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1. Introduction 813
2. Preliminaries 817
3. Caccioppoli inequalities 831
4. Decay estimates for a nonlinear function of the gradient for p > 2 835
5. Decay estimates for the gradient for 1< p � 2 841
6. Proof of the Main Theorem 845
Appendix A. Inequalities 846
Appendix B. Some general tools 850
Acknowledgements 853
References 853

1. Introduction

1A. The result. Let �� R2 be an open set and let u 2W
1;p

loc .�/ be a local weak solution in � of the
orthotropic p-Laplace equation

2X
iD1

.juxi
j
p�2 uxi

/xi
D 0: (1-1)

This means that for every �0 b� and every ' 2W
1;p

0
.�0/, we have

2X
iD1

Z
�0
juxi
j
p�2 uxi

'xi
dx D 0: (1-2)

In the recent literature, such an equation has sometimes been called the pseudo p-Laplace equation. We
decided to adopt the terminology orthotropic p-Laplace equation in order to emphasize the role played
by the coordinate system. Indeed, let us recall that if u 2W

1;p
loc .�/ is a local weak solution of the usual

p-Laplace equation, i.e.,
2X

iD1

.jrujp�2 uxi
/xi
D 0;
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814 PIERRE BOUSQUET AND LORENZO BRASCO

then for every linear isometry A W R2! R2, we know u ıA is still a local weak solution of this equation
on A�1.�/. This property fails to be true for (1-1), but it still holds if A belongs to the dihedral group D2,
i.e., the group of symmetries of the square .�1; 1/� .�1; 1/.

Equation (1-1) is the prototype of degenerate/singular elliptic equations with orthotropic structure,
interest in which arose for example in the context of optimal transport problems with congestion effects.
We refer to the introduction of [Brasco and Carlier 2014] for a detailed description of the framework and
the model leading to these kinds of equations.

A function u 2W
1;p

loc .�/ is a local weak solution if and only if it is a local minimizer of the functional

F.'I�0/ WD

2X
iD1

1

p

Z
�0
j'xi
j
p dx; ' 2W

1;p
loc .�/; �

0 b�� R2:

This easily follows from the convexity of the functional F. We recall that u 2 W
1;p

loc .�/ is a local
minimizer of F if

F.uI�0/� F.'I�0/ for every u�' 2W
1;p

0
.�0/; �0 b�:

In the recent paper [Bousquet et al. 2016], we proved that for p � 2 any such local minimizer is a
locally Lipschitz function; actually, the case 1< p < 2 is a mere application of [Fonseca and Fusco 1997,
Theorem 2.2]. The aim of this paper is to go one step further and prove the following additional regularity.

Main Theorem. Every local minimizer U 2W
1;p

loc .�/ of the functional F is a C 1 function.

Remark 1.1. It is easy to see that the function

u.x1;x2/D jx1j
p

p�1 � jx2j
p

p�1 ; .x1;x2/ 2 R2;

is a local weak solution of (1-1). Observe that for p > 2, we have u is not C 2, but only C 1; 1
p�1. We

conjecture this to be the sharp regularity of local weak solutions.

1B. Method of proof. The proof of the Main Theorem is greatly inspired by that of [Santambrogio and
Vespri 2010, Theorem 11], which in turn exploits an idea introduced in [DiBenedetto and Vespri 1995].
However, since our equation is much more singular/degenerate than theirs, most of the estimates have to be
recast and the argument needs various nontrivial adaptations. In order to neatly explain the method of proof
and highlight the differences with respect to [Santambrogio and Vespri 2010], let us first recall their result.

In [Santambrogio and Vespri 2010] it is shown that in R2, local weak solutions of the variational
equation

divrH.ru/D 0 (1-3)

are such that x 7! rH.ru.x// is continuous, provided that

� rH.ru/ 2W
1;2

loc \L1loc;

� H W R2! Œ0;1/ is a C 2 convex function such that there exist M � 0 and 0< ��ƒ for which

� jzjp�2
j�j2 � hD2H.z/ �; �i �ƒ jzjp�2

j�j2 for every � 2 R2; jzj �M: (1-4)
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The last assumption implies that (1-3) is a degenerate/singular elliptic equation, with confined degener-
acy/singularity. Indeed, on the set where the gradient of a Lipschitz solution u satisfies jruj �M, the
equation behaves as a uniformly elliptic equation. By using the terminology of [Bousquet et al. 2016],
we can say that (1-3) has a p-Laplacian-type structure at infinity.

The proof of the continuity of rH.ru/ in [Santambrogio and Vespri 2010] relies on the following
De Giorgi–type lemma: given a ball BR of radius R, if a component Hxi

.ru/ of the vector field rH.ru/

has large oscillations only on a small portion of BR , then the global oscillation of Hxi
.ru/ on the ball BR

2

is reduced (in a precise quantitative sense). Such a result amounts to an L1 estimate for (a nonlinear
function of) the gradient, which in turn relies on the Caccioppoli inequality for the linearized equation

div.D2H.ru/ruxi
/D 0: (1-5)

On the contrary, if Hxi
.ru/ has large oscillations on a large portion of BR, then one exploits the fact

that a function W 1;2\L1 in the plane is such that either

(A1) its Dirichlet energy in a crown contained in BR is large; or

(A2) the function itself is large on a circle contained in BR.

When (A2) occurs, the structure of the linearized equation (1-5) allows us to prove a minimum principle
for Hxi

.ru/, which implies that Hxi
.ru/ is large on the whole disc bounded by the above-mentioned

circle. This again leads to a decay of the oscillation of Hxi
.ru/ (this time because the infimum increases

when shrinking the ball).
Then the continuity result of [Santambrogio and Vespri 2010] is achieved by constructing inductively a

decreasing sequence of balls and using the dichotomy above at each step. The important point is that since
Hxi

.ru/ has finite Dirichlet energy, then possibility (A1) can occur only finitely many times. Hence, the
oscillation of Hxi

.ru/ decays to 0, as desired.
Unfortunately, our (1-1) does not have a p-Laplacian structure at infinity; i.e., (1-4) is not satisfied.

Indeed, in our case we have

H.z/D

2X
iD1

jzi j
p

p

so that

D2H.z/D .p� 1/

�
jz1j

p�2 0

0 jz2j
p�2

�
; z D .z1; z2/ 2 R2:

In particular, D2H.z/ is degenerate/singular on the union of the two axes fz1D0g [ fz2D0g and our
equation does not fit in the framework of [Santambrogio and Vespri 2010]. Thus, even if the proof of
the Main Theorem follows the guidelines illustrated above, we will have to overcome the additional
difficulties linked to the more degenerate/singular structure of (1-5). In particular, in the case p > 2,
we need a new Caccioppoli inequality, which weirdly mixes different components of the gradient (see
Proposition 3.1). This is one of the main novelties of the paper.
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Remark 1.2 (stream functions). For 1 < p <1, let us set p0 D p=.p � 1/. When � � R2 is simply
connected, to every local weak solution u 2 W

1;p
loc .�/ of (1-1) one can associate a stream function

v 2W
1;p0

loc .�/, such that

vx1
D jux2

j
p�2 ux2

and vx2
D�jux1

j
p�2 ux1

:

Existence of such a function v is a straightforward consequence of the Poincaré Lemma, once it is
observed that (1-1) implies that the vector field�

jux1
j
p�2 ux1

; jux2
j
p�2 ux2

�
is divergence free (in the distributional sense). It is readily seen that v is a weak solution of

2X
iD1

.jvxi
j
p0�2 vxi

/xi
D 0:

This would allow us to reduce the proof of the Main Theorem to the case 1< p � 2 only. However, this
kind of argument is very specific to the homogeneous equation and already fails in the case

2X
iD1

.juxi
j
p�2 uxi

/xi
D � 2 R;

which we note is covered by our method (indeed, observe that the previous equation and (1-1) have
the same linearization (1-5), thus the Main Theorem still applies). More generally, we observe that our
method of proof can be adapted to treat the case, as in [Santambrogio and Vespri 2010], of

2X
iD1

.juxi
j
p�2 uxi

/xi
D f

under suitable (not sharp) assumptions1 on f . For these reasons, we avoided using this argument based
on stream functions.

1C. Plan of the paper. First, it should be noticed that almost every section is divided in two parts, one
for the degenerate case p > 2 and the other for the singular one 1< p < 2 (the case pD 2 corresponds to
the standard Laplacian). Though the methods of proof for the two cases look very much the same, there
are some important differences which lead us to think that it is better to separate the two cases.

In Section 2 we introduce the technical machinery and present some basic integrability properties of
solutions and their derivatives, needed throughout the whole paper. Section 3 is devoted to some new
Caccioppoli inequalities for the gradient of a local minimizer. The core of the paper is represented by
Sections 4 and 5, concerning decay estimates for a nonlinear function of the gradient (case p > 2) or for
the gradient itself (case 1< p � 2). Finally, the proof of the Main Theorem is postponed to Section 6.
The paper ends with Appendices A and B containing technical facts.

1As in the case of the ordinary p-Laplacian, see [Kuusi and Mingione 2013, Corollary 1.6], the sharp assumption should be
f 2L

2;1
loc , the latter being a Lorentz space. For p > 2 our proof requires juxj j

p�2
2 uxj 2W

1;2
loc .�/; a result which is true only

when f enjoys suitable differentiability properties.
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2. Preliminaries

2A. Notation. Given � > 0 and a ball B � R2 of radius R> 0, we denote by �B the ball with the same
center and radius �R.

We define for every q > �1 the function gq W R! R as

gq.t/D jt j
q t; t 2 R: (2-1)

Then gq is a homeomorphism and g�1
q D g� q

qC1
. Observe that

jt jq t � ˛ () t � j˛j�
q

qC1 ˛;

a fact that will be used repeatedly.
Let U 2W

1;p
loc .�/ be a given local minimizer of F. We fix a ball B b�. There exists �B > 1 such

that �B B b� as well. If f�"g">0 � C1
0
.B"/ is a smooth convolution kernel (here, B" refers to the ball

with center 0 and radius "), we define U " WDU ��" 2W 1;p.�"/, where �" WD fx 2� W dist.x; @�/ > "g.
By the definition of U " there exists 0< "0 < 1 such that for every 0< " < "0

kU "
kW 1;p.B/ D krU "

kLp.B/CkU
"
kLp.B/ � krU kLp.�B B/CkU kLp.�B B/: (2-2)

2B. Regularization scheme, case p > 2. As in [Bousquet et al. 2016], we consider the minimization
problem

min
� 2X

iD1

1

p

Z
B

jwxi
j
p dxC

p� 1

2
"

Z
B

jrwj2 dx W w�U "
2W

1;p
0

.B/

�
: (2-3)

Since the functional is strictly convex, there exists a unique solution u", which is C 2 on B; see, e.g.,
[Bousquet et al. 2016, Theorem 2.4] for the Lipschitz regularity and [Giusti 2003, Theorems 8.6 and 10.18]
for the higher regularity. Moreover, u" satisfies the Euler–Lagrange equation

2X
iD1

Z
B

.ju"xi
j
p�2
C .p� 1/ "/u"xi

'xi
dx D 0 for every ' 2W

1;p
0

.B/:

We take ' 2 C 2 with compact support in B. Then for j 2 f1; 2g, the partial derivative 'xj is still an
admissible test function. An integration by parts leads to

2X
iD1

Z
B

.ju"xi
j
p�2
C "/u"xi xj

'xi
dx D 0; j D 1; 2: (2-4)

As usual, by a density argument, the equation still holds with ' 2W
1;2

0
.B/. We now collect some uniform

estimates on u".

Lemma 2.1 (uniform energy estimate). There exists a constant C D C.p/ > 0 such that for every
0< " < "0 the following estimate holds:Z

B

jru"jp dx � C

�Z
�B B

jrU jp dxC "
p

p�2 jBj

�
: (2-5)

Moreover, the family fu"g0<"<"0
converges weakly in W 1;p.B/ and strongly in Lp.B/ to U.
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Proof. The estimate (2-5) is standard, it is sufficient to test the minimality of u" against U ", which
is admissible. In particular, the family fu"g0<"<"0

is uniformly bounded in W 1;p.B/. Moreover, by
[Bousquet et al. 2016, Lemma 2.9] there exists a sequence f"kgk2N � .0; "0/ such that u"k converges
weakly in W 1;p.B/ and strongly in Lp.B/ to a solution w of

min
� 2X

iD1

1

p

Z
B

j'xi
j
p dx W ' �U 2W

1;p
0

.B/

�
:

Since U is a local minimizer of F and the solution of this problem is unique (by strict convexity), we get
w D U and full convergence of the whole family. �

Lemma 2.2 (uniform regularity estimates). For every 0< " < "0 and every Br b B we have

ku"kL1.Br / � C; (2-6)

kru"kL1.Br / � C; (2-7)Z
Br

ˇ̌
r.ju"xj j

p�2
2 u"xj /

ˇ̌2
dx � C; j D 1; 2; (2-8)

for some constant C > 0 independent of " > 0.

Proof. The proof of the L1 estimate (2-6) is standard; it can be obtained as in [Giusti 2003, Theorem 7.5].
The standing assumption required throughout [Giusti 2003, Chapter 7], namely the property (7.2) there,
is satisfied in our framework since for every z 2 R2 one has

1

C
jzjp �

1

p

2X
iD1

jzi j
p
C

p� 1

2
" jzj2 � C .jzjpC 1/

for some C D C.p/ > 0.
The Lipschitz estimate (2-7) is more delicate and is one of the main outcomes of [Bousquet et al. 2016].

Indeed, we know from Proposition 4.1 of that paper that there exists C D C.p/ > 0 such that for every
Br b BR b B

ku"xi
kL1.Br / � C

�
R

R� r

�8�

/

Z
BR

jru"jp dxC 1

�2C 1
p

; i D 1; 2: (2-9)

With the notation introduced in [Bousquet et al. 2016], this corresponds to the particular case ı1D ı2D 0

and f D 0 there. By combining this with (2-5), we get (2-7).
We now prove the W 1;2 estimate for the nonlinear function of ru". We take � 2 C1

0
.B/ a standard

cut-off function such that

0� �� 1; �� 1 on Br ; �� 0 on R2
nBR; jr�j �

C

R� r
:

Then we test (2-4) against ' D u"xj �
2. With standard manipulations, we get the Caccioppoli inequality

2X
iD1

Z
.ju"xi
j
p�2
C "/ ju"xi xj

j
2 �2 dx � C

2X
iD1

Z
.ju"xi
j
p�2
C "/ ju"xj j

2
j�xi
j
2 dx:
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By dropping the term containing " on the left and observing that

ju"xi
j
p�2
ju"xi xj

j
2
D

4

p2

ˇ̌
.ju"xi
j

p�2
2 u"xi

/xj
ˇ̌2
;

we get
2X

iD1

Z
Br

ˇ̌
.ju"xi
j

p�2
2 u"xi

/xj
ˇ̌2

dx �
C

.R� r/2

2X
iD1

Z
BR

.ju"xi
j
p�2
C "/ ju"xj j

2 dx; (2-10)

where we used the properties of �. In order to conclude, it is sufficient to use again (2-5). �

From the bounds obtained in Lemma 2.2, we can deduce the following convergence result.

Proposition 2.3 (convergence). With the notation above, for every Br b B we have:

(i) fu"g0<"<"0
converges uniformly to U on Br .

(ii) fju"xi
j

p�2
2 u"xi

g0<"<"0
converges to jUxi

j
p�2

2 Uxi
weakly in W 1;2.Br / and strongly in L2.Br /. In

particular, we have
jUxi
j

p�2
2 Uxi

2W 1;2.Br /:

(iii) fru"g0<"<"0
converges to rU strongly in Lp.Br /.

Proof. We already know from Lemma 2.1 that u" converges to U weakly in W 1;p.B/ and strongly
in Lp.B/.

In view of (2-6) and (2-7), the Arzelà–Ascoli theorem implies that the convergence is indeed uniform
on Br for every Br b B.

By (2-8), there exists a sequence f"kgk2N � .0; "0/ such that

fju"k
xi
j

p�2
2 u"k

xi
gk2N; i D 1; 2;

converges to some function Vi 2W 1;2.Br / weakly in W 1;2.Br / and strongly in L2.Br /. In particular,
this is a Cauchy sequence in L2.Br /. By using the elementary inequality

jt � sjp � C
ˇ̌
jt j

p�2
2 t � jsj

p�2
2 s

ˇ̌2
; t; s 2 R;

where C > 0 depends only on p, we obtain that fu"k
xi
gk2N is a Cauchy sequence as well, this time in

Lp.Br /. This implies
lim

k!C1
kru"k �rU kLp.Br / D 0:

We now prove that Vi D jUxi
j

p�2
2 Uxi

. We use the elementary inequalityˇ̌
jt j

p�2
2 t � jsj

p�2
2 s

ˇ̌
� C

�
jt j

p�2
2 Cjsj

p�2
2

�
jt � sj; t; s 2 R;

valid for some C D C.p/ > 0. Then we obtainZ
Br

ˇ̌
ju"k

xi
j

p�2
2 u"k

xi
�jUxi

j
p�2

2 Uxi

ˇ̌2
dx�C

Z
Br

�
ju"k

xi
j

p�2
2 CjUxi

j
p�2

2

�2
ju"k

xi
�Uxi

j
2 dx

�C

�Z
Br

�
ju"k

xi
j

p�2
2 CjUxi

j
p�2

2

� 2p
p�2 dx

�p�2
p
�Z

Br

ju"k
xi
�Uxi

j
p dx

�2
p

:
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By using the strong convergence of the gradients proved above, this implies that Vi DjUxi
j

p�2
2 Uxi

. Since
the above argument can be repeated for every subsequence of fu"g0<"<"0

, it follows from the uniqueness
of the limit that the convergence holds true for the whole family fu"g0<"<"0

, both in (ii) and (iii). �

From the convergence results stated in the above proposition, we can obtain some regularity properties
for the local minimizer U , which we state in the following theorem. These properties, which come with
local scaling-invariant a priori estimates, have already been established in [Bousquet et al. 2016; Brasco
and Carlier 2013; Fonseca and Fusco 1997].

Theorem 2.4 (a priori estimates, p > 2). Every local minimizer U 2W
1;p

loc .�/ of the functional F is a
locally Lipschitz function, such that for every ˛ � p

2
we have

jUxi
j
˛�1 Uxi

2W
1;2

loc .�/; i D 1; 2:

Moreover, for every BR b� we have

kUxi
kL1.BR=2/ � C

�
/

Z
BR

jrU jp dx

�1
p

; i D 1; 2; (2-11)

Z
BR=2

ˇ̌
r.jUxi

j
˛�1 Uxi

/
ˇ̌2

dx � C ˛2

�

/

Z
BR

jrU jp dx

�2˛
p

; i D 1; 2; (2-12)

for some C.p/ > 0.

Proof. Let us prove the estimates (2-11) and (2-12). By taking the limit as " goes to 0 in (2-9) and using
the convergence result of Proposition 2.3, we obtain

kUxi
kL1.BR=2/ � C

�

/

Z
BR

jrU jp dxC 1

�2C 1
p

; i D 1; 2:

In order to obtain (2-11), it is sufficient to observe that if U is a local minimizer of F, then for every �> 0

the function �U is still a local minimizer of the same functional. Thus the previous Lipschitz estimate
holds true; i.e.,

� kUxi
kL1.BR=2/ � C

�
�p /

Z
BR

jrU jp dxC 1

�2C 1
p

; i D 1; 2:

This can be rewritten as

�
p

2pC1 kUxi
k

p
2pC1

L1.BR=2/
�C �p /

Z
BR

jrU jp dx � C; i D 1; 2;

for a different constant C D C.p/ > 0. If we now maximize the left-hand side with respect to � > 0, we
get (2-11) as desired.

We already know from Proposition 2.3 that jUxi
j

p�2
2 Uxi

2W
1;2

loc .�/. By passing to the limit in (2-10)
and using the convergences at our disposal from Proposition 2.3, we obtainZ

BR=2

ˇ̌
r.jUxi

j
p�2

2 Uxi
/
ˇ̌2

dx �
C

R2

Z
BR

jrU jp dx;
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which is (2-12) for ˛ D p
2

. In order to prove (2-12) for a general ˛ > p
2

, it is sufficient to observe that

jUxi
j
˛�1 Uxi

D
ˇ̌
jUxi
j

p�2
2 Uxi

ˇ̌ 2
p
˛�1
jUxi
j

p�2
2 Uxi

; (2-13)

and the function t 7! jt j
2˛�p

p t is C 1. By using that

jUxi
j

p�2
2 Uxi

2W
1;2

loc .�/\L1loc.�/;

we get that jUxi
j˛�1 Uxi

2W
1;2

loc .�/\L1loc.�/ as well. Finally, to prove the estimate, we observe that
(2-13) impliesZ

BR=2

ˇ̌
r.jUxi

j
˛�1 Uxi

/
ˇ̌2

dx � C ˛2
kUxi
k

2˛�p

L1.BR=2/

Z
BR=2

ˇ̌
r.jUxi

j
p�2

2 Uxi
/
ˇ̌2

dx:

By using (2-11) and (2-12) for ˛ D p
2

, we get the desired conclusion. �

We proceed with a technical result which will be needed to handle the case p > 2.

Lemma 2.5. Let p > 2 and let U 2W
1;p

loc .�/ still denote a local minimizer of F. Let ˇ 2 R and set

F.t/D
p

2

Z t

ˇ

jsj
p�2

2 .s�ˇ/C ds; t 2 R:

Then F.Uxj / 2W
1;2

loc .�/ and we have

.jUxj j
p�2

2 Uxj /xk
.Uxj �ˇ/C D .F.Uxj //xk

a.e. in �: (2-14)

Proof. In order to prove that F.Uxj / 2W
1;2

loc .�/, we can observe that if we introduce the function

G.t/D F.jt j
2�p

p t/D
p

2

Z jt j.2�p/=p t

ˇ

jsj
p�2

2 .s�ˇ/C ds;

then we have
F.Uxj /DG.jUxj j

p�2
2 Uxj /: (2-15)

With the simple change of variable � D jsj
p�2

2 s, the function G can be rewritten as

G.t/D

Z t

jˇj.p�2/=2 ˇ

.j� j
2�p

p � �ˇ/C d�:

Hence, G is a C 1 function. By using Theorem 2.4 and (2-15), we thus get that F.Uxj / 2W
1;2

loc .�/.
In order to prove (2-14), we use the approximation scheme introduced in this section. For every " > 0,

thanks to the smoothness of u", we have

.ju"xj j
p�2

2 u"xj /xk
.u"xj �ˇ/C D .F.u

"
xj
//xk

: (2-16)

By Proposition 2.3, we know that ru" converges to rU strongly in Lp.Br / and

ju"xj j
p�2

2 u"xj weakly converges in W 1;2.Br / to jUxj j
p�2

2 Uxj :

This implies that the left-hand side of (2-16) converges weakly in L1.Br / to the left-hand side of (2-14).
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By using the uniform bounds of Lemma 2.2, the local Lipschitz character of G and the relation (2-15),
we get Z

Br

jrF.u"xj /j
2 dx D

Z
Br

ˇ̌
rG.ju"xj j

p�2
2 u"xj /

ˇ̌2
dx � C

Z
Br

ˇ̌
r.ju"xj j

p�2
2 u"xj /

ˇ̌2
dx � C;

and

lim
"!0

Z
Br

ˇ̌
F.Uxj /�F.u"xj /

ˇ̌2
dx D lim

"!0

Z
Br

ˇ̌
G.jUxj j

p�2
2 Uxj /�G.ju"xj j

p�2
2 u"xj /

ˇ̌2
dx

� C lim
"!0

Z
Br

ˇ̌
jUxj j

p�2
2 Uxj � ju

"
xj
j

p�2
2 u"xj

ˇ̌2
dx D 0;

where we used Proposition 2.3 for the last limit. We thus obtain that F.u"xj / converges weakly in W 1;2.Br /

and strongly in L2.Br / to F.Uxj /. We can then pass to the limit in the right-hand side of (2-16). �

We end this subsection with two results on the solutions u" of the problem (2-3). The first one is a
standard minimum principle.

Lemma 2.6 (a minimum principle, p > 2). With the notation above, let Br b B. We have

ju"xj j
p�2

2 u"xj � C on @Br () ju"xj j
p�2

2 u"xj � C in Br :

Proof. In the differentiated equation (2-4) we insert the test function

ˆD

�
.C � ju"xj j

p�2
2 u"xj /C in Br ;

0 in B nBr ;

which is admissible thanks to the hypothesis. Observe that

ju"xj j
p�2

2 u"xj � C ” u"xj � jC j
2�p

p C I (2-17)

thus we obtain
2X

iD1

Z
fx2Br Wu

"
xj
�jC j.2�p/=p C g

.ju"xi
j
p�2
C "/ ju"xj j

p�2
2 ju"xi xj

j
2 dx D 0:

Observe that the two terms are nonnegative; thus for i D j we can also infer

0D

Z
fx2Br Wu

"
xj
�jC j.2�p/=p C g

ju"xj j
3
2
.p�2/

ju"xjxj
j
2 dx

D

�
4

3p� 2

�2 Z
fx2Br Wu

"
xj
�jC j.2�p/=p C g

ˇ̌�
ju"xj j

3
4
.p�2/ u"xj

�
xj

ˇ̌2
dx

D

�
4

3p� 2

�2 Z
Br

ˇ̌�
min

˚
ju"xj j

3
4
.p�2/ u"xj ; jC j

p�2
2p C

	�
xj

ˇ̌2
dx;

where we used that

u"xj � jC j
2�p

p C () ju"xj j
3
4
.p�2/ u"xj � jC j

p�2
2p C: (2-18)
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This gives �
min

˚
ju"xj j

3
4
.p�2/ u"xj ; jC j

p�2
2p C

	�
xj
D 0 a.e. in Br ;

so that the Sobolev function

min
˚
ju"xj j

3
4
.p�2/ u"xj ; jC j

p�2
2p C

	
does not depend on the variable xj in Br . By assumption, this function is constant on @Br . The last two
facts imply

min
˚
ju"xj j

3
4
.p�2/ u"xj ; jC j

p�2
2p C

	
D jC j

p�2
2p C a.e. in Br ;

which is the desired conclusion, thanks to (2-17) and (2-18). �

Finally, we will need the following result about convergence of traces.

Lemma 2.7. Let Br b B. With the notation above, there exists a sequence f"kgk2N � .0; "0/ such that
for almost every s 2 Œ0; r �, we have

lim
k!C1

ju"k
xj
j

p�2
2 u"k

xj
� jUxj j

p�2
2 Uxj


L1.@Bs/

D 0; j D 1; 2:

Proof. We first observe that ˚
ju"xj j

p�2
2 u"xj � jUxj j

p�2
2 Uxj

	
0<"<"0

weakly converges to 0 in W 1;2.Br /, thanks to Proposition 2.3. Thus for every 0< � < 1, there exists a
subsequence which strongly converges to 0 in the fractional Sobolev space W �;2.Br /. We take 1

2
< � < 1

and observe that the previous convergence implies that we can extract again a subsequence which strongly
converges to 0 in W �;2.@Bs/ for almost every s 2 Œ0; r � (see Lemma B.2). In order to conclude, it is now
sufficient to use that for 1

2
< � < 1, the space W �;2.@Bs/ is continuously embedded in C 0.@Bs/, since

@Bs is one-dimensional; see [Adams 1975, Theorem 7.57]. �

2C. Regularization scheme, case 1 < p � 2. In this case, the functional in (2-3) is not smooth enough,
in particular is not C 2. Thus the regularized problem is now

min
� 2X

iD1

1

p

Z
B

."Cjwxi
j
2/

p
2 W w�U "

2W
1;p

0
.B/

�
: (2-19)

This problem admits a unique solution u", which is C 2 on B; see again [Bousquet et al. 2016, Theorem 2.4]
and [Giusti 2003, Theorems 8.6 and 10.18]. Moreover, the solution u" satisfies the corresponding Euler–
Lagrange equation; i.e.,

2X
iD1

Z
B

."Cju"xi
j
2/

p�2
2 u"xi

'xi
dx D 0 for every ' 2W

1;p
0

.B/: (2-20)

We still have the following uniform estimate. The proof is standard routine and is left to the reader.
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Lemma 2.8 (uniform energy estimate). There exists a constant C D C.p/ > 0 such that for every
0< " < "0 the following estimate holdsZ

B

jru"jp dx � C

�Z
�B B

jrU jp dxC "
p
2 jBj

�
: (2-21)

Moreover, the family fu"g0<"<"0
converges weakly in W 1;p.B/ and strongly in Lp.B/ to U.

We will rely on the following Caccioppoli inequality to obtain certain bounds on the family fu"g0<"<"0
.

Proposition 2.9 (Caccioppoli inequality for the gradient, 1< p � 2). Let � W R! R be a C 1 monotone
function; then for every � 2 C 2 with compact support in B we have

2X
iD1

Z
."Cju"xi

j
2/

p�2
2 j�0.u"xj /j ju

"
xj xi
j
2 �2 dx

�C

Z
."Cjru"j2/

p
2 j�0.u"xj /j jr�j

2 dxCC

Z
."Cjru"j2/

p�1
2 j�.u"xj /j

�
jr�j2Cj�j jD2�j

�
dx (2-22)

for some C D C.p/ > 0.

Proof. Suppose � 2C 2; then the general result can be obtained by a standard approximation argument. To
obtain (2-22), we use a trick by Fonseca and Fusco [1997] to avoid using the upper bound on the Hessian of

H".z/ WD

2X
iD1

1

p
."Cjzi j

2/
p
2 ; z 2 R2

I

see also [Esposito and Mingione 1998; Fonseca et al. 2002].
We start by testing (2-20) against ' D .�.u"xj / �

2/xj . Thus we get
2X

iD1

Z
B

."Cju"xi
j
2/

p�2
2 u"xi

.�.u"xj / �
2/xj xi

dx D 0:

By using the smoothness of u" and �, we have

.�.u"xj / �
2/xj xi

D .�.u"xj / �
2/xi xj D

�
�0.u"xj /u"xj xi

�2
C 2 �.u"xj / � �xi

�
xj

D
�
�0.u"xj /u"xj xi

�2
�
xj
C 2

�
�.u"xj / � �xi

�
xj
:

By using an integration by parts, we thus obtain

�

2X
iD1

Z
B

�
."Cju"xi

j
2/

p�2
2 u"xi

�
xj
�0.u"xj /u

"
xj xi

�2 dxC2

2X
iD1

Z
B

."Cju"xi
j
2/

p�2
2 u"xi

.�.u"xj /��xi
/xj dxD0:

With simple manipulations, this becomes
2X

iD1

Z
B

."Cju"xi
j
2/

p�2
2 �0.u"xj / ju

"
xj xi
j
2 �2 dx

C .p� 2/

2X
iD1

Z
B

."Cju"xi
j
2/

p�4
2 ju"xi

j
2 �0.u"xj / ju

"
xj xi
j
2 �2 dx

D 2

2X
iD1

Z
B

."Cju"xi
j
2/

p�2
2 u"xi

�0.u"xj /u"xj xj
� �xi

dx

C 2

2X
iD1

Z
B

."Cju"xi
j
2/

p�2
2 u"xi

�.u"xj / .� �xi
/xj dx: (2-23)
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We now observe that
2X

iD1

Z
B

."Cju"xi
j
2/

p�2
2 �0.u"xj / ju

"
xj xi
j
2 �2 dx

C .p� 2/

2X
iD1

Z
B

."Cju"xi
j
2/

p�4
2 ju"xi

j
2 �0.u"xj / ju

"
xj xi
j
2 �2 dx

D

2X
iD1

Z
B

."Cju"xi
j
2/

p�4
2 ."C .p� 1/ ju"xi

j
2/ �0.u"xj / ju

"
xj xi
j
2 �2 dx

so that the left-hand side of (2-23) has a sign. Thus we obtain2

2X
iD1

Z
B

."Cju"xi
j
2/

p�4
2 ."C .p� 1/ ju"xi

j
2/ j�0.u"xj /j ju

"
xj xi
j
2 �2 dx

� 2

2X
iD1

Z
B

."Cju"xi
j
2/

p�2
2 ju"xi

j j�0.u"xj /j ju
"
xj xj
j � j�xi

j dx

C 2

2X
iD1

Z
B

."Cju"xi
j
2/

p�2
2 ju"xi

j j�.u"xj /j j.� �xi
/xj j dx: (2-24)

We now estimate the left-hand side of (2-24) from below
2X

iD1

Z
B

."Cju"xi
j
2/

p�4
2 ."C .p� 1/ ju"xi

j
2/ j�0.u"xj /j ju

"
xj xi
j
2 �2 dx

� .p� 1/

2X
iD1

Z
B

."Cju"xi
j
2/

p�2
2 j�0.u"xj /j ju

"
xj xi
j
2 �2 dx

�
p� 1

2

2X
iD1

Z
B

."Cju"xi
j
2/

p�2
2 j�0.u"xj /j ju

"
xj xi
j
2 �2 dx

C
p� 1

2

2X
iD1

Z
B

."Cjru"j2/
p�2

2 j�0.u"xj /j ju
"
xj xi
j
2 �2 dx;

where we used that p� 2< 0. We will use the last term as a sponge term in order to absorb the second
derivatives of u" contained in the right-hand side.

As for the first term in the right-hand side of (2-24),Z
B

."Cju"xi
j
2/

p�2
2 ju"xi

j j�0.u"xj /j ju
"
xj xj
j � j�xi

j dx

�

Z
B

."Cju"xi
j
2/

p�1
2 j�0.u"xj /j ju

"
xj xj
j � j�xi

j dx

�

Z
B

."Cjru"j2/
p�1

2 j�0.u"xj /j ju
"
xj xj
j � j�xi

j dx

�
1

2�

Z
BR

."Cjru"j2/
p
2 j�0.u"xj /j jr�j

2 dxC
�

2

Z
B

."Cjru"j2/
p�2

2 j�0.u"xj /j ju
"
xj xj
j
2 �2 dx:

2Recall that by hypothesis, �0 has constant sign.
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Also, for the last term of (2-24), we simply getZ
B

."Cju"xi
j
2/

p�2
2 ju"xi

j j�.u"xj /j j.� �xi
/xj j dx �

Z
BR

."Cjru"j2/
p�1

2 j�.u"xj /j
�
jr�j2Cj�j jD2�j

�
dx:

By using these estimates in (2-24) and taking � D p�1
2

in order to absorb the Hessian term on the
right-hand side, we obtain

2X
iD1

Z
B

."Cju"xi
j
2/

p�2
2 j�0.u"xj /j ju

"
xj xi
j
2 �2 dx

�C

Z
BR

."Cjru"j2/
p
2 j�0.u"xj /j jr�j

2 dxCC

Z
BR

."Cjru"j2/
p�1

2 j�.u"xj /j
�
jr�j2Cj�j jD2�j

�
dx; (2-25)

which is exactly (2-22). �

We now collect some bounds on the family fu"g0<"<"0
.

Lemma 2.10 (uniform estimates, 1< p � 2). Let 1< p � 2; then for every Br b B we have

ku"kL1.Br /Ckru"kL1.Br / � C; (2-26)
2X

iD1

Z
Br

."Cju"xi
j
2/

p�2
2 ju"xi xj

j
2
� C; j D 1; 2; (2-27)Z

Br

jru"xj j
2 dx � C; j D 1; 2; (2-28)

for some C > 0 independent of ".

Proof. The L1 estimate can be found in [Giusti 2003, Chapter 7] again, while the Lipschitz estimate
follows from [Fonseca and Fusco 1997, Theorem 2.2]. More precisely, for every ball Bs such that B2sbB,

sup
Bs

."Cjru"j2/
p
2 dx � C /

Z
B2s

."Cjru"j2/
p
2 dx: (2-29)

By covering a given ball Br bB with a finite number of balls Bs such that B2s bB and using the bound
on the Lp norm of ru", one easily gets the Lipschitz estimate in (2-26) for some constant C > 0 which
may depend on Br but not on ".

In order to prove (2-27), we introduce two balls Br b BR b B and a standard cut-off function � 2 C 2

such that

0� �� 1; �� 1 on Br ; �� 0 on R2
nBR; jr�j �

C

R� r
; jD2�j �

C

.R� r/2
:

By taking �.t/D t in (2-22), one gets
2X

iD1

Z
."Cju"xi

j
2/

p�2
2 ju"xj xi

j
2 �2 dx

� C

Z
."Cjru"j2/

p
2 jr�j2 dxCC

Z
."Cjru"j2/

p�1
2 ju"xj j

�
jr�j2CjD2�j

�
dx: (2-30)

By recalling the uniform bound on the Lp norm of ru", (2-30) gives (2-27).
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We now observe that
2X

iD1

Z
B

."Cju"xi
j
2/

p�2
2 ju"xj xi

j
2 �2 dx �

2X
iD1

Z
B

."Cjru"j2/
p�2

2 ju"xj xi
j
2 �2 dx

�

2X
iD1

."Ckru"k2L1.BR/
/

p�2
2

Z
Br

ju"xj xi
j
2 dx:

By appealing to (2-30), this yieldsZ
Br

ju"xj xi
j
2 dx �

C

.R� r/2
."Ckru"k2L1.BR/

/
2�p

2

Z
BR

."Cjru"j2/
p
2 dx:

In order to conclude, it is sufficient to use (2-26) for the ball BR b B and again the uniform estimate on
the Lp norm of ru". �

Proposition 2.11. With the notation above, for every Br b B, we have:

(1) fu"g0<"<"0
converges uniformly to U on Br .

(2) fru"g0<"<"0
converges to rU weakly in W 1;2.Br / and strongly in L2.Br /. In particular, we have

Uxi
2W 1;2.Br /:

(3)
˚
."Cju"xi

j2/
p�2

4 u"xi

	
0<"<"0

converges to jUxi
j

p�2
2 Uxi

weakly in W 1;2.Br / and strongly in L
4
p .Br /.

In particular, we have
jUxi
j

p�2
2 Uxi

2W 1;2.Br /:

Proof. We already know from Lemma 2.8 that u" converges to U weakly in W 1;p.B/ and strongly
in Lp.B/.

By (2-26) and the Arzelà–Ascoli theorem, the convergence of fu"g0<"<"0
to U is uniform on Br for

every Br b B.
From estimates (2-26) and (2-28), we get that fu"xi

g0<"<"0
is uniformly bounded in W 1;2.Br /. By

the Rellich–Kondrašov theorem, we can infer strong convergence in L2.Br / to Uxi
for every i D 1; 2.

We now observe thatˇ̌
r.."Cju"xi

j
2/

p�2
4 u"xi

/
ˇ̌2
D

ˇ̌̌̌
p� 2

2
."Cju"xi

j
2/

p�6
4 ju"xi

j
2
ru"xi

C ."Cju"xi
j
2/

p�2
4 ru"xi

ˇ̌̌̌2
D ."Cju"xi

j
2/

p�6
2 jru"xi

j
2

ˇ̌̌̌
p

2
ju"xi
j
2
C "

ˇ̌̌̌2
� ."Cju"xi

j
2/

p�2
2 jru"xi

j
2;

where we used that 1< p � 2. By (2-27), this implies˚
."Cju"xi

j
2/

p�2
4 u"xi

	
0<"<"0

; i D 1; 2; (2-31)

is bounded in W 1;2.Br /. Again by the Rellich–Kondrašov theorem we can assume that, up to a sub-
sequence (we do not relabel), it converges to some function Vi 2W 1;2.Br / weakly in W 1;2.Br / and
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strongly in L2.Br /. We now show at the same time that Vi D jUxi
j

p�2
2 Uxi

and that actually we have
strong convergence in L

4
p .Br /. Indeed, by using the elementary inequality of Corollary A.3, we obtainZ

Br

ˇ̌
."Cju"xi

j
2/

p�2
4 u"xi

� jUxi
j

p�2
2 Uxi

ˇ̌ 4
p dx

� C

Z
Br

ˇ̌
."Cju"xi

j
2/

p�2
4 u"xi

� ."CjUxi
j
2/

p�2
4 Uxi

ˇ̌ 4
p dx

CC

Z
Br

ˇ̌
."CjUxi

j
2/

p�2
4 Uxi

� jUxi
j

p�2
2 Uxi

ˇ̌ 4
p dx

� C

Z
Br

ju"xi
�Uxi

j
2 dxCC

Z
Br

ˇ̌
."CjUxi

j
2/

p�2
4 Uxi

� jUxi
j

p�2
2 Uxi

ˇ̌ 4
p dx:

By using the strong convergence of the gradients proved above (for the first term) and the dominated
convergence theorem (for the second one), this implies Vi D jUxi

j
p�2

2 Uxi
and the convergence of the

full original sequence in (2-31) weakly in W 1;2.Br / and strongly in L
4
p .Br /. �

Using the above convergence result, one can establish the following regularity properties for the local
minimizer U.

Theorem 2.12 (a priori estimates, 1< p � 2). Every local minimizer U 2W
1;p

loc .�/ of the functional F
is a locally Lipschitz function such that for every ˛ � p

2
we have

jUxi
j
˛�1 Uxi

2W
1;2

loc .�/; i D 1; 2:

In particular, we have rU 2W
1;2

loc .�IR
2/. Moreover, for every BR b�, we have

kUxj kL1.BR=2/ � C1

�

/

Z
BR

jrU jp dx

�1
p

; j D 1; 2; (2-32)

Z
BR=2

ˇ̌
r.jUxj j

˛�1 Uxj /
ˇ̌2

dx � C2

�

/

Z
BR

jrU jp dx

�2˛
p

; j D 1; 2; (2-33)

for some C1 D C1.p/ > 0 and C2 D C2.p; ˛/ > 0.

Proof. Local Lipschitz regularity and the scaling invariant estimate (2-32) follow from [Fonseca and
Fusco 1997, Theorem 2.2].

We already know from Proposition 2.11 that jUxi
j

p�2
2 Uxi

2W
1;2

loc .�/. In order to get (2-33) for
˛ D p

2
, we first recall thatˇ̌

r
�
."Cju"xj j

2/
p�2

4 u"xj

�ˇ̌2
� ."Cju"xj j

2/
p�2

2 jru"xj j
2:

We multiply the above inequality by the cut-off function �2 as in (2-30), associated to the balls BR
2
bBR .

Integrating the resulting inequality, we getZ
BR=2

ˇ̌
r
�
."Cju"xj j

2/
p�2

4 u"xj

�ˇ̌2
dx �

Z
BR

."Cju"xj j
2/

p�2
2 jru"xj j

2�2 dx:
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Using (2-30), this impliesZ
BR=2

ˇ̌
r
�
."Cju"xj j

2/
p�2

4 u"xj

�ˇ̌2
dx �

C

R2

Z
BR

."Cjru"j2/
p
2 dx:

By taking the limit in the previous inequality and using the convergences of Proposition 2.11, we get
(2-33) for ˛ D p

2
.

The last part of the statement now follows as in Theorem 2.4 above (observe that this time 0< p
2
�1). �

Remark 2.13. For later reference, we observe that for every k; j D 1; 2,

.jUxj j
p�2

2 Uxj /xk
D

p

2
jUxj j

p�2
2 Uxjxk

a.e. on fUxj 6D 0g: (2-34)

Since the function t 7! jt j
p�2

2 t is not C 1 for 1< p < 2, or locally Lipschitz, the identity (2-34) does not
follow from the chain rule in a straightforward way. We start instead from the following identity, which
results from the classical chain rule for smooth functions:

."Cju"xj j
2/

2�p
4

�
."Cju"xj j

2/
p�2

4 u"xj

�
xk
D

�
"C p

2
ju"xj j

2

"Cju"xj j
2

�
u"xjxk

: (2-35)

On the left-hand side, ." C ju"xj j
2/

2�p
4 is uniformly bounded on BR b B and converges (up to a

subsequence) almost everywhere to jUxj j
2�p

2 , while�
."Cju"xj j

2/
p�2

4 uxj

�
xk

weakly converges in L2.BR/ to .jUxj j
p�2

2 Uxj /xk
:

Hence, the product converges weakly in L2.BR/ to jUxj j
2�p

2 .jUxj j
p�2

2 Uxj /xk
.

A similar argument proves that the right-hand side of (2-35) converges to p
2

Uxjxk
weakly in L2.BR/.

We have thus proved that for almost every x 2 BR,

jUxj j
2�p

2 .jUxj j
p�2

2 Uxj /xk
D

p

2
Uxjxk

:

The identity (2-34) follows at once.

As in the case p > 2, we end this subsection on the case 1< p � 2 with two additional results on the
solutions u" of the problem (2-19).

Lemma 2.14 (a minimum principle, 1< p � 2). Let Br b B. With the notation above, we have

u"xj � C on @Br () u"xj � C in Br :

Proof. By inserting in (2-20) a test function of the form 'xj with ' smooth with compact support in B

and integrating by parts, we get

2X
iD1

Z
B

�
."Cju"xi

j
2/

p�2
2 u"xi

�
xj
'xi

dx D 0:
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This is the same as
2X

iD1

Z
B

."Cju"xi
j
2/

p�2
2 u"xi xj

'xi
dxC .p� 2/

2X
iD1

Z
B

."Cju"xi
j
2/

p�4
2 ju"xi

j
2 u"xi xj

'xi
dx D 0:

By the regularity of u", the previous identity is still true for functions ' 2 W
1;2

0
.B/. In the previous

identity, we insert the test function

ˆD

�
.C �u"xj /C in Br ;

0 in B nBr ;

which is admissible thanks to the hypothesis on u"xj . We obtain

2X
iD1

Z
fx2Br Wu

"
xj
�C g

."Cju"xi
j
2/

p�2
2 ju"xi xj

j
2 dx

C .p� 2/

2X
iD1

Z
fx2Br Wu

"
xj
�C g

."Cju"xi
j
2/

p�4
2 ju"xi

j
2
ju"xi xj

j
2 dx D 0:

This can be rewritten as

2X
iD1

Z
fx2Br Wu

"
xj
�C g

."Cju"xi
j
2/

p�4
2

�
"C .p� 1/ ju"xi

j
2
�
ju"xj xi

j
2 dx D 0;

which in turn implies

2X
iD1

Z
fx2Br Wu

"
xj
�C g

ju"xj xi
j
2 dx D 0I i.e.,

Z
fx2Br Wu

"
xj
�C g

jru"xj j
2 dx D 0:

From this identity, we get that the Sobolev function

.C �u"xj /C;

is constant in Br and thanks to the fact that u"xj � C on @Br , we get

.C �u"xj /C D 0 in Br

as desired. �

Lemma 2.15. Let Br b B. With the notation above, there exists a sequence f"kgk2N � .0; "0/ such that
for almost every s 2 Œ0; r �, we have

lim
k!C1

ku"k
xj
�Uxj kL1.@Bs/ D 0; j D 1; 2:

Proof. Observe that fu"xj �Uxj g0<"<"0
weakly converges to 0 in W 1;2.Br /, thanks to Proposition 2.11.

The proof then runs similarly to that of Lemma 2.7. �
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3. Caccioppoli inequalities

3A. The case p > 2. One of the key ingredients in the proof of the Main Theorem for p > 2 is the
following “weird” Caccioppoli inequality for the gradient of the local minimizer U. Observe that the
inequality contains quantities like the product of different components of rU.

Proposition 3.1. Let ˆ W R! R be a C 2 function such that ˆˆ00 � 0 and � W R! RC be a nonnegative
convex function. For every B b�, every � 2 C1

0
.B/ and every j ; k 2 f1; 2g,

2X
iD1

Z ˇ̌
.jUxi

j
p�2

2 Uxi
/xk

ˇ̌2
Œˆ0.Uxk

/�2 �.Uxj / �
2 dx

� C

� 2X
iD1

Z
jUxi
j
p�2ˆ.Uxk

/4 j�xi
j
2 dx

�1
2
� 2X

iD1

Z
jUxi
j
p�2 �.Uxj /

2
j�xi
j
2 dx

�1
2

: (3-1)

Proof. By a standard approximation argument, one can assume � to be a smooth function. We fix " > 0

and we take as above u" the minimizer of (2-3), subject to the boundary condition u"�U " 2W
1;p

0
.B/.

We divide the proof in two parts: we first show (3-1) for u" and then prove that we can take the limit.

Caccioppoli for u". We consider (2-4) with k in place of j and plug in the test function

' D‰.u"xk
/ �.u"xj / �

2; with ‰.t/Dˆ.t/ˆ0.t/;

where � is as in the statement. In order to simplify the notation, we write u in place of u" in what follows.
Since

'xi
D uxk xi

‰0.uxk
/ �.uxj / �

2
C‰.uxk

/ .�.uxj //xi
�2
C 2 � �xi

‰.uxk
/ �.uxj /;

we obtain
2X

iD1

Z
.juxi
j
p�2
C "/u2

xi xk
‰0.uxk

/ �.uxj / �
2 dx

D�

2X
iD1

Z
.juxi
j
p�2
C "/uxi xk

‰.uxk
/ .�.uxj //xi

�2 dx

�2

2X
iD1

Z
.juxi
j
p�2
C "/uxi xk

‰.uxk
/ �.uxj / � �xi

dx: (3-2)

For the second term in the right-hand side, the Young inequality implies

2

Z
.juxi
j
p�2
C "/uxi xk

‰.uxk
/ �.uxj / � �xi

dx

�
1

2

Z
.juxi
j
p�2
C "/u2

xi xk
ˆ0.uxk

/2 �.uxj / �
2 dxC 2

Z
.juxi
j
p�2
C "/ˆ.uxk

/2 �.uxj / �
2
xi

dx;

where we used the definition of ‰. The first term can be absorbed into the left-hand side of (3-2), thanks
to the fact that

‰0 D .ˆˆ0/0 Dˆ02Cˆˆ00 �ˆ02:
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Hence, for the moment we have obtained
2X

iD1

Z
.juxi
j
p�2
C "/u2

xi xk
ˆ0.uxk

/2 �.uxj / �
2 dx

� 2

2X
iD1

Z
.juxi
j
p�2
C "/ juxi xk

j j‰.uxk
/j
ˇ̌
.�.uxj //xi

ˇ̌
�2 dx

C 4

2X
iD1

Z
.juxi
j
p�2
C "/ˆ.uxk

/2�.uxj / �
2
xi

dx: (3-3)

In the particular case when � � 1, we observe for later use that
2X

iD1

Z
.juxi
j
p�2
C "/

ˇ̌
.ˆ.uxk

//xi

ˇ̌2
�2 dx D

2X
iD1

Z
.juxi
j
p�2
C "/u2

xi xk
ˆ0.uxk

/2 �2 dx

� 4

2X
iD1

Z
.juxi
j
p�2
C "/ˆ.uxk

/2 �2
xi

dx: (3-4)

We go back to (3-3). By Hölder’s inequality, we can estimate the last term of the right-hand side:
2X

iD1

Z
.juxi
j
p�2
C "/ˆ.uxk

/2 �.uxj / �
2
xi

dx

�

� 2X
iD1

Z
.juxi
j
p�2
C "/ˆ.uxk

/4 �2
xi

dx

�1
2
� 2X

iD1

Z
.juxi
j
p�2
C "/ �.uxj /

2 �2
xi

dx

�1
2

: (3-5)

In a similar fashion, for the first term in the right-hand side of (3-3), we have
2X

iD1

Z
.juxi
j
p�2
C"/ juxi xk

j j‰.uxk
/j
ˇ̌
.�.uxj //xi

ˇ̌
�2 dx

�

� 2X
iD1

Z
.juxi
j
p�2
C"/u2

xi xk
‰.uxk

/2�2 dx

�1
2
� 2X

iD1

Z
.juxi
j
p�2
C"/

ˇ̌
.�.uxj //xi

ˇ̌2
�2 dx

�1
2

D
1

2

� 2X
iD1

Z
.juxi
j
p�2
C"/

ˇ̌
.ˆ.uxk

/2/xi

ˇ̌2
�2 dx

�1
2
� 2X

iD1

Z
.juxi
j
p�2
C"/

ˇ̌
.�.uxj //xi

ˇ̌2
�2 dx

�1
2

: (3-6)

In the last equality, we have used the fact that

u2
xi xk

‰.uxk
/2 D 1

4
..ˆ.uxk

/2/xi
/2:

It follows from (3-3), (3-5) and (3-6) that
2X

iD1

Z
.juxi
j
p�2
C "/u2

xi xk
ˆ0.uxk

/2�.uxj /�
2 dx

�

� 2X
iD1

Z
.juxi
j
p�2
C "/

ˇ̌
.ˆ.uxk

/2/xi
j
2�2 dx

�1
2
� 2X

iD1

Z
.juxi
j
p�2
C "/

ˇ̌
.�.uxj //xi

ˇ̌2
�2 dx

�1
2

C 4

� 2X
iD1

Z
.juxi
j
p�2
C "/ˆ.uxk

/4 �2
xi

dx

�1
2
� 2X

iD1

Z
.juxi
j
p�2
C "/ �.uxj /

2 �2
xi

dx

�1
2

:
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By (3-4) with3 ˆ2 in place of ˆ, one has
2X

iD1

Z
.juxi
j
p�2
C "/

ˇ̌
.ˆ.uxk

/2/xi

ˇ̌2
�2 dx � 4

2X
iD1

Z
.juxi
j
p�2
C "/ˆ.uxk

/4 �2
xi

dx:

Similarly, by using (3-4) with � in place of ˆ and j in place of k,
2X

iD1

Z
.juxi
j
p�2
C "/

ˇ̌
.�.uxj //xi

ˇ̌2
�2 dx � 4

2X
iD1

Z
.juxi
j
p�2
C "/ �.uxj /

2 �2
xi

dx:

Hence, we have obtained
2X

iD1

Z
.juxi
j
p�2
C "/u2

xi xk
ˆ0.uxk

/2 �.uxj / �
2 dx

� C

�Z 2X
iD1

.juxi
j
p�2
C "/ˆ.uxk

/4 �2
xi

dx

�1
2
�Z 2X

iD1

.juxi
j
p�2
C "/ �.uxj /

2 �2
xi

dx

�1
2

for some universal constant C > 0. We now observe that

.juxi
j
p�2
C "/u2

xi xk
� juxi

j
p�2u2

xi xk
D

4

p2

ˇ̌
.juxi
j

p�2
2 uxi

/xk

ˇ̌2
I

thus, by restoring the original notation u", we get
2X

iD1

Z ˇ̌
.ju"xi
j

p�2
2 u"xi

/xk

ˇ̌2
ˆ0.u"xk

/2 �.u"xj / �
2 dx

� C

� 2X
iD1

Z
.ju"xi
j
p�2
C "/ˆ.u"xk

/4 �2
xi

dx

�1
2
� 2X

iD1

Z
.ju"xi
j
p�2
C "/ �.u"xj /

2 �2
xi

dx

�1
2

: (3-7)

Passing to the limit "! 0. By Lemma 2.2, for every Br b B the gradient ru" is uniformly bounded in
L1.Br /. Moreover, by Proposition 2.3, up to a subsequence (we do not relabel), it converges almost every-
where to rU. By recalling that � has compact support in B, the dominated convergence theorem implies
that the right-hand side of (3-7) converges to the corresponding quantity with U in place of u" and "D 0.

As for the left-hand side, we use the fact that for a subsequence (still denoted by u")ˆ0.u"xk
/
p
�.u"xj / �


L1.spt.�// � C; ˆ0.u"xk

/
p
�.u"xj / �!ˆ0.Uxk

/
p
�.Uxj / � a.e.;

and that
ju"xi
j

p�2
2 u"xi

weakly converges in W 1;2.spt.�// to jUxi
j

p�2
2 Uxi

;

still by Proposition 2.3. Hence, we can infer weak convergence in L2.spt.�// of

.ju"xi
j

p�2
2 u"xi

/xk
ˆ0.u"xk

/
p
�.u"xj / �:

Finally, by semicontinuity of the L2 norm with respect to weak convergence, one getsZ ˇ̌
.jUxi

j
p�2

2 Uxi
/xk

ˇ̌2
ˆ0.Uxk

/2 �.Uxj / �
2 dx � lim inf

"!0

Z ˇ̌
.ju"xi
j

p�2
2 u"xi

/xk

ˇ̌2
ˆ0.u"xk

/2 �.u"xj / �
2 dx:

This yields the desired estimate (3-1) for U. �
3Observe that ˆ2 still verifies ˆ2 .ˆ2/00 � 0. Indeed, .ˆ2/00 D 2 .ˆ0/2C 2ˆˆ00 � 0, by hypothesis.
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3B. The case 1 < p � 2. In this case, the Caccioppoli inequality we need is more standard.

Proposition 3.2. Let � W R! R be a C 1 monotone function. For every B b�, every � 2 C1
0
.B/ and

every j D 1; 2 we have

2X
iD1

Z
fUxi
6D0g

jUxi
j
p�2

ˇ̌
.Z.Uxj //xi

ˇ̌2
�2 dx

� C

Z
jrU jp�1

�
jrU j j�0.Uxj /jC j�.Uxj /j

� �
jr�j2Cj�j jD2�j

�
dx; (3-8)

where Z W R! R is the C 1 function defined by

Z.t/D

Z t

0

p
j�0.s/j ds: (3-9)

Proof. We fix " > 0 and we take as above u" the minimizer of (2-19), subject to the boundary condition
u"�U " 2W

1;p
0

.B/. Then by Proposition 2.9, we have

2X
iD1

Z
."Cju"xi

j
2/

p�2
2 j�0.u"xj /j ju

"
xj xi
j
2 �2 dx

� C

Z
."Cjru"j2/

p
2 j�0.u"xj /j jr�j

2 dxCC

Z
."Cjru"j2/

p�1
2 j�.u"xj /j

�
jr�j2Cj�j jD2�j

�
dx

for some C D C.p/ > 0. Since p < 2,

."Cju"xi
j
2/

p�2
2 j�0.u"xj /j ju

"
xj xi
j
2 �2
�
��
."Cju"xi

j
2/

p�2
4 u"xi

�
xj

p
j�0.u"xj /j �

�2
:

Hence,
2X

iD1

Z ��
."Cju"xi

j
2/

p�2
4 u"xi

�
xj

p
j�0.u"xj /j�

�2
�C

Z
."Cjru"j2/

p
2 j�0.u"xj /j jr�j

2 dxCC

Z
."Cjru"j2/

p�1
2 j�.u"xj /j

�
jr�j2Cj�j jD2�j

�
dx: (3-10)

In order to pass to the limit as " goes to 0, we observe that by Lemma 2.10, for every Br bB the gradient
ru" is uniformly bounded in L1.Br /. Moreover, by Proposition 2.11 it converges almost everywhere to
rU (up to a subsequence). By recalling that � has compact support in B, the dominated convergence
theorem implies that the right-hand side of the above inequality converges to the corresponding quantity
with U in place of u" and "D 0.

As for the left-hand side, we observe that by Proposition 2.11

."Cju"xi
j
2/

p�2
4 u"xi

weakly converges in W 1;2.spt.�// to jUxi
j

p�2
2 Uxi

;

and (up to a subsequence),pj�0.u"xj /j �L1.spt.�// � C;
p
j�0.u"xj /j �!

p
j�0.Uxj /j � a.e.
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Thus as in the case p > 2, we can infer weak convergence in L2.spt.�// of�
."Cju"xi

j
2/

p�2
4 u"xi

�
xj

p
j�0.u"xj /j �:

By the same semicontinuity argument as before, we get

lim inf
"!0

2X
iD1

Z ��
."Cju"xj j

2/
p�2

4 u"xi

�
xj

p
j�0.u"xj /j�

�2
dx �

2X
iD1

Z ˇ̌
.jUxi

j
p�2

2 Uxi
/xj

p
j�0.Uxj /j �

ˇ̌2
dx:

The right-hand side is greater than or equal to

2X
iD1

Z
fUxi
6D0g

ˇ̌
.jUxi

j
p�2

2 Uxi
/xj
ˇ̌2
j�0.Uxj /j �

2 dx D
p2

4

2X
iD1

Z
fUxi
6D0g

ˇ̌
jUxi
j

p�2
2 Uxi xj

ˇ̌2
j�0.Uxj /j �

2 dx:

The last equality follows from (2-34). Now, applying the standard chain rule for the C 1 function Z

defined in (3-9) (remember also that Uxj 2W
1;2

loc .�/\L1loc.�/) yields

lim inf
"!0

2X
iD1

Z ��
."Cju"xj j

2/
p�2

4 u"xi

�
xj

p
j�0.u"xj /j �

�2
dx

�
p2

4

2X
iD1

Z
fUxi
6D0g

jUxi
j
p�2

ˇ̌
.Z.Uxj //xi

ˇ̌2
�2 dx:

In view of (3-10), this completes the proof. �

4. Decay estimates for a nonlinear function of the gradient for p > 2

We already know from Theorem 2.4 that

jUxj j
p�2

2 Uxj 2W
1;2

loc .�/\L1loc.�/:

This nonlinear function of the gradient of U will play a crucial role in the sequel for the case p > 2. Thus
we introduce the expedient notation

vj D jUxj j
p�2

2 Uxj ; j D 1; 2:

For every BR b�, we will also use the following notation:

mj D inf
BR

vj ; Vj D vj �mj ; Mj D sup
BR

Vj D osc
BR

vj ; j D 1; 2; (4-1)

LR D 1CkrU kL1.BR/: (4-2)

4A. A De Giorgi-type lemma. We first need the following result on the decay of the oscillation of vj .
This is the analogue of [Santambrogio and Vespri 2010, Lemma 4]. As explained in the Introduction,
our operator is much more degenerate then the one considered in that paper; thus the proof has to be
completely recast. We crucially rely on the Caccioppoli inequality of Proposition 3.1.
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Lemma 4.1. Let BR b� and 0< ˛ < 1. By using the notation in (4-1) and (4-2), there exists a constant
� D �.p; ˛;LR/ > 0 such that ifˇ̌

fVj > .1�˛/Mj g\BR

ˇ̌
� �M

2pC4.1� 2
p
/

j jBRj;

then
0� Vj �

�
1�

˛

2

�
Mj ; on B R

2
:

Proof. We first observe that if Mj D 0, then Vj identically vanishes in BR and there is nothing to prove.
Thus, we can assume that Mj > 0.

For n� 1, we set

kn DMj

�
1�

˛

2
�
˛

2n

�
; Rn D

R

2
C

R

2n
; An D fVj > kng\BRn

;

where the ball BRn
is concentric with BR. Let �n be a smooth cut-off function such that

0� �n � 1; �n � 1 on BRnC1
; �n � 0 on R2

nBRn
; jr�nj � C

2n

R
:

Recalling the definition (2-1) of gq , we then set for every n� 1

ˇn D g�1
p�2

2

.mj C kn/D jmj C knj
2�p

p .mj C kn/; (4-3)

with mj defined in (4-1). We start from (3-1) with the choices

ˆ.t/D t; �.t/D .t �ˇn/
2
C and �D �n:

Observe that
�.Uxj /D .Uxj �ˇn/

2
C > 0 () Vj > kn;

and also4

0� �.Uxj /�
ˇ̌
g�1

p�2
2

.vj /�g�1
p�2

2

.mj C kn/
ˇ̌2
� C jvj �mj � knj

4
p � CM

4
p

j a.e. on BRn
: (4-4)

By using (4-4) and the definition of An, we then obtain
2X

iD1

Z
j.vi/xk

j
2 �.Uxj / �

2
n

� C

� 2X
iD1

Z
jUxi
j
p�2
jUxk
j
4
j.�n/xi

j
2 dx

�1
2
� 2X

iD1

Z
jUxi
j
p�2 �.Uxj /

2
j.�n/xi

j
2 dx

�1
2

� C L
p
R

M
4
p

j

�Z
BRn

jr�nj
2

�1
2
�Z

An

jr�nj
2

�1
2

:

In view of the properties of �n, it follows that
2X

iD1

Z
j.vi/xk

j
2 �.Uxj / �

2
n dx � C L

p
R

M
4
p

j

�
2n

R

�2
jBRn
nBRnC1

j
1
2 jAnj

1
2 � C 4n L

p
R

M
4
p

j

jAnj
1
2

R

4In the second inequality we use that t 7! g�1
p�2

2

.t/ is 2
p -Hölder continuous.
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for some C D C.p/ > 0. Here, we have used that

jBRn
nBRnC1

j D �.R2
n�R2

nC1/D � .Rn�RnC1/ .RnCRnC1/�
R

2nC1
2� RD �

R2

2n
:

In the left-hand side, we only keep the term i D j and use that by Lemma 2.5

.vj /xk

p
�.Uxj /D .F.Uxj //xk

;

where

F.t/D
p

2

Z t

ˇn

jsj
p�2

2

p
�.s/ ds D

p

2

Z t

ˇn

jsj
p�2

2 .s�ˇn/C ds; t 2 R:

We thus obtain Z ˇ̌
.F.Uxj //xk

ˇ̌2
�2

n dx � C 4n L
p
R

M
4
p

j

jAnj
1
2

R
:

Summing over k D 1; 2, this yields an estimate for the gradient of F.Uxj /, i.e.,Z ˇ̌
r.F.Uxj //

ˇ̌2
�2

n dx � C 4n L
p
R

M
4
p

j

jAnj
1
2

R
: (4-5)

Since mj � mj C kn � mj CMj D supBR
vj and by the definition of LR, we have jmj C knj � L

p
2

R
.

Hence, by the definition of ˇn, see (4-3),

jˇnj �LR: (4-6)

By keeping this in mind and using Lemma A.1 below,

0� F.Uxj /� C
�
jUxj j

p�2
2 Cjˇnj

p�2
2

�
.Uxj �ˇn/

2
C � C L

p�2
2

R
.Uxj �ˇn/

2
C:

This implies that F.Uxj /D 0 on BRn
nAn and also that

0� F.Uxj /� C L
p�2

2

R
�.Uxj /� C L

p�2
2

R
M

4
p

j

for some C D C.p/ > 0. In the last inequality, we have used (4-4). Hence,Z
jr�nj

2.F.Uxj //
2 dx � C L

p�2
R

M
8
p

j

Z
An

jr�nj
2 dx

� C 4n L
p�2
R

M
8
p

j

jAnj

R2
� C 4n L

p
R

M
4
p

j

jAnj
1
2

R
;

(4-7)

where in the last inequality we used that jAnj
1
2 �
p
� R and Mj � 2L

p
2

R
. By adding (4-5) and (4-7), with

some simple manipulations we getZ
BRn

jr.F.Uxj / �n/j
2
� C 4n L

p
R

M
4
p

j

jAnj
1
2

R
;
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where as usual C D C.p/ > 0. We now rely on the following Poincaré inequality for the function
F.Uxj / �n 2W

1;2
0
.BRn

/:ˇ̌
fx 2 BRn

W F.Uxj / �n > 0g
ˇ̌ Z

BRn

jr.F.Uxj / �n/j
2 dx � c

Z
BRn

jF.Uxj / �nj
2 dx:

This inequality can be obtained as follows: for every bounded open set �� R2, the Sobolev embedding
W

1;1
0
.�/ ,!L2.�/ implies that for every f 2W

1;2
0
.�/,Z

jf j2 dx � C

�Z
jrf j dx

�2

D C

�Z
ff 6D0g

jrf j dx

�2

� C jfx W f .x/ 6D 0gj

Z
jrf j2 dx;

where C is a universal constant.
Since �n � 1 on BRnC1

and by construction

jAnj �
ˇ̌
fF.Uxj / �n > 0g

ˇ̌
;

one gets Z
BRnC1

jF.Uxj /j
2 dx � C

4n L
p
R

M
4
p

j

R
jAnj

3
2

for some C D C.p/ > 0. By using that F is nondecreasing and

AnC1 D fVj > knC1g\BRnC1
D fUxj > ˇnC1g\BRnC1

;

we obtain Z
BRnC1

jF.Uxj /j
2 dx �

Z
AnC1

jF.Uxj /j
2 dx � jAnC1jF.ˇnC1/

2:

This gives

jAnC1jF.ˇnC1/
2
� C

4n L
p
R

M
4
p

j

R
jAnj

3
2 : (4-8)

We now use the lower bound of Lemma A.1 to get

F.ˇnC1/
2
� c .ˇnC1�ˇn/

pC2: (4-9)

Remember that
ˇn D g�1

p�2
2

.mj C kn/ and ˇnC1 D g�1
p�2

2

.mj C knC1/:

If we use again that for every s; t 2 R,ˇ̌
g p�2

2

.t/�g p�2
2

.s/
ˇ̌
� C

�
jt j

p�2
2 Cjsj

p�2
2

�
jt � sj;

then one gets

jknC1� knj
pC2
D
ˇ̌
.knC1Cmj /� .knCmj /

ˇ̌pC2
� C

�
jˇnC1j

p�2
2 Cjˇnj

p�2
2

�pC2
.ˇnC1�ˇn/

pC2:

By using (4-6) and (4-9) we obtain

jknC1� knj
pC2
� C L

p2�4
2

R
F.ˇnC1/

2:
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so that by (4-8),

jAnC1j jknC1� knj
pC2
� C

4n L
p2�4C2 p

2

R
M

4
p

j

R
jAnj

3
2 :

By the definition of kn, the previous inequality gives

jAnC1j

R2
� C

�
2n .pC4/

˛pC2
L

p2�4C2 p
2

R
M

4
p
�p�2

j

��
jAnj

R2

�3
2

:

Since Mj > 0, the right-hand side is well-defined. If we now set Yn D jAnj=R
2, this finally yields

YnC1 �
�
C0 L

p2�4C2 p
2

R
M

4
p
�p�2

j

�
.2pC4/n Y

3
2

n for every n 2 N n f0g;

for some C0 D C0.˛;p/ which can be supposed to be larger than 1. If follows from Lemma B.1 that

lim
n!C1

Yn D 0; provided that Y1 �
.2pC4/�6

C 2
0

L
4�p2�2 p
R

M
2pC4 .1� 2

p
/

j :

The condition on Y1 means

jfVj > .1�˛/Mj g\BRj � �M
2pC4 .1� 2

p
/

j jBRj; with � WD
.2pC4/�6

C 2
0
�

L
4�p2�2p
R

: (4-10)

By assuming this condition and recalling the definition of Yn, we get

Vj � lim
n!C1

kn D

�
1�

˛

2

�
Mj a.e. on BR

2
: �

Remark 4.2 (quality of the constant �). For later reference, it is useful to record that

�M
2pC4 .1� 2

p
/

j < 1
2
:

This follows by direct computation, using the definition of � and observing that

Mj � 2 kvjkL1.BR/ D 2 kUxj k

p
2

L1.BR/
� 2 .LR � 1/

p
2 :

Also observe that by its definition (4-10), the constant � is monotone nonincreasing as a function of the
radius of the ball BR (since R 7!LR is monotone nondecreasing and 4�p2� 2 p < 0 for p � 2).

4B. Alternatives.

Lemma 4.3. We still use the notation in (4-1) and (4-2). Let BR b � and let � be the constant in
Lemma 4.1 for ˛ D 1

4
. If we set

ı D

r
�

2
M

2pC4 .1� 2
p
/

j ;

then exactly one of the two following alternatives occur:

osc
BıR

vj �
7
8

osc
BR

vj ; (B1)Z
BRnBıR

jrvj j
2 dx � 1

512�
�M 2

j M
2pC4 .1� 2

p
/

j : (B2)
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Proof. We can suppose that Mj > 0, otherwise there is nothing to prove. We have two possibilities: eitherˇ̌˚
Vj >

3
4

Mj

	
\BR

ˇ̌
< �M

2pC4 .1� 2
p
/

j jBRj;

or not. In the first case, by Lemma 4.1 with ˛ D 1
4

we obtain

osc
BıR

vj � osc
BR=2

vj �
7
8

osc
BR

vj ;

which corresponds to alternative (B1) in the statement. In the first inequality we used that ı < 1
2

; see
Remark 4.2.

In the second case, we appeal to Lemma B.3 with the choices

q D 2; ' D Vj ; M DMj and  D �M
2pC4 .1� 2

p
/

j ;

with ı as in the statement above. It follows that

� either Z
BRnBıR

jrVj j
2 dx � 1

512�
�M 2

j M
2pC4 .1� 2

p
/

j ;

� or the subset of ŒıR;R� given by

AD
˚
s 2 ŒıR;R� W Vj �

5
8

Mj ; H1-a.e. on @Bs

	
has positive measure.

If the first possibility occurs, then we are done since this coincides with alternative (B2).
In the second case, we consider u" the solution of the regularized problem (2-3) in a ball B b� such

that BR b B. Then we know from Lemma 2.7

lim
k!C1

ju"k
xj
j

p�2
2 u"k

xj
� vj


L1.@Bs/

D 0 for a.e. s 2 Œ0;R�;

for an infinitesimal sequence f"kgn2N. Since A has positive measure, we can then choose a radius s 2A
such that the previous convergence holds. For every n 2Nn f0g, by taking k large enough we thus obtain

ju"k
xj
j

p�2
2 u"k

xj
�

5
8

Mj Cmj �
1
n
; H1-a.e. on @Bs:

We can now apply the minimum principle of Lemma 2.6 with C D 5
8

Mj Cmj �
1
n

and get

ju"k
xj
j

p�2
2 u"k

xj
�

5
8

Mj Cmj �
1
n

in Bs: (4-11)

Thanks to Proposition 2.3, we know that fju"k
xj j

p�2
2 u

"k
xj gk2N converges strongly in L2.Bs/ to vj . It then

follows from (4-11) that

vj �
5
8

Mj Cmj �
1
n

a.e. in BsI that is, Vj �
5
8

Mj �
1
n

a.e. in Bs:

Hence, by the arbitrariness of n we get

osc
BıR

vj � osc
Bs

vj � sup
BR

Vj � inf
Bs

Vj �
3
8
Mj ;

which implies again alternative (B1). �
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5. Decay estimates for the gradient for 1 < p � 2

5A. A De Giorgi-type lemma. For every BR b�, we introduce the alternative notation

mj D inf
BR

Uxj ; Vj D Uxj �mj ; Mj D sup
BR

Vj D osc
BR

Uxj ; j D 1; 2; (5-1)

and still use the notation (4-2) for LR.

Lemma 5.1. Let BR b� and 0< ˛ < 1. By using the notation in (5-1) and (4-2), there exists a constant
� D �.p; ˛;LR/ > 0 such that ifˇ̌

fVj > .1�˛/Mj g\BR

ˇ̌
� �M 2

j jBRj;

then

0� Vj �

�
1�

˛

2

�
Mj on BR

2
:

Proof. We first observe that if Mj D 0, then Vj identically vanishes in BR and there is nothing to prove.
Thus, we can assume that Mj > 0.

For n� 1, we set

kn DMj

�
1�

˛

2
�
˛

2n

�
; Rn D

R

2
C

R

2n
; An D fVj > kng\BRn

;

where the ball BRn
is concentric with BR. Let �n be a cut-off function such that

0� �n � 1; �n � 1 on BRnC1
; �n � 0 on R2

nBRn

jr�nj � C
2n

R
and jD2�nj � C

4n

R2
:

We then set for every n� 1

ˇn Dmj C kn: (5-2)

For every ı > 0, we take a C 1 nondecreasing function �ı W R! Œ0C1/ such that

�ı.t/D 0 for t � 0; j� 0ı.t/j � C for t 2 R; � 0ı.t/D C for t � ı;

for some universal constant C > 0. This has to be thought of as a smooth approximation of the “positive
part” function, up to the constant C > 0. One can take for example the function �ı of the form

�ı.t/D

8<:
0 for t � 0;

t3=ı2 for 0< t < ı;

3 t � 2 ı for t � ı:

In the setting of Proposition 3.2, we take

�.t/D �ı.t �ˇn/ and �D �n:

We observe that
�.t/� C .t �ˇn/C;



842 PIERRE BOUSQUET AND LORENZO BRASCO

so that

�.Uxj /� C .Uxj �mj � kn/C � C Mj � 2C LR: (5-3)

By using (5-3) and the properties of �, one gets from (3-8)

C

2X
iD1

Z
fUxj

�ˇnCıg\fUxi
6D0g

jUxi
j
p�2
jUxj xi

j
2 �2

n dx

� C

Z
fUxj

�ˇng

jrU jp
�
jr�nj

2
CjD2�nj

�
dxC

Z
fUxj

�ˇng

jrU jp�1
j�.Uxj /j

�
jr�nj

2
CjD2�nj

�
dx

� C L
p
R

Z
fUxj

�ˇng

�
jr�nj

2
CjD2�nj

�
dx:

Since p < 2 and jUxi
j �LR a.e., one gets

2X
iD1

Z
fUxj

�ˇnCıg

jUxj xi
j
2 �2

n dx � C L2
R

Z
fUxj

�ˇng

�
jr�nj

2
CjD2�nj

�
dx:

Here, we have also used the fact that Uxj xi
D 0 a.e. on the set fUxi

D 0g. We now take the limit as ı
goes to 0 in the left-hand side. By the monotone convergence theorem, we get

2X
iD1

Z
fUxj

�ˇng

jUxj xi
j
2 �2

n dx � C L2
R

Z
fUxj

�ˇng

�
jr�nj

2
CjD2�nj

�
dx:

In view of the properties of �n, it follows thatZ ˇ̌
r.Uxj �ˇn/C

ˇ̌2
�2

n dx � C L2
R 4n jAnj

R2
(5-4)

for some C D C.p/ > 0. Observe thatZ
jr�nj

2 .Uxj �ˇn/
2
C dx � C L2

R 4n jAnj

R2
; (5-5)

thanks to (5-3). By adding (5-4) and (5-5), we getZ
BRn

ˇ̌
r..Uxj �ˇn/C �n/

ˇ̌2
dx � C 4n L2

R

jAnj

R2
;

where as usual C D C.p/ > 0. We rely again on the Poincaré inequality and obtainˇ̌
fx 2 BRn

W .Uxj �ˇn/C �n > 0g
ˇ̌ Z

BRn

ˇ̌
r..Uxj �ˇn/C �n/

ˇ̌2
dx � c

Z
BRn

ˇ̌
.Uxj �ˇn/C �n

ˇ̌2
dx:

Since �n � 1 on BRnC1
and by construction

jAnj �
ˇ̌˚
.Uxj �ˇn/C �n > 0

	ˇ̌
;
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one gets Z
BRnC1

.Uxj �ˇn/
2
C dx � C

4n L2
R

R2
jAnj

2

for some C D C.p/ > 0. By using that

AnC1 D fVj > knC1g\BRnC1
D fUxj > ˇnC1g\BRnC1

;

we obtain Z
BRnC1

.Uxj �ˇn/
2
C dx �

Z
AnC1

.Uxj �ˇn/
2
C dx � jAnC1j .ˇnC1�ˇn/

2:

This gives

jAnC1j .ˇnC1�ˇn/
2
� C

4n L2
R

R2
jAnj

2: (5-6)

By recalling the definitions of ˇn and kn, the previous inequality gives

jAnC1j

R2
� C

�
42 n

˛2
L2

R M�2
j

��
jAnj

R2

�2

:

Since Mj > 0, the right-hand side is well-defined. As before, we set Yn D jAnj=R
2 and obtain

YnC1 � .C0 L2
R M�2

j / 16n Y 2
n for every n 2 N n f0g;

for some C0 D C0.˛;p/� 1. Again by Lemma B.1 we get

lim
n!C1

Yn D 0; provided that Y1 �
16�2

C0

L�2
R M 2

j ;

This means

jfVj > .1�˛/Mj g\BRj � �M 2
j jBRj; with � WD

16�2

C 2
0
�

L�2
R :

By assuming this condition and recalling the definition of Yn, we get

Vj � lim
n!C1

kn D

�
1�

˛

2

�
Mj a.e. on BR

2
: �

Remark 5.2 (quality of the constant �). For later reference, as in the previous case we observe that

�M 2
j < 1

2
;

and that the constant � is monotone nonincreasing as a function of R.

