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REDUCIBILITY OF THE QUANTUM HARMONIC OSCILLATOR IN
d-DIMENSIONS WITH POLYNOMIAL TIME-DEPENDENT PERTURBATION

DARIO BAMBUSI, BENOÎT GRÉBERT, ALBERTO MASPERO AND DIDIER ROBERT

We prove a reducibility result for a quantum harmonic oscillator in arbitrary dimension with arbitrary
frequencies perturbed by a linear operator which is a polynomial of degree 2 in (x j ,−i∂j ) with coefficients
which depend quasiperiodically on time.

1. Introduction and statement of results

The aim of this paper is to present a reducibility result for the time-dependent Schrödinger equation

iψ̇ = Hε(ω t)ψ, x ∈ Rd, (1-1)

Hε(ω t) := H0+ εW (ω t, x,−i∇), (1-2)
where

H0 := −1+ V (x), V (x) :=
d∑

j=1

ν2
j x2

j , νj > 0, (1-3)

and W (θ, x, ξ) is a real polynomial in (x, ξ) of degree at most 2, with coefficients being real analytic
functions of θ ∈ Tn. Here ω are parameters which are assumed to belong to the set D = (0, 2π)n.

For ε = 0 the spectrum of (1-2) is given by

σ(H0)= {λk}k∈Nd , λk ≡ λ(k1,...,kd ) :=

d∑
j=1

(2kj + 1)νj , (1-4)

with kj ≥ 0 integers. In particular if the frequencies νj are nonresonant, then the differences between
couples of eigenvalues are dense on the real axis. As a consequence, in the case ε = 0 most of the
solutions of (1-1) are almost periodic with an infinite number of rationally independent frequencies.

Here we will prove that for any choice of the mechanical frequencies νj and for ω belonging to a
set of large measure in D, the system (1-1) is reducible: precisely there exists a time-quasiperiodic
unitary transformation of L2(Rd) which conjugates (1-2) to a time-independent operator. We also deduce
boundedness of the Sobolev norms of the solution.

The proof exploits the fact that for polynomial Hamiltonians of degree at most 2, the correspondence
between classical and quantum mechanics is exact (i.e., without error term), so that the result can be

MSC2010: 35J10, 37K55.
Keywords: reducibility, harmonic oscillators, growth of Sobolev norms.

775

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2018.11-3
http://dx.doi.org/10.2140/apde.2018.11.775
http://msp.org


776 DARIO BAMBUSI, BENOÎT GRÉBERT, ALBERTO MASPERO AND DIDIER ROBERT

proven by exact quantization of the classical KAM theory, which ensures reducibility of the classical
Hamiltonian system

hε := h0+ εW (ω t, x, ξ), h0 :=

d∑
j=1

ξ 2
j + ν

2
j x2

j . (1-5)

We will use (in the Appendix) the exact correspondence between classical and quantum dynamics of
quadratic Hamiltonians also to prove a complementary result. Precisely we will present a class of
examples, following [Graffi and Yajima 2000], in which one generically has growth of Sobolev norms.
This happens when the frequencies ω of the external forcing are resonant with some of the νj .

We recall that the exact correspondence between classical and quantum dynamics of quadratic Hamil-
tonians was already exploited in [Hagedorn et al. 1986] to prove stability/instability results for one degree
of freedom time-dependent quadratic Hamiltonians.

Notwithstanding the simplicity of the proof, we think that the present result could have some interest,
since this is the first example of a reducibility result for a system in which the gaps of the unperturbed
spectrum are dense in R. Furthermore it is one of the few cases in which reducibility is obtained for
systems in more than one space dimension.

Indeed, most of the results on the reducibility problem for (1-1) have been obtained in the 1-dimensional
case, and also the results in higher dimensions obtained up to now deal only with cases in which the
spectrum of the unperturbed system has gaps whose size is bounded from below, like in the harmonic
oscillator (or in the Schrödinger equation on Td). On the other hand we restrict here to perturbations,
which although unbounded, must belong to the very special class of polynomials in x j and −i∂j . The
reason is that for operators in this class, the commutator is the operator whose symbol is the Poisson
bracket of the corresponding symbols, without any error term (see Remark 2.2 and Remark 2.4). In order
to deal with more general perturbations one needs further ideas and techniques.

Before closing this introduction we recall some previous works on the reducibility problem for (1-1)
and more generally for perturbations of the Schrödinger equation with a potential V (x). As we already
anticipated, most of the works deal with the 1-dimensional case. The first one is [Combescure 1987], in
which the pure point nature of the Floquet operator is obtained in the case of a smoothing perturbation
of the harmonic oscillator in dimension 1; see also [Kuksin 1993]. The techniques of this paper were
extended in [Duclos and Št’ovíček 1996; Duclos et al. 2002] in order to deal with potentials growing
superquadratically (still in dimension 1) but with perturbations which were only required to be bounded.

A slightly different approach originates from the so-called KAM theory for PDEs [Kuksin 1987; Wayne
1990]. In particular the methods developed in that context in order to deal with unbounded perturbations,
see [Kuksin 1997; 1998], were exploited in [Bambusi and Graffi 2001] in order to deal with the reducibility
problem of (1-1) with superquadratic potential in dimension 1; see [Liu and Yuan 2010] for a further
improvement. The case of bounded perturbations of the harmonic oscillator in dimension 1 was treated in
[Wang 2008; Grébert and Thomann 2011].

An extension of KAM theory to NLS on Td has been obtained in [Eliasson and Kuksin 2010] and
its methods have been adapted to deal with the reducibility problem of quasiperiodically forced linear
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Schrödinger equation in [Eliasson and Kuksin 2009]. A further reducibility result for equations in more
than one space dimension is [Grébert and Paturel 2016], in which bounded perturbations of the completely
resonant harmonic oscillator in Rd were studied. As far as we know, these are the only higher-dimensional
linear systems for which reducibility is known.1

We remark that all these papers deal with cases where the spectrum of the unperturbed operator is
formed by well-separated eigenvalues. In the higher-dimensional cases they are allowed to have high
multiplicity localized in clusters. But then the perturbation must have special properties ensuring that the
clusters are essentially not destroyed under the KAM iteration.

Finally we recall the works [Bambusi 2017a; 2017b], in which pseudodifferential calculus was used
together with KAM theory in order to prove reducibility results for (1-1) (in dimension 1) with unbounded
perturbations. The ideas of the present paper are a direct development of the ideas of [Bambusi 2017a;
2017b]. We also recall that the idea of using pseudodifferential calculus together with KAM theory in
order to deal with problems involving unbounded perturbations originates from [Plotnikov and Toland
2001; Iooss et al. 2005] and has been developed in order to give a quite general theory in [Baldi et al.
2014; Berti and Montalto 2016; Montalto 2014]; see also [Feola and Procesi 2015].

In order to state our main result, we need some preparations. It is well known that (1-1) is well-posed,
see for example [Maspero and Robert 2017], in the scale Hs, s ∈ R, of the weighted Sobolev spaces
defined as follows. For s ≥ 0 let

Hs
:= {ψ ∈ L2(Rd) : H s/2

0 ψ ∈ L2(Rd)},

equipped with the natural Hilbert space norm ‖ψ‖s := ‖H
s/2
0 ψ‖L2(Rd ). For s < 0, Hs is defined by

duality. Such spaces are not dependent on ν for νj > 0, 1≤ j ≤ d . We also have Hs
≡Dom(−1+|x |2)s/2.

We will prove the following reducibility theorem:

Theorem 1.1. Let ψ be a solution of (1-1). There exist ε∗ > 0, C > 0 and for all |ε| < ε∗ a closed
set Eε ⊂ (0, 2π)n with meas((0, 2π)n \ Eε) ≤ Cε1/9 and, for all ω ∈ Eε there exists a unitary (in L2)
time-quasiperiodic map Uω(ω t) such that, defining ϕ by Uω(ω t)ϕ = ψ , it satisfies the equation

iϕ̇ = H∞ϕ, (1-6)

with H∞ a positive definite time-independent operator which is unitary equivalent to a diagonal operator
d∑

j=1

ν∞j (x
2
j − ∂

2
x j
),

where ν∞j = ν
∞

j (ω) are defined for ω ∈ Eε and fulfill the estimates

|νj − ν
∞

j | ≤ Cε, j = 1, . . . , d.

