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SQUARE FUNCTION ESTIMATES FOR DISCRETE RADON TRANSFORMS

MARIUSZ MIREK

We show `p(Zd)-boundedness, for p ∈ (1,∞), of discrete singular integrals of Radon type with the aid
of appropriate square function estimates, which can be thought of as a discrete counterpart of Littlewood–
Paley theory. It is a very robust approach which allows us to proceed as in the continuous case.

1. Introduction

Assume that K ∈ C1(Rk
\ {0}) is a Calderón–Zygmund kernel satisfying the differential inequality

|y|k |K (y)| + |y|k+1
|∇K (y)| ≤ 1 (1-1)

for all y ∈ Rk with |y| ≥ 1 and the cancellation condition

sup
λ≥1

∣∣∣∣∫
1≤|y|≤λ

K (y) dy
∣∣∣∣≤ 1. (1-2)

Let P = (P1, . . . ,Pd0) : Z
k
→ Zd0 be a polynomial mapping, where each component Pj : Z

k
→ Z is a

polynomial of k variables with integer coefficients and Pj (0)= 0. In the present article, as in [Ionescu
and Wainger 2006], we are interested in the discrete singular Radon transform T P defined by

T P f (x)=
∑

y∈Zk\{0}

f (x −P(y))K (y) (1-3)

for a finitely supported function f : Zd0 → R. We prove the following theorem.

Theorem A. For every p ∈ (1,∞) there is C p > 0 such that for all f ∈ `p(Zd0) we have

‖T P f ‖`p ≤ C p‖ f ‖`p . (1-4)

Moreover, the constant C p is independent of the coefficients of the polynomial mapping P .

Theorem A was proven by Ionescu and Wainger [2006]. The operator T P is a discrete analogue of the
continuous Radon transform RP defined by

RP f (x)= p.v.
∫

Rk
f (x −P(y))K (y) dy. (1-5)
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Nowadays the operators RP and their L p(Rd0)-boundedness properties for p ∈ (1,∞) are very well
understood. We refer to [Stein 1993] for a detailed exposition, and see also [Christ et al. 1999] for more
general cases. The key ingredient in proving L p(Rd0) bounds for RP is Littlewood–Paley theory. More
precisely, we begin with L2(Rd0) theory which, based on some oscillatory integral estimates for dyadic
pieces of the multiplier corresponding to RP, provides bounds with acceptable decays. Then appealing
to Littlewood–Paley theory and interpolation it is possible to obtain general L p(Rd0) bounds for all
p ∈ (1,∞). Now, one would like to follow the same scheme in the discrete case. However, the situation
for T P is much more complicated due to arithmetic nature of this operator. Although `2(Zd0) theory is
based on estimates for some oscillatory integrals, or rather exponential sums associated with dyadic pieces
of the multiplier corresponding to T P as was shown in [Ionescu and Wainger 2006], `p(Zd0) theory does
not fall under the Littlewood–Paley paradigm as it does in the continuous case.

The main aim of this paper is to give a new proof of Theorem A using square function techniques.
We construct a suitable square function which allows us to proceed as in the continuous case to obtain
`p(Zd0) theory for the operator (1-3). Our square function gives a new insight for these sort of problems,
see especially [Mirek et al. 2015; 2017], and can be thought as a discrete counterpart of Littlewood–Paley
theory.

There is also an interesting open question concerning the estimates of T P at the endpoint for p = 1.
This is unknown even in the continuous case. For instance, if we consider a Radon transform RP along
the parabola P(y)= (y, y2) in R2, i.e.,

RP f (x1, x2)= p.v.
∫

R

f (x1− y, x2− y2)
dy
y
,

then the question about weak-type (1, 1)-estimates for RP is one of the major unsolved problems in
harmonic analysis. The best known result to date belongs to Seeger, Tao and Wright [Seeger et al. 2004].

In view of the recent negative results of [Buczolich and Mauldin 2010] and [LaVictoire 2011], at the end-
point for p= 1, for Bourgain’s maximal functions corresponding to the discrete averaging operators along
n2 or nk with k ≥ 2, we expect that similar phenomena may occur for discrete singular Radon transforms.

Outline of the strategy of our proof. Recall from [Stein 1993, Chapter 6, §4.5, Chapter 13, §5.3] that
given a kernel K satisfying (1-1) and (1-2) there are functions (Kn : n ∈ Z) and a constant C > 0 such
that for x 6= 0,

K (x)=
∞∑

n∈Z

Kn(x), (1-6)

where for each n ∈ Z, the kernel Kn is supported inside 2n−2
≤ |x | ≤ 2n , satisfies

|x |k |Kn(x)| + |x |k+1
|∇Kn(x)| ≤ C (1-7)

for all x ∈ Rk such that |x | ≥ 1, and has integral 0. Thus in view of (1-7), instead of (1-4), it suffices to
show that for every p ∈ (1,∞) there is a constant C p > 0 such that∥∥∥∥∑

n≥0

T P
n f

∥∥∥∥
`p
≤ C p‖ f ‖`p (1-8)
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for all f ∈ `p(Zd), where

T P
n f (x)=

∑
y∈Zk

f (x −P(y))Kn(y) (1-9)

for each n ∈ Z. The summation in (1-8) can be taken over nonnegative integers, since
∑

n<0 T P
n f ≡ 0.

As we mentioned before, the proof of inequality (1-8) will strongly follow the scheme of the proof of
the corresponding inequality from the continuous setup. Now we describe the key points of our approach.
To avoid some technicalities assume that P(x) = (xd , . . . , x) is a moment curve for some d = d0 ≥ 2
and k = 1. Let mn be the Fourier multiplier associated with the operator T P

n ; i.e., T P
n f = F−1(mn f̂ ).

As in [Mirek et al. 2015; 2017], we introduce a family of appropriate projections (4n(ξ) : n ≥ 0) which
will localize the asymptotic behaviour of mn(ξ). Namely, let η be a smooth bump function with a small
support, fix l ∈ N and define for each integer n ≥ 0 the projection

4n(ξ)=
∑

a/q∈Unl

η(E−1
n (ξ − a/q)), (1-10)

where En is a diagonal d × d matrix with positive entries (εj : 1≤ j ≤ d) such that εj ≤ e−n1/5
and

Unl =
{
a/q ∈ Td

∩Qd
: a = (a1, . . . , ad) ∈ Nd

q and gcd(a1, . . . , ad , q)= 1 and q ∈ Pnl
}

for some family Pnl such that Nnl ⊆ Pnl ⊆Nen1/10 . All details are described in Section 2. Exploiting the
ideas of [Ionescu and Wainger 2006], we prove that for every p ∈ (1,∞) there is a constant Cl,p > 0
such that

‖F−1(4n f̂ )‖`p ≤ Cl,p log(n+ 2)‖ f ‖`p . (1-11)

Inequality (1-11) will be essential in our proof. Observe that (1-10) allows us to dominate (1-8) as∥∥∥∥∑
n≥0

T P
n f

∥∥∥∥
`p
≤

∥∥∥∥∑
n≥0

F−1(mn4n f̂ )
∥∥∥∥
`p
+

∥∥∥∥∑
n≥0

F−1(mn(1−4n) f̂ )
∥∥∥∥
`p
, (1-12)

and we can employ the ideas from the circle method of Hardy and Littlewood, which are implicit in the
behaviour of the projections 4n and 1−4n . Namely, the second norm on the right-hand side of (1-12) is
bounded, since the multiplier mn(1−4n) is highly oscillatory. Thus appealing to (1-11) and a variant of
Weyl’s inequality with logarithmic decay, which has been proven in [Mirek et al. 2015], see Theorem 3.1,
we can conclude that there is a constant C p > 0 such that for each n ≥ 0 we have∥∥F−1(mn(1−4n) f̂ )

∥∥
`p ≤ C p(n+ 1)−2

‖ f ‖`p .

Now the whole difficulty lies in proving∥∥∥∥∑
n≥0

F−1(mn4n f̂ )
∥∥∥∥
`p
≤ C p‖ f ‖`p . (1-13)

For this purpose we construct new multipliers of the form

1 j
n,s(ξ)=

∑
a/q∈U

(s+1)l \Usl

(
η(E−1

n+ j (ξ − a/q))− η(E−1
n+ j+1(ξ − a/q))

)
η(E−1

s (ξ − a/q)) (1-14)
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such that
4n(ξ)'

∑
j∈Z

∑
s≥0

1 j
n,s(ξ).

