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KLEIN’S PARADOX AND THE RELATIVISTIC δ-SHELL INTERACTION IN R3

ALBERT MAS AND FABIO PIZZICHILLO

Under certain hypotheses of smallness on the regular potential V, we prove that the Dirac operator in R3,
coupled with a suitable rescaling of V, converges in the strong resolvent sense to the Hamiltonian coupled
with a δ-shell potential supported on 6, a bounded C2 surface. Nevertheless, the coupling constant
depends nonlinearly on the potential V ; Klein’s paradox comes into play.

1. Introduction

Klein’s paradox is a counterintuitive relativistic phenomenon related to scattering theory for high-barrier
(or equivalently low-well) potentials for the Dirac equation. When an electron is approaching a barrier,
its wave function can be split in two parts: the reflected one and the transmitted one. In a nonrelativistic
situation, it is well known that the transmitted wave-function decays exponentially depending on the high
of the potential; see [Thaller 2005]. In the case of the Dirac equation it has been observed, in [Klein 1929]
for the first time, that the transmitted wave-function depends weakly on the power of the barrier, and it
becomes almost transparent for very high barriers. This means that outside the barrier the wave-function
behaves like an electronic solution and inside the barrier it behaves like a positronic one, violating the
principle of the conservation of the charge. This incongruence comes from the fact that, in the Dirac
equation, the behavior of electrons and positrons is described by different components of the same spinor
wave-function; see [Katsnelson et al. 2006]. Roughly speaking, this contradiction derives from the fact
that even if a very high barrier is reflective for electrons, it is attractive for the positrons.

From a mathematical perspective, the problem appears when approximating the Dirac operator coupled
with a δ-shell potential by the corresponding operator using local potentials with shrinking support.
The idea of coupling Hamiltonians with singular potentials supported on subsets of lower dimension
with respect to the ambient space (commonly called singular perturbations) is quite classic in quantum
mechanics. One important example is the model of a particle in a 1-dimensional lattice that analyses
the evolution of an electron on a straight line perturbed by a potential caused by ions in the periodic
structure of the crystal that create an electromagnetic field. Kronig and Penney [1931] idealized this
system: in their model the electron is free to move in regions of the whole space separated by some
periodical barriers which are zero everywhere except at a single point, where they take infinite value. In
modern language, this corresponds to a δ-point potential. For the Schrödinger operator, this problem is
described in [Albeverio et al. 1988] for finite and infinite δ-point interactions and in [Exner 2008] for
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singular potentials supported on hypersurfaces. The reader may look at [Dittrich et al. 1989; Behrndt and
Holzmann 2016; Arrizabalaga et al. 2014; 2015; Ourmières-Bonafos and Vega 2016] for the case of the
Dirac operator, and to [Posilicano 2008] for a much more general scenario.

Nevertheless, one has to keep in mind that, even if this kind of model is more easily mathematically
understood, since the analysis can be reduced to an algebraic problem, it is an ideal model that cannot be
physically reproduced. This is the reason why it is interesting to approximate these kinds of operators by
more regular ones. For instance, in one dimension, if V ∈ C∞c (R) then

Vε(t) :=
1
ε

V
( t
ε

)
→

(∫
V
)
δ0 when ε→ 0

in the sense of distributions, where δ0 denotes the Dirac measure at the origin. In [Albeverio et al. 1988]
it is proved that 1+ Vε → 1+

(∫
V
)
δ0 in the norm resolvent sense when ε → 0, and in [Behrndt

et al. 2017] this result is generalized to higher dimensions for singular perturbations on general smooth
hypersurfaces.

These kinds of results do not hold for the Dirac operator. In fact, in [Šeba 1989] it is proved that, in
the 1-dimensional case, the convergence holds in the norm resolvent sense but the coupling constant
does depend nonlinearly on the potential V, unlike in the case of Schrödinger operators. This nonlinear
phenomenon, which may also occur in higher dimensions, is a consequence of the fact that, in a sense, the
free Dirac operator is critical with respect to the set where the δ-shell interaction is performed, unlike the
Laplacian (the Dirac/Laplace operator is a first/second-order differential operator, respectively, and the
set where the interaction is performed has codimension 1 with respect to the ambient space). The present
paper is devoted to the study of the 3-dimensional case, where we investigate if it is possible to obtain the
same results as in one dimension. For δ-shell interactions on bounded smooth hypersurfaces, we get the
same nonlinear phenomenon on the coupling constant but we are only able to show convergence in the
strong resolvent sense.

Given m ≥ 0, the free Dirac operator in R3 is defined by

H := −iα · ∇ +mβ,

where α = (α1, α2, α3),

αj =

(
0 σj

σj 0

)
for j = 1, 2, 3, β =

(
I2 0
0 −I2

)
, I2 :=

(
1 0
0 1

)
,

and

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(1-1)

is the family of Pauli matrices. It is well known that H is self-adjoint on the Sobolev space H 1(R3)4 =:

D(H); see [Thaller 1992, Theorem 1.1]. Throughout this article we assume that m > 0.
In the sequel�⊂R3 denotes a bounded C2 domain and6 := ∂� denotes its boundary. By a C2 domain

we mean the following: for each point Q ∈ 6 there exist a ball B ⊂ R3 centered at Q, a C2 function
ψ : R2

→ R and a coordinate system {(x, x3) : x ∈ R2, x3 ∈ R} such that, with respect to this coordinate
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system, Q = (0, 0) and
B ∩�= B ∩ {(x, x3) : x3 >ψ(x)},

B ∩6 = B ∩ {(x, x3) : x3 = ψ(x)}.

By compactness, one can find a finite covering of 6 made of such coordinate systems; thus the Lipschitz
constant of those ψ can be taken to be uniformly bounded on 6.

Set �ε := {x ∈ R3
: d(x, 6) < ε} for ε > 0. Following [Behrndt et al. 2017, Appendix B], there exists

η > 0 small enough depending on 6 such that for every 0< ε ≤ η one can parametrize �ε as

�ε = {x6 + tν(x6) : x6 ∈6, t ∈ (−ε, ε)}, (1-2)

where ν(x6) denotes the outward (with respect to �) unit normal vector field on 6 evaluated at x6 .
This parametrization is a bijective correspondence between �ε and 6× (−ε, ε); it can be understood as
tangential and normal coordinates. For t ∈ [−η, η], we set

6t := {x6 + tν(x6) : x6 ∈6}. (1-3)

In particular, 6t = ∂�t \� if t > 0, 6t = ∂�|t | ∩� if t < 0 and 60 = 6. Let σt denote the surface
measure on 6t and, for simplicity of notation, we set σ := σ0, the surface measure on 6.

Given V ∈ L∞(R) with supp V ⊂ [−η, η] and 0< ε ≤ η define

Vε(t) :=
η

ε
V
(
ηt
ε

)
and, for x ∈ R3,

Vε(x) :=
{

Vε(t) if x ∈�ε, where x = x6 + tν(x6) for a unique (x6, t) ∈6× (−ε, ε),
0 if x 6∈�ε .

(1-4)

Finally, set
uε := |Vε |1/2, vε := sign(Vε)|Vε |1/2,

u(t) := |ηV (ηt)|1/2, v(t) := sign(V (ηt))u(t).
(1-5)

Note that uε, vε ∈ L∞(R3) are supported in �ε and u, v ∈ L∞(R) are supported in [−1, 1].

Definition 1.1. Given η, δ > 0, we say that V ∈ L∞(R) is (δ, η)-small if

supp V ⊂ [−η, η] and ‖V ‖L∞(R) ≤
δ

η
.

Observe that if V is (δ, η)-small then ‖V ‖L1(R) ≤ 2δ; this is the reason why we call it a “small”
potential.

In this article we study the asymptotic behavior, in a strong resolvent sense, of the couplings of the
free Dirac operator with electrostatic and Lorentz scalar short-range potentials of the forms

H + Vε and H +βVε, (1-6)

respectively, where Vε is given by (1-4) for some (δ, η)-small V with δ and η small enough only depending
on 6. By [Thaller 1992, Theorem 4.2], both couplings in (1-6) are self-adjoint operators on H 1(R3)4.
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Given η > 0 small enough so that (1-2) holds, and given u and v as in (1-5) for some V ∈ L∞(R) with
supp V ⊂ [−η, η], set

KV f (t) := 1
2 i
∫

R

u(t) sign(t − s)v(s) f (s) ds for f ∈ L1
loc(R). (1-7)

The main result in this article reads as follows.

Theorem 1.2. There exist η0, δ > 0 small enough only depending on 6 such that, for any 0 < η ≤ η0

and (δ, η)-small V,

H + Vε→ H + λeδ6 in the strong resolvent sense when ε→ 0, (1-8)

H +βVε→ H + λsβ δ6 in the strong resolvent sense when ε→ 0, (1-9)

where

λe :=

∫
R

v(t) ((1−K2
V )
−1u)(t) dt ∈ R, (1-10)

λs :=

∫
R

v(t) ((1+K2
V )
−1u)(t) dt ∈ R, (1-11)

and H + λeδ6 and H + λsβ δ6 are the electrostatic and Lorentz scalar shell interactions given by (2-9)
and (2-11), respectively.

To define λe in (1-10) and λs in (1-11), the invertibility of 1±K2
V is required. However, since KV

is a Hilbert–Schmidt operator, we know that ‖KV ‖L2(R)→L2(R) is controlled by the norm of its kernel
in L2(R×R), which is exactly ‖u‖L2(R)‖v‖L2(R) = ‖V ‖L1(R) ≤ 2δ < 1, assuming that δ < 1

2 and that
V is (δ, η)-small with η ≤ η0. We must stress that the way to construct λe and λs is the same as in the
1-dimensional case; see [Šeba 1989, Theorem 1].

From Theorem 1.2 we deduce that if a ∈ σ(H + λeδ6), where σ( · ) denotes the spectrum, then there
exists a sequence {aε} such that aε ∈ σ(H + Vε) and aε→ a when ε→ 0. The kind of instruments we
used to prove Theorem 1.2 suggest to us that the norm resolvent convergence may not hold in general;
thus we cannot ensure that the vice-versa spectral implication also holds. Nevertheless, if 6 is a sphere,
one has more information than in the general scenario; see [Mas and Pizzichillo 2017]. The Lorentz
scalar case is analogous.

The nonlinear behavior of the limiting coupling constant with respect to the approximating potentials
mentioned in the first paragraphs of the Introduction is depicted by (1-10) and (1-11); the reader may
compare this to the analogous result [Behrndt et al. 2017, Theorem 1.1] in the nonrelativistic scenario.
However, unlike in that result, in Theorem 1.2 we demand a smallness assumption on the potential, the
(δ, η)-smallness from Definition 1.1. We use this assumption in Corollary 3.3 below, where the strong
convergence of some inverse operators (1+ Bε(a))−1 when ε→ 0 is shown. The proof of Theorem 1.2
follows the strategy of [Behrndt et al. 2017, Theorem 1.1], but dealing with the Dirac operator instead of
the Laplacian makes a big difference at this point. In the nonrelativistic scenario, the fundamental solution
of −1+ a2 in R3 for a > 0 has exponential decay at infinity and behaves like 1/|x | near the origin,
which is locally integrable in R2 and thus its integral tends to zero as we integrate on shrinking balls in
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R2 centered at the origin. These facts are used in [Behrndt et al. 2017] to show that their corresponding
(1+Bε(a))−1 can be uniformly bounded in ε just by taking a big enough. In our situation, the fundamental
solution of H − a in R3 can still be taken with exponential decay at infinity for a ∈ C \R, but it is not
locally absolutely integrable in R2. Actually, its most singular part behaves like x/|x |3 near the origin,
and thus it yields a singular integral operator in R2. This means that the contribution near the origin
cannot be disregarded as in [Behrndt et al. 2017] just by shrinking the domain of integration and taking
a ∈ C \R big enough; something else is required. We impose smallness on V to obtain smallness on
Bε(a) and ensure the uniform invertibility of 1+ Bε(a) with respect to ε; this is the only point where the
(δ, η)-smallness is used.

Let η0, δ > 0 be as in Theorem 1.2. Take 0 < η ≤ η0 and V = 1
2τχ(−η,η) for some τ ∈ R such that

0< |τ |η ≤ 2δ. Then, arguing as in [Šeba 1989, Remark 1], one gets that∫
R

v (1−K2
V )
−1u =

∞∑
n=0

∫
R

vK2n
V u = 2 tan

( 1
2τη

)
.

Since V is (δ, η)-small, using (1-10) and (1-8) we obtain that

H + Vε→ H + 2 tan
( 1

2τη
)
δ6 in the strong resolvent sense when ε→ 0,

analogously to [Šeba 1989, Remark 1]. Similarly, one can check that
∫
v (1+K2

V )
−1u = 2 tanh

( 1
2τη

)
.

Then, (1-11) and (1-9) yield

H +β Vε→ H + 2 tanh
( 1

2τη
)
βδ6 in the strong resolvent sense when ε→ 0.

Regarding the structure of the paper, Section 2 is devoted to the preliminaries, which refer to basic
rudiments with a geometric measure-theory flavor and spectral properties of the short-range and shell
interactions appearing in Theorem 1.2. In Section 3 we present the first main step to proving Theorem 1.2,
a decomposition of the resolvent of the approximating interaction into three concrete operators. This type
of decomposition, which is made through a scaling operator, already appears in [Behrndt et al. 2017; Šeba
1989]. Section 3 also contains some auxiliary results concerning these three operators, whose proofs are
carried out later on, and the proof of Theorem 1.2; see Section 3A. Sections 4, 5, 6 and 7 are devoted to
proving all those auxiliary results presented in Section 3.

2. Preliminaries

As usual, in the sequel the letter “C” (or “c”) stands for some constant which may change its value at
different occurrences. We will also make use of constants with subscripts, both to highlight the dependence
on some other parameters and to stress that they retain their value from one equation to another. The
precise meaning of the subscripts will be clear from the context in each situation.

2A. Geometric and measure-theoretic considerations. In this section we recall some geometric and
measure-theoretic properties of 6 and the domains presented in (1-2). At the end, we provide some
growth estimates of the measures associated to the layers introduced in (1-3).
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The following definition and propositions correspond to Definition 2.2 and Propositions 2.4 and 2.6 in
[Behrndt et al. 2017], respectively. The reader should look at that paper for the details.

Definition 2.1 (Weingarten map). Let 6 be parametrized by the family {ϕi ,Ui , Vi }i∈I ; that is, I is a
finite set, Ui ⊂ R2, Vi ⊂ R3, 6 ⊂

⋃
i∈I Vi and ϕi (Ui )= Vi ∩6 for all i ∈ I. For

x = ϕi (u) ∈6 ∩ Vi

with u ∈Ui , i ∈ I, one defines the Weingarten map W (x) : Tx → Tx , where Tx denotes the tangent space
of 6 on x , as the linear operator acting on the basis vector {∂jϕi (u)}j=1,2 of Tx as

W (x) ∂jϕi (u) := −∂jν(ϕi (u)).

Proposition 2.2. The Weingarten map W (x) is symmetric with respect to the inner product induced by
the first fundamental form and its eigenvalues are uniformly bounded for all x ∈6.

