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EIGENFUNCTION SCARRING AND IMPROVEMENTS IN L∞ BOUNDS

JEFFREY GALKOWSKI AND JOHN A. TOTH

We study the relationship between L∞ growth of eigenfunctions and their L2 concentration as measured
by defect measures. In particular, we show that scarring in the sense of concentration of defect measure on
certain submanifolds is incompatible with maximal L∞ growth. In addition, we show that a defect measure
which is too diffuse, such as the Liouville measure, is also incompatible with maximal eigenfunction
growth.

1. Introduction

Let (M, g) be a C∞ compact manifold of dimension n without boundary. Consider the eigenfunctions

(−1g − λ
2
j )uλj = 0, ‖uλj‖L2 = 1 (1-1)

as λj →∞. It is well known [Avakumović 1956; Levitan 1952; Hörmander 1968], see also [Zworski
2012, Chapter 7], that solutions to (1-1) satisfy

‖uλj‖L∞(M) ≤ Cλ(n−1)/2
j (1-2)

and that this bound is saturated, e.g., on the sphere. It is natural to consider the situations which produce
sharp examples for (1-2). In many cases, one expects polynomial improvements to (1-2), but rigorous
results along these lines are few and far between [Iwaniec and Sarnak 1995]. In the case of negatively
curved manifolds, log improvements can be obtained [Bérard 1977]. However, at present, under general
dynamical assumptions, known results involve o-improvements to (1-2) [Toth and Zelditch 2002; Sogge
et al. 2011; Sogge and Zelditch 2002; 2003; 2016a; 2016b]. These papers all study the connections
between the growth of L∞ norms of eigenfunctions and the global geometry of the manifold (M, g). In
this note, we examine the relationship between L∞ growth and L2 concentration of eigenfunctions. We
measure L2 concentration using the concept of a defect measure — a sequence {uλj } has defect measure µ
if for any a ∈ S0

hom(T
∗M \ {0}),

〈a(x, D)uλj , uλj 〉 →

∫
S∗M

a(x, ξ) dµ. (1-3)

By an elementary compactness/diagonalization argument, it follows that any sequence of eigenfunctions
uλj solving (1-1) possesses a further subsequence that has a defect measure in the sense of (1-3) [Zworski
2012, Chapter 5; Gérard 1991]. Moreover, a standard commutator argument shows that if {uλj } is any
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sequence of L2-normalized Laplace eigenfunctions, the associated defect measure µ is invariant under the
geodesic flow; that is, if G t : S∗M→ S∗M is the geodesic flow, i.e., the Hamiltonian flow of p = 1

2 |ξ |
2
g,

(G t)∗µ= µ for all t ∈ R.

Definition 1.1. We say that an eigenfunction subsequence is strongly scarring provided that for any
defect measure µ associated to the sequence, suppµ is a finite union of periodic geodesics.

Theorem 1. Let {uλj } be a strongly scarring sequence of solutions to (1-1). Then

‖uλj‖L∞ = o(λ(n−1)/2
j ).

We also have improved L∞ bounds when eigenfunctions are quantum ergodic, that is, their defect
measure is the Liouville measure on S∗M , µL ; see, e.g., [Shnirelman 1974; Colin de Verdière 1985;
Zelditch 1987] for the standard quantum ergodicity theorem.

Theorem 2. Let {uλj } be a quantum ergodic sequence of solutions to (1-1). Then

‖uλj‖L∞ = o(λ(n−1)/2
j ).

Theorems 1 and 2 are corollaries of our next theorem, where we relax the assumptions on µ and make
the following definitions. Define the time-T flow-out by

3x,T :=

T⋃
t=−T

G t(S∗x M).

Definition 1.2. Let Hn be the n-dimensional Hausdorff measure on S∗M induced by the Sasaki metric
on T ∗M ; see for example [Blair 2010, Chapter 9] for a treatment of the Sasaki metric. We say that the
subsequence uλj , j = 1, 2, . . . , is admissible at x if for any defect measure µ associated to the sequence
there exists T > 0 such that

Hn(suppµ|3x,T )= 0. (1-4)

We say that the subsequence is admissible if it is admissible at x for every x ∈ M.