Moreover, we will be able to show in Theorem 3.3, using Theorem 2.2, that for each p ∈ (1,∞) there is
a constant C p > 0 such that∥∥∥∥(∑

n∈Z

|F−1(1 j
n,s f̂ )|2

)1/2∥∥∥∥
`p
≤ C p log(s+ 2)‖ f ‖`p (1-15)

for any s ≥ 0, uniformly in j ∈ Z. Estimate (1-15) can be thought of as a discrete counterpart of the
Littlewood–Paley inequality; see Theorem 3.3. This is the key ingredient in our proof, which combined
with the robust `2(Zd) estimate∥∥∥∥(∑

n∈Z

|F−1(mn1
j
n,s f̂ )|2

)1/2∥∥∥∥
`2
≤ C2−ε| j |(s+ 1)−δl‖ f ‖`2, (1-16)

allows us to deduce (1-13). The last bound follows, since for each a/q ∈ U(s+1)l \Usl we have

mn(ξ)= G(a/q)8n(ξ − a/q)+O(2−n/2),

where G(a/q) is the Gaussian sum and 8n is a continuous counterpart of mn; precise definitions can
be found at the beginning of Section 3. This observation leads to (1-16), because |G(a/q)| ≤ Cq−δ and
q ≥ sl if a/q ∈ U(s+1)l \Usl . The decay in | j | in (1-16) follows from the assumption on the support of
1

j
n,s and the behaviour of 8n(ξ − a/q); see Section 3 for more details.
The ideas of exploiting projection (1-10) were initiated in [Mirek et al. 2015] in the context of

`p(Zd0)-boundedness of maximal functions corresponding to the averaging Radon operators

MP
N f (x)= N−k

∑
y∈Nk

N

f (x −P(y)), (1-17)

where Nk
N = {1, 2, . . . , N }k, and the truncated singular Radon transforms

T P
N f (x)=

∑
y∈BN \{0}

f (x −P(y))K (y), (1-18)

where BN = {x ∈Zk
: |x | ≤ N }. These ideas, on the one hand, resulted in a new proof for Bourgain’s maxi-

mal operators [Bourgain 1988a; 1988b; 1989]. On the other hand, they turned out to be flexible enough to
attack `p(Zd0)-boundedness of maximal functions for operators with signs like in (1-18). In fact, in [Mirek
et al. 2015] we provided some vector-valued estimates for the maximal functions associated with (1-17) and
(1-18). These estimates found applications in variational estimates for (1-17) and (1-18), which were the
subject of [Mirek et al. 2017]. Our approach falls within the scope of a general scheme which was recently
developed in [Mirek et al. 2015; 2017] and resulted in some unification in the theory of discrete analogues
in harmonic analysis. The novelty of this paper is that it provides a counterpart of the Littlewood–Paley
square function, which is useful in the problems with arithmetic flavour. Furthermore, this square function
theory is also an invaluable ingredient in the estimates of variational seminorm in [Mirek et al. 2017].
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The paper is organized as follows. In Section 2 we prove Theorem 2.2, which is essential in our
approach and guarantees (1-11). Ionescu and Wainger [2006] proved this result with (log N )D loss in
norm, where D > 0 is a large power. In [Mirek et al. 2015] we provided a slightly different proof and
showed that log N is possible. Moreover log N loss is sharp for the method which we used. Since
Theorem 2.2 is a deep theorem, which uses the most sophisticated tools developed to date in the field
of discrete analogues, we have decided, for the sake of completeness, to provide necessary details. In
Section 3 we prove Theorem A. To understand more quickly the proof of Theorem A, the reader may
begin by looking at Section 3 first. These sections can be read independently, assuming the results from
Section 2.

Basic reductions. We set
degP =max{degPj : 1≤ j ≤ d0}

and define the set
0 = {γ ∈ Zk

\ {0} : 0< |γ | ≤ degP}

with the lexicographic order. Let d be the cardinality of 0. Then we can identify Rd with the space
of all vectors whose coordinates are labelled by multi-indices γ ∈ 0. Next we introduce the canonical
polynomial mapping

Q= (Qγ : γ ∈ 0) : Z
k
→ Zd,

where Qγ (x)= xγ and xγ = xγ1
1 · · · · · x

γk
k . The canonical polynomial mapping Q determines anisotropic

dilations. Namely, let A be a diagonal d × d matrix such that

(Av)γ = |γ |vγ

for any v ∈ Rd and γ ∈ 0, where |γ | = γ1+ · · ·+ γk . Then for every t > 0 we set

t A
= exp(A log t);

i.e., t Ax = (t |γ |xγ : γ ∈ 0) for x ∈ Rd, and we see that Q(t x)= t AQ(x).
Observe also that each Pj can be expressed as

Pj (x)=
∑
γ∈0

cγj xγ

for some cγj ∈ R. Moreover, the coefficients (cγj : γ ∈ 0, j ∈ {1, . . . , d0}) define a linear transformation
L : Rd

→ Rd0 such that LQ= P . Indeed, it is enough to set

(Lv)j =
∑
γ∈0

cγj vγ

for each j ∈ {1, . . . , d0} and v ∈ Rd. Now instead of proving Theorem A we show the following.

Theorem B. For every p ∈ (1,∞) there is C p > 0 such that for all f ∈ `p(Zd) we have

‖T Q f ‖`p ≤ C p‖ f ‖`p . (1-19)
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In view of [Stein 1993, Section 11] we can perform a lifting procedure, which allows us to replace the
underlying polynomial mapping P from (1-4) by the canonical polynomial mapping Q. Moreover, it shows
that (1-19) implies (1-4) with the same constant C p; see also [Ionescu and Wainger 2006] for more details.
Therefore, the matters are reduced to proving (1-19) for the canonical polynomial mapping. The advantage
of working with the canonical polynomial mapping Q is that it has all coefficients equal to 1, and the
uniform bound in this case is immediate. From now on for simplicity of notation we will write T = T Q.

Notation. Throughout the whole article C > 0 will stand for a positive constant (possibly large constant)
whose value may change from occurrence to occurrence. If there is an absolute constant C > 0 such
that A ≤ C B (A ≥ C B) then we will write A . B (A & B). Moreover, we will write A ' B if A . B
and A & B hold simultaneously, and we will write A .δ B (A &δ B) to indicate that the constant C > 0
depends on some δ > 0. Let N0 = N∪ {0} and for N ∈ N we set

NN = {1, 2, . . . , N }.

For a vector x ∈ Rd we will use the norms

|x |∞ =max{|x j | : 1≤ j ≤ d} and |x | =
( d∑

j=1

|x j |
2
)1/2

.

If γ is a multi-index from Nk
0 then |γ | = γ1+· · ·+γk . Although, we use | · | for the length of a multi-index

γ ∈Nk
0 and the Euclidean norm of x ∈ Rd, their meaning will be always clear from the context and it will

cause no confusions in the sequel.

2. Ionescu–Wainger-type multipliers

For a function f ∈ L1(Rd) let F denote the Fourier transform on Rd defined as

F f (ξ)=
∫

Rd
f (x)e2π iξ ·x dx .

If f ∈ `1(Zd) we set

f̂ (ξ)=
∑
x∈Zd

f (x)e2π iξ ·x.

To simplify the notation, we denote by F−1 the inverse Fourier transform on Rd and the inverse Fourier
transform on the torus Td

≡ [0, 1)d (Fourier coefficients). The meaning of F−1 will be always clear from
the context. Let η : Rd

→ R be a smooth function such that 0≤ η(x)≤ 1 and

η(x)=
{

1 for |x | ≤ 1/(16d),
0 for |x | ≥ 1/(8d).

Remark 2.1. We will additionally assume that η is a convolution of two nonnegative smooth functions φ
and ψ with compact supports contained in (−1/(8d), 1/(8d))d.
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This section is intended to prove Theorem 2.2, which is inspired by the ideas of [Ionescu and Wainger
2006]. Let ρ > 0 and for every N ∈ N define

N0 = bNρ/2
c+ 1 and Q0 = (N0!)

D,

where D = Dρ = b2/ρc+ 1. Let PN = P∩ (N0, N ], where P is the set of all prime numbers. For any
V ⊆ PN we define

5(V )=
⋃

k∈ND

5k(V ),

where for any k ∈ ND

5k(V )= {p
γ1
1 · · · · · p

γk
k : γl ∈ ND and pl ∈ V are distinct for all 1≤ l ≤ k}.

In other words 5(V ) is the set of all products of prime factors from V of length at most D, at powers
between 1 and D. Now we introduce the sets

PN =
{
q = Q ·w : Q | Q0 and w ∈5(PN )∪ {1}

}
.

It is not difficult to see that every integer q ∈NN can be uniquely written as q = Q ·w, where Q | Q0 and
w ∈5(PN )∪ {1}. Moreover, for sufficiently large N ∈ N we have

q = Q ·w ≤ Q0 ·w ≤ (N0!)
D N D2

≤ eNρ

;

thus we have NN ⊆ PN ⊆ NeNρ . Furthermore, if N1 ≤ N2 then PN1 ⊆ PN2 .
For a subset S ⊆ N we define

R(S)= {a/q ∈ Td
∩Qd

: a ∈ Aq and q ∈ S},

where for each q ∈ N

Aq = {a ∈ Nd
q : gcd(q, (aγ : γ ∈ 0))= 1}.