Given 0< ε ≤ η and �ε as in (1-2), let iε :6× (−ε, ε)→�ε be the bijection defined by

iε(x6, t) := x6 + tν(x6).

For future purposes, we also introduce the projection P6 :�ε→6 given by

P6(x6 + tν(x6)) := x6. (2-1)

For 1≤ p <+∞, let L p(�ε) and L p(6× (−1, 1)) be the Banach spaces endowed with the norms

‖ f ‖p
L p(�ε)

:=

∫
�ε

| f |p dL, ‖ f ‖p
L p(6×(−1,1)) :=

∫ 1

−1

∫
6

| f |p dσ dt, (2-2)

respectively, where L denotes the Lebesgue measure in R3. The Banach spaces corresponding to the
endpoint case p =+∞ are defined, as usual, in terms of essential suprema with respect to the measures
associated to �ε and 6× (−1, 1) in (2-2), respectively.

Proposition 2.3. If η > 0 is small enough, there exist 0< c1, c2 <+∞ such that

c1‖ f ‖L1(�ε) ≤ ‖ f ◦ iε‖L1(6×(−ε,ε)) ≤ c2‖ f ‖L1(�ε) for all f ∈ L1(�ε), 0< ε ≤ η.

Moreover, if W denotes the Weingarten map associated to 6 from Definition 2.1,∫
�ε

f (x) dx =
∫ ε

−ε

∫
6

f (x6 + tν(x6)) det(1− tW (x6)) dσ(x6) dt for all f ∈ L1(�ε). (2-3)

The eigenvalues of the Weingarten map W (x) are the principal curvatures of 6 on x ∈6, and they are
independent of the parametrization of 6. Therefore, the term det(1− tW (x6)) in (2-3) is also independent
of the parametrization of 6.

Remark 2.4. Let h : �ε → (−ε, ε) be defined by h(x6 + tν(x6)) := t . Then |∇h| = 1 in �ε , so the
coarea formula, see for example [Ambrosio et al. 2000, Remark 2.94], gives∫

�ε

f (x) dx =
∫ ε

−ε

∫
6t

f (x) dσt(x) dt for all f ∈ L1(�ε).
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In view of (2-3), one deduces that∫
6t

f dσt =

∫
6

f (x6 + tν(x6)) det(1− tW (x6)) dσ(x6) (2-4)

for all t ∈ (−ε, ε) and all f ∈ L1(6t).

In the following lemma we give uniform growth estimates on the measures σt for t ∈ [−η, η] that
exhibit their 2-dimensional nature. These estimates will be used many times in the sequel, mostly for the
case of σ.

Lemma 2.5. If η > 0 is small enough, there exist c1, c2 > 0 such that

σt(Br (x))≤ c1r2 for all x ∈ R3, r > 0, t ∈ [−η, η], (2-5)

σt(Br (x))≥ c2r2 for all x ∈6t , 0< r < 2 diam(�η), t ∈ [−η, η], (2-6)

where Br (x) is the ball of radius r centered at x.

Proof. We first prove (2-5). Let r0 > 0 be a constant small enough, to be fixed later on. If r ≥ r0, then

σt(Br (x))≤ max
t∈[−η,η]

σt(R
3)≤ C =

C
r2

0
r2

0 ≤ C0r2,

where C0 := C/r2
0 > 0 only depends on r0 and η. Therefore, we can assume that r < r0. Let us see that

we can also suppose that x ∈6t . In fact, if η and r0 are small enough and 0< r < r0, given x ∈ R3 one
can always find x̃ ∈6t such that σt(Br (x))≤ 2σt(Br (x̃)) (if x ∈�η just take x̃ = P6x+ tν(P6x)). Then
if (2-5) holds for x̃ , one gets σt(Br (x))≤ 2σt(Br (x̃))≤ Cr2, as desired.

Thus, it is enough to prove (2-5) for x ∈6t and r < r0. If r0 and η are small enough, covering6t by local
chards we can find an open and bounded set Vt,r ⊂ R2 and a C1 diffeomorphism ϕt : R

2
→ ϕt(R

2)⊂ R3

such that ϕt(Vt,r ) = 6t ∩ Br (x). By means of a rotation if necessary, we can further assume that
ϕt is of the form ϕt(y′) = (y′, Tt(y′)), i.e., ϕt is the graph of a C1 function Tt : R2

→ R, and that
maxt∈[−η,η] ‖∇Tt‖∞ ≤C (this follows from the regularity of 6). Then, if x ′ ∈ Vt,r is such that ϕt(x ′)= x ,
for any y′ ∈ Vt,r we get

r2
≥ |ϕt(y′)−ϕt(x ′)|2 ≥ |y′− x ′|2,

which means that Vt,r ⊂ {y′ ∈R2
: |x ′− y′|< r} =: B ′⊂R2. Denoting by H2 the 2-dimensional Hausdorff

measure, from [Mattila 1995, Theorem 7.5] we get

σt(Br (x))=H2(ϕt(Vt,r ))≤H2(ϕt(B ′))≤ ‖∇ϕt‖
2
∞
H2(B ′)≤ Cr2

for all t ∈ [−η, η], so (2-5) is finally proved.
Let us now deal with (2-6). Given r0 > 0, by the regularity and boundedness of 6 it is clear that

inft∈[−η,η], x∈6t σt(Br0(x))≥ C > 0. As before, for any r0 ≤ r < 2 diam(�η) we easily see that

σt(Br (x))≥ σt(Br0(x))≥ C =
C

4 diam(�η)2
4 diam(�η)2 ≥ C1r2,
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where C1 := C/(4 diam(�η)2) > 0 only depends on r0 and η. Hence (2-6) is proved for all r0 ≤ r <
2 diam(�η).

The case 0< r < r0 is treated, as before, using the local parametrization of 6t around x by the graph
of a function. Taking η and r0 small enough, we may assume the existence of Vt,r and ϕt as above, so
let us set ϕt(x ′) = x for some x ′ ∈ Vt,r . The fact that ϕt is of the form ϕt(y′) = (y′, Tt(y′)) and that
ϕt(Vt,r ) = 6t ∩ Br (x) implies B ′′ := {y′ ∈ R2

: |x ′− y′| < C2r} ⊂ Vt,r for some C2 > 0 small enough
only depending on maxt∈[−η,η] ‖∇Tt‖∞, which is finite by assumption. Then, we easily see that

σt(Br (x))= σt(ϕt(Vt,r ))≥ σt(ϕt(B ′′))=
∫

B ′′

√
1+ |∇Tt(y′)|2 dy′ ≥

∫
B ′′

dy′ = Cr2,

where C > 0 only depends on C2. �

2B. Shell interactions for Dirac operators. In this section we briefly recall some useful instruments
regarding the δ-shell interactions studied in [Arrizabalaga et al. 2014; 2015]. The reader should look at
[Arrizabalaga et al. 2015, Sections 2 and 5] for the details.

Let a ∈ C. A fundamental solution of H − a is given by

φa(x)=
e−
√

m2−a2|x |

4π |x |

(
a+mβ + (1+

√
m2− a2|x |) iα ·

x
|x |2

)
for x ∈ R3

\ {0},

where
√

m2− a2 is chosen with positive real part whenever a ∈ (C \R)∪ ((−m,m)×{0}). To guarantee
the exponential decay of φa at∞, from now on we assume that a ∈ (C \R)∪ ((−m,m)×{0}). Given
G ∈ L2(R3)4 and g ∈ L2(σ)4 we define

8a(G, g)(x) :=
∫

R3
φa(x − y)G(y) dy+

∫
6

φa(x − y)g(y) dσ(y) for x ∈ R3
\6. (2-7)

Then, 8a
: L2(R3)4× L2(σ)4→ L2(R3)4 is linear and bounded and 8a(G, 0) ∈ H 1(R3)4. We also set

8a
σG := trσ(8a(G, 0)) ∈ L2(σ)4,

where trσ is the trace operator on 6. Finally, given x ∈6 we define

Ca
σg(x) := lim

ε↘0

∫
6∩{|x−y|>ε}

φa(x − y)g(y) dσ(y) and Ca
±

g(x) := lim
�±3y nt

→x
8a(0, g)(y),

where �± 3 y nt
→ x means that y tends to x nontangentially from the interior/exterior of �, respectively;

i.e., �+ :=� and �− := R3
\�. The operators Ca

σ and Ca
±

are linear and bounded in L2(σ)4. Moreover,
the following Plemelj–Sokhotski jump formulae hold:

Ca
±
=∓

1
2 i(α · ν)+Ca

σ. (2-8)

Let λe ∈ R. Using 8a, we define the electrostatic δ-shell interaction appearing in Theorem 1.2 as

D(H + λeδ6) :=
{
80(G, g) : G ∈ L2(R3)4, g ∈ L2(σ)4, λe8

0
σG =−(1+ λeC0

σ)g
}
,

(H + λeδ6)ϕ := Hϕ+ 1
2λe(ϕ++ϕ−)σ for ϕ ∈ D(H + λeδ6),

(2-9)
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where Hϕ in the right-hand side of the second statement in (2-9) is understood in the sense of distributions
and ϕ± denotes the boundary traces of ϕ when one approaches 6 from �±. In particular, one has
(H+λeδ6)ϕ =G ∈ L2(R3)4 for all ϕ =80(G, g) ∈ D(H+λeδ6). We should mention that one recovers
the free Dirac operator in H 1(R3)4 when λe = 0.

From [Arrizabalaga et al. 2015, Section 3.1] we know that H + λeδ6 is self-adjoint for all λe 6= ±2.
Additionally, if λe 6= 0, given a ∈ (−m,m) and ϕ =80(G, g) ∈ D(H + λeδ6),

(H + λeδ6 − a)ϕ = 0 if and only if
( 1
λe
+Ca

σ

)
g = 0. (2-10)

This corresponds to the Birman–Schwinger principle in the electrostatic δ-shell interaction setting. Since
the case λe = 0 corresponds to the free Dirac operator, it can be excluded from this consideration because
it is well known that the free Dirac operator doesn’t have pure point spectrum. Moreover, the relation
(2-10) can be easily extended to the case of a ∈ (C \R)∪ ((−m,m)× {0}) (one still has exponential
decay of a fundamental solution of H − a).

In the same vein, given λs ∈ R, we define the Lorentz scalar δ-shell interaction as

D(H + λsβ δ6) :=
{
80(G, g) : G ∈ L2(R3)4, g ∈ L2(σ)4, λs8

0
σG =−(β + λsC0

σ)g
}
,

(H + λsβ δ6)ϕ := Hϕ+ 1
2λsβ(ϕ++ϕ−)σ for ϕ ∈ D(H + λsβ δ6).

(2-11)

From [Arrizabalaga et al. 2015, Section 5.1] we know that H + λsβ δ6 is self-adjoint for all λs ∈ R.
Additionally, given λs 6= 0, a ∈ (C \R)∪ ((−m,m)×{0}) and ϕ =80(G, g) ∈ D(H +λsβ δ6), arguing
as in (2-10) one gets

(H + λsβ δ6 − a)ϕ = 0 if and only if
(
β

λs
+Ca

σ

)
g = 0. (2-12)

The following lemma describes the resolvent operator of the δ-shell interactions presented in (2-9) and
(2-11).

Lemma 2.6. Given λe, λs ∈ R with λe 6= ±2, a ∈ C \R and F ∈ L2(R3)4, the following identities hold:

(H + λeδ6 − a)−1 F = (H − a)−1 F − λe8
a(0, (1+ λeCa

σ)
−18a

σF), (2-13)

(H + λsβ δ6 − a)−1 F = (H − a)−1 F − λs8
a(0, (β + λsCa

σ)
−18a

σF). (2-14)

Proof. We will only show (2-13); the proof of (2-14) is analogous. Since H + λeδ6 is self-adjoint for
λe 6= ±2, we know (H+λeδ6−a)−1 is well-defined and bounded in L2(R3)4. For λe = 0 there is nothing
to prove, so we assume λe 6= 0.

Let ϕ =80(G, g) ∈ D(H + λeδ6) as in (2-9) and F = (H + λeδ6 − a)ϕ ∈ L2(R3)4. Then,

F = (H + λeδ6 − a)80(G, g)= G− a80(G, g). (2-15)

If we apply H on both sides of (2-15) and we use that H80(G, g)= G+ gσ in the sense of distributions,
we get HF = HG − a(G + gσ); that is, (H − a)G = (H − a)F + aF + agσ. Convolving with φa

the left- and right-hand sides of this last equation, we obtain G = F + a8a(F, 0)+ a8a(0, g); thus
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G− F = a8a(F, g). This, combined with (2-15), yields

80(G, g)=8a(F, g). (2-16)

Therefore, taking nontangential boundary values on 6 from inside/outside of � in (2-16) we obtain

80
σG+C0

±
g =8a

σF +Ca
±

g.

Since 80(G, g) ∈ D(H + λeδ6), thanks to (2-9) and (2-8) we conclude that

8a
σF =−

( 1
λe
+Ca

σ

)
g. (2-17)

Since a ∈C\R and H+λeδ6 is self-adjoint for λe 6=±2, by (2-10) we see that Kernel(1/λe+Ca
σ)={0}.

Moreover, using the ideas of the proof of [Arrizabalaga et al. 2014, Lemma 3.7] and that λe 6= ±2, one
can show that 1/λe+Ca

σ has closed range. Finally, since we are taking the square root so that√
m2− a2 =

√
m2− ā2,

following Lemma 3.1 of the same paper we see that (φa)t(x)=φā(−x). Here, (φa)t denotes the transpose
matrix of φa. Thus we conclude that (Range(1/λe+Ca

σ))
⊥
=Kernel(1/λe+C ā

σ)= {0}, and so 1/λe+Ca
σ

is invertible. Then, by (2-17), we obtain

g =−
( 1
λe
+Ca

σ

)−1
8a

σF. (2-18)

Thanks to (2-16) and (2-18), we finally get

(H + λeδ6 − a)−1 F = ϕ =80(G, g)=8a(F, g)=8a
(

F,−
( 1
λe
+Ca

σ

)−1
8a

σF
)

=8a(F, 0)− λe8
a(0, (1+ λeCa

σ)
−18a

σF),

and the lemma follows because 8a( · , 0)= (H − a)−1 as a bounded operator in L2(R3)4. �

2C. Coupling the free Dirac operator with short-range potentials as in (1-6). Given Vε as in (1-4), set

H e
ε := H + Vε and H s

ε := H +βVε .

Recall that these operators are self-adjoint on H 1(R3)4. In the following, we give the resolvent formulae
for H e

ε and H s
ε .

Throughout this section we make an abuse of notation. Remember that, given G ∈ L2(R3)4 and
g ∈ L2(σ)4, in (2-7) we already defined 8a(G, g). However, now we make the identification 8a( · )≡

8a( · , 0); that is, in this section we identify 8a with an operator acting on L2(R3)4 by always assuming
that the second entrance in8a vanishes. Additionally, in this section we use the symbol σ( · ) to denote the
spectrum of an operator, the reader should not confuse it with the symbol σ for the surface measure on 6.

