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TSUKASA IWABUCHI

In the whole space Rd, linear estimates for heat semigroup in Besov spaces are well established, which
are estimates of Lp�Lq type, with maximal regularity, etc. This paper is concerned with such estimates
for the semigroup generated by the Dirichlet Laplacian of fractional order in terms of the Besov spaces on
an arbitrary open set of Rd.

1. Introduction

Let � be an arbitrary open set of Rd with d � 1. We consider the Dirichlet Laplacian A on L2.�/,

AD��D�

dX
jD1

@2

@x2j
;

with the domain
D.A/ WD ff 2H 1

0 .�/ W�f 2 L
2.�/g:

We consider the fractional Laplacian and the semigroup

A
˛
2 D

Z 1
�1

�
˛
2 dEA.�/; e�tA

˛=2

D

Z 1
�1

e�t�
˛=2

dEA.�/; t � 0:

Here, ˛ > 0 and fEA.�/g�2R denotes the spectral resolution of identity, which is determined uniquely
for the self-adjoint operator A by the spectral theorem. The motivation of the study of the fractional
Laplacian comes from the study of fluid mechanics, stochastic processes, finance etc.; see for instance
[Applebaum 2009; Bertoin 1996; Chen et al. 2010; Vlahos et al. 2008]. We also refer to [Di Nezza et al.
2012; Vázquez 2012; 2014], where one can find some results on fundamental properties of fractional
Sobolev spaces and applications to partial differential equations.

In the paper [Iwabuchi et al. 2016a], based on spectral theory for the Dirichlet Laplacian A on L2.�/,
a kind of Lp theory was established and the Besov spaces on an open set � were introduced, where
regularity of functions is measured by A. The purpose of this paper is to develop linear estimates for the
semigroup generated by the Dirichlet Laplacian of fractional order in the homogeneous Besov spaces
PBsp;q.A/, namely, the estimate of Lp�Lq type, smoothing effects, continuity in time of the semigroup,

equivalent norms with the semigroup and maximal regularity estimates. Such estimates with the heat
semigroup in the case when�DRd are well established; see [Bahouri et al. 2011; Chemin 2004; Danchin
2005; 2007; Danchin and Mucha 2009; Hieber and Prüss 1997; Kozono et al. 2003; Lemarié-Rieusset
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2002; Ogawa and Shimizu 2010; 2016; Peetre 1976]. In this paper we consider open sets of Rd and the
semigroup generated by the fractional Laplacian with the Dirichlet boundary condition.

Let us recall the definitions of spaces of test functions and tempered distributions and the Besov spaces
associated with the Dirichlet Laplacian; see [Iwabuchi et al. 2016a]. We take �0. � / 2 C10 .R/ to be a
nonnegative function on R such that

supp�0 � f� 2 R W 2�1 � �� 2g;
X
j2Z

�0.2
�j�/D 1 for � > 0; (1-1)

and f�j gj2Z is defined by letting

�j .�/ WD �0.2
�j�/ for � 2 R: (1-2)

Definition. (i) (linear topological spaces X0.�/ and X 00.�/) X0.�/ is defined by letting

X0.�/ WD
˚
f 2 L1.�/\D.A/ W AMf 2 L1.�/\D.A/ for all M 2 N

	
;

equipped with the family of seminorms fp0;M . � /g1MD1 given by

p0;M .f / WD kf kL1.�/C sup
j2N

2Mj
�j .pA/f L1.�/:

(ii) (linear topological spaces Z0.�/ and Z 00.�/) Z0.�/ is defined by letting

Z0.�/ WD
˚
f 2 X0.�/ W sup

j�0

2M jj j
�j .pA/f L1.�/ <1 for all M 2 N

	
;

equipped with the family of seminorms fq0;M . � /g1MD1 given by

q0;M .f / WD kf kL1.�/C sup
j2Z

2M jj j
�j .pA/f L1.�/:

Definition. For s 2 R and 1� p; q �1, PBsp;q.A/ is defined by letting

PBsp;q.A/ WD ff 2 Z
0
0.�/ W kf k PBsp;q.A/

<1g;

where
kf k PBsp;q.A/

WD
˚2sj�j .pA/f Lp.�/	j2Z


`q.Z/

:

Let us mention the basic properties of X0.�/;Z0.�/, their duals, and PBsp;q.A/ and explain the operators
�j .
p
A/ and the Laplacian of fractional order.

Proposition [Iwabuchi et al. 2016a]. Let s; ˛ 2 R and 1� p; q; r �1. Then the following hold:

(i) X0.�/ and Z0.�/ are Fréchet spaces and enjoy X0.�/ ,! Lp.�/ ,! X 00.�/ and Z0.�/ ,!
Lp.�/ ,! Z 00.�/:

(ii) PBsp;q.A/ is a Banach space and enjoys Z0.�/ ,! PBsp;q.A/ ,! Z 00.�/:

(iii) If p; q <1 and 1
p
C

1
p0
D

1
q
C

1
q0
D 1, the dual space of PBsp;q.A/ is PB�sp0;q0.A/.

(iv) If r � p, then PB
sCd. 1

r
� 1
p
/

r;q .A/ is embedded to PBsp;q.A/.

(v) For any f 2 PBsC˛p;q .A/, we have A
˛
2f 2 PBsp;q.A/.
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It should be noted that �j .
p
A/ and A are defined in L2.�/ initially and by the argument in [Iwabuchi

et al. 2016a] they can be realized as operators in Z 00.�/ and Besov spaces. In the proof, the uniform
boundedness in Lp.�/ of �j .

p
A/ with respect to j 2 Z is essential. Uniformity in L2.�/ is proved

easily by the spectral theorem, while that in L1.�/ is not trivial. For any open set � � Rd, L1.�/
boundedness is known in some papers; see Proposition 6.1 in [Thinh Duong et al. 2002] and also
Theorem 1.1 in [Iwabuchi et al. 2017]. Let us explain the strategy of its proof as in [Iwabuchi et al. 2017]
(see also the comment below Lemma 2.2). The uniform boundedness in L1.�/ is proved via estimates in
amalgam spaces `1.L2/� , where the side length of each cube is scaled by �

1
2, � D 2�2j (see Section 2),

together with the Gaussian upper bounds of the kernel of e�tA. That scaling fits for the scaled operator
�j .
p
A/D �0.2

�j
p
A/, and we can handle the norm in `1.L2/� through the estimates in L2.�/, since

its norm is defined locally with L2.�/. The Gaussian upper bounds of the kernel of e�tA are necessary
in order to estimate the L1.�/ norm via `1.L2/� . Once the L1.�/ estimate is proved, the Lp.�/ case
is assured by interpolation and a duality argument.

