
rt;xQ<k1�10 u<k1�10rt;x.Q<k1C10 uk1Q<k1�10 uk2/

�
�P0

�
r
2
t;xQ<k1�10 u<k1�10.Q<k1C10 uk1Q<k1�10 uk2/

�
:

The last two terms on the right can be easily placed intoL1tL
2
x using theL2tL

1
x norm for the low-frequency

factors, while for the first term on the right, we get

�P0�Q<k1�10 u<k1�10.Q<k1C10 uk1Q<k1�10 uk2/�

X n
2
�1;� 1

2
;1

.
X

j<k1C20

2
j
2



P0Qj �Q<k1�10 u<k1�10.Q<k1C10 uk1Q<k1�10 uk2/�

L2t;x
. 2

k1
2 kQ<k1C10 uk1kL2tL

1
x
kQ<k1�10 uk2kL1t L

2
x

. kuk1kSk1 kuk2kSk2 :
Further, we get

P0�Q<k1�10 u<k1�10�Q<k1C10 uk1Q<k1�10 uk2�

L1tL2x

. k�Q<k1C10 uk1kL2tL4x kQ<k1�10 uk2kL2tL4x

. 2
k1
4 kuk1kSk1 kuk2kSk2 :

To close things, we also get

P0�Q<k1�10 u<k1�10Q<k1C10 uk1 �Q<k1�10 uk2�

L1tL2x
. kQ<k1C10 uk1kL2tL1x k�Q<k1�10 uk2kL2t;x
. kuk1kSk1 kuk2kSk2

and the desired bound follows again by summing over k1 < k2� 10.
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Proof of (4-2) Here we shall be able to get by only using Strichartz-type norms, by taking advantage of
the condition u �uD 1. Using the standard Littlewood–Paley trichotomy, we have

0D u �u�p �p D
X

jk1�k2j�10

uk1uk2 C 2
X
k1

uk1 �u<k1�10: (4-6)

This implies

0D
X

jk1�k2j<10

.�4/
1
2 .uk1uk2/C 2

X
k1

.�4/
1
2 .uk1 �u<k1�10/: (4-7)

Here the first term is better, since the outer derivative falls on the low-frequency output. We shall use this
to replace the second term on the right by the first. Write

… Qu?..�4/
1
2u/.u � .�4/

1
2u/D

X
jk1�k2j�10

… Qu?..�4/
1
2u/.uk1 � .�4/

1
2uk2/

C

X
k1

… Qu?..�4/
1
2u/.uk1 � .�4/

1
2u<k1�10/

C

X
k2

… Qu?..�4/
1
2u/.u<k2�10 � .�4/

1
2uk2/: (4-8)

Then for the first term on the right we infer



P0� X
jk1�k2j�10

… Qu?..�4/
1
2u/.uk1 � .�4/

1
2uk2/

�




L1tL

2
x

.
X

jk1�k2j�10
k1<�20



PŒ�20;20�.… Qu?..�4/ 12u//

L1t L2x kuk1kL2tL1x k.�4/ 12uk2kL2tL1x
C

X
jk1�k2j�10
k1��20

k… Qu?..�4/
1
2u/kL1t L

2
xCL

1
t;x
kuk1kL2tL

4
x
k.�4/

1
2uk2kL2tL

4
x
:

Then using a further elementary frequency decomposition it is easy to see (see the Appendix) that

PŒ�20;20�.… Qu?..�4/ 12u//

L1t L2x .X
k32Z

2�jk3jkPk3ukSk3 .1Ck QukS /;

k.… Qu?..�4/
1
2u//kL1t L

2
xCL

1
t;x
.
X
k32Z

2�jk3jkPk3ukSk3 .1Ck QukS /;

and so we obtain thatX
jk1�k2j�10
k1<�20



PŒ�20;20�.… Qu?..�4/ 12u//

L1t L2x kuk1kL2tL1x k.�4/ 12uk2kL2tL1x
.

X
jk1�k2j�10
k1<�20

2
k2�k1
2

Y
jD1;2

kPkjukSkj

�X
k32Z

2�jk3jkPk3ukSk3 .1Ck QukS /

�

.
�X
k32Z

2�jk3jkPk3ukSk3

�
kuk2S .1Ck QukS /;
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as well asX
jk1�k2j�10
k1��20



… Qu?..�4/ 12u/

L1t L2xCL1t;x kuk1kL2tL4x k.�4/ 12uk2kL2tL4x
.
� X
jk1�k2j�10
k1��20

2�
5
2
k1 kuk1kSk1 kuk2kSk2

� X
k32Z

2�jk3jkPk3ukSk3 .1Ck QukS /

.
�X
k32Z

2�jk3jkPk3ukSk3

�
kuk2S .1Ck QukS /:

This concludes the required bound for the first term on the right-hand side of (4-8).
Now we pass to the second term. We write it as a sum of three terms:X
k1

… Qu?..�4/
1
2u/.uk1 � .�4/

1
2u<k1�10/D

X
k1�5

… Qu?..�4/
1
2u/.uk1 � .�4/

1
2u<k1�10/

C

X
k12Œ�5;5�

… Qu?..�4/
1
2u/.uk1 � .�4/

1
2u<k1�10/

C

X
k1<�5

… Qu?..�4/
1
2u/.uk1 � .�4/

1
2u<k1�10/:

Then we get



P0� X
k1�5

… Qu?..�4/
1
2u/.uk1 � .�4/

1
2u<k1�10/

�




L1tL

2
x

.
X
k1�5



PŒk1�5;k1C5�.… Qu?..�4/ 12u//

L1t L2x kuk1kL2tL1x k.�4/ 12u<k1�10kL2tL1x
.

X
k1�5; k2<k1�10

X
k3

2�
3
2
jk3j kPk3ukSk3 .1Ck QukS / kuk1kSk1 kuk2kSk2

.
�X
k3

2�
3
2
jk3jkPk3ukSk3

�
.1Ck QukS / kuk

2
S :

Similarly, for the term of intermediate k1, we have



P0� X
k12Œ�5;5�

… Qu?..�4/
1
2u/.uk1 � .�4/

1
2u<k1�10/

�




L1tL

2
x

.
X

k12Œ�5;5�



P<10… Qu?..�4/ 12u/

L2tL1x kuk1kSk1 k.�4/ 12u<k1�10kL2tL1x ;
and one closes by observing (see the Appendix for the first bound) that

P<10… Qu?..�4/ 12u/

L2tL1x . .k QukS C 1/ kukS ; k.�4/ 12u<k1�10kL2tL1x . kukS :
Finally, for the range of low k1 < �5, we place both uk1 and .�4/

1
2u<k1�10 into L2tL

1
x and observe

that
kuk1kL2tL

1
x
k.�4/

1
2u<k1�10kL2tL

1
x
. kuk1kSk1kukS :
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Then we close by using that

P0

� X
k1<�5

… Qu?..�4/
1
2u/.uk1 � .�4/

1
2u<k1�10/

�

D P0

� X
k1<�5

PŒ�2;2�.… Qu?..�4/
1
2u//.uk1 � .�4/

1
2u<k1�10/

�
;

as well as 

PŒ�2;2�.… Qu?..�4/ 12u//

L1t L2x . .1Ck QukS /
�X
k3

2�
3
2
jk3jkPk3ukSk3

�
:

This concludes the required bound for the second term on the right in (4-8).
Finally, the third term in (4-8) is the most delicate, as the derivative .�4/

1
2 lands on the higher-

frequency term uk2 . To deal with it, we note, using Lemma 3.2, that the differenceX
k2

… Qu?..�4/
1
2u/.u<k2�10 � .�4/

1
2uk2/�

X
k2

… Qu?..�4/
1
2u/.�4/

1
2 .u<k2�10 �uk2/

can be estimated like the second term on the right in (4-8), and hence it suffices to boundX
k2

… Qu?..�4/
1
2u/.�4/

1
2 .u<k2�10 �uk2/D�

X
jk3�k4j<10

1
2
… Qu?..�4/

1
2u/.�4/

1
2 .uk3 �uk4/;

where we have used (4-6). This term is again straightforward to estimate: we have



P0� X
jk3�k4j<10
k3<�20

1
2
… Qu?..�4/

1
2u/.�4/

1
2 .uk3 �uk4/

�




L1tL

2
x

.
X

jk3�k4j<10
k3<�20



PŒ�10;10�Œ… Qu?..�4/ 12u/�

L1t L2x k.�4/ 12 .uk3 �uk4/kL1tL1x ;
and we close for the case k3 < �20 by observing thatX

jk3�k4j<10
k3<�20

k.�4/
1
2 .uk3 �uk4/kL1tL

1
x
.

X
jk3�k4j<10
k3<�20

2k3kuk3kL2tL
1
x
kuk4kL2tL

1
x
. kuk2S ;

as well as 

PŒ�10;10�Œ… Qu?..�4/ 12u/�

L1t L2x . .1Ck QukS /X
k3

2�
3
2
jk3jkPk3ukSk3 :

On the other hand, if k3 > �20, we place both uk3;4 into L2tL
4
x . We omit the simple details. This finally

concludes the bound of estimate (4-2).

Proof of (4-3) We commence by observing that we may in fact get rid of the outer operator … Qu? , since
one easily checks that

kP0Œ… Qu?F �kL1tL
2
x
. .1Ck QukS /

X
k1

2�jk1jkPk1F kL1t PHn=2�1 :
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Then assuming that we have proved the bound

kPk1F kL1t PHn=2�1 .
X
k2

2�� jk1�k2jkPk2ukSk2

for some � > 1, we then infer the bound

kP0Œ… Qu?F �kL1tL
2
x
. .1Ck QukS /

X
k2

2�jk2jkPk2ukSk2 :

Next, localising the last two factors to dyadic frequencies, and the output to frequency � 1 as we may,
we arrive at the expression

P0
�
u� .�4/

1
2 .uk1 � .�4/

1
2uk2/�u� .uk1 � .�4/uk2/

�
:

Then we first dispose of the easy cases:

Both frequencies large: maxfk1; k2g > 10. If k1 D k2CO.1/, we simply place both high-frequency
factors into L2tL

4
x , resulting in

P0�u� .�4/ 12 .uk1 � .�4/ 12uk2/�u� .uk1 � .�4/uk2/�

L1tL2x . 22k1kPk1ukL2tL4x kuk2kL2tL4x

. 22k1�.1C
5
2
/k1

Y
jD1;2

kukj kSkj
;

whence we have



 X
k1Dk2CO.1/>10

P0
�
u� .�4/

1
2 .uk1 � .�4/

1
2uk2/�u� .uk1 � .�4/uk2/

�




L1tL

2
x

.
X

k1Dk2CO.1/>10

2�
3
2
jk1j

Y
jD1;2

kukj kSkj
.
�X
k1

2�
3
2
jk1jkPk1ukSk1

�
kukS :

On the other hand, if k2� k1, we use

P0
�
u� .�4/

1
2 .uk1 � .�4/

1
2uk2/�u� .uk1 � .�4/uk2/

�
D P0

�
Pk2CO.1/u� .�4/

1
2 .uk1 � .�4/

1
2uk2/�Pk2CO.1/u� .uk1 � .�4/uk2/

�
:

Then place the first and third factors into L2tL
4
x and the middle factor into L1t L

2
x CL

1
t;x . The case

k2� k1 is similar.

Both frequencies small: maxfk1; k2g < �10. Here we observe that Lemma 3.2 allows us to place one
derivative .�4/

1
2 onto the factor uk1 , even if k1 < k2� 10. Thus we reduce to bounding the schematic

expression
P0ŒPŒ�5;5�urxuk1rxuk2 �;

which is straightforward since we can place the second and third factors into L2tL
1
x . We omit the simple

details.

One frequency intermediate, the other small: maxfk1; k2g 2 Œ�10; 10�. This case is a bit more difficult,
and we shall exploit the geometric structure of the expression. We split this further into two cases:
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(i) k1 2 Œ�10; 10�; k2 < 10. Here the difference structure inherent in the term is not helpful. In fact, we
can immediately estimate

P0Œu� .uk1 � .�4/uk2/�

L1tL2x . kuk1kL2tL4x k.�4/uk2kL2tL4x

. 2
k2
4 kuk2kSk2 kuk1kSk1 ;

and here of course we can sum over k2 < 10 to infer the desired bound. Next, using Lemma 3.2 allows
us to replace the term

P0
�
u� .�4/

1
2 .uk1 � .�4/

1
2uk2/

�
by

P0
�
u� ..�4/

1
2uk1 � .�4/

1
2uk2/

�
up to a term which is estimated like P0Œu� .uk1 � .�4/uk2/�. Before exploiting the algebraic structure
of the term above, we reduce the first factor u to frequency < 2k2�10, which we can on account of

P0�u�k2�10 � ..�4/ 12uk1 � .�4/ 12uk2/�

L1tL2x

. ku�k2�10kL2tL1x k.�4/
1
2uk1kL1t L

2
x
k.�4/

1
2uk2kL2tL

1
x

. kuk1kSk1 kuk2kSk2 kukS :

Summing over k2 < 10 and recalling that k1 2 Œ�10; 10� leads to the desired bound.
Consider now the expression

P0
�
u<k2�10 � ..�4/

1
2uk1 � .�4/

1
2uk2/

�
:

Write this as

P0
�
u<k2�10 � ..�4/

1
2uk1 � .�4/

1
2uk2/

�
D P0

�
.�4/

1
2uk1.u<k2�10 � .�4/

1
2uk2/� .�4/

1
2uk2.u<k2�10 � .�4/

1
2uk1/

�
:

In order to estimate this, we use a frequency-localised version of (4-6). Specifically, we have

0D 2uk �u<k�10C
X

k1Dk2CO.1/

Pk.uk1 �uk2/C 2
�kL.uk;rxu<k�10/; (4-9)

where L is a bilinear operator of the form used in Lemma 3.2 with a bounded kernelm.�; �/. We conclude
the schematic relation

.�4/
1
2uk �u<k�10 D�

1
2
.�4/

1
2

X
k1Dk2CO.1/

Pk.uk1 �uk2/CL.uk;rxu<k�10/:

It follows that we can write

P0
�
.�4/

1
2uk1.u<k2�10 � .�4/

1
2uk2/

�
D�

1
2
P0

�
.�4/

1
2uk1

X
k3Dk4CO.1/

.�4/
1
2Pk2.uk3 �uk4/

�
CP0

�
.�4/

1
2uk1L.uk2 ;rxu<k2�10/

�
;
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and here we have (keeping in mind that k1 2 Œ�10; 10�)



P0�.�4/ 12uk1 X
k3Dk4CO.1/

.�4/
1
2Pk2.uk3 �uk4/

�




L1tL

2
x

. 2k2
X

k3Dk4CO.1/�k2

k.�4/
1
2uk1kL1t L

2
x
kuk3kL2tL

1
x
kuk4kL2tL

1
x

. k.�4/
1
2uk1kL1t L

2
x

X
k3Dk4CO.1/�k2

2k2�k3 kuk3kSk3 kuk4kSk4 ;

and here we can sum over k2 < 10 to arrive at an upper bound of . kuk1kSk1 kuk
2
S , as desired. We also

have the simple bound

P0�.�4/ 12uk1L.uk2 ;rxu<k2�10/�

L1tL2x . k.�4/ 12uk1kL1t L2x kuk2kL2tL1x krxu<k2�10kL2tL1x
. k.�4/

1
2uk1kL1t L

2
x
kuk2kSk2 kukS ;

and summing over k2 < 10, we arrive again at the bound

. kuk1kSk1 kuk
2
S :

This concludes the case (i).

(ii) k2 2 Œ�10; 10�; k1 < 10. Proceeding in analogy to case (i), we immediately reduce to the expression

P0
�
u<k1�10 � .�4/

1
2 .uk1 � .�4/

1
2uk2/�u<k1�10 � .uk1 � .�4/uk2/

�
:

Here we first note that on account of Lemma 3.2 we have

P0�u<k1�10 � .�4/ 12 .uk1 � .�4/ 12uk2/� .�4/ 12 �u<k1�10 � .uk1 � .�4/ 12uk2/��

L1tL2x
. k.�4/

1
2u<k1�10kL2tL

1
x
kuk1kL2tL

1
x
k.�4/

1
2uk2kL1t L

2
x

. kukS kuk1kSk1 kuk2kSk2 :

Then summation over k1 < 10 gives the required bound.
Next, we expand out

P0
�
.�4/

1
2

�
u<k1�10 � .uk1 � .�4/

1
2uk2/

�
�u<k1�10 � .uk1 � .�4/uk2/

�
D P0.�4/

1
2

�
uk1.u<k1�10 � .�4/

1
2uk2/� .�4/

1
2uk2.u<k1�10 �uk1/

�
�P0

�
uk1.u<k1�10 � .�4/uk2/� .�4/uk2.u<k1�10 �uk1/

�
: (4-10)

Then pairing up these last four terms suitably, we have

P0.�4/
1
2

�
uk1.u<k1�10 � .�4/

1
2uk2/

�
�P0

�
uk1.u<k1�10 � .�4/uk2/

�
D P0.�4/

1
2

�
uk1.�4/

1
2 .u<k1�10 �uk2/

�
�P0

�
uk1.�4/.u<k1�10 �uk2/

�
Cuk1L.rxu<k1�10; uk2/

D L
�
.�4/

1
2uk1 ; .�4/

1
2 .u<k1�10 �uk2/

�
Cuk1L.rxu<k1�10; uk2/:
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The last term is straightforward since

uk1L.rxu<k1�10; uk2/

L1tL2x . kuk1kL2tL1x krxu<k1�10kL2tL1x kuk2kL1t L2x
. kukS kuk1kSk1 kuk2kSk2 ;

and we can sum over k1 < 10. Further, we see that

L
�
.�4/

1
2uk1 ; .�4/

1
2 .u<k1�10 �uk2/

�
D L

�
.�4/

1
2uk1 ; .�4/

1
2 .u<k2�10 �uk2/

�
C error;

where the term error here is estimated exactly like the previous term. But then taking advantage of (4-9),
we find

L
�
.�4/

1
2uk1 ; .�4/

1
2 .u<k2�10 �uk2/

�
D�

1

2

X
k3Dk4CO.1/>k2

L
�
.�4/

1
2uk1 ; .�4/

1
2Pk2.uk3 �uk4/

�
C 2�k2L

�
.�4/

1
2uk1 ; .�4/

1
2L.rxu<k2�10; uk2/

�
:

Then we have



�12 X
k3Dk4CO.1/>k2

L
�
.�4/

1
2uk1 ; .�4/

1
2Pk2.uk3 �uk4/

�




L1tL

2
x

.
X

k3Dk4CO.1/>k2

2k2k.�4/
1
2uk1kL2tL

1
x
kuk3kL2tL

1
x
kuk4kL1t L

2
x
:

The preceding sum can be further bounded by

.
X

k3Dk4CO.1/>k2

2k2 2
k1�k3
2 2�

5
2
k4kuk1kSk1 kuk3kSk3 kuk4kSk4

.
�X
k1

2�jk4�k2j kuk4kSk4 kukS

�
kuk1kSk1 :

This can be summed over k1 < 10 to yield the desired kind of bound.
Finally, we have the simpler bound

2�k2L�.�4/ 12uk1 ; .�4/ 12L.rxu<k2�10; uk2/�

L1tL2x

. k.�4/
1
2uk1kL2tL

1
x
krxu<k2�10kL2tL

1
x
kuk2kL1t L

2
x
;

which after summation over k1 < 10 is again bounded by . kuk2S kuk2kSk2 .
Returning to (4-10), it remains to bound the difference

P0.�4/
1
2

�
.�4/

1
2uk2.u<k1�10 �uk1/

�
�P0

�
.�4/uk2.u<k1�10 �uk1/

�
D�L

�
.�4/

1
2uk2 ;

X
k3Dk4CO.1/>k1

.�4/
1
2Pk1.uk3 �uk4/

�
CL

�
.�4/

1
2uk2 ; .�4/

1
2 2�k1L.rxu<k1�10; uk1/

�
:
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Then the first term is bounded by



12L�.�4/ 12uk2 ; X
k3Dk4CO.1/>k1

.�4/
1
2Pk1.uk3 �uk4/

�




L1tL

2
x

. 2k1
X

k3Dk4CO.1/>k1



.�4/ 12uk2

L1t L2x kuk3kL2tL1x kuk4kL2tL1x
. kuk2kSk2

X
k3Dk4CO.1/>k1

2k1�k3 kuk3kSk3 kuk4kSk4 :

This expression can be summed over k1 to give the desired bound. Similarly, we get

L�.�4/ 12uk2 ; .�4/ 12 2�k1L.rxu<k1�10; uk1/�

L1tL2x
. k.�4/

1
2uk2kL1t L

2
x
krxu<k1�10kL2tL

1
x
kuk1kL2tL

1
x

. kuk2kSk2 kuk1kSk1 kukS ;

and summation over k1 < 10 yields the desired bound. This concludes case (ii), and thereby of (4-3).
The estimates (4-4), (4-5) are proved similarly, after passing to the differences. One only needs to make

sure to reformulate the terms as in the preceding using (4-6), (4-9), before passing to the differences. �

5. The iteration scheme

Here we solve (2-1). Specifically, we prove the following.

Theorem 5.1. Let n � 5. Let uŒ0� D .u; ut / W Rn ! S2 � TS2 be a smooth data pair with u � ut D 0
pointwise, and such that u is constant outside of a compact subset of Rn. Also, assume the smallness
condition

kuŒ0�k PBn=2;12 � PB
n=2�1;1
2

< �;

where �� 1 is sufficiently small. Then problem (2-1) admits a global smooth solution with these data.

Proof. We do this by means of a suitable iteration scheme: first, let u.0/ D p, where p 2 S2 is the limit
of the initial data ujtD0 at spatial infinity. Then let u.1/ be the wave map into S2 with the given data
(which is possible since ut .0; � / �u.0; � /D 0 from our assumption), thus solving

.@2t �4/u
.1/
D u.1/.ru.1/ � ru.1/� @tu

.1/
� @tu

.1//:

It is given by u.1/ D pC
P
k2Z u

.1/

k
, and its existence follows via simple iteration from (4-1) and the

corresponding difference estimate. Then we define the higher iterates u.j /, j � 2, via the following
iterative scheme:

.@2t �4/u
.j /

D u.j /.ru.j / � ru.j /� @tu
.j /
� @tu

.j //

C…
u
.j/
?

..�4/
1
2u.j�1//.u.j�1/ � .�4/

1
2u.j�1//

C…
u
.j/
?

�
u.j�1/ � .�4/

1
2 .u.j�1/ � .�4/

1
2u.j�1//�u.j�1/ � .u.j�1/ � .�4/u.j�1//

�
: (5-1)
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This equation defines u.j / implicitly, and so to actually compute it, we have to run a subiteration

.@2t �4/u
.j;i/

D u.j;i�1/.ru.j;i�1/ �ru.j;i�1/�@tu
.j;i�1/

�@tu
.j;i�1//

C…
u
.j;i�1/
?

..�4/
1
2u.j�1//.u.j�1/ �.�4/

1
2u.j�1//

C…
u
.j;i�1/
?

�
u.j�1/�.�4/

1
2 .u.j�1/�.�4/

1
2u.j�1//�u.j�1/�.u.j�1/�.�4/u.j�1//

�
(5-2)

for i �1, while u.j;0/ is the free wave evolution of the data uŒ0�. Then we again have u.j;i/DpC
P
k u

.j;i/

k
,

and in particular each u.j;i/ is close to S2 with respect to the L1 norm, while convergence with respect to
k�kS follows from Proposition 4.1. We also get higher regularity of each u.j;i/ and u.j / by differentiating
the equation.

Our choice of iterative scheme (5-1) implies

�.u.j / �u.j /� 1/D .u.j / �u.j /� 1/.ru.j / � ru.j /� @tu.j / � @tu.j //;

as well as .u.j / �u.j /� 1/Œ0�D .0; 0/, which inductively gives that u.j / maps into S2 for all j . Finally,
convergence of the u.j / with respect to k � kS follows again via Proposition 4.1. Differentiating (5-1) then
also gives higher regularity of the limit function u. The latter is then easily seen to solve (2-1). For later
purposes, we also note that Proposition 4.1 in conjunction with the assumptions that .u�p/jtD0 2 C10
and ut jtD0 D u� .�4/

1
2 jtD0 imply that we have improved control over low frequencies: u.t; � / 2

PH
n
2
� 1
2 ; ut .t; � / 2 PH

n
2
� 3
2 for all t . �

6. Proof of Theorem 1.1

It remains to show that the solution u.t; x/ obtained in Theorem 5.1 actually solves (1-1). For this
introduce the quantity

X WD ut �u� .�4/
1
2u;

as well as the energy type functional

zE.t/ WD
1

2

Z
Rn

ˇ̌
.�4/

n
4
� 3
4X.t; � /

ˇ̌2
dx:

Note that we have rt;xu 2 PH
n
2
� 3
2 as observed previously, and hence zE.t/ is well defined and also

continuously differentiable (on account of the higher-regularity properties of u). Retracing the steps that
led to the final wave equation (2-1), we deduce

@tX D�X � .�4/
1
2u�u� .�4/

1
2X �u.X � .u� .�4/

1
2uCut //;

and so we deduce

d

dt
zE.t/D�

Z
Rn
.�4/

n
4
� 3
4

�
X � .�4/

1
2uCu� .�4/

1
2X
�
� .�4/

n
4
� 3
4X dx

�

Z
Rn
.�4/

n
4
� 3
4

�
u.X � .u� .�4/

1
2uCut //

�
� .�4/

n
4
� 3
4X dx:
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Then we note that3

.�4/n4� 34 �X � .�4/ 12uCu� .�4/ 12X��u� .�4/n4� 14X


L2x

. k.�4/
n
4
� 3
4XkL2x k.�4/

1
2ukL1x CkXkL2n=3x

k.�4/
n
4
� 1
4uk

L
2n=.n�3/
x

Ck.�4/
n
4
� 3
4uk

L
2n=.n�5/
x

k.�4/
1
2Xk

L
2n=5
x
.u k.�4/

n
4
� 3
4Xk2

L2x

on account of Sobolev’s embedding and higher regularity of u, and further, we observe thatZ
Rn
.u� .�4/

n
4
� 1
4X/ � .�4/

n
4
� 3
4X dx

D

Z
Rn
.�4/

1
4 .u� .�4/

n
4
� 2
4X/ � .�4/

n
4
� 3
4X dxCO

�
k.�4/

n
4
� 3
4Xk2

L2x
krxukL1x

�
DO

�
k.�4/

n
4
� 3
4Xk2

L2x
krxukL1x

�
:

Similarly, we inferˇ̌̌̌Z
Rn
.�4/

n
4
� 3
4

�
u.X � .u� .�4/

1
2uCut //

�
� .�4/

n
4
� 3
4X dx

ˇ̌̌̌
.u k.�4/

n
4
� 3
4Xk2

L2x
:

But then the preceding implies that
d

dt
zE.t/� C.u/ zE.t/

and furthermore zE.0/D 0, which implies zE.t/D 0 throughout. It follows that X D 0 identically, which
completes the proof of Theorem 1.1.

Appendix

Here we prove some bounds related to the projection operator … Qu? used in the proof of Proposition 4.1.

Lemma A.1. Assume that Qu W R5C1! S2 maps into a small neighbourhood of S2 with k QukS . 1. Then
for any a 2 Z we have the bounds

PŒ�a;a�.… Qu?..�4/ 12u//

L1t L2x .a X

k32Z

2�jk3jkPk3ukSk3 .1Ck QukS /; (A-1)



.… Qu?..�4/ 12u//

L1t L2xCL1t;x .X
k32Z

2�jk3jkPk3ukSk3 .1Ck QukS /; (A-2)



P<a… Qu?..�4/ 12u/

L2tL1x .a .k QukS C 1/kukS : (A-3)

Proof of (A-1). Note that we can write

… Qu?..�4/
1
2u/D .�4/

1
2u�F. Qu/ � .�4/

1
2u

3Here 2n=.n� 5/ gets replaced by1 if nD 5.
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for a suitable C1 function F W R3! R3, which in addition to all its derivatives is bounded. Then since

PŒ�a;a�.�4/ 12u

L1t L2x .a X
k32Z

2�jk3jkPk3ukSk3 ;

it suffices to consider


PŒ�a;a��F. Qu/ � .�4/ 12u�

L1t L2x . To deal with this expression, observe first that

kPlF. Qu/kL1t L
2
x
. 2�l



Pl�P<l�20.r Qu/F 0. Qu/�

L1t L2x C 2� 52 lk Quk PHn=2

. 2�2l


Pl�P<l�20.r Qu/P<l�20.r Qu/F 00. Qu/�

L1t L2x C 2� 52 lk Quk PHn=2

. 2�3l


Pl�P<l�20.r Qu/P<l�20.r Qu/P<l�20.r Qu/F 000. Qu/�

L1t L2x C 2� 52 lk Quk PHn=2

and we can estimate the last term by

2�3l


Pl�P<l�20.r Qu/P<l�20.r Qu/P<l�20.r Qu/F 000. Qu/�

L1t L2x

. 2�3lkP<l�20.r Qu/k3L1t L6x . 2
� 5
2
l
k Quk3S . 2

� 5
2
l
k QukS ;

whence in summary kPlF. Qu/kL1t L2x . 2
� 5
2
l
k QukS . To conclude, we estimate

PŒ�a;a�ŒF . Qu/ � .�4/ 12u�

L1t L2x � 

PŒ�a;a��P<�a�10ŒF . Qu/� � .�4/ 12u�

L1t L2x
C


PŒ�a;a��PŒ�a�10;aC10�ŒF . Qu/� � .�4/ 12u�

L1t L2x
C


PŒ�a;a��P>aC10ŒF . Qu/� � .�4/ 12u�

L1t L2x ;

and we have

PŒ�a;a��P<�a�10ŒF . Qu/��.�4/ 12u�

L1t L2x . 

PŒ�a�20;aC20�.�4/ 12u

L1t L2x
.a

X
k32Z

2�jk3jkPk3ukSk3 ;



PŒ�a;a��PŒ�a�10;aC10�ŒF . Qu/��.�4/ 12u�

L1t L2x . 

PŒ�a�10;aC10�ŒF . Qu/�

L1t L2x

P<aC10.�4/ 12u

L1t;x
.a k QukS

X
k32Z

2�jk3jkPk3ukSk3 ;

where we have used the preceding bound for PlF. Qu/ to control


PŒ�a�10;aC10�ŒF . Qu/�

L1t L2x . Finally,

we get

PŒ�a;a��P>aC10ŒF . Qu/��.�4/ 12u�

L1t L2x � X
k1Dk2CO.1/>aC10



PŒ�a;a��Pk1 ŒF . Qu/��Pk2.�4/ 12u�

L1t L2x
.a

X
k1Dk2CO.1/>aC10

kPk1 ŒF . Qu/�kL1t L
2
x
kPk2.�4/

1
2ukL1t L

2
x

.a k QukS
X
k32Z

2�jk3jkPk3ukSk3 ;

where we have used Bernstein’s and Holder’s inequalities as well as the preceding bound for PlF. Qu/. �
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Proof of (A-2). This is similar to the preceding bound; one places

P<0Œ.… Qu?..�4/
1
2u//�

into L1t;x and

P�0Œ.… Qu?..�4/
1
2u//�

into L1t L
2
x . �

Proof of (A-3). We use the preceding bounds, and reduce to bounding


P<a�F. Qu/.�4/ 12u�

L2tL1x .

Then

P<a�F. Qu/.�4/ 12u�

L2tL1x
.


P<a�F. Qu/P<aC10.�4/ 12u�

L2tL1x C 

P<a�F. Qu/P�aC10.�4/ 12u�

L2tL1x

and we can bound

P<a�F. Qu/P<aC10.�4/ 12u�

L2tL1x . X
k<aC10

kPk.�4/
1
2ukL2tL

1
x

.
X

k<aC10

2
k
2 kPkukSk .a kukS ;

as well as

P<a�F. Qu/P�aC10.�4/ 12u�

L2tL1x . X
k1Dk2CO.1/�aC10



P<a�Pk2F. Qu/Pk1.�4/ 12u�

L2tL1x
. 2

5
2
a

X
k1Dk2CO.1/�aC10

kPk2F. Qu/kL1t L
2
x
kPk1.�4/

1
2ukL2tL

1
x

. 2
5
2
a

X
k1Dk2CO.1/�aC10

2�
5
2
k2 k QukS � 2

k1
2 kPk1ukSk1

.a k QukS kukS : �
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THE SEMIGROUP GENERATED BY THE DIRICHLET LAPLACIAN
OF FRACTIONAL ORDER

TSUKASA IWABUCHI

In the whole space Rd, linear estimates for heat semigroup in Besov spaces are well established, which
are estimates of Lp�Lq type, with maximal regularity, etc. This paper is concerned with such estimates
for the semigroup generated by the Dirichlet Laplacian of fractional order in terms of the Besov spaces on
an arbitrary open set of Rd.

1. Introduction

Let � be an arbitrary open set of Rd with d � 1. We consider the Dirichlet Laplacian A on L2.�/,

AD��D�

dX
jD1

@2

@x2j
;

with the domain
D.A/ WD ff 2H 1

0 .�/ W�f 2 L
2.�/g:

We consider the fractional Laplacian and the semigroup

A
˛
2 D

Z 1
�1

�
˛
2 dEA.�/; e�tA

˛=2

D

Z 1
�1

e�t�
˛=2

dEA.�/; t � 0:

Here, ˛ > 0 and fEA.�/g�2R denotes the spectral resolution of identity, which is determined uniquely
for the self-adjoint operator A by the spectral theorem. The motivation of the study of the fractional
Laplacian comes from the study of fluid mechanics, stochastic processes, finance etc.; see for instance
[Applebaum 2009; Bertoin 1996; Chen et al. 2010; Vlahos et al. 2008]. We also refer to [Di Nezza et al.
2012; Vázquez 2012; 2014], where one can find some results on fundamental properties of fractional
Sobolev spaces and applications to partial differential equations.

In the paper [Iwabuchi et al. 2016a], based on spectral theory for the Dirichlet Laplacian A on L2.�/,
a kind of Lp theory was established and the Besov spaces on an open set � were introduced, where
regularity of functions is measured by A. The purpose of this paper is to develop linear estimates for the
semigroup generated by the Dirichlet Laplacian of fractional order in the homogeneous Besov spaces
PBsp;q.A/, namely, the estimate of Lp�Lq type, smoothing effects, continuity in time of the semigroup,

equivalent norms with the semigroup and maximal regularity estimates. Such estimates with the heat
semigroup in the case when�DRd are well established; see [Bahouri et al. 2011; Chemin 2004; Danchin
2005; 2007; Danchin and Mucha 2009; Hieber and Prüss 1997; Kozono et al. 2003; Lemarié-Rieusset

MSC2010: primary 35R11; secondary 35K08.
Keywords: semigroup, Dirichlet Laplacian, Besov spaces.
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2002; Ogawa and Shimizu 2010; 2016; Peetre 1976]. In this paper we consider open sets of Rd and the
semigroup generated by the fractional Laplacian with the Dirichlet boundary condition.

Let us recall the definitions of spaces of test functions and tempered distributions and the Besov spaces
associated with the Dirichlet Laplacian; see [Iwabuchi et al. 2016a]. We take �0. � / 2 C10 .R/ to be a
nonnegative function on R such that

supp�0 � f� 2 R W 2�1 � �� 2g;
X
j2Z

�0.2
�j�/D 1 for � > 0; (1-1)

and f�j gj2Z is defined by letting

�j .�/ WD �0.2
�j�/ for � 2 R: (1-2)

Definition. (i) (linear topological spaces X0.�/ and X 00.�/) X0.�/ is defined by letting

X0.�/ WD
˚
f 2 L1.�/\D.A/ W AMf 2 L1.�/\D.A/ for all M 2 N

	
;

equipped with the family of seminorms fp0;M . � /g1MD1 given by

p0;M .f / WD kf kL1.�/C sup
j2N

2Mj


�j .pA/f 

L1.�/:

(ii) (linear topological spaces Z0.�/ and Z 00.�/) Z0.�/ is defined by letting

Z0.�/ WD
˚
f 2 X0.�/ W sup

j�0

2M jj j


�j .pA/f 

L1.�/ <1 for all M 2 N

	
;

equipped with the family of seminorms fq0;M . � /g1MD1 given by

q0;M .f / WD kf kL1.�/C sup
j2Z

2M jj j


�j .pA/f 

L1.�/:

Definition. For s 2 R and 1� p; q �1, PBsp;q.A/ is defined by letting

PBsp;q.A/ WD ff 2 Z
0
0.�/ W kf k PBsp;q.A/

<1g;

where
kf k PBsp;q.A/

WD


˚2sj

�j .pA/f 

Lp.�/	j2Z




`q.Z/

:

Let us mention the basic properties of X0.�/;Z0.�/, their duals, and PBsp;q.A/ and explain the operators
�j .
p
A/ and the Laplacian of fractional order.

Proposition [Iwabuchi et al. 2016a]. Let s; ˛ 2 R and 1� p; q; r �1. Then the following hold:

(i) X0.�/ and Z0.�/ are Fréchet spaces and enjoy X0.�/ ,! Lp.�/ ,! X 00.�/ and Z0.�/ ,!
Lp.�/ ,! Z 00.�/:

(ii) PBsp;q.A/ is a Banach space and enjoys Z0.�/ ,! PBsp;q.A/ ,! Z 00.�/:

(iii) If p; q <1 and 1
p
C

1
p0
D

1
q
C

1
q0
D 1, the dual space of PBsp;q.A/ is PB�sp0;q0.A/.

(iv) If r � p, then PB
sCd. 1

r
� 1
p
/

r;q .A/ is embedded to PBsp;q.A/.

(v) For any f 2 PBsC˛p;q .A/, we have A
˛
2f 2 PBsp;q.A/.
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It should be noted that �j .
p
A/ and A are defined in L2.�/ initially and by the argument in [Iwabuchi

et al. 2016a] they can be realized as operators in Z 00.�/ and Besov spaces. In the proof, the uniform
boundedness in Lp.�/ of �j .

p
A/ with respect to j 2 Z is essential. Uniformity in L2.�/ is proved

easily by the spectral theorem, while that in L1.�/ is not trivial. For any open set � � Rd, L1.�/
boundedness is known in some papers; see Proposition 6.1 in [Thinh Duong et al. 2002] and also
Theorem 1.1 in [Iwabuchi et al. 2017]. Let us explain the strategy of its proof as in [Iwabuchi et al. 2017]
(see also the comment below Lemma 2.2). The uniform boundedness in L1.�/ is proved via estimates in
amalgam spaces `1.L2/� , where the side length of each cube is scaled by �

1
2, � D 2�2j (see Section 2),

together with the Gaussian upper bounds of the kernel of e�tA. That scaling fits for the scaled operator
�j .
p
A/D �0.2

�j
p
A/, and we can handle the norm in `1.L2/� through the estimates in L2.�/, since

its norm is defined locally with L2.�/. The Gaussian upper bounds of the kernel of e�tA are necessary
in order to estimate the L1.�/ norm via `1.L2/� . Once the L1.�/ estimate is proved, the Lp.�/ case
is assured by interpolation and a duality argument.

As for the Laplacian of fractional order, it was shown in the proof of Proposition 3.2 in [Iwabuchi
et al. 2016a] that A

˛
2 is a continuous operator from Z 00.�/ to itself, which is proved as follows: Show

the continuity of A
˛
2 in Z0.�/ first with the boundedness of spectral multipliers

A˛

2 �j .
p
A/



L1.�/!L1.�/

� C2 j̨

for all j 2 Z and consider their dual operator together with the approximation of the identity

f D
X
j2Z

�j .
p
A/f in Z 00.�/ for any f 2 Z 00.�/:

Hence, we define A
˛
2 by

A
˛
2 f D

X
j2Z

.A
˛
2 �j .
p
A//f in Z 00.�/ for any f 2 Z 00.�/:

Noting that e�tA
˛=2

�j .
p
A/ with t � 0 is also bounded in L1.�/ (see Lemma 2.1 and (3-1) below), we

also define e�tA
˛=2

by

e�tA
˛=2

f D
X
j2Z

.e�tA
˛=2

�j .
p
A//f in Z 00.�/ for any f 2 Z 00.�/:

We state four theorems on the semigroup generated byA
˛
2 : the estimates ofLp�Lq type and smoothing

effects, continuity in time, equivalent norms with semigroup and maximal regularity estimates, referring
to the results in the case when �D Rd and ˛ D 2.

We start by considering estimates of Lp�Lq type and smoothing effects. When �D Rn, it is well
known that

ket�f kLq.Rd / � Ct
�d
2
. 1
p
� 1
q
/
kf kLp.Rd /; kre

t�f kLp.Rd / � Ct
� 1
2 kf kLp.Rd /;

where 1� p; q �1 and f 2 Lp.Rd /. Hence one can show that

ket�f k PBs2p2;q.A/
� Ct

�d
2
. 1
p1
� 1
p2
/� s2�s1

2 kf k PBs1p1;q.A/
;
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where s2 � s1, 1 � p1 � p2 � 1 and 1 � q � 1. The following gives the linear estimates for the
semigroup generated by A

˛
2 on an open set.

Theorem 1.1. Let ˛ > 0, t � 0, s; s1; s2 2 R and 1� p; p1; p2; q; q1; q2 �1:

(i) e�tA
˛=2

is a bounded linear operator in PBsp;q.A/; i.e., there exists a constant C > 0 such that for any
f 2 PBsp;q.A/

e�tA
˛=2

f 2 PBsp;q.A/ and ke�tA
˛=2

f k PBsp;q.A/
� Ckf k PBsp;q.A/

: (1-3)

(ii) If s2 � s1, p1 � p2 and
d
�
1

p1
�
1

p2

�
C s2� s1 > 0;

then there exists a constant C > 0 such that

ke�tA
˛=2

f k PBs2p2;q2 .A/
� Ct

�d
˛
. 1
p1
� 1
p2
/� s2�s1

˛ kf k PBs1p1;q1 .A/
(1-4)

for any f 2 PBs1p1;q1.A/.

Remark. In the estimate (1-4), the regularity on indices q1 and q2 is gained without loss of the singularity
at t D 0. This estimate is known in the case when �D Rn and ˛ D 2; see [Kozono et al. 2003].

As for the continuity in time of the heat semigroup et� when � D Rd, it is well known that for
1� p <1

lim
t!0
ket�f �f kLp.Rd / D 0 for any f 2 Lp.Rd /:

In the case when pD1, the above strong convergence does not hold in general, while it holds in the dual
weak sense. The following theorem is concerned with such continuity in the Besov spaces on an open set.

Theorem 1.2. Let s 2 R, 1� p; q �1 and 1
p
C

1
p0
D

1
q
C

1
q0
D 1:

(i) Assume that q <1 and f 2 PBsp;q.A/. Then

lim
t!0
ke�tA

˛=2

f �f k PBsp;q.A/
D 0:

(ii) Assume that 1 < p �1, qD1 and f 2 PBsp;1.A/. Then e�tA
˛=2

f converges to f in the dual weak
sense as t ! 0; namely,

lim
t!0

X
j2Z

Z
�

˚
�j .
p
A/.e�tA

˛=2

f �f /
	
ˆj .
p
A/g dx D 0

for any g 2 PB�sp0;1.A/.

Remark. Related to Theorem 1.2(ii), it should be noted that the predual of PBsp;q.A/ is PB�sp0;q0.A/ for
1 < p; q �1, where 1

p
C

1
p0
D

1
q
C

1
q0
D 1. In fact, we can regard f 2 PBsp;q.A/ as an element of the

dual of PB�sp0;q0.A/ by

hf; gi D
X
j2Z

Z
�

f�j .
p
A/f gˆj .

p
A/g dx

for any g 2 PB�sp0;q0.A/, see [Iwabuchi et al. 2016a], where ĵ WD �j�1C�j C�jC1.
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As for the characterization of the norm by using the semigroup when �D Rd, it is known that

kf k PBsp;q.A/
'

�Z 1
0

�
t�

s
2 ket�f kLp.Rd /

�q dt
t

�1
q

;

where s < 0; see, e.g., [Lemarié-Rieusset 2002]. We consider the equivalent norm of Besov spaces on an
open set by using the semigroup generated by A

˛
2 .

Theorem 1.3. Let ˛ > 0, s; s0 2 R, s0 > s
˛

and 1� p; q �1. Then there exists a constant C > 0 such
that

C�1kf k PBsp;q.A/
�

�Z 1
0

�
t�

s
˛ k.tA

˛
2 /s0e�tA

˛=2

f kX
�q dt

t

�1
q

� Ckf k PBsp;q.A/
(1-5)

for any f 2 PBsp;q.A/, where X D Lp.�/; PB0p;r.A/ with 1� r �1.

Since the equivalence (1-5) is closely related to the real interpolation in the Besov spaces, we mention
that the interpolation is also available; see, e.g., [Bergh and Löfström 1976; Triebel 1983] and also
Proposition A.1 in the Appendix.

The last result is concerned with the maximal regularity estimates. When �DRd, the Cauchy problem
which we should consider is �

@tu��uD f; t > 0; x 2 Rd;

u.0; x/D u0.x/; x 2 Rd:

For 1 < p; q <1, the solution u of the above problem satisfies

k@tukLq.0;1ILp.Rd //Ck�ukLq.0;1ILp.Rd // � Cku0k PB2�2=qp;q .A/
CCkf kLq.0;1ILp.Rd //;

provided that u0 2 PB
2� 2

q

p;q .A/ and f 2Lq.0;1ILp.Rd //; see [Hieber and Prüss 1997; Lemarié-Rieusset
2002]. We note that maximal regularity such as the above is well-studied in the general framework
on Banach spaces with unconditional martingale differences (UMD); see [Amann 1995; Da Prato and
Grisvard 1975; Denk et al. 2003; Dore and Venni 1987; Ladyzhenskaya and Ural’tseva 1968; Weis 2001].
We also note that the cases when p; qD 1;1 require a different treatment from UMD since the spaces are
not reflexive. In terms of Besov spaces, one can consider PB0p;q.A/ for all indices p; q with 1� p; q �1;
see [Danchin 2005; 2007; Danchin and Mucha 2009; Hieber and Prüss 1997; Ogawa and Shimizu 2010;
2016]. Our result on the maximal regularity estimates on open sets is formulated in the following way.