5B. Alternatives.

Lemma 5.3. We still use the notation in (5-1) and (4-2). Let BR b B2R b� and let � be the constant in
Lemma 5.1 for ˛ D 1

4
. If we set

ı D

q
�

2
M 2

j ;
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then exactly one of the two following alternatives occur:

osc
BıR

Uxj �
7
8

osc
BR

Uxj ; (B1)Z
BRnBıR

jrUxj j
2 dx � 1

512�
�M 4

j : (B2)

Proof. We can suppose that Mj > 0, otherwise there is nothing to prove. We have two possibilities: eitherˇ̌˚
Vj >

3
4

Mj

	
\BR

ˇ̌
< �M 2

j jBRj;

or not. In the first case, by Lemma 5.1 with ˛ D 1
4

we obtain

osc
BıR

Uxj � osc
BR=2

Uxj �
7
8

osc
BR

Uxj ;

which corresponds to alternative (B1) in the statement. In the first inequality we used again that ı < 1
2

;
see Remark 5.2.

In the second case, we appeal to Lemma B.3 with the choices

q D 2; ' D Vj ; M DMj and  D �M 2
j ;

with ı as in the statement above. It follows that

� either Z
BRnBıR

jrVj j
2 dx � 1

512�
�M 4

j ;

� or the set

AD
˚
s 2 ŒıR;R� W Uxj �mj �

5
8

Mj ; H1-a.e. on @Bs

	
has positive measure.

Again, if the first possibility occurs, then we are done since this coincides with alternative (B2).
In the second case, we consider u" the solution of the regularized problem (2-19) in a ball B b� such

that BR b B. Then we know from Lemma 2.15

lim
k!C1

ku"k
xj
�Uxj kL1.@Bs/ D 0 for a.e. s 2 Œ0;R�;

for an infinitesimal sequence f"kgk2N. Since A has positive measure, we can then choose a radius s 2A
such that the previous convergence holds. For every n 2Nn f0g, by taking k large enough we thus obtain

u"xj �
5
8

Mj Cmj �
1
n

H1-a.e. on @Bs:

By proceeding as in the proof of Lemma 4.3 and using this time the minimum principle of Lemma 2.14
and Proposition 2.11, we obtain

Uxj �mj �
5
8

Mj �
1
n

a.e. in Bs:
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By arbitrariness of n, we get

osc
BıR

Uxj � osc
Bs

Uxj �
�
sup
BR

Uxj �mj

�
�
�
inf
Bs

Uxj �mj

�
�

3
8
Mj ;

which implies again alternative (B1). �

6. Proof of the Main Theorem

6A. Case p > 2. We already observed that for every q >�1 the function t 7! t jt jq is a homeomorphism
on R. This implies the following.

Lemma 6.1. Let f WE! R be a measurable function such that for some q > �1 the function jf jqf is
continuous. Then f itself is continuous.

In view of this result, in order to prove the Main Theorem in the case p > 2 it is sufficient to prove
that each function

vj D jUxj j
p�2

2 Uxj ; j D 1; 2;

is continuous on �. Thus the Main Theorem for p > 2 is a consequence of the following.

Proposition 6.2. Let p > 2, x0 2� and R0 > 0 such that BR0
.x0/b�. We consider the family of balls

fBR.x0/g0<R�R0
centered at x0. Then we have

lim
R&0

�
osc

BR.x0/
vj
�
D 0; j D 1; 2:

Proof. For simplicity, in what follows we omit indication of the center x0 of the balls. Since the map
R 7! oscBR

vj is nondecreasing, we only need to find a decreasing sequence fRngn2N converging to 0

such that
lim

n!C1

�
osc
BRn

vj
�
D 0:

For simplicity we now drop the index j and write v in place of vj . We set

M0 D osc
BR0

v and ı0 D

r
�0

2
M

2pC4 .1� 2
p
/

0
;

where �0 is the constant of Lemma 4.1 for RDR0 and ˛ D 1
4

. We construct by induction the sequence
of triples f.Rn;Mn; ın/gn2N defined by

Mn WD osc
BRn

v; ın D

r
�n

2
M

2pC4 .1� 2
p
/

n ; RnC1 D ın Rn;

and �n is the constant of Lemma 4.1 for R D Rn and ˛ D 1
4

. Since ın < 1
2

for every n 2 N (see
Remark 4.2), the sequence fRngn2N is monotone decreasing and goes to 0. In order to conclude, we just
need to prove that

lim
n!1

Mn D 0: (6-1)
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Observe that we can suppose Mn > 0 for every n 2 N, otherwise there is nothing to prove. We set

I WD

�
n 2 N W

Z
BRnnBRnC1

jrvj2 dx �
1

512�
�n M

2pC4 .1� 2
p
/

n M 2
n

�
;

and we have

�0

512�

X
n2I

M
2pC2C4 .1� 2

p
/

n �
1

512�

X
n2I

�n M
2pC2C4 .1� 2

p
/

n

�

X
n2I

Z
BRnnBRnC1

jrvj2 dx �

Z
BR0

jrvj2 dx; (6-2)

thanks to the fact that �n � �0 > 0 for every n 2 N (see Remark 4.2). We now have two possibilities:
either I is infinite or it is finite. If the first alternative occurs, then (6-2) and the fact that v 2W

1;2
loc .�/

imply

lim
I3n!1

Mn D 0:

This means that the monotone sequence fMngn2N has a subsequence which converges to 0; thus we have
(6-1) and this completes the proof in that case.

Otherwise, if I is finite then there exists ` 2 N such that for every n� ` we haveZ
BRnnBRnC1

jrvj2 dx <
1

512�
�n M

2pC4 .1� 2
p
/

n M 2
n :

By Lemma 4.3, this in turn implies that

MnC1 D osc
BRnC1

v � 7
8

osc
BRn

v D 7
8

Mn for every n� `:

This again implies (6-1). �

6B. Case 1 < p � 2. The case 1 < p � 2 is similar, but more direct. This time the Main Theorem
follows from the result below, whose proof is exactly as above. It is sufficient to use Lemma 5.1 in place
of Lemma 4.1 and Lemma 5.3 in place of Lemma 4.3. We leave the details to the reader.

Proposition 6.3. Let 1< p � 2, x0 2� and R0 > 0 such that BR0
.x0/b�. We consider the family of

balls fBR.x0/g0<R�R0
centered at x0. Then we have

lim
R&0

�
osc

BR.x0/
Uxj

�
D 0; j D 1; 2:

Appendix A: Inequalities

In the proof of Lemma 5.1 we crucially relied on the following double-sided estimate for the function

F.t/D
p

2

Z t

ˇ

jsj
p�2

2 .s�ˇ/C ds; t 2 R:
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Lemma A.1. Let ˇ 2 R and p > 2. There exists a constant C D C.p/ > 1 such that for every t 2 R,

1

C
.t �ˇ/

pC2
2

C � F.t/� C
�
jt j

p�2
2 C .maxf0;�ˇg/

p�2
2

�
.t �ˇ/2C: (A-1)

Proof. Since F.t/D 0 when t � ˇ, both inequalities are true in this case. Thus let us assume that t > ˇ.
Moreover, if ˇ D 0,

F.t/D
p

2

Z t

0

s
p�2

2 s ds D
p

pC 2
t

pC2
2 for t > 0;

which implies the result.

Case ˇ > 0. By Hölder’s inequality

.t�ˇ/
p
C

2
p
2

D

�Z t

ˇ

.s�ˇ/C ds

�p
2

D

�Z t

ˇ

s
p�2

p
.s�ˇ/C

s
p�2

p

ds

�p
2

�

�Z t

ˇ

s
p�2

2 .s�ˇ/C ds

��Z t

ˇ

.s�ˇ/C

s
ds

�p�2
2

�
2

p
F.t/ .t�ˇ/

p�2
2

C ;

where we used that .s�ˇ/C � s and this gives the lower bound in (A-1). As for the upper bound, by the
change of variables � D s=ˇ one has

F.t/D ˇ
pC2

2 FC

�
t

ˇ

�
; where FC.X /D

p

2

Z X

1

�
p�2

2 .� � 1/ d�; � > 1:

Observe that

FC.X /D
p

pC 2
.X

pC2
2 � 1/� .X

p
2 � 1/; X > 1:

Moreover, by convexity of the function X 7!X
p
2 we have

�.X
p
2 � 1/� �

p

2
.X � 1/;

while a second-order Taylor expansion gives

p

pC 2
.X

pC2
2 � 1/D

p

2
.X � 1/C

p2

4

Z X

1

s
p�2

2 .X � s/ ds �
p

2
.X � 1/C

p2

8
X

p�2
2 .X � 1/2:

Thus we obtain

FC.X /�
p2

8
X

p�2
2 .X � 1/2; X > 1;

and finally for t > ˇ

F.t/D ˇ
pC2

2 FC

�
t

ˇ

�
�

p2

8
t

p�2
2 .t �ˇ/2;

which proves the upper bound in (A-1).
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Case ˇ < 0. This case is slightly more complicated. We introduce the function

F�.X /D
p

2

Z X

�1

jsj
p�2

2 .sC 1/ ds D
p

pC 2
.jX j

pC2
2 � 1/C .jX j

p�2
2 X C 1/; X > �1:

It is sufficient to prove that there exists C > 1 such that

1

C
.X C 1/

pC2
2 � F�.X /� C .jX j

p�2
2 C 1/ .X C 1/2: (A-2)

Indeed, F.t/D jˇj
pC2

2 F�.t=jˇj/ and this would give

1

C
.t �ˇ/

pC2
2 � F.t/� C

�
jt j

p�2
2 Cjˇj

p�2
2

�
.t �ˇ/2;

as desired.
The upper bound in (A-2) for �1<X < 0 can be obtained as before, by using a second-order Taylor

expansion for the first term and using that � 7! j� j
p�2

2 � is concave on �1< � < 0. This gives

F�.X /D
p

pC 2
.jX j

pC2
2 � 1/C .jX j

p�2
2 X C 1/

� �
p

2
.X C 1/C

p2

4

Z X

�1

jsj
p�2

2 .X � s/ dsC
p

2
.X C 1/

�
p2

8
.X C 1/2:

Observe that the upper bound is trivial for 0�X � 1, since
p

pC 2
.jX j

pC2
2 � 1/C .jX j

p�2
2 X C 1/� 2� 2 .jX j

p�2
2 C 1/ .X C 1/2:

Finally, for X > 1 we still use a second-order Taylor expansion for the first term and the elementary
inequality

X
p
2 C 1� 1

2
X

p�2
2 .X C 1/2

for the second one. These yield

F�.X /�
p2

4

Z X

�1

jsj
p�2

2 .X � s/ dsC
1

2
X

p�2
2 .X C 1/2 �

�
p2

8
C

1

2

�
X

p�2
2 .X C 1/2:

In order to prove the lower bound, we just observe that the function

X 7!
.X C 1/

pC2
2

F�.X /
; X > �1;

is positive continuous on .�1;C1/ and such that

lim
X!.�1/C

.X C 1/
pC2

2

F�.X /
<C1 and lim

X!C1

.X C 1/
pC2

2

F�.X /
<C1:

Thus it is bounded on .�1;C1/ and this concludes the proof of the lower bound. �
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Lemma A.2. Let 1< q � 2. For every z0; z1 2 RN we haveˇ̌
jz0j

q�2 z0� jz1j
q�2 z1

ˇ̌
� 22�q

jz0� z1j
q�1: (A-3)

Proof. The proof is the same as that of [DiBenedetto 1993, Lemma 4.4], which proves a slightly different
inequality. We first observe that if z1 D z0 there is nothing to prove; thus we can suppose jz1� z0j> 0.
Let us set

zt D .1� t/z0C t z1; t 2 Œ0; 1�:

Then we have

jz1j
q�2 z1� jz0j

q�2 z0 D

Z 1

0

d

dt
.jzt j

q�2 zt / dt D .q� 1/

Z 1

0

jzt j
q�2 .z1� z0/ dt;

which implies ˇ̌
jz0j

q�2 z0� jz1j
q�2 z1

ˇ̌
� .q� 1/ jz1� z0j

Z 1

0

ˇ̌
jz0j � t jz1� z0j

ˇ̌q�2
dt; (A-4)

where we used that q� 2� 0. We now distinguish two cases:

either jz0j � jz1� z0j or jz0j< jz1� z0j:

In the first case, we haveZ 1

0

ˇ̌
jz0j � t jz1� z0j

ˇ̌q�2
dt D

Z 1

0

.jz0j � t jz1� z0j/
q�2 dt

D
jz0j

q�1� .jz0j � jz1� z0j/
q�1

.q� 1/ jz1� z0j
�
jz1� z0j

q�2

q� 1
;

which inserted in (A-4) gives the desired conclusion. In the second case, let 0< � < 1 be such that

jz0j D � jz0� z1j;

then we haveZ 1

0

ˇ̌
jz0j � t jz1� z0j

ˇ̌q�2
dt D

Z �

0

.jz0j � t jz1� z0j/
q�2 dt C

Z 1

�

.t jz1� z0j � jz0j/
q�2 dt

D
jz0j

q�1

.q� 1/ jz1� z0j
C
.jz1� z0j � jz0j/

q�1

.q� 1/ jz1� z0j
� 22�q jz1� z0j

q�2

q� 1
:

In view of (A-4), this gives the desired conclusion. �

Corollary A.3. Let 1< p � 2. For every "� 0 and every t; s 2 R we haveˇ̌
."C t2/

p�2
4 t � ."C s2/

p�2
4 s

ˇ̌
� 2

2�p
2 jt � sj

p
2 ; t; s 2 R:

Proof. We use (A-3) with the choices

N D 2; q D 1
2
.pC 2/; z0 D .t;

p
"/ and z1 D .s;

p
"/:

This implies ˇ̌
."C t2/

p�2
4 .t;

p
"/� ."C s2/

p�2
4 .s;

p
"/
ˇ̌
� 2

2�p
2 jt � sj

p
2 :
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By further observing thatˇ̌
."C t2/

p�2
4 .t;

p
"/� ."C s2/

p�2
4 .s;

p
"/
ˇ̌
�
ˇ̌
."C t2/

p�2
4 t � ."C s2/

p�2
4 s

ˇ̌
;

we get the conclusion. �

Appendix B: Some general tools

In the proofs of Lemmas 4.1 and 5.1, we used the following classical result. This can be found, for
example, in [Giusti 2003, Lemma 7.1].

Lemma B.1. If fYngn2N is a sequence of nonnegative numbers satisfying

YnC1 � c bn Y 1Cˇ
n ; Y1 � c�

1
ˇ b
�
ˇC1

ˇ2 for some c; ˇ > 0; b > 1;

then limn!C1 Yn D 0.

The next lemma is a Fubini-type result on the convergence of Sobolev functions. We denote by H1 the
one-dimensional Hausdorff measure.

Lemma B.2. Let 0 < � < 1 and 1 � p <1. Let BR.x0/ � R2 be the disc centered at x0 with radius
R> 0 and let fungn2N �W �;p.BR.x0// be a sequence strongly converging to 0, i.e., such that

lim
n!1

�Z
BR.x0/

junj
p dxC

“
BR.x0/�BR.x0/

jun.x/�un.y/j
p

jx�yj2C�p
dx dy

�
D 0:

Then there exists a subsequence funi
gi2N such that for almost every r 2 Œ0;R�, funi

gi2N strongly converges
to 0 in W �;p.@Br .x0//; i.e.,

lim
i!1

�Z
@Br .x0/

juni
j
p dH1

C

“
@Br .x0/�@Br .x0/

juni
.x/�uni

.y/jp

jx�yj1C�p
dH1.x/ dH1.y/

�
D 0:

Proof. Let us consider the convergence of the double integral, since the convergence of the Lp norm is
similar and simpler to prove. Without loss of generality, we can assume x0 D 0. Then we omit indication
of the center of the ball. We use polar coordinates x D % ei #. We need to show that up to a subsequence,
for almost every % 2 Œ0;R� we have

lim
n!1

Œun�
p

W �;p.@B%/
D lim

n!1
%1��p

“
Œ0;2���Œ0;2��

jun.% ei #/�un.% ei !/jp

jei # � ei ! j1C�p
d# d! D 0: (B-1)

For every u 2W �;p.R2/ and " > 0, we introduce

W".u/ WD

Z 1
"

“
Œ0;2���Œ0;2��

ju.% ei #/�u.% ei !/jp

jei # � ei ! j1C�p
d# d!

% d%

%1C�p
:

We claim that

W".u/�
C

"
Œu�

p

W �;p.R2/
D

C

"

“
R2�R2

ju.x/�u.y/jp

jx�yj2C�p
dx dy (B-2)
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for some constant C D C.p; �/ > 0. Let us assume (B-2) for a moment and explain how to conclude: we
can extend fungn2N to a sequence f Qungn2N �W �;p.R2/ such that

Qun D un on BR and Œ Qun�
p

W �;p.R2/
� C Œun�

p

W �;p.BR/
I

see [Adams 1975, Lemma 7.45]. The latter and (B-2) imply that

lim
n!1

W". Qun/D 0 for every " > 0:

By the definition of W", this means that the sequence of functions

fn.%/D
%

%1C�p

Z
Œ0;2���Œ0;2��

jun.% ei #/�un.% ei !/jp

jei # � ei ! j1C�p
d# d!

converges to 0 in L1..";R//. Hence, there exists a subsequence ffni
gi2N which converges almost

everywhere to 0 on .";R/. By taking a sequence f"kgk2N converging to 0 and repeating the above
argument for each "k , a diagonal argument leads to the existence of a subsequence, still denoted by
ffni
gi2N, which converges almost everywhere to 0 on .0;R/. Equivalently, funi

gi2N satisfies (B-1) for
almost every % 2 Œ0;R�.

Let us now show (B-2). The proof is similar to that of [Bethuel and Demengel 1995, Lemma A.4]. For
%� ", t � 0 and #; ! 2 Œ0; 2�� we haveˇ̌

u.% ei #/�u.% ei !/
ˇ̌p
� C

ˇ̌
u.% ei #/�u..%C t/ ei !C#

2 /
ˇ̌p
CC

ˇ̌
u..%C t/ ei !C#

2 /�u.% ei !/
ˇ̌p
;

and (for # 6D !)

%��p�1
jei #
� ei !

j
��p�1

D .1C �p/

Z 1
0

Œt C % jei #
� ei !

j ���p�2 dt:

Thus from the definition of W".u/, we obtain with simple manipulations

W".u/� C

Z 1
0

Z 1
"

Z
Œ0;2���Œ0;2��

ju.% ei #/�u..%C t/ ei #C!
2 /jp

.t C % jei # � ei ! j/2C�p
% d# d! d% dt:

Observe that ˇ̌
% ei #

� .%C t/ ei #C!
2

ˇ̌
� t C %

ˇ̌
ei #
� ei #C!

2

ˇ̌
I

hence,

W".u/� C

Z 1
0

Z 1
"

Z
Œ0;2���Œ0;2��

ju.% ei #/�u..%C t/ ei #C!
2 /jp

j% ei # � .%C t/ ei #C!
2 j2C�p

% d# d! d% dt

� 2
C

"

Z
Œ0;1/�Œ0;1/

Z
Œ0;2���Œ0;2��

ju.% ei #/�u.s ei /jp

j% ei # � s ei j2C�p
% s d# d d% ds;

which completes the proof of (B-2). �

The following result is a general fact for bounded Sobolev functions in the plane. This is exactly the
same as [Santambrogio and Vespri 2010, Lemma 5]; we reproduce the proof for the reader’s convenience.
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Lemma B.3. Let q > 1 and let ' 2W 1;q.BR/\L1.BR/ be a function such that 0 � ' �M. Let us
suppose that there exists 0<  < 1 such thatˇ̌˚

' > 3
4

M
	
\BR

ˇ̌
�  jBRj:

If we set ı D
q

2

, one of the following two alternatives occur:

(A1) either Z
BRnBıR

jr'jq dx �
R2�q

8q � 4 � .2�/q�1
 M q

I

(A2) or the subset of ŒıR;R� given by˚
s 2 ŒıR;R� W ' � 5

8
M; H1-a.e. on @Bs

	
has positive measure.

Proof. We first observe that thanks to the hypothesis we haveˇ̌˚
' > 3

4
M
	
\ .BR nBıR/

ˇ̌
D
ˇ̌˚
' > 3

4
M
	
\BR

ˇ̌
�
ˇ̌˚
' > 3

4
M
	
\BıR

ˇ̌
�  jBRj � jBıRj

D . � ı2/ jBRj:

By the definition of ı, we get ˇ̌˚
' > 3

4
M
	
\ .BR nBıR/

ˇ̌
�

1
2
 jBRj:

We define the set
X D

˚
s 2 ŒıR;R� WH1

�˚
x 2 @Bs W '.x/�

3
4

M
	�
> 0

	
:

Then

1
2
 jBRj �

ˇ̌˚
' > 3

4
M
	
\ .BRnBıR/

ˇ̌
D

Z
X

Z
@Bs

1f'>3=4 M g dH1 ds � 2�

Z
X

s ds � 2� R jX j:

This in turn implies that
jX j � 1

4
 R:

Let us now suppose that alternative (A2) does not occur. This implies that

H1
�˚

x 2 @Bs W '.x/ <
5
8

M
	�
> 0 for a.e. s 2 ŒıR;R�:

Thus for almost every s 2 X , we have

osc
@Bs

' � 3
4

M � 5
8

M D 1
8
M:

By observing that @Bs is one-dimensional, we obtain

1
8
M � osc

@Bs

' �

Z
@Bs

jr�'j dH1
� .2� R/1�

1
q

�Z
@Bs

jr�'j
q dH1

�1
q

;
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where r� denotes the tangential gradient (by using polar coordinates x D % ei #, this is nothing but the
#-derivative). By taking the power q in the previous estimate and integrating in s 2 X , we getZ

BRnBıR

jr'jq dx �

Z
X

Z
@Bs

jr'jq dH1
�
�

1
8
M
�q 1

.2� R/q�1
jX j:

Using the lower-bound on jX j yields alternative (A1). �
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APPLICATIONS OF SMALL-SCALE QUANTUM ERGODICITY IN NODAL SETS

HAMID HEZARI

The goal of this article is to draw new applications of small-scale quantum ergodicity in nodal sets
of eigenfunctions. We show that if quantum ergodicity holds on balls of shrinking radius r.�/! 0

then one can achieve improvements on the recent upper bounds of Logunov (2016) and Logunov and
Malinnikova (2016) on the size of nodal sets, according to a certain power of r.�/. We also show that
the doubling estimates and the order-of-vanishing results of Donnelly and Fefferman (1988, 1990) can
be improved. Due to results of Han (2015) and Hezari and Rivière (2016), small-scale QE holds on
negatively curved manifolds at logarithmically shrinking rates, and thus we get logarithmic improvements
on such manifolds for the above measurements of eigenfunctions. We also get o.1/ improvements for
manifolds with ergodic geodesic flows. Our results work for a full density subsequence of any given
orthonormal basis of eigenfunctions.

1. Introduction

Let .X; g/ be a smooth compact connected boundaryless Riemannian manifold of dimension n. Sup-
pose �g is the positive Laplace–Beltrami operator on .X; g/ and  � is a sequence of L2 normalized
eigenfunctions of �g with eigenvalues �. It was shown in [Hezari and Rivière 2016] that if for some
shrinking radius r D r.�/! 0 and for all geodesic balls Br.x/ one has K1rn � k �k2Br .x/ �K2r

n, then
one gets improved upper bounds1 of the form .r2�/ı.p/ on the Lp norms of  �, where ı.p/ is Sogge’s
exponent. The purpose of this article is to prove more applications of small-scale L2 equidistribution
of eigenfunctions. We will show that upper bounds on the size of nodal sets, as well as the order of
vanishing of eigenfunctions, can be improved by certain powers of r . Since by [Hezari and Rivière
2016]2 such equidistribution properties hold on negatively curved manifolds3 with r D .log�/�� for
any � 2

�
0; 1
2n

�
, we obtain improvements of the results of [Logunov 2016a; Logunov and Malinnikova

2016; Donnelly and Fefferman 1988; 1990a; Dong 1992]. We also get slight improvements for quantum
ergodic eigenfunctions because roughly speaking they equidistribute on balls of radius r D o.1/.

In the following Hn�1.Z �/ means the .n�1/-dimensional Hausdorff measure of the nodal set of  �,
denoted by Z � , and �x. �/ means the order of vanishing of  � at a point x in X.

We recall that for n � 3, a recent result of [Logunov 2016a] gives a polynomial upper bound for
Hn�1.Z �/ of the form �˛ for some ˛ > 1

2
depending only on n, and for nD 2 another recent result

MSC2010: 35P20.
Keywords: eigenfunctions, nodal sets, doubling estimates, order of vanishing, quantum ergodicity.

1It was shown by Sogge [2016] that k �k2Br .x/ �K2r
n suffices.

2In [Han 2015], this is proved for � 2
�
0; 13n

�
.

3For a full density subsequence of any given orthonormal basis of eigenfunctions.
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of [Logunov and Malinnikova 2016] shows upper bounds of the form �
3
4
�ˇ for some small universal

ˇ 2
�
0; 1
4

�
. Our first result is the following refinement of the results of the above-mentioned papers and

also the order-of-vanishing results of [Donnelly and Fefferman 1988; 1990a; Dong 1992].

Theorem 1.1. Let .X; g/ be a boundaryless compact Riemannian manifold of dimension n with volume
measure dvg , and  � be an eigenfunction of �g of eigenvalue � > 0. Then there exists r0.g/ > 0 such
that if ��

1
2 < r0.g/, and if for some r 2 Œ��

1
2 ; r0.g/� and for all geodesic balls fBr.x/gx2X we have

K1r
n
�

Z
Br .x/

j �j
2 dvg �K2r

n (1-1)

for some positive constants K1 and K2 independent of x, then:
For n� 3,

Hn�1.Z �/� c1r
2˛�1�˛; (1-2)

�x. �/� c2r
p
�: (1-3)

For nD 2,
H1.Z �/� c3r

1
2
�2ˇ�

3
4
�ˇ; (1-4)X

z2Z �\Br1=2��1=4 .x/

.�z. �/� 1/� c4r
p
�: (1-5)

Here, ˛ D ˛.n/ > 1
2

and ˇ 2
�
0; 1
4

�
are the universal exponents from [Logunov 2016a; Logunov and

Malinnikova 2016], and the constants c1; c2; c3; c4 are positive and depend only on .X; g/, K1, and K2,
and are independent of �, r , and x. Note that the quantity on the left-hand side of (1-5) counts the number
of singular points

S D f �Djr �jD0g

in geodesic balls of radius r
1
2��

1
4 .

Combining this with our result [Hezari and Rivière 2016], which states that on negatively curved
manifolds (1-1) holds with r D .log�/�� for any � 2

�
0; 1
2n

�
, the following unconditional results on such

manifolds are immediate.

Theorem 1.2. Let .X; g/ be a boundaryless compact connected smooth Riemannian manifold of dimen-
sion n, with negative sectional curvatures. Let f �j gj2N be any orthonormal basis of L2.X/ consisting
of eigenfunctions of �g with eigenvalues f�j gj2N. Let � > 0 be arbitrary. Then there exists S �N of full
density4 such that for j 2 S ,

if n� 3; Hn�1.Z �j /� c1.log�j /
1�2˛
2n
C��˛j ;

if nD 2; H1.Z �j /� c3.log�j /�
1
8
C
ˇ
2
C��

3
4
�ˇ

j :

In addition, for all dimensions

�x. �j /� c2.log�j /�
1
2n
C�
p
�j :

4It means that limN!1 1
N

card.S \ Œ1; N �/D 1.
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We repeat that here ˛ D ˛.n/ > 1
2

and ˇ 2
�
0; 1
4

�
are the universal exponents from [Logunov 2016a;

Logunov and Malinnikova 2016], and c1; c2; c3 depend only on .X; g/ and �.
We will also prove the following o.1/ improvements for quantum ergodic sequences of eigenfunctions.

In fact equidistribution on X (instead of the phase space S�X ) suffices.

Theorem 1.3. Let .X; g/ be a boundaryless compact connected smooth Riemannian manifold of dimen-
sion n. Let f �j gj2S be a sequence of eigenfunctions of �g with eigenvalues f�j gj2S such that for all
r 2

�
0; 1
2

inj.g/
�

and all x 2XZ
Br .x/

j �j j
2
!

Volg.Br.x//
Volg.X/

; �j
j2S
��!1: (1-6)

Then, along this sequence, for n� 3

Hn�1.Z �j /D o.�
˛
j /;

and for nD 2

H1.Z �j /D o.�
3
4
�ˇ

j /:

Also in all dimensions

�x. �j /D o.
p
�j / .uniformly in x/:

In particular the above theorem holds for manifolds with ergodic geodesic flows by the quantum
ergodicity theorem of Shnirel’man [1974], Colin de Verdière [1985] and Zelditch [1987]. Hence given
any orthonormal basis of eigenfunctions, on such a manifold one can pass to a full density subsequence
where (1-6), whence Theorem 1.3 holds.

Remark 1.4. We point out that the equidistribution property (1-6), which is weaker than quantum
ergodicity, holds for some nonergodic manifolds such as the flat torus and the rational polygons; see
[Marklof and Rudnick 2012; Rivière 2013; Taylor 2015].

Main idea. The major idea in proving our upper bounds is to lower the doubling index

N.Bs.x// WD log
�supB2s.x/ j �j

2

supBs.x/ j �j
2

�
under the assumption

K1r
n
�

Z
Br .x/

j j j
2
�K2r

n:

We recall that Donnelly and Fefferman [1988] showed that an eigenfunction  � of �g with eigenvalue �
satisfies

N.Bs.x//� c
p
�

for all s < s0, where s0 and c depend only on .X; g/. We will prove in Lemma 2.1 that

N.Bs.x//� c r
p
� (1-7)
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for all s < 10r , where c depends only on .X; g/. We then apply this modified growth estimate to the
proofs of [Logunov 2016a; Logunov and Malinnikova 2016; Donnelly and Fefferman 1988; 1990a; Dong
1992] to obtain our improvements.

Remark 1.5. It is worth mentioning that in order to prove (1-2) of Theorem 1.1, we will need the improved
doubling estimates (1-7) to hold for all 0 < s < 10r and not just s comparable to r . This is because the
doubling exponent of a ball B (or a cube Q) as defined in [Logunov 2016a], see definition (2-12), is,
roughly speaking, the supremum of N.Bs.x// over all balls Bs.x/ contained in 2B (or 2Q respectively).
The main result of that paper (see Theorem 2.5) gives an upper bound on the nodal sets in terms
of this maximal doubling index. For the estimates (1-4) and (1-5) we need the validity of (1-7) for
0 < s < Cr

1
2��

1
4 .

Background on the size of nodal sets. For any smooth compact connected Riemannian manifold .X; g/
of dimension n, Yau’s conjecture states that there exist constants c >0 andC >0 independent of � such that

c
p
��Hn�1.Z �/� C

p
�:

The conjecture was proved by Donnelly and Fefferman [1988] in the real analytic case. In dimension 2 and
the C1 case, Brüning [1978] and Yau proved the lower bound c

p
�. Until the recent result of Logunov

and Malinnikova [2016] the best upper bound in dimension 2 was C�
3
4 , which was proved independently

by Donnelly and Fefferman [1990a] and Dong [1992]. The result of Logunov and Malinnikova [2016]
gives C�

3
4
�ˇ for some small universal constant ˇ < 1

4
. In dimensions n� 3 until very recently, the best

lower bound was c�
3�n
4 , proved5 by Colding and Minicozzi [2011]. However, a recent breakthrough

result of Logunov [2016b] proves the lower bound c
p
� for all n� 3. Also another result of Logunov

[2016a] shows a polynomial upper bound C�˛ for some ˛ > 1
2

which depends only on n. The best upper
bound before this was the exponential bound ec

p
� log� of Hardt and Simon [1989].

Background on small-scale quantum ergodicity. First, we recall that the quantum ergodicity result of
Shnirel’man [1974], Colin de Verdière [1985] and Zelditch [1987] implies in particular that if the geodesic
flow of a smooth compact Riemannian manifold without boundary is ergodic then for any orthonormal
basis f �j g

1
jD1 consisting of the eigenfunctions of �g , there exists a full density subset S �N such that

for any r < inj.g/, independent of �j , one has

k �j k
2
L2.Br .x//

�
Volg.Br.x//

Volg.X/
; as �j !1; j 2 S: (1-8)

The analogous result on manifolds with piecewise smooth boundary and with ergodic billiard flows was
proved by Zelditch and Zworski [1996].

The small-scale equidistribution problem asks whether (1-8) holds for r dependent on �j . A quantitative
QE result of Luo and Sarnak [1995] shows that the Hecke eigenfunctions on the modular surface satisfy

5Different proofs were given later by [Hezari and Wang 2012; Hezari and Sogge 2012; Sogge and Zelditch 2012] based
on the earlier work [Sogge and Zelditch 2011], and by [Steinerberger 2014] using heat equation techniques. Also logarithmic
improvements of the form �

3�n
4 .log�/˛ were given in [Hezari and Rivière 2016] on negatively curved manifolds and in [Blair

and Sogge 2015] on nonpositively curved manifolds.
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this property along a density one subsequence for r D ��� for some small � > 0. Also, under the
Generalized Riemann Hypothesis, Young [2016] proved that small-scale equidistribution holds for Hecke
eigenfunctions for r D ��

1
4
C�.

This problem was studied in [Han 2015; Hezari and Rivière 2016] for the eigenfunctions of negatively
curved manifolds. To be precise, it was proved that on compact negatively curved manifolds without
boundary, for any � > 0 and any orthonormal basis f �j g

1
jD1 of L2.X/ consisting of the eigenfunctions

of �g , there exists a subset S � N of full density such that for all x 2X and j 2 S ,

K1r
n
� k �j k

2
L2.Br .x//

�K2r
n; with r D .log�j /�

1
2n
C�; (1-9)

for some positive constants K1; K2 which depend only on .X; g/ and �. The same result was proved in
[Han 2015] for r D .log�j /�

1
3n
C�.

We also point out that although eigenfunctions on the flat torus Rn=Zn are not quantum ergodic, they
equidistribute on the configuration space Rn=Zn; see [Marklof and Rudnick 2012], and also [Rivière
2013; Taylor 2015] for later proofs. So one can investigate the small-scale equidistribution property
for toral eigenfunctions. It was proved in [Hezari and Rivière 2017] that a commensurability of L2

masses such as (1-9) is valid for a full density subsequence with r D ��
1

7nC4 . Lester and Rudnick [2017]
improved this rate of shrinking to r D ��

1
2n�2

C�, and in fact they proved that the stronger statement (1-8)
holds. They also showed that their results are almost6 sharp. The case of interest is nD 2, which gives
r D ��

1
2
C�. A natural conjecture is that this should be the optimal rate of shrinking on negatively curved

manifolds. A recent result of [Han 2017] proves that random eigenbases on the torus enjoy small-scale QE
for r D ��

n�2
4n
C�, which is better than [Lester and Rudnick 2017] for n� 5.

Some remarks.

Remark 1.6. In our proof we have used both local and global harmonic analysis; see [Zelditch 2008]
for background. The local analysis is used in [Logunov 2016a; Logunov and Malinnikova 2016], and
the global analysis is used in [Hezari and Rivière 2016] to obtain equidistribution on small balls. We
emphasize that our improvements of [Logunov 2016a; Logunov and Malinnikova 2016] are robust, in
the sense that any upper bounds of the form �˛ for ˛ > 1

2
that result from a purely local analysis of

eigenfunctions can be improved using our combined method.

Remark 1.7. The most important assumption of Theorem 1.1 is the lower bound K1rn �
R
Br .x/

j �j
2

and the upper bound in (1-1) can be discarded at the expense of messy estimates in Theorem 1.1. In fact
using Sogge’s “trivial local L2 estimates” [2016], which assert that one always has

R
Br .x/

j �j
2 �K2r ,

we can still prove modified doubling estimates of the form

sup
B2s.x/

j �j
2
� r�becr

p
� sup
Bs.x/

j �j
2 for some b D b.n/ > 0 and all s < 10r:

We can use this inequality and obtain estimates similar to those in Theorem 1.1; however we have not done
so for the sake of more polished estimates. Another reason that we have not discarded the assumption

6They showed that the equidistribution property fails for r D ��
1

2n�2�� for a positive density subset of some orthonormal
basis.
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Br .x/

j �j
2 �K2r

n is that all the examples (such as QE eigenfunctions) for which we know the lower
bounds are satisfied, also satisfy the upper bounds in (1-1).

Remark 1.8. As we discussed in the previous section, a result of [Luo and Sarnak 1995] implies that
small-scale QE holds for a full density subsequence of Hecke eigenfunctions on the modular surface for
balls of radius r D ��� for some explicitly calculable � > 0. Hence using (1-3), we get upper bounds of
the form �

1
2
�� on the order of vanishing of these eigenfunctions. We could not find any arithmetic results

in the literature discussing improvements on the upper bound
p
� of Donnelly and Fefferman. Of course

a natural conjecture to impose is that for Hecke eigenfunctions �x. �/ � c��. Although the available
graphs of nodal lines of Hecke eigenfunctions with high energy do not show any singular points, i.e.,
places where nodal lines intersect each other, there are many almost-intersecting nodal lines.

Remark 1.9. By our discussion in the previous section on the work of [Lester and Rudnick 2017], and
using (1-3), we get that for a full density subsequence of toral eigenfunctions on the 2-torus, we have
�x. �/ � c�

�. However, it is proved in [Bourgain and Rudnick 2011] that �x. �/ � c�
c

log log� for all
eigenfunctions on T2.

Remark 1.10. Theorem 1.1 is local in nature, meaning that if the eigenfunctions satisfy (1-1) for balls
centered on an open set, then we get the upper bounds in this theorem on that open set. In particular
we get all the upper bounds in Theorem 1.3 for eigenfunctions on ergodic billiards (and also rational
polygons) as long as we stay a positive distance away from the boundary. One would expect that the
results of [Logunov 2016a; Logunov and Malinnikova 2016] can be extended to the eigenfunctions of
the Laplacian on manifolds with boundary (with Dirichlet or Neumann boundary conditions) using the
method of [Donnelly and Fefferman 1990b].

2. Proofs of upper bounds for nodal sets and order of vanishing

The following lemma is the main ingredient of the proofs. It gives improved growth estimates for
eigenfunctions under our L2 assumption on small balls.

Lemma 2.1. Let .X; g/ be a smooth Riemannian manifold, p 2X a fixed point, and R > 0 a fixed radius
so that the geodesic ball B2R.p/ is embedded. Then there exists r0.g/ such that the following statement
holds:

Suppose ��
1
2 � r0.g/ and  � is a smooth function such that �g � D � � on B2R.p/. If for some

r 2 Œ��
1
2 ; r0.g/� and all x 2 BR.p/

K1r
n
�

Z
Br .x/

j �j
2
�K2r

n (2-1)

holds for some positive constantsK1 andK2 independent of x, then one has the refined doubling estimates

for ı 2 .0; 10r/; x 2 BR
2
.p/;

Z
B2ı.x/

j �j
2
� ec r

p
�

Z
Bı.x/

j �j
2; (2-2)

for ı 2 .0; 10r/; x 2 BR
2
.p/; sup

B2ı.x/

j �j
2
� ec r

p
� sup
Bı.x/

j �j
2: (2-3)
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We also have

for ı 2
�
0; 1
2
r
�
; x 2 BR

2
.p/;

1

ın

Z
Bı.x/

j �j
2
�

�
r

ı

��c rp�
; (2-4)

for ı 2
�
0; 1
2
r
�
; x 2 BR

2
.p/; sup

Bı.x/

j �j
2
�

�
r

ı

��c rp�
: (2-5)

Here c is positive and is uniform in x, r , ı, and �, but depends on K1, K2, and .B2R.p/; g/.

Proof. We will give two proofs for (2-3). All other statements will follow from this as we will show. The
first proof of (2-3) follows from a rescaling argument applied to the following theorem of Donnelly and
Fefferman, which is a purely local result based on Carleman estimates. The second proof relies on a
theorem of [Mangoubi 2013].

Theorem 2.2 [Donnelly and Fefferman 1988, Proposition 3.10(ii)]. Let . zX; Qg/ be a smooth Riemannian
manifold, p 2 zX a fixed point, and zR>0 a fixed radius such that the Qg-geodesic ball zB

2 zR
.p/ is embedded.

Let  Q� be a smooth function such that for some Q�� 1 we have� Qg Q�D
Q� Q� on zB

2 zR
.p/. Then there exists

a suitably small h0. Qg/ > 0 such that for all h� h0. Qg/, ı < 1
2
h, and x 2 zB zR

2

.p/,

sup
zB2ı.x/

j Q�j
2
� e�1

p
Q�

� sup zBh.x/ j Q�j
2

sup zBh=5.x/n zBh=10.x/ j Q�j
2

��2
sup
zBı.x/

j Q�j
2: (2-6)

The constant h0. Qg/ is controlled by zR and the reciprocal of the square root of sup zB
2 zR
.p/
jSec. Qg/j, and

the constants �1 and �2 are controlled by sup zB
2 zR
.p/
jSec. Qg/j.

To prove our lemma, we define . zX; Qg/D .X; 1
r2
g/, and zRD 1

r
R. Then the equation

�g � D � � on B2R.p/

becomes
� Qg Q� D

Q� Q� on zB
2 zR
.p/;

with
Q�D r2� and  Q� D  �:

We then note that by [Donnelly and Fefferman 1988], although not explicitly stated, we have

h0. Qg/D C min
�
1
2
zR;
�

sup
zB2R.p/

jSec. Qg/j
�� 1

2
�
D
C

r
min

�
1
2
R;
�

sup
B2R.p/

jSec.g/j
�� 1

2
�

for some suitably small C that is uniform in r . Hence if we set

r0.g/�
1
20
C min

�
1
2
R;
�

sup
B2R.p/

jSec.g/j
�� 1

2
�

then for all r � r0.g/ we have h0. Qg/� 20, and therefore we can choose hD 20. As a result, by (2-6)

for ı 2 .0; 10/; x 2 zB zR
2

.p/; sup
zB2ı.x/

j Q�j
2
� e�1

p
Q�

� sup zB20.x/ j Q�j
2

sup zB4.x/n zB2.x/ j Q�j
2

��2
sup
zBı.x/

j Q�j
2:
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Writing this inequality with respect to the metric g we get

for ı 2 .0; 10r/; x 2 BR
2
.p/; sup

B2ı.x/

j �j
2
� e�1 r

p
�

� supB20r .x/ j �j
2

supB4r .x/nB2r .x/ j �j
2

��2
sup
Bı.x/

j �j
2: (2-7)

Remark 2.3. We emphasize that since jSec. Qg/j D r2jSec.g/j, and since r is bounded by r0.g/, the
constants �1 and �2 can be chosen independently from r .

We now bound the expression in parenthesis using our local L2 assumptions (2-1). First we find y
such that

Br.y/� B4r.x/nB2r.x/:

Since by assumption
R
Br .y/

j j j
2 �K1r

n, we must have

sup
B4r .x/nB2r .x/

j �j
2
� sup
Br .y/

j �j
2
�

rn

Vol.Br.y//
K1:

By making r0.g/ sufficiently smaller, we obtain that for any r � r0.g/ which satisfies (2-1), we have

sup
B4r .x/nB2r .x/

j �j
2
� aK1 (2-8)

for some constant a which is uniform in x 2 BR
2
.p/, r 2 .0; r0.g//, and �. For the numerator in the

parenthesis we claim that7

sup
B20r .x/

j �j
2
� bK2.r

p
�/n (2-9)

for some constant b which is uniform in x 2 BR
2
.p/, r 2 .0; r0.g// and �. To prove (2-9) we cover

B20r.x/ using balls of radius r
2

. It is therefore enough to show that

sup
Br=2.y/

j �j
2
� b�

n
2 sup
z2Br=2.y/

Z
Br .z/

j �j
2 (2-10)

for some b that is uniform in y, r , and �. This estimate, however, follows from standard elliptic estimates,
see for example [Gilbarg and Trudinger 1998, Theorem 8.17 and Corollary 9.21], which assert that there
exists a0 < 1 suitably small such that for z 2 BR.p/ we have

for all s 2 .0; a0��
1
2 �; sup

Bs=2.z/

j �j
2
� b0s

�n

Z
Bs.z/

j �j
2 (2-11)

for some b0 which is uniform in �, z, and s. Since ��
1
2 � r , we have Ba0��1=2.z/�Br.z/ and hence to

get (2-10) we just need to observe that

sup
Br=2.y/

j �j
2
� sup
z2Br=2.y/

sup
B
.a0=2/�

�1=2 .z/

j �j
2
� b�

n
2 sup
z2Br=2.y/

Z
Br .z/

j �j
2;

7In fact when .X; g/ is a closed manifold the better estimate bK2.r
p
�/n�1 holds using Sogge’s local L1 estimates [2016],

but we do not need this better estimate.
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with b D b0a�n0 . Now we apply (2-8) and (2-9) to (2-7) to achieve

for ı 2 .0; 10r/; x 2 BR
2
.p/; sup

B2ı.x/

j �j
2
� de�1 r

p
�.r
p
�/n�2 sup

Bı.x/

j �j
2

for some uniform constant d which depends on K1 and K2. We note since r
p
�� 1, if we choose M to

be an integer larger than �1 and n�2 then

.r
p
�/n�2e�1 r

p
�
�MŠ e2Mr

p
�:

Finally by choosing
c �max.log d;M logM; 2M/;

we get (2-3).
To prove (2-2) we use (2-3). It is enough to show thatR

B2ı.x/
j �j

2R
Bı.x/

j �j
2
�K.ı

p
�/n

supB2ı.x/ j �j
2

supBı=2.x/ j �j
2
;

because .ı
p
�/n � .10r

p
�/n � ecr

p
� for some appropriate c, as we found in the above argument. The

above comparison of ratios follows from the trivial estimateZ
B2ı.x/

j �j
2
�
1

a
.2ı/n sup

B2ı.x/

j �j
2

applied to the numerator, and the estimateZ
Bı.x/

j �j
2
�
1

b0

�
min

�
��

1
2 ; 1
4
ı
��n sup

Bı=2.x/

j �j
2

applied to the denominator. The last estimate follows from the elliptic estimate (2-11) by setting
s Dmin

�
a0�
� 1
2 ; 1
4
ı
�

and writing

sup
Bı=2.x/

j �j
2
� sup
z2Bı=2.x/

sup
Bs=2.z/

j �j
2
� b0s

�n sup
z2Bı=2.x/

Z
Bs.z/

j �j
2
� b0s

�n

Z
Bı.x/

j �j
2:

The proofs of (2-4) and (2-5) are obtained by iterations of inequalities (2-2) and (2-3). Since they
are very similar we only give the proof of (2-5). Fix ı � r

2
and let m be the greatest integer such that

2m�1ı � r . Then if we write inequalities (2-3) for ı; 2ı; 4ı; : : : ; 2m�1ı and multiply them all we get

sup
Bı.x/

j �j
2
� e�mcr

p
� sup
B2mı.x/

j �j
2:

Because of the choice of m, we have 2mı > r . Hence

sup
Bı.x/

j �j
2
� e�mcr

p
� sup
Br .x/

j �j
2
�

e�mcr
p
�

Vol.Br.x//

Z
Br .x/

j �j
2
� aK2e

�mcr
p
�:

Since m� log
�
r
ı

�
and r

p
�� 1, by selecting c slightly larger the lower bound (2-5) follows. �
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Second proof of improved L1-growth estimates (2-3). We recall the following result of [Mangoubi
2013], which is similar to estimate (2-7).

Theorem 2.4 [Mangoubi 2013, Theorem 3.2]. Let .X; g/ be a smooth Riemannian manifold, p 2X , and
R > 0 so that the geodesic ball B2R.p/ is embedded, and set S D supB2R.p/ jSec.g/j. Suppose  � is a
smooth function such that�g �D� � onB2R.p/ for some �� 0. Then for all ı� s�min

�
CS�

1
2 ; 1
6
R
�
,

and all x 2 BR
2
.p/

sup
B3ı.x/

j �j
2
� c0e

c1 s
p
�

�supB3s.x/ j �j
2

supBs.x/ j �j
2

�1Cc2ı2S
sup
B2ı.x/

j �j
2;

where C , c1 and c2 are positive constants which depend only on R, and c0 depends on bounds on .g�1/ij ,
its derivatives and its ellipticity constant on the ball B2R.p/.

Using this theorem twice, we get for ı � s �min
�
CS�

1
2 ; 1
6
R
�

supB2ı.x/ j �j
2

supBı.x/ j �j
2
�

supB.9=4/ı.x/ j �j
2

supB.3=2/ı.x/ j �j
2

supB.3=2/ı.x/ j �j
2

supBı.x/ j �j
2
� c20e

2c1 s
p
�

�supB3s.x/ j �j
2

supBs.x/ j �j
2

�2Cc02ı2S
for a new constant c02. Now we choose r0.g/ � 1

10
min

�
CS�

1
2 ; 1
6
R
�
, we put s D 10r , and argue as we

did following inequality (2-7).

Proof of (1-3)W upper bound on the order of vanishing. Let us show that the upper bound (1-3) on the
order of vanishing �x. �/ follows from the lower bound (2-5). Suppose  � vanishes at x to order M.
Then there exists ı0 > 0 such that for all ı < ı0

C �;ı0ı
M
� sup
Bı.x/

j �j
2:

Therefore using (2-5), for all 0 < ı <min
�
ı0;

1
2
r
�

C �;ı0ı
M
�

�
ı

r

�crp�
:

Dividing by ıM and letting ı! 0 we see that we must have M � cr
p
�.

Proof of (1-2)W upper bounds on the size of nodal sets for n� 3. The main tool is the following result.

Theorem 2.5 [Logunov 2016a, Theorem 6.1]. Let . zX; Qg/ be a smooth Riemannian manifold of dimen-
sion d , Qp 2 zX , and zR > 0 so that the geodesic ball B

2 zR
. Qp/ is embedded. Suppose H is a harmonic

function on B
2 zR
. Qp/; that is, � QgH D 0 on B

2 zR
. Qp/. Then there exists R0 D R0.B2 zR. Qp/; g/ < zR such

that for any Euclidean8 cube zQ � BR0. Qp/ one has

Hd�1
�
fH D 0g\ zQ

�
� � diam. zQ/d�1N.H; zQ/2˛

8It means that zQ is a cube in the chart associated to the geodesic normal coordinates at Qp.
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for some ˛ > 1
2

that is only dependent on d , and some � that depends only on .B
2 zR
. Qp/; g/. Here,

N.H; zQ/D sup
Bes .x/�2 zQ

log
�supBe2s.x/ jH j

2

supBes .x/ jH j
2

�
; (2-12)

where Bes .x/ stands for the Euclidean ball of radius s centered at x in the normal chart of B zR. Qp/.

To prove (1-2), we use our modified growth estimates (2-2) and the above theorem. We first cover
.X; g/ using geodesic balls fBr.xi /gxi2I such that each point in X is contained in C.X; g/ many of the
double balls fB2r.xi /gxi2I , where C.X; g/ is independent of r and depends only on the injectivity radius
of .X; g/ and a bound on the Ricci curvature of .X; g/. Such a thing is possible by the Bishop–Gromov
volume comparison theorem. For a proof see, for example, [Colding and Minicozzi 2011, Lemma 2].
It is then easy to see that such a covering has at most C0r�n open balls for some uniform constant
C0 D C0.X; g/. Next we estimate Hn�1.Z � \Br.p// for each p 2 I. To do this we define

zX DX �R; d D nC 1; Qg D product metric:

We shall also use Qx D .x; t/. We then put

H. Qx/D  �.x/e
t
p
�:

Then clearly � QgH D 0. We now cover the compact manifold X � Œ�1; 1� by finitely many balls
f zBj g1�j�M each of which satisfies the property of the ball zBR0 in Theorem 2.5. Let L0 be the Lebesgue
number of this finite cover and assume r � 1

2
L0. Also for each p 2X , let Qr.p/ be the Euclidean cube

in X of side lengths 2r centered at p. Then we observe that for some 1� j �M we have

zQr. Qp/ WDQr.p/� Œ�r; r�� zB2r. Qp/� zBL0. Qp/�
zBj ;

where Qp D .p; 0/. By applying Theorem 2.5 for the cube zQ. Qp/ in the ball zBj , we get that

Hn�1
�
f �D0g\Br.p/

�
�Hn�1

�
f �D0g\Qr.p/

�
D

1

2r
Hn
�
fHD0g\ zQr. Qp/

�
�
�

2r
.2r/nN.H; zQr. Qp//

2˛

D �0rn�1N.H; zQr. Qp//
2˛:

Now we use our doubling estimates to show that N.H; zQr. Qp//� c0r
p
� for some c0 that is uniform in

r , �, and p. We emphasize that our doubling estimates involve geodesic balls, but the definition of the
doubling index N in [Logunov 2016a] uses Euclidean balls Bes . Qx/ in a fixed normal chart of B

2 zR
. Qp/.

However, by choosing R0 sufficiently small we can make sure that

B s
2
. Qx/� Bes . Qx/� B 3s

2
. Qx/
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for all Qx 2BR0. Qp/ and all s < R0. As a result of this if we assume r < 1
20
R0, then using (2-3) four times

we get

N.H; zQr. Qp//D sup
Bes . Qx/� zQ2r . Qp/

log
�supBe2s. Qx/ jH. Qx/j

2

supBes . Qx/ jH. Qx/j
2

�

� sup
Bs=2. Qx/� zQ2r . Qp/

log
� supB3s. Qx/ jH. Qx/j

2

supBs=2. Qx/ jH. Qx/j
2

�

� sup
Bs=2.x/�Q2r .p/

log
�
e5s
p
�

supB3s.x/ j �.x/j
2

supBs=4.x/ j �.x/j
2

�
� c0r

p
�:

Finally

Hn�1.Z �/�
X
xi2I

Hn�1.Z � \Br.xi //� C0r
�n�0rn�1.c02r2�/˛ � c1r

2˛�1�˛

for some c1 that is uniform in r and �.

Proof of (1-4)W upper bounds on the size of nodal sets for surfaces. The main tool is the following local
result.

Theorem 2.6 [Logunov and Malinnikova 2016]. Let . zX; Qg/ be a smooth Riemannian manifold of dimen-
sion nD 2, p 2 zX a point, and zR > 0 a radius such that the Qg-geodesic ball zB

2 zR
.p/ is embedded. Let

 Q� be a smooth function such that for some Q�� 1 we have � Qg Q� D
Q� Q� on zB

2 zR
.p/. Suppose we also

know that there exists some s0 � 1
10
R such that for all s < s0 we have

sup zB2s.x/ j Q�j
2

sup zBs.x/ j Q�j
2
� C1e

c

p
Q�

for some constants c and C1 that are uniform for x 2 zB zR.p/. Then

H1
Qg

�
f Q�D0g\

zB zR
2

.p/
�
� C2 Q�

3
4
�ˇ ; (2-13)

where ˇ 2
�
0; 1
4

�
is a small universal constant and C2 is controlled by c, C1, and the Ck norm of . Qg�1/ij

on zB
2 zR
.p/ for some universal k.

To prove (1-4), suppose  � is an eigenfunction of �g on .X; g/. We cover X by geodesic balls
fB r

2
.xi /gxi2I of radius 1

2
r in such a way that the number of them is at most C0r�n. As we saw earlier,

this is always possible. We then estimate the size of the nodal set of  � in each B r
2
.x/ using Theorem 2.6.

To do this, we first define . zX; Qg/D
�
X; 1

r2
g
�
. Under such a rescaling, a ball of radius r scales to a ball of

radius 1. Hence we put zRD 1. Then the equation

��g � D � � on B2r.p/;

becomes

�� Qg � D Q� � on zB2.p/;
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with
Q�D r2� and  Q� D  �:

We can see that the doubling condition of Theorem 2.6 is valid because for all s � 1
10

, using (2-3)

sup zB2s.x/ j �j
2

sup zBs.x/ j �j
2
D

supB2sr .x/ j �j
2

supBsr .x/ j �j
2
� ecr

p
�
D ec
p
Q�

for some c that is uniform in Q�, s, and x, and is controlled by K1, K2, and the Ck norm of . Qg/ij on
zB2.p/ for some universal k. Therefore, by Theorem 2.6

H1g
�
f �D0g\B r

2
.p/

�
D rn�1H1

Qg

�
f Q�D0g\

zB 1
2
.p/

�
� C2r

n�1 Q�
3
4
�ˇ:

We emphasize that since . Qg/ij D r2gij , for small enough r0.g/ and all r < r0.h/, the Ck norm of . Qg/ij

on zB2.p/ is bounded by the Ck norm of .g/ij on B2r.p/. Hence C2 is independent of r , �, and p, and
is controlled only by K1 and K2 and .X; g/. Adding these up, we get

H1g
�
f �D0g

�
�

X
xi2I

H1g
�
f �D0g\B r

2
.xi /

�
� .C0r

�n/C2r
n�1 Q�

3
4
�ˇ
D c3r

1�2ˇ�
3
4
�ˇ:

Proof of (1-5)W number of singular points for surfaces. We shall use the results of [Dong 1992] instead
of [Donnelly and Fefferman 1990a], although both methods would work. Another goal is to simplify a
less detailed part of the argument of [Dong 1992]. Let us first recall some statements from that paper.

Theorem 2.7 [Dong 1992, Theorems 2.2 and 3.4]. Let .X; g/ be a smooth Riemannian manifold of
dimension 2, p 2X , and R > 0 so that the geodesic ball B2R.p/ is embedded. Suppose  � is a smooth
function such that �g � D � � on B2R.p/ for some �� 1. Then for all x 2 BR

2
.p/ and all s < 1

8
RX

z2Z �\Bs.x/

.�z. �/� 1/� ˛1
p
�C˛2s

2�: (2-14)

The constants ˛1; ˛2 are uniform in x, s, and �, and depend only on .B2R.p/; g/.

In fact by a glance at the proof of (2-14), see [Dong 1992, Theorem 3.4, pp. 502–503], one sees that
the following statement holds:X

z2Z �\Bs.x/

.�z. �/� 1/� ˛
0
1 log

�supB4s.x/ q�
supBs.x/ q�

�
C˛2s

2�; (2-15)

where
q� D jr �j

2
C
�

2
j �j

2

and ˛01 and ˛2 are some uniform constants.
The estimate (2-14) follows quickly from (2-15) if one knows that

for s 2
�
0; 1
8
R
�
; x 2 BR

2
.p/;

supB4s.x/ q�
supBs.x/ q�

� ˛3e
c2
p
�:
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The above growth estimate is proved in [Dong 1992] using the theory of frequency functions and
monotonicity formulas; see [Garofalo and Lin 1986; Han and Lin 2007; Lin 1991] for background.
However the proof of the monotonicity formula associated to q�, see [Dong 1992, pp. 498–499], is carried
out only for the Euclidean metric and the proof of the upper bound

p
� on the frequency function uses the

methods of [Lin 1991]. Here we give a simpler proof of this growth estimate which is based on gradient
estimates for solutions of elliptic equations. More precisely, we show that if doubling estimates (2-3)

for s 2 .0; 10r/; x 2 BR
2
.p/; sup

B2s.x/

j �j
2
� ec r

p
� sup
Bs.x/

j �j
2

hold, then
for s 2 .��

1
2 ; 2r/; x 2 BR

2
.p/;

supB4s.x/ q�
supBs.x/ q�

� ˛3e
c2r
p
� (2-16)

for uniform constants ˛3 and c2. For the proof we use an application of standard elliptic estimates to the
gradient of eigenfunctions, as performed in [Shi and Xu 2010].

Theorem 2.8 [Shi and Xu 2010, Theorem 1]. Let .X; g/ be a smooth connected compact Riemannian
manifold without boundary. Suppose  � is an eigenfunction of �g with eigenvalue �. Then

ˇ1
p
� sup
X

j �j � sup
X

jr �j � ˇ2
p
� sup
X

j �j

for some positive constants ˇ1 and ˇ2 independent of �.

In fact by looking at the proof of this theorem we notice that a stronger statement holds. More precisely,
one can see that, see [Shi and Xu 2010, p. 23, Fact (1) and equation (6)], for all s < 1

4
inj.g/

ˇ1
p
� sup
Bs.x/

j �j � sup
B
sC.0=�

1=2/
.x/

jr �j

sup
Bs.x/

jr �j � ˇ2
p
� sup
B
sC.1=�1=2/

.x/

j �j; (2-17)

where 0 is a positive constant that depends only on the Riemannian manifold .X; g/. In fact it is the
Brüning constant that guarantees that in every ball of radius 0=�

1
2 there is a zero of  �. However, to

prove (2-16) we only need the upper bound (2-17) for the gradient.9 Let s 2 .��
1
2 ; 2r/. Then since

4sC��
1
2 < 10r , using our doubling estimate (2-3) three times, we get

sup
B4s.x/

q� D sup
B4s.x/

�
jr �j

2
C
1
2
�j �j

2
�

� ˇ02� sup
B
4sC.1=�1=2/

.x/

j �j
2

� ˇ02�e
3cr
p
� sup
B
s=2C.1=8�1=2/

.x/

j �j
2

� 2ˇ02e
3cr
p
� sup
Bs.x/

q�:

This proves (2-16) with ˛3 D 2ˇ02 and c2 D 3c.

9This is proved easily by a rescaling argument and elliptic estimates such as Theorem 8.32 in [Gilbarg and Trudinger 1998].
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To finish the proof of our upper bounds for the number of singular points for surfaces, we apply (2-16)
to the inequality (2-15) and obtainX

z2Z �\Bs.x/

.�z. �/� 1/� ˛
00
3r
p
�C˛2s

2�:

We now put s D r
1
2��

1
4 . We underline that this choice of s is in fact in the allowable range .��

1
2 ; 2r/

because r � ��
1
2 . From this, (1-5) follows immediately.

Proof of Theorem 1.3W upper bounds for QE eigenfunctions. This theorem follows quickly from the
lemma below combined with Theorem 1.1.

Lemma 2.9. Let f j gj2S be a sequence of eigenfunctions of �g with eigenvalues f�j gj2S such that for
all r 2

�
0; 1
2

inj.g/
�

and all x 2XZ
Br .x/

j j j
2
!

Volg.Br.x//
Volg.X/

; �j
j2S
���!1: (2-18)

Then there exists r0.g/ such that for each r 2 .0; r0.g// there exists ƒr such that for �j �ƒr we have

K1r
n
�

Z
Br .x/

j j j
2
�K2r

n

uniformly for all x 2X. Here, K1 and K2 are independent of r , j , and x.

We point out that this lemma is obvious when x is fixed; however to obtain uniform L2 estimates we
need to use a covering argument as follows.

Proof. First we choose r0.g/ < 1
4

inj.g/ small enough so that for all r < r0.g/

a1r
n
� Vol.B r

2
.x// < Vol.B2r.x//� a2rn

for some positive a1 and a2 that are independent of r and x. Next, we cover .X; g/ using geodesic balls
fB r

2
.xi /gxi2I such that card .I/ is at most C0r�n, where C0 depends only on .X; g/. The existence of

such a covering was discussed in the proof of (1-2). For each xi 2 I, by using (2-18) twice, we can find
ƒi;r large enough so that for �j �ƒi;r

K1r
n
�

Z
Br=2.xi /

j j j
2
�

Z
B2r .xi /

j j j
2
�K2r

n;

with K1 D a1=.2Vol.X// and K2 D 2a2=Vol.X/. We claim that ƒr Dmaxi2Ifƒi;rg would do the job
for all x in X. So let x be in X and r be as above. Then x 2 B r

2
.xi / for some i 2 I and clearly one has

B r
2
.xi /� Br.x/� B2r.xi /. This and the above inequalities prove the lemma. �
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ON RANK-2 TODA SYSTEMS WITH ARBITRARY SINGULARITIES:
LOCAL MASS AND NEW ESTIMATES

CHANG-SHOU LIN, JUN-CHENG WEI, WEN YANG AND LEI ZHANG

For all rank-2 Toda systems with an arbitrary singular source, we use a unified approach to prove:

(1) The pair of local masses .�1; �2/ at each blowup point has the expression

�i D 2.Ni1�1CNi2�2CNi3/;

where Nij 2 Z, i D 1; 2, j D 1; 2; 3.
(2) At each vortex point pt if .˛1t ; ˛

2
t / are integers and �i … 4�N, then all the solutions of Toda systems

are uniformly bounded.
(3) If the blowup point q is a vortex point pt and ˛1t ; ˛

2
t and 1 are linearly independent over Q, then

uk.x/C 2 log jx�pt j � C:

The Harnack-type inequalities of 3 are important for studying the bubbling behavior near each blowup
point.

1. Introduction

Let .M; g/ be a Riemann surface without boundary and K D .kij /n�n be the Cartan matrix of a simple
Lie algebra of rank n. For example, for the Lie algebra sl.nC 1/ (the so-called An) we have

K D

0BBBBB@
2 �1 0 � � � 0

�1 2 �1 � � � 0
:::

:::

0 � � � �1 2 �1

0 � � � 0 �1 2

1CCCCCA : (1-1)

In this paper we consider the solution uD .u1; : : : ; un/ of the following system defined on M :

�gui C

nX
jD1

kij�j

�
hj e

ujR
M hj e

uj dVg
� 1

�
D

X
pt2S

4�˛it .ıpt
� 1/; (1-2)

where�g is the Laplace–Beltrami operator (��g � 0), S is a finite set onM, h1; : : : ; hn are positive and
smooth functions on M, ˛it >�1 is the strength of the Dirac mass ıpt

and �D .�1; : : : ; �n/ is a constant
vector with nonnegative components. Here for simplicity we just assume that the total area of M is 1.

MSC2010: primary 35J47; secondary 35J60, 35J55.
Keywords: SU.nC1/-Toda system, asymptotic analysis, a priori estimate, classification theorem, topological degree, blowup

solutions, Riemann–Hurwitz theorem.
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Obviously, (1-2) remains the same if ui is replaced by ui C ci for any constant ci . Thus we might
assume that each component of uD .u1; : : : ; un/ is in

ı

H 1.M/ WD
˚
v 2 L2.M/; rv 2 L2.M/ and

R
M v dVg D 0

	
:

Then (1-2) is the Euler–Lagrange equation for the following nonlinear functional J�.u/ in VH 1.M/:

J�.u/D
1

2

Z
M

nX
i;jD1

kijrguirguj dVg �

nX
iD1

�i log
Z
M

hie
ui dVg ;

where .kij /n�n DK�1.
It is hard to overestimate the importance of system (1-2), as it covers a large number of equations and

systems deeply rooted in geometry and physics. Even if (1-2) is reduced to a single equation with Dirac
sources, it is a mean-field equation that describes metrics with conic singularities. Finding metrics with
constant curvature with prescribed conic singularity is a classical problem in differential geometry and
extensive references can be found in [Bartolucci and Tarantello 2002; Battaglia and Malchiodi 2014;
Eremenko et al. 2014; Lin et al. 2012; 2015; Lin and Zhang 2010; 2013; 2016; Troyanov 1989; 1991;
Yang 1997]. Recently profound relations among mean-field equations, the classical Lamé equation,
hyperelliptic curves, modular forms and the Painlevé equation have been discovered and developed in
[Chai et al. 2015; Chen et al. 2016].

The general form of (1-2) has close ties with algebraic geometry and integrable systems. Here we just
briefly explain the relation between the sl.nC1/-Toda system and the holomorphic curves in projective
spaces: Let f be a holomorphic curve from a domain D of R2 into CPn. Then f can be lifted locally to
CnC1 and we use �.z/D Œ�0.z/; : : : ; �n.z/� to denote the lift and fk the k-th associated curve,

fk WD!G.k; nC 1/� CPn.ƒkCnC1/; fk.z/D Œ�.z/^ �
0.z/^ � � � ^ �.k�1/.z/�;

where �.j / is the j -th derivative of � with respect to z. Let

ƒk.z/D �.z/^ � � � ^ �
.k�1/.z/:

Then the well-known infinitesimal Plüker formula gives

@2

@z@ Nz
log kƒk.z/k

2
D
kƒk�1.z/k

2kƒkC1.z/k
2

kƒk.z/k
4

for k D 1; 2; : : : ; n; (1-3)

where we put kƒ0.z/k2D1 as convention and the norm k�k2Dh � ; � i is defined by the Fubini–Study metric
in CP.ƒkCnC1/. Here we observe that (1-3) holds only for kƒk.z/k>0, i.e., for all the unramified points
z 2M. Now we set kƒnC1.z/kD 1 by normalization (analytically extended at the ramification points) and

Uk.z/D� log kƒk.z/k
2
C k.n� kC 1/ log 2; 1� k � n:

For every ramified point p we use fp;1; : : : ; p;ng to denote the total ramification index at p and set

u�i D

nX
jD1

kijUj ; p̨;i D

nX
jD1

kij p;j ;
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Then we have

�u�i C

nX
jD1

kij e
u�

j �K0 D 4�
X
p2S

p̨;iıp; i D 1; : : : ; n; (1-4)

where K0 is the Gaussian curvature of the metric g.
Therefore any holomorphic curve from M to CPn is associated with a solution u� D .u�1; : : : ; u

�
n/

of (1-4). Conversely, given any solution u� D .u�1; : : : ; u
�
n/ of (1-4) in S2, it is possible to construct

a holomorphic curve of S2 into CPn which has the given ramification index p;i at p if p;i 2 N.
One can see [Lin et al. 2012] for the details of this construction. Therefore, (1-4) is related to the
following problem in more general setting: given a set of ramified points on M and its ramification
indices at these points, can we find holomorphic curves into CPn that satisfy the given ramification
information?

Equation (1-2) is also related to many physical models from gauge field theory. For example, to
describe the physics of high critical temperature superconductivity, a model related to the Chern–Simons
model was proposed, which can be reduced to an n�n system with exponential nonlinearity if the gauge
potential and the Higgs field are algebraically restricted. The Toda system with (1-1) is one of the limiting
equations if a coupling constant tends to zero. For extensive discussions on the relationship between the
Toda system and its background in Physics we refer the readers to [Bennett 1934; Ganoulis et al. 1982;
Lee 1991; Mansfield 1982; Yang 2001].

In this article we are concerned with rank-2 Toda systems. There are three types of Cartan matrices of
rank 2:

A2 D

�
2 �1

�1 2

�
; B2.D C2/D

�
2 �1

�2 2

�
; G2 D

�
2 �1

�3 2

�
:

One of our main theorems is the following estimate:

Theorem 1.1. Let .kij /2�2 be one of the matrices above, hi be positive C 1 functions onM, ˛it 2N[f0g,
t 2 f1; 2; : : : ; N g and K be a compact subset of M nS . If �i 62 4�N, then there exists a constant
C.K; �1; �2/ such that for any solution uD .u1; u2/ of (1-2)

jui .x/j � C for all x 2K; i D 1; 2:

Our proof of Theorem 1.1 is based on the analysis of the behavior of solutions uk D .uk1 ; u
k
2/ near

each blowup point. A point p 2M is called a blowup point if, along a sequence of points pk! p,

max
iD1;2
f Quk1.pk/; Qu

k
2.pk/g !C1;

where
Quki .x/D u

k
i .x/C 4�

X
t

˛kt G.x; pt /;

and G.x; y/ is the Green’s function of the Laplacian operator on M.
Suppose uk is a sequence of solutions of (1-2). When nD 1, it has been proved that if uk blows up

somewhere, the mass distribution �heu
k

=
�R
M heu

k�
will concentrate; that is, for a set of finite points
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p1; p2; : : : ; pL and positive numbers m1; : : : ; mL

�heu
kR

M heu
k
!

LX
iD1

miıpi
as k!1:

In other words, “uk concentrates” means uk.x/!�1 if x is not a blowup point. This “blowup implies
concentration” was first noted by Brezis and Merle [1991] and was later proved by Li [1999], Li and
Shafrir [1994] and Bartolucci and Tarantello [2002]. But for n� 2, this phenomenon might fail in general.
A component uki is called not concentrating if uki 6! �1 away from blowup points, or equivalently, Quki
converges to some smooth function wi away from blowup points. It is natural to ask whether it is possible
to have all components not concentrating. For nD 2, we prove it is impossible.

Theorem 1.2. Suppose uk is a sequence of blowup solutions of a rank-2 Toda system (1-2). Then at least
one component of uk satisfies uki .x/!�1 if x is not contained in the blowup set.

The first example of such nonconcentration phenomenon was proved by Lin and Tarantello [2016]. The
new phenomenon makes the study of systems .n� 2/ much more difficult than the mean-field equation
(nD 1). Recently, Battaglia [2015] and Lin, Yang and Zhong [Lin et al. 2017] independently proved the
result of Theorem 1.2 for n� 3.

As mentioned before, our proofs of Theorems 1.1 and 1.2 are based on the asymptotic behavior of
local bubbling solutions. For simplicity we set up the situation as follows:

Let uk D .uk1 ; u
k
2/ be a sequence of solutions of

�uki C

2X
jD1

kijh
k
j e
uk

j D 4�˛iı0 in B.0; 1/; i D 1; 2; (1-5)

where ˛i > �1. B.0; 1/ is the unit ball in R2 (we use B.p; r/ to denote the ball centered at p with
radius r) and .kij /2�2 is A2, B2 or G2. Throughout the paper, hk1 ; h

k
2 are smooth functions satisfying

hk1.0/D h
k
2.0/D 1 and

1

C
� hki � C; kh

k
i kC1.B.0;1// � C in B.0; 1/; i D 1; 2: (1-6)

For solutions uk D .uk1 ; u
k
2/ we assume8̂<̂

:
0 is the only blowup point of uk;

juki .x/�u
k
i .y/j � C for all x; y 2 @B.0; 1/; i D 1; 2;R

B.0;1/ h
k
i e
uk

i � C; i D 1; 2:

(1-7)

For this sequence of blowup solutions we define the local mass by

�i D lim
r!0

lim
k!1

1

2�

Z
B.0;r/

hki e
uk

i ; i D 1; 2: (1-8)

It is known that 0 is a blowup point if and only if .�1; �2/¤ .0; 0/. The proof is to use ideas from
[Brezis and Merle 1991] and has become standard now. We refer the readers to [Lee et al. 2017] for a
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complete proof. One important property of .�1; �2/ is the so-called Pohozaev identity (P.I. in short)

k21�
2
1 C k12k21�1�2C k12�

2
2 D 2k21�1�1C 2k12�2�2; (1-9)

where �i D 1C˛i . Take A2 as an example; the P.I. is

�21 � �1�2C �
2
2 D 2�1�1C 2�2�2:

The proof of (1-9) was given in [Lin et al. 2015] where we initiated an algorithm to calculate all the
possible (finitely many) values of local masses and (1-9) played an essential role. But the argument there
seems not very efficient. In this work we add major new ingredients to our approach and improve the
classification of .�1; �2/ to the following sharper form:

Theorem 1.3. Let uk be a sequence of blowup solutions of (1-5) which also satisfies (1-6) and (1-7).
Suppose �1 and �2 are local masses defined by (1-8). Then �i can be written as

�i D 2.Ni;1�1CNi;2�2CNi;3/; i D 1; 2;

for some Ni;1; Ni;2; Ni;3 2 Z (i D 1; 2).

Theorem 1.3 is proved in Sections 5 and 6. In Section 5, we give an explicit procedure to calculate the
local masses. Take the A2 system as an example; we start with �1 D 0 and the P.I. gives �2 D 2�2. With
�2 D 2�2, the P.I. gives �1 D 2�1C 2�2 and so on. Let �.�1; �2/ be the set obtained by the above
algorithm. Then �.�1; �2/ is equal to:

(i) .2�1; 0/, .2�1; 2�1C 2�2/, .2�1C 2�2; 2�1C 2�2/, .2�1C 2�2; 2�2/, .0; 2�2/ for A2,

(ii) .2�1; 0/, .2�1; 4�1C 2�2/, .4�1C 2�2; 4�1C 2�2/, .4�1C 2�2; 4�1C 4�2/,
.0; 2�2/, .2�1C 2�2; 2�2/, .2�1C 2�2; 4�1C 4�2/ for B2,

(iii) .2�1; 0/, .2�1; 6�1C 2�2/, .6�1C 2�2; 6�1C 2�2/, .6�1C 2�2; 12�1C 6�2/,
.8�1C 4�2; 12�1C 6�2/, .8�1C 4�2; 12�1C 8�2/, .0; 2�2/, .2�1C 2�2; 2�2/,
.2�1C 2�2; 6�1C 6�2/, .6�1C 4�2; 6�1C 6�2/, .6�1C 4�2; 12�1C 8�2/ for G2.

Definition 1.4. A pair of local masses .�1; �2/ 2 �.�1; �2/ is called special if

.�1; �2/D

8<:
.2�1C 2�2; 2�1C 2�2/ for A2;
.4�1C 2�2; 4�1C 4�2/ for B2;
.8�1C 4�2; 12�1C 8�2/ for G2:

The analysis of local solutions in [Lin et al. 2015] describes a method to pick a family of points
�k D f0; x

k
1 ; : : : ; x

k
N g (if 0 is a singular point, otherwise 0 can be deleted from �k) such that a tiny ball

B.xki ; l
k
j / contributes an amount of mass (which is quantized), and the following Harnack-type inequality

holds:
uki .x/C 2 log dist.x;†k/6 C for all x 2 B.0; 1/: (1-10)

When ˛1D˛2D 0, we can use Theorem 1.3 to calculate all the pairs of even positive integers satisfying
(1-9) and the set is exactly the same as �.1; 1/.
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It is interesting to see whether any pair of the above really consists of the local masses of some
sequence of blowup solutions of (1-2). For K D A2 the existence of such a local blowup sequence has
been obtained; see [Musso et al. 2016; Lin and Yan 2013].

After †k is picked, the difficulty at the next step is how to calculate the mass contributed from outside
B.xkj ; l

k
j / j D 1; 2; � � � ; N. In Section 6, we see that the mass outside this union could be very messy.