Proposition 2.7. Let uε and vε be as in (1-5). Then:

(i) a ∈ ρ(H e
ε ) if and only if −1 ∈ ρ(uε8avε), where ρ( · ) denotes the resolvent set.
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(ii) a ∈ σpp(H e
ε ) if and only if −1 ∈ σpp(uε8avε), where σpp( · ) denotes the pure point spectrum.

Moreover, the multiplicity of a as an eigenvalue of H e
ε coincides with the multiplicity of −1 as

eigenvalue of uε8avε .

Furthermore, the following resolvent formula holds:

(H e
ε − a)−1

=8a
−8avε(1+ uε8avε)

−1uε8a. (2-19)

Proof. To prove (i) and (ii) it is enough to verify that the assumptions of [Konno and Kuroda 1966,
Lemma 1] are satisfied. That is, we just need to show that a ∈ σpp(H e

ε ) if and only if −1 ∈ σpp(uε8avε)

and that there exists a ∈ ρ(H e
ε ) such that −1 ∈ ρ(uε8avε).

Assume that a ∈ σpp(H e
ε ). Then (H+Vε−a)F = 0 for some F ∈ L2(R3)4 with F 6≡ 0, so (H−a)F =

−VεF . Using that σ(H)= σess(H), where σess( · ) denotes the essential spectrum, it is not hard to show
that indeed VεF 6≡ 0. Since Vε = vεuε , by setting G = uεF ∈ L2(R3)4 we get that G 6≡ 0 and

(H − a)F =−vεG. (2-20)

From [Thaller 1992, Theorem 4.7] we know that σess(H + Vε)= σess(H)= σ(H). Since σ(H e
ε ) is the

disjoint union of the pure point spectrum and the essential spectrum, we have σpp(H e
ε )⊂ ρ(H), which

means that (H − a)−1
=8a is a bounded operator on L2(R3)4. By (2-20), F =−8avεG. If we multiply

both sides of this last equation by uε we obtain G = uεF =−uε8avεG, so −1∈ σpp(uε8avε) as desired.
On the contrary, assume now that there exists a nontrivial G ∈ L2(R3)4 such that uε8avεG =−G. If

we take F = 8avεG ∈ L2(R3), we easily see that F 6≡ 0 and VεF = −(H − a)F , which means that a
is an eigenvalue of H e

ε .
To conclude the first part of the proof, it remains to show that there exists a ∈ ρ(H e

ε ) such that
−1 ∈ ρ(uε8avε). By [Thaller 1992, Theorem 4.23] we know that σpp(H e

ε ) is a finite sequence contained
in (−m,m), so we can chose a ∈ (−m,m)∩ ρ(H e

ε ). Moreover, by [Šeba 1988, Lemma 2], uε8avε is
a compact operator. Then, by Fredholm’s alternative, either −1 ∈ σpp(uε8avε) or −1 ∈ ρ(uε8avε). But
we can discard the first option, otherwise a ∈ σpp(H e

ε ), in contradiction with a ∈ ρ(H e
ε ).

Let us now prove (2-19). Writing Vε = vεuε and using that (H − a)−1
=8a, we have

(H e
ε − a)(8a

−8avε(1+ uε8avε)
−1uε8a)

= 1− vε(1+ uε8avε)
−1uε8a

+ vεuε8a
− vε(−1+ 1+ uε8avε)(1+ uε8avε)

−1uε8a

= 1− vε(1+ uε8avε)
−1uε8a

+ vεuε8a
+ vε(1+ uε8avε)

−1uε8a
− vεuε8a

= 1,
as desired. �

The following result can be proved in the same way; we leave the details for the reader.

Proposition 2.8. Let uε and vε be as in (1-5). Then:

(i) a ∈ ρ(H s
ε ) if and only if −1 ∈ ρ(βuε8avε).

(ii) a ∈ σpp(H s
ε ) if and only if −1 ∈ σpp(βuε8avε). Moreover, the multiplicity of a as an eigenvalue of

H s
ε coincides with the multiplicity of −1 as eigenvalue of βuε8avε .

Furthermore, the following resolvent formula holds:

(H s
ε − a)−1

=8a
−8avε(β + uε8avε)

−1uε8a. (2-21)
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3. The main decomposition and the proof of Theorem 1.2

Following the ideas in [Šeba 1989; Behrndt et al. 2017], the first key step to proving Theorem 1.2 is to
decompose (H e

ε − a)−1 and (H s
ε − a)−1, using a scaling operator, in terms of the operators Aε(a), Bε(a)

and Cε(a) introduced below (see Lemma 3.1).
Let η0 > 0 be some constant small enough to be fixed later on. In particular, we take η0 so that (1-2)

holds for all 0< ε ≤ η0. Given 0< ε ≤ η0, define

Iε : L2(6× (−ε, ε))4→ L2(�ε)
4 by (Iε f )(x6 + tν(x6)) := f (x6, t),

Sε : L2(6× (−1, 1))4→ L2(6× (−ε, ε))4 by (Sεg)(x6, t) :=
1
√
ε

g
(

x6,
t
ε

)
.

Thanks to the regularity of 6, Iε is well-defined, bounded and invertible for all 0< ε ≤ η0 if η0 is small
enough. Note also that Sε is a unitary and invertible operator.

Let 0< η ≤ η0, V ∈ L∞(R) with supp V ⊂ [−η, η] and u, v ∈ L∞(R) be the functions with support
in [−1, 1] introduced in (1-5); that is,

u(t) := |ηV (ηt)|1/2 and v(t) := sign(V (ηt))u(t). (3-1)

Using the notation related to (2-3), for 0< ε ≤ η0 we consider the integral operators

Aε(a) : L2(6× (−1, 1))4→ L2(R3)4,

Bε(a) : L2(6× (−1, 1))4→ L2(6× (−1, 1))4,

Cε(a) : L2(R3)4→ L2(6× (−1, 1))4
(3-2)

defined by

(Aε(a)g)(x) :=
∫ 1

−1

∫
6

φa(x − y6 − εsν(y6))v(s) det(1− εsW (y6))g(y6, s) dσ(y6) ds,

(Bε(a)g)(x6, t) := u(t)
∫ 1

−1

∫
6

φa(x6 + εtν(x6)− y6 − εsν(y6))v(s)

× det(1− εsW (y6))g(y6, s) dσ(y6) ds,

(Cε(a)g)(x6, t) := u(t)
∫

R3
φa(x6 + εtν(x6)− y)g(y) dy.

(3-3)

Recall that, given F ∈ L2(R3)4 and f ∈ L2(σ)4, in (2-7) we defined 8a(F, f ). However, in Section 2C
we made the identification 8a( · )≡8a( · , 0), which enabled us to write (H − a)−1

=8a. Here, and in
the sequel, we recover the initial definition for 8a given in (2-7) and we assume that a ∈ C \R; now we
must write (H − a)−1

=8a( · , 0), which is a bounded operator in L2(R3)4.
Proceeding as in the proof of [Behrndt et al. 2017, Lemma 3.2], one can show the following result.

Lemma 3.1. The following operator identities hold for all 0< ε ≤ η:

Aε(a)=8a( · , 0)vε Iε Sε,

Bε(a)= S−1
ε I−1

ε uε 8a( · , 0)vε Iε Sε,

Cε(a)= S−1
ε I−1

ε uε 8a( · , 0).

(3-4)
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Moreover, the following resolvent formulae hold:

(H e
ε − a)−1

= (H − a)−1
+ Aε(a)(1+ Bε(a))−1Cε(a), (3-5)

(H s
ε − a)−1

= (H − a)−1
+ Aε(a)(β + Bε(a))−1Cε(a). (3-6)

In (3-4), Aε(a)=8a( · , 0)vε Iε Sε means that Aε(a)g=8a(vε Iε Sε g, 0) for all g ∈ L2(6×(−1, 1))4,
and similarly for Bε(a) and Cε(a). Since both Iε and Sε are an isometry, V ∈ L∞(R) is supported in
[−η, η] and 8a( · , 0) is bounded by assumption, from (3-4) we deduce that Aε(a), Bε(a) and Cε(a) are
well-defined and bounded, so (3-2) is fully justified. Once (3-4) is proved, the resolvent formulae (3-5)
and (3-6) follow from (2-19) and (2-21), respectively. We stress that, in (2-19) and (2-21), there is the
abuse of notation in the definition of 8a, commented on before.

Lemma 3.1 connects (H e
ε − a)−1 and (H s

ε − a)−1 to Aε(a), Bε(a) and Cε(a). When ε→ 0, the limit
of the former ones is also connected to the limit of the latter ones. We now introduce those limit operators
for Aε(a), Bε(a) and Cε(a) when ε→ 0. Let

A0(a) : L2(6× (−1, 1))4→ L2(R3)4,

B0(a) : L2(6× (−1, 1))4→ L2(6× (−1, 1))4,

B ′ : L2(6× (−1, 1))4→ L2(6× (−1, 1))4,

C0(a) : L2(R3)4→ L2(6× (−1, 1))4

(3-7)

be the operators given by

(A0(a)g)(x) :=
∫ 1

−1

∫
6

φa(x − y6)v(s)g(y6, s) dσ(y6) ds,

(B0(a)g)(x6, t) := lim
ε→0

u(t)
∫ 1

−1

∫
|x6−y6 |>ε

φa(x6 − y6)v(s)g(y6, s) dσ(y6) ds,

(B ′g)(x6, t) := (α · ν(x6)) 1
2 i u(t)

∫ 1

−1
sign(t − s)v(s)g(x6, s) ds,

(C0(a)g)(x6, t) := u(t)
∫

R3
φa(x6 − y)g(y) dy.

(3-8)

The next theorem corresponds to the core of this article. Its proof is quite technical and is carried out
in Sections 4, 5 and 6. We also postpone the proof of (3-7) to those sections, where each operator is
studied in detail. Anyway, the boundedness of B ′ is trivial.

Theorem 3.2. The following convergences of operators hold in the strong sense:

Aε(a)→ A0(a) when ε→ 0, (3-9)

Bε(a)→ B0(a)+ B ′ when ε→ 0, (3-10)

Cε(a)→ C0(a) when ε→ 0. (3-11)

The proof of the following corollary is also postponed to Section 7. It combines Theorem 3.2, (3-5)
and (3-6), but it requires some fine estimates developed in Sections 4, 5 and 6.
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Corollary 3.3. There exist η0, δ > 0 small enough only depending on 6 such that, for any a ∈C\R with
|a| ≤ 1, 0< η ≤ η0 and (δ, η)-small V (see Definition 1.1), the following convergences of operators hold
in the strong sense:

(H + Vε − a)−1
→ (H − a)−1

+ A0(a)(1+ B0(a)+ B ′)−1C0(a) when ε→ 0,

(H +βVε − a)−1
→ (H − a)−1

+ A0(a)(β + B0(a)+ B ′)−1C0(a) when ε→ 0.

In particular, (1 + B0(a) + B ′)−1 and (β + B0(a) + B ′)−1 are well-defined bounded operators in
L2(6× (−1, 1))4.

3A. Proof of Theorem 1.2. Thanks to [Reed and Simon 1980, Theorem VIII.19], to prove the theorem
it is enough to show that, for some a ∈ C \R, the following convergences of operators hold in the strong
sense:

(H + Vε − a)−1
→ (H + λeδ6 − a)−1 when ε→ 0, (3-12)

(H +βVε − a)−1
→ (H + λsβδ6 − a)−1 when ε→ 0. (3-13)

Thus, from now on, we fix a ∈ C \R with |a| ≤ 1.
We introduce the operators

V̂ : L2(6× (−1, 1))4→ L2(6)4 and Û : L2(6)4→ L2(6× (−1, 1))4

given by

V̂ f (x6) :=
∫ 1

−1
v(s) f (x6, s) ds and Û f (x6, t) := u(t) f (x6).

Observe that, by Fubini’s theorem,

A0(a)=8a(0, · )V̂, B0(a)= ÛCa
σV̂, C0(a)= Û8a

σ. (3-14)

Hence, from Corollary 3.3 and (3-14) we deduce that, in the strong sense,

(H + Vε − a)−1
→ (H − a)−1

+8a(0, · )V̂ (1+ ÛCa
σV̂ + B ′)−1Û8a

σ when ε→ 0, (3-15)

(H +βVε − a)−1
→ (H − a)−1

+8a(0, · )V̂ (β + ÛCa
σV̂ + B ′)−1Û8a

σ when ε→ 0. (3-16)

For convenience of notation, set

K̃g(x6, t) := KV (g(x6, · ))(t) for g ∈ L2(6× (−1, 1)),

where KV is as in (1-7). Then, we get

1+ B ′ = I4+ (α · ν)K̃I4 =

(
I2 (σ · ν)K̃I2

(σ · ν)K̃I2 I2

)
.

Here, σ := (σ1, σ2, σ3), see (1-1), I4 denotes the 4× 4 identity matrix and K̃I4 denotes the diagonal 4× 4
operator matrix whose nontrivial entries are K̃, and analogously for K̃I2. Since the operators that compose
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the matrix 1+ B ′ commute, if we set K := K̃I4, we get

(1+ B ′)−1
= (1− K̃2)−1

⊗

(
I2 −(σ · ν)K̃I2

−(σ · ν)K̃I2 I2

)
= (1−K2)−1

− (α · ν)(1−K2)−1K. (3-17)

With this at hand, we can compute

(1+ ÛCa
σV̂ + B ′)−1

=
(
1+ (1+ B ′)−1ÛCa

σV̂
)−1
(1+ B ′)−1

=
(
1+ (1−K2)−1ÛCa

σV̂ − (α · ν)(1−K2)−1KÛCa
σV̂
)−1

◦
(
(1−K2)−1

− (α · ν)(1−K2)−1K
)
. (3-18)

Notice that

V̂
(
1+ (1−K2)−1ÛCa

σV̂ − (α · ν)(1−K2)−1KÛCa
σV̂
)

=
(
1+ V̂ (1−K2)−1ÛCa

σ− (α · ν)V̂ (1−K2)−1KÛCa
σ

)
V̂,

which obviously yields

V̂
(
1+ (1−K2)−1ÛCa

σV̂ − (α · ν)(1−K2)−1KÛCa
σV̂
)−1

=
(
1+ V̂ (1−K2)−1ÛCa

σ− (α · ν)V̂ (1−K2)−1KÛCa
σ

)−1V̂. (3-19)

Additionally, by the definition of KV in (1-7), we see that

V̂ (1−K2)−1Û =
(∫

R

v (1−K2
V )
−1u

)
I4 = λeI4,

V̂ (1−K2)−1KÛ =
(∫

R

v (1−K2
V )
−1KV u

)
I4 = 0.

(3-20)

Indeed, from (1-10) in Theorem 1.2, λe =
∫

R
v (1−K2

V )
−1u. Let us focus on

∫
R
v (1−K2

V )
−1KV u. Note

that, for any n ≥ 0,∫
R

vK2n+1
V u=

(
−

1
2 i
)2n+1

∫
(−η,η)2n+2

V(t0)V(t1) · · ·V(t2n+1)sign(t0−t1) · · ·sign(t2n−t2n+1)dt0 dt1 · · · dt2n+1.