Finally, for each N ∈ N we will consider the sets

UN =R(PN ). (2-1)

It is easy to see, if N1 ≤ N2 then UN1 ⊆ UN2 .
We will assume that 2 is a multiplier on Rd and for every p ∈ (1,∞) there is a constant Ap > 0 such

that for every f ∈ L2(Rd)∩ L p(Rd) we have

‖F−1(2F f )‖L p ≤ Ap‖ f ‖L p . (2-2)

For each N ∈ N we define the new periodic multiplier

1N (ξ)=
∑

a/q∈UN

2(ξ − a/q)ηN (ξ − a/q), (2-3)

where ηN (ξ)= η(E−1
N ξ) and EN is a diagonal d × d matrix with positive entries (εγ : γ ∈ 0) such that

εγ ≤ e−N 2ρ
. The main result is the following.



590 MARIUSZ MIREK

Theorem 2.2. Let 2 be a multiplier on Rd obeying (2-2). Then for every ρ > 0 and p ∈ (1,∞) there is a
constant Cρ,p > 0 such that for any N ∈ N and f ∈ `p(Zd) we have

‖F−1(1N f̂ )‖`p ≤ Cρ,p(Ap + 1) log N‖ f ‖`p . (2-4)

The main constructing blocks have been gathered in the next three subsections. Theorem 2.2 is a
consequence of Theorem 2.6 and Proposition 2.7 proved below. To prove Theorem 2.2 we find some
Cρ > 0 and disjoint sets U i

N ⊆ UN such that

UN =
⋃

1≤i≤Cρ log N

U i
N

and we show that 1N with the summation restricted to U i
N is bounded on `p(Zd) for every p ∈ (1,∞).

In order to construct U i
N , we need a suitable partition of integers from the set 5(PN )∪ {1}; see also

[Ionescu and Wainger 2006].

Fundamental combinatorial lemma. We begin with the following definition.

Definition 2.3. A subset 3⊆5(V ) has property O if there is k ∈ ND and there are sets S1, S2, . . . , Sk

with the following properties:

(i) For each 1≤ j ≤ k there is βj ∈ N such that Sj = {qj,1, . . . , qj,βj }.

(ii) For every qj,s ∈ Sj there are pj,s ∈ V and γj ∈ ND such that qj,s = pγj
j,s .

(iii) For every w ∈3 there are unique numbers q1,s1 ∈ S1, . . . , qk,sk ∈ Sk such that w = q1,s1 · · · · · qk,sk .

(iv) If ( j, s) 6= ( j ′, s ′) then (qj,s, qj ′,s′)= 1.

Now three comments are in order.

• The set 3= {1} has property O corresponding to k = 0.

• If 3 has property O, then each subset 3′ ⊆3 has property O as well.

• If a set 3 has property O then each element of 3 has the same number of prime factors k ≤ D.

The main result is the following.

Lemma 2.4. For every ρ > 0 there exists a constant Cρ > 0 such that for every N ∈ N the set UN can be
written as a disjoint union of at most Cρ log N sets U i

N =R(P i
N ), where

P i
N = {q = Q ·w : Q | Q0 and w ∈3i (PN )} (2-5)

and 3i (PN )⊆5(PN )∪ {1} has property O for each integer 1≤ i ≤ Cρ log N.

Proof. We have to prove that for every V ⊆PN the set 5(V ) can be written as a disjoint union of at most
Ck log N sets with property O. Fix k ∈ ND , let γ = (γ1, . . . , γk) ∈ Nk

D be a multi-index and observe that

5k(V )=
⋃
γ∈Nk

D

5
γ

k (V ),

where
5
γ

k (V )= {p
γ1
1 · · · · · p

γk
k : pl ∈ V are distinct for all 1≤ l ≤ k}.
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Since there are Dk possible choices of exponents γ1, . . . , γk ∈ND when k ∈ND , it only suffices to prove
that every 5γ

k (V ) can be partitioned into a union (not necessarily disjoint) of at most Ck log N sets with
property O.

We claim that for each k ∈ N there is a constant Ck > 0 and a family

π = {πi (V ) : 1≤ i ≤ Ck log |V |} (2-6)

of partitions of V such that

(i) for every 1≤ i ≤ Ck log |V |, each πi (V )= {V i
1 , . . . , V i

k } consists of pairwise disjoint subsets of V
and V = V i

1 ∪ · · · ∪ V i
k ;

(ii) for every E ⊆V with at least k elements, there exists πi (V )={V i
1 , . . . , V i

k } ∈π such that E∩V i
j 6=∅

for every 1≤ j ≤ k.

Assume for a moment we have constructed a family π as in (2-6). Then one sees that for a fixed γ ∈Nk
D

we have

5
γ

k (V )=
⋃

1≤i≤Ck log |V |

5
γ

k,i (V ), (2-7)

where

5
γ

k,i (V )= {p
γ1
1 · · · · · p

γk
k : pj ∈ V i

j and V i
j ∈ πi (V ) for each 1≤ j ≤ k}.

Indeed, the sum on the right-hand side of (2-7) is contained in 5γ

k (V ) since each 5γ

k,i (V ) is. For the
opposite inclusion take pγ1

1 · · · · · p
γk
k ∈5

γ

k (V ) and let E = {p1, . . . , pk}; then property (ii) for the family
(2-6) ensures that there is πi (V )= {V i

1 , . . . , V i
k } ∈π such that E∩V i

j 6=∅ for every 1≤ j ≤ k. Therefore,
pγ1

1 · · · · · pγk
k ∈ 5

γ

k,i (V ). Furthermore, we see that for each 1 ≤ i ≤ Ck log N, the sets 5γ

k,i (V ) have
property O.

The proof will be completed if we construct the family π as in (2-6) for the set V. We assume, for
simplicity, that V = NN but the result is true for all V ⊆ NN containing at least k elements. Now it will
be more comfortable to work with surjective mappings f :NN 7→Nk rather than with partitions of NN

into k nonempty subsets. It will cause no changes to us, since every surjection f : NN 7→ Nk determines
a partition { f −1

[{m}] : 1≤ m ≤ k} of NN into k nonempty subsets.
For the proof we employ a probabilistic argument. Indeed, let f : NN 7→ Nk be a random surjective

mapping. Assume that for every n ∈NN and m ∈Nk we have P({ f (n)=m})= 1/k independently of all
other n ∈ NN . For every E ⊆ NN with k elements we have P({| f [E]| = k})= k!/kk. It suffices to show
that for some r 'k log N and f1, . . . , fr random surjections we have

P
(
{∀E⊆NN |E | = k ∃1≤l≤r | fl[E]| = k}

)
> 0.

In other words, for each E ⊆NN with cardinality k it is always possible to find, with a positive probability,
among at most Ck log N random surjections at least one f : NN 7→ Nk such that | f [E]| = k. Then the
set { f −1

[{m}] : 1≤ m ≤ k} is a partition of NN and E ∩ f −1
[{m}] 6=∅ for every 1≤ m ≤ k.
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The task now is the determine the exact value of r 'k log N. Take now 1≤ r ≤ N independent random
surjections f1, . . . , fr and observe that

P
({
∃E⊆NN |E | = k ∀1≤l≤r | fl[E]|< k

})
≤

∑
E⊆NN :|E |=k

P
(
{∀1≤l≤r | fl[E]|< k}

)
=

∑
E⊆NN :|E |=k

(
1−

k!
kk

)r

=

(
N
k

)(
1−

k!
kk

)r

≤

(
eN
k

)k

e−rk!/kk
= ek log(eN/k)−rk!/kk

.

Therefore

P
(
{∃E⊆NN |E | = k ∀1≤l≤r | fl[E]|< k}

)
< 1

if and only if

r >
kk+1

k!
log
(

eN
k

)
.

Thus taking

r =
⌈

kk+1

k!
log
(

eN
k

)⌉
+ 1' Ck log N,

we see that it does the job. This completes the proof of Lemma 2.4. �

Further reductions and square function estimates. Now we can write

1N =
∑

1≤i≤Cρ log N

1i
N ,

where for each 1≤ i ≤ Cρ log N

1i
N (ξ)=

∑
a/q∈U i

N

2(ξ − a/q)ηN (ξ − a/q) (2-8)

with U i
N as in Lemma 2.4. The proof of Theorem 2.2 will be completed if we show that for every

p ∈ (1,∞) and ρ > 0, there is a constant C > 0 such that for any N ∈ N and 1≤ i ≤ Cρ log N we have

‖F−1(1i
N f̂ )‖`p ≤ C(Ap + 1)‖ f ‖`p (2-9)

for every f ∈ `p(Zd).
Let

3⊆5(PN )∪ {1} (2-10)

be a set with property O; see Definition 2.3. Define

U 3
N =R

(
{q = Q ·w : Q | Q0 and w ∈3}

)
and WN =R(3), and we introduce

13N (ξ)=
∑

a/q∈U 3
N

2(ξ − a/q)ηN (ξ − a/q). (2-11)
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We show that for every p ∈ (1,∞) and ρ > 0, there is a constant C > 0 such that for any N ≥ 8max{p,p′}/ρ

and for any set 3 as in (2-10) and for every f ∈ `p(Zd) we have

‖F−1(13N f̂ )‖`p ≤ C(Ap + 1)‖ f ‖`p . (2-12)

For N ≤ 8max{p,p′}/ρ the bound in (2-12) is obvious, since we allow the constant C > 0 to depend on p
and ρ. Moreover, by the duality and interpolation, it suffices to prove (2-12) for p = 2r , where r ∈ N. If
3=3i (PN ), as in Lemma 2.4, for some 1≤ i ≤ Cρ log N, then we see that U 3

N = U i
N and 13N =1

i
N ,

and consequently (2-12) implies (2-9) as desired.
The function 2(ξ)ηN (ξ) is regarded as a periodic function on Td ; thus

13N (ξ)=
∑

a/q∈U 3
N

2(ξ − a/q)ηN (ξ − a/q)=
∑

b∈Nd
Q0

∑
a/w∈WN

2(ξ − b/Q0− a/w)ηN (ξ − b/Q0− a/w),

where we have used the fact that if (q1, q2)= 1 then for every a ∈ Zd, there are unique a1, a2 ∈ Zd, such
that a1/q1, a2/q2 ∈ [0, 1)d and

a
q1q2
=

a1

q1
+

a2

q2
(mod Zd). (2-13)

Since 3 has property O, according to Definition 2.3 there is an integer 1≤ k ≤ 2/ρ+1 and there are sets
S1, . . . , Sk such that for any j ∈ Nk we have Sj = {qj,1, . . . , qj,βj } for some βj ∈ N.

