Vol. 11, No. 3, 2018

Download this article
Download this article For screen
For printing
Recent Issues

Volume 15
Issue 8, 1861–2108
Issue 7, 1617–1859
Issue 6, 1375–1616
Issue 5, 1131–1373
Issue 4, 891–1130
Issue 3, 567–890
Issue 2, 273–566
Issue 1, 1–272

Volume 14, 8 issues

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
ISSN: 1948-206X (e-only)
ISSN: 2157-5045 (print)
Author Index
To Appear
Other MSP Journals
This article is available for purchase or by subscription. See below.
Klein's paradox and the relativistic $\delta$-shell interaction in $\mathbb{R}^3$

Albert Mas and Fabio Pizzichillo

Vol. 11 (2018), No. 3, 705–744

Under certain hypotheses of smallness on the regular potential V, we prove that the Dirac operator in 3 , coupled with a suitable rescaling of V , converges in the strong resolvent sense to the Hamiltonian coupled with a δ-shell potential supported on Σ, a bounded C2 surface. Nevertheless, the coupling constant depends nonlinearly on the potential V; Klein’s paradox comes into play.

PDF Access Denied

We have not been able to recognize your IP address as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 40.00:

Dirac operator, Klein's paradox, $\delta$-shell interaction, singular integral operator, approximation by scaled regular potentials, strong resolvent convergence
Mathematical Subject Classification 2010
Primary: 81Q10
Secondary: 35Q40, 42B20, 42B25
Received: 23 January 2017
Revised: 14 September 2017
Accepted: 16 October 2017
Published: 22 November 2017
Albert Mas
Departament de Matemàtiques i Informàtica
Universitat de Barcelona
Fabio Pizzichillo
Basque Center for Applied Mathematics (BCAM)