We note that in (1-4), µ|3x,T denotes the defect measure restricted to the flow-out 3x,T ; for any A that
is µ-measurable,

µ|3x,T (A) := µ(A∩3x,T ).

Theorem 3. Let {uλj } be a sequence of L2-normalized Laplace eigenfunctions that is admissible in the
sense of (1-4). Then

‖uλj‖L∞ = o(λ(n−1)/2
j ).

Remark 1.3. We choose to use the Sasaki metric to define Hn for concreteness, but this is not important
and we could replace the Sasaki metric by any other metric on S∗M.

Theorem 3 can be interpreted as saying that eigenfunctions which strongly scar are too concentrated
to have maximal L∞ growth, while diffuse eigenfunctions are too spread out to have maximal growth.
However, the reason the admissibility assumption is satisfied differs in these cases. In the diffuse case
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(see Theorem 2), one has µ|3x,T = 0, so that the admissibility assumption is trivially verified. In the
case where the eigenfunctions strongly scar (see Theorem 1), µ|3x,T 6= 0 but the Hausdorff dimension of
suppµ|3x,T is < n; so again, (1-4) is satisfied. The zonal harmonics on the sphere S2, which saturate the
L∞ bound (1-2), lie precisely between being diffuse and strongly scarring (see Section 4).

Observe that the condition µ is diffuse is much more general than µ = µL . Jakobson and Zelditch
[1999] show that any invariant measure on S∗Sn where Sn is the round sphere can be obtained as a defect
measure for a sequence of eigenfunctions and in particular many non-Liouville but diffuse measures
occur.

Remark 1.4. We note that the results here hold for any o(λ) quasimode of (−1g−λ
2) that is compactly

microlocalized in frequency; see [Galkowski 2017].

Relation with previous results. Theorem 2 is related to [Sogge et al. 2011, Theorem 3], where the
o(h(1−n)/2) sup bound is proved for all Laplace eigenfunctions on a Cω surface with ergodic geodesic
flow. However, in Theorem 2, we make no analyticity or dynamical assumptions on (M, g) whatsoever,
only an assumption on the particular defect measure associated with the eigenfunction sequence. Recently,
Hezari [2016] and Sogge [2016] gave independent proofs of Theorem 2.

One consequence of the work of Sogge is the relation between L p norms for eigenfunctions and the
push forward of defect measures to the base manifold M. In particular, he showed [Sogge 2016, (3.3)]
that

‖uλ‖L∞(M) ≤ Cλ(n−1)/2 sup
x∈M

δ−1/2
‖uλ‖L2(Bδ(x)) (1-5)

when λ−1
≤ δ ≤ inj(M, g) and λ≥ 1. We note that when uλ are quantum ergodic, ‖uλ‖L2(Bδ(x)) ≈ δ

n/2

and so the o(λ(n−1)/2)-bound in Theorem 2 follows from (1-5) as well; see also Corollary 1.2 in [Sogge
2016].

However, neither the scarring result in Theorem 1 nor the more general bound in Theorem 3 follow
from (1-5). To compare and contrast with (1-5), we observe that (1-5) implies for any δ > 0 independent
of λ,

lim sup
λ→∞

λ(1−n)/2
‖uλ‖L∞(M) ≤ C sup

x∈M
δ−1/2 (µ(S∗Bδ(x)))1/2.

Our main estimate in (3-12) says that for any x(λ) with d(x(λ), x)= o(1),

lim sup
λ→∞

λ(1−n)/2
|uλ(x(λ))| ≤ C ′δ

(
Hn(suppµ|Ax (δ/2,3δ))

)1/2
, (1-6)

where for δ2 > δ1 we have Ax(δ1, δ2)=3x,δ2 \3x,δ1 . This microlocalized bound allows us to deal with
the more general scarring-type cases as well. In particular, the key differences are that we have replaced
S∗Bδ(x) by Ax(δ/2, 2δ)⊂3x and the defect measure by Hausdorff n-measure. We note however that
unlike (1-5), δ > 0 can be arbitrarily small but is fixed independent of λ in (1-6).