Now for each j ∈ Nk we introduce

U{ j} =
{
aj,s/qj,s ∈ Td

∩Qd
: s ∈ Nβj and aj,s ∈ Aqj,s

}
and for any M = { j1, . . . , jm} ⊆ Nk let

UM =
{
u j1 + · · ·+ u jm ∈ Td

∩Qd
: u jl ∈ U{ jl } for any l ∈ Nm

}
.

For any sequence σ = (sj1, . . . , sjm ) ∈ Nβj1
× · · ·×Nβjm

determined by the set M, let us define

V σM =
{
aj1,sj1

/qj1,sj1
+ · · ·+ ajm ,sjm

/qjm ,sjm
∈ Td
∩Qd

: ajl ,sjl
∈ Aqjl ,sjl

for any l ∈ Nm
}
.

Note that V σM is a subset of UM with fixed denominators qj1,sj1
, . . . , qjm ,sjm

. If M = ∅ then we have
UM = VM = {0}. Let

χ(ξ)= 13(ξ) and �N (ξ)=2(ξ)ηN (ξ).

Then again by (2-13) we obtain

13N (ξ)=
∑

a/w∈WN

∑
b∈Nd

Q0

2(ξ − b/Q0− a/w)ηN (ξ − b/Q0− a/w)

=

∑
s1∈Nβ1

∑
a1,s1∈Aq1,s1

· · ·

∑
sk∈Nβk

∑
ak,sk∈Aqk,sk

ma1,s1/q1,s1+···+ak,sk /qk,sk
(ξ)=

∑
u∈UNk

mu(ξ), (2-14)
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where

mu(ξ)= ma1,s1/q1,s1+···+ak,sk /qk,sk
(ξ)= χ(q1,s1 · · · · · qk,sk )

∑
b∈Nd

Q0

�N

(
ξ − b/Q0−

k∑
j=1

aj,sj /qj,sj

)
(2-15)

for u = a1,s1/q1,s1 + · · ·+ ak,sk/qk,sk .
From now on we will write, for every u ∈ UNk ,

fu(x)= F−1(mu f̂ )(x) (2-16)

with f ∈ `2r (Zd) and r ∈ N. Therefore,

F−1(13N f̂ )(x)=
∑

u∈UNk

fu(x) (2-17)

and the proof of inequality (2-12) will follow from the theorem below.

Theorem 2.5. Suppose that ρ > 0 and r ∈N are given. Then there is a constant Cρ,r > 0 such that for
any N > 82r/ρ and for any set 3 as in (2-10) and for every f ∈ `2r (Zd) we have∥∥∥∥ ∑

u∈UNk

fu

∥∥∥∥
`2r
≤ Cρ,r‖ f ‖`2r . (2-18)

Moreover, the integer k ∈ ND, the set UNk and consequently the sets S1, . . . , Sk are determined by the
set 3 as it was described above.

The estimate (2-18) will follow from Theorem 2.6 and Proposition 2.7 formulated below. Let us
introduce a suitable square function which will be useful in bounding (2-18). For any M ⊆ Nk and
L = { j1, . . . , jl} ⊆ M and any sequence σ = (sj1, . . . , sjl ) ∈ Nβj1

× · · · ×Nβjl
determined by the set L ,

let us define the square function S σL ,M( fu : u ∈ UNk ) associated with the sequence ( fu : u ∈ UNk ) of
complex-valued functions as in (2-16) by setting

S σL ,M( fu(x) : u ∈ UNk )=

( ∑
w∈UMc

∣∣∣∣ ∑
u∈UM\L

∑
v∈VσL

fw+u+v(x)
∣∣∣∣2)1/2

, (2-19)

where Mc
= Nk \M. For some sji ∈ {sj1, . . . , sjl } we will write

‖S σL ,M( fu : u ∈ UNk )‖`2
sji
=

( ∑
sji ∈Nβji

∣∣S(sj1 ,...,sjl )

L ,M ( fu(x) : u ∈ UNk )
∣∣2)1/2

, (2-20)

which defines some function which depends on x ∈ Zd and on each sjn ∈ {sj1, . . . , sjl } \ {sji }.
For the proof of (2-18) we have to exploit the fact that the Fourier transform of fu is defined as a

sum of disjointly supported smooth cut-off functions. Then appropriate subsums of
∑

u∈UNk
fu should be

strongly orthogonal to each other.
Theorem 2.5 will be proved as a consequence of Theorem 2.6 and Proposition 2.7 below.
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Theorem 2.6. Suppose that ρ > 0 and r ∈N are given. Then there is a constant Cρ,r > 0 such that for
any N > 82r/ρ and for any set 3 as in (2-10) and for every f ∈ `2r (Zd) we have∥∥∥∥ ∑

u∈UNk

fu

∥∥∥∥2r

`2r
≤ Cρ,r

∑
M⊆Nk

M={ j1,..., jm}

∑
σ∈Nβj1

×···×Nβjm

‖SσM,M( fu : u ∈ UNk )‖
2r
`2r . (2-21)

Moreover, the integer k ∈ ND, the set UNk and consequently the sets S1, . . . , Sk are determined by the
set 3 as it was described above the formulation of Theorem 2.5.

Proof. Under the assumptions of Theorem 2.5, there is a constant Cr > 0 such that for any M ⊆Nk and
L = { j1, . . . , jl} ⊆ M and jn ∈ M \ L and for any σ = (sj1, . . . , sjl ) ∈ Nβj1

× · · · ×Nβjl
determined by

the set L we have

‖S σL ,M( fu : u ∈ UNk )‖`2r ≤ Cr
∥∥‖Sσ⊕sjn

L∪{ jn},M( fu : u ∈ UNk )‖`2
sjn

∥∥
`2r , (2-22)

where σ⊕sjn = (sj1, . . . , sjl , sjn )∈Nβj1
×· · ·×Nβjl

×Nβjn
is the sequence determined by the set L∪{sjn }.

Moreover, the right-hand side in (2-22) can be controlled in the following way:∥∥‖Sσ⊕sjn
L∪{ jn},M( fu : u ∈ UNk )‖`2

sjn

∥∥2r
`2r

≤ Cr

∑
sjn∈Nβjn

‖Sσ⊕sjn
L∪{ jn},M( fu : u ∈ UNk )‖

2r
`2r +Cr‖SσL ,M\{ jn}( fu : u ∈ UNk )‖

2r
`2r . (2-23)

The proofs of (2-22) and (2-23) can be found in [Mirek et al. 2015]. Therefore, (2-22) combined with
(2-23) yields

‖S σL ,M( fu :u∈UNk )‖
2r
`2r ≤Cr

∑
sjn∈Nβjn

‖Sσ⊕sjn
L∪{ jn},M( fu :u∈UNk )‖

2r
`2r+Cr‖SσL ,M\{ jn}( fu :u∈UNk )‖

2r
`2r . (2-24)

Applying (2-24) recursively we obtain∥∥∥∥ ∑
u∈UNk

fu

∥∥∥∥2r

`2r
= ‖S∅,Nk ( fu : u ∈ UNk )‖

2r
`2r

.r

∑
sk∈Nβjk

‖S(sk)
{k},Nk

( fu : u ∈ UNk )‖
2r
`2r +‖S∅,Nk−1( fu : u ∈ UNk )‖

2r
`2r

.r

∑
sk−1∈Nβjk−1

∑
sk∈Nβjk

‖S(sk−1,sk)

{k−1,k},Nk
( fu : u ∈ UNk )‖

2r
`2r +

∑
sk∈Nβjk

‖S(sk)
{k},Nk\{k−1}( fu : u ∈ UNk )‖

2r
`2r

+

∑
sk−1∈Nβjk−1

‖S(sk−1)

{k−1},Nk−1
( fu : u ∈ UNk )‖

2r
`2r +‖S∅,Nk−2( fu : u ∈ UNk )‖

2r
`2r

.r · · ·.ρ,r
∑

M⊆Nk
M={ j1,..., jm}

∑
σ∈Nβj1

×···×Nβjm

∑
x∈Zd

( ∑
w∈UMc

∣∣∣∣∑
v∈VσM

fw+v(x)
∣∣2)r

. (2-25)

The proof of (2-21) is completed. �
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Concluding remarks and the proof of Theorem 2.5. Now Theorem 2.6 reduces the proof of inequality
(2-18) to showing the estimate∑

M⊆Nk
M={ j1,..., jm}

∑
σ∈Nβj1

×···×Nβjm

‖SσM,M( fu : u ∈ UNk )‖
2r
`2r .r ‖ f ‖2r

`2r (2-26)

for any f ∈ `2r (Zd) which is a characteristic function of a finite set in Zd. Firstly, we prove the following.