As for the Laplacian of fractional order, it was shown in the proof of Proposition 3.2 in [Iwabuchi
et al. 2016a] that A

˛
2 is a continuous operator from Z 00.�/ to itself, which is proved as follows: Show

the continuity of A
˛
2 in Z0.�/ first with the boundedness of spectral multipliersA˛

2 �j .
p
A/

L1.�/!L1.�/

� C2 j̨

for all j 2 Z and consider their dual operator together with the approximation of the identity

f D
X
j2Z

�j .
p
A/f in Z 00.�/ for any f 2 Z 00.�/:

Hence, we define A
˛
2 by

A
˛
2 f D

X
j2Z

.A
˛
2 �j .
p
A//f in Z 00.�/ for any f 2 Z 00.�/:

Noting that e�tA
˛=2

�j .
p
A/ with t � 0 is also bounded in L1.�/ (see Lemma 2.1 and (3-1) below), we

also define e�tA
˛=2

by

e�tA
˛=2

f D
X
j2Z

.e�tA
˛=2

�j .
p
A//f in Z 00.�/ for any f 2 Z 00.�/:

We state four theorems on the semigroup generated byA
˛
2 : the estimates ofLp�Lq type and smoothing

effects, continuity in time, equivalent norms with semigroup and maximal regularity estimates, referring
to the results in the case when �D Rd and ˛ D 2.

We start by considering estimates of Lp�Lq type and smoothing effects. When �D Rn, it is well
known that

ket�f kLq.Rd / � Ct
�d
2
. 1
p
� 1
q
/
kf kLp.Rd /; kre

t�f kLp.Rd / � Ct
� 1
2 kf kLp.Rd /;

where 1� p; q �1 and f 2 Lp.Rd /. Hence one can show that

ket�f k PBs2p2;q.A/
� Ct

�d
2
. 1
p1
� 1
p2
/� s2�s1

2 kf k PBs1p1;q.A/
;
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where s2 � s1, 1 � p1 � p2 � 1 and 1 � q � 1. The following gives the linear estimates for the
semigroup generated by A

˛
2 on an open set.

Theorem 1.1. Let ˛ > 0, t � 0, s; s1; s2 2 R and 1� p; p1; p2; q; q1; q2 �1:

(i) e�tA
˛=2

is a bounded linear operator in PBsp;q.A/; i.e., there exists a constant C > 0 such that for any
f 2 PBsp;q.A/

e�tA
˛=2

f 2 PBsp;q.A/ and ke�tA
˛=2

f k PBsp;q.A/
� Ckf k PBsp;q.A/

: (1-3)

(ii) If s2 � s1, p1 � p2 and
d
�
1

p1
�
1

p2

�
C s2� s1 > 0;

then there exists a constant C > 0 such that

ke�tA
˛=2

f k PBs2p2;q2 .A/
� Ct

�d
˛
. 1
p1
� 1
p2
/� s2�s1

˛ kf k PBs1p1;q1 .A/
(1-4)

for any f 2 PBs1p1;q1.A/.

Remark. In the estimate (1-4), the regularity on indices q1 and q2 is gained without loss of the singularity
at t D 0. This estimate is known in the case when �D Rn and ˛ D 2; see [Kozono et al. 2003].

As for the continuity in time of the heat semigroup et� when � D Rd, it is well known that for
1� p <1

lim
t!0
ket�f �f kLp.Rd / D 0 for any f 2 Lp.Rd /:

In the case when pD1, the above strong convergence does not hold in general, while it holds in the dual
weak sense. The following theorem is concerned with such continuity in the Besov spaces on an open set.

Theorem 1.2. Let s 2 R, 1� p; q �1 and 1
p
C

1
p0
D

1
q
C

1
q0
D 1:

(i) Assume that q <1 and f 2 PBsp;q.A/. Then

lim
t!0
ke�tA

˛=2

f �f k PBsp;q.A/
D 0:

(ii) Assume that 1 < p �1, qD1 and f 2 PBsp;1.A/. Then e�tA
˛=2

f converges to f in the dual weak
sense as t ! 0; namely,

lim
t!0

X
j2Z

Z
�

˚
�j .
p
A/.e�tA

˛=2

f �f /
	
ˆj .
p
A/g dx D 0

for any g 2 PB�sp0;1.A/.

Remark. Related to Theorem 1.2(ii), it should be noted that the predual of PBsp;q.A/ is PB�sp0;q0.A/ for
1 < p; q �1, where 1

p
C

1
p0
D

1
q
C

1
q0
D 1. In fact, we can regard f 2 PBsp;q.A/ as an element of the

dual of PB�sp0;q0.A/ by

hf; gi D
X
j2Z

Z
�

f�j .
p
A/f gˆj .

p
A/g dx

for any g 2 PB�sp0;q0.A/, see [Iwabuchi et al. 2016a], where ĵ WD �j�1C�j C�jC1.
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As for the characterization of the norm by using the semigroup when �D Rd, it is known that

kf k PBsp;q.A/
'

�Z 1
0

�
t�

s
2 ket�f kLp.Rd /

�q dt
t

�1
q

;

where s < 0; see, e.g., [Lemarié-Rieusset 2002]. We consider the equivalent norm of Besov spaces on an
open set by using the semigroup generated by A

˛
2 .

Theorem 1.3. Let ˛ > 0, s; s0 2 R, s0 > s
˛

and 1� p; q �1. Then there exists a constant C > 0 such
that

C�1kf k PBsp;q.A/
�

�Z 1
0

�
t�

s
˛ k.tA

˛
2 /s0e�tA

˛=2

f kX
�q dt

t

�1
q

� Ckf k PBsp;q.A/
(1-5)

for any f 2 PBsp;q.A/, where X D Lp.�/; PB0p;r.A/ with 1� r �1.

Since the equivalence (1-5) is closely related to the real interpolation in the Besov spaces, we mention
that the interpolation is also available; see, e.g., [Bergh and Löfström 1976; Triebel 1983] and also
Proposition A.1 in the Appendix.