Set sj := t2n+1− j for j ∈ {0, . . . , 2n+ 1}. Then,

sign(t0− t1) · · · sign(t2n − t2n+1)= (−1)2n+1 sign(s0− s1) · · · sign(s2n − s2n+1);

thus, by Fubini’s theorem,
∫

R
vK2n+1

V u = 0. This implies
∫

R
v (1−K2

V )
−1KV u = 0 by a Neumann series

argument, and therefore V̂ (1−K2)−1KÛ = 0.
Hence, combining (3-19) and (3-20) we have

V̂
(
1+ (1−K2)−1ÛCa

σV̂ − (α · ν)(1−K2)−1KÛCa
σV̂
)−1
= (1+ λeCa

σ )
−1V̂. (3-21)

Then, from (3-18), (3-21) and (3-20), we finally get

8a(0, · )V̂ (1+ ÛCa
σV̂ + B ′)−1Û8a

σ =8
a(0, · )(1+ λeCa

σ)
−1λe8

a
σ.

This last identity combined with (3-15) and (2-13) yields (3-12).
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The proof of (3-13) follows the same lines. Similarly to (3-17),

(β + B ′)−1
= (1+K2)−1β − (α · ν)(1+K2)−1.

One can then make the computations analogous to (3-18)–(3-21). Since

λs =

∫
R

v (1+K2
V )
−1u,

we now get

8a(0, · )V̂ (β + ÛCa
σV̂ + B ′)−1Û8a

σ =8
a(0, · )(β + λsCa

σ)
−1λs8

a
σ.

From this, (3-16) and (2-14) we obtain (3-13). This finishes the proof of Theorem 1.2, except for the
boundedness stated in (3-7), the proof of Corollary 3.3 in Section 7, and Theorem 3.2, whose proof is
broken up as follows: (3-9) in Section 6, (3-10) in Section 5 and (3-11) in Section 4.

4. Proof of (3-11): Cε(a)→ C0(a) in the strong sense when ε→ 0

Recall from (3-3) and (3-8) that Cε(a) with 0< ε ≤ η0 and C0(a) are defined by

(Cε(a)g)(x6, t)= u(t)
∫

R3
φa(x6 + εtν(x6)− y)g(y) dy,

(C0(a)g)(x6, t)= u(t)
∫

R3
φa(x6 − y)g(y) dy.

Let us first show that Cε(a) is bounded from L2(R3)4 to L2(6×(−1, 1))4 with a norm uniformly bounded
on 0≤ ε ≤ η0. For this purpose, we write

(Cε(a)g)(x6, t)= u(t)(φa
∗ g)(x6 + εtν(x6)), (4-1)

where φa
∗ g denotes the convolution of the matrix-valued function φa with the vector-valued function

g∈ L2(R3)4. Since we are assuming that a∈C\R and, in the definition of φa, we are taking
√

m2− a2 with
positive real part, the same arguments as the ones in the proof of [Arrizabalaga et al. 2014, Lemma 2.8]
(essentially Plancherel’s theorem) show that

‖φa
∗ g‖H1(R3)4 ≤ C‖g‖L2(R3)4 for all g ∈ L2(R3)4,

where C > 0 only depends on a. Additionally, thanks to the C2 regularity of 6, if η0 is small enough it is
not hard to show that the Sobolev trace inequality from H 1(R3)4 to L2(6εt)

4 holds for all 0 ≤ ε ≤ η0

and t ∈ [−1, 1] with a constant only depending on η0 (and 6, of course). Combining these two facts, we
obtain that

‖φa
∗ g‖L2(6εt )4 ≤ C‖g‖L2(R3)4 for all g ∈ L2(R3)4, 0≤ ε ≤ η0 and t ∈ [−1, 1]. (4-2)

By Proposition 2.2, if η0 is small enough there exists C > 0 such that

C−1
≤ det(1− εtW (P6x))≤ C for all 0< ε ≤ η0, t ∈ (−1, 1) and x ∈6εt . (4-3)
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Therefore, an application of (4-1), (2-4), (4-3) and (4-2) finally yields

‖Cε(a)g‖2L2(6×(−1,1))4 =

∫ 1

−1

∫
6

∣∣u(t)(φa
∗ g)(x6 + εtν(x6))

∣∣2 dσ(x6) dt

≤ ‖u‖2L∞(R)

∫ 1

−1

∫
6εt

∣∣det(1− εtW (P6x))−1/2(φa
∗ g)(x)

∣∣2 dσεt(x) dt

≤ C‖u‖2L∞(R)

∫ 1

−1
‖φa
∗ g‖2L2(6εt )4

dt ≤ C‖u‖2L∞(R)‖g‖
2
L2(R3)4

.

That is, if η0 is small enough there exists C1 > 0 only depending on η0 and a such that

‖Cε(a)‖L2(R3)4→L2(6×(−1,1))4 ≤ C1‖u‖L∞(R) for all 0≤ ε ≤ η0. (4-4)

In particular, the boundedness stated in (3-7) holds for C0(a).
In order to prove the strong convergence of Cε(a) to C0(a) when ε→ 0, fix g ∈ L2(R3)4. We must

show that, given δ > 0, there exists ε0 > 0 such that

‖Cε(a)g−C0(a)g‖L2(6×(−1,1))4 ≤ δ for all 0≤ ε ≤ ε0. (4-5)

For every 0< d ≤ η0, using (4-4) we can estimate

‖Cε(a)g−C0(a)g‖L2(6×(−1,1))4

≤‖Cε(a)(χ�d g)‖L2(6×(−1,1))4+‖C0(a)(χ�d g)‖L2(6×(−1,1))4+‖(Cε(a)−C0(a))(χR3\�d g)‖L2(6×(−1,1))4

≤ 2C1‖u‖L∞(R)‖χ�d g‖L2(R3)4+‖(Cε(a)−C0(a))(χR3\�d g)‖L2(6×(−1,1))4 . (4-6)

On one hand, since g ∈ L2(R3)4 and L(6) = 0 (L denotes the Lebesgue measure in R3), we can take
d > 0 small enough so that

‖χ�d g‖L2(R3)4 ≤
δ

4C1‖u‖L∞(R)
. (4-7)

On the other hand, note that

|(x6 + εtν(x6))− x6| = ε|t ||ν(x6)| ≤ ε ≤ 1
2 d = 1

2 dist(6,R3
\�d)≤

1
2 |x6 − y| (4-8)

for all 0≤ ε ≤ 1
2 d, t ∈ (−1, 1), x6 ∈6 and y ∈ R3

\�d .
As we said before, we are assuming that a ∈C\R and, in the definition of φa, we are taking

√
m2− a2

with positive real part, so the components of φa(x) decay exponentially as |x | →∞. In particular, there
exist C, r > 0 only depending on a such that

|∂φa(x)| ≤ Ce−r |x | for all |x | ≥ 1,

|∂φa(x)| ≤ C |x |−3 for all 0< |x |< 1,
(4-9)

where by the left-hand side in (4-9) we mean the absolute value of any derivative of any component of the
matrix φa(x). Therefore, using the mean value theorem, (4-9) and (4-8), we see that there exists Ca,d > 0



722 ALBERT MAS AND FABIO PIZZICHILLO

only depending on a and d such that∣∣φa(x6 + εtν(x6)− y)−φa(x6 − y)
∣∣≤ Ca,d

ε

|x6 − y|3

for all 0≤ ε ≤ 1
2 d, t ∈ (−1, 1), x6 ∈6 and y ∈ R3

\�d . Hence, we can easily estimate∣∣(Cε(a)−C0(a))(χR3\�d g)(x6, t)
∣∣

≤ ‖u‖L∞(R)

∫
R3\�d

∣∣φa(x6 + εtν(x6)− y)−φa(x6 − y)
∣∣|g(y)| dy

≤ Ca,d‖u‖L∞(R)

∫
R3\�d

ε|g(y)|
|x6 − y|3

dy

≤ Ca,d ε‖u‖L∞(R)

(∫
R3\Bd (x6)

dy
|x6 − y|6

)1/2

‖g‖L2(R3)4 ≤ C ′a,d ε‖u‖L∞(R)‖g‖L2(R3)4,

where C ′a,d > 0 only depends on a and d . Then,

‖(Cε(a)−C0(a))(χR3\�d g)‖L2(6×(−1,1))4 ≤ C ′a,d ε‖u‖L∞(R)‖g‖L2(R3)4 (4-10)

for a possibly bigger constant C ′a,d > 0.
With these ingredients, the proof of (4-5) is straightforward. Given δ > 0, take d > 0 small enough so

that (4-7) holds. For this fixed d , take

ε0 =min
{

δ

2C ′a,d‖u‖L∞(R)‖g‖L2(R3)4
,

d
2

}
.

Then, (4-5) follows from (4-6), (4-7) and (4-10). In conclusion, we have shown that

lim
ε→0
‖(Cε(a)−C0(a))g‖L2(6×(−1,1))4 = 0 for all g ∈ L2(R3)4, (4-11)

which is (3-11).

5. Proof of (3-10): Bε(a)→ B0(a)+ B′ in the strong sense when ε→ 0

Recall from (3-3) and (3-8) that Bε(a) with 0< ε ≤ η0, and B0(a) and B ′ are defined by

(Bε(a)g)(x6, t)= u(t)
∫ 1

−1

∫
6

φa(x6 + εtν(x6)− y6 − εsν(y6))v(s)

× det(1− εsW (y6))g(y6, s) dσ(y6) ds,

(B0(a)g)(x6, t)= lim
ε→0

u(t)
∫ 1

−1

∫
|x6−y6 |>ε

φa(x6 − y6)v(s)g(y6, s) ds dσ(y6),

(B ′g)(x6, t)= (α · ν(x6)) 1
2 i u(t)

∫ 1

−1
sign(t − s)v(s)g(x6, s) ds.

We already know that Bε(a) and B ′ are bounded in L2(6× (−1, 1))4. Let us postpone to Section 5B the
proof of the boundedness of B0(a) stated in (3-7). The first step to proving (3-10) is to decompose φa as
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in [Arrizabalaga et al. 2015, Lemma 3.2]; that is,

φa(x)=
e−
√

m2−a2|x |

4π |x |

(
a+mβ +

√
m2− a2 iα ·

x
|x |

)
+

e−
√

m2−a2|x |
− 1

4π
iα ·

x
|x |3
+

i
4π

α ·
x
|x |3

=: ωa
1(x)+ω

a
2(x)+ω3(x). (5-1)

Then we can write
Bε(a)= Bε,ωa

1
+ Bε,ωa

2
+ Bε,ω3,

B0(a)= B0,ωa
1
+ B0,ωa

2
+ B0,ω3,

(5-2)

where Bε,ωa
1
, Bε,ωa

2
and Bε,ω3 are defined as Bε(a) but replacing φa by ωa

1 , ωa
2 and ω3, respectively, and

analogously for the case of B0(a).
For j = 1, 2, we see that |ωa

j (x)| = O(|x |−1) and |∂ωa
j (x)| = O(|x |−2) for |x | → 0, with the un-

derstanding that |ωa
j (x)| means the absolute value of any component of the matrix ωa

j (x) and |∂ωa
j (x)|

means the absolute value of any first-order derivative of any component of ωa
j (x). Therefore, the integrals

defining Bε,ωa
j

and B0,ωa
j

are of fractional type for j = 1, 2 (recall Lemma 2.5) and they are taken over
bounded sets, so the strong convergence follows by standard methods. However, one can also follow the
arguments in the proof of [Behrndt et al. 2017, Lemma 3.4] to show, for j = 1, 2, the convergence of
Bε,ωa

j
to B0,ωa

j
in the norm sense when ε→ 0; that is,

lim
ε→0
‖Bε,ωa

j
− B0,ωa

j
‖L2(6×(−1,1))4→L2(6×(−1,1))4 = 0 for j = 1, 2. (5-3)

A comment is in order. Since the integrals involved in (5-3) are taken over 6×(−1, 1), which is bounded,
the exponential decay at infinity from [Behrndt et al. 2017, Proposition A.1] is not necessary in the setting
of (3-10); hence the local estimates of |ωa

j (x)| and |∂ωa
j (x)| near the origin are enough to adapt the proof

of Lemma 3.4 of the same paper to get (5-3).
Thanks to (5-2) and (5-3), to prove (3-10) we only need to show that Bε,ω3 → B0,ω3 + B ′ in the strong

sense when ε→ 0. This will be done in two main steps. First, we will show that

lim
ε→0

Bε,ω3 g(x6, t)= B0,ω3 g(x6, t)+ B ′g(x6, t) for almost all (x6, t) ∈6× (−1, 1) (5-4)

and all g ∈ L∞(6×(−1, 1))4 such that sup|t |<1 |g(x6, t)−g(y6, t)|≤C |x6−y6| for all x6, y6 ∈6 and
some C > 0 which may depend on g. This is done in Section 5A. Then, for a general g ∈ L2(6×(−1, 1))4,
we will estimate |Bε,ω3 g(x6, t)| in terms of some bounded maximal operators that will allow us to prove
the pointwise limit (5-4) for almost every (x6, t) ∈6× (−1, 1) and the desired strong convergence of
Bε,ω3 to B0,ω3 + B ′; see Section 5B.

5A. The pointwise limit of Bε,ω3 g(x6, t) when ε→ 0 for g in a dense subspace of L2(6× (−1, 1))4.
Observe that the function u in front of the definitions of Bε,ω3 , B0,ω3 and B ′ does not affect the validity
of the limit in (5-4), so we can assume without loss of generality that u ≡ 1 in (−1, 1).

We are going to prove (5-4) by showing the pointwise limit component by component; that is, we are
going to work in L∞(6× (−1, 1)) instead of L∞(6× (−1, 1))4. In order to do so, we need to introduce
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some definitions. Set

k(x) :=
x

4π |x |3
for x ∈ R3

\ {0}. (5-5)

Given t ∈ (−1, 1) and 0< ε ≤ η0 with η0 small enough and f ∈ L∞(6× (−1, 1)) such that

sup
|t |<1
| f (x6, t)− f (y6, t)| ≤ C |x6 − y6|

for all x6, y6 ∈6 and some C > 0, we define

T ε
t f (x6) :=

∫ 1

−1

∫
6

k(x6 + εtν(x6)− y6 − εsν(y6)) f (y6, s) det(1− εsW (y6)) dσ(y6) ds.

By (2-4),

T ε
t f (x6)=

∫ 1

−1

∫
6εs

k(xεt − yεs) f (P6 yεs, s) dσεs(yεs) ds, (5-6)

where xεt := x6 + εtν(x6), yεs := y6 + εsν(y6) and P6 is given by (2-1). We also set

Tt f (x6) := lim
δ→0

∫ 1

−1

∫
|x6−y6 |>δ

k(x6 − y6) f (y6, s) dσ(y6) ds+ 1
2ν(x6)

∫ 1

−1
sign(t − s) f (x6, s) ds.