Sogge and Zelditch [2002] proved that any manifold on which (1-2) is sharp must have a self-focal
point. That is, a point x such that |Lx |> 0, where

Lx := {ξ ∈ S∗x M : there exists T such that expx T ξ = x}
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and | · | denotes the normalized surface measure on the sphere. Subsequently, in [Sogge et al. 2011] the
authors showed that one can replace Lx by the set of recurrent directions Rx ⊂ Lx and the assumption
|Rx |> 0 for some x ∈ M is necessary to saturate the maximal bound in (1-2). Here,

Rx :=

{
ξ ∈ S∗x M : ξ ∈

(⋂
T>0

⋃
t≥T

G t(x, ξ)∩ S∗x M
)⋂(⋂

T>0

⋃
t≤−T

G t(x, ξ)∩ S∗x M
)}
.

The example of the triaxial ellipsoid with x equal to an umbilic point shows that latter assumption is
weaker than the former. Indeed, in such a case |Lx | = 1, whereas |Rx | = 0. Most recently, in [Sogge and
Zelditch 2016a; 2016b], it was proved that for real-analytic surfaces, the maximal L∞ bound can only
be achieved if there exists a periodic point x ∈ M for the geodesic flow, i.e., a point (x, ξ) such that all
geodesics starting at (x, ξ) ∈ S∗M close up smoothly after some finite time T > 0.

Together with our analysis, the results of [Sogge et al. 2011] imply that any sequence of eigenfunctions,
{uλ} having maximal L∞ growth near x and defect measure µ must have µ(3x,T ) > 0 for all T > 0 and
|Rx |> 0. In particular, the results of that paper show that uλ can only have maximal L∞ growth near a
point with a positive measure set of recurrent points and Theorem 3 shows that a point with maximal L∞

growth must have µ(3x,T ) > 0. As far as the authors are aware, the results in [Sogge et al. 2011; Sogge
and Zelditch 2016a; 2016b] do not give additional information about µ.

On the other hand, under an additional regularity assumption on the measure µ, Theorem 3 can be
used to show that when uλ has maximal growth near x , the measure µ|3x .T is not mutually singular with
respect to Hn. Since the measure for a zonal harmonic is a smooth multiple of Hn (see Section 4), this
implies that the measure µ resembles the defect measure of a zonal harmonic. In [Galkowski 2017], the
first author removed the necessity for any additional regularity assumption and gave a full characterization
of defect measures for eigenfunctions with maximal L∞ growth, in particular proving that if uλ has
maximal growth near x and defect measure µ, then µ|3x,T is not mutually singular with respect to Hn.
Finally, we note that unlike [Sogge et al. 2011; Sogge and Zelditch 2002; 2016a; 2016b], the analysis
here is entirely local.

2. A local version of Theorem 3

In the following, we will freely use semiclassical pseudodifferential calculus where the semiclassical
parameter is h with h−1

= λ ∈ Spec
√

−1g. We write r(x, y) : M×M→R for the Riemannian distance
from x to y and write B(x, δ) for the geodesic ball of radius δ around x . We start with a local result:

Theorem 4. Let {uh} be sequence of Laplace eigenfunctions that is admissible at x. Then for any
δ(h)= o(1),

‖uh‖L∞(B(x,δ(h))) = o(h(1−n)/2).

Theorem 3 is an easy consequence of Theorem 4.

Proof that Theorem 4 implies Theorem 3. Suppose that u is admissible and

lim sup
h→0

h(n−1)/2
‖uh‖L∞ 6= 0.
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Then, there exist c > 0, hk→ 0, xhk so that

|uhk (xhk )| ≥ ch−(n−1)/2
k .

Since M is compact, by taking a subsequence, we may assume xhk → x . But then r(x, xhk )= o(1) and
since u is admissible at x , Theorem 4 implies

lim sup
k→∞

h(n−1)/2
k |uhk (xhk )| = 0. �

3. Proof of Theorem 4

In view of the above, it suffices to prove the local result: Theorem 4.