Finally the following properties hold:

(i) For all s ≥ 0, for all ψ ∈Hs , we have θ 7→Uω(θ)ψ ∈ C0(Tn
;Hs).

1We would like to point out also [Procesi and Procesi 2012; 2015], which at present refer to the resonant nonlinear Schrödinger
equation; it would be interesting to study if they have some consequences for reducibility theory.
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(ii) For all s ≥ 0, there exists Cs > 0 such that for all θ ∈ Tn

‖1−Uω(θ)‖L(Hs+2;Hs) ≤ Csε. (1-7)

(iii) For all s, r ≥ 0, the map θ 7→Uω(θ) is of class Cr (Tn
;L(Hs+4r+2

;Hs)).

Remark 1.2. In Theorem 1.1, if the frequencies νj are resonant, then the change of coordinates Uω is
close to the identity, in the sense of (1-7), but the Hamiltonian H∞ is not necessary diagonal. However, it
is always possible to diagonalize it by means of a metaplectic transformation which is not close to the
identity; see Theorem 2.10 and Remark 2.11 below.

Let us denote by Uε,ω(t, τ ) the propagator generated by (1-1) such that Uε,ω(τ, τ )= 1 for all τ ∈ R.
An immediate consequence of Theorem 1.1 is that we have a Floquet decomposition:

Uε,ω(t, τ )=U∗ω(ω t) e−i(t−τ)H∞ Uω(ω tau). (1-8)

Another consequence of (1-8) is that for any s > 0 the norm ‖Uε,ω(t, 0)ψ0‖s is bounded uniformly in
time:

Corollary 1.3. Let ω ∈ Eε with |ε|< ε∗. The following is true: for any s > 0 one has

cs‖ψ0‖s ≤ ‖Uε,ω(t, 0)ψ0‖s ≤ Cs‖ψ0‖s for all t ∈ R, for all ψ0 ∈Hs, (1-9)

for some cs > 0, Cs > 0.
Moreover there exists a constant c′s such that if the initial data ψ0 is in Hs+2 then

‖ψ0‖s − εc′s‖ψ0‖s+2 ≤ ‖Uε,ω(t, 0)ψ0‖s ≤ ‖ψ0‖s + εc′s‖ψ0‖s+2 for all t ∈ R. (1-10)

It is interesting to compare estimate (1-9) with the corresponding estimate which can be obtained for
more general perturbations W (t, x, D). So denote by U(t, τ ) the propagator of H0+W (t, x, D) with
U(τ, τ )= 1. Then in [Maspero and Robert 2017] it is proved that if W (t, x, ξ) is a real polynomial in
(x, ξ) of degree at most 2, the propagator U(t, s) exists, belongs to L(Hs) for all s ≥ 0 and fulfills

‖U(t, 0)ψ0‖s ≤ eCs |t |‖ψ0‖s for all t ∈ R

(the estimate is sharp!). If W (t, x, ξ) is a polynomial of degree at most 1, one has

‖U(t, 0)ψ0‖s ≤ Cs(1+ |t |)s ‖ψ0‖s for all t ∈ R.

Thus estimate (1-9) improves dramatically the upper bounds proved in [Maspero and Robert 2017] when
the perturbation is small and depends quasiperiodically in time with “good” frequencies.

As a final remark we recall that growth of Sobolev norms can indeed happen if the frequencies ω are
not well chosen. In the Appendix, we show that the Schrödinger equation

iψ̇ =
[
−

1
2∂xx +

1
2 x2
+ ax sinω t

]
ψ, x ∈ R

(which was already studied by Graffi and Yajima [2000], who showed that the corresponding Floquet
operator has continuous spectrum), exhibits growth of Sobolev norms if and only if ω =±1, which are
clearly resonant frequencies. We also slightly generalize the example.
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Another example of growth of Sobolev norms for the perturbed harmonic oscillator is given by Delort
[2014]. There the perturbation is a pseudodifferential operator of order 0, periodic in time with resonant
frequency ω = 1.

Remark 1.4. The uniform-time estimate given in (1-9) is similar to the main result obtained in [Eliasson
and Kuksin 2009] for small perturbation of the Laplace operator on the torus Td. Concerning perturbations
of harmonic oscillators in Rd, most known reducibility results are obtained for d = 1, except in [Grébert
and Paturel 2016].

Remark 1.5. In [Eliasson and Kuksin 2009; Grébert and Paturel 2016] the estimate (1-10) is proved
without loss of regularity; this is due to the fact that the perturbations treated in those papers are bounded
operators. There are also some cases, see for example [Bambusi and Graffi 2001], in which the reducing
transformation is bounded notwithstanding the fact that the perturbation is unbounded, but this is due to
the fact that the unperturbed system has suitable gap properties which are not fulfilled in our case.

Remark 1.6. The ε1/9 estimate on the measure of the set of resonant frequencies is not optimal. We
wrote it just for the sake of giving a simple quantitative estimate.

Remark 1.7. Denote by {ψk}k∈Nd the set of Hermite functions, namely the eigenvectors of H0: H0ψk =

λkψk . They form an orthonormal basis of L2(Rd), and writing ψ =
∑

k ckψk , one has

‖ψ‖2s '
∑

k

(1+ |k|)2s
|ck |

2.

Denote byψ(t)=
∑

k∈Nd ck(t)ψk the solution of (1-1) written on the Hermite basis. Then (1-9) implies the
following dynamical localization for the energy of the solution: for all s ≥ 0, there exists Cs ≡Cs(ψ0) > 0
such that

sup
t∈R

|ck(t)| ≤ Cs(1+ |k|)−s for all k ∈ Nd. (1-11)

From the dynamical property (1-11) one obtains easily that every state ψ ∈ L2(Rd) is a bounded state
for the time evolution Uε,ω(t, 0)ψ under the conditions of Theorem 1.1 on (ε, ω). The corresponding
definitions are given below.

Definition 1.8 [Enss and Veselić 1983]. A function ψ ∈ L2(Rd) is a bounded state (or belongs to the
point spectral subspace of {Uε,ω(t, 0)}t∈R) if the quantum trajectory {Uε,ω(t, 0)ψ : t ∈R} is a precompact
subset of L2(Rd).

Corollary 1.9. Under the conditions of Theorem 1.1 on (ε, ω), every state ψ ∈ L2(Rd) is a bounded
state of {Uε,ω(t, 0)}t∈R.

Proof. To prove that every state ψ ∈ L2(Rd) is a bounded state for the time evolution Uε,ω(t, 0)ψ , using
that Hs is dense in L2(Rd), it is enough to assume that ψ ∈ Hs, with s > 1

2 d. With the notation of
Remark 1.7, we write

ψ(t)= ψ (N )(t)+ R(N )(t),

where ψ (N )(t)=
∑
|k|≤N ck(t)ψk and R(N )(t)=

∑
|k|>N ck(t)ψk .
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Take δ > 0. Applying (1-11), taking N large enough, we get that ‖R(N )(t)‖0 ≤ 1
2δ for all t ∈ R. But

{ψ (N )(t) : t ∈R} is a subset of a finite-dimensional linear space. So we get that {Uε,ω(t, 0)ψ : t ∈R} is a
precompact subset of L2(Rd). �

This last dynamical result is deeply connected with the spectrum of the Floquet operator. First note
that Theorem 1.1 implies the following:

Corollary 1.10. The operator Uω induces a unitary transformation L2(Tn)⊗ L2(Rd) which transforms
the Floquet operator K , namely

K := −iω · ∂
∂θ
+ H0+ εW (θ),

into
−iω · ∂

∂θ
+ H∞.

Thus one has that the spectrum of K is pure point and its eigenvalues are λ∞j +ω · k.

Notice that Enss and Veselić [1983, Theorems 2.3 and 3.2] proved that the spectrum of the Floquet
operator is pure point if and only if every state is a bounded state. So Corollary 1.10 gives another proof
of Corollary 1.9.