However, the picture is very clean if (˛1; ˛2) satisfies the following Q-condition:

˛1; ˛2 and 1 are linearly independent over Q:

Theorem 1.5. Suppose (˛1; ˛2) satisfies the Q-condition. Then (�1; �2) 2 �(�1; �2). Furthermore, for
any sequence of solutions of (1-5) satisfying (1-6) and (1-7), the following Harnack-type inequality holds:

uki .x/C 2 log jxj6 C for x 2 B.0; 1/:

For (1-2), let �1;t D ˛1t C 1 and �2;t D ˛2t C 1 at a vortex point pt 2 S , and define

�i D
˚
2�.†t2J�i;t C 2n/

ˇ̌
.�1;t ; �2;t / 2 �.�1;t ; �2;t /; J � S; n 2 N[f0g

	
: (1-11)

Based on Theorem 1.5, Theorem 1.1 can be extended to the following version:

Theorem 1.6. Let hi be positive C 1 functions on M, and K be a compact set in M. For every point
pt 2 S , if either both ˛1t ; ˛

2
t 2 N [ f0g or (˛1t ; ˛

2
t ) satisfies the Q-condition, then for �i … �i and

uD .u1; u2/ a solution of (1-2), there exists a constant C such that

jui .x/j6 C for all x 2K:

The organization of this article is as follows. In Section 2 we establish the global mass for the
entire solutions of some singular Liouville equation defined in R2. Then in Section 3 we review some
fundamental tools proved in the previous work [Lin et al. 2015]. In Section 4 we present two crucial
lemmas, which play the key role in the proof of main results. In Sections 5 and 6 we discuss the local
mass on each bubbling disk centered at 0 and not at 0 respectively, and then all the main results are
established based on previous discussions.

2. Total mass for Liouville equation

The main purpose of this section is to prove an estimate of the total mass for the solutions of the equation�
�uC eu D

PN
iD14�˛iıpi

in R2;R
R2 e

u <1;
(2-1)

where p1; : : : ; pN are distinct points in R2 and ˛i > �1 for all 16 i 6N.

Theorem 2.1. Suppose u is a solution of (2-1) and ˛1; : : : ; ˛N are positive integers. Then 1
4�

R
R2 e

u is
an even integer.

Proof. It is known that any solution u of (2-1) has, at infinity, the asymptotic behavior

u.z/D�2˛1 log jzjCO.1/; ˛1 > 1; (2-2)



ON RANK-2 TODA SYSTEMS WITH ARBITRARY SINGULARITIES: LOCAL MASS AND NEW ESTIMATES 879

and u satisfies

1

2�

Z
R2

eudx D 2

NX
iD1

˛i C 2˛1: (2-3)

We shall prove that ˛1C
PN
iD1 ˛i is an even integer. A classical Liouville theorem (see [Chou and Wan

1994]) says that u can be written as

uD log
8jf 0.z/j2

.1Cjf .z/j2/2
; z 2 R2; (2-4)

for some meromorphic function f . In general, f .z/ is multivalued and any vertex pi is a branch point.
However if ˛i 2N[f0g, then f .z/ is single-valued. Furthermore (2-2) implies that f .z/ is meromorphic
at infinity. Hence for any solution u of (2-1) there is a meromorphic function f on S2 D C[f1g such
that (2-4) holds. Then

4�

� NX
jD1

j̨ C˛1

�
D

Z
R2

eu D 8

Z
R2

jf 0.z/j2

.1Cjf .z/j2/2
dx dy

D 8.degf /
Z

R2

d Qx d Qy

.1Cjwj2/2
D 8�.degf /;

where deg.f / is the degree of f as a map from S2 D C[f1g onto S2, and w D f .z/D QxC i Qy. Thus
we have

NX
jD1

j̨ C˛1 D 2 deg.f /: �

Theorem 2.2. Suppose u is a solution of�
�uC eu D 4�˛0ıp0

C
PN
iD1 4�˛iıpi

in R2;R
R2 e

u <1;
(2-5)

where p0; p1; : : : ; pN are distinct points in R2 and ˛1; : : : ; ˛N are positive integers, ˛0 > �1. Then
1
4�

R
R2 e

u is equal to 2.˛0C 1/C 2k for some k 2 Z or 2k1 for some k1 2 N.

Proof. As in Theorem 2.1, there is a developing map f .z/ of u such that

u.z/D log
8jf 0.z/j2

.1Cjf .z/j2/2
; z 2 C: (2-6)

On one hand by (2-5), uzz � 12u
2
z is a meromorphic function in C[f1g because away from the Dirac

masses
4
�
uzz �

1
2
u2z
�
Nz
D�.eu/zCuze

u
D 0:

By u.z/D 2˛i log jz�pi jCO.1/ near pi we have

uzz �
1
2
u2z D�2

� NX
jD0

1
2 j̨

�
1
2 j̨ C 1

�
.z�pj /

�2
CAj .z�pj /

�1
CB

�
;
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where A0; : : : ; AN ; B 2C are some constants. On the other hand by (2-6), a straightforward computation
shows that

uzz �
1

2
u2z D

f 000

f 0
�
3

2

�
f 00

f 0

�2
: (2-7)

Using the Schwarz derivative of f ,

ff I zg D
f 000.z/

f 0.z/
�
3

2

�
f 00.z/

f 0.z/

�2
;

and letting

I.z/D

NX
jD0

1
2 j̨

�
1
2 j̨ C 1

�
.z�pj /

�2
CAj .z�pj /

�1
CB;

we can write the equation for f as
ff; zg D �2I.z/: (2-8)

A well-known classic theorem (see [Whittaker and Watson 1927]) says that for any two linearly independent
solutions y1 and y2 of

y00.z/D I.z/y.z/; (2-9)

the ratio y2=y1 always satisfies
fy2=y1I zg D �2I.z/:

By (2-8) and a basic result of the Schwarz derivative, f .z/ can be written as the ratio of two linearly
independent solutions. This is how (2-1) is related to the complex ODE (2-9). We refer the readers to
[Chai et al. 2015] for the details.

For (2-9), there is an associated monodromy representation � from �1.C n fp0; p1; : : : ; pN gI q/ to
GL.2IC/, where q is a base point. Note that at any singular point pj , the local exponents are 1

2 j̨ C 1

and �1
2 j̨ . It is known from [Lin et al. 2012, Section 7] that e�u can be locally written as

e�u D j�1j
2
Cj�2j

2
D h.�1; �2/

t ; .�1; �2/
t
i;

where �1; �2 are the two fundamental solutions of (2-9). After encircling the singular point pj once, we
have e�u D h�j .�1; �2/t; �j .�1; �2/t i and the value does not change. Therefore, we conclude that �j is
unitary and

�j D �.j /D Cj

�
e�i j̨ 0

0 e��i j̨

�
C�1j ;

where j 2 �1.C n fp0; : : : ; pN g; q/ encircles pj only once, 0 � j � N, while the monodromy at 1
is �1. Then we have

�1�N � � � �0 D I2�2:

Note that �j D˙I2�2 for 1� j �N. Hence

��11 DD0

 
e�i

PN
jD0 j̨ 0

0 e��i
PN

jD0 j̨

!
D�10

for some constant invertible matrix D0.
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On the other hand, the local exponents at1 can be computed as follows. Let Oy.z/D y
�
1
z

�
, where y

is a solution of (2-9). Then we have

Oy00.z/C
2

z
Oy0.z/D OI .z/ Oy.z/; (2-10)

where OI .z/D I
�
1
z

�
z�4. Since I.z/ is the Schwarz derivative of f .z/, by direct computation OI .z/ is the

Schwarz derivative of f
�
1
z

�
. As before we let Ou.z/D u

�
1
z

�
�4 log jzj. Then f

�
1
z

�
is the developing map

of Ou.z/. Since
Ou.z/D 2.˛1� 2/ log jzjCO.1/ near 0;

(because u.z/D�2˛1 log jzjCO.1/ at infinity), we have

OI .z/D 1
2
˛1

�
1
2
˛1� 1

�
z�2C higher-order terms of z near 0:

By (2-10) we see that the local exponents of (2-9) are �1
2
˛1 and 1

2
˛1� 1. Hence e�i˛1 equals either

e�i
PN

jD0 j̨ or e��i
PN

jD0 j̨ , which yields

˛1 D�

NX
jD0

j̨ C 2k or ˛1 D

NX
jD0

j̨ C 2k (2-11)

for some k 2 Z. Since
1

4�

Z
R2

eu D

NX
jD0

j̨ C˛1;

we either have 1
4�

R
R2 e

u D 2k for some k 2N if the first case holds or 1
4�

R
R2 e

u D 2.˛0C 1/C 2k
0 for

k0 D
PN
iD1 ˛i C k� 1 if the second case holds. �

Remark 2.3. After proving Theorems 2.1 and 2.2, we found a stronger version of both theorems in
[Eremenko et al. 2014]. Because we only need the present form of both theorems, we include our proofs
here to make the paper more self-contained.

3. Review of bubbling analysis from a selection process

Let uk D .uk1 ; u
k
2/ be solutions of (1-5) such that (1-6) and (1-7) hold. In this section we review the

process to select a set †k D f0; xk1; : : : ; x
k
ng and balls B.xki ; lk/ such that uk has nonzero local masses

in B.xki ; lk/. This selection process was first carried out in [Lin et al. 2015]. We briefly review it below.
The set †k is constructed by induction. If (1-5) has no singularity, we start with †k D∅. If (1-5) has

a singularity, we start with †k D f0g. By induction suppose †k consists of f0; xk1; : : : ; x
k
m�1g. Then we

consider
max
x2B1

max
iD1;2

�
uki .x/C 2 log dist.x;†k/

�
: (3-1)

If the maximum is bounded from above by a constant independent of k, the process stops and †k is
exactly equal to f0; xk1; : : : ; x

k
m�1g. However if the maximum tends to infinity, let qk be where (3-1) is

achieved and we set
dk D

1
2

dist.qk; †k/
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and
Ski .x/D u

k
i .x/C 2 log.dk � jx� qkj/ in B.qk; dk/; i D 1; 2:

Suppose i0 is the component that attains

max
i

max
x2 NB.qk ;dk/

Ski (3-2)

at pk . Then we set
Qlk D

1
2
.dk � jpk � qkj/

and scale uki by

vki .y/D u
k
i .pkC e

� 1
2
uk

i0
.pk/y/�uki0.pk/ for jyj �Rk + e

1
2
uk

i0
.pk/ Qlk : (3-3)

It can be shown that Rk!1 and vki is bounded from above over any fixed compact subset of R2. Thus
by passing to a subsequence, vki satisfies one of the following two alternatives:

(a) .vk1 ; v
k
2 / converges in C 2loc.R

2/ to .v1; v2/ which satisfies

�vi C

2X
jD1

kij e
vj D 0 in R2; i D 1; 2: (3-4)

(b) Either vk1 converges to
�v1C 2e

v1 D 0 in R2 (3-5)

and vk2 !�1 over any fixed compact subset of R2 or vk2 converges to �v2C 2ev2 D 0 in R2 and
vk1 !�1 over any fixed compact subset of R2.

Therefore in either case, we could choose l�
k
!1 such that

vki .y/C 2 log jyj � C for i D 1; 2 and jyj6 l�k (3-6)
and Z

B.0;l�
k
/

hki e
vk

i dy D

Z
R2

evi .y/C o.1/:

By scaling back to uki , we add pk in †k with

lk D e
� 1

2
uk

i0
.pk/l�k :

We can continue in this way until the Harnack-type inequality (1-10) holds.
We summarize what the selection process has done in the following proposition (a detailed proof for a

more general case can be found in [Lin et al. 2015, Proposition 2.1]):

Proposition 3A. Let uk be described as above. Then there exist a finite set †k WD f0; xk1; : : : ; x
k
mg (if 0

is not a singular point, then 0 can be deleted from †k) and positive numbers lk1 ; : : : ; l
k
m! 0 as k!1

such that the following hold:

(1) There exists C > 0 independent of k such that (1-10) holds and all the components have fast decay
on @B.xkj ; l

k
j /; j D 1; : : : ; m. (The definition of fast decay can be found in Definition 3.1 below).
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(2) In B.xkj ; l
k
j / (j D 1; : : : ; m), let Rj;k D e

1
2
uk

i0
.xk

j
/
lkj , uki0.x

k
j /Dmaxi uki .x

k
j / and

vki .y/D u
k
i .x

k
j C e

� 1
2
uk

i0
.xk

j
/
y/�uki0.x

k
j / (3-7)

for jyj �Rj;k; then vk D .vk1 ; v
k
2 / satisfies either (a) or (b).

(3) B.xkj ; l
k
j /\ B.x

k
i ; l

k
i /D∅, i ¤ j.

The inequality (1-10) is a Harnack-type inequality, because it implies the following result.

Proposition 3B. Suppose uk satisfies (1-5)–(1-7) and

uki .x/C 2 log jx� x0j � C for x 2 B.x0; 2rk/:
Then

juki .x1/�u
k
i .x2/j � C0 for 1

2
�
jx1� x0j

jx2� x0j
� 2 and x1; x2 2 B.x0; rk/: (3-8)

The proof of Proposition 3B is standard, see [Lin et al. 2015, Lemma 2.4], so we omit it here. Let
xk
l
2†k and �k

l
D

1
2

dist.xk
l
; †k n fx

k
l
g/; then (3-8) implies

uki .x/D Nu
k

xk
l
;i
.r/CO.1/; x 2 B.xkl ; �

k
l /; (3-9)

where r D jxk
l
� xj and Nuk

xk
l
;i

is the average of uki on @B.xk
l
; r/,

Nuk
xk

l
;i
.r/D

1

2�r

Z
@B.xk

l
;r/

uki dS; (3-10)

and O.1/ is independent of r and k.
Next we introduce the notions of slow decay and fast decay in our bubbling analysis.

Definition 3.1. We say uki has fast decay on @B.x0; rk/ if along a subsequence

uki .x/C 2 log jx� x0j � �Nk for all x 2 @B.x0; rk/;

for some Nk!1 and we say uki has slow decay if there is a constant C independent of k such that

uki .x/C 2 log jx� x0j � �C for all x 2 @B.x0; rk/:

Furthermore, we say uki is fast-decaying in B.x0; sk/ nB.x0; rk/ if uki has fast decay on @B.x0; lk/ for
any lk 2 Œrk; sk�.

The concept of fast decay is important for evaluating the Pohozaev identities. The following proposition
is a direct consequence of [Lin et al. 2015, Proposition 3.1] and it says if both components are fast-decaying
on the boundary, the Pohozaev identity holds for the local masses.

In the following proposition, we let B D B.xk; rk/. If xk ¤ 0, we assume 0 … B.xk; 2rk/.

Proposition 3C. Suppose both uk1 ; u
k
2 have fast decay on @B , where B is given above. Then .�1; �2/

satisfies the P.I. (1-9), where

�i D lim
k!0

1

2�

Z
B

hki e
uk

i ; i D 1; 2:

We refer the readers to [Lin et al. 2015, Proposition 3.1] for the proof.
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4. Two lemmas

In this section, we prove two crucial lemmas which play the key role in Sections 5 and 6. For Lemma 4.1,
we assume:

(i) The Harnack inequality

uki .x/C 2 log jxj � C for 1
2
lk � jxj � 2sk; i D 1; 2;

holds for both components.

(ii) Both components uki have fast decay on @B.0; lk/ and �ki .B.0; lk//D �i Co.1/ for i D 1; 2, where

�i D lim
r!0

lim
k!1

1

2�

Z
B.0;rsk/

hki e
uk

i ; i D 1; 2:

(iii) One of uki , i D 1; 2, has slow decay on @B.0; sk/.

Lemma 4.1. (a) Assume (i) and (ii). If uki has slow decay on @B.0; sk/, then

2�i �

2X
jD1

kij�j > 0:

(b) Assume (i), (ii) and (iii). Let uki be a slow-decaying component on @B.0; sk/. Then the other
component has fast decay on @B.0; sk/.

Proof. (a) Suppose that uki has slow decay on @B.0; sk/. Then the scaling

vkj .y/D u
k
j .sky/C 2 log sk; j D 1; 2 for y 2 B2

gives

�vkj .y/C

2X
lD1

kjlh
k
l .sky/e

vk
l
.y/
D 4� j̨ ı0 in y 2 B2:

If the other component also has slow decay on @B.0; sk/, then .vk1 ; v
k
2 / converges to .v1; v2/ which

satisfies

�vj .y/C

2X
lD1

kjle
vl D 0 in B2nf0g; j D 1; 2: (4-1)

If the other component has fast decay on @B.0; sk/, then vki .y/ converges to vi .y/ and vj .y/!�1,
j ¤ i . Furthermore, vi .y/ satisfies

�vi .y/C 2e
vi D 0 in B2nf0g: (4-2)

For any r > 0, Z
@B.0;r/

@vi .y/

@v
dS D lim

k!1

�
4�˛i �

2X
jD1

Z
B.0;r/

kijh
k
j e
vk

j dy

�

D 4�˛i � 2�

2X
jD1

kij�j C o.1/+ 4�ˇi C o.1/;
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which implies the right-hand sides of both (4-1) and (4-2) should be replaced by 4�ˇiı0. If ˇi � �1, we
can use the finite energy assumption (see the bottom assumption in (1-7)) to conclude that either (4-1) or
(4-2) has no solutions. Hence ˛i � 1

2

P2
jD1 kij�j > �1 and then (a) is proved.

(b) Since both components have fast decay on @B.0; lk/, the pair .�1; �2/ satisfies the P.I. (1-9). By a
simple manipulation, the P.I. (1-9) can be written as

k21�1.4�1� k12�2� k11�1/C k12�2.4�2� k21�1� k22�2/D 0: (4-3)

Note by (a),

4�i �

2X
lD1

kil�l > 2�i �

2X
lD1

kil�l > 0:

Hence for j ¤ i

2�j �

2X
lD1

kjl�l < 4�j �

2X
lD1

kjl�l < 0;

where the last inequality is due to (4-3). By (a) again, ukj does not have slow decay on @B.0; sk/. �

Our second lemma says that a fast-decaying component does not change its energy more than o.1/,
regardless of the behavior of the other component.

Lemma 4.2. Suppose the Harnack-type inequality holds for both components over r 2
�
1
2
lk; 2sk

�
. If uki

is fast-decaying on r 2 Œlk; sk�, then

�ki .B.0; sk//D �
k
i .B.0; lk//C o.1/:

Proof. Obviously the conclusion holds if sk=lk 6 C . So we assume sk=lk!C1. The Harnack-type
inequality implies uki .x/D Nu

k
i .r/C o.1/ for 1

2
lk 6 jxj6 2sk . Thus we obtain from (1-5) that

d

dr
. Nuki .r/C 2 log r/D

2�i �
P2
jD1 kij�

k
j .r/

r
; lk 6 r 6 sk; i D 1; 2;

where �kj .r/D �
k
j .B.0; r// and �j D limk!C1 �kj .lk/; j D 1; 2.

Without loss of generality, we assume that ukj , j ¤ i , is fast-decaying on @B.0; lk/. Otherwise, we
may choose Qlk such that lk � Qlk , uki remains fast-decaying for r 2 Œlk; Qlk� and �ki .B.0; r// does not
change more than o.1/, while ukj is fast-decaying on @B.0; Qlk/. If sk= Qlk 6 C , we get the conclusion as
explained above. If sk= Qlk !C1, by a little abuse of notation, we may replace Qlk by lk . Then both
uk1 ; u

k
2 have fast decay on @B.0; lk/, and the P.I. holds at lk , which implies that at least one component

(say l) satisfies

4�l �

2X
jD1

klj�
k
j .lk/ < 0:

Thus,
d

dr
. Nu
.k/

l
.r/C 2 log r/6 �

2�l C o.1/

r
at r D lk : (4-4)
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Suppose rk 2 Œlk; sk� is the largest r such that

d

dr
. Nu
.k/

l
.r/C 2 log r/6 �

�l

r
for r 2 Œlk; rk�: (4-5)

Thus, either the equality holds at r D rk or rk D sk . For simplicity, we let "D �l . By integrating (4-4)
from lk up to r 6 rk , we have

Nu
.k/

l
.r/C 2 log r 6 Nu.k/

l
.lk/C 2 log.lk/C " log

�
lk

r

�
I

that is for jxj D r ,

eu
k
l
.x/ 6O.1/e Nu

k
l
.r/ 6O.1/e�Nk l"kr

�.2C"/;

where we used Nu.k/
l
.lk/C 2 log lk 6 �Nk by the assumption of fast decay. ThusZ

lk6jxj6rk

eu
k
l
.x/ dx 6O.1/e�Nk l"k

Z rk

lk

r�.1C"/ dr DO.1/
e�Nk

"
! 0

as k!C1. Hence

�kl .rk/D �
k
l .lk/C o.1/: (4-6)

If both components are fast-decaying on r 2 Œlk; rk�, then limk!C1.�k1 .rk/; �
k
2 .rk//D . O�1; O�2/ also

satisfies the P.I. (1-9). If O�j >�j , then j ¤ l by (4-6). We choose r�
k
�rk such that �j .r�k /D�

k
j .lk/C"0 for

small "0, and let ��j D limk!0 �j .r�k /. Then ��j and �l satisfies the P.I. (1-9) and it yields a contradiction
provided "0 is small. Thus, we have �km.rk/ D �

k
m.lk/C o.1/; m D 1; 2. Then (4-4) holds at r D rk ,

which implies rk D sk , and Lemma 4.2 is proved in this case.
If one of the components does not have fast decay on Œlk; rk�, then we have l D i and ukj , j ¤ i ,

has slow decay on @B.0; r�
k
/ for some r�

k
� rk . If sk=rk � C , then (4-6) implies the lemma. If

sk=rk!C1, then by the scaling of ukj at r D r�
k

, the standard argument implies that there is a sequence
of r�

k
� Qrk DRkr

�
k
� sk such that both components have fast decay on Qrk and

�ki . Qrk/D �i .r
�
k /C o.1/D �i .lk/C o.1/ and �kj . Qrk/� �

k
j .lk/C "0

for j ¤ i and "0 > 0. Therefore the assumption of Lemma 4.2 holds at r 2 Œ Qrk; sk�. Then we repeat the
argument starting from (4-4) and the lemma can be proved in a finite steps. �

Remark 4.3. Both lemmas will be used in Section 6 (and Section 5) for the case with singularity at 0
(and without singularity at 0).

5. Local mass on the bubbling disk centered at xk
l

¤ 0

5A. In this subsection we study the local behavior of uk near xk
l

, where xk
l
¤ 0. For simplicity, we use

xk instead of xk
l

and Nuki .r/ rather than Nuk
xk

l
;i
.r/. Let

�k D 1
2

dist.xk; †k n fx
k
g/; �ki .r/D

1

2�

Z
B.xk;r/

hki e
uk

i ; i D 1; 2:
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By Proposition 3A, lk � �k. Clearly uk D .uk1 ; u
k
2/ satisfies

�uki C

2X
jD1

kijh
k
j e
uk

j D 0 in B.xk; �k/:

For a sequence sk , we define

O�i .sk/D

(
limk!C1 �ki .sk/ if uki has fast decay on @B.xk; sk/;

limr!0 limk!C1 �ki .rsk/ if uki has slow decay on @B.xk; sk/:
(5-1)

Recall that both components of uk have fast decay on @B.xk; lk/. This is the starting point of the following
proposition, which is a special case of Proposition 5.2 below.

In Proposition 5.1, .�1; �2/ will be .1; 1/ in both lemmas of Section 4.

Proposition 5.1. Let uk D .uk1 ; u
k
2/ be the solution of (1-5) satisfying (1-7) and O�i .sk/ be defined in

(5-1). The following holds:

(1) At least one component uk has fast decay on @B.xk; �k/.

(2) . O�1.�k/; O�2.�k// satisfies the P.I. (1-9) with �1 D �2 D 1.

(3) . O�1.�k/; O�2.�k// 2 �.1; 1/.

Proof. If �k=lk 6 C , (1)–(3) hold obviously for �k. So we assume �k=lk!C1. First we remark that
if uk is fully bubbling in B.xk; lk/ (i.e., (1) in Proposition 3A holds), . O�1.lk/; O�2.lk// is special (see
Definition 1.4) and satisfies

2�i �

2X
jD1

kij O�j .lk/ < 0; i D 1; 2:

Then by Lemma 4.1, both uki have fast decay on @B.0; �k/ and Proposition 5.1 follows immediately.
Now we assume vki defined in (3-7) and satisfies case (2) in Proposition 3A. We already know that

both components have fast decay at r D lk . If both components remain fast-decaying as r increases from
lk to �k, Lemma 4.2 implies

�k1 .�
k/D �k1 .lk/C o.1/; �k2 .�

k/D �k2 .lk/C o.1/

and we are done. So we only consider the case that at least one component changes to a slow-decaying
component. For simplicity, we assume that uk1 changes to a slow-decaying component for some rk� lk .
By Lemma 4.2,

�k1 .B.x
k; rk//> �k1 .B.x

k; lk//C c0 for some c0 > 0:

We might choose sk 6 rk such that

�k1 .B.x
k; sk//D �

k
1 .B.x

k; lk//C "0;

and
�k1 .B.x

k; r// < �k1 .B.x
k; lk//C "0 for all r < sk;

where "0 < 1
2
c0 is small.
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Then Lemmas 4.1 and 4.2 together imply that uk1 has slow decay on @B.xk; sk/ and uk2 has fast decay
on @B.xk; sk/ with

O�1.sk/D �
k
1 .lk/C o.1/ and O�2.sk/D �

k
2 .lk/C o.1/:

Let vki .y/Du
k
i .x

kCsky/C2 log sk . If �k=sk �C , there is nothing to prove. So we assume �k=sk!1.
Then vk1 .y/ converges to v1.y/ and vk2 .y/! �1 in any compact set of R2 as k !C1 and v1.y/
satisfies

�v1C 2e
v1 D�2�

2X
jD1

.k1j O�j .lk//ı.0/ in R2: (5-2)

Hence there is a sequence N �
k
!C1 as k!C1 that satisfies

(1) N �
k
sk � �

k,

(2)
R
B.0;N�

k
/ e
v1 dy D

R
R2 e

v1 dyC o.1/,

(3) vki .y/C 2 log jyj6 �Nk , i D 1; 2, for jyj DN �
k

.

Scaling back to uki , we obtain that uki , i D 1; 2, have fast decay on @B.xk; N �
k
sk/.

We could use the classification theorem of [Prajapat and Tarantello 2001] to calculate the total
mass of v1, but instead we use the P.I. (1-9) to compute it. We know that both . O�1.lk/; O�2.lk// and
. O�1.N

�
k
sk/; O�2.N

�
k
sk// satisfy the P.I. and O�2.N �k sk/D O�2.lk/ by Lemma 4.2. With a fixed �2D O�2.lk/,

P.I. (1-9) is a quadratic polynomial in �1; then O�1.lk/ and O�1.N �k sk/ are two roots of the polynomial.
From it, we can easily calculate O�1.N �k sk/.

By a direct computation, we have

. O�1.N
�
k sk/; O�2.N

�
k sk// 2 �.1; 1/ if . O�1.lk/; O�2.lk// 2 �.1; 1/:

Thus (1)–(3) hold at r DN �
k
sk . By denoting N �

k
sk as lk , we can repeat the same argument until

�k=lk 6 C . Hence Proposition 5.1 is proved. �

5B. Local mass in a group that does not contain 0. In this subsection we collect some xki 2†k into a
group S , a subset of †k satisfying the following S -conditions:

(1) 0 62 S and jS j � 2.

(2) If jS j � 3 and xki , xkj , xk
l

are three distinct elements in S, then

dist.xki ; x
k
j /� C dist.xkj ; x

k
l /

for some constant C independent of k.

(3) For any xkm 2†k nS , we have dist.xkm; S/= dist.xki ; x
k
j /!1 as k!1, where xki ; x

k
j 2 S .

We write S as S D fxk1; : : : ; x
k
mg and let

lk.S/D 2 max
1�j�m

dist.xk1; x
k
j /: (5-3)
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Recall �k
l
D

1
2

dist.xk
l
; †k n fx

k
l
g/; by (2) and (3) above we have lk.S/� �ki for 1� i �m. Let

�kS D
1
2

dist.xk1; †k nS/:

Then by (3) above we have �kS=�
k
i !1 for any xki 2 S .

By Proposition 5.1, we know that at least one of uki has fast decay on @B.xk1; �
k
1 /. Suppose uk1 has fast

decay on @B.xk1; �
k
1 /. Then

uk1 has fast decay on @B.xk1; l
k.S//, (5-4)

and we get

�k1 .B.x
k
1; l

k.S///D
1

2�

Z
B.xk

1;l
k.S//

hk1e
uk

1 dx

D
1

2�

Z
Sm

jD1B.x
k
j
;�k

j
/

hk1e
uk

1 C
1

2�

Z
B.xk

1;l
k.S//n.

Sm
jD1B.x

k
j
;�k

j
//

hk1e
uk

1:

Since uk1 has fast decay outside of B.xkj ; �
k
j /, we have

eu
k
1 .x/ � o.1/max

j
fjx� xkj j

�2
g for x …

k[
jD1

B.xkj ; �
k
j /

and the second integral is o.1/. Hence by Proposition 5.1,

�k1 .B.x
k
1; l

k.S///D 2m1C o.1/ for some m1 2 N[f0g: (5-5)

Similarly if uk2 has fast decay on @B.xk1; �
k
1 /, we have

�k2 .B.x
k
1; l

k.S///D 2m2C o.1/ for some m2 2 N[f0g: (5-6)

If uk2 has slow decay on @B.xk1; �
k
1 /, then it is easy to see that uk2 has slow decay on @B.xkj ; �

k
j /. By

Proposition 5.1 we denote ni;j 2 N by

2ni;j D lim
r!0

lim
k!1

�ki .B.x
k
j ; r�

k
j //; 1� j �m; i D 1; 2:

Define Oni;j by

Oni;j D�

2X
lD1

kilnl;j :

Then the slow decay of uk2 on @B.xkj ; �
k
j / implies 1C On2;j > 0. Since On2;j 2 Z we have On2;j � 0.

Furthermore, if we scale uk by

vki .y/D u
k
i .x

k
1 C l

k.S/y/C 2 log lk.S/; i D 1; 2;

the sequence vk2 converges to v2.y/ and vk1 tends to �1 over any compact subset of R2 n f0g. Then v2
satisfies

�v2.y/C 2e
v2.y/ D 4�

mX
jD1

On2;j ıpj
in R2; (5-7)
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where pj D limk!1.xkj � x
k
1 /=l

k.S/. By Theorem 2.1

1

2�

Z
R2

ev2 D 2N for some N 2 N:

Thus using the argument in Proposition 5.1, we conclude that there is a sequence of N �
k
!1 such that

both uki (i D 1; 2) have fast decay on @B.xk1; N
�
k
lk.S// and �ki .B.x

k
1; N

�
k
lk.S///D 2miCo.1/. Denote

N �
k
lk.S/ by lk for simplicity; we see that (5-5) and (5-6) hold at lk . Then by using Lemmas 4.1 and 4.2

we continue this process to obtain the following conclusion:

At least one component of uk has fast decay on @B.xk1; �
k
S /: (5-8)

Let O�ki .B.x
k
1; �

k
S // be defined as in (5-1). Then

O�ki .B.x
k
1; �

k
S //D 2mi .S/; where mi .S/ 2 N[f0g; (5-9)

and the pair .2m1.S/; 2m2.S// satisfies the P.I. (1-9).
Denote the group S by S1. Based on this procedure, we can continue to select a new group S2 such

that the S-conditions holds except we have to modify condition (2). In (2), we consider S1 as a single
point as long as we compare the distance of distinct elements in S2.

Set
�kS2
D

1
2

dist.xk1; †k nS2/ for xk1 2 S2:

Then we follow the same argument as above to obtain the same conclusion as (5-8)–(5-9).
If (1-5) does not contain a singularity, the final step is to collect all the xki into the single biggest group

and (5-8)–(5-9) hold. Then we get .�1; �2/D .2m1; 2m2/ (which satisfies the Pohozaev identity), where

�i D lim
r!0

lim
k!1

1

2�

Z
B.0;r/

hki e
uk

i ; i D 1; 2:

By a direct computation, we can prove that the set of all the pairs of even integers solving (1-9) is exactly
�.1; 1/. This proves Theorem 1.3 if (1-5) has no singularities.

If 0 is a singularity of (1-5) then †k can be written as a disjoint union of f0g and Sj (j D 1; : : : ; m).
Here each Sj is collected by the process described above and is maximal in the following sense:

(i) 0 62 S , jS j � 2 and for any two distinct points xki ; x
k
j in S we have

dist.xki ; x
k
j /� �k.S/;

where �k.S/D dist.S;†k nS/.

(ii) For any 0¤ xki 2†k nS ,
dist.xki ; 0/� C dist.xki ; S/

for some constant C .

For Sj we define
�kSj
D

1
2

dist.Sj ; †k nSj /:
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Then the process described above proves the main result of this section:

Proposition 5.2. Let Sj (j D 1; : : : ; m) be described as above. Then (5-8)–(5-9) hold, where B.xk1; �
k
S /

is replaced by B.xki ; �
k
Sj
/ and xki is any element in Sj .

6. Proofs of Theorems 1.2, 1.3, 1.5 and 1.6

In Proposition 5.2, we write †k D f0g [ S1 [ � � � [ SN. From the construction, the ratio jxkj=j Qxkj is
bounded for any xk; Qxk 2 Sj . Let

kSj k D min
xk2Sj

jxkj

and arrange Sj by
kS1k � kS2k � � � � � kSN k:

Assume l is the largest number such that kSlk � CkS1k. Then kSlk� kSlC1k.

We recall the local mass contributed by xkj 2 Sj is�
O�1.B.x

k
j ; �

k
j //; O�2.B.x

k
j ; �

k
j //

�
D .m1;j ; m2;j /; where m1;j ; m2;j 2 2N[f0g:

Let
rk1 D

1
2
kS1k:

Then we have
uki .x/C 2 log jxj � C for 0 < jxj � rk1; i D 1; 2:

Proof of Theorem 1.3. Let
Quki .x/D u

k
i .x/C 2˛i log jxj; i D 1; 2:

Then (1-5) becomes

� Quki .x/C

2X
jD1

kij jxj
2 j̨ hkj .x/e

Quk
j
.x/
D 0; jxj � rk1; i D 1; 2:

Let

�2 log ık Dmax
i2I

max
x2 NB.0;rk

1 /

Quki
1C˛i

; (6-1)

and
Qvki .y/D Qu

k
i .ıky/C 2.1C˛i / log ık; jyj � r

k
1 =ık; i D 1; 2: (6-2)

Then Qvki satisfies

� Qvki .y/C

2X
jD1

kij jyj
2 j̨ hkj .ıky/e

Qvk
j
.y/
D 0; jyj � rk1 =ık; i D 1; 2: (6-3)

We have either

(a) limk!1 rk1 =ık D1, or

(b) rk1 =ık � C .
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For case (a), our purpose is to prove a result similar to Proposition 5.1:

(1) At most one component of uk has slow decay on @B.0; rk1 /. As in Section 5, we define

O�i;1 D

(
limk!C1 �ki .B.0; r

k
1 // if uki has fast decay on @B.0; rk1 /;

limr!0 limk!C1 �ki .B.0; rr
k
1 // if uki has slow decay on @B.0; rk1 /;

(2) . O�1;1; O�2;1/ satisfies the Pohozaev identity (1-9), and

(3) O�i;1 D 2
P2
jD1 ni;j�j C 2ni;3; ni;j 2 Z, i D 1; 2, j D 1; 2; 3.

We carry out the proof in the discussion of the following two cases.

Case 1: If both Qvki .y/ converge in any compact set of R2, then . O�1;1; O�2;1/ can be obtained by the
classification theorem in [Lin et al. 2012]:

. O�1;1; O�2;1/D

8<:
.2�1C 2�2; 2�1C 2�2/ for A2;
.4�1C 2�2; 4�1C 4�2/ for B2;
.8�1C 4�2; 12�1C 8�2/ for G2:

By Lemma 4.1, both uki have fast decay on @B.0; rk1 /. So this proves (1)–(3) in this case.

Case 2: Only one Qvki converges to vi .y/ and the other tends to �1 uniformly in any compact set. Then
it is easy to see that there is lk� rk1 such that both uki have fast decay on @B.0; lk/ and�

�1.B.0; lk//; �2.B.0; lk//
�
D .2�1; 0/ or

�
�1.B.0; lk//; �2.B.0; lk//

�
D .0; 2�2/:

So this is the same situation as in the starting point for Proposition 5.1. Then the same argument of
Proposition 5.1 leads to the conclusion (1)–(3).

The pair . O�1;1; O�2;1/ can be calculated by the same method in Proposition 5.1. Then . O�1;1; O�2;1/ 2
�.�1; �2/, which is given in Section 2.

To continue for r 2 Œrk1 ; r
k
2 �, where rk2 D

1
2
kSlC1k, we separate our discussion into two cases also.

Case 1: One component has slow decay on @B.0; rk1 /, say uk1 . Then we scale

vki .y/D u
k
i .r

k
1 y/C 2 log rk1 :

By our assumption, vk1 .y/ converges to v1.y/ and vk2 .y/!�1 in any compact set. Let xkj 2 Sj and
ykj D .r

k
1 /
�1xkj ! pj for j � l . Then v1.y/ satisfies

�v1C 2e
v1 D 4� Q̨1ı0C 4�

lX
jD1

Qn1;j ıpj
; (6-4)

where

Qn1;j D�
1

2

2X
iD1

k1imi;j for some mij 2 Z and Q̨1 D ˛1�
1

2

2X
iD1

k1i O�i;1: (6-5)

The finiteness of
R

R2 e
v1 implies

Q̨1 > �1 and Qn1;j � 0:
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By Theorem 2.2, we have

1

2�

Z
R2

ev1 dy D 2. Q̨1C 1/C 2k1;
1

2�

Z
R2

ev1 dy D 2k2; where k1; k2 2 Z: (6-6)

As before, we can choose lk , rk1 � lk� rk2 , such that both uki have fast decay on @B.0; lk/. Then the
new pair . O�1;2; O�2;2/, which is defined by

O�t;2 D
1

2�
lim
k!0

Z
B.0;lk/

hkt e
uk

t ; t D 1; 2;

becomes

. O�1;2; O�2;2/D

�
O�1;1C

1

2�

Z
R2

ev1C

lX
jD1

m1;j ; O�2;1C

lX
jD1

m2;j

�
(6-7)

for m1j ; m2j 2 2N[f0g. Using (6-6), we get

O�1;2D

(
O�1;1C2k2C

Pl
jD1m1;j if 1

2�

R
R2 e

v1 dyD 2k2;

2�1CO�1;1�
P2
iD1k1i O�i;1C2k1C

Pl
jD1m1;j if 1

2�

R
R2 e

v1 dyD 2. Q̨1C1/C2k1:
(6-8)

We note that if . O�1;1; O�2;1/ 2 �.�1; �2/ and

2�1C O�1;1�

2X
iD1

k1i O�i;1 > 0;

then �
2�1C O�1;1�

2X
iD1

k1i O�i;1; O�2;1

�
2 �.�1; �2/:

Let .��1 ; �
�
2 /D

�
2�1C O�1;1�

P2
iD1 k1i O�i;1; O�2;1

�
. We can write

. O�1;2; O�2;2/D .�
�
1 Cm1; �

�
2 Cm2/; (6-9)

with .��1 ; �
�
2 / 2 �.�1; �2/ and m1; m2 2 2Z.

Case 2: If both uki have fast decay on @B.0; rk1 /, then they have fast decay on @B.0; crk1 /, where we
choose c bounded such that

Sl
jD1 Sj � B

�
0; 1
2
crk1

�
. Then the new pair . O�1;2; O�2;2/ becomes

. O�1;2; O�2;2/D

�
O�1;1C

lX
jD1

m1;j ; O�2;1C

lX
jD1

m2;j

�
for m1;j ; m2;j 2 2Z: (6-10)

Hence, in this case we can also write

. O�1;2; O�2;2/D .�
�
1 Cm1; �

�
2 Cm2/; (6-11)

with .��1 ; �
�
2 / D . O�1;1; O�2;1/ 2 �.�1; �2/ and m1; m2 2 2Z. Set crk1 D lk . Then we can continue our

process starting from lk . After finitely many steps, we can prove that at most one component of uk has
slow decay on @B.0; 1/ and their local masses have the expression in (3).
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For case (b), i.e., rk1 =ık � C , first Qvki � 0 implies jyj2 j̨ hkj .ıky/e
Qvk
j � C on B.0; rk1 =ık/. Then the

fact that Qvki has bounded oscillation on @B.0; rk1 =ık/ further gives

Qvki .x/D
NQvki .@B.0; r

k
1 =ık//CO.1/ for all x 2 B.rk1 =ık/;

where NQvki .@B.0; r
k
1 =ık// stands for the average of Qvki on @B.0; rk1 =ık/. Direct computation shows thatZ

B.0;rk
1 /

hki e
uk

i dx D

Z
B.0;rk

1 =ık/

jyj2˛ihki .ıky/e
Qvk

i
.y/ dy DO.1/e

NQvk
i
.@B.0;rk

1 =ık//:

Thus if NQvki .@B.0; r
k
1 =ık//!�1, we get

R
B.0;rk

1 /
hki e

uk
i dx D o.1/. On the other hand, we note that

NQvki .@B.0; r
k
1 =ık//!�1 is equivalent to uki having fast decay on @B.0; rk1 /. Consequently O�i;1 D 0

if uki has fast decay on @B.0; rk1 /. So if both components have fast decay on @B.0; rk1 / we have
. O�1;1; O�2;1/D .0; 0/.

If some component of uk has slow decay, say uk2 , according to the definition of O�2;1, we have

O�2;1 D lim
r!0

lim
k!C1

�k2 .B.0; rr
k
1 //D

1

2�
lim
r!0

lim
k!C1

Z
B.0;rrk

1 /

hk2e
uk

2 dx

D
1

2�
lim
r!0

lim
k!C1

Z
B.0;rrk

1 =ık/

jyj2˛2hk2.ıky/e
Qvk

2 .y/ dy D 0;

(6-12)

where we used jyj2˛2hk2.ıky/e
Qvk

2 � C on B.0; rk1 =ık/. Then we still get

. O�1;1; O�2;1/D .0; 0/:

Now we can continue our discussion as in case (a) and Theorem 1.3 is proved completely. �

Next, we shall prove Theorem 1.5, that is, †k D f0g, by way of contradiction. Suppose †k has points
other than 0. Using the notation from the beginning of this section, we have

†k D f0g[S1[ � � � [SN :

Now suppose rk1 =ık!1 as k!1. Let . O�1;2; O�2;2/ be the local masses defined by (6-7) for one of the
components uki having slow decay on @B.0; rk1 / or by (6-10) for both components having fast decay on
@B.0; rk1 /. We summarize the results in the following:

(i) O�i;2 D ��i Cmi , where .��1 ; �
�
2 / 2 �.�1; �2/ and mi , i D 1; 2, are even integers.

(ii) Both pairs .��1 ; �
�
2 / and . O�1;2; O�2;2/ satisfy the Pohozaev identity.

Based on the description above, we now present the proof of Theorem 1.5.

Proof of Theorem 1.5. From the discussion above, we have

. O�1;2; O�2;2/D .�
�
1 Cm1; �

�
2 Cm2/:

We note that the conclusion of Theorem 1.5 is equivalent to proving mi D 0, i D 1; 2. In order to prove
this we first observe that both . O�1;2; O�2;2/ and .��1 ; �

�
2 / satisfy the P.I.

k21�
2
1 C k12k21�1�2C k12�

2
2 D 2k21�1�1C 2k12�2�2: (6-13)
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Thus we can write

k21.�
�
1 /
2
C k12k21�

�
1 �
�
2 C k12.�

�
2 /
2
D 2k21�1�

�
1 C 2k12�2�

�
2 ; (6-14)

and

k21.�
�
1 Cm1/

2
C k12k21.�

�
1 Cm1/.�

�
2 Cm2/C k12.�

�
2 Cm2/

2

D 2k21�1.�
�
1 Cm1/C 2k12�2.�

�
2 Cm2/: (6-15)

It is easy to obtain the following from (6-15) and (6-14):

2k21m1�
�
1 C k12k21m2�

�
1 C k12k21m1�

�
2 C 2k12m2�

�
2

D 2k21m1�1C 2k12m2�2� .k21m
2
1C k12k21m1m2C k12m

2
2/: (6-16)

Since .��1 ; �
�
2 / 2 �.�1; �2/, we set

��1 D l1;1�1C l1;2�2; ��2 D l2;1�1C l2;2�2:

Then we can rewrite (6-16) as�
2k21l1;1m1C k12k21l2;1m1� 2k21m1C 2k12l2;1m2C k12k21l1;1m2

�
�1

C
�
2k21l1;2m1C k12k21l2;2m1C 2k12l2;2m2C k12k21l1;2m2� 2k12m2

�
�2

C .k21m
2
1C k12k21m1m2C k12m

2
2/D 0: (6-17)

Since �1; �2 and 1 are linearly independent, the coefficients of �1 and �2 must vanish. Equivalently we
have �

2k21l1;1C k12k21l2;1� 2k21 2k12l2;1C k12k21l1;1
2k21l1;2C k12k21l2;2 2k12l2;2C k12k21l1;2� 2k12

��
m1
m2

�
D 0: (6-18)

Let MK be the coefficient matrix

MK D

�
2k21l1;1C k12k21l2;1� 2k21 2k12l2;1C k12k21l1;1

2k21l1;2C k12k21l2;2 2k12l2;2C k12k21l1;2� 2k12

�
:

Our goal is to show that Mk is nonsingular, which immediately implies m1 Dm2 D 0 and completes the
proof of Theorem 1.5. The proof of the nonsingularity of Mk is divided into the following three cases.

Case 1: K D A2. Then we can write (6-18) as�
2l1;1�l2;1�2 2l2;1�l1;1
2l1;2�l2;2 2l2;2�l1;2�2

��
m1
m2

�
D 0: (6-19)

We note that

.l1;1; l1;2; l2;1; l2;2/ 2
˚
.2; 0; 0; 0/; .0; 0; 0; 2/; .2; 2; 0; 2/; .2; 0; 2; 2/; .2; 2; 2; 2/

	
:

Then it is easy to see that MK is nonsingular when .l1;1; l1;2; l2;1; l2;2/ belongs the above set.

Case 2: K D B2. Then we can write (6-18) as�
2l1;1�l2;1�2 l2;1�l1;1
2l1;2�l2;2 l2;2�l1;2�1

��
m1
m2

�
D 0: (6-20)
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We note that

.l1;1; l1;2; l2;1; l2;2/2
˚
.2; 0; 0; 0/; .2; 0; 4; 2/; .4; 2; 4; 2/; .0; 0; 0; 2/; .2; 2; 0; 2/; .2; 2; 4; 4/; .4; 2; 4; 4/

	
From the above set, we can see that 4 j .l2;1� l1;1/.2l1;2� l2;2/. As a result, if the determinant of MK

is 0, we have to make 4 j .2l1;1� l2;1� 2/, which forces l2;1 � 2 .mod 4/. However, this is impossible
according to the above list. Thus Mk is nonsingular in this case.

Case 3: K DG2. Then we can write (6-18) as�
6l1;1�3l2;1�6 2l2;1�3l1;1
6l1;2�3l2;2 2l2;2�3l1;2�2

��
m1
m2

�
D 0: (6-21)

We note that

.l1;1; l1;2; l2;1; l2;2/ 2
˚
.2; 0; 0; 0/; .2; 0; 6; 2/; .6; 2; 6; 2/; .6; 2; 12; 6/; .8; 4; 12; 6/; .8; 4; 12; 8/;

.0; 0; 0; 2/; .2; 2; 0; 2/; .2; 2; 6; 6/; .6; 4; 6; 6/; .6; 4; 12; 8/
	
:

From the above list, we have 3 j l2;1; then we get 9 j .2l2;1� 3l1;1/.6l1;2� 3l2;2/. On the other hand, we
see that

l1;1 � 0; 2 .mod 3/ and l2;2 � 0; 2 .mod 3/;

which implies .6l1;1�3l2;1�6/.2l2;2�3l1;2�2/ is not multiple of 9; therefore we have the determinant
of MK is not zero. Thus Mk is nonsingular when K DG2.

Theorem 1.5 is established. �

Finally we prove Theorems 1.2 and 1.6.

Proof of Theorems 1.2 and 1.6. Suppose there exists a sequence of blowup solutions .uk1 ; u
k
2/ of (1-2)

with .�1; �2/D .�k1 ; �
k
2 /. First, we prove Theorem 1.2. From the previous discussion of this section, we

get that at least one component (say uk1) of uk has fast decay on a small ball B near each blowup point q,
which means uk1.x/!�1 if x 62 S and x is not a blowup point. Hence Theorem 1.2 holds.

Because the mass distribution of uk1 concentrates as k!C1, we get that limk!C1 �k1 is equal to the
sum of the local mass �1 at a blowup point q, which implies �1 2 �1, a contradiction to the assumption.
Thus, we finish the proof of Theorem 1.6. �
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BEYOND THE BKM CRITERION FOR THE 2D RESISTIVE
MAGNETOHYDRODYNAMIC EQUATIONS

LÉO AGÉLAS

The question of whether the two-dimensional (2D) magnetohydrodynamic (MHD) equations with only
magnetic diffusion can develop a finite-time singularity from smooth initial data is a challenging open prob-
lem in fluid dynamics and mathematics. In this paper, we derive a regularity criterion less restrictive than
the Beale–Kato–Majda (BKM) regularity criterion type, namely any solution .u; b/ 2 C.Œ0;T ŒIH r .R2//

with r > 2 remains in H r .R2/ up to time T under the assumption thatZ T

0

kru.t/k
1
2
1

log.eCkru.t/k1/
dt <C1:

This regularity criterion may stand as a great improvement over the usual BKM regularity criterion,
which states that if

R T

0
kr �u.t/k1 dt <C1 then the solution .u; b/ 2 C.Œ0;T ŒIH r .R2// with r > 2

remains in H r .R2/ up to time T. Furthermore, our result applies also to a class of equations arising in
hydrodynamics and studied by Elgindi and Masmoudi (2014) for their L1 ill-posedness.

Introduction

Magnetohydrodynamic (MHD) equations describe the evolution of electrically conducting fluids in the
presence of electric and magnetic fields. Examples of such fluids include plasmas, liquid metals, and salt
water or electrolytes. The field of MHD was initiated by Hannes Alfvén [1942], for which he received
the Nobel Prize in physics in 1970. It addresses laboratory as well as astrophysical plasmas and therefore
is extensively used in very different contexts. In astrophysics, its applications range from solar wind
[Marsch and Tu 1994], to the sun [Priest 1982; Priest and Forbes 2000], to the interstellar medium [Ng
et al. 2003] and beyond [Zweibel and Heiles 1997]. At the same time, MHD is also relevant to large-scale
motion in nuclear fusion devices such as tokamaks [Strauss 1976]. A tokamak is a toroidal device in
which hydrogen isotopes in the form of a plasma reaching a temperature on the order of hundreds of
millions of Kelvins is confined thanks to a very strong applied magnetic field. Tokamaks are used to study
controlled fusion and are considered as one of the most promising concepts to produce fusion energy
in the near future. However the main problem with this approach of confinement is that hydrodynamic
instabilities arise. Numerical simulations using the MHD models are therefore of uttermost importance.
Further, the proof of the existence of a smooth strong solution would allow one to guarantee a priori the
convergence of some numerical approximations; see for instance [Chernyshenko et al. 2007].

MSC2010: 35Q31, 35Q61.
Keywords: MHD, Navier–Stokes, Euler, BKM criterion.
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Due to their prominent roles in modeling many phenomena in astrophysics, geophysics and plasma
physics, the MHD equations have been studied extensively mathematically. Furthermore, while the
differences in behavior between the two-dimensional (2D) and three-dimensional (3D) hydrodynamical
turbulence of neutral fluids are accepted to be important, those of the MHD system in both cases are
conventionally believed to be nonsignificant [Biskamp and Schwarz 2001]. Strong statements were made
by some authors that 2D simulations can be safely used to model 3D situations because the properties
of the 2D and the 3D MHD turbulence are essentially the same [Biskamp 1993; Biskamp and Schwarz
2001].

Hence, the mathematical studies on the MHD equations in the two-dimensional case appear highly
relevant. However up to now, the question of the spontaneous appearance of a singularity from a local
classical solution of the partially viscous 2D MHD (2) or 2D inviscid MHD ((2) without the Laplacian
term) remains a challenging open problem in mathematical fluid mechanics. Thus, in the absence of a
well-posedness theory, the development of blow-up/nonblow-up theory is of major importance for both
theoretical and practical purposes. Indeed, for a mathematical or numerical test of the actual finite-time
blow-up of a given solution, it is important to have a good blow-up criterion. Thus, there have been
many computational attempts to find finite-time singularities of the 2D MHD equations; see [Brachet
et al. 2013; Kerr and Brandenburg 1999; Tran et al. 2013a]. Moreover, recent works on the 2D MHD
equations developed regularity criteria in terms of the velocity field and dealt with the MHD equations
with dissipation and magnetic diffusion given by general Fourier multiplier operators such as the fractional
Laplacian operators; see [Wu 2003; 2008; 2011; Chen et al. 2010; Tran et al. 2013b; Jiu and Zhao 2014;
Cao et al. 2014; Yamazaki 2014a; 2014b].

Among all the regularity criteria, one of particular interest is the Beale–Kato–Majda criterion, well-
known for Euler equations, and extended in [Caflisch et al. 1997] to the inviscid MHD equations, under
the assumption on both velocity field and magnetic field

R T
0 .k!.t/kL1 Ckj .t/kL1/ dt <1, where the

vorticity is ! Dr �u and the density is j Dr � b. And so, the Beale–Kato–Majda criterion ensures
that the solution .u; b/ of the inviscid MHD equations is smooth up to time T.

Meanwhile the 2D Euler equation is globally well-posed for smooth initial data; however for the 2D
inviscid MHD equations, the global well-posedness of classical solutions is still a big open problem.
Despite recent developments on regularity criteria, see [Gala et al. 2017; Tran et al. 2013b; Jiu and
Zhao 2014; 2015; Yamazaki 2014a; 2014b; Agélas 2016; Ye and Xu 2014; Fan et al. 2014], the global
regularity issue of 2D MHD equations (2) remains a challenging open problem to date. The main reason
for the unavailability of a proof of global regularity for the system of equations (2) is due to the quadratic
coupling between u and b which invalidates the vorticity conservation. Indeed, the structure of the
vorticity is instantaneously altered due to the effects of the magnetic fields. This fact is the source of the
main difficulty connected to the global existence of classical solutions, where no strong global a priori
estimates are yet known. This difficulty is revealed through the equations of the 2D inviscid MHD
equations governing the vorticity ! D @1u2� @2u1 and the current density j D @1b2� @2b1,�

@t!Cu � r! D b � rj ;

@tj Cu � rj D b � r!CT .ru;rb/;
(1)
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where,
T .ru;rb/D 2@1b1.@2u1C @1u2/C 2@2u2.@2b1C @1b2/:

We observe that the magnetic field contributes in the last nonlinear part of the second equation with the
quadratic term T .ru;rb/.

By virtue of this difficulty, no a priori uniform bound for k!kL1.R2�Œ0;T �/ is known for the 2D MHD
equations with only magnetic diffusion (2). Further in [Fan et al. 2014; Jiu and Zhao 2015; Agélas
2016], by considering Fourier multiplier operators magnetic diffusion slightly stronger than the Laplacian
magnetic diffusion, the authors were able to obtain a uniform bound of krj kL1.Œ0;T �IL1.R2// and then
from the first equation of (1) obtain a uniform bound of k!kL1.R2�Œ0;T �/ deriving from estimates for
transport equations; see for instance Lemma 4.1 in [Kato and Ponce 1988].

However, the approach used in [Fan et al. 2014; Jiu and Zhao 2015; Agélas 2016], based on the
properties of the heat equation by using singular integral representations of (2), fails in the case where we
have only a Laplacian magnetic diffusion.

Then, in this paper, we consider the initial-value problem for the 2D incompressible magnetohydrody-
namic equations with Laplacian magnetic diffusion,8̂<̂

:
@tuC .u � r/uD�rpC .b � r/b;

@tbC .u � r/b��b D .b � r/u;

r �uD 0; r � b D 0;

(2)

with initial conditions
u.x; 0/D u0.x/ for a.e. x 2 R2;

b.x; 0/D b0.x/ for a.e. x 2 R2;
(3)

which models many significant phenomena such as the magnetic reconnection in astrophysics and
geomagnetic dynamo in geophysics; see [Priest and Forbes 2000]. The problem of global well-posedness
of the 2D MHD equations with partial dissipation and magnetic diffusion has generated considerable
interest recently [Cao and Wu 2011; Chae 2008; Jiu and Niu 2006; Lei and Zhou 2009; Zhou and Fan
2011; Jiu and Zhao 2015]. However, as of now, the problem of uniqueness and global regularity of the
2D MHD system (2) remains widely open.

Let us take a new look at the main obstruction. We start by noting that we can rewrite the first equation
of (1) satisfied by !, the vorticity of u, as

@t!C .u � r/! D F � b1 b � ru2C b2 b � ru1; (4)

where
F D b1.�b2C b � ru2/� b2.�b1C b � ru1/:

Furthermore, a uniform bound of k�bC .b � r/ukL1.R2�Œ0;T �/ was shown recently in [Yuan and Zhao
2018] (in Section 4 we give a sketch of the proof). Moreover, we get a uniform bound of kbkL1.R2�Œ0;T �/

deriving from some estimates for the linear Stokes system, see [Giga and Sohr 1991], hence we deduce a
uniform bound for kFkL1.R2�Œ0;T �/. Then, we notice that our (4) fits with the study made in [Elgindi
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and Masmoudi 2014] about L1 ill-posedness for a class of equations arising in hydrodynamics. Thus,
by virtue of ruD R.! Id/, where R is the Riesz transform on 2�2 matrix-valued functions, see (18), we
understand that the main obstruction comes from the fact that Riesz transforms do not map L1 into itself.

Let us specify the way in which the obstruction is characterized. We refer to Section 1 for the notation
used. By using the logarithmic Sobolev inequality proved in [Kozono and Taniuchi 2000],

krf kL1.R2/ . 1Ckr � f kL1.R2/.1C logC kf kW s;p.R2// with p > 1; s > 1C
2

p
;

where r �f D 0, r�f D�@2f1C@1f2 is the vorticity of f and logC xDmax.0; log x/ for any x > 0,
we infer that for all t 2 Œ0;T Œ,

kru.t/k1 .r 1Ck!.t/k1.1C logC ku.t/kH r / (5)

and also
k.ru;rb/.t/k1 .r 1Ck.!; j /.t/k1.1C logC k.u; b/.t/kH r /: (6)

Then thanks to (5) and by using estimates for transport equations, see for instance Lemma 4.1 in [Kato
and Ponce 1988], from (4) we infer that for all t 2 Œ0;T Œ

k!.t/k1.r k!0k1C

Z t

0

.kF.s/k1Ckb.s/k
2
1/dsC

Z t

0

kb.s/k21k!.s/k1 .1ClogC ku.s/kH r /ds; (7)

where r > 2. As a consequence of the Grönwall lemma, we deduce

k!.t/k1 � cr

�
k!0k1C

Z t

0

.kF.s/k1Ckb.s/k
2
1/ ds

�
ecr

R t

0kb.s/k
2
1.1ClogC ku.s/kH r /ds; (8)

where cr > 0 is a real number depending only on r . Thus, the main obstruction to getting global regularity
comes from the term in logarithm which appears in (8), namely logC ku.s/kH r . Nevertheless, thanks to
(5), (7) and the estimate

k.u; b/.t/kH r � k.u0; b0/kH r e�r

R t

0k.ru;rb/.�/k1 d� (9)

in the Hilbert space H r, we obtain a new estimate of kru.t/k1 in Lemma 5.1, which leads to a new
regularity criterion in Theorem 5.3. Our new regularity criterion states that ifZ T

0

kru.t/k
1
2
1

log.eCkru.t/k1/
dt <C1

then the solution .u; b/ of the 2D MHD equations (2) remains smooth up to time T. This new
regularity criterion appears less restrictive than the BKM regularity criterion, which states that ifR T

0 kr �u.t/k1 dt <C1 then the solution .u; b/ of the 2D MHD equations (2) remains smooth up to
time T. Indeed, by ruD R..r �u/ Id/ with R the Riesz transform on matrix-valued functions, we get

krukBMO.R2/ . kr �ukBMO.R2/;

and for any 1< q <1

krukLq.R2/ . kr �ukLq.R2/:
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We thus expect that the blow-up rate at a time T of kru.t/k1 behaves like the one of kr � u.t/k1 �

.log.eCkr �u.t/k1//
 for a given  � 0 and due to the exponent 1

2
in our regularity criterion, we can

expect a great improvement over the usual BKM regularity criterion.
The paper is organized as follows:

� In Section 1, we give some notation and introduce the functional spaces.

� In Section 2, we deal with the local well-posedness of the Cauchy problem of the partially viscous
magnetohydrodynamic system (2).

� In Section 3, we give two energy estimates and some estimates from the properties of heat equation
by using singular integral representations of equations.

� In Section 4, we recall and give a sketch of the proof of new estimates obtained in [Yuan and Zhao
2018] related to the term �bC .b � r/u.

� In Section 5, we give a new estimate for kru.t/k1 in Lemma 5.1 and from this estimate, we obtain
a new regularity criterion in Theorem 5.3 less restrictive than the BKM regularity criterion.

1. Some notation

For any Banach space Z, we endow the Banach space Z�Z with the norm defined for all .f;g/2Z�Z

by k.f;g/kZ�Z WDkf kZCkgkZ , and for simplicity in the notation, we use k.f;g/kZ for k.f;g/kZ�Z .
We use X . Y to denote the estimate X � C Y for an absolute constant C . If we need C to depend on a
parameter, we shall indicate this by subscripts; thus, for instance, X .s Y denotes the estimate X � CsY

for some Cs depending on s.
For any f 2Lp.R2/, with 1�p�1, we denote by kf kp and kf kLp , the Lp-norm of f . We denote

by BMO.R2/ the space of functions of bounded mean oscillation equipped with the norm

kf kBMO WD sup
x2R2; r>0

1

jBx;r j

Z
Bx;r

jf .y/�fBx;r
j dy;

where Bx;r is the ball of radius r centered at x, jBx;r j its measure and fBx;r
WD .1=jBx;r j/

R
Bx;r

f .y/ dy.
We denote by Id the 2� 2 identity matrix.

Given an absolutely integrable function f 2L1.R2/, we define the Fourier transform Of W R2 7�! C by
the formula,

Of .�/D

Z
R2

e�2�ix��f .x/ dx;

and extend it to tempered distributions. We will use also the notation F.f / for the Fourier transform
of f . We define also the inverse Fourier transform Lf W R2 7�! C by the formula,

Lf .x/D

Z
R2

e2�ix��f .�/ d�:

For s 2 R, we define the Sobolev norm kf kH s.R2/ of a tempered distribution f W R2 7�! R by

kf kH s.R2/ D

�Z
R2

.1Cj�j2/sj Of .�/j2 d�

�1
2

;
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and then we denote by H s.R2/ the space of tempered distributions with finite H s.R2/-norm, which
matches when s is a nonnegative integer with the classical Sobolev space H k.R2/, k 2N. The Sobolev
space H s.R2/ can be written as H s.R2/D J�sL2.R2/ where J D .1��/

1
2 .

For s > �1, we also define the homogeneous Sobolev norm,

kf k PH s.R2/
D

�Z
R2

j�j2s
j Of .�/j2 d�

�1
2

; (10)

and then we denote by PH s.R2/ the space of tempered distributions with finite PH s.R2/-norm. We use the
Fourier transform to define the fractional Laplacian operator .��/˛, �1< ˛ � 1, as follows:

3.��/˛f .�/D j�j2˛ Of .�/:
We denote by H s

� .R
2/ the Sobolev space H s

� .R
2/ WD f 2H s.R2/2 W div D 0g.

We denote by P the projector onto divergence-free vector fields given by PD Id�r��1 div. The
operator P, which acts on vector-valued functions, is a projection: P is equal to P2, annihilates gradients
and maps into solenoidal (divergence-free) vectors; it is a bounded operator from (vector-valued) Lq to
itself for all 1< q <1 and commutes with translation. We can notice that the operator P can be written
in the form

PD Id�r��1 div; (11)

which yields the Helmholtz decomposition; indeed for all v 2Lq.R2/2, 1< q <1,

v D PvCr ; with div Pv D 0;

 D��1 div v:
(12)

2. Local regularity of solutions of the 2D MHD equations

This section is devoted to the local well-posedness of the 2D MHD equations. By using P, the matrix
Leray operator, the first equation of (2) can be rewritten as

@u

@t
CP

�
.u � r/u� .b � r/b

�
D 0: (13)

For a solution .u; b/ of (2), let us introduce the vorticity ! D r � uD �@2u1C @1u2 and the current
density j D r � b D �@2b1C @1b2. Applying r � to the equations of (2), we obtain the governing
equations for ! and j �

@t!C .u � r/! D .b � r/j ;

@tj C .u � r/j ��j D .b � r/!CT .ru;rb/;
(14)

where,
T .ru;rb/D 2 @1b1.@2u1C @1u2/C 2 @2u2.@2b1C @1b2/:

In this section we assume that the initial data satisfies .u0; b0/ 2H r
� .R

2/ with r > 2. Then, we introduce
!0 Dr �u0, the vorticity of u0, and j0 Dr � b, the current density of b0.
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We assume that .u0; b0/ 2H r
� .R

2/ with r > 2, thanks to Theorem 5.1 in [Caflisch et al. 1997], valid
for all integers r � 3, and by using the same arguments as in Proposition 4.3 of [Agélas 2016], valid for
all real numbers r > 2, we get that there exists a time of existence T > 0 such that there exists a unique
strong solution .u; b/ 2 C.Œ0;T Œ;H r

� .R
2// to the 2D MHD equations (2)–(3).

Thanks to the Beale–Kato–Majda (BKM) criterion obtained in [Caflisch et al. 1997] for any integer
r � 3 and extended in Proposition 4.2 of [Agélas 2016] for any real r > 2, we get that if .u; b/ 62
C.Œ0;T �;H r

� .R
2//, then we have Z T

0

k.!; j /.t/kL1 dt DC1: (15)

From the first equation of (2), we can retrieve the pressure p from .u; b/ with the formula

p D���1 div..u � r/u� .b � r/b/: (16)

Since r �uD 0 and r � b D 0, we get .u � r/uDr � .u˝u/ and .b � r/b Dr � .b˝ b/. Then by (16),

p D���1 divr � .u˝u� b˝ b/: (17)
By introducing

R WD��1 divr� (18)

the Riesz transform on 2� 2 matrix-valued functions on R2, we get

p D�R.u˝u� b˝ b/: (19)

Since .u; b/ 2 C.Œ0;T Œ;H r .R2// with r > 2, we get p 2 C.Œ0;T Œ;H r .R2//. Lemma X4 in [Kato and
Ponce 1988] (see also [Bahouri et al. 2011, Corollary 2.86, pp. 104] for which the Besov space Bs

2;2

matches with H s) states that L1.R2/\H s.R2/ is an algebra for any s > 0; i.e., for any f 2H s.R2/ and
g 2H s.R2/, we have kfgkH s . kf kH skgk1Ckf k1kgkH s . This lemma and the use of the Sobolev
embedding H r .R2/ ,!L1.R2/, since r > 2, yield for all f 2H r .R2/ and g 2H r .R2/,

kfgkH r . kf kH r kgkH r : (20)

Then owing to .u; b/ 2 C.Œ0;T Œ;H r .R2//, thanks to the L2-boundedness of the Riesz transforms and
(20) from (19) we infer that p 2 C.Œ0;T Œ;H r .R2//.

Similarly to Proposition 4.1 in [Agélas 2016], we get the following local estimates in the higher Sobolev
norm H r : there exists a real �r > 0 depending only on r such that for all t 2 Œ0;T Œ

k.u; b/.t/kH r � k.u0; b0/kH r e�r

R t

0k.ru;rb/.�/k1 d�: (21)

3. Some estimates

In this section, we give some estimates related to the solutions of the 2D MHD equations (2).

Energy estimates. We recall some energy estimates. We state here the two following energy estimates
given in [Tran et al. 2013b; Lei and Zhou 2009; Agélas 2016]: for all t 2 Œ0;T �Œ

ku.t/k22Ckb.t/k
2
2C 2

Z t

0

krb.�/k22 d� D ku0k
2
2Ckb0k

2
2 (22)
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and we get also that for all t 2 Œ0;T �Œ

k!.t/k22Ckj .t/k
2
2C

Z t

0

krj .�/k22 d� � .k!0k
2
2Ckj0k

2
2/e

C.ku0k
2
2
Ckb0k

2
2
/; (23)

where C > 0 is an absolute constant.

Some estimates deriving from heat equation. In the lemma just below, we give the details (often omitted)
of the proof of some estimates deriving from the properties of the heat kernel.

Lemma 3.1. Let .u0; b0/ 2 H r .R2/ with r > 2 and let T > 0 be such that there exists .u; b/ 2
C.Œ0;T Œ;H r

� .R
2// a solution of the 2D MHD equations (2)–(3). Then there exists a real C1 > 0

depending only on k.u0; b0/kH r, r and T such that

kbkL1.R2�Œ0;T �/ � C1:

For any real p > 1 and q > 2, we have also three real C2 > 0, C3 > 0 and C4 > 0 depending only on
k.u0; b0/kH r, p, q, r and T such that

krbkL1.Œ0;T ��Lq.R2// � C2;

krukL1.Œ0;T ��Lq.R2// � C3;

kr
2bkLp.Œ0;T ��Lq.R2// � C4:

Proof. For this, we write the second equation of (2) under its integral form; then we have for all t 2 Œ0;T Œ

b.t/D et�b0C

Z t

0

e.t�s/�..b � r/u.s/� .u � r/b.s// ds: (24)

Then by using inequality (2.3) in [Kato 1984], we gete.t�s/�..b � r/u.s/� .u � r/b.s//

1
. .t � s/�

2
3 k.b � r/u.s/� .u � r/b.s/k 3

2

. .t � s/�
2
3

�
kb.s/k6 kru.s/k2Cku.s/k6 krb.s/k2

�
:

As a consequence, from (24) we get,

kb.t/k1 . kb0k1C

Z t

0

.t � s/�
2
3

�
kb.s/k6 kru.s/k2Cku.s/k6 krb.s/k2

�
ds: (25)

Since kb.s/k6 . kb.s/kH 1 , ku.s/k6 . ku.s/kH 1 and krb.s/k2 D kj .s/k2, we have kru.s/k2 D

k!.s/k2 due to the facts r �b.s/D 0 and r �u.s/D 0; then thanks to (22) and (23), from (25) we deduce
that there exists a real C0 > 0 depending only on k.u0; b0/k2, k.!0; j0/k2 such that for all t 2 Œ0;T Œ

kb.t/k1 . kb0k1CC0 .T /
1
3 : (26)

Owing to (26) and thanks to the Sobolev embedding H r .R2/ ,!L1.R2/ since r > 2, we deduce that
there exists a real C1 > 0 depending only on k.u0; b0/kH r, r and T such that for all t 2 Œ0;T Œ

kb.t/k1 � C1; (27)
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which concludes the first part of the proof. By virtue of (24), we get that for all t 2 Œ0;T Œ

rb.t/D et�
rb0C

Z t

0

re.t�s/�
�
.b � r/u.s/� .u � r/b.s/

�
ds: (28)

Let 2q=.q C 2/ < ˛ < 2. Notice that 2q=.q C 2/ > 1 since q > 2 and hence ˛ > 1. Then by using
inequality (2.30) in [Kato 1984], from (28) we deduce

krb.t/kq .q krb0kqC

Z t

0

.t � s/�.
1
2
C 1
˛
� 1

q
/.b � r/u.s/� .u � r/b.s/

˛
ds: (29)

Further, thanks to the Hölder inequality, we have k.b � r/u.s/k˛ � kb.s/k 2˛
2�˛
kru.s/k2 and we also get

kb.s/k 2˛
2�˛
.˛ kb.s/k

2�˛
˛

2
krb.s/k

2.˛�1/
˛

2

thanks to a Gagliardo–Nirenberg inequality. Hence, we deduce for any s 2 Œ0;T Œ

k.b � r/u.s/k˛ .˛ kb.s/k
2�˛
˛

2
krb.s/k

2.˛�1/
˛

2
kru.s/k2

.˛ kb.s/k
2�˛
˛

2
kj .s/k

2.˛�1/
˛

2
k!.s/k2

.˛ k.u; b/.s/k
2�˛
˛

2
k.!; j /.s/k

3˛�2
˛

2
:

Similarly, we get also k.u � r/b.s/k˛ .˛ k.u; b/.s/k
2�˛
˛

2
k.!; j /.s/k

3˛�2
˛

2
. By virtue of the two latter

inequalities, it is inferred that for all s 2 Œ0;T Œ.b � r/u.s/� .u � r/b.s/
˛
.˛ k.u; b/.s/k

2�˛
˛

2
k.!; j /.s/k

3˛�2
˛

2
: (30)

Thanks to the energy estimates (22) and (23), we have k.u; b/.s/k2 � k.u0; b0/k2 and k.!; j /.s/k2 �
k.!0; j0/k2eck.u0;b0/k2 with c > 0 an absolute constant. Then by setting

�0 WD k.u0; b0/k2Ck.!0; j0/k2eck.u0;b0/k2 ;

from (30) we deduce that for all s 2 Œ0;T Œ.b � r/u.s/� .u � r/b.s/
˛
.˛ �2

0: (31)

After plugging inequality (31) into (29), we obtain that for all t 2 Œ0;T Œ

krb.t/kq .q;˛ krb0kqC �
2
0

Z t

0

.t � s/�.
1
2
C 1
˛
� 1

q
/ ds

.q;˛ krb0kqC �
2
0T

qC2
2q
� 1
˛ : (32)

We choose ˛ D 1
2
.2C 2q=.qC 2//. Thanks to a Gagliardo–Nirenberg inequality, for any q > 2 we have

the Sobolev embedding H r .R2/ ,! PW 1;q.R2/ since r > 2; then owing to (32) we deduce that there
exists a real C2 > 0 depending only on k.u0; b0/kH r, T , r and q such that for all t 2 Œ0;T Œ

krb.t/kq � C2; (33)

which concludes the second part of the proof.
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To get an estimate of k!kL1.Œ0;T �ILq/, we borrow some arguments used in [Jiu and Zhao 2015].
Thanks to the Lp �Lq maximal regularity of the Laplacian operator, see for example [Giga and Sohr
1991], from the second equation of (2), we get that for all t 2 Œ0;T Œ, p > 1 and q > 2Z t

0

kr
2b.s/kpq .p;q

Z t

0

.b � r/u.s/� .u � r/b.s/p

q
ds

.p;q

Z t

0

�
kb.s/k

p
1 k!.s/k

p
q Cku.s/k

p
1 krb.s/kpq

�
ds; (34)

where we have used the fact that kru.s/kq .q k!.s/kq; see Theorem 3.1.1 in [Chemin 1998]. Then, we
multiply the first equation of (14) by !j!jq�2, integrate it over R2 and use the fact that r �uD 0 to obtain

1

q

d

dt
k!.t/kqq D

Z
R2

b.x; t/ � rj .x; t/!.x; t/j!.x; t/jq�2 dx

� kb.t/k1 krj .t/kq k!.t/k
q�1
q ;

which yields for all t 2 Œ0;T Œ

1

2

d

dt
k!.t/k2q � kb.t/k1 krj .t/kq k!.t/kq:

After an integration over Œ0; t � of the inequality just above, we obtain

k!.t/k2q � k!0k
2
qC 2

Z t

0

kb.s/k1 krj .s/kqk!.s/kq ds

� k!0k
2
qC

Z t

0

�
krj .s/k2qCkb.s/k

2
1 k!.s/k

2
q

�
ds (35)

Then thanks to (34), from (35) we infer that for all t 2 Œ0;T Œ

k!.t/k2q . k!0k
2
qC

Z t

0

�
ku.s/k21 krb.s/k2qCkb.s/k

2
1 k!.s/k

2
q

�
ds: (36)

By using Gagliardo–Nirenberg inequalities, Young inequalities and the fact that kru.s/kq .q k!.s/kq ,
we get

ku.s/k1 .q ku.s/k2Ck!.s/kq: (37)

By virtue of (36) and (37), we get that for all t 2 Œ0;T Œ

k!.t/k2q .q k!0k
2
qC

Z t

0

�
ku.s/k22 krb.s/k2qC .krb.s/k2qCkb.s/k

2
1/k!.s/k

2
q

�
ds: (38)

Thanks to (22), (27) and (33), we deduce that there exists a real C > 0 depending only on k.u0; b0/kH r,
T , r and q such that for all t 2 Œ0;T Œ

k!.t/k2q � C CC

Z t

0

k!.s/k2q ds: (39)

Thanks to the Grönwall inequality, we infer that for all t 2 Œ0;T Œ

k!.t/k2q � CeC T:
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By using the fact that

kru.t/kq .q k!.t/kq;

we infer that there exists a real C3> 0 depending only on k.u0; b0/kH r, T and q such that for all t 2 Œ0;T Œ

kru.t/kq � C3; (40)

which concludes the third part of the proof. By using (37) in (34) and thanks to (40), (22), (27) and (33),
we complete the proof. �

4. Some new estimates

We give a sketch of the proof of Lemma 4.1 obtained in [Yuan and Zhao 2018] by exploiting the special
structure of the 2D MHD equations (2).