We are going to prove that

lim
ε→0

T ε
t f (x6)= Tt f (x6) (5-7)

for almost all (x6, t) ∈ 6× (−1, 1). Once this is proved, it is not hard to get (5-4). Indeed, note that
k = (k1, k2, k3) with kj (x) := x j/(4π |x |3) being the scalar components of the vector kernel k(x). Thus,
we can write

T ε
t f (x6)=

(
(T ε

t f (x6))1, (T ε
t f (x6))2, (T ε

t f (x6))3
)
,

where each (T ε
t f (x6))j is defined as in (5-6) but replacing k by kj . Then, (5-7) holds if and only if

(T ε
t f (x6))j → (Tt f (x6))j when ε → 0 for j = 1, 2, 3. From these limits, if we let f (y6, s) in the

definitions of T ε
t f and Tt f be the different components of v(s)g(y6, s), we easily deduce (5-4). Thus,

we are reduced to proving (5-7).
The proof of (5-7) follows the strategy of the proof of [Hofmann et al. 2010, Proposition 3.30]. Set

E(x) := −
1

4π |x |
for x ∈ R3

\ {0},

the fundamental solution of the Laplace operator in R3. Note that ∇E = k = (k1, k2, k3). In particular, if
we set ν = (ν1, ν2, ν3) and x = (x1, x2, x3), for x ∈R3 and y ∈6 with x 6= y we have the decomposition

kj (x − y)= ∂x j E(x − y)= |ν(y)|2 ∂x j E(x − y)

=

∑
n

νn(y)2∂x j E(x − y)+
∑

n

νj (y)νn(y)∂xn E(x − y)−
∑

n

νj (y)νn(y)∂xn E(x − y)

= νj (y)
∑

n

∂xn E(x − y)νn(y)+
∑

n

(
νn(y)∂x j E(x − y)− νj (y)∂xn E(x − y)

)
νn(y)

= νj (y)∇ν(y)E(x − y)+
∑

n

∇
j,n
ν(y)E(x − y)νn(y), (5-8)



KLEIN’S PARADOX AND THE RELATIVISTIC δ-SHELL INTERACTION IN R3 725

where we have taken

∇ν(y)E(x − y) :=
∑

n

νn(y)∂xn E(x − y)=∇x E(x − y) · ν(y),

∇
j,n
ν(y)E(x − y) := νn(y)∂x j E(x − y)− νj (y)∂xn E(x − y).

(5-9)

For j, n ∈ {1, 2, 3} we define

T ε
ν f (x6, t) :=

∫ 1

−1

∫
6εs

∇νεs(yεs)E(xεt − yεs) f (P6 yεs, s) dσεs(yεs) ds,

T ε
j,n f (x6, t) :=

∫ 1

−1

∫
6εs

∇
j,n
νεs(yεs)

E(xεt − yεs) f (P6 yεs, s) dσεs(yεs) ds,

(5-10)

where νεs(yεs) := ν(y6) is a normal vector field to 6εs . Additionally, the terms ∇νεs(yεs)E(xεt − yεs) and
∇

j,n
νεs(yεs)

E(xεt − yεs) in (5-10) are defined as in (5-9) with the obvious replacements.
Given f ∈ L∞(6× (−1, 1)) such that sup|t |<1 | f (x6, t)− f (y6, t)| ≤C |x6− y6| for all x6, y6 ∈6

and some C > 0, by (5-8) we see that

(T ε
t f (x6))j = T ε

ν h j (x6, t)+
∑

n

T ε
j,nhn(x6, t), (5-11)

where hn(P6 yεs, s) := (νεs(yεs))n f (P6 yεs, s) for n = 1, 2, 3. We are going to prove that

lim
ε→0

T ε
ν h j (x6, t)= lim

δ→0

∫ 1

−1

∫
|x6−y6 |>δ

∇ν(y6)E(x6 − y6)h j (y6, s) dσ(y6) ds

+
1
2

∫ 1

−1
sign(t − s)h j (x6, s) ds, (5-12)

lim
ε→0

T ε
j,nhn(x6, t)= lim

δ→0

∫ 1

−1

∫
|x6−y6 |>δ

∇
j,n
ν(y6)E(x6 − y6)hn(y6, s) dσ(y6) ds (5-13)

for n = 1, 2, 3. Then, combining (5-11), (5-12) and (5-13), we obtain (5-7). Therefore, it is enough to
show (5-12) and (5-13).

We first deal with (5-12). Remember that ∇E = k so, given δ > 0, from (5-9) and (5-10) we can split
T ε
ν h j (x6, t) as

T ε
ν h j (x6, t)=

∫ 1

−1

∫
|xεs−yεs |>δ

k(xεt − yεs) · νεs(yεs) h j (P6 yεs, s) dσεs(yεs) ds

+

∫ 1

−1

∫
|xεs−yεs |≤δ

k(xεt − yεs) · νεs(yεs)(h j (P6 yεs, s)− h j (P6xεs, s)) dσεs(yεs) ds

+

∫ 1

−1
h j (P6xεs, s)

∫
|xεs−yεs |≤δ

k(xεt − yεs) · νεs(yεs) dσεs(yεs) ds

=: Aε,δ +Bε,δ +Cε,δ,

and we easily see that

lim
ε→0

T ε
ν h j (x6, t)= lim

δ→0
lim
ε→0

(Aε,δ +Bε,δ +Cε,δ). (5-14)

We study the three terms on the right-hand side of (5-14) separately.
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For the case of Aε,δ, note that k ∈ C∞(R3
\ Bδ(0))3 and it has polynomial decay at∞, so

|k(x)| + |∂k(x)| ≤ C <+∞ for all x ∈ R3
\ Bδ(0),

where C>0 only depends on δ, and ∂k denotes any first-order derivative of any component of k. Moreover,
h j is bounded on 6× (−1, 1) and 6 is bounded and of class C2. Therefore, for a fixed δ > 0, the uniform
boundedness of the integrand combined with the regularity of k and 6 and the dominated convergence
theorem yields

lim
ε→0

Aε,δ =

∫ 1

−1

∫
|x6−y6 |>δ

k(x6 − y6) · ν(y6) h j (y6, s) dσ(y6) ds. (5-15)

Then, if we let δ→ 0, from (5-15) we get the first term on the right-hand side of (5-12).
Recall that the function h j appearing in Bε,δ is constructed from the one in (5-4) using v, see below (5-7),

and νεs , see below (5-11). Hence h j ∈ L∞(6×(−1, 1)) and sup|t |<1 |h j (x6, t)−h j (y6, t)| ≤C |x6− y6|
for all x6, y6 ∈6 and some C > 0. Thus, if η0 and δ are small enough, by the mean value theorem there
exists C > 0 such that∣∣k(xεt − yεs) · νεs(yεs)(h j (P6 yεs, s)− h j (P6xεs, s))

∣∣≤ C
|P6 yεs − P6xεs |

|xεt − yεs |
2 ≤

C
|yεs − xεs |

(5-16)

for all 0 ≤ ε ≤ η0 and |xεs − yεs | ≤ δ. In the last inequality in (5-16) we used that P6 is Lipschitz on
�η0 and that |xεs − yεs | ≤ C |xεt − yεs | if |xεs − yεs | ≤ δ and δ is small enough (due to the regularity
of 6). From the local integrability of the right-hand side of (5-16) with respect to σεs (see Lemma 2.5)
and standard arguments, we easily deduce the existence of Cδ > 0 such that sup0≤ε≤η0

|Bε,δ| ≤ Cδ and
Cδ→ 0 when δ→ 0; see [Behrndt et al. 2017, (A.7)] for a similar argument. Then, we have∣∣ lim

δ→0
lim
ε→0

Bε,δ

∣∣≤ lim
δ→0

sup
0≤ε≤η0

|Bε,δ| ≤ lim
δ→0

Cδ = 0. (5-17)

Let us finally focus on Cε,δ. Since k =∇E , from (5-9) we get∫
|xεs−yεs |≤δ

k(xεt − yεs) · νεs(yεs) dσεs(yεs)=

∫
|xεs−yεs |≤δ

∇νεs(yεs)E(xεt − yεs) dσεs(yεs).

Consider the set

Dε
δ (t, s) :=

{
Bδ(xεs) \�(ε, s) if t ≤ s,
Bδ(xεs)∩�(ε, s) if t > s,

where �(ε, s) denotes the bounded connected component of R3
\6εs that contains � if s ≥ 0 and that is

included in � if s < 0.
Set Ex(y) := E(x − y) for x, y ∈ R3 with x 6= y. Then 1Exεt = 0 in Dε

δ (t, s) and ∇Exεt (y) =
−∇E(xεt − y). If ν∂Dε

δ (t,s) denotes the normal vector field on ∂Dε
δ (t, s) pointing outside Dε

δ (t, s), by the
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ν(x6)
νεs(yεs)

xεt
xεs

yεsδ

x6 Dεδ(t,s)

ν∂Dε
δ (t,s)

�

6εt

6εs

∂�

ν∂Dε
δ (t,s)

ν(x6)
δ Dεδ(t,s)xεs

yεs

xεt
–νεs(yεs)

x6

�

6εs

6εt

∂�

Figure 1. The set Dε
δ (t, s) in the case t > s > 0 (left) and s > t > 0 (right).

divergence theorem,

0=
∫

Dε
δ (t,s)

1Exεt (y) dy =−
∫
∂Dε

δ (t,s)
∇E(xεt − y) · ν∂Dε

δ (t,s)(y) dH2(y)

=− sign(t − s)
∫
|xεs−yεs |≤δ

∇νεs(yεs)E(xεt − yεs) dσεs(yεs)

−

∫
{y∈R3:|xεs−y|=δ}∩Aεt,s

∇E(xεt − y) ·
y− xεs

|y− xεs |
dH2(y), (5-18)

where

Aεt,s := R3
\�(ε, s) if t ≤ s and Aεt,s :=�(ε, s) if t > s.

Remember also that H2 denotes the 2-dimensional Hausdorff measure. Since ∇E = k, from (5-18) and
(5-9) we deduce that∫
|xεs−yεs |≤δ

k(xεt−yεs)·νεs(yεs) dσεs(yεs)= sign(t−s)
∫
∂Bδ(xεs)∩Aεt,s

k(xεt−y)·
xεs − y
|xεs − y|

dH2(y). (5-19)

Note that xεt 6∈ Dε
δ (t, s) by construction; see Figure 1. Moreover, by the regularity of 6, given

δ > 0 small enough we can find ε0 > 0 so that |xεt − y| ≥ 1
2δ for all 0 < ε ≤ ε0, s, t ∈ [−1, 1] and

y ∈ ∂Bδ(xεs)∩ Aεt,s . In particular,

|k(xεt − y)| ≤ C <+∞ for all y ∈ ∂Bδ(xεs)∩ Aεt,s, (5-20)

where C only depends on δ and ε0. Then,

χ∂Bδ(xεs)∩Aεt,s (y) k(xεt − y) ·
xεs − y
|xεs − y|

dH2(y)= χ∂Bδ(xεs)∩Aεt,s (y)
xεt − y

4π |xεt − y|3
·

xεs − y
|xεs − y|

dH2(y)

→
χ∂Bδ(x6)∩D(t,s)(y)

4π |x6 − y|2
dH2(y) when ε→ 0, (5-21)

where

D(t, s) := R3
\� if t ≤ s and D(t, s) :=� if t > s.
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The limit in (5-21) refers to weak-∗ convergence of finite Borel measures in R3 (acting on the variable y).
Using (5-21), the uniform estimate (5-20), the boundedness of h j and the dominated convergence theorem,
we see that

lim
ε→0

∫ 1

−1
sign(t − s)h j (x6, s)

∫
∂Bδ(xεs)∩Aεt,s

k(xεt − y) ·
xεs − y
|xεs − y|

dH2(y) ds

=

∫ 1

−1
sign(t − s)h j (x6, s)

∫
∂Bδ(x6)∩D(t,s)

1
4π |x6 − y|2

dH2(y) ds

=

∫ 1

−1
sign(t − s)h j (x6, s)

H2(∂Bδ(x6)∩ D(t, s))
H2(∂Bδ(x6))

ds.

Then, using the regularity of 6 and the dominated convergence theorem once again, we get

lim
δ→0

lim
ε→0

∫ 1

−1
sign(t − s)h j (x6, s)

∫
∂Bδ(xεs)∩Aεt,s

k(xεt − y) ·
xεs − y
|xεs − y|

dH2(y) ds

=
1
2

∫ 1

−1
sign(t − s)h j (x6, s) ds. (5-22)

By (5-19), (5-22) and the definition of Cε,δ before (5-14), we get

lim
δ→0

lim
ε→0

Cε,δ =
1
2

∫ 1

−1
sign(t − s)h j (x6, s) ds. (5-23)

The proof of (5-12) is a straightforward combination of (5-14), (5-15), (5-17) and (5-23).
To prove (5-13) we use the same approach as in (5-12); that is, we split T ε

j,nhn(x6, t) as

T ε
j,nhn(x6, t)=: Aε,δ +Bε,δ +Cε,δ,

like above (5-14). The first two terms can be treated analogously and one gets the desired result; the
details are left for the reader. To estimate Cε,δ we use the notation introduced before. Recall that Exεt is
smooth in Dε

δ (t, s) (assuming t 6= s) and k(xεt − y)=∇E(xεt − y)=−∇Exεt (y). So, by the divergence
theorem, see also (5-9),∫
∂Dε

δ (t,s)
∇

j,n
ν∂Dε

δ
(t,s)(y)

E(xεt − y) dH2(y)

=

∫
∂Dε

δ (t,s)

(
(ν∂Dε

δ (t,s)(y))n∂x j E(xεt − y)− (ν∂Dε
δ (t,s)(y))j∂xn E(xεt − y)

)
dH2(y)

=

∫
Dε
δ (t,s)

(∂yj ∂yn Exεt − ∂yn∂yj Exεt )(y) dy = 0. (5-24)

Since ∂Dε
δ (t, s)= (Bδ(xεs)∩6εs)∪ (∂Bδ(xεs)∩ Aεt,s), from (5-24) we have∣∣∣∣∫
|xεs−yεs |≤δ

∇
j,n
νεs(yεs)

E(xεst − yεs) dσεs(yεs)

∣∣∣∣= ∣∣∣∣∫
∂Bδ(xεs)∩Aεt,s

∇
j,n
ν∂Dε

δ
(t,s)(y)

E(xεt − y) dH2(y)
∣∣∣∣.
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Observe that

χ∂Bδ(xεs)∩Aεt,s (y)∇
j,n
ν∂Dε

δ
(t,s)(y)

E(xεt − y) dH2(y)

= χ∂Bδ(xεs)∩Aεt,s (y)
(
(ν∂Dε

δ (t,s)(y))j∂ynExεt (y)− (ν∂Dε
δ (t,s)(y))n∂yjExεt (y)

)
dH2(y)

→ χ∂Bδ(x6)∩D(t,s)(y)
(
(y− x6)j

|y− x6|
∂ynEx6 (y)−

(y− x6)n
|y− x6|

∂yjEx6 (y)
)

dH2(y)= 0 (5-25)

when ε→ 0. The limit measure in (5-25) vanishes because its density function corresponds to a tangential
derivative of Ex6 on ∂Bδ(x6), which is a constant function on ∂Bδ(x6). Therefore, arguing as in the
proof of (5-12) but replacing (5-21) by (5-25), we have that, now,

lim
δ→0

lim
ε→0

Cε,δ = 0.