Proof. Fix T > 3δ > 0 and let ρ ∈ S(R) with ρ(0)= 1 and supp ρ̂ ⊂ (δ, 2δ). Let

S∗M(ε) :=
{
(x, ξ) :

∣∣|ξ |x − 1
∣∣≤ ε}

and χ(x, ξ) ∈ C∞0 (T
∗M) be a cutoff near the cosphere S∗M with χ(x, ξ)= 1 for (x, ξ) ∈ S∗M(ε) and

χ(x, ξ) = 0 when (x, ξ) ∈ T ∗M \ S∗M(2ε). Let χ(x, h D) ∈ Oph(C
∞

0 (T
∗M)) be the corresponding

h-pseudodifferential cutoff. Also, in the following, we will use the notation

0x := suppµ|3x,T

to denote the support of the restricted defect measure corresponding to the eigenfunction sequence {uh j }

in Theorem 3.
Then, we have

uh = ρ
( 1

2h
[−h21− 1]

)
uh =

∫
R

ρ̂(t)ei(t/2)[−h21−1]/hχ(y, h Dy)uh dt + Oε(h∞). (3-1)

Microlocalization to the flow-out 3x . Set

V (t, x, y, h) :=
(
ρ̂(t)ei(t/2)[−h21−1]/hχ(y, h Dy)

)
(t, x, y).

Then, by Egorov’s theorem [Zworski 2012, Theorem 11.1]

WF ′h(V (t, · , · , h))⊂
{
(x, ξ, y, η) : (x, ξ)= G t(y, η),

∣∣|ξ |x − 1
∣∣≤ 2ε

}
; (3-2)

see, e.g., [Dyatlov and Zworski 2017, Definition E.37] for a definition of WF ′h .
Let bx,ε(x, h D) ∈ Oph(C

∞

0 (T
∗M)) be a family of h-pseudodifferential cutoffs with principal symbols

bx,ε ∈ C∞0
({
(y, η) : (y, η)= G t(x0, ξ) for some (x0, ξ) ∈ S∗x0

M(3ε) with r(x, x0) < 2ε, δ/2< t < 3δ
}
,

with

bx,ε ≡ 1 on
{
(y, η) : (y, η)= G t(x0, ξ) for some (x0, ξ) ∈ S∗x0

M(2ε) with r(x, x0) < ε, δ < t < 2δ
}
.

By the definition of WF ′h together with (3-1) and (3-2), it follows that for r(x(h), x)= o(1),

uh(x(h))=
∫

M
V (x(h), y, h) bx,ε(y, h Dy) uh(y) dy+ Oε(h∞), (3-3)
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where,

V (x(h), y, h) :=
∫

R

ρ̂(t)
(
ei(t/2)[−h21−1]/hχ(y, h Dy)

)
(t, x(h), y) dt.

By a standard stationary phase argument,

V (x, y, h)= h(1−n)/2e−ir(x,y)/ha(x, y, h) ρ̂(r(x, y))+ Oε(h∞), (3-4)

where a(x, y, h) ∈ S0(1).
To see this, observe that by [Zworski 2012, Theorem 10.4]

V (x, y, h)= (2πh)−n
∫

eiϕ(t,x,y,η)/h α(t, x, y, η, h) ρ̂(t) dη dt + O(h∞),

where b ∈ C∞c and ϕ solves

∂tϕ =
1
2(|∂xϕ|

2
g(x)− 1), ϕ(0, x, y, η)= 〈x − y, η〉. (3-5)

In particular, for all (t, x, y, η), we have exp(t H|ξ |2g/2)(∂ηϕ+ y, η)= (x, ∂xϕ). The phase function

ϕ(t, x, y, η)= 〈exp−1
y (x), η〉+ 1

2 t (|η|2y − 1)
satisfies (3-5).

We next perform stationary phase in (t, η). First, observe that the phase is stationary at

exp(t H|ξ |2g/2)(y, η)= (x, ∂xϕ), |∂xϕ|g(x) = 1.