Proposition 2.7. Under the assumptions of Theorem 2.5, there exists a constant Cρ,r > 0 such that for
any M = { j1, . . . , jm} ⊆ Nk , any σ = (sj1, . . . , sjm ) ∈ Nβj1

× · · · ×Nβjm
determined by the set M and

f ∈ `2r (Zd) we have

‖SσM,M( fu : u ∈ UNk )‖`2r ≤Cρ,r Ar

∥∥∥∥SσM,M(F−1
( ∑

b∈NQ0

ηN (ξ−b/Q0−u) f̂ (ξ)
)
: u ∈ UNk

)∥∥∥∥
`2r
. (2-27)

Proof. We assume, without of loss of generality, that N ∈N is large. Let Bh =qj1,sj1
· · · · ·qjm ,sjm

·Q0≤ eNρ

and observe that according to the notation from (2-16) and (2-14), we have

‖SσM,M( fu : u ∈ UNk )‖
2r
`2r

=

∑
x∈Zd

( ∑
w∈UMc

∣∣∣∣∑
v∈VσM

fw+v(x)
∣∣∣∣2)r

≤

∑
x∈Zd

( ∑
w∈UMc

∣∣∣∣F−1
( ∑
v∈VσM

∑
b∈NQ0

2(ξ − b/Q0− v−w)ηN (ξ − b/Q0− v−w) f̂ (ξ)
)
(x)
∣∣∣∣2)r

=

∑
n∈Nd

Bh

∑
x∈Zd

( ∑
w∈UMc

|F−1(2ηN G(ξ ; n, w))(Bh x + n)|2
)r

,

(2-28)

where

G(ξ ; n, w)=
∑
v∈VσM

∑
b∈Nd

Q0

f̂ (ξ + b/Q0+ v+w)e−2π i(b/Q0+v)·n. (2-29)

We know that for each 0< p<∞ there is a constant C p>0 such that for any d ∈N and λ1, . . . , λd ∈Cd

we have (∫
Cd
|λ1z1+ · · ·+ λd zd |

pe−π |z|
2

dz
)1/p

= C p(|λ1|
2
+ · · ·+ |λd |

2)1/2. (2-30)

By Proposition 4.5 from [Mirek et al. 2015], with the sequence of multipliers 2N =2 for all N ∈ N

and 2 as in (2-2), we have∥∥F−1(2ηN G(ξ ; n, w))(Bh x + n)
∥∥
`2r (x) ≤ Cρ,r A2r

∥∥F−1(ηN G(ξ ; n, w))(Bh x + n)
∥∥
`2r (x) (2-31)

since infγ∈0 ε−1
γ ≥ eN 2ρ

≥ 2e(d+1)Nρ

≥ Bh for sufficiently large N ∈ N.
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Therefore, combining (2-31) with (2-30), we obtain∑
n∈Nd

Bh

∑
x∈Zd

( ∑
w∈UMc

∣∣F−1(2ηN G(ξ ; n, w))(Bh x + n)
∣∣2)r

= C2r
2r

∫
Cd

∑
n∈Nd

Bh

∑
x∈Zd

∣∣∣∣F−1
(
2ηN

( ∑
w∈UMc

zwG(ξ ; n, w)
))
(Bh x + n)

∣∣∣∣2r

e−π |z|
2

dz

.r

∫
Cd

∑
n∈Nd

Bh

∑
x∈Zd

∣∣∣∣F−1
( ∑
w∈UMc

zwηN G(ξ ; n, w)
)
(Bh x + n)

∣∣∣∣2r

e−π |z|
2

dz

.r

∑
n∈Nd

Bh

∑
x∈Zd

( ∑
w∈UMc

∣∣F−1(ηN G(ξ ; n, w))(Bh x + n)
∣∣2)r

.r

∑
x∈Zd

( ∑
w∈UMc

∣∣∣∣F−1
( ∑
v∈VσM

∑
b∈NQ0

ηN (ξ − b/Q0− v−w) f̂ (ξ)
)
(x)
∣∣∣∣2)r

. (2-32)

This completes the proof of Proposition 2.7. �

Now we are able to finish the proof of Theorem 2.5.

Proof of Theorem 2.5. It remains to show that there exists a constant Cρ,r > 0 such that for any
M = { j1, . . . , jm} ⊆ Nk any σ = (sj1, . . . , sjm ) ∈ Nβj1

× · · · × Nβjm
determined by the set M and

f ∈ `2r (Zd) we have∑
σ∈Nβj1

×···×Nβjm

∥∥∥∥SσM,M(F−1
( ∑

b∈NQ0

ηN (ξ − b/Q0− u) f̂ (ξ)
)
: u ∈ UNk

)∥∥∥∥2r

`2r
≤ C2r

ρ,r‖ f ‖`2r . (2-33)

Since there are 2k possible choices of sets M ⊆ Nk and k ∈ ND, (2-26) will follow and the proof of
Theorem 2.5 will be completed. If r = 1 then Plancherel’s theorem does the job since the functions
ηN (ξ − b/Q0 − v − w) are disjointly supported for all b/Q0 ∈ NQ0 , w ∈ UMc , v ∈ VσM and σ =
(sj1, . . . , sjm ) ∈ Nβj1

× · · · ×Nβjm
. For general r ≥ 2, since ‖ f ‖2r

`2r = ‖ f ‖2
`2 because we have assumed

that f is a characteristic function of a finite set in Zd, it suffices to prove for any x ∈ Zd that∑
w∈UMc

∣∣∣∣F−1
( ∑
v∈VσM

∑
b∈NQ0

ηN (ξ − b/Q0− v−w) f̂ (ξ)
)
(x)
∣∣∣∣2 ≤ Cρ,r . (2-34)

In fact, since ‖ f ‖`∞ = 1, it is enough to show∥∥∥∥F−1
( ∑
w∈UMc

α(w)
∑
v∈VσM

∑
b∈NQ0

ηN (ξ − b/Q0− v−w)

)∥∥∥∥
`1
≤ Cρ,r (2-35)

for any sequence of complex numbers (α(w) : w ∈ UMc) such that∑
w∈UMc

|α(w)|2 = 1. (2-36)
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Computing the Fourier transform we obtain

F−1
( ∑
w∈UMc

α(w)
∑
v∈VσM

∑
b∈NQ0

ηN (ξ − b/Q0− v−w)

)
(x)

=

( ∑
w∈UMc

α(w)e−2π i x ·w
)
· det(EN )F−1η(EN x) ·

( ∑
v∈VσM

∑
b∈NQ0

e−2π i x ·(b/Q0+v)

)
.

(2-37)

The function ∑
v∈VσM

∑
b∈NQ0

e−2π i x ·(b/Q0+v) (2-38)

can be written as a sum of 2m functions∑
b∈NQ

e−2π i x ·(b/Q)
=

{
Qd if x ≡ 0 (mod Q),
0 otherwise,

(2-39)

where possible values of Q are products of Q0 and pγi
ji ,sji

or pγi−1
ji ,sji

for i ∈ Nm . Therefore, the proof of
(2-35) will be completed if we show that∥∥∥∥( ∑

w∈UMc

α(w)e−2π i Qx ·w
)
· Qd det(EN )F−1η(QEN x)

∥∥∥∥
`1(x)
≤ Cρ,r (2-40)

for any integer Q ≤ eNρ

such that (Q, qj,s)= 1, for all j ∈ Mc and s ∈ Nβj .
Recall that, according to Remark 2.1, in our case η= φ ∗ψ for some smooth functions φ,ψ supported

in (−1/(8d), 1/(8d))d. Therefore, by the Cauchy–Schwarz inequality we only need to prove that

Qd/2 det(EN )
1/2
‖F−1φ(QEN x)‖`2(x) ≤ Cρ,r (2-41)

and

Qd/2 det(EN )
1/2
∥∥∥∥( ∑

w∈UMc

α(w)e−2π i Qx ·w
)
·F−1ψ(QEN x)

∥∥∥∥
`2(x)
≤ Cρ,r . (2-42)

Since (Q, qj,s)= 1, for all j ∈ Mc and s ∈Nβj , we know Qw 6∈ Zd for any w ∈ UMc and its denominator
is bounded by N D. We can assume, without of loss of generality, that Qw ∈ [0, 1)d by the periodicity
of x 7→ e−2π i x ·Qw. Inequality (2-41) easily follows from Plancherel’s theorem. In order to prove (2-42),
observe that by the change of variables one has( ∑
w∈UMc

α(w)e−2π i x ·Qw
)
·F−1ψ(QEN x)= Q−d det(EN )

−1
∑
w∈UMc

α(w)F−1(ψ(Q−1E−1
N ( · −Qw))

)
(x).