This yields (5-13) and concludes the proof of (5-4).

5B. A pointwise estimate of |Bε,ω3 g(x6, t)| by maximal operators. We begin this section by setting

k(x) :=
x j

4π |x |3
for j = 1, 2, 3, x = (x1, x2, x3) ∈ R3

\ {0}. (5-26)

In (5-5) we already introduced a kernel k which, in fact, corresponds to the vectorial version of the ones
introduced in (5-26). So, by an abuse of notation, throughout this section we mean by k(x) any of the
components of the kernel given in (5-5).

Note that k(−x)=−k(x) for all x ∈ R3
\ {0} and, besides, there exists C > 0 such that

|k(x − y)| ≤
C

|x − y|2
for all x, y ∈ R3 such that |x − y|> 0,

|k(z− y)− k(x − y)| ≤ C
|z− x |
|x − y|3

for all x, y, z ∈ R3 with 0< |z− x | ≤ 1
2 |x − y|.

(5-27)

As in Section 5A, we are going to work componentwise. More precisely, in order to deal with the
different components of Bε,ω3 g(x6, t) for g ∈ L2(6 × (−1, 1))4, we are going to study the following
scalar version. Given 0< ε ≤ η0, g ∈ L2(6× (−1, 1)) and (x6, t) ∈6× (−1, 1), define

B̃εg(x6, t)

:= u(t)
∫ 1

−1

∫
6

k(x6 + εtν(x6)− y6 − εsν(y6))v(s) det(1− εsW (y6))g(y6, s) dσ(y6) ds, (5-28)

where u and v are as in (3-1) for some 0 < η ≤ η0. It is clear that pointwise estimates of |B̃εg(x6, t)|
for a given g ∈ L2(6× (−1, 1)) directly transfer to pointwise estimates of |Bε,ω3h(x6, t)| for a given
h ∈ L2(6× (−1, 1))4, so we are reduced to estimating |B̃εg(x6, t)| for g ∈ L2(6× (−1, 1)).

A key ingredient to finding those suitable pointwise estimates is to relate B̃ε to the Hardy–Littlewood
maximal operator and some maximal singular integral operators from Calderón–Zygmund theory. The
Hardy–Littlewood maximal operator is given by

M∗ f (x6) := sup
δ>0

1
σ(Bδ(x6))

∫
Bδ(x6)
| f | dσ, M∗ : L2(6)→ L2(6) bounded; (5-29)
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see [Mattila 1995, Theorem 2.19] for a proof of the boundedness. The above-mentioned maximal singular
integral operators are

T∗ f (x6) := sup
δ>0

∣∣∣∣∫
|x6−y6 |>δ

k(x6 − y6) f (y6) dσ(y6)
∣∣∣∣, T∗ : L2(6)→ L2(6) bounded; (5-30)

see [David 1988, Proposition 4 bis] for a proof of the boundedness. We also introduce some integral
versions of these maximal operators to connect them to the space L2(6× (−1, 1)). Set

M̃∗g(x6) :=
(∫ 1

−1
M∗(g( · , s))(x6)2 ds

)1/2

, M̃∗ : L2(6× (−1, 1))→ L2(6) bounded,

T̃∗g(x6) :=
∫ 1

−1
T∗(g( · , s))(x6) ds, T̃∗ : L2(6× (−1, 1))→ L2(6) bounded.

(5-31)

Indeed, by Fubini’s theorem and (5-29),

‖M̃∗g‖2L2(6)
=

∫
6

∫ 1

−1
M∗(g( · , s))(x6)2 ds dσ(x6)=

∫ 1

−1
‖M∗(g( · , s))‖2L2(6)

ds

≤ C
∫ 1

−1
‖g( · , s)‖2L2(6)

ds = C‖g‖2L2(6×(−1,1)).

By the Cauchy–Schwarz inequality, Fubini’s theorem and (5-30), we also see that T̃∗ is bounded, so
(5-31) is fully justified.

Let us focus for a moment on the boundedness of B0(a) stated in (3-7). The fact that, for g ∈
L2(6×(−1, 1))4, the limit in the definition of (B0(a)g)(x6, t) exists for almost every (x6, t)∈6×(−1, 1)
is a consequence of the decomposition (see (5-1))

φa
= ωa

1 +ω
a
2 +ω3,

the integrals of fractional type on bounded sets in the case of ωa
1 and ωa

2 and, for ω3, that

lim
ε→0

∫
|x6−y6 |>ε

k(x6 − y6) f (y6) dσ(y6) exists for σ-almost every x6 ∈6 (5-32)

if f ∈ L2(6) (see [Mattila 1995, Theorem 20.27] for a proof) and that∫ 1

−1
v(s)g( · , s) ds ∈ L2(6)4.

Of course, (5-32) directly applies to B0,ω3 (see (5-2) for the definition). From the boundedness of T̃∗
and working component by component, we easily see that B0,ω3 is bounded in L2(6× (−1, 1))4. By the
comments regarding B0,ωa

1
and B0,ωa

2
from the paragraph which contains (5-3), we also get that B0(a) is

bounded in L2(6× (−1, 1))4, which gives (3-7) in this case.
With the maximal operators at hand, we proceed to pointwise estimate |B̃εg(x6, t)| for g ∈ L2(6×

(−1, 1)). Set
gε(y6, s) := v(s) det(1− εsW (y6))g(y6, s). (5-33)
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Then, since the eigenvalues of W are uniformly bounded by Proposition 2.2, there exists C > 0 only
depending on η0 such that

|gε(y6, s)| ≤ C‖v‖L∞(R)|g(y6, s)| for all 0< ε ≤ η0, (y6, s) ∈6× (−1, 1). (5-34)

Additionally, the regularity and boundedness of 6 imply the existence of L > 0 such that

|ν(x6)− ν(y6)| ≤ L|x6 − y6| for all x6, y6 ∈6. (5-35)

We make the following splitting of B̃εg(x6, t) (see (5-28) for the definition):

B̃εg(x6, t)= u(t)
∫ 1

−1

∫
|x6−y6 |≤4ε|t−s|

k(x6 + εtν(x6)− y6 − εsν(y6))gε(y6, s) dσ(y6) ds

+ u(t)
∫ 1

−1

∫
|x6−y6 |>4ε|t−s|

(
k(x6 + εtν(x6)− y6 − εsν(y6))

− k(x6 + εsν(x6)− y6 − εsν(y6))
)
gε(y6, s) dσ(y6) ds

+ u(t)
∫ 1

−1

∫
|x6−y6 |>4ε|t−s|

(
k(x6 + εs(ν(x6)− ν(y6))− y6)− k(x6 − y6)

)
× gε(y6, s) dσ(y6) ds

+ u(t)
∫ 1

−1

∫
|x6−y6 |>4ε|t−s|

k(x6 − y6)gε(y6, s) dσ(y6) ds

=: B̃ε,1g(x6, t)+ B̃ε,2g(x6, t)+ B̃ε,3g(x6, t)+ B̃ε,4g(x6, t). (5-36)

We are going to estimate the four terms on the right-hand side of (5-36) separately.
Concerning B̃ε,1g(x6, t), note that

ε|t − s| = dist(x6 + εtν(x6),6εs)≤
∣∣x6 + εtν(x6)− y6 − εsν(y6))

∣∣
for all (y6, s) ∈ 6 × (−1, 1); thus |k(x6 + εtν(x6)− y6 − εsν(y6))| ≤ 1/(ε2

|t − s|2) by (5-27), and
then

|B̃ε,1g(x6, t)| ≤ ‖u‖L∞(R)

∫ 1

−1

1
ε2|t − s|2

∫
|x6−y6 |≤4ε|t−s|

|gε(y6, s)| dσ(y6) ds

≤ C‖u‖L∞(R)

∫ 1

−1
M∗(gε( · , s))(x6) ds ≤ C‖u‖L∞(R)‖v‖L∞(R)M̃∗g(x6), (5-37)

where we used the Cauchy–Schwarz inequality and (5-34) in the last inequality above.
For the case of B̃ε,2g(x6, t), we split the integral over 6 on dyadic annuli as follows. Set

N :=
[∣∣∣∣log2

(
diam(�η0)

ε|t − s|

)∣∣∣∣]+ 1 (5-38)

for t 6= s, where [ · ] denotes the integer part. Then, 2Nε|t − s|> diam(�η0) and

|B̃ε,2g(x6, t)| ≤ ‖u‖L∞(R)

∫ 1

−1

N∑
n=2

∫
2n+1ε|t−s|≥|x6−y6 |>2nε|t−s|

· · · dσ(y6) ds, (5-39)



732 ALBERT MAS AND FABIO PIZZICHILLO

where “· · · ” means
∣∣k(x6 + εtν(x6)− y6 − εsν(y6))− k(x6 + εsν(x6)− y6 − εsν(y6))

∣∣|gε(y6, s)|.
By (5-35),

(1− η0L)|x6 − y6| ≤ |x6 − y6| − η0|ν(x6)− ν(y6)|

≤
∣∣x6 + εsν(x6)− y6 − εsν(y6)

∣∣
≤ |x6 − y6| + η0|ν(x6)− ν(y6)| ≤ (1+ η0L)|x6 − y6|,

thus if we take η0 ≤ 1/(2L) we get

1
2 |x6 − y6| ≤

∣∣x6 + εsν(x6)− y6 − εsν(y6)
∣∣≤ 2|x6 − y6|. (5-40)

Additionally, for 2n+1ε|t − s| ≥ |x6 − y6|> 2nε|t − s|, using (5-40) we see that∣∣x6 + εtν(x6)− (x6 + εsν(x6))
∣∣= ε|t − s|< 2−n

|x6 − y6|

≤ 2−n+1∣∣x6 + εsν(x6)− y6 − εsν(y6)
∣∣

≤
1
2

∣∣x6 + εsν(x6)− y6 − εsν(y6)
∣∣ (5-41)

for all n = 2, . . . , N. Therefore, combining (5-41), (5-27) and (5-40) we finally get∣∣k(x6 + εtν(x6)− y6 − εsν(y6))− k(x6 + εsν(x6)− y6 − εsν(y6))
∣∣

≤ C
|x6 + εtν(x6)− (x6 + εsν(x6))|
|x6 + εsν(x6)− y6 − εsν(y6)|3

≤
Cε|t − s|
|x6 − y6|3

<
C

23nε2|t − s|2

for all s, t ∈ (−1, 1), 0< ε ≤ η0, n = 2, . . . , N and 2n+1ε|t− s| ≥ |x6− y6|> 2nε|t− s|. Plugging this
estimate into (5-39) we obtain

|B̃ε,2g(x6, t)| ≤ C‖u‖L∞(R)

∫ 1

−1

N∑
n=2

∫
2n+1ε|t−s|≥|x6−y6 |>2nε|t−s|

|gε(y6, s)|
23nε2|t − s|2

dσ(y6) ds

≤ C‖u‖L∞(R)

∫ 1

−1

N∑
n=2

1
2n

∫
|x6−y6 |≤2n+1ε|t−s|

|gε(y6, s)|
(2n+1ε|t − s|)2

dσ(y6) ds

≤ C‖u‖L∞(R)

∞∑
n=2

1
2n

∫ 1

−1
M∗(gε( · , s))(x6) ds ≤ C‖u‖L∞(R)‖v‖L∞(R)M̃∗g(x6), (5-42)

where we used the Cauchy–Schwarz inequality and (5-34) in the last inequality above.
Let us deal now with B̃ε,3g(x6, t). Since 0< ε ≤ η0 and s ∈ (−1, 1), if we take η0 ≤ 1/(2L) as before,

from (5-35) we see that∣∣(x6 + εs(ν(x6)− ν(y6)))− x6
∣∣= ε|s||ν(x6)− ν(y6)| ≤ 1

2 |x6 − y6|,

and then, by (5-27),∣∣k(x6 + εs(ν(x6)− ν(y6))− y6)− k(x6 − y6)
∣∣≤ C

ε|s||ν(x6)− ν(y6)|
|x6 − y6|3

≤
Cε

|x6 − y6|2
. (5-43)
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Splitting the integral which defines B̃ε,3g(x6, t) into dyadic annuli as in (5-39), and using (5-43), (5-34)
and (5-38), we get

|B̃ε,3g(x6, t)| ≤ C‖u‖L∞(R)

∫ 1

−1

N∑
n=2

ε

∫
2n+1ε|t−s|≥|x6−y6 |>2nε|t−s|

|gε(y6, s)|
|x6 − y6|2

dσ(y6) ds

≤ C‖u‖L∞(R)

∫ 1

−1
ε

N∑
n=2

M∗(gε( · , s))(x6) ds

≤ C‖u‖L∞(R)‖v‖L∞(R)

∫ 1

−1
ε

∣∣∣∣log2

(
diam(�η0)

ε|t − s|

)∣∣∣∣M∗(g( · , s))(x6) ds. (5-44)

Note that

ε

∣∣∣∣log2

(
diam(�η0)

ε|t − s|

)∣∣∣∣≤ ε(C + | log2 ε| +
∣∣log2 |t − s|

∣∣)≤ C
(
1+

∣∣log2 |t − s|
∣∣)

for all 0 < ε ≤ η0, where C > 0 only depends on η0. Hence, from (5-44) and the Cauchy–Schwarz
inequality, we obtain

|B̃ε,3g(x6, t)| ≤ C‖u‖L∞(R)‖v‖L∞(R)

∫ 1

−1

(
1+

∣∣log2 |t − s|
∣∣)M∗(g( · , s))(x6) ds

≤ C‖u‖L∞(R)‖v‖L∞(R)

(∫ 1

−1

(
1+

∣∣log2 |t − s|
∣∣)2 ds

)1/2

M̃∗g(x6)

≤ C‖u‖L∞(R)‖v‖L∞(R)M̃∗g(x6), (5-45)

where we also used that t ∈ (−1, 1), so
∫ 1
−1

(
1+

∣∣log2 |t − s|
∣∣)2 ds ≤ C

(
1+

∫ 2
0 | log2 r |2 dr

)
< +∞, in

the last inequality above.
The term |B̃ε,4g(x6, t)| can be estimated using the maximal operator T̃∗ as follows. Let λ1(y6) and

λ2(y6) denote the eigenvalues of the Weingarten map W (y6). By definition,

gε(y6, s)= v(s) det(1− εsW (y6))g(y6, s)

= v(s)
(
1+ ε2s2λ1(y6)λ2(y6)− εsλ1(y6)− εsλ2(y6)

)
g(y6, s).

Therefore, the triangle inequality yields

|B̃ε,4g(x6, t)| ≤ ‖u‖L∞(R)‖v‖L∞(R)

∫ 1

−1

(
T∗(g( · , s))(x6)+ η2

0T∗(λ1λ2g( · , s))(x6)

+ η0T∗(λ1g( · , s))(x6)+ η0T∗(λ2g( · , s))(x6)
)

ds

≤C‖u‖L∞(R)‖v‖L∞(R)
(
T̃∗g(x6)+T̃∗(λ1λ2g)(x6)+T̃∗(λ1g)(x6)+T̃∗(λ2g)(x6)

)
. (5-46)

Combining (5-36), (5-37), (5-42), (5-45) and (5-46) and taking the supremum on ε we finally get that

sup
0<ε≤η0

|B̃εg(x6, t)| ≤ C‖u‖L∞(R)‖v‖L∞(R)
(
M̃∗g(x6)+ T̃∗g(x6)

+ T̃∗(λ1λ2g)(x6)+ T̃∗(λ1g)(x6)+ T̃∗(λ2g)(x6)
)
, (5-47)
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where C > 0 only depends on η0. Define

B̃∗g(x6, t) := sup
0<ε≤η0

|B̃εg(x6, t)| for (x6, t) ∈6× (−1, 1).