Lemma 4.1. Let .u0; b0/ 2 H r .R2/ with r > 2 and let T > 0 be such that there exists .u; b/ 2
C.Œ0;T Œ;H r

� .R
2// a solution of the 2D MHD equations (2)–(3). Then there exists a real C > 0 depending

only on k.u0; b0/kH r, r and T such that

k�bC .b � r/ukL1.Œ0;T �IL1.R2// � C; (41)

and we have also that for any real p � 2 and q � 2,

kr.�bC .b � r/u/kLp.Œ0;T �ILq.R2// � C: (42)

Although we can deduce the proof of Lemma 4.1 from [Yuan and Zhao 2018], we prefer to give here
the details of its proof, as it is at the heart of the improvements obtained in this paper. For this, we borrow
some arguments used in [Yuan and Zhao 2018]. We start the proof by writing the equation satisfied by
F WD�bC .b � r/u, that is,

@tF��FD�.b � r/P..u � r/u/C .b � r/P..b � r/b/��..u � r/b/

�ru .u � r/bCru .b � r/uCru�b: (43)

This equation is obtained by applying .b � r/ and � respectively to the first equation of (13) and second
equation of (2), multiplying the second equation of (2) by ru and then adding the resulting equations
together. Then, by writing (43) in its integral form and using the facts that r �uD 0 and r �bD 0, we get
for all t 2 Œ0;T Œ

F.t/D et�F.0/C

Z t

0

re.t�s/�
�
b.s/˝P..u � r/u/.s/� b.s/˝P..b � r/b/.s/

�
ds

C

Z t

0

re.t�s/�
r..u � r/b/.s/ ds

C

Z t

0

e.t�s/�
�
�ru.s/ .u.s/ � r/b.s/Cru.s/ .b.s/ � r/u.s/Cru.s/�b.s/

�
ds: (44)
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Then using inequalities (2.3) and (2.30) of [Kato 1984] stated for 1< p � q <C1 but remaining true for
q D1, we obtain for all t 2 Œ0;T Œ

kF.t/k1�kF.0/k1C

Z t

0

.t�s/�
5
6

�b.s/˝P..u�r/u/.s/�b.s/˝P..b�r/b/.s/
�

3
ds

C

Z t

0

.t�s/�
5
6 kr..u�r/b/.s/k3 ds

C

Z t

0

.t�s/�
1
2

�ru.s/.u.s/�r/b.s/Cru.s/.b.s/�r/u.s/Cru.s/�b.s/


2
ds: (45)

By using the fact that P is a bounded operator from (vector-valued) Lq to itself for all 1< q <1 and
the Hölder inequality, we get.b.s/˝P..u � r/u/.s/� .b.s/˝P..b � r/b/.s/


3

. kb.s/k1 ku.s/k6 kru.s/k6Ckb.s/k1 kb.s/k6 krb.s/k6;

kr..u � r/b/.s/k3 . kru.s/k6 krb.s/k6Cku.s/k6 kr
2b.s/k6;�ru.s/ .u.s/ � r/b.s/Cru.s/ .b.s/ � r/u.s/Cru.s/�b.s/


2

. kru.s/k6 ku.s/k6krb.s/k6Ckru.s/k26 kb.s/k6Ckru.s/k6 k�b.s/k3:

(46)

Furthermore, thanks to a Gagliardo–Nirenberg interpolation inequality and the fact that, since r �u.s/D 0,
r � b.s/D 0, we have kru.s/k2 D k!.s/k2 and krb.s/k2 D kj .s/k2, we get

ku.s/k6 . ku.s/k
1
3

2
k!.s/k

2
3

2
; kb.s/k6 . kb.s/k

1
3

2
kj .s/k

2
3

2
: (47)

After plugging (47) into (46) and using Lemma 3.1 with the energy inequalities (22), (23), from (45) we
infer that there exists a real C0 > 0 depending only on k.u0; b0/kH r, r and T such that for all t 2 Œ0;T Œ

kF.t/k1 . C0

�
1C

Z t

0

.t � s/�
5
6 .1Ckr2b.s/k6/C .t � s/�

1
2 .1Ck�b.s/k3/ ds

�
: (48)

Thanks to the Hölder inequality used with the pairs of exponents
�

7
6
; 7
�

and
�

3
2
; 3
�
, from (48) we deduce

that for all t 2 Œ0;T Œ

kF.t/k1 . C0CC0

�Z t

0

.t � s/�
35
36 ds

�6
7
�Z t

0

.1Ckr2b.s/k6/
7 ds

�1
7

CC0

�Z t

0

.t � s/�
3
4 ds

�2
3
�Z t

0

.1Ck�b.s/k3/
3 ds

�1
3

;

which yields

kF.t/k1 . C0

�
1C t

1
42

�Z t

0

.1Ckr2b.s/k76/ ds

�1
7

C t
1
6

�Z t

0

.1Ck�b.s/k33/ ds

�1
3
�
: (49)
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Then, thanks again to Lemma 3.1, from (49) one obtains that there exists a real C1 > 0 depending only
on k.u0; b0/kH r, r and T such that for all t 2 Œ0;T Œ

kF.t/k1 � C1;

which gives us (41), the first inequality of Lemma 4.1.
For the second inequality of Lemma 4.1, we use the Lp �Lq maximal regularity of the Laplacian

operator [Giga and Sohr 1991]; one has for any 1< p <1, 1< q <1 and g D
R t

0 e.t�s/�f ,

kr
2gkLp.Œ0;T �ILq.R2// .p;q kf kLp.Œ0;T �ILq.R2//: (50)

Then, with the expression of rF.t/ obtained from (44) and by using (50), inequality (2.30) of [Kato 1984],
Lemma 3.1 and the energy inequalities (22), (23), we obtain in a similar way (42), the second inequality
of Lemma 4.1.

5. A new blow-up criterion

In this section, we give a new estimate for kru.t/k1 in Lemma 5.1 and from this estimate, we obtain a
new regularity criterion in Theorem 5.3 which is less restrictive than the BKM regularity criterion.

Lemma 5.1. Let .u0; b0/ 2 H r .R2/ with r > 2 and let T > 0 be such that there exists .u; b/ 2
C.Œ0;T Œ;H r

� .R
2// a solution of the 2D MHD equations (2)–(3). Then there exists a real 0> 0 depending

only on k.u0; b0/kH r, T and r such that for all t 2 Œ0;T Œ

kru.t/k1 � exp
�
0 exp

�
0

Z t

0

kru.s/k
1
2
1

log.eCkru.s/k1/
ds

��
: (51)

Proof. We begin the proof with the following logarithmic Sobolev inequality, which is proved in [Kozono
and Taniuchi 2000], see inequality (4.20), and stands as an improved version of that in [Beale et al. 1984]:

krf kL1.R2/ . 1Ckr � f kL1.R2/.1C logC kf kW s;p.R2// with p > 1; s > 1C
2

p
; (52)

where r �f D 0, r�f D�@2f1C@1f2 is the vorticity of f and logC xDmax.0; log x/ for any x > 0.
Thus, by virtue of (52), we get that for all t 2 Œ0;T Œ

kru.t/k1 � ˇr Cˇrk!.t/k1.1C logC ku.t/kH r /; (53)

where ˇr > 0 is a real depending only on r . Let us give an estimate of the term 1C logC ku.t/kH r .
Thanks to (21), we get that there exists a real �r > 0 depending only on r such that for all t 2 Œ0;T Œ

k.u; b/.t/kH r � k.u0; b0/kH r e�r

R t

0k.ru;rb/.�/k1 d� : (54)

After taking the logarithm in the inequality (54), we observe that for all t 2 Œ0;T Œ,

logC k.u; b/.t/kH r � logC k.u0; b0/kH r C �r

Z t

0

k.ru;rb/.�/k1 d�: (55)
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Thanks to Lemma 3.1 and the Sobolev embedding W 2;q.R2/ ,!W 1;1.R2/ with q > 2, we infer that
there exists a real %0 > 0 depending only on r , T and k.u0; b0/kH r such thatZ T

0

krb.�/k1 � %0: (56)

Then owing to (56), from (55) we infer that there exists a real %1 � 1 depending only on r , T and
k.u0; b0/kH r such that for all t 2 Œ0;T Œ

1C logC k.u; b/.t/kH r � %1C �r

Z t

0

kru.s/k1 ds: (57)

Thus, by plugging (57) into (53), we deduce that there exists a real %2> 0 depending only on k.u0; b0/kH r,
T and r such that for all t 2 Œ0;T Œ

kru.t/k1 � ˇr C %2k!.t/k1

�
1C

Z t

0

kru.s/k1 ds

�
: (58)

Now, let us estimate k!.t/k1. We observe that the first equation of (14) can be changed into

@t!Cu � r! D F � b1b � ru2C b2b � ru1; (59)

where F D b1.�b2C b � ru2/� b2.�b1C b � ru1/. By using estimates for transport equations, see for
instance Lemma 4.1 in [Kato and Ponce 1988], we obtain that for all t 2 Œ0;T Œ

k!.t/k1 � k!0k1C c

Z t

0

kF.s/k1 dsC c

Z t

0

kb.s/k21 kru.s/k1 ds; (60)

where c > 0 is a constant. Thanks to Lemmata 3.1 and 4.1, we deduce that there exist two real %3 > 0

and %4 > 0 depending only on k.u0; b0/kH r, T and r such that for all t 2 Œ0;T Œ

c

Z t

0

kF.s/k1 ds � %3;

kb.t/k21 � %4:

(61)

Thus by virtue of (61), from (60) we infer that for all t 2 Œ0;T Œ

k!.t/k1 � k!0k1C %3C c%4

Z t

0

kru.s/k1 ds: (62)

Furthermore, thanks to the Sobolev embedding H r .R2/ ,!W 1;1.R2/ with r > 2, we get

k!0k1 .r ku0kH r : (63)

Hence, owing to (63), from (62) we deduce that there exists a real %5> 0 depending only on k.u0; b0/kH r,
T and r such that for all t 2 Œ0;T Œ

k!.t/k1 � %5C c%4

Z t

0

kru.s/k1 ds: (64)
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By plugging (64) into (58), we infer that there exists a real %6 � 1 depending only on r , T and
k.u0; b0/kH r such that for all t 2 Œ0;T Œ

kru.t/k1 � %6

�
1C

Z t

0

kru.s/k1 ds

�2

; (65)

which yields

kru.t/k
1
2
1 � %

1
2

6

�
1C

Z t

0

kru.s/k1 ds

�
: (66)

We thus introduce the real function J defined for all t 2 Œ0;T Œ by

J.t/ WD %
1
2

6
C %

1
2

6

Z t

0

kru.s/k1 ds: (67)

On one hand, by virtue of (66), thanks to (67) we get that for all t 2 Œ0;T Œ

kru.t/k
1
2
1 � J.t/: (68)

On the other hand, from (67), we infer that for any t 2 Œ0;T Œ

J0.t/D %
1
2

6
kru.t/k1 D

%
1
2

6
kru.t/k

1
2
1

log.eCkru.t/k
1
2
1/

kru.t/k
1
2
1 log.eCkru.t/k

1
2
1/: (69)

Then, owing to (68), from (69), we infer that for all t 2 Œ0;T Œ

J0.t/�
%

1
2

6
kru.t/k

1
2
1

log.eCkru.t/k
1
2
1/

J.t/ log.eC J.t//: (70)

After dividing inequality (70) by eC J.t/, we obtain that for all t 2 Œ0;T Œ

d

dt
log.eC J.t//�

%
1
2

6
kru.t/k

1
2
1

log.eCkru.t/k
1
2
1/

log.eC J.t//: (71)

As a consequence of the Grönwall lemma, from (71) we get for all t 2 Œ0;T Œ

log.eC J.t//� log.eC J.0// exp

 
%

1
2

6

Z t

0

kru.s/k
1
2
1

log.eCkru.s/k
1
2
1/

ds

!
: (72)

From (67), we get J.0/D %
1
2

6
and thanks to (72), we thus obtain for all t 2 Œ0;T Œ

J.t/� exp

 
log.eC %

1
2

6
/ exp

 
%

1
2

6

Z t

0

kru.s/k
1
2
1

log.eCkru.s/k
1
2
1/

ds

!!
: (73)
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Owing to (68) and (73), we obtain that for all t 2 Œ0;T Œ

kru.t/k1 � exp

 
2 log.eC %

1
2

6
/ exp

 
%

1
2

6

Z t

0

kru.s/k
1
2
1

log.eCkru.s/k
1
2
1/

ds

!!
: (74)

Since eCkru.s/k
1
2
1 � .eCkru.s/k1/

1
2 , then we get

log.eCkru.s/k
1
2
1/�

1
2

log.eCkru.s/k1/

and hence from (74) we infer for all t 2 Œ0;T Œ

kru.t/k1 � exp

 
2 log.eC %

1
2

6
/ exp

 
2%

1
2

6

Z t

0

kru.s/k
1
2
1

log.eCkru.s/k1/
ds

!!
;

which concludes the proof. �

Remark 5.2. We observe that the expression of the estimate obtained in Lemma 5.1 for kru.t/k1

makes a double exponential growth appear. This double exponential growth derives from taking into
account in the estimate the term log.eCkru.t/k1/. We thus point out that we have also an upper bound
of kru.t/k1 for which we get only one single exponential growth. Indeed, from (66), thanks to the
Grönwall lemma, we obtain that for all t 2 Œ0;T Œ

kru.t/k
1
2
1 � %

1
2

6
exp

�
%

1
2

6

Z t

0

kru.s/k
1
2
1 ds

�
;

which yields

kru.t/k1 � %6 exp
�

2%
1
2

6

Z t

0

kru.s/k
1
2
1 ds

�
;

where %6 > 0 is a real number depending only on T , r and k.u0; b0/kr .

Let us establish now, a new regularity criterion in the theorem just below.

Theorem 5.3. Let .u0; b0/ 2 H r
� .R

2/ with r > 2 and let T > 0 be such that there exists .u; b/ 2
C.Œ0;T Œ;H r

� .R
2// a solution of the 2D MHD equations (2)–(3). IfZ T

0

kru.t/k
1
2
1

log.eCkru.t/k1/
dt <C1 (75)

then there cannot be blow-up of the solution u in H r .R2/ at the time T , that is, u 2 C.Œ0;T �;H r
� .R

2//.

Proof. Let us assume that (75) holds. For a contradiction, we suppose that u 62 C.Œ0;T �;H r
� .R

2/. Then
we get (15). Thanks to Lemma 3.1 and the Sobolev embedding W 2;q.R2/ ,!W 1;1.R2/ with q > 2, we
infer that

R T
0 kj .t/k1 dt <C1. Then from (15), we get onlyZ T

0

k!.t/k1 dt DC1: (76)
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Thanks to Lemma 5.1, there exists a real %1 > 0 depending only on k.u0; b0/kH r, T and r such that for
all t 2 Œ0;T Œ

kru.t/k1 � exp
�
%1 exp

�
%1

Z t

0

kru.s/k
1
2
1

log.eCkru.s/k1/
ds

��
: (77)

Then from (77) and (75), we infer that
R T

0 kru.t/k1 dt <C1, which implies
R T

0 k!.t/k1 dt <C1.
Then we obtain a contradiction with (76) and hence u2C.Œ0;T �;H r

� .R
2/, which concludes the proof. �

Conclusion

We obtained a new regularity criterion for the two-dimensional resistive magnetohydrodynamic (MHD)
equations which is less restrictive than the BKM regularity criterion (see Theorem 5.3) by using the
logarithmic Sobolev inequality. It is important to find some criteria less restrictive than the BKM
regularity criterion. Indeed, due to the quadratic nonlinearity of the MHD equations, we expect that the
blow-up rate of kru.t/k1 at a time T be at least faster than O.1=.T � t//. Thus, if one investigates
numerically the finite-time singularities of the solutions of such a system of equations and believes
that its numerical solution computed leads to a finite-time blow-up at some time T, then one may
observe a blow-up rate at the time T for kru.t/k of the form O.1=..T � t/ //,  � 1. Further, in all
the recent numerical investigations performed to find finite-time singularities of the 2D inviscid MHD
equations, the results suggest blow-up rates at a time T for kru.t/k1 of the form O.1=..T � t/˛//

with 1 � ˛ < 2; see [Brachet et al. 2013; Kerr and Brandenburg 1999]. Then, for these numerical
cases, with the BKM regularity criterion, one would conclude there is evidence for a finite-time sin-
gularity at some time T of the solutions of the 2D resistive MHD equations. However, with the use
of our regularity criterion (see Theorem 5.3), we can confirm that in fact there is no blow-up of the
solution at this time T. Then, it is dangerous to interpret the blow-up of an under-resolved computation
as evidence of finite-time singularities for the 2D resistive MHD equations. Indeed, computing 2D
MHD singularities numerically is an extremely challenging task. First of all, it requires huge com-
putational resources; see [Brachet et al. 2013]. Tremendous resolutions are required to capture the
nearly singular behavior of the 2D MHD equations. Secondly, one has to perform a careful convergence
study.

Furthermore, we notice also that our problem fits in the class of equations considered in [Elgindi and
Masmoudi 2014] in the study of L1 ill-posedness problem. We thus point out that by borrowing the
arguments used in this paper, we can establish the same regularity criterion for another interesting open
problem in mathematical fluid dynamics mentioned in [Elgindi and Masmoudi 2014] about the following
type of equation in two dimensions:

@tuC .u � r/uCrp DAu;

r �uD 0;
(78)

with initial condition u0 in a divergence-free vector field and where A is some constant matrix. Namely,
as with Theorem 5.3, we get the following theorem for the system of equations (78):
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Theorem 5.4. Let u0 2H r
� .R

2/ with r > 2 and let T > 0 be such that there exists u2C.Œ0;T Œ;H r
� .R

2//

a solution of (78). If Z T

0

kru.t/k
1
2
1

log.eCkru.t/k1/
dt <C1

then there cannot be blow-up of the solution u in H r .R2/ at the time T, that is, u 2 C.Œ0;T �;H r
� .R

2//.
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ON A BILINEAR STRICHARTZ ESTIMATE ON IRRATIONAL TORI

CHENJIE FAN, GIGLIOLA STAFFILANI, HONG WANG AND BOBBY WILSON

We prove a bilinear Strichartz-type estimate for irrational tori via a decoupling-type argument, as used by
Bourgain and Demeter (2015), recovering and generalizing a result of De Silva, Pavlović, Staffilani and
Tzirakis (2007). As a corollary, we derive a global well-posedness result for the cubic defocusing NLS on
two-dimensional irrational tori with data of infinite energy.

1. Introduction

Bourgain and Demeter [2015] proved the full range of Strichartz estimates for the Schrödinger equation
on tori as a consequence of the `2 decoupling theorem. In this paper we prove in full generality the analog
of the improved Strichartz estimate that first appeared in [De Silva et al. 2007] for rational tori.

1A. Statement of the problem and main results. Let T D R=Z be the one-dimensional torus, and let
˛1; : : : ; ˛d�1 2

�
1
2
; 1
�
; we define d -dimensional torus Td as Td D T�˛1T� � � � �˛d�1T. We say that

the torus is irrational if at least one ˛i is irrational. The torus is rational otherwise. For any �� 1, we
define Td

�
as a rescaling of Td by �; i.e.,

Td� D �Td D .�T/� .˛1�T/� � � � � .˛d�1�T/:

When �!1, one should think of T� as a large torus approximating Rd. We consider the following
Cauchy problem for the linear Schrödinger equation on Td

�
:�

iut ��uD 0; .t; x/ 2 R�Td
�
;

u.0; x/D u0; u0 2 L
2.Td

�
/:

(1-1)

Let U�.t/u0 be the solution to (1-1), and let

ƒ� WD
1

�

�
Z�

1

˛1
Z� � � � �

1

˛d�1
Z

�
:

One has

U�.t/u0.x/D
1

�d=2

X
k2ƒ�

e2�kix�j2�kj
2it
Ou0.k/: (1-2)

Our main theorem is the following bilinear refined Strichartz estimate.

Fan and Staffilani are partially supported by NSF DMS 1362509 and DMS 1462401.
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Keywords: decoupling, bilinear Strichartz.
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Theorem 1.1. Let �1; �2 2 L2.T�/ be two initial data such that supp O�i � fk W jkj �Nig, i D 1; 2, for
some large N1 �N2, and let �.t/ be a time cut-off function, supp �� Œ0; 1�. Then when d D 2,

k�.t/U��1 � �.t/U��2kL2x;t
.N �

2

�
1

�
C
N2

N1

�1=2
k�1kL2k�2kL2 ; (1-3)

and when d � 3

k�.t/U��1 � �.t/U��2kL2x;t
.N �

2

�
N d�3
2

�
C
N d�1
2

N1

�1=2
k�1kL2k�2kL2 : (1-4)

We note that when d D 2, N1 D N2, and � D 1, estimate (1-3) recovers the Strichartz inequality
for the (irrational) torus after an application of Hölder’s inequality, up to an N �

2 -loss. When �!1,
estimates (1-3) and (1-4) are consistent with the bilinear Strichartz inequality in RdC1 [Bourgain 1998].
Up to the N �

2 -loss, inequality (1-3) is sharp.
Furthermore, when � � N1, the estimates fall into the so-called semiclassical regime in which the

geometry of T� is irrelevant. We refer to [Hani 2012] for the same estimate (without N �
2 -loss) on general

compact manifolds. On the torus, our result improves the estimate in that paper for ��N1. Estimates
(1-3) and (1-4) rely on the geometry of the torus and cannot hold on general compact manifolds.

Remark 1.2. It may also be interesting to consider trilinear estimates. In fact when one considers the
quintic nonlinear Schrödinger equation, as in [Herr et al. 2011; Ionescu and Pausader 2012], trilinear
estimates are fundamental. See also [Ramos 2016].

We will derive Theorem 1.1 from some bilinear decoupling-type estimates. We first introduce some
basic notation.

Let P be the truncated paraboloid in RdC1,

P D f.�; j�j2/ W � 2 Rd; j�j. 1g: (1-5)

For any function f supported on P, we define

Ef D bfd�; (1-6)

where � is the measure on P.
Note a function supported on P can be naturally understood as a function supported on the ball

B D f� 2 Rd W j�j. 1g.
By a slight abuse of notation, for a function f supported in the ball B in Rd, we also define

Ef .x; t/D

Z
B

e�2�i.��xCj�j
2t/f .�/ d�: (1-7)

One can see that the two definitions of Ef are essentially the same since P projects onto B.
We decompose P as a finitely overlapping union of caps � of radius ı. Here a cap � of radius ı is the

set � D f� 2 P W j� � �0j. ıg for some fixed �0 2 P. We define Ef� D1f�d� , where f� is f restricted
to � . We use a similar definition also when f is a function supported on the unit ball in Rd. We have
Ef D

P
� Ef� .

Now, we are ready to state our main decoupling-type estimate.
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Theorem 1.3. Given � � 1, N1 � N2 � 1, let f1 be supported on P where j�j � 1, and let f2 be
supported on P where j�j �N2=N1. Let�Df.t; x/2 Œ0; N 2

1 �� Œ0; .�N1/
2�d g. For a finitely overlapping

covering of the ball B D fj�j � 1g of caps f�g, j� j D 1=.�N1/, we have the following estimate. For any
small � > 0, when d D 2,

kEf1Ef2kL2avg.w�/
.� .N2/��d=2

�
1

�
C
N d�1
2

N1

�1=2 2Y
jD1

� X
j� jD1=.�N1/

kEfj;�k
2
L4avg.w�/

�1=2
; (1-8)

and when d � 3,

kEf1Ef2kL2avg.w�/
.� .N2/��d=2

�
N d�3
2

�
C
N d�1
2

N1

�1=2 2Y
jD1

� X
j� jD1=.�N1/

kEfj;�k
2
L4avg.w�/

�1=2
; (1-9)

where w� is a weight adapted to �.

The presence of the weight w in these estimates is standard. We list the basic properties of w in
Section 1D, and one can refer to [Bourgain and Demeter 2017] for more details. The notation Lavg.w�/

2

is explained in Section 1C.
The proof of Theorem 1.3 gives another proof of the linear decoupling theorem in [Bourgain and

Demeter 2015] in dimension d D 2, and does not rely on multilinear Kakeya or multilinear restriction
theorems in R3. The proof of Theorem 1.3 in dimension d � 3 relies instead on linear decoupling in
RdC1 [Bourgain and Demeter 2015].

Remark 1.4. The estimates in Theorems 1.1 and 1.3 are sharp up to an N �
2 . See the Appendix for

examples.

Remark 1.5. The N �
2 -loss in Theorem 1.1 is typical if one wants to directly use a decoupling-type

argument. It may be possible to remove N �
2 in the mass supercritical setting (in our case, this means

d � 3), using the approach in [Killip and Vişan 2016], where the scale-invariant Strichartz estimates are
studied.

Remark 1.6. Similar bilinear estimates for dimension d � 3 were also considered in [Killip and Vişan
2016] for nonrescaled tori; see Lemma 3.3 in that paper. On the other hand in this work we also consider
the d D 2 case, which is mass critical.

1B. Background and motivation. System (1-1) and the bilinear estimates (1-3) and (1-4) naturally
appear in the study of the following nonlinear Schrödinger equation on the nonrescaled tori:�

iut C�uD juj
2u;

u.0/D u0 2H
s.Td /:

(1-10)

Let us focus for a moment on the d D 2 case. The Cauchy problem is said to be locally well-posed in
H s.Td / if for any initial data u0 2H s.Td / there exists a time T D T .ku0ks/ such that a unique solution
to the initial value problem exists on the time interval Œ0; T �. We also require that the data-to-solution
map is continuous from H s.Td / to C 0t H

s
x.Œ0; T ��Td /. If T D1, we say that a Cauchy problem is

globally well-posed.
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The initial value problem (1-10) is locally well-posed for initial data u0 2H s, s > 0, via Strichartz
estimates. Note that using iteration, by the energy conservation law, i.e.,

E.u.t//DE.u0/D
1

2

Z
jruj2C

1

4

Z
juj4;

all initial data in H 1.T2/ give rise to a global solution. Next, by the nowadays standard I-method
[Colliander et al. 2002] by considering a modified version of the energy, in the rational torus case, it was
proved in [De Silva et al. 2007] that (1-10) is indeed globally well-posed for initial data in H s, s > 2

3
.

The key estimate there was in fact (1-3) for linear solutions on rescaled tori, which we prove here to be
available also for irrational tori.

The proof for (1-3) presented in [De Silva et al. 2007] is only for rational tori since it relies on certain
types of counting lemmata that cannot directly work on irrational tori. One of the main purposes of this
work in fact is to extend results on rational tori to irrational ones.

Based on the discussion we just made, as a corollary of Theorem 1.1, we have:

Corollary 1.7. The initial value problem (1-10) defined on any torus T2 is globally well-posed for initial
data in H s.T2/ with s > 2

3
.

Remark 1.8. Results such as Corollary 1.7 usually also give a control on the growth of Sobolev norms
of the global solutions. We do not address this particular question here. We instead refer the reader to the
recent work [Deng and Germain 2017].

The original Strichartz estimates needed to prove the local well-posedness of Cauchy problems such
as (1-10) were first obtained in [Bourgain 1993] via number-theoretical-related counting arguments for
rational tori. Recently, the striking proof of the `2 decoupling theorem [Bourgain and Demeter 2015]
provided a completely different approach from which all the desired Strichartz estimates on tori, both
rational and irrational, follow. This approach in particular does not depend on counting lattice points.
See also [Guo et al. 2014; Deng et al. 2017]. The method of proof we implement in this present work is
mostly inspired by [Bourgain and Demeter 2015] and the techniques used to prove the `2 decoupling
theorem.

We quickly recall the main result in [Bourgain and Demeter 2015]. Let P be a unit parabola in RdC1,
covered by finitely overlapping caps � of radius 1=R. Let f be a function defined on P ; then one has for
any � > 0 small,

kEf kLp.wB
R2
/ .� R�.R2/d=4�.dC2/=.2p/

�X
�

kEf�k
2
Lp.B

R2
/

�1=2
; p �

2.d C 2/

d
: (1-11)

Note that (1-11) corresponds to Theorem 1.1 in [Bourgain and Demeter 2015], and the dimension n in the
estimate (2) there corresponds to our d C 1. Also note that the linear decoupling (1-11) not only works
for those f exactly supported on P, but those f supported in an R�2 neighborhood of P, and in this
case, cap � would be replaced by the R�2 neighborhood of the original � ; see Theorem 1.1 in [Bourgain
and Demeter 2015].
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We remark that one key feature of this decoupling-type estimate is that one needs to work on a larger
scale in physical space, i.e., the scale R2 rather than R, in order to observe the decoupling phenomena.
The proper observational scale dictated by Heisenberg’s uncertainty principle is R.

Indeed, one principle, which is usually called parallel decoupling, indicates that if decoupling happens
in a small region, then decoupling happens in a large region as well. We state a bilinear version of parallel
decoupling below.

Lemma 1.9 [Bourgain and Demeter 2015; 2017]. Let D be a domain, and D DD1 [D2 [ � � � [DJ ,
Di \Dj D∅. If for some constant A> 0 and for functions h1; h2, defined on the unit parabola, one has

kEh1Eh2kL2avg.wDi /
� A

2Y
jD1

� X
j� jD1=.�N1/

kEhj;�k
2
L4avg.wDi /

�1=2
; i D 1; : : : ; J; (1-12)

then one also has

kEh1Eh2kL2avg.wD/
� A

2Y
jD1

� X
j� jD1=.�N1/

kEhj;�k
2
L4avg.wD/

�1=2
: (1-13)

The proof of this particular formulation of parallel decoupling follows by Minkowski’s inequality.
As it exists, parallel decoupling is a principle rather than a concrete lemma. We state the version here

solely for concreteness. It should be easy to generalize the lemma under different conditions.

1C. Notation. We write A. B if A� CB for a constant C > 0, and A� B if both A. B and B . A.
We say A .� B if the constant C depends on �. Similarly for A �� B . For a Borel set, E � Rd, we
denote the diameter of E by jEj and the Lebesgue measure of E by m.E/.

We will use the usual function space Lp. We also use a (weighted) average version of Lp space; i.e.,

kgkLpavg.A/
D

�

/

Z
A

jgjp
�1=p

WD

�
1

m.A/

Z
A

jgjp
�1=p

;

kgkLpavg.wA/
D

�
1

m.A/

Z
jgjpwA

�1=p
;

where wA is a weight function described below.
For any function f , we use Of to denote its Fourier transform. When we say unit ball, we refer to a ball of

radius r � 1. We will often identify a torus as a bounded domain in Euclidean space; for example, we will
view .R=Z/d as Œ0; 1�d �Rd. In this work,� is used to denote the domain Œ0; N 2

1 ��Œ0; .�N1/
2�d �RdC1.

1D. The weight wA. If h is a Schwartz function whose Fourier transform, Oh, is supported in a ball of
radius 1=R, we expect h to be essentially constant on balls of radius R, and essentially

khkLpavg.BR/
� khkL2avg.BR/

� khkL1.BR/: (1-14)

Expression (1-14) is not rigorous, and the introduction of the weight wBR is a standard way to overcome
this technical difficulty. We refer to Lemma 4.1 in [Bourgain and Demeter 2017] for a more detailed
discussion of the weight function.
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For any bounded open convex set A, the weight function wA might change from line to line and from
the left-hand side of the inequality to the right-hand side, and satisfies the properties:

�
R
wA �m.A/.

� wA & 1 on A, and rapidly (polynomial-type) decays outside A.

We will usually define A to be a ball, or the product of balls in this paper.
Furthermore, let BR be a ball centered at 0, and let �BR be a function such that b�BR is about

1=.m.B1=R// on B1=R, and supported in B2=R. Then �BR is about 1 on BR, and decays faster than any
polynomial outside of BR. Additionally, �2BR is positive, decays faster than any polynomial outside of
BR and is Fourier-supported in B4=R. We take translations B 0 of BR to cover the whole space, and we
denote by �B 0 the corresponding translation of �BR and wBR.B

0/Dmaxx2B 0 wBR . We have the useful
property,

wBR.x/�
X
B 0

wBR.B
0/1B 0.x/.

X
B 0

wBR.B
0/�2B 0.x/. wBR.x/: (1-15)

The last inequality follows from the fact that �2B 0 decays faster than any polynomial outside of B 0.

Lemma 1.10. For a function f supported in B1=R, for any p <1,

kEf kL1.BR/ . kEf kLpavg.�BR /
:

We refer to the proof of Corollary 4.3 in [Bourgain and Demeter 2017] with the weight on the left-hand
side being 1BR so that on the right-hand side we have a fast decay weight.

Remark 1.11. In general, Lemma 1.10 should hold for any convex set A and the dual convex body A�.

2. Proof of Theorem 1.1 assuming Theorem 1.3

Assume Theorem 1.3, and let us prove Theorem 1.1. The argument below comes from the proof of
discrete restriction and the Strichartz estimate on irrational tori assuming the `2 decoupling estimate; see
Theorems 2.2 and 2.3 in [Bourgain and Demeter 2015]. The argument originally comes as observation
due to Bourgain [2013]. We record it here for completeness.

Let �1; �2 be as in Theorem 1.1. We rescale �1 to be supported in the unit ball and rescale �2 to be
supported in a ball of radius �N2=N1. Recall,

U�.t/�j .x; t/D
1

�d=2

X
k2ƒ�
k�N1

e2�ik�x�j2�kj
2t O�j .k/: (2-1)

We perform a change of variables � D k=N1 and we let

hj .�/D
1

�d=2

X
�2ƒ�N1
j�j�1

O�j .�N1/ı�.�/; j D 1; 2: (2-2)

Note one can directly check that

U�.t/�j .x; t/DEhj .�2�N1x; .2�/
2N 2

1 t /: (2-3)
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Without loss of generality, we suppress the constants �2� and .2�/2.
Let Q0D Œ0; N 2

1 ��Td
�N1

and let us view Td
�N1

as a compact set in Rd. In particular, one can construct
the associated weight function wQ0 . Direct computation (via change of variables) gives

kU�.t/�1U�.t/�2kL2.Œ0;1��Td
�
/ �N

�.dC2/=2
1 m.Q0/

1=2
kEh1Eh2kL2avg.Q0/

(2-4)

and due to the periodicity of Ehi , i D 1; 2, one has

kEh1Eh2kL2avg.�/
D kEh1Eh2kL2avg.Q0/

: (2-5)

For a covering f�g of caps of radius 1=.�N1/, each cap � contains at most one �� 2ƒ�N1 , corresponding
to k� DN1�� 2ƒ�. Then

kEhj;�kL4avg.wQ0 /
� hj .�� /�

1

�d
O�j .k� /;

and

2Y
jD1

� X
j� jD1=.�N1/

kEhj k
2
L4avg.wQ0 /

�1=2
� ��d

2Y
jD1

�
1

�d

X
k2ƒ�

j O�j .k/j
2

�1=2
� ��dk�1kL2k�2kL2 :

For convenience of notation let

D�;N1;N2 WD

�
1=�CN2=N1 when d D 2;

N d�3
2 =�CN d�1

2 =N1 when d � 3:
(2-6)

Recall that �D Œ0; N1�2 � Œ0; .�N1/2�d ; we apply Theorem 1.3 with fj D hj , and we have

kEh1Eh2kL2avg.w�/
.� .N2/��d=2D1=2�;N1;N2

2Y
jD1

� X
j� jD1=.�N1/

kEhj;�k
2
L4avg.w�/

�1=2
: (2-7)

Note that � can be covered by Q such that fQg are finitely overlapping and each Q is a translation
of Q0. Since Ehj are periodic on x, estimate (2-7) is equivalent to

kEh1Eh2kL2avg.wQ0 /
.� .N2/��d=2D1=2�;N1;N2

2Y
jD1

� X
j� jD1=.�N1/

kEhj;�k
2
L4.wQ0 /

�1=2
: (2-8)

Plugging (2-8) into (2-4) gives

kU�.t/�1U�.t/�2kL2.Œ0;1��Td
�
/ .N

�.dC2/=2
1 �N1m.T

d
�N1

/1=2��d �.N2/
��d=2D

1=2

�;N1;N2
k�1kL2k�2kL2

� .N2/
�D

1=2

�;N1;N2
k�1kL2k�2kL2

and Theorem 1.1 follows.

The rest of the paper details the proof of Theorem 1.3.
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3. An overview of the proof of Theorem 1.3

First, we reduce the proof of Theorem 1.3 to the following proposition.

Proposition 3.1. Let �1 be a cap of radius N2=N1 supported at � with j�j � 1. Let �2 be a cap of
radius N2=N1 supported at � with j�j �N2=N1. Let fj be a function supported in �j . Then for any small
� > 0, when d D 2

kEf1Ef2kL2avg.w�/
.� .N2/��d=2

�
1

�
C
N2

N1

�1=2 2Y
jD1

� X
j� jD1=.�N1/

���j

kEfj;�k
2
L4avg.w�/

�1=2
; (3-1)

and when d � 3,

kEf1Ef2kL2avg.w�/
.� .N2/��d=2

�
N d�3
2

�
C
N d�1
2

N1

�1=2 2Y
jD1

� X
j� jD1=.�N1/

���j

kEfj;�k
2
L4avg.w�/

�1=2
: (3-2)

Now, let f1; f2 be as in Proposition 3.1. We define K0.�;N1; N2/ to be the best constant such that

kEf1Ef2kL2avg.w�/
� �d=2K0.�;N1; N2/

2Y
jD1

� X
j� jD1=.�N1/

kEfj;�k
2
L4avg.w�/

�1=2
: (3-3)

We also let zK.�;N1; N2/ and K.�;N1; N2/ be defined as the best constants such that

kEf1Ef2kL2avg.wŒ0;N2
1
��Œ0;�N1�

d /
��d=2 zK.�;N1;N2/

2Y
jD1

� X
j� jD1=.�N1/

kEfj;�k
2
L4avg.wŒ0;N2

1
��Œ0;�N1�

d /

�1=2
;

(3-4)

kEf1Ef2kL2avg.wB
N2
1

/��
d=2K.�;N1;N2/

2Y
jD1

� X
j� jD1=.�N1/

kEfj;�k
2
L4avg.wB

N2
1

/

�1=2
: (3-5)

Below we will prove that

K0.�;N1; N2/.N �
2

�
1

�
C
N2

N1

�1=2
; d D 2;

K0.�;N1; N2/.N �
2

�
N d�3
2

�
C
N d�1
2

N1

�1=2
; d � 3:

(3-6)

We point out here that by parallel decoupling, Lemma 1.9, one always has

K0.�;N1; N2/.K.�;N1; N2/;

K0.�;N1; N2/. zK.�;N1; N2/:
(3-7)

The proof of Proposition 3.1 or equivalently (3-6) proceeds as follows. We first show:
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Lemma 3.2. When ��N1,

zK.�;N1; N2/.N �
2

N
.d�1/=2
2

N
1=2
1

: (3-8)

Note that when ��N1, Proposition 3.1 follows from (3-7) and Lemma 3.2.
Then, we show:

Lemma 3.3. When ��N1,

K.�;N1; N2/.N �
2

�
1

�
C
N2

N1

�1=2
; d D 2;

K.�;N1; N2/.N �
2

�
N d�3
2

�
C
N d�1
2

N1

�1=2
; d D 3:

(3-9)

From (3-7), clearly Proposition 3.1 follows from Lemmas 3.2 and 3.3.
The proof of Lemma 3.3 in dimension d D 2 relies on induction (of scale N2). The proof of Lemma 3.3

in dimension in d � 3 is easier and more straightforward, (in some sense, it also relies on induction, but
it is enough to induct only once.)

We first show the base case:

Lemma 3.4. When ��N1 and N2 . 1, we have K.�;N1; N2/. 1=�1=2.

Lemma 3.4 is not as useful in dimension d � 3, we indeed have a better estimate:

Lemma 3.5. When d � 3, ��N1 and ��N1=N 2
2 , we have K.�;N1; N2/. .N d�3

2 =�/1=2.

We then show the following lemma, which ensures that we only need to induct until ��N1=N2, when
d D 2, and until N1=N2 when d � 3.

Lemma 3.6. Let ��N1.

Let d D 2. Assume we have K.�;N1; N2/� ��1=2 when � < N1=N2. Then

K.�;N1; N2/�N
�
2

N
.d�1/=2
2

N
1=2
1

when ��
N1

N2
:

Let d � 3. Assume we have K.�;N1; N2/� .N d�3
2 =�/1=2 when � < N1=N 2

2 . Then

K.�;N1; N2/�N
�
2

N
d�1=.2/
2

N
1=2
1

when ��
N1

N 2
2

:

Note that when d � 3, Lemmas 3.5 and 3.6 imply Lemma 3.3. In dimension d D 2, we use induction
(we rely on the so-called parabolic rescaling) to finish the proof of Lemma 3.3.

We end this section with an outline of the structure of the rest of the paper. We show that Proposition 3.1
implies Theorem 1.3 in Section 4. Lemmas 3.2, 3.4, and 3.6 all rely on the exploration of the so-called
transversality, which essentially allows us to reduce the dimensionality of the problem. We first explore
transversality in Section 5 and then we prove Lemmas 3.2, 3.4, and 3.6 in Section 6.
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The details of the induction procedure (which is nontrivial) that is used to prove Lemma 3.3 in
dimension d D 2 are given in Section 5. We remark here the proof of Lemma 3.3 relies on Lemma 3.2.

Finally, we prove Lemma 3.5 at the end of Section 7, which, together with Lemma 3.6 will conclude
the proof of Lemma 3.3 in dimension d � 3.

4. Proposition 3.1 implies Theorem 1.3

We first introduce one standard but important tool in the following lemma.

Lemma 4.1 [Bourgain and Demeter 2015; 2017]. Let fg˛g be a family of functions such that supp Og˛
are finitely overlapped cubes of length �. Let A be bounded convex open set tiled by finitely overlapped
cubes Q of side length � ��1. Then for the wA adapted to A, the following holds:

/

Z
A

ˇ̌̌̌X
g˛

ˇ̌̌̌2
wA .

X 1

m.A/

Z
jg˛j

2wA:

Proof. Since we can sum up the weight function over a finitely overlapping cover fQg of A, that is,
wA D

P
Q�AwQ, it suffices to prove the result for ADQ. Recall by inequality (1-15), we can cover

the whole space Rn by translations Q0 of Q:

/

Z
Q

ˇ̌̌̌X
g˛

ˇ̌̌̌2
wQ dx �

1

m.Q/

X
Q0

Z
Q0
wQ.Q

0/

ˇ̌̌̌X
g˛

ˇ̌̌̌2

�
1

m.Q/

X
Q0

wQ.Q
0/

Z ˇ̌̌̌X
g˛

ˇ̌̌̌2
�2Q0

D
1

m.Q/

X
Q0

wQ.Q
0/

Z
j Og˛ � O�Q0 j

2

.
1

m.Q/

X
Q0

wQ.Q
0/
X
˛

Z
jg˛j

2�2Q0 .
1

m.Q/

X
˛

Z
jg˛j

2wQ: �

Now we can reduce Proposition 3.1 to a bilinear decoupling on two .N2=N1/-diameter caps.

Lemma 4.2. Theorem 1.3 is equivalent to Proposition 3.1.

Proof. Let f1; f2 be as in Theorem 1.3. Then f1 D
P
j� jDN2=N1

f1;� and the f1;� are supported on
finitely overlapping caps of diameter N2=N1.

Since jf2j is supported in a cap of diameter N2=N1, the supports of fbEf 1;� �bEf2g� are in finitely
overlapping cubes of length N2=N1. Since the scale of � is larger than N1=N2, i.e., it contains a ball of
radius >N1=N2, by Lemma 4.1,

/

Z
�

jEf1Ef2j
2w� dx �

X
j� jDN2=N1

ˇ̌̌̌

/

Z
�

Ef1;�Ef2

ˇ̌̌̌2
w� dx:

Now apply Proposition 3.1 for f1;� and f2 for each � ; Theorem 1.3 follows. �
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5. Transversality

Let f1; f2 be as in Proposition 3.1; then f1 is supported around .0; 0; : : : ; 0; 1; 1/ and f2 is supported
around .0; 0; : : : ; 0/. The main goal of this section is to explore the transversality between .0; 0; : : : ; 0; 1/
and .0; 0; 0; : : : ; 0/, or more precisely, the transversality between the unit normal vectors of the truncated
parabola at these two points. The main lemma in this section is Lemma 5.1 below, and Corollary 5.7
which essentially follows from Lemma 5.1.

We first introduce some basic notation. Let fe1; : : : ; ed g be the standard basis of Rd. We will encounter
caps of radius v around .0; 0; : : : ; 0/ and .0; : : : ; 0; 1; 1/ on the parabola. Note around those two points,
when v is small (which is always the case in our work), one may view those caps as their natural
projection to Rd�1. And their image is essentially a square/cap of radius v. We say that a .v; v2/-plate
is a d -dimensional rectangle with the short side on the ed�1-direction such that its image under the
orthogonal projection to Rd�1 is a .v� v� � � � � v� v2/-rectangle.

Lemma 5.1. Given j�j<1, let f1 be a function supported on a cap of radius � , centered at .0; : : : ; 0; 1; 1/
on the truncated parabola P, and let f2 be a function supported on a cap of radius � centered at
.0; : : : ; 0; 0; 0/ on the paraboloid. For a covering f�ig of suppfi with .�; �2/ plates, with the shorter
side on the ed�1-direction, we have the following decoupling inequality: for any R > ��2,Z

jEf1Ef2j
2wBR .

X
�1;�2

Z
jEf1;�1Ef2;�2 j

2wBR : (5-1)

Remark 5.2. We thank J. Ramos for pointing out that Lemma 5.1 is a particular case of Proposition 2 in
[Ramos 2016]. We still write a proof in this paper for clarity.

Proof. The proof is similar to the proof of the L4 Strichartz estimate on the one-dimensional torus. From
the inequality (1-15), we only need to prove thatZ

B 0
jEf1Ef2j

2 .
X
�1;�2

Z
jEf1;�1Ef2;�2 j

2�2B 0

for all translations B 0 of BR. NowZ
B 0
jEf1Ef2j

2
�

X
�1;�2;�3;�4

Z
B 0
Ef1;�1Ef2;�2Ef 1;�3Ef 2;�4�

2
B 0 : (5-2)

Let �i 2 �i , �i D
�
�i;1; : : : ; �i;d�1;

Pd�1
jD1 .�

j
i /
2
�
� . N�i ; �i;d�1; j N�i j

2 C .�d�1i /2/, i D 1; 2; 3; 4. We
have

j N�i j. �; i D 1; 2; 3; 4;

j�i;d�1� 1j. �; i D 1; 3;

j�i;d�1j. �; i D 2; 4:

(5-3)

Essentially, for any �1; �2; �3; �4 such thatZ
Ef1;�1Ef2;�2Ef 1;�3Ef 2;�4�

2
B 0 ¤ 0;
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one must have for some �i 2 �i ,

�1� �3 D �2� �4CO.R
�1/;

j�1j
2
� j�3j

2
D j�j22� j�j

2
4CO.R

�1/;
(5-4)

and the second formula in (5-4) implies

.�1;d�1� �3;d�1/.�1;d�1C �3;d�1/DO.j�2j
2
Cj�4j

2/CO.j N�1j
2
CjN�3j

2/CO.R�1/: (5-5)

Plugging into (5-3), one has j�1;d�1� �3;d�1j. v2, which again implies j�2;d�1� �4;d�1j. v2.
To summarize,

R
Ef1;�1Ef2;�2Ef 1;�3Ef 2;�4�

2
B 0 ¤ 0 implies the distance between �1 and �3 and

the distance between �2 and �4 are both bounded by v2, which essentially means �i D �iC2, i D 1; 2.
Applying this fact to (5-2), Lemma 5.1 follows. �

Remark 5.3. A quantitative version of estimate (5-1) can be stated as follows: assume that the support of
f1 is centered at .0; 1=K; .1=K/2/ rather than .0; 0; 1/. From the proof we can attain the same estimate
as in (5-1) by introducing an additional constant K,Z

jEf1Ef2j
2wBR .K

X
�1;�2

Z
jEf1;�1Ef2;�2 j

2wBR : (5-6)

Indeed, the proof essentially only relies on the fact that for �i 2 suppfi , i D 1; 2, the difference between
the d � 1 components is at least 1=K. Similar arguments also hold for the estimate in Lemma 5.5; see
Corollary 5.7 below.

Remark 5.4. We remark that for any ˛ < � , a function which is supported on a cap of radius ˛ can be
naturally understood as a function supported on a cap of radius � .

Lemma 5.1 facilitates the decomposition of caps of radius v into plates of size .v; v2/. We can further
decompose those into caps of radius v2.

Lemma 5.5. With the same notation as in Lemma 5.1, R � ��2, let suppfi be covered by finitely
overlapping caps �i of radius v2, i D 1; 2. ThenZ

jEf1Ef2j
2wBR . �

�.d�1/
X
j�i jD�2

Z
jEf1;�1Ef2;�2 j

2wBR : (5-7)

Proof. Clearly, we need only to prove (5-7) for every ball of radius ��2 contained in BR, and then sum
them together. (This is the same principle of parallel decoupling, Lemma 1.9.)

Fix a pair of .�; �2/ plates �1; �2:Z
jEf1;�1Ef2;�2 j

2wBR D

Z ˇ̌̌̌ X
�2��2
j�2jD�

2

Ef1;�1Ef2;�2

ˇ̌̌̌2
wBR

� ��.d�1/
X
�2��2
j�2jD�

2

jEf1;�1Ef2;�2 j
2wBR.

X
�j��j
j�j jD�

2

jEf1;�1Ef2;�2 j
2wBR : (5-8)

The last inequality follows from Lemma 4.1 and Lemma 4.2. �
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Remark 5.6. Similar to Remark 5.4, for �2 < ˛ < � , a cap of scale � naturally lies in a cap of scale
p
˛.

Thus if we let f1 be a function supported on a cap of radius ˛ centered at .0; : : : ; 0; 1; 1/ on the paraboloid,
and we let f2 be a function supported on a cap of radius ˛ centered at .0; : : : ; 0; 0; 0/ on the paraboloid,
then by arguing similar to the proof of Lemma 5.5, we have for R � ˛�1,Z

jEf1Ef2j
2wBR .

�
�

˛

�d�1 X
j�i jD˛

Z
jEf1;�1Ef2;�2 j

2wBR : (5-9)

If we directly use the Hölder inequality for all caps in the support of fi to estimate as in (5-8), then the
interpolation in the proof of Lemma 5.5 will give us a constant v�d rather than v�.d�1/ in (5-7), since
one has v�d caps for each fi . The bilinear transversality, i.e., the transversality between .0; 0; : : : ; 0/ and
.0; : : : ; 0; 1; 1/, helps in reducing the dimension by 1 since in one direction we can use L4 orthogonality,
as shown in Lemma 5.1. Thus here we are able to improve the constant in (5-7) to v�.d�1/.

Corollary 5.7. Using the same notation as in Lemma 5.1, there exists a constant C such that for any � , ı,
and R�1 � ı � � ,Z

jEf1Ef2j
2wBR .

�
�

ı

�d�1 ˇ̌̌̌ log ı
log �

ˇ̌̌̌C X
j�i jDı

Z
jEf1;�1Ef2;�2 j

2wBR :

Proof. The proof is most clear when ı D �2
n

for some n. Let us first handle this case and then go to the
general case. One may use induction. (This induction, however, does not rely on parabolic rescaling.) If
nD 0, there is nothing to prove.

Assume the result holds for the case nD k. Let us turn to the case nD kC 1, where ı D v2
kC1

, and
so ı1=2 D v2

k

; thus by the induction assumption, we haveZ
jEf1Ef2j

2wBR .
�
�

ı1=2

�d�1
2Ck

X
j�i jDı1=2

Z
jEf1;�1Ef2;�2 j

2wBR : (5-10)

Now note that R � .ı�1=2/2. By Lemma 5.5, we have for each pair .�1; �2/ in (5-10) thatZ
jEf1;�1Ef2;�2 j

2wBR . .ı
1=2/�.d�1/

X
�i��i
j�i jDı

Z
jEf1;�1Ef2;�2 j

2wBR : (5-11)

The case nD kC 1 clearly follows if one plugs (5-11) into (5-10), taking the constant C large enough.
Now we turn to the general case. We only need to work on the case �2

nC1

< ı < �2
n

. Recall that
previously, when ı D �2

n

, we used induction as �! v2! �2
2

! � � � ! �2
n

D ı, and in each step we
used Lemma 5.5 to finish the induction �2

k

! �2
kC1

.
In the case �2

nC1

< ı < �2
n

we have �2
n

< ı1=2, and we use induction as before for � ! �2 !

�2
2

! � � � ! �2
n

, and we use (5-9) to use induction again from �2
n

to ı. This ends the proof. �

6. Proofs of Lemmas 3.2, 3.4 and 3.6

We are now prepared to use transversality to prove Lemmas 3.2, 3.4, and 3.6. Recall Lemma 3.2 concerns
zK.�;N1; N2/ defined in (3-4). Furthermore, Lemmas 3.4 and 3.6 refer to K.�;N1; N2/ defined in (3-5).
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6A. Proof of Lemma 3.2. For convenience of notation, we let �1 WD Œ0; N 2
1 �� Œ0; �N1�

d. Note that one
can use finite overlapped balls of radius N 2

1 to cover �1 since ��N1. We want to prove

kEf1Ef2kL2avg.!�1 /
.� �d=2N �

2

N d�1
2

N1

2Y
jD1

� X
j� jD1=.�N1/

kEfj;�k
2
L4avg.w�1 /

�1=2
: (6-1)

We first apply Corollary 5.7 with ı DN�21 , � DN2=N1, RDN 2
1 . Note that ı � v. Then we haveZ

jEf1Ef2j
2wB

N2
1

. .N1N2/d�1
ˇ̌̌̌

logN1
logN1� logN2

ˇ̌̌̌C X
j�j jD1=N

2
1

Z
jEf1;�1Ef2;�2 j

2wB
N2
1

. .N1N2/d�1N �
2

X
j�j jD1=N

2
1

2Y
jD1

kEfj;�j k
2
L4.wB

N2
1

/
: (6-2)

Remark 6.1. We avoid the case when N1 DN2, and thus lnN1� lnN2 D 0, by first decomposing caps
of diameter N2=N1 into caps of diameter N2=.2N1/ with loss of a fixed constant, then continuing with
the proof as above. In all of what follows, one may assume, without loss of generality, that N1 � 2N2.

Via the principle of parallel decoupling, Lemma 1.9, or by summing different BN 21 together, we haveZ
jEf1Ef2j

2w�1 . .N1N2/
d�1N �

2

X
j�j jD1=N

2
1

2Y
jD1

kEfj;�j k
2
L4.w�1/

: (6-3)

Next we would like to show that

kEfj;�j k
2
L4.w�1 /

�

�
�

N1

�d=2 X
� 0
j
��j

j� 0
j
jD1=.�N1/

kEfj;� 0
j
k
2
L4.w�1 /

: (6-4)

It suffices to show

kEfj;�j k
2
L4avg.�1/

�

�
�

N1

�d=2 X
� 0
j
��j

j� 0
j
jD1=.�N1/

kEfj;� 0
j
k
2
L4avg.w�1 /

and sum up as in Lemma 4.1.
Each function Efj;� 0

j
is Fourier-supported in � 0j , in particular, Fourier-supported in a cylinder of

radius 1=.�N1/, height 1=N 2
1 , and �1 is tiled by cylinders of radius �N1, height N 2

1 in the t-direction.
The proof of Lemma 4.1 works the same:

kEfj;�j k
2
L2avg.�1/

.
X
� 0
j
��j

j� 0
j
jD1=.�N1/

kEfj;� 0
j
k
2
L2avg.wBR /

.
X
� 0
j
��j

j� 0
j
jD1=.�N1/

kEfj;� 0
j
k
2
L4avg.wBR /

:
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For the L1-estimate, we apply the Cauchy–Schwarz inequality:

kEfj;�j k
2
L1.�1/

�

�
�

N1

�d X
� 0
j
��j

j� 0
j
jD1=.�N1/

kEfj;� 0
j
k
2
L1.�1/

.
�
�

N1

�d X
� 0
j
��j

j� 0
j
jD1=.�N1/

kEfj;� 0
j
k
2
L4avg.w�1 /

:

The last inequality is an application of Lemma 1.10. Note f� 0
j

is supported in a ball of scale 1=.�N1/,
and inside a box C of size .1=N 2

1 /� .1=.�N1//� � � �� .1=.�N1//. We can make a affine transform of C
into a cube Q� of scale �N1 , which on the physical side would transform �1 into a cube of scale �N1.
We apply Lemma 1.10 after the affine transformation and then transform back. (Note in that setting, cube
is no different than a ball.)

We apply Hölder’s inequality to conclude the argument.

6B. Proof of Lemma 3.4. Let ��N1. We first note that we can use finitely overlapping balls B�N1 to
cover � and that N2 . 1. Applying Corollary 5.7 with ı D 1=.�N1/ and � DN2=N1 we haveZ

jEf1Ef2j
2wB�N1 . .�N2/

d�1

ˇ̌̌̌
log�C logN1

logN1� logN2

ˇ̌̌̌C X
j�j jD1=.�N1/

Z
jEf1;�1Ef2;�2 j

2wB�N1

. .�N2/d�1N �
2

X
j�j jD1=.�N1/

2Y
jD1

kEfj;�j k
2
L4.wB�N1

/
:

With parallel decoupling, Lemma 1.9, the desired estimate follows. (As remarked in Remark 6.1, one can
assume N1 � 2N2.)

6C. Proof of Lemma 3.6. Let ��N1.
We have the following two cases:

� Case 1: d D 2, N1 � ��N1=N2, and N 02 D .N1=�/.

� Case 2: d � 3, N1 � ��N1=N 2
2 , and N 02 D .N1=�/

1=2.

It is easy to check that we only need to show

K.�;N1; N2/.K.�;N1; N 02/
�
N1

N 02

N2

N1

�.d�1/=2
: (6-5)

We claim that

kEf1Ef2kL4avg.wB
N2
1

/ .
�
N1

N 02

N2

N1

�.d�1/=2 2Y
jD1

� X
j� jDN 02=.N1/

kEfj;�k
2
L4avg.wB

N2
1

/

�1=2
: (6-6)

Since ��N1, we cover BN 21 with balls of radius �N1. Thus by parallel decoupling, to prove (6-6), we
only need to show

kEf1Ef2kL4avg.wB�N1
/ .

�
N1

N 02

N2

N1

�.d�1/=2 2Y
jD1

� X
j� jD1=.�N1/

kEfj;�k
2
L4avg.wB�N1

/

�1=2
: (6-7)
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Note that since �N1 � N1=N 02, estimate (6-7) follows from Corollary 5.7 by setting ı D N2=N1,
� DN 02=N1 via interpolation and local constant arguments as in Section 6A.

By the definition of K.�;N1; N2/, we have that for any �1; �2 in (6-7),

kEf1;�1Ef2;�2kL4avg.wB�N1
/ . �d=2K.�;N1; N 02/

2Y
jD1

� X
j� 0
j
jD1=.�N1/

�j��j

kEfj;� 0
j
k
2
L4avg.w�/

�1=2
: (6-8)

Plugging (6-8) into (6-7), clearly (6-5) follows.

7. Induction procedure and proof of Lemma 3.3

To conclude the proof of Proposition 3.1, we are left with the proof of Lemma 3.3. For this lemma the
proof relies on induction on N2. The base case N2 . 1 is resolved by Lemma 3.4, and by Lemma 3.6 we
need only to induct until �D .N2/d�1=N1.

Let f1; f2 be as in Lemma 3.3. Applying Lemma 5.1, taking v D N1=N2 and R D N 2
1 , we can

decouple the N2=N1 caps into .N2=N1; N 2
2 =N

2
1 / plates without any loss; i.e.,Z

jEf1Ef2j
2wB

N2
1

.
X
�1;�2

Z
jEf1;�1Ef2;�2 j

2wB2N1
: (7-1)

Here �i are plates as described in Lemma 5.1. We focus on the case when d D 2 in R3; the high-
dimensional case will be explained in the end. When d D 2, the underlying plates become strips. We
start with some preparation before the induction.

7A. Preliminary preparation for the induction. We fix a pair of .N2=N1; N 2
2 =N

2
1 / strips �1; �2 from

estimate (7-1). We decompose �j into a union of .N2=.KN1//� .N 2
2 =N

2
1 / strips fsj g.

Using the notation “nonadj” short for nonadjacent, and “adj” short for adjacent, we have

jEf�j j
2
D

X
sj

jEfsj j
2
C

X
sj ;s
0
j

adj

jEfsjEfs0j
jC

X
sj ;s
0
j

nonadj

jEfsjEfs0j
j

� 10
X
sj

jEfsj j
2
C

X
sj ;s
0
j

nonadj

jEfsjEfs0j
j D Ij;1C Ij;2 (7-2)

andZ
jEf�1Ef�2 j

2wB
N2
1

�

Z ˇ̌
.Ef 2�1�I1;1/.Ef

2
�2
�I2;1/

ˇ̌
CEf 2�1I2;1CEf

2
�2
I1;1CI1;1I2;1wB

N2
1

.
X

sj ;s
0
j

nonadj

Z
jEfs1Efs01

Efs2Efs02
jwB

N2
1

C

X
s1;s2

Z
jEfs1Efs2 j

2wB
N2
1

: (7-3)

The last inequality follows from Lemmas 4.1 and 4.2.
The reason why we want to have nonadjacent parts is that we would like transversality (after rescaling)

on the other direction. Formula (7-3) will the starting point of our induction.
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For the second term in (7-3), we will later directly use induction (not relying on parallel rescaling) on
N2 and reduce everything to the known base case N2 D 1.

For the first term, using Cauchy–SchwarzZ
jEfs1Efs01

Efs2Efs02
jwB

N2
1

�

�Z
jEfs1Efs01

j
2wB

N2
1

�1=2�Z
jEfs2Efs02

j
2wB

N2
1

�1=2
: (7-4)

We point out here that in what follows we do not rely on the bilinear transversality between s1 and s2
(or s1 and s02), which is already handled in Lemma 5.1. Instead we will rely on the bilinear transversality
between s1 and s01 (or s2; s02), since they are not adjacent. This transversality is most clear when one
applies parabolic rescaling.

Let us now turn to the term
R
jEfs2Efs02

j2w�, when s2; s02 are nonadjacent. The term with s1; s01 is
handled similarly, though one may need to rotate the coordinates.

Finally we point out here that K will be chosen large later and any (fixed) power of K will not impact
the final estimate. In particular, in the following estimates we will not worry about losing powers of K.

Without loss of generality, we assume

� s2 is the strip f.a1; a2; a21C a
2
2/ W ja1j �N

2
2 =N

2
1 ; ja2j �N2=KN1g,

� s02 is the strip f.b1; b2; b21 C b
2
2/ W jb1j �N

2
2 =N

2
1 ; jb2�CN2=KN1j �N2=KN1g, C � 10. (Here

10 is of course just some universal constant.)

7B. Parabolic rescaling. The next step, parabolic scaling, is standard in decoupling-type results; we
give the details here for the convenience of the reader.

Note s2; s02 lie on the same N2=N1 cap. We rescale the N2=N1 cap to radius 1. By a slight abuse of
notation, we regard fsi as a function depending only on two variables .�i;1; �i;2/. For convenience of
notation, we let h1 D fs2 , h2 D fs02 . Let also gi .�i;1; �i;2/ WD hi

�
.N2=N1/�i;1; .N2=N1/�i;2

�
.

Now

� g1 is supported in the strip f.a1; a2; a21C a
2
2/ W ja1j �N2=N1; ja2j � 1=Kg,

� g2 is supported in the strip f.b1; b2; b21 C b
2
2/ W jb1j �N2=N1; jb2�C=Kj � 1=Kg, C � 10.

Note g1, g2 are supported on a pair of transverse .N2=N1/� 1 strips1 due to the nonadjacency of s2; s02.
We point out here the transversality between g1; g2 is not as in the assumption of Lemma 5.1, but it is in
the sense of Remark 5.3, which usually causes a loss of K in the estimate, but this does not matter.

The parabolic scaling says the following:

Claim 7.1. Let

Egi .y1; y2; y3/DEhi ..N1=N2/y1; .N1=N2/y2; .N
2
1 =N

2
2 /y3/;

let D be domain in R3 and let

zD WD f.y1; y2; y3/ W .N1=N2/y1; .N1=N2/y2; .N
2
1 =N

2
2 /y3 2Dg:

1Strictly speaking, we need them to support on a pair of .N2=N1/� .1=100/ strips; we neglect this technical point here.



936 CHENJIE FAN, GIGLIOLA STAFFILANI, HONG WANG AND BOBBY WILSON

Then it follows from a standard change of variables technique that the following two estimates, with the
same constant A, are equivalent:

kEh1Eh2kL2avg.wD/
. A

2Y
jD1

� X
j� jD1=.�N1/

kEfsj ;�k
2
L4avg.wD/

�1=2
; (7-5)

kEg1Eg2kL2avg.w zD/
. A

2Y
jD1

� X
j Q� jD1=.�N2/

kEg
j; Q�
k
2
L4avg.w zD/

�1=2
: (7-6)

We then concentrate on (7-6).
Take D D BN 21 ; then zD D Œ0; N 2

2 �� Œ0; N1N2�
2. (Here, without loss of generality, we regard BN 21 as

Œ0; N 2
1 �
3.) For convenience of notation, we set z�D Œ0; N 2

2 �� Œ0; N1N2�
2. The parabolic rescaling gives:

Lemma 7.2. Assume g1; g2 are two general functions defined on the parabola. Let g1 be supported in
a strip of size .N2=N1/� 1 around .0; 0; 0/, and g2 be supported in a strip of size .N2=N1/� 1 around
.0; 1; 1/. If for some constant A, one has (for all such g1; g2)

kEg1Eg2kL2avg.wz�/
. A

� X
j Q� jD1=.�N2/

kEg
j; Q�
k
2
L4avg.wy�/

�1=2
; (7-7)

then for the same constant A, one has

kEfs2Efs02
kL2avg.wB

N2
1

/

.KCA
� X
j� jD1=.�N1/

kEfs2;�k
2
L4avg.wB

N2
1

/

�1=2� X
j� jD1=.�N1/

kEfs02;�
k
2
L4avg.wB

N2
1

/

�1=2
: (7-8)

Remark 7.3. After rescaling, the relevant g1; g2 should be supported around .0; 0; 0/ and .0; 1=K; 1=K2/
rather than .0; 0; 0/ and .0; 0; 1/. We state our lemma for g1; g2 supported around .0; 0; 0/ and .0; 1; 1/
to be consistent with the statement in Lemma 5.1. This causes a loss of KC, but we emphasize again that
any loss due to a power of K would be irrelevant in the proof.

We end this section by introducing some notation.
Let g1; g2 be as in Lemma 7.2. We define A.�;N1; N2/ to be the best constant such that

kEg1Eg2kL2avg.wz�/
. A.�;N1; N2/

� X
j Q� jD1=.�N2/

kEg
j; Q�
k
2
L4avg.wy�/

�1=2
: (7-9)

Then we can restate Lemma 7.2.

Lemma 7.4. For j D 1; 2, we have

kEfsjEfs0j
kL2avg.wB

N2
1

/

.KCA.�;N1; N2/
� X
j� jD1=.�N1/

kEfsj ;�k
2
L4avg.wB

N2
1

/

�1=2� X
j� jD1=.�N1/

kEfs0
j
;�k

2
L4avg.wB

N2
1

/

�1=2
: (7-10)
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7C. The induction procedure.

7C1. Before induction. Now we are ready to start the induction for the proof of Lemma 3.3. We emphasize
here the induction is on N2 (though mixed with induction on K). Note we are now in dimension d D 2.

We need to show that for all 1�N2 �N1 and ��N1, one has

K.�;N1; N2/.N �
2

�
1

�
C
N2

N1

�1=2
:

Note the base case N2 D 1 is already established in Lemma 3.4. And with Lemma 3.6, we need only to
perform induction until �DN2=N1.

We will work on A.�;N1; N2/ defined in (7-9) to explore the transversality between nonadjacent
strips. The induction process is two-fold in some sense. We will induct on N2 to better understand
K.�;N1; N2/. In turn we find more information about A.�;N1; N2/, which gives a better understanding
of K.�;N1; N2/.

This is a final summary before we start the induction. Recall, we have (7-1) and (7-3); thus we haveZ
jEf1Ef2j

2wB
N2
1

.
Z X
sj ;s
0

j
nonadj

Z
jEfs1Efs01

Efs2Efs02
jwB

N2
1

C

Z
s1;s2

Z
jEfs1Efs2 jwBN2

1

: (7-11)

Also recall that s1; s01; s2; s
0
2 are all .N2=N1/2�.N2=KN1/ strips. The second term can be easily handled

by direct induction, (which is not the main point of the induction procedure explained later). Indeed, if
there were only the second term in (7-11), since s1; s2 are both contained in caps of radius .N2=KN1/,
then (7-11) already reduces the decoupling problem for fi supported in caps of size N2=N1 into the
decoupling problem for fi supported in caps of size N2=KN1, which reduce N2 to N2=K.

We will focus on the first term of (7-11). The Hölder inequality givesZ
jEfs1Efs01

Efs2Efs02
jwB

N2
1

�

2Y
jD1

�Z
jEfsjEfs0j

j
2wB

N2
1

�1=2
: (7-12)

Estimate (7-12) is the starting point of the analysis in the following subsections.
We summarize in the lemma below how (7-12) and (7-11) come together to highlight the relevance of

A.N1; N2; �/ in the induction procedure.

Lemma 7.5. When ��N1=N2 and ��N1, we have

K.N1; N2; �/.KC
1

�
A.N1; N2; �/CK.N1; N2=K; �/: (7-13)

Note that the assumption of Lemma 7.5 always holds during the induction procedure to prove
Lemma 3.3.

Proof of Lemma 7.5. Applying Lemma 7.4, we have

kEfsjEfs0j
kL2avg.wB

N2
1

/

.KCA.N1; N2; �/
� X
j� jD1=.�N1/

kEfsj ;�k
2
L4avg.wB

N2
1

/

�1=2� X
j� jD1=.�N1/

kEfs0
j
;�k

2
L4avg.wB

N2
1

/

�1=2
: (7-14)
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Plugging (7-14) into (7-12), and then plugging into (7-11), we derive

kEf1Ef2jkl2.wB
N2
1

/.KC�
�
1

�

�1=2 2Y
iD1

� X
j� jD1=.�N1/

kEfi;�k
2
L4avg.wB

N2
1

/

�1=2
C

� X
j� jDN2=.�KN1/

kEfi;�k
2
L4avg.wB

N2
1

/

�1=2
:

(7-15)

Thus we derive

�K.N1; N2; �/.KCA.N1; N2; �/C�K.N1; N2=K; �/: (7-16)

Therefore, Lemma 7.5 follows. �

Now we are ready to start with the induction procedure on N2. We emphasize again that by Lemma 3.6
we only need to consider the case ��N1=N2.

7C2. First induction: Case N 2
2 �N1. It will become clear in the following proof why we choose the

first splitting point at N1 DN 2
2 . We start with an estimate for A.�;N1; N2/. We have:

Lemma 7.6. When N2 �N 2
1 , ��N1, ��N1=N2,

A.�;N1; N2/. �1=2 � ���1=2: (7-17)

Assuming Lemma 7.6 for the moment, let us finish the proof of Lemma 3.3 when N1 �N 2
2 . Applying

Lemma 7.6 with Lemma 7.5, we derive

K.N1; N2; �/.KC�
�
1

�

�1=2
CK.N1; N2=K; �/ (7-18)

when N1 � N 2
2 and � � N1=N2. Choosing 1� K � N �10

2 , performing induction on N2 again, and
recalling that the case N2 . 1 is covered by Lemma 3.4, we have Lemma 3.3 follows when N1 �N 2

2 .

Now, we turn to the proof of Lemma 7.6.

Proof of Lemma 7.6. Since N1 � N 2
2 , we have N2=N1 � 1=N2. (It is exactly because of this that we

decided our first splitting point N1 �N 2
2 ). Thus, the support of g1; g2 appearing in (7-9) is (contained

in) strips of size .1=N2/� 1. Thus, in a ball of radius N 2
2 , we haveZ

jEg1Eg2jwB
N2
2

.
X

j�i jD1=N2
�i�suppgi

Z
jEg1;�1Eg2;�2 jwBN2

2

: (7-19)

The proof of (7-19) is essentially the same as the proof of Lemma 5.1 and we leave it to reader.
Note one can use balls BN 22 to cover z� WD Œ0; N 2

2 �� Œ0; N1N2�
2 (since N1 � N2), thus we extend

(7-19) to Z
jEg1Eg2jwz� .

X
j�i jD1=N2
�i�suppgi

Z
jEg1;�1Eg2;�2 jwz�: (7-20)
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We claim for any fixed �1; �2, one has

kEg1;�1Eg2;�2kL2.wz�/
. ���1=2

2Y
iD1

� X
Q�i��i

k Q�iD1=.�N2/k

kEg
i; Q�i
kL4.wz�/

�1=2
: (7-21)

Plugging (7-21) into (7-20), we have

A.N1; N2; �/. �
�
1

�

�1=2
; (7-22)

and then Lemma 7.6 follows.
Now we are left with the proof of (7-21). Let N 01 D N2, N 02 D N

2
2 =N1 . 1. When N 01 D N2 � �,

recall the definition of zK.�;N1; N2/ in (3-4) and apply Lemma 3.2. Then we have

K.N 01; N
0
2; �/. .N

0
2/
�

�
N 02
N 01

�1=2
.
�
1

�
C
N2

N1

�1=2
. ��1=2: (7-23)

The last inequality in (7-23) follows because we always have ��N1=N2 in the whole induction process.
Note (7-23) implies

kEg1;�1Eg2;�2kL2.w
Œ0;N2

2
��Œ0;�N2�

2 /

. � zK.N 01; N
0
2; �/

2Y
iD1

� X
Q�i��i

k Q�iD1=.�N2/k

kEg
i; Q�i
kL4.w

Œ0;N2
2
��Œ0;�N2�

2 /

�1=2
: (7-24)

Since ��N1, (which is also always the case during the induction process ), z� can be covered by the
translations of Œ0; N 2

2 �� Œ0; �N2�; thus (7-24) implies (7-21) by parallel decoupling, Lemma 1.9.
When ��N 01, since N 02 . 1, by Lemma 3.4, we have

K.�;N 01; N
0
2/. �

�1=2: (7-25)

Thus,

kEg1;�1Eg2;�2kL2.wB
N2
2

/ . ���1=2
2Y
iD1

� X
Q�i��i

k Q�iD1=.�N2/k

kEg
i; Q�i
kL4.wB

N2
2

/

�1=2
: (7-26)

Since one can use BN 22 and its translations to cover z�, (7-26) implies (7-21) by parallel decoupling,
Lemma 1.9. �

7C3. Second induction: Case N 3=2
2 �N1 �N

2
2 .

Lemma 7.7. When N 3=2
2 �N1 �N

2
2 , ��N1 and ��N1=N2, we have

A.�;N1; N2/. �1=2 � ���1=2: (7-27)

Clearly, using Lemma 7.5 and arguing as in Section 7C2, Lemma 3.3 follows from Lemma 7.7 when
N
3=2
2 �N1 �N

2
2 .
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Now we are left with proof of Lemma 7.7, i.e., the estimate (7-27). We will prove that estimate (7-27), in
the caseN 3=2

2 �N1�N
2
2 , follows from the fact that Lemma 3.3 holds whenN 2

2 �N1 (given Lemma 3.2).

Proof of Lemma 7.7. The proof starts similarly to the proof of Lemma 7.6; note now we have N2=N1 �
1=N2. As we derived in (7-19), we have in a ball of radius N 2

1 =N
2
2 ,Z

jEg1Eg2jwB
.N1=N2/

2
.

X
j�i jDN2=N1
�i�suppgi

Z
jEg1;�1Eg2;�2 jwB.N1=N2/2

: (7-28)

Note one can use B.N1=N2/2 and its translations to cover z�; thus we haveZ
jEg1Eg2jwz� .

X
j�i jDN2=N1
�i�suppgi

Z
jEg1;�1Eg2;�2 jwz�: (7-29)

The following procedure is essentially the same as in the first induction. Note that to prove (7-27) we
only need to further show that for fixed �1; �2,

kEg1;�1Eg2;�2kL2.wz�/
. ���1=2

2Y
iD1

� X
Q�i��i

j Q�i jD1=.�N2/

kEg
i; Q�i
kL4.wz�/

�1=2
; (7-30)

where now j�i j DN2=N1.
Let N 01DN2 and N 02DN

2
2 =N1; note we have N 01 � .N

0
2/
2 since N1 �N

3=2
2 . When ��N 01, we have

by Lemma 3.2
kEg1;�1Eg2;�2kL2.w

Œ0;N2
2
��Œ0;�N2�

2 /

. �
�
N 02
N 01

��1=2 2Y
iD1

� X
Q�i��i

j Q�i jD1=.�N2/

kEg
i; Q�i
kL4.w

Œ0;N2��Œ0;�N2�
2 /

�1=2
: (7-31)

Since one can use Œ0; N 2
2 � � Œ0; �N2�

2 to cover z�, (7-30) follows from (7-31) (note that N 02=N
0
1 D

N2=N1 � �
�1).

When ��N 01, since one can use BN 22 to cover z�, to prove (7-30), we need only show

kEg1;�1Eg2;�2kL2.wB
N2
2

/ . ���1=2
2Y
iD1

� X
Q�i��i

k Q�iD1=.�N2/k

kEg
i; Q�i
kL4.wB

N2
2

/

�1=2
; (7-32)

which is equivalent to K.N 01; N
0
2; �/ � 1=�. But recall that N 01 � .N

0
2/
2, thus this is exactly what we

proved in first induction; i.e., Lemma 3.3 holds when N1 �N 2
2 . �

7C4. Later inductions and the conclusion of the induction process. Recall that the first induction covers
the case N1 �N 2

2 and the second inductions covers the case N ˛
2 �N1 �N

2
2 , ˛D 3

2
. The goal now is to

use induction to cover the case N ˛
2 �N1, all the way to ˛ D 1. The arguments here are similar to those

for the second induction presented in Section 7C3. Let N 01 DN2, N 02 DN
2
2 =N1; then N 01 � .N

0
2/
˛ is

equivalent to N1 �N
.2˛�1/=˛
2 . Once we show that Lemma 3.3 holds when N ˛

2 �N1 �N
2
2 , we will be
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able to extend Lemma 7.7 to the case when N .2˛�1/=˛
2 �N1, which in turn proves that Lemma 3.3 holds

when N .2˛�1/=˛
2 �N1 �N

2
2 . The induction would not end until ˛D 1. We finally point out that only an

induction with finite steps is involved.
To show Lemma 3.3 for a fixed �0, we may pick an Q�� �0, and then perform the induction for Q� as above.
After we prove Lemma 3.3 for N1 � N 1CQ�

2 , we are left with the case N1 � N 1CQ�
2 . We first use the

Hölder inequality to shrink the size of the cap from N2=N1 to N 1�2Q�
2 =N1, which only gives a loss of

NC Q�
2 �N

�0
2 . Then we use Lemma 3.3 in the case N1 �N 1CQ�

2 again.
Thus, Lemma 3.3 holds for all the cases for our fixed �0.

7D. The high-dimension case. To handle the case d � 3, we are left with the proof of Lemma 3.5. The
proof is indeed similar to previous arguments in this section and easier. The proof relies on the linear
decoupling estimate in [Bourgain and Demeter 2015].

As mentioned earlier, applying Lemma 5.1, taking v D N2=N1 and R D N 2
1 , we can decouple the

N2=N1 caps into .N2=N1; N 2
2 =N

2
1 / plates without any loss, i.e., (7-1). However, since we are in the case

��N1=N
2
2 , indeed N 2

2 =N
2
1 . 1=.�N1/, we only need a weaker version of (7-1); i.e., we only want to

decouple the N2=N1 caps into .N2=N1; 1=.�N1// plates:Z
jEf1Ef2j

2wB
N2
1

.
X
�1;�2

Z
jEf1;�1Ef2;�2 j

2wB2N1
: (7-33)

Here �i are .N2=N1; 1=.�N1// plates as described in Lemma 5.1. Note (7-33) follows from (7-1).
Now, for each �i fixed, we further decouple �i into .1=N1; 1=.�N1// plates via linear decoupling in

[Bourgain and Demeter 2015], here recalled in (1-11). Note direct application of linear decoupling in
dimension d gives us

kEf�ikL4.wB
N2
1

/ .N �
2 .N

2
2 /
d=4�.dC2/=8

� X
vi��i

kEfvik
2
L4.wB

N2
1

/

�1=2
: (7-34)

However, we are able to use (1-11) when the dimension is d � 1 rather than d , because our plates
are so thin (of scale 1=.�N1/ � 1=N1), which reduces the dimension by 1. Indeed, linear decoupling
(1-11) not only works for those functions which are exactly supported in parabola P but also those which
are supported in an N�21 neighborhood of P. This is consistent with the uncertainty principle, since in
physical space we are of scale N 2

1 , and in frequency space any scale of N�21 cannot be differentiated.
Since our plates are so thin, of scale 1=.�N1/�N�21 , one could indeed view them as N�21 neighborhoods
of some .d�1/-dimensional parabola. To be more specific, use �2 as example, since �2 is supported at
the origin. Let ��1t .�2/ be the pull back image of �2 to the paraboloid. The Fourier inverse transform of
Ef�2 is supported on ��1t .�2/. One can see that if we project along the x1-axis, the projection image of
��1t .�2/ is the .1=.�N1//2-neighborhood of a .d�1/-dimensional paraboloid (a piece of lengthN2=N1).