In particular, t = r(x, y) and the geodesic through (y, η) passes through x . Since supp ρ̂ ⊂ (δ, 2δ), by
performing nonstationary phase, we may assume t ∈ (δ, 2δ) and hence δ < r(x, y) < 2δ. Then, we
observe that ∂2

(t,η)ϕ is nondegenerate for t ∈ (δ, 2δ). The solutions (tc, ηc) of the critical point equations
∂tϕ = 0 and ∂ηϕ = 0 are given by

tc = | exp−1
y (x)| = r(x, y), ηc =−

exp−1
y (x)

r(x, y)
.

Consequently, (3-4) follows from an application of stationary phase; see also [Sogge 1993, Lemma 5.1.3;
Burq et al. 2007, Theorem 4].

Then, in view of (3-4) and (3-3),

uh(x(h))= vh(x(h))+ Oε(h∞),

vh(x(h))= h(1−n)/2
∫
δ/2<r(x,y)<2δ

e−ir(x(h),y)/ha(x(h), y, h) ρ̂(r(x(h), y)) bx,ε(y, h Dy) uh(y) dy.
(3-6)

Now, note that for any ψ ∈ C∞0 (M),

vh(x(h))= I1(x(h), h)+ I2(x(h), h), (3-7)

where

I1 := (2πh)(1−n)/2
∫
δ/2<r(x,y)<2δ

e−ir(x(h),y)/ha(x(h), y,h) ρ̂(r(x(h), y))ψ(y) (bx,ε(y,h Dy)uh)dy,

I2 := (2πh)(1−n)/2
∫
δ/2<r(x,y)<2δ

e−ir(x(h),y)/ha(x(h), y,h) ρ̂(r(x(h), y))(1−ψ(y)) (bx,ε(y,h Dy)uh)dy.
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Therefore, by Cauchy–Schwarz applied to I1 and I2,

|h(n−1)/2vh(x(h))| ≤ Cδ
(
‖ψ‖L2 ‖bx,ε(y, h Dy)uh(y)‖L2 +

∥∥(1−ψ(y))[bx,ε(y, h Dy)uh]
∥∥

L2

)
.

Hence letting h→ 0 then ε→ 0, and using that

‖bx,ε(y, h Dy)uh(y)‖L2 ≤ (sup |bx,ε| + oε(1))‖uh‖L2,

see for example [Zworski 2012, Theorem 5.1], we have

lim sup
h→0

h(n−1)/2
|uh(x(h))| ≤ Cδ

(
‖ψ‖L2 +

(∫
3x,3δ\3x,δ/2

(1−ψ(y))2 dµ
)1

2
)
. (3-8)

Further microlocalization along suppµ|3x . Let Hn be the n-dimensional Hausdorff measure on the
flow-out 3x . By assumption, Hn(suppµ|3x )= 0. In view of the microlocalization above, we are only
interested in the annular subset

Ax(δ/2, 3δ) :=3x,3δ \3x,δ/2.

Since Hn is Radon, for any ε1 > 0, there exist n-dimensional balls B(rj ) ⊂ Ax(δ/4, 4δ), j = 1, 2, . . . ,
with radii rj > 0, j = 1, 2, . . . , such that

suppµ|Ax (δ/2,3δ) ⊂

∞⋃
j=1

B(rj ), Hn
( ∞⋃

j=1

B(rj )
)
<Hn(suppµ|Ax (δ/2,3δ))+ ε1.

Note that for δ > 0 small enough, the canonical projection π : T ∗M→ M restricts to a diffeomorphism

π : Ax
( 1

4δ, 4δ
)
→ {y ∈ M : δ/4< r(x, y) < 4δ}.

Consider the closed set
K = π(suppµ|Ax (δ/2,3δ))⊂ M

with open covering

G := π
( ∞⋃

j=1

B(rj )
)

satisfying Hn(G)=Hn(K )+ O(ε1). (3-9)

By the C∞ Urysohn lemma, there exists χ0x ∈ C∞0 (M; [0, 1]) with

χ0x |K = 1, suppχ0x ⊂ G. (3-10)

(Note that χ0x depends on ε1, but we suppress this dependence to simplify notation.) We now apply (3-8)
with ψ = χ0x . First, observe that by (3-9) and (3-10)

‖χ0x‖L2 ≤ (Hn(G))1/2 ≤ (Hn(K ))1/2+ O(ε1/2
1 ). (3-11)

Next, by construction, for all ε1 > 0,

(1−χ0x )(y)= 0 for all y ∈ π(suppµ|3x,4δ\3x,δ/4)
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and hence ∫
3x,3δ\3x,δ/2

(1−χ0x )
2 dµ= 0.