2. Proof of Theorem 1.1

To start, we scale the variables x j by defining x ′j =
√
νj x j so that, defining

h j (x j , ξj ) := ξ
2
j + x2

j , Hj := −∂
2
x j
+ x2

j ,

one has

h0 =

d∑
j=1

νj h j , H0 =

d∑
j=1

νj Hj . (2-1)

Remark 2.1. Notice that for any positive definite quadratic Hamiltonian h on R2d there exists a symplectic
basis such that h =

∑d
j=1 νj h j , with νj > 0 for 1≤ j ≤ d; see [Hörmander 1994].

For convenience in this paper we shall consider the Weyl quantization. The Weyl quantization of a
symbol f is the operator Opw( f ), defined as usual as

Opw( f )u(x)=
1

(2π)d

∫
y,ξ∈Rd

ei(x−y)ξ f
( 1

2 x + y, ξ
)

u(y) dy dξ.

Correspondingly we will say that an operator F = Opw( f ) is the Weyl operator with Weyl symbol f .
Notice that for polynomials f of degree at most 2 in (x, ξ), we have Opw( f )= f (x, D)+ const, where
D = i−1

∇x .
Most of the time we also use the notation f w(x, D) :=Opw( f ). In particular, in (1-2) W (ω t, x,−i∂x)

denotes the Weyl operator Ww(ω t, x, D).
Given a Hamiltonian χ = χ(x, ξ), we will denote by φt

χ the flow of the corresponding classical
Hamilton equations.
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It is well known that, if f and g are symbols, then the operator −i[ f w(x, D); gw(x, D)] admits a
symbol denoted by { f ; g}M (the Moyal bracket). Two fundamental properties of quadratic polynomial
symbols are given by the following well-known remarks.

Remark 2.2. If f or g is a polynomial of degree at most 2, then { f ; g}M = { f ; g}, where

{ f ; g} :=
d∑

j=1

∂ f
∂x j

∂g
∂ξj
−
∂g
∂x j

∂ f
∂ξj

is the Poisson Bracket of f and g.

Remark 2.3. Let χ be a polynomial of degree at most 2; then it follows from the previous remark that,
for any Weyl operator f w(x, D), the symbol of eitχw(x,D) f w(x, D)e−itχw(x,D) is f ◦φt

χ .

Remark 2.4. If f and g are not quadratic polynomials, then { f ; g}M = { f ; g} + lower-order terms;
similar lower-order corrections would appear in the symbol of e−itχw(x,D) f w(x, D)eitχw(x,D). That is the
reason why we restrict here to the case of quadratic perturbations. In order to deal with more general
perturbations one needs further ideas which will be developed elsewhere.

Next we need to know how a time-dependent transformation transforms a classical and a quantum
Hamiltonian. Precisely, consider a 1-parameter family of (Hamiltonian) functions χ(t, x, ξ) (where t is
thought of as an external parameter) and denote by φτ (t, x, ξ) the time τ flow it generates, precisely the
solution of

dx
dτ
=
∂χ

∂ξ
(t, x, ξ),

dξ
dτ
=−

∂χ

∂x
(t, x, ξ). (2-2)

Consider the time-dependent coordinate transformation

(x, ξ)= φ1(t, x ′, ξ ′) := φτ (t, x ′, ξ ′)|τ=1. (2-3)

Remark 2.5. Working in the extended phase space in which time and a new momentum conjugated to it
are added, it is easy to see that the coordinate transformation (2-3) transforms a Hamiltonian system with
Hamiltonian h into a Hamiltonian system with Hamiltonian h′ given by

h′(t, x ′, ξ ′)= h(φ1(t, x ′, ξ ′))−
∫ 1

0

∂χ

∂t
(t, φτ (t, x ′, ξ ′)) dτ. (2-4)

Remark 2.6. If the operator χw(t, x, D) is selfadjoint for any fixed t , then the transformation

ψ = e−iχw(t,x,D)ψ ′ (2-5)

transforms iψ̇ = Hψ into iψ̇ ′ = H ′ψ ′ with

H ′ = eiχw(t,x,D)He−iχw(t,x,D)
−

∫ 1

0
eiτχw(t,x,D)(∂tχ

w(t, x, ξ)) e−iτχw(t,x,D) dτ. (2-6)

This is seen by an explicit computation. For example see Lemma 3.2 of [Bambusi 2017a].
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So in view of Remark 2.3, provided that transformation (2-5) is well-defined in the quadratic case, the
quantum transformed Hamiltonian (2-6) is the exact quantization of the transformed classical Hamiltonian
(2-4).

To study the analytic properties of the transformation (2-5) we will use the following simplified version
of Theorem 1.2 of [Maspero and Robert 2017] (to which we refer for the proof).

Theorem 2.7 [Maspero and Robert 2017]. Let H0 be the Hamiltonian of the harmonic oscillator. If X is
an operator symmetric on H∞ such that X H−1

0 and [X, H0]H−1
0 belong to L(Hs) for any s ≥ 0, then the

Schrödinger equation
i ∂τψ = Xψ

is globally well-posed in Hs for any s, and its unitary propagator e−iτ X belongs to L(Hs) for all s ≥ 0.
Furthermore one has the quantitative estimate

cs‖ψ‖s ≤ ‖e−iτ Xψ‖s ≤ Cs‖ψ‖s for all τ ∈ [0, 1], (2-7)

where the constants cs,Cs > 0 depend only on ‖[X, H s
0 ]H

−s
0 ‖L(H0).

The properties of the transformation are given by the next lemma and are closely related to the standard
properties on the smoothness in time of the semigroup generated by an unbounded operator.

Lemma 2.8. Let χ(ρ, x, ξ) be a polynomial in (x, ξ) of degree at most 2 with real coefficients depending
in a C∞-way on ρ ∈ Rn. Then for all ρ ∈ Rn, the operator χw(ρ, x, D) is selfadjoint in L2(Rd).
Furthermore for all s ≥ 0, for all τ ∈ R, the following hold true:

(i) The map ρ 7→ e−iτχw(ρ,x,D) is in C0(Rn,L(Hs+2,Hs)).

(ii) For all ψ ∈Hs, the map ρ 7→ e−iτχw(ρ,x,D)ψ is in C0(Rn,Hs).

(iii) For all r ∈ N, the map ρ 7→ e−iτχw(ρ,x,D) is in Cr (Rn,L(Hs+4r+2,Hs)).

(iv) If the coefficients of χ(ρ, x, ξ) are uniformly bounded in ρ ∈Rn then for any s > 0 there exist cs > 0,
Cs > 0 such that we have

cs‖ψ‖s ≤ ‖e−iτχw(ρ,x,D)ψ‖s ≤ Cs‖ψ‖s for all ρ ∈ Rn, for all τ ∈ [0, 1].

Proof. First we remark that in this lemma the quantity ρ plays the role of a parameter. Since χ(ρ, x, ξ) is
a real-valued polynomial in (x, ξ) of degree at most 2, the operator χw(ρ, x, D) is selfadjoint in L2(Rd),
so for all ρ ∈ Rn the propagator e−iτχw(ρ,x,D) is unitary on L2(Rd).

In order to show that e−iτχw(ρ,x,D) maps Hs to itself, for all s> 0, for all ρ ∈Rn, we apply Theorem 2.7.
Indeed since χw(ρ, x, D) has a polynomial symbol, we know χw(ρ, x, D)H−1

0 and the commutator
[H0, χ

w(ρ, x, D)]H−1
0 belong to L(Hs) for all s ≥ 0. Item (iv) follows by estimate (2-7) and the fact

that ‖[H s
0 , χ

w(ρ, x, D)]H−s
0 ‖L(H0) is bounded uniformly in ρ.

To prove item (i) we use the Duhamel formula

e−iτ B
− e−iτ A

= i
∫ τ

0
e−i(τ−τ1)A (A− B) e−iτ1 B dτ1. (2-8)
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Then choosing B = χw(ρ+ ρ ′, x, D), A = χw(ρ, x, D) one has that for all 0≤ τ ≤ 1

‖e−iτχw(ρ+ρ′,x,D)
− e−iτχw(ρ,x,D)

‖L(Hs+2,Hs) ≤ C‖χw(ρ+ ρ ′, x, D)−χw(ρ, x, D)‖L(Hs+2,Hs).