Now, applying .d�1/-dimensional linear decoupling, we improve (7-34) into

kEf�ikL4.wB
N2
1

/ .N �
2 .N

2
2 /
.d�1/=4�.dC1/=8

� X
vi��i

kEfvik
2
L4.wB

N2
1

/

�1=2
; (7-35)

where vi are .1=N1; 1=.�N1// plates.
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Finally, similarly to the derivation of (6-4), we decouple vi into caps of radius 1=.�N1/,

kEfvik
4
L4.wB

N2
1

/
. �.d�1/

� X
�i�vi

kEf�ik
2
L4.wB

N2
1

/

�2
: (7-36)

We remark that each vi can be covered by �d�1 rather than �d caps of radius 1=.�N1/. Plugging (7-36)
into (7-35), then plugging it into (7-33), we derive

kEf1Ef2kL2avg.wB
N2
1

/ � �
d�1=2N

.d�3/=2
2

2Y
jD1

� X
j� jD1=.�N1/

kEfj;�k
2
L4avg.wB

N2
1

/

�1=2
: (7-37)

Thus, the desired estimate for K.�;N1; N2/ follows.

Appendix: Sharpness of Theorems 1.1 and 1.3

The sharpness (up to N �
2 ) of Theorem 1.3 is provided by the following examples. One can also rescale

those examples to show the sharpness of Theorem 1.1.
We take

Ef1 D
X

�2ƒ�N1
j�j�N2=N1

e2�i.��xCj�j
2t/

and f2 D f1. � � .1; 0; : : : ; 0//. Then jEf1j is about .�N2/d at B.0;N1=N2/ in RdC1. Note that it
follows from the uncertainty principle that it is locally constant in any ball of size N1=N2 and one can
easily compute jEf1.0/j � .�N2/d. Also note jEf1j has periodicity around �N1 in all components of x
(not necessarily in t ). The same is true for jEf2j. Thus,

kEf1Ef2k
2
L2.w�/

& .�N2/4d
ˇ̌̌̌
B

�
0;
N1

N2

�ˇ̌̌̌
.�N1/

d & �5dN 2dC1
1 N 3d�1

2 :

Each cap �j of radius 1=.�N1/ contains at most one point � 2ƒ�N1 . Hence kEfj;�j k
4
L4.w�/

. j�j D
N 2
1 .�N1/

2d :

…2jD1

� X
j�j jD1=.�N1/

kEfj;�j k
2
L4.w�/

�
. .�N2/2dN 2

1 .�N1/
2d . �4dN 2dC2

1 N 2d
2 :

This example shows that the term with N d�1
2 =N1 is sharp for both d D 2 and d � 3.

When d D 2, we consider the example when

Ef1 D
X

�2ƒ�N1
�1D1; j�2j�1=N1

e2�i.��xCj�j
2t/; Ef2 D

X
�2ƒ�N1

�1D0 j�2j�1=N1

e2�i.��xCj�j
2t/:

jEf1j is about � in the box of height N 2
1 (i.e., the t-direction), width N1 (i.e., the-x2 direction) and

length .�N1/2 (i.e., the x1-direction) centered at origin. jEf2j is the same size in the same box. Moreover,
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Ef1 and Ef2 both have periodicity around �N1 in x2:

kEf1Ef2k
2
L2.w�/

& �4N 2
1 �N1 � .�N1/

2
��N1 & �7N 6

1 :

As calculated previously, kEfj;�j k
4
L4.w�/

D j�j, so

…2jD1

� X
j�j jD1=.�N1/

kEfj;�j k
2
L4.w�/

�
. �2 � j�j. �6N 6

1 :

This example shows that when d D 2, the term with 1=� is sharp.
When d � 3, we consider the example with

Ef1 D
X

�2ƒ�N1 ; �1D1

j.�2;:::;�d /j�N2=N1

e2�i.��xCj�j
2t/; Ef2 D

X
�2ƒ�N1 ; �1D0

j.�2;:::;�d /j�N2=N1

e2�i.��xCj�j
2t/:

Notice that we construct the example in d � 3 differently; the support of fj is in a thin plate of radius
N2=N1 instead of 1=N1, as in two-dimensional example.
jEf1j is about .�N2/d�1 in a box of size .N1=N2/� � � � � .N1=N2/� .N1=N2/2 � .�N1/2. jEf2j

is about .�N2/d�1 in the same box. Both Ef1 and Ef2 have periodicity around �N1 in the x2-, . . . ,
xd -directions:

kEf1Ef2k
2
L2.w�/

& .�N1/4.d�1/
�
N1

N2

�dC1
.�N1/

2.�N1/
d�1 & �5d�3N 2dC2

1 N 3d�5
2

and

…2jD1

� X
j�j jD1=.�N1/

kEfj;�j k
2
L4.w�/

�
. .�N2/2.d�1/ � j�j. �4d�2N 2dC2

1 N 2d�2
2

This example shows that when d � 3, the term with N d�3
2 =� is sharp.

Acknowledgment

We thank Larry Guth for very helpful discussions during the course of this work.

References

[Bourgain 1993] J. Bourgain, “Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear
evolution equations, II: The KdV-equation”, Geom. Funct. Anal. 3:3 (1993), 209–262. MR Zbl

[Bourgain 1998] J. Bourgain, “Refinements of Strichartz’ inequality and applications to 2D-NLS with critical nonlinearity”,
Internat. Math. Res. Notices 1998:5 (1998), 253–283. MR Zbl

[Bourgain 2013] J. Bourgain, “Moment inequalities for trigonometric polynomials with spectrum in curved hypersurfaces”,
Israel J. Math. 193:1 (2013), 441–458. MR Zbl

[Bourgain and Demeter 2015] J. Bourgain and C. Demeter, “The proof of the l2 decoupling conjecture”, Ann. of Math. .2/ 182:1
(2015), 351–389. MR Zbl

[Bourgain and Demeter 2017] J. Bourgain and C. Demeter, “A study guide for the l2 decoupling theorem”, Chin. Ann. Math.
Ser. B 38:1 (2017), 173–200. MR Zbl

http://dx.doi.org/10.1007/BF01895688
http://dx.doi.org/10.1007/BF01895688
http://msp.org/idx/mr/1215780
http://msp.org/idx/zbl/0787.35098
http://dx.doi.org/10.1155/S1073792898000191
http://msp.org/idx/mr/1616917
http://msp.org/idx/zbl/0917.35126
http://dx.doi.org/10.1007/s11856-012-0077-1
http://msp.org/idx/mr/3038558
http://msp.org/idx/zbl/1271.42039
http://dx.doi.org/10.4007/annals.2015.182.1.9
http://msp.org/idx/mr/3374964
http://msp.org/idx/zbl/1322.42014
http://dx.doi.org/10.1007/s11401-016-1066-1
http://msp.org/idx/mr/3592159
http://msp.org/idx/zbl/1370.42021


944 CHENJIE FAN, GIGLIOLA STAFFILANI, HONG WANG AND BOBBY WILSON

[Colliander et al. 2002] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, “Almost conservation laws and global
rough solutions to a nonlinear Schrödinger equation”, Math. Res. Lett. 9:5 (2002), 659–682. MR Zbl
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[Killip and Vişan 2016] R. Killip and M. Vişan, “Scale invariant Strichartz estimates on tori and applications”, Math. Res. Lett.
23:2 (2016), 445–472. MR Zbl

[Ramos 2016] J. Ramos, “The trilinear restriction estimate with sharp dependence on the transversality”, preprint, 2016. arXiv

Received 23 Jan 2017. Revised 7 Oct 2017. Accepted 11 Dec 2017.

CHENJIE FAN: cjfan@math.uchicago.edu
Department of Mathematics, University of Chicago, Chicago, IL, United States

GIGLIOLA STAFFILANI: gigliola@math.mit.edu
Department of Mathematics, Massachusetts Institue of Technology, Cambridge, MA, United States

HONG WANG: hongwang@mit.edu
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, United States

BOBBY WILSON: blwilson@mit.edu
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, United States

mathematical sciences publishers msp

http://dx.doi.org/10.4310/MRL.2002.v9.n5.a9
http://dx.doi.org/10.4310/MRL.2002.v9.n5.a9
http://msp.org/idx/mr/1906069
http://msp.org/idx/zbl/1152.35491
http://dx.doi.org/10.3934/dcds.2007.19.37
http://dx.doi.org/10.3934/dcds.2007.19.37
http://msp.org/idx/mr/2318273
http://msp.org/idx/zbl/1293.35291
http://msp.org/idx/arx/1702.04978
https://doi.org/10.1016/j.jfa.2017.05.011
http://msp.org/idx/mr/3692323
http://msp.org/idx/zbl/1372.35012
http://dx.doi.org/10.1112/plms/pdu025
http://msp.org/idx/mr/3273490
http://msp.org/idx/zbl/1303.35099
http://dx.doi.org/10.2140/apde.2012.5.339
http://dx.doi.org/10.2140/apde.2012.5.339
http://msp.org/idx/mr/2970710
http://msp.org/idx/zbl/1273.35070
http://dx.doi.org/10.1215/00127094-1415889
http://dx.doi.org/10.1215/00127094-1415889
http://msp.org/idx/mr/2824485
http://msp.org/idx/zbl/1230.35130
http://dx.doi.org/10.1215/00127094-1593335
http://msp.org/idx/mr/2931275
http://msp.org/idx/zbl/1245.35119
http://dx.doi.org/10.4310/MRL.2016.v23.n2.a8
http://msp.org/idx/mr/3512894
http://msp.org/idx/zbl/1354.35140
http://msp.org/idx/arx/1601.05750
mailto:cjfan@math.uchicago.edu
mailto:gigliola@math.mit.edu
mailto:hongwang@mit.edu
mailto:blwilson@mit.edu
http://msp.org


ANALYSIS AND PDE
Vol. 11, No. 4, 2018

dx.doi.org/10.2140/apde.2018.11.945 msp

SHARP GLOBAL ESTIMATES FOR LOCAL AND NONLOCAL POROUS
MEDIUM-TYPE EQUATIONS IN BOUNDED DOMAINS

MATTEO BONFORTE, ALESSIO FIGALLI AND JUAN LUIS VÁZQUEZ

We provide a quantitative study of nonnegative solutions to nonlinear diffusion equations of porous medium-
type of the form ∂t u+Lum

= 0, m > 1, where the operator L belongs to a general class of linear operators,
and the equation is posed in a bounded domain�⊂RN. As possible operators we include the three most com-
mon definitions of the fractional Laplacian in a bounded domain with zero Dirichlet conditions, and also a
number of other nonlocal versions. In particular, L can be a fractional power of a uniformly elliptic operator
with C1 coefficients. Since the nonlinearity is given by um with m > 1, the equation is degenerate parabolic.

The basic well-posedness theory for this class of equations was recently developed by Bonforte and
Vázquez (2015, 2016). Here we address the regularity theory: decay and positivity, boundary behavior, Har-
nack inequalities, interior and boundary regularity, and asymptotic behavior. All this is done in a quantitative
way, based on sharp a priori estimates. Although our focus is on the fractional models, our results cover
also the local case when L is a uniformly elliptic operator, and provide new estimates even in this setting.

A surprising aspect discovered in this paper is the possible presence of nonmatching powers for the
long-time boundary behavior. More precisely, when L = (−1)s is a spectral power of the Dirichlet
Laplacian inside a smooth domain, we can prove that
• when 2s > 1− 1/m, for large times all solutions behave as dist1/m near the boundary;
• when 2s ≤ 1− 1/m, different solutions may exhibit different boundary behavior.

This unexpected phenomenon is a completely new feature of the nonlocal nonlinear structure of this model,
and it is not present in the semilinear elliptic equation Lum

= u.
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1. Introduction

In this paper we address the question of obtaining a priori estimates, positivity, boundary behavior,
Harnack inequalities, and regularity for a suitable class of weak solutions of nonlinear nonlocal diffusion
equations of the form

∂t u+LF(u)= 0 posed in Q = (0,∞)×�, (1-1)

where �⊂ RN is a bounded domain with C1,1 boundary, N ≥ 2,1 and L is a linear operator representing
diffusion of local or nonlocal type, the prototype example being the fractional Laplacian (the class of
admissible operators will be precisely described below). Although our arguments hold for a rather general
class of nonlinearities F : R→ R, for the sake of simplicity we shall focus on the model case F(u)= um

with m > 1.
The use of nonlocal operators in diffusion equations reflects the need to model the presence of long-

distance effects not included in evolution driven by the Laplace operator, and this is well documented in
the literature. The physical motivation and relevance of the nonlinear diffusion models with nonlocal
operators has been mentioned in many references; see for instance [Athanasopoulos and Caffarelli 2010;
Bonforte and Vázquez 2014; 2015; de Pablo et al. 2011; 2012; Vázquez 2014b]. Because u usually
represents a density, all data and solutions are supposed to be nonnegative. Since the problem is posed in
a bounded domain, we need boundary or external conditions that we assume to be of Dirichlet type.

This kind of problem has been extensively studied when L=−1 and F(u)= um, m> 1, in which case
the equation becomes the classical porous medium equation [Vázquez 2004; 2007; Dahlberg and Kenig
1988; Daskalopoulos and Kenig 2007]. Here, we are interested in treating nonlocal diffusion operators,
in particular fractional Laplacian operators. Note that, since we are working on a bounded domain, the
concept of fractional Laplacian operator admits several nonequivalent versions, the best known being the
restricted fractional Laplacian (RFL), the spectral fractional Laplacian (SFL), and the censored fractional
Laplacian (CFL); see Section 2A for more details. We use these names because they already appeared in
some previous works [Bonforte et al. 2015; Bonforte and Vázquez 2016], but we point out that the RFL
is usually known as the standard fractional Laplacian, or plainly fractional Laplacian, and the CFL is
often called the regional fractional Laplacian.

The case of the SFL operator with F(u) = um, m > 1, was already studied by the first and third
authors in [Bonforte and Vázquez 2015; 2016]. In particular, in [Bonforte and Vázquez 2016] the authors
presented a rather abstract setting where they were able to treat not only the usual fractional Laplacians
but also a large number of variants that will be listed below for the reader’s convenience. Besides, rather
general increasing nonlinearities F were allowed. The basic questions of existence and uniqueness of
suitable solutions for this problem were solved in [Bonforte and Vázquez 2016] in the class of “weak dual
solutions”, an extension of the concept of solution introduced in [Bonforte and Vázquez 2015] that has
proved to be quite flexible and efficient. A number of a priori estimates (absolute bounds and smoothing
effects) were also derived in that generality.

1Our results work also in dimension N = 1 if the fractional exponent (that we shall introduce later) belongs to the range
0< s < 1

2 . The interval 1
2 ≤ s < 1 requires some minor modifications that we prefer to avoid in this paper.
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Since these basic facts are settled, here we focus our attention on the finer aspects of the theory, mainly
sharp boundary estimates and decay estimates. Such upper and lower bounds will be formulated in
terms of the first eigenfunction 81 of L, which under our assumptions will satisfy 81 � dist( · , ∂�)γ

for a certain characteristic power γ ∈ (0, 1] that depends on the particular operator we consider. Typical
values are γ = s (SFL), γ = 1 (RFL), and γ = s− 1

2 for s > 1
2 (CFL); see Sections 2A and 10A. As a

consequence, we get various kinds of local and global Harnack-type inequalities.
It is worth mentioning that some of the boundary estimates that we obtain for the parabolic case are

essentially elliptic in nature. The study of this issue for stationary problems is done in a companion paper
[Bonforte et al. 2017b]. This has the advantage that many arguments are clearer, since the parabolic
problem is more complicated than the elliptic one. Clarifying such differences is one of the main
contributions of our present work.

Thanks to these results, in the last part of the paper we are able to prove both interior and boundary
regularity, and to find the large-time asymptotic behavior of solutions.

Let us indicate here some notation of general use. The symbol∞ will always denote +∞. Given a, b,
we use the notation a � b whenever there exist universal constants c0, c1 > 0 such that c0 b ≤ a ≤ c1b.
We also use the symbols a ∨ b = max{a, b} and a ∧ b = min{a, b}. We will always consider bounded
domains � with boundary of class C2. In the paper we use the short form “solution” to mean “weak dual
solution”, unless differently stated.

1A. Presentation of the results on sharp boundary behavior. • A basic principle in the paper is that
the sharp boundary estimates depend not only on L but also on the behavior of the nonlinearity F(u)
near u = 0, i.e., in our case, on the exponent m > 1. The elliptic analysis performed in the companion
paper [Bonforte et al. 2017b] combined with some standard arguments will allow us to prove that, in all
cases, u(t) approaches the separate-variable solution U(x, t)= t−1/(m−1)S(x) in the sense that

‖t1/(m−1)u(t, · )− S‖L∞(�) t→∞
−−−→ 0, (1-2)

where S is the solution of the elliptic problem (see Theorems 3.2 and 7.1). The behavior of the profile
S(x) is shown to be, when 2sm 6= γ (m− 1),

S(x)�81(x)σ/m, σ :=min
{

1,
2sm

γ (m− 1)

}
. (1-3)

Thus, the behavior strongly depends on the new parameter σ , more precisely, on whether this parameter is
equal to 1 or less than 1. As we shall see later, σ encodes the interplay between the “elliptic scaling power”
2s/(m− 1), the “eigenfunction power” γ , and the “nonlinearity power” m. When 2sm = γ (m− 1) we
have σ = 1, but a logarithmic correction appears:

S(x)�81(x)1/m(1+ | log81(x)|)1/(m−1). (1-4)

• This fact and the results in [Bonforte et al. 2017a] prompted us to look for estimates of the form

c0(t)
8
σ/m
1 (x0)

t1/(m−1) ≤ u(t, x0)≤ c1
8
σ/m
1 (x0)

t1/(m−1) for all t > 0, x0 ∈�, (1-5)
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where c0(t) and c1 are positive and independent of u, eventually with a logarithmic term appearing
when 2sm = γ (m− 1), as in (1-4). We will prove in this paper that the upper bound holds for the three
mentioned fractional Laplacian choices, and indeed for the whole class of integrodifferential operators
we will introduce below; see Theorem 4.1. Also, separate-variable solutions saturate the upper bound.

The issue of the validity of a lower bound as in (1-5) is instead much more elusive. A first indication
for this is the introduction of a function c0(t) depending on t , instead of a constant. This seems to reflect
the fact that the solution may take some time to reach the boundary behavior that is expected to hold
uniformly for large times. Indeed, recall that in the classical PME [Aronson and Peletier 1981; Vázquez
2004; 2007], for data supported away from the boundary, some “waiting time” is needed for the support
to reach the boundary.

• As proved in [Bonforte et al. 2017a], the stated lower bound holds for the RFL with c0(t)∼ (1∧t)m/(m−1).
In particular, in this nonlocal setting, infinite speed of propagation holds. Here, we show that this holds
also for the CFL and a number of other operators; see Theorem 5.2. Note that for the RFL and the CFL
we have 2sm > γ (m− 1), in particular σ = 1, which simplifies formula (1-5).

A combination of an upper and a lower bound with matching behavior (with respect to x and t) will be
called a global Harnack principle, and holds for all t > 0 for these operators; see Theorems 6.1 and 6.2.

• When L is the SFL, we shall see that the lower bound may fail. Of course, solutions by separation of
variables satisfy the matching estimates in (1-5), eventually with an extra logarithmic term in the limit
case, as in (1-4), but it came as a complete surprise to us that for the SFL the situation is not the same for
“small” initial data. More precisely:

(i) We can prove that the following bounds always hold for all times:

c0

(
1∧

t
t∗

)m/(m−1)
81(x0)

t1/(m−1) ≤ u(t, x0)≤ c1
8
σ/m
1 (x0)

t1/(m−1) (1-6)

(when 2sm = γ (m−1), a logarithmic correction (1+| log81(x)|)1/(m−1) appears in the right-hand side);
see Theorem 5.1. These are nonmatching estimates.

(ii) For 2sm > γ (m− 1), the sharp estimate (1-5) holds for any nonnegative nontrivial solution for large
times t ≥ t∗; see Theorem 5.3.

(iii) Anomalous boundary behavior. Consider now the SFL with σ < 1 (resp. 2sm = γ (m− 1)).2 In this
case we can find initial data for which the upper bound in (1-6) is not sharp. Depending on the initial
data, there are several possible rates for the long-time behavior near the boundary. More precisely:

(a) When u0 ≤ A81, we have u(t)≤ F(t)81/m
1 �8

σ/m
1 (resp. 81/m

1 �8
1/m
1 (1+| log81|)

1/(m−1)) for
all times; see Theorem 5.4. In particular

lim
x→∂�

u(t, x)
81(x)σ/m = 0

(
resp. lim

x→∂�

u(t, x)
81(x)1/m(1+ | log81(x)|)1/(m−1) = 0

)
(1-7)

for any t > 0.

2Since for the SFL γ = 1, we have σ < 1 if and only if 0< s < s∗ := (m− 1)/(2m) < 1
2 . Note that s∗→ 0 as we tend to the

linear case m = 1, so this exceptional regime does not appear for linear diffusions, both fractional and standard.
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(b) When u0 ≤ A81−2s/γ
1 , we have u(t)≤ F(t)81−2s/γ

1 for small times; see Theorem 4.4. Notice that
when σ < 1 we have always 1− 2s/γ > σ/m. This sets a limitation on the improvement of the
lower bound, which is confirmed by another result: in Theorem 5.5 we show that lower bounds of
the form u(T, x)≥ κ8α1 (x) for data u0(x)≤ A81(x) are possible only for α ≥ 1− 2s/γ .

(c) On the other hand, for “large” initial data, Theorem 6.2 shows that the desired matching estimates
from above and below hold.

After discovering this strange boundary behavior, we looked for numerical confirmation. In Section 9
we will explain the numerical results obtained in [Cusimano et al. 2017]. Note that, if one looks for
universal bounds independent of the initial condition, Figures 2–3 below seem to suggest that the bounds
provided by (1-6) are optimal for all times and all operators.

• The current interest in more general types of nonlocal operators led us to a more general analysis where
the just-explained alternative has been extended to a wide class of integrodifferential operators, subject only
to a list of properties that we call (A1), (A2), (L1), (L2), (K2), (K4); a number of examples are explained
in Section 2. These general classes appear also in the study of the elliptic problem [Bonforte et al. 2017b].

1B. Asymptotic behavior and regularity. Our quantitative lower and upper estimates admit formulations
as local or global Harnack inequalities. They are used at the end of the paper to settle two important
issues.

Sharp asymptotic behavior. Exploiting the techniques in [Bonforte et al. 2015], we can prove a sharp
asymptotic behavior for our nonnegative and nontrivial solutions when the upper and lower bounds have
matching powers. Such sharp results hold true for a quite general class of local and nonlocal operators. A
detailed account is given in Section 7.

Regularity. By a variant of the techniques used in [Bonforte et al. 2017a], we can show interior Hölder
regularity. In addition, if the kernel of the operator satisfies some suitable continuity assumptions, we
show that solutions are classical in the interior and are Hölder continuous up to the boundary if the upper
and lower bounds have matching powers. We refer to Section 8 for details.

2. General class of operators and their kernels

The interest of the theory developed here lies both in the sharpness of the results and in the wide range of
applicability. We have just mentioned the most relevant examples appearing in the literature, and more are
listed at the end of this section. Actually, our theory applies to a general class of operators with definite
assumptions, and this is what we want to explain now.

Let us present the properties that have to be assumed on the class of admissible operators. Some of
them already appeared in [Bonforte and Vázquez 2016]. However, to further develop our theory, more
hypotheses need to be introduced. In particular, while the paper above only uses the properties of the
Green function, here we shall make some assumptions also on the kernel of L (whenever it exists). Note
that assumptions on the kernel K of L are needed for the positivity results, because we need to distinguish
between the local and nonlocal cases. The study of the kernel K is performed in Section 10.
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For convenience of reference, the list of used assumptions is (A1), (A2), (K2), (K4), (L1), (L2). The
first three are assumed in all operators L that we use.

• Basic assumptions on L. The linear operator L : dom(L)⊆ L1(�)→ L1(�) is assumed to be densely
defined and sub-Markovian; more precisely, it satisfies(A1)and(A2)below:

(A1) L is m-accretive on L1(�);

(A2) If 0≤ f ≤ 1 then 0≤ e−tL f ≤ 1.

Under these assumptions, in [Bonforte and Vázquez 2016], the first and third authors proved existence,
uniqueness, weighted estimates, and smoothing effects.

• Assumptions on the kernel. Whenever L is defined in terms of a kernel K (x, y) via the formula

L f (x)= P.V.
∫

RN
( f (x)− f (y)) K (x, y) dy,

assumption (L1) states that there exists κ� > 0 such that

inf
x,y∈�

K (x, y)≥ κ� > 0. (L1)

We note that condition holds both for the RFL and the CFL; see Section 2A.

Whenever L is defined in terms of a kernel K (x, y) and a zero-order term via the formula

L f (x)= P.V.
∫

RN
( f (x)− f (y)) K (x, y) dy+ B(x) f (x),

assumption (L2) states that

K (x, y)≥ c0δ
γ(x)δγ(y), c0 > 0, and B(x)≥ 0, (L2)

where, from now on, we adopt the notation δ(x) := dist(x, ∂�). This condition is satisfied by the SFL in
a stronger form; see Section 10 and Lemma 10.1.

• Assumptions on L−1. In order to prove our quantitative estimates, we need to be more specific about the
operator L. Besides satisfying(A1)and (A2), we will assume that it has a left-inverse L−1

:L1(�)→L1(�)

that can be represented by a kernel G (the letter “G” standing for Green function) as

L−1
[ f ](x)=

∫
�

G(x, y) f (y) dy,

where G satisfies the following assumption for some s ∈ (0, 1]: there exist constants γ ∈ (0, 1] and
c0,�, c1,� > 0 such that, for a.e. x, y ∈�,

c0,�δ
γ(x)δγ(y)≤ G(x, y)≤

c1,�

|x − y|N−2s

(
δγ(x)
|x − y|γ

∧ 1
)(

δγ(y)
|x − y|γ

∧ 1
)
. (K2)

(Here and below we use the labels (K2) and (K4) to be consistent with the notation in [Bonforte and
Vázquez 2016].) Hypothesis (K2) introduces an exponent γ which is a characteristic of the operator and
will play a big role in the results. Notice that defining an inverse operator L−1 implies that we are taking into
account the Dirichlet boundary conditions. See more details in Section 2 of [Bonforte and Vázquez 2016].
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The lower bound in (K2) is weaker than the known bounds on the Green function for many examples
under consideration; indeed, the following stronger estimate holds in many cases:

G(x, y)�
1

|x − y|N−2s

(
δγ(x)
|x − y|γ

∧ 1
)(

δγ(y)
|x − y|γ

∧ 1
)
. (K4)

Remarks. (i) The labels (A1), (A2), (K1), (K2), (K4) are consistent with the notation in [Bonforte and
Vázquez 2016]. The label (K3) was used to mean hypothesis (K2) written in terms of 81 instead of δγ.

(ii) In the classical local case L = −1, the Green function G satisfies (K4) only when N ≥ 3, as the
formulas slightly change when N = 1, 2. In the fractional case s ∈ (0, 1) the same problem arises when
N = 1 and s ∈

[ 1
2 , 1

)
. Hence, treating also these cases would require a slightly different analysis based

on different but related assumptions on G. Since our approach is very general, we expect it to work also
in these remaining cases without any major difficulties. However, to simplify the presentation, from now
on we assume that

either N ≥ 2 and s ∈ (0, 1) or N = 1 and s ∈
(
0, 1

2

)
.

The role of the first eigenfunction of L. We showed in [Bonforte et al. 2017b] that, under assumption (K1),
the operator L is compact, has a discrete spectrum, and has a first nonnegative bounded eigenfunction 81;
assuming also (K2), we have

81(x)� δγ(x)= dist(x, ∂�)γ for all x ∈�. (2-1)

Hence, 81 encodes the parameter γ that takes care of describing the boundary behavior. We recall that
we are assuming that the boundary of � is smooth enough, for instance C1,1.

Remark. We note that our assumptions allow us to cover all the examples of operators described in
Sections 2A and 10A.

2A. Main examples of operators and properties. When working in the whole RN, the fractional Lapla-
cian admits different definitions that can be shown to be all equivalent. On the other hand, when we
deal with bounded domains, there are at least three different operators in the literature, which we call the
restricted (RFL), the spectral (SFL) and the censored fractional Laplacian (CFL). We will show below
that these different operators exhibit quite different behaviors, so the distinction between them has to be
taken into account. Let us present the statement and results for the three model cases, and we refer to
Section 10A for further examples. Here, we collect the sharp results about the boundary behavior, namely
the global Harnack inequalities from Theorems 6.1, 6.2, and 6.3.

The parameters γ and σ . The strong difference between the various operators L is reflected in the
different boundary behavior of their nonnegative solutions. We will often use the exponent γ , which
represents the boundary behavior of the first eigenfunction 81� dist( · , ∂�)γ ; see [Bonforte et al. 2017b].
Both in the parabolic theory of this paper and the elliptic theory of [Bonforte et al. 2017b] the parameter
σ =min{1, 2sm/(γ (m− 1))} introduced in (1-3) plays a big role.
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2A1. The RFL. We define the fractional Laplacian operator acting on a bounded domain by using the
integral representation on the whole space in terms of a hypersingular kernel; namely

(−1RN )s g(x)= cN ,s P.V.
∫

RN

g(x)− g(z)
|x − z|N+2s dz, (2-2)

where cN ,s > 0 is a normalization constant, and we “restrict” the operator to functions that are zero outside
�. We denote such operator by L= (−1|�)s , and call it the restricted fractional Laplacian3 (RFL). The
initial and boundary conditions associated to the fractional diffusion equation (1-1) are u(t, x) = 0 in
(0,∞)×RN

\� and u(0, · )= u0. As explained in [Bonforte et al. 2015], such boundary conditions can
also be understood via the Caffarelli–Silvestre extension [2007]. The sharp expression of the boundary
behavior for the RFL was investigated in [Ros-Oton and Serra 2014]. We refer to [Bonforte et al. 2015]
for a careful construction of the RFL in the framework of fractional Sobolev spaces, and [Blumenthal and
Getoor 1960] for a probabilistic interpretation.

This operator satisfies the assumptions (A1), (A2), (L1), and also (K2) and (K4) with γ = s < 1. Let
us present our results in this case. Note that we have σ = 1 for all 0< s < 1, and Theorem 6.1 shows the
sharp boundary behavior for all times; namely for all t > 0 and a.e. x ∈� we have

κ

(
1∧

t
t∗

)m/(m−1) dist(x, ∂�)s/m

t1/(m−1) ≤ u(t, x)≤ κ̄
dist(x, ∂�)s/m

t1/(m−1) . (2-3)

The critical time t∗ is given by a weighted L1 norm; namely

t∗ := κ∗‖u0‖
−(m−1)
L1
81
(�)

,

where κ∗ > 0 is a universal constant. Moreover, solutions are classical in the interior and we prove sharp
Hölder continuity up to the boundary. These regularity results were first obtained in [Bonforte et al.
2017a]; we give here different proofs valid in the more general setting of this paper. See Section 8 for
further details.

2A2. The SFL. Starting from the classical Dirichlet Laplacian 1� on the domain �, the so-called
spectral definition of the fractional power of 1� may be defined via a formula in terms of the semigroup
associated to the Laplacian; namely

(−1�)
s g(x)=

1
0(−s)

∫
∞

0
(et1�g(x)− g(x))

dt
t1+s =

∞∑
j=1

λs
j ĝj φj (x), (2-4)

where (λj , φj ), j = 1, 2, . . . , is the normalized spectral sequence of the standard Dirichlet Laplacian
on �, ĝj =

∫
�

g(x)φj (x) dx , and ‖φj‖L2(�) = 1. We denote this operator by L= (−1�)s , and call it the
spectral fractional Laplacian (SFL) as in [Cabré and Tan 2010]. The initial and boundary conditions
associated to the fractional diffusion equation (1-1) are u(t, x) = 0 on (0,∞)× ∂� and u(0, · ) = u0.

3In the literature this is often called the fractional Laplacian on domains, but this simpler name may be confusing when the
spectral fractional Laplacian is also considered; see [Bonforte and Vázquez 2015]. As discussed in this paper, there are other
natural versions.
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Such boundary conditions can also be understood via the Caffarelli–Silvestre extension; see [Bonforte
et al. 2015]. Following ideas of [Song and Vondraček 2003], we use the fact that this operator admits a
kernel representation,

(−1�)
s g(x)= cN ,s P.V.

∫
�

[g(x)− g(z)]K (x, z) dz+ B(x)g(x), (2-5)

where K is a singular and compactly supported kernel, which degenerates at the boundary, and B �
dist( · , ∂�)−2s (see [Song and Vondraček 2003] or Lemma 10.1 for further details). This operator satisfies
the assumptions (A1), (A2), (L2), and also (K2) and (K4) with γ = 1. Therefore, σ can be less than 1,
depending on the values of s and m.

As we shall see, in our parabolic setting, the degeneracy of the kernel is responsible for a peculiar
change of the boundary behavior of the solutions (with respect to the previous case) for small and large
times. Here, the lower bounds change both for short and large times, and they strongly depend on σ
and on u0: we called this phenomenon anomalous boundary behavior in Section 1A. More precisely,
Theorem 6.3 shows that for all t > 0 and all x ∈� we have

κ

(
1∧

t
t∗

)m/(m−1) dist(x, ∂�)
t1/(m−1) ≤ u(t, x)≤ κ̄

dist(x, ∂�)σ/m

t1/(m−1) (2-6)

(when 2sm = γ (m − 1), a logarithmic correction (1+ | log81(x)|)1/(m−1) appears in the right-hand
side). Such lower behavior is somehow minimal, in the sense that it holds in all cases. The basic
asymptotic result (see (1-2) or Theorem 7.1) suggests that the lower bound in (2-6) could be improved
by replacing dist(x, ∂�) with dist(x, ∂�)σ/m, at least for large times. This is shown to be true for σ = 1
(see Theorem 5.3), but it is false for σ < 1 (see Theorem 5.4), since there are “small” solutions with
nonmatching boundary behavior for all times; see (1-7).

It is interesting that, in this case, one can appreciate the interplay between the “elliptic scaling power”
2s/(m−1) related to the invariance of the equation LSm

= S under the scaling S(x) 7→ λ−2s/(m−1)S(λx),
the “eigenfunction power” γ = 1, and the “nonlinearity power” m, made clear through the parameter
σ/m. Also in this case, thanks to the strict positivity in the interior, we can show interior space-time
regularity of solutions, as well as sharp boundary Hölder regularity for large times whenever upper and
lower bounds match.

2A3. The CFL. In the simplest case, the infinitesimal operator of the censored stochastic processes has
the form

Lg(x)= P.V.
∫
�

g(x)− g(y)
|x − y|N+2s dy, with 1

2 < s < 1. (2-7)

This operator was introduced in [Bogdan et al. 2003] (see also [Chen et al. 2010] and [Bonforte and
Vázquez 2016] for further details and references).

In this case γ = s− 1
2 < 2s; hence σ = 1 for all 1

2 < s < 1, and Theorem 6.1 shows that for all t > 0
and x ∈� we have

κ

(
1∧

t
t∗

)m/(m−1) dist(x, ∂�)(s−1/2)/m

t1/(m−1) ≤ u(t, x)≤ κ̄
dist(x, ∂�)(s−1/2)/m

t1/(m−1) .
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Again, we have interior space-time regularity of solutions, as well as sharp boundary Hölder regularity
for all times.

2A4. Other examples. There a number of examples to which our theory applies, besides the RFL, CFL
and SFL, since they satisfy the list of assumptions listed in the previous section. Some are listed in the
last Section 10; see more detail in [Bonforte and Vázquez 2016].

3. Reminders about weak dual solutions

We denote by Lp
81
(�) the weighted Lp space Lp(�, 81 dx), endowed with the norm

‖ f ‖Lp
81
(�) =

(∫
�

| f (x)|p81(x) dx
)1/p

.

Weak dual solutions: existence and uniqueness. We recall the definition of weak dual solutions used in
[Bonforte and Vázquez 2016]. This is expressed in terms of the inverse operator L−1, and encodes the
Dirichlet boundary condition. This is needed to build a theory of bounded nonnegative unique solutions
to (1-1) under the assumptions of the previous section. Note that in [Bonforte and Vázquez 2016] we
used the setup with the weight δγ = dist( · , ∂�)γ, but the same arguments generalize immediately to the
weight 81; indeed under assumption (K2), these two setups are equivalent.

Definition 3.1. A function u is a weak dual solution to the Dirichlet problem for (1-1) in (0,∞)×� if:

• u ∈ C((0,∞) : L1
81
(�)) and um

∈ L1((0,∞) : L1
81
(�)).

• The identity ∫
∞

0

∫
�

L−1u
∂ψ

∂t
dx dt −

∫
∞

0

∫
�

umψ dx dt = 0 (3-1)

holds for every test function ψ such that ψ/81 ∈ C1
c ((0,∞) : L

∞(�)).

• A weak dual solution to the Cauchy–Dirichlet problem (CDP) is a weak dual solution to the homo-
geneous Dirichlet problem for (1-1) such that u ∈ C([0,∞) : L1

81
(�)) and u(0, x)= u0 ∈ L1

81
(�).

This kind of solution was first introduced in [Bonforte and Vázquez 2015]; see also [Bonforte and
Vázquez 2016]. Roughly speaking, we are considering the weak solution to the “dual equation” ∂tU =−um,
where U = L−1u, posed on the bounded domain � with homogeneous Dirichlet conditions. Such a weak
solution is obtained by approximation from below as the limit of the unique mild solution provided by
the semigroup theory [Bonforte and Vázquez 2016], and it was used in [Vázquez 2014a] with space
domain RN in the study of Barenblatt solutions. We call those solutions minimal weak dual solutions, and
it has been proven in Theorems 4.4 and 4.5 of [Bonforte and Vázquez 2016] that such solutions exist and
are unique for any nonnegative data u0 ∈ L1

81
(�). The class of weak dual solutions includes the classes

of weak, mild and strong solutions, and is included in the class of very weak solutions. In this class of
solutions the standard comparison result holds.
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Explicit solution. When trying to understand the behavior of positive solutions with general nonnegative
data, it is natural to look for solutions obtained by separation of variables. These are given by

UT (t, x) := (T + t)−1/(m−1)S(x), T ≥ 0, (3-2)

where S solves the elliptic problem {
LSm
= S in (0,+∞)×�,

S = 0 on the boundary.
(3-3)

The properties of S have been thoroughly studied in the companion paper [Bonforte et al. 2017b], and we
summarize them here for the reader’s convenience.

Theorem 3.2 (properties of asymptotic profiles). Assume that L satisfies (A1), (A2), and (K2). Then
there exists a unique positive solution S to the Dirichlet problem (3-3) with m > 1. Moreover, let σ be as
in (1-3), and assume that

• either σ = 1 and 2sm 6= γ (m− 1);

• or σ < 1 and (K4) holds.

Then there exist positive constants c0 and c1 such that the following sharp absolute bounds hold true for
all x ∈�:

c081(x)σ/m
≤ S(x)≤ c181(x)σ/m. (3-4)

When 2sm = γ (m− 1) then, assuming (K4), for all x ∈� we have

c081(x)1/m(1+ | log81(x)|)1/(m−1)
≤ S(x)≤ c181(x)1/m(1+ | log81(x)|)1/(m−1). (3-5)

Remark. As observed in the proof of Theorem 7.2, by applying Theorem 6.1 to the separate-variables
solution t−1/(m−1)S(x) we deduce that (3-4) is still true when σ < 1 if, instead of assuming (K4), we
suppose that

K (x, y)≤ c1|x − y|−(N+2s)

for a.e. x, y ∈ RN and that 81 ∈ Cγ (�).

When T = 0, the solution U0 in (3-2) is commonly named “friendly giant”, because it takes initial data
u0 ≡+∞ (in the sense of a pointwise limit as t→ 0) but is bounded for all t > 0. This term was coined
in the study of the standard porous medium equation.

In Sections 4 and 5 we will state and prove our general results concerning upper and lower bounds
respectively. These sections are the crux of this paper. The combination of such upper and lower bounds
will then be summarized in Section 6. Consequences of these results in terms of asymptotic behavior and
regularity estimates will be studied in Sections 7 and 8 respectively.

4. Upper boundary estimates

We present a general upper bound that holds under the sole assumptions (A1), (A2), and (K2), and hence
is valid for all our examples.



956 MATTEO BONFORTE, ALESSIO FIGALLI AND JUAN LUIS VÁZQUEZ

Theorem 4.1 (absolute boundary estimates). Let (A1), (A2), and (K2) hold. Let u ≥ 0 be a weak
dual solution to the CDP corresponding to u0 ∈ L1

81
(�), and let σ be as in (1-3). Then, there exists a

computable constant k1 > 0, depending only on N, s, m, and �, such that for all t ≥ 0 and all x ∈�

u(t, x)≤
k1

t1/(m−1)

{
81(x0)

σ/m if γ 6= 2sm/(m− 1),
81(x0)

1/m(1+ | log81(x0)|)
1/(m−1) if γ = 2sm/(m− 1).

(4-1)

This absolute bound proves a strong regularization which is independent of the initial datum. It
improves the absolute bound in [Bonforte and Vázquez 2016] in the sense that it exhibits a precise
boundary behavior. The estimate gives the correct behavior for the solutions UT in (3-2) obtained by
separation of variables; see Theorem 3.2. It turns out that the estimate will be sharp for all nonnegative,
nontrivial solutions in the case of the RFL and the CFL. We will also see below that the estimate is
not always the correct behavior for the SFL when data are small, as explained in the Introduction (see
Section 4A, and Theorem 5.4 in Section 5).

Proof of Theorem 4.1. This subsection is devoted to the proof of Theorem 4.1. The first steps are based
on a few basic results of [Bonforte and Vázquez 2016] that will also be used in the rest of the paper.

Step 1: pointwise and absolute upper estimates.

Pointwise estimates. We begin by recalling the basic pointwise estimates which are crucial in the proof
of all the upper and lower bounds of this paper.

Proposition 4.2 [Bonforte and Vázquez 2015; 2016]. It holds that∫
�

u(t, x)G(x, x0) dx ≤
∫
�

u0(x)G(x, x0) dx for all t > 0. (4-2)

Moreover, for every 0< t0 ≤ t1 ≤ t and almost every x0 ∈�, we have

tm/(m−1)
0

tm/(m−1)
1

(t1− t0) um(t0, x0)≤

∫
�

[u(t0, x)− u(t1, x)]G(x, x0) dx ≤ (m− 1)
tm/(m−1)

t1/(m−1)
0

um(t, x0). (4-3)

Absolute upper bounds. Using the estimates above, in Theorem 5.2 of [Bonforte and Vázquez 2016] the
authors proved that solutions corresponding to initial data u0 ∈ L1

81
(�) satisfy

‖u(t)‖L∞(�) ≤
K1

t1/(m−1) for all t > 0, (4-4)

with a constant K1 independent of u0. For this reason, this is called “absolute bound”.

Step 2: upper bounds via Green function estimates. The proof of Theorem 4.1 requires the following
general statement; see [Bonforte et al. 2017b, Proposition 6.5]:

Lemma 4.3. Let (A1), (A2), and (K2) hold, and let v :�→ R be a nonnegative bounded function. Let σ
be as in (1-3), and assume that, for a.e. x0 ∈�,

v(x0)
m
≤ κ0

∫
�

v(x)G(x, x0) dx . (4-5)
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Then, there exists a constant κ̄∞ > 0, depending only on s, γ , m, N, �, such that the following bound
holds true for a.e. x0 ∈�:∫

�

v(x)G(x, x0) dx ≤ κ̄∞κ
1/(m−1)
0

{
81(x0)

σ if γ 6= 2sm/(m− 1),
81(x0)(1+ | log81(x0)|

m/(m−1)) if γ = 2sm/(m− 1).
(4-6)

Step 3: end of the proof of Theorem 4.1. We already know that u(t) ∈ L∞(�) for all t > 0 by (4-4).
Also, choosing t1 = 2t0 in (4-3) we deduce that, for t ≥ 0 and a.e. x0 ∈�,

um(t, x0)≤
2m/(m−1)

t

∫
�

u(t, x)G(x, x0) dx . (4-7)

The above inequality corresponds exactly to hypothesis (4-5) of Lemma 4.3 with the value κ0=2m/(m−1)t−1.
As a consequence, inequality (4-6) holds, and we conclude that for a.e. x0 ∈� and all t > 0∫

�

u(t, x)G(x, x0)dx ≤
κ̄∞2m/(m−1)2

t1/(m−1)

{
81(x0)

σ if γ 6= 2sm/(m−1),
81(x0)(1+| log81(x0)|

m/(m−1)) if γ = 2sm/(m−1).
(4-8)

Hence, combining this bound with (4-7), we get

um(t, x0)≤
km

1

tm/(m−1)

{
81(x0)

σ if γ 6= 2sm/(m− 1),
81(x0)(1+ | log81(x0)|

m/(m−1)) if γ = 2sm/(m− 1).

This proves the upper bounds (4-1) and concludes the proof. �

4A. Upper bounds for small data and small times. As mentioned in the Introduction, the above upper
bounds may not be realistic when σ < 1. We have the following estimate for small times if the initial
data are sufficiently small.

Theorem 4.4. Let L satisfy (A1), (A2), and (L2). Suppose also that L has a first eigenfunction 81 �

dist(x, ∂�)γ, and assume that σ < 1. Finally, we assume that for all x, y ∈�

K (x, y)≤
c1

|x − y|N+2s

(
81(x)
|x − y|γ

∧ 1
)(

81(y)
|x − y|γ

∧ 1
)

and B(x)≤ c181(x)−2s/γ. (4-9)

Let u ≥ 0 be a weak dual solution to the CDP corresponding to u0 ∈ L1
81
(�). Then, for every initial data

u0 ≤ A81−2s/γ
1 for some A > 0, we have

u(t)≤
8

1−2s/γ
1

(A1−m − C̃t)m−1
on [0, TA], where TA :=

1

C̃ Am−1
,

and the constant C̃ > 0, that depends only on N, s, m, λ1, c1, and �.

Remark. This result applies to the SFL. Notice that when σ < 1 we have always 1−2s/γ > σ/m; hence
in this situation small data have a smaller behavior at the boundary than the one predicted in Theorem 4.1.
This is not true for “big” data, for instance for solutions obtained by separation of variables, as already said.
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Proof. In view of our assumption on the initial datum, namely u0 ≤ A81−2s/γ
1 , by comparison it is enough

to prove that the function

ū(t, x)= F(t)81(x)1−2s/γ, F(t)=
1

(A1−m − C̃t)m−1
,

is a supersolution (i.e., ∂t ū ≥−Lūm) in (0, TA)×� provided we choose C̃ sufficiently large.
To this aim, we use the following elementary inequality, whose proof is left to the interested reader:

for any η > 1 and any M > 0 there exists b̃ = b̃(M) > 0 such that letting η̃ := η∧ 2

aη− bη ≤ η bη−1(a− b)+ b̃|a− b|η̃ for all 0≤ a, b ≤ M . (4-10)

We apply inequality (4-10) to a =81(y) and b =81(x), η = m(1− 2s/γ ), noticing that η > 1 if and
only if σ < 1, and we obtain (recall that 81 is bounded)

ūm(t, y)− ūm(t, x)= F(t)m
(
81(y)m(1−2s/γ )

−81(x)m(1−2s/γ ))
= F(t)m(81(y)η−81(x)η)

≤ η F(t)m81(x)η−1
[81(y)−81(x)] + b̃ F(t)m |81(y)−81(x)|η̃

≤ η F(t)m81(x)η−1
[81(y)−81(x)] + b̃ F(t)mcη̃γ |x − y|η̃γ,

where in the last step we have used that |81(y)−81(x)| ≤ cγ |x − y|γ. Since B ≤ c18
−2s/γ
1 ,∫

RN
[81(y)−81(x)]K (x, y) dy =−L81(x)+ B(x)81(x)≤−λ181(x)+ c181(x)1−2s/γ.

Thus, recalling that η, η̃ > 1 and that 81 is bounded, it follows that

−L[ūm
](x)=

∫
RN
[ūm(t, y)− ūm(t, x)]K (x, y) dy+ B(x)ūm(t, x)

≤ η F(t)m81(x)η−1
[−λ181(x)+ c181(x)1−2s/γ

]

+ B(x)F(t)m8η1(x)+ b̃ cm̃
γ F(t)m

∫
RN
|x − y|η̃γ K (x, y) dy

≤ c̃F(t)m
(
81(x)η−2s/γ

+

∫
RN
|x − y|η̃γ K (x, y) dy

)
. (4-11)

Next, we claim that, as a consequence of (4-9),∫
RN
|x − y|η̃γ K (x, y) dy ≤ c481(x)1−2s/γ. (4-12)

Postponing for the moment the proof of the above inequality, we first show how to conclude: combining
(4-11) and (4-12) we have

−Lūm
≤ c5 F(t)m81(x)1−2s/γ

= F ′(t)81(x)1−2s/γ
= ∂t ū,

where we used that F ′(t)= c5 F(t)m̃ provided C̃ = c5(m− 1). This proves that ū is a supersolution in
(0, T )×�. Hence the proof is concluded once we prove inequality (4-12); for this, using hypothesis
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(4-9) and choosing r =81(x)1/γ we have∫
RN
|x − y|η̃γ K (x, y) dy ≤ c1

∫
Br (x)

1
|x − y|N+2s−η̃γ

dy+ c181(x)
∫
�\Br (x)

1
|x − y|N+2s+γ−η̃γ

dy

≤ c2r η̃γ−2s
+ c1

81(x)
r2s

∫
�\Br (x)

1
|x − y|N+γ−η̃γ

dy

= c2r η̃γ−2s
+ c3

81(x)
r2s ≤ c481(x)1−2s/γ,

where we used that η̃γ − 2s > 0 and η̃ > 1. �

Remark. For operators for which the previous assumptions hold with B ≡ 0, we can actually prove a
better upper bound for “smaller data”:

Corollary 4.5. Under the assumptions of Theorem 4.4, assume that moreover B ≡ 0 and u0 ≤ A81 for
some A > 0. Then, we have

u(t)≤
81

(A1−m − C̃t)m−1
on [0, TA], where TA :=

1

C̃ Am−1
,

and the constant C̃ > 0 depends only on N, s, m, λ1, c1, and �.

Proof. We have to show that ū(t, x) = F(t)81(x) is a supersolution: we essentially repeat the proof
of Theorem 4.4 with γ = m (formally replace 1 − 2s/γ by 1), taking into account that B ≡ 0 and
u0 ≤ A81. �

5. Lower bounds

This section is devoted to the proofs of all the lower bounds summarized later in the main theorems,
Theorems 6.1, 6.2, and 6.3. The general situation is quite involved to describe, so we will separate several
cases and we will indicate for which examples it holds for the sake of clarity.

Infinite speed of propagation: universal lower bounds. First, we are going to quantitatively establish that
all nonnegative weak dual solutions of our problems are in fact positive in � for all t > 0. This result is
valid for all nonlocal operators considered in this paper.

Theorem 5.1. Let L satisfy (A1), (A2), and (L2). Let u ≥ 0 be a weak dual solution to the CDP
corresponding to u0 ∈ L1

81
(�). Then there exists a constant κ0 > 0 such that the following inequality

holds:

u(t, x)≥ κ0

(
1∧

t
t∗

)m/(m−1)
81(x)

t1/(m−1) for all t > 0 and a.e. x ∈�. (5-1)

Here t∗ = κ∗‖u0‖
−(m−1)
L1
81
(�)

, and the constants κ0 and κ∗ depend only on N, s, γ , m, c0, c1, and �.

Notice that, for t ≥ t∗, the dependence on the initial data disappears from the lower bound, as the
inequality reads as

u(t)≥ κ0
81

t1/(m−1) for all t ≥ t∗,
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where κ0 is an absolute constant. Assumption (L2) on the kernel K of L holds for all examples mentioned
in Section 10A.

Clearly, the power in this lower bound does not match the one of the general upper bounds of
Theorem 4.1; hence we cannot expect these bounds to be sharp. However, when σ < 1, for small times
and small data and when B ≡ 0, the lower bounds (5-1) match the upper bounds of Corollary 4.5; hence
they are sharp. Theorem 5.1 shows that, even in the “worst case scenario”, there is a quantitative lower
bound for all positive times, and shows infinite speed of propagation.

Matching lower bounds, I. Actually, in many cases the kernel of the nonlocal operator satisfies a stronger
property, namely infx,y∈� K (x, y)≥ κ� > 0 and B ≡ 0, in which case we can actually obtain sharp lower
bounds for all times. Here we do not consider the potential logarithmic correction that may appear in the
“critical case” 2sm = γ (m− 1); indeed, as far as examples are concerned, the next theorem applies to the
RFL and the CFL, for which 2sm > γ (m− 1).

Theorem 5.2. Let L satisfy (A1), (A2), and (L1). Furthermore, suppose that L has a first eigenfunction
81 � dist( · , ∂�)γ. Let σ be as in (1-3) and assume that

• either σ = 1;

• or σ < 1, K (x, y)≤ c1|x − y|−(N+2s) for a.e. x, y ∈ RN, and 81 ∈ Cγ (�).

Let u ≥ 0 be a weak dual solution to the CDP corresponding to u0 ∈ L1
81
(�). Then there exists a constant

κ1 > 0 such that the following inequality holds:

u(t, x)≥ κ1

(
1∧

t
t∗

)m/(m−1)
81(x)σ/m

t1/(m−1) for all t > 0 and a.e. x ∈�, (5-2)

where t∗ = κ∗‖u0‖
−(m−1)
L1
81
(�)

. The constants κ∗ and κ1 depend only on N, s, γ , m, κ�, c1, �, and ‖81‖Cγ (�).

Remarks. (i) As in the case of Theorem 5.1, for large times the dependence on the initial data disappears
from the lower bound and we have absolute lower bounds.

(ii) The boundary behavior is sharp when 2sm 6= γ (m−1) in view of the upper bound from Theorem 4.1.

(iii) This theorem applies to the RFL and the CFL, but not to the SFL (or, more generally, spectral powers
of elliptic operators); see Sections 2A and 2. In the case of the RFL, this result was obtained in
Theorem 1 of [Bonforte et al. 2017a].

We have already seen the example of the separate-variables solutions (3-2) that have a very definite
behavior at the boundary ∂�. The analysis of general solutions leads to completely different situations
for σ = 1 and σ < 1.

Matching lower bounds, II: The case σ = 1. When σ = 1 we can establish a quantitative lower bound
near the boundary that matches the separate-variables behavior for large times (except in the case
2sm = γ (m− 1) where the result is false, see Theorem 5.4 below). We do not need the assumption of
nondegenerate kernel, so the SFL can be considered.
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Theorem 5.3. Let (A1), (A2), and (K2) hold, and let σ = 1. Let u ≥ 0 be a weak dual solution to the
CDP corresponding to u0 ∈ L1

81
(�). There exists a constant κ2 > 0 such that

u(t, x)≥ κ2
81(x)1/m

t1/(m−1) for all t ≥ t∗ and a.e. x ∈�. (5-3)

Here, t∗ = κ∗‖u0‖
−(m−1)
L1
81
(�)

, and the constants κ∗ and κ2 depend only on N, s, γ , m, and �.

Remarks. (i) At first sight, this theorem may seem weaker than the previous positivity result. However,
this result has wider applicability since it holds under the only assumption (K2) on G. In particular
it is valid in the local case s = 1, where the finite speed of propagation makes it impossible to have
global lower bounds for small times.

(ii) When L=−1 the result has been proven in [Aronson and Peletier 1981; Vázquez 2004] by quite
different methods. On the other hand, our method is very general and immediately applies to the
case when L is an elliptic operator with C1 coefficients; see Section 10A.

(iii) This result fixes a small error in Theorem 7.1 of [Bonforte and Vázquez 2015], where the power σ
was not present.

The anomalous lower bounds with small data. As shown in Theorem 5.1, the lower bound u(t)&81 is
always valid. We now discuss the possibility of improving this bound.

Let S solve the elliptic problem (3-3). It follows by comparison whenever u0 ≥ ε0S with ε0 > 0 then
u(t) ≥ S/(T0+ t)1/(m−1), where T0 = ε

1−m
0 . Since S � 8σ/m

1 under (K4) (up to a possible logarithmic
correction in the critical case, see Theorem 3.2), there are initial data for which the lower behavior
is dictated by 81(x)σ/m t−1/(m−1). More generally, as we shall see in Theorem 7.1, given any initial
datum u0 ∈ L1

81
(�) the function v(t, x) := t1/(m−1)u(t, x) always converges to S in L∞(�) as t→∞,

independently of the value of σ . Hence, one may conjecture that there should exist a waiting time t∗ > 0
after which the lower behavior is dictated by 81(x)σ/m t−1/(m−1), in analogy with what happens for the
classical porous medium equation. As we shall see, this is actually false when σ < 1 or 2sm = γ (m− 1).
Since for large times v(t, x) must look like S(x) in uniform norm away from the boundary (by the interior
regularity that we will prove later), the contrasting situation for large times could be described as a
“dolphin’s head” with the “snout” flatter than the “forehead”. As t→∞ the forehead progressively fills
the whole domain.

The next result shows that, in general, we cannot hope to prove that u(t) is larger than 81/m
1 . In

particular, when σ < 1 or 2sm = γ (m− 1), this shows that the behavior u(t)� S cannot hold.

Theorem 5.4. Let (A1), (A2), and (K2) hold, and u≥0 be a weak dual solution to the CDP corresponding
to a nonnegative initial datum u0 ∈ L1

81
(�). Assume that u0(x) ≤ C081(x) a.e. in � for some C0 > 0.

Then there exists a constant κ̂ , depending only N, s, γ , m, and �, such that

u(t, x)m ≤ C0 κ̂
81(x)

t
for all t > 0 and a.e. x ∈�.
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In particular, if σ < 1 (resp. 2sm = γ (m− 1)), then

lim
x→∂�

u(t, x)
81(x)σ/m = 0

(
resp. lim

x→∂�

u(t, x)
81(x)1/m(1+ | log81(x)|)1/(m−1) = 0

)
for any t > 0.

The proposition above could make one wonder whether the sharp general lower bound could be given
by 81/m

1 , as in the case σ = 1. Recall that, under rather minimal assumptions on the kernel K associated
to L, we have a universal lower bound for u(t) in terms of 81 (see Theorem 5.1). Here we shall see that,
under (K4), the bound u(t)&81/m

1 is false for σ < 1.

Theorem 5.5. Let (A1), (A2), and (K4) hold, and let u ≥ 0 be a weak dual solution to the CDP
corresponding to a nonnegative initial datum u0 ≤ C081 for some C0 > 0. Assume that there exist
constants κ , T , α > 0 such that

u(T, x)≥ κ8α1 (x) for a.e. x ∈�.

Then α ≥ 1− 2s/γ . In particular α > 1/m if σ < 1.

We devote the rest of this section to the proof of the above results, and to this end we collect in the
first two subsections some preliminary lower bounds and results about approximate solutions.

5A. Lower bounds for weighted norms. Here we prove some useful lower bounds for weighted norms,
which follow from the L1-continuity for ordered solutions in the version proved in Proposition 8.1 of
[Bonforte and Vázquez 2016].

Lemma 5.6 (backward-in-time L1
81

lower bounds). Let u be a solution to the CDP corresponding to the
initial datum u0 ∈ L1

81
(�). For all

0≤ τ0 ≤ t ≤ τ0+
1

(2K̄ )1/(2sϑγ )‖u(τ0)‖
m−1
L1
81
(�)

(5-4)

we have
1
2

∫
�

u(τ0, x)81(x) dx ≤
∫
�

u(t, x)81(x) dx, (5-5)

where ϑγ := 1/[2s+ (N + γ )(m− 1)] and K̄ > 0 is a computable constant.

Proof. We recall the inequality of Proposition 8.1 of [Bonforte and Vázquez 2016], adapted to our case:
for all 0≤ τ0 ≤ τ, t we have∫

�

u(τ, x)81(x) dx ≤
∫
�

u(t, x)81(x) dx + K̄‖u(τ0)‖
2s(m−1)ϑγ+1
L1
81
(�)

|t − τ |2sϑγ . (5-6)

Choosing τ = τ0 in the above inequality, we get[
1− K9‖u(τ0)‖

2s(m−1)ϑγ
L1
81
(�)

|t − τ0|
2sϑγ

] ∫
�

u(τ0, x)81(x) dx ≤
∫
�

u(t, x)81(x) dx . (5-7)

Then (5-5) follows from (5-4). �

We also need a lower bound for Lp
81
(�) norms.
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Lemma 5.7. Let u be a solution to the CDP corresponding to the initial datum u0 ∈ L1
81
(�). Then the

following lower bound holds true for any t ∈ [0, t∗] and p ≥ 1:

c2

(∫
�

u0(x)81(x) dx
)p

≤

∫
�

u p(t, x)81(x) dx . (5-8)

Here t∗ = c∗‖u0‖
−(m−1)
L1
81
(�)

, where c2, c∗ > 0 are positive constants that depend only on N, s, m, p, �.

The proof of this lemma is an easy adaptation of the proof of Lemma 2.2 of [Bonforte et al. 2017a], so
we skip it. Notice that c∗ has explicit form given in [Bonforte and Vázquez 2015; 2016; Bonforte et al.
2017a], while the form of c2 is given in the proof of Lemma 2.2 of [Bonforte et al. 2017a].

5B. Approximate solutions. To prove our lower bounds, we will need a special class of approximate
solutions uδ. We will list now the necessary details. In the case when L is the restricted fractional
Laplacian (RFL), see Section 10A, these solutions have been used in Appendix II of [Bonforte et al.
2017a], where complete proofs can be found; the proof there holds also for the operators considered here.
The interested reader can easily adapt the proofs in that paper to the current case.

Let us fix δ > 0 and consider the problem
∂tvδ =−L[(vδ + δ)m − δm

] for any (t, x) ∈ (0,∞)×�,
vδ(t, x)= 0 for any (t, x) ∈ (0,∞)× (RN

\�),

vδ(0, x)= u0(x) for any x ∈�.
(5-9)

Next, we define
uδ := vδ + δ.

We summarize here the basic properties of uδ.
Approximate solutions uδ exist, are unique, and bounded for all (t, x) ∈ (0,∞) × � whenever

0≤ u0 ∈ L1
81
(�). Also, they are uniformly positive: for any t ≥ 0,

uδ(t, x)≥ δ > 0 for a.e. x ∈�. (5-10)

This implies that the equation for uδ is never degenerate in the interior, so solutions are as smooth as the
linear parabolic theory with the kernel K allows them to be (in particular, in the case of the fractional
Laplacian, they are C∞ in space and C1 in time). Also, by a comparison principle, for all δ > δ′ > 0,

uδ(t, x)≥ uδ′(t, x) for all t ≥ 0 and a.e. x ∈�, (5-11)

uδ(t, x)≥ u(t, x) for all t ≥ 0 and a.e. x ∈�. (5-12)

Furthermore, they converge in L1
81
(�) to u as δ→ 0:

‖uδ(t)− u(t)‖L1
81
(�) ≤ ‖uδ(0)− u0‖L1

81
(�) = δ‖81‖L1(�). (5-13)

As a consequence of (5-11) and (5-13), we deduce that uδ converges pointwise to u at almost every point:
more precisely, for all t ≥ 0,

u(t, x)= lim
δ→0+

uδ(t, x) for a.e. x ∈�. (5-14)
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5C. Proof of Theorem 5.1. The proof consists in showing that

u(t, x)≥ u(t, x) := k0 t81(x)

for all t ∈ [0, t∗] and a.e. x ∈ �, where the parameter k0 > 0 will be fixed later. Note that, once the
inequality u ≥ u on [0, t∗] is proved, we conclude as follows: since t 7→ t1/(m−1) u(t, x) is nondecreasing
in t > 0 for a.e. x ∈� [Bonforte and Vázquez 2016, (2.3)], we have

u(t, x)≥
(

t∗
t

)1/(m−1)

u(t∗, x)≥ k0 t∗

(
t∗
t

)1/(m−1)

81(x) for all t ≥ t∗.

Then, the result will follow κ0 = k0tm/(m−1)
∗ (note that, as we shall see below, k0tm/(m−1)

∗ can be chosen
independently of u0). Hence, we are left with proving that u ≥ u on [0, t∗].

Step 1: reduction to an approximate problem. Let us fix δ > 0 and consider the approximate solutions uδ
constructed in Section 5B. We shall prove that uδ ≥ u on [0, t∗]×�, so that the result will follow by the
arbitrariness of δ.

Step 2: We claim that u(t, x) < uδ(t, x) for all 0 ≤ t ≤ t∗ and x ∈ �, for a suitable choice of k0 > 0.
Assume that the inequality u< uδ is false in [0, t∗]×�, and let (tc, xc) be the first contact point between u
and uδ . Since uδ= δ > 0= u on the lateral boundary, (tc, xc)∈ (0, t∗]×�. Now, since (tc, xc)∈ (0, t∗]×�
is the first contact point, we necessarily have

uδ(tc, xc)= u(tc, xc) and uδ(t, x)≥ u(t, x) for all t ∈ [0, tc], x ∈�. (5-15)

Thus, as a consequence,

∂t uδ(tc, xc)≤ ∂t u(tc, xc)= k081(xc). (5-16)

Next, we observe the following Kato-type inequality holds: for any nonnegative function f ,

L( f m)≤ m f m−1L f. (5-17)

Indeed, by convexity, f (x)m − f (y)m ≤ m[ f (x)]m−1( f (x)− f (y)); therefore

L( f m)(x)=
∫

RN
[ f (x)m − f (y)m] K (x, y) dy+ B(x) f (x)m

≤ m[ f (x)]m−1
∫

RN
[ f (x)− f (y)] K (x, y) dy+ B(x) f (x)m

= m[ f (x)]m−1
(∫

RN
[ f (x)− f (y)] K (x, y) dy+ B(x) f (x)

)
− (m− 1)B(x) f (x)m

≤ m[ f (x)]m−1L f (x).

As a consequence of (5-17), since tc ≤ t∗ and 81 is bounded,

L(um)(t, x)≤ mum−1L(u)= m[k0t81(x)]m−1 k0tL(81)(x)

= mλ1[k0t81(x)]m ≤ κ1(t∗k0)
m81(x). (5-18)
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Then, using (5-16) and (5-18), we establish an upper bound for −L(um
δ − um)(tc, xc) as follows:

−L[um
δ − um

](tc, xc)= ∂t uδ(tc, xc)+L(um)(tc, xc)≤ k0 [1+ κ1tm
∗

km−1
0 ]81(xc). (5-19)

Next, we want to prove lower bounds for −L(um
δ −ψ

m)(tc, xc), and this is the point where the nonlocality
of the operator enters, since we make essential use of hypothesis (L2). We recall that by (5-15) we have
um
δ (tc, xc)= um(tc, xc), so that assumption (L2) gives

−L[um
δ − um

](tc, xc)=−L[um
δ − um

](tc, xc)+ B(xc)[um
δ (tc, xc)− um(tc, xc)]

= −

∫
RN

[
(um
δ (tc, xc)− um

δ (tc, y))− (um(tc, xc)− um(tc, y))
]
K (xc, y) dy

=

∫
�

[um
δ (tc, y)− um(tc, y)]K (xc, y) dy

≥ c081(xc)

∫
�

[um
δ (tc, y)− um(tc, y)]81(y) dy,

from which it follows (since um
= [k0t81(x)]m ≤ κ2(t∗k0)

m)

−L[um
δ − um

](tc, xc)≥ c081(xc)

∫
�

um
δ (tc, y)81(y) dy− c081(xc)

∫
�

um(tc, y)81(y) dy.

≥ c081(xc)

∫
�

um
δ (tc, y)81(y) dy− c081(xc)κ3 (t∗k0)

m. (5-20)

Combining the upper and lower bounds (5-19) and (5-20) we obtain

c081(xc)

∫
�

um
δ (tc, y)81(y) dy ≤ k0 [1+ (κ1+ κ3)tm

∗
km−1

0 ]81(xc). (5-21)

Hence, recalling (5-8), we get

c2

(∫
�

u0(x)81(x) dx
)m

≤

∫
�

um
δ (tc, y)81(y) dy ≤

k0

c0

[
1+ (κ1+ κ3)tm

∗
km−1

0

]
.

Since t∗ = κ∗‖u0‖
−(m−1)
L1
81
(�)

, this yields

c2κ
m/(m−1)
∗

t−m/(m−1)
∗

≤
k0

c0

[
1+ (κ1+ κ3)tm

∗
km−1

0

]
,

which gives the desired contradiction provided we choose k0 so that κ0 := k0tm/(m−1)
∗ is universally

small. �

5D. Proof of Theorem 5.2. The proof proceeds along the lines of the proof of Theorem 5.1, so we will
just briefly mention the common parts.

We want to show that
u(t, x) := κ0 t 81(x)σ/m, (5-22)

is a lower barrier for our problem on [0, t∗]×� provided κ0 is small enough. More precisely, as in the
proof of Theorem 5.1, we aim to prove that u < uδ on [0, t∗] ×�, as the lower bound for t ≥ t∗ then
follows by monotonicity.
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Assume by contradiction that the inequality u(t, x)< uδ(t, x) is false inside [0, t∗]×�. Since u< uδ on
the parabolic boundary, letting (tc, xc) be the first contact point, we necessarily have (tc, xc) ∈ (0, t∗]×�.
The desired contradiction will be obtained by combining the upper and lower bounds (which we prove
below) for the quantity −L[um

δ − um
](tc, xc), and then choosing κ0 > 0 suitably small. In this direction,

it is convenient in what follows to assume that

κ0 ≤ 1∧ t−m/(m−1)
∗

so that κm−1
0 tm

∗
≤ 1. (5-23)

Upper bound. We first establish the following upper bound: there exists a constant Ā > 0 such that

−L[um
δ − um

](tc, xc)≤ ∂t uδ(tc, xc)+Lum(tc, xc)≤ Āκ0. (5-24)

To prove this, we estimate ∂t uδ(tc, xc) and Lum(tc, xc) separately. First we notice that, since (tδ, xδ) is
the first contact point, we have

uδ(tδ, xδ)= u(tδ, xδ) and uδ(t, x)≥ u(t, x) for all t ∈ [0, tδ], x ∈�. (5-25)

Hence, since tδ ≤ t∗,

∂t uδ(tδ, xδ)≤ ∂t u(tδ, xδ)= κ081(x)σ/m
≤ κ0 ‖81‖

σ/m
L∞(�) = A1κ0, (5-26)

where we defined A1 := ‖81‖
σ/m
L∞(�). Next we estimate Lum(tc, xc), using the Kato-type inequality (5-17);

namely L[um
] ≤ mum−1Lu. This implies

L[um
](t, x)≤ mum−1(t, x)Lu(t, x)= m(κ0 t)m81(x)σ(m−1)/mL8σ1 (x)

≤ m(κ0 t∗)m‖81‖
σ(m−1)/m
L∞(�) ‖L8σ1 ‖L∞(�) := A2κ0. (5-27)

Since κm−1
0 tm

∗
≤ 1, see (5-23), in order to prove that A2 is finite it is enough to bound ‖L8σ1 ‖L∞(�). When

σ = 1 we simply have L81 =−λ181; hence A2 ≤ mλ1‖81‖
2−1/m
L∞(�) . When σ < 1, we use the assumption

81 ∈ Cγ (�) to estimate

|8σ1 (x)−8
σ
1 (y)| ≤ |81(x)−81(y)|σ ≤ C |x − y|γ σ for all x, y ∈�. (5-28)

Hence, since γ σ = 2sm/(m− 1) > 2s and K (x, y)≤ c1|x − y|−(N+2s), we see that

|L8σ1 (x)| =
∣∣∣∣∫

RN
[8σ1 (x)−8

σ
1 (y)]K (x, y) dy

∣∣∣∣
≤

∫
�

|x − y|γ σ K (x, y) dy+C‖81‖
σ
L∞(�)

∫
RN \B1

|y|−(N+2s) dy <∞;

hence A2 is again finite. Combining (5-26) and (5-27), we obtain (5-24) with Ā := A1+ A2.

Lower bound. We want to prove that there exists A > 0 such that

−L[um
δ − um

](tc, xc)≥
κ�

‖81‖L∞(�)

∫
�

um
δ (tc, y)81(y) dy− Aκ0. (5-29)
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This follows by (L1) and (5-25):

−L[um
δ − um

](tc, xc)=−

∫
RN

[
(um
δ (tc, xc)− um

δ (tc, y))− (um(tc, xc)− um(tc, y))
]
K (x, y) dy

=

∫
�

[um
δ (tc, y)− um(tc, y)]K (x, y) dy

≥ κ�

∫
�

[um
δ (tc, y)− um(tc, y)] dy

≥
κ�

‖81‖L∞(�)

∫
�

um
δ (tc, y)81(y) dy− Aκ0, (5-30)

where in the last step we used that um(tc, y)= [κ0t8σ/m
1 (y)]m ≤ κ2(κ0t∗)m and κm−1

0 tm
∗
≤ 1; see (5-23).

End of the proof. The contradiction can be now obtained by joining the upper and lower bounds (5-24)
and (5-29). More precisely, we have proved∫

�

um
δ (tc, y)81(y) dy ≤

‖81‖L∞(�)

κ�
( Ā+ A)κ0 := κ̄κ0,

which combined with the lower bound (5-8) yields

c2

(∫
�

u0(x)81(x) dx
)m

≤

∫
�

um
δ (tc, y)81(y) dy ≤ κ̄κ0.

Setting κ0 := (1∧ c2/κ̄)t
−m/(m−1)
∗ , we obtain the desired contradiction. �

5E. Proof of Theorem 5.3. We first recall the upper pointwise estimates (4-3): for all 0 ≤ t0 ≤ t1 ≤ t
and a.e. x0 ∈�, we have∫

�

u(t0, x)G(x, x0) dx −
∫
�

u(t1, x)G(x, x0) dx ≤ (m− 1)
tm/(m−1)

t1/(m−1)
0

um(t, x0). (5-31)

The proof follows by estimating the two integrals on the left-hand side separately.
We begin by using the upper bounds (4-8) to get∫

�

u(t1, x)G(x, x0) dx ≤ κ̄
81(x0)

t1/(m−1)
1

for all (t1, x) ∈ (0,+∞)×�. (5-32)

Then we note that, as a consequence of (K2) and Lemma 5.6,∫
�

u(t0, x)G(x, x0) dx ≥ κ�81(x0)

∫
�

u(t0, x)81(x) dx ≥ 1
2κ�81(x0)

∫
�

u0(x)81(x) dx (5-33)

provided t0 ≤ τ0/‖u0‖
m−1
L1
81
(�)

. Combining (5-31), (5-32), and (5-33), for all t ≥ t1 ≥ t0 ≥ 0 we obtain

um(t, x0)≥
t1/(m−1)
0

m− 1

( 1
2κ�‖u0‖L1

81
(�)− κ̄t−1/(m−1)

1

) 81(x0)

tm/(m−1) .
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Choosing

t0 :=
τ0

‖u0‖
m−1
L1
81
(�)

≤ t1 := t∗ =
κ∗

‖u0‖
m−1
L1
81
(�)

with κ∗ ≥ τ0 ∨

(
κ�

4κ̄

)m−1

so that 1
2κ�‖u0‖L1

81
(�)− κ̄t−1/(m−1)

1 ≥
1
4κ�‖u0‖L1

81
(�), the result follows. �

5F. Proofs of Theorems 5.4 and 5.5.

Proof of Theorem 5.4. Since u0 ≤ C081 and L8= λ181, we have∫
�

u0(x)G(x, x0) dx ≤ C0

∫
�

81(x)G(x, x0) dx = C0L−181(x0)=
C0

λ1
81(x0).

Since t 7→
∫
�

u(t, y)G(x, y) dy is decreasing, see (4-2), it follows that∫
�

u(t, y)G(x0, y) dy ≤
C0

λ1
81(x0) for all t ≥ 0. (5-34)

Combining this estimate with (4-7) concludes the proof. �

Proof of Theorem 5.5. Given x0 ∈ �, set R0 := dist(x0, ∂�). Since G(x, x0) & |x − x0|
−(N−2s) inside

BR0/2(x0) by (K4), using our assumption on u(T ) we get∫
�

G(x, x0)u(T, x) dx &
∫

BR0/2(x0)

81(x)α

|x − x0|N−2s &81(x0)
αR2s

0 .

Recalling that 81(x0)� Rγ0 , this yields

81(x0)
α+2s/γ .

∫
�

G(x, x0)u(T, x) dx .

Combining the above inequality with (5-34) gives

81(x0)
α+2s/γ .81(x0) for all x0 ∈�,

which implies

α ≥ 1− 2s
γ
.

Noticing that 1− 2s/γ > 1/m if and only if σ < 1, this concludes the proof. �

6. Summary of the general decay and boundary results

We now present a summary of the main results, which can be summarized in various forms of upper
and lower bounds, which we call the global Harnack principle, GHP for short. As already mentioned,
such inequalities are important for regularity issues (see Section 8), and they play a fundamental role
in formulating the sharp asymptotic behavior (see Section 7). The proof of such a GHP is obtained by
combining upper and lower bounds, stated and proved in Sections 4 and 5 respectively. There are cases
when the bounds do not match, for which the complicated panorama described in the Introduction holds. As
explained before, as far as examples are concerned, the latter anomalous situation happens only for the SFL.
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Theorem 6.1 (global Harnack principle I). Let L satisfy (A1), (A2), (K2), and (L1). Furthermore, suppose
that L has a first eigenfunction 81 � dist( · , ∂�)γ. Let σ be as in (1-3) and assume that 2sm 6= γ (m− 1)
and

• either σ = 1

• or σ < 1, K (x, y)≤ c1|x − y|−(N+2s) for a.e. x, y ∈ RN, and 81 ∈ Cγ (�).

Let u ≥ 0 be a weak dual solution to the CDP corresponding to u0 ∈ L1
81
(�). Then, there exist constants

κ, κ̄ > 0 such that the following inequality holds:

κ

(
1∧

t
t∗

)m/(m−1)
81(x)σ/m

t1/(m−1) ≤ u(t, x)≤ κ̄
81(x)σ/m

t1/(m−1) for all t > 0, x ∈�. (6-1)

The constants κ, κ̄ depend only on N, s, γ , m, c1, κ�, �, and ‖81‖Cγ (�).

Proof. We combine the upper bound (4-1) with the lower bound (5-2). The expression of t∗ is explicitly
given in Theorem 5.2. �

Degenerate kernels. When the kernel K vanishes on ∂�, there are two combinations of upper/lower
bounds that provide Harnack inequalities, one for small times and one for large times. As we have already
seen, there is a strong difference between the cases σ = 1 and σ < 1.