Theorem 1.4. Let s2R, ˛>0 and 1�p; q�1. Assume that u02 PB
sC˛�˛

q

p;q .A/, f 2Lq.0;1I PBsp;q.A//.
Let u be given by

u.t/D e�tA
˛=2

u0C

Z t

0

e�.t��/A
˛=2

f .�/ d�:

Then there exists a constant C > 0 independent of u0 and f such that

k@tukLq.0;1I PBsp;q.A//
CkA

˛
2 uk

Lq.0;1I PBsp;q.A//
� Cku0k PBsC˛�˛=qp;q .A/

CCkf k
Lq.0;1I PBsp;q.A//

: (1-6)
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The proofs of our theorems are based on the boundedness of the spectral multiplier of the operator
e�tA

˛=2

�j .
p
A/:

e�tA˛=2�j .pA/

Lp.�/!Lp.�/ � C

e�t2˛j . � /˛�0.p� /

H s.R/

for all j 2 Z;

where s > d
2
C
1
2

(see Lemma 2.1 below). The above inequality implies

e�tA˛=2�j .pA/

Lp.�/!Lp.�/ � Ce�C�1t2˛j;
and this estimate allows us to show our theorems in a method analogous to those in the case when�DRd.
In this paper, we give proofs of all theorems by estimating directly so that the paper is self-contained.
Here, we note that our proofs can be applicable to the estimates for e�tA in the inhomogeneous Besov
spaces and hence similar theorems are able to be obtained. On the other hand, for the semigroup generated
by the fractional Laplacian, since there appear to be problems around low frequencies, we show only
the result for the heat semigroup in Section 7 (see Theorem 7.2 below). It should be also noted that our
argument can be applied not only to the Dirichlet Laplacian but also to more general operators A such
that the Gaussian upper bounds for e�tA hold.

This paper is organized as follows. In Section 2, we prepare a lemma to prove our results. Sections
3–6 are devoted to proofs of theorems. In Section 7, we state the result for the inhomogeneous Besov
spaces. In the Appendix, we show the characterization of Besov spaces by real interpolation.

Before closing this section, we introduce some notation. We denote by k � kLp the Lp.�/ norm
and by k � k PBsp;q the PBsp;q.A/ norm. We use the notation k � kH s.R/ to represent the H s.R/ norm for
functions, e.g., �j .�/, e�t�

˛=2

, whose variables are spectral parameters. We denote by S.R/ the Schwartz
class.

2. Preliminaries

In this section we introduce the following lemma on the boundedness of the scaled spectral multiplier.

Lemma 2.1. Let N > d
2

, 1� p �1, ı > 0 and a; b > 0. Then there exists a constant C > 0 such that
for any � 2 C10 .R/ with supp� � Œa; b�, G 2 C1..0;1//\C.R/ and f 2 Lp.�/ we have

G.pA/�.2�jpA/f 



Lp
� C



G.2jp� /�.p� /


HNC1=2Cı.R/

kf kLp (2-1)

for all j 2 Z.

Remark. As is seen from the proof below, the constant C on the right-hand side of (2-1) depends on the
interval Œa; b� containing the support of �.

To prove Lemma 2.1, we introduce a set AN of some bounded operators on L2.�/ and scaled amalgam
spaces `1.L2/� for � > 0 to prepare a lemma. Hereafter, for k 2 Zd, C� .k/ denotes a cube with the
center �

1
2k and side length �

1
2 , namely,

C� .k/ WD
˚
x 2� W jxj � �

1
2kj j � 2

�1�
1
2 for j D 1; 2; : : : ; d

	
;

and �C� .k/ is a characteristic function whose support is C� .k/.
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Definition. For N 2 N, we denote by AN the set of all bounded operators T on L2.�/ such that

kT kAN WD sup
k2Zd



j � �� 12kjNT�C� .k/

L2!L2 <1:
Definition. The space `1.L2/� is defined by letting

`1.L2/� WD ff 2 L
2
loc.�/ W kf k`1.L2/� <1g;

where
kf k`1.L2/� WD

X
k2Zd

kf kL2.C� .k//:

Lemma 2.2 [Iwabuchi et al. 2017; Iwabuchi et al. 2016b]. (i) Let N 2N and N > d
2

. Then there exists
a constant C > 0 such that

kT k`1.L2/�!`1.L2/� � C
�
kT kL2!L2 C �

�d
4 kT k

d
2N

AN
kT k

1� d
2N

L2!L2

�
(2-2)

for any T 2 AN and � > 0.

(ii) Let N 2 N. Then there exists a constant C > 0 such that

k ..M C �A/�1/kAN � C�
N
2

Z 1
�1

.1Cj�j2/
N
2 j y .�/j d� (2-3)

for any  2 S.R/ and � > 0.

(iii) Let M > 0 and ˇ > d
4

. Then there exists a constant C > 0 such that

k.M C �A/�ˇkL1!`1.L2/� � C�
�d
2 (2-4)

for any � > 0.

Remark. Lemma 2.2 is useful to prove the L1 boundedness of spectral multipliers and let us briefly
remind how to prove Lemma 2.2 as in [Iwabuchi et al. 2017; Iwabuchi et al. 2016b]. The original
idea is by Jensen and Nakamura [1994; 1995], who studied the Schrödinger operators on Rd. In the
first inequality (2-2), we start with the decomposition T D

P
m;k2Zd �C� .m/T�C� .k/, and it suffices to

show that for each k 2 Z a sum of operator norms
P
m2Z k�C� .m/T�C� .k/kL2!L2 is bounded by the

right-hand side of (2-2). The first term kT kL2!L2 is obtained just by applying L2.�/ boundedness to the
L2.C� .m// norm with mD k. The second term is obtained by decomposing the sum into two cases when
0< jm�kj �! and jm�kj>! for ! > 0, applying the L2.�/ boundedness to the case jm�kj �! and
the Schwarz inequality to the case jm�kj> ! for sequences jm�kj�N, jm�kjN k�C� .m/T�C� .k/kL2 ,
and minimizing by taking suitable !. As for the second one (2-3), we utilize the formula

 ..M C �A/�1/D .2�/
1
2

Z 1
�1

e�it.MC�A/
�1
y .t/ dt:

To estimate ke�it.MC�A/
�1

kAN , we consider the commutator of .x� �1=2k/ and e�it.MC�A/
�1

, which
is rewritten with � , .M C �A/�1, r.M C �A/�1 and is able to be handled by the use of L2.�/
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boundedness, which proves (2-3). As for the last one (2-4), thanks to the formula

.M C �A/�ˇ D
1

�.ˇ/

Z 1
0

tˇ�1e�Mte�t�A dt

and the Young inequality, we get

k.M C �A/�ˇf k`1.L2/� �
1

�.ˇ/

Z 1
0

tˇ�1e�Mt

�Z
�

ke�t�A. � ; y/k`1.L2/� jf .y/j dy

�
dt;

where �.ˇ/ is the Gamma function. By the Gaussian upper bounds of e�t�A, we have

ke�t�A. � ; y/k`1.L2/� � C�
�d
4 .1C t�

d
4 /:

These estimates yield the inequality (2-4), since the integrability with respect to t 2 .0;1/ is assured by
ˇ > 4

d
.

Proof of Lemma 2.1. Instead of the inequality (2-1), by replacing 2�j
p
A and

p
A with 2�2jA and A,

respectively, it is sufficient to show that

kG.A/�.2�2jA/f kLp � CkG.2
2j
� /�. � /kHNC1=2Cı.R/kf kLp ; (2-5)

where supp� � Œa2; b2�.
First we consider the case when pD 1. By decomposing � into cubes C� .k/ and the Hölder inequality,

we get
kG.A/f �.2�2jA/kL1 � C�

d
2 kG.A/�.2�2jA/f k`1.L2/� : (2-6)

For fixed real numbers M > 0 and ˇ > d
2

, let  be such that

 .�/ WDG.22j .��1�M//�.��1�M/��ˇ: (2-7)

It is easy to check that

 2 C10 ..0;1// and supp �
h

1

MCb
;

1

MCa

i
;

and
G.�/�.2�2j�/DG.22j � 2�2j�/�.2�2j�/��ˇ ��ˇ D  .�/�ˇ;

where � and � are real numbers with

2�2j�D ��1�M:

The above equality yields that

G.A/�.2�2jA/D  ..M C 2�2jA/�1/.M C 2�2jA/�ˇ: (2-8)

Then it follows from (2-6), (2-8) and the estimate (2-4) in Lemma 2.2 that

kG.A/�.2�2jA/f kL1

� C�
d
2



 ..M C 2�2jA/�1/.M C 2�2jA/�ˇf 


`1.L2/�

� C�
d
2 k ..M C 2�2jA/�1/k`1.L1/�!`1.L2/�k.M C 2

�2jA/�ˇkL1!`1.L2/�kf kL1

� Ck ..M C 2�2jA/�1/k`1.L1/�!`1.L2/�kf kL1 : (2-9)
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By comparing the estimates (2-5) and (2-9), all we have to do is to show that

k ..M C 2�2jA/�1/k`1.L2/�!`1.L2/� � CkG.2
j
� /�. � /kHNC1=2Cı.R/: (2-10)

To apply the estimate (2-2), we consider the operator norms k�kL2!L2 and k�kAN of  ..MC2�2jA/�1/.
On the operator norm k�kL2!L2 , we have from N > d

2
and the embeddingHNC 1

2
Cı.R/ ,!L1.R/ that

k ..M C 2�2jA/�1/kL2!L2 � k kL1.R/ � k kHNC1=2Cı.R/

for any ı > 0. As for k ..M C2�2jA/�1/kAN , by applying the estimate (2-3) and the Hölder inequality,
for any ı > 0 there exists C > 0 such that

k ..M C �A/�1/kAN � C�
N
2

Z 1
�1

.1Cj�j2/
N
2 j y .�/j d�

� C�
N
2 k.1Cj�j2/�

1
2
�ı
kL2.R/k.1Cj�j

2/
N
2
C 1
2
Cı y kL2.R/

� C�
N
2 k kHNC1=2Cı.R/:

Then we deduce from the above two estimates and (2-2) that

k ..M C 2�2jA/�1/k`1.L2/�!`1.L2/�

� C
˚
k kHNC1=2Cı.R/C �

�d
4 .�

N
2 k kHNC1=2Cı.R//

d
2N .k kHNC1=2Cı.R//

1� d
2N

	
� Ck kHNC1=2Cı.R/:

Since  is defined by (2-7) and the support is bounded and away from the origin, we see from the change
of variables by �D .�CM/�1 that

k . � /kHNC1=2Cı.R/ � CkG.2
2j
� /�. � /kHNC1=2Cı.R/:

Hence the estimate (2-10) is obtained by the above two estimates, and the estimate (2-5) in the case when
p D 1 is proved.

We next consider the case when p D1. Since the dual space of L1.�/ is L1.�/ and C10 .�/ is
dense in L1.�/, the following holds:

kG.A/�.2�jA/f kL1 D sup
g2C10 ; kgkL1D1

ˇ̌̌̌Z
�

�
G.A/�.2�jA/f

�
Ng dx

ˇ̌̌̌
:

On the right-hand side of the above equality, we have from the duality argument for the operator
G.A/�.2�jA/, the Hölder inequality and the estimate (2-5) with p D 1 thatˇ̌̌̌Z

�

�
G.A/�.2�jA/f

�
Ng dx

ˇ̌̌̌
D
ˇ̌
X 00
hG.A/�.2�jA/f; giX0

ˇ̌
D
ˇ̌
X 00
hf;G.A/�.2�jA/giX0

ˇ̌
D

ˇ̌̌̌Z
�

f G.A/�.2�jA/g dx

ˇ̌̌̌
� kf kL1kG.A/�.2

�jA/gkL1

� kf kL1kG.2
2j
� /�. � /kHNC1=2Cı.R/kgkL1 ;

where g 2 C10 . This proves (2-5) in the case when p D1.
As for the case when 1 < p <1, the Riesz–Thorin theorem allows us to obtain the estimate (2-5). �
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3. Proof of Theorem 1.1

Proof of (1-3). Put ĵ WD �j�1C�j C�jC1. By applying the estimate (2-1) in Lemma 2.1 with

G DGt .�/D e
�t�˛;

we have 

�j .pA/e�tA˛=2f 

Lp D 

�Gt .pA/ ĵ .
p
A/
�
.�j .
p
A/f /




Lp

� C


Gt .2jp� /ˆ0.p� /

HNC1=2Cı.R/



�j .pA/f 

Lp ;
where N > d

2
and ı > 0. Here it is easy to check that there exists C > 0 such that

Gt .2jp� /ˆ0.p� /

HNC1=2Cı.R/

� Ce�C
�1t2˛j for any j 2 Z;

and hence, 

�j .pA/e�tA˛=2f 

Lp � Ce�C�1t2˛j 

�j .pA/f 

Lp for any j 2 Z: (3-1)

By multiplying 2sj and taking the `q.Z/ norm in the above inequality, we obtain the assertion (1-3). �

Proof of (1-4). By the inequalities

ke�tA
˛=2

f k PBs2p2;q2
� ke�tA

˛=2

f k PBs2p2;1
; kf k PBs1p1;1

� kf k PBs1p1;q1
;

which are assured from the embedding relations in the Besov spaces, and taking s1 D 0 for the sake of
simplicity, it is sufficient to show

ke�tA
˛=2

f k PBs2p2;1
� Ct

�d
˛
. 1
p1
� 1
p2
/� s2

˛ kf k PB0p1;1
; (3-2)

where
s2 � 0; p1 � p2 and d

�
1

p1
�
1

p2

�
C s2 > 0:

It follows from the embedding PB
s2Cd. 1p1�

1
p2
/

p1;1
,! PB

s2
p2;1

and the estimate (3-1) that

ke�tA
˛=2

f k PBs2p2;1
� Cke�tA

˛=2

f k
PB
s2Cd.1=p1�1=p2/

p1;1

� C
X
j2Z

2
s2jCd. 1p1�

1
p2
/j
e�ct2

˛j 

�j .pA/f 

Lp1 :
Since s2C d

�
1
p1
�

1
p2

�
> 0, we getX

j2Z

2
s2jCd. 1p1�

1
p2
/j
e�ct2

˛j 

�j .pA/f 

Lp1
D t
�
s2
˛
�d
˛
. 1
p1
� 1
p2
/X
j2Z

˚
.t2 j̨ /

s2
˛
Cd
˛
. 1
p1
� 1
p2
/
e�ct2

˛j 	

�j .pA/f 

Lp1
� Ct

�
s2
˛
�d
˛
. 1
p1
� 1
p2
/
kf k PB0p1;1

;

which proves (3-2). �
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4. Proof of Theorem 1.2

Proof of (i). Let f 2 PBsp;q.A/. We take fN such that

fN WD
X
jj j�N

�j .
p
A/f for N 2 N:

Since q <1, for any " > 0 there exists N0 2 N such that

kfN �f k PBsp;q
< " for any N �N0:

The above inequality and boundedness (1-3) in Theorem 1.1 imply

ke�tA
˛=2

f �f k PBsp;q
� ke�tA

˛=2

fN �fN k PBsp;q
Cke�tA

˛=2

.fN �f /k PBsp;q
CkfN �f k PBsp;q

� ke�tA
˛=2

fN �fN k PBsp;q
CCkfN �f k PBsp;q

� ke�tA
˛=2

fN �fN k PBsp;q
CC"

for any t > 0 provided that N �N0. Then all we have to do is to show that

lim
t!0
ke�tA

˛=2

fN �fN k PBsp;q
D 0: (4-1)

We prove (4-1). Noting that the spectrum of fN is restricted and

ke�tA
˛=2

fN �fN k PBsp;q
D

� NC1X
jD�N�1

�
2sj


�j .pA/.e�tA˛=2 � 1/fN

Lp�q�1q;

we may consider the convergence of


�j .pA/.e�tA˛=2 � 1/fN

Lp for each j . For each j D 0;˙1;

˙2; : : : ;˙.N C 1/, it follows from (2-1) in Lemma 2.1 with

G DGt .�/D e
�t�˛

� 1

that 

�j .pA/.e�tA˛=2 � 1/fN

Lp D 

.Gt .pA/ ĵ .
p
A//.�j .

p
A/fN /




Lp

� C


Gt .2jp� /ˆ0.p� /

HNCd=2Cı



�j .pA/fN

Lp ;
where ĵ WD �j�1C�j C�jC1. Here it is readily checked that

lim
t!0



Gt .2jp� /ˆ0.p� /

HNCd=2Cı D 0 for each j;

and hence, (4-1) is obtained. �

Proof of (ii). Put ĵ WD �j�1C�j C�jC1. By considering the dual operator of e�tA
˛=2

� 1, we haveX
j2Z

Z
�

˚
�j .
p
A/.e�tA

˛=2

�1/f
	
ˆj .
p
A/gdxD

X
j2Z

Z
�

f�j .
p
A/f g ĵ .

p
A/.e�tA

˛=2
�1/gdx: (4-2)
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It follows from the Hölder inequality thatX
j2Z

Z
�

ˇ̌
f�j .
p
A/f g ĵ .

p
A/.e�tA

˛=2
� 1/g

ˇ̌
dx

�

X
j2Z

2sj


�j .pA/f 

Lp � 2�sj

 ĵ .

p
A/.e�tA

˛=2

� 1/g



Lp
0

� Ckf k PBsp;1
k.e�tA

˛=2

� 1/gk PB�s
p0;1

; (4-3)

which assures the absolute convergence of the series in (4-2) by the boundedness of e�tA
˛=2

in PB�sp0;1
from (1-3) in Theorem 1.1. The above estimate and the assertion (i) of Theorem 1.2 implyˇ̌̌̌X
j2Z

Z
�

˚
�j .
p
A/.e�tA

˛=2

�1/f
	
ˆj .
p
A/gdx

ˇ̌̌̌
�Ckf k PBsp;1

k.e�tA
˛=2

�1/gk PB�s
p0;1

!0 as t!0: �

5. Proof of Theorem 1.3

To prove Theorem 1.3 we will need the following lemma.

Lemma 5.1. Let ˛ > 0, s0 2 R and 1� p �1. Then there exists C > 0 such that

C�1.t2 j̨ /s0e�Ct2
˛j 

�j .pA/f 

Lp � 

.tA˛

2 /s0e�tA
˛=2

�j .
p
A/f




Lp

� C.t2 j̨ /s0e�C
�1t2˛j



�j .pA/f 

Lp (5-1)

for any t > 0, j 2 Z and f 2 Lp.�/.

Proof. Put ĵ WD �j�1C�j C�jC1. We start by proving the second inequality of the estimate (5-1). By
applying the estimate (2-1) in Lemma 2.1 with

G DGt .�/D .t�
˛/s0e�t�

˛

;

we have

.tA˛
2 /s0e�tA

˛=2

�j .
p
A/f




Lp
D


�Gt .pA/ ĵ .

p
A/
�
.�j .
p
A/f /




Lp

� C


Gt .2jp� /ˆ0.p� /

HNC1=2Cı.R/



�j .pA/f 

Lp ; (5-2)

where N > d
2

and ı > 0. Here it is easy to check that there exists C > 0 such that

Gt .2jp� /ˆ0.p� /

HNC1=2Cı.R/
� C.t2 j̨ /s0e�C

�1t2˛j for any j 2 Z; (5-3)

and hence,

.tA˛
2 /s0e�tA

˛=2

�j .
p
A/f




Lp
� C.t2 j̨ /s0e�C

�1t2˛j


�j .pA/f 

Lp for any j 2 Z:

This proves the second inequality of (5-1).
We turn to the first inequality of (5-1). Since �j .

p
A/f is written as

�j .
p
A/f D

�
.tA

˛
2 /�s0etA

˛=2

ĵ .
p
A/
��
.tA

˛
2 /s0e�tA

˛=2

�j .
p
A/f

�
DW
�
.tA

˛
2 /�s0etA

˛=2

ĵ .
p
A/
�
F;
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all we have to do is to show that

.tA˛
2 /�s0etA

˛=2

ĵ .
p
A/F




Lp
� C.t2 j̨ /�s0eCt�

˛

kF kLp : (5-4)

Applying (2-1) in Lemma 2.1 with

G D zGt .�/D .t�
˛/�s0et�

˛

to the left-hand side of (5-4), we have from an similar argument to (5-2) and (5-3) that

.tA˛
2 /�s0etA

˛=2

ĵ .
p
A/F




Lp
� C



 zGt .2jp� /ˆ0.p� /

HNC1=2C".R/
kF kLp

� C.t2 j̨ /�s0eCt�
˛

kF kLp :

This proves (5-4) and the first inequality of (5-1) is obtained. �

In what follows, we show the inequality (1-5) for f 2 PBsp;q.A/ to prove Theorem 1.3. We note that the
proof below concerns the case when q <1 only, since the case when q D1 is also shown analogously
with some modification.

Proof of the first inequality of (1-5). By the embedding Lp.�/; PB0p;r.A/ ,! PB0p;1.A/, it is sufficient to
show that

C�1kf k PBsp;q
�

�Z 1
0

�
t�

s
˛



.tA˛
2 /s0e�tA

˛=2

f



PB0p;1

�q dt
t

�1
q

: (5-5)

We have from the definition of norm k � k PB0p;1 and the first inequality of estimate (5-1) in Lemma 5.1 that

�Z 1
0

�
t�

s
˛



.tA˛
2 /s0e�tA

˛=2

f



PB0p;1

�q dt
t

�1
q

� C�1
�Z 1

0

�
t�

s
˛ sup
j2Z

.t2 j̨ /s0e�Ct2
˛j 

�j .pA/f 

Lp�q dtt

�1
q

:

Decomposing .0;1/ in the last line by

.0;1/D
[
k2Z

Œ2�˛.kC1/; 2�˛k�; (5-6)

we get�Z 1
0

�
t�

s
˛



.tA˛
2 /s0e�tA

˛=2

f



PB0p;1

�q dt
t

�1
q

� C�1
�X
k2Z

Z 2�˛k

2�˛.kC1/

�
t�

s
˛ sup
j2Z

.t2 j̨ /s0e�Ct2
˛j 

�j .pA/f 

Lp�q dtt

�1
q

� C�1
�X
k2Z

�
2sk sup

j2Z

.2˛.j�k//s0e�C2
˛.j�k/

�j .pA/f 

Lp�q�1q: (5-7)
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Here it follows from the Hölder inequality that

sup
j2Z

.2˛.j�k//s0e�C2
˛.j�k/

�j .pA/f 

Lp

� C�1
�X
j2Z

�
1

1C˛2jj � kj2
� .2˛.j�k//s0e�C2

˛.j�k/

�j .pA/f 

Lp�q�1q:
Then we deduce from (5-7) and the above inequality that

�Z 1
0

�
t�

s
˛



.tA˛
2 /s0e�tA

˛=2

f



PB0p;1

�q dt
t

�1
q

� C�1
�X
k2Z

.2sk/q
X
j2Z

�
1

1C˛2jj � kj2
� .2˛.j�k//s0e�C2

˛.j�k/

�j .pA/f 

Lp�q�1q

D C�1
�X
j2Z

�
2sj


�j .pA/f 

Lp�qX

k2Z

�
2�s.j�k/

1C˛2jj � kj2
� .2˛.j�k//s0e�C2

˛.j�k/

�q�1
q

D C�1kf k PBsp;q

�X
k2Z

�
2.s0˛�s/k

1C˛2jkj2
� e�C2

˛k

�q�1
q

:

Since s0 > s
˛

and the summation appearing in the last line converges, we obtain (5-5). �

Proof of the second inequality of (1-5). By the embedding PB0p;1.A/ ,!Lp.�/; PB0p;q.A/, it is sufficient to
show that �Z 1

0

�
t�

s
˛



.tA˛
2 /s0e�tA

˛=2

f



PB0p;1

�q dt
t

�1
q

� Ckf k PBsp;q.A/
: (5-8)

Analogously to the proof of (5-5), we apply the second inequality of (5-1) in Lemma 5.1 instead of the
first one and the decomposition (5-6) to get

�Z 1
0

�
t�

s
˛



.tA˛
2 /s0e�tA

˛=2

f



PB0p;1

�q dt
t

�1
q

�

�X
k2Z

�
2sk

X
j2Z

.2˛.j�k//s0e�C
�12˛.j�k/



�j .pA/f 

Lp�q�1q:
Here the Hölder inequality yields thatX
j2Z

.2˛.j�k//s0e�C
�12˛.j�k/



�j .pA/f 

Lp
� C

�X
j2Z

�
.1C˛2jj � kj2/.2˛.j�k//s0e�C

�12˛.j�k/
k�j .
p
A/f kLp

�q�1q
:
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Then we have from the above two estimates that�Z 1
0

�
t�

s
˛



.tA˛
2 /s0e�tA

˛=2

f



PB0p;1

�q dt
t

�1
q

� C

�X
k2Z

.2sk/q
X
j2Z

�
.1C˛2jj � kj2/.2˛.j�k//s0e�C

�12˛.j�k/


�j .pA/f 

Lp�q�1q

D C

�X
j2Z

�
2sj


�j .pA/f 

Lp�qX

k2Z

�
2�s.j�k/.1C˛2jj � kj2/.2˛.j�k//s0e�C

�12˛.j�k/
�q�1q

D Ckf k PBsp;q

�X
k2Z

�
.1C˛2jkj2/2.s0˛�s/ke�C

�12˛k
�q�1q

:

Since s0 > s
˛

and the summation appearing in the last line converges, we obtain (5-8). �

6. Proof of Theorem 1.4

Proof of (1-6). It is sufficient to prove the case when sD 0 thanks to the lifting property in the proposition
on page 684. We also consider the case when q <1 only, since the case when q D1 is also shown
analogously. First we prove that

kA
˛
2 uk

Lq.0;1I PB0p;q/
� Cku0k PB˛�˛=qp;q

CCkf k
Lq.0;1I PB0p;q/

: (6-1)

By the definition of u and the triangle inequality, we get

kA
˛
2 uk

Lq.0;1I PB0p;q/
�kA

˛
2 e�tA

˛=2

u0kLq.0;1I PB0p;q/
C





A˛
2

Z t

0

e�.t��/A
˛=2

f .�/d�






Lq.0;1I PB0p;q/

: (6-2)

On the first term of the right-hand side in the above inequality, it follows from the estimate (1-5) for
s0 D 1, s D ˛� ˛

q
that

kA
˛
2 e�tA

˛=2

u0kLq.0;1I PB0p;q/
� Cku0kLq.0;1I PB˛�˛=qp;q /

: (6-3)

As for the second one, we start by proving that



�j .pA/A˛
2

Z t

0

e�.t��/A
˛=2

f .�/ d�






Lp
� C2

˛
q
j

�Z t

0

�
e�C

�1.t��/2˛j


�j .pA/f 

Lp�q d��1q: (6-4)

The above estimate (6-4) is verified by applying the estimate (5-1) in Lemma 5.1 and the Hölder inequality;
in fact, we get



�j .pA/A˛

2

Z t

0

e�.t��/A
˛=2

f .�/ d�






Lp
� C2 j̨

Z t

0

e�C
�1.t��/2˛j



�j .pA/f .�/

Lp d�
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� C2 j̨ ke�.2C/
�1.t��/2˛j

kLq=.q�1/.f0���tg/

�Z t

0

�
e�.2C/

�1.t��/2˛j


�j .pA/f .�/

Lp�q d��1q

� C2
˛
q
j

�Z t

0

�
e�.2C/

�1.t��/2˛j


�j .pA/f .�/

Lp�q d��1q:

By the estimate (6-4), we have



A˛
2

Z t

0

e�.t��/A
˛=2

f .�/ d�






Lq.0;1I PB0p;q/

� C

�Z 1
0

X
j2Z

�
2
˛
q
j

�Z t

0

�
e�.2C/

�1.t��/2˛j


�j .pA/f .�/

Lp�q d��1q�q dt� 1q

D C

�Z 1
0

X
j2Z



�j .pA/f .�/

qLp�2 j̨

Z 1
�

e�q.2C/
�1.t��/2˛j dt

�
d�

� 1
q

D Ckf k
Lq.0;1I PB0p;q.A//

: (6-5)

Then the estimates (6-2), (6-3) and (6-5) imply the inequality (6-1). The estimate for @tu, i.e., the
inequality

k@tukLq.0;1I PB0p;q/
� Cku0k PB˛�˛=qp;q

CCkf k
Lq.0;1I PB0p;q/

;

is verified by the estimate (6-1) and the equality

@tuD�A
˛
2 uCf:

Hence we obtain the estimate (1-6) and the proof is complete. �

7. Results for the inhomogeneous Besov spaces

We should mention that similar theorems also hold for the heat semigroup in the inhomogeneous Besov
spaces Bsp;q.A/. We also note that the semigroup generated by the fractional Laplacian cannot be treated
analogously by the direct application of boundedness of the scaled spectral multiplier in Lemma 2.1 (see
the comment below Theorem 7.2).

First we recall the definition of Bsp;q.A/. Let  be as in C10 ..�1;1// such that

 .�2/C
X
j2N

�j .�/D 1 for any �� 0:

The inhomogeneous Besov space Bsp;q.A/ is defined as follows; see [Iwabuchi et al. 2016a].

Definition. For s 2 R and 1� p; q �1, Bsp;q.A/ is defined by letting

Bsp;q.A/ WD ff 2 X
0
0.�/ W kf kBsp;q.A/ <1g;

where
kf kBsp;q.A/ WD k .A/f kLp C



˚2sj

�j .pA/f 

Lp	j2N




`q.N/

:
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The high-frequency part is able to be treated in the same way as the proof for the homogeneous case by
using Lemma 2.1. As for the low-frequency part, we employ the pointwise estimate of the kernel of e�tA

0� e�tA.x; y/� .4�t/�
d
2 exp

�
jx�yj2

4t

�
;

which assures the boundedness of e�tA in Lp.�/ and also Bsp;q.A/ as well as the case when �DRd. In
order to treat continuity in time of e�tA, we need the following obtained by a proof similar to that of
Lemma 2.1.

Lemma 7.1. Let N > d
2

, 1 � p �1, ı > 0,  2 C10 ..�1;1// and G 2 HNC 1
2
Cı.R/. Then there

exists a positive constant C such that for any f 2 Lp.�/

kG.A/ .A/f kLp � CkG. � / . � /kHNC1=2Cı.R/kf kLp : (7-1)

We take G such that
G.�/ WD e�t�� 1 for any � 2 R

to apply the above lemma. For the above G it is easy to check that

kG. � / . � /kHNC1=2Cı.R/! 0 as t ! 0:

Hence for any f 2 Bsp;q.A/, it follows from (7-1) that

lim
t!0
k .A/.e�tAf �f /kLp D 0:

According to the boundedness and the continuity of e�tA, we obtain the following result for the inhomo-
geneous Besov spaces.

Theorem 7.2. Let s 2 R, 1� p; p1; p2; q �1 and 1
p
C

1
p0
D 1. Let ‰ and ‰j with j 2 N be such that

‰.A/ WD  .A/C�1.
p
A/;

ˆ1.
p
A/ WD  .A/C�1.

p
A/C�2.

p
A/;

ĵ .
p
A/ WD �j�1.

p
A/C�j .

p
A/C�jC1.

p
A/ for j � 2 W

(i) There exists a constant C > 0 such that

ke�tAf kBsp;q.A/ � Ckf kBsp;q.A/

for any f 2 Bsp;q.A/. If p1 � p2, then there exists a constant C > 0 such that

ke�tAf kBsp2;q.A/
� Ct

�d
2
. 1
p1
� 1
p2
/
kf kBsp1;q.A/

for any f 2 Bsp1;q.A/.

(ii) If q <1 and f 2 Bsp;q.A/, then

lim
t!0
ke�tAf �f kBsp;q.A/ D 0:
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If q D1, 1 < p �1 and f 2 Bsp;1.A/, then e�tAf converges to f in the dual weak sense as t ! 0;
namely,

lim
t!0

�Z
�

˚
 .A/.e�tAf �f /

	
‰.A/g dxC

X
j2N

Z
�

˚
�j .
p
A/.e�tAf �f /

	
ˆj .
p
A/g dx

�
D 0

for any g 2 PB�sp0;1.A/.

(iii) Let T > 0, s; s0 2 R and s0 > s
2

. Then

kf kBsp;q.A/ ' k .TA/f kLp C

�Z T

0

�
t�

s
2 k.tA/s0e�tAf kX

�q dt
t

�1
q

for any f 2 Bsp;q.A/, where X D Lp.�/; B0p;r.A/ with 1� r �1.

(iv) Let T > 0, u0 2 B
sC2�2=q
p;q .A/ and f 2 Lq.0; T IBsp;q.A//. Assume that u satisfies

u.t/D e�tAu0C

Z t

0

e�.t��/Af .�/ d�:

Then there exists a constant C D C.T / > 0 independent of u0 and f such that

k@tukLq.0;T IBsp;q.A//CkA
˛
2 ukLq.0;T IBsp;q.A// � Cku0kBsC2�2=qp;q .A/

CCkf kLq.0;T IBsp;q.A//:

Remark. Let us mention what is obtained by the abstract theory for sectorial operators by Da Prato
and Grisvard [1975]; see also [Haase 2006; Lunardi 1995]. Let X D B0p;q.A/. We can consider A as
a sectorial operator with the domain D.A˛/D B2p;q.A/. Let 0 < T <1, 1 < q <1, 1 � p; r �1,
� 2 .0; 1/ and ˛ > 0. Then for any f 2 Lq.0; T I .X;D.A˛//�;r/ the equation8<:

du

dt
CAuD f; 0 < t < T;

u.0/D 0

admits a unique solution u satisfying


du
dt





Lq.0;T I.X;D.A˛//�;r /

CkAukLq.0;T I.X;D.A˛//�;r / � Ckf kLq.0;T I.X;D.A˛//�;r /;

where C depends on T. Here we note that .X;D.A˛//�;r D B2˛�p;r .A/ and 2˛� is possibly an arbitrary
positive number since ˛ > 0 and � 2 .0; 1/.

Let us give a few remarks on the semigroup generated by A
˛
2 . If we consider applying Lemma 7.1

directly, it is impossible to obtain the boundedness of e�tA
˛=2

for general ˛. In fact, taking

G DGt .�/D e
�t j�j˛=2;

and applying (7-1), we see that the HNC 1
2
Cı.R/ norm of the above G D Gt .�/ is not finite for small

� > 0 because of less regularity around �D 0. On the other hand, if ˛ is even or sufficiently large, the
HNC 1

2
Cı.R/ norm of e�t j�j

˛=2

is finite and we can get some results. However this argument does not
reach the optimal estimate, and hence, we do not treat it in this paper and will treat it in a future work.
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Appendix: Real interpolation

We now give a remark that real interpolation can be considered in the Besov spaces PBsp;q.A/ and Bsp;q.A/
on open sets as well as the whole space case. We recall the definition of real interpolation spaces
.X0; X1/�;q for Banach spaces X0 and X1; see, e.g., [Bergh and Löfström 1976; Peetre 1968; Triebel
1983].

Definition. Let 0 < � < 1 and 1� q �1. .X0; X1/�;q is defined by letting

.X0; X1/�;q WD

�
a 2X0CX1 W kak.X0;X1/�;q WD

�Z 1
0

.t��K.t; a//q
dt

t

�1
q

<1

�
;

where K.t; a/ is Peetre’s K-function

K.t; a/ WD inf
˚
ka0kX0 C tka1kX1 W aD a0C a1; a0 2X0; a1 2X1

	
:

As well as in the case when �D Rd, we obtain the following.

Proposition A.1. Let 0 < � < 1, s; s0; s1 2 R and 1 � p; q; q0; q1 � 1. Assume that s0 6D s1 and
s D .1� �/s0C �s1. Then

. PBs0p;q0.A/;
PBs1p;q1.A//�;q D

PBsp;q.A/;

.Bs0p;q0.A/; B
s1
p;q1

.A//�;q D B
s
p;q.A/:

We omit the proof of the above proposition since one can show it analogously to the whole space case;
see, e.g., [Triebel 1983].
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KLEIN’S PARADOX AND THE RELATIVISTIC δ-SHELL INTERACTION IN R3

ALBERT MAS AND FABIO PIZZICHILLO

Under certain hypotheses of smallness on the regular potential V, we prove that the Dirac operator in R3,
coupled with a suitable rescaling of V, converges in the strong resolvent sense to the Hamiltonian coupled
with a δ-shell potential supported on 6, a bounded C2 surface. Nevertheless, the coupling constant
depends nonlinearly on the potential V ; Klein’s paradox comes into play.

1. Introduction

Klein’s paradox is a counterintuitive relativistic phenomenon related to scattering theory for high-barrier
(or equivalently low-well) potentials for the Dirac equation. When an electron is approaching a barrier,
its wave function can be split in two parts: the reflected one and the transmitted one. In a nonrelativistic
situation, it is well known that the transmitted wave-function decays exponentially depending on the high
of the potential; see [Thaller 2005]. In the case of the Dirac equation it has been observed, in [Klein 1929]
for the first time, that the transmitted wave-function depends weakly on the power of the barrier, and it
becomes almost transparent for very high barriers. This means that outside the barrier the wave-function
behaves like an electronic solution and inside the barrier it behaves like a positronic one, violating the
principle of the conservation of the charge. This incongruence comes from the fact that, in the Dirac
equation, the behavior of electrons and positrons is described by different components of the same spinor
wave-function; see [Katsnelson et al. 2006]. Roughly speaking, this contradiction derives from the fact
that even if a very high barrier is reflective for electrons, it is attractive for the positrons.

From a mathematical perspective, the problem appears when approximating the Dirac operator coupled
with a δ-shell potential by the corresponding operator using local potentials with shrinking support.
The idea of coupling Hamiltonians with singular potentials supported on subsets of lower dimension
with respect to the ambient space (commonly called singular perturbations) is quite classic in quantum
mechanics. One important example is the model of a particle in a 1-dimensional lattice that analyses
the evolution of an electron on a straight line perturbed by a potential caused by ions in the periodic
structure of the crystal that create an electromagnetic field. Kronig and Penney [1931] idealized this
system: in their model the electron is free to move in regions of the whole space separated by some
periodical barriers which are zero everywhere except at a single point, where they take infinite value. In
modern language, this corresponds to a δ-point potential. For the Schrödinger operator, this problem is
described in [Albeverio et al. 1988] for finite and infinite δ-point interactions and in [Exner 2008] for
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Keywords: Dirac operator, Klein’s paradox, δ-shell interaction, singular integral operator, approximation by scaled regular

potentials, strong resolvent convergence.
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singular potentials supported on hypersurfaces. The reader may look at [Dittrich et al. 1989; Behrndt and
Holzmann 2016; Arrizabalaga et al. 2014; 2015; Ourmières-Bonafos and Vega 2016] for the case of the
Dirac operator, and to [Posilicano 2008] for a much more general scenario.

Nevertheless, one has to keep in mind that, even if this kind of model is more easily mathematically
understood, since the analysis can be reduced to an algebraic problem, it is an ideal model that cannot be
physically reproduced. This is the reason why it is interesting to approximate these kinds of operators by
more regular ones. For instance, in one dimension, if V ∈ C∞c (R) then

Vε(t) :=
1
ε

V
( t
ε

)
→

(∫
V
)
δ0 when ε→ 0

in the sense of distributions, where δ0 denotes the Dirac measure at the origin. In [Albeverio et al. 1988]
it is proved that 1+ Vε → 1+

(∫
V
)
δ0 in the norm resolvent sense when ε → 0, and in [Behrndt

et al. 2017] this result is generalized to higher dimensions for singular perturbations on general smooth
hypersurfaces.

These kinds of results do not hold for the Dirac operator. In fact, in [Šeba 1989] it is proved that, in
the 1-dimensional case, the convergence holds in the norm resolvent sense but the coupling constant
does depend nonlinearly on the potential V, unlike in the case of Schrödinger operators. This nonlinear
phenomenon, which may also occur in higher dimensions, is a consequence of the fact that, in a sense, the
free Dirac operator is critical with respect to the set where the δ-shell interaction is performed, unlike the
Laplacian (the Dirac/Laplace operator is a first/second-order differential operator, respectively, and the
set where the interaction is performed has codimension 1 with respect to the ambient space). The present
paper is devoted to the study of the 3-dimensional case, where we investigate if it is possible to obtain the
same results as in one dimension. For δ-shell interactions on bounded smooth hypersurfaces, we get the
same nonlinear phenomenon on the coupling constant but we are only able to show convergence in the
strong resolvent sense.

Given m ≥ 0, the free Dirac operator in R3 is defined by

H := −iα · ∇ +mβ,

where α = (α1, α2, α3),

αj =

(
0 σj

σj 0

)
for j = 1, 2, 3, β =

(
I2 0
0 −I2

)
, I2 :=

(
1 0
0 1

)
,

and

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(1-1)

is the family of Pauli matrices. It is well known that H is self-adjoint on the Sobolev space H 1(R3)4 =:

D(H); see [Thaller 1992, Theorem 1.1]. Throughout this article we assume that m > 0.
In the sequel�⊂R3 denotes a bounded C2 domain and6 := ∂� denotes its boundary. By a C2 domain

we mean the following: for each point Q ∈ 6 there exist a ball B ⊂ R3 centered at Q, a C2 function
ψ : R2

→ R and a coordinate system {(x, x3) : x ∈ R2, x3 ∈ R} such that, with respect to this coordinate
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system, Q = (0, 0) and
B ∩�= B ∩ {(x, x3) : x3 >ψ(x)},

B ∩6 = B ∩ {(x, x3) : x3 = ψ(x)}.

By compactness, one can find a finite covering of 6 made of such coordinate systems; thus the Lipschitz
constant of those ψ can be taken to be uniformly bounded on 6.

Set �ε := {x ∈ R3
: d(x, 6) < ε} for ε > 0. Following [Behrndt et al. 2017, Appendix B], there exists

η > 0 small enough depending on 6 such that for every 0< ε ≤ η one can parametrize �ε as

�ε = {x6 + tν(x6) : x6 ∈6, t ∈ (−ε, ε)}, (1-2)

where ν(x6) denotes the outward (with respect to �) unit normal vector field on 6 evaluated at x6 .
This parametrization is a bijective correspondence between �ε and 6× (−ε, ε); it can be understood as
tangential and normal coordinates. For t ∈ [−η, η], we set

6t := {x6 + tν(x6) : x6 ∈6}. (1-3)

In particular, 6t = ∂�t \� if t > 0, 6t = ∂�|t | ∩� if t < 0 and 60 = 6. Let σt denote the surface
measure on 6t and, for simplicity of notation, we set σ := σ0, the surface measure on 6.

Given V ∈ L∞(R) with supp V ⊂ [−η, η] and 0< ε ≤ η define

Vε(t) :=
η

ε
V
(
ηt
ε

)
and, for x ∈ R3,

Vε(x) :=
{

Vε(t) if x ∈�ε, where x = x6 + tν(x6) for a unique (x6, t) ∈6× (−ε, ε),
0 if x 6∈�ε .

(1-4)

Finally, set
uε := |Vε |1/2, vε := sign(Vε)|Vε |1/2,

u(t) := |ηV (ηt)|1/2, v(t) := sign(V (ηt))u(t).
(1-5)

Note that uε, vε ∈ L∞(R3) are supported in �ε and u, v ∈ L∞(R) are supported in [−1, 1].

Definition 1.1. Given η, δ > 0, we say that V ∈ L∞(R) is (δ, η)-small if

supp V ⊂ [−η, η] and ‖V ‖L∞(R) ≤
δ

η
.

Observe that if V is (δ, η)-small then ‖V ‖L1(R) ≤ 2δ; this is the reason why we call it a “small”
potential.

In this article we study the asymptotic behavior, in a strong resolvent sense, of the couplings of the
free Dirac operator with electrostatic and Lorentz scalar short-range potentials of the forms

H + Vε and H +βVε, (1-6)

respectively, where Vε is given by (1-4) for some (δ, η)-small V with δ and η small enough only depending
on 6. By [Thaller 1992, Theorem 4.2], both couplings in (1-6) are self-adjoint operators on H 1(R3)4.
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Given η > 0 small enough so that (1-2) holds, and given u and v as in (1-5) for some V ∈ L∞(R) with
supp V ⊂ [−η, η], set

KV f (t) := 1
2 i
∫

R

u(t) sign(t − s)v(s) f (s) ds for f ∈ L1
loc(R). (1-7)

The main result in this article reads as follows.

Theorem 1.2. There exist η0, δ > 0 small enough only depending on 6 such that, for any 0 < η ≤ η0

and (δ, η)-small V,

H + Vε→ H + λeδ6 in the strong resolvent sense when ε→ 0, (1-8)

H +βVε→ H + λsβ δ6 in the strong resolvent sense when ε→ 0, (1-9)

where

λe :=

∫
R

v(t) ((1−K2
V )
−1u)(t) dt ∈ R, (1-10)

λs :=

∫
R

v(t) ((1+K2
V )
−1u)(t) dt ∈ R, (1-11)

and H + λeδ6 and H + λsβ δ6 are the electrostatic and Lorentz scalar shell interactions given by (2-9)
and (2-11), respectively.

To define λe in (1-10) and λs in (1-11), the invertibility of 1±K2
V is required. However, since KV

is a Hilbert–Schmidt operator, we know that ‖KV ‖L2(R)→L2(R) is controlled by the norm of its kernel
in L2(R×R), which is exactly ‖u‖L2(R)‖v‖L2(R) = ‖V ‖L1(R) ≤ 2δ < 1, assuming that δ < 1

2 and that
V is (δ, η)-small with η ≤ η0. We must stress that the way to construct λe and λs is the same as in the
1-dimensional case; see [Šeba 1989, Theorem 1].