This proves item (i). Continuity in item (ii) is deduced by (i) with a standard density argument. Finally
item (iii) is proved by induction on r , again using the Duhamel formula (2-8). �

Remark 2.5, Remark 2.6 and Lemma 2.8 imply the following important proposition.

Proposition 2.9. Let χ(t, x, ξ) be a polynomial of degree at most 2 in x and ξ with smooth time-
dependent coefficients. If the transformation (2-3) transforms a classical system with Hamiltonian h into
a Hamiltonian system with Hamiltonian h′, then the transformation (2-5) transforms the quantum system
with Hamiltonian hw into the quantum system with Hamiltonian (h′)w.

As a consequence, for quadratic Hamiltonians, the quantum KAM theorem will follow from the
corresponding classical KAM theorem.

To give the needed result, consider the classical time-dependent Hamiltonian

hε(ω t, x, ξ) :=
∑

1≤ j≤d

1
2νj (x2

j + ξ
2
j )+ ε W (ω t, x, ξ), (2-9)

with W as in the Introduction. The following KAM theorem holds.

Theorem 2.10. Assume νj ≥ ν0 > 0 for j = 1, . . . , d and Tn
×Rd

×Rd
3 (θ, x, ξ) 7→W (θ, x, ξ) ∈ R is

a polynomial in (x, ξ) of degree at most 2 with coefficients which are real analytic functions of θ ∈ Tn.
Then there exists ε∗ > 0 and C > 0, such that for |ε|< ε∗ the following hold true:

(i) There exists a closed set Eε ⊂ (0, 2π)n with meas((0, 2π)n \ Eε)≤ Cε1/9.

(ii) For any ω ∈ Eε , there exists an analytic map θ 7→ Aω(θ) ∈ sp(2d) (the symplectic algebra2 of
dimension 2d) and an analytic map θ 7→ Vω(θ) ∈ R2d such that the change of coordinates

(x ′, ξ ′)= eAω(ω t)(x, ξ)+ Vω(ω t) (2-10)

conjugates the Hamiltonian equations of (2-9) to the Hamiltonian equations of a homogeneous
polynomial h∞(x,ξ) of degree 2 which is positive definite. Finally both Aω and Vω are ε-close to zero.

Furthermore h∞ can be diagonalized: there exists a matrix P ∈ Sp(2d) (the symplectic group of dimen-
sion 2d) such that, setting (y, η)= P(x, ξ) we have

h∞ ◦P−1(y, η)=
d∑

j=1

ν∞j (y
2
j + η

2
j ), (2-11)

where ν∞j = ν
∞

j (ω) are defined on Eε and fulfill the estimates

|ν∞j − νj | ≤ Cε, j = 1, . . . , d. (2-12)

Remark 2.11. In general, the matrix P is not close to the identity. However, in the case that the
frequencies νj are nonresonant, P = 1.

2Recall that a real 2d × 2d matrix A belongs to sp(2d) if and only if JA is symmetric
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KAM theory in finite dimensions is nowadays standard. In particular we believe that Theorem 2.10 can
be obtained combining the results of [Eliasson 1988; You 1999]. However, for the reader’s convenience
and the sake of being self-contained, we add in Section 3 its proof.

Theorem 1.1 follows immediately combining the results of Theorem 2.10 and Proposition 2.9.

Proof of Theorem 1.1. We see easily that the change of coordinates (2-10) has the form (2-3) with a
Hamiltonian χω(ω t, x, ξ) which is a polynomial in (x, ξ) of degree at most 2 with real, smooth and
uniformly bounded coefficients in t ∈ R.

Define Uω(ω t)= e−iχwω (ω t,x,D). By Proposition 2.9 it conjugates the original equation (1-1) to (1-6),
where H∞ := Opw(h∞).

Furthermore θ 7→ Uω(θ) fulfills (i)–(iv) of Lemma 2.8, from which it follows immediately that
θ 7→Uω(θ) fulfills items (i), (iii) of Theorem 1.1. Concerning item (ii), by the Taylor formula the quantity
‖1−Uω(θ)‖L(Hs+2,Hs) is controlled by ‖χwω (θ, x, D)‖L(Hs+2,Hs), from which estimate (1-7) follows.

Finally using the metaplectic representation, see [Combescure and Robert 2012], and (2-11), there
exists a unitary transformation in L2, denoted by R(P−1), such that

R(P−1)∗H∞R(P−1)=

d∑
j=1

ν∞j (x
2
j − ∂

2
x j
). �

We prove now Corollary 1.3.

Proof of Corollary 1.3. Consider first the propagator e−it H∞. We claim that

sup
t∈R

‖e−it H∞‖L(Hs) <∞ for all t ∈ R. (2-13)

Recall that H∞ = hw
∞
(x, D), where h∞(x, ξ) is a positive definite symmetric form which can be di-

agonalized by a symplectic matrix P. Since h∞ is positive definite, there exist c0, c1, c2 > 0 such
that

c1h0(x, ξ)≤ c0+ h∞(x, ξ)≤ c2(1+ h0(x, ξ)),

which implies C1 H0 ≤ C0+ H∞ ≤ C2(1+ H0) as bilinear form. Thus one has the equivalence of norms

C−1
s ‖ψ‖Hs ≤ ‖(H∞)s/2ψ‖L2 ≤ Cs‖ψ‖Hs .

Then

‖e−it H∞ψ0‖Hs ≤ Cs‖(H∞)s/2 e−it H∞ψ0‖L2 = Cs‖(H∞)s/2 ψ0‖L2 ≤ C ′s‖ψ0‖Hs ,

which implies (2-13).
Now let ψ(t) be a solution of (1-1). By formula (1-8), ψ(t) = U∗ω(ω t)e−it H∞Uω(0)ψ0. Then the

upper bound in (1-9) follows easily from (2-13) and supt ‖Uω(ω t)‖L(Hs) <∞, which is a consequence
of Lemma 2.8. The lower bound follows by applying Lemma 2.8 (iv).

Finally estimate (1-10) follows from (1-7). �
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3. A classical KAM result

In this section we prove Theorem 2.10. We prefer to work in the extended phase space in which we
add the angles θ ∈ Tn as new variables and their conjugated momenta I ∈ Rn. Furthermore we will use
complex variables defined by

z j =
1
√

2
(ξj − ix j ),

so that our phase space will be Tn
×Rn

×Cd, with Cd considered as a real vector space. The symplectic
form is d I ∧ dθ + i dz ∧ dz̄ and the Hamilton equations of a Hamiltonian function h(θ, I, z, z̄) are

İ =−
∂h
∂θ
, θ̇ =

∂h
∂ I
, ż =−i

∂h
∂ z̄
.

In this framework h0 takes the form h0 =
∑d

j=1 νj z j z̄ j and W takes the form of polynomial in (z, z̄) of
degree 2, W (θ, x, ξ)= q(θ, z, z̄). The Hamiltonian system associated with the time-dependent Hamil-
tonian hε , see (2-9), is then equivalent to the Hamiltonian system associated with the time-independent
Hamiltonian ω · I + hε (written in complex variables) in the extended phase space.

General strategy. Let h be a Hamiltonian in normal form:

h(I, θ, z, z̄)= ω · I +〈z, N (ω)z̄〉, (3-1)

with N ∈MH the set of Hermitian matrices. Notice that at the beginning of the procedure N is diagonal,

N = N0 = diag(νj , j = 1, . . . , d)

and is independent of ω. Let q ≡ qω be a polynomial Hamiltonian which takes real values: q(θ, z, z̄) ∈ R

for θ ∈ Tn and z ∈ Cd. We write

q(θ, z, z̄)= 〈z, Qzz(θ)z〉+ 〈z, Qzz̄(θ)z̄〉+ 〈z̄, Qzz(θ)z̄〉+ 〈Qz(θ), z〉+ 〈Q z̄(θ), z̄〉, (3-2)

where Qzz(θ)≡ Qzz(ω, θ) and Qzz̄(θ)≡ Qzz̄(ω, θ) are d × d complex matrices and Qz(θ)≡ Qz(θ, ω)

is a vector in Cd. They all depend analytically on the angle

θ ∈ Tn
σ := {x + iy : x ∈ Tn, y ∈ Rn, |y|< σ }.