The last result is concerned with the maximal regularity estimates. When �DRd, the Cauchy problem
which we should consider is �

@tu��uD f; t > 0; x 2 Rd;

u.0; x/D u0.x/; x 2 Rd:

For 1 < p; q <1, the solution u of the above problem satisfies

k@tukLq.0;1ILp.Rd //Ck�ukLq.0;1ILp.Rd // � Cku0k PB2�2=qp;q .A/
CCkf kLq.0;1ILp.Rd //;

provided that u0 2 PB
2� 2

q

p;q .A/ and f 2Lq.0;1ILp.Rd //; see [Hieber and Prüss 1997; Lemarié-Rieusset
2002]. We note that maximal regularity such as the above is well-studied in the general framework
on Banach spaces with unconditional martingale differences (UMD); see [Amann 1995; Da Prato and
Grisvard 1975; Denk et al. 2003; Dore and Venni 1987; Ladyzhenskaya and Ural’tseva 1968; Weis 2001].
We also note that the cases when p; qD 1;1 require a different treatment from UMD since the spaces are
not reflexive. In terms of Besov spaces, one can consider PB0p;q.A/ for all indices p; q with 1� p; q �1;
see [Danchin 2005; 2007; Danchin and Mucha 2009; Hieber and Prüss 1997; Ogawa and Shimizu 2010;
2016]. Our result on the maximal regularity estimates on open sets is formulated in the following way.

Theorem 1.4. Let s2R, ˛>0 and 1�p; q�1. Assume that u02 PB
sC˛�˛

q

p;q .A/, f 2Lq.0;1I PBsp;q.A//.
Let u be given by

u.t/D e�tA
˛=2

u0C

Z t

0

e�.t��/A
˛=2

f .�/ d�:

Then there exists a constant C > 0 independent of u0 and f such that

k@tukLq.0;1I PBsp;q.A//
CkA

˛
2 uk

Lq.0;1I PBsp;q.A//
� Cku0k PBsC˛�˛=qp;q .A/

CCkf k
Lq.0;1I PBsp;q.A//

: (1-6)
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The proofs of our theorems are based on the boundedness of the spectral multiplier of the operator
e�tA

˛=2

�j .
p
A/:e�tA˛=2�j .pA/Lp.�/!Lp.�/ � Ce�t2˛j . � /˛�0.p� /H s.R/

for all j 2 Z;

where s > d
2
C
1
2

(see Lemma 2.1 below). The above inequality impliese�tA˛=2�j .pA/Lp.�/!Lp.�/ � Ce�C�1t2˛j;
and this estimate allows us to show our theorems in a method analogous to those in the case when�DRd.
In this paper, we give proofs of all theorems by estimating directly so that the paper is self-contained.
Here, we note that our proofs can be applicable to the estimates for e�tA in the inhomogeneous Besov
spaces and hence similar theorems are able to be obtained. On the other hand, for the semigroup generated
by the fractional Laplacian, since there appear to be problems around low frequencies, we show only
the result for the heat semigroup in Section 7 (see Theorem 7.2 below). It should be also noted that our
argument can be applied not only to the Dirichlet Laplacian but also to more general operators A such
that the Gaussian upper bounds for e�tA hold.

This paper is organized as follows. In Section 2, we prepare a lemma to prove our results. Sections
3–6 are devoted to proofs of theorems. In Section 7, we state the result for the inhomogeneous Besov
spaces. In the Appendix, we show the characterization of Besov spaces by real interpolation.

Before closing this section, we introduce some notation. We denote by k � kLp the Lp.�/ norm
and by k � k PBsp;q the PBsp;q.A/ norm. We use the notation k � kH s.R/ to represent the H s.R/ norm for
functions, e.g., �j .�/, e�t�

˛=2

, whose variables are spectral parameters. We denote by S.R/ the Schwartz
class.

2. Preliminaries

In this section we introduce the following lemma on the boundedness of the scaled spectral multiplier.

Lemma 2.1. Let N > d
2

, 1� p �1, ı > 0 and a; b > 0. Then there exists a constant C > 0 such that
for any � 2 C10 .R/ with supp� � Œa; b�, G 2 C1..0;1//\C.R/ and f 2 Lp.�/ we haveG.pA/�.2�jpA/f 

Lp
� C

G.2jp� /�.p� /
HNC1=2Cı.R/

kf kLp (2-1)

for all j 2 Z.

Remark. As is seen from the proof below, the constant C on the right-hand side of (2-1) depends on the
interval Œa; b� containing the support of �.

To prove Lemma 2.1, we introduce a set AN of some bounded operators on L2.�/ and scaled amalgam
spaces `1.L2/� for � > 0 to prepare a lemma. Hereafter, for k 2 Zd, C� .k/ denotes a cube with the
center �

1
2k and side length �

1
2 , namely,

C� .k/ WD
˚
x 2� W jxj � �

1
2kj j � 2

�1�
1
2 for j D 1; 2; : : : ; d

	
;

and �C� .k/ is a characteristic function whose support is C� .k/.
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Definition. For N 2 N, we denote by AN the set of all bounded operators T on L2.�/ such that

kT kAN WD sup
k2Zd

j � �� 12kjNT�C� .k/L2!L2 <1:
Definition. The space `1.L2/� is defined by letting

`1.L2/� WD ff 2 L
2
loc.�/ W kf k`1.L2/� <1g;

where
kf k`1.L2/� WD

X
k2Zd

kf kL2.C� .k//:

Lemma 2.2 [Iwabuchi et al. 2017; Iwabuchi et al. 2016b]. (i) Let N 2N and N > d
2

. Then there exists
a constant C > 0 such that

kT k`1.L2/�!`1.L2/� � C
�
kT kL2!L2 C �

�d
4 kT k

d
2N

AN
kT k

1� d
2N

L2!L2

�
(2-2)

for any T 2 AN and � > 0.

(ii) Let N 2 N. Then there exists a constant C > 0 such that

k ..M C �A/�1/kAN � C�
N
2

Z 1
�1

.1Cj�j2/
N
2 j y .�/j d� (2-3)

for any  2 S.R/ and � > 0.

(iii) Let M > 0 and ˇ > d
4

. Then there exists a constant C > 0 such that

k.M C �A/�ˇkL1!`1.L2/� � C�
�d
2 (2-4)

for any � > 0.