Then, from (5-47), the boundedness of M̃∗ and T̃∗ from L2(6× (−1, 1)) to L2(6), see (5-31), and the
fact that ‖λ1‖L∞(6) and ‖λ2‖L∞(6) are finite by Proposition 2.2, we easily conclude that there exists
C > 0 only depending on η0 such that

‖B̃∗g‖L2(6×(−1,1)) ≤ C‖u‖L∞(R)‖v‖L∞(R)‖g‖L2(6×(−1,1)). (5-48)

5C. Bε,ω3 → B0,ω3 + B′ in the strong sense when ε → 0 and conclusion of the proof of (3-10). To
begin this section, we present a standard result in harmonic analysis about the existence of a limit almost
everywhere for a sequence of operators acting on a fixed function and its convergence in the strong sense.
General statements can be found in [Duoandikoetxea 2001, Theorem 2.2 and the remark below it] and
[Torchinsky 1986, Proposition 6.2], for example. For the sake of completeness, here we present a concrete
version with its proof.

Lemma 5.1. Let b ∈ N and (X, µX ) and (Y, µY ) be two Borel measure spaces. Let {Wε}0<ε≤η0 be a
family of bounded linear operators from L2(µX )

b to L2(µY )
b such that, if

W∗g(y) := sup
0<ε≤η0

|Wεg(y)| for g ∈ L2(µX )
b and y ∈ Y,

then
W∗ : L2(µX )

b
→ L2(µY )

is a bounded sublinear operator. Suppose that for any g ∈ S, where S ⊂ L2(µX )
b is a dense subspace,

limε→0 Wεg(y) exists for µY -a.e. y ∈ Y. Then, for any g ∈ L2(µX )
b, we know limε→0 Wεg(y) exists for

µY -a.e. y ∈ Y and
lim
ε→0

∥∥Wεg− lim
δ→0

Wδg
∥∥

L2(µY )b
= 0. (5-49)

In particular, limε→0 Wε defines a bounded operator from L2(µX )
b to L2(µY )

b.

Proof. We start by proving that, for any g ∈ L2(µX )
b, limε→0 Wεg(y) exists for µY -a.e. y ∈ Y. Take

gk ∈ S such that ‖gk− g‖L2(µX )b→ 0 for k→∞, and fix λ> 0. Since limε→0 Wεgk(y) exists for µY -a.e.
y ∈ Y, the Chebyshev inequality yields

µY
({

y ∈ Y :
∣∣lim sup
ε→0

Wεg(y)− lim inf
ε→0

Wεg(y)
∣∣> λ})

≤ µY
({

y ∈ Y :
∣∣lim sup
ε→0

Wε(g− gk)(y)
∣∣+ ∣∣lim inf

ε→0
Wε(gk − g)(y)

∣∣> λ})
≤ µY ({y ∈ Y : 2W∗(g− gk)(y) > λ})

≤
4
λ2 ‖W∗(g− gk)‖

2
L2(µY )

≤
C
λ2 ‖g− gk‖

2
L2(µX )b

.



KLEIN’S PARADOX AND THE RELATIVISTIC δ-SHELL INTERACTION IN R3 735

Letting k→∞ we deduce that

µY
({

y ∈ Y :
∣∣lim sup
ε→0

Wεg(y)− lim inf
ε→0

Wεg(y)
∣∣> λ})= 0.

Since this holds for all λ > 0, we finally get that limε→0 Wεg(y) exists µY -a.e.
Note that |Wεg(y)− limδ→0 Wδg(y)| ≤ 2W∗g(y) and W∗g ∈ L2(µY ). Thus, (5-49) follows by the

dominated convergence theorem. The last statement in the lemma is also a consequence of the boundedness
of W∗. �

Thanks to Lemma 5.1 and the results in Sections 5A and 5B, we are ready to conclude the proof of
(3-10). As we said before (5-4), to obtain (3-10) we only need to show that Bε,ω3 → B0,ω3 + B ′ in the
strong sense when ε→ 0. From (5-4), we know that

lim
ε→0

Bε,ω3 g(x6, t)= B0,ω3 g(x6, t)+ B ′g(x6, t) for almost all (x6, t) ∈6× (−1, 1)

and all g ∈ L∞(6× (−1, 1))4 such that sup|t |<1 |g(x6, t)− g(y6, t)| ≤ Cg|x6 − y6| for all x6, y6 ∈6
and some Cg > 0 (it may depend on g). Note also that this set of functions g is dense in L2(6×(−1, 1))4.
Additionally, thanks to (5-48) we see that, if η0 > 0 is small enough and we set

B∗,ω3 g(x6, t) := sup
0<ε≤η0

|Bε,ω3 g(x6, t)| for (x6, t) ∈6× (−1, 1),

then there exists C > 0 only depending on η0 such that

‖B∗,ω3 g‖L2(6×(−1,1)) ≤ C‖u‖L∞(R)‖v‖L∞(R)‖g‖L2(6×(−1,1))4 . (5-50)

Thus, from Lemma 5.1 we get that, for any g∈ L2(6×(−1, 1))4, the pointwise limit limε→0 Bε,ω3 g(x6, t)
exists for almost every (x6, t) ∈6× (−1, 1). Recall also that B0,ω3+ B ′ is bounded in L2(6× (−1, 1))4

(see the comment before (5-33) for B0,ω3 , the case of B ′ is trivial), so one can easily adapt the proof of
Lemma 5.1 to also show that, for any g ∈ L2(6× (−1, 1))4,

lim
ε→0

Bε,ω3 g(x6, t)= B0,ω3 g(x6, t)+ B ′g(x6, t) for almost all (x6, t) ∈6× (−1, 1).

Finally, (5-49) in Lemma 5.1 yields

lim
ε→0
‖(Bε,ω3 − B0,ω3 − B ′)g‖L2(6×(−1,1))4 = 0 for all g ∈ L2(6× (−1, 1))4,

which is the required strong convergence of Bε,ω3 to B0,ω3 + B ′. This finishes the proof of (3-10).

6. Proof of (3-9): Aε(a)→ A0(a) in the strong sense when ε→ 0

Recall from (3-3) and (3-8) that Aε(a) with 0< ε ≤ η0 and A0(a) are defined by

(Aε(a)g)(x)=
∫ 1

−1

∫
6

φa(x − y6 − εsν(y6))v(s) det(1− εsW (y6))g(y6, s) dσ(y6) ds,

(A0(a)g)(x)=
∫ 1

−1

∫
6

φa(x − y6)v(s)g(y6, s) dσ(y6) ds.
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We already know that Aε(a) is bounded from L2(6× (−1, 1))4 to L2(R3)4. To show the boundedness of
A0(a) (and conclude the proof of (3-7)) just note that, by Fubini’s theorem, for every x ∈ R3

\6 we have

(A0(a)g)(x)=
∫
6

φa(x − y6)
(∫ 1

−1
v(s)g(y6, s) ds

)
dσ(y6),

and
∫ 1
−1 v(s)g( · , s) ds ∈ L2(6)4 if g ∈ L2(6 × (−1, 1))4. Since a ∈ C \R, [Arrizabalaga et al. 2014,

Lemma 2.1] shows that A0(a) is bounded from L2(6× (−1, 1))4 to L2(R3)4.
We begin the proof of (3-9) by splitting

Aε(a)g = χR3\�η0
Aε(a)g+χ�η0

Aε(a)g. (6-1)

Let us treat first the case of χR3\�η0
Aε(a). As we said before, since a ∈ C \R, the components of

φa(x) decay exponentially when |x |→∞. In particular, there exist C, r > 0 only depending on a and η0

such that

|φa(x)|, |∂φa(x)| ≤ Ce−r |x | for all |x | ≥ 1
2η0, (6-2)

where the left-hand side of (6-2) means the absolute value of any component of the matrix φa(x) and of
any first-order derivative of it, respectively.

Note that η0 = dist(R3
\�η0, 6). Hence, if x ∈ R3

\�η0 , y6 ∈6, 0≤ ε ≤ 1
2η0 and s ∈ (−1, 1) then,

for any 0≤ q ≤ 1,∣∣q(x− y6−εsν(y6))+(1−q)(x− y6)
∣∣= |x− y6−qεsν(y6)|

≥ |x− y6|−qε|s| ≥ |x− y6|− 1
2η0 ≥

1
2 |x− y6| ≥ 1

2η0. (6-3)

Thus (6-2) applies to [x, y6]q := q(x− y6−εsν(y6))+ (1−q)(x− y6), and a combination of the mean
value theorem and (6-3) gives∣∣φa(x − y6 − εsν(y6))−φa(x − y6)

∣∣≤ ε max
0≤q≤1

|∂φa([x, y6]q)| ≤ Cεe−(r/2)|x−y6 |. (6-4)

Set g̃ε(y6, s) := det(1−εsW (y6))g(y6, s). On one hand, from (6-4), Proposition 2.2 and the Cauchy–
Schwarz inequality, we get that

χR3\�η0
(x)
∣∣(Aε(a)g)(x)− (A0(a)gε)(x)

∣∣
≤ C‖v‖L∞(R)χR3\�η0

(x)
∫ 1

−1

∫
6

εe−(r/2)|x−y6 ||g̃ε(y6, s)| dσ(y6) ds

≤ Cε‖v‖L∞(R)‖g̃ε‖L2(6×(−1,1))4χR3\�η0
(x)
(∫

6

e−r |x−y6 | dσ(y6)
)1/2

≤ Cε‖v‖L∞(R)‖g‖L2(6×(−1,1))4ξ(x),

where

ξ(x) := χR3\�η0
(x)
(∫

6

e−r |x−y6 | dσ(y6)
)1/2

.
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Since ξ ∈ L2(R3) because σ(6) <+∞, we deduce that

‖χR3\�η0
(Aε(a)g− A0(a)g̃ε)‖L2(R3)4 ≤ Cε‖v‖L∞(R)‖g‖L2(6×(−1,1))4 . (6-5)

On the other hand, by Proposition 2.2 we have

|g̃ε(y6, s)− g(y6, s)| =
∣∣det(1− εsW (y6))− 1

∣∣|g(y6, s)| ≤ Cε|g(y6, s)|.

This, together with the fact that A0(a) is bounded from L2(6× (−1, 1))4 to L2(R3)4, see above (6-1),
implies

‖χR3\�η0
A0(a)(g̃ε − g)‖L2(R3)4 ≤ C‖v‖L∞(R)‖g̃ε − g‖L2(6×(−1,1))4

≤ Cε‖v‖L∞(R)‖g‖L2(6×(−1,1))4 . (6-6)

Using the triangle inequality, (6-5) and (6-6), we finally get that

‖χR3\�η0
(Aε(a)− A0(a))g‖L2(R3)4 ≤ Cε‖v‖L∞(R)‖g‖L2(6×(−1,1))4 (6-7)

for all 0≤ ε ≤ 1
2η0, where C > 0 only depends on a and η0. In particular, this implies

lim
ε→0
‖χR3\�η0

(Aε(a)− A0(a))‖L2(6×(−1,1))4→L2(R3)4 = 0. (6-8)

Let us deal now with χ�η0
Aε(a). Consider the decomposition of φa given by (5-1). Then, as in (5-2),

we write
Aε(a)= Aε,ωa

1
+ Aε,ωa

2
+ Aε,ω3,

A0(a)= A0,ωa
1
+ A0,ωa

2
+ A0,ω3,

(6-9)

where Aε,ωa
1
, Aε,ωa

2
and Aε,ω3 are defined as Aε(a) but replacing φa by ωa

1 , ωa
2 and ω3, respectively, and

analogously for the case of A0(a). For j = 1, 2, the arguments used to show (5-3) in the case of Bε,ωa
j

also apply to χ�η0
Aε,ωa

j
; thus we now get

lim
ε→0
‖χ�η0

(Aε,ωa
j
− A0,ωa

j
)‖L2(6×(−1,1))4→L2(R3)4 = 0 for j = 1, 2. (6-10)

It only remains to show the strong convergence of χ�η0
Aε,ω3 . This case is treated similarly to what we

did in Sections 5A, 5B and 5C, as follows.

6A. The pointwise limit of Aε,ω3 g(x) when ε→ 0 for g ∈ L2(6× (−1, 1))4. This case is much easier
than the one in Section 5A. For a fixed x ∈ R3

\6, we can always find δx ,Cx > 0 small enough such that

|x − y6 − εsν(y6)| ≥ Cx for all y6 ∈6, s ∈ (−1, 1) and 0≤ ε ≤ δx .

In particular, for a fixed x ∈R3
\6, we have |ω3(x−y6−εsν(y6))|≤C uniformly on y6 ∈6, s ∈ (−1, 1)

and 0≤ ε ≤ δx , where C > 0 depends on x . By Proposition 2.2 and the dominated convergence theorem,
given g ∈ L2(6× (−1, 1))4, we have

lim
ε→0

Aε,ω3 g(x)= A0,ω3 g(x) for L-a.e. x ∈ R3, (6-11)

where L denotes the Lebesgue measure in R3.
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6B. A pointwise estimate of χ�η0
(x)|Aε,ω3 g(x)| by maximal operators. Given 0≤ ε ≤ 1

4η0, we divide
the study of χ�η0

(x)Aε,ω3 g(x) into two different cases, i.e., x ∈ �η0 \�4ε and x ∈ �4ε . As we did in
Section 5B, we are going to work componentwise; that is, we consider C-valued functions instead of
C4-valued functions. With this in mind, for g ∈ L2(6× (−1, 1)) we set

Ãεg(x) :=
∫ 1

−1

∫
6

k(x − y6 − εsν(y6))v(s) det(1− εsW (y6))g(y6, s) dσ(y6) ds,

where k is given by (5-26).
In what follows, we can always assume that x ∈ R3

\6 because L(6) = 0. In case that x ∈ �4ε ,
we can write x = x6 + εtν(x6) for some t ∈ (−4, 4), and then Ãεg(x) coincides with B̃εg(x6, t), see
(5-28), except for the term u(t). Therefore, one can carry out all the arguments involved in the estimate
of B̃εg(x6, t), that is, from (5-28) to (5-48), with minor modifications to get the following result: Define

Ã∗g(x6, t) := sup
0<ε≤η0/4

| Ãεg(x6 + εtν(x6))| for (x6, t) ∈6× (−4, 4). (6-12)

Then, if η0 is small enough, there exists C > 0 only depending on η0 such that∥∥sup
|t |<4

Ã∗g( · , t)
∥∥

L2(6)
≤ C‖v‖L∞(R)‖g‖L2(6×(−1,1)) for all g ∈ L2(6× (−1, 1)). (6-13)

For the proof of (6-13), a remark is in order. The fact that in the present situation t ∈ (−4, 4) instead
of t ∈ (−1, 1), as in the definition of B̃εg(x6, t) in (5-28), only affects the arguments used to get (5-47)
at the comment just below (5-45). Now one should use that∫ 5

0
| log2 r |2 dr <+∞

to prove the estimate analogous to (5-45) and to derive the counterpart of (5-47); that is,

Ã∗g(x6, t)≤ C‖v‖L∞(R)
(
M̃∗g(x6)+ T̃∗g(x6)+ T̃∗(λ1λ2g)(x6)+ T̃∗(λ1g)(x6)+ T̃∗(λ2g)(x6)

)
for all (x6, t) ∈6× (−4, 4), where λ1 and λ2 are the eigenvalues of the Weingarten map. Combining
this estimate, whose right-hand side is independent of t ∈ (−4, 4), the boundedness of M̃∗ and T̃∗ from
L2(6× (−1, 1)) to L2(6), see (5-31), and Proposition 2.2, we get (6-13).