We notice that Qzz̄ is Hermitian, while Qzz is symmetric. The size of such a polynomial function
depending analytically on θ ∈ Tn

σ and C1 on ω ∈ D = (0, 2π)n will be controlled by the norm

[q]σ := sup
|Imθ |<σ

ω∈D, j=0,1

‖∂ j
ωQzz(ω, θ)‖+ sup

|Imθ |<σ
ω∈D, j=0,1

‖∂ j
ωQzz̄(ω, θ)‖+ sup

|Imθ |<σ
ω∈D, j=0,1

|∂ j
ωQz(ω, θ)|

and we denote by Q(σ ) the class of Hamiltonians of the form (3-2) whose norm [ · ]σ is finite.
Let us assume that [q]σ =O(ε). We search for χ ≡ χω ∈Q(σ ) with [χ ]σ =O(ε) such that its time-1

flow φχ ≡ φ
t=1
χ (in the extended phase space, of course) transforms the Hamiltonian h+ q into

(h+ q(θ)) ◦φχ = h++ q+(θ), ω ∈ D+, (3-3)
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where h+ = ω · I +〈z, N+ z̄〉 is a new normal form, ε-close to h, the new perturbation q+ ∈Q(σ ) is of
size3 O(ε3/2) and D+ ⊂ D is εα-close to D for some α > 0. Notice that all the functions are defined on
the whole open set D but (3-3) holds only on D+, a subset of D from which we excised the “resonant
parts”.

As a consequence of the Hamiltonian structure, we have

(h+ q(θ)) ◦φχ = h+{h, χ}+ q(θ)+O(ε3/2), ω ∈ D+.

So to achieve the goal above we should solve the homological equation:

{h, χ} = h+− h− q(θ)+O(ε3/2), ω ∈ D+. (3-4)

Repeating iteratively the same procedure with h+ instead of h, we will construct a change of variable φ
such that

(h+ q(θ)) ◦φ = ω · I + h∞, ω ∈ D∞,

with h∞ = 〈z, N∞(ω)z̄〉 in normal form and D∞ an εα-close subset of D. Note that we will be forced to
solve the homological equation not only for the diagonal normal form N0, but for more general normal
form Hamiltonians (3-1) with N close to N0.

Homological equation.

Proposition 3.1. Let D = (0, 2π)n and D 3 ω 7→ N (ω) ∈MH be a C1 mapping that satisfies

‖∂ j
ω(N (ω)− N0)‖<

min(1, ν0)

max(4, d)
(3-5)

for j = 0, 1 and ω ∈ D. Let h = ω · I +〈z, N z̄〉, q ∈Q(σ ), κ > 0 and K ≥ 1.
Then there exists a closed subset D′ = D′(κ, K )⊂ D satisfying

meas(D \D′)≤ C K nκ, (3-6)

and there exist χ, r ∈
⋂

0≤σ ′<σ Q(σ
′) and D 3 ω 7→ Ñ (ω) ∈MH a C1 mapping such that for all ω ∈D′

{h, χ}+ q = 〈z, Ñ z̄〉+ r. (3-7)

Furthermore for all ω ∈ D
‖∂ j
ω Ñ (ω)‖ ≤ [q]σ , j = 0, 1, (3-8)

and for all 0≤ σ ′ < σ

[r ]σ ′ ≤ C
e−1/2(σ−σ ′)K

(σ − σ ′)n
[q]σ , (3-9)

[χ ]σ ′ ≤
C K

κ2(σ − σ ′)n
[q]σ . (3-10)

3Formally we could expect q+ to be of size O(ε2) but the small divisors and the reduction of the analyticity domain will lead
to an estimate of the type O(ε3/2).
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Proof. Writing the Hamiltonians h, q and χ as in (3-2), the homological equation (3-7) is equivalent to
the three following equations (we use that N is Hermitian, thus N = t N ):

ω · ∇θ Xzz̄ − i[N , Xzz̄] = Ñ − Qzz̄ + Rzz̄, (3-11)

ω · ∇θ Xzz − i(N Xzz + Xzz N )=−Qzz + Rzz, (3-12)

ω · ∇θ Xz + iN Xz =−Qz + Rz. (3-13)

First we solve (3-11). To simplify notation we drop the indices zz̄. Written in Fourier variables (with
respect to θ ), (3-11) reads as

iω · k X̂k − i[N , X̂k] = δk,0 Ñ − Q̂k + R̂k, k ∈ Zn, (3-14)

where δk, j denotes the Kronecker symbol.
When k = 0 we solve this equation by defining

X̂0 = 0, R̂0 = 0 and Ñ = Q̂0.

We notice that Ñ ∈MH and satisfies (3-8).
When |k| ≥ K , (3-14) is solved by defining

R̂k = Q̂k, X̂k = 0 for |k| ≥ K . (3-15)

Then we set
R̂k = 0 for |k| ≤ K

in such a way that r ∈
⋂

0≤σ ′<σ Q(σ
′) and by a standard argument r satisfies (3-9). Now it remains to

solve the equations for X̂k , 0< |k| ≤ K , which we rewrite as

Lk(ω)X̂k = i Q̂k, (3-16)

where Lk(ω) is the linear operator from MS , the space of symmetric matrices, into itself defined by

Lk(ω) : M 7→ (k ·ω)M − [N (ω),M].

We notice that MS can be endowed with the Hermitian product: (A, B) = Tr(AB) associated with
the Hilbert–Schmidt norm. Since N is Hermitian, Lk(ω) is selfadjoint for this structure. As a first
consequence we get

‖(Lk(ω))
−1
‖ ≤

1
min{|λ|, λ ∈Σ(Lk(ω))}

=
1

min{|k ·ω−α(ω)+β(ω)| : α, β ∈Σ(N (ω))}
, (3-17)

where for any matrix A, we denote its spectrum by Σ(A).
Let us recall an important result of perturbation theory, which is a consequence of Theorem 1.10 in

[Kato 1980] (since Hermitian matrices are normal matrices):

Theorem 3.2 [Kato 1980, Theorem 1.10]. Let I ⊂ R and I 3 z 7→ M(z) be a holomorphic curve of
Hermitian matrices. Then all the eigenvalues and associated eigenvectors of M(z) can be parametrized
holomorphically on I .
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Let us assume for a while that N depends analytically on ω in such a way that ω 7→ Lk(ω) is analytic.
Fix a direction zk ∈ Rn; the eigenvalue λk(ω)= k ·ω−α(ω)+β(ω) of Lk(ω) is C1 in the direction4 zk

and the associated unitary eigenvector, denoted by v(ω), is also piecewise C1 in the direction zk . Then,
as a consequence of the hermiticity of Lk(ω) we have

∂ωλ(ω) · zk = 〈v(ω), (∂ωLk(ω) · zk) v(ω)〉.

Therefore, if N depends analytically of ω, we deduce using (3-5) and choosing zk = k/|k|∣∣∣∣∂ωλk(ω) ·
k
|k|

∣∣∣∣≥ |k| − 2‖∂ωN‖ ≥ 1
2 for k 6= 0, (3-18)

which extends also to the points of discontinuity of v(ω). Now given a matrix L depending on the
parameter ω ∈ D, we define

D(L , κ)= {ω ∈ D : ‖L(ω)−1
‖ ≤ κ−1

}

and we recall the following classical lemma:

Lemma 3.3. Let f : [0, 1] 7→ R be a C1-map satisfying | f ′(x)| ≥ δ for all x ∈ [0, 1] and let κ > 0. Then

meas{x ∈ [0, 1] : | f (x)| ≤ κ} ≤
κ

δ
.