From Theorem 1.2 we deduce that if a ∈ σ(H + λeδ6), where σ( · ) denotes the spectrum, then there
exists a sequence {aε} such that aε ∈ σ(H + Vε) and aε→ a when ε→ 0. The kind of instruments we
used to prove Theorem 1.2 suggest to us that the norm resolvent convergence may not hold in general;
thus we cannot ensure that the vice-versa spectral implication also holds. Nevertheless, if 6 is a sphere,
one has more information than in the general scenario; see [Mas and Pizzichillo 2017]. The Lorentz
scalar case is analogous.

The nonlinear behavior of the limiting coupling constant with respect to the approximating potentials
mentioned in the first paragraphs of the Introduction is depicted by (1-10) and (1-11); the reader may
compare this to the analogous result [Behrndt et al. 2017, Theorem 1.1] in the nonrelativistic scenario.
However, unlike in that result, in Theorem 1.2 we demand a smallness assumption on the potential, the
(δ, η)-smallness from Definition 1.1. We use this assumption in Corollary 3.3 below, where the strong
convergence of some inverse operators (1+ Bε(a))−1 when ε→ 0 is shown. The proof of Theorem 1.2
follows the strategy of [Behrndt et al. 2017, Theorem 1.1], but dealing with the Dirac operator instead of
the Laplacian makes a big difference at this point. In the nonrelativistic scenario, the fundamental solution
of −1+ a2 in R3 for a > 0 has exponential decay at infinity and behaves like 1/|x | near the origin,
which is locally integrable in R2 and thus its integral tends to zero as we integrate on shrinking balls in
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R2 centered at the origin. These facts are used in [Behrndt et al. 2017] to show that their corresponding
(1+Bε(a))−1 can be uniformly bounded in ε just by taking a big enough. In our situation, the fundamental
solution of H − a in R3 can still be taken with exponential decay at infinity for a ∈ C \R, but it is not
locally absolutely integrable in R2. Actually, its most singular part behaves like x/|x |3 near the origin,
and thus it yields a singular integral operator in R2. This means that the contribution near the origin
cannot be disregarded as in [Behrndt et al. 2017] just by shrinking the domain of integration and taking
a ∈ C \R big enough; something else is required. We impose smallness on V to obtain smallness on
Bε(a) and ensure the uniform invertibility of 1+ Bε(a) with respect to ε; this is the only point where the
(δ, η)-smallness is used.

Let η0, δ > 0 be as in Theorem 1.2. Take 0 < η ≤ η0 and V = 1
2τχ(−η,η) for some τ ∈ R such that

0< |τ |η ≤ 2δ. Then, arguing as in [Šeba 1989, Remark 1], one gets that∫
R

v (1−K2
V )
−1u =

∞∑
n=0

∫
R

vK2n
V u = 2 tan

( 1
2τη

)
.

Since V is (δ, η)-small, using (1-10) and (1-8) we obtain that

H + Vε→ H + 2 tan
( 1

2τη
)
δ6 in the strong resolvent sense when ε→ 0,

analogously to [Šeba 1989, Remark 1]. Similarly, one can check that
∫
v (1+K2

V )
−1u = 2 tanh

( 1
2τη

)
.

Then, (1-11) and (1-9) yield

H +β Vε→ H + 2 tanh
( 1

2τη
)
βδ6 in the strong resolvent sense when ε→ 0.

Regarding the structure of the paper, Section 2 is devoted to the preliminaries, which refer to basic
rudiments with a geometric measure-theory flavor and spectral properties of the short-range and shell
interactions appearing in Theorem 1.2. In Section 3 we present the first main step to proving Theorem 1.2,
a decomposition of the resolvent of the approximating interaction into three concrete operators. This type
of decomposition, which is made through a scaling operator, already appears in [Behrndt et al. 2017; Šeba
1989]. Section 3 also contains some auxiliary results concerning these three operators, whose proofs are
carried out later on, and the proof of Theorem 1.2; see Section 3A. Sections 4, 5, 6 and 7 are devoted to
proving all those auxiliary results presented in Section 3.

2. Preliminaries

As usual, in the sequel the letter “C” (or “c”) stands for some constant which may change its value at
different occurrences. We will also make use of constants with subscripts, both to highlight the dependence
on some other parameters and to stress that they retain their value from one equation to another. The
precise meaning of the subscripts will be clear from the context in each situation.

2A. Geometric and measure-theoretic considerations. In this section we recall some geometric and
measure-theoretic properties of 6 and the domains presented in (1-2). At the end, we provide some
growth estimates of the measures associated to the layers introduced in (1-3).
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The following definition and propositions correspond to Definition 2.2 and Propositions 2.4 and 2.6 in
[Behrndt et al. 2017], respectively. The reader should look at that paper for the details.

Definition 2.1 (Weingarten map). Let 6 be parametrized by the family {ϕi ,Ui , Vi }i∈I ; that is, I is a
finite set, Ui ⊂ R2, Vi ⊂ R3, 6 ⊂

⋃
i∈I Vi and ϕi (Ui )= Vi ∩6 for all i ∈ I. For

x = ϕi (u) ∈6 ∩ Vi

with u ∈Ui , i ∈ I, one defines the Weingarten map W (x) : Tx → Tx , where Tx denotes the tangent space
of 6 on x , as the linear operator acting on the basis vector {∂jϕi (u)}j=1,2 of Tx as

W (x) ∂jϕi (u) := −∂jν(ϕi (u)).

Proposition 2.2. The Weingarten map W (x) is symmetric with respect to the inner product induced by
the first fundamental form and its eigenvalues are uniformly bounded for all x ∈6.

Given 0< ε ≤ η and �ε as in (1-2), let iε :6× (−ε, ε)→�ε be the bijection defined by

iε(x6, t) := x6 + tν(x6).

For future purposes, we also introduce the projection P6 :�ε→6 given by

P6(x6 + tν(x6)) := x6. (2-1)

For 1≤ p <+∞, let L p(�ε) and L p(6× (−1, 1)) be the Banach spaces endowed with the norms

‖ f ‖p
L p(�ε)

:=

∫
�ε

| f |p dL, ‖ f ‖p
L p(6×(−1,1)) :=

∫ 1

−1

∫
6

| f |p dσ dt, (2-2)

respectively, where L denotes the Lebesgue measure in R3. The Banach spaces corresponding to the
endpoint case p =+∞ are defined, as usual, in terms of essential suprema with respect to the measures
associated to �ε and 6× (−1, 1) in (2-2), respectively.

Proposition 2.3. If η > 0 is small enough, there exist 0< c1, c2 <+∞ such that

c1‖ f ‖L1(�ε) ≤ ‖ f ◦ iε‖L1(6×(−ε,ε)) ≤ c2‖ f ‖L1(�ε) for all f ∈ L1(�ε), 0< ε ≤ η.

Moreover, if W denotes the Weingarten map associated to 6 from Definition 2.1,∫
�ε

f (x) dx =
∫ ε

−ε

∫
6

f (x6 + tν(x6)) det(1− tW (x6)) dσ(x6) dt for all f ∈ L1(�ε). (2-3)

The eigenvalues of the Weingarten map W (x) are the principal curvatures of 6 on x ∈6, and they are
independent of the parametrization of 6. Therefore, the term det(1− tW (x6)) in (2-3) is also independent
of the parametrization of 6.

Remark 2.4. Let h : �ε → (−ε, ε) be defined by h(x6 + tν(x6)) := t . Then |∇h| = 1 in �ε , so the
coarea formula, see for example [Ambrosio et al. 2000, Remark 2.94], gives∫

�ε

f (x) dx =
∫ ε

−ε

∫
6t

f (x) dσt(x) dt for all f ∈ L1(�ε).



KLEIN’S PARADOX AND THE RELATIVISTIC δ-SHELL INTERACTION IN R3 711

In view of (2-3), one deduces that∫
6t

f dσt =

∫
6

f (x6 + tν(x6)) det(1− tW (x6)) dσ(x6) (2-4)

for all t ∈ (−ε, ε) and all f ∈ L1(6t).

In the following lemma we give uniform growth estimates on the measures σt for t ∈ [−η, η] that
exhibit their 2-dimensional nature. These estimates will be used many times in the sequel, mostly for the
case of σ.

Lemma 2.5. If η > 0 is small enough, there exist c1, c2 > 0 such that

σt(Br (x))≤ c1r2 for all x ∈ R3, r > 0, t ∈ [−η, η], (2-5)

σt(Br (x))≥ c2r2 for all x ∈6t , 0< r < 2 diam(�η), t ∈ [−η, η], (2-6)

where Br (x) is the ball of radius r centered at x.

Proof. We first prove (2-5). Let r0 > 0 be a constant small enough, to be fixed later on. If r ≥ r0, then

σt(Br (x))≤ max
t∈[−η,η]

σt(R
3)≤ C =

C
r2

0
r2

0 ≤ C0r2,

where C0 := C/r2
0 > 0 only depends on r0 and η. Therefore, we can assume that r < r0. Let us see that

we can also suppose that x ∈6t . In fact, if η and r0 are small enough and 0< r < r0, given x ∈ R3 one
can always find x̃ ∈6t such that σt(Br (x))≤ 2σt(Br (x̃)) (if x ∈�η just take x̃ = P6x+ tν(P6x)). Then
if (2-5) holds for x̃ , one gets σt(Br (x))≤ 2σt(Br (x̃))≤ Cr2, as desired.

Thus, it is enough to prove (2-5) for x ∈6t and r < r0. If r0 and η are small enough, covering6t by local
chards we can find an open and bounded set Vt,r ⊂ R2 and a C1 diffeomorphism ϕt : R

2
→ ϕt(R

2)⊂ R3

such that ϕt(Vt,r ) = 6t ∩ Br (x). By means of a rotation if necessary, we can further assume that
ϕt is of the form ϕt(y′) = (y′, Tt(y′)), i.e., ϕt is the graph of a C1 function Tt : R2

→ R, and that
maxt∈[−η,η] ‖∇Tt‖∞ ≤C (this follows from the regularity of 6). Then, if x ′ ∈ Vt,r is such that ϕt(x ′)= x ,
for any y′ ∈ Vt,r we get

r2
≥ |ϕt(y′)−ϕt(x ′)|2 ≥ |y′− x ′|2,

which means that Vt,r ⊂ {y′ ∈R2
: |x ′− y′|< r} =: B ′⊂R2. Denoting by H2 the 2-dimensional Hausdorff

measure, from [Mattila 1995, Theorem 7.5] we get

σt(Br (x))=H2(ϕt(Vt,r ))≤H2(ϕt(B ′))≤ ‖∇ϕt‖
2
∞
H2(B ′)≤ Cr2

for all t ∈ [−η, η], so (2-5) is finally proved.
Let us now deal with (2-6). Given r0 > 0, by the regularity and boundedness of 6 it is clear that

inft∈[−η,η], x∈6t σt(Br0(x))≥ C > 0. As before, for any r0 ≤ r < 2 diam(�η) we easily see that

σt(Br (x))≥ σt(Br0(x))≥ C =
C

4 diam(�η)2
4 diam(�η)2 ≥ C1r2,
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where C1 := C/(4 diam(�η)2) > 0 only depends on r0 and η. Hence (2-6) is proved for all r0 ≤ r <
2 diam(�η).

The case 0< r < r0 is treated, as before, using the local parametrization of 6t around x by the graph
of a function. Taking η and r0 small enough, we may assume the existence of Vt,r and ϕt as above, so
let us set ϕt(x ′) = x for some x ′ ∈ Vt,r . The fact that ϕt is of the form ϕt(y′) = (y′, Tt(y′)) and that
ϕt(Vt,r ) = 6t ∩ Br (x) implies B ′′ := {y′ ∈ R2

: |x ′− y′| < C2r} ⊂ Vt,r for some C2 > 0 small enough
only depending on maxt∈[−η,η] ‖∇Tt‖∞, which is finite by assumption. Then, we easily see that

σt(Br (x))= σt(ϕt(Vt,r ))≥ σt(ϕt(B ′′))=
∫

B ′′

√
1+ |∇Tt(y′)|2 dy′ ≥

∫
B ′′

dy′ = Cr2,

where C > 0 only depends on C2. �

2B. Shell interactions for Dirac operators. In this section we briefly recall some useful instruments
regarding the δ-shell interactions studied in [Arrizabalaga et al. 2014; 2015]. The reader should look at
[Arrizabalaga et al. 2015, Sections 2 and 5] for the details.

Let a ∈ C. A fundamental solution of H − a is given by

φa(x)=
e−
√

m2−a2|x |

4π |x |

(
a+mβ + (1+

√
m2− a2|x |) iα ·

x
|x |2

)
for x ∈ R3

\ {0},

where
√

m2− a2 is chosen with positive real part whenever a ∈ (C \R)∪ ((−m,m)×{0}). To guarantee
the exponential decay of φa at∞, from now on we assume that a ∈ (C \R)∪ ((−m,m)×{0}). Given
G ∈ L2(R3)4 and g ∈ L2(σ)4 we define

8a(G, g)(x) :=
∫

R3
φa(x − y)G(y) dy+

∫
6

φa(x − y)g(y) dσ(y) for x ∈ R3
\6. (2-7)

Then, 8a
: L2(R3)4× L2(σ)4→ L2(R3)4 is linear and bounded and 8a(G, 0) ∈ H 1(R3)4. We also set

8a
σG := trσ(8a(G, 0)) ∈ L2(σ)4,

where trσ is the trace operator on 6. Finally, given x ∈6 we define

Ca
σg(x) := lim

ε↘0

∫
6∩{|x−y|>ε}

φa(x − y)g(y) dσ(y) and Ca
±

g(x) := lim
�±3y nt

→x
8a(0, g)(y),

where �± 3 y nt
→ x means that y tends to x nontangentially from the interior/exterior of �, respectively;

i.e., �+ :=� and �− := R3
\�. The operators Ca

σ and Ca
±

are linear and bounded in L2(σ)4. Moreover,
the following Plemelj–Sokhotski jump formulae hold:

Ca
±
=∓

1
2 i(α · ν)+Ca

σ. (2-8)

Let λe ∈ R. Using 8a, we define the electrostatic δ-shell interaction appearing in Theorem 1.2 as

D(H + λeδ6) :=
{
80(G, g) : G ∈ L2(R3)4, g ∈ L2(σ)4, λe8

0
σG =−(1+ λeC0

σ)g
}
,

(H + λeδ6)ϕ := Hϕ+ 1
2λe(ϕ++ϕ−)σ for ϕ ∈ D(H + λeδ6),

(2-9)
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where Hϕ in the right-hand side of the second statement in (2-9) is understood in the sense of distributions
and ϕ± denotes the boundary traces of ϕ when one approaches 6 from �±. In particular, one has
(H+λeδ6)ϕ =G ∈ L2(R3)4 for all ϕ =80(G, g) ∈ D(H+λeδ6). We should mention that one recovers
the free Dirac operator in H 1(R3)4 when λe = 0.

From [Arrizabalaga et al. 2015, Section 3.1] we know that H + λeδ6 is self-adjoint for all λe 6= ±2.
Additionally, if λe 6= 0, given a ∈ (−m,m) and ϕ =80(G, g) ∈ D(H + λeδ6),

(H + λeδ6 − a)ϕ = 0 if and only if
( 1
λe
+Ca

σ

)
g = 0. (2-10)

This corresponds to the Birman–Schwinger principle in the electrostatic δ-shell interaction setting. Since
the case λe = 0 corresponds to the free Dirac operator, it can be excluded from this consideration because
it is well known that the free Dirac operator doesn’t have pure point spectrum. Moreover, the relation
(2-10) can be easily extended to the case of a ∈ (C \R)∪ ((−m,m)× {0}) (one still has exponential
decay of a fundamental solution of H − a).

In the same vein, given λs ∈ R, we define the Lorentz scalar δ-shell interaction as

D(H + λsβ δ6) :=
{
80(G, g) : G ∈ L2(R3)4, g ∈ L2(σ)4, λs8

0
σG =−(β + λsC0

σ)g
}
,

(H + λsβ δ6)ϕ := Hϕ+ 1
2λsβ(ϕ++ϕ−)σ for ϕ ∈ D(H + λsβ δ6).

(2-11)

From [Arrizabalaga et al. 2015, Section 5.1] we know that H + λsβ δ6 is self-adjoint for all λs ∈ R.
Additionally, given λs 6= 0, a ∈ (C \R)∪ ((−m,m)×{0}) and ϕ =80(G, g) ∈ D(H +λsβ δ6), arguing
as in (2-10) one gets

(H + λsβ δ6 − a)ϕ = 0 if and only if
(
β

λs
+Ca

σ

)
g = 0. (2-12)

The following lemma describes the resolvent operator of the δ-shell interactions presented in (2-9) and
(2-11).

Lemma 2.6. Given λe, λs ∈ R with λe 6= ±2, a ∈ C \R and F ∈ L2(R3)4, the following identities hold:

(H + λeδ6 − a)−1 F = (H − a)−1 F − λe8
a(0, (1+ λeCa

σ)
−18a

σF), (2-13)

(H + λsβ δ6 − a)−1 F = (H − a)−1 F − λs8
a(0, (β + λsCa

σ)
−18a

σF). (2-14)

Proof. We will only show (2-13); the proof of (2-14) is analogous. Since H + λeδ6 is self-adjoint for
λe 6= ±2, we know (H+λeδ6−a)−1 is well-defined and bounded in L2(R3)4. For λe = 0 there is nothing
to prove, so we assume λe 6= 0.

Let ϕ =80(G, g) ∈ D(H + λeδ6) as in (2-9) and F = (H + λeδ6 − a)ϕ ∈ L2(R3)4. Then,

F = (H + λeδ6 − a)80(G, g)= G− a80(G, g). (2-15)

If we apply H on both sides of (2-15) and we use that H80(G, g)= G+ gσ in the sense of distributions,
we get HF = HG − a(G + gσ); that is, (H − a)G = (H − a)F + aF + agσ. Convolving with φa

the left- and right-hand sides of this last equation, we obtain G = F + a8a(F, 0)+ a8a(0, g); thus
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G− F = a8a(F, g). This, combined with (2-15), yields

80(G, g)=8a(F, g). (2-16)

Therefore, taking nontangential boundary values on 6 from inside/outside of � in (2-16) we obtain

80
σG+C0

±
g =8a

σF +Ca
±

g.

Since 80(G, g) ∈ D(H + λeδ6), thanks to (2-9) and (2-8) we conclude that

8a
σF =−

( 1
λe
+Ca

σ

)
g. (2-17)

Since a ∈C\R and H+λeδ6 is self-adjoint for λe 6=±2, by (2-10) we see that Kernel(1/λe+Ca
σ)={0}.

Moreover, using the ideas of the proof of [Arrizabalaga et al. 2014, Lemma 3.7] and that λe 6= ±2, one
can show that 1/λe+Ca

σ has closed range. Finally, since we are taking the square root so that√
m2− a2 =

√
m2− ā2,

following Lemma 3.1 of the same paper we see that (φa)t(x)=φā(−x). Here, (φa)t denotes the transpose
matrix of φa. Thus we conclude that (Range(1/λe+Ca

σ))
⊥
=Kernel(1/λe+C ā

σ)= {0}, and so 1/λe+Ca
σ

is invertible. Then, by (2-17), we obtain

g =−
( 1
λe
+Ca

σ

)−1
8a

σF. (2-18)

Thanks to (2-16) and (2-18), we finally get

(H + λeδ6 − a)−1 F = ϕ =80(G, g)=8a(F, g)=8a
(

F,−
( 1
λe
+Ca

σ

)−1
8a

σF
)

=8a(F, 0)− λe8
a(0, (1+ λeCa

σ)
−18a

σF),

and the lemma follows because 8a( · , 0)= (H − a)−1 as a bounded operator in L2(R3)4. �

2C. Coupling the free Dirac operator with short-range potentials as in (1-6). Given Vε as in (1-4), set

H e
ε := H + Vε and H s

ε := H +βVε .

Recall that these operators are self-adjoint on H 1(R3)4. In the following, we give the resolvent formulae
for H e

ε and H s
ε .

Throughout this section we make an abuse of notation. Remember that, given G ∈ L2(R3)4 and
g ∈ L2(σ)4, in (2-7) we already defined 8a(G, g). However, now we make the identification 8a( · )≡

8a( · , 0); that is, in this section we identify 8a with an operator acting on L2(R3)4 by always assuming
that the second entrance in8a vanishes. Additionally, in this section we use the symbol σ( · ) to denote the
spectrum of an operator, the reader should not confuse it with the symbol σ for the surface measure on 6.

Proposition 2.7. Let uε and vε be as in (1-5). Then:

(i) a ∈ ρ(H e
ε ) if and only if −1 ∈ ρ(uε8avε), where ρ( · ) denotes the resolvent set.
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(ii) a ∈ σpp(H e
ε ) if and only if −1 ∈ σpp(uε8avε), where σpp( · ) denotes the pure point spectrum.

Moreover, the multiplicity of a as an eigenvalue of H e
ε coincides with the multiplicity of −1 as

eigenvalue of uε8avε .

Furthermore, the following resolvent formula holds:

(H e
ε − a)−1

=8a
−8avε(1+ uε8avε)

−1uε8a. (2-19)

Proof. To prove (i) and (ii) it is enough to verify that the assumptions of [Konno and Kuroda 1966,
Lemma 1] are satisfied. That is, we just need to show that a ∈ σpp(H e

ε ) if and only if −1 ∈ σpp(uε8avε)

and that there exists a ∈ ρ(H e
ε ) such that −1 ∈ ρ(uε8avε).

Assume that a ∈ σpp(H e
ε ). Then (H+Vε−a)F = 0 for some F ∈ L2(R3)4 with F 6≡ 0, so (H−a)F =

−VεF . Using that σ(H)= σess(H), where σess( · ) denotes the essential spectrum, it is not hard to show
that indeed VεF 6≡ 0. Since Vε = vεuε , by setting G = uεF ∈ L2(R3)4 we get that G 6≡ 0 and

(H − a)F =−vεG. (2-20)

From [Thaller 1992, Theorem 4.7] we know that σess(H + Vε)= σess(H)= σ(H). Since σ(H e
ε ) is the

disjoint union of the pure point spectrum and the essential spectrum, we have σpp(H e
ε )⊂ ρ(H), which

means that (H − a)−1
=8a is a bounded operator on L2(R3)4. By (2-20), F =−8avεG. If we multiply

both sides of this last equation by uε we obtain G = uεF =−uε8avεG, so −1∈ σpp(uε8avε) as desired.
On the contrary, assume now that there exists a nontrivial G ∈ L2(R3)4 such that uε8avεG =−G. If

we take F = 8avεG ∈ L2(R3), we easily see that F 6≡ 0 and VεF = −(H − a)F , which means that a
is an eigenvalue of H e

ε .
To conclude the first part of the proof, it remains to show that there exists a ∈ ρ(H e

ε ) such that
−1 ∈ ρ(uε8avε). By [Thaller 1992, Theorem 4.23] we know that σpp(H e

ε ) is a finite sequence contained
in (−m,m), so we can chose a ∈ (−m,m)∩ ρ(H e

ε ). Moreover, by [Šeba 1988, Lemma 2], uε8avε is
a compact operator. Then, by Fredholm’s alternative, either −1 ∈ σpp(uε8avε) or −1 ∈ ρ(uε8avε). But
we can discard the first option, otherwise a ∈ σpp(H e

ε ), in contradiction with a ∈ ρ(H e
ε ).

Let us now prove (2-19). Writing Vε = vεuε and using that (H − a)−1
=8a, we have

(H e
ε − a)(8a

−8avε(1+ uε8avε)
−1uε8a)

= 1− vε(1+ uε8avε)
−1uε8a

+ vεuε8a
− vε(−1+ 1+ uε8avε)(1+ uε8avε)

−1uε8a

= 1− vε(1+ uε8avε)
−1uε8a

+ vεuε8a
+ vε(1+ uε8avε)

−1uε8a
− vεuε8a

= 1,
as desired. �

The following result can be proved in the same way; we leave the details for the reader.

Proposition 2.8. Let uε and vε be as in (1-5). Then:

(i) a ∈ ρ(H s
ε ) if and only if −1 ∈ ρ(βuε8avε).

(ii) a ∈ σpp(H s
ε ) if and only if −1 ∈ σpp(βuε8avε). Moreover, the multiplicity of a as an eigenvalue of

H s
ε coincides with the multiplicity of −1 as eigenvalue of βuε8avε .

Furthermore, the following resolvent formula holds:

(H s
ε − a)−1

=8a
−8avε(β + uε8avε)

−1uε8a. (2-21)
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3. The main decomposition and the proof of Theorem 1.2

Following the ideas in [Šeba 1989; Behrndt et al. 2017], the first key step to proving Theorem 1.2 is to
decompose (H e

ε − a)−1 and (H s
ε − a)−1, using a scaling operator, in terms of the operators Aε(a), Bε(a)

and Cε(a) introduced below (see Lemma 3.1).
Let η0 > 0 be some constant small enough to be fixed later on. In particular, we take η0 so that (1-2)

holds for all 0< ε ≤ η0. Given 0< ε ≤ η0, define

Iε : L2(6× (−ε, ε))4→ L2(�ε)
4 by (Iε f )(x6 + tν(x6)) := f (x6, t),

Sε : L2(6× (−1, 1))4→ L2(6× (−ε, ε))4 by (Sεg)(x6, t) :=
1
√
ε

g
(

x6,
t
ε

)
.

Thanks to the regularity of 6, Iε is well-defined, bounded and invertible for all 0< ε ≤ η0 if η0 is small
enough. Note also that Sε is a unitary and invertible operator.

Let 0< η ≤ η0, V ∈ L∞(R) with supp V ⊂ [−η, η] and u, v ∈ L∞(R) be the functions with support
in [−1, 1] introduced in (1-5); that is,

u(t) := |ηV (ηt)|1/2 and v(t) := sign(V (ηt))u(t). (3-1)

Using the notation related to (2-3), for 0< ε ≤ η0 we consider the integral operators

Aε(a) : L2(6× (−1, 1))4→ L2(R3)4,

Bε(a) : L2(6× (−1, 1))4→ L2(6× (−1, 1))4,

Cε(a) : L2(R3)4→ L2(6× (−1, 1))4
(3-2)

defined by

(Aε(a)g)(x) :=
∫ 1

−1

∫
6

φa(x − y6 − εsν(y6))v(s) det(1− εsW (y6))g(y6, s) dσ(y6) ds,

(Bε(a)g)(x6, t) := u(t)
∫ 1

−1

∫
6

φa(x6 + εtν(x6)− y6 − εsν(y6))v(s)

× det(1− εsW (y6))g(y6, s) dσ(y6) ds,

(Cε(a)g)(x6, t) := u(t)
∫

R3
φa(x6 + εtν(x6)− y)g(y) dy.

(3-3)

Recall that, given F ∈ L2(R3)4 and f ∈ L2(σ)4, in (2-7) we defined 8a(F, f ). However, in Section 2C
we made the identification 8a( · )≡8a( · , 0), which enabled us to write (H − a)−1

=8a. Here, and in
the sequel, we recover the initial definition for 8a given in (2-7) and we assume that a ∈ C \R; now we
must write (H − a)−1

=8a( · , 0), which is a bounded operator in L2(R3)4.
Proceeding as in the proof of [Behrndt et al. 2017, Lemma 3.2], one can show the following result.

Lemma 3.1. The following operator identities hold for all 0< ε ≤ η:

Aε(a)=8a( · , 0)vε Iε Sε,

Bε(a)= S−1
ε I−1

ε uε 8a( · , 0)vε Iε Sε,

Cε(a)= S−1
ε I−1

ε uε 8a( · , 0).

(3-4)
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Moreover, the following resolvent formulae hold:

(H e
ε − a)−1

= (H − a)−1
+ Aε(a)(1+ Bε(a))−1Cε(a), (3-5)

(H s
ε − a)−1

= (H − a)−1
+ Aε(a)(β + Bε(a))−1Cε(a). (3-6)

In (3-4), Aε(a)=8a( · , 0)vε Iε Sε means that Aε(a)g=8a(vε Iε Sε g, 0) for all g ∈ L2(6×(−1, 1))4,
and similarly for Bε(a) and Cε(a). Since both Iε and Sε are an isometry, V ∈ L∞(R) is supported in
[−η, η] and 8a( · , 0) is bounded by assumption, from (3-4) we deduce that Aε(a), Bε(a) and Cε(a) are
well-defined and bounded, so (3-2) is fully justified. Once (3-4) is proved, the resolvent formulae (3-5)
and (3-6) follow from (2-19) and (2-21), respectively. We stress that, in (2-19) and (2-21), there is the
abuse of notation in the definition of 8a, commented on before.

Lemma 3.1 connects (H e
ε − a)−1 and (H s

ε − a)−1 to Aε(a), Bε(a) and Cε(a). When ε→ 0, the limit
of the former ones is also connected to the limit of the latter ones. We now introduce those limit operators
for Aε(a), Bε(a) and Cε(a) when ε→ 0. Let

A0(a) : L2(6× (−1, 1))4→ L2(R3)4,

B0(a) : L2(6× (−1, 1))4→ L2(6× (−1, 1))4,

B ′ : L2(6× (−1, 1))4→ L2(6× (−1, 1))4,

C0(a) : L2(R3)4→ L2(6× (−1, 1))4

(3-7)

be the operators given by

(A0(a)g)(x) :=
∫ 1

−1

∫
6

φa(x − y6)v(s)g(y6, s) dσ(y6) ds,

(B0(a)g)(x6, t) := lim
ε→0

u(t)
∫ 1

−1

∫
|x6−y6 |>ε

φa(x6 − y6)v(s)g(y6, s) dσ(y6) ds,

(B ′g)(x6, t) := (α · ν(x6)) 1
2 i u(t)

∫ 1

−1
sign(t − s)v(s)g(x6, s) ds,

(C0(a)g)(x6, t) := u(t)
∫

R3
φa(x6 − y)g(y) dy.

(3-8)

The next theorem corresponds to the core of this article. Its proof is quite technical and is carried out
in Sections 4, 5 and 6. We also postpone the proof of (3-7) to those sections, where each operator is
studied in detail. Anyway, the boundedness of B ′ is trivial.

Theorem 3.2. The following convergences of operators hold in the strong sense:

Aε(a)→ A0(a) when ε→ 0, (3-9)

Bε(a)→ B0(a)+ B ′ when ε→ 0, (3-10)

Cε(a)→ C0(a) when ε→ 0. (3-11)

The proof of the following corollary is also postponed to Section 7. It combines Theorem 3.2, (3-5)
and (3-6), but it requires some fine estimates developed in Sections 4, 5 and 6.
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Corollary 3.3. There exist η0, δ > 0 small enough only depending on 6 such that, for any a ∈C\R with
|a| ≤ 1, 0< η ≤ η0 and (δ, η)-small V (see Definition 1.1), the following convergences of operators hold
in the strong sense:

(H + Vε − a)−1
→ (H − a)−1

+ A0(a)(1+ B0(a)+ B ′)−1C0(a) when ε→ 0,

(H +βVε − a)−1
→ (H − a)−1

+ A0(a)(β + B0(a)+ B ′)−1C0(a) when ε→ 0.

In particular, (1 + B0(a) + B ′)−1 and (β + B0(a) + B ′)−1 are well-defined bounded operators in
L2(6× (−1, 1))4.

3A. Proof of Theorem 1.2. Thanks to [Reed and Simon 1980, Theorem VIII.19], to prove the theorem
it is enough to show that, for some a ∈ C \R, the following convergences of operators hold in the strong
sense:

(H + Vε − a)−1
→ (H + λeδ6 − a)−1 when ε→ 0, (3-12)

(H +βVε − a)−1
→ (H + λsβδ6 − a)−1 when ε→ 0. (3-13)

Thus, from now on, we fix a ∈ C \R with |a| ≤ 1.
We introduce the operators

V̂ : L2(6× (−1, 1))4→ L2(6)4 and Û : L2(6)4→ L2(6× (−1, 1))4

given by

V̂ f (x6) :=
∫ 1

−1
v(s) f (x6, s) ds and Û f (x6, t) := u(t) f (x6).

Observe that, by Fubini’s theorem,

A0(a)=8a(0, · )V̂, B0(a)= ÛCa
σV̂, C0(a)= Û8a

σ. (3-14)

Hence, from Corollary 3.3 and (3-14) we deduce that, in the strong sense,

(H + Vε − a)−1
→ (H − a)−1

+8a(0, · )V̂ (1+ ÛCa
σV̂ + B ′)−1Û8a

σ when ε→ 0, (3-15)

(H +βVε − a)−1
→ (H − a)−1

+8a(0, · )V̂ (β + ÛCa
σV̂ + B ′)−1Û8a

σ when ε→ 0. (3-16)

For convenience of notation, set

K̃g(x6, t) := KV (g(x6, · ))(t) for g ∈ L2(6× (−1, 1)),

where KV is as in (1-7). Then, we get

1+ B ′ = I4+ (α · ν)K̃I4 =

(
I2 (σ · ν)K̃I2

(σ · ν)K̃I2 I2

)
.

Here, σ := (σ1, σ2, σ3), see (1-1), I4 denotes the 4× 4 identity matrix and K̃I4 denotes the diagonal 4× 4
operator matrix whose nontrivial entries are K̃, and analogously for K̃I2. Since the operators that compose



KLEIN’S PARADOX AND THE RELATIVISTIC δ-SHELL INTERACTION IN R3 719

the matrix 1+ B ′ commute, if we set K := K̃I4, we get

(1+ B ′)−1
= (1− K̃2)−1

⊗

(
I2 −(σ · ν)K̃I2

−(σ · ν)K̃I2 I2

)
= (1−K2)−1

− (α · ν)(1−K2)−1K. (3-17)

With this at hand, we can compute

(1+ ÛCa
σV̂ + B ′)−1

=
(
1+ (1+ B ′)−1ÛCa

σV̂
)−1
(1+ B ′)−1

=
(
1+ (1−K2)−1ÛCa

σV̂ − (α · ν)(1−K2)−1KÛCa
σV̂
)−1

◦
(
(1−K2)−1

− (α · ν)(1−K2)−1K
)
. (3-18)

Notice that

V̂
(
1+ (1−K2)−1ÛCa

σV̂ − (α · ν)(1−K2)−1KÛCa
σV̂
)

=
(
1+ V̂ (1−K2)−1ÛCa

σ− (α · ν)V̂ (1−K2)−1KÛCa
σ

)
V̂,

which obviously yields

V̂
(
1+ (1−K2)−1ÛCa

σV̂ − (α · ν)(1−K2)−1KÛCa
σV̂
)−1

=
(
1+ V̂ (1−K2)−1ÛCa

σ− (α · ν)V̂ (1−K2)−1KÛCa
σ

)−1V̂. (3-19)

Additionally, by the definition of KV in (1-7), we see that

V̂ (1−K2)−1Û =
(∫

R

v (1−K2
V )
−1u

)
I4 = λeI4,

V̂ (1−K2)−1KÛ =
(∫

R

v (1−K2
V )
−1KV u

)
I4 = 0.

(3-20)

Indeed, from (1-10) in Theorem 1.2, λe =
∫

R
v (1−K2

V )
−1u. Let us focus on

∫
R
v (1−K2

V )
−1KV u. Note

that, for any n ≥ 0,∫
R

vK2n+1
V u=

(
−

1
2 i
)2n+1

∫
(−η,η)2n+2

V(t0)V(t1) · · ·V(t2n+1)sign(t0−t1) · · ·sign(t2n−t2n+1)dt0 dt1 · · · dt2n+1.

Set sj := t2n+1− j for j ∈ {0, . . . , 2n+ 1}. Then,

sign(t0− t1) · · · sign(t2n − t2n+1)= (−1)2n+1 sign(s0− s1) · · · sign(s2n − s2n+1);

thus, by Fubini’s theorem,
∫

R
vK2n+1

V u = 0. This implies
∫

R
v (1−K2

V )
−1KV u = 0 by a Neumann series

argument, and therefore V̂ (1−K2)−1KÛ = 0.
Hence, combining (3-19) and (3-20) we have

V̂
(
1+ (1−K2)−1ÛCa

σV̂ − (α · ν)(1−K2)−1KÛCa
σV̂
)−1
= (1+ λeCa

σ )
−1V̂. (3-21)

Then, from (3-18), (3-21) and (3-20), we finally get

8a(0, · )V̂ (1+ ÛCa
σV̂ + B ′)−1Û8a

σ =8
a(0, · )(1+ λeCa

σ)
−1λe8

a
σ.

This last identity combined with (3-15) and (2-13) yields (3-12).
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The proof of (3-13) follows the same lines. Similarly to (3-17),

(β + B ′)−1
= (1+K2)−1β − (α · ν)(1+K2)−1.

One can then make the computations analogous to (3-18)–(3-21). Since

λs =

∫
R

v (1+K2
V )
−1u,

we now get

8a(0, · )V̂ (β + ÛCa
σV̂ + B ′)−1Û8a

σ =8
a(0, · )(β + λsCa

σ)
−1λs8

a
σ.

From this, (3-16) and (2-14) we obtain (3-13). This finishes the proof of Theorem 1.2, except for the
boundedness stated in (3-7), the proof of Corollary 3.3 in Section 7, and Theorem 3.2, whose proof is
broken up as follows: (3-9) in Section 6, (3-10) in Section 5 and (3-11) in Section 4.

4. Proof of (3-11): Cε(a)→ C0(a) in the strong sense when ε→ 0

Recall from (3-3) and (3-8) that Cε(a) with 0< ε ≤ η0 and C0(a) are defined by

(Cε(a)g)(x6, t)= u(t)
∫

R3
φa(x6 + εtν(x6)− y)g(y) dy,

(C0(a)g)(x6, t)= u(t)
∫

R3
φa(x6 − y)g(y) dy.

Let us first show that Cε(a) is bounded from L2(R3)4 to L2(6×(−1, 1))4 with a norm uniformly bounded
on 0≤ ε ≤ η0. For this purpose, we write

(Cε(a)g)(x6, t)= u(t)(φa
∗ g)(x6 + εtν(x6)), (4-1)

where φa
∗ g denotes the convolution of the matrix-valued function φa with the vector-valued function

g∈ L2(R3)4. Since we are assuming that a∈C\R and, in the definition of φa, we are taking
√

m2− a2 with
positive real part, the same arguments as the ones in the proof of [Arrizabalaga et al. 2014, Lemma 2.8]
(essentially Plancherel’s theorem) show that

‖φa
∗ g‖H1(R3)4 ≤ C‖g‖L2(R3)4 for all g ∈ L2(R3)4,

where C > 0 only depends on a. Additionally, thanks to the C2 regularity of 6, if η0 is small enough it is
not hard to show that the Sobolev trace inequality from H 1(R3)4 to L2(6εt)

4 holds for all 0 ≤ ε ≤ η0

and t ∈ [−1, 1] with a constant only depending on η0 (and 6, of course). Combining these two facts, we
obtain that

‖φa
∗ g‖L2(6εt )4 ≤ C‖g‖L2(R3)4 for all g ∈ L2(R3)4, 0≤ ε ≤ η0 and t ∈ [−1, 1]. (4-2)

By Proposition 2.2, if η0 is small enough there exists C > 0 such that

C−1
≤ det(1− εtW (P6x))≤ C for all 0< ε ≤ η0, t ∈ (−1, 1) and x ∈6εt . (4-3)



KLEIN’S PARADOX AND THE RELATIVISTIC δ-SHELL INTERACTION IN R3 721

Therefore, an application of (4-1), (2-4), (4-3) and (4-2) finally yields

‖Cε(a)g‖2L2(6×(−1,1))4 =

∫ 1

−1

∫
6

∣∣u(t)(φa
∗ g)(x6 + εtν(x6))

∣∣2 dσ(x6) dt

≤ ‖u‖2L∞(R)

∫ 1

−1

∫
6εt

∣∣det(1− εtW (P6x))−1/2(φa
∗ g)(x)

∣∣2 dσεt(x) dt

≤ C‖u‖2L∞(R)

∫ 1

−1
‖φa
∗ g‖2L2(6εt )4

dt ≤ C‖u‖2L∞(R)‖g‖
2
L2(R3)4

.

That is, if η0 is small enough there exists C1 > 0 only depending on η0 and a such that

‖Cε(a)‖L2(R3)4→L2(6×(−1,1))4 ≤ C1‖u‖L∞(R) for all 0≤ ε ≤ η0. (4-4)

In particular, the boundedness stated in (3-7) holds for C0(a).
In order to prove the strong convergence of Cε(a) to C0(a) when ε→ 0, fix g ∈ L2(R3)4. We must

show that, given δ > 0, there exists ε0 > 0 such that

‖Cε(a)g−C0(a)g‖L2(6×(−1,1))4 ≤ δ for all 0≤ ε ≤ ε0. (4-5)

For every 0< d ≤ η0, using (4-4) we can estimate

‖Cε(a)g−C0(a)g‖L2(6×(−1,1))4

≤‖Cε(a)(χ�d g)‖L2(6×(−1,1))4+‖C0(a)(χ�d g)‖L2(6×(−1,1))4+‖(Cε(a)−C0(a))(χR3\�d g)‖L2(6×(−1,1))4

≤ 2C1‖u‖L∞(R)‖χ�d g‖L2(R3)4+‖(Cε(a)−C0(a))(χR3\�d g)‖L2(6×(−1,1))4 . (4-6)

On one hand, since g ∈ L2(R3)4 and L(6) = 0 (L denotes the Lebesgue measure in R3), we can take
d > 0 small enough so that

‖χ�d g‖L2(R3)4 ≤
δ

4C1‖u‖L∞(R)
. (4-7)

On the other hand, note that

|(x6 + εtν(x6))− x6| = ε|t ||ν(x6)| ≤ ε ≤ 1
2 d = 1

2 dist(6,R3
\�d)≤

1
2 |x6 − y| (4-8)

for all 0≤ ε ≤ 1
2 d, t ∈ (−1, 1), x6 ∈6 and y ∈ R3

\�d .
As we said before, we are assuming that a ∈C\R and, in the definition of φa, we are taking

√
m2− a2

with positive real part, so the components of φa(x) decay exponentially as |x | →∞. In particular, there
exist C, r > 0 only depending on a such that

|∂φa(x)| ≤ Ce−r |x | for all |x | ≥ 1,

|∂φa(x)| ≤ C |x |−3 for all 0< |x |< 1,
(4-9)

where by the left-hand side in (4-9) we mean the absolute value of any derivative of any component of the
matrix φa(x). Therefore, using the mean value theorem, (4-9) and (4-8), we see that there exists Ca,d > 0
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only depending on a and d such that∣∣φa(x6 + εtν(x6)− y)−φa(x6 − y)
∣∣≤ Ca,d

ε

|x6 − y|3

for all 0≤ ε ≤ 1
2 d, t ∈ (−1, 1), x6 ∈6 and y ∈ R3

\�d . Hence, we can easily estimate∣∣(Cε(a)−C0(a))(χR3\�d g)(x6, t)
∣∣

≤ ‖u‖L∞(R)

∫
R3\�d

∣∣φa(x6 + εtν(x6)− y)−φa(x6 − y)
∣∣|g(y)| dy

≤ Ca,d‖u‖L∞(R)

∫
R3\�d

ε|g(y)|
|x6 − y|3

dy

≤ Ca,d ε‖u‖L∞(R)

(∫
R3\Bd (x6)

dy
|x6 − y|6

)1/2

‖g‖L2(R3)4 ≤ C ′a,d ε‖u‖L∞(R)‖g‖L2(R3)4,

where C ′a,d > 0 only depends on a and d . Then,

‖(Cε(a)−C0(a))(χR3\�d g)‖L2(6×(−1,1))4 ≤ C ′a,d ε‖u‖L∞(R)‖g‖L2(R3)4 (4-10)

for a possibly bigger constant C ′a,d > 0.
With these ingredients, the proof of (4-5) is straightforward. Given δ > 0, take d > 0 small enough so

that (4-7) holds. For this fixed d , take

ε0 =min
{

δ

2C ′a,d‖u‖L∞(R)‖g‖L2(R3)4
,

d
2

}
.

Then, (4-5) follows from (4-6), (4-7) and (4-10). In conclusion, we have shown that

lim
ε→0
‖(Cε(a)−C0(a))g‖L2(6×(−1,1))4 = 0 for all g ∈ L2(R3)4, (4-11)

which is (3-11).

5. Proof of (3-10): Bε(a)→ B0(a)+ B′ in the strong sense when ε→ 0

Recall from (3-3) and (3-8) that Bε(a) with 0< ε ≤ η0, and B0(a) and B ′ are defined by

(Bε(a)g)(x6, t)= u(t)
∫ 1

−1

∫
6

φa(x6 + εtν(x6)− y6 − εsν(y6))v(s)

× det(1− εsW (y6))g(y6, s) dσ(y6) ds,

(B0(a)g)(x6, t)= lim
ε→0

u(t)
∫ 1

−1

∫
|x6−y6 |>ε

φa(x6 − y6)v(s)g(y6, s) ds dσ(y6),

(B ′g)(x6, t)= (α · ν(x6)) 1
2 i u(t)

∫ 1

−1
sign(t − s)v(s)g(x6, s) ds.