Theorem 6.2 (global Harnack principle II). Let (A1), (A2), and (K2) hold. Let u ≥ 0 be a weak dual
solution to the CDP corresponding to u0 ∈ L1

81
(�). Assume that

• either σ = 1 and 2sm 6= γ (m− 1);

• or σ < 1, u0 ≥ κ08
σ/m
1 for some κ0 > 0, and (K4) holds.

Then there exist constants κ, κ̄ > 0 such that the following inequality holds:

κ
81(x)σ/m

t1/(m−1) ≤ u(t, x)≤ κ̄
81(x)σ/m

t1/(m−1) for all t ≥ t∗, x ∈�.

If 2sm = γ (m− 1), assuming (K4) and that u0 ≥ κ081(1+ | log81|)
1/(m−1) for some κ0 > 0, then for

all t ≥ t∗ and all x ∈�

κ
81(x)1/m

t1/(m−1) (1+ | log81(x)|)1/(m−1)
≤ u(t, x)≤ κ̄

81(x)1/m

t1/(m−1) (1+ | log81(x)|)1/(m−1).

The constants κ, κ̄ depend only on N, s, γ , m, κ0, κ�, and �.

Proof. In the case σ = 1, we combine the upper bound (4-1) with the lower bound (5-3). The expression
of t∗ is explicitly given in Theorem 5.3. When σ < 1, the upper bound is still given by (4-1), while the
lower bound follows by comparison with the solution S(x)(κ1−m

0 + t)−1/(m−1), recalling that S �8σ/m
1

(see Theorem 3.2). �

Remark. Local Harnack inequalities of elliptic/backward type follow as a consequence of Theorems 6.1
and 6.2, for all times and for large times respectively, see Theorem 8.2.
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Note that, for small times, we cannot find matching powers for a global Harnack inequality (except
for some special initial data), and such a result is actually false for s = 1 (in view of the finite speed of
propagation). Hence, in the remaining cases, we have only the following general result.

Theorem 6.3 (nonmatching upper and lower bounds). Let L satisfy (A1), (A2), (K2), and (L2). Let u ≥ 0
be a weak dual solution to the CDP corresponding to u0 ∈ L1

81
(�). Then, there exist constants κ, κ̄ > 0

such that the following inequality holds when 2sm 6= γ (m− 1):

κ

(
1∧

t
t∗

)m/(m−1)
81(x)

t1/(m−1) ≤ u(t, x)≤ κ̄
81(x)σ/m

t1/(m−1) for all t > 0, x ∈�. (6-2)

When 2sm = γ (m− 1), a logarithmic correction (1+ | log81(x)|)1/(m−1) appears in the right-hand side.

Proof. We combine the upper bound (4-1) with the lower bound (5-1). The expression of t∗ is explicitly
given in Theorem 5.1. �

Remark. As already mentioned in the Introduction, in the nonmatching case, which in examples can
only happen for spectral-type operators, we have the appearance of an anomalous behavior of solutions
corresponding to “small data”: it happens for all times when σ < 1 or 2sm = γ (m − 1), and it can
eventually happen for short times when σ = 1.

7. Asymptotic behavior

An important application of the global Harnack inequalities of the previous section concerns the sharp
asymptotic behavior of solutions. More precisely, we first show that for large times all solutions behave
like the separate-variables solution U(t, x) = S(x) t−1/(m−1) introduced at the end of Section 3. Then,
whenever the GHP holds, we can improve this result to an estimate in relative error.

Theorem 7.1 (asymptotic behavior). Assume that L satisfies (A1), (A2), and (K2), and let S be as in
Theorem 3.2. Let u be any weak dual solution to the CDP. Then, unless u ≡ 0,

‖t1/(m−1)u(t, · )− S‖L∞(�) t→∞
−−−→ 0. (7-1)

Proof. The proof uses rescaling and time monotonicity arguments, and it is a simple adaptation of the
proof of Theorem 2.3 of [Bonforte et al. 2015]. In those arguments, the interior Cα

x (�) continuity is
needed to improve the L1(�) convergence to L∞(�), but the interior Hölder continuity is guaranteed by
Theorem 8.1(i) below. �

We now exploit the GHP to get a stronger result.

Theorem 7.2 (sharp asymptotic behavior). Under the assumptions of Theorem 7.1, assume that u 6≡ 0.
Furthermore, suppose that either the assumptions of Theorem 6.1 or of Theorem 6.2 hold. Set U(t, x) :=
t−1/(m−1)S(x). Then there exists c0 > 0 such that, for all t ≥ t0 := c0‖u0‖

−(m−1)
L1
81
(�)

, we have∥∥∥∥ u(t, · )
U(t, · )

− 1
∥∥∥∥

L∞(�)
≤

2
m− 1

t0
t0+ t

. (7-2)

We remark that the constant c0 > 0 only depends on N, s, γ , m, κ0, κ�, and �.
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Remark. This asymptotic result is sharp, as it can be checked by considering u(t, x)= U(t + 1, x). For
the classical case, that is L=1, we recover the classical results of [Aronson and Peletier 1981; Vázquez
2004] with a different proof.

Proof. Notice that we are in the position to use Theorem 6.1 or 6.2; namely we have

u(t)� t−1/(m−1)S = U(t, · ) for all t ≥ t∗,

where the last equivalence follows by Theorem 3.2. Hence, we can rewrite the bounds above saying that
there exist κ, κ̄ > 0 such that

κ
S(x)

t1/(m−1) ≤ u(t, x)≤ κ̄
S(x)

t1/(m−1) for all t ≥ t∗ and a.e. x ∈�. (7-3)

Since t∗ = κ∗‖u0‖
−(m−1)
L1
81
(�)

, the first inequality implies

S
(t∗+ t0)1/(m−1) ≤ κ

S

t1/(m−1)
∗

≤ u(t∗)

for some t0 = c0‖u0‖
−(m−1)
L1
81
(�)
≥ t∗. Hence, by the comparison principle,

S
(t + t0)1/(m−1) ≤ u(t) for all t ≥ t∗.

On the other hand, it follows by (7-3) that u(t, x)≤UT (t, x) := S(x)(t−T )−1/(m−1) for all t ≥ T provided
T is large enough. If we now start to reduce T, the comparison principle combined with the upper bound
(4-1) shows that u can never touch UT from below in (T,∞)×�. Hence we can reduce T until T = 0,
proving that u ≤ U0; for an alternative proof, see Lemma 5.4 in [Bonforte et al. 2015]. Since t0 ≥ t∗, this
shows that

S(x)
(t + t0)1/(m−1) ≤ u(t, x)≤

S(x)
t1/(m−1) for all t ≥ t0 and a.e. x ∈�.

Therefore∣∣∣∣1− u(t, x)
U(t, x)

∣∣∣∣≤ 1−
(

1−
t0

t0+ t

)1/(m−1)

≤
2

m− 1
t0

t0+ t
for all t ≥ t0 and a.e. x ∈�,

as desired. �

8. Regularity results

In order to obtain the regularity results, we basically require the validity of a global Harnack principle,
namely Theorem 6.1, 6.2, or 6.3, depending on the situation under study. For some higher-regularity
results, we will eventually need some extra assumptions on the kernels. For simplicity we assume that L is
described by a kernel, without any lower-order term. However, it is clear that the presence of lower-order
terms does not play any role in the interior regularity.

Theorem 8.1 (interior regularity). Assume that

L f (x)= P.V.
∫

RN
( f (x)− f (y))K (x, y) dy+ B(x) f (x),
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with

K (x, y)� |x − y|−(N+2s) in B2r (x0)⊂�, K (x, y). |x − y|−(N+2s) in RN
\ B2r (x0).

Let u be a nonnegative bounded weak dual solution to the CDP on (T0, T1)×�, and assume that there
exist δ,M > 0 such that

0< δ ≤ u(t, x) for a.e. (t, x) ∈ (T0, T1)× B2r (x0),

0≤ u(t, x)≤ M for a.e. (t, x) ∈ (T0, T1)×�.

(i) Then u is Hölder continuous in the interior. More precisely, there exists α > 0 such that, for all
0< T0 < T2 < T1,

‖u‖Cα/2s,α
t,x ((T2,T1)×Br (x0))

≤ C. (8-1)

(ii) Assume in addition |K (x, y)− K (x ′, y)| ≤ c|x − x ′|β |y|−(N+2s) for some β ∈ (0, 1∧ 2s) such that
β + 2s is not an integer. Then u is a classical solution in the interior. More precisely, for all
0< T0 < T2 < T1,

‖u‖C1+β/2s,2s+β
t,x ((T2,T1)×Br (x0))

≤ C. (8-2)

The constants in the above regularity estimates depend on the solution only through the upper and
lower bounds on u. These bounds can be made quantitative by means of local Harnack inequalities, of
elliptic and forward type, which follow from the global ones.

Theorem 8.2 (local Harnack inequalities of elliptic/backward type). Under the assumptions of Theorem 6.1,
there exists a constant Ĥ > 0, depending only on N, s, γ , m, c1, κ�, �, such that for all balls BR(x0)

such that B2R(x0)⊂�

sup
x∈BR(x0)

u(t, x)≤
Ĥ

(1∧ t/t∗)m/(m−1) inf
x∈BR(x0)

u(t, x) for all t > 0. (8-3)

Moreover, for all t > 0 and all h > 0 we have

sup
x∈BR(x0)

u(t, x)≤ Ĥ
[(

1+
h
t

)(
1∧

t
t∗

)−m ]1/(m−1)

inf
x∈BR(x0)

u(t + h, x). (8-4)

Proof. Recalling (6-1), the bound (8-3) follows easily from the following Harnack inequality for the first
eigenfunction, see for instance [Bonforte et al. 2017b]:

sup
x∈BR(x0)

81(x)≤ HN ,s,γ,� inf
x∈BR(x0)

81(x).

Since u(t, x) ≤ (1 + h/t)1/(m−1)u(t + h, x), by the time monotonicity of t 7→ t1/(m−1) u(t, x), (8-4)
follows. �

Remark. The same result holds for large times t ≥ t∗ as a consequence of Theorem 6.2. Already in the
local case s = 1, these Harnack inequalities are stronger than the known two-sided inequalities valid for
solutions to the Dirichlet problem for the classical porous medium equation, see [Aronson and Caffarelli
1983; Daskalopoulos and Kenig 2007; DiBenedetto 1988; 1993; DiBenedetto et al. 2012], which are
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of forward type and are often stated in terms of the so-called intrinsic geometry. Note that elliptic and
backward Harnack-type inequalities usually occur in the fast diffusion range m < 1 [Bonforte et al. 2012;
Bonforte and Vázquez 2006; 2010; 2014], or for linear equations in bounded domains [Fabes et al. 1986;
Safonov and Yuan 1999].

For sharp boundary regularity we need a GHP with matching powers, like Theorems 6.1 or 6.2, and
when s > γ/2, we can also prove Hölder regularity up to the boundary. We leave to the interested reader
to check that the presence of an extra term B(x)um(t, x) with 0 ≤ B(x) ≤ c1 dist(x, ∂�)−2s (as in the
SFL) does not affect the validity of the next result. Indeed, when considering the scaling in (8-6), the
lower term scales as B̂r um

r with 0≤ B̂r ≤ c1 inside the unit ball B1.

Theorem 8.3 (Hölder continuity up to the boundary). Under assumptions of Theorem 8.1(ii), assume
in addition that 2s > γ . Then u is Hölder continuous up to the boundary. More precisely, for all
0< T0 < T2 < T1 there exists a constant C > 0 such that

‖u‖Cγ /mϑ,γ /m
t,x ((T2,T1)×�)

≤ C with ϑ := 2s− γ
(

1− 1
m

)
. (8-5)

Remark. Since we have u(t, x)�81(x)1/m
� dist(x, ∂�)γ /m (note that 2s > γ implies that σ = 1 and

that 2sm 6= γ (m − 1)), the spacial Hölder exponent is sharp, while the Hölder exponent in time is the
natural one by scaling.

8A. Proof of interior regularity. The strategy to prove Theorem 8.1 follows the lines of [Bonforte et al.
2017a] but with some modifications. The basic idea is that, because u is bounded away from zero and
infinity, the equation is nondegenerate and we can use parabolic regularity for nonlocal equations to
obtain the results. More precisely, interior Hölder regularity will follow by applying Cα/2s,α

t,x estimates of
[Felsinger and Kassmann 2013] for a “localized” linear problem. Once Hölder regularity is established,
under a Hölder continuity assumption on the kernel we can use the Schauder estimates proved in [Dong
and Zhang 2016] to conclude.

8A1. Localization of the problem. Up to a rescaling, we can assume r = 2, T0 = 0, T1 = 1. Also, by a
standard covering argument, it is enough to prove the results with T2 =

1
2 .

Take a cutoff function ρ ∈ C∞c (B4) such that ρ ≡ 1 on B3 and η ∈ C∞c (B2) a cutoff function such that
η ≡ 1 on B1, and define v = ρu. By construction u = v on (0, 1)× B3. Since ρ ≡ 1 on B3, we can write
the equation for v on the small cylinder (0, 1)× B1 as

∂tv(t, x)=−L[vm
](t, x)+ g(t, x)=−Lav(t, x)+ f (t, x)+ g(t, x),

where

La[v](t, x) :=
∫

RN
(v(t, x)− v(t, y))a(t, x, y)K (x, y) dy,

a(t, x, y) :=
vm(t, x)− vm(t, y)
v(t, x)− v(t, y)

η(x − y)+ [1− η(x − y)]

= mη(x − y)
∫ 1

0
[(1− λ)v(t, x)+ λv(t, y)]m−1 dλ+ [1− η(x − y)],
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f (t, x) :=
∫

RN \B1(x)

(
vm(t, x)− vm(t, y)− v(t, x)+ v(t, y)

)
[1− η(x − y)]K (x, y) dy,

g(t, x) := −L[(1− ρm)um
](t, x)=

∫
RN \B3

(1− ρm(y))um(t, y)K (x, y) dy

(recall that (1− ρm)um
≡ 0 on (0, 1)× B3).

8A2. Hölder continuity in the interior. Set b := f + g, with f and g as above. It is easy to check
that, since K (x, y) . |x − y|−(N+2s), we have b ∈ L∞((0, 1)× B1). Also, since 0 < δ ≤ u ≤ M inside
(0, 1)× B1, there exists 3> 1 such that 3−1

≤ a(t, x, y)≤3 for a.e. (t, x, y) ∈ (0, 1)× B1× B1 with
|x − y| ≤ 1. This guarantees that the linear operator La is uniformly elliptic, so we can apply the results
in [Felsinger and Kassmann 2013] to ensure that

‖v‖Cα/2s,α
t,x ((1/2,1)×B1/2)

≤ C
(
‖b‖L∞((0,1)×B1)+‖v‖L∞((0,1)×RN )

)
for some universal exponent α > 0. This proves Theorem 8.1(i).

8A3. Classical solutions in the interior. Now that we know that u ∈ Cα/2s,α
((1

2 , 1
)
× B1/2

)
, we repeat

the localization argument above with cutoff functions ρ and η supported inside
( 1

2 , 1
)
× B1/2 to ensure

that v := ρu is Hölder continuous in
( 1

2 , 1
)
×RN. Then, to obtain higher regularity we argue as follows.

Set β1 := min{α, β}. Thanks to the assumption on K and Theorem 8.1(i), it is easy to check that
Ka(t, x, y) := a(t, x, y)K (x, y) satisfies

|Ka(t, x, y)− Ka(t ′, x ′, y)| ≤ C
(
|x − x ′|β1 + |t − t ′|β1/2s)

|y|−(N+2s)

inside
( 1

2 , 1
)
× B1/2. Also, f, g ∈Cβ1/2s,β1

((1
2 , 1

)
× B1/2

)
. This allows us to apply the Schauder estimates

from [Dong and Zhang 2016], see also [Chang-Lara and Kriventsov 2017], to obtain that

‖v‖
C

1+β1/2s,2s+β
t,x ((3/4,1)×B1/4)

≤ C
(
‖b‖Cβ/2s,β

t,x ((1/2,1)×B1/2)
+‖v‖Cβ/2s,β

t,x ((1/2,1)×RN )

)
.

In particular, u ∈ C1+β1/2s,2s+β1
((3

4 , 1
)
× B1/8

)
. In the case β1 = β we stop here. Otherwise we set

α1 := 2s + β and we repeat the argument above with β2 := min{α1, β} in place of β1. In this way, we
obtain that u ∈C1+β1/2s,2s+β1((1−2−4, 1)×B2−5). Iterating this procedure finitely many times, we finally
obtain

u ∈ C1+β/2s,2s+β((1− 2−k, 1)× B2−k−1)

for some universal k. Finally, a covering argument completes the proof of Theorem 8.1(ii).

8B. Proof of boundary regularity. The proof of Theorem 8.3 follows by scaling and interior estimates.
Notice that the assumption 2s > γ implies σ = 1; hence u(t) has matching upper and lower bounds.

Given x0 ∈�, set r = dist(x0, ∂�)/2 and define

ur (t, x) := r−γ /m u(t0+ rϑ t, x0+ r x), with ϑ := 2s− γ
(

1− 1
m

)
. (8-6)
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Note that, because 2s > γ , we have ϑ > 0. With this definition, we see that ur satisfies the equation
∂t ur +Lr um

r = 0 in �r := (�− x0)/r , where

Lr f (x)= P.V.
∫

RN
( f (x)− f (y))Kr (x, y) dy, Kr (x, y) := r N+2s K (x0+ r x, x0+ r y).

Note that, since σ = 1, it follows by the GHP that u(t)� dist(x, ∂�)γ /m. Hence,

0< δ ≤ ur (t, x)≤ M for all t ∈ [r−ϑT0, r−ϑT1], x ∈ B1,

with constants δ,M>0 that are independent of r and x0. In addition, using again that u(t)�dist(x,∂�)γ /m,
we see that

ur (t, x)≤ C(1+ |x |γ /m) for all t ∈ [r−ϑT0, r−ϑT1] and x ∈ RN.

Noticing that um
r (t, x)≤ C(1+ |x |γ ) and that γ < 2s by assumption, we see that the tails of ur will not

create any problem. Indeed, for any x ∈ B1,∫
RN \B2

um
r (t, y)Kr (x, y)−(N+2s) dy ≤ C

∫
RN \B2

|y|γ |y|−(N+2s) dy ≤ C̄0,

where C̄0 is independent of r . This means that we can localize the problem using cutoff functions as done
in Section 8A1, and the integrals defining the functions f and g will converge uniformly with respect to
x0 and r . Hence, we can apply Theorem 8.1(ii) to get

‖ur‖C1+β/2s,2s+β ([r−ϑT+1/2,r−ϑT+1]×B1/2) ≤ C (8-7)

for all T ∈ [T0, T1− r−ϑ ]. Since γ /m < 2s+β (because γ < 2s), it follows that

‖ur‖L∞([r−ϑT+1/2,r−ϑT+1],Cγ /m(B1/2) ≤ ‖ur‖C1+β/2s,2s+β ([r−ϑT+1/2,r−ϑT0+1]×B1/2) ≤ C.

Noticing that

sup
t∈[r−ϑT+1/2,r−ϑT+1]

[ur ]Cγ /m(B1/2) = sup
t∈[T+rϑ/2,r−ϑT+r−ϑ ]

[u]Cγ /m(Br (x0)),

and that T ∈ [T0, T1− r−ϑ ] and x0 are arbitrary, arguing as in [Ros-Oton and Serra 2014] we deduce that,
given T2 ∈ (T0, T1),

sup
t∈[T2,T1]

[u]Cγ /m(�) ≤ C. (8-8)

This proves the global Hölder regularity in space. To show the regularity in time, we start again from
(8-7) to get

‖∂t ur‖L∞([r−ϑT+1/2,r−ϑT+1]×B1/2) ≤ C.

By scaling, this implies
‖∂t u‖L∞([T+rϑ/2,r−ϑT+r−ϑ ]×Br (x0)) ≤ Crγ /m−ϑ,

and by the arbitrariness of T and x0 we obtain (recall that r = dist(x0, ∂�)/2)

|∂t u(t, x)| ≤ C dist(x, ∂�)γ /m−ϑ for all t ∈ [T2, T1], x ∈�. (8-9)

Note that γ /m−ϑ = γ − 2s < 0 by our assumption.
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Now, given t0, t1 ∈ [T2, T1] and x ∈ �, we argue as follows: if |t0− t1| ≤ dist(x, ∂�)ϑ then we use
(8-9) to get (recall that γ /m−ϑ < 0)

|u(t1, x)− u(t0, x)| ≤ C dist(x, ∂�)γ /m−ϑ
|t0− t1| ≤ C |t0− t1|γ /mϑ.

On the other hand, if |t0− t1| ≥ dist(x, ∂�)ϑ, then we use (8-8) and the fact that u vanishes on ∂� to
obtain

|u(t1, x)− u(t0, x)| ≤ |u(t1, x)| + |u(t0, x)| ≤ C dist(x, ∂�)γ /m
≤ C |t0− t1|γ /mϑ.

This proves that u is (γ /mϑ)-Hölder continuous in time, and completes the proof of Theorem 8.3. �

9. Numerical evidence

After discovering the unexpected boundary behavior, we looked for numerical confirmation. This has
been given to us by the authors of [Cusimano et al. 2017], who exploited the analytical tools developed
in this paper to support our results by means of accurate numerical simulations. We include here some
of these simulations, courtesy of the authors. In all the figures we shall consider the spectral fractional
Laplacian, so that γ = 1 (see Section 2A for more details).

We take �= (−1, 1), and we consider as initial datum the compactly supported function

u0(x)= e4−1/((x−1/2)(x+1/2))χ|x |<1/2

appearing in the left of Figure 1. In all the other figures, the solid line represents either 81/m
1 or 81−2s

1 ,
while the dotted lines represent t1/(m−1)u(t) for different values of t , where u(t) is the solution starting
from u0. These choices are motivated by Theorems 5.3 and 5.5. Since the map t 7→ t1/(m−1) u(t, x) is
nondecreasing for all x ∈� [Bonforte and Vázquez 2016, (2.3)], the lower dotted line corresponds to an
earlier time with respect to the higher one.
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Figure 1. On the left, the initial condition u0. On the right, the solid line represents
8

1/m
1 , and the dotted lines represent t1/(m−1)u(t) at t = 1 and t = 5. The parameters are

m = 2 and s = 1
2 ; hence σ = 1. While u(t) appears to behave as 81 � dist( · , ∂�) for

very short times, already at t = 5 it exhibits the matching boundary behavior predicted
by Theorem 5.3.
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Figure 2. In both pictures, the solid line represents 81/m
1 . On the left, the dotted lines

represent t1/(m−1)u(t) at t = 30 and t = 150, with parameters m = 4 and s = 3
4 ; hence

σ = 1. In this case u(t) appears to behave as 81 � dist( · , ∂�) for quite some time, and
only around t = 150 it exhibits the matching boundary behavior predicted by Theorem 5.3.
On the right, the dotted lines represent t1/(m−1)u(t) at t=150 and t=600 with parameters
m = 4 and s = 1

5 ; hence σ = 8
15 < 1. In this case u(t) seems to exhibit a linear boundary

behavior even after long time (this linear boundary behavior is a universal lower bound
for all times by Theorem 5.1). The second picture may lead one to conjecture that, in the
case σ < 1 and u0 .81, the behavior u(t)�81 holds for all times. However, as shown
in Figure 3, there are cases when u(t)�81−2s

1 for large times.
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Figure 3. In both pictures we use the parameters m = 2 and s = 1
10 ; hence σ = 2

5 < 1,
and the solid line represents 81−2s

1 . On the left, the dotted lines represent t1/(m−1)u(t) at
t = 4 and t = 25, on the right we see t = 40 and t = 150. Note that u(t)�81 for short
times. Then, after some time, u(t) starts looking more like 81−2s

1 , and for large times
(t = 150) it becomes much larger than 81−2s

1 .

Comparing Figures 2 and 3, it seems that when σ < 1 there is no hope of finding a universal behavior
of solutions for large times. In particular, the bound provided by (1-6) seems to be optimal.
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10. Complements, extensions and further examples

Elliptic versus parabolic. The exceptional boundary behaviors we have found for some operators and
data came as a surprise to us, since the solution to the corresponding “elliptic setting” LSm

= S satisfies
S � 8σ/m

1 (with a logarithmic correction when 2sm 6= γ (m − 1)); hence separate-variable solutions
always satisfy (1-5) (see (3-2) and Theorem 3.2).

About the kernel of operators of the spectral type. In this section we study the properties of the kernel
of L. While in some situations L may not have a kernel (for instance, in the local case), in other situations
that may not be so obvious from its definition. In the next lemma it is shown in particular that the SFL,
defined by (2-4), admits a representation of the form (2-5). We state hereby the precise result, mentioned
in [Abatangelo 2015] and proven in [Song and Vondraček 2003] for the SFL.

Lemma 10.1 (spectral kernels). Let s ∈ (0, 1), and let L be the s-th spectral power of a linear elliptic
second-order operator A, and let 81 � dist( · , ∂�)γ be the first positive eigenfunction of A. Let
H(t, x, y) be the heat kernel of A, and assume that it satisfies the following bounds: there exist constants
c0, c1, c2 > 0 such that for all 0< t ≤ 1

c0

(
81(x)
tγ /2

∧ 1
)(

81(y)
tγ /2

∧ 1
)

e−c1|x−y|2/t

t N/2 ≤ H(t, x, y)≤ c−1
0

(
81(x)
tγ /2

∧ 1
)(

81(y)
tγ /2

∧ 1
)

e−|x−y|2/(c1 t)

t N/2

(10-1)
and

0≤ H(t, x, y)≤ c281(x)81(y) for all t ≥ 1. (10-2)

Then the operator L can be expressed in the form

L f (x)= P.V.
∫

RN
( f (x)− f (y)) K (x, y) dy+ B(x)u(x) (10-3)

with a kernel K (x, y) supported in �×� satisfying

K (x, y)�
1

|x − y|N+2s

(
81(x)
|x − y|γ

∧ 1
)(

81(y)
|x − y|γ

∧ 1
)

and B(x)�81(x)−2s/γ. (10-4)

The proof of this lemma follows the ideas of [Song and Vondraček 2003]; indeed assumptions of
Lemma 10.1 allow us to adapt the proof of that paper to our case with minor changes.

Method and generality. Our work is part of a current effort aimed at extending the theory of evolution
equations of parabolic type to a wide class of nonlocal operators, in particular operators with general
kernels that have been studied by various authors; see for instance [del Teso et al. 2017; de Pablo et al.
2016; Serra 2015]. Our approach is different from many others: indeed, even if the equation is nonlinear,
we concentrate on the properties of the inverse operator L−1 (more precisely, on its kernel given by the
Green function G), rather than on the operator L itself. Once this setting is well-established and good linear
estimates for the Green function are available, the calculations and estimates are very general. Hence, the
method is applicable to a very large class of equations, both for elliptic and parabolic problems, as well
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as to more general nonlinearities than F(u)= um ; see also related comments in the works [Bonforte and
Vázquez 2015; 2016; Bonforte et al. 2015].

Finite and infinite propagation. In all cases considered in the paper for s < 1 we prove that the solution
becomes strictly positive inside the domain at all positive times. This is called infinite speed of propagation,
a property that does not hold in the limit s = 1 for any m > 1 [Vázquez 2007] (in that case, finite speed
of propagation holds and a free boundary appears). Previous results on this infinite speed of propagation
can be found in [Bonforte et al. 2017a; de Pablo et al. 2012]. We recall that infinite speed of propagation
is typical of the evolution with nonlocal operators representing long-range interactions, but it is not true
for the standard porous medium equation; hence a trade-off takes place when both effects are combined.
All our models fall on the side of infinite propagation, but we recall that finite propagation holds for a
related nonlocal model called “nonlinear porous medium flow with fractional potential pressure”; see
[Caffarelli and Vázquez 2011].

The local case. Since 2sm > γ (m− 1) when s = 1 (independently of m > 1), our results give a sharp
behavior in the local case after a “waiting time”. Although this is well-known for the classical porous
medium equation, our results apply also to the case of the uniformly elliptic operator in divergence form
with C1 coefficients, and yield new results in this setting. Actually one can check that, even when the
coefficients are merely measurable, many of our results are still true and they provided universal upper
and lower estimates. At least to our knowledge, such general results are completely new.

10A. Further examples of operators. Here we briefly exhibit a number of examples to which our theory
applies, besides the RFL, CFL and SFL already discussed in Section 2. These include a wide class of
local and nonlocal operators. We just sketch the essential points, referring to [Bonforte and Vázquez
2016] for a more detailed exposition.

Censored fractional Laplacian (CFL) and operators with more general kernels. As already mentioned
in Section 2A, assumptions (A1), (A2), and (K2) are satisfied with γ = s− 1

2 . Moreover, it follows by
[Bogdan et al. 2003; Chen et al. 2010] that we can also consider operators of the form:

L f (x)= P.V.
∫
�

( f (x)− f (y))
a(x, y)
|x − y|N+2s dy, with 1

2 < s < 1,

where a(x, y) is a symmetric function of class C1 bounded between two positive constants. The Green
function G(x, y) of L satisfies the stronger assumption (K4); see Corollary 1.2 of [Chen et al. 2010].

Fractional operators with more general kernels. Consider integral operators of the form

L f (x)= P.V.
∫

RN
( f (x)− f (y))

a(x, y)
|x − y|N+2s dy,

where a is a measurable symmetric function, bounded between two positive constants, and satisfying

|a(x, y)− a(x, x)|χ|x−y|<1 ≤ c|x − y|σ , with 0< s < σ ≤ 1,
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for some c > 0 (actually, one can allow even more general kernels; see [Bonforte and Vázquez 2016;
Kim and Kim 2014]). Then, for all s ∈ (0, 1], the Green function G(x, y) of L satisfies (K4) with γ = s;
see Corollary 1.4 of [Kim and Kim 2014].

Spectral powers of uniformly elliptic operators. Consider a linear operator A in divergence form,

A=−
N∑

i, j=1

∂i (ai j∂j ),

with uniformly elliptic C1 coefficients. The uniform ellipticity allows one to build a self-adjoint operator
on L2(�) with discrete spectrum (λk, φk). Using the spectral theorem, we can construct the spectral
power of such operator as

L f (x) :=As f (x) :=
∞∑

k=1

λs
k f̂kφk(x), where f̂k =

∫
�

f (x)φk(x) dx

(we refer to the books [Davies 1990; 1995] for further details), and the Green function satisfies (K2) with
γ = 1; see [Davies 1995, Chapter 4.6]. Then, the first eigenfunction 81 is comparable to dist( · , ∂�).
Also, Lemma 10.1 applies, see for instance [Davies 1995], and allow us to get sharp upper and lower
estimates for the kernel K of L, as in (10-4).

Other examples. As explained in Section 3 of [Bonforte and Vázquez 2016], our theory may also be
applied to: (i) sums of two fractional operators; (ii) the sum of the Laplacian and a nonlocal operator
kernel; (iii) Schrödinger equations for nonsymmetric diffusions; (iv) gradient perturbation of restricted
fractional Laplacians. Finally, it is worth mentioning that our arguments readily extend to operators on
manifolds for which the required bounds hold.
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[Song and Vondraček 2003] R. Song and Z. Vondraček, “Potential theory of subordinate killed Brownian motion in a domain”,
Probab. Theory Related Fields 125:4 (2003), 578–592. MR Zbl

[del Teso et al. 2017] F. del Teso, J. Endal, and E. R. Jakobsen, “Uniqueness and properties of distributional solutions of nonlocal
equations of porous medium type”, Adv. Math. 305 (2017), 78–143. MR Zbl

[Vázquez 2004] J. L. Vázquez, “The Dirichlet problem for the porous medium equation in bounded domains: asymptotic
behavior”, Monatsh. Math. 142:1-2 (2004), 81–111. MR Zbl

[Vázquez 2007] J. L. Vázquez, The porous medium equation: mathematical theory, Clarendon, New York, 2007. MR Zbl

[Vázquez 2014a] J. L. Vázquez, “Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of
porous medium type”, J. Eur. Math. Soc. (JEMS) 16:4 (2014), 769–803. MR Zbl

[Vázquez 2014b] J. L. Vázquez, “Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators”,
Discrete Contin. Dyn. Syst. Ser. S 7:4 (2014), 857–885. MR Zbl

Received 2 Feb 2017. Revised 31 Jul 2017. Accepted 22 Nov 2017.

MATTEO BONFORTE: matteo.bonforte@uam.es
Departamento de Matemáticas, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain

ALESSIO FIGALLI: alessio.figalli@math.ethz.ch
ETH Zürich, Department of Mathematics, Zürich, Switzerland

JUAN LUIS VÁZQUEZ: juanluis.vazquez@uam.es
Departamento de Matemáticas, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain

mathematical sciences publishers msp

http://dx.doi.org/10.1007/978-1-4612-0895-2
http://msp.org/idx/mr/1230384
http://msp.org/idx/zbl/0794.35090
http://dx.doi.org/10.1007/978-1-4614-1584-8
http://dx.doi.org/10.1007/978-1-4614-1584-8
http://msp.org/idx/mr/2865434
http://msp.org/idx/zbl/1237.35004
http://msp.org/idx/arx/1604.00101v1
http://projecteuclid.org/euclid.ijm/1256064230
http://projecteuclid.org/euclid.ijm/1256064230
http://msp.org/idx/mr/857210
http://msp.org/idx/zbl/0625.35006
http://dx.doi.org/10.1080/03605302.2013.808211
http://msp.org/idx/mr/3169755
http://msp.org/idx/zbl/1277.35090
http://dx.doi.org/10.1016/j.spa.2014.04.004
http://dx.doi.org/10.1016/j.spa.2014.04.004
http://msp.org/idx/mr/3217433
http://msp.org/idx/zbl/1333.60184
http://dx.doi.org/10.1016/j.aim.2010.07.017
http://msp.org/idx/mr/2737788
http://msp.org/idx/zbl/1208.26016
http://dx.doi.org/10.1002/cpa.21408
http://msp.org/idx/mr/2954615
http://msp.org/idx/zbl/1248.35220
http://dx.doi.org/10.1016/j.na.2016.01.026
http://msp.org/idx/mr/3485132
http://msp.org/idx/zbl/1334.35409
http://dx.doi.org/10.1016/j.matpur.2013.06.003
http://dx.doi.org/10.1016/j.matpur.2013.06.003
http://msp.org/idx/mr/3168912
http://msp.org/idx/zbl/1285.35020
http://dx.doi.org/10.2307/121104
http://msp.org/idx/mr/1715327
http://msp.org/idx/zbl/1157.35391
http://dx.doi.org/10.1007/s00526-014-0798-6
http://msp.org/idx/mr/3385173
http://msp.org/idx/zbl/1327.35170
http://dx.doi.org/10.1007/s00440-002-0251-1
http://msp.org/idx/mr/1974415
http://msp.org/idx/zbl/1022.60078
http://dx.doi.org/10.1016/j.aim.2016.09.021
http://dx.doi.org/10.1016/j.aim.2016.09.021
http://msp.org/idx/mr/3570132
http://msp.org/idx/zbl/1349.35311
http://dx.doi.org/10.1007/s00605-004-0237-4
http://dx.doi.org/10.1007/s00605-004-0237-4
http://msp.org/idx/mr/2065023
http://msp.org/idx/zbl/1055.35024
http://msp.org/idx/mr/2286292
http://msp.org/idx/zbl/1107.35003
http://dx.doi.org/10.4171/JEMS/446
http://dx.doi.org/10.4171/JEMS/446
http://msp.org/idx/mr/3191976
http://msp.org/idx/zbl/1297.35279
http://dx.doi.org/10.3934/dcdss.2014.7.857
http://msp.org/idx/mr/3177769
http://msp.org/idx/zbl/1290.26010
mailto:matteo.bonforte@uam.es
mailto:alessio.figalli@math.ethz.ch
mailto:juanluis.vazquez@uam.es
http://msp.org


ANALYSIS AND PDE
Vol. 11, No. 4, 2018

dx.doi.org/10.2140/apde.2018.11.983 msp

BLOW-UP OF A CRITICAL SOBOLEV NORM FOR ENERGY-SUBCRITICAL
AND ENERGY-SUPERCRITICAL WAVE EQUATIONS

THOMAS DUYCKAERTS AND JIANWEI YANG

We consider a wave equation in three space dimensions, with a power-like nonlinearity which is either
focusing or defocusing. The exponent is greater than 3 (conformally supercritical) and not equal to 5
(not energy-critical). We prove that for any radial solution which does not scatter to a linear solution,
an adapted scale-invariant Sobolev norm goes to infinity at the maximal time of existence. The proof
uses a conserved generalized energy for the radial linear wave equation, new Strichartz estimates adapted
to this generalized energy, and a bound from below of the generalized energy of any nonzero solution
outside wave cones. It relies heavily on the fact that the equation does not have any nontrivial stationary
solution. Our work yields a qualitative improvement on previous results on energy-subcritical and
energy-supercritical wave equations, with a unified proof.

1. Introduction

1A. Motivation and background. Consider the semilinear wave equation in 1C3 dimensions

.@2t ��/uD �juj
2mu; (1-1)

with initial data
u.0; x/D u0.x/; @tu.0; x/D u1.x/; (1-2)

where x 2 R3 and t 2 R. The parameters m> 1 and � 2 f˙1g are fixed. The equation is focusing when
� D 1 and defocusing when � D �1. It has the following scaling invariance: if u.t; x/ is a solution of
(1-1) and �> 0, then �

1
mu.�t; �x/ is also a solution. It is well-posed in the scale-invariant Sobolev space

PHsc WD PH sc .R3/� PH sc�1.R3/, where sc D 3
2
�
1
m

is the critical Sobolev exponent. Equation (1-1) is
energy-subcritical if sc <1 (equivalentlym<2), energy-critical if scD1 (mD2) and energy-supercritical
if sc > 1 (m> 2).

The dynamics of (1-1) depend in a crucial way on the value of m and the sign of �.
The energy-critical case mD 2 is particular. The conserved energy

E.Eu.t//D
1

2

Z
jru.t; x/j2 dxC

1

2

Z
.@tu.t; x//

2 dx�
�

2mC2

Z
ju.t; x/j2mC2 dx

is well-defined in PHsc D PH1 D PH 1 �L2. When the nonlinearity is defocusing, the conservation of the
energy implies that all solutions are bounded in PH1. It was proved in the 90s that all solutions are global
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and scatter to a linear solution in the energy space, i.e., that there exists a solution uL of the linear wave
equation

.@2t ��/uL D 0; .t; x/ 2 R�R3; (1-3)

with initial data in PH1, such that

lim
t!C1

kEu.t/� EuL.t/k PH1 D 0I (1-4)

see [Grillakis 1990; 1992; Ginibre et al. 1992; Shatah and Struwe 1993; 1994; Kapitanski 1994; Ginibre
and Velo 1995; Nakanishi 1999; Bahouri and Shatah 1998]. In the focusing case, there exist solutions
that do not scatter. Indeed, there exist solutions of (1-1) that blow up in finite time with a type I behavior;
i.e., there are solutions u such that

lim
t!TC.u/

kEu.t/k PH1 DC1;

where TC.u/ is the maximal time of existence of u. Furthermore, the equation also admits stationary
solutions and more generally traveling waves. It was proved in [Duyckaerts et al. 2013] that any radial
solution that does not scatter and is not a type I blow-up solution decouples asymptotically as a sum
of rescaled stationary solutions and a dispersive term. This includes global nonscattering solutions (see
[Krieger and Schlag 2007; Donninger and Krieger 2013], and also [Martel and Merle 2016; Jendrej 2016]
in higher space dimensions, for examples of such solutions) and solutions that blow up in finite time
but remain bounded in the energy space, called type II blow-up solutions (see, e.g., [Krieger et al. 2009;
Krieger and Schlag 2014a] and, in higher dimensions [Hillairet and Raphaël 2012; Jendrej 2017]).

The casem¤ 2 is quite different. It is known that stationary solutions do not exist in the critical Sobolev
space, even for focusing nonlinearity, see, e.g., [Joseph and Lundgren 1973; Farina 2007, Theorem 2],
and it is conjectured that any solution that does not satisfy

lim
t!TC.u/

kEu.t/k PHsc DC1 (1-5)

is global and scatters to a linear solution for positive times. A slightly weaker version of this result was
proved in many works; namely, if the solution does not scatter, then

lim sup
t!TC.u/

kEu.t/k PHsc DC1: (1-6)

See [Kenig and Merle 2011; Duyckaerts et al. 2014] for the radial case, m> 2, [Shen 2013; Rodriguez
2017] for the radial case, 1 < m < 2, [Killip and Visan 2011] for the defocusing nonradial case, m> 2,
[Dodson and Lawrie 2015] for the radial case, m D 1, and also [Killip et al. 2014] for the nonradial
defocusing case, 1�m< 2, where (1-6) is proved for finite time blow-up solutions with initial data in
the energy space.

Note that none of the preceding works excludes the existence of a nonscattering solution of (1-1) such
that

lim sup
t!TC.u/

kEu.t/k PHsc DC1 and lim inf
t!TC.u/

kEu.t/k PHsc <1:
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In [Duyckaerts and Roy 2015], this type of solution was ruled out in the case m > 2: for any radial
nonscattering solution of the equation, the critical Sobolev norm goes to infinity as t ! TC.u/.

It is interesting to compare the theorems cited above with analogous ones for other equations, and in
particular for the nonlinear Schrödinger equation

i@tv��v D �jvj
2mv: (1-7)

For the defocusing equation (� D �1), the fact that the bound of a critical norm implies scattering is
known in the cubic case in three space dimensions [Kenig and Merle 2010] and in energy-supercritical
cases in large space dimensions [Killip and Visan 2010]. Merle and Raphaël [2008] considered the
focusing equation (1-7) with �D 1 and an L2 supercritical (i.e., pseudoconformally supercritical), energy
subcritical nonlinearity, that is, 2

3
<m< 2 when the number of space dimensions is three. This condition

is the analogue of the condition 1 < m < 2 (conformally supercritical and energy subcritical power) for
the wave equation. They proved that if u is radial with initial data in the intersection of PH 1 and the
critical Sobolev space, and if TC.v/ is finite, then

kv.t/kL3m �
1

C
j log.TC.v/� t /j˛

for some constant ˛ > 0. Note that in this case there exists a global, bounded, nonscattering solution.
The space L3m is scale-invariant and strictly larger than the critical Sobolev space. Analogous results are
known for Navier–Stokes equations; see [Iskauriaza et al. 2003; Kenig and Koch 2011; Seregin 2012;
Gallagher et al. 2013; 2016]. For example, it is proved in [Seregin 2012] that the scale-invariant L3 norm
of a solution blowing-up in finite time goes to infinity at the blow-up time.

Going back to (1-1) with m¤ 2, many questions remain open:

� Is it true that all nonscattering solutions of (1-1) satisfy (1-5) in the nonradial case, or if 1 < m < 2?

� Can one lower the regularity of the scale-invariant norm used in (1-5), as in the case of nonlinear
Schrödinger and Navier–Stokes equations?

� Is it possible to give an explicit lower-bound of the critical norm, in the spirit of [Merle and Raphaël
2008]?

In this article, we give a partial answer to the first two questions in the radial case. This is based on a new
well-posedness theory for (1-1), in a scale-invariant weighted Sobolev space Lm which is not Hilbertian,
but is related to a conserved quantity of the linear wave equation and is compatible with the finite speed
of propagation.

1B. Strichartz estimates and local well-posedness. Consider the following norm for radial functions
.u0; u1/ on R3:

k.u0; u1/kLm D

�Z C1
0

.jr@ru0j
m
Cjru1j

m/ dr

�1
m

;
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and define the space Lm as the closure of radial, smooth, compactly supported functions for this norm.
Note that L2 is exactly1 PH1rad. The Lm norm was introduced in [Duyckaerts and Roy 2015], in the case
m> 2, as a scale-invariant substitute to the energy norm PH 1 �L2 norm. Let us mention that PHscrad � Lm

if m> 2, and Lm � PHscrad if 1 < m < 2 (see Proposition 2.2 below). It was observed in [Duyckaerts and
Roy 2015] that the Lm norm is almost conserved for solutions of the linear wave equation: we will indeed
introduce in Section 2 a conserved quantity (the generalized energy) which is equivalent to this norm. We
first prove Strichartz estimates for the linear wave equation. If I is a real interval, we denote by S.I / the
space defined by the norm

kf kS.I/ D

�Z
I

�Z C1
0

jf .t; r/j.2mC1/mrm dr

�1
m

dt

� 1
2mC1

:

Theorem 1. Let v be a solution of the linear wave equation

@2t v��v D 0; .v; @tv/�tD0 D .v0; v1/ 2 Lm:
Then v 2 S.R/ and

kvkS.R/ � Ck.v0; v1/kLm :

Note that Theorem 1 generalizes, in the radial case, the L5L10 Strichartz/Sobolev estimate for finite-
energy solutions of the linear wave equation to the case m ¤ 2. Let us mention that we prove more
general Strichartz estimates, including estimates for the nonhomogeneous wave equation (see Section 2B
for the details). As a consequence, we obtain local well-posedness in Lm for (1-1):

Theorem 2. For m> 1, (1-1) is locally well-posed in Lm. For any initial data .u0; u1/ in Lm, there exists
a unique solution u of (1-1), (1-2) defined on a maximal interval of existence Imax.u/D .T�.u/; TC.u//

such that Eu2C 0.Imax.u/;Lm/ and for all compact intervals J bImax.u/, we have u2S.J /. Furthermore,

TC.u/ <1 D) kukS.Œ0;TC.u/// DC1:

We obtain Theorem 1 and the other generalized Strichartz estimates of Section 2B by interpolating
between the known generalized Strichartz estimates of [Ginibre and Velo 1995], see also [Lindblad and
Sogge 1995], in correspondence to the casemD2, and Strichartz-type estimates obtained by a new method,
based on the continuity of the Hardy–Littlewood maximal function from L1 to L1w (see Section 2B).

We also construct a profile decomposition for sequences of functions that are bounded in Lm, which
is adapted to (1-1), in the spirit of the one of [Bahouri and Gérard 1999] which corresponds to the
case mD 2. This construction is based on a refined Sobolev embedding due to Chamorro [2011]. The
fact that Lm is not a Hilbert space yields a new technical difficulty, namely that the usual Pythagorean
expansion of the norm does not seem to be valid and must be replaced by a weaker statement, closer to
Bessel’s inequality than to the Pythagorean theorem. We refer to [Solimini 1995; Jaffard 1999] for other
non-Hilbertian profile decompositions where this type of inequality also appears.

The definition of the space Lm does not involve any fractional derivatives and is technically easier to
handle than the space PHsc with m¤ 2, where the latter are all defined by norms that are not compatible

1 Throughout the article, the index rad denotes the subspace of radial elements of a given space of distributions on R3.
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with finite speed of propagation. We hope that the Strichartz estimates and profile decomposition proved
in this article will find applications for nonlinear wave equations apart from (1-1).

1C. Blow-up of the critical Sobolev norm for the nonlinear equation. Our second result is that the
dichotomy proved in [Duyckaerts and Roy 2015] remains valid in Lm, as long as m¤ 2:

Theorem 3. Assume m> 1 and m¤ 2. Let u be a radial solution of (1-1), (1-2), with .u0; u1/ 2 Lm and
maximal positive time of existence TC. Then one of the following holds:

(1) limt!TC.u/ kEu.t/kLm DC1.

(2) TC.u/DC1 and u scatters forward in time to a linear solution; i.e., there exists a solution uL of
(1-3), with initial data Lm, such that

lim
t!C1

kEu.t/� EuL.t/kLm D 0:

In the energy-supercritical case m> 2, Theorem 3 improves the result of [Duyckaerts and Roy 2015]
since PHsc is continuously embedded into Lm. In the case 1 < m < 2, we know Lm is continuously
embedded into PHsc and Theorem 3 is not strictly stronger than the result of [Shen 2013]. However,
Theorem 3 is also new, since it says that as least some scale-invariant norm of u must go to infinity as t
goes to TC.u/. It is very natural to conjecture that the PHsc norm of the solution also goes to infinity, but
this is still an open question.

Once the Strichartz estimates, well-posed theory and profile decomposition in Lm are known, the proof
of Theorem 3 (sketched in Sections 4, 5 and 6) is very close to the proof of the corresponding result in
[Duyckaerts and Roy 2015], with some simplifications due to the use of the space Lm instead of PHsc

throughout the proof. As in [loc. cit.], we use the channels of energy method initiated in [Duyckaerts et al.
2011], and the main ingredient of the proof is an exterior energy estimate for radial solutions of the linear
wave equation for the Lm-energy, which generalizes the exterior energy estimate used in [Duyckaerts
et al. 2011; 2013; 2014].

According to Theorem 3, there are three potential types of dynamics for (1-1): scattering, finite time
blow-up solutions such that the critical norm goes to infinity at the blow-up time, and global solutions
such that the critical norm goes to infinity as t goes to infinity. Only two of these dynamics are known to
exist: scattering (for both focusing and defocusing nonlinearities) and finite time blow-up (for focusing
nonlinearity only). Indeed, in the focusing case, it is possible to construct blow-up solutions with smooth,
compactly supported initial data using finite speed of propagation and the ordinary differential equation
y00 D jyj2my. Another type of blow-up solution was constructed by C. Collot [2014] for some energy-
supercritical nonlinearity in large space dimension: in this case the scale-invariant Sobolev norms blow
up logarithmically.

It is natural to conjecture that all solutions in Lm are global in the defocusing case. For m < 2,
this follows from conservation of the energy if the data is assumed to be in PH1, and only the case of
low-regularity solution is open. For supercritical nonlinearity m> 2, it is a very delicate issue even for
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smooth initial data, as the recent construction by T. Tao [2016] of a finite time blow-up solution for a
defocusing system2 of energy supercritical wave equation suggests.

The existence of global solutions blowing-up at infinity with initial data in Lm (or PHsc ) is also
completely open. We refer to [Krieger and Schlag 2014b; Luk et al. 2016, Appendix A] for two different
constructions of global, smooth, nonscattering solutions in the case m D 3. The initial data of these
solutions do not belong either to the critical Sobolev spaces PH

7
6 or to the L3 space, but are, however, in

all spaces PHs, s > 7
6

. These constructions and Theorem 3 seem to suggest that any global solution with
initial data decaying sufficiently at infinity actually scatters, but we do not know of any rigorous result in
this direction.

Let us finally mention [Beceanu and Soffer 2017] on (1-1) with supercritical nonlinearity m>2, where
global existence is proved for a class of outgoing initial data.

The outline of the paper is as follows: in Section 2, we prove the Strichartz estimate for the linear wave
equation and deduce the Cauchy theory for (1-1). In Section 3, we construct the profile decomposition. In
Section 4, we prove the exterior energy property for nonzero solutions of (1-1), which is the core of the
proof of Theorem 3. In Section 5, we introduce the radiation term (i.e., the dispersive part) of a solution
which is bounded in the critical space for a sequence of times. In Section 6, we conclude the proof.

Notation. If a and b are two positive quantities we write a . b when there exists a constant C > 0 such
that a � Cb, where the constant will be clear from the context. When the constant depends on some
other quantity M, we emphasize the dependence by writing a .M b. We will write a� b when we have
both a . b and b . a. We will write a� b or a� b if there exists a sufficiently large constant C > 0
such that Ca � b or a � Cb respectively. We use S.Rd / to denote the Schwartz class of functions on the
Euclidean space Rd.

If f is a radial function depending on t and r WD jxj, let

Ef WD .f; @tf / and Œf �˙.t; r/D .@r ˙ @t /.rf /:

Given s � 0 and n a positive integer, we define

PHs.Rn/ WD PH s.Rn/� PH s�1.Rn/;

where PH s denotes the standard homogeneous Sobolev space. We letLpt .I; L
q
x/ be the space of measurable

functions f on I �R3 such that

kf kLpt .I;L
q
x/
D

�Z
I

�Z
R3
jf .t; x/jq dx

�p
q

dt

�1
p

<1:

Unless specified, the functional spaces (Lp, PH s, etc. . . ) are spaces of functions or distributions on R3

with the Lebesgue measure. On a measurable space .�; d�/ where � is positive, the weak Lq quasinorm
of a function f is defined as

kf kLqw WD sup
�>0

�
�
�fx 2� W jf .x/j> �g

� 1
q :

2The unknown u is R40-valued.
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We shall also use the weighted Lebesgue norm Lq.Rn; !/, defined as

kf kLq.Rn;!/ WD

�Z
Rn
jf .x/jq!.x/ dx

�1
q

for some measurable function !.x/ as a weight. For q > 1, we use q0 D q
q�1

to mean its Lebesgue
conjugate.

We denote by TR the operator

f 7! TR.f / WD
�
f .R/; jxj �R;

f .jxj/; jxj �R:

Let SL.t/ denote the linear propagator; i.e.,

SL.t/.w0; w1/ WD cos .tD/w0C
sin .tD/
D

w1; D D
p
�4:

If u is a function of t and r , we will denote by F.@r;tu/ the sum F.@ru/ C F.@tu/; for example,
j@t;ruj

m WD j@tuj
mCj@ruj

m.

2. Strichartz estimates and local well-posedness

2A. Preliminaries. Form>1, we denote by PW1;m the closure of C10;rad for the norm k�k PW1;m defined by

k'k PW1;m WD

�Z C1
0

j@r'.r/j
mrm dr

�1
m

:

Proposition 2.1. We have f 2 PW1;m if and only if f .r/ 2 C 0rad..0;C1// satisfies the conditionsZ C1
0

jr@rf .r/j
m dr <C1; (2-1)

lim
r!0

r
1
mf .r/D lim

r!1
r
1
mf .r/D 0: (2-2)

The proof is given in the Appendix.
We denote by Lm the closure of .C10;rad/

2 for the norm k � kLm ,

k.u0; u1/kLm WD ku0k PW1;m C

�Z C1
0

ju1.r/j
mrm dr

�1
m

:

Then:

Proposition 2.2. (1) If m> 2 and .u0; u1/ 2 PHsc , then .u0; u1/ 2 Lm and

k.u0; u1/kLm . k.u0; u1/k PHsc :

(2) If 1 < m < 2 and .u0; u1/ 2 Lm, then .u0; u1/ 2 PHsc and

k.u0; u1/k PHsc . k.u0; u1/kLm :
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(3) If u0 2 PW1;m, then u0 2 L3m.R3/ and

ku0kL3m . ku0k PW1;m :

(4) If u0 2 PW1;m, and R > 0, then

Rju0.R/j
m
C

Z C1
R

j@r.ru0/j
m dr �

Z C1
R

j@ru0j
mrm dr;

where the implicit constant does not depend on R.

Proof. For the proofs of properties (1), (3), (4), see [Kenig and Merle 2011, Lemma 3.2; Duyckaerts and
Roy 2015, Lemmas 3.2 and 3.3]. We prove (2) by duality from (1). Assume m 2 .1; 2/ and let m0 be the
Lebesgue dual exponent of m. Let .u0; u1/ 2 Lm and '; 2 C10;rad.R

3/. Note thatZ 1
0

r2@ru0@r' dr D

Z 1
0

@r.ru0/@r.r'/ dr:

By Hölder’s inequality and (1),ˇ̌̌̌Z 1
0

r2@ru0@r' dr

ˇ̌̌̌
C

ˇ̌̌̌Z 1
0

r2u1 dr

ˇ̌̌̌
�k.u0; u1/kLmk.';  /kLm0 �k.u0; u1/kLmk.';  /k PH1=2C1=m :

This yields the announced result. �

Let v.t; x/ be a solution to the Cauchy problem

.@2t ��/v.t; x/D 0; .v; @tv/jtD0 D .v0; v1/; t 2 R; x 2 R3; (2-3)

where the initial data is in Lm. Define r D jxj and set

F.�/D
1

2
� v0.j� j/C

1

2

Z j� j
0

r v1.r/ dr: (2-4)

An explicit computation, using
.@2t � @

2
r /.rv/D 0 (2-5)

yields

v.t; r/D
1

r

�
F.t C r/�F.t � r/

�
: (2-6)

We have

Œv�C.t; r/D .@r C @t /.rv/D 2 PF .t C r/; Œv��.t; r/D .@r � @t /.rv/D 2 PF .t � r/: (2-7)

If .v0; v1/ 2 Lm, we define

Em.v0; v1/D

Z C1
0

�
j@r.rv0/C rv1j

m
Cj@r.rv0/� rv1j

m
�
dr;

so that

Em.Ev.t//D

Z C1
0

ˇ̌
Œv�C.t; r/

ˇ̌m
dr C

Z C1
0

ˇ̌
Œv��.t; r/

ˇ̌m
dr:
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Proposition 2.3. Assume 1 < m <C1. Let .v0; v1/ 2 Lm and v.t; r/ be given by (2-3).

(1) Equivalence of energy and Lm norm.

k.v0; v1/k
m
Lm �

Z C1
0

j@r.rv0/j
m dr C

Z C1
0

jrv1j
m dr �Em.v0; v1/:

(2) Energy conservation. Em.Ev/ is independent of time. We call Em the Lm-modified energy for (1-3).

(3) Exterior energy bound. If R > 0, the following holds for all t � 0 or for all t � 0:Z C1
R

j@r.rv0/j
m
Cjrv1j

m dr .
Z C1
RCjt j

j@r.rv/j
m
Cj@t .rv/j

m dr:

Property (2) follows from direct computation, and the formula (2-5). Let us mention that the notationEm
has a slightly different meaning in [Duyckaerts and Roy 2015].

Remark 2.4. Note that

E2.v.t//D

Z
R3
jrv.t; x/j2 dxC

Z
R3
j@tv.t; x/j

2 dx; (2-8)

which coincides (up to a constant) with the standard energy functional for (2-3). Moreover, from (2-6)
we know for any m 2 .1;C1/, there exists Cm > 0 such that

C�1m kEv.0/kLm � kEv.t/kLm � CmkEv.0/kLm for all t: (2-9)

Thus kEv.t/kLm enjoys the pseudoconservation law, namely (2-9), and extends the classical energy to the
general case m> 1.

From the conservation of the energy, we deduce the following energy estimate for the equation with a
right-hand side.

Corollary 2.5. Consider the problem

.@2t ��/u.t; x/D f .t; x/; .u; @tu/jtD0 D .u0; u1/; t 2 R; x 2 R3; (2-10)

with .u0; u1/ 2 Lm for a fixed m> 1, and f radial. Then we have the following inequality as long as the
right-hand side is finite:

sup
t2R

�Z 1
0

�
j@r.ru/j

m.t/Cj@t .ru/j
m.t/

�
dr

� 1
m

�C

�
k.u0;u1/kLmC

Z C1
�1

�Z 1
0

jrf .t; r/jmdr

� 1
m

dt

�
(2-11)

Proof. Write u.t; r/D uL.t; r/CuN .t; r/ with

uL.t; r/D SL.t/.u0; u1/; uN .t/D

Z t

0

sin.t � s/
p
��

p
��

f .s/ ds:

The bound for kEuLkLm follows from (2-9) and the conservation of the Lm modified energy. Moreover,

kEuN .t; r/kLm �

Z t

0

�sin
�
.t � s/

p
��

�
p
��

f .s/; cos
�
.t � s/

p
��

�
f .s/

�
Lm
ds;

and the estimate on uN follows again from (2-9) and the conservation of the Lm-modified energy. �
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2B. Strichartz estimates in weighted Sobolev spaces. Let � be a measurable subset of Rt � .0;C1/

of the form �D
S
t2Rftg �Jt , where for all t , we have Jt is a measurable subset of .0;C1/. If f is a

measurable function on �, we let

kf kS.�/ D

�Z
R

�Z
Jt

jf .t; r/j.2mC1/mrm dr

� 1
m

dt

� 1
2mC1

:

If �D I � .0;C1/, where I is a time interval, we will set S.�/D S.I / to lighten notation:

kf kS.I/ D

�Z
I

�Z C1
0

jf .t; r/j.2mC1/mrmdr

� 1
m

dt

� 1
2mC1

:

In this subsection we prove the following Strichartz estimate:

Proposition 2.6. Let m> 1 and assume v.t; x/ is the solution of the Cauchy problem (2-3) with radial
initial data .v0; v1/ 2 Lm. Then there exists a constant C such that

kvkS.R/ � CkEv.0/kLm : (2-12)

We also have its analogue for the inhomogeneous part:

Proposition 2.7. Let m> 1 and u.t; r/ be the solution of (2-10) with Eu.0/D .0; 0/. Assume

kf kL1tL
m
x .rm dr/

WD

Z C1
�1

�Z C1
0

jf .t; r/jmrm dr

�1
m

dt <1:

Then we have
kukS.R/ � Ckf kL1tL

m
x .rmdr/

: (2-13)

We start by proving auxiliary symmetric Strichartz-type estimates in Section 2B1, using the weak
continuity in L1 of the Hardy–Littlewood maximal function. In Section 2B2 we will interpolate these
estimates with standard Strichartz inequalities to obtain the key estimates (2-12) and (2-13).

2B1. A family of symmetric Strichartz estimates. With the explicit expression (2-6), we are ready to
deduce a crucial estimate for the linear wave equation (2-3) with Ev.0/ 2 Lm.

Proposition 2.8. Let v.t; x/D SL.t/.v0; v1/ be a radial solution of (2-3). Then for any m 2 .1;C1/
and ˛ 2 .1;C1/, there is a constant C such that the following a priori estimate is valid:�Z

R

Z C1
0

jv.t; r/j˛mr˛�2 dr dt

� 1
˛m

� CkEv.0/kLm : (2-14)

Proof. We assume v1 � 0 first. Then from (2-4) and the fundamental theorem of calculus,

v.t; r/D
1

2r

Z tCr

t�r

@s.s v0.jsj// ds; r D jxj: (2-15)

Let us consider the operator

T W G.s/ 7! 1

2r

Z tCr

t�r

G.s/ ds: (2-16)
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First, it is clear that
sup

.t;r/2R�RC

jT G.t; r/j � kGkL1.RIds/: (2-17)

Next, we demonstrate the weak-type estimate

kT GkL˛w.R�RCI r˛�2drdt/
� CkGkL1.RIds/; (2-18)

or equivalently, there is C > 0 such that for any � > 0 we have“
E�
r˛�2drdt � C

�
kGkL1

�

�̨
; (2-19)

where E� D f.t; r/ 2 R�RC W jT G.t; r/j> �g.
Given this, we have, interpolating between (2-17) and (2-18),�Z

R

Z C1
0

jT G.t; r/j˛mr˛�2 dr dt
�1
˛

� C

Z
R

jG.s/jm dsI (2-20)

see Theorem 5.3.2 in [Bergh and Löfström 1976]. The estimate (2-14) with v1 � 0 now follows by using
(2-20) with

G.s/D @s.s v0.jsj//:

To show (2-19), one observes that on E�,

0 < r <
kGkL1

�
and .MG/.t/ > �;

where M denotes the Hardy–Littlewood maximal function. Therefore, we can bound the left-hand side
of (2-19) as follows: Z 1

2�
kGk

L1

0

r˛�2 dr

Z
ft2Rj.MG/.t/>�g

dt � C

�
kGkL1

�

�̨
; (2-21)

where we have used the weak estimate M W L1.R/! L1w.R/.
The case v0 � 0 follows from the same argument. Indeed, in this case we have

v.t; r/D
1

2r

Z tCr

t�r

sv1.jsj/ ds: (2-22)

Letting G.s/D sv1.jsj/ and applying (2-20) we are done. �

Let u.t; x/ be a solution to the nonhomogeneous Cauchy problem (2-10), where f .t; x/ is radial in
the space variable and locally integrable. If we set

g.t; �/D �f .t; j�j/; (2-23)

then we have

u.t; r/D
1

2r

Z t

0

Z �Cr

��r

g.t � �; �/ d� d�: (2-24)
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After a change of variables, we obtain

u.t; r/D
1

2r

Z tCr

t�r

G.t; �/ d�; (2-25)

with

G.t; �/D

Z t

0

g.s; �� s/ ds:

A proof very close to the one of Proposition 2.8 yields symmetric Strichartz estimates for the nonhomo-
geneous equation:

Proposition 2.9. Let u.t; x/ be a radial solution of the problem (2-10) with initial data Eu.0/ D .0; 0/.
Then for any m 2 .1;C1/ and ˛ 2 .1;C1/ there is a constant C such that we have�Z

R

Z C1
0

ju.t; r/j˛mr˛�2 dr dt

� 1
˛m

� C

Z
R

�Z C1
0

jrf .t; r/jm dr

�1
m

dt: (2-26)

Proof. In view of (2-25), we have

ju.t; r/j � T zG.t; r/;

where T is defined as in (2-16) and

zG.�/D

Z C1
�1

jg.s; �� s/j ds;

with g given by (2-23). Noting thatm>1, we obtain (2-26) by using (2-20) and Minkowski’s inequality. �

Remark 2.10. Notice that from (2-15) and (2-22), one may deduce the following end-point Strichartz
estimate for linear wave equations in three dimensions with radial initial data

kSL.t/.v0; v1/kL2.Rt ;L1.R3x// � C
�
kv0k PH1.R3/

Ckv1kL2.R3/
�
; (2-27)

where .v0; v1/ 2 PH 1
rad.R

3/�L2rad.R
3/. In fact, we may assume without loss of generality that .v0; v1/

belongs to the Schwartz class. Then (2-27) follows from (2-15) and (2-22) by using the L2-boundedness
of the Hardy–Littlewood maximal function and integration by parts.

2B2. Proof of the key Strichartz inequality. We prove here Propositions 2.6 and 2.7. Let us first recall
the following classical Strichartz estimates for wave equations; see [Ginibre and Velo 1995].

Theorem 2.11. Consider v.t; x/, the solution of the linear Cauchy problem8̂<̂
:
.@2t ��/v D h.t; x/; .x; t/ 2 R3 �R;

vjtD0 D v0 2 PH
1.R3/;

@tvjtD0 D v1 2 L
2.R3/;

(2-28)

so that

v.t/D SL.t/.v0; v1/C

Z t

0

sin.t � s/
p
��

p
��

h.s/ ds:
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Let 2� q; � �1 and let the following conditions be satisfied:

1

q
C
1

�
�
1

2
; .q; �/¤ .2;1/;

1

q
C
3

�
D
1

2
:

Then there exists C > 0 such that v satisfies the estimate

kvkLq.R;L� .R3// � C
�
kv0k PH1.R3/

Ckv1kL2.R3/CkhkL1.R IL2.R3/
�
: (2-29)

We are now ready to prove Proposition 2.6

Proof. Since (2-12) is classical when m D 2, it suffices to consider below the cases for m > 2 and
1 < m < 2 separately.

If m> 2, we define m� D 2m and take ˛ D 4
3
.2mC 1/. Then we have from (2-14)�Z C1

�1

Z C1
0

jv.t; r/ r1 j˛m
�

r2 dr dt

� 1
˛m�

� CkEv.0/kLm� ; (2-30)

where

1 D
5m� 2

5m.2mC 1/
; 2 D

2

5
;

so that 1˛m�C 2 D ˛� 2. Let

q D
8m.2mC 1/

8m2� 11mC 6
; � D

8m.2mC 1/

5m� 2
:

Then (2-29) yields �Z C1
�1

�Z C1
0

jv.t; r/ r1 j�r2 dr

�q
�

dt

�1
q

� CkEv.0/kL2 : (2-31)

In view of

1

m
D
�

2
C
1� �

m�
;

1

2mC 1
D
�

q
C
1� �

˛m�
;

1

m.2mC 1/
D
�

�
C
1� �

˛m�
; � D

1

m� 1
;

and the fact that 1m.2mC 1/C 2 D m, we obtain (2-12) by interpolating (2-30) and (2-31); see
Theorem 5.1.2 in [Bergh and Löfström 1976].

If 1 < m < 2, we set

m� D
mC 1

2
; ˛ D

8.2mC 1/

3mC 5
; � D

2.m� 1/

m.3�m/
;

q D
8.2mC 1/

10�m
; � D

8.2mC 1/

3m� 2
;

1 D
3m� 2

6m2C 11mC 4
D

3m� 2

.2mC 1/.3mC 4/
; 2 D

6m

3mC 4
:

One can verify that (2-30) and (2-31) along with the interpolation relations as in the first case remain
valid. �
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Using the same argument as above and (2-26), we obtain Proposition 2.7.

We conclude this subsection with some additional Strichartz-type estimates that will be useful in the
construction of the profile decomposition in Section 3 and follow from Proposition 2.8 and (2-27).

Proposition 2.12. Assume m > 2 and v.t; x/ is the solution of the Cauchy problem (2-3) with radial
initial data .v0; v1/ 2 Lm. Let

aD
2m.m� 1/.mC 2/

m2C 3m� 2
; b D

2m.m� 1/.mC 2/

m� 2
:

Then there exists a constant C such that�Z C1
�1

�Z C1
0

jv.t; r/jbrm dr

�a
b

dt

�1
a

� CkEv.0/kLm : (2-32)

Proof. Indeed, from (2-14), we have�Z C1
�1

Z C1
0

jv.t; r/j2m.mC2/rm dr dt

� 1
2m.mC2/

� CkEv.0/kL2m : (2-33)

Interpolating (2-33) with (2-27), we are done. �

The choice of .a; b/ above is not suitable in the case m< 2, where we will use the following estimates:

Proposition 2.13. Assume 1 < m < 2 and v.t; x/ is the solution of the Cauchy problem (2-3) with radial
initial data .v0; v1/ 2 Lm. Let

aD
m.mC 2/.3�m/

m2�mC 2
; b D

m.mC 2/.3�m/

2.2�m/
:

Then there exists a constant C such that�Z C1
�1

�Z C1
0

jv.t; r/jbrm dr

�a
b

dt

�1
a

� CkEv.0/kLm : (2-34)

Proof. Let m� D mC1
2

. From (2-14), we have�Z C1
�1

Z C1
0

jv.t; r/jm
�.mC2/rm dr dt

� 1
.mC2/m�

� CkEv.0/kLm� : (2-35)

Interpolating (2-35) with (2-27), we are done. �

Remark 2.14. In both propositions, we have m< a < 2mC 1 < b
m
<1.

Remark 2.15. The interpolations we used in the above two propositions are based on the complex method.
In fact, we used Theorems 5.1.1 and 5.1.2 in [Bergh and Löfström 1976].

Remark 2.16. Notice that when mD 2, we have .a; b/D .2;1/ coincides with the end-point Strichartz
estimate (2-27).
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2C. Local well-posedness. Consider here the Cauchy problem for the nonlinear wave equations (1-1),
(1-2), with .u0; u1/ 2 Lm, m> 1. In this subsection, we prove the following small-data well-posedness
statement, which implies Theorem 2:

Proposition 2.17. There exists ı0 > 0 such that if 0 2 I � R is an interval and

kSL.t/.u0; u1/kS.I/ D ı � ı0; (2-36)

then there exists a unique solution u 2 S.I / to the Cauchy problem (1-1), (1-2) for t 2 I such that
Eu 2 C 0.I;Lm/. Moreover,

kukS.I/ � 2ı (2-37)

and we have

sup
t2I

kEu.t/kLm � Cm
�
k.u0; u1/kLm C ı

2mC1
�
: (2-38)

Remark 2.18. From the assumption on the initial data and the Strichartz-type inequality (2-12), we see
that for each .u0; u1/ 2 Lm and ı > 0, there is an interval I D I.u0; u1; ı/ such that (2-36) holds. Using
this observation and standard arguments, it is easy to construct from Proposition 2.17 a maximal solution
of (1-1), (1-2) that satisfies the conclusion of Theorem 2.

Proof. Let C0 be the constant in the estimates (2-12) and (2-13) . Consider

XD fv on R�R3 j v.t; x/D v.t; jxj/; kvkS.I/ � 2ıg;

where

0 < ı <min
�
C
� 1
p�1

0 2�
p
p�1 ; 2�

pC2
p�1 .pC0/

� 1
p�1

�
; p D 2mC 1:

Define

ˆ.u0;u1/.v/D SL.t/.u0; u1/C �

Z t

0

sin.t � s/
p
��

p
��

jvj2mv.s/ ds: (2-39)

If v;w 2 X, we have from (2-13)

kˆ.u0;u1/.v/kS.I/ � ıCC0.2ı/
p
� 2ı;

and by the Hölder inequalityˆ.u0;u1/.v/�ˆ.u0;v0/.w/S.I/ � 2pC0�kvkp�1S.I/
Ckwk

p�1

S.I/

�
kv�wkS.I/

� 4p C0.2ı/
p�1
kv�wkS.I/

�
1
2
kv�wkS.I/

for all v;w 2 X. Thus, there exists a unique fixed point u 2 X such that

uDˆu0;u1.u/:

Note that (2-37) follows from the construction and (2-38) follows from the energy estimates and (2-37). �
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2D. Exterior long-time perturbation theory. We conclude this section by a long-time perturbation theory
result for (1-1) with initial data in Lm. Taking into account the finite speed of propagation, we will give
a statement that works as well when the estimates are restricted to the exterior fr > ACjt jg of a wave
cone. This generalization will be very useful when using the channels of energy arguments.

Lemma 2.19. Let M > 0. There exist "M > 0, CM > 0 with the following properties. Let T 2 .0;C1�,
u; Qu 2 S..0; T // such that Eu; EQu 2 C 0.Œ0; T /;Lm/. Assume that u is a solution of (1-1), (1-2) on Œ0; T /
and that3 �

@2t Qu�� QuD �1fr�.ACjt j/Cgj Quj
2m QuC e;

Qu�tD0 D . Qu0; Qu1/;
(2-40)

where e 2 L1tL
m
x .r

m dr/, A 2 R[f�1g. Let

RL.t/D SL.t/..u0; u1/� . Qu0; Qu1//:

Assume

k QukS.ft2.0;T /; r�.ACjt j/Cg/ �M; (2-41)Z T

0

�Z C1
.ACjt j/C

jr ejm dr

�1
m

dt CkRLkS.ft2Œ0;T /; r�.ACjt j/Cg/ D "� "M : (2-42)

Then u.t/D Qu.t/CRL.t/C �.t/ with

k�kS.ftŒ0;T /; r�.ACjt j/Cg/C sup
t2Œ0;T /

Z
.ACjt j/C

jr@t;r�j
m dr � CM ":

In the lemma, we have set .AC jt j/C D max.0; AC jt j/. By convention, if AD �1, this quantity
equals 0 for all t . Note that the case AD �1 corresponds to the usual long-time perturbation theory
statement;4 see, e.g., [Tao and Visan 2005].

Sketch of the proof. We let, for t 2 Œ0; T /,

E.t/D

�Z C1
.ACjt j/C

j�.t; r/j.2mC1/mrm dr

� 1
.2mC1/m

;

zU.t/D

�Z C1
.ACjt j/C

j Qu.t; r/j.2mC1/mrm dr

� 1
.2mC1/m

;

R.t/D

�Z C1
.ACjt j/C

jRL.t; r/j
.2mC1/mrm dr

� 1
.2mC1/m

:

By the assumptions (2-41), (2-42),

kzUkL2mC1.0;T / �M; kRkL2mC1.0;T / � ":

3in the sense that Qu satisfies the usual integral equation
4Traditionally the “linear part” of the solution RL.t/ is incorporated into Qu. For convenience we preferred to distinguish

between these two components.
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Since

.@2t ��/� D �.juj
2mu� j Quj2m Qu/C e;

we obtain by (2-11), Strichartz estimates and finite speed of propagation that for all � 2 Œ0; T /,

sup
t2Œ0;��

��Z C1
.ACjt j/C

jr@t;r�j
m dr

�1
m

CkE�.t/kLm CkE.t/kL2mC1

�

� C

Z �

0

�Z C1
.ACjt j/C

�ˇ̌
j Quj2m Qu� juj2mu

ˇ̌m
Cjejm

�
rm dr

�1
m

dt:
(2-43)

We have Z �

0

�Z C1
.ACjt j/C

jejmrm dr

�1
m

dt � "

and, using Hölder’s inequalityZ �

0

�Z C1
.ACjt j/C

ˇ̌
j Quj2m Qu� juj2mu

ˇ̌m
rm dr

�1
m

dt

.
Z �

0

.E.t/CR.t//.zU.t/2mCR.t/2mCE.t/2m/ dt

� C

�
kEk2mC1

L2mC1.0;�/
CkRk2mC1

L2mC1.0;�/
C

Z �

0

R.t/zU.t/2m dt C

Z �

0

E.t/zU.t/2m dt

�
� C

�
kEk2mC1

L2mC1.0;�/
C "2mC1CM 2m"C

Z �

0

E.t/zU.t/2m dt

�
:

Collecting the above, we obtain, for all � 2 Œ0; T /,

kEkL2mC1.0;�/ � C

�
"C "2mC1CM 2m"CkEk2mC1

L2mC1.0;�/
C

Z �

0

E.t/zU.t/2m dt

�
:

This is a Grönwall-type inequality classical in this context. Using, e.g., Lemma 8.1 in [Fang et al. 2011],
we deduce that for all � 2 Œ0; T /,

kEkL2mC1.0;�/ � C
�
"C "2mC1CM 2m"CkEk2mC1

L2mC1.0;�/

�
ˆ.CM 2m/;

where ˆ.s/D 2�.3C2s/, and � is the usual Gamma function. Using a standard bootstrap argument, we
deduce, assuming that "� "M for some small "M ,

kEkL2mC1.0;�/ � CM ";

and going back to (2-43) and the computations that follow this inequality, we obtain also the desired
bound on the Lm norm of �. �
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3. Profile decomposition

3A. Linear profile decomposition. The main result of this section is the following:

Theorem 3.1. Let .uL;n/n be a sequence of radial solutions of (1-3) such that .EuL;n.0//n is bounded in Lm.
Then there exists a subsequence of .uL;n/n (still denoted by .uL;n/n) and, for all j � 1, a solution U jL
of (1-3) with initial data .U j0 ; U

j
1 / in Lm and sequences .�j;n/n 2 .0;1/N, .tj;n/n 2 RN such that the

following properties hold:

� Pseudo-orthogonality. For all j; k � 1, one has

j ¤ k D) lim
n!1

�j;n

�k;n
C
�k;n

�j;n
C
jtj;n� tk;nj

�j;n
DC1: (3-1)

� Weak convergence. For all j � 1,�
�
1
m

j;nuL;n.tj;n; �j;n � /; �
1
m
C1

j;n @tuL;n.tj;n; �j;n � /
�
���*
n!1

.U
j
0 ; U

j
1 /; (3-2)

weakly in Lm.

� Bessel-type inequality. For all J � 1,

lim
n!1

Em.u0;n; u1;n/�

JX
jD1

Em. EU
j
L .0//� 0: (3-3)

� Vanishing in the dispersive norm.

lim
J!1

lim
n!1

kwJn kS.R/ D 0; (3-4)

In the above, we have taken

wJn .t; x/D uL;n.t; x/�

JX
jD1

U
j
L;n.t; x/; (3-5)

U
j
L;n.t; x/D

1

�
1
m

j;n

U
j
L

�
t � tj;n

�j;n
;
x

�j;n

�
: (3-6)

Theorem 3.1 generalizes (in the radial setting) the profile decomposition of [Bahouri and Gérard 1999]
to sequences that are bounded in Lm instead of the classical energy space. The only difference between
the two decompositions is the fact that the Pythagorean expansion proved in that paper is replaced by the
weaker property (3-3). One cannot hope, in this context, to have an exact Pythagorean expansion; see the
example on p. 387 of [Jaffard 1999].