Combining this lemma, (3-17) and (3-18) we deduce that, if N depends analytically of ω, then for k 6= 0

meas(D \D(Lk, κ))≤ Cκ. (3-19)

Now it turns out that, by a density argument, this last estimate remains valid (with a larger constant C)
when N is only a C1 function of ω; the point is that (3-18) holds true uniformly for close analytic
approximations of N.

In particular, defining
D′ =

⋂
0<|k|≤K

D(Lk, κ),

D′ is closed and satisfies (3-6).
By construction, X̂k(ω) := i Lk(ω)

−1 Q̂k satisfies (3-16) for 0< |k| ≤ K and ω ∈ D(Lk, κ) and

‖X̂k(ω)‖ ≤ κ
−1
‖Q̂k(ω)‖, ω ∈ D(Lk, κ). (3-20)

It remains to extend X̂k( · ) on D. Using again (3-5) we have for any |k| ≤ K and any unit vector z,
|∂ωλ(ω) · z| ≤ C K . Therefore

dist
(
D \D(Lk, κ),D

(
Lk,

1
2κ
))
≥

κ

C K

and we can construct (by a convolution argument) for each k, 0< |k| ≤ K , a C1 function gk on D with

|gk |C0(D) ≤ C, |gk |C1(D) ≤ C Kκ−1 (3-21)

4That is, t 7→ λk(ω+ t zk) is a holomorphic curve on a neighborhood of 0, and we denote by ∂ωλ(ω) · zk its derivative at
t = 0.
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(the constant C is independent of k) and such that gk(ω) = 1 for ω /∈ D(Lk, κ) and gk(ω) = 0 for
ω ∈D

(
Lk,

1
2κ
)
. Then X̃k = gk X̂k is a C1 extension of X̂k to D. Similarly we define Q̃k = gk Q̂k in such a

way that X̃k satisfies
Lk(ω)X̃k(ω)= i Q̃k(ω), 0< |k| ≤ K , ω ∈ D.

Differentiating with respect to ω leads to

Lk(ω) ∂ωj X̂(k)= i ∂ωj Q̂(k)− kj X̂(k)+ [∂ωj N, X̂(k)], 1≤ j ≤ n.

Defining Bk(ω)= i ∂ωj Q̃k(ω)− kj X̃k(ω)+ [∂ωj N (ω), X̃k(ω)] we have

‖∂ωj X̃k(ω)‖ ≤ κ
−1
‖Bk(ω)‖, ω ∈ D.

Using (3-5), (3-20) and (3-21) we get for |k| ≤ K and ω ∈ D

‖Bk(ω)‖ ≤ ‖∂ωj Q̃k(ω)‖+ K‖X̃k(ω)‖+ 2‖∂ωj N (ω)‖‖X̃k(ω)‖

≤ C Kκ−1(‖∂ωj Q̂(k, ω)‖+‖Q̂(k, ω)‖).

Combining the last two estimates we get

sup
ω∈D, j=0,1

‖∂ j
ω X̃k(ω)‖ ≤ C Kκ−2 sup

ω∈D, j=0,1
‖∂ j
ω Q̂k(ω)‖.

Thus defining
Xzz̄(ω, θ)=

∑
0<|k|≤K

X̃k(ω)eik·θ,

Xzz̄(ω, · ) satisfies (3-11) for ω ∈ D′ and leads to (3-10) for χzz̄(ω, θ, z, z̄)= 〈z, Xzz̄(ω, · )z̄〉.

We solve (3-13) in a similar way. We notice that in this case we face the small divisors |ω · k−α(ω)|,
k ∈ Zn, where α ∈Σ(N (ω)). In particular for k = 0 these quantities are ≥ 1

2ν0 since |α− νj | ≤
1
4ν0 for

some 1≤ j ≤ d by (3-5).
Writing in Fourier variables and dropping indices zz, (3-12) reads as

iω · k X̂(k)− i(N X̂(k)+ X̂(k)N )=−Q̂(k)+ R̂(k). (3-22)

So to mimic the resolution of (3-14) we have to replace the operator Lk(ω) by the operator Mk(ω), defined
on MS by

Mk(ω)X := ω · k+ N X + X N.

This operator is still selfadjoint for the Hermitian product (A, B)= Tr(AB) so the same strategy applies.
Nevertheless we have to consider differently the case k = 0. In that case we use that the eigenvalues of
M0(ω) are close to eigenvalues of the operator M0 defined by

M0 : X 7→ N0 X + X N 0 = N0 X + X N0,

with N0 = diag(νj , j = 1, . . . , d) a real and diagonal matrix. Actually in view of (3-5)

‖(L − L0)M‖HS ≤ ‖N − N0‖HS ‖M‖HS ≤ d‖N − N0‖‖M‖HS ≤ ν0.
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The eigenvalues of L0 are {νj + ν` : j, `= 1, . . . , d} and they are all larger than 2ν0. We conclude that
all the eigenvalues of M0(ω) satisfy |α(ω)| ≥ ν0. The end of the proof follows as before. �

The KAM step. Theorem 2.10 is proved by an iterative KAM procedure. We begin with the initial
Hamiltonian h0+ q0, where

h0(I, θ, z, z̄)= ω · I +〈z, N0 z̄〉, (3-23)

N0 = diag(νj , j = 1, . . . , d), ω ∈D≡ [1, 2]n and the quadratic perturbation q0 equals εW ∈Q(σ,D) for
some σ >0. Then we construct iteratively the change of variables φm , the normal form hm=ω·I+〈z, Nm z̄〉
and the perturbation qm ∈Q(σm,Dm) as follows: Assume that the construction is done up to step m ≥ 0.
Then:

(i) Using Proposition 3.1 we construct χm+1, rm+1 and Ñm the solution of the homological equation:

{h, χm+1} = 〈z, Ñm z̄〉− qm(θ)+ rm+1, ω ∈ Dm+1, θ ∈ Tn
σm+1

. (3-24)

(ii) We define hm+1 := ω · I +〈z, Nm+1 z̄〉 by

Nm+1 = Nm + Ñm, (3-25)

and

qm+1 := rm +

∫ 1

0
{(1− t)(hm+1− hm + rm+1)+ tqm, χm+1} ◦φ

t
χm+1

dt. (3-26)

By construction, if Qm and Nm are Hermitian, so are Rm and Sm+1 by the resolution of the homological
equation, and also Nm+1 and Qm+1.

For any regular Hamiltonian f we have, using the Taylor expansion of f ◦φt
χm+1

between t = 0 and
t = 1,

f ◦φ1
χm+1
= f +{ f, χm+1}+

∫ 1

0
(1− t){{ f, χm+1}, χm+1} ◦φ

t
χm+1

dt.

Therefore we get for ω ∈ Dm+1

(hm + qm) ◦φ
1
χm+1
= hm+1+ qm+1.

Iterative lemma. Following the general scheme above we have

(h0+ q0) ◦φ
1
χ1
◦ · · · ◦φ1

χm
= hm + qm,

where qm is a polynomial of degree 2 and hm = ω · I +〈z, Nm z̄〉 with Nm a Hermitian matrix. At step m
the Fourier series are truncated at order Km and the small divisors are controlled by κm . Now we specify
the choice of all the parameters for m ≥ 0 in terms of εm , which will control [qm]Dm ,σm .

First we define ε0 = ε, σ0 = σ , D0 = D and for m ≥ 1 we choose

σm−1− σm = C∗σ0m−2, Km = 2(σm−1− σm)
−1 ln ε−1

m−1, κm = ε
1/8
m−1,

where (C∗)−1
= 2

∑
j≥1 1/ j2.
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Lemma 3.4. There exists ε∗ > 0 depending on d, n such that, for |ε| ≤ ε∗ and

εm = ε
(3/2)m, m ≥ 0,

we have the following:
For all m ≥ 1 there exist closed subsets Dm ⊂ Dm−1, hm = ω · I + 〈z, Nm z̄〉 in normal form, where

Dm 3 ω 7→ Nm(ω) ∈MH ∈ C1, and there exist χm, qm ∈Q(Dm, σm) such that for m ≥ 1:

(i) The symplectomorphism

φm ≡ φχm (ω) : R
n
×Tn

×C2d
→ Rn

×Tn
×C2d, ω ∈ Dm, (3-27)

is an affine transformation in (z, z̄), analytic in θ ∈ Tn
σm

and C1 in ω ∈ Dm of the form

φm(I, θ, z, z̄)= (gm(I, θ, z, z̄), θ,9m(θ, z, z̄)), (3-28)

where, for each θ ∈ Tn, (z, z̄) 7→9m(θ, z, z̄) is a symplectic change of variable on C2n.
The map φm links the Hamiltonian at step m− 1 and the Hamiltonian at step m; i.e.,

(hm−1+ qm−1) ◦φm = hm + qm for all ω ∈ Dm .