Therefore, Plancherel’s theorem and the last identity yield

Qd det(EN )

∥∥∥∥( ∑
w∈UMc

α(w)e−2π i Qx ·w
)
·F−1ψ(QEN x)

∥∥∥∥2

`2(x)

=

∑
w∈UMc

|α(w)|2
∫

Rd

∣∣ψ(ξ−E−1
N w)

∣∣2 dξ+
∑

w1,w2∈UMc
w1 6=w2

α(w1)α(w2)

∫
Rd
ψ(ξ)ψ(ξ−E−1

N (w1−w2))dξ. (2-43)
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The first sum on the right-hand side of (2-43) is bounded in view of (2-36). The second one vanishes
since the function ψ is supported in (−1/(8d), 1/(8d))d and |E−1

N (w1 −w2)|∞ ≥ eN 2ρ
N−2D > 1 for

sufficiently large N. The proof of Theorem 2.5 is completed. �

3. Proof of Theorem B

To prove inequality (1-19) in Theorem B, in view of the decomposition of the kernel K into dyadic
pieces as in (1-6), it suffices to show that for every p ∈ (1,∞) there is a constant C p > 0 such that for all
f ∈ `p(Zd) we have ∥∥∥∥∑

n≥0

Tn f
∥∥∥∥
`p
≤ C p‖ f ‖`p , (3-1)

where
Tn f (x)=

∑
y∈Zk

f (x −Q(y))Kn(y) (3-2)

with the kernel Kn as in (1-6) for each n ∈ Z.

Exponential sums and `2(Zd) approximations. Recall that for q ∈ N

Aq =
{
a ∈ Nd

q : gcd(q, (aγ : γ ∈ 0))= 1
}
.

Now for q ∈ N and a ∈ Aq we define the Gaussian sums

G(a/q)= q−k
∑
y∈Nk

q

e2π i(a/q)·Q(y).

Let us observe that there exists δ > 0 such that

|G(a/q)|. q−δ. (3-3)

This follows from the multidimensional variant of Weyl’s inequality; see [Stein and Wainger 1999,
Proposition 3].

Let P be a polynomial in Rk of degree d ∈ N such that

P(x)=
∑
γ∈0

ξγ xγ.

Given N ≥ 1, let �N be a convex set in Rk such that

�N ⊆ {x ∈ Rk
: |x − x0| ≤ cN }

for some x0 ∈ Rk and c > 0. We define the Weyl sums

SN =
∑

n∈�N∩Zk

e2π i P(n)ϕ(n), (3-4)

where ϕ : Rk
7→ C is a continuously differentiable function which for some C > 0 satisfies

|ϕ(x)| ≤ C and |∇ϕ(x)| ≤ C(1+ |x |)−1. (3-5)
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In [Mirek et al. 2015] we proved Theorem 3.1, which is a refinement of the estimates for the multidimen-
sional Weyl sums SN , where the limitations N ε

≤ q ≤ N k−ε from [Stein and Wainger 1999, Proposition 3]
are replaced by the weaker restrictions (log N )β ≤ q ≤ N k(log N )−β for appropriate β. Namely:

Theorem 3.1. Assume that there is a multi-index γ0 such that 0< |γ0| ≤ d and∣∣∣∣ξγ0 −
a
q

∣∣∣∣≤ 1
q2

for some integers a, q such that 0≤ a ≤ q and (a, q)= 1. Then for any α > 0 there is βα > 0 so that, for
any β ≥ βα, if

(log N )β ≤ q ≤ N |γ0|(log N )−β (3-6)

then there is a constant C > 0 such that

|SN | ≤ C N k(log N )−α. (3-7)

The implied constant C is independent of N.

Let (mn : n ≥ 0) be a sequence of multipliers on Td, corresponding to the operators (3-2). Then for
any finitely supported function f : Zd

7→ C we see that

Tn f (x)= F−1(mn f̂ )(x),

where
mn(ξ)=

∑
y∈Zk

e2π iξ ·Q(y)Kn(y).

For n ≥ 0 we set

8n(ξ)=

∫
Rk

e2π iξ ·Q(y)Kn(y) dy.

Using multidimensional version of van der Corput’s lemma, see [Stein and Wainger 2001, Proposition 2.1],
we obtain

|8n(ξ)|.min{1, |2n Aξ |−1/d
∞
}. (3-8)

Moreover, if n ≥ 1 we have

|8n(ξ)| =

∣∣∣∣8n(ξ)−

∫
Rk

Kn(y) dy
∣∣∣∣.min{1, |2n Aξ |∞}. (3-9)

The next proposition shows relations between mn and 8n .

Proposition 3.2. There is a constant C > 0 such that for every n ∈N and for every ξ ∈
[ 1

2 ,
1
2

)d satisfying∣∣∣∣ξγ − aγ
q

∣∣∣∣≤ L−|γ |1 L2

for all γ ∈ 0, where 1≤ q ≤ L3 ≤ 2n/2, a ∈ Aq , L1 ≥ 2n and L2 ≥ 1 we have∣∣mn(ξ)−G(a/q)8n(ξ − a/q)
∣∣≤ C

(
L32−n

+ L2L32−n
∑
γ∈0

(2n/L1)
|γ |

)
≤ C L2L32−n. (3-10)
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Proof. Let θ = ξ − a/q. For any r ∈ Nk
q , if y ≡ r (mod q) then for each γ ∈ 0

ξγ yγ ≡ θγ yγ + (aγ /q)rγ (mod 1);

thus

ξ ·Q(y)≡ θ ·Q(y)+ (a/q) ·Q(r) (mod 1).

Therefore, ∑
y∈Zk

e2π iξ ·Q(y)Kn(y)=
∑
r∈Nk

q

e2π i(a/q)·Q(r)
∑
y∈Zk

e2π iθ ·Q(qy+r)Kn(qy+ r).

If 2n−2
≤ |qy+ r |, |qy| ≤ 2n then by the mean value theorem we obtain∣∣θ ·Q(qy+ r)− θ ·Q(qy)

∣∣. |r |∑
γ∈0

|θγ | · 2n(|γ |−1) . q
∑
γ∈0

L−|γ |1 L22n(|γ |−1) . L2L32−n
∑
γ∈0

(2n/L1)
|γ |

and ∣∣Kn(qy+ r)− Kn(qy)
∣∣. 2−n(k+1)L3.

Thus∑
y∈Zk

e2π iξ ·Q(y)Kn(y)= G(a/q) · qk
∑
y∈Zk

e2π iθ ·Q(qy)Kn(qy)+O
(

L32−n
+ L2L32−n

∑
γ∈0

(2n/L1)
|γ |

)
.

Now one can replace the sum on the right-hand side by the integral. Indeed, again by the mean value
theorem we obtain∣∣∣∣∑

y∈Zk

e2π iθ ·Q(qy)Kn(qy)−
∫

Rk
e2π iθ ·Q(qt)Kn(qt) dt

∣∣∣∣
=

∣∣∣∣∑
y∈Zk

∫
[0,1)k

(
e2π iθ ·Q(qy)Kn(qy)− e2π iθ ·Q(q(y+t))Kn(q(y+ t)) dt

)∣∣∣∣
=O

(
q−k L32−n

+ q−k L2L32−n
∑
γ∈0

(2n/L1)
|γ |

)
. �

Discrete Littlewood–Paley theory. Fix j, n ∈ Z and N ∈ N and let EN be a diagonal d × d matrix with
positive entries (εγ : γ ∈ 0) such that εγ ≤ e−N 2ρ

with ρ > 0 as in Section 2. Let us consider the
multipliers

�
j,n
N (ξ)=

∑
a/q∈UN

8j,n(ξ − a/q)ηN (ξ − a/q) (3-11)

with ηN (ξ)= η(E−1
N ξ) and 8j,n(ξ)=8(2n A+ j I ξ), where 8 is a Schwartz function such that 8(0)= 0.