We already know that Bε(a) and B ′ are bounded in L2(6× (−1, 1))4. Let us postpone to Section 5B the
proof of the boundedness of B0(a) stated in (3-7). The first step to proving (3-10) is to decompose φa as
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in [Arrizabalaga et al. 2015, Lemma 3.2]; that is,

φa(x)=
e−
√

m2−a2|x |

4π |x |

(
a+mβ +

√
m2− a2 iα ·

x
|x |

)
+

e−
√

m2−a2|x |
− 1

4π
iα ·

x
|x |3
+

i
4π

α ·
x
|x |3

=: ωa
1(x)+ω

a
2(x)+ω3(x). (5-1)

Then we can write
Bε(a)= Bε,ωa

1
+ Bε,ωa

2
+ Bε,ω3,

B0(a)= B0,ωa
1
+ B0,ωa

2
+ B0,ω3,

(5-2)

where Bε,ωa
1
, Bε,ωa

2
and Bε,ω3 are defined as Bε(a) but replacing φa by ωa

1 , ωa
2 and ω3, respectively, and

analogously for the case of B0(a).
For j = 1, 2, we see that |ωa

j (x)| = O(|x |−1) and |∂ωa
j (x)| = O(|x |−2) for |x | → 0, with the un-

derstanding that |ωa
j (x)| means the absolute value of any component of the matrix ωa

j (x) and |∂ωa
j (x)|

means the absolute value of any first-order derivative of any component of ωa
j (x). Therefore, the integrals

defining Bε,ωa
j

and B0,ωa
j

are of fractional type for j = 1, 2 (recall Lemma 2.5) and they are taken over
bounded sets, so the strong convergence follows by standard methods. However, one can also follow the
arguments in the proof of [Behrndt et al. 2017, Lemma 3.4] to show, for j = 1, 2, the convergence of
Bε,ωa

j
to B0,ωa

j
in the norm sense when ε→ 0; that is,

lim
ε→0
‖Bε,ωa

j
− B0,ωa

j
‖L2(6×(−1,1))4→L2(6×(−1,1))4 = 0 for j = 1, 2. (5-3)

A comment is in order. Since the integrals involved in (5-3) are taken over 6×(−1, 1), which is bounded,
the exponential decay at infinity from [Behrndt et al. 2017, Proposition A.1] is not necessary in the setting
of (3-10); hence the local estimates of |ωa

j (x)| and |∂ωa
j (x)| near the origin are enough to adapt the proof

of Lemma 3.4 of the same paper to get (5-3).
Thanks to (5-2) and (5-3), to prove (3-10) we only need to show that Bε,ω3 → B0,ω3 + B ′ in the strong

sense when ε→ 0. This will be done in two main steps. First, we will show that

lim
ε→0

Bε,ω3 g(x6, t)= B0,ω3 g(x6, t)+ B ′g(x6, t) for almost all (x6, t) ∈6× (−1, 1) (5-4)

and all g ∈ L∞(6×(−1, 1))4 such that sup|t |<1 |g(x6, t)−g(y6, t)|≤C |x6−y6| for all x6, y6 ∈6 and
some C > 0 which may depend on g. This is done in Section 5A. Then, for a general g ∈ L2(6×(−1, 1))4,
we will estimate |Bε,ω3 g(x6, t)| in terms of some bounded maximal operators that will allow us to prove
the pointwise limit (5-4) for almost every (x6, t) ∈6× (−1, 1) and the desired strong convergence of
Bε,ω3 to B0,ω3 + B ′; see Section 5B.

5A. The pointwise limit of Bε,ω3 g(x6, t) when ε→ 0 for g in a dense subspace of L2(6× (−1, 1))4.
Observe that the function u in front of the definitions of Bε,ω3 , B0,ω3 and B ′ does not affect the validity
of the limit in (5-4), so we can assume without loss of generality that u ≡ 1 in (−1, 1).

We are going to prove (5-4) by showing the pointwise limit component by component; that is, we are
going to work in L∞(6× (−1, 1)) instead of L∞(6× (−1, 1))4. In order to do so, we need to introduce
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some definitions. Set

k(x) :=
x

4π |x |3
for x ∈ R3

\ {0}. (5-5)

Given t ∈ (−1, 1) and 0< ε ≤ η0 with η0 small enough and f ∈ L∞(6× (−1, 1)) such that

sup
|t |<1
| f (x6, t)− f (y6, t)| ≤ C |x6 − y6|

for all x6, y6 ∈6 and some C > 0, we define

T ε
t f (x6) :=

∫ 1

−1

∫
6

k(x6 + εtν(x6)− y6 − εsν(y6)) f (y6, s) det(1− εsW (y6)) dσ(y6) ds.

By (2-4),

T ε
t f (x6)=

∫ 1

−1

∫
6εs

k(xεt − yεs) f (P6 yεs, s) dσεs(yεs) ds, (5-6)

where xεt := x6 + εtν(x6), yεs := y6 + εsν(y6) and P6 is given by (2-1). We also set

Tt f (x6) := lim
δ→0

∫ 1

−1

∫
|x6−y6 |>δ

k(x6 − y6) f (y6, s) dσ(y6) ds+ 1
2ν(x6)

∫ 1

−1
sign(t − s) f (x6, s) ds.

We are going to prove that

lim
ε→0

T ε
t f (x6)= Tt f (x6) (5-7)

for almost all (x6, t) ∈ 6× (−1, 1). Once this is proved, it is not hard to get (5-4). Indeed, note that
k = (k1, k2, k3) with kj (x) := x j/(4π |x |3) being the scalar components of the vector kernel k(x). Thus,
we can write

T ε
t f (x6)=

(
(T ε

t f (x6))1, (T ε
t f (x6))2, (T ε

t f (x6))3
)
,

where each (T ε
t f (x6))j is defined as in (5-6) but replacing k by kj . Then, (5-7) holds if and only if

(T ε
t f (x6))j → (Tt f (x6))j when ε → 0 for j = 1, 2, 3. From these limits, if we let f (y6, s) in the

definitions of T ε
t f and Tt f be the different components of v(s)g(y6, s), we easily deduce (5-4). Thus,

we are reduced to proving (5-7).
The proof of (5-7) follows the strategy of the proof of [Hofmann et al. 2010, Proposition 3.30]. Set

E(x) := −
1

4π |x |
for x ∈ R3

\ {0},

the fundamental solution of the Laplace operator in R3. Note that ∇E = k = (k1, k2, k3). In particular, if
we set ν = (ν1, ν2, ν3) and x = (x1, x2, x3), for x ∈R3 and y ∈6 with x 6= y we have the decomposition

kj (x − y)= ∂x j E(x − y)= |ν(y)|2 ∂x j E(x − y)

=

∑
n

νn(y)2∂x j E(x − y)+
∑

n

νj (y)νn(y)∂xn E(x − y)−
∑

n

νj (y)νn(y)∂xn E(x − y)

= νj (y)
∑

n

∂xn E(x − y)νn(y)+
∑

n

(
νn(y)∂x j E(x − y)− νj (y)∂xn E(x − y)

)
νn(y)

= νj (y)∇ν(y)E(x − y)+
∑

n

∇
j,n
ν(y)E(x − y)νn(y), (5-8)
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where we have taken

∇ν(y)E(x − y) :=
∑

n

νn(y)∂xn E(x − y)=∇x E(x − y) · ν(y),

∇
j,n
ν(y)E(x − y) := νn(y)∂x j E(x − y)− νj (y)∂xn E(x − y).

(5-9)

For j, n ∈ {1, 2, 3} we define

T ε
ν f (x6, t) :=

∫ 1

−1

∫
6εs

∇νεs(yεs)E(xεt − yεs) f (P6 yεs, s) dσεs(yεs) ds,

T ε
j,n f (x6, t) :=

∫ 1

−1

∫
6εs

∇
j,n
νεs(yεs)

E(xεt − yεs) f (P6 yεs, s) dσεs(yεs) ds,

(5-10)

where νεs(yεs) := ν(y6) is a normal vector field to 6εs . Additionally, the terms ∇νεs(yεs)E(xεt − yεs) and
∇

j,n
νεs(yεs)

E(xεt − yεs) in (5-10) are defined as in (5-9) with the obvious replacements.
Given f ∈ L∞(6× (−1, 1)) such that sup|t |<1 | f (x6, t)− f (y6, t)| ≤C |x6− y6| for all x6, y6 ∈6

and some C > 0, by (5-8) we see that

(T ε
t f (x6))j = T ε

ν h j (x6, t)+
∑

n

T ε
j,nhn(x6, t), (5-11)

where hn(P6 yεs, s) := (νεs(yεs))n f (P6 yεs, s) for n = 1, 2, 3. We are going to prove that

lim
ε→0

T ε
ν h j (x6, t)= lim

δ→0

∫ 1

−1

∫
|x6−y6 |>δ

∇ν(y6)E(x6 − y6)h j (y6, s) dσ(y6) ds

+
1
2

∫ 1

−1
sign(t − s)h j (x6, s) ds, (5-12)

lim
ε→0

T ε
j,nhn(x6, t)= lim

δ→0

∫ 1

−1

∫
|x6−y6 |>δ

∇
j,n
ν(y6)E(x6 − y6)hn(y6, s) dσ(y6) ds (5-13)

for n = 1, 2, 3. Then, combining (5-11), (5-12) and (5-13), we obtain (5-7). Therefore, it is enough to
show (5-12) and (5-13).

We first deal with (5-12). Remember that ∇E = k so, given δ > 0, from (5-9) and (5-10) we can split
T ε
ν h j (x6, t) as

T ε
ν h j (x6, t)=

∫ 1

−1

∫
|xεs−yεs |>δ

k(xεt − yεs) · νεs(yεs) h j (P6 yεs, s) dσεs(yεs) ds

+

∫ 1

−1

∫
|xεs−yεs |≤δ

k(xεt − yεs) · νεs(yεs)(h j (P6 yεs, s)− h j (P6xεs, s)) dσεs(yεs) ds

+

∫ 1

−1
h j (P6xεs, s)

∫
|xεs−yεs |≤δ

k(xεt − yεs) · νεs(yεs) dσεs(yεs) ds

=: Aε,δ +Bε,δ +Cε,δ,

and we easily see that

lim
ε→0

T ε
ν h j (x6, t)= lim

δ→0
lim
ε→0

(Aε,δ +Bε,δ +Cε,δ). (5-14)

We study the three terms on the right-hand side of (5-14) separately.
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For the case of Aε,δ, note that k ∈ C∞(R3
\ Bδ(0))3 and it has polynomial decay at∞, so

|k(x)| + |∂k(x)| ≤ C <+∞ for all x ∈ R3
\ Bδ(0),

where C>0 only depends on δ, and ∂k denotes any first-order derivative of any component of k. Moreover,
h j is bounded on 6× (−1, 1) and 6 is bounded and of class C2. Therefore, for a fixed δ > 0, the uniform
boundedness of the integrand combined with the regularity of k and 6 and the dominated convergence
theorem yields

lim
ε→0

Aε,δ =

∫ 1

−1

∫
|x6−y6 |>δ

k(x6 − y6) · ν(y6) h j (y6, s) dσ(y6) ds. (5-15)

Then, if we let δ→ 0, from (5-15) we get the first term on the right-hand side of (5-12).
Recall that the function h j appearing in Bε,δ is constructed from the one in (5-4) using v, see below (5-7),

and νεs , see below (5-11). Hence h j ∈ L∞(6×(−1, 1)) and sup|t |<1 |h j (x6, t)−h j (y6, t)| ≤C |x6− y6|
for all x6, y6 ∈6 and some C > 0. Thus, if η0 and δ are small enough, by the mean value theorem there
exists C > 0 such that∣∣k(xεt − yεs) · νεs(yεs)(h j (P6 yεs, s)− h j (P6xεs, s))

∣∣≤ C
|P6 yεs − P6xεs |

|xεt − yεs |
2 ≤

C
|yεs − xεs |

(5-16)

for all 0 ≤ ε ≤ η0 and |xεs − yεs | ≤ δ. In the last inequality in (5-16) we used that P6 is Lipschitz on
�η0 and that |xεs − yεs | ≤ C |xεt − yεs | if |xεs − yεs | ≤ δ and δ is small enough (due to the regularity
of 6). From the local integrability of the right-hand side of (5-16) with respect to σεs (see Lemma 2.5)
and standard arguments, we easily deduce the existence of Cδ > 0 such that sup0≤ε≤η0

|Bε,δ| ≤ Cδ and
Cδ→ 0 when δ→ 0; see [Behrndt et al. 2017, (A.7)] for a similar argument. Then, we have∣∣ lim

δ→0
lim
ε→0

Bε,δ

∣∣≤ lim
δ→0

sup
0≤ε≤η0

|Bε,δ| ≤ lim
δ→0

Cδ = 0. (5-17)

Let us finally focus on Cε,δ. Since k =∇E , from (5-9) we get∫
|xεs−yεs |≤δ

k(xεt − yεs) · νεs(yεs) dσεs(yεs)=

∫
|xεs−yεs |≤δ

∇νεs(yεs)E(xεt − yεs) dσεs(yεs).

Consider the set

Dε
δ (t, s) :=

{
Bδ(xεs) \�(ε, s) if t ≤ s,
Bδ(xεs)∩�(ε, s) if t > s,

where �(ε, s) denotes the bounded connected component of R3
\6εs that contains � if s ≥ 0 and that is

included in � if s < 0.
Set Ex(y) := E(x − y) for x, y ∈ R3 with x 6= y. Then 1Exεt = 0 in Dε

δ (t, s) and ∇Exεt (y) =
−∇E(xεt − y). If ν∂Dε

δ (t,s) denotes the normal vector field on ∂Dε
δ (t, s) pointing outside Dε

δ (t, s), by the
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ν(x6)
νεs(yεs)

xεt
xεs

yεsδ

x6 Dεδ(t,s)

ν∂Dε
δ (t,s)

�

6εt

6εs

∂�

ν∂Dε
δ (t,s)

ν(x6)
δ Dεδ(t,s)xεs

yεs

xεt
–νεs(yεs)

x6

�

6εs

6εt

∂�

Figure 1. The set Dε
δ (t, s) in the case t > s > 0 (left) and s > t > 0 (right).

divergence theorem,

0=
∫

Dε
δ (t,s)

1Exεt (y) dy =−
∫
∂Dε

δ (t,s)
∇E(xεt − y) · ν∂Dε

δ (t,s)(y) dH2(y)

=− sign(t − s)
∫
|xεs−yεs |≤δ

∇νεs(yεs)E(xεt − yεs) dσεs(yεs)

−

∫
{y∈R3:|xεs−y|=δ}∩Aεt,s

∇E(xεt − y) ·
y− xεs

|y− xεs |
dH2(y), (5-18)

where

Aεt,s := R3
\�(ε, s) if t ≤ s and Aεt,s :=�(ε, s) if t > s.

Remember also that H2 denotes the 2-dimensional Hausdorff measure. Since ∇E = k, from (5-18) and
(5-9) we deduce that∫
|xεs−yεs |≤δ

k(xεt−yεs)·νεs(yεs) dσεs(yεs)= sign(t−s)
∫
∂Bδ(xεs)∩Aεt,s

k(xεt−y)·
xεs − y
|xεs − y|

dH2(y). (5-19)

Note that xεt 6∈ Dε
δ (t, s) by construction; see Figure 1. Moreover, by the regularity of 6, given

δ > 0 small enough we can find ε0 > 0 so that |xεt − y| ≥ 1
2δ for all 0 < ε ≤ ε0, s, t ∈ [−1, 1] and

y ∈ ∂Bδ(xεs)∩ Aεt,s . In particular,

|k(xεt − y)| ≤ C <+∞ for all y ∈ ∂Bδ(xεs)∩ Aεt,s, (5-20)

where C only depends on δ and ε0. Then,

χ∂Bδ(xεs)∩Aεt,s (y) k(xεt − y) ·
xεs − y
|xεs − y|

dH2(y)= χ∂Bδ(xεs)∩Aεt,s (y)
xεt − y

4π |xεt − y|3
·

xεs − y
|xεs − y|

dH2(y)

→
χ∂Bδ(x6)∩D(t,s)(y)

4π |x6 − y|2
dH2(y) when ε→ 0, (5-21)

where

D(t, s) := R3
\� if t ≤ s and D(t, s) :=� if t > s.
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The limit in (5-21) refers to weak-∗ convergence of finite Borel measures in R3 (acting on the variable y).
Using (5-21), the uniform estimate (5-20), the boundedness of h j and the dominated convergence theorem,
we see that

lim
ε→0

∫ 1

−1
sign(t − s)h j (x6, s)

∫
∂Bδ(xεs)∩Aεt,s

k(xεt − y) ·
xεs − y
|xεs − y|

dH2(y) ds

=

∫ 1

−1
sign(t − s)h j (x6, s)

∫
∂Bδ(x6)∩D(t,s)

1
4π |x6 − y|2

dH2(y) ds

=

∫ 1

−1
sign(t − s)h j (x6, s)

H2(∂Bδ(x6)∩ D(t, s))
H2(∂Bδ(x6))

ds.

Then, using the regularity of 6 and the dominated convergence theorem once again, we get

lim
δ→0

lim
ε→0

∫ 1

−1
sign(t − s)h j (x6, s)

∫
∂Bδ(xεs)∩Aεt,s

k(xεt − y) ·
xεs − y
|xεs − y|

dH2(y) ds

=
1
2

∫ 1

−1
sign(t − s)h j (x6, s) ds. (5-22)

By (5-19), (5-22) and the definition of Cε,δ before (5-14), we get

lim
δ→0

lim
ε→0

Cε,δ =
1
2

∫ 1

−1
sign(t − s)h j (x6, s) ds. (5-23)

The proof of (5-12) is a straightforward combination of (5-14), (5-15), (5-17) and (5-23).
To prove (5-13) we use the same approach as in (5-12); that is, we split T ε

j,nhn(x6, t) as

T ε
j,nhn(x6, t)=: Aε,δ +Bε,δ +Cε,δ,

like above (5-14). The first two terms can be treated analogously and one gets the desired result; the
details are left for the reader. To estimate Cε,δ we use the notation introduced before. Recall that Exεt is
smooth in Dε

δ (t, s) (assuming t 6= s) and k(xεt − y)=∇E(xεt − y)=−∇Exεt (y). So, by the divergence
theorem, see also (5-9),∫
∂Dε

δ (t,s)
∇

j,n
ν∂Dε

δ
(t,s)(y)

E(xεt − y) dH2(y)

=

∫
∂Dε

δ (t,s)

(
(ν∂Dε

δ (t,s)(y))n∂x j E(xεt − y)− (ν∂Dε
δ (t,s)(y))j∂xn E(xεt − y)

)
dH2(y)

=

∫
Dε
δ (t,s)

(∂yj ∂yn Exεt − ∂yn∂yj Exεt )(y) dy = 0. (5-24)

Since ∂Dε
δ (t, s)= (Bδ(xεs)∩6εs)∪ (∂Bδ(xεs)∩ Aεt,s), from (5-24) we have∣∣∣∣∫
|xεs−yεs |≤δ

∇
j,n
νεs(yεs)

E(xεst − yεs) dσεs(yεs)

∣∣∣∣= ∣∣∣∣∫
∂Bδ(xεs)∩Aεt,s

∇
j,n
ν∂Dε

δ
(t,s)(y)

E(xεt − y) dH2(y)
∣∣∣∣.
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Observe that

χ∂Bδ(xεs)∩Aεt,s (y)∇
j,n
ν∂Dε

δ
(t,s)(y)

E(xεt − y) dH2(y)

= χ∂Bδ(xεs)∩Aεt,s (y)
(
(ν∂Dε

δ (t,s)(y))j∂ynExεt (y)− (ν∂Dε
δ (t,s)(y))n∂yjExεt (y)

)
dH2(y)

→ χ∂Bδ(x6)∩D(t,s)(y)
(
(y− x6)j

|y− x6|
∂ynEx6 (y)−

(y− x6)n
|y− x6|

∂yjEx6 (y)
)

dH2(y)= 0 (5-25)

when ε→ 0. The limit measure in (5-25) vanishes because its density function corresponds to a tangential
derivative of Ex6 on ∂Bδ(x6), which is a constant function on ∂Bδ(x6). Therefore, arguing as in the
proof of (5-12) but replacing (5-21) by (5-25), we have that, now,

lim
δ→0

lim
ε→0

Cε,δ = 0.

This yields (5-13) and concludes the proof of (5-4).

5B. A pointwise estimate of |Bε,ω3 g(x6, t)| by maximal operators. We begin this section by setting

k(x) :=
x j

4π |x |3
for j = 1, 2, 3, x = (x1, x2, x3) ∈ R3

\ {0}. (5-26)

In (5-5) we already introduced a kernel k which, in fact, corresponds to the vectorial version of the ones
introduced in (5-26). So, by an abuse of notation, throughout this section we mean by k(x) any of the
components of the kernel given in (5-5).

Note that k(−x)=−k(x) for all x ∈ R3
\ {0} and, besides, there exists C > 0 such that

|k(x − y)| ≤
C

|x − y|2
for all x, y ∈ R3 such that |x − y|> 0,

|k(z− y)− k(x − y)| ≤ C
|z− x |
|x − y|3

for all x, y, z ∈ R3 with 0< |z− x | ≤ 1
2 |x − y|.

(5-27)

As in Section 5A, we are going to work componentwise. More precisely, in order to deal with the
different components of Bε,ω3 g(x6, t) for g ∈ L2(6 × (−1, 1))4, we are going to study the following
scalar version. Given 0< ε ≤ η0, g ∈ L2(6× (−1, 1)) and (x6, t) ∈6× (−1, 1), define

B̃εg(x6, t)

:= u(t)
∫ 1

−1

∫
6

k(x6 + εtν(x6)− y6 − εsν(y6))v(s) det(1− εsW (y6))g(y6, s) dσ(y6) ds, (5-28)

where u and v are as in (3-1) for some 0 < η ≤ η0. It is clear that pointwise estimates of |B̃εg(x6, t)|
for a given g ∈ L2(6× (−1, 1)) directly transfer to pointwise estimates of |Bε,ω3h(x6, t)| for a given
h ∈ L2(6× (−1, 1))4, so we are reduced to estimating |B̃εg(x6, t)| for g ∈ L2(6× (−1, 1)).

A key ingredient to finding those suitable pointwise estimates is to relate B̃ε to the Hardy–Littlewood
maximal operator and some maximal singular integral operators from Calderón–Zygmund theory. The
Hardy–Littlewood maximal operator is given by

M∗ f (x6) := sup
δ>0

1
σ(Bδ(x6))

∫
Bδ(x6)
| f | dσ, M∗ : L2(6)→ L2(6) bounded; (5-29)
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see [Mattila 1995, Theorem 2.19] for a proof of the boundedness. The above-mentioned maximal singular
integral operators are

T∗ f (x6) := sup
δ>0

∣∣∣∣∫
|x6−y6 |>δ

k(x6 − y6) f (y6) dσ(y6)
∣∣∣∣, T∗ : L2(6)→ L2(6) bounded; (5-30)

see [David 1988, Proposition 4 bis] for a proof of the boundedness. We also introduce some integral
versions of these maximal operators to connect them to the space L2(6× (−1, 1)). Set

M̃∗g(x6) :=
(∫ 1

−1
M∗(g( · , s))(x6)2 ds

)1/2

, M̃∗ : L2(6× (−1, 1))→ L2(6) bounded,

T̃∗g(x6) :=
∫ 1

−1
T∗(g( · , s))(x6) ds, T̃∗ : L2(6× (−1, 1))→ L2(6) bounded.

(5-31)

Indeed, by Fubini’s theorem and (5-29),

‖M̃∗g‖2L2(6)
=

∫
6

∫ 1

−1
M∗(g( · , s))(x6)2 ds dσ(x6)=

∫ 1

−1
‖M∗(g( · , s))‖2L2(6)

ds

≤ C
∫ 1

−1
‖g( · , s)‖2L2(6)

ds = C‖g‖2L2(6×(−1,1)).

By the Cauchy–Schwarz inequality, Fubini’s theorem and (5-30), we also see that T̃∗ is bounded, so
(5-31) is fully justified.

Let us focus for a moment on the boundedness of B0(a) stated in (3-7). The fact that, for g ∈
L2(6×(−1, 1))4, the limit in the definition of (B0(a)g)(x6, t) exists for almost every (x6, t)∈6×(−1, 1)
is a consequence of the decomposition (see (5-1))

φa
= ωa

1 +ω
a
2 +ω3,

the integrals of fractional type on bounded sets in the case of ωa
1 and ωa

2 and, for ω3, that

lim
ε→0

∫
|x6−y6 |>ε

k(x6 − y6) f (y6) dσ(y6) exists for σ-almost every x6 ∈6 (5-32)

if f ∈ L2(6) (see [Mattila 1995, Theorem 20.27] for a proof) and that∫ 1

−1
v(s)g( · , s) ds ∈ L2(6)4.

Of course, (5-32) directly applies to B0,ω3 (see (5-2) for the definition). From the boundedness of T̃∗
and working component by component, we easily see that B0,ω3 is bounded in L2(6× (−1, 1))4. By the
comments regarding B0,ωa

1
and B0,ωa

2
from the paragraph which contains (5-3), we also get that B0(a) is

bounded in L2(6× (−1, 1))4, which gives (3-7) in this case.
With the maximal operators at hand, we proceed to pointwise estimate |B̃εg(x6, t)| for g ∈ L2(6×

(−1, 1)). Set
gε(y6, s) := v(s) det(1− εsW (y6))g(y6, s). (5-33)
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Then, since the eigenvalues of W are uniformly bounded by Proposition 2.2, there exists C > 0 only
depending on η0 such that

|gε(y6, s)| ≤ C‖v‖L∞(R)|g(y6, s)| for all 0< ε ≤ η0, (y6, s) ∈6× (−1, 1). (5-34)

Additionally, the regularity and boundedness of 6 imply the existence of L > 0 such that

|ν(x6)− ν(y6)| ≤ L|x6 − y6| for all x6, y6 ∈6. (5-35)

We make the following splitting of B̃εg(x6, t) (see (5-28) for the definition):

B̃εg(x6, t)= u(t)
∫ 1

−1

∫
|x6−y6 |≤4ε|t−s|

k(x6 + εtν(x6)− y6 − εsν(y6))gε(y6, s) dσ(y6) ds

+ u(t)
∫ 1

−1

∫
|x6−y6 |>4ε|t−s|

(
k(x6 + εtν(x6)− y6 − εsν(y6))

− k(x6 + εsν(x6)− y6 − εsν(y6))
)
gε(y6, s) dσ(y6) ds

+ u(t)
∫ 1

−1

∫
|x6−y6 |>4ε|t−s|

(
k(x6 + εs(ν(x6)− ν(y6))− y6)− k(x6 − y6)

)
× gε(y6, s) dσ(y6) ds

+ u(t)
∫ 1

−1

∫
|x6−y6 |>4ε|t−s|

k(x6 − y6)gε(y6, s) dσ(y6) ds

=: B̃ε,1g(x6, t)+ B̃ε,2g(x6, t)+ B̃ε,3g(x6, t)+ B̃ε,4g(x6, t). (5-36)

We are going to estimate the four terms on the right-hand side of (5-36) separately.
Concerning B̃ε,1g(x6, t), note that

ε|t − s| = dist(x6 + εtν(x6),6εs)≤
∣∣x6 + εtν(x6)− y6 − εsν(y6))

∣∣
for all (y6, s) ∈ 6 × (−1, 1); thus |k(x6 + εtν(x6)− y6 − εsν(y6))| ≤ 1/(ε2

|t − s|2) by (5-27), and
then

|B̃ε,1g(x6, t)| ≤ ‖u‖L∞(R)

∫ 1

−1

1
ε2|t − s|2

∫
|x6−y6 |≤4ε|t−s|

|gε(y6, s)| dσ(y6) ds

≤ C‖u‖L∞(R)

∫ 1

−1
M∗(gε( · , s))(x6) ds ≤ C‖u‖L∞(R)‖v‖L∞(R)M̃∗g(x6), (5-37)

where we used the Cauchy–Schwarz inequality and (5-34) in the last inequality above.
For the case of B̃ε,2g(x6, t), we split the integral over 6 on dyadic annuli as follows. Set

N :=
[∣∣∣∣log2

(
diam(�η0)

ε|t − s|

)∣∣∣∣]+ 1 (5-38)

for t 6= s, where [ · ] denotes the integer part. Then, 2Nε|t − s|> diam(�η0) and

|B̃ε,2g(x6, t)| ≤ ‖u‖L∞(R)

∫ 1

−1

N∑
n=2

∫
2n+1ε|t−s|≥|x6−y6 |>2nε|t−s|

· · · dσ(y6) ds, (5-39)
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where “· · · ” means
∣∣k(x6 + εtν(x6)− y6 − εsν(y6))− k(x6 + εsν(x6)− y6 − εsν(y6))

∣∣|gε(y6, s)|.
By (5-35),

(1− η0L)|x6 − y6| ≤ |x6 − y6| − η0|ν(x6)− ν(y6)|

≤
∣∣x6 + εsν(x6)− y6 − εsν(y6)

∣∣
≤ |x6 − y6| + η0|ν(x6)− ν(y6)| ≤ (1+ η0L)|x6 − y6|,

thus if we take η0 ≤ 1/(2L) we get

1
2 |x6 − y6| ≤

∣∣x6 + εsν(x6)− y6 − εsν(y6)
∣∣≤ 2|x6 − y6|. (5-40)

Additionally, for 2n+1ε|t − s| ≥ |x6 − y6|> 2nε|t − s|, using (5-40) we see that∣∣x6 + εtν(x6)− (x6 + εsν(x6))
∣∣= ε|t − s|< 2−n

|x6 − y6|

≤ 2−n+1∣∣x6 + εsν(x6)− y6 − εsν(y6)
∣∣

≤
1
2

∣∣x6 + εsν(x6)− y6 − εsν(y6)
∣∣ (5-41)

for all n = 2, . . . , N. Therefore, combining (5-41), (5-27) and (5-40) we finally get∣∣k(x6 + εtν(x6)− y6 − εsν(y6))− k(x6 + εsν(x6)− y6 − εsν(y6))
∣∣

≤ C
|x6 + εtν(x6)− (x6 + εsν(x6))|
|x6 + εsν(x6)− y6 − εsν(y6)|3

≤
Cε|t − s|
|x6 − y6|3

<
C

23nε2|t − s|2

for all s, t ∈ (−1, 1), 0< ε ≤ η0, n = 2, . . . , N and 2n+1ε|t− s| ≥ |x6− y6|> 2nε|t− s|. Plugging this
estimate into (5-39) we obtain

|B̃ε,2g(x6, t)| ≤ C‖u‖L∞(R)

∫ 1

−1

N∑
n=2

∫
2n+1ε|t−s|≥|x6−y6 |>2nε|t−s|

|gε(y6, s)|
23nε2|t − s|2

dσ(y6) ds

≤ C‖u‖L∞(R)

∫ 1

−1

N∑
n=2

1
2n

∫
|x6−y6 |≤2n+1ε|t−s|

|gε(y6, s)|
(2n+1ε|t − s|)2

dσ(y6) ds

≤ C‖u‖L∞(R)

∞∑
n=2

1
2n

∫ 1

−1
M∗(gε( · , s))(x6) ds ≤ C‖u‖L∞(R)‖v‖L∞(R)M̃∗g(x6), (5-42)

where we used the Cauchy–Schwarz inequality and (5-34) in the last inequality above.
Let us deal now with B̃ε,3g(x6, t). Since 0< ε ≤ η0 and s ∈ (−1, 1), if we take η0 ≤ 1/(2L) as before,

from (5-35) we see that∣∣(x6 + εs(ν(x6)− ν(y6)))− x6
∣∣= ε|s||ν(x6)− ν(y6)| ≤ 1

2 |x6 − y6|,

and then, by (5-27),∣∣k(x6 + εs(ν(x6)− ν(y6))− y6)− k(x6 − y6)
∣∣≤ C

ε|s||ν(x6)− ν(y6)|
|x6 − y6|3

≤
Cε

|x6 − y6|2
. (5-43)
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Splitting the integral which defines B̃ε,3g(x6, t) into dyadic annuli as in (5-39), and using (5-43), (5-34)
and (5-38), we get

|B̃ε,3g(x6, t)| ≤ C‖u‖L∞(R)

∫ 1

−1

N∑
n=2

ε

∫
2n+1ε|t−s|≥|x6−y6 |>2nε|t−s|

|gε(y6, s)|
|x6 − y6|2

dσ(y6) ds

≤ C‖u‖L∞(R)

∫ 1

−1
ε

N∑
n=2

M∗(gε( · , s))(x6) ds

≤ C‖u‖L∞(R)‖v‖L∞(R)

∫ 1

−1
ε

∣∣∣∣log2

(
diam(�η0)

ε|t − s|

)∣∣∣∣M∗(g( · , s))(x6) ds. (5-44)

Note that

ε

∣∣∣∣log2

(
diam(�η0)

ε|t − s|

)∣∣∣∣≤ ε(C + | log2 ε| +
∣∣log2 |t − s|

∣∣)≤ C
(
1+

∣∣log2 |t − s|
∣∣)

for all 0 < ε ≤ η0, where C > 0 only depends on η0. Hence, from (5-44) and the Cauchy–Schwarz
inequality, we obtain

|B̃ε,3g(x6, t)| ≤ C‖u‖L∞(R)‖v‖L∞(R)

∫ 1

−1

(
1+

∣∣log2 |t − s|
∣∣)M∗(g( · , s))(x6) ds

≤ C‖u‖L∞(R)‖v‖L∞(R)

(∫ 1

−1

(
1+

∣∣log2 |t − s|
∣∣)2 ds

)1/2

M̃∗g(x6)

≤ C‖u‖L∞(R)‖v‖L∞(R)M̃∗g(x6), (5-45)

where we also used that t ∈ (−1, 1), so
∫ 1
−1

(
1+

∣∣log2 |t − s|
∣∣)2 ds ≤ C

(
1+

∫ 2
0 | log2 r |2 dr

)
< +∞, in

the last inequality above.
The term |B̃ε,4g(x6, t)| can be estimated using the maximal operator T̃∗ as follows. Let λ1(y6) and

λ2(y6) denote the eigenvalues of the Weingarten map W (y6). By definition,

gε(y6, s)= v(s) det(1− εsW (y6))g(y6, s)

= v(s)
(
1+ ε2s2λ1(y6)λ2(y6)− εsλ1(y6)− εsλ2(y6)

)
g(y6, s).

Therefore, the triangle inequality yields

|B̃ε,4g(x6, t)| ≤ ‖u‖L∞(R)‖v‖L∞(R)

∫ 1

−1

(
T∗(g( · , s))(x6)+ η2

0T∗(λ1λ2g( · , s))(x6)

+ η0T∗(λ1g( · , s))(x6)+ η0T∗(λ2g( · , s))(x6)
)

ds

≤C‖u‖L∞(R)‖v‖L∞(R)
(
T̃∗g(x6)+T̃∗(λ1λ2g)(x6)+T̃∗(λ1g)(x6)+T̃∗(λ2g)(x6)

)
. (5-46)

Combining (5-36), (5-37), (5-42), (5-45) and (5-46) and taking the supremum on ε we finally get that

sup
0<ε≤η0

|B̃εg(x6, t)| ≤ C‖u‖L∞(R)‖v‖L∞(R)
(
M̃∗g(x6)+ T̃∗g(x6)

+ T̃∗(λ1λ2g)(x6)+ T̃∗(λ1g)(x6)+ T̃∗(λ2g)(x6)
)
, (5-47)
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where C > 0 only depends on η0. Define

B̃∗g(x6, t) := sup
0<ε≤η0

|B̃εg(x6, t)| for (x6, t) ∈6× (−1, 1).

Then, from (5-47), the boundedness of M̃∗ and T̃∗ from L2(6× (−1, 1)) to L2(6), see (5-31), and the
fact that ‖λ1‖L∞(6) and ‖λ2‖L∞(6) are finite by Proposition 2.2, we easily conclude that there exists
C > 0 only depending on η0 such that

‖B̃∗g‖L2(6×(−1,1)) ≤ C‖u‖L∞(R)‖v‖L∞(R)‖g‖L2(6×(−1,1)). (5-48)

5C. Bε,ω3 → B0,ω3 + B′ in the strong sense when ε → 0 and conclusion of the proof of (3-10). To
begin this section, we present a standard result in harmonic analysis about the existence of a limit almost
everywhere for a sequence of operators acting on a fixed function and its convergence in the strong sense.
General statements can be found in [Duoandikoetxea 2001, Theorem 2.2 and the remark below it] and
[Torchinsky 1986, Proposition 6.2], for example. For the sake of completeness, here we present a concrete
version with its proof.

Lemma 5.1. Let b ∈ N and (X, µX ) and (Y, µY ) be two Borel measure spaces. Let {Wε}0<ε≤η0 be a
family of bounded linear operators from L2(µX )

b to L2(µY )
b such that, if

W∗g(y) := sup
0<ε≤η0

|Wεg(y)| for g ∈ L2(µX )
b and y ∈ Y,

then
W∗ : L2(µX )

b
→ L2(µY )

is a bounded sublinear operator. Suppose that for any g ∈ S, where S ⊂ L2(µX )
b is a dense subspace,

limε→0 Wεg(y) exists for µY -a.e. y ∈ Y. Then, for any g ∈ L2(µX )
b, we know limε→0 Wεg(y) exists for

µY -a.e. y ∈ Y and
lim
ε→0

∥∥Wεg− lim
δ→0

Wδg
∥∥

L2(µY )b
= 0. (5-49)

In particular, limε→0 Wε defines a bounded operator from L2(µX )
b to L2(µY )

b.

Proof. We start by proving that, for any g ∈ L2(µX )
b, limε→0 Wεg(y) exists for µY -a.e. y ∈ Y. Take

gk ∈ S such that ‖gk− g‖L2(µX )b→ 0 for k→∞, and fix λ> 0. Since limε→0 Wεgk(y) exists for µY -a.e.
y ∈ Y, the Chebyshev inequality yields

µY
({

y ∈ Y :
∣∣lim sup
ε→0

Wεg(y)− lim inf
ε→0

Wεg(y)
∣∣> λ})

≤ µY
({

y ∈ Y :
∣∣lim sup
ε→0

Wε(g− gk)(y)
∣∣+ ∣∣lim inf

ε→0
Wε(gk − g)(y)

∣∣> λ})
≤ µY ({y ∈ Y : 2W∗(g− gk)(y) > λ})

≤
4
λ2 ‖W∗(g− gk)‖

2
L2(µY )

≤
C
λ2 ‖g− gk‖

2
L2(µX )b

.
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Letting k→∞ we deduce that

µY
({

y ∈ Y :
∣∣lim sup
ε→0

Wεg(y)− lim inf
ε→0

Wεg(y)
∣∣> λ})= 0.

Since this holds for all λ > 0, we finally get that limε→0 Wεg(y) exists µY -a.e.
Note that |Wεg(y)− limδ→0 Wδg(y)| ≤ 2W∗g(y) and W∗g ∈ L2(µY ). Thus, (5-49) follows by the

dominated convergence theorem. The last statement in the lemma is also a consequence of the boundedness
of W∗. �

Thanks to Lemma 5.1 and the results in Sections 5A and 5B, we are ready to conclude the proof of
(3-10). As we said before (5-4), to obtain (3-10) we only need to show that Bε,ω3 → B0,ω3 + B ′ in the
strong sense when ε→ 0. From (5-4), we know that

lim
ε→0

Bε,ω3 g(x6, t)= B0,ω3 g(x6, t)+ B ′g(x6, t) for almost all (x6, t) ∈6× (−1, 1)

and all g ∈ L∞(6× (−1, 1))4 such that sup|t |<1 |g(x6, t)− g(y6, t)| ≤ Cg|x6 − y6| for all x6, y6 ∈6
and some Cg > 0 (it may depend on g). Note also that this set of functions g is dense in L2(6×(−1, 1))4.
Additionally, thanks to (5-48) we see that, if η0 > 0 is small enough and we set

B∗,ω3 g(x6, t) := sup
0<ε≤η0

|Bε,ω3 g(x6, t)| for (x6, t) ∈6× (−1, 1),

then there exists C > 0 only depending on η0 such that

‖B∗,ω3 g‖L2(6×(−1,1)) ≤ C‖u‖L∞(R)‖v‖L∞(R)‖g‖L2(6×(−1,1))4 . (5-50)

Thus, from Lemma 5.1 we get that, for any g∈ L2(6×(−1, 1))4, the pointwise limit limε→0 Bε,ω3 g(x6, t)
exists for almost every (x6, t) ∈6× (−1, 1). Recall also that B0,ω3+ B ′ is bounded in L2(6× (−1, 1))4

(see the comment before (5-33) for B0,ω3 , the case of B ′ is trivial), so one can easily adapt the proof of
Lemma 5.1 to also show that, for any g ∈ L2(6× (−1, 1))4,

lim
ε→0

Bε,ω3 g(x6, t)= B0,ω3 g(x6, t)+ B ′g(x6, t) for almost all (x6, t) ∈6× (−1, 1).

Finally, (5-49) in Lemma 5.1 yields

lim
ε→0
‖(Bε,ω3 − B0,ω3 − B ′)g‖L2(6×(−1,1))4 = 0 for all g ∈ L2(6× (−1, 1))4,

which is the required strong convergence of Bε,ω3 to B0,ω3 + B ′. This finishes the proof of (3-10).

6. Proof of (3-9): Aε(a)→ A0(a) in the strong sense when ε→ 0

Recall from (3-3) and (3-8) that Aε(a) with 0< ε ≤ η0 and A0(a) are defined by

(Aε(a)g)(x)=
∫ 1

−1

∫
6

φa(x − y6 − εsν(y6))v(s) det(1− εsW (y6))g(y6, s) dσ(y6) ds,

(A0(a)g)(x)=
∫ 1

−1

∫
6

φa(x − y6)v(s)g(y6, s) dσ(y6) ds.
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We already know that Aε(a) is bounded from L2(6× (−1, 1))4 to L2(R3)4. To show the boundedness of
A0(a) (and conclude the proof of (3-7)) just note that, by Fubini’s theorem, for every x ∈ R3

\6 we have

(A0(a)g)(x)=
∫
6

φa(x − y6)
(∫ 1

−1
v(s)g(y6, s) ds

)
dσ(y6),

and
∫ 1
−1 v(s)g( · , s) ds ∈ L2(6)4 if g ∈ L2(6 × (−1, 1))4. Since a ∈ C \R, [Arrizabalaga et al. 2014,

Lemma 2.1] shows that A0(a) is bounded from L2(6× (−1, 1))4 to L2(R3)4.
We begin the proof of (3-9) by splitting

Aε(a)g = χR3\�η0
Aε(a)g+χ�η0

Aε(a)g. (6-1)

Let us treat first the case of χR3\�η0
Aε(a). As we said before, since a ∈ C \R, the components of

φa(x) decay exponentially when |x |→∞. In particular, there exist C, r > 0 only depending on a and η0

such that

|φa(x)|, |∂φa(x)| ≤ Ce−r |x | for all |x | ≥ 1
2η0, (6-2)

where the left-hand side of (6-2) means the absolute value of any component of the matrix φa(x) and of
any first-order derivative of it, respectively.

Note that η0 = dist(R3
\�η0, 6). Hence, if x ∈ R3

\�η0 , y6 ∈6, 0≤ ε ≤ 1
2η0 and s ∈ (−1, 1) then,

for any 0≤ q ≤ 1,∣∣q(x− y6−εsν(y6))+(1−q)(x− y6)
∣∣= |x− y6−qεsν(y6)|

≥ |x− y6|−qε|s| ≥ |x− y6|− 1
2η0 ≥

1
2 |x− y6| ≥ 1

2η0. (6-3)

Thus (6-2) applies to [x, y6]q := q(x− y6−εsν(y6))+ (1−q)(x− y6), and a combination of the mean
value theorem and (6-3) gives∣∣φa(x − y6 − εsν(y6))−φa(x − y6)

∣∣≤ ε max
0≤q≤1

|∂φa([x, y6]q)| ≤ Cεe−(r/2)|x−y6 |. (6-4)

Set g̃ε(y6, s) := det(1−εsW (y6))g(y6, s). On one hand, from (6-4), Proposition 2.2 and the Cauchy–
Schwarz inequality, we get that

χR3\�η0
(x)
∣∣(Aε(a)g)(x)− (A0(a)gε)(x)

∣∣
≤ C‖v‖L∞(R)χR3\�η0

(x)
∫ 1

−1

∫
6

εe−(r/2)|x−y6 ||g̃ε(y6, s)| dσ(y6) ds

≤ Cε‖v‖L∞(R)‖g̃ε‖L2(6×(−1,1))4χR3\�η0
(x)
(∫

6

e−r |x−y6 | dσ(y6)
)1/2

≤ Cε‖v‖L∞(R)‖g‖L2(6×(−1,1))4ξ(x),

where

ξ(x) := χR3\�η0
(x)
(∫

6

e−r |x−y6 | dσ(y6)
)1/2

.
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Since ξ ∈ L2(R3) because σ(6) <+∞, we deduce that

‖χR3\�η0
(Aε(a)g− A0(a)g̃ε)‖L2(R3)4 ≤ Cε‖v‖L∞(R)‖g‖L2(6×(−1,1))4 . (6-5)

On the other hand, by Proposition 2.2 we have

|g̃ε(y6, s)− g(y6, s)| =
∣∣det(1− εsW (y6))− 1

∣∣|g(y6, s)| ≤ Cε|g(y6, s)|.

This, together with the fact that A0(a) is bounded from L2(6× (−1, 1))4 to L2(R3)4, see above (6-1),
implies

‖χR3\�η0
A0(a)(g̃ε − g)‖L2(R3)4 ≤ C‖v‖L∞(R)‖g̃ε − g‖L2(6×(−1,1))4

≤ Cε‖v‖L∞(R)‖g‖L2(6×(−1,1))4 . (6-6)

Using the triangle inequality, (6-5) and (6-6), we finally get that

‖χR3\�η0
(Aε(a)− A0(a))g‖L2(R3)4 ≤ Cε‖v‖L∞(R)‖g‖L2(6×(−1,1))4 (6-7)

for all 0≤ ε ≤ 1
2η0, where C > 0 only depends on a and η0. In particular, this implies

lim
ε→0
‖χR3\�η0

(Aε(a)− A0(a))‖L2(6×(−1,1))4→L2(R3)4 = 0. (6-8)

Let us deal now with χ�η0
Aε(a). Consider the decomposition of φa given by (5-1). Then, as in (5-2),

we write
Aε(a)= Aε,ωa

1
+ Aε,ωa

2
+ Aε,ω3,

A0(a)= A0,ωa
1
+ A0,ωa

2
+ A0,ω3,

(6-9)

where Aε,ωa
1
, Aε,ωa

2
and Aε,ω3 are defined as Aε(a) but replacing φa by ωa

1 , ωa
2 and ω3, respectively, and

analogously for the case of A0(a). For j = 1, 2, the arguments used to show (5-3) in the case of Bε,ωa
j

also apply to χ�η0
Aε,ωa

j
; thus we now get

lim
ε→0
‖χ�η0

(Aε,ωa
j
− A0,ωa

j
)‖L2(6×(−1,1))4→L2(R3)4 = 0 for j = 1, 2. (6-10)

It only remains to show the strong convergence of χ�η0
Aε,ω3 . This case is treated similarly to what we

did in Sections 5A, 5B and 5C, as follows.