(ii) We have the estimates
meas(Dm−1 \Dm)≤ ε

1/9
m−1, (3-29)

[Ñm−1]
Dm
s,β ≤ εm−1, (3-30)

[qm]
Dm ,σm
s,β ≤ εm, (3-31)

‖φm(ω)− 1‖L(Rn×Tn×C2d ) ≤ Cε1/2
m−1 for all ω ∈ Dm . (3-32)

Proof. At step 1, h0 = ω · I +〈z, N0 z̄〉 and thus hypothesis (3-5) is trivially satisfied and we can apply
Proposition 3.1 to construct χ1, N1, r1 and D1 such that for ω ∈ D1

{h0, χ1} = 〈z, (N1− N0)z̄〉− q0+ r1.

Then, using (3-6), we have
meas(D \D1)≤ C K n

1 κ1 ≤ ε
1/9
0

for ε = ε0 small enough. Using (3-10) we have for ε0 small enough

[χ1]D1,σ1 ≤ C
K1

κ2
1 (σ0− σ1)n

ε0 ≤ ε
1/2
0 .

Similarly using (3-9), (3-8) we have

‖N1− N0‖ ≤ ε0 and [r1]D1,σ1 ≤ C
ε

15/8
0

(σ1− σ0)n
≤ ε

7/4
0

for ε = ε0 small enough. In particular we deduce ‖φ1− 1‖L(Rn×Tn×C2d ) ≤ ε
1/2
0 . Thus using (3-26) we get

for ε0 small enough
[q1]D1,σ1 ≤ ε

3/2
0 = ε1.

The form of the flow (3-28) follows since χ1 is a Hamiltonian of the form (3-2).
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Now assume that we have verified Lemma 3.4 up to step m. We want to perform the step m+ 1. We
have hm = ω · I +〈z, Nm z̄〉 and since

‖Nm − N0‖ ≤ ‖Nm − N0‖+ · · · + ‖N1− N0‖ ≤

m−1∑
j=0

εj ≤ 2ε0,

hypothesis (3-5) is satisfied and we can apply Proposition 3.1 to construct Dm+1, χm+1 and qm+1. Estimates
(3-29)–(3-32) at step m+ 1 are proved as we have proved the corresponding estimates at step 1. �

Transition to the limit and proof of Theorem 2.10. Let Eε =
⋂

m≥0 Dm . In view of (3-29), this is a
closed set satisfying

meas(D \ Eε)≤
∑
m≥0

ε1/9
m ≤ 2ε1/9

0 .

Let us set φ̃N = φ1 ◦ · · · ◦φN . Due to (3-32) it satisfies for M ≤ N and for ω ∈ Eε

‖φ̃N − φ̃M‖L(Rn×Tn×C2d ) ≤

N∑
m=M

ε1/2
m ≤ 2ε1/2

M .

Therefore (φ̃N )N is a Cauchy sequence in L(Rn
×Tn

×C2d). Thus when N →∞, the mappings φ̃N

converge to a limit mapping φ∞ ∈ L(Rn
×Tn

×C2d). Furthermore since the convergence is uniform on
ω ∈ Eε and θ ∈ Tσ/2, we know φ1

∞
depends analytically on θ and C1 in ω. Moreover,

‖φ∞− 1‖L(Rn×Tn×C2d ) ≤ ε
1/2
0 . (3-33)

By construction, the map φ̃m transforms the original Hamiltonian h0+ q0 into hm + qm . When m→∞,
by (3-31) we get qm→ 0 and by (3-30) we get Nm→ N, where

N ≡ N (ω)= N0+

+∞∑
k=1

Ñk

is a Hermitian matrix which is C1 with respect to ω ∈ Eε . Setting h∞(z, z̄)= ω · I +〈z, N (ω)z̄〉 we have
proved

(h+ q(θ)) ◦φ∞ = h∞. (3-34)

Furthermore for all ω ∈ Eε we have, using (3-30),

‖N (ω)− N0‖ ≤

∞∑
m=0

εm ≤ 2ε

and thus the eigenvalues of N (ω), denoted by ν∞j (ω), satisfy (2-12).
It remains to give the affine symplectomorphism φ∞. At each step of the KAM procedure we have by

Lemma 3.4
φm(I, θ, z, z̄)= (gm(I, θ, z, z̄), θ,9m(θ, z, z̄)),

and therefore
φ∞(I, θ, z, z̄)= (g(I, θ, z, z̄), θ,9(θ, z, z̄)),

where 9(θ, z, z̄)= limm→∞91 ◦92 ◦ · · · ◦9m .
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It is useful to go back to real variables (x, ξ). More precisely, write each Hamiltonian χm constructed
in the KAM iteration in the variables (x, ξ):

χm(θ, x, ξ)= 1
2

[
x
ξ

]
· E Bm(θ)

[
x
ξ

]
+Um(θ), E :=

[
0 −1
1 0

]
, (3-35)

where Bm(θ) is a skew-symmetric matrix of dimension 2d × 2d and Um(θ) ∈ R2d, and they are both of
size εm . Then 9m written in the real variables has the form

9m(θ, x, ξ)= eBm(θ)(x, ξ)+ Tm(θ), where Tm(θ) :=

∫ 1

0
e(1−s)J Bm(θ)Um(θ) ds. (3-36)

Lemma 3.5. There exists a sequence of Hamiltonian matrices Al(θ) and vectors Vl(θ) ∈ R2d such that

91 ◦ · · · ◦9l(x, ξ)= eAl (θ)(x, ξ)+ Vl(θ) for all (x, ξ) ∈ R2d. (3-37)

Furthermore, there exist an Hamiltonian matrix Aω(θ) and a vector Vω(θ) ∈ R2d such that

lim
l→+∞

eAl (θ) = eA∞(θ), lim
l→+∞

Vl(θ)= V∞(θ),

sup
|Imθ |≤σ/2

‖Aω(θ)‖ ≤ Cε, sup
|Imθ |≤σ/2

|Vω(θ)| ≤ Cε,
(3-38)

and for each θ ∈ Tn,

9(θ, x, ξ)= eAω(θ)(x, ξ)+ Vω(θ) for all (x, ξ) ∈ R2d.

Proof. Recall that φj = eBj +Tj , where Tj is a translation by the vector Tj with the estimates ‖Bj‖ ≤Cεj ,
‖Tj‖ ≤ Cεj . So we have eBj = I+ Sj with ‖Sj‖ ≤ Cεj . Then the infinite product

∏
1≤ j<+∞ eBj is

convergent. Moreover we have
∏

1≤ j≤l eBj = I+Ml with ‖Ml‖ ≤Cε, so we have
∏

1≤ j<+∞ eBj = I+M,
with ‖M‖ ≤ Cε. This is proved by using∏

1≤ j≤l

(I+ Sj )= I+ Sl + Sl−1Sl + · · ·+ S1S2 · · · Sl

and estimates on ‖Sj‖.
So, Ml has a small norm and therefore Al := log(I+Ml) is well-defined. Furthermore, by construction

I+Ml ∈ Sp(2d) and therefore its logarithm is a Hamiltonian matrix, namely Al ∈ sp(2d) for 1≤ l ≤+∞.
Now we have to include the translations. By induction on l we have

φ1 ◦ · · · ◦φl(x, ξ)= eAl (x, ξ)+ Vl,

with Vl+1 = eAl Tl+1+ Vl and V1 = T1. Using the previous estimates we have

‖Vl+1− Vl‖ ≤ C‖Tl+1‖ ≤ Cεl .