If UN = {0} then � j,n
N (ξ) can be treated as a standard Littlewood–Paley projector. Now we formulate

an abstract theorem which can be thought of as a discrete variant of Littlewood–Paley theory. Its proof
will be based on Theorem 2.2. Here we obtain a square function estimate which will be used in the proof
of inequality (3-1).
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Theorem 3.3. For every p ∈ (1,∞) there is a constant C p > 0 such that for all −∞≤ M1 ≤ M2 ≤∞,
j ∈ Z and N ∈ N and every f ∈ `p(Zd) we have∥∥∥∥( ∑

M1≤n≤M2

|F−1(�
j,n
N f̂ )|2

)1/2∥∥∥∥
`p
≤ C p log N‖ f ‖`p . (3-12)

Proof. By Khintchine’s inequality, (3-12) is equivalent to(∫ 1

0

∥∥∥∥ ∑
M1≤n≤M2

εn(t)F−1(�
j,n
N f̂ )

∥∥∥∥p

`p
dt
)1/p

. log N‖ f ‖`p . (3-13)

Observe that the multiplier from (3-13) can be rewritten as∑
M1≤n≤M2

εn(t)�
j,n
N (ξ)=

∑
a/q∈UN

∑
M1≤n≤M2

mn(ξ − a/q)ηN (ξ − a/q)

with the functions
mn(ξ)= εn(t)8(2n A+ j I ξ).

We observe that
|mn(ξ)|.min

{
|2n A+ j I ξ |∞, |2n A+ j I ξ |−1

∞

}
.

The first bound follows from the mean value theorem, since

|8(2n A+ j I ξ)| =
∣∣8(2n A+ j I ξ)−8(0)

∣∣. |2n A+ j I ξ | sup
ξ∈Rd
|∇8(ξ)|. |2n A+ j I ξ |∞.

The second bound follows since8 is a Schwartz function. Moreover, for every p ∈ (1,∞) there is C p > 0
such that ∥∥sup

n∈Z

|F−1(mnF f )|
∥∥

L p ≤ C p‖ f ‖L p

for every f ∈ L p(Rd). Therefore, by [Stein 1993], the multiplier∑
M1≤n≤M2

mn(ξ)

corresponds to a continuous singular integral; thus it defines a bounded operator on L p(Rd) for all
p ∈ (1,∞) with the bound independent of j ∈ Z and −∞≤ M1 ≤ M2 ≤∞. Hence, Theorem 2.2 applies
and the multiplier ∑

M1≤n≤M2

εn(t)�
j,n
N (ξ)

defines a bounded operator on `p(Zd) with the log N loss, and (3-13) is established. �

Remark 3.4. If the function 8 is a real-valued function then we have∥∥∥∥ ∑
M1≤n≤M2

F−1(�
j,n
N f̂n)

∥∥∥∥
`p
≤ C p log N

∥∥∥∥( ∑
M1≤n≤M2

| fn|
2
)1/2∥∥∥∥

`p
. (3-14)
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This is the dual version of inequality (3-12) for any sequence of functions ( fn : M1 ≤ n ≤ M2) such that∥∥∥∥( ∑
M1≤n≤M2

| fn|
2
)1/2∥∥∥∥

`p
<∞.

We have gathered all necessary ingredients to prove inequality (3-1).

Proof of inequality (3-1). Let χ > 0 and l ∈N be the numbers whose precise values will be adjusted later.
As in [Mirek et al. 2015], we will consider for every n ∈ N0 the multipliers

4n(ξ)=
∑

a/q∈Unl

η(2n(A−χ I )(ξ − a/q))2 (3-15)

with UN as defined in Section 2. Theorem 2.2 yields, for every p ∈ (1,∞), that

‖F−1(4n f̂ )‖`p . log(n+ 2)‖ f ‖`p . (3-16)

The implicit constant in (3-16) depends on ρ > 0 from Theorem 2.2. From now on we will assume that
l ∈ N and ρ > 0 are related by the equation

10ρl = 1. (3-17)

Assume that f : Zd
7→ C has finite support and f ≥ 0. Observe that∥∥∥∥∑

n≥0

Tn f
∥∥∥∥
`p
≤

∥∥∥∥∑
n≥0

F−1(mn4n f̂ )
∥∥∥∥
`p
+

∥∥∥∥∑
n≥0

F−1(mn(1−4n) f̂ )
∥∥∥∥
`p
. (3-18)

Without of loss of generality we may assume that p ≥ 2; the case 1< p ≤ 2 follows by the duality then.

The estimate of the second norm in (3-18). It suffices to show that∥∥F−1(mn(1−4n) f̂ )
∥∥
`p . (n+ 1)−2

‖ f ‖`p . (3-19)

For this purpose we define for every x ∈ Zd the Radon averages

MN f (x)= N−k
∑

y∈Nk
N

f (x −Q(y)).

From [Mirek et al. 2015] follows that for every p ∈ (1,∞) there is a constant C p > 0 such that for every
f ∈ `p(Zd) we have ∥∥sup

N∈N

|MN f |
∥∥
`p ≤ C p‖ f ‖`p . (3-20)

Then for every 1< p <∞, by (3-16) and (3-20) we obtain∥∥F−1(mn(1−4n) f̂ )
∥∥
`p ≤ ‖ sup

N∈N

MN f ‖`p +
∥∥sup

N∈N

MN (|F−1(4n f̂ )|)
∥∥
`p . log(n+ 2)‖ f ‖`p (3-21)

since we have a pointwise bound

|F−1(mn f̂ )(x)| = |Tn f (x)|. M2n f (x). (3-22)
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We show that it is possible to improve estimate (3-21) for p = 2. Indeed, by Theorem 3.1 we will show
that for big enough α > 0, which will be specified later, and for all n ∈ N0 we have∣∣mn(ξ)(1−4n(ξ))

∣∣. (n+ 1)−α. (3-23)

By Dirichlet’s principle, we have for every γ ∈ 0

|ξγ − aγ /qγ | ≤ q−1
γ nβ2−n|γ |,

where 1≤ qγ ≤ n−β2n|γ |. In order to apply Theorem 3.1 we must show that there exists some γ ∈ 0 such
that nβ ≤ qγ ≤ n−β2n|γ |. Suppose for a contradiction that for every γ ∈ 0 we have 1≤ qγ < nβ ; then for
some q ≤ lcm(qγ : γ ∈ 0)≤ nβd we have

|ξγ − a′γ /q| ≤ nβ2−n|γ |,

where gcd(q, gcd(a′γ : γ ∈ 0))= 1. Hence, taking a′ = (a′γ : γ ∈ 0) we have a′/q ∈ Unl provided that
βd < l. On the other hand, if 1−4n(ξ) 6= 0 then for every a′/q ∈ Unl there exists γ ∈ 0 such that

|ξγ − a′γ /q|> (16d)−12−n(|γ |−χ).

Therefore
2χn < 16dnβ

but this is impossible when n ∈ N is large. Hence, there is γ ∈ 0 such that nβ ≤ qγ ≤ n−β2n|γ |. Thus by
Theorem 3.1,

|mn(ξ)|. (n+ 1)−α

provided that 1−4n(ξ) 6= 0. This yields (3-23) and we obtain∥∥F−1(mn(1−4n) f̂ )
∥∥
`2 . (1+ n)−α log(n+ 2)‖ f ‖`2 . (3-24)

Interpolating (3-24) with (3-21) we obtain∥∥F−1(mn(1−4n) f̂ )
∥∥
`p . (1+ n)−cpα log(n+ 2)‖ f ‖`p . (3-25)

for some cp > 0. Choosing α > 0 and l ∈ N appropriately large, one obtains (3-19).

The estimate of the first norm in (3-18). Note that for any ξ ∈ Td such that

|ξγ − aγ /q| ≤ 2−n(|γ |−χ)

for every γ ∈ 0 with 1≤ q ≤ en1/10
, we have

mn(ξ)= G(a/q)8n(ξ − a/q)+ q−δE2n (ξ), (3-26)
where

|E2n (ξ)|. 2−n/2. (3-27)

Proposition 3.2, with L1= 2n, L2= 2χn and L3= en1/10
, establishes (3-26) and (3-27), since for sufficiently

large n ∈ N we have

qδ|E2n (ξ)|. qδL2L32−n . (e−n((1−χ) log 2−2n−9/10)). 2−n/2
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provided χ > 0 is sufficiently small. Now for every j, n ∈ N0 we introduce the multiplier

4 j
n(ξ)=

∑
a/q∈Unl

η(2n A+ j I (ξ − a/q))2 (3-28)

and we note that∥∥∥∥∑
n≥0

F−1(mn4n f̂ )
∥∥∥∥
`p

≤

∥∥∥∥∑
n≥0

F−1
( ∑
−bχnc≤ j<n

mn(4
j
n −4

j+1
n ) f̂

)∥∥∥∥
`p
+

∥∥∥∥∑
n≥0

F−1(mn(4
−χn
n −4−bχnc

n ) f̂ +mn4
n
n f̂
)∥∥∥∥
`p

= I 1
p + I 2

p. (3-29)

We will estimate I 1
p and I 2

p separately. For this purpose observe that by (3-26) and (3-27), for every
a/q ∈ Unl we have

|mn(ξ)|. q−δ|8n(ξ − a/q)| + q−δ|E2n (ξ)|

. q−δ
(
min

{
1, |2n A(ξ − a/q)|∞, |2n A(ξ − a/q)|−1/d

∞

}
+ 2−n/2), (3-30)

where the last inequality follows from (3-8) and (3-9). Therefore by (3-30) we get∣∣mn(ξ)
(
η(2n A−χnI (ξ − a/q))2− η(2n A−bχncI (ξ − a/q))

)2∣∣. q−δ(2−χn/d
+ 2−n/2) (3-31)

since η(2n A−χnI (ξ − a/q))≥ η(2n A−bχncI (ξ − a/q). Moreover, for any integer −χn ≤ j < n we get∣∣mn(ξ)
(
η(2n A+ j I (ξ − a/q))2− η(2n A+( j+1)I (ξ − a/q))2

)∣∣. q−δ(2−| j |/d + 2−n/2). (3-32)

Bounding I 2
p . It will suffice to show, for some ε = εp > 0, that∥∥F−1(mn(4

−χn
n −4−bχnc

n ) f̂ +mn4
n
n f̂
)∥∥
`p . 2−εn‖ f ‖`p . (3-33)

Observe that for any 1< p <∞, by (3-22), (3-20) and (3-16) we have∥∥F−1(mn4
n
n f̂ )

∥∥
`p ≤

∥∥sup
N∈N

MN (|F−1(4n
n f̂ )|)

∥∥
`p .