6A. The pointwise limit of Aε,ω3 g(x) when ε→ 0 for g ∈ L2(6× (−1, 1))4. This case is much easier
than the one in Section 5A. For a fixed x ∈ R3

\6, we can always find δx ,Cx > 0 small enough such that

|x − y6 − εsν(y6)| ≥ Cx for all y6 ∈6, s ∈ (−1, 1) and 0≤ ε ≤ δx .

In particular, for a fixed x ∈R3
\6, we have |ω3(x−y6−εsν(y6))|≤C uniformly on y6 ∈6, s ∈ (−1, 1)

and 0≤ ε ≤ δx , where C > 0 depends on x . By Proposition 2.2 and the dominated convergence theorem,
given g ∈ L2(6× (−1, 1))4, we have

lim
ε→0

Aε,ω3 g(x)= A0,ω3 g(x) for L-a.e. x ∈ R3, (6-11)

where L denotes the Lebesgue measure in R3.
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6B. A pointwise estimate of χ�η0
(x)|Aε,ω3 g(x)| by maximal operators. Given 0≤ ε ≤ 1

4η0, we divide
the study of χ�η0

(x)Aε,ω3 g(x) into two different cases, i.e., x ∈ �η0 \�4ε and x ∈ �4ε . As we did in
Section 5B, we are going to work componentwise; that is, we consider C-valued functions instead of
C4-valued functions. With this in mind, for g ∈ L2(6× (−1, 1)) we set

Ãεg(x) :=
∫ 1

−1

∫
6

k(x − y6 − εsν(y6))v(s) det(1− εsW (y6))g(y6, s) dσ(y6) ds,

where k is given by (5-26).
In what follows, we can always assume that x ∈ R3

\6 because L(6) = 0. In case that x ∈ �4ε ,
we can write x = x6 + εtν(x6) for some t ∈ (−4, 4), and then Ãεg(x) coincides with B̃εg(x6, t), see
(5-28), except for the term u(t). Therefore, one can carry out all the arguments involved in the estimate
of B̃εg(x6, t), that is, from (5-28) to (5-48), with minor modifications to get the following result: Define

Ã∗g(x6, t) := sup
0<ε≤η0/4

| Ãεg(x6 + εtν(x6))| for (x6, t) ∈6× (−4, 4). (6-12)

Then, if η0 is small enough, there exists C > 0 only depending on η0 such that∥∥sup
|t |<4

Ã∗g( · , t)
∥∥

L2(6)
≤ C‖v‖L∞(R)‖g‖L2(6×(−1,1)) for all g ∈ L2(6× (−1, 1)). (6-13)

For the proof of (6-13), a remark is in order. The fact that in the present situation t ∈ (−4, 4) instead
of t ∈ (−1, 1), as in the definition of B̃εg(x6, t) in (5-28), only affects the arguments used to get (5-47)
at the comment just below (5-45). Now one should use that∫ 5

0
| log2 r |2 dr <+∞

to prove the estimate analogous to (5-45) and to derive the counterpart of (5-47); that is,

Ã∗g(x6, t)≤ C‖v‖L∞(R)
(
M̃∗g(x6)+ T̃∗g(x6)+ T̃∗(λ1λ2g)(x6)+ T̃∗(λ1g)(x6)+ T̃∗(λ2g)(x6)

)
for all (x6, t) ∈6× (−4, 4), where λ1 and λ2 are the eigenvalues of the Weingarten map. Combining
this estimate, whose right-hand side is independent of t ∈ (−4, 4), the boundedness of M̃∗ and T̃∗ from
L2(6× (−1, 1)) to L2(6), see (5-31), and Proposition 2.2, we get (6-13).

Finally, thanks to (6-12), (2-3), Proposition 2.2 and (6-13), for η0 small enough we conclude∥∥ sup
0≤ε≤η0/4

χ�4ε | Ãεg|
∥∥

L2(R3)
≤
∥∥sup
|t |<4

Ã∗g(P6·, t)
∥∥

L2(�η0 )

≤ C
∥∥sup
|t |<4

Ã∗g( · , t)
∥∥

L2(6)

≤ C‖v‖L∞(R)‖g‖L2(6×(−1,1)). (6-14)

We now focus on χ�η0\�4ε Ãε for 0≤ ε ≤ 1
4η0. Similarly to what we did in (5-36), we set

gε(y6, s) := v(s) det(1− εsW (y6))g(y6, s),
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see (5-33), and we split Ãεg(x) into Ãεg(x)= Ãε,1g(x)+ Ãε,2g(x)+ Ãε,3g(x)+ Ãε,4g(x), where

Ãε,1g(x) :=
∫ 1

−1

∫
6

(
k(x − y6 − εsν(y6))− k(x − y6)

)
gε(y6, s) dσ(y6) ds,

Ãε,2g(x) :=
∫ 1

−1

∫
|x6−y6 |≤4 dist(x,6)

k(x − y6)gε(y6, s) dσ(y6) ds,

Ãε,3g(x) :=
∫ 1

−1

∫
|x6−y6 |>4 dist(x,6)

(k(x − y6)− k(x6 − y6))gε(y6, s) dσ(y6) ds,

Ãε,4g(x) :=
∫ 1

−1

∫
|x6−y6 |>4 dist(x,6)

k(x6 − y6)gε(y6, s) dσ(y6) ds.

From now on we assume x ∈�η0 \�4ε and, as always, y6 ∈6. Note that

|(y6 − εsν(y6))− y6| ≤ ε ≤ 1
4 dist(x, 6)≤ 1

4 |x − y6|,

so (5-27) gives |k(x − y6 − εsν(y6))− k(x − y6)| ≤ Cε|x − y6|−3. Furthermore, we have |x − y6| ≥
C |x6 − y6| for all y6 ∈6 and some C > 0 only depending on η0. We can split the integral on 6, which
defines Ãε,1g(x) in dyadic annuli as we did in (5-39), see also (5-42), to obtain

| Ãε,1g(x)| ≤ C
∫ 1

−1

∫
|x6−y6 |<dist(x,6)

ε|gε(y6, s)|
dist(x, 6)3

dσ(y6) ds

+C
∫ 1

−1

∞∑
n=0

∫
2n dist(x,6)<|x6−y6 |≤2n+1 dist(x,6)

ε|gε(y6, s)|
|x − y6|3

dσ(y6) ds

≤ C‖v‖L∞(R)M̃∗g(x6)+C
∫ 1

−1

∞∑
n=0

1
2n

∫
|x6−y6 |≤2n+1 dist(x,6)

|gε(y6, s)|
(2n dist(x, 6))2

dσ(y6) ds

≤ C‖v‖L∞(R)M̃∗g(x6)+C
∞∑

n=0

1
2n

∫ 1

−1
M∗(gε( · , s))(x6) ds ≤ C‖v‖L∞(R)M̃∗g(x6). (6-15)

Using that |k(x − y6)| ≤ C |x − y6|−2
≤ C dist(x, 6)−2 by (5-27), it is easy to show that

| Ãε,2g(x)| ≤ C‖v‖L∞(R)M̃∗g(x6). (6-16)

Since dist(x, 6)= |x − x6|, the same arguments as in (6-15) yield

| Ãε,3g(x)| ≤ C‖v‖L∞(R)M̃∗g(x6). (6-17)

Finally, the same arguments as in (5-46) show that

| Ãε,4g(x)| ≤ C‖v‖L∞(R)
(
T̃∗g(x6)+ T̃∗(λ1λ2g)(x6)+ T̃∗(λ1g)(x6)+ T̃∗(λ2g)(x6)

)
. (6-18)

Therefore, thanks to (6-15)–(6-18) we conclude that

sup
0≤ε≤η0/4

χ�η0\�4ε (x)| Ãεg(x)|

≤ C‖v‖L∞(R)
(
M̃∗g(x6)+ T̃∗g(x6)+ T̃∗(λ1λ2g)(x6)+ T̃∗(λ1g)(x6)+ T̃∗(λ2g)(x6)

)
,
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and then, similarly to what we did in (6-14), a combination of (5-31) and Proposition 2.2 gives∥∥ sup
0≤ε≤η0/4

χ�η0\�4ε | Ãεg|
∥∥

L2(R3)
≤ C‖v‖L∞(R)‖g‖L2(6×(−1,1)). (6-19)

Finally, combining (6-14) and (6-19) we get that, if η0 > 0 is small enough, then∥∥ sup
0≤ε≤η0/4

χ�η0
| Ãεg|

∥∥
L2(R3)

≤ C‖v‖L∞(R)‖g‖L2(6×(−1,1)), (6-20)

where C > 0 only depends on η0.

6C. Aε,ω3 → A0,ω3 in the strong sense when ε → 0 and conclusion of the proof of (3-9). It only
remains to put all the pieces together. Despite that the proof follows more or less the same lines as the
one in Section 5C, this case is easier. Namely, now we don’t need to appeal to Lemma 5.1 because the
dominated convergence theorem suffices (the developments in Section 6A hold for all g∈ L2(6×(−1, 1))4,
not only for a dense subspace like in Section 5A).

Working component by component and using (6-20) we see that, if we set

A∗,ω3 g(x) := sup
0≤ε≤η0/4

|Aε,ω3 g(x)| for x ∈ R3
\6,

then there exists C > 0 only depending on η0 > 0 (being η0 small enough) such that

‖χ�η0
A∗,ω3 g‖L2(R3)4 ≤ C‖v‖L∞(R)‖g‖L2(6×(−1,1))4 . (6-21)

Moreover, given g ∈ L2(6× (−1, 1))4, in (6-11) we showed that limε→0 Aε,ω3 g(x)= A0,ω3 g(x) for
L-a.e. x ∈ R3. Thus (6-21) and the dominated convergence theorem show that

lim
ε→0
‖χ�η0

(Aε,ω3 − A0,ω3)g‖L2(R3)4 = 0. (6-22)

Then, combining (6-1), (6-9), (6-8), (6-10) and (6-22), we conclude that

lim
ε→0
‖(Aε(a)− A0(a))g‖2L2(R3)4

≤ lim
ε→0

(
‖χR3\�η0

(Aε(a)− A0(a))g‖2L2(R3)4

+‖χ�η0
(Aε,ωa

1
− A0,ωa

1
)g‖2L2(R3)4

+‖χ�η0
(Aε,ωa

2
− A0,ωa

2
)g‖2L2(R3)4

+‖χ�η0
(Aε,ω3 − A0,ω3)g‖

2
L2(R3)4

)
= 0

for all g ∈ L2(6× (−1, 1))4. This is precisely (3-9).

7. Proof of Corollary 3.3

We first prove an auxiliary result.

Lemma 7.1. Let a ∈ C \R and η0 > 0 be such that (1-2) holds for all 0< ε ≤ η0. If η0 is small enough,
then for any 0< η ≤ η0 and V ∈ L∞(R) with supp V ⊂ [−η, η] we have

‖Aε(a)‖L2(6×(−1,1))4→L2(R3)4,

‖Bε(a)‖L2(6×(−1,1))4→L2(6×(−1,1))4,

‖Cε(a)‖L2(R3)4→L2(6×(−1,1))4
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are uniformly bounded for all 0≤ ε ≤ η0, with bounds that only depend on a, η0 and V. Furthermore, if
η0 is small enough there exists δ > 0 only depending on η0 such that

‖Bε(a)‖L2(6×(−1,1))4→L2(6×(−1,1))4 ≤
1
3 (7-1)

for all |a| ≤ 1, 0≤ ε ≤ η0, 0< η ≤ η0 and all (δ, η)-small V.

Proof. The first statement in the lemma comes as a byproduct of the developments carried out in Sections 4,
5 and 6; see (4-4) for the case of Cε(a), (5-50) and the paragraph which contains (5-3) for Bε(a), and
(6-7), (6-10) and (6-21) for Aε(a). We should stress that these developments are valid for any V ∈ L∞(R)
with supp V ⊂ [−η, η], where 0 < η ≤ η0; hence the (δ, η)-small assumption on V in Theorem 1.2
is only required to prove the explicit bound in the second part of the lemma, which will yield the
strong convergence of (1+ Bε(a))−1 and (β + Bε(a))−1 to (1+ B0(a)+ B ′)−1 and (β + B0(a)+ B ′)−1,
respectively, in Corollary 3.3.

Recall the decomposition

Bε(a)= Bε,ωa
1
+ Bε,ωa

2
+ Bε,ω3 (7-2)

given by (5-2). Thanks to (5-50), there exists C0 > 0 only depending on η0 such that

‖Bε,ω3‖L2(6×(−1,1))4→L2(6×(−1,1))4 ≤ C0‖u‖L∞(R)‖v‖L∞(R) for all 0< ε ≤ η0. (7-3)

The comments in the paragraph which contains (5-3) and an inspection of the proof of [Behrndt et al.
2017, Lemma 3.4] show that there also exists C1 > 0 only depending on η0 such that, for any |a| ≤ 1 and
j = 1, 2,

‖Bε,ωa
j
‖L2(6×(−1,1))4→L2(6×(−1,1))4 ≤ C1‖u‖L∞(R)‖v‖L∞(R) for all 0< ε ≤ η0. (7-4)

Note that the kernel defining Bε,ωa
2

is given by

ωa
2(x)=

e−
√

m2−a2|x |
− 1

4π
iα ·

x
|x |3

,

so

|ωa
2(x)| = O

(√
|m2− a2|

|x |

)
for |x | → 0.

Therefore, the kernel is of fractional type with respect to σ, but the estimate blows up as |a| →∞. This
is the reason why we restrict ourselves to |a| ≤ 1 in (7-4), where we have a uniform bound with respect
to a. However, for proving Theorem 1.2, one fixed a ∈ C \R suffices, say a = i ; see (3-12) and (3-13).

From (7-2), (7-3) and (7-4), we derive that

‖Bε(a)‖L2(6×(−1,1))4→L2(6×(−1,1))4 ≤ (C0+ 2C1)‖u‖L∞(R)‖v‖L∞(R) for all 0< ε ≤ η0. (7-5)

If V is (δ, η)-small (see Definition 1.1) then ‖V ‖L∞(R) ≤ δ/η, so (1-5) yields

‖u‖L∞(R)‖v‖L∞(R) = η‖V ‖L∞(R) ≤ δ.
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Taking δ > 0 small enough so that (C0+ 2C1)δ ≤
1
3 , from (7-5) we finally get (7-1) for all 0< ε ≤ η0.

The case of B0(a) follows similarly, just recall the paragraph previous to (5-33) taking into account that
the dependence of the norm of B0(a) with respect to ‖u‖L∞(R)‖v‖L∞(R) is the same as in the case of
0< ε ≤ η0. �

7A. Proof of Corollary 3.3. We are going to prove the corollary for (H + Vε − a)−1; the case of
(H +βVε − a)−1 follows by the same arguments. Let η0, δ > 0 be as in Lemma 7.1 and take a ∈ C \R

with |a| ≤ 1. It is trivial to show that

‖B ′‖L2(6×(−1,1))4→L2(6×(−1,1))4 ≤ C‖u‖L∞(R)‖v‖L∞(R)

for some C > 0 only depending on6. Using (1-5), we can take a smaller δ > 0 so that, for any (δ, η)-small
V with 0< η ≤ η0,

‖B ′‖L2(6×(−1,1))4→L2(6×(−1,1))4 ≤ Cδ ≤ 1
3 .

Then, from this and (7-1) in Lemma 7.1 (with ε = 0) we deduce that

‖(1+ B0(a)+ B ′)g‖L2(6×(−1,1))4 ≥ ‖g‖L2(6×(−1,1))4 −‖(B0(a)+ B ′)g‖L2(6×(−1,1))4

≥
1
3‖g‖L2(6×(−1,1))4

for all g ∈ L2(6× (−1, 1))4. Therefore, 1+ B0(a)+ B ′ is invertible and

‖(1+ B0(a)+ B ′)−1
‖L2(6×(−1,1))4→L2(6×(−1,1))4 ≤ 3.

This justifies the last comment in the corollary. Similar considerations also apply to 1+ Bε(a), so in this
case we deduce that

‖(1+ Bε(a))−1
‖L2(6×(−1,1))4→L2(6×(−1,1))4 ≤

3
2 (7-6)

for all 0< ε ≤ η0. Note also that

(1+ Bε(a))−1
− (1+ B0(a)+ B ′)−1

= (1+ Bε(a))−1(B0(a)+ B ′− Bε(a))(1+ B0(a)+ B ′)−1. (7-7)

Given g ∈ L2(6× (−1, 1))4, set f = (1+ B0(a)+ B ′)−1g ∈ L2(6× (−1, 1))4. Then, by (7-7) and
(7-6), we see that∥∥((1+ Bε(a))−1

− (1+ B0(a)+ B ′)−1)g∥∥L2(6×(−1,1))4

=
∥∥(1+ Bε(a))−1(B0(a)+ B ′− Bε(a)) f

∥∥
L2(6×(−1,1))4

≤
3
2

∥∥(B0(a)+ B ′− Bε(a)) f
∥∥

L2(6×(−1,1))4 . (7-8)

By (3-10) in Theorem 3.2, the right-hand side of (7-8) converges to zero when ε→ 0. Therefore, we
deduce that (1+ Bε(a))−1 converges strongly to (1+ B0(a)+ B ′)−1 when ε→ 0. Since the composition
of strongly convergent operators is strongly convergent, using (3-5) and Theorem 3.2, we finally obtain
the desired strong convergence

(H + Vε − a)−1
→ (H − a)−1

+ A0(a)(1+ B0(a)+ B ′)−1C0(a) when ε→ 0.

Corollary 3.3 is finally proved.
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DIMENSION-FREE L p ESTIMATES FOR VECTORS OF RIESZ TRANSFORMS
ASSOCIATED WITH ORTHOGONAL EXPANSIONS

BŁAŻEJ WRÓBEL

An explicit Bellman function is used to prove a bilinear embedding theorem for operators associated
with general multidimensional orthogonal expansions on product spaces. This is then applied to obtain
L p boundedness, 1< p <∞, of appropriate vectorial Riesz transforms, in particular in the case of Jacobi
polynomials. Our estimates for the L p norms of these Riesz transforms are both dimension-free and linear
in max(p, p/(p− 1)). The approach we present allows us to avoid the use of both differential forms and
general spectral multipliers.

1. Introduction

The classical Riesz transforms on Rd are the operators

Ri f (x)= ∂xi (−1Rd )−1/2 f (x), i = 1, . . . , d.

E. M. Stein [1983] proved that the vector of Riesz transforms

R f = (R1 f, . . . , Rd f )

has L p bounds which are independent of the dimension. More precisely

‖R f ‖L p(Rd ) 6 C p ‖ f ‖L p(Rd ), 1< p <∞, (1-1)

where C p is independent of the dimension d . Note that (1-1) is formally the same as the a priori bound∥∥|∇ f |
∥∥

L p(Rd )
6 C p ‖(−1)

1/2 f ‖L p(Rd ).

Later it was realized that, for 1< p < 2, one may take C p 6 C(p− 1)−1 in (1-1); see [Bañuelos 1986;
Duoandikoetxea and Rubio de Francia 1985]. It is worth mentioning that the best constant in (1-1)
remains unknown when d ≥ 2; the best results to date are given in [Bañuelos and Wang 1995] (see also
[Dragičević and Volberg 2006] for an analytic proof) and [Iwaniec and Martin 1996].

The main goal of this paper is to generalize (1-1) to product settings different from Rd
= R× · · ·×R

with the product Lebesgue measure. Our starting point is the observation that the classical Riesz transform
can be written as Ri = δi

(∑d
i=1 L i

)−1/2, where δi = ∂xi , and L i = δ
∗

i δi . The generalized Riesz transforms
we pursue are of the same form,

Ri = δi L−1/2, i = 1, . . . , d, (1-2)

MSC2010: 42C10, 42A50, 33C50.
Keywords: Riesz transform, Bellman function, orthogonal expansion.
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with δi being an operator on L2(X i , µi ),

L i = δ
∗

i δi + ai and L =
d∑

i=1

L i .

Here ai is a nonnegative constant. The adjoint δ∗i is taken with respect to the inner product on L2(X i , µi ),
where µi is a nonnegative Borel measure on X i such that dµi (xi ) = wi (xi ) dxi for some positive and
smooth function wi on X i . To be precise, if 0 is an L2 eigenvalue of L , then the definition of Ri needs
to be slightly modified; this is properly explained in the next section. Throughout the paper we assume
that each X i , i = 1, . . . , d, is an open interval in R, an open half-line in R, or the real line; we also set
X = X1× · · ·× Xd and µ= µ1⊗ · · ·⊗µd . We consider δi given by

δi f (x)= pi (xi ) ∂xi + qi (xi ), xi ∈ X i ,

for some real-valued functions pi ∈ C∞(X i ) and qi ∈ C∞(X i ). We remark that a significant difference
between the classical Riesz transforms and the general Riesz transforms (1-2) lies in the fact that the
operators δi and δ∗i do not need to commute.

There are two assumptions which are critical to our results. Firstly, a computation, see [Nowak and
Stempak 2006, p. 683], shows that the commutator [δi , δ

∗

i ] is a function which we call vi . We assume
that vi is nonnegative; see (A1). Secondly, it is not hard to see that L =

∑d
i=1 L i may be written as

L = L̃ + r , where L̃ is a purely differential operator (without a zero-order potential term) and r is the
potential term. We impose that

∑d
i=1 q2

i is controlled pointwise from above by a constant times r , namely∑d
i=1 q2

i ≤ K · r for some K > 0; see (A2). In several cases we will consider, we can take K = 1 or
K = 0. In particular if q1 = · · · = qd = 0 then the bound (A2) holds with K = 0. When 0 is not an
L2 eigenvalue of L , our main result can be summarized as follows.

Main result (informal). Set p∗ = max(p, p/(p − 1)). Then the vectorial Riesz transform R f =
(R1 f, . . . , Rd f ) with Ri given by (1-2) satisfies the bounds

‖R f ‖L p(X,µ) 6 24(1+
√

K )(p∗− 1)‖ f ‖L p(X,µ), 1< p <∞.

In other words, introducing δ f = (δ1 f, . . . , δd f ), we have∥∥|δ f |
∥∥

L p(X,µ) 6 24(1+
√

K )(p∗− 1)‖L1/2 f ‖L p(X,µ), 1< p <∞.

The rigorous statement of our main result is contained in Theorem 1. In order to prove it we need some
extra technical assumptions. For the sake of clarity of the presentation we decided to concentrate on the
case of orthogonal expansions, when each of the operators L i = δ

∗

i δi + ai has a decomposition in terms
of an orthonormal basis. Our precise setting is described in detail in Section 2. We follow the approach
of [Nowak and Stempak 2006]; in fact the present paper may be thought of as an L p counterpart for a
large part of the L2 results from that paper. Adding the technical assumptions (T1), (T2), and (T3) to the
crucial assumptions (A1) and (A2), we state our main result, Theorem 1, in Section 3. In all the cases
we will consider, the projection 5 appearing in Theorem 1 is the identity operator or has its L p norm
bounded by 2 for all 1≤ p ≤∞. Moreover, we have 5= I if and only if 0 is not an L2 eigenvalue of L .
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From Theorem 1 we obtain several new dimension-free bounds on L p, 1 < p <∞, for vectors of
Riesz transforms connected with classical multidimensional orthogonal expansions. For more details we
refer to the examples in Section 5. For instance, in Section 5.3 we obtain the dimension-free boundedness
for the vector of Riesz transforms in the case of Jacobi polynomial expansions. This answers a question
left open in [Nowak and Sjögren 2008]. Moreover, the approach we present gives a unified way to treat
dimension-free estimates for vectors of Riesz transforms. In most of the previous cases, separate papers
were written for each of the classical orthogonal expansions. More unified approaches were recently
presented by Forzani, Sasso, and Scotto in [Forzani et al. 2015] and by the author in [Wróbel 2014].
However, these papers treat only dimension-free estimates for scalar Riesz transforms and not for the
vector of Riesz transforms.

Let us remark that Theorem 1 formally cannot be applied to some cases where the crucial assumptions
on vi and r continue to hold. This is true when L has a purely continuous spectrum, for instance for
the classical Riesz transforms on Rd (when vi = 0 and r = 0). However, it is not difficult to modify the
proof of Theorem 1 so that it remains valid for the classical Riesz transforms. We believe that a similar
procedure can be applied to other cases outside the scope of Theorem 1, as long as the crucial assumptions
(A1) and (A2) are satisfied.

We deduce Theorem 1 from a bilinear embedding theorem (see Theorem 3) together with a bilinear
formula (see Proposition 2). The main tool that is used to prove Theorem 3 is the Bellman function
technique. This method was introduced to harmonic analysis by Nazarov, Treil, and Volberg [Nazarov
et al. 1999]. Before that paper, Bellman functions appeared implicitly in [Burkholder 1984; 1988; 1991].
The proof of Theorem 3 is presented in Section 4 and is based on subtle properties of a particular Bellman
function. This approach was devised by Dragičević and Volberg [2006; 2011; 2012]. Carbonaro and
Dragičević [2013; 2016a; 2016b; 2017] developed the method further. The approach from [Carbonaro
and Dragičević 2013] was recently adapted by Mauceri and Spinelli [2015] to the case of the Laguerre
operator. Our paper generalizes simultaneously [Dragičević and Volberg 2012] (as we admit a nonnegative
potential r ) and [Dragičević and Volberg 2006; Mauceri and Spinelli 2015] (as we consider general pi in
δi = pi ∂xi + qi ).

In some applications of the Bellman function method, the authors needed to prove dimension-free
bounds on L p for certain spectral multipliers related to the considered operators; see [Dragičević and
Volberg 2006; 2012] for such a situation. In other papers mentioned in the previous paragraph they needed
to consider operators acting on differential forms; see [Carbonaro and Dragičević 2013; Mauceri and
Spinelli 2015]. One of the merits of our approach is that we avoid using both general spectral multipliers
and differential forms. This is achieved by means of the bilinear formula from Proposition 2. This formula
relates the Riesz transform Ri with an integral where only δi and two kinds of semigroups (one for L and
one for L + vi ) are present; see (3-1).

For the sake of simplicity we use a Bellman function with real entries in Section 4. Thus our main results,
Theorems 1 and 3, apply to real-valued functions. Of course they can be easily extended to complex-valued
functions with the constants being twice as large. One may improve the estimates further by using a
Bellman function with complex arguments, as was done in [Dragičević and Volberg 2006; 2011; 2012].
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Notation. We finish this section by introducing the general notation used in the paper. By N we denote
the set of nonnegative integers. For N ∈ N and Y being an open subset of RN, the symbol Cn(Y ), n ∈ N,
denotes the space of real-valued functions which have continuous partial derivatives in Y up to the order n.
In particular C0(Y )=C(Y ) denotes the space of continuous functions on Y equipped with the supremum
norm. By C∞(Y ) we mean the space of infinitely differentiable functions on Y. Whenever we say that
ν is a measure on Y we mean that ν is a Borel measure on Y. The symbols ∇ f and Hess f stand for
the gradient and the Hessian of a function f : RN

→ R. For a, b ∈ RN, we denote by 〈a, b〉 the inner
product on RN and set |a|2 = 〈a, a〉. The actual N should be clear from the context (in fact we always
have N ∈ {1, d, d + 1}). For p ∈ (1,∞) we set

p∗ =max
(

p,
p

p− 1

)
.

2. Preliminaries

All the functions we consider are real-valued. Our notations will closely follow that of [Nowak and
Stempak 2006].

For i = 1, . . . , d , let X i be the real line R, an open half-line in R or an open interval in R of the form

X i = (σi , 6i ), where −∞6 σi <6i 6∞.

Consider the measure spaces (X i ,Bi , µi ), where Bi denotes the σ -algebra of Borel subsets of X i and
µi is a Borel measure on X i . We impose that dµi (xi )= wi (xi ) dxi , where wi is a positive C∞ function
on X i . Note that in [Nowak and Stempak 2006] the authors assumed that X1 = · · · = Xd ; this is, however,
not needed in our paper. Throughout the article we let

X = X1× · · ·× Xd , µ= µ1⊗ · · ·⊗µd ,

and abbreviate

L p
:= L p(X, µ), ‖ · ‖p = ‖ · ‖L p , and ‖ · ‖p→p = ‖ · ‖L p→L p .

This notation is also used for vector-valued functions. Namely, if g = (g1, . . . , gN ) : X→ RN for some
N ∈ N, then

‖g‖p =

(∫
X
|g(x)|p dµ(x)

)1/p

, with |g(x)| =
( N∑

i=1

|gi (x)|2
)1/2

.

We shall also write 〈 f, g〉L2 for 〈 f, g〉L2(X,µ).
Let δi , i = 1, . . . , d , be the operators acting on C∞c (X i ) functions via

δi = pi ∂xi + qi .

Here pi and qi are real-valued functions on X i , with pi , qi ∈ C∞(X i ). We assume that pi (xi ) 6= 0 for
xi ∈ X i . We shall also denote by p and q the exponents of L p and Lq spaces. This will not lead to any
confusion as the functions pi and qi will always appear with the index i = 1, . . . , d .
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Let δ∗i be the formal adjoint of δi with respect to the inner product on L2(X i , µi ); i.e.,

δ∗i f =− 1
wi
∂xi (piwi f )+ qi f, f ∈ C∞c (X i ).

A simple calculation, see [Nowak and Stempak 2006, p. 683], shows that the commutator

[δi , δ
∗

i ] = δiδ
∗

i − δ
∗

i δi = pi

(
2q ′i −

(
pi
w′i

wi

)′
− p′′i

)
=: vi (2-1)

is a locally integrable function (0-order operator). Most of the assumptions made in this section are of a
technical nature. The first of the two assumptions that are crucial to our results is

the functions vi , i = 1, . . . , d, are nonnegative. (A1)

The property (A1) has been (explicitly or implicitly) instrumental for establishing the main results in
[Harboure et al. 2004; Mauceri and Spinelli 2015; Nowak and Sjögren 2008; Stempak and Wróbel 2013].
It is also explicitly stated by Forzani, Sasso, and Scotto as Assumption H1(c) in [Forzani et al. 2015].

For a scalar ai ≥ 0 we let L i and L be given on C∞c (X) by

L i := δ
∗

i δi + ai , L =
d∑

i=1

L i .

Here each L i can be considered to act either on C∞c (X i ) or on C∞c (X); thus the definition of L makes
sense. Note that both L i and L are symmetric on C∞c (X) with respect to the inner product on L2. We
assume that for each i = 1, . . . , d, there is an orthonormal basis {ϕi

ki
}ki∈N which consists of L2(X i , µi )

eigenvectors of L i that correspond to nonnegative eigenvalues {λi
ki
}ki∈N; i.e.,

L iϕ
i
ki
= λi

ki
ϕi

ki
.

Then, it must be that λki ≥ ai for ki ∈ N and i = 1, . . . , d. We require that the sequence {λi
ki
}ki∈N is

strictly increasing and that limki→∞ λ
i
ki
=∞. Note that our assumptions on pi , qi , and wi imply that L i

is hypoelliptic. Therefore we have ϕi
ki
∈ C∞(X i ). Setting, for k = (k1, . . . , kd) ∈ Nd,

ϕk = ϕ
1
k1
⊗ · · ·⊗ϕd

kd
, (2-2)

we obtain an orthonormal basis of eigenvectors on L2 for the operator L = L1+· · ·+ Ld . The eigenvalue
corresponding to ϕk is

λk := λ
1
k1
+ · · ·+ λd

kd
,

so that Lϕk = λkϕk . We consider the self-adjoint extension of L (still denoted by the same symbol)
given by

L f =
∑
k∈Nd

λk 〈 f, ϕk〉L2ϕk

on the domain

Dom(L)=
{

f ∈ L2
:

∑
k∈Nd

|λk |
2
|〈 f, ϕk〉L2 |

2 <∞

}
.
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We assume that the eigenfunctions ϕi
ki

, i = 1, . . . , d, are such that

〈δiϕ
i
ki
, δiϕ

i
mi
〉L2(X i ,µi ) = 〈δ

∗

i δi ϕ
i
ki
, ϕi

mi
〉L2(X i ,µi ) (T1)

for i = 1, . . . , d , and ki ,mi ∈N; see [Nowak and Stempak 2006, (2.8)]. The condition (T1) implies that
the functions

δiϕk = ϕ
1
k1
⊗ · · ·⊗ δiϕ

i
ki
⊗ · · ·⊗ϕd

kd
(2-3)

are pairwise orthogonal on L2 and

〈δiϕk, δiϕk〉L2 = λi
ki
− ai ;

see [Nowak and Stempak 2006, Lemmas 5 and 6]. Moreover, since ϕk ∈ C∞(X), we also see that
δiϕk ∈ C∞(X).

We remark that our assumptions differ slightly from those in [Nowak and Stempak 2006]. Namely,
we assume that the coefficients pi , qi , and the weight wi are C∞ functions, whereas they considered
pi , qi , wi that possessed only a finite order of smoothness. The smoothness of these functions is in
fact needed to easily conclude that L i is hypoelliptic and that ϕk ∈ C∞(X), which is an issue that was
overlooked† in [Nowak and Stempak 2006].

We also impose a boundary condition on the functions ϕi
ki

and δiϕ
i
ki

. Namely, we require that for each
i = 1, . . . , d , if zi ∈ {σi , 6i }, then

lim
xi→zi

[
(1+ |ϕi

ki
|
s1 + |δiϕ

i
ki
|
s2)(p2

i wi ∂xiϕ
i
ki
)
]
(xi )= 0,

lim
xi→zi

[
(1+ |ϕi

ki
|
s1 + |δiϕ

i
ki
|
s2)(p2

i wi ∂xi δiϕ
i
ki
)
]
(xi )= 0

(T2)

for all ki ∈ N and s1, s2 > 0. Condition (T2) is close to Assumption H1(a) from [Forzani et al. 2015].
Observe that the term |ϕi

ki
|
s1 + |δiϕ

i
ki
|
s2 in (T2) is significant only when the functions ϕi

ki
and δiϕ

i
ki

are
unbounded on X i .

Let
A = a1+ · · ·+ ad , 30 = λ

1
0+ · · ·+ λ

d
0 .

Then 30 is the smallest eigenvalue of L . We set

Nd
3 =

{
Nd , 30 > 0,
Nd
\ {(0, . . . , 0)}, 30 = 0

and define
5 f =

∑
k∈Nd

3

〈 f, ϕk〉L2ϕk .

Then in the case 30 > 0 we have 5= I, while in the case 30 = 0 the operator 5 is the projection onto
the orthogonal complement of the vector ϕ(0,...,0). The Riesz transforms studied in this paper are formally

†The hypoellipticity of L i is not necessary for the theory from [Nowak and Stempak 2006] to work (Nowak, personal
communication, 2017). When not having this property, one has to add instead some extra assumptions (much weaker than
smoothness) on the regularity of the eigenfunctions ϕk .
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of the form
Ri := δi L−1/25,

while the rigorous definition of Ri is

Ri f =
∑

k∈Nd
3

λ
−1/2
k 〈 f, ϕk〉L2 δiϕk .

In many of the considered cases, 5≡ I so that Ri = δi L−1/2.
It was proved in [Nowak and Stempak 2006, Proposition 1] that the vector of Riesz transforms

R f = (R1 f, . . . , Rd f )

satisfies
‖R f ‖2→2 6 ‖ f ‖2.

The main goal of this paper is to prove similar estimates for p in place of 2. We aim for these estimates
to be dimension-free and linear in p∗. More precisely, we shall prove that for 1< p <∞ it holds that

‖R f ‖p→p 6 C(p∗− 1)‖ f ‖p.

Here C is a constant that is independent of both p and the dimension d .
To state and prove our main results we need several auxiliary objects. Firstly, we let

di = pi ∂xi . (2-4)

That is, di is the “differential” part of δi . In many (though not all) of our applications we will have qi ≡ 0
and thus δi ≡ di . The formal adjoint of di on L2(X i , µi ) is

d∗i f =− 1
wi
∂xi (piwi f ), f ∈ C∞c (X i ). (2-5)

A computation shows that L i = d∗i di + ri , with

ri = ai +

(
q2

i − pi q ′i − p′i qi − pi qi
w′i

wi

)
. (2-6)

We shall also need

L̃ :=
d∑

i=1

d∗i di = L − r, where r :=
d∑

i=1

ri .

Then L̃ is the potential-free component of L and the potential r is a locally integrable function on X. We
assume that

there is a constant K > 0 such that
d∑

i=1

q2
i (xi )≤ K · r(x) (A2)

for all x ∈ X. This is our second (and last) crucial assumption. In many of our examples we shall have
q1 = · · · = qd = 0 and thus r = A and (A2) holding with K = 0.
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Next we define

Mi :=
∑
j 6=i

δ∗j δj + δiδ
∗

i = L + [δi , δ
∗

i ] = L + vi ,

see [Nowak and Stempak 2006, (5.1)], and set

ci
k = ‖δiϕk‖

−1
2

if δiϕk 6= 0 and ci
k = 0 in the other case. Then {ci

kδiϕk}k∈Nd (excluding those ci
kδiϕk which vanish) is an

orthonormal system of eigenvectors of Mi such that Mi (ci
kδiϕk) equals λkci

kδiϕk .
We define

D = lin{ϕk : k ∈ Nd
}, Di = δi [D] = lin{δiϕk : k ∈ Nd

},

and make the technical assumption that

both D and Di , i = 1, . . . , d, are dense subspaces of L p, 1≤ p <∞. (T3)

In most of our applications the condition (T3) will follow from [Forzani et al. 2015, Lemma 7.5], which
is itself a consequence of [Berg and Christensen 1981, Theorem 5].

Lemma 1 [Forzani et al. 2015, Lemma 7.5]. Assume that ν is a measure on X such that, for some ε > 0,
we have ∫

X
exp

(
ε

d∑
i=1

|yi |

)
dν(y) <∞.

Then, for each 16 p <∞, multivariable polynomials on X are dense in L p(X, ν).

In what follows we consider the self-adjoint extension of Mi given by

Mi f =
∑
k∈Nd

λk〈 f, ci
k δiϕk〉L2ci

k δiϕk,

on the domain

Dom(Mi )=

{
f ∈ L2

:

∑
k∈Nd

|λk |
2
|〈 f, ci

kδiϕk〉L2 |
2 <∞

}
.

Keeping the symbol Mi for this self-adjoint extension is a slight abuse of notation, which however will
not lead to any confusion. Finally, we shall need the semigroups

Pt := e−t L1/2
and Qi

t := e−t M1/2
i .

These are formally defined on L2 as

Pt f =
∑
k∈Nd

e−tλ1/2
k 〈 f, ϕk〉L2 ϕk, Qi

t f =
∑
k∈Nd

e−tλ1/2
k 〈 f, ci

k δiϕk〉L2 ci
k δiϕk .

Note that for t > 0 we have Pt [D] ⊆ D and Qi
t [Di ] ⊆ Di , i = 1, . . . , d.
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3. General results for Riesz transforms

Recall that we are in the setting of the previous section. In particular the assumptions (A1), (A2), and the
technical assumptions (T1), (T2), (T3), are in force. The following is the main result of our paper.

Theorem 1. For each 1< p <∞ we have

‖R f ‖p 6 24(1+
√

K )(p∗− 1)‖5 f ‖L p , f ∈ L p.

Remark. In all the examples we consider in Section 5 the projection5 satisfies ‖5‖p→p6 2, 16 p6∞.
In fact in many of the examples 5 equals the identity operator.

In order to prove Theorem 1 we need two ingredients. The first of these ingredients is a bilinear
formula that relates the Riesz transform with an integral in which both Pt and Qi

t are present.

Proposition 2. Let i = 1, . . . , d. Then the formula

〈Ri f, g〉L2 =−4
∫
∞

0
〈δi Pt5 f, ∂t Qi

t g〉L2 t dt (3-1)

holds for f ∈ D and g ∈ Di .

Before proving the proposition let us make two remarks.

Remark 1. Formulas similar to (3-1) were proved before, though, depending on the context, they may have
involved spectral multipliers of the operator L . However, treating these spectral multipliers appropriately
was achieved with variable success. A way of avoiding multipliers was first devised in [Carbonaro and
Dragičević 2013] for Riesz transforms on manifolds. In such a setting, the above formula is a special case
of the identity (3) there. The approach in [Carbonaro and Dragičević 2013] was adapted in [Mauceri and
Spinelli 2015] to the case of Hodge–Laguerre operators. In the case of Laguerre polynomial expansions
(see Section 5.2) the formula (3-1) is a special case of [Mauceri and Spinelli 2015, (5.1)]. We note that
both in [Carbonaro and Dragičević 2013] and [Mauceri and Spinelli 2015] the authors needed to consider
the Riesz transform as well as the formula (3-1) for differential forms; this is not needed in our approach.

Remark 2. Note that if the operators δi and δ∗i commute, then Qi
t = Pt and the formula (3-1) can be

formally obtained via the spectral theorem. The problem is that often these operators do not commute.
A way to overcome this noncommutativity problem was devised by Nowak and Stempak [2013]. They
introduced a symmetrization Ti of δi that does commute with its adjoint; in fact T ∗i = −Ti . This
symmetrization is defined on L2(X̃), where

X̃ = (X1 ∪ (−X1))× · · ·× (Xd ∪ (−Xd)).

Set T =−
∑d

i=1 T 2
i and let St = e−tT 1/2

. The formula (3-1) for Ti is then formally

〈Ti T−1/2 f, g〉L2(X̃) =−4
∫
∞

0
〈Ti St f, ∂t St g〉L2(X̃) t dt. (3-2)

This leads to a proof of (3-1) different from the one presented in our paper. Namely, a computation shows
that applying (3-2) to functions f : X̃→ R and g : X̃→ R, which are both even in all the variables, we
arrive at (3-1).
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Proof of Proposition 2. We start with proving (3-1) for f = ϕk and g= δiϕn , with some k, n ∈Nd. If k = 0
and 30 = 0 then both sides of (3-1) vanish. Thus we can assume that λk > 0. A computation shows that

〈δi L−1/2 f, g〉L2 = λ
−1/2
k 〈δi f, g〉L2

and

−4
∫
∞

0
〈δi Pt f, ∂t Qi

t g〉L2 t dt =−4
∫
∞

0

〈
e−tλ1/2

k δi f,−λ1/2
n e−tλ1/2

n g
〉
L2 t dt

= 4λ1/2
n

∫
∞

0
e−t (λ1/2

k +λ
1/2
n ) t dt · 〈δi f, g〉L2 =

4λ1/2
n

(λ
1/2
k + λ

1/2
n )2
· 〈δi f, g〉L2;

hence

〈δi L−1/2 f, g〉+ 4
∫
∞

0
〈δi Pt f, ∂t Qi

t g〉L2 t dt =
(
λ
−1/2
k −

4λ1/2
n

(λ
1/2
k + λ

1/2
n )2

)
· 〈δi f, g〉L2 . (3-3)

Now δi f is also an L2 eigenvector for Mi corresponding to the eigenvalue λk . Consequently, since
eigenspaces for Mi corresponding to different eigenvalues are orthogonal, 〈δi f, g〉 is nonzero only if
λn = λk . Coming back to (3-3) we obtain (3-1) for f = ϕk and g = δiϕn .

Finally, by linearity (3-1) holds also for f ∈ D and g ∈ Di . �

The second ingredient we need to prove Theorem 1 is a bilinear embedding, as was the case in
[Carbonaro and Dragičević 2013; Dragičević and Volberg 2006; 2012; Mauceri and Spinelli 2014; 2015].
For N ∈N (the cases interesting to us being N=1 and N=d) we take F= ( f1, . . . , fN ) : X×(0,∞)→RN

and set

|F |2
∗
:= r |F |2+ |∂t F |2+

d∑
i=1

|di F |2. (3-4)

The absolute values | · | in (3-4) denote the Euclidean norms on RN of the vectors F(x, t), ∂t F(x, t)=
(∂t f1(x, t), . . . , ∂t fN (x, t)), and di F(x, t) = (di f1(x, t), . . . , di fN (x, t)), where (x, t) ∈ X × (0,∞).
Below we only state our bilinear embedding. The proof of it is presented in the next section.

Theorem 3. Let f : X → R and g = (g1, . . . , gd) : Xd
→ Rd and assume that f ∈ D and gi ∈ Di for

i = 1, . . . , d. Define

F(x, t)= Pt 5 f (x) and G(x, t)= Qt g = (Q1
t g1, . . . , Qd

t gd).

Then ∫
∞

0

∫
X
|F(x, t)|∗ |G(x, t)|∗ dµ(x) t dt 6 6(p∗− 1)‖5 f ‖p ‖g‖q . (3-5)

Remark. The theorem can be slightly generalized, at least at a formal level. Namely in Theorem 3, we
do not need that vi = [δi , δ

∗

i ]. It is enough to have any vi ≥ 0 and take Qt = e−t Mi with Mi = L + vi .

Our main theorem is an immediate corollary of Proposition 2 and Theorem 3.
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Proof of Theorem 1. It is enough to prove that for each f ∈ L p and gi ∈ Lq, i = 1, . . . , d, the absolute
value of

∑d
i=1〈Ri f, gi 〉 does not exceed

24(1+
√

K )(p∗− 1)‖5 f ‖p

∥∥∥∥( d∑
i=1

|gi |
2
)1/2∥∥∥∥

q
.