Using this together with (3-11) in (3-8) and sending ε1→ 0 gives

lim sup
h→0

h(n−1)/2
|uh(x(h))| ≤ Cδ

(
Hn(π(suppµ|Ax (δ/2,3δ)))

)1/2
≤ C ′δ

(
Hn(suppµ|Ax (δ/2,3δ))

)1/2
, (3-12)

where the last inequality follows from the fact that π |A(δ/2,3δ) is a diffeomorphism. Finally, since uh is
admissible at x ,

Hn(suppµ|Ax (δ/2,3δ))= 0. �

Remark 3.1. For r(x(h), x)= o(1), the estimate

lim sup
h→0

h(n−1)/2
|uh(x(h))| ≤ C ′δ

(
Hn(suppµ|Ax (δ/2,3δ))

)1/2

in (3-12) holds for any sequence of eigenfunctions with defect measure µ. It gives a quantitative estimate
relating the behaviour of the defect measure to L∞ norms of eigenfunctions. This estimate can also be
obtained as a consequence of [Galkowski 2017, Theorem 2] by replacing the absolutely continuous part
of µ with 1suppµ|3x

dHn.

4. The example of zonal harmonics

Let (S2, gcan) be the round sphere and (r, θ) be polar variables centred at the north pole p= (0, 0, 1)∈R3.
The geodesic flow is a completely integrable system with Hamiltonian

H = |ξ |2g = ξ
2
r + (sin r)−2ξ 2

θ , r ∈ (0, π), (4-1)

and Claurault integral p = ξθ satisfying {H, p} = 0. The associated moment mapping is P = (H, p) :
T ∗S2

→ R2 and the connected components of the level sets are, by the Liouville–Arnold theorem,
Lagrangian tori 3c indexed by the values of the moment map (1, c) ∈ P(T ∗S2).

The associated quantum integrable system is given by the Laplacian 1g and the rotation operator h Dθ .
The corresponding L2-normalized joint eigenfunctions are the standard spherical harmonics Y k

m with

−1gY k
m = k(k+ 1)Y k

m, h DθY k
m = mY k

m .

These eigenfunctions can be separated into various sequences (i.e., ladders) associated with different
values (∈ P(T ∗S2); specifically, the correspondence is given by c = limm→∞m/k). The eigenfunctions
with maximal L∞ blow-up are the sequence of zonal harmonics given by

uh(r, θ)= Y k
0 (r, θ)=

√
2k+ 1
2π

∫ 2π

0
(cos r + i sin r cos τ)k dτ, h = k−1, k = 1, 2, 3 . . . . (4-2)

It is obvious from (4-2) that
|Y k

0 (p)| ≈ k1/2

and thus attains the maximal sup growth at p (similarly, at the south pole). At the classical level, the
zonals uh = Y k

0 concentrate microlocally on the Lagrangian tori 30 = P−1(1, 0). From the formula (4-1)
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it is clear that away from the poles (where (r, θ) are honest coordinates),

30 \ {±p} = {(r, θ, ξr =±1, ξθ = 0) : r ∈ (0, π)} ∼= S2
\ {±p}. (4-3)

The choice of ξr = ±1 determines the Lagrangian torus (there are two of them) and also, either torus
clearly covers the entire sphere. At the poles themselves, the projection π30 :30→ S2 has a blowdown
singularity with

π−1
30
(±p)= S∗

±
(S2)∼= S1. (4-4)

To see this, consider the behaviour at p (with a similar computation at −p). Rewriting the integral in
involution in Euclidean coordinates (x, y, z)∈R3, one has H = (xξy− yξx)

2
+(xξz−zξx)

2
+(yξz−zξy)

2

and ξθ = xξy − yξx . Setting H = 1, xξy − yξx = 0 and (x, y, z)= (0, 0, 1) gives

π−1
30
(p)∼= {(ξx , ξy) ∈ R2

: ξ 2
x + ξ

2
y = 1}.