The proof of Theorem 3.1 is based on the following two propositions, which we will prove in Sections 3B
and 3C respectively.

Proposition 3.2. Let .uL;n/n be a sequence of radial solutions to the linear wave equation and set
.u0;n; u1;n/D EuL;n.0/. Assume for m 2 .1;C1/, the sequence .EuL;n.0//n is bounded in Lm and that for
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all sequences .�n/n 2 .0;1/N and .tn/n 2 RN, 
1

�
1
m
n

uL;n

�
�tn

�n
;
�

�n

�
;

1

�
1C 1

m
n

@tuL;n

�
�tn

�n
;
�

�n

�!
n

(3-7)

converges weakly to 0 in Lm as n!C1. Then

lim
n!C1

kuL;nkS.R/ D 0: (3-8)

Proposition 3.3. Let J � 1 and .U jL /jD1;:::;J be solutions of the linear wave equations with initial data
in Lm. For all j D 1; : : : ; J, we let .�j;n/n 2 .0;1/N and .tj;n/n 2 RN be sequences of parameters that
satisfy the pseudo-orthogonality property (3-1). Let .uL;n/ be a sequence of solutions of the linear wave
equation with initial data in Lm. Let wJn be defined by (3-5), (3-6) and assume that for all j 2 f1; : : : ; J g,�

�
1
m

j;nw
J
n .tj;n; �j;n � /; �

1
m
C1

j;n @tw
J
n .tj;n; �j;n � /

�
���*
n!1

0 weakly in Lm: (3-9)

Then the Bessel-type inequality (3-3) holds.

Proof of the theorem. The proof of Theorem 3.1, assuming Proposition 3.2 and 3.3, is quite standard, at
least in the Hilbertian setting. We give it for the sake of completeness. We mainly need to check that it
is harmless that we have only a Bessel-type inequality (3-3) in the Lm setting, which is not Hilbertian,
instead of a more precise Pythagorean expansion.

We construct the profiles U jL and the parameters �j;n, tj;n by induction.
Let J � 1 and assume that for 1 � j � J � 1, we have constructed profiles U jL such that (3-1) and

(3-2) hold after extraction of a subsequence in n (if J D 1 we do not assume anything and set w0nD uL;n).
Note that this implies (3-3) by Proposition 3.3. Let AJ be the set of .U0; U1/ 2 Lm such that there exist
sequences .�n/n, .tn/n of parameters such that, after extraction of a subsequence,�

�
1
m
n w

J�1
n .tn; �n � /; �

1
m
C1

n @tw
J�1
n .tn; �n � /

�
���*
n!1

.U0; U1/

weakly in Lm, where wJ�1n is defined by (3-5). We distinguish two cases.

Case 1: AJ D f.0; 0/g. In this case we stop the process and let U jL D 0 for all j � J.

Case 2: There exists a nonzero element in AJ . In this case, we choose .U J0 ; U
J
1 / 2AJ such that

Em.U
J
0 ; U

J
1 /�

1
2

sup
.U0;U1/2AJ

Em.U0; U1/; (3-10)

and we choose sequences .�J;n/n and .tJ;n/n such that, (after extraction of subsequences in n),�
�
1
m

J;nw
J�1
n .tJ;n; �J;n � /; �

1
m
C1

J;n @tw
J�1
n .tJ;n; �J;n � /

�
���*
n!1

.U J0 ; U
J
1 / (3-11)

weakly in Lm. Note that (3-2) holds for j D J thanks to (3-11). Furthermore, (3-1) for j 2 f1; : : : ; J �1g,
k D J follows from (3-2) (for j 2 f1; : : : ; J � 1g), (3-11) and the fact that .U J0 ; U

J
1 /¤ .0; 0/. Finally,

as already observed, (3-3) is a consequence of (3-1), (3-2) and Proposition 3.3.
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If there exists a J � 1 such that Case 1 above holds, then we are done: indeed, in this case, wJn
does not depend on J for large n, and (3-4) is an immediate consequence of the definition of AJ and
Proposition 3.2.

Next assume that Case 2 holds for all J � 1. Using a diagonal extraction argument, we obtain, for all
j � 1, profiles U jL , and sequences of parameters .�jn/n and .tjn /n such that (3-1), (3-2) and (3-3) hold for
all j; k; J. It remains to prove (3-4). In view of Proposition 3.2, it is sufficient to prove

lim
J!1

sup
.A0;A1/2AJ

k.A0; A1/kLm D 0:

This follows from (3-10), the equivalence between E
1
m
m and the Lm norm, and the fact that, by (3-3),

lim
J!1

Em.U
J
0 ; U

J
1 /D 0: �

3B. Convergence to 0 of the Strichartz norm. First of all, let us introduce the notation PBs1;1.R
d / for

the homogeneous Besov space on Rd, which is defined as follows. Let  2 C10 .R
d / be a radial function,

supported in
˚
� 2 Rd W 1

2
� j�j � 2

	
and such thatX

j2Z

 .2�j �/D 1; � 2 R3 n f0g:

We denote by P�j the Littlewood–Paley projector

P�jf .x/D
�
 .2�j � / Of . � /

�_
.x/; j 2 Z;

where

Of .�/D

Z
Rd
f .x/e�ix�� dx

is the Fourier transform on Rd and we use

g_.x/D
1

.2�/d

Z
Rd
g.�/eix�� d�

to denote the inverse Fourier transform. For a tempered distribution f on Rd, we set

kf k PBs1;1.Rd /
WD sup

j2Z

2js
 P�jf L1.Rd / :

If kf k PBs1;1 <C1, we say f belongs to PBs1;1.

We have the following refined Sobolev inequality in weighted norms.

Lemma 3.4. Let !.x/ 2 Ap with 1 < p <C1; i.e.,

sup
B

�
1

jBj

Z
B

!.x/ dx

��
1

jBj

Z
B

!.x/�
1
p�1 dx

�p�1
<C1; (3-12)
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where the supremum is taken over all balls B in Rd. If rf 2 Lp.Rd ; !.x/dx/ and f 2 PB�ˇ1;1.Rd /,
then

kf kLq.Rd ;!/ � Ckrf k
�
Lp.Rd ;!/

kf k1��
PB
�ˇ
1;1.Rd /

; (3-13)

where 1 < p < q <C1, � D p
q

, ˇ D �
1��

.

The refined Sobolev inequality (3-13) in weighted norms was proved in [Chamorro 2011], where
the author considered more general situations with the underlying domain Rd replaced by stratified Lie
groups. The above lemma follows immediately since the Euclidean space Rd with its natural group
structure is an example of a stratified Lie group. Notice that 1 2 Ap , and one recovers the classical result
on the refined Sobolev inequalities established first in [Gerard et al. 1997].

With Lemma 3.4 at hand, we are ready to prove the Proposition 3.2.

Proof. Since ..u0;n; u1;n//n is bounded in Lm, there exists A > 0 such thatZ C1
0

jr@ru0;n.r/j
m dr C

Z C1
0

jru1;n.r/j
m dr � A <C1

for all n.
Assuming (3-8) fails, we have for some constant c0 having the property that 0 < c0 � C A

1
m , that

lim sup
n!1

kuL;nkL2mC1t .R;L
m.2mC1/
x .R3;rm�2//

D c0; (3-14)

where C is the constant in (2-12), (2-32) and (2-34). From (2-32), (2-34) and Hölder’s inequality, we
know that up to a subsequence, there exists some � 2 .0; 1/ such that

lim
n!1

kuL;nkL1t .R;L
m.mC1/
x .R3;rm�2//

�

�
c0

.CA
1
m /�

� 1
1��

: (3-15)

For m > 1, we denote by Œm� the greatest integer less than or equal to m and by fmg WD m� Œm� the
fractional part of m. Notice that fmg 2 Œ0; 1/ and fmg D 0 if and only if m 2 N.

Let d D Œm�C1 and !.x/D jxj with  Dfmg, x 2Rd. It is easy to see that ! 2Am, see for example
[Grafakos 2014], and we have the following refined Sobolev inequality in view of Lemma 3.4:

kf kLm.mC1/.Rd ;jxj / � C0krf k
1

mC1

Lm.Rd ;jxj /
kf k

m
mC1

PB
�1=m
1;1 .Rd /

: (3-16)

If we apply (3-16) to functions uL;n.t; jxj/ with respect to the spatial variable x 2 RŒm�C1, we obtain by
transferring the formula into polar coordinatesZ C1
0

juL;n.t; r/j
m.mC1/rm dr �C

m.mC1/
0

Z C1
0

jr@ruL;n.t; r/j
m dr

�sup
j2Z

sup
x2RŒm�C1

�
2�

j
m

Z
RŒm�C1

 _.y/ uL;n.t; jx�2
�jyj/ dy

�m2
: (3-17)
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In view of the conservation of the Lm-energy, and the fact that the norms k�kLm and .Em/
1
m are equivalent,

there exists some N > 0 such that if n�N

sup
t2R

sup
j2Z

sup
x2RŒm�C1

ˇ̌̌̌Z
RŒm�C1

2�
j
m uL;n.t; jx� 2

�jyj/  _.y/ dy

ˇ̌̌̌
� ı0; (3-18)

where

ı0 D
1
2
c

mC1
.1��/m

0 .C
�
1�� C0/

�
mC1
m C

� 1
m

m A
�
mC1

m2

�
�
1��
C 1
mC1

�
> 0;

and Cm is the constant in (2-9).
As a result of (3-18), we have a family of .t0n/n in RN, a sequence of .jn/n 2 ZN and .xn/n in

.RŒm�C1/Nsuch thatˇ̌̌̌Z
RŒm�C1

2�
jn
m uL;n.t

0
n ; jxn� 2

�jnyj/ _.y/ dy

ˇ̌̌̌
�
ı0

2
; n�N:

Setting '. � /D _. � /, �n D 2jn , tn D�t0n�n, and yn D �nxn, we will obtain a contradiction by letting
n!1 provided, up to some subsequences,Z

RŒm�C1

1

�
1
m
n

uL;n

�
�tn

�n
;
jy �ynj

�n

�
'.y/ dy! 0; n!C1: (3-19)

To prove this, we divide the argument into two cases.

Case 1: lim supn!1 jynj D C1. Up to a subsequence, we may assume

0 < jy1j � jy2j � � � � � jynj � jynC1j � � � ! C1; n!C1: (3-20)

Define

Vn.y/D
1

�
1
m
n

uL;n

�
�
tn

�n
;
jyj

�n

�
:

Note that Vn is a radial function on RŒm�C1. Then from the radial Sobolev embedding (see (4) in
Proposition 2.2), we have

jVn.y/j �
1

jyj
1
m

�Z C1
0

ˇ̌̌̌
r@ruL;n

�
�
tn

�n
; r

�ˇ̌̌̌m
dr

�1
m

� Cm

�
A

jyj

�1
m

(3-21)

for all n. As a consequence, (3-19) is bounded by

cn WD

Z
RŒm�C1

jy �ynj
� 1
m j'.y/j dy; (3-22)

and it suffices to show

lim
n!C1

cn D 0: (3-23)

We write

cn D

Z
jy�ynj�1

jy �ynj
� 1
m j'.y/j dyC

Z
jy�ynj�1

jy �ynj
� 1
m j'.y/j dy:
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The first term is bounded by �
sup

jy�ynj�1

j'.y/j
� Z
jzj�1

jzj�
1
m �!
n!1

0;

while the second one goes to zero by dominated convergence. Hence (3-23).

Case 2: There exists c >0 such that jynj� c <C1 for all n. We have, up to some subsequences, yn!y�

as n!1, where y� 2RŒm�C1 such that jy�j � c. Setting �n'. � /D '. � Cyn/ and ��'. � /D '. � Cy�/,
we have

�n'! ��'; n!C1; in S.RŒm�C1/: (3-24)

From the condition that (3-7) converges weakly to zero in Lm, we have

lim
n!C1

Z
RŒm�C1

Vn.x/ ��'.x/ dx D 0:

In fact, considered as a function on R3, we have, by (3) in Proposition 2.2,

Vn ���*
n!1

0 weakly in L3m.R3/:

Furthermore,Z
RŒm�C1

Vn.x/ ��'.x/ dx D

Z C1
0

Z
S Œm�

��'.r!/ d�.!/ Vn.r/r
Œm� dr

D

Z C1
0

�Z
S Œm�

��'.r!/ d�.!/ r
Œm��2

�
„ ƒ‚ …

WD‰.r/

Vn.r/r
2 dr �!

n!1
0;

since ‰.r/ can be considered as a radial function in L.3m/
0

.R3/ for 1 < m <C1. On the other hand,
we have by the fundamental theorem of calculus and integration by partsZ

RŒm�C1
Vn.jyj/ .�n'.y/���'.y// dy D

Z 1

0

Z
RŒm�C1

˝
rVn.y/; .y��yn/'.yC s.yn�y�/Cy�/

˛
dy ds:

After using Hölder’s inequality and the energy estimate, we see the term on the right-hand side is bounded
by

CmA
1
m jyn�y�j

Z 1

0

�Z
RŒm�C1

ˇ̌
'.yC s.yn�y�/Cy�/

ˇ̌ m
m�1 jyj�

m�Œm�
m�1 dy

�m�1
m

ds:

Notice that ' 2 S.RŒm�C1/, jy�j � c and jyj�
m�Œm�
m�1 is integrable near the origin of RŒm�C1 when m> 1.

We have

lim
n!1

Z
RŒm�C1

Vn.y/
�
�n'.y/� ��'.y/

�
dy D 0: �

3C. Bessel-type inequality. In this subsection we prove Proposition 3.3.
We let fuL;ngn2N and, for 1� j � J, let U jL and .�j;n; tj;n/n be as in Proposition 3.3, and define U jL;n

by (3-6) and wJn by (3-5).
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First of all, we have the explicit formula for ŒU jL �˙.t; r/

ŒU
j
L �C.t; r/D 2

PF j .t C r/; ŒU
j
L ��.t; r/D 2

PF j .t � r/; j � 1; (3-25)

with

F j .�/D
1

2
�U

j
0 .j� j/C

1

2

Z j� j
0

%U
j
1 .%/ d%:

In view of (2-7), one easily verifies that

ŒU
j
L; n�˙.t; r/D

1

�
1
m

j; n

ŒU
j
L �˙

�
t � tj;n

�j;n
;
r

�j;n

�
:

Up to subsequences, we may assume, after translating in time and rescaling U jL if necessary,

j � 1; lim
n!1

�
tj;n

�j;n
D˙1 or for all n; tj;n D 0: (3-26)

Step 1: decoupling of linear profiles. In this step, we prove

lim
n!C1

Em

� JX
jD1

EU
j
L;n.0/

�
D

JX
jD1

Em. EU
j
L .0//: (3-27)

Recall that for any solution u of the linear wave equation, we have

Em.Eu.0//DEm.Eu.t//D
X
˙

Z C1
0

ˇ̌
Œu�˙.t; r/

ˇ̌m
dr;

where Œu�˙ is defined in (2-7). Hence (for constants C > 0 that depend on J and m, but not on n)ˇ̌̌̌
Em

� JX
jD1

U
j
L;n.0/

�
�

JX
jD1

Em.U
j
L .0//

ˇ̌̌̌
D

ˇ̌̌̌
Em

� JX
jD1

U
j
L;n.0/

�
�

JX
jD1

Em.U
j
L;n.0//

ˇ̌̌̌

�C
X
j¤k
˙

Z C1
0

ˇ̌
ŒU
j
L;n�˙.0;r/

ˇ̌m�1ˇ̌
ŒU kL;n�˙.0;r/

ˇ̌
dr

�C
X
j¤k
˙

Z C1
0

ˇ̌̌̌
ˇ 1
�
1
m

j;n

PF j
�
�tj;n˙r

�j;n

�̌̌̌̌
ˇ
m�1 ˇ̌̌̌

ˇ 1

�
1
m

k;n

PF k
�
�tk;n˙r

�k;n

�̌̌̌̌
ˇdr:„ ƒ‚ …

I˙
j;k;n

We are thus reduced to proving that each of the terms I˙
j;k;n

(j ¤ k) goes to 0 as n goes to infinity. By
density we may assume

U
j
0 ; U

j
1 ; U

k
0 ; U

k
1 2 C

1
0 ;

and thus PF j; PF k 2C10 . We will only consider IC
j;k;n

, whereas the proof for I�
j;k;n

is the same. Extracting
subsequences and arguing by contradiction, we can distinguish without loss of generality between the
following three cases.
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Case 1: We assume limn!1
�k;n
�j;n
D 0. By the change of variable s D �tk;nCr

�k;n
, we obtain

IC
j;k;n
D

Z C1
�
tk;n
�k;n

�
�k;n

�j;n

�1� 1
m
ˇ̌̌̌
PF j
�
�k;nsC tk;n� tj;n

�j;n

�ˇ̌̌̌m�1
j PF k.s/j ds .

�
�k;n

�j;n

�1� 1
m

; (3-28)

where we have used that PF j and PF k are bounded and compactly supported. Since �k;n
�j;n

goes to 0 as n
goes to infinity, we are done.

Case 2: We assume limn!1
�j;n
�k;n
D 0. We argue similarly by using the change of variable s D �tj;nCr

�j;n
.

Case 3: We assume that the sequence
� �j;n
�k;n
C
�k;n
�j;n

�
n

is bounded. We use as in Case 1 the change of
variable s D �tk;nCr

�k;n
. By the pseudo-orthogonality condition (3-1) we see that

lim
n!1

jtj;n� tk;nj

�j;n
DC1;

and thus, as a consequence of the first line of (3-28), IC
j;k;n

is 0 for large n, which concludes Step 1.

Step 2: end of the proof. For 1 < m <C1, we introduce the notation

ˆ
j
n;0.r/D

1

2r

X
˙

Z r

0

ˇ̌
ŒU
j
L; n�˙.0; s/

ˇ̌m�2
ŒU
j
L; n�˙.0; s/ ds;

ˆ
j
n;1.r/D

1

2r

X
˙

˙
ˇ̌
ŒU
j
L; n�˙.0; r/

ˇ̌m�2
ŒU
j
L; n�˙.0; r/;

and let ˆjn;L.t/ be the solution of the linear wave equations with initial data .ˆjn;0; ˆ
j
n;1/ 2 L

m0, where
m0 D m

m�1
. Then we have

Œˆ
j
n;L�˙.0; r/D

ˇ̌
ŒU
j
L;n�˙.0; r/

ˇ̌m�2
ŒU
j
L;n�˙.0; r/;

and note that

Em. EU
j
L .0//DEm.

EU
j
L;n.0//D

Z C1
0

X
˙

Œˆ
j
n;L�˙.0/ŒU

j
L;n�˙.0/ dr: (3-29)

From the weak convergence condition satisfied by the remainder term wJn , we have by time translation
and changing variablesZ C1
0

�
Œˆ
j
n;L�C.0; r/Œw

J
n �C.0; r/C Œˆ

j
n;L��.0; r/Œw

J
n ��.0; r/

�
dr

D

Z C1
0

ˇ̌
ŒU
j
L �C.0; r/

ˇ̌m�2
ŒU
j
L �C.0; r/ �

1
m

j;nŒw
J
n �C.tj;n; �j;n r/ dr

C

Z C1
0

ˇ̌
ŒU
j
L ��.0; r/

ˇ̌m�2
ŒU
j
L ��.0; r/ �

1
m

j;nŒw
J
n ��.tj;n; �j;n r/ dr;

which goes to zero as n!C1 for 1� j � J. Furthermore,Z C1
0

ˇ̌
Œˆ
j
n;L�˙.0; r/ŒU

k
L;n�˙.0; r/

ˇ̌
dr D

Z C1
0

ˇ̌
ŒU
j
L;n�˙.0; r/

ˇ̌m�1ˇ̌
ŒU kL;n�˙.0; r/

ˇ̌
dr;
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and, by Step 1, this goes to 0 as n goes to infinity if j ¤ k. Hence from (3-29), we have
JX
jD1

Em. EU
j
L .0//

D lim
n!C1

�Z C1
0

ŒuL;n�C.0; r/

� JX
jD1

Œˆ
j
n;L�C.0; r/

�
dr C

Z C1
0

ŒuL;n��.0; r/

� JX
jD1

Œˆ
j
n;L��.0; r/

�
dr

�
;

which is bounded after using Hölder’s inequality by�
lim

n!C1
Em0

� JX
jD1

Ê j
n;L.0; r/

�� 1
m

0�
lim sup
n!C1

Em.EuL;n.0//

� 1
m

:

Furthermore, by the decoupling property proved in Step 1 we obtain

lim
n!C1

Em0

� JX
jD1

Ê j
n;L.0; r/

�
D

JX
jD1

Em0. Ê
j
n;L.0//D

JX
jD1

Em. EU
j
L .0//

and this concludes the result.

3D. Approximation by sum of profiles. We next write a lemma approximating a nonlinear solution by a
sum of profiles outside a wave cone. This type of approximation is only available in space-time slabs
where the S norm of all the profiles remain finite. To satisfy this assumption, we will work outside a
sufficiently large wave cone.

Let f.u0;n; u1;n/gn be a sequence of functions in Lm that has a profile decomposition with profiles
.U

j
0 ; U

j
1 / and parameters .�j;n; tj;n/n, j � 1. Extracting subsequences and time-translating the profiles,

we can assume that for all j � 1 one of the following holds:

lim
n!1

�
tj;n

�j;n
2 f˙1g or (3-30)

for all n; tj;n D 0: (3-31)

We will denote by J1 the set of indices j such that (3-30) holds and by J0 the set of indices such that
(3-31) holds. We assume:

(1) There exist j0 � 1, A > 0 and a global solution U j0 of(
@2tU

j0 ��U j0 D �jU j0 j2mU j01fr�jt jCAg;

EU j0.0; r/D EU
j0
L .0; r/; r � A;

such that EU j0.0/ 2 Lm and kU j0kS.fr�jt jCAg/ <1.

(2) If j 2 J0 n fj0g, then the solution of (1-1) with initial EU jL .0/ scatters in both time directions or

lim
n!1

�j;n

�j0;n
D 0:

For j � 1, we define U j as follows:

� U j0 is defined as in point (1) above.

� If j 2 J0 and limn!1
�j;n
�j0;n

D 0, then U j is the solution of (1-1) with initial data EU jL .0/.
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� If j 2 J0 and limn!1
�j;n
�j0;n

D1, then U j D 0.

� If j 2 J1, then U j D U jL .

We let U jn be the corresponding modulated profiles:

U jn .t; x/D
1

�
1
m

j;n

U j
�
t � tj;n

�j;n
;
x

�j;n

�
:

Lemma 3.5. Assume that points (1) and (2) above hold, let un be the solution of (1-1) with initial data
.u0;n; u1;n/, and In be its maximal interval of existence. Then

un.t; x/D

JX
jD1

U jn .t; x/Cw
J
n .t; x/C "

J
n .t; x/;

where

lim
J!1

lim sup
n!1

�
k"Jn kS.ft2In; r�A�j0;nCjt jg/

C sup
t2In

Z C1
A�j0;nCjt j

jr@t;r E"
J
n .t; r/j

m dr

�
D 0:

Proof. This follows from Lemma 2.19 with

Qun D
X
j2J0

U jn :

We omit the details of the proof that are by now standard; see, e.g., the proof of the main theorem in
[Bahouri and Gérard 1999]. �

3E. Exterior energy of a sum of profiles.

Proposition 3.6. Let f.u0;n; u1;n/gn2N be a bounded sequence in Lm that has a profile decomposition
with profiles fU jL gj�1 and parameters f.tj;n; �j;n/ngj�1. Let f.�n; �n; �n/gn2N be a sequence such that
0� �n < �n �1, �n 2 R. Let k � 1. Then, extracting a subsequence if necessary

on.1/C

Z �n

�n

jr@r;tuL;n.�n; r/j
m dr �

Z �n

�n

jr@r;tU
k
L;n.�n; r/j

m dr; (3-32)

where limn on.1/D 0, uL;n is the solution of the linear wave equation with initial data .u0;n; u1;n/ and
U kL;n is defined in (3-6).

See [Duyckaerts and Roy 2015, Proposition 3.12] for the proof.

4. Exterior energy for solutions of the nonlinear equation

4A. Preliminaries on singular stationary solutions. We recall from [Duyckaerts et al. 2014; Duyckaerts
and Roy 2015; Shen 2013] the following result on existence of stationary solutions for (1-1).

Proposition 4.1. Let ` 2 R n f0g. Assume m > 1, m ¤ 2. There exists R` � 0 and a maximal radial
C 2 solution Z` of

�Z`C �jZ`j
2mZ` D 0 on R3\fjxj>R`g (4-1)

such that

jrZ`.r/� `jC jr
2Z0`.r/C `j.

1

r2m�2
; r � 1: (4-2)
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Furthermore,

� if �DC1 (focusing nonlinearity), then R` D 0 and Z` … L3m.R3/,

� if �D�1 (defocusing nonlinearity), then R` > 0 and

lim
r!R`

jZ`.r/j D C1: (4-3)

Remark 4.2. We will construct Z1 and let

Z` D
˙1

j`j
1

m�1

Z1

�
r

j`j
m
m�1

�
(where ˙ is the sign of `), which will satisfy the conclusion of Proposition 4.1 for all ` 2 R n f0g. In
particular,

R` DR1j`j
m
m�1 :

Let us mention that the uniqueness of Z` can be proved by elementary arguments. However, it will follow
from Proposition 4.3 and we will not prove it here.

Proof. The proof is essentially contained in [Duyckaerts et al. 2014; Shen 2013] (focusing case for m> 2
and m 2 .1; 2/ respectively) and [Duyckaerts and Roy 2015] (defocusing case for m > 2). We give a
sketch for the sake of completeness.

We assume `D 1 (see Remark 4.2).

Existence for large r . Letting g D rZ1, we see that the equation on Z1 is equivalent to

g00.r/D�
�

r2m
jg.r/j2mg.r/: (4-4)

It is sufficient to find a fixed point for the operator A defined by

A.g/D 1�

Z 1
r

Z 1
s

�

�2m
jg.�/j2mg.�/ d� ds

in the ball
B D

˚
g 2 C 0.Œr0;C/;R/ W d.g; 1/�M

	
;

where r0 and M are two large parameters and

d.g; h/ WD sup
r�r0

.r2m�2jg.r/� h.r/j/:

Noting that .B; d/ is a complete metric space, it is easy to prove that A is a contraction on B assuming
M � 1 and r0� 1 (depending on M ), and thus that A has a fixed point g1. The fact that Z1 WD 1

r
g1

satisfies the estimates (4-2) follows easily. Let R1 � 0 such that .R1;C1/ is the maximal interval of
existence of g1 as a solution of the ordinary differential equation.

Focusing case. We next assume �D 1 and prove that R1 D 0 and Z` … L3m. Let

G.r/D
1

2
g0.r/2C

1

.2mC 2/r2m
jg.r/j2mC2:
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By (4-4), if r 2 .R1;C1/,

G0.r/D�
m

.mC 1/r2mC1
jg.r/j2mC2:

Hence

jG0.r/j �
C

r
G.r/:

This proves that G is bounded on .R1;C1/ if R1 > 0, a contradiction with the standard ODE blow-up
criterion. Thus R1 D 0.

The fact that Z1 … L3m.R3/ is nontrivial but classical. Assume by contradiction that Z1 2 L3m. Then
one can prove, see [Duyckaerts et al. 2014], that Z1 is a solution in the distributional sense on R3 of

��Z1 D jZ1j
2mZ1:

Noting that jZ1j2m 2 L
3
2 , one can use [Trudinger 1968] to prove that Z1 2 L1, and thus, by elliptic

regularity, that Z1 is C 2 on R3. To deduce a contradiction, we introduce, as in [Shen 2013], the function
v.r/D r

1
mZ1. It is easy to check, using (4-2), for the limits at infinity and the fact that Z1 is C 2 for the

limit at 0, that

lim
r!0C

v.r/D lim
r!0C

rv0.r/D lim
r!C1

v.r/D lim
r!C1

rv0.r/D 0:

Furthermore,

v00C
2

r

�
1�

1

m

�
v0C

1

r2

�
1

m2
�
1

m

�
vC

1

r2
jvj2mv D 0:

Integrating the identity

d

dr

�
r2
jv0.r/j2

2
�
m� 1

2m2
v2.r/C

jv.r/j2mC2

2mC 2

�
D
2�m

m
r jv0.r/j2 (4-5)

between 0 and C1, one sees that v must be a constant, a contradiction with the construction of Z1. Note
that we have used in this last step that the constant 2�m

m
in the right-hand side of the identity (4-5) is

nonzero, i.e., m¤ 2.

Defocusing case. Assume �D�1. We prove that R1 > 0 by contradiction. Assume R1 D 0 and let

h.s/ WDZ`

�
1

s

�
:

Then

h00.s/D
1

s4
jh.s/j2mh.s/

and by (4-2),

lim
s!0C

h.s/

s
D lim
s!0C

h0.s/D 1:

By a classical ODE argument, see [Duyckaerts and Roy 2015] for the details, one can prove that h blows
up in finite time, a contradiction. This proves that R1 > 0. The condition (4-3) follows from the standard
ODE blow-up criterion. �
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4B. Statement. One of the main ingredients of the proof of Theorem 3 is a bound from below of
the exterior Lm-energy for nonzero, Lm solutions of (1-1). It is similar to [Duyckaerts et al. 2013,
Propostions 2.1 and 2.2] and [Duyckaerts and Roy 2015, Propositions 4.1 and 4.2]. The statements in
these articles are divided between two cases, whether the support of .u0; u1/� .Z`; 0/ is compact for all
`¤ 0 or not. We give below a unified statement.

If .u0; u1/ 2 Lm and A > 0 we will denote by TA.u0; u1/ the element of Lm defined by

TA.u0; u1/.r/D .u0; u1/.r/ if r > A; (4-6)

TA.u0; u1/.r/D .u0.A/; 0/ if r � A: (4-7)

We note that

kTA.u0; u1/kmLm D
Z C1
A

�
j@ru0.r/ht j

m
Cju1.r/j

m
�
rm dr: (4-8)

We denote by ess supp the essential support of a function defined on a domain D of R3:

ess supp.f /DD n
[
f��D j� is open and f D 0 a.e. in �g:

Recall from Proposition 4.1 the definition of Z1 and R1.

Proposition 4.3. Let u be a radial solution of (1-1) with .u0; u1/ 2 Lm. Assume that .u0; u1/ is not
identically 0. Then there exist A > 0, � > 0 such that, if . Qu0; Qu1/D TA.u0; u1/, and Qu is the solution of

@2t Qu�� QuD �j Quj
2m
Qu1fr�ACjt jg (4-9)

with initial data . Qu0; Qu1/, then Qu is global, scatters in Lm and the following holds for all t � 0 or for all
t � 0: Z C1

ACjt j

j@r Qu.r/j
mrm dr C

Z C1
ACjt j

j@t Qu.r/j
mrm dr � �: (4-10)

The proof of Proposition 4.3 is very close to the proofs of the analogous propositions in [Duyckaerts
et al. 2014; Duyckaerts and Roy 2015]. We give a sketch of proof for the sake of completeness.

4C. Sketch of proof of Proposition 4.3. We argue by contradiction, assuming that for all A > 0 the
solution Qu of (4-9) with initial data TA.u0; u1/ is not a scattering solution, or is scattering and satisfies

lim inf
t!˙1

Z
ACjt j

j@t;r Qu.t; r/j
mrm dr D 0: (4-11)

We let

v.r/D ru.r/; v0.r/D ru0.r/; v1.r/D ru1.r/:

Step 1: In this step we prove that there exists "0 > 0 such that, if A > 0 is such thatZ C1
A

.j@ru0j
m
Cju1j

m/rm dr D "� "0; (4-12)
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then Z C1
A

j@rv0j
m
Cjv1j

m dr �
C

A.2mC1/.m�1/
jv0.A/j

m.2mC1/; (4-13)

for all B 2 ŒA; 2A�; jv0.B/� v0.A/j � CA2�2mjv0.A/j2mC1 � C"2jv0.A/j: (4-14)

We first assume (4-13) and prove (4-14). By the Hölder inequality and (4-13) we have

jv0.B/� v0.A/j �

Z 2A

A

j@rv0.r/j dr � A
m�1
m

�Z 2A

A

j@rv0j
m dr

�1
m

� CA2�2mjv0.A/j
2mC1: (4-15)

Furthermore, by (4-12) and (4) in Proposition 2.2,

1

Am�1
jv0.A/j

m
D Aju0.A/j

m . ";

which yields
jv0.A/j

2m . "2A2m�2:

Combining with (4-15), we obtain the second inequality of (4-14).
We next prove (4-13). Let

. Qu0; Qu1/D TA.u0; u1/:

Let Qu and QuL be the solutions of the nonlinear wave equation (1-1) and the linear wave equation (1-3),
respectively, with initial data . Qu0; Qu1/. By the small data theory, Qu is global and

sup
t2R

kEQu.t/� EQuL.t/kLm � C"
2mC1: (4-16)

Using the exterior energy property (3) in Proposition 2.3, we have that the following holds for all t � 0 or
for all t � 0:Z C1

A

.j@r.v0/j
m
Cjv1j

m/ dr � C

Z C1
ACjt j

j@r;t .r QuL/.t; r/j
m dr � C

Z C1
ACjt j

j@r;t QuL.t; r/j
mrm dr:

Using (4-16), we obtain that the following holds for all t � 0 or for all t � 0:Z C1
A

.j@r.v0/j
m
Cjv1j

m/ dr � C

�Z C1
ACjt j

j@r;t Qu.t; r/j
m dr C ".2mC1/m

�
: (4-17)

Using (4-11) and the definition (4-12) of ", and letting t !C1 or t !�1, we obtain

1

C

Z C1
A

.j@rv0j
m
Cjv1j

m/ dr �

�Z C1
A

.j@ru0j
m
Cju1j

m/rm dr

�2mC1
:

By (4) in Proposition 2.2, and since Aju0.A/jm D 1
Am�1

jv0.A/j
m,Z C1

A

.j@rv0j
m
Cjv1j

m/ dr � C

�Z C1
A

.j@rv0j
m
Cjv1j

m/ dr C
1

Am�1
jv0.A/j

m

�2mC1
:

Since
RC1
A .j@rv0j

mCjv1j
m/ dr is small, we deduce (4-13).
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Step 2: We prove that there exists ` 2 R n 0 such that

lim
r!1

v0.r/D `; (4-18)

and that there exists a constant M > 0 (depending on u) such that

jv0.r/� `j �
M

r2m�2
(4-19)

for large r .
Let " > 0 and fix A0 such thatZ C1

A0

.j@ru0j
m
Cju1j

m/rm dr D "� "0; (4-20)

where "0 is given by Step 1. By (4-14),

for all k � 0; jv0.2kC1A0/j � .1CC"2/.jv0.2kA0/j/:

Hence, by a straightforward induction,

for all k � 0; jv0.2kC1A0/j � .1CC"2/kjv0.A0/j:

Using (4-14) again, we deduceˇ̌
v0.2

kC1A0/� v0.2
kA0/

ˇ̌
� C.2kA0/

2�2m.1CC"2/k.2mC1/jv0.A0/j
2mC1: (4-21)

Choosing " small enough (so that 22�2m.1CC"2/2mC1 < 1), we see thatX
k�1

ˇ̌
v0.2

kC1A0/� v0.2
kA0/

ˇ̌
<1;

and thus that v0.2kA0/ has a limit ` as k!C1. Using (4-14) again, we deduce

lim
r!1

jv0.r/j D `:

Summing (4-21) over all k � 0, we deduce, using that v0 is bounded, that there exists a constant M > 0,
such that jv0.A0/� `j �MA2�2m0 for A0 large enough. This yields (4-19).

It remains to prove that `¤ 0. We argue by contradiction. By (4-19), if `D 0, then

jv0.r/j �
M

r2m�2
:

On the other hand, using (4-14) and an easy induction argument, we obtain that for all " > 0, for all A0
satisfying (4-20),

jv0.2
kA0/j � .1�C"

2/kjv0.A0/j:

Combining with the previous bound, we obtain

.1�C"2/kjv0.A0/j �
M

.2kA0/2m�2
;
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a contradiction if " is chosen small enough unless v0.A0/ D 0. Using (4-13), we see that this would
imply v0.r/ D 0 and v1.r/ D 0 for almost all r � A0. Since this is true for any A0 such that (4-20)
holds, an obvious bootstrap argument proves that .v0; v1/D .0; 0/ almost everywhere, contradicting our
assumption.

Step 3: Recall from Proposition 4.1 the definition of R`. Let, for r > R`,

.g0; g1/.r/ WD .u0.r/�Z`.r/; u1.r//; .h0; h1/.r/D r.g0.r/; g1.r//:

If " > 0, we fix A" >R` such thatZ C1
A"

j@rZ`j
mrm dr CkZ`k

m
S.fr�A"Cjt jg/

�
"m

C
; (4-22)

In this step, we prove that for all " > 0, if A > A" satisfiesZ C1
A

.j@rg0j
m
Cjg1j

m/rm dr <
"m

C
(4-23)

then Z C1
A

j@rh0j
m
Cjh1j

m dr �
"

Am�1
jh0.A/j

m: (4-24)

Fix A > A", let . Qu0; Qu1/ D TA.u0; u1/, and let Qu be the solution of the nonlinear wave equation (1-1)
with initial data . Qu0; Qu1/ at t D 0. Note that by (4-23) and small data theory, Qu is global and scatters in
both time directions. Note also that by our assumption, Qu satisfies (4-11).

Define Qg as the solution to the equation�
@2t Qg�� Qg D 1fr�ACjt jg.j Quj2m Qu� jZ`j

2mZ`/;

EQg�tD0 D TA.g0; g1/;
(4-25)

and QgL the solution of the free wave equation with the same initial data. Notice that .@2t ��/. Qu�Z`/D
.@2t ��/ Qg for r >ACjt j and EQg.0; r/D . Qu0�Z`; Qu1/.r/ for r >A. Thus, by finite speed of propagation,
Qg D Qu�Z` for r > ACjt j, and we can rewrite the first equation in (4-25):

@2t Qg�� Qg D 1fr�ACjt jg
�
jZ`C Qgj

2m.Z`C Qg/� jZ`j
2mZ`

�
: (4-26)

Using (4-26), Strichartz estimates and the Hölder inequality, we see that for all time intervals I containing 0

k Qg� QgLkS.I/C sup
t2Imax.u/

kEQg.t/� EQgL.t/kLm � C
�
kZ`k

2m
S.fr�ACjt jg/k QgkS.I/Ck Qgk

2mC1
S.I/

�
:

By (4-23), (4-22) and a straightforward bootstrap argument, we deduce that for all intervals I with 0 2 I ,

k QgkS.I/ � Ck QgLkS.I/ � CkTA.g0; g1/kLm � C";

and

sup
t2R

kEQg.t/� EQgL.t/kLm � C"
2m
kTA.g0; g1/kLm : (4-27)
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By the exterior energy property (3) in Proposition 2.3, the following holds for all t � 0 or for all t � 0:Z C1
A

.jh0j
m
Cjh1j

m/ dr � C

Z C1
ACjt j

j@t;r QgLj
mrm dr

� C

�
."2mkTA.g0; g1/kLm/mC

Z C1
ACjt j

j@t;r Qgj
mrm dr

�
;

where in the last line we used (4-27).
Letting t !˙1 and using (4-11), we deduceZ C1

A

j@rh0j
m
Cjh1j

m dr � C"2m
2

Z C1
A

.j@rg0j
m
Cjg1j

m/rm dr:

The desired estimate (4-24) follows, taking " small and using (4) in Proposition 2.2.

Step 4: Fix a small " > 0 and let A" be as in Step 3, i.e., such that (4-22) holds. In this step, we prove
that r � A" on ess supp.u0�Z`; u1/.

Indeed, if not, we obtain from (4-24) that there exists A > A" such that h0.A/¤ 0. Using a similar
argument to that in Step 1, we deduce from (4-24) that for all A� A" such that (4-23) holds,

for all B 2 ŒA; 2A�; jh0.A/� h0.B/j � C"jh0.A/j: (4-28)

If ess supp.u0�Z`; u1/ is not bounded, we deduce by (4-24) that h0.A/¤ 0 for all large A> 0. If " > 0
is small enough, we deduce using (4-28) that

lim
r!C1

r˛h0.r/DC1;

where ˛ 2 .0; 2m� 2/ is fixed. Since

v0.r/� `D h0.r/� `C rZ`;

this contradicts (4-19) in Step 2 and the asymptotic estimate (4-2) of Z`.
We have proved that ess supp.u0 �Z`; u1/ is bounded. Using (4-24), (4-28) and a straightforward

bootstrap argument, we deduce that r � A" on the support of ess supp.u0�Z`; u1/.

Step 5: Fix a small "> 0. We have proved in Step 4 that .u0; u1/.r/D .Z`.r/; 0/ for almost every r �A",
where A" depends only on `. We will prove .u0; u1/.r/D .Z`.r/; 0/ for r > R`, a contradiction with
Proposition 4.1 since .u0; u1/ 2 Lm.

We argue by contradiction, assuming that there existsB>R` such thatB 2ess supp.u0�Z`; u1/. Using
a similar argument to that in Step 3, but on small time intervals (see, e.g., the proof of Proposition 2.2(a),
§2.2.1 in [Duyckaerts et al. 2013]), we prove that the following holds for all t � 0 or for all t � 0:

BCjt j 2 ess supp
�
.u.t/�Z`; @tu.t//

�
: (4-29)

Choose t0 such that

BCjt0j> A" on ess supp
�
.u.t0/�Z`; @tu.t0//

�
: (4-30)
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It is easy to see that u satisfies the following: for all A > jt0j the solution Qu of

@2t Qu�� QuD �j Quj
2m
Qu1fr�ACjt�t0jg

with initial data TA.Eu.t0// at t D t0 is not a scattering solution, or is scattering and satisfies

lim inf
t!˙1

Z C1
ACjt�t0j

j@t;r Qu.t; r/j
mrm dr D 0:

We can then go through Steps 1–4 above, but with initial data at t D t0, and restricting to r > jt0j. Note
that by finite speed of propagation, the limit ` obtained in Step 2 for t D 0 and for t D t0 is the same; i.e.,

lim
r!C1

ru.t0; r/D lim
r!C1

ru.0; r/:

By the conclusion of Step 4, we obtain that r < max.A"; t0/ on ess supp.Eu.t0/ �Z`/, contradicting
(4-30). �

5. Dispersive term

This section concerns the existence of a “dispersive” component for a solution u of (1-1) that remains
bounded in Lm along a sequence of times. This component is the strong limit of Eu.t/, in Lm, outside the
origin in the finite time blow-up case (see Section 5A), and a solution of the linear wave equation in the
global case (see Section 5B).

5A. Regular part in the finite time blow-up case.

Proposition 5.1. Let u be a radial solution of (1-1), (1-2). Assume

TC.u/ <1; lim inf
t!TC.u/

kEu.t/kLm <1:

Then there exists a solution v of (1-1), defined in a neighborhood of t D TC, such that for all t in
Imax.u/\ Imax.v/,

for all r > TC� t; Eu.t; r/D Ev.t; r/:

We omit the proof; see Section 6.3 in [Duyckaerts and Roy 2015] for a very close proof.

5B. Extraction of the radiation term in the global case. We prove here:

Proposition 5.2. Let u be a radial solution of (1-1), (1-2). Assume

TC.u/DC1; lim inf
t!C1

kEu.t/kLm <1:

Then there exists a solution vL of the free wave equation (1-3) such that for all A 2 R,

lim
t!C1

Z
jxj�ACjt j

�
j@t .u� vL/j

m
Cj@r.u� vL/j

m
�
rm dr D 0: (5-1)
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The proof relies on the following lemma, which is a consequence of finite speed of propagation,
Strichartz estimates and the small data theory. We omit the proof, which is an easy adaptation of the
proofs of Claims 2.3 and 2.4 in [Duyckaerts et al. 2016] where the usual energy is replaced by the
Lm-energy:

Lemma 5.3. There exists "1 > 0 with the following property. Let u be a solution of (1-1), (1-2) such
that TC.u/DC1. Let T � 0 and A � 0. Assume kSL. � � T /Eu.T /kS.fjxj�ACt; t�T g/ D "

0 < "1: Then
kukS.fjxj�ACt; t�T g/ � 2"

0, and there exists a solution vL of the linear wave equation such that (5-1)
holds.

Proof of Proposition 5.2. See also Section 3.3 in [Duyckaerts et al. 2013].

Step 1: Let tn!C1 such that the sequence .Eu.tn//n is bounded in Lm. In this step we prove that there
exists ı > 0 such that for large n,

kSL. � /Eu.tn/kS.fjxj�.1�ı/tnCt; t�0g/ < "1; (5-2)

where "1 is given by Lemma 5.3. We argue by contradiction, assuming (after extraction of subsequences)
that there exists a sequence ın! 0 such that

kSL. � /Eu.tn/kS.fjxj�.1�ın/tnCt; t�0g/ � "1: (5-3)

Extracting subsequences again, we can assume that the sequence .Eu.tn//n has a profile decomposition
with profiles U jL and parameters .�j;n; tj;n/n. Let J be a large integer such thatSL. � /

�
Eu.tn/�

JX
jD1

EU
j
L;n.0/

�
S.R/

�
"1

2
:

A contradiction will follow if we prove (possibly extracting subsequences in n) that for all j 2 f1; : : : ; J g,

lim
n!1

kSL. � / EU
j
L;n.0/kS.fjxj�.1�ın/tnCt; t�0g/ D 0: (5-4)

We have
kSL. � / EU

j
L;n.0/kS.fr�.1�ın/tnCt; t�0g/ D kU

j
L kS.Aj;n/;

where

Aj;n WD

�
.t; r/ 2 R� .0;1/ W t � �

tj;n

�j;n
and r �

.1� ın/tn

�j;n
C

ˇ̌̌̌
t C

tj;n

�j;n

ˇ̌̌̌�
:

As a consequence, we see that we can extract subsequences so that the characteristic function of Aj;n
goes to 0 pointwise unless tj;n

�j;n
and tn

�j;n
are bounded. Time translating the profile U jL and extracting

again, we can assume
lim
n!1

tn

�j;n
D �0 2 Œ0;1/ for all n; tj;n D 0:

By finite speed of propagation and the small data theory,

lim
A!C1

lim sup
n!C1

Z
jxj�tnCA

jr@r;tu.tn/j
m dr D 0: (5-5)
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By Proposition 3.6, for all A 2 R, we have that for large n,Z C1
tnCA

jr.@r;tu.tn//j
m dr �

1

2

Z C1
tnCA

jr.@r;tU
j
L;n.0//j

m dr

D
1

2

Z C1
tnCA
�j;n

jr.@r;tU
j
L .0//j

m dr �!
n!1

1

2

Z C1
�0

jr.@r;tU
j
L .0//j

m dr:

Combining with (5-5), we see that if U jL is not identically 0, then �0 is strictly positive, and we can rescale
the profile U jL to assume �0 D 1, and �j;n D tn. Using (5-5) we see that ess supp EU jL .0/ is included in
the unit ball of R3, which implies

kU
j
L kS.Aj;n/ D kU

j
L kS.ft�0; r�.1�ın/Ctg/ �!n!1

0;

concluding the proof of (5-4) in this case. Step 1 is complete.

Step 2: By Step 1 and Lemma 5.3, for all A 2 R, there exists a solution vAL of the free wave equation
such that

lim
t!C1

Z
jxj�ACjt j

�
j@t .u� v

A
L /j

m
Cj@r.u� v

A
L /j

m
�
rm dr D 0: (5-6)

We consider the sequence tn!C1 of Step 1 and assume, extracting a subsequence if necessary, that
Eu.tn/ has a profile decomposition .U jL ; .�j;n; tj;n/n/j�1. Reordering the profiles and rescaling and time-
translating U 1L if necessary, we can assume, without loss of generality, that t1;n D tn and �1;n D 1 for
all n. In other words, EU 1L .0/ is the weak limit, as n goes to infinity, of ESL.�tn/Eu.tn/. Note that U 1L might
be identically 0.

Fix A 2 R. Then

Eu.tn/� Ev
A
L .tn/D

EU 1L .tn/� Ev
A
L .tn/C

JX
jD2

EU
j
L;n.0/C Ew

J
n .tn/I

i.e., Eu.tn/ � EvAL .tn/ has a profile decomposition . zU jL ; .�j;n; tj;n/n/j�1, with zU jL D U
j
L if j � 2, and

zU 1L D U
1
L � v

A
L . By Proposition 3.6,

lim sup
n!1

Z
r�ACtn

jr@r;t .u� v
A
L /.tn/j

m dr � lim sup
n!1

Z
r�tnCA

jr@r;t .U
1
L � v

A
L /.tn/j

m;

and thus, by (5-6)

lim
n!1

Z
r�tnCA

jr@r;t .U
1
L � v

A
L /.tn/j

m
D 0:

Using (5-6) again, we obtain

lim
n!1

Z
r�tnCA

jr@r;t .U
1
L �u/.tn/j

m
D 0:
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This is valid for all A 2 R. A simple argument using finite speed of propagation and small data theory
yields

lim
t!1

Z
r�tCA

jr@r;t .U
1
L �u/.t/j

m
D 0;

concluding the proof of the proposition with vL D U
1
L . �

6. Scattering/blow-up dichotomy

In this section we prove Theorem 3. Let u be a solution of (1-1). Consider the property:

lim inf
t!TC.u/

kEu.t/kLm <1: (6-1)

We must prove:

(1) If (6-1) holds then TC.u/DC1.

(2) If TC.u/DC1 and (6-1) holds, then u scatters to a linear solution in Lm.

The proofs of (1) and (2) are very similar, and are simplified versions of the corresponding proofs in
[Duyckaerts and Roy 2015]. We will only sketch the proof of (2) and explain the necessary modification
to obtain (1).

6A. Proof of scattering. Let u be a global solution and let tn!C1 such that Eu.tn/ is bounded. Let
vL be the linear component of u, given by Proposition 5.2. Extracting subsequences, we can assume that
.Eu.tn/� EvL.tn//n has a profile decomposition with profiles U jL and parameters .�j;n; tj;n/n. As before,
we denote by U jL;n the modulated profiles; see (3-6). Extracting subsequences and translating the profiles
in time if necessary, one of the following three cases holds.

Case 1: Assume

8j � 1; U
j
L � 0 or lim

n!1

�tj;n

�j;n
D�1: (6-2)

Let T �1 such that kvLkS..T;C1//<
ı0
2

, where ı0 is given by the small data theory (see Proposition 2.17).
By (6-2), for all j ,

lim
n!1

kU
j
L;nkS..T�tn;0// D lim

n!1
kU

j
L kS..

T�tn�tj;n
�j;n

;
�tj;n
�j;n

//
D 0:

Thus for large n,

kSL. � /Eu.tn/kS..T�tn;0// < ı0:

By Proposition 2.17, for large n,

kukS..T;tn// D ku.tnC � /kS..T�tn;0// < 2ı0:

Letting n!1, we deduce kukS..T;C1// < 2ı0, and thus u scatters.
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Case 2: We assume
8j � 1; U

j
L � 0 or lim

n!1

�tj;n

�j;n
2 f˙1g: (6-3)

and
9j0 � 1; U

j0
L 6� 0 and lim

n!1

�tj0;n

�j0;n
DC1: (6-4)

We will use a channel of energy argument based on the following observation, which is a direct consequence
of the explicit form of the solution; see (2-4), (2-6):

Claim 6.1. Let uL be a nonzero solution of the linear wave equation (1-3) with initial data in Lm. Then
there exists A 2 R such that

lim inf
t!C1

Z C1
ACt

rmj@r;tuLj
m dr > 0:

If j � 1, we have
kU

j
L;nkS.ft�0; r�tg/ D kU

j
L kS.ft��

tj;n
�j;n

; r�tC
tj;n
�j;n
g/
:

Noting that under the assumptions of Case 2,

for all j � 1; 1
ft��

tj;n
�j;n

; r�tC
tj;n
�j;n
g
�!
n!1

0

pointwise, otherwise U jL � 0. We obtain

for all j � 1; lim
n!1

kU
j
L;nkS.fr�t�0g/ D 0

and thus
lim
n!1

kSL.t/Eu.tn/kS.fr�t�0g/ D 0:

By the small data theory (see Proposition 2.17) and finite speed of propagation

lim
n!1

�
ku.tnC � /kS.fr�t�0g/C sup

t�0

Z C1
t

ˇ̌
@t;r.u.tnC t /�SL.t/Eu.tn//

ˇ̌m
rm dr

�
D 0: (6-5)

Let j0 be as in (6-4). By Claim 6.1, there exists A 2 R such that

lim inf
t!C1

Z 1
�j0;nA�tj0;nCt

jr@t;rU
j0
L;nj

m dr > 0:

For large n, we have �j0;nA� tj0;n � 0. By Proposition 3.6, we deduce from (6-5) that for large n,

lim inf
t!C1

Z 1
�j0;nA�tj0;nCt�tn

rmj@t;r.u.t; r/� vL.t; r//j
m dr > 0;

contradicting the definition of vL.

Case 3: In this last case we assume

9j � 1; 8n; tj;n D 0 and U
j
L 6� 0: (6-6)

This is the core of the proof, where we use Proposition 4.3, and thus the fact that (1-1) has no nonzero
stationary solution in Lm.
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We will use Section 3D to approximate u, outside appropriate wave cones, by a sum of profiles. As
in Section 3D, we let J0 be the set of indices j such that tj;n D 0 for all n and J1 the set of j such
that tj;n

�j;n
goes to C1 or �1. Extracting subsequences and translating the profiles in time if necessary,

we can assume N n f0g D J0 [J1. Let ı1 > 0 be a small number, smaller than the number given by
the small data theory, and such that there exists j 2 J0 with k EU jL .0/kLm > ı1. We let j0 2 J0 such that
k EU

j0
L .0/kLm > ı1, and�

j 2 J0 and k EU
j
L .0/kLm > ı1

�
D) lim

n!1

�j0;n

�j;n
DC1: (6-7)

We note that by Proposition 3.3, there exists a finite number of j 2 J0 with k EU jL .0/kLm > ı1, so that, in
view of the pseudo-orthogonality property (3-1), j0 is well-defined. By Proposition 4.3, there exist A,
� > 0, U j0 2 S.R/ such that EU j0 2 C 0.R;Lm/,

.@2t ��/U
j0 D �jU j0 j2mU j01fr�ACjt jg; EU j0.0/D TA. EU

j0
L .0//; (6-8)

and the following holds for all t � 0 or for all t � 0:Z C1
jt jCA

jr@t;rU
j0 j
m dr � �: (6-9)

Note that .U jL ; �j;n; tj;n/j�0 with U 0L D vL and �0;n D 1; t0;n D tn is a profile decomposition of Eu.tn/.
According to Lemma 3.5,

u.t C tn/D vL.t C tn/C

JX
jD1

U jn .t/Cw
J
n .t/C "

J
n .t/; t 2 Œ�tn;C1/; (6-10)

where the modulated profiles U jn for j ¤ j0 are defined in Section 3D and

lim sup
n!1

�
k"Jn kS.ft2Œ�tn;C1/; r>A�j0;nCjt jg/

C sup
t��tn

Z C1
jt jCA�j0;n

jr@t;r"
J
n .t; r/j

m dr

�
goes to 0 as J goes to infinity. It can be deduced from Proposition 3.6 that for all sequences .�n/n in
Œ�tn;C1/,

on.1/C

Z C1
A�j0;nCj�nj

ˇ̌
r@r;t .u� vL/.tnC �n; r/

ˇ̌m
dr �

Z C1
A�j0;nCj�nj

jr@r;tU
j0
n .�n; r/j

m dr: (6-11)

Indeed, this can be proved by noticing that (6-10) (and its time derivative) at t D �n can be considered as
a profile decomposition of the sequence ..Eu� EvL/.�nC tn//n and using Proposition 3.6 and finite speed
of propagation. We refer to the proof of (3.18) in [Duyckaerts and Roy 2015] for a detailed proof in a
very similar setting.

If (6-9) holds for t � 0, then by (6-11), for large n,

lim sup
t!C1

Z C1
tCA�j0;n

jr@t;r.u.tn; r/� vL.tn; r//j
m dr �

�

2
;

contradicting the definition of vL.
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If (6-9) holds for t � 0, we use (6-11) at �n D�tn together with (6-9) and obtain that for large nZ C1
tnCA�j0;n

jr@t;r.u.0; r/� vL.0; r//j
m dr �

�

2
;

a contradiction since Eu.0/ 2 Lm. �

6B. Proof of global existence. We argue by contradiction, assuming that (6-1) holds and that TCDTC.u/
is finite. Let v be the regular part of u at t D TC, defined by Proposition 5.1. Recall that v is a solution
of (1-1) defined in a neighborhood of TC.u/ and such that

for all t 2 Imax.u/\ Imax.v/; for all r > TC� t; Eu.t; r/D Ev.t; r/: (6-12)

As in Section 6A, we consider a sequence tn! TC such that Eu.tn/ is bounded in Lm, and we assume
(extracting subsequences if necessary) that .Eu.tn/� Ev.tn//n has a profile decomposition with profiles U jL
and parameters .�j;n; tj;n/n. We distinguish again between three cases.

Case 1: We assume (6-2). By the same proof as in Case 1 of Section 6A, we obtain

lim
n!1

SL. � /.Eu.tn/� Ev.tn//

S..�1;0//

D 0:

By Lemma 2.19, if T < TC.u/ is in the domain of definition of v, close to TC.u/,

lim
n!1

kEu.tn/kS..T;tn// <1;

which contradicts the blow-up criterion

kEu.tn/kS..T;TC.u/// DC1;

Case 2: We assume (6-3) and (6-4). Fix j0 � 1 such that (6-4) holds. Using Claim 6.1 and an argument
very similar to the one of Case 2 of Section 6A, we obtain that for large n,

lim inf
t!TC.u/

Z
r�A�j0;n�tj0;nCt�tn

j@t;r.u� v/.t; r/j
m rm dr > 0;

where A 2 R is given by Claim 6.1, contradicting (6-12) (since for large n, we have A�j0;n� tj0;n � 0).

Case 3: We assume (6-6). We define J0, J1 as in Case 3 of Section 6A and choose j0 2 J0 such that
(6-7) holds. Using Proposition 4.3, we obtain A, � > 0, and a solution U j0 2 S.R/ of (6-8), such that
(6-9) holds for all t � 0 or for all t � 0. We distinguish two cases.

If (6-9) holds for all t � 0, then we prove using Lemma 2.19 and Proposition 3.6 that for large n,

lim inf
t!TC.u/

Z
r�A�j0;nCt�tn

j@t;r.u� v/.t; r/j
m rm dr > 0;

a contradiction with (6-12).
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If (6-9) holds for all t � 0, we let T 2 Œ0; TC.u// such that T is in the domain of definition of v. Using
Lemma 2.19 and Proposition 3.6, we deduce that for large nZ

r�A�j0;nCtn�T

j@t;r.u� v/.T; r/j
m rm dr �

�

2
;

a contradiction for large n, since @t;r.u�v/.T; r/ is supported in jxj � TC�T . This concludes the sketch
of proof.

Appendix: Proof of Proposition 2.1

The “only if” part. First of all, we have a sequence of smooth radial functions .fn/n with compact
supports such that Z C1

0

j@r.f �fn/.r/j
mrm dr! 0; n!1: (A-1)

As a consequence, we clearly have (2-1). Notice that for 0 < r < r 0 <C1, we have

jf .r 0/�f .r/j �
Cm

r
1
m

�Z r 0

r

js@sf .s/j
m ds

�1
m

;

and this yields that f .r/ is continuous.
To see (2-2), we first prove

jf .r/j �
1

r
1
m

�Z C1
r

js@sf .s/j
m ds

�1
m

;

and

jrf .r/j � r
m�1
m

�Z r

0

j@s.sf .s//j
m ds

�1
m

:

Indeed, if f 2 C10 ..0;C1//, then the preceding inequality follows from the fundamental theorem of
calculus and the Hölder inequality. The case of a general function f can be deduced from (A-1). The
desired estimate (2-2) is an immediate consequence of these two inequalities.

The“if” part. Given a radial function f .x/ on R3, satisfying the conditions (2-1), (2-2), we are to construct
a sequence of smooth radial functions fn.x/ compactly supported in R3 such that (A-1) holds.

To achieve this, we take a smooth radial function '.x/ on R3 such that '.x/ D 1 for jxj � 1 and
'.x/D 0 if jxj � 2. Let ."n/n be a sequence of positive numbers, tending to zero as n!1. Define

fn.x/D '."nx/

�
1�'

�
x

"n

��
.f � �"n/.x/; (A-2)

where �".%/ is the usual approximate delta function supported in � "
2
< % < 0 and f � �" denotes the

radial convolution as in [Strauss 1977], namely

f � �".x/D

Z 0

� "
2

�".%/ f .jxj � %/ d%:
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Then it is clear that fn.x/ is smooth, radial and supported in
˚
x 2 R3 j "n � jxj �

2
"n

	
. We have

@r.f .r/�fn.r//D�"n.@r'/."nr/

�
1�'

�
r

"n

��
f .r/ (A-3)

C'."nr/
1

"n
.@r'/

�
r

"n

�
f .r/ (A-4)

C

�
1�'."nr/

�
1�'

�
r

"n

���
@rf .r/ (A-5)

C @r

�
'."nr/

�
1�'

�
r

"n

���Z 0

�
"n
2

.f .r/�f .r � %// �"n.%/ d% (A-6)

C'."nr/

�
1�'

�
r

"n

��Z 0

�
"n
2

.@rf .r/� @rf .r � %// �"n.%/ d%: (A-7)

In view of (2-1), one easily sees that multiplying by r on both sides of the above identity, raising them
to the power m and integrating over .0;C1/, we have the contributions of (A-6), (A-7) go to zero as
n!1. In fact, this is immediate for (A-7) in view of the boundedness of ' and the fact that �" is an
approximation of the identity. For (A-6), we need to estimate two terms produced correspondingly by the
cases when @r hits on '."nr/ and '

�
r
"n

�
. In the first case, we use the fundamental theorem of calculus to

write

f .r/�f .r � %/D

Z 1

0

% @rf .r � �%/ d�:

Applying Minkowski’s inequality, we are led to estimating

"n

Z 0

�
"n
2

Z 1

0

�Z 4
"n

1
2"n

jr@rf .r/j
m dr

�1
m

j% �"n.%/j d� d%;

which is clearly tending to zero as n!1. A similar argument applies to the second case. In fact,
applying the same trick will lead us to estimatingZ 0

�
"n
2

Z 1

0

�Z 2"n

"n
2

jr@rf .r/j
m dr

�1
m j%j

"n
�"n.%/ d� d%;

which tends to zero as n!1.

Next, by invoking (2-2), one sees that the contribution from (A-3) is bounded by

�
sup

1
"n
�r� 2

"n

r
1
m

ˇ̌
f .r/j

�m
�

Z 2
"n

1
"n

j'0."nr/j
m"mn r

m�1 dr! 0; n!1:

Similar argument applies to (A-4) thanks to (2-2). Finally, the contribution of (A-5) is easily seen to be
bounded by Z 2"n

0

jr@rf .r/j
m drC

Z C1
1
"n

jr@rf .r/j
mdr �!0; n!1: �
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GLOBAL WEAK SOLUTIONS FOR GENERALIZED SQG
IN BOUNDED DOMAINS

HUY QUANG NGUYEN

We prove the existence of global L2 weak solutions for a family of generalized inviscid surface quasi-
geostrophic (SQG) equations in bounded domains of R2. In these equations, the active scalar is transported
by a velocity field which is determined by the scalar through a more singular nonlocal operator compared
to the SQG equation. The result is obtained by establishing appropriate commutator representations for
the weak formulation together with good bounds for them in bounded domains.

1. Introduction

Let �� R2 be an open bounded set with smooth boundary. Define

ƒD
p
��; (1-1)

where �� is the Laplacian operator in � with homogeneous Dirichlet boundary condition.
We consider the following family of active scalars

@t� Cu � r� D 0; (1-2)

where � D �.x; t/, uD u.x; t/ with .x; t/ 2�� Œ0;1/ and with the velocity u given by

uDr? ; (1-3)

 Dƒ�˛�; ˛ 2 Œ0; 2�: (1-4)

Here, fractional powers of the Laplacian�� are based on eigenfunction expansions (see the first subsection
of Section 2 below for definitions and notations) and  is called the stream function. By (1-3) the velocity
u is automatically divergence-free. The case ˛ D 2 corresponds to the two-dimensional Euler equation
in the vorticity formulation. When ˛ D 1, (1-2) is the surface quasigeostrophic (SQG) equation of
geophysical significance [Held et al. 1995], which also serves as a two-dimensional model of the three-
dimensional Euler equations in view of many striking physical and mathematical analogies between them
[Constantin et al. 1994]. The global regularity issue is known for the two-dimensional Euler equations
but remains open for any ˛ < 2. Growth of solutions when ˛ D 1; 2 and � D R2;T2 was studied in
[Córdoba and Fefferman 2002]; nonexistence of simple hyperbolic blow-up when ˛ D 1 and �D R2

was confirmed in [Córdoba 1998]. We refer to [Chae et al. 2011] for a regularity criterion when ˛ 2 Œ1; 2�
and �D R2. On the other hand, finite time blow-up for patch solutions of (1-2) in the half plane with

MSC2010: 35Q35, 35Q86.
Keywords: generalized SQG, global weak solutions, bounded domains.
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small ˛ < 2 was recently shown in [Kiselev et al. 2016]. The velocity u becomes more singular when ˛
decreases, and in particular, u is not in L2.�/ if � is in L2.�/ and ˛ < 1. Equations (1-2) with ˛ 2 .0; 1/
were introduced in [Chae et al. 2012] to understand solutions to the SQG-type equations with even more
singular velocity fields. More precisely, that paper established the existence of global L2 weak solutions
on the torus T2, together with local existence and uniqueness of strong solutions in R2. The borderline
case ˛ D 0 is surprisingly easy due to the cancellation of the nonlinear term: (1-2) reduces to the simple
equation @t� D 0, and thus �. � ; t /D �. � ; 0/ for all t > 0. On the other hand, if ˛ < 0 then the stream
function  D ƒ�˛� is not well-defined when � 2 L2.�/, noticing that there is no dissipation in the
equation.

In this paper, we are interested in the issue of global weak solutions for (1-2) with ˛ 2 .0; 1/ in arbitrary
(smooth) bounded domains of R2. Let us recall that the existence of global weak solutions for SQG
.˛ D 1) were first proved in [Resnick 1995] in the periodic case. This highlights a difference between the
nonlinearities of the SQG equation and the three-dimensional Euler equations: SQG has weak continuity
in L2, while the Euler equations do not. The weak continuity of SQG is due to a remarkable commutator
structure which was subsequently revisited in [Chae et al. 2011] and used in the proof of absence of
anomalous dissipation in [Constantin et al. 2014]. In [Constantin and Nguyen 2016], this structure
was adapted to arbitrary bounded domains to take into account the lack of translation invariance of the
fractional Laplacian in domains: a new commutator between the fractional Laplacian and differentiation
appears. In addition to that, with the more singular constitutive laws (1-4), in order to establish the
weak continuity of the nonlinearity u � r� we will need to find appropriate commutator representations
for which good bounds can be derived. Let us emphasize that many known commutator estimates for
fractional Laplacians in the whole space (or on tori) are too expensive for bounded domains due to
possible singularity near the boundary or the lack of powerful tools of Fourier analysis. For further results
on the fractional Laplacian and SQG in bounded domains, we refer to [Cabré and Tan 2010; Caffarelli
and Silvestre 2007; Constantin and Ignatova 2016; 2017].

Our main result is:

Theorem 1.1. Let ˛ 2 .0; 1/ and �0 2L2.�/. There is a weak solution of (1-2), � 2L1.Œ0;1/IL2.�//
with initial data �0. That is, for any T � 0 and � 2 C10 .�� .0; T //, � satisfiesZ T

0

Z
�

�.x; t/ @t�.x; t/ dx dt C

Z T

0

N . ; �/ dt D 0 (1-5)

and the initial data
�. � ; 0/D �0. � / in H�".�/ for all " > 0 (1-6)

is attained. Here,

N . ; �/D 1

2

Z
�

Œƒ˛;r?� � r� dx�
1

2

Z
�

ƒ�1C˛r? �ƒ1�˛Œƒ˛;r�� dx: (1-7)

Moreover, � obeys the energy inequality

k�. � ; t /k2
L2.�/

� k�0k
2
L2.�/

a.e. t � 0: (1-8)
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Additionally, the stream function  is in C.Œ0;1/ID.ƒ˛�"// for any " > 0 and its D.ƒ
˛
2 / norm is

conserved,

k . � ; t /kD.ƒ˛=2/ D k . � ; 0/kD.ƒ˛=2/ for all t > 0: (1-9)

In Theorem 1.1 and what follows,

ŒA; B� WD AB �BA

denotes the commutator of two operators A and B .
When ˛ D 0, we have u D R?� , where R D .@x1ƒ

�1; @x2ƒ
�1/ denotes the Riesz transforms. As

R WL2.�/!L2.�/ is continuous, we have u� 2L1.�/ if � 2L2.�/. In that case, � is a weak solution
of (1-2) ifZ T

0

Z
�

�.x; t/ @t�.x; t/ dx dtC

Z T

0

Z
�

u.x; t/ �.x; t/�r�.x; t/ dx dtD0 for all � 2C10 .��.0; T //:

The global existence of such solutions was proved in [Constantin and Nguyen 2016]. However, when
˛ < 1, we have u is less regular than � and the second integral in the preceding formulation is not
well-defined. Nevertheless, taking into account the nonlinearity structure to explore extra cancellations,
this integral has the commutator representation (1-7), which makes sense provided only � 2 L2.�/, as
will be proved in Lemma 3.4 below using the heat kernel approach. Let us note that the two objects are
equal if  2H 1

0 .�/, or equivalently, � 2D.ƒ1�˛/. This representation is good enough to well define the
nonlinearity but another representation, see (3-5), will be needed for the compactness argument. The point
is that these two representations are equivalent provided only � 2 L2.�/ (see Lemma 3.3 below). Unlike
the proof in [Constantin and Nguyen 2016], which uses only Galerkin approximations, Theorem 1.1 will
be proved by a two-tier approximation procedure: Galerkin approximations for each vanishing viscosity
approximation. This is because the nonlinearity u� is not well-defined in L1.�/ (see Remark 3.6 below).

The paper is organized as follows. In Section 2, we present the functional setup of fractional Laplacian
in domains and necessary commutator estimates, which can be of independent interest. The proof of
Theorem 1.1 is presented in Section 3. Finally, the proofs of the commutator estimates announced in
Section 2 are given Appendices A and B.

2. Preliminaries

Fractional Laplacian. Let� be an open bounded set of Rd, d �2, with smooth boundary. The Laplacian
�� is defined onD.��/DH 2.�/\H 1

0 .�/. Let fwj g1jD1 be an orthonormal basis of L2.�/ comprised
of L2-normalized eigenfunctions wj of ��; i.e.,

��wj D �jwj ; wj j@� D 0;

Z
�

w2j dx D 1;

with 0 < �1 < �2 � � � � � �j !1.
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The fractional Laplacian is defined using eigenfunction expansions,

ƒsf � .��/
s
2f WD

1X
jD1

�
s
2

j fj ; wj with f D
1X
jD1

fjwj ; fj D

Z
�

f wj dx;

for s � 0 and
f 2D.ƒs/ WD ff 2 L2.�/ Wƒsf 2 L2.�/g:

The norm of f D
P1
jD1 fjwj in D.ƒs/, s � 0, is defined by

kf kD.ƒs/ WD kƒ
sf kL2.�/ D

� 1X
jD1

�sjf
2
j

�1
2

:

It is also well-known that D.ƒ/ and H 1
0 .�/ are isometric. In the language of interpolation theory, see

[Lions and Magenes 1972, Chapter 1],

D.ƒs/D ŒL2.�/;D.��/� s
2

for all s 2 Œ0; 2�:
As mentioned above,

H 1
0 .�/DD.ƒ/D ŒL

2.�/;D.��/� 1
2
I

hence
D.ƒs/D ŒL2.�/;H 1

0 .�/�s for all s 2 Œ0; 1�: (2-1)

Consequently, we can identify D.ƒs/ with usual Sobolev spaces:

D.ƒs/D

8̂̂<̂
:̂
H s
0.�/ if s 2

�
1
2
; 1
�
;

H
1
2

00.�/ WD fu 2H
1
2 .�/ W u=

p
d.x/ 2 L2.�/g if s D 1

2
;

H s.�/ if s 2
�
0; 1
2

�
:

(2-2)

see [Lions and Magenes 1972, Chapter 1]. Here and below d.x/ is the distance to the boundary of the
domain:

d.x/D d.x; @�/: (2-3)

Next, for s > 0 we define

ƒ�sf D

1X
jD1

�
� s
2

j fjwj

if f D
P1
jD1 fjwj 2D.ƒ

�s/ with

D.ƒ�s/ WD

� 1X
jD1

fjwj 2 D 0.�/ W fj 2 R;

1X
jD1

�
� s
2

j fjwj 2 L
2.�/

�
I

moreover,

kf kD.ƒ�s/ WD kƒ
�sf kL2.�/ D

� 1X
jD1

��sj f 2j

�1
2

:

It is easy to check that D.ƒ�s/ is the dual of D.ƒs/ with respect to the pivot space L2.�/.
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We have the following relation between D.ƒs/ and H s.�/ when s � 0.

Lemma 2.1. The continuous embedding

D.ƒs/�H s.�/ (2-4)

holds for any s � 0.

Proof. By interpolation, it suffices to prove (2-4) for s 2 f0; 1; 2; : : : g. The case s D 0 is obvious and the
case s D 1 follows from (2-2). Assume by induction (2-4) for s � m with m � 1. Let � 2 D.ƒmC1/.
Then f WD ��� 2D.ƒm�1/ and thus f 2Hm�1.�/ by the induction hypothesis. On the other hand,
� vanishes on the boundary @� in the trace sense because � 2D.ƒ1/DH 1

0 .�/. Elliptic regularity then
implies that � 2HmC1.�/ and

k�kHmC1 � Ckf kHm�1 � Ck��km�1;D D Ck�kmC1;D;

which is (2-4) for s DmC 1. �

Lemma 2.2. The operator
ƒ�r WD.ƒ /!D.ƒ�1��/ (2-5)

is continuous for any  2 Œ0; 1� and ��  � 1.

Proof. We first note that the gradient operator r is continuous from H 1
0 .�/ to L2.�/ and from L2.�/

to H�1.�/; hence by interpolation,

r W ŒL2;H 1
0 � ! ŒH�1; L2�

for any  2 Œ0; 1�. From the interpolation (2-1) we deduce that

ŒL2;H 1
0 � DD.ƒ

 /;

ŒH�1; L2� D .ŒH
1; L2� /

�
D .ŒL2;H 1�1� /

�
DD.ƒ1� /� DD.ƒ�1/:

Thus, for any  2 Œ0; 1�,
r WD.ƒ /!D.ƒ�1/;

and hence
ƒ�r WD.ƒ /!D.ƒ�1��/

provided ��  � 1. �

Remark 2.3. The above fractional Laplacian is the spectral one. In Rd the well-known integral represen-
tation

.��Rd /
sf .x/D cd;s P.V.

Z
Rd

f .x/�f .y/

jx�yjdC2s
dy; s > 0;

holds; here P.V. stands for the principal value integral. For any domain �� Rd, the restricted fractional
Laplacian .��j�/s is defined by

.��j�/
sf D ..��Rd /

s Qf /j�
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for f W�! R and Qf the zero-extension of f outside �. It was proved in [Bonforte et al. 2015] (see
Section 3.1 there) that .��j�/s is an isomorphism from D.ƒs/ onto its dual D.ƒs/� with respect to the
bilinear form

B.f; g/D

Z
�

L
1
2f L

1
2g; LD .��j�/s:

Hence for any scalar � 2D.ƒ
˛
2 /� � L2.�/ the stream function  can be defined alternatively by

 D ..��j�/
˛
2 /�1�: (2-6)

Note that the resulting  is different from the one defined in (1-4). It would be interesting to see if the
results in this paper still hold with this definition. We also refer to [Ros-Oton and Serra 2014] for the
Hölder regularity of the  given by (2-6).

Commutator estimates. Due to the lack of translation invariance, the fractional Laplacian does not
commute with differentiation. The following theorem provides a bound for the commutator.

Theorem 2.4 [Constantin and Nguyen 2016, Theorem 2.2]. Let p; q 2 Œ1;1�, s 2 .0; 2/ and a satisfy

a. � /d. � /�s�1�
d
p 2 Lq.�/:

Then the operator aŒƒs;r� can be uniquely extended from C10 .�/ to Lp.�/ such that there exists a
positive constant C D C.d; s; p;�/ such that

kaŒƒs;r�f kLq.�/ � Cka. � /d. � /
�s�1�d

p kLq.�/kf kLp.�/ (2-7)

holds for all f 2 Lp.�/.

The bound (2-7) is remarkable in that the commutator between an operator of order s > 0 and an
operator of order 1, which happens to vanish when �D Rd, is of order 0. The price is a singularity of
the form d.x/�s�1�

d
p, which counts the order of ƒs and r.

Remark 2.5. Let us explain how Theorem 2.4 follows from [Constantin and Nguyen 2016]. In that paper,
using the heat kernel representation of the fractional Laplacian together with a cancellation of the heat
kernel of Rd, we proved the pointwise estimate for f 2 C10 .�/,

jŒƒs;r�f .x/j � C.d; s; p;�/d.x/�s�1�
d
p kf kLp.�/:

The estimate (2-7) then follows by extension by continuity.

The next commutator estimate for negative powers of Laplacian is needed to handle the situation of
more singular velocity.

Theorem 2.6. Let s 2 .0; d/ and a 2W 1;1.�/. Let p; r 2 .1;1/ satisfy

1

p
C
d�s
d
D 1C

1

r
:
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Then the operator Œƒ�s; a� can be uniquely extended from C10 .�/ to Lp.�/ with values in W 1;r
0 .�/

such that there exists C D C.s; d; p; r;�/ > 0 such that

kŒƒ�s; a�f k
W
1;r
0 .�/

� CkakW 1;1.�/kf kLp.�/

for all f 2 Lp.�/.
In particular, for any p 2 .1;1/, s 2

�
0; d
p

�
, there exists C D C.s; d; p;�/ > 0 such that

kŒƒ�s; a�f k
W
1;p
0 .�/

� CkakW 1;1.�/kf kLp.�/ (2-8)

for all f 2 Lp.�/.