A density argument based on the assumption (T3) allows us to take f ∈ D and gi ∈ Di , i = 1, . . . , d.
From Proposition 2 we have

−
1
4〈Ri f, gi 〉L2 =

∫
∞

0
〈di Pt5 f, ∂t Qi

t gi 〉L2 t dt +
∫
∞

0
〈qi Pt5 f, ∂t Qi

t gi 〉L2 t dt

and thus, assumption (A2) gives∣∣∣∣ d∑
i=1

〈Ri f, gi 〉L2

∣∣∣∣6 4
∫
∞

0

∫
X

(( d∑
i=1

|di Pt5 f (x)|2
)1/2

+
√

K
√

r(x)|Pt5 f (x)|
)
|G(x, t)|∗ dµ(x) t dt

≤ 4(1+
√

K )
∫
∞

0

∫
X
|F(x, t)|∗ |G(x, t)|∗ dµ(x) t dt.

Now, Theorem 3 completes the proof. �

4. Bilinear embedding theorem

This section is devoted to the proof of our embedding theorem, Theorem 3. We shall follow closely the
reasoning from [Carbonaro and Dragičević 2013; Mauceri and Spinelli 2015].

4.1. The Bellman function. Before proceeding to the proof of Theorem 3 we need to introduce its most
important ingredient: the Bellman function.

Choose p > 2. Let q = p/(p− 1),

γ = γ (p)= 1
8q(q − 1),

and define βp : [0,∞)2→ [0,∞] by

βp(s1, s2)= s p
1 + sq

2 + γ

{
s2

1 s2−q
2 , s p

1 6 sq
2,

(2/p) s p
1 +

(
2/q − 1

)
sq

2 , s p
1 > sq

2 .

For m = (m1,m2) ∈ N2, the Nazarov–Treil Bellman function corresponding to p,m is the function

B = Bp,m : Rm1 ×Rm2 → [0,∞)

given, for any ζ ∈ Rm1 and η ∈ Rm2, by

Bp,m(ζ, η)=
1
2βp(|ζ |, |η|).

The function B originated in an article by F. Nazarov and S. Treil [1996]. It was employed (and simplified)
in [Carbonaro and Dragičević 2013; 2017; Dragičević and Volberg 2006; 2011; 2012]. Note that B is
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C1(Rm1+m2) and is C2 everywhere except on the set

{(ζ, η) ∈ Rm1 ×Rm2 : η = 0 or |ζ |p = |η|q}.

To remedy the nonsmoothness of B we consider the regularization

Bκ,p,m = Bκ := B ∗Rm1+m2 ψκ ,

where

ψ(x)= cme−1/(1−|x |2)χBm1+m2 (x) and ψκ(x)=
1

κm1+m2
ψ(x/κ),

with cm such that
∫

Rm1+m2 ψκ(x) dx = 1. Here χBm1+m2 stands for the characteristic function of the
(m1+m2)-dimensional Euclidean ball centered at the origin and of radius 1. Since both B and ψκ are
biradial also Bκ is biradial. Hence, there is βκ = βκ,p acting from [0,∞)2 to R such that

Bκ(ζ, η)= 1
2βκ(|ζ |, |η|), ζ ∈ Rm1, η ∈ Rm2.

We shall need some properties of βκ and Bκ that were essentially proved in [Carbonaro and Dragičević
2013; Dragičević and Volberg 2012; Mauceri and Spinelli 2014; 2015].

Proposition 4. Let κ ∈ (0, 1). Then, for si > 0, i = 1, 2, we have

(i) 06 βκ(s1, s2)6 (1+ γ (p))((s1+ κ)
p
+ (s2+ κ)

q),

(ii) 06 ∂s1βκ(s)6 C p max((s1+ κ)
p−1, s2+ κ) and 06 ∂s2βκ(s)6 C p(s2+ κ)

q−1, with C p a positive
constant.

The function Bκ belongs to C∞(Rm1+m2), and for any ξ = (ζ, η) ∈ Rm1+m2 there exists a positive
τκ = τκ(|ζ |, |η|) such that for ω = (ω1, ω2) ∈ Rm1+m2 we have

(iii) 〈Hess(Bκ)(ξ)ω, ω〉> 1
2γ (p)(τκ |ω1|

2
+ τ−1

κ |ω2|
2).

Moreover, there is a continuous function Eκ : Rm1+m2 → R for which

(iv) 〈(∇Bκ)(ξ), ξ〉> 1
2γ (p)(τκ |ζ |

2
+ τ−1

κ |η|
2)− κEκ(ξ),

(v) |Eκ(ξ)| ≤ Cm,p(|ζ |
p−1
+ |η| + |η|q−1

+ κq−1).

Proof (sketch). Let τ = τ(|ζ |, |η|) be the function from [Carbonaro and Dragičević 2013, Theorem 3]
and define τκ = τ ∗Rd+1 ψκ . With exactly this τκ , items (i), (ii), and (iii) were proved in [Mauceri and
Spinelli 2014, Proposition 6.3].

Let

Eκ(ξ)=−
∫

Rm1+m2
〈∇B(ξ − κs), s〉ψκ(s) ds, ξ ∈ Rm1+m2;

see [Dragičević and Volberg 2012, (2.10)]. Item (iv) (with these τκ and Eκ ) follows from [Dragičević
and Volberg 2012, Theorem 4(iii′)], together with the observation from [Carbonaro and Dragičević 2013;
Dragičević and Volberg 2012] that

(τ ∗ψκ)(ξ)(τ
−1
∗ψκ)(ξ)≥

(∫
Rd+1

(τ (y)ψκ(x − y))1/2(τ−1(y)ψκ(x − y))1/2 dy
)1/2

= 1.
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Item (v) is proved in [Dragičević and Volberg 2012, p. 207]. Note that, our Bellman function Bκ coincides
with − 1

2 Qκ from that paper (when Qκ is restricted to real arguments).
We remark that in [Dragičević and Volberg 2012, Theorem 4 (iii′)] a stronger statement is proved with

an additional negative term −Bκ(ξ) on the left-hand side of (iv). �

4.2. Proof of Theorem 3. Define u : X × (0,∞)→ R×Rd by

u = u(x, t)= (Pt 5 f (x), Qt g(x))=
(
Pt 5 f (x), Q1

t g1(x), . . . , Qd
t gd(x)

)
.

Assume first that p ≥ 2 and set

bκ = Bκ ◦ u : X × (0,∞)→ [0,∞).

Here Bκ = Bκ,d,p is the Bellman function from Proposition 4 with m1 = 1 and m2 = d. For each
i = 1, . . . , d , we fix a sequence {σ n

i }n∈N which converges to σi , and a sequence {6n
i }n∈N which converges

to 6i . We also impose that σi < σ
n
i <6

n
i <6i for i = 1, . . . , d, n ∈ N. Defining

Xn
i = [σ

n
i , 6

n
i ] and Xn = Xn

1 × · · ·× Xn
d ,

where n ∈N, we see that {Xn}n∈N is an increasing family of compact subsets of X such that X =
⋃

n Xn .
We shall estimate the integral

I (n, ε) :=
∫
∞

0

∫
Xn

(∂2
t − L̃)(bκ(n))(x, t) dµ(x) te−εt dt (4-1)

from below and above and then, first let n→∞ and then ε→ 0+. Here κ(n) is a small quantity depending
on n which will be determined in the proof. Since Xn is compact, f ∈ D and gi ∈ Di , i = 1, . . . , d,
the integral (4-1) is in fact absolutely convergent. In what follows we will often briefly write κ instead
of κ(n).

The lower estimate of (4-1) for p ≥ 2 . The key result here is Proposition 5 below. Its proof hinges on
the assumption (A1).

Proposition 5. For x ∈ X and t > 0 it holds that

((∂2
t − L̃)bκ)(x, t)> γ |F(x, t)|∗ |G(x, t)|∗− κ r(x)Eκ(u(x, t)). (4-2)

Proof. Set d0 := ∂t . To justify (4-2) we shall need the pointwise equality

(∂2
t − L̃)bκ = r 〈∇Bκ(u), u〉+

d∑
i=1

vi · (∂ηi Bκ(u) · Qi
t gi )+

d∑
i=0

〈
Hess(Bκ)(di u), di u

〉
. (4-3)

We first we focus on proving (4-3).
From the chain rule we have di bκ = pi 〈∇Bκ(u), ∂xi u〉. Moreover, a computation shows that, for

i = 1, . . . , d ,

d∗i =−pi∂xi − pi
w′i

wi
− p′i and d∗i di =−p2

i ∂
2
xi
−

(
pi
w′i

wi
+ 2p′i

)
pi∂xi .
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Consequently, applying once again the chain rule we obtain for i = 0, . . . , d,

d∗i di bκ =−pi∂xi (pi 〈∇Bκ(u), ∂xi u〉)−
(

pi
w′i

wi
+ p′i

)
pi 〈∇Bκ(u), ∂xi u〉

= −p2
i ∂xi (〈∇Bκ(u), ∂xi u〉)− pi p′i 〈∇Bκ(u), ∂xi u〉−

(
pi
w′i

wi
+ p′i

)
pi 〈∇Bκ(u), ∂xi u〉

=

〈
∇Bκ(u),−p2

i ∂
2
xi

u−
(

pi
w′i

wi
+ 2p′i

)
pi∂xi u

〉
− p2

i
〈
Hess(Bκ)(∂xi u), ∂xi u

〉
=
〈
∇Bκ(u), d∗i di u

〉
−
〈
Hess(Bκ)(di u), di u

〉
.

Now, summing the above formula in i = 0, . . . , d, we obtain

(d2
0− L̃)bκ =

〈
∇Bκ(u), (d2

0− L̃)u
〉
+

d∑
i=0

〈
Hess(Bκ)(u)(di u), di u

〉
. (4-4)

The formula (4-4) implies (4-3). Indeed we have

(∂2
t − L)u =

(
(∂2

t − L)Pt f, (∂2
t − L)Qt g

)
,

where
(∂2

t − L)Pt f = 0

and
(∂2

t − L)Qt g =
(
(∂2

t − L)Q1
t g1, . . . , (∂

2
t − L)Qd

t gd
)
.

Moreover,
(∂2

t − L)Qi
t gi = (∂

2
t −Mi )Qi

t gi + vi · Qi
t gi = vi · Qi

t gi ,

and using (4-4) the equation (4-3) follows.
Having demonstrated (4-3) we pass to the proof of (4-2). Proposition 4(ii) implies (∂ηi Bκ(u)·Qi

t gi )≥ 0.
Thus (4-3) together with the assumption (A1) produce

(∂2
t − L̃)bκ > r 〈∇Bκ(u), u〉+

d∑
i=0

〈
Hess(Bκ)(di u), di u

〉
. (4-5)

Finally, (4-2) is a consequence of (4-5), items (iii) and (iv) from Proposition 4, and the inequality between
the arithmetic and geometric mean. �

Coming back to the proof of the lower estimate in (4-1) we now take {κ(n)}n∈N such that |κ(n)|6 1,
limn κ(n)= 0 and

|κ(n)|1/2
∫

Xn

|r(x)Eκ(n)(u(x, t))| dµ(x)6 1. (4-6)

To see that such a sequence exists we use Proposition 4(v) and the fact that Pt f ∈ D and Qi
t gi ∈ Di

(hence also Pt f ∈ C∞(X) and Qi
t gi ∈ C∞(X)). Next, (4-2), together with (4-6), leads to

lim inf
n→∞

I (n, ε)≥ γ
∫
∞

0

∫
X
|F(x, t)|∗ |G(x, t)|∗ dµ(x) te−εt dt,
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and, consequently, by the monotone convergence theorem

lim inf
ε→0+

lim inf
n→∞

I (n, ε)≥ γ (p)
∫
∞

0

∫
X
|F(x, t)|∗ |G(x, t)|∗ dµ(x) t dt. (4-7)

This is our lower estimate of (4-1).

The upper estimate of (4-1) for p ≥ 2 . The main ingredients here are the technical assumptions (T2)
and (T3). We split the integral in (4-1) as

I (n, ε)= I1(n, ε)− I2(n, ε)

:=

∫
∞

0

∫
Xn

∂2
t (bκ(n))(x, t) dµ(x) te−εt dt −

∫
∞

0

∫
Xn

L̃(bκ(n))(x, t) dµ(x) te−εt dt.

First we prove that

lim
n→∞

I2(n, ε)= 0. (4-8)

To see this we recall that L̃ =
∑d

i=1 d
∗

i di with di given by (2-4) and d∗i being the formal adjoint of di

on L2. Then,

I2(n, ε)=
d∑

i=1

I i
2(n, ε) :=

d∑
i=1

∫
∞

0

∫
Xn

(d∗i di )(bκ(n))(x, t) dµ(x) te−εt dt,

and it is enough to prove that each of the integrals I i
2(n, ε) goes to 0 as n→∞. As the reasoning is

symmetric in i = 1, . . . , d , we present it only for I 1
2 (n, ε). Define

X (1)
= X2× · · ·× Xd , x (1) = (x2, . . . , xd), and µ(1) = µ2⊗ · · ·⊗µd .

Formula (2-5) together with integration by parts in the x1-variable produces

I 1
2 (n, ε)=

∫
∞

0

∫
X (1)

(
(p2

1w1 ∂x1bκ)(6n
1 , x (1))− (p2

1w1 ∂x1bκ)(σ n
1 , x (1))

)
dµ(1)(x1) te−εt dt.

Call zn
1 either of the quantities σ n

1 or 6n
1 . Then the chain rule gives

(p2
1w1 ∂x1bκ)(zn

1, x (1))= p2
1(z

n
1)w1(zn

1)∂x1 Pt f (zn
1, x (1)) ∂ζ Bκ

(
Pt f (zn

1, x (1)), Qt g(zn
1, x (1))

)
+ p2

1(z
n
1)w1(zn

1)
〈
∂x1 Qt g(zn

1, x (1)),∇ηBκ
(
Pt f (zn

1, x (1)), Qt g(zn
1, x (1))

)〉
. (4-9)

Since f ∈ D and gi ∈ Di we have that Pt f ∈ D and Qt g ∈ D1⊗ · · ·⊗Dd . Recall that ϕk is defined by
(2-2), while δiϕk , i = 1, . . . , d , are given by (2-3). Now, Proposition 4(ii) implies

|∇ζ,ηBκ(ζ, η)|6 C p,q(|ζ |
p−1
+ |η|q−1

+ |η| + κq−1). (4-10)

Therefore, since |κ(n)|6 1, a calculation based on (4-9) together with the assumptions (T2), (T3), and
Hölder’s inequality produces limn I 1

2 (n, ε)= 0.
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Now we focus on I1(n, ε). Since f ∈ D, gi ∈ Di , i = 1, . . . , d, Bκ ∈ C∞(Rd+1) and we integrate
over x ∈ Xn , the double integral is absolutely convergent. Thus Fubini’s theorem gives

I1(n, ε)=
∫

Xn

∫
∞

0
∂2

t (bκ(n))(x, t) te−εt dt dµ(x).

Integrating by parts in the inner integral twice we obtain

I1(n,ε)=−
∫

Xn

∫
∞

0
∂t(bκ(n))(x, t)(1−εt)e−εt dt dµ(x)

=

∫
Xn

bκ(n)(x,0)dµ(x)+ε2
∫

Xn

∫
∞

0
bκ(n)(x, t) te−εt dt dµ(x)−2ε

∫
Xn

∫
∞

0
bκ(n)(x, t)e−εt dt dµ(x)

6
∫

Xn

bκ(n)(x,0)dµ(x)+ε2
∫

Xn

∫
∞

0
bκ(n)(x, t) te−εt dt dµ(x)

:= I 1
1 (n)+I 2

1 (n,ε).

In the first two equalities above we neglected the boundary terms by using the chain rule together with
(4-10).

First we treat I 2
1 (n, ε). Proposition 4(i) gives

I 2
1 (n, ε)6 ε

2C p

∫
Xn

∫
∞

0

(
|Pt5 f (x)|p + |Qt g(x)|q +max(κ(n)p, κ(n)q)

)
te−εt dt dµ(x).

Take κ(n) which satisfies (4-6) and

max(κ(n)p−1/2, κ(n)q−1/2) µ(Xn)6 1. (4-11)

Then, since f ∈ D and gi ∈ Di , i = 1, . . . , d , we have

lim sup
n→∞

I 2
1 (n, ε)6 ε

2C p

∫
X

∫
∞

0
|Pt5 f (x)|p + |Qt g(x)|q t dt dµ(x)6 C(p, f, g) ε2,

and, consequently,

lim sup
ε→0+

lim sup
n→∞

I 2
1 (n, ε)= 0. (4-12)

Coming back to I 1
1 (n) we use Proposition 4(i) to estimate

I 1
1 (n)6

1
2(1+ γ )

∫
Xn

(
|5 f (x)| + κ(n)

)p dµ(x)+ 1
2(1+ γ )

∫
Xn

(
|g(x)| + κ(n)

)q dµ(x).

Now for each ε > 0 we split the first integral onto
∫
|κ(n)|6ε|5 f (x)| and

∫
|κ(n)|>ε|5 f (x)| and the second

integral onto
∫
|κ(n)|6ε|g(x)| and

∫
|κ(n)|>ε|g(x)|. Then we obtain

I 1
1 (n)6

1
2(1+ γ )

(
(1+ ε)p

‖5 f ‖p
p + (1+ ε)

q
‖g‖qq

)
+

1
2(1+ γ )

(
(1+ ε−1)pκ(n)pµ(Xn)+ (1+ ε−1)qκ(n)qµ(Xn)

)
.
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Since κ(n) satisfies (4-6) and (4-11) we arrive at

lim sup
ε→0+

lim sup
n→∞

I 1
1 (n)6

1
2(1+ γ )

(
‖5 f ‖p

p +‖g‖
q
q
)
.

Recalling (4-8) and (4-12) we thus proved

lim sup
ε→0+

lim sup
n→∞

I (n, ε)6 1
2(1+ γ (p))

(
‖5 f ‖p

p +‖g‖
q
q
)
, (4-13)

which is the upper estimate of (4-1) we need.

Completion of the proof of the bilinear embedding. Consider first p≥ 2. Combining the lower estimate
(4-7) and the upper estimate (4-13) we obtain∫

∞

0

∫
X
|F(x, t)|∗ |G(x, t)|∗ dµ(x) t dt 6

1+ γ (p)
2γ (p)

(
‖5 f ‖p

p +‖g‖
q
q
)
. (4-14)

Finally, a polarization argument finishes the proof. More precisely, for s > 0 we replace f with s f and g
with s−1 g on both sides of (4-14). Then, the left-hand side is unchanged, while minimizing the right-hand
side over s > 0 we obtain∫

∞

0

∫
X
|F(x, t)|∗ |G(x, t)|∗ dµ(x) t dt 6

1+ γ (p)
2γ (p)

((
p
q

)1/p

+

(
q
p

)1/q)
‖5 f ‖p ‖g‖q . (4-15)

Using the above inequality, a calculation leads to (3-5). We sketch the argument below.
Note that for p ≥ 2 we have p∗ = p and recall that γ (p)= 1

8q(q− 1). Thus, for 1< q ≤ 2 we obtain

1+ γ (p)
2γ (p)

((
p
q

)1/p

+

(
q
p

)1/q)
=

1
2(8+ q(q − 1))(q − 1)1/q−1(p− 1)

≤ (q + 3)(q − 1)1/q−1(p∗− 1). (4-16)

Setting s = q − 1 we need to maximize the function H(s) := (s+ 4)s−s/(s+1) for s ∈ (0, 1]. Let

h(s)= log(s+ 4)−
s log s
s+ 1

,

so that H(s)= eh(s). Then we have

h′(s)=
1

s+ 4
−

log s
(s+ 1)2

−
1

s+ 1
and h′′(s)=−

1
(s+ 4)2

+
2 log s
(s+ 1)3

+
s− 1

s(s+ 1)2
;

consequently, h′′(s) < 0 for s ∈ (0, 1). Observe that h′
( 7

20

)
> 0 and h′

( 2
5

)
< 0. Therefore h′ has a unique

zero inside the interval
( 7

20 ,
2
5

)
and h attains a global maximum there. Obviously, the same is true for

H = eh. Now it is easy to see that

max
7/20≤s≤2/5

H(s) < 22
5 ·
( 7

20

)−2/7
< 6,

and thus also sup0<s≤1 H(s) < 6. Hence, coming back to (4-16) we obtain

1+ γ (p)
2γ (p)

((
p
q

)1/p

+

(
q
p

)1/q)
≤ 6 (p∗− 1).

In view of (4-15) this implies (3-5) and completes the proof of Theorem 3 for p ≥ 2.
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The proof of Theorem 3 for p ≤ 2 proceeds analogously once we switch p with q and Pt f with Qt g
in the definition of bκ . Namely, we consider b̃κ(x, t)= B̃κ(Qt g, Pt f ), where B̃κ(ζ, η)= Bκ,q,(d,1)(ζ, η),
ζ ∈Rd, η ∈R. Here Bκ,q,(d,1) is the function from Proposition 4 with m1= d and m2= 1. Then we repeat
the argument used for p≥ 2. The function B̃κ satisfies items (iii)–(v) of Proposition 4 with p replaced by q .
Therefore both the lower estimate (4-7) and the upper estimate (4-13) hold with γ (p) replaced by γ (q).

5. Examples

Throughout this section we apply Theorem 1 to the examples of orthogonal systems considered in [Nowak
and Stempak 2006, Section 7]. This is possible for all of these systems except for the Fourier–Bessel
expansions [Nowak and Stempak 2006, Section 7.8]. In this case the condition (T2) fails. Despite this
failure we think that it might be possible to treat also the Fourier–Bessel expansions by the methods of the
present paper. It might be also interesting to try to apply the methods of our paper to the Riesz transforms
considered in [Nowak and Sjögren 2012] (in the case of Jacobi trigonometric polynomial expansions).

In all of the examples we present, for more details the reader is kindly referred to [Nowak and Stempak
2006, Sections 7.1–7.7]. The formulas for vi and r =

∑d
i=1 ri in the examples below follow directly from

(2-1) and (2-6). Recall that

µ= µ1⊗ · · ·⊗µd , X = X1× · · ·× Xd , L p
= L p(X, µ), ‖ · ‖p = ‖ · ‖L p ,

and

p∗ =max
(

p,
p

p− 1

)
.

5.1. Ornstein–Uhlenbeck operator: Hermite polynomial expansions. Here we consider

pi = 1, qi = 0, ai = 0, wi (xi )= π
−1/2e−x2

i, dµi (xi )= wi (xi ) dxi

on X i = R. Then

δi = di = ∂xi , δ∗i =−∂xi + 2xi , vi = [δi , δ
∗

i ] = 2, r = 0, (5-1)

and

L =
d∑

i=1

L i =−1+ 2〈x,∇〉

is the Ornstein–Uhlenbeck operator on X = Rd. The operator L is essentially self-adjoint on C∞c (R
d)

with the self-adjoint extension given by

L f =
∑
k∈Nd

|k|〈 f, H̃k〉L2 H̃k .

In the formula above |k| = k1+ · · · + kd , the symbol L2 stands for L2
= L2(Rd, µ), while {H̃k}k∈Nd is

the system of L2 normalized Hermite polynomials; see [Nowak and Stempak 2006, Section 7.1; Lebedev
1972, p. 60]. In this section we take

ϕk = H̃k, k ∈ Nd.
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Note that µ is a probability measure in this setting. The projection 5 becomes

5 f =
∑

k∈Nd, k 6=0

〈 f, H̃k〉L2 H̃k, f ∈ L2.

Then
(I −5) f = 〈 f, H̃0〉L2 H̃0,

and, since H̃0 = 1, the operator I −5 is the projection onto the constants given by

(I −5) f (x)=
∫

X
f (y) dµ(y), x ∈ X.

Hence, by Holder’s inequality ‖(I −5) f ‖p 6 ‖ f ‖p, and, consequently,

‖5 f ‖p 6 2‖ f ‖p, 16 p 6∞. (5-2)

Next
δi H̃k =

√
2kj H̃k−ej , (5-3)

where, by convention H̃k−ej = 0 if kj = 0. This convention is also used for the examples presented in the
next sections. The Riesz transform is defined by

Ri f =
∑

k∈Nd, k 6=0

(
kj

|k|

)1/2

〈 f, H̃k〉L2 H̃k−ei , f ∈ L2.

Dimension-free estimates for the vector R f = (R1 f, . . . , Rd f ) were proved by Meyer [1984]; see
also [Gundy 1986; Gutiérrez 1994; Pisier 1988] for different proofs. Later Dragičević and Volberg [2006,
Corollary 0.4] found a proof which uses the Bellman function method. The best result in terms of the
size of the constants is due to Arcozzi [1998, Corollary 2.4] who proved that ‖R f ‖p 6 2(p∗− 1)‖ f ‖p,
1< p <∞. An application of Theorem 1 produces similar, though weaker, bounds.

Theorem 6. Fix 1< p <∞. Then, for f ∈ L p such that
∫

X f (y) dµ(y)= 0, we have

‖R f ‖p 6 24(p∗− 1)‖ f ‖p. (5-4)

Remark. Using (5-2) we may extend the bound (5-4) to all f ∈ L p with 24 being replaced by 48.

Proof. We apply Theorem 1. In order to do so we need to check that its assumptions are satisfied.
By (5-1) we see that (A1) and (A2) (with K = 0) hold. Condition (T1) is proved by an easy calculation

based on integration by parts. The assumption (T2) is also straightforward. Finally, (T3) follows from
Lemma 1 and (5-3).

Now, if
∫

X f (y) dµ(y)= 0 then 5 f = f . Thus, an application of Theorem 1 completes the proof. �

5.2. Laguerre operator: Laguerre polynomial expansions. Here, for a parameter α ∈ (−1,∞)d, we
consider

pi =
√

xi , qi = 0, ai = 0, wi (xi )=
1

0(αi + 1)
xαi

i e−xi dxi , dµi (xi )= wi (xi ) dxi
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on X i = (0,∞). Then δi = di =
√

xi ∂xi , and thus

δ∗i =−
√

xi ∂xi −
αi +

1
2

√
xi
+
√

xi , vi = [δi , δ
∗

i ] =
αi +

1
2 + xi

2xi
, r = 0. (5-5)

In this case

L =
d∑

i=1

L i =

d∑
i=1

−xi ∂
2
xi
− (αi + 1− xi ) ∂xi

is the Laguerre operator on X = (0,∞)d. It is symmetric on C∞c ((0,∞)
d) and has a self-adjoint extension

L f =
∑
k∈Nd

|k|〈 f, L̃αk 〉L2 L̃αk .

Here L2
= L2((0,∞)d , µ), while {L̃αk }k∈Nd is the system of L2 normalized Laguerre polynomials; see

[Nowak and Stempak 2006, Section 7.2; Lebedev 1972, p. 76]. These Laguerre polynomials are our
functions ϕk in this section; namely

ϕk = L̃αk , k ∈ Nd.

Next we have
δi L̃αk =

√
kj
√

xi L̃α+ei
k−ei

, (5-6)

while the projection 5 becomes

5 f =
∑

k∈Nd, k 6=0

〈 f, L̃αk 〉L2 L̃αk , f ∈ L2.

A repetition of the argument from the previous section shows that5 f = f if and only if
∫

X f (y) dµ(y)=0
and

‖5 f ‖p 6 2‖ f ‖p, 16 p 6∞. (5-7)

The Riesz transform is then given by

Ri f =
∑

k∈Nd ,k 6=0

(
kj

|k|

)1/2

〈 f, L̃αk 〉L2
√

xi L̃α+ei
k−ei

, f ∈ L2.

Dimension-free bounds for single Riesz transforms Ri were first studied by Gutiérrez, Incognito and
Torrea [Gutiérrez et al. 2001] for half-integer multi-indices, and generalized† by Nowak [2004] to multi-
indices α ∈

[
−

1
2 ,∞

)d. Moreover in [Graczyk et al. 2005], Graczyk, Loeb, López, Nowak, and Urbina
proved dimension-free estimates on L p for the vector of Riesz-Laguerre transforms and half-integer
multi-indices α. Recently, the author [Wróbel 2014, Theorem 4.1(b)] obtained dimension-free bounds on
L p for scalar Riesz transforms and general parameters α ∈ (−1,∞)d, while Mauceri and Spinelli [2015,
Theorem 5.2] proved a dimension-free bound for the vectorial Riesz transforms R f = (R1 f, . . . , Rd f ),
and α ∈

[
−

1
2 ,∞

)d. All the bounds mentioned in this paragraph are also independent of the parameter α

†In [Nowak 2004, Theorem 13] the author also states an estimate on L p for the vector of Riesz-Laguerre transforms that is
dimension-free for certain values of α. Unfortunately this result is not properly proved there (Nowak, personal communication,
2017). This is due to a problem in the proof of the vectorial g-function bound from [Nowak 2004, Theorem 7(b)].
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(appropriately restricted). Moreover, the estimate from [Mauceri and Spinelli 2015, Theorem 5.2] is also
linear in p∗.

By using Theorem 1 we obtain a result which coincides with [Mauceri and Spinelli 2015, Theorem 5.2]
in the case of Riesz transforms acting on functions.

Theorem 7. Fix α ∈
[
−

1
2 ,∞

)d and 1< p <∞. Then, for f ∈ L p which satisfy
∫

X f (y) dµ(y)= 0, we
have

‖R f ‖p 6 24(p∗− 1)‖ f ‖p.

Remark. By (5-7) we have the same bound for general f ∈ L p with the constant being twice as large.

Proof. We are going to apply Theorem 1, so we need to verify its assumptions.
By (5-5) we see that if α ∈

[
−

1
2 ,∞

)d, then (A1) and (A2) (with K = 0) are satisfied. Moreover, the
assumptions (T1) and (T2) follow from a direct calculation. Next, for such α the condition (T3) can be
deduced from Lemma 1 together with (5-6).

Now, if
∫

X f (y) dµ(y) = 0 then 5 f = f . Therefore, using Theorem 1 we complete the proof of
Theorem 7. �

5.3. Jacobi operator: Jacobi polynomial expansions. In this section for parameters α, β ∈ (−1,∞)d

we consider

pi =
√

1− x2
i , qi = 0, ai = 0,

wi (xi )=
1

C(αi , βi )
(1− xi )

αi (1+ xi )
βi dxi , dµi (xi )= wi (xi ) dxi , X i = (−1, 1),

where C(αi , βi ) is such that µi (X i )= 1. Then δi = di =
√

1− x2
i ∂xi , and

δ∗i =−
√

1− x2
i ∂xi +

(
αi +

1
2

)√1+ xi

1− xi
−
(
βi +

1
2

)√1− xi

1+ xi
,

vi = [δi , δ
∗

i ] =
αi +

1
2

1− xi
+
βi +

1
2

1+ xi
, r = 0.

(5-8)

Here

L =
d∑

i=1

L i =

d∑
i=1

−(1− x2
i )∂

2
xi
−
(
βi −αi − (αi +βi + 2)xi

)
∂xi

is the Jacobi operator on X = (−1, 1)d. Let L2
= L2((−1, 1)d, µ), and denote by {P̃α,βk }k∈Nd the system of

L2 normalized Jacobi polynomials; see [Nowak and Stempak 2006, Section 7.1; Szegő 1975, Chapter 4].
These Jacobi polynomials are our functions ϕk in this section; namely

ϕk = P̃α,βk , k ∈ N.

The Jacobi operator is symmetric on C∞c ((−1, 1)d) and has a self-adjoint extension

L f =
∑
k∈Nd

λk〈 f, P̃α,βk 〉L2 P̃α,βk ,
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where λk =
∑d

i=1 λ
i
ki

with λi
ki
= ki (ki +αi +βi +1), i = 1, . . . , d . Similarly to the previous two sections

the projection 5 is

5 f =
∑

k∈Nd, k 6=0

〈 f, P̃α,βk 〉L2 P̃α,βk , f ∈ L2.

Moreover, 5 f = f precisely when
∫

X f (y) dµ(y)= 0 and we have

‖5 f ‖p 6 2‖ f ‖p, 16 p 6∞. (5-9)

The action of δi on Jacobi polynomials is given by

δi P̃α,βk =

√
ki (ki +αi +βi + 1)

√
1− x2

i P̃α+ei ,β+ei
k−ei

, (5-10)

and the Riesz transform becomes

Ri f =
∑

k∈Nd, k 6=0

(
λi

ki

λk

)1/2

〈 f, P̃α,βk 〉L2

√
1− x2

i P̃α+ei ,β+ei
k−ei

, f ∈ L2.

Dimension- and parameter-free estimates for single Riesz transforms Ri are due to Nowak and Sjögren
[2008], who proved them for α, β ∈

[
−

1
2 ,∞

)d.
An application of Theorem 1 generalizes [Nowak and Sjögren 2008, Theorem 5.1] to the vectorial

Riesz transforms R f = (R1 f, . . . , Rd f ). This result is new according to our knowledge. Moreover, we
obtain an explicit estimate which is linear in p∗.

Theorem 8. Fix α, β ∈
[
−

1
2 ,∞

)d and 1< p <∞. Then, for f ∈ L p which satisfy
∫

X f (y) dµ(y)= 0,
we have

‖R f ‖p 6 24 (p∗− 1)‖ f ‖p, f ∈ L p. (5-11)

Remark. As in the previous two sections (5-11) holds for all f ∈ L p with 48 (p∗ − 1) in place of
24 (p∗− 1). This follows from (5-9).

Proof. We are going to apply Theorem 1, so we need to verify its assumptions for parameters α, β ∈[
−

1
2 ,∞

)d.
By (5-8) we see that if α, β ∈

[
−

1
2 ,∞

)d, then (A1) and (A2) (with K = 0) are satisfied. Similarly,
using (5-10) one can see that, for such α and β, the conditions (T1) and (T2) also hold. The assumption
(T3) follows from Lemma 1 together with (5-10).

Now, since
∫

X f (y) dµ(y)= 0 implies 5 f = f , an application of Theorem 1 completes the proof of
Theorem 8. �

5.4. Harmonic oscillator: Hermite function expansions. Here we take

pi = 1, qi = xi , ai = 1, wi (xi )= 1, dµi (xi )= dxi , X i = R,

so that

δi = ∂xi + xi , di = ∂xi , δ∗i =−∂xi + xi , vi = [δi , δ
∗

i ] = 2, r(x)= |x |2, (5-12)
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and L is the harmonic oscillator

L =
d∑

i=1

L i =−1+ |x |2.

It is well known that L is essentially self-adjoint on C∞c (R
d) with the self-adjoint extension given by

L f =
∑
k∈Nd

(2|k| + d)〈 f, hk〉L2hk .

Here L2
= L2(Rd, dx), while {hk}k∈Nd is the system of L2 normalized Hermite functions; see [Nowak

and Stempak 2006, Section 7.4]. The functions hk are our ϕk in this section. They are of the form
hk = hk1 ⊗ · · ·⊗ hkd , where

hki (xi )= H̃ki (xi )e−x2
i /2, xi ∈ R, (5-13)

with H̃ki being the Hermite polynomial from Section 5.1. Note that as 0 is not an L2 eigenvalue of L , the
projection 5 equals the identity operator.

Next
δi hk =

√
2kj hk−ej , (5-14)

and thus the Riesz transform is

Ri f =
∑

k∈Nd, k 6=0

(
2kj

2|k| + d

)1/2

〈 f, hk〉L2hk−ei , f ∈ L2.

Here dimension-free bounds for the vector of Riesz transforms can be deduced, by means of transference,
from the paper of Coulhon, Müller, and Zienkiewicz [Coulhon et al. 1996]; see also [Harboure et al.
2004; Lust-Piquard 2006] for different proofs. Moreover, a dimension-free bound for the vector of Riesz
transforms which is additionally linear in p∗ was proved in [Dragičević and Volberg 2012, Proposition 4].

Using Theorem 1 we are able to obtain a more explicit estimate for the vector R f than in [Dragičević
and Volberg 2012]. However, contrary to that paper, our method says nothing about the vector of “adjoint”
transforms R∗ f = (δ∗1 L−1/2 f, . . . , δ∗d L−1/2 f ).

Theorem 9. For 1< p <∞ we have

‖R f ‖p 6 48(p∗− 1)‖ f ‖p, f ∈ L p.

Proof. We apply Theorem 1. In order to do so we need to check that its assumptions are satisfied.
The equation (5-12) gives (A1) and (A2) with K =1. Condition (T1) is straightforward. The assumption

(T2) holds since, by (5-13), Hermite functions hki vanish rapidly at ±∞. Finally, (T3) follows from
(5-14) and the (well-known) density of Hermite functions in L p, 16 p <∞.

Thus, an application of Theorem 1 is justified and the proof of Theorem 9 is completed. �

5.5. Laguerre operator: Laguerre function expansions of Hermite type. For a parameter α∈ (−1,∞)d

we consider

pi = 1, qi = xi −
αi +

1
2

xi
, ai = 1, wi (xi )= 1, dµi (xi )= dxi , X i = (0,∞),
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so that

δi = ∂xi + xi −
αi +

1
2

xi
, di = ∂xi , δ∗i =−∂xi + xi −

αi +
1
2

xi
,

vi = [δi , δ
∗

i ] = 2, r(x)= |x |2+
d∑

i=1

α2
i −

1
4

x2
i

.

(5-15)

Here L is the Laguerre operator

L =
d∑

i=1

L i =−1+ |x |2+
d∑

i=1

α2
i −

1
4

x2
i

.

Then L is symmetric on C∞c (R
d) and has a self-adjoint extension given by

L f =
∑
k∈Nd

(4|k| + 2d + 2|α|)〈 f, ϕαk 〉L2ϕαk .

In the above formula we set |k| = k1+· · ·+kd and |α| = α1+· · ·+αd ; note that |α| may be negative. By
L2 we mean L2((0,∞)d, dx), while {ϕαk }k∈Nd stands for the system of L2 normalized Laguerre functions
of Hermite type; see [Nowak and Stempak 2006, Section 7.5]. The functions ϕαk are the tensor products
ϕαk = ϕ

α1
k1
⊗ · · ·⊗ϕ

αd
kd

with

ϕ
αi
ki
(xi )=

√
2 L̃αi

ki
(x2

i ) xαi+1/2
i e−x2

i /2, xi > 0, (5-16)

and L̃αi
ki

the Laguerre polynomials from Section 5.2. In this section we take

ϕk = ϕ
α
k .

As 0 is not an L2 eigenvalue of L , the projection 5 equals the identity operator.
Next

δiϕ
α
k =−2

√
kj ϕ

α+ej
k−ej

, (5-17)

and thus the Riesz transform is

Ri f =−
∑

k∈Nd, k 6=0

(
4ki

4|k| + 2|α| + 2d

)1/2

〈 f, ϕαk 〉L2ϕ
α+ej
k−ej

, f ∈ L2.

Dimension-free bounds for single Riesz transforms Ri were obtained by Stempak and the author [Stempak
and Wróbel 2013, Theorem 5.1] for a certain restricted range of the parameter α.

In this section, for α ∈
( 1

2 ,∞
)d we define

C(α)= max
i=1,...,d

αi +
1
2

αi −
1
2

.

By using Theorem 1 we obtain the following strengthening of [Stempak and Wróbel 2013, Theorem 5.1]
in the case α ∈

( 1
2 ,∞

)d.
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Theorem 10. Let α ∈
( 1

2 ,∞
)d. Then, for 1< p <∞, we have

‖R f ‖p 6 24(1+
√

C(α))(p∗− 1)‖ f ‖p, f ∈ L p.

Proof. We apply Theorem 1. In order to do so we need to check that its assumptions are satisfied.
The formula (5-15) gives (A1) and (A2) for α ∈

(1
2 ,∞

)d with K = C(α). Conditions (T1) and (T2)
follow from (5-16) and (5-17). Finally, (T3) follows from [Nowak 2003, Lemma 5.2] and (5-17).

Thus, an application of Theorem 1 is justified and the proof of Theorem 10 is completed. �

5.6. Laguerre operator: Laguerre function expansions of convolution type. For a parameter α ∈
(−1,∞)d we consider

pi = 1, qi = xi , ai = 2αi + 2,

wi (xi )= x2αi+1
i , dµi (xi )= wi (xi ) dxi , X i = (0,∞),

so that

δi = ∂xi + xi , di = ∂xi , δ∗i =−∂xi + xi −
2αi + 1

xi
,

vi = [δi , δ
∗

i ] = 2+
2α+ 1

x2
i

, r(x)= |x |2.
(5-18)

Here L is the Laguerre operator

L =
d∑

i=1

L i =−1+ |x |2−
d∑

i=1

2αi + 1
xi

∂xi .

Then L is symmetric on C∞c ((0,∞)
d) and has a self-adjoint extension given by

L f =
∑
k∈Nd

(4|k| + 2d + 2|α|)〈 f, `αk 〉L2`αk .

Here L2
= L2((0,∞)d, w(x)dx), while {`αk }k∈Nd is the system of L2 normalized Laguerre functions

of convolution type; see [Nowak and Stempak 2006, Section 7.6]. The functions `αk are of the form
`αk = `

α1
k1
⊗ · · ·⊗ `

αd
kd

with

`
αi
ki
(xi )=

√
2 L̃αi

ki
(x2

i ) e−x2
i /2, xi > 0, (5-19)

and L̃αi
ki

the Laguerre polynomials from Section 5.2. In this section we take

ϕk = `
α
k .

Also here, as 0 is not an L2 eigenvalue of L , the projection 5 equals the identity operator.
Next

δi`
α
k =−2

√
ki xi `

α+ei
k−ei

, (5-20)

and thus the Riesz transform is

Ri f =−
∑

k∈Nd, k 6=0

(
4ki

4|k| + 2|α| + 2d

)1/2

〈 f, `αk 〉L2`
α+ei
k−ei

, f ∈ L2.
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The boundedness of these Riesz transforms on L p was proved by Nowak and Stempak [2007, Theorem 3.4].
Later Nowak and Szarek [2012, Theorem 4.1] enlarged the range of admitted parameters α. In both of these
papers Calderón–Zygmund theory was used; thus the L p bounds depended on the dimension d . Applying
Theorem 1 we obtain a dimension-free bound for the vectorial Riesz transform R f = (R1 f, . . . , Rd f ).

Theorem 11. Let α ∈
[
−

1
2 ,∞

)d. Then, for 1< p <∞, we have

‖R f ‖p 6 48(p∗− 1)‖ f ‖p, f ∈ L p. (5-21)

Proof. A continuity argument based on (5-19) and (5-20) shows that it suffices to prove (5-21) for
α ∈

(
−

1
2 ,∞

)d. We are going to apply Theorem 1. In order to do so we need to check that its assumptions
are satisfied.

The formula (5-18) gives (A1) and (A2) with K = 1. Conditions (T1) and (T2) follow from (5-19) and
(5-20). It remains to prove (T3). For the space D this condition follows from [Nowak 2003, Lemma 4.3].
In the case of Di , i = 1, . . . , d , the assumption (T3) can be deduced from (T3) for D together with (5-20).

Thus, an application of Theorem 1 is justified and the proof of Theorem 11 is completed. �

5.7. Jacobi operator: Jacobi function expansions. For parameters α, β ∈ (−1,∞)d we consider

pi = 1, qi =−
1
4(2αi + 1) cot

( 1
2 xi
)
+

1
4(2βi + 1) tan

(1
2 xi
)
, ai =

1
4(αi +β1+ 1)2,

wi (xi )= 1, dµi (xi )= dxi , X i = (0, π),

so that

δi = ∂xi−
1
4(2αi+1)cot

( 1
2 xi
)
+

1
4(2βi+1) tan

(1
2 xi
)
, di = ∂xi ,

δ∗i =−∂xi−
1
4(2αi+1)cot

(1
2 xi
)
+

1
4(2βi+1) tan

( 1
2 xi
)
, vi =[δi ,δ

∗

i ]=
2αi+1

8cos2
( 1

2 xi
)+ 2βi+1

8sin2( 1
2 xi
) ,

r(x)=
d∑

i=1

1
16(2αi+1)2 cot2

( 1
2 xi
)
+

1
16(2βi+1)2 tan2( 1

2 xi
)
+

1
16

(
(αi+βi+1)2−(2αi+1)(2βi+1)

)
.

(5-22)

Here L is the Jacobi operator

L =
d∑

i=1

L i =−1+

d∑
i=1

(
4α2

i − 1

16 sin2( 1
2 xi
) + 4β2

i − 1

16 cos2
( 1

2 xi
)).

Then L is symmetric on C∞c ((0, π)
d) and has a self-adjoint extension given by

L f =
∑
k∈Nd

λk〈 f, φ
α,β

k 〉L2φ
α,β

k .

Here λk =
∑d

i=1 λ
i
ki

with λi
ki
=
(
ki +

1
2(αi + βi + 1)

)2, L2
= L2((0, π)d , dx), while {φα,βk }k∈Nd is the

system of L2 normalized Jacobi functions; see [Nowak and Stempak 2006, Section 7.7]. These Jacobi
functions have the tensor product form φ

α,β

k = φ
α1,β1
k1
⊗ · · ·⊗φ

αd ,βd
kd

with

φ
αi ,βi
ki

(xi )= 2(αi+βi+1)/2 P̃αi ,βi
ki

(cos xi )
(
sin
( 1

2 xi
))αi+1/2(cos

( 1
2 xi
))βi+1/2 (5-23)
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for xi ∈ (0, π), and P̃αi ,βi
ki

being the Jacobi polynomials from Section 5.3. In this section we take

ϕk = φ
α,β

k .

In the case when α, β ∈
[ 1

2 ,∞
)d, the L2 kernel of L is trivial, and thus the projection5 equals the identity

operator.
Next

δiφ
α,β

k =−
√

ki (ki +αi +βi + 1)φα+ei ,β+ei
k−ei

, (5-24)

and thus the Riesz transform is

Ri f =−
∑

k∈Nd, ki 6=0

(
ki (ki +αi +βi + 1)

λk

)1/2

〈 f, φα,βk 〉L2φ
α+ei ,β+ei
k−ei

, f ∈ L2.

In the case d = 1 the L p boundedness of these Riesz transforms was proved by Stempak [2007]. Using
Theorem 1 we obtain the following multidimensional bounds.