Remark. Lemma 2.2 is useful to prove the L1 boundedness of spectral multipliers and let us briefly
remind how to prove Lemma 2.2 as in [Iwabuchi et al. 2017; Iwabuchi et al. 2016b]. The original
idea is by Jensen and Nakamura [1994; 1995], who studied the Schrödinger operators on Rd. In the
first inequality (2-2), we start with the decomposition T D

P
m;k2Zd �C� .m/T�C� .k/, and it suffices to

show that for each k 2 Z a sum of operator norms
P
m2Z k�C� .m/T�C� .k/kL2!L2 is bounded by the

right-hand side of (2-2). The first term kT kL2!L2 is obtained just by applying L2.�/ boundedness to the
L2.C� .m// norm with mD k. The second term is obtained by decomposing the sum into two cases when
0< jm�kj �! and jm�kj>! for ! > 0, applying the L2.�/ boundedness to the case jm�kj �! and
the Schwarz inequality to the case jm�kj> ! for sequences jm�kj�N, jm�kjN k�C� .m/T�C� .k/kL2 ,
and minimizing by taking suitable !. As for the second one (2-3), we utilize the formula

 ..M C �A/�1/D .2�/
1
2

Z 1
�1

e�it.MC�A/
�1
y .t/ dt:

To estimate ke�it.MC�A/
�1

kAN , we consider the commutator of .x� �1=2k/ and e�it.MC�A/
�1

, which
is rewritten with � , .M C �A/�1, r.M C �A/�1 and is able to be handled by the use of L2.�/
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boundedness, which proves (2-3). As for the last one (2-4), thanks to the formula

.M C �A/�ˇ D
1

�.ˇ/

Z 1
0

tˇ�1e�Mte�t�A dt

and the Young inequality, we get

k.M C �A/�ˇf k`1.L2/� �
1

�.ˇ/

Z 1
0

tˇ�1e�Mt

�Z
�

ke�t�A. � ; y/k`1.L2/� jf .y/j dy

�
dt;

where �.ˇ/ is the Gamma function. By the Gaussian upper bounds of e�t�A, we have

ke�t�A. � ; y/k`1.L2/� � C�
�d
4 .1C t�

d
4 /:

These estimates yield the inequality (2-4), since the integrability with respect to t 2 .0;1/ is assured by
ˇ > 4

d
.

Proof of Lemma 2.1. Instead of the inequality (2-1), by replacing 2�j
p
A and

p
A with 2�2jA and A,

respectively, it is sufficient to show that

kG.A/�.2�2jA/f kLp � CkG.2
2j
� /�. � /kHNC1=2Cı.R/kf kLp ; (2-5)

where supp� � Œa2; b2�.
First we consider the case when pD 1. By decomposing � into cubes C� .k/ and the Hölder inequality,

we get
kG.A/f �.2�2jA/kL1 � C�

d
2 kG.A/�.2�2jA/f k`1.L2/� : (2-6)

For fixed real numbers M > 0 and ˇ > d
2

, let  be such that

 .�/ WDG.22j .��1�M//�.��1�M/��ˇ: (2-7)

It is easy to check that

 2 C10 ..0;1// and supp �
h

1

MCb
;

1

MCa

i
;

and
G.�/�.2�2j�/DG.22j � 2�2j�/�.2�2j�/��ˇ ��ˇ D  .�/�ˇ;

where � and � are real numbers with

2�2j�D ��1�M:

The above equality yields that

G.A/�.2�2jA/D  ..M C 2�2jA/�1/.M C 2�2jA/�ˇ: (2-8)

Then it follows from (2-6), (2-8) and the estimate (2-4) in Lemma 2.2 that

kG.A/�.2�2jA/f kL1

� C�
d
2

 ..M C 2�2jA/�1/.M C 2�2jA/�ˇf 
`1.L2/�

� C�
d
2 k ..M C 2�2jA/�1/k`1.L1/�!`1.L2/�k.M C 2

�2jA/�ˇkL1!`1.L2/�kf kL1

� Ck ..M C 2�2jA/�1/k`1.L1/�!`1.L2/�kf kL1 : (2-9)



THE SEMIGROUP GENERATED BY THE DIRICHLET LAPLACIAN OF FRACTIONAL ORDER 691

By comparing the estimates (2-5) and (2-9), all we have to do is to show that

k ..M C 2�2jA/�1/k`1.L2/�!`1.L2/� � CkG.2
j
� /�. � /kHNC1=2Cı.R/: (2-10)

To apply the estimate (2-2), we consider the operator norms k�kL2!L2 and k�kAN of  ..MC2�2jA/�1/.
On the operator norm k�kL2!L2 , we have from N > d

2
and the embeddingHNC 1

2
Cı.R/ ,!L1.R/ that

k ..M C 2�2jA/�1/kL2!L2 � k kL1.R/ � k kHNC1=2Cı.R/

for any ı > 0. As for k ..M C2�2jA/�1/kAN , by applying the estimate (2-3) and the Hölder inequality,
for any ı > 0 there exists C > 0 such that

k ..M C �A/�1/kAN � C�
N
2

Z 1
�1

.1Cj�j2/
N
2 j y .�/j d�

� C�
N
2 k.1Cj�j2/�

1
2
�ı
kL2.R/k.1Cj�j

2/
N
2
C 1
2
Cı y kL2.R/

� C�
N
2 k kHNC1=2Cı.R/:

Then we deduce from the above two estimates and (2-2) that

k ..M C 2�2jA/�1/k`1.L2/�!`1.L2/�

� C
˚
k kHNC1=2Cı.R/C �

�d
4 .�

N
2 k kHNC1=2Cı.R//

d
2N .k kHNC1=2Cı.R//

1� d
2N

	
� Ck kHNC1=2Cı.R/:

Since  is defined by (2-7) and the support is bounded and away from the origin, we see from the change
of variables by �D .�CM/�1 that

k . � /kHNC1=2Cı.R/ � CkG.2
2j
� /�. � /kHNC1=2Cı.R/:

Hence the estimate (2-10) is obtained by the above two estimates, and the estimate (2-5) in the case when
p D 1 is proved.