∥∥F−1(4n
n f̂ )

∥∥
`p . log(n+ 2)‖ f ‖`p (3-34)

and in a similar way we obtain∥∥F−1(mn(4
−χn
n −4−bχnc

n ) f̂
)∥∥
`p . log(n+ 2)‖ f ‖`p . (3-35)

For p = 2, by Plancherel’s theorem and (3-30) we obtain∥∥F−1(mn4
n
n f̂ )

∥∥
`2 =

(∫
Td

∑
a/q∈Unl

|mn(ξ)|
2η(2n A+nI (ξ−a/q))4| f̂ (ξ)|2 dξ

)1/2

. 2−n/(2d)
‖ f ‖`2 . (3-36)

By (3-31) we obtain∥∥F−1(mn(4
−χn
n −4−bχnc

n ) f̂
)∥∥
`2

=

(∫
Td

∑
a/q∈Unl

|mn(ξ)|
2(η(2n A−χnI (ξ − a/q))2− η(2n A−bχncI (ξ − a/q))2

)2
| f̂ (ξ)|2 dξ

)1/2

. 2−χn/(2d)
‖ f ‖`2 . (3-37)
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Therefore, by interpolation (3-34) with (3-36) and (3-35) with (3-37) we obtain for every p ∈ (1,∞) that∥∥F−1(mn(4
−χn
n −4−bχnc

n ) f̂ +mn4
n
n f̂
)∥∥
`p . 2−εn‖ f ‖`p ,

which in turn implies (3-33) and I 2
p . ‖ f ‖`p .

Bounding I 1
p . Define for any 0≤ s < n the new multiplier

1 j
n,s(ξ)=

∑
a/q∈U

(s+1)l \Usl

(
η(2n A+ j I (ξ − a/q))2− η(2n A+( j+1)I (ξ − a/q))2

)
η(2s(A−χ I )(ξ − a/q))2

and we observe that by the definition (3-28) we have

4 j
n(ξ)−4

j+1
n (ξ)=

∑
0≤s<n

1 j
n,s(ξ).

Moreover,

η(2n A+ j I ξ)2−η(2n A+( j+1)I ξ)2=
(
η(2n A+ j I ξ)2−η(2n A+( j+1)I ξ)2

)
·
(
η(2n A+( j−1)I ξ)−η(2n A+( j+2)I ξ)

)
.

Thus we see
1 j

n,s(ξ)=1
j,1
n,s(ξ) ·1

j,2
n,s(ξ),

where

1 j,1
n,s(ξ)=

∑
a/q∈U

(s+1)l \Usl

(
η(2n A+( j−1)I (ξ − a/q))− η(2n A+( j+2)I (ξ − a/q))

)
η(2s(A−χ I )(ξ − a/q))

and

1 j,2
n,s(ξ)=

∑
a/q∈U

(s+1)l \Usl

(
η(2n A+ j I (ξ − a/q))2− η(2n A+( j+1)I (ξ − a/q))2

)
η(2s(A−χ I )(ξ − a/q)).

Moreover, 1 j,1
n,s and 1 j,2

n,s are the multipliers which satisfy the assumptions of Theorem 3.3. Therefore,

I 1
p =

∥∥∥∥∑
n≥0

F−1
( ∑
−χn≤ j<n

∑
0≤s<n

1 j,1
n,smn1

j,2
n,s f̂

)∥∥∥∥
`p

≤

∑
s≥0

∑
j∈Z

∥∥∥∥ ∑
n≥max{ j,− j/χ,s}

F−1(1 j,1
n,smn1

j,2
n,s f̂ )

∥∥∥∥
`p

.
∑
s≥0

∑
j∈Z

log s
∥∥∥∥( ∑

n≥max{ j,− j/χ,s}

∣∣F−1(mn1
j,2
n,s f̂ )

∣∣2)1/2∥∥∥∥
`p
. (3-38)

In the last step we used (3-14). The task now is to show that for some ε = εp > 0∥∥∥∥( ∑
n≥max{ j,− j/χ,s}

∣∣F−1(mn1
j,2
n,s f̂ )

∣∣2)1/2∥∥∥∥
`p
. s−22−ε j

‖ f ‖`p . (3-39)

This in turn will imply I 1
p . ‖ f ‖`p and the proof will be completed. We have assumed that p≥ 2; then for

every g ∈ `r (Zd) such that g ≥ 0 with r = (p/2)′ > 1 we have by (3-22), the Cauchy–Schwarz inequality
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and (3-20) that∑
x∈Zd

∑
n∈Z

∣∣F−1(mn1
j,2
n,s f̂ )(x)

∣∣2g(x).
∑
x∈Zd

∑
n∈Z

M2n
(∣∣F−1(1 j,2

n,s f̂ )
∣∣)(x)2g(x)

≤

∑
x∈Zd

∑
n∈Z

M2n
(∣∣F−1(1 j,2

n,s f̂ )
∣∣2)(x)g(x)

=

∑
x∈Zd

∑
n∈Z

∣∣F−1(1 j,2
n,s f̂ )(x)

∣∣2 M∗2n g(x)

.

∥∥∥∥(∑
n∈Z

∣∣F−1(1 j,2
n,s f̂ )

∣∣2)1/2∥∥∥∥2

`p

∥∥sup
N∈N

M∗N g
∥∥
`r

.

∥∥∥∥(∑
n∈Z

∣∣F−1(1 j,2
n,s f̂ )

∣∣2)1/2∥∥∥∥2

`p
‖g‖`r . (3-40)

Therefore, by Theorem 3.3 we have∥∥∥∥(∑
n∈Z

∣∣F−1(mn1
j,2
n,s f̂ )

∣∣2)1/2∥∥∥∥
`p
.

∥∥∥∥(∑
n∈Z

∣∣F−1(1 j,2
n,s f̂ )

∣∣2)1/2∥∥∥∥
`p
. log s‖ f ‖`p . (3-41)

We refine the estimate in (3-41) for p = 2. Indeed, define

%n, j (ξ)=
(
η(2n A+ j I ξ)2− η(2n A+( j+1)I ξ)2

)
η(2s(A−χ I )ξ),

9n(ξ)=min
{
|2n Aξ |∞, |2n Aξ |−1/d

∞
, 1
}
.

By Plancherel’s theorem we have∥∥∥∥( ∑
n≥max{ j,− j/χ,s}

∣∣F−1(mn1
j,2
n,s f̂ )

∣∣2)1/2∥∥∥∥
`2

=

(∫
Td

∑
n≥max{ j,− j/χ,s}

∑
a/q∈U

(s+1)l \Usl

|mn(ξ)|
2%n, j (ξ − a/q)2| f̂ (ξ)|2 dξ

)1/2

. (s+ 1)−δl2−| j |/(2d)
‖ f ‖`2 . (3-42)

The last estimate is implied by (3-30). Namely, by (3-30) we may write∑
n≥max{ j,− j/χ,s}

∑
a/q∈U

(s+1)l \Usl

|mn(ξ)|
2%n, j (ξ − a/q)2

.
∑

n≥max{ j,− j/χ,s}

∑
a/q∈U

(s+1)l \Usl

q−2δ(9n(ξ − a/q)+ 2−n/2)(2−| j |/d + 2−n/2)η(2s(A−χ I )(ξ − a/q))2

. (s+ 1)−2δl2−| j |/(2d). (3-43)

The last line follows, since we have used the lower bound for q ≥ sl if a/q ∈ U(s+1)l \Usl . Moreover,∑
n≥0

(9n(ξ − a/q)+ 2−n/2). 1 and
∑

a/q∈U
(s+1)l \Usl

η(2s(A−χ I )(ξ − a/q)). 1
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by the disjointness of the supports of the η(2s(A−χ I )(ξ −a/q)) whenever a/q ∈U(s+1)l \Usl . Since l ∈N

can be as large as we wish, interpolating (3-42) with (3-41) we obtain (3-39) and the proof of (3-1) and
consequently Theorem A is completed. �
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