Theorem 12. Let α, β ∈
[ 1

2 ,∞
)d. Then, for 1< p <∞, we have

‖R f ‖p 6 48 (p∗− 1)‖ f ‖p, f ∈ L p.

Proof. A continuity argument based on (5-23) and (5-24) allows us to focus on α, β ∈
( 1

2 ,∞
)d. We

are going to apply Theorem 1 for such parameters α and β. In order to do so we need to check that its
assumptions are satisfied.

The formula (5-22) gives (A1) and (A2) (with K = 1). Conditions (T1) and (T2) follow from (5-23)
and (5-24), while (T3) can be deduced from the density of polynomials in C((−1, 1)) together with (5-23)
and (5-24).

Thus, an application of Theorem 1 is permitted and the proof of Theorem 12 is completed. �

Acknowledgments

This paper grew out of discussions with Oliver Dragičević during the author’s visit at the University of
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[Szegő 1975] G. Szegő, Orthogonal polynomials, 4th ed., Colloquium Publications 23, American Mathematical Society,
Providence, R.I., 1975. MR Zbl

[Wróbel 2014] B. Wróbel, “Dimension free L p estimates for single Riesz transforms via an H∞ joint functional calculus”, J.
Funct. Anal. 267:9 (2014), 3332–3350. MR Zbl

Received 23 Jan 2017. Revised 31 Jul 2017. Accepted 23 Sep 2017.
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REDUCIBILITY OF THE QUANTUM HARMONIC OSCILLATOR IN
d-DIMENSIONS WITH POLYNOMIAL TIME-DEPENDENT PERTURBATION

DARIO BAMBUSI, BENOÎT GRÉBERT, ALBERTO MASPERO AND DIDIER ROBERT

We prove a reducibility result for a quantum harmonic oscillator in arbitrary dimension with arbitrary
frequencies perturbed by a linear operator which is a polynomial of degree 2 in (x j ,−i∂j ) with coefficients
which depend quasiperiodically on time.

1. Introduction and statement of results

The aim of this paper is to present a reducibility result for the time-dependent Schrödinger equation

iψ̇ = Hε(ω t)ψ, x ∈ Rd, (1-1)

Hε(ω t) := H0+ εW (ω t, x,−i∇), (1-2)
where

H0 := −1+ V (x), V (x) :=
d∑

j=1

ν2
j x2

j , νj > 0, (1-3)

and W (θ, x, ξ) is a real polynomial in (x, ξ) of degree at most 2, with coefficients being real analytic
functions of θ ∈ Tn. Here ω are parameters which are assumed to belong to the set D = (0, 2π)n.

For ε = 0 the spectrum of (1-2) is given by

σ(H0)= {λk}k∈Nd , λk ≡ λ(k1,...,kd ) :=

d∑
j=1

(2kj + 1)νj , (1-4)

with kj ≥ 0 integers. In particular if the frequencies νj are nonresonant, then the differences between
couples of eigenvalues are dense on the real axis. As a consequence, in the case ε = 0 most of the
solutions of (1-1) are almost periodic with an infinite number of rationally independent frequencies.

Here we will prove that for any choice of the mechanical frequencies νj and for ω belonging to a
set of large measure in D, the system (1-1) is reducible: precisely there exists a time-quasiperiodic
unitary transformation of L2(Rd) which conjugates (1-2) to a time-independent operator. We also deduce
boundedness of the Sobolev norms of the solution.

The proof exploits the fact that for polynomial Hamiltonians of degree at most 2, the correspondence
between classical and quantum mechanics is exact (i.e., without error term), so that the result can be
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Keywords: reducibility, harmonic oscillators, growth of Sobolev norms.
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proven by exact quantization of the classical KAM theory, which ensures reducibility of the classical
Hamiltonian system

hε := h0+ εW (ω t, x, ξ), h0 :=

d∑
j=1

ξ 2
j + ν

2
j x2

j . (1-5)

We will use (in the Appendix) the exact correspondence between classical and quantum dynamics of
quadratic Hamiltonians also to prove a complementary result. Precisely we will present a class of
examples, following [Graffi and Yajima 2000], in which one generically has growth of Sobolev norms.
This happens when the frequencies ω of the external forcing are resonant with some of the νj .

We recall that the exact correspondence between classical and quantum dynamics of quadratic Hamil-
tonians was already exploited in [Hagedorn et al. 1986] to prove stability/instability results for one degree
of freedom time-dependent quadratic Hamiltonians.

Notwithstanding the simplicity of the proof, we think that the present result could have some interest,
since this is the first example of a reducibility result for a system in which the gaps of the unperturbed
spectrum are dense in R. Furthermore it is one of the few cases in which reducibility is obtained for
systems in more than one space dimension.

Indeed, most of the results on the reducibility problem for (1-1) have been obtained in the 1-dimensional
case, and also the results in higher dimensions obtained up to now deal only with cases in which the
spectrum of the unperturbed system has gaps whose size is bounded from below, like in the harmonic
oscillator (or in the Schrödinger equation on Td). On the other hand we restrict here to perturbations,
which although unbounded, must belong to the very special class of polynomials in x j and −i∂j . The
reason is that for operators in this class, the commutator is the operator whose symbol is the Poisson
bracket of the corresponding symbols, without any error term (see Remark 2.2 and Remark 2.4). In order
to deal with more general perturbations one needs further ideas and techniques.

Before closing this introduction we recall some previous works on the reducibility problem for (1-1)
and more generally for perturbations of the Schrödinger equation with a potential V (x). As we already
anticipated, most of the works deal with the 1-dimensional case. The first one is [Combescure 1987], in
which the pure point nature of the Floquet operator is obtained in the case of a smoothing perturbation
of the harmonic oscillator in dimension 1; see also [Kuksin 1993]. The techniques of this paper were
extended in [Duclos and Št’ovíček 1996; Duclos et al. 2002] in order to deal with potentials growing
superquadratically (still in dimension 1) but with perturbations which were only required to be bounded.

A slightly different approach originates from the so-called KAM theory for PDEs [Kuksin 1987; Wayne
1990]. In particular the methods developed in that context in order to deal with unbounded perturbations,
see [Kuksin 1997; 1998], were exploited in [Bambusi and Graffi 2001] in order to deal with the reducibility
problem of (1-1) with superquadratic potential in dimension 1; see [Liu and Yuan 2010] for a further
improvement. The case of bounded perturbations of the harmonic oscillator in dimension 1 was treated in
[Wang 2008; Grébert and Thomann 2011].

An extension of KAM theory to NLS on Td has been obtained in [Eliasson and Kuksin 2010] and
its methods have been adapted to deal with the reducibility problem of quasiperiodically forced linear
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Schrödinger equation in [Eliasson and Kuksin 2009]. A further reducibility result for equations in more
than one space dimension is [Grébert and Paturel 2016], in which bounded perturbations of the completely
resonant harmonic oscillator in Rd were studied. As far as we know, these are the only higher-dimensional
linear systems for which reducibility is known.1

We remark that all these papers deal with cases where the spectrum of the unperturbed operator is
formed by well-separated eigenvalues. In the higher-dimensional cases they are allowed to have high
multiplicity localized in clusters. But then the perturbation must have special properties ensuring that the
clusters are essentially not destroyed under the KAM iteration.

Finally we recall the works [Bambusi 2017a; 2017b], in which pseudodifferential calculus was used
together with KAM theory in order to prove reducibility results for (1-1) (in dimension 1) with unbounded
perturbations. The ideas of the present paper are a direct development of the ideas of [Bambusi 2017a;
2017b]. We also recall that the idea of using pseudodifferential calculus together with KAM theory in
order to deal with problems involving unbounded perturbations originates from [Plotnikov and Toland
2001; Iooss et al. 2005] and has been developed in order to give a quite general theory in [Baldi et al.
2014; Berti and Montalto 2016; Montalto 2014]; see also [Feola and Procesi 2015].

In order to state our main result, we need some preparations. It is well known that (1-1) is well-posed,
see for example [Maspero and Robert 2017], in the scale Hs, s ∈ R, of the weighted Sobolev spaces
defined as follows. For s ≥ 0 let

Hs
:= {ψ ∈ L2(Rd) : H s/2

0 ψ ∈ L2(Rd)},

equipped with the natural Hilbert space norm ‖ψ‖s := ‖H
s/2
0 ψ‖L2(Rd ). For s < 0, Hs is defined by

duality. Such spaces are not dependent on ν for νj > 0, 1≤ j ≤ d . We also have Hs
≡Dom(−1+|x |2)s/2.

We will prove the following reducibility theorem:

Theorem 1.1. Let ψ be a solution of (1-1). There exist ε∗ > 0, C > 0 and for all |ε| < ε∗ a closed
set Eε ⊂ (0, 2π)n with meas((0, 2π)n \ Eε) ≤ Cε1/9 and, for all ω ∈ Eε there exists a unitary (in L2)
time-quasiperiodic map Uω(ω t) such that, defining ϕ by Uω(ω t)ϕ = ψ , it satisfies the equation

iϕ̇ = H∞ϕ, (1-6)

with H∞ a positive definite time-independent operator which is unitary equivalent to a diagonal operator
d∑

j=1

ν∞j (x
2
j − ∂

2
x j
),

where ν∞j = ν
∞

j (ω) are defined for ω ∈ Eε and fulfill the estimates

|νj − ν
∞

j | ≤ Cε, j = 1, . . . , d.

Finally the following properties hold:

(i) For all s ≥ 0, for all ψ ∈Hs , we have θ 7→Uω(θ)ψ ∈ C0(Tn
;Hs).

1We would like to point out also [Procesi and Procesi 2012; 2015], which at present refer to the resonant nonlinear Schrödinger
equation; it would be interesting to study if they have some consequences for reducibility theory.
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(ii) For all s ≥ 0, there exists Cs > 0 such that for all θ ∈ Tn

‖1−Uω(θ)‖L(Hs+2;Hs) ≤ Csε. (1-7)

(iii) For all s, r ≥ 0, the map θ 7→Uω(θ) is of class Cr (Tn
;L(Hs+4r+2

;Hs)).

Remark 1.2. In Theorem 1.1, if the frequencies νj are resonant, then the change of coordinates Uω is
close to the identity, in the sense of (1-7), but the Hamiltonian H∞ is not necessary diagonal. However, it
is always possible to diagonalize it by means of a metaplectic transformation which is not close to the
identity; see Theorem 2.10 and Remark 2.11 below.

Let us denote by Uε,ω(t, τ ) the propagator generated by (1-1) such that Uε,ω(τ, τ )= 1 for all τ ∈ R.
An immediate consequence of Theorem 1.1 is that we have a Floquet decomposition:

Uε,ω(t, τ )=U∗ω(ω t) e−i(t−τ)H∞ Uω(ω tau). (1-8)

Another consequence of (1-8) is that for any s > 0 the norm ‖Uε,ω(t, 0)ψ0‖s is bounded uniformly in
time:

Corollary 1.3. Let ω ∈ Eε with |ε|< ε∗. The following is true: for any s > 0 one has

cs‖ψ0‖s ≤ ‖Uε,ω(t, 0)ψ0‖s ≤ Cs‖ψ0‖s for all t ∈ R, for all ψ0 ∈Hs, (1-9)

for some cs > 0, Cs > 0.
Moreover there exists a constant c′s such that if the initial data ψ0 is in Hs+2 then

‖ψ0‖s − εc′s‖ψ0‖s+2 ≤ ‖Uε,ω(t, 0)ψ0‖s ≤ ‖ψ0‖s + εc′s‖ψ0‖s+2 for all t ∈ R. (1-10)

It is interesting to compare estimate (1-9) with the corresponding estimate which can be obtained for
more general perturbations W (t, x, D). So denote by U(t, τ ) the propagator of H0+W (t, x, D) with
U(τ, τ )= 1. Then in [Maspero and Robert 2017] it is proved that if W (t, x, ξ) is a real polynomial in
(x, ξ) of degree at most 2, the propagator U(t, s) exists, belongs to L(Hs) for all s ≥ 0 and fulfills

‖U(t, 0)ψ0‖s ≤ eCs |t |‖ψ0‖s for all t ∈ R

(the estimate is sharp!). If W (t, x, ξ) is a polynomial of degree at most 1, one has

‖U(t, 0)ψ0‖s ≤ Cs(1+ |t |)s ‖ψ0‖s for all t ∈ R.

Thus estimate (1-9) improves dramatically the upper bounds proved in [Maspero and Robert 2017] when
the perturbation is small and depends quasiperiodically in time with “good” frequencies.

As a final remark we recall that growth of Sobolev norms can indeed happen if the frequencies ω are
not well chosen. In the Appendix, we show that the Schrödinger equation

iψ̇ =
[
−

1
2∂xx +

1
2 x2
+ ax sinω t

]
ψ, x ∈ R

(which was already studied by Graffi and Yajima [2000], who showed that the corresponding Floquet
operator has continuous spectrum), exhibits growth of Sobolev norms if and only if ω =±1, which are
clearly resonant frequencies. We also slightly generalize the example.
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Another example of growth of Sobolev norms for the perturbed harmonic oscillator is given by Delort
[2014]. There the perturbation is a pseudodifferential operator of order 0, periodic in time with resonant
frequency ω = 1.

Remark 1.4. The uniform-time estimate given in (1-9) is similar to the main result obtained in [Eliasson
and Kuksin 2009] for small perturbation of the Laplace operator on the torus Td. Concerning perturbations
of harmonic oscillators in Rd, most known reducibility results are obtained for d = 1, except in [Grébert
and Paturel 2016].

Remark 1.5. In [Eliasson and Kuksin 2009; Grébert and Paturel 2016] the estimate (1-10) is proved
without loss of regularity; this is due to the fact that the perturbations treated in those papers are bounded
operators. There are also some cases, see for example [Bambusi and Graffi 2001], in which the reducing
transformation is bounded notwithstanding the fact that the perturbation is unbounded, but this is due to
the fact that the unperturbed system has suitable gap properties which are not fulfilled in our case.

Remark 1.6. The ε1/9 estimate on the measure of the set of resonant frequencies is not optimal. We
wrote it just for the sake of giving a simple quantitative estimate.

Remark 1.7. Denote by {ψk}k∈Nd the set of Hermite functions, namely the eigenvectors of H0: H0ψk =

λkψk . They form an orthonormal basis of L2(Rd), and writing ψ =
∑

k ckψk , one has

‖ψ‖2s '
∑

k

(1+ |k|)2s
|ck |

2.

Denote byψ(t)=
∑

k∈Nd ck(t)ψk the solution of (1-1) written on the Hermite basis. Then (1-9) implies the
following dynamical localization for the energy of the solution: for all s ≥ 0, there exists Cs ≡Cs(ψ0) > 0
such that

sup
t∈R

|ck(t)| ≤ Cs(1+ |k|)−s for all k ∈ Nd. (1-11)

From the dynamical property (1-11) one obtains easily that every state ψ ∈ L2(Rd) is a bounded state
for the time evolution Uε,ω(t, 0)ψ under the conditions of Theorem 1.1 on (ε, ω). The corresponding
definitions are given below.

Definition 1.8 [Enss and Veselić 1983]. A function ψ ∈ L2(Rd) is a bounded state (or belongs to the
point spectral subspace of {Uε,ω(t, 0)}t∈R) if the quantum trajectory {Uε,ω(t, 0)ψ : t ∈R} is a precompact
subset of L2(Rd).

Corollary 1.9. Under the conditions of Theorem 1.1 on (ε, ω), every state ψ ∈ L2(Rd) is a bounded
state of {Uε,ω(t, 0)}t∈R.

Proof. To prove that every state ψ ∈ L2(Rd) is a bounded state for the time evolution Uε,ω(t, 0)ψ , using
that Hs is dense in L2(Rd), it is enough to assume that ψ ∈ Hs, with s > 1

2 d. With the notation of
Remark 1.7, we write

ψ(t)= ψ (N )(t)+ R(N )(t),

where ψ (N )(t)=
∑
|k|≤N ck(t)ψk and R(N )(t)=

∑
|k|>N ck(t)ψk .
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Take δ > 0. Applying (1-11), taking N large enough, we get that ‖R(N )(t)‖0 ≤ 1
2δ for all t ∈ R. But

{ψ (N )(t) : t ∈R} is a subset of a finite-dimensional linear space. So we get that {Uε,ω(t, 0)ψ : t ∈R} is a
precompact subset of L2(Rd). �

This last dynamical result is deeply connected with the spectrum of the Floquet operator. First note
that Theorem 1.1 implies the following:

Corollary 1.10. The operator Uω induces a unitary transformation L2(Tn)⊗ L2(Rd) which transforms
the Floquet operator K , namely

K := −iω · ∂
∂θ
+ H0+ εW (θ),

into
−iω · ∂

∂θ
+ H∞.

Thus one has that the spectrum of K is pure point and its eigenvalues are λ∞j +ω · k.

Notice that Enss and Veselić [1983, Theorems 2.3 and 3.2] proved that the spectrum of the Floquet
operator is pure point if and only if every state is a bounded state. So Corollary 1.10 gives another proof
of Corollary 1.9.

2. Proof of Theorem 1.1

To start, we scale the variables x j by defining x ′j =
√
νj x j so that, defining

h j (x j , ξj ) := ξ
2
j + x2

j , Hj := −∂
2
x j
+ x2

j ,

one has

h0 =

d∑
j=1

νj h j , H0 =

d∑
j=1

νj Hj . (2-1)

Remark 2.1. Notice that for any positive definite quadratic Hamiltonian h on R2d there exists a symplectic
basis such that h =

∑d
j=1 νj h j , with νj > 0 for 1≤ j ≤ d; see [Hörmander 1994].

For convenience in this paper we shall consider the Weyl quantization. The Weyl quantization of a
symbol f is the operator Opw( f ), defined as usual as

Opw( f )u(x)=
1

(2π)d

∫
y,ξ∈Rd

ei(x−y)ξ f
( 1

2 x + y, ξ
)

u(y) dy dξ.

Correspondingly we will say that an operator F = Opw( f ) is the Weyl operator with Weyl symbol f .
Notice that for polynomials f of degree at most 2 in (x, ξ), we have Opw( f )= f (x, D)+ const, where
D = i−1

∇x .
Most of the time we also use the notation f w(x, D) :=Opw( f ). In particular, in (1-2) W (ω t, x,−i∂x)

denotes the Weyl operator Ww(ω t, x, D).
Given a Hamiltonian χ = χ(x, ξ), we will denote by φt

χ the flow of the corresponding classical
Hamilton equations.
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It is well known that, if f and g are symbols, then the operator −i[ f w(x, D); gw(x, D)] admits a
symbol denoted by { f ; g}M (the Moyal bracket). Two fundamental properties of quadratic polynomial
symbols are given by the following well-known remarks.

Remark 2.2. If f or g is a polynomial of degree at most 2, then { f ; g}M = { f ; g}, where

{ f ; g} :=
d∑

j=1

∂ f
∂x j

∂g
∂ξj
−
∂g
∂x j

∂ f
∂ξj

is the Poisson Bracket of f and g.

Remark 2.3. Let χ be a polynomial of degree at most 2; then it follows from the previous remark that,
for any Weyl operator f w(x, D), the symbol of eitχw(x,D) f w(x, D)e−itχw(x,D) is f ◦φt

χ .

Remark 2.4. If f and g are not quadratic polynomials, then { f ; g}M = { f ; g} + lower-order terms;
similar lower-order corrections would appear in the symbol of e−itχw(x,D) f w(x, D)eitχw(x,D). That is the
reason why we restrict here to the case of quadratic perturbations. In order to deal with more general
perturbations one needs further ideas which will be developed elsewhere.

Next we need to know how a time-dependent transformation transforms a classical and a quantum
Hamiltonian. Precisely, consider a 1-parameter family of (Hamiltonian) functions χ(t, x, ξ) (where t is
thought of as an external parameter) and denote by φτ (t, x, ξ) the time τ flow it generates, precisely the
solution of

dx
dτ
=
∂χ

∂ξ
(t, x, ξ),

dξ
dτ
=−

∂χ

∂x
(t, x, ξ). (2-2)

Consider the time-dependent coordinate transformation

(x, ξ)= φ1(t, x ′, ξ ′) := φτ (t, x ′, ξ ′)|τ=1. (2-3)

Remark 2.5. Working in the extended phase space in which time and a new momentum conjugated to it
are added, it is easy to see that the coordinate transformation (2-3) transforms a Hamiltonian system with
Hamiltonian h into a Hamiltonian system with Hamiltonian h′ given by

h′(t, x ′, ξ ′)= h(φ1(t, x ′, ξ ′))−
∫ 1

0

∂χ

∂t
(t, φτ (t, x ′, ξ ′)) dτ. (2-4)

Remark 2.6. If the operator χw(t, x, D) is selfadjoint for any fixed t , then the transformation

ψ = e−iχw(t,x,D)ψ ′ (2-5)

transforms iψ̇ = Hψ into iψ̇ ′ = H ′ψ ′ with

H ′ = eiχw(t,x,D)He−iχw(t,x,D)
−

∫ 1

0
eiτχw(t,x,D)(∂tχ

w(t, x, ξ)) e−iτχw(t,x,D) dτ. (2-6)

This is seen by an explicit computation. For example see Lemma 3.2 of [Bambusi 2017a].



782 DARIO BAMBUSI, BENOÎT GRÉBERT, ALBERTO MASPERO AND DIDIER ROBERT

So in view of Remark 2.3, provided that transformation (2-5) is well-defined in the quadratic case, the
quantum transformed Hamiltonian (2-6) is the exact quantization of the transformed classical Hamiltonian
(2-4).

To study the analytic properties of the transformation (2-5) we will use the following simplified version
of Theorem 1.2 of [Maspero and Robert 2017] (to which we refer for the proof).

Theorem 2.7 [Maspero and Robert 2017]. Let H0 be the Hamiltonian of the harmonic oscillator. If X is
an operator symmetric on H∞ such that X H−1

0 and [X, H0]H−1
0 belong to L(Hs) for any s ≥ 0, then the

Schrödinger equation
i ∂τψ = Xψ

is globally well-posed in Hs for any s, and its unitary propagator e−iτ X belongs to L(Hs) for all s ≥ 0.
Furthermore one has the quantitative estimate

cs‖ψ‖s ≤ ‖e−iτ Xψ‖s ≤ Cs‖ψ‖s for all τ ∈ [0, 1], (2-7)

where the constants cs,Cs > 0 depend only on ‖[X, H s
0 ]H

−s
0 ‖L(H0).

The properties of the transformation are given by the next lemma and are closely related to the standard
properties on the smoothness in time of the semigroup generated by an unbounded operator.

Lemma 2.8. Let χ(ρ, x, ξ) be a polynomial in (x, ξ) of degree at most 2 with real coefficients depending
in a C∞-way on ρ ∈ Rn. Then for all ρ ∈ Rn, the operator χw(ρ, x, D) is selfadjoint in L2(Rd).
Furthermore for all s ≥ 0, for all τ ∈ R, the following hold true:

(i) The map ρ 7→ e−iτχw(ρ,x,D) is in C0(Rn,L(Hs+2,Hs)).

(ii) For all ψ ∈Hs, the map ρ 7→ e−iτχw(ρ,x,D)ψ is in C0(Rn,Hs).

(iii) For all r ∈ N, the map ρ 7→ e−iτχw(ρ,x,D) is in Cr (Rn,L(Hs+4r+2,Hs)).

(iv) If the coefficients of χ(ρ, x, ξ) are uniformly bounded in ρ ∈Rn then for any s > 0 there exist cs > 0,
Cs > 0 such that we have

cs‖ψ‖s ≤ ‖e−iτχw(ρ,x,D)ψ‖s ≤ Cs‖ψ‖s for all ρ ∈ Rn, for all τ ∈ [0, 1].

Proof. First we remark that in this lemma the quantity ρ plays the role of a parameter. Since χ(ρ, x, ξ) is
a real-valued polynomial in (x, ξ) of degree at most 2, the operator χw(ρ, x, D) is selfadjoint in L2(Rd),
so for all ρ ∈ Rn the propagator e−iτχw(ρ,x,D) is unitary on L2(Rd).

In order to show that e−iτχw(ρ,x,D) maps Hs to itself, for all s> 0, for all ρ ∈Rn, we apply Theorem 2.7.
Indeed since χw(ρ, x, D) has a polynomial symbol, we know χw(ρ, x, D)H−1

0 and the commutator
[H0, χ

w(ρ, x, D)]H−1
0 belong to L(Hs) for all s ≥ 0. Item (iv) follows by estimate (2-7) and the fact

that ‖[H s
0 , χ

w(ρ, x, D)]H−s
0 ‖L(H0) is bounded uniformly in ρ.

To prove item (i) we use the Duhamel formula

e−iτ B
− e−iτ A

= i
∫ τ

0
e−i(τ−τ1)A (A− B) e−iτ1 B dτ1. (2-8)
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Then choosing B = χw(ρ+ ρ ′, x, D), A = χw(ρ, x, D) one has that for all 0≤ τ ≤ 1

‖e−iτχw(ρ+ρ′,x,D)
− e−iτχw(ρ,x,D)

‖L(Hs+2,Hs) ≤ C‖χw(ρ+ ρ ′, x, D)−χw(ρ, x, D)‖L(Hs+2,Hs).

This proves item (i). Continuity in item (ii) is deduced by (i) with a standard density argument. Finally
item (iii) is proved by induction on r , again using the Duhamel formula (2-8). �

Remark 2.5, Remark 2.6 and Lemma 2.8 imply the following important proposition.

Proposition 2.9. Let χ(t, x, ξ) be a polynomial of degree at most 2 in x and ξ with smooth time-
dependent coefficients. If the transformation (2-3) transforms a classical system with Hamiltonian h into
a Hamiltonian system with Hamiltonian h′, then the transformation (2-5) transforms the quantum system
with Hamiltonian hw into the quantum system with Hamiltonian (h′)w.

As a consequence, for quadratic Hamiltonians, the quantum KAM theorem will follow from the
corresponding classical KAM theorem.

To give the needed result, consider the classical time-dependent Hamiltonian

hε(ω t, x, ξ) :=
∑

1≤ j≤d

1
2νj (x2

j + ξ
2
j )+ ε W (ω t, x, ξ), (2-9)

with W as in the Introduction. The following KAM theorem holds.

Theorem 2.10. Assume νj ≥ ν0 > 0 for j = 1, . . . , d and Tn
×Rd

×Rd
3 (θ, x, ξ) 7→W (θ, x, ξ) ∈ R is

a polynomial in (x, ξ) of degree at most 2 with coefficients which are real analytic functions of θ ∈ Tn.
Then there exists ε∗ > 0 and C > 0, such that for |ε|< ε∗ the following hold true:

(i) There exists a closed set Eε ⊂ (0, 2π)n with meas((0, 2π)n \ Eε)≤ Cε1/9.

(ii) For any ω ∈ Eε , there exists an analytic map θ 7→ Aω(θ) ∈ sp(2d) (the symplectic algebra2 of
dimension 2d) and an analytic map θ 7→ Vω(θ) ∈ R2d such that the change of coordinates

(x ′, ξ ′)= eAω(ω t)(x, ξ)+ Vω(ω t) (2-10)

conjugates the Hamiltonian equations of (2-9) to the Hamiltonian equations of a homogeneous
polynomial h∞(x,ξ) of degree 2 which is positive definite. Finally both Aω and Vω are ε-close to zero.

Furthermore h∞ can be diagonalized: there exists a matrix P ∈ Sp(2d) (the symplectic group of dimen-
sion 2d) such that, setting (y, η)= P(x, ξ) we have

h∞ ◦P−1(y, η)=
d∑

j=1

ν∞j (y
2
j + η

2
j ), (2-11)

where ν∞j = ν
∞

j (ω) are defined on Eε and fulfill the estimates

|ν∞j − νj | ≤ Cε, j = 1, . . . , d. (2-12)

Remark 2.11. In general, the matrix P is not close to the identity. However, in the case that the
frequencies νj are nonresonant, P = 1.

2Recall that a real 2d × 2d matrix A belongs to sp(2d) if and only if JA is symmetric
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KAM theory in finite dimensions is nowadays standard. In particular we believe that Theorem 2.10 can
be obtained combining the results of [Eliasson 1988; You 1999]. However, for the reader’s convenience
and the sake of being self-contained, we add in Section 3 its proof.

Theorem 1.1 follows immediately combining the results of Theorem 2.10 and Proposition 2.9.

Proof of Theorem 1.1. We see easily that the change of coordinates (2-10) has the form (2-3) with a
Hamiltonian χω(ω t, x, ξ) which is a polynomial in (x, ξ) of degree at most 2 with real, smooth and
uniformly bounded coefficients in t ∈ R.

Define Uω(ω t)= e−iχwω (ω t,x,D). By Proposition 2.9 it conjugates the original equation (1-1) to (1-6),
where H∞ := Opw(h∞).

Furthermore θ 7→ Uω(θ) fulfills (i)–(iv) of Lemma 2.8, from which it follows immediately that
θ 7→Uω(θ) fulfills items (i), (iii) of Theorem 1.1. Concerning item (ii), by the Taylor formula the quantity
‖1−Uω(θ)‖L(Hs+2,Hs) is controlled by ‖χwω (θ, x, D)‖L(Hs+2,Hs), from which estimate (1-7) follows.

Finally using the metaplectic representation, see [Combescure and Robert 2012], and (2-11), there
exists a unitary transformation in L2, denoted by R(P−1), such that

R(P−1)∗H∞R(P−1)=

d∑
j=1

ν∞j (x
2
j − ∂

2
x j
). �

We prove now Corollary 1.3.

Proof of Corollary 1.3. Consider first the propagator e−it H∞. We claim that

sup
t∈R

‖e−it H∞‖L(Hs) <∞ for all t ∈ R. (2-13)

Recall that H∞ = hw
∞
(x, D), where h∞(x, ξ) is a positive definite symmetric form which can be di-

agonalized by a symplectic matrix P. Since h∞ is positive definite, there exist c0, c1, c2 > 0 such
that

c1h0(x, ξ)≤ c0+ h∞(x, ξ)≤ c2(1+ h0(x, ξ)),

which implies C1 H0 ≤ C0+ H∞ ≤ C2(1+ H0) as bilinear form. Thus one has the equivalence of norms

C−1
s ‖ψ‖Hs ≤ ‖(H∞)s/2ψ‖L2 ≤ Cs‖ψ‖Hs .

Then

‖e−it H∞ψ0‖Hs ≤ Cs‖(H∞)s/2 e−it H∞ψ0‖L2 = Cs‖(H∞)s/2 ψ0‖L2 ≤ C ′s‖ψ0‖Hs ,

which implies (2-13).
Now let ψ(t) be a solution of (1-1). By formula (1-8), ψ(t) = U∗ω(ω t)e−it H∞Uω(0)ψ0. Then the

upper bound in (1-9) follows easily from (2-13) and supt ‖Uω(ω t)‖L(Hs) <∞, which is a consequence
of Lemma 2.8. The lower bound follows by applying Lemma 2.8 (iv).

Finally estimate (1-10) follows from (1-7). �
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3. A classical KAM result

In this section we prove Theorem 2.10. We prefer to work in the extended phase space in which we
add the angles θ ∈ Tn as new variables and their conjugated momenta I ∈ Rn. Furthermore we will use
complex variables defined by

z j =
1
√

2
(ξj − ix j ),

so that our phase space will be Tn
×Rn

×Cd, with Cd considered as a real vector space. The symplectic
form is d I ∧ dθ + i dz ∧ dz̄ and the Hamilton equations of a Hamiltonian function h(θ, I, z, z̄) are

İ =−
∂h
∂θ
, θ̇ =

∂h
∂ I
, ż =−i

∂h
∂ z̄
.

In this framework h0 takes the form h0 =
∑d

j=1 νj z j z̄ j and W takes the form of polynomial in (z, z̄) of
degree 2, W (θ, x, ξ)= q(θ, z, z̄). The Hamiltonian system associated with the time-dependent Hamil-
tonian hε , see (2-9), is then equivalent to the Hamiltonian system associated with the time-independent
Hamiltonian ω · I + hε (written in complex variables) in the extended phase space.

General strategy. Let h be a Hamiltonian in normal form:

h(I, θ, z, z̄)= ω · I +〈z, N (ω)z̄〉, (3-1)

with N ∈MH the set of Hermitian matrices. Notice that at the beginning of the procedure N is diagonal,

N = N0 = diag(νj , j = 1, . . . , d)

and is independent of ω. Let q ≡ qω be a polynomial Hamiltonian which takes real values: q(θ, z, z̄) ∈ R

for θ ∈ Tn and z ∈ Cd. We write

q(θ, z, z̄)= 〈z, Qzz(θ)z〉+ 〈z, Qzz̄(θ)z̄〉+ 〈z̄, Qzz(θ)z̄〉+ 〈Qz(θ), z〉+ 〈Q z̄(θ), z̄〉, (3-2)

where Qzz(θ)≡ Qzz(ω, θ) and Qzz̄(θ)≡ Qzz̄(ω, θ) are d × d complex matrices and Qz(θ)≡ Qz(θ, ω)

is a vector in Cd. They all depend analytically on the angle

θ ∈ Tn
σ := {x + iy : x ∈ Tn, y ∈ Rn, |y|< σ }.

We notice that Qzz̄ is Hermitian, while Qzz is symmetric. The size of such a polynomial function
depending analytically on θ ∈ Tn

σ and C1 on ω ∈ D = (0, 2π)n will be controlled by the norm

[q]σ := sup
|Imθ |<σ

ω∈D, j=0,1

‖∂ j
ωQzz(ω, θ)‖+ sup

|Imθ |<σ
ω∈D, j=0,1

‖∂ j
ωQzz̄(ω, θ)‖+ sup

|Imθ |<σ
ω∈D, j=0,1

|∂ j
ωQz(ω, θ)|

and we denote by Q(σ ) the class of Hamiltonians of the form (3-2) whose norm [ · ]σ is finite.
Let us assume that [q]σ =O(ε). We search for χ ≡ χω ∈Q(σ ) with [χ ]σ =O(ε) such that its time-1

flow φχ ≡ φ
t=1
χ (in the extended phase space, of course) transforms the Hamiltonian h+ q into

(h+ q(θ)) ◦φχ = h++ q+(θ), ω ∈ D+, (3-3)
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where h+ = ω · I +〈z, N+ z̄〉 is a new normal form, ε-close to h, the new perturbation q+ ∈Q(σ ) is of
size3 O(ε3/2) and D+ ⊂ D is εα-close to D for some α > 0. Notice that all the functions are defined on
the whole open set D but (3-3) holds only on D+, a subset of D from which we excised the “resonant
parts”.

As a consequence of the Hamiltonian structure, we have

(h+ q(θ)) ◦φχ = h+{h, χ}+ q(θ)+O(ε3/2), ω ∈ D+.

So to achieve the goal above we should solve the homological equation:

{h, χ} = h+− h− q(θ)+O(ε3/2), ω ∈ D+. (3-4)

Repeating iteratively the same procedure with h+ instead of h, we will construct a change of variable φ
such that

(h+ q(θ)) ◦φ = ω · I + h∞, ω ∈ D∞,

with h∞ = 〈z, N∞(ω)z̄〉 in normal form and D∞ an εα-close subset of D. Note that we will be forced to
solve the homological equation not only for the diagonal normal form N0, but for more general normal
form Hamiltonians (3-1) with N close to N0.

Homological equation.

Proposition 3.1. Let D = (0, 2π)n and D 3 ω 7→ N (ω) ∈MH be a C1 mapping that satisfies

‖∂ j
ω(N (ω)− N0)‖<

min(1, ν0)

max(4, d)
(3-5)

for j = 0, 1 and ω ∈ D. Let h = ω · I +〈z, N z̄〉, q ∈Q(σ ), κ > 0 and K ≥ 1.
Then there exists a closed subset D′ = D′(κ, K )⊂ D satisfying

meas(D \D′)≤ C K nκ, (3-6)

and there exist χ, r ∈
⋂

0≤σ ′<σ Q(σ
′) and D 3 ω 7→ Ñ (ω) ∈MH a C1 mapping such that for all ω ∈D′

{h, χ}+ q = 〈z, Ñ z̄〉+ r. (3-7)

Furthermore for all ω ∈ D
‖∂ j
ω Ñ (ω)‖ ≤ [q]σ , j = 0, 1, (3-8)

and for all 0≤ σ ′ < σ

[r ]σ ′ ≤ C
e−1/2(σ−σ ′)K

(σ − σ ′)n
[q]σ , (3-9)

[χ ]σ ′ ≤
C K

κ2(σ − σ ′)n
[q]σ . (3-10)

3Formally we could expect q+ to be of size O(ε2) but the small divisors and the reduction of the analyticity domain will lead
to an estimate of the type O(ε3/2).
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Proof. Writing the Hamiltonians h, q and χ as in (3-2), the homological equation (3-7) is equivalent to
the three following equations (we use that N is Hermitian, thus N = t N ):

ω · ∇θ Xzz̄ − i[N , Xzz̄] = Ñ − Qzz̄ + Rzz̄, (3-11)

ω · ∇θ Xzz − i(N Xzz + Xzz N )=−Qzz + Rzz, (3-12)

ω · ∇θ Xz + iN Xz =−Qz + Rz. (3-13)

First we solve (3-11). To simplify notation we drop the indices zz̄. Written in Fourier variables (with
respect to θ ), (3-11) reads as

iω · k X̂k − i[N , X̂k] = δk,0 Ñ − Q̂k + R̂k, k ∈ Zn, (3-14)

where δk, j denotes the Kronecker symbol.
When k = 0 we solve this equation by defining

X̂0 = 0, R̂0 = 0 and Ñ = Q̂0.

We notice that Ñ ∈MH and satisfies (3-8).
When |k| ≥ K , (3-14) is solved by defining

R̂k = Q̂k, X̂k = 0 for |k| ≥ K . (3-15)

Then we set
R̂k = 0 for |k| ≤ K

in such a way that r ∈
⋂

0≤σ ′<σ Q(σ
′) and by a standard argument r satisfies (3-9). Now it remains to

solve the equations for X̂k , 0< |k| ≤ K , which we rewrite as

Lk(ω)X̂k = i Q̂k, (3-16)

where Lk(ω) is the linear operator from MS , the space of symmetric matrices, into itself defined by

Lk(ω) : M 7→ (k ·ω)M − [N (ω),M].

We notice that MS can be endowed with the Hermitian product: (A, B) = Tr(AB) associated with
the Hilbert–Schmidt norm. Since N is Hermitian, Lk(ω) is selfadjoint for this structure. As a first
consequence we get

‖(Lk(ω))
−1
‖ ≤

1
min{|λ|, λ ∈Σ(Lk(ω))}

=
1

min{|k ·ω−α(ω)+β(ω)| : α, β ∈Σ(N (ω))}
, (3-17)

where for any matrix A, we denote its spectrum by Σ(A).
Let us recall an important result of perturbation theory, which is a consequence of Theorem 1.10 in

[Kato 1980] (since Hermitian matrices are normal matrices):

Theorem 3.2 [Kato 1980, Theorem 1.10]. Let I ⊂ R and I 3 z 7→ M(z) be a holomorphic curve of
Hermitian matrices. Then all the eigenvalues and associated eigenvectors of M(z) can be parametrized
holomorphically on I .
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Let us assume for a while that N depends analytically on ω in such a way that ω 7→ Lk(ω) is analytic.
Fix a direction zk ∈ Rn; the eigenvalue λk(ω)= k ·ω−α(ω)+β(ω) of Lk(ω) is C1 in the direction4 zk

and the associated unitary eigenvector, denoted by v(ω), is also piecewise C1 in the direction zk . Then,
as a consequence of the hermiticity of Lk(ω) we have

∂ωλ(ω) · zk = 〈v(ω), (∂ωLk(ω) · zk) v(ω)〉.

Therefore, if N depends analytically of ω, we deduce using (3-5) and choosing zk = k/|k|∣∣∣∣∂ωλk(ω) ·
k
|k|

∣∣∣∣≥ |k| − 2‖∂ωN‖ ≥ 1
2 for k 6= 0, (3-18)

which extends also to the points of discontinuity of v(ω). Now given a matrix L depending on the
parameter ω ∈ D, we define

D(L , κ)= {ω ∈ D : ‖L(ω)−1
‖ ≤ κ−1

}

and we recall the following classical lemma:

Lemma 3.3. Let f : [0, 1] 7→ R be a C1-map satisfying | f ′(x)| ≥ δ for all x ∈ [0, 1] and let κ > 0. Then

meas{x ∈ [0, 1] : | f (x)| ≤ κ} ≤
κ

δ
.

Combining this lemma, (3-17) and (3-18) we deduce that, if N depends analytically of ω, then for k 6= 0

meas(D \D(Lk, κ))≤ Cκ. (3-19)

Now it turns out that, by a density argument, this last estimate remains valid (with a larger constant C)
when N is only a C1 function of ω; the point is that (3-18) holds true uniformly for close analytic
approximations of N.

In particular, defining
D′ =

⋂
0<|k|≤K

D(Lk, κ),

D′ is closed and satisfies (3-6).
By construction, X̂k(ω) := i Lk(ω)

−1 Q̂k satisfies (3-16) for 0< |k| ≤ K and ω ∈ D(Lk, κ) and

‖X̂k(ω)‖ ≤ κ
−1
‖Q̂k(ω)‖, ω ∈ D(Lk, κ). (3-20)

It remains to extend X̂k( · ) on D. Using again (3-5) we have for any |k| ≤ K and any unit vector z,
|∂ωλ(ω) · z| ≤ C K . Therefore

dist
(
D \D(Lk, κ),D

(
Lk,

1
2κ
))
≥

κ

C K

and we can construct (by a convolution argument) for each k, 0< |k| ≤ K , a C1 function gk on D with

|gk |C0(D) ≤ C, |gk |C1(D) ≤ C Kκ−1 (3-21)

4That is, t 7→ λk(ω+ t zk) is a holomorphic curve on a neighborhood of 0, and we denote by ∂ωλ(ω) · zk its derivative at
t = 0.
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(the constant C is independent of k) and such that gk(ω) = 1 for ω /∈ D(Lk, κ) and gk(ω) = 0 for
ω ∈D

(
Lk,

1
2κ
)
. Then X̃k = gk X̂k is a C1 extension of X̂k to D. Similarly we define Q̃k = gk Q̂k in such a

way that X̃k satisfies
Lk(ω)X̃k(ω)= i Q̃k(ω), 0< |k| ≤ K , ω ∈ D.

Differentiating with respect to ω leads to

Lk(ω) ∂ωj X̂(k)= i ∂ωj Q̂(k)− kj X̂(k)+ [∂ωj N, X̂(k)], 1≤ j ≤ n.

Defining Bk(ω)= i ∂ωj Q̃k(ω)− kj X̃k(ω)+ [∂ωj N (ω), X̃k(ω)] we have

‖∂ωj X̃k(ω)‖ ≤ κ
−1
‖Bk(ω)‖, ω ∈ D.

Using (3-5), (3-20) and (3-21) we get for |k| ≤ K and ω ∈ D

‖Bk(ω)‖ ≤ ‖∂ωj Q̃k(ω)‖+ K‖X̃k(ω)‖+ 2‖∂ωj N (ω)‖‖X̃k(ω)‖

≤ C Kκ−1(‖∂ωj Q̂(k, ω)‖+‖Q̂(k, ω)‖).

Combining the last two estimates we get

sup
ω∈D, j=0,1

‖∂ j
ω X̃k(ω)‖ ≤ C Kκ−2 sup

ω∈D, j=0,1
‖∂ j
ω Q̂k(ω)‖.

Thus defining
Xzz̄(ω, θ)=

∑
0<|k|≤K

X̃k(ω)eik·θ,

Xzz̄(ω, · ) satisfies (3-11) for ω ∈ D′ and leads to (3-10) for χzz̄(ω, θ, z, z̄)= 〈z, Xzz̄(ω, · )z̄〉.

We solve (3-13) in a similar way. We notice that in this case we face the small divisors |ω · k−α(ω)|,
k ∈ Zn, where α ∈Σ(N (ω)). In particular for k = 0 these quantities are ≥ 1

2ν0 since |α− νj | ≤
1
4ν0 for

some 1≤ j ≤ d by (3-5).
Writing in Fourier variables and dropping indices zz, (3-12) reads as

iω · k X̂(k)− i(N X̂(k)+ X̂(k)N )=−Q̂(k)+ R̂(k). (3-22)

So to mimic the resolution of (3-14) we have to replace the operator Lk(ω) by the operator Mk(ω), defined
on MS by

Mk(ω)X := ω · k+ N X + X N.

This operator is still selfadjoint for the Hermitian product (A, B)= Tr(AB) so the same strategy applies.
Nevertheless we have to consider differently the case k = 0. In that case we use that the eigenvalues of
M0(ω) are close to eigenvalues of the operator M0 defined by

M0 : X 7→ N0 X + X N 0 = N0 X + X N0,

with N0 = diag(νj , j = 1, . . . , d) a real and diagonal matrix. Actually in view of (3-5)

‖(L − L0)M‖HS ≤ ‖N − N0‖HS ‖M‖HS ≤ d‖N − N0‖‖M‖HS ≤ ν0.
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The eigenvalues of L0 are {νj + ν` : j, `= 1, . . . , d} and they are all larger than 2ν0. We conclude that
all the eigenvalues of M0(ω) satisfy |α(ω)| ≥ ν0. The end of the proof follows as before. �

The KAM step. Theorem 2.10 is proved by an iterative KAM procedure. We begin with the initial
Hamiltonian h0+ q0, where

h0(I, θ, z, z̄)= ω · I +〈z, N0 z̄〉, (3-23)

N0 = diag(νj , j = 1, . . . , d), ω ∈D≡ [1, 2]n and the quadratic perturbation q0 equals εW ∈Q(σ,D) for
some σ >0. Then we construct iteratively the change of variables φm , the normal form hm=ω·I+〈z, Nm z̄〉
and the perturbation qm ∈Q(σm,Dm) as follows: Assume that the construction is done up to step m ≥ 0.
Then:

(i) Using Proposition 3.1 we construct χm+1, rm+1 and Ñm the solution of the homological equation:

{h, χm+1} = 〈z, Ñm z̄〉− qm(θ)+ rm+1, ω ∈ Dm+1, θ ∈ Tn
σm+1

. (3-24)

(ii) We define hm+1 := ω · I +〈z, Nm+1 z̄〉 by

Nm+1 = Nm + Ñm, (3-25)

and

qm+1 := rm +

∫ 1

0
{(1− t)(hm+1− hm + rm+1)+ tqm, χm+1} ◦φ

t
χm+1

dt. (3-26)

By construction, if Qm and Nm are Hermitian, so are Rm and Sm+1 by the resolution of the homological
equation, and also Nm+1 and Qm+1.