We next consider the case when p D1. Since the dual space of L1.�/ is L1.�/ and C10 .�/ is
dense in L1.�/, the following holds:

kG.A/�.2�jA/f kL1 D sup
g2C10 ; kgkL1D1

ˇ̌̌̌Z
�

�
G.A/�.2�jA/f

�
Ng dx

ˇ̌̌̌
:

On the right-hand side of the above equality, we have from the duality argument for the operator
G.A/�.2�jA/, the Hölder inequality and the estimate (2-5) with p D 1 thatˇ̌̌̌Z

�

�
G.A/�.2�jA/f

�
Ng dx

ˇ̌̌̌
D
ˇ̌
X 00
hG.A/�.2�jA/f; giX0

ˇ̌
D
ˇ̌
X 00
hf;G.A/�.2�jA/giX0

ˇ̌
D

ˇ̌̌̌Z
�

f G.A/�.2�jA/g dx

ˇ̌̌̌
� kf kL1kG.A/�.2

�jA/gkL1

� kf kL1kG.2
2j
� /�. � /kHNC1=2Cı.R/kgkL1 ;

where g 2 C10 . This proves (2-5) in the case when p D1.
As for the case when 1 < p <1, the Riesz–Thorin theorem allows us to obtain the estimate (2-5). �
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3. Proof of Theorem 1.1

Proof of (1-3). Put ĵ WD �j�1C�j C�jC1. By applying the estimate (2-1) in Lemma 2.1 with

G DGt .�/D e
�t�˛;

we have �j .pA/e�tA˛=2f Lp D �Gt .pA/ ĵ .
p
A/
�
.�j .
p
A/f /


Lp

� C
Gt .2jp� /ˆ0.p� /HNC1=2Cı.R/

�j .pA/f Lp ;
where N > d

2
and ı > 0. Here it is easy to check that there exists C > 0 such thatGt .2jp� /ˆ0.p� /HNC1=2Cı.R/

� Ce�C
�1t2˛j for any j 2 Z;

and hence, �j .pA/e�tA˛=2f Lp � Ce�C�1t2˛j �j .pA/f Lp for any j 2 Z: (3-1)

By multiplying 2sj and taking the `q.Z/ norm in the above inequality, we obtain the assertion (1-3). �

Proof of (1-4). By the inequalities

ke�tA
˛=2

f k PBs2p2;q2
� ke�tA

˛=2

f k PBs2p2;1
; kf k PBs1p1;1

� kf k PBs1p1;q1
;

which are assured from the embedding relations in the Besov spaces, and taking s1 D 0 for the sake of
simplicity, it is sufficient to show

ke�tA
˛=2

f k PBs2p2;1
� Ct

�d
˛
. 1
p1
� 1
p2
/� s2

˛ kf k PB0p1;1
; (3-2)

where
s2 � 0; p1 � p2 and d

�
1

p1
�
1

p2

�
C s2 > 0:

It follows from the embedding PB
s2Cd. 1p1�

1
p2
/

p1;1
,! PB

s2
p2;1

and the estimate (3-1) that

ke�tA
˛=2

f k PBs2p2;1
� Cke�tA

˛=2

f k
PB
s2Cd.1=p1�1=p2/

p1;1

� C
X
j2Z

2
s2jCd. 1p1�

1
p2
/j
e�ct2

˛j �j .pA/f Lp1 :
Since s2C d

�
1
p1
�

1
p2

�
> 0, we getX

j2Z

2
s2jCd. 1p1�

1
p2
/j
e�ct2

˛j �j .pA/f Lp1
D t
�
s2
˛
�d
˛
. 1
p1
� 1
p2
/X
j2Z

˚
.t2 j̨ /

s2
˛
Cd
˛
. 1
p1
� 1
p2
/
e�ct2

˛j 	�j .pA/f Lp1
� Ct

�
s2
˛
�d
˛
. 1
p1
� 1
p2
/
kf k PB0p1;1

;

which proves (3-2). �
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4. Proof of Theorem 1.2

Proof of (i). Let f 2 PBsp;q.A/. We take fN such that

fN WD
X
jj j�N

�j .
p
A/f for N 2 N:

Since q <1, for any " > 0 there exists N0 2 N such that

kfN �f k PBsp;q
< " for any N �N0:

The above inequality and boundedness (1-3) in Theorem 1.1 imply

ke�tA
˛=2

f �f k PBsp;q
� ke�tA

˛=2

fN �fN k PBsp;q
Cke�tA

˛=2

.fN �f /k PBsp;q
CkfN �f k PBsp;q

� ke�tA
˛=2

fN �fN k PBsp;q
CCkfN �f k PBsp;q

� ke�tA
˛=2

fN �fN k PBsp;q
CC"

for any t > 0 provided that N �N0. Then all we have to do is to show that

lim
t!0
ke�tA

˛=2

fN �fN k PBsp;q
D 0: (4-1)

We prove (4-1). Noting that the spectrum of fN is restricted and

ke�tA
˛=2

fN �fN k PBsp;q
D

� NC1X
jD�N�1

�
2sj
�j .pA/.e�tA˛=2 � 1/fNLp�q�1q;

we may consider the convergence of
�j .pA/.e�tA˛=2 � 1/fNLp for each j . For each j D 0;˙1;

˙2; : : : ;˙.N C 1/, it follows from (2-1) in Lemma 2.1 with

G DGt .�/D e
�t�˛

� 1

that �j .pA/.e�tA˛=2 � 1/fNLp D .Gt .pA/ ĵ .
p
A//.�j .

p
A/fN /


Lp

� C
Gt .2jp� /ˆ0.p� /HNCd=2Cı

�j .pA/fNLp ;
where ĵ WD �j�1C�j C�jC1. Here it is readily checked that

lim
t!0

Gt .2jp� /ˆ0.p� /HNCd=2Cı D 0 for each j;

and hence, (4-1) is obtained. �

Proof of (ii). Put ĵ WD �j�1C�j C�jC1. By considering the dual operator of e�tA
˛=2

� 1, we haveX
j2Z

Z
�

˚
�j .
p
A/.e�tA

˛=2

�1/f
	
ˆj .
p
A/gdxD

X
j2Z

Z
�

f�j .
p
A/f g ĵ .

p
A/.e�tA

˛=2
�1/gdx: (4-2)
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It follows from the Hölder inequality thatX
j2Z

Z
�

ˇ̌
f�j .
p
A/f g ĵ .

p
A/.e�tA

˛=2
� 1/g

ˇ̌
dx

�

X
j2Z

2sj
�j .pA/f Lp � 2�sj ĵ .

p
A/.e�tA

˛=2

� 1/g

Lp
0

� Ckf k PBsp;1
k.e�tA

˛=2

� 1/gk PB�s
p0;1

; (4-3)

which assures the absolute convergence of the series in (4-2) by the boundedness of e�tA
˛=2

in PB�sp0;1
from (1-3) in Theorem 1.1. The above estimate and the assertion (i) of Theorem 1.2 implyˇ̌̌̌X
j2Z

Z
�

˚
�j .
p
A/.e�tA

˛=2

�1/f
	
ˆj .
p
A/gdx

ˇ̌̌̌
�Ckf k PBsp;1

k.e�tA
˛=2

�1/gk PB�s
p0;1

!0 as t!0: �

5. Proof of Theorem 1.3

To prove Theorem 1.3 we will need the following lemma.