It is then clear from (4-3) and (4-4) that π30 :30→ S2 is surjective and a diffeomorphism away from the
poles (modulo choice of Lagrangian cover) and the fibres above the poles are S∗

±
(S2)∼= S1. We also note

that the Lagrangian 30 =3p,2π is the 2π -flow-out Lagrangian of S∗p(S
2) and the cylinder Ap(δ/2, 3δ) is

just a local slice of this Lagrangian.
The defect measure µ associated with the zonals is

dµ= |dθ1 dθ2|,

where (θ1, θ2; I1, I2) ∈ R2/Z2
×R2 are symplectic action-angle variables defined in a neighbourhood of

the Lagrangian torus 30 [Toth and Zelditch 2003]. One can choose one of the angle variables θ1 ∈ S∗p(S
2)

to parametrize the circle fibre above p (a homology generator of the torus). Then, by the Liouville–Arnold
theorem, the geodesic flow on the torus 30 = {I1 = c1, I2 = c2} is affine with

θj (t)= θj (0)+αj t, αj =
∂H
∂ Ij
6= 0.

It is then clear that

µ(3p,δ)=

∫ 2π

0
dθ1 ·

∫
|t |<δ

α2 dt ≈ δ 6= 0

and suppµ|3p = 3p. Therefore, this case violates the assumption in Theorem 3 and that is of course
consistent with the maximal L∞ growth of zonal harmonics.

The analysis above extends in a straightforward fashion to the case of a more general sphere of rotation
[Toth and Zelditch 2003].

5. Eigenfunctions of Schrödinger operators

Consider a Schrödinger operator P(h) = −h21g + V with V ∈ C∞(M;R) on a compact, closed
Riemannian manifold (M, g) and let uh be an L2-normalized eigenfunction with

P(h)uh = E(h)uh, E(h)= E + o(1), E >min V, ‖uh‖L2 = 1. (5-1)
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Any sequence uh of solutions to (5-1) has a subsequence uhk with a defect measure µ in the sense that
for a ∈ C∞0 (T

∗M)

〈a(x, h D)uh, uh〉 →

∫
T ∗M

a dµ.

Such a measure µ is supported on {p= 0} and is invariant under the bicharacteristic flow G t := exp(t Hp).
In analogy with the homogeneous case, we define for x ∈ M the time-T flow-out by

3x,T,V :=

T⋃
t=−T

G t(6x),

where

6x = {ξ ∈ T ∗x M : |ξ |2g + V (x)= E}.

Definition 5.1. Let Hn be n-dimensional Hausdorff measure on {|ξ |2g+V (x)= E} induced by the Sasaki
metric on T ∗M. We say that the sequence uh of solutions to (5-1) is admissible at x if for any defect
measure µ associated to the sequence, there exists T > 0 so that

Hn(suppµ|3x,T,V )= 0. (5-2)

With these definitions we have the analog of Theorem 3:

Theorem 5. Let B ⊂ V−1(E) be a closed ball in the classically allowable region and µ be a defect
measure associated with the eigenfunction sequence uh . Then, if the eigenfunction sequence is admissible
for all x ∈ B in the sense of (5-2),

sup
x∈B
|uh(x)| = o(h(1−n)/2).

Proof. In analogy with the homogeneous case [Christianson et al. 2015, Lemma 5.1], we have

ρ(h−1
[P(h)− E]))(x, y)= h(1−n)/2a(x, y, h)e−i A(x,y)/h

+ R(x, y, h),

where A(x, y) ∈ [(2C0)
−1ε, 2C0ε] for some C0 > 1 and is the action function defined to be the integral of

the Lagrangian L(x, ξ)= |ξ |2g − V (x) along the bicharacteristic in {p = E} starting at (y, η) and ending
at (x, ξ). For (x, y) in a small neighbourhood of the diagonal, there is a unique such η satisfying this
condition. The remainder R(x, y, h) is equal to O(h∞) pointwise and with all derivatives. The proof
then follows using the same argument as in the homogeneous case. �
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