For any regular Hamiltonian f we have, using the Taylor expansion of f ◦φt
χm+1

between t = 0 and
t = 1,

f ◦φ1
χm+1
= f +{ f, χm+1}+

∫ 1

0
(1− t){{ f, χm+1}, χm+1} ◦φ

t
χm+1

dt.

Therefore we get for ω ∈ Dm+1

(hm + qm) ◦φ
1
χm+1
= hm+1+ qm+1.

Iterative lemma. Following the general scheme above we have

(h0+ q0) ◦φ
1
χ1
◦ · · · ◦φ1

χm
= hm + qm,

where qm is a polynomial of degree 2 and hm = ω · I +〈z, Nm z̄〉 with Nm a Hermitian matrix. At step m
the Fourier series are truncated at order Km and the small divisors are controlled by κm . Now we specify
the choice of all the parameters for m ≥ 0 in terms of εm , which will control [qm]Dm ,σm .

First we define ε0 = ε, σ0 = σ , D0 = D and for m ≥ 1 we choose

σm−1− σm = C∗σ0m−2, Km = 2(σm−1− σm)
−1 ln ε−1

m−1, κm = ε
1/8
m−1,

where (C∗)−1
= 2

∑
j≥1 1/ j2.
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Lemma 3.4. There exists ε∗ > 0 depending on d, n such that, for |ε| ≤ ε∗ and

εm = ε
(3/2)m, m ≥ 0,

we have the following:
For all m ≥ 1 there exist closed subsets Dm ⊂ Dm−1, hm = ω · I + 〈z, Nm z̄〉 in normal form, where

Dm 3 ω 7→ Nm(ω) ∈MH ∈ C1, and there exist χm, qm ∈Q(Dm, σm) such that for m ≥ 1:

(i) The symplectomorphism

φm ≡ φχm (ω) : R
n
×Tn

×C2d
→ Rn

×Tn
×C2d, ω ∈ Dm, (3-27)

is an affine transformation in (z, z̄), analytic in θ ∈ Tn
σm

and C1 in ω ∈ Dm of the form

φm(I, θ, z, z̄)= (gm(I, θ, z, z̄), θ,9m(θ, z, z̄)), (3-28)

where, for each θ ∈ Tn, (z, z̄) 7→9m(θ, z, z̄) is a symplectic change of variable on C2n.
The map φm links the Hamiltonian at step m− 1 and the Hamiltonian at step m; i.e.,

(hm−1+ qm−1) ◦φm = hm + qm for all ω ∈ Dm .

(ii) We have the estimates
meas(Dm−1 \Dm)≤ ε

1/9
m−1, (3-29)

[Ñm−1]
Dm
s,β ≤ εm−1, (3-30)

[qm]
Dm ,σm
s,β ≤ εm, (3-31)

‖φm(ω)− 1‖L(Rn×Tn×C2d ) ≤ Cε1/2
m−1 for all ω ∈ Dm . (3-32)

Proof. At step 1, h0 = ω · I +〈z, N0 z̄〉 and thus hypothesis (3-5) is trivially satisfied and we can apply
Proposition 3.1 to construct χ1, N1, r1 and D1 such that for ω ∈ D1

{h0, χ1} = 〈z, (N1− N0)z̄〉− q0+ r1.

Then, using (3-6), we have
meas(D \D1)≤ C K n

1 κ1 ≤ ε
1/9
0

for ε = ε0 small enough. Using (3-10) we have for ε0 small enough

[χ1]D1,σ1 ≤ C
K1

κ2
1 (σ0− σ1)n

ε0 ≤ ε
1/2
0 .

Similarly using (3-9), (3-8) we have

‖N1− N0‖ ≤ ε0 and [r1]D1,σ1 ≤ C
ε

15/8
0

(σ1− σ0)n
≤ ε

7/4
0

for ε = ε0 small enough. In particular we deduce ‖φ1− 1‖L(Rn×Tn×C2d ) ≤ ε
1/2
0 . Thus using (3-26) we get

for ε0 small enough
[q1]D1,σ1 ≤ ε

3/2
0 = ε1.

The form of the flow (3-28) follows since χ1 is a Hamiltonian of the form (3-2).
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Now assume that we have verified Lemma 3.4 up to step m. We want to perform the step m+ 1. We
have hm = ω · I +〈z, Nm z̄〉 and since

‖Nm − N0‖ ≤ ‖Nm − N0‖+ · · · + ‖N1− N0‖ ≤

m−1∑
j=0

εj ≤ 2ε0,

hypothesis (3-5) is satisfied and we can apply Proposition 3.1 to construct Dm+1, χm+1 and qm+1. Estimates
(3-29)–(3-32) at step m+ 1 are proved as we have proved the corresponding estimates at step 1. �

Transition to the limit and proof of Theorem 2.10. Let Eε =
⋂

m≥0 Dm . In view of (3-29), this is a
closed set satisfying

meas(D \ Eε)≤
∑
m≥0

ε1/9
m ≤ 2ε1/9

0 .

Let us set φ̃N = φ1 ◦ · · · ◦φN . Due to (3-32) it satisfies for M ≤ N and for ω ∈ Eε

‖φ̃N − φ̃M‖L(Rn×Tn×C2d ) ≤

N∑
m=M

ε1/2
m ≤ 2ε1/2

M .

Therefore (φ̃N )N is a Cauchy sequence in L(Rn
×Tn

×C2d). Thus when N →∞, the mappings φ̃N

converge to a limit mapping φ∞ ∈ L(Rn
×Tn

×C2d). Furthermore since the convergence is uniform on
ω ∈ Eε and θ ∈ Tσ/2, we know φ1

∞
depends analytically on θ and C1 in ω. Moreover,

‖φ∞− 1‖L(Rn×Tn×C2d ) ≤ ε
1/2
0 . (3-33)

By construction, the map φ̃m transforms the original Hamiltonian h0+ q0 into hm + qm . When m→∞,
by (3-31) we get qm→ 0 and by (3-30) we get Nm→ N, where

N ≡ N (ω)= N0+

+∞∑
k=1

Ñk

is a Hermitian matrix which is C1 with respect to ω ∈ Eε . Setting h∞(z, z̄)= ω · I +〈z, N (ω)z̄〉 we have
proved

(h+ q(θ)) ◦φ∞ = h∞. (3-34)

Furthermore for all ω ∈ Eε we have, using (3-30),

‖N (ω)− N0‖ ≤

∞∑
m=0

εm ≤ 2ε

and thus the eigenvalues of N (ω), denoted by ν∞j (ω), satisfy (2-12).
It remains to give the affine symplectomorphism φ∞. At each step of the KAM procedure we have by

Lemma 3.4
φm(I, θ, z, z̄)= (gm(I, θ, z, z̄), θ,9m(θ, z, z̄)),

and therefore
φ∞(I, θ, z, z̄)= (g(I, θ, z, z̄), θ,9(θ, z, z̄)),

where 9(θ, z, z̄)= limm→∞91 ◦92 ◦ · · · ◦9m .
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It is useful to go back to real variables (x, ξ). More precisely, write each Hamiltonian χm constructed
in the KAM iteration in the variables (x, ξ):

χm(θ, x, ξ)= 1
2

[
x
ξ

]
· E Bm(θ)

[
x
ξ

]
+Um(θ), E :=

[
0 −1
1 0

]
, (3-35)

where Bm(θ) is a skew-symmetric matrix of dimension 2d × 2d and Um(θ) ∈ R2d, and they are both of
size εm . Then 9m written in the real variables has the form

9m(θ, x, ξ)= eBm(θ)(x, ξ)+ Tm(θ), where Tm(θ) :=

∫ 1

0
e(1−s)J Bm(θ)Um(θ) ds. (3-36)

Lemma 3.5. There exists a sequence of Hamiltonian matrices Al(θ) and vectors Vl(θ) ∈ R2d such that

91 ◦ · · · ◦9l(x, ξ)= eAl (θ)(x, ξ)+ Vl(θ) for all (x, ξ) ∈ R2d. (3-37)

Furthermore, there exist an Hamiltonian matrix Aω(θ) and a vector Vω(θ) ∈ R2d such that

lim
l→+∞

eAl (θ) = eA∞(θ), lim
l→+∞

Vl(θ)= V∞(θ),

sup
|Imθ |≤σ/2

‖Aω(θ)‖ ≤ Cε, sup
|Imθ |≤σ/2

|Vω(θ)| ≤ Cε,
(3-38)

and for each θ ∈ Tn,

9(θ, x, ξ)= eAω(θ)(x, ξ)+ Vω(θ) for all (x, ξ) ∈ R2d.

Proof. Recall that φj = eBj +Tj , where Tj is a translation by the vector Tj with the estimates ‖Bj‖ ≤Cεj ,
‖Tj‖ ≤ Cεj . So we have eBj = I+ Sj with ‖Sj‖ ≤ Cεj . Then the infinite product

∏
1≤ j<+∞ eBj is

convergent. Moreover we have
∏

1≤ j≤l eBj = I+Ml with ‖Ml‖ ≤Cε, so we have
∏

1≤ j<+∞ eBj = I+M,
with ‖M‖ ≤ Cε. This is proved by using∏

1≤ j≤l

(I+ Sj )= I+ Sl + Sl−1Sl + · · ·+ S1S2 · · · Sl

and estimates on ‖Sj‖.
So, Ml has a small norm and therefore Al := log(I+Ml) is well-defined. Furthermore, by construction

I+Ml ∈ Sp(2d) and therefore its logarithm is a Hamiltonian matrix, namely Al ∈ sp(2d) for 1≤ l ≤+∞.
Now we have to include the translations. By induction on l we have

φ1 ◦ · · · ◦φl(x, ξ)= eAl (x, ξ)+ Vl,

with Vl+1 = eAl Tl+1+ Vl and V1 = T1. Using the previous estimates we have

‖Vl+1− Vl‖ ≤ C‖Tl+1‖ ≤ Cεl .

Then we get that liml→+∞ Vl = V∞ exists. �
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Appendix: An example of growth of Sobolev norms (following Graffi and Yajima)

In this appendix we are going to study the Hamiltonian

H := − 1
2∂xx +

1
2 x2
+ ax sinω t (A-1)

and prove that it is reducible to the harmonic oscillator if ω 6= ±1, while the system exhibits growth of
Sobolev norms in the case ω=±1. Actually the result holds in a quite more general situation, but we think
that the present example can give a full understanding of the situation with as few techniques as possible.
We also remark that in this case it is not necessary to assume that the time-dependent part is small.

Finally we recall that (A-1) with ω = ±1 was studied by Graffi and Yajima as an example of a
Hamiltonian whose Floquet spectrum is absolutely continuous (despite the fact that the unperturbed
Hamiltonian has discrete spectrum). Exploiting the results of [Enss and Veselić 1983; Bunimovich et al.
1991], one can conclude from [Graffi and Yajima 2000] that the expectation value of the energy is not
bounded in this model. The novelty of the present result rests in the much more precise statement ensuring
growth of Sobolev norms.

As we already pointed out, in order to get reducibility of the Hamiltonian (A-1), it is enough to study
the corresponding classical Hamiltonian, in particular proving its reducibility; this is what we will do. It
also turns out that the whole procedure is clearer working as much as possible at the level of the equations.

So, consider the classical Hamiltonian system

h := 1
2(x

2
+ ξ 2)+ ax sin(ω t), (A-2)

whose equations of motion are{
ẋ = ξ,
ξ̇ =−x − a sin(ω t)

⇐⇒ ẍ + x + a sin(ω t)= 0. (A-3)

Proposition A.1. Assume that ω 6= ±1. Then there exists a time-periodic canonical transformation
conjugating (A-2) to

h′ := 1
2(x

2
+ ξ 2). (A-4)

If ω =±1 then the system is canonically conjugated to

h′ := ± 1
2aξ. (A-5)

In both cases the transformation has the form (2-10).

Corollary A.2. In the caseω=±1, for any s>0 andψ0∈Hs, there exists a constant 0<Cs=Cs(‖ψ0‖Hs )

such that the solution of the Schrödinger equation with Hamiltonian (A-1) and initial datum ψ0 fulfills

‖ψ(t)‖Hs ≥ Cs〈t〉s for all t ∈ R. (A-6)

Before proving the theorem, recall that by the general result of [Maspero and Robert 2017, Theorem 1.5],
any solution of the Schrödinger equation with Hamiltonian (A-1) fulfills the a priori bound

‖ψ(t)‖Hs ≤ C ′s(‖ψ0‖Hs + |t |s‖ψ0‖H0) for all t ∈ R, (A-7)

which is therefore sharp.
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Proof of Proposition A.1. We look for a translation

x = x ′− f (t), ξ = ξ ′− g(t), (3-8)

with f and g time-periodic functions to be determined in such a way to eliminate time from (A-3).
Writing the equations for (x ′, ξ ′), one gets

ẋ ′ = ξ ′− g+ ḟ, ξ̇ ′ =−x ′− a sin(ω t)+ ġ+ f,

which reduces to the harmonic oscillator by choosing{
−a sin(ω t)+ ġ+ f = 0,
−g+ ḟ = 0

⇐⇒ f̈ + f = a sin(ω t), (3-9)

which has a solution of period 2π/ω only if ω 6= ±1. In such a case the only solution having the correct
period is

f =
a

1−ω2 sin(ω t), g =
aω

1−ω2 cos(ω t).

Then the transformation (3-8) is a canonical transformation generated as the time-1 flow of the auxiliary
Hamiltonian

χ := −ξ
a

1−ω2 sin(ω t)+ x
aω

1−ω2 cos(ω t),

which thus conjugates the classical Hamiltonian (A-2) to the harmonic oscillator; of course the quantization
of χ conjugates the quantum system to the quantum harmonic oscillator, as follows by Proposition 2.9.

We come to the resonant case, and, in order to fix ideas, we take ω = 1. In such a case the flow of the
harmonic oscillator is periodic of the same period as the forcing, and thus its flow can be used to reduce
the system.

In a slightly more abstract way, consider a Hamiltonian system with Hamiltonian

H := 1
2〈z; Bz〉+ 〈z; b(t)〉,

with z := (x, ξ), B a symmetric matrix, and b(t) a vector-valued time-periodic function. Then, using the
formula (2-4), it is easy to see that the auxiliary time-dependent Hamiltonian

χ1 :=
1
2 t〈z; Bz〉 (3-10)

generates a time-periodic transformation which conjugates the system to

h′ := 〈z; e−J Bt b(t)〉

(J being the standard symplectic matrix). An explicit computation shows that in our case

h′ = 1
2ax sin(2t)− 1

2aξ cos(2t)+ 1
2aξ. (3-11)

Then in order to eliminate the two time-periodic terms in (3-11) it is sufficient to use the canonical
transformation generated by the Hamiltonian

χ2 := −
1
4ξa sin(2t)− 1

4 xa cos(2t), (3-12)

which reduces to (A-5). �
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Proof of Corollary A.2. To fix ideas we take ω = 1. Let χw1 ≡
1
2 t (−∂xx + x2) and χw2 be the Weyl

quantizations of the Hamiltonians (3-10) and (3-12) respectively. By the proof of Proposition A.1, the
changes of coordinates

ψ = e−it H0ψ1, ψ1 = e−iχw2 (t,x,D)ϕ, H0 :=
1
2(−∂xx + x2), (3-13)

conjugate the Schrödinger equation with Hamiltonian (A-1) to the Schrödinger equation with Hamiltonian
(A-2), namely the transport equation

∂tϕ =−
1
2a∂xϕ.

The solution of this transport equation is given clearly by

ϕ(t, x)= ϕ0
(
x − 1

2at
)
,

where ϕ0 is the initial datum. Now a simple computation shows that

lim inf
|t |→+∞

|t |−s
‖ϕ(t)‖Hs ≥

( 1
2 |a|

)s
‖ϕ0‖H0 .

In particular there exists a constant 0< Cs = Cs(‖ϕ0‖Hs ) such that

‖ϕ(t)‖Hs ≥ Cs〈t〉s. (3-14)

Since the transformation (3-13) maps Hs to Hs uniformly in time (see also Lemma 2.8) estimate (3-14)
holds also for the original variables. �

We remark that by a similar procedure one can also prove the following slightly more general result.

Theorem 3.3. Consider the classical Hamiltonian system

h =
d∑

j=1

1
2νj (x2

j + ξ
2
j )+

d∑
j=1

(gj (ω t)x j + f j (ω t)ξj ), (3-15)

with f j , gj ∈ Cr (Tn).

(1) If there exist γ > 0 and τ > n+ 1 such that

|ω · k± νj | ≥
γ

1+ |k|τ
for all k ∈ Zn, j = 1, . . . , d, (3-16)

and r > τ + 1+ 1
2 n, then there exists a time-quasiperiodic canonical transformation of the form

(2-10) conjugating the system to5

h =
d∑

j=1

1
2νj (x2

j + ξ
2
j ).

(2) If there exist 0 6= k̄ ∈ Zn and j̄ , such that

ω · k̄− ν j̄ = 0, (3-17)

5Actually the transformation is just a translation, so in this case one has A ≡ 0.
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and there exist γ > 0 and τ such that

|ω · k± νj | ≥
γ

1+ |k|τ
for all (k, j) 6= (k̄, j̄) (3-18)

and r > τ + 1+ 1
2 n, then there exists a time-quasiperiodic canonical transformation of the form

(2-10) conjugating the system to

h =
∑
j 6= j̄

1
2νj (x2

j + ξ
2
j )+ c1x j̄ + c2ξ j̄ ,

with c1, c2 ∈ R.

Remark 3.4. The constants c1, c2 can be easily computed. If at least one of them is different from zero
then the solution of the corresponding quantum system exhibits growth of Sobolev norms, as in the special
model (A-1). Of course the result extends in a trivial way to the case in which more resonances are present.
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EIGENFUNCTION SCARRING AND IMPROVEMENTS IN L∞ BOUNDS

JEFFREY GALKOWSKI AND JOHN A. TOTH

We study the relationship between L∞ growth of eigenfunctions and their L2 concentration as measured
by defect measures. In particular, we show that scarring in the sense of concentration of defect measure on
certain submanifolds is incompatible with maximal L∞ growth. In addition, we show that a defect measure
which is too diffuse, such as the Liouville measure, is also incompatible with maximal eigenfunction
growth.

1. Introduction

Let (M, g) be a C∞ compact manifold of dimension n without boundary. Consider the eigenfunctions

(−1g − λ
2
j )uλj = 0, ‖uλj‖L2 = 1 (1-1)

as λj →∞. It is well known [Avakumović 1956; Levitan 1952; Hörmander 1968], see also [Zworski
2012, Chapter 7], that solutions to (1-1) satisfy

‖uλj‖L∞(M) ≤ Cλ(n−1)/2
j (1-2)

and that this bound is saturated, e.g., on the sphere. It is natural to consider the situations which produce
sharp examples for (1-2). In many cases, one expects polynomial improvements to (1-2), but rigorous
results along these lines are few and far between [Iwaniec and Sarnak 1995]. In the case of negatively
curved manifolds, log improvements can be obtained [Bérard 1977]. However, at present, under general
dynamical assumptions, known results involve o-improvements to (1-2) [Toth and Zelditch 2002; Sogge
et al. 2011; Sogge and Zelditch 2002; 2003; 2016a; 2016b]. These papers all study the connections
between the growth of L∞ norms of eigenfunctions and the global geometry of the manifold (M, g). In
this note, we examine the relationship between L∞ growth and L2 concentration of eigenfunctions. We
measure L2 concentration using the concept of a defect measure — a sequence {uλj } has defect measure µ
if for any a ∈ S0

hom(T
∗M \ {0}),

〈a(x, D)uλj , uλj 〉 →

∫
S∗M

a(x, ξ) dµ. (1-3)

By an elementary compactness/diagonalization argument, it follows that any sequence of eigenfunctions
uλj solving (1-1) possesses a further subsequence that has a defect measure in the sense of (1-3) [Zworski
2012, Chapter 5; Gérard 1991]. Moreover, a standard commutator argument shows that if {uλj } is any
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sequence of L2-normalized Laplace eigenfunctions, the associated defect measure µ is invariant under the
geodesic flow; that is, if G t : S∗M→ S∗M is the geodesic flow, i.e., the Hamiltonian flow of p = 1

2 |ξ |
2
g,

(G t)∗µ= µ for all t ∈ R.

Definition 1.1. We say that an eigenfunction subsequence is strongly scarring provided that for any
defect measure µ associated to the sequence, suppµ is a finite union of periodic geodesics.

Theorem 1. Let {uλj } be a strongly scarring sequence of solutions to (1-1). Then

‖uλj‖L∞ = o(λ(n−1)/2
j ).

We also have improved L∞ bounds when eigenfunctions are quantum ergodic, that is, their defect
measure is the Liouville measure on S∗M , µL ; see, e.g., [Shnirelman 1974; Colin de Verdière 1985;
Zelditch 1987] for the standard quantum ergodicity theorem.

Theorem 2. Let {uλj } be a quantum ergodic sequence of solutions to (1-1). Then

‖uλj‖L∞ = o(λ(n−1)/2
j ).

Theorems 1 and 2 are corollaries of our next theorem, where we relax the assumptions on µ and make
the following definitions. Define the time-T flow-out by

3x,T :=

T⋃
t=−T

G t(S∗x M).

Definition 1.2. Let Hn be the n-dimensional Hausdorff measure on S∗M induced by the Sasaki metric
on T ∗M ; see for example [Blair 2010, Chapter 9] for a treatment of the Sasaki metric. We say that the
subsequence uλj , j = 1, 2, . . . , is admissible at x if for any defect measure µ associated to the sequence
there exists T > 0 such that

Hn(suppµ|3x,T )= 0. (1-4)

We say that the subsequence is admissible if it is admissible at x for every x ∈ M.

We note that in (1-4), µ|3x,T denotes the defect measure restricted to the flow-out 3x,T ; for any A that
is µ-measurable,

µ|3x,T (A) := µ(A∩3x,T ).

Theorem 3. Let {uλj } be a sequence of L2-normalized Laplace eigenfunctions that is admissible in the
sense of (1-4). Then

‖uλj‖L∞ = o(λ(n−1)/2
j ).

Remark 1.3. We choose to use the Sasaki metric to define Hn for concreteness, but this is not important
and we could replace the Sasaki metric by any other metric on S∗M.

Theorem 3 can be interpreted as saying that eigenfunctions which strongly scar are too concentrated
to have maximal L∞ growth, while diffuse eigenfunctions are too spread out to have maximal growth.
However, the reason the admissibility assumption is satisfied differs in these cases. In the diffuse case
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(see Theorem 2), one has µ|3x,T = 0, so that the admissibility assumption is trivially verified. In the
case where the eigenfunctions strongly scar (see Theorem 1), µ|3x,T 6= 0 but the Hausdorff dimension of
suppµ|3x,T is < n; so again, (1-4) is satisfied. The zonal harmonics on the sphere S2, which saturate the
L∞ bound (1-2), lie precisely between being diffuse and strongly scarring (see Section 4).

Observe that the condition µ is diffuse is much more general than µ = µL . Jakobson and Zelditch
[1999] show that any invariant measure on S∗Sn where Sn is the round sphere can be obtained as a defect
measure for a sequence of eigenfunctions and in particular many non-Liouville but diffuse measures
occur.

Remark 1.4. We note that the results here hold for any o(λ) quasimode of (−1g−λ
2) that is compactly

microlocalized in frequency; see [Galkowski 2017].

Relation with previous results. Theorem 2 is related to [Sogge et al. 2011, Theorem 3], where the
o(h(1−n)/2) sup bound is proved for all Laplace eigenfunctions on a Cω surface with ergodic geodesic
flow. However, in Theorem 2, we make no analyticity or dynamical assumptions on (M, g) whatsoever,
only an assumption on the particular defect measure associated with the eigenfunction sequence. Recently,
Hezari [2016] and Sogge [2016] gave independent proofs of Theorem 2.

One consequence of the work of Sogge is the relation between L p norms for eigenfunctions and the
push forward of defect measures to the base manifold M. In particular, he showed [Sogge 2016, (3.3)]
that

‖uλ‖L∞(M) ≤ Cλ(n−1)/2 sup
x∈M

δ−1/2
‖uλ‖L2(Bδ(x)) (1-5)

when λ−1
≤ δ ≤ inj(M, g) and λ≥ 1. We note that when uλ are quantum ergodic, ‖uλ‖L2(Bδ(x)) ≈ δ

n/2

and so the o(λ(n−1)/2)-bound in Theorem 2 follows from (1-5) as well; see also Corollary 1.2 in [Sogge
2016].

However, neither the scarring result in Theorem 1 nor the more general bound in Theorem 3 follow
from (1-5). To compare and contrast with (1-5), we observe that (1-5) implies for any δ > 0 independent
of λ,

lim sup
λ→∞

λ(1−n)/2
‖uλ‖L∞(M) ≤ C sup

x∈M
δ−1/2 (µ(S∗Bδ(x)))1/2.

Our main estimate in (3-12) says that for any x(λ) with d(x(λ), x)= o(1),

lim sup
λ→∞

λ(1−n)/2
|uλ(x(λ))| ≤ C ′δ

(
Hn(suppµ|Ax (δ/2,3δ))

)1/2
, (1-6)

where for δ2 > δ1 we have Ax(δ1, δ2)=3x,δ2 \3x,δ1 . This microlocalized bound allows us to deal with
the more general scarring-type cases as well. In particular, the key differences are that we have replaced
S∗Bδ(x) by Ax(δ/2, 2δ)⊂3x and the defect measure by Hausdorff n-measure. We note however that
unlike (1-5), δ > 0 can be arbitrarily small but is fixed independent of λ in (1-6).

Sogge and Zelditch [2002] proved that any manifold on which (1-2) is sharp must have a self-focal
point. That is, a point x such that |Lx |> 0, where

Lx := {ξ ∈ S∗x M : there exists T such that expx T ξ = x}
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and | · | denotes the normalized surface measure on the sphere. Subsequently, in [Sogge et al. 2011] the
authors showed that one can replace Lx by the set of recurrent directions Rx ⊂ Lx and the assumption
|Rx |> 0 for some x ∈ M is necessary to saturate the maximal bound in (1-2). Here,

Rx :=

{
ξ ∈ S∗x M : ξ ∈

(⋂
T>0

⋃
t≥T

G t(x, ξ)∩ S∗x M
)⋂(⋂

T>0

⋃
t≤−T

G t(x, ξ)∩ S∗x M
)}
.

The example of the triaxial ellipsoid with x equal to an umbilic point shows that latter assumption is
weaker than the former. Indeed, in such a case |Lx | = 1, whereas |Rx | = 0. Most recently, in [Sogge and
Zelditch 2016a; 2016b], it was proved that for real-analytic surfaces, the maximal L∞ bound can only
be achieved if there exists a periodic point x ∈ M for the geodesic flow, i.e., a point (x, ξ) such that all
geodesics starting at (x, ξ) ∈ S∗M close up smoothly after some finite time T > 0.

Together with our analysis, the results of [Sogge et al. 2011] imply that any sequence of eigenfunctions,
{uλ} having maximal L∞ growth near x and defect measure µ must have µ(3x,T ) > 0 for all T > 0 and
|Rx |> 0. In particular, the results of that paper show that uλ can only have maximal L∞ growth near a
point with a positive measure set of recurrent points and Theorem 3 shows that a point with maximal L∞

growth must have µ(3x,T ) > 0. As far as the authors are aware, the results in [Sogge et al. 2011; Sogge
and Zelditch 2016a; 2016b] do not give additional information about µ.

On the other hand, under an additional regularity assumption on the measure µ, Theorem 3 can be
used to show that when uλ has maximal growth near x , the measure µ|3x .T is not mutually singular with
respect to Hn. Since the measure for a zonal harmonic is a smooth multiple of Hn (see Section 4), this
implies that the measure µ resembles the defect measure of a zonal harmonic. In [Galkowski 2017], the
first author removed the necessity for any additional regularity assumption and gave a full characterization
of defect measures for eigenfunctions with maximal L∞ growth, in particular proving that if uλ has
maximal growth near x and defect measure µ, then µ|3x,T is not mutually singular with respect to Hn.
Finally, we note that unlike [Sogge et al. 2011; Sogge and Zelditch 2002; 2016a; 2016b], the analysis
here is entirely local.

2. A local version of Theorem 3

In the following, we will freely use semiclassical pseudodifferential calculus where the semiclassical
parameter is h with h−1

= λ ∈ Spec
√

−1g. We write r(x, y) : M×M→R for the Riemannian distance
from x to y and write B(x, δ) for the geodesic ball of radius δ around x . We start with a local result:

Theorem 4. Let {uh} be sequence of Laplace eigenfunctions that is admissible at x. Then for any
δ(h)= o(1),

‖uh‖L∞(B(x,δ(h))) = o(h(1−n)/2).

Theorem 3 is an easy consequence of Theorem 4.

Proof that Theorem 4 implies Theorem 3. Suppose that u is admissible and

lim sup
h→0

h(n−1)/2
‖uh‖L∞ 6= 0.



EIGENFUNCTION SCARRING AND IMPROVEMENTS IN L∞ BOUNDS 805

Then, there exist c > 0, hk→ 0, xhk so that

|uhk (xhk )| ≥ ch−(n−1)/2
k .

Since M is compact, by taking a subsequence, we may assume xhk → x . But then r(x, xhk )= o(1) and
since u is admissible at x , Theorem 4 implies

lim sup
k→∞

h(n−1)/2
k |uhk (xhk )| = 0. �

3. Proof of Theorem 4

In view of the above, it suffices to prove the local result: Theorem 4.

Proof. Fix T > 3δ > 0 and let ρ ∈ S(R) with ρ(0)= 1 and supp ρ̂ ⊂ (δ, 2δ). Let

S∗M(ε) :=
{
(x, ξ) :

∣∣|ξ |x − 1
∣∣≤ ε}

and χ(x, ξ) ∈ C∞0 (T
∗M) be a cutoff near the cosphere S∗M with χ(x, ξ)= 1 for (x, ξ) ∈ S∗M(ε) and

χ(x, ξ) = 0 when (x, ξ) ∈ T ∗M \ S∗M(2ε). Let χ(x, h D) ∈ Oph(C
∞

0 (T
∗M)) be the corresponding

h-pseudodifferential cutoff. Also, in the following, we will use the notation

0x := suppµ|3x,T

to denote the support of the restricted defect measure corresponding to the eigenfunction sequence {uh j }

in Theorem 3.
Then, we have

uh = ρ
( 1

2h
[−h21− 1]

)
uh =

∫
R

ρ̂(t)ei(t/2)[−h21−1]/hχ(y, h Dy)uh dt + Oε(h∞). (3-1)

Microlocalization to the flow-out 3x . Set

V (t, x, y, h) :=
(
ρ̂(t)ei(t/2)[−h21−1]/hχ(y, h Dy)

)
(t, x, y).

Then, by Egorov’s theorem [Zworski 2012, Theorem 11.1]

WF ′h(V (t, · , · , h))⊂
{
(x, ξ, y, η) : (x, ξ)= G t(y, η),

∣∣|ξ |x − 1
∣∣≤ 2ε

}
; (3-2)

see, e.g., [Dyatlov and Zworski 2017, Definition E.37] for a definition of WF ′h .
Let bx,ε(x, h D) ∈ Oph(C

∞

0 (T
∗M)) be a family of h-pseudodifferential cutoffs with principal symbols

bx,ε ∈ C∞0
({
(y, η) : (y, η)= G t(x0, ξ) for some (x0, ξ) ∈ S∗x0

M(3ε) with r(x, x0) < 2ε, δ/2< t < 3δ
}
,

with

bx,ε ≡ 1 on
{
(y, η) : (y, η)= G t(x0, ξ) for some (x0, ξ) ∈ S∗x0

M(2ε) with r(x, x0) < ε, δ < t < 2δ
}
.

By the definition of WF ′h together with (3-1) and (3-2), it follows that for r(x(h), x)= o(1),

uh(x(h))=
∫

M
V (x(h), y, h) bx,ε(y, h Dy) uh(y) dy+ Oε(h∞), (3-3)
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where,

V (x(h), y, h) :=
∫

R

ρ̂(t)
(
ei(t/2)[−h21−1]/hχ(y, h Dy)

)
(t, x(h), y) dt.

By a standard stationary phase argument,

V (x, y, h)= h(1−n)/2e−ir(x,y)/ha(x, y, h) ρ̂(r(x, y))+ Oε(h∞), (3-4)

where a(x, y, h) ∈ S0(1).
To see this, observe that by [Zworski 2012, Theorem 10.4]

V (x, y, h)= (2πh)−n
∫

eiϕ(t,x,y,η)/h α(t, x, y, η, h) ρ̂(t) dη dt + O(h∞),

where b ∈ C∞c and ϕ solves

∂tϕ =
1
2(|∂xϕ|

2
g(x)− 1), ϕ(0, x, y, η)= 〈x − y, η〉. (3-5)

In particular, for all (t, x, y, η), we have exp(t H|ξ |2g/2)(∂ηϕ+ y, η)= (x, ∂xϕ). The phase function

ϕ(t, x, y, η)= 〈exp−1
y (x), η〉+ 1

2 t (|η|2y − 1)
satisfies (3-5).

We next perform stationary phase in (t, η). First, observe that the phase is stationary at

exp(t H|ξ |2g/2)(y, η)= (x, ∂xϕ), |∂xϕ|g(x) = 1.

In particular, t = r(x, y) and the geodesic through (y, η) passes through x . Since supp ρ̂ ⊂ (δ, 2δ), by
performing nonstationary phase, we may assume t ∈ (δ, 2δ) and hence δ < r(x, y) < 2δ. Then, we
observe that ∂2

(t,η)ϕ is nondegenerate for t ∈ (δ, 2δ). The solutions (tc, ηc) of the critical point equations
∂tϕ = 0 and ∂ηϕ = 0 are given by

tc = | exp−1
y (x)| = r(x, y), ηc =−

exp−1
y (x)

r(x, y)
.

Consequently, (3-4) follows from an application of stationary phase; see also [Sogge 1993, Lemma 5.1.3;
Burq et al. 2007, Theorem 4].

Then, in view of (3-4) and (3-3),

uh(x(h))= vh(x(h))+ Oε(h∞),

vh(x(h))= h(1−n)/2
∫
δ/2<r(x,y)<2δ

e−ir(x(h),y)/ha(x(h), y, h) ρ̂(r(x(h), y)) bx,ε(y, h Dy) uh(y) dy.
(3-6)

Now, note that for any ψ ∈ C∞0 (M),

vh(x(h))= I1(x(h), h)+ I2(x(h), h), (3-7)

where

I1 := (2πh)(1−n)/2
∫
δ/2<r(x,y)<2δ

e−ir(x(h),y)/ha(x(h), y,h) ρ̂(r(x(h), y))ψ(y) (bx,ε(y,h Dy)uh)dy,

I2 := (2πh)(1−n)/2
∫
δ/2<r(x,y)<2δ

e−ir(x(h),y)/ha(x(h), y,h) ρ̂(r(x(h), y))(1−ψ(y)) (bx,ε(y,h Dy)uh)dy.
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Therefore, by Cauchy–Schwarz applied to I1 and I2,

|h(n−1)/2vh(x(h))| ≤ Cδ
(
‖ψ‖L2 ‖bx,ε(y, h Dy)uh(y)‖L2 +

∥∥(1−ψ(y))[bx,ε(y, h Dy)uh]
∥∥

L2

)
.

Hence letting h→ 0 then ε→ 0, and using that

‖bx,ε(y, h Dy)uh(y)‖L2 ≤ (sup |bx,ε| + oε(1))‖uh‖L2,

see for example [Zworski 2012, Theorem 5.1], we have

lim sup
h→0

h(n−1)/2
|uh(x(h))| ≤ Cδ

(
‖ψ‖L2 +

(∫
3x,3δ\3x,δ/2

(1−ψ(y))2 dµ
)1

2
)
. (3-8)

Further microlocalization along suppµ|3x . Let Hn be the n-dimensional Hausdorff measure on the
flow-out 3x . By assumption, Hn(suppµ|3x )= 0. In view of the microlocalization above, we are only
interested in the annular subset

Ax(δ/2, 3δ) :=3x,3δ \3x,δ/2.

Since Hn is Radon, for any ε1 > 0, there exist n-dimensional balls B(rj ) ⊂ Ax(δ/4, 4δ), j = 1, 2, . . . ,
with radii rj > 0, j = 1, 2, . . . , such that

suppµ|Ax (δ/2,3δ) ⊂

∞⋃
j=1

B(rj ), Hn
( ∞⋃

j=1

B(rj )
)
<Hn(suppµ|Ax (δ/2,3δ))+ ε1.

Note that for δ > 0 small enough, the canonical projection π : T ∗M→ M restricts to a diffeomorphism

π : Ax
( 1

4δ, 4δ
)
→ {y ∈ M : δ/4< r(x, y) < 4δ}.

Consider the closed set
K = π(suppµ|Ax (δ/2,3δ))⊂ M

with open covering

G := π
( ∞⋃

j=1

B(rj )
)

satisfying Hn(G)=Hn(K )+ O(ε1). (3-9)

By the C∞ Urysohn lemma, there exists χ0x ∈ C∞0 (M; [0, 1]) with

χ0x |K = 1, suppχ0x ⊂ G. (3-10)

(Note that χ0x depends on ε1, but we suppress this dependence to simplify notation.) We now apply (3-8)
with ψ = χ0x . First, observe that by (3-9) and (3-10)

‖χ0x‖L2 ≤ (Hn(G))1/2 ≤ (Hn(K ))1/2+ O(ε1/2
1 ). (3-11)

Next, by construction, for all ε1 > 0,

(1−χ0x )(y)= 0 for all y ∈ π(suppµ|3x,4δ\3x,δ/4)
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and hence ∫
3x,3δ\3x,δ/2

(1−χ0x )
2 dµ= 0.

Using this together with (3-11) in (3-8) and sending ε1→ 0 gives

lim sup
h→0

h(n−1)/2
|uh(x(h))| ≤ Cδ

(
Hn(π(suppµ|Ax (δ/2,3δ)))

)1/2
≤ C ′δ

(
Hn(suppµ|Ax (δ/2,3δ))

)1/2
, (3-12)

where the last inequality follows from the fact that π |A(δ/2,3δ) is a diffeomorphism. Finally, since uh is
admissible at x ,

Hn(suppµ|Ax (δ/2,3δ))= 0. �

Remark 3.1. For r(x(h), x)= o(1), the estimate

lim sup
h→0

h(n−1)/2
|uh(x(h))| ≤ C ′δ

(
Hn(suppµ|Ax (δ/2,3δ))

)1/2

in (3-12) holds for any sequence of eigenfunctions with defect measure µ. It gives a quantitative estimate
relating the behaviour of the defect measure to L∞ norms of eigenfunctions. This estimate can also be
obtained as a consequence of [Galkowski 2017, Theorem 2] by replacing the absolutely continuous part
of µ with 1suppµ|3x

dHn.

4. The example of zonal harmonics

Let (S2, gcan) be the round sphere and (r, θ) be polar variables centred at the north pole p= (0, 0, 1)∈R3.
The geodesic flow is a completely integrable system with Hamiltonian

H = |ξ |2g = ξ
2
r + (sin r)−2ξ 2

θ , r ∈ (0, π), (4-1)

and Claurault integral p = ξθ satisfying {H, p} = 0. The associated moment mapping is P = (H, p) :
T ∗S2

→ R2 and the connected components of the level sets are, by the Liouville–Arnold theorem,
Lagrangian tori 3c indexed by the values of the moment map (1, c) ∈ P(T ∗S2).

The associated quantum integrable system is given by the Laplacian 1g and the rotation operator h Dθ .
The corresponding L2-normalized joint eigenfunctions are the standard spherical harmonics Y k

m with

−1gY k
m = k(k+ 1)Y k

m, h DθY k
m = mY k

m .

These eigenfunctions can be separated into various sequences (i.e., ladders) associated with different
values (∈ P(T ∗S2); specifically, the correspondence is given by c = limm→∞m/k). The eigenfunctions
with maximal L∞ blow-up are the sequence of zonal harmonics given by

uh(r, θ)= Y k
0 (r, θ)=

√
2k+ 1
2π

∫ 2π

0
(cos r + i sin r cos τ)k dτ, h = k−1, k = 1, 2, 3 . . . . (4-2)

It is obvious from (4-2) that
|Y k

0 (p)| ≈ k1/2

and thus attains the maximal sup growth at p (similarly, at the south pole). At the classical level, the
zonals uh = Y k

0 concentrate microlocally on the Lagrangian tori 30 = P−1(1, 0). From the formula (4-1)
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it is clear that away from the poles (where (r, θ) are honest coordinates),

30 \ {±p} = {(r, θ, ξr =±1, ξθ = 0) : r ∈ (0, π)} ∼= S2
\ {±p}. (4-3)

The choice of ξr = ±1 determines the Lagrangian torus (there are two of them) and also, either torus
clearly covers the entire sphere. At the poles themselves, the projection π30 :30→ S2 has a blowdown
singularity with

π−1
30
(±p)= S∗

±
(S2)∼= S1. (4-4)

To see this, consider the behaviour at p (with a similar computation at −p). Rewriting the integral in
involution in Euclidean coordinates (x, y, z)∈R3, one has H = (xξy− yξx)

2
+(xξz−zξx)

2
+(yξz−zξy)

2

and ξθ = xξy − yξx . Setting H = 1, xξy − yξx = 0 and (x, y, z)= (0, 0, 1) gives

π−1
30
(p)∼= {(ξx , ξy) ∈ R2

: ξ 2
x + ξ

2
y = 1}.

It is then clear from (4-3) and (4-4) that π30 :30→ S2 is surjective and a diffeomorphism away from the
poles (modulo choice of Lagrangian cover) and the fibres above the poles are S∗

±
(S2)∼= S1. We also note

that the Lagrangian 30 =3p,2π is the 2π -flow-out Lagrangian of S∗p(S
2) and the cylinder Ap(δ/2, 3δ) is

just a local slice of this Lagrangian.
The defect measure µ associated with the zonals is

dµ= |dθ1 dθ2|,

where (θ1, θ2; I1, I2) ∈ R2/Z2
×R2 are symplectic action-angle variables defined in a neighbourhood of

the Lagrangian torus 30 [Toth and Zelditch 2003]. One can choose one of the angle variables θ1 ∈ S∗p(S
2)

to parametrize the circle fibre above p (a homology generator of the torus). Then, by the Liouville–Arnold
theorem, the geodesic flow on the torus 30 = {I1 = c1, I2 = c2} is affine with

θj (t)= θj (0)+αj t, αj =
∂H
∂ Ij
6= 0.

It is then clear that

µ(3p,δ)=

∫ 2π

0
dθ1 ·

∫
|t |<δ

α2 dt ≈ δ 6= 0

and suppµ|3p = 3p. Therefore, this case violates the assumption in Theorem 3 and that is of course
consistent with the maximal L∞ growth of zonal harmonics.

The analysis above extends in a straightforward fashion to the case of a more general sphere of rotation
[Toth and Zelditch 2003].

5. Eigenfunctions of Schrödinger operators

Consider a Schrödinger operator P(h) = −h21g + V with V ∈ C∞(M;R) on a compact, closed
Riemannian manifold (M, g) and let uh be an L2-normalized eigenfunction with

P(h)uh = E(h)uh, E(h)= E + o(1), E >min V, ‖uh‖L2 = 1. (5-1)
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Any sequence uh of solutions to (5-1) has a subsequence uhk with a defect measure µ in the sense that
for a ∈ C∞0 (T

∗M)

〈a(x, h D)uh, uh〉 →

∫
T ∗M

a dµ.

Such a measure µ is supported on {p= 0} and is invariant under the bicharacteristic flow G t := exp(t Hp).
In analogy with the homogeneous case, we define for x ∈ M the time-T flow-out by

3x,T,V :=

T⋃
t=−T

G t(6x),

where

6x = {ξ ∈ T ∗x M : |ξ |2g + V (x)= E}.

Definition 5.1. Let Hn be n-dimensional Hausdorff measure on {|ξ |2g+V (x)= E} induced by the Sasaki
metric on T ∗M. We say that the sequence uh of solutions to (5-1) is admissible at x if for any defect
measure µ associated to the sequence, there exists T > 0 so that

Hn(suppµ|3x,T,V )= 0. (5-2)

With these definitions we have the analog of Theorem 3:

Theorem 5. Let B ⊂ V−1(E) be a closed ball in the classically allowable region and µ be a defect
measure associated with the eigenfunction sequence uh . Then, if the eigenfunction sequence is admissible
for all x ∈ B in the sense of (5-2),

sup
x∈B
|uh(x)| = o(h(1−n)/2).

Proof. In analogy with the homogeneous case [Christianson et al. 2015, Lemma 5.1], we have

ρ(h−1
[P(h)− E]))(x, y)= h(1−n)/2a(x, y, h)e−i A(x,y)/h

+ R(x, y, h),

where A(x, y) ∈ [(2C0)
−1ε, 2C0ε] for some C0 > 1 and is the action function defined to be the integral of

the Lagrangian L(x, ξ)= |ξ |2g − V (x) along the bicharacteristic in {p = E} starting at (y, η) and ending
at (x, ξ). For (x, y) in a small neighbourhood of the diagonal, there is a unique such η satisfying this
condition. The remainder R(x, y, h) is equal to O(h∞) pointwise and with all derivatives. The proof
then follows using the same argument as in the homogeneous case. �
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