Finally, thanks to (6-12), (2-3), Proposition 2.2 and (6-13), for η0 small enough we conclude∥∥ sup
0≤ε≤η0/4

χ�4ε | Ãεg|
∥∥

L2(R3)
≤
∥∥sup
|t |<4

Ã∗g(P6·, t)
∥∥

L2(�η0 )

≤ C
∥∥sup
|t |<4

Ã∗g( · , t)
∥∥

L2(6)

≤ C‖v‖L∞(R)‖g‖L2(6×(−1,1)). (6-14)

We now focus on χ�η0\�4ε Ãε for 0≤ ε ≤ 1
4η0. Similarly to what we did in (5-36), we set

gε(y6, s) := v(s) det(1− εsW (y6))g(y6, s),
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see (5-33), and we split Ãεg(x) into Ãεg(x)= Ãε,1g(x)+ Ãε,2g(x)+ Ãε,3g(x)+ Ãε,4g(x), where

Ãε,1g(x) :=
∫ 1

−1

∫
6

(
k(x − y6 − εsν(y6))− k(x − y6)

)
gε(y6, s) dσ(y6) ds,

Ãε,2g(x) :=
∫ 1

−1

∫
|x6−y6 |≤4 dist(x,6)

k(x − y6)gε(y6, s) dσ(y6) ds,

Ãε,3g(x) :=
∫ 1

−1

∫
|x6−y6 |>4 dist(x,6)

(k(x − y6)− k(x6 − y6))gε(y6, s) dσ(y6) ds,

Ãε,4g(x) :=
∫ 1

−1

∫
|x6−y6 |>4 dist(x,6)

k(x6 − y6)gε(y6, s) dσ(y6) ds.

From now on we assume x ∈�η0 \�4ε and, as always, y6 ∈6. Note that

|(y6 − εsν(y6))− y6| ≤ ε ≤ 1
4 dist(x, 6)≤ 1

4 |x − y6|,

so (5-27) gives |k(x − y6 − εsν(y6))− k(x − y6)| ≤ Cε|x − y6|−3. Furthermore, we have |x − y6| ≥
C |x6 − y6| for all y6 ∈6 and some C > 0 only depending on η0. We can split the integral on 6, which
defines Ãε,1g(x) in dyadic annuli as we did in (5-39), see also (5-42), to obtain

| Ãε,1g(x)| ≤ C
∫ 1

−1

∫
|x6−y6 |<dist(x,6)

ε|gε(y6, s)|
dist(x, 6)3

dσ(y6) ds

+C
∫ 1

−1

∞∑
n=0

∫
2n dist(x,6)<|x6−y6 |≤2n+1 dist(x,6)

ε|gε(y6, s)|
|x − y6|3

dσ(y6) ds

≤ C‖v‖L∞(R)M̃∗g(x6)+C
∫ 1

−1

∞∑
n=0

1
2n

∫
|x6−y6 |≤2n+1 dist(x,6)

|gε(y6, s)|
(2n dist(x, 6))2

dσ(y6) ds

≤ C‖v‖L∞(R)M̃∗g(x6)+C
∞∑

n=0

1
2n

∫ 1

−1
M∗(gε( · , s))(x6) ds ≤ C‖v‖L∞(R)M̃∗g(x6). (6-15)

Using that |k(x − y6)| ≤ C |x − y6|−2
≤ C dist(x, 6)−2 by (5-27), it is easy to show that

| Ãε,2g(x)| ≤ C‖v‖L∞(R)M̃∗g(x6). (6-16)

Since dist(x, 6)= |x − x6|, the same arguments as in (6-15) yield

| Ãε,3g(x)| ≤ C‖v‖L∞(R)M̃∗g(x6). (6-17)

Finally, the same arguments as in (5-46) show that

| Ãε,4g(x)| ≤ C‖v‖L∞(R)
(
T̃∗g(x6)+ T̃∗(λ1λ2g)(x6)+ T̃∗(λ1g)(x6)+ T̃∗(λ2g)(x6)

)
. (6-18)

Therefore, thanks to (6-15)–(6-18) we conclude that

sup
0≤ε≤η0/4

χ�η0\�4ε (x)| Ãεg(x)|

≤ C‖v‖L∞(R)
(
M̃∗g(x6)+ T̃∗g(x6)+ T̃∗(λ1λ2g)(x6)+ T̃∗(λ1g)(x6)+ T̃∗(λ2g)(x6)

)
,
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and then, similarly to what we did in (6-14), a combination of (5-31) and Proposition 2.2 gives∥∥ sup
0≤ε≤η0/4

χ�η0\�4ε | Ãεg|
∥∥

L2(R3)
≤ C‖v‖L∞(R)‖g‖L2(6×(−1,1)). (6-19)

Finally, combining (6-14) and (6-19) we get that, if η0 > 0 is small enough, then∥∥ sup
0≤ε≤η0/4

χ�η0
| Ãεg|

∥∥
L2(R3)

≤ C‖v‖L∞(R)‖g‖L2(6×(−1,1)), (6-20)

where C > 0 only depends on η0.

6C. Aε,ω3 → A0,ω3 in the strong sense when ε → 0 and conclusion of the proof of (3-9). It only
remains to put all the pieces together. Despite that the proof follows more or less the same lines as the
one in Section 5C, this case is easier. Namely, now we don’t need to appeal to Lemma 5.1 because the
dominated convergence theorem suffices (the developments in Section 6A hold for all g∈ L2(6×(−1, 1))4,
not only for a dense subspace like in Section 5A).

Working component by component and using (6-20) we see that, if we set

A∗,ω3 g(x) := sup
0≤ε≤η0/4

|Aε,ω3 g(x)| for x ∈ R3
\6,

then there exists C > 0 only depending on η0 > 0 (being η0 small enough) such that

‖χ�η0
A∗,ω3 g‖L2(R3)4 ≤ C‖v‖L∞(R)‖g‖L2(6×(−1,1))4 . (6-21)

Moreover, given g ∈ L2(6× (−1, 1))4, in (6-11) we showed that limε→0 Aε,ω3 g(x)= A0,ω3 g(x) for
L-a.e. x ∈ R3. Thus (6-21) and the dominated convergence theorem show that

lim
ε→0
‖χ�η0

(Aε,ω3 − A0,ω3)g‖L2(R3)4 = 0. (6-22)

Then, combining (6-1), (6-9), (6-8), (6-10) and (6-22), we conclude that

lim
ε→0
‖(Aε(a)− A0(a))g‖2L2(R3)4

≤ lim
ε→0

(
‖χR3\�η0

(Aε(a)− A0(a))g‖2L2(R3)4

+‖χ�η0
(Aε,ωa

1
− A0,ωa

1
)g‖2L2(R3)4

+‖χ�η0
(Aε,ωa

2
− A0,ωa

2
)g‖2L2(R3)4

+‖χ�η0
(Aε,ω3 − A0,ω3)g‖

2
L2(R3)4

)
= 0

for all g ∈ L2(6× (−1, 1))4. This is precisely (3-9).

7. Proof of Corollary 3.3

We first prove an auxiliary result.

Lemma 7.1. Let a ∈ C \R and η0 > 0 be such that (1-2) holds for all 0< ε ≤ η0. If η0 is small enough,
then for any 0< η ≤ η0 and V ∈ L∞(R) with supp V ⊂ [−η, η] we have

‖Aε(a)‖L2(6×(−1,1))4→L2(R3)4,

‖Bε(a)‖L2(6×(−1,1))4→L2(6×(−1,1))4,

‖Cε(a)‖L2(R3)4→L2(6×(−1,1))4
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are uniformly bounded for all 0≤ ε ≤ η0, with bounds that only depend on a, η0 and V. Furthermore, if
η0 is small enough there exists δ > 0 only depending on η0 such that

‖Bε(a)‖L2(6×(−1,1))4→L2(6×(−1,1))4 ≤
1
3 (7-1)

for all |a| ≤ 1, 0≤ ε ≤ η0, 0< η ≤ η0 and all (δ, η)-small V.

Proof. The first statement in the lemma comes as a byproduct of the developments carried out in Sections 4,
5 and 6; see (4-4) for the case of Cε(a), (5-50) and the paragraph which contains (5-3) for Bε(a), and
(6-7), (6-10) and (6-21) for Aε(a). We should stress that these developments are valid for any V ∈ L∞(R)
with supp V ⊂ [−η, η], where 0 < η ≤ η0; hence the (δ, η)-small assumption on V in Theorem 1.2
is only required to prove the explicit bound in the second part of the lemma, which will yield the
strong convergence of (1+ Bε(a))−1 and (β + Bε(a))−1 to (1+ B0(a)+ B ′)−1 and (β + B0(a)+ B ′)−1,
respectively, in Corollary 3.3.

Recall the decomposition

Bε(a)= Bε,ωa
1
+ Bε,ωa

2
+ Bε,ω3 (7-2)

given by (5-2). Thanks to (5-50), there exists C0 > 0 only depending on η0 such that

‖Bε,ω3‖L2(6×(−1,1))4→L2(6×(−1,1))4 ≤ C0‖u‖L∞(R)‖v‖L∞(R) for all 0< ε ≤ η0. (7-3)

The comments in the paragraph which contains (5-3) and an inspection of the proof of [Behrndt et al.
2017, Lemma 3.4] show that there also exists C1 > 0 only depending on η0 such that, for any |a| ≤ 1 and
j = 1, 2,

‖Bε,ωa
j
‖L2(6×(−1,1))4→L2(6×(−1,1))4 ≤ C1‖u‖L∞(R)‖v‖L∞(R) for all 0< ε ≤ η0. (7-4)

Note that the kernel defining Bε,ωa
2

is given by

ωa
2(x)=

e−
√

m2−a2|x |
− 1

4π
iα ·

x
|x |3

,

so

|ωa
2(x)| = O

(√
|m2− a2|

|x |

)
for |x | → 0.

Therefore, the kernel is of fractional type with respect to σ, but the estimate blows up as |a| →∞. This
is the reason why we restrict ourselves to |a| ≤ 1 in (7-4), where we have a uniform bound with respect
to a. However, for proving Theorem 1.2, one fixed a ∈ C \R suffices, say a = i ; see (3-12) and (3-13).

From (7-2), (7-3) and (7-4), we derive that

‖Bε(a)‖L2(6×(−1,1))4→L2(6×(−1,1))4 ≤ (C0+ 2C1)‖u‖L∞(R)‖v‖L∞(R) for all 0< ε ≤ η0. (7-5)

If V is (δ, η)-small (see Definition 1.1) then ‖V ‖L∞(R) ≤ δ/η, so (1-5) yields

‖u‖L∞(R)‖v‖L∞(R) = η‖V ‖L∞(R) ≤ δ.
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Taking δ > 0 small enough so that (C0+ 2C1)δ ≤
1
3 , from (7-5) we finally get (7-1) for all 0< ε ≤ η0.

The case of B0(a) follows similarly, just recall the paragraph previous to (5-33) taking into account that
the dependence of the norm of B0(a) with respect to ‖u‖L∞(R)‖v‖L∞(R) is the same as in the case of
0< ε ≤ η0. �

7A. Proof of Corollary 3.3. We are going to prove the corollary for (H + Vε − a)−1; the case of
(H +βVε − a)−1 follows by the same arguments. Let η0, δ > 0 be as in Lemma 7.1 and take a ∈ C \R

with |a| ≤ 1. It is trivial to show that

‖B ′‖L2(6×(−1,1))4→L2(6×(−1,1))4 ≤ C‖u‖L∞(R)‖v‖L∞(R)

for some C > 0 only depending on6. Using (1-5), we can take a smaller δ > 0 so that, for any (δ, η)-small
V with 0< η ≤ η0,

‖B ′‖L2(6×(−1,1))4→L2(6×(−1,1))4 ≤ Cδ ≤ 1
3 .

Then, from this and (7-1) in Lemma 7.1 (with ε = 0) we deduce that

‖(1+ B0(a)+ B ′)g‖L2(6×(−1,1))4 ≥ ‖g‖L2(6×(−1,1))4 −‖(B0(a)+ B ′)g‖L2(6×(−1,1))4

≥
1
3‖g‖L2(6×(−1,1))4

for all g ∈ L2(6× (−1, 1))4. Therefore, 1+ B0(a)+ B ′ is invertible and

‖(1+ B0(a)+ B ′)−1
‖L2(6×(−1,1))4→L2(6×(−1,1))4 ≤ 3.

This justifies the last comment in the corollary. Similar considerations also apply to 1+ Bε(a), so in this
case we deduce that

‖(1+ Bε(a))−1
‖L2(6×(−1,1))4→L2(6×(−1,1))4 ≤

3
2 (7-6)

for all 0< ε ≤ η0. Note also that

(1+ Bε(a))−1
− (1+ B0(a)+ B ′)−1

= (1+ Bε(a))−1(B0(a)+ B ′− Bε(a))(1+ B0(a)+ B ′)−1. (7-7)

Given g ∈ L2(6× (−1, 1))4, set f = (1+ B0(a)+ B ′)−1g ∈ L2(6× (−1, 1))4. Then, by (7-7) and
(7-6), we see that∥∥((1+ Bε(a))−1

− (1+ B0(a)+ B ′)−1)g∥∥L2(6×(−1,1))4

=
∥∥(1+ Bε(a))−1(B0(a)+ B ′− Bε(a)) f

∥∥
L2(6×(−1,1))4

≤
3
2

∥∥(B0(a)+ B ′− Bε(a)) f
∥∥

L2(6×(−1,1))4 . (7-8)

By (3-10) in Theorem 3.2, the right-hand side of (7-8) converges to zero when ε→ 0. Therefore, we
deduce that (1+ Bε(a))−1 converges strongly to (1+ B0(a)+ B ′)−1 when ε→ 0. Since the composition
of strongly convergent operators is strongly convergent, using (3-5) and Theorem 3.2, we finally obtain
the desired strong convergence

(H + Vε − a)−1
→ (H − a)−1

+ A0(a)(1+ B0(a)+ B ′)−1C0(a) when ε→ 0.

Corollary 3.3 is finally proved.
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