Lemma 5.1. Let ˛ > 0, s0 2 R and 1� p �1. Then there exists C > 0 such that

C�1.t2 j̨ /s0e�Ct2
˛j �j .pA/f Lp � .tA˛

2 /s0e�tA
˛=2

�j .
p
A/f


Lp

� C.t2 j̨ /s0e�C
�1t2˛j

�j .pA/f Lp (5-1)

for any t > 0, j 2 Z and f 2 Lp.�/.

Proof. Put ĵ WD �j�1C�j C�jC1. We start by proving the second inequality of the estimate (5-1). By
applying the estimate (2-1) in Lemma 2.1 with

G DGt .�/D .t�
˛/s0e�t�

˛

;

we have.tA˛
2 /s0e�tA

˛=2

�j .
p
A/f


Lp
D
�Gt .pA/ ĵ .

p
A/
�
.�j .
p
A/f /


Lp

� C
Gt .2jp� /ˆ0.p� /HNC1=2Cı.R/

�j .pA/f Lp ; (5-2)

where N > d
2

and ı > 0. Here it is easy to check that there exists C > 0 such thatGt .2jp� /ˆ0.p� /HNC1=2Cı.R/
� C.t2 j̨ /s0e�C

�1t2˛j for any j 2 Z; (5-3)

and hence,.tA˛
2 /s0e�tA

˛=2

�j .
p
A/f


Lp
� C.t2 j̨ /s0e�C

�1t2˛j
�j .pA/f Lp for any j 2 Z:

This proves the second inequality of (5-1).
We turn to the first inequality of (5-1). Since �j .

p
A/f is written as

�j .
p
A/f D

�
.tA

˛
2 /�s0etA

˛=2

ĵ .
p
A/
��
.tA

˛
2 /s0e�tA

˛=2

�j .
p
A/f

�
DW
�
.tA

˛
2 /�s0etA

˛=2

ĵ .
p
A/
�
F;
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all we have to do is to show that.tA˛
2 /�s0etA

˛=2

ĵ .
p
A/F


Lp
� C.t2 j̨ /�s0eCt�

˛

kF kLp : (5-4)

Applying (2-1) in Lemma 2.1 with

G D zGt .�/D .t�
˛/�s0et�

˛

to the left-hand side of (5-4), we have from an similar argument to (5-2) and (5-3) that.tA˛
2 /�s0etA

˛=2

ĵ .
p
A/F


Lp
� C

 zGt .2jp� /ˆ0.p� /HNC1=2C".R/
kF kLp

� C.t2 j̨ /�s0eCt�
˛

kF kLp :

This proves (5-4) and the first inequality of (5-1) is obtained. �

In what follows, we show the inequality (1-5) for f 2 PBsp;q.A/ to prove Theorem 1.3. We note that the
proof below concerns the case when q <1 only, since the case when q D1 is also shown analogously
with some modification.

Proof of the first inequality of (1-5). By the embedding Lp.�/; PB0p;r.A/ ,! PB0p;1.A/, it is sufficient to
show that

C�1kf k PBsp;q
�

�Z 1
0

�
t�

s
˛

.tA˛
2 /s0e�tA

˛=2

f

PB0p;1

�q dt
t

�1
q

: (5-5)

We have from the definition of norm k � k PB0p;1 and the first inequality of estimate (5-1) in Lemma 5.1 that

�Z 1
0

�
t�

s
˛

.tA˛
2 /s0e�tA

˛=2

f

PB0p;1

�q dt
t

�1
q

� C�1
�Z 1

0

�
t�

s
˛ sup
j2Z

.t2 j̨ /s0e�Ct2
˛j �j .pA/f Lp�q dtt

�1
q

:

Decomposing .0;1/ in the last line by

.0;1/D
[
k2Z

Œ2�˛.kC1/; 2�˛k�; (5-6)

we get�Z 1
0

�
t�

s
˛

.tA˛
2 /s0e�tA

˛=2

f

PB0p;1

�q dt
t

�1
q

� C�1
�X
k2Z

Z 2�˛k

2�˛.kC1/

�
t�

s
˛ sup
j2Z

.t2 j̨ /s0e�Ct2
˛j �j .pA/f Lp�q dtt

�1
q

� C�1
�X
k2Z

�
2sk sup

j2Z

.2˛.j�k//s0e�C2
˛.j�k/�j .pA/f Lp�q�1q: (5-7)
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Here it follows from the Hölder inequality that

sup
j2Z

.2˛.j�k//s0e�C2
˛.j�k/�j .pA/f Lp

� C�1
�X
j2Z

�
1

1C˛2jj � kj2
� .2˛.j�k//s0e�C2

˛.j�k/�j .pA/f Lp�q�1q:
Then we deduce from (5-7) and the above inequality that

�Z 1
0

�
t�

s
˛

.tA˛
2 /s0e�tA

˛=2

f

PB0p;1

�q dt
t

�1
q

� C�1
�X
k2Z

.2sk/q
X
j2Z

�
1

1C˛2jj � kj2
� .2˛.j�k//s0e�C2

˛.j�k/�j .pA/f Lp�q�1q

D C�1
�X
j2Z

�
2sj
�j .pA/f Lp�qX

k2Z

�
2�s.j�k/

1C˛2jj � kj2
� .2˛.j�k//s0e�C2

˛.j�k/

�q�1
q

D C�1kf k PBsp;q

�X
k2Z

�
2.s0˛�s/k

1C˛2jkj2
� e�C2

˛k

�q�1
q

:

Since s0 > s
˛

and the summation appearing in the last line converges, we obtain (5-5). �

Proof of the second inequality of (1-5). By the embedding PB0p;1.A/ ,!Lp.�/; PB0p;q.A/, it is sufficient to
show that �Z 1