Then we get that liml→+∞ Vl = V∞ exists. �
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Appendix: An example of growth of Sobolev norms (following Graffi and Yajima)

In this appendix we are going to study the Hamiltonian

H := − 1
2∂xx +

1
2 x2
+ ax sinω t (A-1)

and prove that it is reducible to the harmonic oscillator if ω 6= ±1, while the system exhibits growth of
Sobolev norms in the case ω=±1. Actually the result holds in a quite more general situation, but we think
that the present example can give a full understanding of the situation with as few techniques as possible.
We also remark that in this case it is not necessary to assume that the time-dependent part is small.

Finally we recall that (A-1) with ω = ±1 was studied by Graffi and Yajima as an example of a
Hamiltonian whose Floquet spectrum is absolutely continuous (despite the fact that the unperturbed
Hamiltonian has discrete spectrum). Exploiting the results of [Enss and Veselić 1983; Bunimovich et al.
1991], one can conclude from [Graffi and Yajima 2000] that the expectation value of the energy is not
bounded in this model. The novelty of the present result rests in the much more precise statement ensuring
growth of Sobolev norms.

As we already pointed out, in order to get reducibility of the Hamiltonian (A-1), it is enough to study
the corresponding classical Hamiltonian, in particular proving its reducibility; this is what we will do. It
also turns out that the whole procedure is clearer working as much as possible at the level of the equations.

So, consider the classical Hamiltonian system

h := 1
2(x

2
+ ξ 2)+ ax sin(ω t), (A-2)

whose equations of motion are{
ẋ = ξ,
ξ̇ =−x − a sin(ω t)

⇐⇒ ẍ + x + a sin(ω t)= 0. (A-3)

Proposition A.1. Assume that ω 6= ±1. Then there exists a time-periodic canonical transformation
conjugating (A-2) to

h′ := 1
2(x

2
+ ξ 2). (A-4)

If ω =±1 then the system is canonically conjugated to

h′ := ± 1
2aξ. (A-5)

In both cases the transformation has the form (2-10).

Corollary A.2. In the caseω=±1, for any s>0 andψ0∈Hs, there exists a constant 0<Cs=Cs(‖ψ0‖Hs )

such that the solution of the Schrödinger equation with Hamiltonian (A-1) and initial datum ψ0 fulfills

‖ψ(t)‖Hs ≥ Cs〈t〉s for all t ∈ R. (A-6)

Before proving the theorem, recall that by the general result of [Maspero and Robert 2017, Theorem 1.5],
any solution of the Schrödinger equation with Hamiltonian (A-1) fulfills the a priori bound

‖ψ(t)‖Hs ≤ C ′s(‖ψ0‖Hs + |t |s‖ψ0‖H0) for all t ∈ R, (A-7)

which is therefore sharp.
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Proof of Proposition A.1. We look for a translation

x = x ′− f (t), ξ = ξ ′− g(t), (3-8)

with f and g time-periodic functions to be determined in such a way to eliminate time from (A-3).
Writing the equations for (x ′, ξ ′), one gets

ẋ ′ = ξ ′− g+ ḟ, ξ̇ ′ =−x ′− a sin(ω t)+ ġ+ f,

which reduces to the harmonic oscillator by choosing{
−a sin(ω t)+ ġ+ f = 0,
−g+ ḟ = 0

⇐⇒ f̈ + f = a sin(ω t), (3-9)

which has a solution of period 2π/ω only if ω 6= ±1. In such a case the only solution having the correct
period is

f =
a

1−ω2 sin(ω t), g =
aω

1−ω2 cos(ω t).

Then the transformation (3-8) is a canonical transformation generated as the time-1 flow of the auxiliary
Hamiltonian

χ := −ξ
a

1−ω2 sin(ω t)+ x
aω

1−ω2 cos(ω t),

which thus conjugates the classical Hamiltonian (A-2) to the harmonic oscillator; of course the quantization
of χ conjugates the quantum system to the quantum harmonic oscillator, as follows by Proposition 2.9.

We come to the resonant case, and, in order to fix ideas, we take ω = 1. In such a case the flow of the
harmonic oscillator is periodic of the same period as the forcing, and thus its flow can be used to reduce
the system.

In a slightly more abstract way, consider a Hamiltonian system with Hamiltonian

H := 1
2〈z; Bz〉+ 〈z; b(t)〉,

with z := (x, ξ), B a symmetric matrix, and b(t) a vector-valued time-periodic function. Then, using the
formula (2-4), it is easy to see that the auxiliary time-dependent Hamiltonian

χ1 :=
1
2 t〈z; Bz〉 (3-10)

generates a time-periodic transformation which conjugates the system to

h′ := 〈z; e−J Bt b(t)〉

(J being the standard symplectic matrix). An explicit computation shows that in our case

h′ = 1
2ax sin(2t)− 1

2aξ cos(2t)+ 1
2aξ. (3-11)

Then in order to eliminate the two time-periodic terms in (3-11) it is sufficient to use the canonical
transformation generated by the Hamiltonian

χ2 := −
1
4ξa sin(2t)− 1

4 xa cos(2t), (3-12)

which reduces to (A-5). �
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Proof of Corollary A.2. To fix ideas we take ω = 1. Let χw1 ≡
1
2 t (−∂xx + x2) and χw2 be the Weyl

quantizations of the Hamiltonians (3-10) and (3-12) respectively. By the proof of Proposition A.1, the
changes of coordinates

ψ = e−it H0ψ1, ψ1 = e−iχw2 (t,x,D)ϕ, H0 :=
1
2(−∂xx + x2), (3-13)

conjugate the Schrödinger equation with Hamiltonian (A-1) to the Schrödinger equation with Hamiltonian
(A-2), namely the transport equation

∂tϕ =−
1
2a∂xϕ.

The solution of this transport equation is given clearly by

ϕ(t, x)= ϕ0
(
x − 1

2at
)
,

where ϕ0 is the initial datum. Now a simple computation shows that

lim inf
|t |→+∞

|t |−s
‖ϕ(t)‖Hs ≥

( 1
2 |a|

)s
‖ϕ0‖H0 .

In particular there exists a constant 0< Cs = Cs(‖ϕ0‖Hs ) such that

‖ϕ(t)‖Hs ≥ Cs〈t〉s. (3-14)

Since the transformation (3-13) maps Hs to Hs uniformly in time (see also Lemma 2.8) estimate (3-14)
holds also for the original variables. �

We remark that by a similar procedure one can also prove the following slightly more general result.

Theorem 3.3. Consider the classical Hamiltonian system

h =
d∑

j=1

1
2νj (x2

j + ξ
2
j )+

d∑
j=1

(gj (ω t)x j + f j (ω t)ξj ), (3-15)

with f j , gj ∈ Cr (Tn).

(1) If there exist γ > 0 and τ > n+ 1 such that

|ω · k± νj | ≥
γ

1+ |k|τ
for all k ∈ Zn, j = 1, . . . , d, (3-16)

and r > τ + 1+ 1
2 n, then there exists a time-quasiperiodic canonical transformation of the form

(2-10) conjugating the system to5

h =
d∑

j=1

1
2νj (x2

j + ξ
2
j ).

(2) If there exist 0 6= k̄ ∈ Zn and j̄ , such that

ω · k̄− ν j̄ = 0, (3-17)

5Actually the transformation is just a translation, so in this case one has A ≡ 0.
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and there exist γ > 0 and τ such that

|ω · k± νj | ≥
γ

1+ |k|τ
for all (k, j) 6= (k̄, j̄) (3-18)

and r > τ + 1+ 1
2 n, then there exists a time-quasiperiodic canonical transformation of the form

(2-10) conjugating the system to

h =
∑
j 6= j̄

1
2νj (x2

j + ξ
2
j )+ c1x j̄ + c2ξ j̄ ,

with c1, c2 ∈ R.

Remark 3.4. The constants c1, c2 can be easily computed. If at least one of them is different from zero
then the solution of the corresponding quantum system exhibits growth of Sobolev norms, as in the special
model (A-1). Of course the result extends in a trivial way to the case in which more resonances are present.
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