0

�
t�

s
˛

.tA˛
2 /s0e�tA

˛=2

f

PB0p;1

�q dt
t

�1
q

� Ckf k PBsp;q.A/
: (5-8)

Analogously to the proof of (5-5), we apply the second inequality of (5-1) in Lemma 5.1 instead of the
first one and the decomposition (5-6) to get

�Z 1
0

�
t�

s
˛

.tA˛
2 /s0e�tA

˛=2

f

PB0p;1

�q dt
t

�1
q

�

�X
k2Z

�
2sk

X
j2Z

.2˛.j�k//s0e�C
�12˛.j�k/

�j .pA/f Lp�q�1q:
Here the Hölder inequality yields thatX
j2Z

.2˛.j�k//s0e�C
�12˛.j�k/

�j .pA/f Lp
� C

�X
j2Z

�
.1C˛2jj � kj2/.2˛.j�k//s0e�C

�12˛.j�k/
k�j .
p
A/f kLp

�q�1q
:
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Then we have from the above two estimates that�Z 1
0

�
t�

s
˛

.tA˛
2 /s0e�tA

˛=2

f

PB0p;1

�q dt
t

�1
q

� C

�X
k2Z

.2sk/q
X
j2Z

�
.1C˛2jj � kj2/.2˛.j�k//s0e�C

�12˛.j�k/
�j .pA/f Lp�q�1q

D C

�X
j2Z

�
2sj
�j .pA/f Lp�qX

k2Z

�
2�s.j�k/.1C˛2jj � kj2/.2˛.j�k//s0e�C

�12˛.j�k/
�q�1q

D Ckf k PBsp;q

�X
k2Z

�
.1C˛2jkj2/2.s0˛�s/ke�C

�12˛k
�q�1q

:

Since s0 > s
˛

and the summation appearing in the last line converges, we obtain (5-8). �

6. Proof of Theorem 1.4

Proof of (1-6). It is sufficient to prove the case when sD 0 thanks to the lifting property in the proposition
on page 684. We also consider the case when q <1 only, since the case when q D1 is also shown
analogously. First we prove that

kA
˛
2 uk

Lq.0;1I PB0p;q/
� Cku0k PB˛�˛=qp;q

CCkf k
Lq.0;1I PB0p;q/

: (6-1)

By the definition of u and the triangle inequality, we get

kA
˛
2 uk

Lq.0;1I PB0p;q/
�kA

˛
2 e�tA

˛=2

u0kLq.0;1I PB0p;q/
C

A˛
2

Z t

0

e�.t��/A
˛=2

f .�/d�


Lq.0;1I PB0p;q/

: (6-2)

On the first term of the right-hand side in the above inequality, it follows from the estimate (1-5) for
s0 D 1, s D ˛� ˛

q
that

kA
˛
2 e�tA

˛=2

u0kLq.0;1I PB0p;q/
� Cku0kLq.0;1I PB˛�˛=qp;q /

: (6-3)

As for the second one, we start by proving that�j .pA/A˛
2

Z t

0

e�.t��/A
˛=2

f .�/ d�


Lp
� C2

˛
q
j

�Z t

0

�
e�C

�1.t��/2˛j
�j .pA/f Lp�q d��1q: (6-4)

The above estimate (6-4) is verified by applying the estimate (5-1) in Lemma 5.1 and the Hölder inequality;
in fact, we get�j .pA/A˛

2

Z t

0

e�.t��/A
˛=2

f .�/ d�


Lp
� C2 j̨

Z t

0

e�C
�1.t��/2˛j

�j .pA/f .�/Lp d�
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� C2 j̨ ke�.2C/
�1.t��/2˛j

kLq=.q�1/.f0���tg/

�Z t

0

�
e�.2C/

�1.t��/2˛j
�j .pA/f .�/Lp�q d��1q

� C2
˛
q
j

�Z t

0

�
e�.2C/

�1.t��/2˛j
�j .pA/f .�/Lp�q d��1q:

By the estimate (6-4), we haveA˛
2

Z t

0

e�.t��/A
˛=2

f .�/ d�


Lq.0;1I PB0p;q/

� C

�Z 1
0

X
j2Z

�
2
˛
q
j

�Z t

0

�
e�.2C/

�1.t��/2˛j
�j .pA/f .�/Lp�q d��1q�q dt� 1q

D C

�Z 1
0

X
j2Z

�j .pA/f .�/qLp�2 j̨

Z 1
�

e�q.2C/
�1.t��/2˛j dt

�
d�

� 1
q

D Ckf k
Lq.0;1I PB0p;q.A//

: (6-5)

Then the estimates (6-2), (6-3) and (6-5) imply the inequality (6-1). The estimate for @tu, i.e., the
inequality

k@tukLq.0;1I PB0p;q/
� Cku0k PB˛�˛=qp;q

CCkf k
Lq.0;1I PB0p;q/

;

is verified by the estimate (6-1) and the equality

@tuD�A
˛
2 uCf:

Hence we obtain the estimate (1-6) and the proof is complete. �

7. Results for the inhomogeneous Besov spaces

We should mention that similar theorems also hold for the heat semigroup in the inhomogeneous Besov
spaces Bsp;q.A/. We also note that the semigroup generated by the fractional Laplacian cannot be treated
analogously by the direct application of boundedness of the scaled spectral multiplier in Lemma 2.1 (see
the comment below Theorem 7.2).

First we recall the definition of Bsp;q.A/. Let  be as in C10 ..�1;1// such that

 .�2/C
X
j2N

�j .�/D 1 for any �� 0:

The inhomogeneous Besov space Bsp;q.A/ is defined as follows; see [Iwabuchi et al. 2016a].

Definition. For s 2 R and 1� p; q �1, Bsp;q.A/ is defined by letting

Bsp;q.A/ WD ff 2 X
0
0.�/ W kf kBsp;q.A/ <1g;

where
kf kBsp;q.A/ WD k .A/f kLp C

˚2sj�j .pA/f Lp	j2N


`q.N/

:
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The high-frequency part is able to be treated in the same way as the proof for the homogeneous case by
using Lemma 2.1. As for the low-frequency part, we employ the pointwise estimate of the kernel of e�tA

0� e�tA.x; y/� .4�t/�
d
2 exp

�
jx�yj2

4t

�
;

which assures the boundedness of e�tA in Lp.�/ and also Bsp;q.A/ as well as the case when �DRd. In
order to treat continuity in time of e�tA, we need the following obtained by a proof similar to that of
Lemma 2.1.

Lemma 7.1. Let N > d
2

, 1 � p �1, ı > 0,  2 C10 ..�1;1// and G 2 HNC 1
2
Cı.R/. Then there

exists a positive constant C such that for any f 2 Lp.�/

kG.A/ .A/f kLp � CkG. � / . � /kHNC1=2Cı.R/kf kLp : (7-1)

We take G such that
G.�/ WD e�t�� 1 for any � 2 R

to apply the above lemma. For the above G it is easy to check that

kG. � / . � /kHNC1=2Cı.R/! 0 as t ! 0:

Hence for any f 2 Bsp;q.A/, it follows from (7-1) that

lim
t!0
k .A/.e�tAf �f /kLp D 0:

According to the boundedness and the continuity of e�tA, we obtain the following result for the inhomo-
geneous Besov spaces.

Theorem 7.2. Let s 2 R, 1� p; p1; p2; q �1 and 1
p
C

1
p0
D 1. Let ‰ and ‰j with j 2 N be such that

‰.A/ WD  .A/C�1.
p
A/;

ˆ1.
p
A/ WD  .A/C�1.

p
A/C�2.

p
A/;

ĵ .
p
A/ WD �j�1.

p
A/C�j .

p
A/C�jC1.

p
A/ for j � 2 W

(i) There exists a constant C > 0 such that

ke�tAf kBsp;q.A/ � Ckf kBsp;q.A/

for any f 2 Bsp;q.A/. If p1 � p2, then there exists a constant C > 0 such that

ke�tAf kBsp2;q.A/
� Ct

�d
2
. 1
p1
� 1
p2
/
kf kBsp1;q.A/

for any f 2 Bsp1;q.A/.

(ii) If q <1 and f 2 Bsp;q.A/, then

lim
t!0
ke�tAf �f kBsp;q.A/ D 0:
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If q D1, 1 < p �1 and f 2 Bsp;1.A/, then e�tAf converges to f in the dual weak sense as t ! 0;
namely,

lim
t!0

�Z
�

˚
 .A/.e�tAf �f /

	
‰.A/g dxC

X
j2N

Z
�

˚
�j .
p
A/.e�tAf �f /

	
ˆj .
p
A/g dx

�
D 0

for any g 2 PB�sp0;1.A/.

(iii) Let T > 0, s; s0 2 R and s0 > s
2

. Then

kf kBsp;q.A/ ' k .TA/f kLp C

�Z T

0

�
t�

s
2 k.tA/s0e�tAf kX

�q dt
t

�1
q

for any f 2 Bsp;q.A/, where X D Lp.�/; B0p;r.A/ with 1� r �1.

(iv) Let T > 0, u0 2 B
sC2�2=q
p;q .A/ and f 2 Lq.0; T IBsp;q.A//. Assume that u satisfies

u.t/D e�tAu0C

Z t

0

e�.t��/Af .�/ d�:

Then there exists a constant C D C.T / > 0 independent of u0 and f such that

k@tukLq.0;T IBsp;q.A//CkA
˛
2 ukLq.0;T IBsp;q.A// � Cku0kBsC2�2=qp;q .A/

CCkf kLq.0;T IBsp;q.A//:

Remark. Let us mention what is obtained by the abstract theory for sectorial operators by Da Prato
and Grisvard [1975]; see also [Haase 2006; Lunardi 1995]. Let X D B0p;q.A/. We can consider A as
a sectorial operator with the domain D.A˛/D B2p;q.A/. Let 0 < T <1, 1 < q <1, 1 � p; r �1,
� 2 .0; 1/ and ˛ > 0. Then for any f 2 Lq.0; T I .X;D.A˛//�;r/ the equation8<:

du

dt
CAuD f; 0 < t < T;

u.0/D 0

admits a unique solution u satisfyingdu
dt


Lq.0;T I.X;D.A˛//�;r /

CkAukLq.0;T I.X;D.A˛//�;r / � Ckf kLq.0;T I.X;D.A˛//�;r /;

where C depends on T. Here we note that .X;D.A˛//�;r D B2˛�p;r .A/ and 2˛� is possibly an arbitrary
positive number since ˛ > 0 and � 2 .0; 1/.

Let us give a few remarks on the semigroup generated by A
˛
2 . If we consider applying Lemma 7.1

directly, it is impossible to obtain the boundedness of e�tA
˛=2

for general ˛. In fact, taking

G DGt .�/D e
�t j�j˛=2;

and applying (7-1), we see that the HNC 1
2
Cı.R/ norm of the above G D Gt .�/ is not finite for small

� > 0 because of less regularity around �D 0. On the other hand, if ˛ is even or sufficiently large, the
HNC 1

2
Cı.R/ norm of e�t j�j

˛=2

is finite and we can get some results. However this argument does not
reach the optimal estimate, and hence, we do not treat it in this paper and will treat it in a future work.
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Appendix: Real interpolation

We now give a remark that real interpolation can be considered in the Besov spaces PBsp;q.A/ and Bsp;q.A/
on open sets as well as the whole space case. We recall the definition of real interpolation spaces
.X0; X1/�;q for Banach spaces X0 and X1; see, e.g., [Bergh and Löfström 1976; Peetre 1968; Triebel
1983].

Definition. Let 0 < � < 1 and 1� q �1. .X0; X1/�;q is defined by letting

.X0; X1/�;q WD

�
a 2X0CX1 W kak.X0;X1/�;q WD

�Z 1
0

.t��K.t; a//q
dt

t

�1
q

<1

�
;

where K.t; a/ is Peetre’s K-function

K.t; a/ WD inf
˚
ka0kX0 C tka1kX1 W aD a0C a1; a0 2X0; a1 2X1

	
:

As well as in the case when �D Rd, we obtain the following.

Proposition A.1. Let 0 < � < 1, s; s0; s1 2 R and 1 � p; q; q0; q1 � 1. Assume that s0 6D s1 and
s D .1� �/s0C �s1. Then

. PBs0p;q0.A/;
PBs1p;q1.A//�;q D

PBsp;q.A/;

.Bs0p;q0.A/; B
s1
p;q1

.A//�;q D B
s
p;q.A/:

We omit the proof of the above proposition since one can show it analogously to the whole space case;
see, e.g., [Triebel 1983].
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