With the same method of proof, we obtain:

Theorem 2.7. Let s 2 .0; 1/ and a 2 C  .�/ with  2 .0; 1� and s <  . Let p; r 2 .1;1/ satisfy

1

p
C
dCs�

d
D 1C

1

r
:

Then the operator Œƒs; a� can be uniquely extended from C10 .�/ to Lp.�/ with values in Lr.�/ such
that there exists C D C.s; ; p; r; d;�/ > 0 such that

kŒƒs; a�f kLr .�/ � CkakC .�/kf kLp.�/ (2-9)

for all f 2 Lp.�/.
In particular, for any p 2 .1;1/, if

s 2
�

max
n
 �

d

p
; 0
o
;max

n
 �

d

p
C d; 

o�
then there exists C D C.s; ; p; d;�/ > 0 such that

kŒƒs; a�f kLp.�/ � CkakC .�/kf kLp.�/: (2-10)

Remark 2.8. In view of the identity

ƒ�sŒƒs; a�f D Œa;ƒ�s�ƒsf;

it follows from (2-8) that

kŒƒs; a�f kD.ƒ1�s/ � CkakW 1;1.�/kf kD.ƒs/; s 2
�
0; d
2

�
: (2-11)

This exhibits a gain of 1� s derivatives of Œƒs; a� when acting on D.ƒs/. On the other hand, the estimate
(2-10) shows a gain of s derivatives when acting on L2. Both (2-8) and (2-10) make use of the fact that
� is bounded.

The proofs of Theorems 2.6, 2.7 are given in Appendices A and B.
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3. Proof of Theorem 1.1

Commutator representations. First, we adapt the well-known commutator representation of the nonlin-
earity in SQG [Resnick 1995], see also [Chae et al. 2012; Constantin et al. 2001; Constantin and Nguyen
2016], to take into account the lack of translation invariance of the fractional Laplacian and the more
singular constitutive law (1-4):

Lemma 3.1. Let  2H 1
0 .�/, uDr

? , and � Dƒ˛ . Let � 2 C10 .�/ be a test function. ThenZ
�

�u � r� dx D
1

2

Z
�

Œƒ˛;r?� � r� dx�
1

2

Z
�

r
? � Œƒ˛;r�� dx (3-1)

holds.

Proof. We have Z
�

�u � r� dx D

Z
�

ƒ˛ r? � r� dx D�

Z
�

 r?ƒ˛ � r� dx;

where we integrated by parts and used the fact that r? � r� D 0. The first and middle terms are well
defined because �uD �r? 2 L1.�/, noticing that  2H 1

0 .�/ and � Dƒ˛ 2D.ƒ1�˛/� L2.�/.
The last term is defined because r� � r?ƒ˛ 2H�1.�/ and  2H 1

0 .�/. Commuting r? with ƒ˛

and then with r� leads toZ
�

�u � r� dx D�

Z
�

 Œr?; ƒ˛� � r� dx�

Z
�

 ƒ˛r? � r� dx

D�

Z
�

 Œr?; ƒ˛� � r� dx�

Z
�

r
? �ƒ˛. r�/ dx

D�

Z
�

Œr?; ƒ˛� � r� dx�

Z
�

r
? � Œƒ˛;r�� dx�

Z
�

r
? � r�ƒ˛ dx

D�

Z
�

Œr?; ƒ˛� � r� dx�

Z
�

r
? � Œƒ˛;r�� dx�

Z
�

�u � r� dx:

The above calculations are justified by means of Theorems 2.4 and 2.7. Noticing that the last term on the
right-hand side is exactly the negative of the left-hand side, we proved (3-1). �

Remark 3.2. The representation (3-1) was derived in [Constantin and Nguyen 2016] for the SQG equation
(˛ D 1). When �D R2 or T2, (3-1) reduces toZ

�

�u � r� dx D�
1

2

Z
�

r
? � Œƒ˛;r�� dx:

Integrating by parts yields

�
1

2

Z
�

r
? � Œƒ˛;r�� dx D

1

2

Z
�

 r? � Œƒ˛;r�� dx D
1

2

Z
�

 Œƒ˛r?;r�� dx;

where we used in the second equality the fact that r? �r� D 0. This representation was invoked in [Chae
et al. 2012] to prove the existence of global L2 weak solutions of (1-2) in the periodic setting. More
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precisely, the authors proved the commutator estimate

kŒƒs
r; g�hkL2.T2/ � CkhkL2.T2/kgkH sC2C".T2/CCkƒ

shkL2.T2/kgkH2C".T2/

for any s; " > 0. In arbitrary bounded domains, we were not able to establish such a commutator estimate.

We observe that by virtue of Theorem 2.4, the first integral on the right-hand side of (3-1) is well-defined
provided only  2 L2.�/; moreover,ˇ̌̌̌Z

�

Œƒ˛;r?� � r� dx

ˇ̌̌̌
� Ckr�d. � /�˛�2kL2.�/k k

2
L2.�/

;

where by applying the Hardy inequality three times, together with the fact that ˛ 2 .0; 1/, we get

kr�d. � /�˛�2kL2.�/ � Ckr�d. � /
�3
kL2 � Ckr

4�kL2.�/ � Ck�kH4.�/:

Consequently, ˇ̌̌̌Z
�

Œƒ˛;r?� � r� dx

ˇ̌̌̌
� Ck�kH4.�/k k

2
L2.�/

: (3-2)

Regarding the second integral, we prove:

Lemma 3.3. Assume  2D.ƒ˛/. Then

N2. ; �/ WD
Z
�

ƒ�1C˛r? �ƒ1�˛Œƒ˛;r�� dx (3-3)

satisfies

jN2. ; �/j � Ckr�kW 1;1k k2D.ƒ˛/: (3-4)

For any ı 2 .0;min.˛; 1�˛// we have

N2. ;�/D
Z
�

ƒ�1C˛�ır? �ƒŒr�;ƒ�˛Cı �ƒ˛ dxC

Z
�

ƒ�1C˛r? �ƒŒr�;ƒ�ı �ƒı dx: (3-5)

Moreover,

jN2. ; �/j � Ckr�kW 1;1k kD.ƒ˛�ı/k kD.ƒ˛/CCkr�kW 1;1k kD.ƒ˛/k kD.ƒı/: (3-6)

Proof. (1) By Lemma 2.2,
kƒ�1C˛r? kL2 � k kD.ƒ˛/:

On the other hand, a direct calculation gives

ƒ�˛Œƒ˛;r�� D Œr�;ƒ�˛�ƒ˛ ;

which, by virtue of Theorem 2.6, belongs to D.ƒ/ and satisfies

kƒŒr�;ƒ�˛�ƒ˛ kL2 � Ckr�kW 1;1kƒ˛ kL2 D Ckr�kW 1;1k kD.ƒ˛/:

Therefore, the integral defining N2. ; �/ in (3-3) makes sense and obeys the bound (3-4).
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(2) Let ı 2 Œ0;min.˛; 1�˛//. According to (3-3),

N2. ; �/D
˝
ƒ�1C˛r? ;ƒ1�˛Œƒ˛;r�� 

˛
L2;L2

D
˝
ƒ�1C˛�ır? ;ƒ1�˛Cı Œƒ˛;r�� 

˛
D.ƒı/;D.ƒ�ı/

:

Now we write

ƒ1�˛Cı Œƒ˛;r�� Dƒƒ�˛Cı Œƒ˛;r�� 

Dƒ
˚
ƒı.r� /�ƒ�˛Cı.r�ƒ˛ /

	
Dƒ

˚
Œƒı;r�� Cr�ƒı �ƒ�˛Cı.r�ƒ˛ /

	
Dƒ

˚
Œƒı;r�� Cr�ƒ�˛Cıƒ˛ �ƒ�˛Cı.r�ƒ˛ /

	
DƒŒƒı;r�� CƒŒr�;ƒ�˛Cı �ƒ˛ ;

where, according to (2-11),
Œƒı;r�� 2D.ƒ1�ı/;

so
ƒŒƒı;r�� 2D.ƒ�ı/I

on the other hand, according to Theorem 2.6,

ƒŒr�;ƒ�˛Cı �ƒ˛ 2 L2.�/�D.ƒ�ı/:

Thus, we can write

I D
˝
ƒ�1C˛�ır? ;ƒŒr�;ƒ�˛Cı �ƒ˛ 

˛
D.ƒı/;D.ƒ�ı/

C
˝
ƒ�1C˛�ır? ;ƒŒƒı;r�� 

˛
D.ƒı/;D.ƒ�ı/

D

Z
�

ƒ�1C˛�ır? �ƒŒr�;ƒ�˛Cı �ƒ˛ dxC

Z
�

ƒ�1C˛r? �ƒ1�ı Œƒı;r�� dx

D

Z
�

ƒ�1C˛�ır? �ƒŒr�;ƒ�˛Cı �ƒ˛ dxC

Z
�

ƒ�1C˛r? �ƒŒr�;ƒ�ı �ƒı dx:

As in (1), an application of Theorems 2.4, 2.6, and (2-5), with . D ˛ � ı; � D �1 � ˛ � ı/ and
. D ˛;�D�1C˛/, leads to the bound (3-6). �

Let us define

N1. ; �/D
Z
�

Œƒ˛;r?� � r� dx;

N . ; �/D 1
2
N1. ; �/� 1

2
N2. ; �/:

(3-7)

Putting together the above considerations, we have proved:

Lemma 3.4. If  2H 1
0 .�/ then Z

�

u� � r� DN . ; �/:

If � 2 L2.�/ then
jN . ; �/j � Ck�kH4k k2L2 CCkr�kW 1;1k k2D.ƒ˛/
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and for any ı 2 .0;min.˛; 1�˛//,

jN . ; �/j�Ck�kH4k k2L2CCkr�kW 1;1k kD.ƒ˛�ı/k kD.ƒ˛/CCkr�kW 1;1k kD.ƒ˛/k kD.ƒı/:

Viscosity approximations. Let us fix �0 2L2.�/ and a positive time T . For each fixed " > 0 we consider
the viscosity approximation of (1-2)�

@t�
"Cu" � r�"� "��" D 0; t > 0;

�" D �0; t D 0;
(3-8)

with u" Dr? ",  " Dƒ�˛�".
Equation (3-8) can be solved using the Galerkin approximation method as follows. Denote by Pm the

projection in L2.�/ onto the linear span L2m.�/ of eigenfunctions fw1; : : : ; wmg; i.e.,

Pmf D

mX
jD1

fjwj for f D
1X
jD1

fjwj :

We recall the following lemma which shows that Pm� are good approximations of � in any Sobolev
space for � 2 C10 .�/.

Lemma 3.5 [Constantin and Nguyen 2016, Lemma 3.1]. Let � 2 C10 .�/. For all k 2 N we have

lim
m!1

k.I�Pm/�kHk.�/ D 0: (3-9)

The m-th Galerkin approximation of (3-8) is the following ODE system in the finite-dimensional space
PmL

2.�/D L2m: �
P�"mCPm.u

"
m � r�

"
m/� "��

"
m D 0; t > 0;

�"m D Pm�0; t D 0;
(3-10)

with �m.x; t/D
Pm
jD1 �

.m/
j .t/wj .x/ and um D r?ƒ�˛�m automatically satisfying divum D 0. Note

that in general um … L2m. The existence of solutions of (3-10) at fixed m follows from the fact that this is
an ODE:

d�
.m/

l

dt
C

mX
j;kD1


.m/

jkl
�
.m/
j �

.m/

k
C "�l�

.m/

l
D 0;

with


.m/

jkl
D �
�˛
2

j

Z
�

.r?wj � rwk/wl dx:

Since Pm is self-adjoint in L2, um is divergence-free and wj vanishes at the boundary @�, integration
by parts with �m gives Z

�

�mPm.um � r�m/ dx D

Z
�

�mum � r�m dx D 0

and

�

Z
�

��"m�
"
m dx D

Z
�

jr�"mj
2 dx:
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It follows that
1

2

d

dt
k�m. � ; t /k

2
L2.�/

C "kr�"mk
2
L2.�/

D 0;

and thus for t 2 Œ0; T �,

1
2
k�"m. � ; t /k

2
L2.�/

C "

Z t

0

kr�"m. � ; s/k
2
L2.�/

d s D 1
2
k�"m. � ; 0/k

2
L2.�/

�
1
2
k�0k

2
L2.�/

: (3-11)

This can be seen directly on the ODE because  .m/
jkl

is antisymmetric in k; l . Therefore, the smooth
solution �"m of (3-10) exists globally and obeys the L2 bound (3-11). The sequence .�"m/m is thus
uniformly in m bounded in L1.Œ0; T �IL2.�//\L2.Œ0; T �IH 1

0 .�//. Consequently, for any p 2 Œ1;1/
and any q 2 Œ1; 2=.1�˛/�, we have

�"m 2 L
2.Œ0; T �IH 1

0 .�//� L
2.Œ0; T �ILp.�//;

u"m Dr
?ƒ�˛�m 2 L

2.Œ0; T �IH˛.�//� L2.Œ0; T �ILq.�//;

with bounds uniform with respect to m, where we have used Lemma 2.1 to have

ƒ�˛�m 2 L
2.Œ0; T �ID.ƒ1C˛//� L2.Œ0; T �IH 1C˛.�//:

In particular,

ku"m � r�
"
mkL1.Œ0;T �IH�1.�// D k div.u"m � �

"
m/kL1.Œ0;T �IH�1.�//

� Ck�"mk
2
L2.Œ0;T �IH1.�//

�
C

"
k�0k

2
H1.�/

; (3-12)

where (3-11) was invoked in the last inequality. Therefore, using (3-10) we obtain that .@t�"m/m is
uniformly in m bounded in L1.Œ0; T �IH�1.�//. Then according to the Aubin–Lions lemma [Lions
1969], there exist a �",

�" 2 L1.Œ0; T �IL2.�//\L2.Œ0; T �IH 1
0 .�//; (3-13)

and a subsequence of .�"m/m such that

�"m! �" strongly in Lp.Œ0; T �IH��.�//\L2.Œ0; T �IH 1��
0 .�// (3-14)

for any p <1 and � 2 .0; 1/.
Integrating by parts the first equation of (3-10) against any test function � 2 C10 .�� .0; T // givesZ T

0

Z
�

�"m @t� dx dt C

Z T

0

Z
�

�"mu
"
m � rPm�.x; t/ dx dt C "

Z T

0

Z
�

�"m�� dx dt D 0: (3-15)

In the limit m!1, the first term and the third term converge respectively toZ T

0

Z
�

�" @t� dx dt; "

Z T

0

Z
�

�"�� dx dt:
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It remains to study the nonlinear term:

N WD

Z T

0

Z
�

�"mu
"
m�rPm� dx dt�

Z T

0

Z
�

�"u"�r� dx dt

D

Z T

0

Z
�

�"mu
"
m�r.Pm���/ dx dtC

Z T

0

Z
�

.�"m��
"/u"m�r� dx dtC

Z T

0

Z
�

�".u"m�u
"/�r� dx dt

DWN1CN2CN3:

Lemma 3.5 ensures that limm!1N1 D 0. On the other hand, the strong convergence (3-14) with
sufficiently small � implies limm!1N2 D limm!1N3 D 0. Thus, we have proved that �" satisfiesZ T

0

Z
�

�" @t� dx dt C

Z T

0

Z
�

�"u" � r� dx dt C "

Z T

0

Z
�

�"�� dx dt D 0

for all � 2 C10 .�� .0; T //. Here, �" has the regularity (3-13), and in view of (3-11),

k�"k2
L1.Œ0;T �IL2.�//

C 2"k�"k2
L2.Œ0;T �IH1

0 .�//
� k�0k

2
L2.�/

: (3-16)

Since  ". � ; t / 2 D.ƒ1C˛/ � H 1
0 .�/ for a.e. t > 0, using Lemma 3.4 for the representation of the

nonlinearity, we obtain for all � 2 C10 .�� .0; T //,Z T

0

Z
�

�" @t� dx dt C

Z T

0

N . "; �/ dt C "
Z T

0

Z
�

�"�� dx dt D 0: (3-17)

Moreover, integrating by parts (3-10) with  "m leads to

1

2

d

dt
k "m. � ; t /k

2
D.ƒ˛=2/

C "k "m. � ; t /k
2
D.ƒ1C˛=2/

D 0;

where we used the fact that the nonlinear term vanishes:Z
�

 "mPm.u
"
m � r�

"
m/ dx D

Z
�

 "m div.r? "m�m/ dx D�
Z
�

r "m � r
? "m�m dx D 0:

Consequently, integrating in time and letting m!1 results in

k ". � ; t /k2
D.ƒ˛=2/

C 2"

Z t

0

k ". � ; s/k2
D.ƒ1C˛=2/

d s D k ". � ; 0/k2
D.ƒ˛=2/

for all t > 0: (3-18)

Vanishing viscosity. In order to extract a convergent subsequence of �" we need, in addition to (3-16),
a uniform bound for @t�" in a lower norm. Let us note that the bound (3-12) is not uniform in ". By
(3-13), �". � ; t / 2D.ƒ/ for a.e. t > 0, which implies  ". � ; t /Dƒ�˛�". � ; t / 2D.ƒ1C˛/�D.ƒ/ for
a.e. t > 0. Lemma 3.4 then givesˇ̌̌̌Z

�

�"u" � r� dx

ˇ̌̌̌
� Ck�kH4.�/k 

"
k
2
D.ƒ˛/ � Ck�kH4.�/k�0k

2
L2.�/

;

and hence, in view of (3-17),ˇ̌̌̌Z T

0

Z
�

�" @t� dx dt

ˇ̌̌̌
� Ck�kL1.Œ0;T �IH4.�//

�
k�0kL2.�/Ck�0k

2
L2.�/

�
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for all � 2 C10 .�� .0; T //. Consequently,

k@t�
"
kL1.Œ0;T �IH�4.�// � C

�
k�0kL2.�/Ck�0k

2
L2.�/

�
: (3-19)

In view of the uniform bounds (3-16) and (3-19), the Aubin–Lions lemma ensures the existence of a � ,

� 2 L1.Œ0; T �IL2.�//\C.Œ0; T �IH��.�// for all � > 0;

and a subsequence �" such that

�"*� weakly in L2.Œ0; T �IL2.�//; (3-20)

�"! � strongly in C.Œ0; T �IH��.�// for all � > 0: (3-21)

Consequently, with  WDƒ�˛� ,

 2 L1.Œ0; T �ID.ƒ˛//\C.Œ0; T �ID.ƒ˛��/ for all � > 0;
we have

 "* weakly in L2.Œ0; T �ID.ƒ˛//; (3-22)

 "!  strongly in C.Œ0; T �ID.ƒ˛��// for all � > 0: (3-23)

Let � 2 C10 .�� .0; T // a be fixed test function, we send " to 0 in the weak formulation (3-17). The first
term converges to

R T
0

R
� � @t� dx dt and the last term converges to 0. Regarding the nonlinear term, we

shall prove that

R" WD

Z T

0

N . "; �/�N . ; �/ dt

converges to 0. In view of (3-1), (3-5), we have 2R" D
P6
jD1 I

"
j with

I "1 D

Z
�

Œƒ˛;r?�. "� / � r� " dx;

I "2 D

Z
�

Œƒ˛;r?� � r�. "� / dx;

I "3 D�

Z T

0

Z
�

ƒ�1C˛�ır?. "� / �ƒŒr�;ƒ�˛Cı �ƒ˛ " dx dt;

I "4 D�

Z T

0

Z
�

ƒ�1C˛�ır? �ƒŒr�;ƒ�˛Cı �ƒ˛. "� / dx dt;

I "5 D�

Z
�

ƒ�1C˛r?. "� / �ƒŒr�;ƒ
�ı �ƒı dx;

I "6 D�

Z
�

ƒ�1C˛r? " �ƒŒr�;ƒ
�ı �ƒı. "� / dx;

where ı 2 .0;min.˛; 1�˛//.
By virtue of Theorem 2.4 and the fact that � 2 C10 .�/,

jI "1 j � C.�/k "� kL2.�/k "kL2.�/; jI
"
2 j � C.�/k "� kL2.�/k kL2.�/:

Hence lim"!0 I "1 D lim"!0 I "2 D 0 in view of the convergence (3-23) with � < ˛.
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As for (3-6),

jI "3 j � Ckr�kL1.Œ0;T �IW 1;1/k 
"
� kL1.Œ0;T �ID.ƒ˛�ı//k 

"
kL1.Œ0;T �ID.ƒ˛//;

which combined with (3-23) leads to lim"!0 I "3 D 0. Because ƒŒr�;ƒ�˛Cı �ƒ˛ is norm continuous
from L2.Œ0; T �ID.ƒ˛// to L2.Œ0; T �IL2.�// (according to Theorem 2.6), it is weak-weak continuous,
and thus lim"!0 I "4 D 0 noticing that by (2-5),

ƒ�1C˛�ır? 2 L1.Œ0; T �ID.ƒı//� L2.Œ0; T �IL2.�//:

Similarly, lim"!0 I "5 D 0 since ƒ�1C˛r?. " �  / * 0 in L2.Œ0; T �ID.ƒ˛// by (3-22), and since
ƒŒr�;ƒ�ı �ƒı 2 L2.Œ0; T �IL2.�// by Theorem 2.6. Finally, by (2-5) and Theorem 2.6,

jI "6 j � kƒ
�1C˛

r
? "kL2.�/kƒŒr�;ƒ

�ı �ƒı. "� /kL2.�/ � k "kD.ƒ˛/k "� kD.ƒı/! 0;

noticing that ı < ˛. We conclude thatZ T

0

Z
�

� @t� dx dt C

Z T

0

N . ; �/ dt D 0 for all � 2 C10 .�� .0; T //:

Moreover, because of the strong convergence (3-21) the initial data is attained:

�. � ; 0/D lim
"!0

�". � ; 0/D lim
"!0

�0. � /D �0. � / in H��.�/ for all � > 0:

Let us now show the conservation (1-9). In view of (3-16) and the fact that �" Dƒ˛ " we have

kƒ˛ "k2
L1.Œ0;T �IL2.�//

C 2"kƒ1C˛ "k2
L2.Œ0;T �IL2.�//

� k�0k
2
L2.�/

:

By interpolation,

kƒ1C
˛
2 "kL2.�/ � Ckƒ

1C˛ "ka
L2.�/

kƒ˛ "k1�a
L2.�/

; aD 1� ˛
2
:

Hölder’s inequality then yields

kƒ1C
˛
2 "k2

L2.Œ0;T �IL2.�//
� Ckƒ˛ "k

2.1�a/

L1.Œ0;T �IL2.�//
kƒ1C˛ "k2a

L2.Œ0;T �IL2.�//
T
˛
2

� CT
˛
2 k�0k

2
L2.�/

"�1C
˛
2 for all T > 0:

In particular,
lim
"!0

"kƒ1C
˛
2 "k2

L2.Œ0;T �IL2.�//
D 0 for all T > 0:

Letting "! 0 in (3-18) we obtain (1-9).
Finally, the energy inequality (1-8) follows from (3-16) and lower semicontinuity.

Remark 3.6. If we implement directly the Galerkin approximations for (1-2) then in view of (3-1), we
need to bound ˇ̌̌̌Z

�

Œƒ˛;r?� m � rPm� m dx

ˇ̌̌̌
:

However, the commutator Œƒ˛;r?� then cannot be bounded by means of Theorem 2.4 because rPm�

does not vanish on the boundary even though � has compact support. In [Constantin and Nguyen 2016],
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we overcame this by first using Lemma 3.5 and the fact that um�m is uniformly bounded in L1.�/ to
approximate

R
� um�mrPm� by

R
� um�mr�. When ˛ < 1, this argument breaks down since um�m is

not anymore uniformly bounded in L1.�/. This explains why we proceeded in the proof of Theorem 1.1
using vanishing viscosity approximations.

Appendix A: Proof of Theorem 2.6

In view of the identity

D�r D cr

Z 1
0

t�1Cre�tD dt

with D; r > 0 we have the representation of negative powers of Laplacian via heat kernel:

ƒ�sf .x/D cs

Z 1
0

t�1C
s
2 et�f .x/ dt; s > 0: (A-1)

Let H.x; y; t/ denote the heat kernel of �; i.e.,

et�f .x/D

Z
�

H.x; y; t/f .y/ dy for all x 2�:

We have from [Li and Yau 1986] the following bounds on H and its gradient:

H.x; y; t/� Ct�
d
2 e�

jx�yj2

Kt ; (A-2)

jrxH.x; y; t/j � Ct
� 1
2
�d
2 e�

jx�yj2

Kt (A-3)

for all .x; y/ 2��� and t > 0.
We will also use the elementary estimateZ 1

0

t�1�
m
2 e�

p2

Kt dt � CK;mp
�m; m; p;K > 0: (A-4)

Let f 2 C10 .�/. Using (A-1) we have

Œƒ�s; a�f .x/D cs

Z 1
0

t�1C
s
2

Z
�

H.x; y; t/a.y/f .y/ dt � cs a.x/

Z 1
0

t�1C
s
2

Z
�

H.x; y; t/f .y/ dt

D cs

Z 1
0

t�1C
s
2

Z
�

H.x; y; t/Œa.y/� a.x/�f .y/ dt:

(A-5)
In view of (A-2), (A-4), and the assumption that s < d , we deduce that

jŒƒ�s; a�f .x/j � CkakL1

Z
�

Z 1
0

t�1C
s
2
�d
2 e�

jx�yj2

Kt dt jf .y/j dy

� CkakL1

Z
�

jf .y/j

jx�yjd�s
dy: (A-6)
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Let us recall the Hardy–Littlewood–Sobolev inequality. Let ˛ 2 .0; d/ and .p; r/ 2 .1;1/ satisfy

1

p
C
˛

d
D 1C

1

r
: (A-7)

A constant C then exists such that

kf � j � j�˛kLr .Rd / � Ckf kLp.Rd /: (A-8)

Applying (A-8) with ˛ D d � s leads to

kŒƒ�s; a�f kLr .�/ � CkakL1kf kLp.�/: (A-9)

Let 0 denote the trace operator for �. It is readily seen that 0.ƒ�sf /D 0 because ƒ�sf 2D.ƒm/
for all m � 0; hence 0.aƒ�sf / D 0.a/0.ƒ�sf / D 0. In addition, af 2 H 1

0 .�/ D D.ƒ/; hence
ƒ�s.af / 2D.ƒ1Cs/�H 1

0 .�/ and 0.ƒ�s.af //D 0. We deduce that

0.Œƒ
�s; a�f /D 0: (A-10)

Next, for gradient bound we differentiate (A-5) and obtain

rŒƒ�s; a�f .x/D cs

Z 1
0

t�1C
s
2

Z
�

rxH.x; y; t/Œa.y/� a.x/�f .y/ dt

� cs

Z 1
0

t�1C
s
2

Z
�

H.x; y; t/ra.x/f .y/ dt

DW I C II:

The term II can be treated as above and we have

kIIkLr .�/ � CkrakL1kf kLp.�/: (A-11)

For I, we use the gradient estimate (A-3) for the heat kernel and the fact that

ja.x/� a.y/j � krakL1 jx�yj

to arrive at

jI.x/j � CkrakL1

Z
�

Z 1
0

t�1C
s
2
� 1
2
�d
2 e�

jx�yj2

Kt dt jx�yjjf .y/j dy

� CkrakL1

Z
�

jf .y/j

jx�yjd�s
dy:

Appealing to (A-8) as before gives

kIkLr .�/ � CkrakL1kf kLp.�/;

which, combined with (A-9), (A-11), (A-10), leads to

kŒƒ�s; a�f k
W
1;r
0 .�/

� CkakW 1;1.�/kf kLp.�/; (A-12)

where p; r satisfy (A-8) with ˛ D d � s. Using the density of C10 .�/ in Lp.�/ for p 2 .1;1/, and
extension by continuity, we conclude that the estimate (A-12) holds for any f 2 Lp.�/.
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Now, for any p 2 .0;1/, if s < d
p

then r 2 .1;1/ given by

1

r
D
1

p
�

s

d

satisfies (A-8). Because r > p and � is bounded, the continuous embedding W 1;r
0 .�/�W

1;p
0 .�/ yields

kŒƒ�s; a�f k
W
1;p
0 .�/

� CkakW 1;1.�/kf kLp.�/: (A-13)

Appendix B: Proof of Theorem 2.7

In view of the identity

�
s
2 D cs

Z 1
0

t�1�
s
2 .1� e�t�/ dt

with 0 < s < 2 and

1D cs

Z 1
0

t�1�
s
2 .1� e�t / dt;

we have the representation of the fractional Laplacian via heat kernel

ƒsf .x/D cs

Z 1
0

t�1�
s
2 .1� et�/f .x/ dt; 0 < s < 2: (B-1)

Appealing to this representation, we have for f 2 C10 .�/

Œƒs; a�f .x/D cs

Z 1
0

t�1�
s
2

Z
�

H.x; y; t/ dt Œa.x/� a.y/�f .y/ dy:

In view of (A-2), the fact that
ja.x/� a.y/j � kakC jx�yj

;

and (A-4), we deduce that

jŒƒs; a�f .x/j � cskakC

Z
�

Z 1
0

t�1�
s
2
�d
2 e�

jx�yj2

Kt dt jx�yj jf .y/j dy

� cskakC

Z
�

jf .y/j

jx�yjdCs�
dy:

Then as in the proof of Theorem 2.6, if s <  (note that d C s �  > 0), an application of the Hardy–
Littlewood–Sobolev inequality leads to the bound (2-9). Finally, (2-10) follows from (2-9) and the fact
that � is bounded.
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SCALE-FREE UNIQUE CONTINUATION PRINCIPLE FOR
SPECTRAL PROJECTORS, EIGENVALUE-LIFTING AND

WEGNER ESTIMATES FOR RANDOM SCHRÖDINGER OPERATORS

IVICA NAKIĆ, MATTHIAS TÄUFER, MARTIN TAUTENHAHN AND IVAN VESELIĆ

We prove a scale-free, quantitative unique continuation principle for functions in the range of the spectral
projector χ(−∞,E](HL) of a Schrödinger operator HL on a cube of side L ∈ N, with bounded potential.
Previously, such estimates were known only for individual eigenfunctions and for spectral projectors
χ(E−γ,E](HL) with small γ . Such estimates are also called, depending on the context, uncertainty
principles, observability estimates, or spectral inequalities. Our main application of such an estimate
is to find lower bounds for the lifting of eigenvalues under semidefinite positive perturbations, which
in turn can be applied to derive a Wegner estimate for random Schrödinger operators with nonlinear
parameter-dependence. Another application is an estimate of the control cost for the heat equation in a
multiscale domain in terms of geometric model parameters. Let us emphasize that previous uncertainty
principles for individual eigenfunctions or spectral projectors onto small intervals were not sufficient to
study such applications.

1. Introduction

We prove a quantitative unique continuation inequality, announced in [Nakić et al. 2015b], for functions
in the range of the spectral projector χ(−∞,E](HL) of a Schrödinger operator HL on a cube of side L ∈N.
Depending on the area of mathematics and the context, estimates of this type have various names: quanti-
tative unique continuation principles (UCP), uncertainty principles, spectral inequalities, observability
or sampling estimates, or bounds on the vanishing order. For our applications it is crucial (i) to exhibit
explicitly the dependence of the quantitative unique continuation inequality on the model parameters, and
(ii) to allow energy intervals (−∞, E] of arbitrary length, that is, for arbitrary E . If the observability or
sampling set respects in a certain way the underlying lattice structure, our estimate is independent of L;
for this reason we call it scale-free. This property is crucial for applications where one studies spectral
properties of the Schrödinger operator HL in the thermodynamic limit L ↗∞.

A key motivation to study scale-free quantitative unique continuation estimates comes from the theory
of random Schrödinger operators, in particular with nonlinear dependence on the random variables. The
class of operators considered here includes the random breather model as studied in [Combes et al. 1996;
2001; Täufer and Veselić 2015; 2016]. Models with nonlinear randomness constitute a step towards a
better understanding of the universality of Anderson localization.

MSC2010: primary 35J10, 35P15, 35Q82, 35R60, 81Q10; secondary 81Q15.
Keywords: uncertainty relation, spectral inequality, Wegner estimate, control of heat equation, random Schroedinger operator.
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We establish eigenvalue-lifting estimates, Wegner bounds, and the continuity of the integrated density
of states. (We defer precise definitions to Section 2.) In fact, there are a number of previous papers which
have derived a scale-free UCP and eigenvalue-lifting estimates under special assumptions.

Naturally, the first situation to be considered was the case where the Schrödinger operator is the pure
Laplacian H =−1, i.e., the background potential V vanishes identically. For instance, [Kirsch 1996]
derives a UCP which is valid for energies in an interval at zero, i.e., the bottom of the spectrum, if one has
a periodic arrangement of sampling sets. The proof uses detailed information about hitting probabilities of
Brownian motion paths, and is related to Harnack inequalities. A very elementary approach to eigenvalue-
lifting estimates is provided by the spatial averaging trick, used in [Bourgain and Kenig 2005; Germinet
et al. 2007] in periodic situations, and extended to nonperiodic situations in [Germinet 2008]. It is
applicable to energies near zero. A different approach for eigenvalue-lifting was derived in [Boutet de
Monvel et al. 2006]. In [Boutet de Monvel et al. 2011] it was shown how one can conclude an uncertainty
principle at low energies based on an eigenvalue-lifting estimate. Related results have been derived for
energies near spectral edges in [Kirsch et al. 1998; Combes et al. 2001] using resolvent comparison.
In one space dimension, eigenvalue-lifting results and Wegner estimates have been proven in [Veselić
1996; Kirsch and Veselić 2002]. There a periodic arrangement of the sampling set is assumed. The proof
carries over to the case of nonperiodic arrangements verbatim, which has been spelled out and used in the
context of quantum graphs in [Helm and Veselić 2007]. In the case that both the deterministic background
potential and the sampling set are periodic, an uncertainty principle and a Wegner estimate, which are
valid for arbitrary bounded energy regions, have been proven in [Combes et al. 2003; 2007]. These papers
make use of Floquet theory; hence they are a priori restricted to periodic background potentials as well as
periodic sampling sets. An alternative proof for the result in [Combes et al. 2007], with more explicit
control of constants, has been worked out in [Germinet and Klein 2013]. The case where the background
potential is periodic but the impurities need not be periodically arranged has been considered in [Boutet de
Monvel et al. 2006; Germinet 2008] for low energies. Our main theorem unifies and generalizes all the
results mentioned so far and makes the dependence on the model parameters quantitative. Indeed, our
scale-free unique continuation principle answers positively a question asked in [Rojas-Molina and Veselić
2013]. A partial answer was given already in [Klein 2013]. While [Rojas-Molina and Veselić 2013]
concerns the case of a single eigenfunctions, [Klein 2013] uses a very nice perturbation argument to treat
linear combinations of eigenfunctions corresponding to eigenvalues which lie in an interval whose size is
smaller than an explicitly determined number. For a broader discussion we refer to the summer school
notes [Täufer et al. 2016].

A second application of our scale-free UCP is in the control theory of the heat equation. Here one asks
whether one can drive a given initial state to a desired state with a control function living in a specified
subset, and what the minimal L2-norm of the control function (called control cost) is. Recently, the search
for optimal placement of the control set and the dependence of the control cost on geometric features of
this set has received much attention; see, e.g., [Privat et al. 2015b; 2015a]. Our scale-free UCP gives an
explicit estimate of the control cost with respect to the model parameters in multiscale domains. While
this is of interest in itself, our main motivation to include the application to control theory in our paper is
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to bring to attention the relation between methods and ideas from this field and the theory of random
Schrödinger operators. This relation has not been explored before and it seems that it can be effectively
used in other problems of random operators.

Other authors have applied our main result, as announced in [Nakić et al. 2015b], to prove decorrelation
estimates for eigenvalues of random Schrödinger operators [Shirley 2015] and lower bounds on averaged
spectral shift functions [Dietlein et al. 2017]. We will generalize the methods of the present paper to
certain unbounded domains in Rd in a forthcoming paper, while two of us have extended the results to
certain infinite-dimensional spectral subspaces in [Täufer and Tautenhahn 2017].

Our proof of the scale-free unique continuation estimate uses two Carleman and nested interpolation
bounds to obtain propagation of smallness estimates, an idea used before, e.g., in [Lebeau and Robbiano
1995; Jerison and Lebeau 1999]. Roughly speaking, one of the Carleman estimates establishes propagation
of smallness from a set of codimension one to a small ball, and the other one from a small ball to a larger
ball. To obtain explicit estimates we need explicit weight functions. The first Carleman estimate includes
a boundary term and uses a parabolic weight function as proposed in [Jerison and Lebeau 1999]. The
second Carleman estimate is similar to the ones in [Escauriaza and Vessella 2003; Bourgain and Kenig
2005]. However, neither of the two is quite sufficient for our purposes, so we use a variant developed
in [Nakić et al. 2015a]. A similar result was established recently in [Davey 2014]. Moreover, at first
sight it seems that one can get our result simply by summing up doubling estimates (which are a standard
consequence of Carleman estimates). However, the prefactor in the doubling estimate depends on the
ambient space, in particular its diameter. In our case we consider a family of domains 3L , L ∈N, and
the diameter grows unboundedly in L; hence the constant in the doubling estimate becomes worse and
worse. Thus, to eliminate the L-dependence we have to use techniques developed in the context of
random Schrödinger operators to accommodate for the multiscale structure of the underlying domain and
sampling set.

In the next section we state our main results. Section 3 is devoted to the proof of the scale-free unique
continuation principle, Section 4 to proofs concerning random Schrödinger operators, and Section 5 to
the observability estimate of the control equation, while certain technical aspects are deferred to the
Appendix.

2. Results

Scale-free unique continuation and eigenvalue lifting. Let d ∈ N. For L > 0 we denote by 3L =

(−L/2, L/2)d ⊂ Rd the cube with side length L , and by 1L the Laplace operator on L2(3L) with
Dirichlet, Neumann or periodic boundary conditions. Moreover, for a measurable and bounded V :Rd

→R

we denote by VL :3L → R its restriction to 3L given by VL(x)= V (x) for x ∈3L , and by

HL =−1L + VL on L2(3L)

the corresponding Schrödinger operator. Note that HL has purely discrete spectrum. For x ∈ Rd and
r > 0 we denote by B(x, r) the ball with center x and radius r with respect to Euclidean norm. If the ball
is centered at zero we write B(r)= B(0, r).
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Definition 2.1. Let G>0 and δ>0. We say that a sequence z j ∈Rd, j ∈(GZ)d, is (G,δ)-equidistributed, if

for all j ∈ (GZ)d we have B(z j , δ)⊂3G + j.

Corresponding to a (G, δ)-equidistributed sequence we define for L ∈ GN the set

Wδ(L)=
⋃

j∈(GZ)d

B(z j , δ)∩3L .

Theorem 2.2. There is N = N (d) such that for all δ ∈
(
0, 1

2

)
, all (1, δ)-equidistributed sequences, all

measurable and bounded V : Rd
→ R, all L ∈ N, all E ≥ 0 and all φ ∈ Ran(χ(−∞,E](HL)) we have

‖φ‖2L2(Wδ(L))
≥ Csfuc‖φ‖

2
L2(3L )

, (1)
where

Csfuc = Csfuc(d, δ, E, ‖V ‖∞) := δN (1+‖V ‖2/3∞ +
√

E).

The result can be formulated in terms of spectral projectors. This is the convenient form to use in the
context of random Schrödinger operators.

Corollary 2.3. Under the same assumptions as in the above theorem, we have in the sense of quadratic
forms

χ(−∞,E](HL) χWδ(L) χ(−∞,E](HL)≥ δ
N (1+‖V ‖2/3∞ +

√
E)χ(−∞,E](HL). (2)

Here χWδ(L) denotes the multiplication operator with a characteristic function, and χ(−∞,E](HL) denotes
a spectral projector.

The crucial point here is that we allow energy intervals (−∞, E] of arbitrary length. It is not possible
to achieve this result with the methods of [Rojas-Molina and Veselić 2013; Klein 2013]. For t, L > 0
and a measurable and bounded V : Rd

→ R we define the Schrödinger operator Ht,L =−t1L + VL on
L2(3L). By scaling we obtain the following corollary.

Corollary 2.4. Let N = N (d) be the constant from Theorem 2.2. Then, for all G, t > 0, all δ ∈ (0,G/2),
all (G, δ)-equidistributed sequences, all measurable and bounded V : Rd

→ R, all L ∈ GN, all E ≥ 0
and all φ ∈ Ran(χ(−∞,E](Ht,L)) we have

‖φ‖2L2(Wδ(L))
≥ CG,t

sfuc‖φ‖
2
L2(3L )

,

where

CG,t
sfuc = CG,t

sfuc(d, δ, E, ‖V ‖∞) :=
(
δ

G

)N (1+G4/3
‖V ‖2/3∞ /t2/3

+G
√

E/t )

.

Note that the set Wδ(L) depends on G and the choice of the (G, δ)-equidistributed sequence. In
particular, there is a constant M = M(d,G, t)≥ 1 such that

CG,t
sfuc ≥ δ

M(1+‖V ‖2/3∞ +
√
|E |). (3)

We also emphasize that Theorem 2.2 and Corollary 2.4 also hold for E < 0, since

Ran(χ(−∞,E](H))⊂ Ran(χ(−∞,0](H))

for any self-adjoint operator H.
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Remark 2.5 (previous results). If L = G the result is closely related to doubling estimates and bounds
on the vanishing order; see [Lebeau and Robbiano 1995; Kukavica 1998; Jerison and Lebeau 1999; Bakri
2013]. These results, however, do not study the dependence of the bound on geometric data, e.g., the
diameter of the domain or manifold. In the context of random Schrödinger operators results like (1)
have been proven before under additional assumptions and using other methods: for V ≡ 0 and energies
close to the minimum of the spectrum in [Kirsch 1996; Bourgain and Kenig 2005], near spectral edges of
periodic Schrödinger operators in [Kirsch et al. 1998], and for periodic geometries Wδ(L) and potentials
in [Combes et al. 2003]. More recently and using similar methods to ours, bounds like (1) have been
established for individual eigenfunctions in [Rojas-Molina and Veselić 2013]. This has then been extended
in [Klein 2013] to linear combinations of eigenfunctions corresponding to eigenvalues which are close
to each other. For more references and a broader discussion of the history see, e.g., [Rojas-Molina and
Veselić 2013; Klein 2013; Täufer et al. 2016].

As an application to spectral theory we have the following corollary. A proof is given at the end of
Section 3.

Corollary 2.6. Let E, α,G > 0, δ ∈ (0,G/2), L ∈ GN and A, B : 3L → R be measurable, bounded
potentials and assume that

B ≥ αχWδ(L)

for a (G, δ)-equidistributed sequence. Denote the eigenvalues of a self-adjoint operator H with discrete
spectrum by λi (H), enumerated increasingly and counting multiplicities. Then for all i ∈ N with
λi (−1+ A+ B)≤ E , we have

λi (−1L + A+ B)≥ λi (−1L + A)+αCG,1
sfuc(d, δ, E, ‖A+ B‖∞).

Remark 2.7 (generalizations). In [Täufer and Tautenhahn 2017] it has been proven that Corollary 2.4
holds also if χ(−∞,E](HL) is replaced by exp(−t HL) for sufficiently large t > 0. An adaptation of our
methods allows us to treat Schrödinger operators H on the whole of Rd instead on cubes. This will be
discussed in our forthcoming paper. An important consequence of this result is a lifting estimate for
boundaries of the essential spectrum, quite analogous to Corollary 2.6. Finally, let us remark that an
analog of Theorem 2.2 for the case V ≡ 0 where the equidistributed set needs only to be measurable (and
not open) has been established in [Egidi and Veselić 2016] using different methods.

Application to random breather Schrödinger operators. An important application of our result is in the
spectral theory of random Schrödinger operators. The above scale-free unique continuation estimate is
the key for proving the Wegner estimate formulated below, which is a bound on the expected number of
eigenvalues in a short energy interval of a finite box restriction of our random Hamiltonian. Together
with a so-called initial scale estimate, Wegner estimates facilitate a proof of Anderson localization via
multiscale analysis. For more background on multiscale analysis and localization and on Wegner estimates
consult, e.g., the monographs [Stollmann 2001] and [Veselić 2008], respectively.

The main point is that the potentials we are dealing with here exhibit a nonlinear dependence on the
random parameters ωj . Due to this challenge, it is not clear how to apply previously established versions
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of (1), as discussed in Remark 2.5, to such models. We emphasize that our scale-free unique continuation
principle and Wegner estimate are valid for all bounded energy intervals, not only near the bottom of the
spectrum.

Let us introduce a simple, but paradigmatic example of the models we are considering. (The general
case will be studied in the next paragraph.)

Let D be a countable set to be specified later. For 0≤ ω− < ω+ < 1 we define the probability space
(�,A,P) with

�=×
j∈D

R, A=
⊗
j∈D

B(R) and P=
⊗
j∈D

µ,

where B(R) is the Borel σ -algebra and µ is a probability measure with suppµ⊂ [ω−, ω+] and a bounded
density νµ. Hence, the projections ω 7→ ωk give rise to a sequence of independent and identically
distributed random variables ωj , j ∈ D. We denote by E the expectation with respect to the measure P.
The standard random breather model is defined as

Hω =−1+ Vω(x) with Vω(x)=
∑
j∈Zd

χBωj
(x − j), (4)

and the restriction of Hω to the box 3L is denoted by Hω,L . Here obviously D = Zd. Denote by
χ[E−ε,E+ε](Hω,L) the spectral projector of Hω,L . We formulate now a version of our general Theorem 2.10
applied to the standard random breather model.

Theorem 2.8 (Wegner estimate for the standard random breather model). Assume that [ω−, ω+] ⊂
[
0, 1

4

]
,

fix E0 ∈ R, and set εmax =
1
4 · 8
−N (2+|E0+1|1/2), where N is the constant from Theorem 2.2. Then there is

C = C(d, E0) ∈ (0,∞) such that for all ε ∈ (0, εmax] and E ≥ 0 with [E − ε, E + ε] ⊂ (−∞, E0], we
have

E
[
Tr[χ[E−ε,E+ε](Hω,L)]

]
≤ C‖ν‖∞ε[N (2+|E0+1|1/2)]−1

|ln ε|d Ld.

Theorem 2.8 implies local Hölder continuity of the integrated density of states (IDS) and is sufficient
for the multiscale analysis proof of spectral localization; see the next paragraph.

Remark 2.9 (previous results on the random breather model). The paper [Combes et al. 1996] introduced
random breather potentials, while a Wegner estimate was proven in [Combes et al. 2001], however,
excluding any bounded and any continuous single site potential; see the Appendix. Lifshitz tails for
random breather Schrödinger operators were proven in [Kirsch and Veselić 2010]. All of the papers
mentioned so far approached the breather model using techniques which have been developed for the
alloy-type model. Consequently, at some stage the nonlinear dependence on the random variables was
linearized, giving rise to certain differentiability conditions. As a result, characteristic functions of cubes
or balls, which would be the most basic example one can think of, were excluded as single-site potentials.
Only [Veselić 2007] considers a simple nondifferentiable example, namely the standard random breather
potential in one dimension, and proves a Lifshitz tail estimate. This will be extended to multidimensional
models in the forthcoming paper [Schumacher and Veselić 2017].
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More general nonlinear models and localization. We formulate now a Wegner estimate for a general
class of models, which includes the standard random breather potential, considered in the last paragraph
as a special case. We state also an initial scale estimate which implies localization.

Here, in the general setting, we assume that D ⊂ Rd is a Delone set; i.e., there are 0< G1 < G2 such
that for any x ∈ Rd we have ]{D∩ (3G1 + x)} ≤ 1 and ]{D∩ (3G2 + x)} ≥ 1. Here, ]{ · } stands for the
cardinality. In other words, Delone sets are relatively dense and uniformly discrete subsets of Rd. For
more background about Delone sets, see, for example, the contributions in [Kellendonk et al. 2015]. The
reader unacquainted with the concept of a Delone set can always think of D = Zd.

Furthermore, let {ut : t ∈ [0, 1]} ⊂ L∞0 (R
d) be functions such that there are Gu ∈ N, umax ≥ 0,

α1, β1 > 0 and α2, β2 ≥ 0 with

∀t ∈ [0, 1], supp ut ⊂3Gu ,

∀t ∈ [0, 1], ‖ut‖∞ ≤ umax,

∀t ∈ [ω−, ω+], δ ≤ 1−ω+, ∃x0 ∈3Gu , ut+δ − ut ≥ α1δ
α2χB(x0,β1δ

β2 ).

(5)

We define the family of Schrödinger operators Hω, ω ∈�, on L2(Rd) given by

Hω := −1+ Vω, where Vω(x)=
∑
j∈D

uωj (x − j).

Note that for all ω ∈ [0, 1]D we have

‖Vω‖∞ ≤ Ku := umaxdGu/G1e
d
;

see Lemma 4.1. Assumption (5) includes many prominent models of random Schrödinger operators —
linear and nonlinear. We give some examples.

Standard random breather model: Let µ be the uniform distribution on
[
0, 1

4

]
and let ut(x) = χB(0,t),

j ∈ Zd. Then Vω =
∑

j∈Zd χB( j,ωj ) is the characteristic function of a disjoint union of balls with random
radii. This model was introduced in the previous subsection.

General random breather models: Let 0≤ u ∈ L∞0 (R
d) and define ut(x) := u(x/t) for t > 0 and u0 :≡ 0

and assume that the family {ut : t ∈ [0, 1]} satisfies (5). Natural examples are discussed in the Appendix.
They include the characteristic function of bounded convex sets, the hat-potential (1− |x |)χ{|x |<1} or the
bump function exp(1/(|x |2− 1))χ{|x |<1}. Then Vω(x)=

∑
j∈Zd uωj (x − j) is a sum of random dilations

of a single-site potential u at each lattice site j ∈ Zd.

Alloy-type model: Let 0 ≤ u ∈ L∞0 (R
d), u ≥ α > 0, on some open set and let ut(x) := tu(x). Then

Vω(x)=
∑

j∈Zd ωj u(x − j) is a sum of copies of u at all lattice sites j ∈ Zd, multiplied with ωj .

Delone-alloy-type model: Let D ⊂ Rd be a Delone set, 0≤ u ∈ L∞0 (R
d), u ≥ α > 0, on some nonempty

open set and let ut(x) := tu(x). Then Vω(x)=
∑

j∈D ωj u(x − j) is a sum of copies of u at all Delone
points j ∈ D, multiplied with ωj . See [Germinet et al. 2015] for background on such models.

For L > 0 we denote by Hω,L the restriction of Hω to L2(3L) with Dirichlet boundary conditions.
Following the methods developed in [Hundertmark et al. 2006], we obtain a Wegner estimate under our
general assumption (5).
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Theorem 2.10 (Wegner estimate). For all E0 ∈ R there are constants C, κ, εmax > 0, depending only
on d, E0, Ku , Gu , G2, α1, α2, β1, β2, ω+ and ‖νµ‖∞, such that for all L ∈ (G2+Gu)N, all E ∈ R and
ε ≤ εmax with [E − ε, E + ε] ⊂ (−∞, E0] we have

E
[
Tr[χ[E−ε,E+ε](Hω,L)]

]
≤ Cε1/κ

|ln ε|d Ld . (6)

Theorem 2.11 (initial scale estimate). Let κ be as in Theorem 2.10 for E0 = dπ2
+ Ku . Assume that

there are t0,C > 0 such that

0 ∈ suppµ and for all t ∈ [0, t0], µ([0, t])≤ Ctdκ.

Then there is L0 = L0(t0, δmax, κ,Gu,G1)≥ 1 such that for all L ∈ (G2+Gu)N, L ≥ L0, we have

P

({
ω ∈� : λ1(Hω,L)− λ1(H0,L)≥

1
L3/2

})
≥ 1−

C
Ld/2 ,

where H0,L is obtained from Hω,L by setting ωj to zero for all j ∈ D.

Remark 2.12 (discussion on initial scale estimate). Theorem 2.11 may serve as an initial scale estimate
for a proof of localization via multiscale analysis. More precisely, by using the Combes–Thomas estimate,
an initial scale estimate in some neighborhood of a := inf σ(H0) follows. Note that the exponents 3

2 and
d
2 in Theorem 2.11 can be modified to some extent by adapting the proof and the assumption on the
measure µ. Localization in a neighborhood Ia of a follows via multiscale analysis, e.g., à la [Stollmann
2001]. The question of whether σ(Hω)∩ Ia 6=∅ for almost all ω ∈� has to be settled. This is, however,
satisfied for all examples mentioned above. In the special case of the standard random breather model one
can get rid of the assumption on µ by proving and using the Lifshitz tail behavior of the integrated density
of states; see [Veselić 2007] for the one-dimensional case, and the forthcoming paper of Schumacher and
Veselić for the multidimensional one.

Application to control theory. We consider the controlled heat equation with heat generation term (−V )
∂t u−1u+ V u = f χω, u ∈ L2([0, T ]×�),
u = 0 on (0, T )× ∂�,
u(0, · )= u0, u0 ∈ L2(�),

(7)

where ω is an open subset of the connected �⊂ Rd, T > 0 and V ∈ L∞(�). In (7) u is the state and f
is the control function which acts on the system through the control set ω.

Definition 2.13. For initial data u0 ∈ L2(�) and time T > 0, the set of reachable states R(T, u0) is

R(T, u0)=
{
u(T, · ) : there exists f ∈ L2([0, T ]×ω) such that u is solution of (7) with RHS

}
.

The system (7) is called null controllable at time T if 0 ∈ R(T ; u0) for all u0 ∈ L2(�). The controllability
cost C(T, u0) at time T for the initial state u0 is

C(T, u0)= inf
{
‖ f ‖L2([0,T ]×ω) : u is solution of (7) and u(T, · )= 0

}
.
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Since the system is linear, null controllability implies that the range of the semigroup generated by
the heat equation is reachable too. It is well known that null controllability holds for any time T > 0,
connected � and any nonempty and open set ω ⊂ � on which the control acts; see [Fursikov and
Imanuvilov 1996].

It is also known, see for instance [Tucsnak and Weiss 2009, Theorem 11.2.1], that null controllability
of the system (7) at time T is equivalent to final state observability on the set ω at time T of the system

∂t u−1u+ V u = 0, u ∈ L2([0, T ]×�),
u = 0 on (0, T )× ∂�,
u(0, · )= u0, u0 ∈ L2(�).

(8)

Definition 2.14. The system (8) is called final state observable on the set ω at time T if there exists
κT = κT (�, ω, V ) such that for every initial state u0 ∈ L2(�) the solution u ∈ L2([0, T ] ×�) of (8)
satisfies

‖u(T, · )‖2� ≤ κT ‖u‖2L2([0,T ]×ω). (9)

Moreover, the controllability cost C(T, u0) of (7) coincides with the infimum over all observability
costs

√
κT in (9) times ‖u0‖�; see, for example, the proof of [Tucsnak and Weiss 2009, Theorem 11.2.1].

The problem of obtaining explicit bounds on C(T, u0) received much consideration in the literature, see,
for example, [Güichal 1985; Fernández-Cara and Zuazua 2000; Phung 2004; Tenenbaum and Tucsnak
2007; Miller 2006; 2004; 2010; Ervedoza and Zuazua 2011; Lissy 2012], especially the case of small
time, i.e., when T goes to zero. The dependencies of the controllability cost on T and ‖V ‖∞ are today
well understood; see, for example, [Zuazua 2007]. However, the dependence on the geometry of the
control set is less clear: in the known estimates the geometry enters only in terms of the distance to the
boundary or in terms of the geometrical optics condition. To find an optimal control set is a very difficult
problem; see for instance the recent articles [Privat et al. 2015a; 2015b].

We are interested in the situation �=3L ⊂ Rd and ω =Wδ(L) for a (G, δ)-equidistributed sequence
with L ∈ GN, G > 0 and δ < G/2. In this specific setting we will give an estimate on the controllability
cost. The novelty of our result is that the observability cost is independent of the scale L and the specific
choice of the (G, δ)-equidistributed sequence. Moreover, the dependencies on ‖V ‖∞ and on the size
of the control set via δ are known explicitly. As far as we are aware, this is the first time that such a
scale-free estimate is obtained.

By the equivalence between null-controllability and final state observability, it is sufficient to construct
an estimate of the form (9). In order to find such an estimate, we will combine Corollary 2.4 with results
from [Miller 2010] to obtain the following theorem.

Theorem 2.15. For every G > 0, δ ∈ (0,G/2) and KV ≥ 0 there is T ′ = T ′(G, δ, KV ) > 0 such that
for all T ∈ (0, T ′], all (G, δ)-equidistributed sequences, all measurable and bounded V : Rd

→ Rd with
‖V ‖∞ ≤ KV and all L ∈ GN, the system

∂t u−1Lu+ VLu = 0, u ∈ L2([0, T ]×3L),

u = 0 on (0, T )× ∂3L ,

u(0, · )= u0, u0 ∈ L2(3L)
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is final state observable on the set Wδ(L) with cost κT satisfying

κT ≤ 4a0b0e2c∗/T,

where a0 = (δ/G)−N (1+G4/3
‖V ‖2/3∞ ), b0 = e2‖V ‖∞ , c∗ ≤ ln(G/δ)2(N G + 4/ ln 2)2 and N = N (d) is the

constant from Theorem 2.2.

Remark 2.16. (i) The same result holds also in the case of the controlled heat equation with periodic or
Neumann boundary conditions with obvious modifications.

(ii) Null controllability of the heat equation implies a stronger type of controllability, so-called approximate
controllability. Following [Fernández-Cara and Zuazua 2000], one can find an estimate for the cost of
approximate controllability from the proof of Theorem 2.15. We will not pursue it in this paper.

3. Proof of the scale-free unique continuation principle

Carleman inequalities. We denote by Rd+1
+ := {x ∈ Rd+1

: xd+1 ≥ 0} the (d+1)-dimensional half-space
and by B+r := {x ∈ Rd+1

+ : |x | < r} the (d+1)-dimensional half-ball. For x ∈ Rd+1 we denote by
x ′ the projection on the first d coordinates; i.e., for x = (x1, . . . , xd+1) ∈ Rd+1 we use the notation
x ′ = (x1, . . . , xd) ∈ Rd. By |x | and |x ′| we denote the Euclidean norms and by 1 the Laplacian on Rd+1.
For functions f ∈ C∞(Rd+1

+ ) we use the notation f0 = f |xd+1=0.
In the appendix of [Lebeau and Robbiano 1995], the authors state a Carleman estimate for complex-

valued functions with support in B+r by using a real-valued weight function ψ ∈ C∞(Rd+1) satisfying
the two conditions

for all x ∈ B+r we have (∂d+1ψ)(x) 6= 0, (10)

and for all ξ ∈ Rd+1 and x ∈ B+r there holds

2〈ξ,∇ψ〉 = 0,

|ξ |2 = |∇ψ |2

}
=⇒

d+1∑
j,k=1

(∂jkψ)
(
ξjξk + (∂jψ)(∂kψ)

)
> 0. (11)

As proposed in [Jerison and Lebeau 1999] we choose r < 2 −
√

2 and the special weight function
ψ : Rd+1

→ R,

ψ(x)=−xd+1+
1
2 x2

d+1−
1
4 |x
′
|
2. (12)

Note that ψ(x) ≤ 0 for all x ∈ B+2 . This function ψ indeed satisfies the assumptions (10) and (11).
Condition (10) is trivial for r < 1. In order to show the implication (11) we show

|ξ |2 = |∇ψ |2 =⇒

d+1∑
j,k=1

∂jkψ(ξjξk + ∂jψ∂kψ) > 0. (13)

We use the hypothesis of (13) and calculate
d+1∑

j,k=1

∂jkψ(ξjξk + ∂jψ∂kψ)=−
1
2

d∑
i=1

ξ 2
i + ξ

2
d+1−

1
8 |x
′
|
2
+ (xd+1−1)2 = 3

2ξ
2
d+1−

1
4 |x
′
|
2
+

1
2(xd+1−1)2.
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Since |x ′|2 ≤ r2 and (xd+1− 1)2 ≥ (1− r)2, assumption (13) is satisfied if r < 2−
√

2. Now let

C∞c,0(B
+

r )=
{
g : Rd+1

+
→ C : g ≡ 0 on {xd+1 = 0}, ∃φ ∈ C∞(Rd+1) with

suppφ ⊂ {x ∈ Rd+1
: |x |< r} and g ≡ φ on Rd+1

+

}
.

Hence, as a corollary of Proposition 1 in the appendix of [Lebeau and Robbiano 1995] we have:

Proposition 3.1. Let ψ ∈ C∞(Rd+1
;R) be as in (12) and ρ ∈ (0, 2−

√
2). Then there are constants

β0,C1 ≥ 1 such that for all β ≥ β0, and all g ∈ C∞c,0(B
+
ρ ) we have∫

Rd+1
e2βψ(β|∇g|2+β3

|g|2)≤ C1

(∫
Rd+1

e2βψ
|1g|2+β

∫
Rd

e2βψ0 |(∂d+1g)0|2
)
.

We will need another Carleman estimate with a weight function whose level sets can be explicitly
controlled.

Proposition 3.2 [Nakić et al. 2015a]. Let ρ > 0 and w : Rd
→ R,

w(x)=
|x |
ρ

∫
|x |/ρ

0

1− e−t

t
dt.

In particular,

for all x ∈ B(ρ),
|x |
ρe
≤ w(x)≤

|x |
ρ
.

Then there are constants α0,C2 ≥ 1 depending only on the dimension such that for all α ≥ α0, and all
u ∈W 2,2(Rd) with support in B(ρ) \ {0} we have∫

Rd

(
αρ2w1−2α

|∇u|2+α3w−1−2α
|u|2

)
dx ≤ C2ρ

4
∫

Rd
w2−2α

|1u|2 dx .

This variant of the Carleman estimate is essentially given in [Escauriaza and Vessella 2003], albeit
that paper concerns parabolic operators. For elliptic operators, in [Bourgain and Kenig 2005] a weaker
statement than Proposition 3.2, without the gradient term on the left-hand side, was spelled out and proven
explicitly. A version of Proposition 3.2 for divergence-type elliptic operators is stated in [Kenig et al. 2011].
While this covers more general operators than we are interested in here, it lacks a quantitative statement
about the admissible functions u. An explicit proof of Proposition 3.2, i.e., for the pure Laplacian, was
first given in [Klein and Tsang 2016]. See also [Nakić et al. 2015a] for the case of divergence-type
elliptic operators. The paper [Davey 2014] also contains a Carleman estimate which is less explicit than
Proposition 3.2, but would still be sufficient for the purpose of the proof of Theorem 2.2.

Extension to larger boxes. For each measurable and bounded V : Rd
→ R and each L ∈ N we denote

the eigenvalues of the corresponding operator HL by Ek , k ∈ N, enumerated in increasing order and
counting multiplicities, and fix a corresponding sequence φk , k ∈ N, of normalized eigenfunctions. Note
that we suppress the dependence of Ek and φk on V and L .

Given V and L we define an extension of the potential VL and the eigenfunctions φk to the set 3RL for
some R ∈Nodd = {1, 3, 5, . . .} to be chosen later on. The extension will depend on the type of boundary
conditions we are considering for the Laplace operator.
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Extension for periodic boundary conditions: We extend the potential VL as well as the function φk , defined
on the box 3L , periodically to Ṽ , ψ̃ : Rd

→ R and then restrict them to 3RL . By the very definition of
the operator domain of 13L with periodic boundary conditions the extension ψ̃ is locally in the Sobolev
space W 2,2(Rd).

Extension for Dirichlet and Neumann boundary conditions: The potential VL will be extended by
symmetric reflections with respect to the hypersurfaces forming the boundaries of 3L . In the first step
we extend VL :3L → R to the set

{x ∈33L : xi ∈ (−L/2, L/2), i ∈ {2, . . . , d}}

by

VL(x)=


VL(x) if x ∈3L ,

0 if x1 ∈ {−L/2, L/2},
VL(L − x1, x2, . . . , xd) if x1 > L/2,
VL(−L − x1, x2, . . . , xd) if x1 <−L/2.

Now we iteratively extend VL in the remaining d − 1 directions using the same procedure and obtain a
function VL :33L → R. Iterating this procedure we obtain a function VL :3RL → R. The extensions of
the eigenfunctions will depend on the boundary conditions. In the case of Dirichlet boundary conditions,
we extend an eigenfunction similarly to the potential by antisymmetric reflections, while in the case of
Neumann boundary conditions, we extend by symmetric reflections.

The extensions of the functions and VL and φk , k ∈ N, to the set 3RL will again be denoted by VL

and φk , k ∈ N. The reader should be reminded that (the extended) VL :3RL → R does in general not
coincide with VRL :3RL→R. Note that for all three boundary conditions, VL :3RL→R takes values in
[−‖V ‖∞, ‖V ‖∞], the extended φk are elements of W 2,2(3RL) with corresponding boundary conditions
and they satisfy 1φk = (VL − Ek)φk on 3RL . Furthermore, the orthogonality relations remain valid.

Ghost dimension. For a measurable and bounded V :Rd
→R, L ∈N, E ≥ 0 and φ ∈Ran(χ(−∞,E](HL))

we have

φ =
∑
k∈N

Ek≤E

αkφk, with αk = 〈φk, φ〉.

Since the φk extend to 3RL as explained in the previous subsection, the function φ also extends to 3RL .
We set ωk :=

√
|Ek | and define the function F :3RL ×R→ C by

F(x, xd+1)=
∑
k∈N

Ek≤E

αkφk(x) sk(xd+1),

where sk : R→ R is given by

sk(t)=


sinh(ωk t)/ωk, Ek > 0,
t, Ek = 0,
sin(ωk t)/ωk, Ek < 0.
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Note that we suppress the dependence of φ and φk on V, L , E . Furthermore, the sums are finite since HL

is lower semibounded with purely discrete spectrum. The function F satisfies

1F =
d+1∑
i=1

∂2
i F = VL F on 3RL ×R

and

∂d+1 F(x, 0)=
∑
k∈N

Ek≤E

αkφk(x) for x ∈3RL .

In particular, for all x ∈3L we have ∂d+1 F(x, 0)= φ. This way we recover the original function we are
interested in.

Let us also fix the geometry. For δ ∈
(
0, 1

2

)
we choose

ψ1 =−
1
16δ

2, ψ2 =−
1
8δ

2, ψ3 =−
1
4δ

2,

r1 =
1
2 −

1
8

√
16− δ2, r2 = 1, r3 = 6e

√
d,

R1 = 1− 1
4

√
16− δ2, R2 = 3

√
d, R3 = 9e

√
d,

and define for i ∈ {1, 2, 3} the sets

Si :=
{

x ∈ Rd+1
: ψ(x) > ψi , xd+1 ∈ [0, 1]

}
⊂ Rd+1

+
,

Vi := B(Ri ) \ B(ri )⊂ Rd+1.

Let R ∈ N be the least power of 3 larger than 2R3 + 2. For i ∈ {1, 2, 3} and x ∈ Rd we denote
by Si (x) = Si + (x, 0) and Vi (x) = Vi + (x, 0) the translates of the sets Si ⊂ Rd+1 and Vi ⊂ Rd+1.
Moreover, for L ∈ N and a (1, δ)-equidistributed sequence z j ∈ Rd, j ∈ Zd, we define QL = Zd

∩3L ,
Ui (L)=

⋃
j∈QL

Si (z j ), X1=3L×[−1, 1] and X̃ R3 =3L+2R3×[−R3, R3]. Note that Wδ(L) is a disjoint
union. In the following lemma we collect some consequences of our geometric setting. We will first
restrict our attention to the case L ∈ Nodd, and consider the case of even integers thereafter.

Lemma 3.3. (i) For all δ ∈
(
0, 1

2

)
we have S1 ⊂ S2 ⊂ S3 ⊂ B+δ ⊂ Rd+1

+ .

(ii) For all L ∈ Nodd with L ≥ 5, all δ ∈
(
0, 1

2

)
and all (1, δ)-equidistributed sequences z j we have⋃

j∈QL
V2(z j )⊃ X1.

(iii) There is a constant Kd , depending only on d, such that for all L ∈ Nodd, all δ ∈
(
0, 1

2

)
, all (1, δ)-

equidistributed sequences z j , all measurable and bounded V : Rd
→ R, all E ≥ 0 and all φ ∈

Ran(χ(−∞,E](HL)) we have∑
j∈QL

‖F‖2H1(V3(z j ))
≤ Kd‖F‖2H1(

⋃
j∈QL

V3(z j ))
.

(iv) For all L ∈Nodd, δ ∈
(
0, 1

2

)
and all (1, δ)-equidistributed sequences z j we have

⋃
j∈QL

V3(z j )⊂ X R3 .

We note that part (ii) of Lemma 3.3 will be applied with L replaced by 5L .
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X1

V2(z j1)

V2(z j2)

x1

x2

Figure 1. Illustration for (ii) in the case d = 1, L = 5 and for some configuration z j ,
j ∈ QL . The set

[
−

1
2 ,

1
2

]
×[−1, 1] is covered by V2(z j1) and V2(z j2).

Proof. Parts (i) and (iv) are obvious.
To show (ii), we first prove that

[
−

1
2 ,

1
2

]d
× [−1, 1] can be covered by the sets V2(z j ). Let us take

j1 = (−1, 0, . . . , 0), j2 = (−2, 0, . . . , 0), j1, j2 ∈ QL .
Then [

−
1
2 ,

1
2

]d
×[−1, 1] ⊂ V2(z j1)∪ V2(z j2); (14)

see Figure 1. Indeed, let x= (x1, . . . , xd+1) be an arbitrary point from
[
−

1
2 ,

1
2

]d
×[−1, 1]. Then (14) is not

satisfied only if |(z j1, 0)−x |2<1 and |(z j2, 0)−x |2> R2
2 . Since z j1 ∈

(
−

3
2+δ,−

1
2−δ

)
×
(
−

1
2+δ,

1
2−δ

)d−1

and z j2 ∈
(
−

5
2 + δ,−

3
2 − δ

)
×
(
−

1
2 + δ,

1
2 − δ

)d−1, it follows that(
−

1
2 − δ− x1

)2
+ x2

d+1 < 1 and
(
−

5
2 + δ− x1

)2
+ (d − 1)(1− δ)2+ x2

d+1 > 9d.

Plugging the first relation into the second, we obtain

9d < (d − 1)(1− δ)2+ 2(1− δ)(3+ 2x1)+ 1≤ (d − 1)(1− δ)2+ 8(1− δ)+ 1.

But this relation is satisfied only for d < 1. Since L ≥ 5 the same argument applies to cover every
elementary cell

([
−

1
2 ,

1
2

]
+ i
)
×[−1, 1], i ∈ QL , by two neighboring sets V2(z j ).

Now we turn to the proof of (iii). Since R ≥ 2R3 + 2, the function F is defined on V3(z j ) for all
j ∈ QL . For all x ∈

⋃
j∈QL

V3(z j ), the number of indices j ∈ QL such that V3(z j ) 3 x is bounded from
above by (2R3+ 2)d. Hence,

for all x ∈ X̃ R3,
∑
j∈QL

χV3(z j )(x)≤ (2R3+ 2)dχ⋃
j∈QL

V3(z j )(x),

and thus ∑
j∈QL

‖F‖2H1(V3(z j ))
=

∫
X̃ R3

(∑
j∈QL

χV3(z j )(x)
)
(|F(x)|2+ |∇F(x)|2) dx

≤ (2R3+ 2)d‖F‖2
H1(

⋃
j∈QL

V3(z j ))
.

Hence we can take Kd = (2R3+ 2)d. �



SCALE-FREE UNIQUE CONTINUATION PRINCIPLE FOR SPECTRAL PROJECTORS 1063

Interpolation inequalities.

Proposition 3.4. For all δ ∈
(
0, 1

2

)
, all (1, δ)-equidistributed sequences z j , all measurable and bounded

V : Rd
→ R, all L ∈ Nodd, all E ≥ 0 and all φ ∈ Ran(χ(−∞,E](HL)):

(a) There is β1 = β1(d, ‖V ‖∞)≥ 1 such that for all β ≥ β1 we have

‖F‖2H1(U1(L))
≤ D̃1(β)‖F‖2H1(U3(L))

+ D̂1(β)‖(∂d+1 F)0‖2L2(Wδ(L))
,

where β1 is given in (16), and D̃1(β) and D̂1(β) are given in (17).

(b) We have

‖F‖H1(U1(L)) ≤ D1‖(∂d+1 F)0‖
1/2
L2(Wδ(L))

‖F‖1/2H1(U3(L))
,

where D1 is given in (21).

Proof. First we recall that 1F = VL F, ∂d+1 F(x ′, 0) = φ(x ′) and B+δ ⊃ S3. Now we choose a cutoff
function χ ∈ C∞(Rd+1

; [0, 1]) with suppχ ⊂ S3, χ(x)= 1 if x ∈ S2 and

max{‖1χ‖∞, ‖|∇χ |‖∞} ≤
2̃1

δ4 =:21,

where 2̃1 = 2̃1(d) depends only on the dimension. This is due to the fact that the distance of S2

and Rd+1
+ \ S3 is bounded from below by δ2/16. Let ϕ be a nonnegative function in C∞c (R

d) with the
properties that ‖ϕ‖1 = 1 and suppϕ ⊂ B(1). For ε > 0 we define ϕε : Rd

→ R+0 by ϕε(x)= ε−dϕ(x/ε).
The function ϕε belongs to C∞c (R

d) and satisfies suppϕε ⊂ (ε). Now we continuously extend the
eigenfunctions φk :3RL → R to the set Rd by zero and define for ε > 0 the function Fε : Rd

×R by

Fε(x, xd+1)=
∑
k∈N

Ek≤E

αk(ϕε ∗φk)(x) sk(xd+1).

By construction, the function g = χFε is an element of C∞c,0(B
+

δ ). Hence, we can apply Proposition 3.1
with g = χFε and ρ = 1

2 and obtain for all β ≥ β0 ≥ 1∫
S3

e2βψ(β|∇(χFε)|2+β3
|χFε|2

)
≤ C1

∫
S3

e2βψ
|1(χFε)|2+βC1

∫
B(δ)

e2βψ0 |(∂d+1(χFε))0|2. (15)

Note that β0 and C1 only depend on the dimension. By [Ziemer 1989, Theorem 1.6.1(iii)] we have
ϕε ∗φk→ φk , ∇(ϕε ∗φk)→∇φk and 1(ϕε ∗φk)→1φk in L2(S3) as ε tends to zero. Consequently, the
same holds for Fε, ∇Fε and 1Fε and thus we obtain (15) with Fε replaced by F. For the first summand
on the right-hand side we have the upper bound∫

S3

e2βψ
|1(χF)|2 ≤ 3

∫
S3

e2βψ(4|∇χ |2|∇F |2+ |1χ |2|F |2+ |1F |2|χ |2
)

≤ 3e2βψ2

∫
S3\S2

(
422

1|∇F |2+22
1|F |

2)
+

∫
S3

3e2βψ
|VL Fχ |2

≤ 1222
1e2βψ2‖F‖2H1(S3)

+ 3‖V ‖2
∞

∫
S3

e2βψ
|χF |2.
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The second summand is bounded from above by βC1
∫

B(δ)|(∂d+1 F)0|2, since F = 0 and ψ ≤ 0 on
{xd+1 = 0}. Hence,

β

∫
S3

e2βψ
|∇(χF)|2+(β3

−3‖V ‖2
∞

C1)

∫
S3

e2βψ
|χF |2≤12C12

2
1e2βψ2‖F‖2H1(S3)

+C1β‖(∂d+1 F)0‖2L2(B(δ)).

Additionally to β ≥ β0 we choose β ≥ (6‖V ‖2
∞

C1)
1/3
=: β̃0. This ensures that for all

β ≥ β1 :=max{β0, β̃0} (16)
we have

1
2

∫
S3

e2βψ(β|∇(χF)|2+β3
|χF |2

)
≤ 12C12

2
1e2βψ2‖F‖2H1(S3)

+C1β‖(∂d+1 F)0‖2L2(B(δ)).

Since β ≥ 1, S3 ⊃ S1, χ = 1 and e2βψ
≥ e2βψ1 on S1, we obtain

e2βψ1‖F‖2H1(S1)
≤ 24C12

2
1e2βψ2‖F‖2H1(S3)

+ 2C1‖(∂d+1 F)0‖2L2(B(δ)).

We apply this inequality for translates Si (z j ) and obtain by summing over j ∈ QL = Zd
∩3L

e2βψ1
∑
j∈QL

‖F‖2H1(S1(z j ))
≤ 24C12

2
1e2βψ2

∑
j∈QL

‖F‖2H1(S3(z j ))
+ 2C1

∑
j∈QL

‖(∂d+1 F)0‖2L2(B(z j ,δ))
.

Recall that Ui (L)=
⋃

j∈QL
Si (z j ) and Wδ(L)=

⋃
j∈QL

B(z j , δ). Hence, for all β ≥ β1 we have

‖F‖2H1(U1(L))
≤ D̃1‖F‖2H1(U3(L))

+ D̂1‖(∂d+1 F)0‖2L2(Wδ(L))
,

where
D̃1(β)= 24C12

2
1e2β(ψ2−ψ1) and D̂1(β)= 2C1e−2βψ1 . (17)

We choose β such that

eβ =
[

1
1222

1

‖(∂d+1 F)0‖2L2(Wδ(L)

‖F‖2H1(U3(L))

]1/(2ψ2)

. (18)

Now we distinguish two cases. If β ≥ β1 we obtain by using ψ1 = 2ψ2

‖F‖2H1(U1(L))
≤ 8
√

3C121‖F‖H1(U3(L))‖(∂d+1 F)0‖L2(Wδ(L)). (19)

If β < β1 we use Lemma 5.2 of [Le Rousseau and Lebeau 2012]. In particular, one concludes from (18)
that

‖F‖2H1(U3(L))
<

1
1222

1
e−2β1ψ2‖(∂d+1 F)0‖2L2(Wδ(L))

.

This gives us in the case β < β1

‖F‖2H1(U1(L))
≤ ‖F‖2H1(U3(L))

<
e−β1ψ2

√
1221

‖F‖H1(U3(L))‖(∂d+1 F)0‖L2(Wδ(L)). (20)

If we set

D2
1 =max

{
8
√

3C121,
e−β1ψ2

21
√

12

}
, (21)

we conclude the statement of the proposition from inequalities(19) and (20). �
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Now we deduce from the second Carleman estimate, Proposition 3.2, another interpolation inequality.

Proposition 3.5. For all δ ∈
(
0, 1

2

)
, all (1, δ)-equidistributed sequences z j , all measurable and bounded

V : Rd
→ R, all L ∈ Nodd, all E ≥ 0 and all φ ∈ Ran(χ(−∞,E](HL)):

(a) There is α1 = α1(d, ‖V ‖∞)≥ 1 such that for all α ≥ α1 we have

‖F‖2H1(X1)
≤ D̃2(α)‖F‖2H1(U1(L))

+ D̂2(α)‖F‖H1(X̃ R3 )
,

where α1 is given in (23), and D̃2(α) and D̂2(α) are given in (27).

(b) We have
‖F‖H1(X1) ≤ D2‖F‖

γ

H1(U1(L))
‖F‖1−γ

H1(X̃ R3 )
,

where γ and D2 are given in (32) and (33).

Proof. We choose a cutoff function χ ∈ C∞c (R
d+1
; [0, 1]) with suppχ ⊂ B(R3) \ B(r1), χ(x) = 1 if

x ∈ B(r3) \ B(R1),

max{‖1χ‖∞,V1, ‖|∇χ |‖∞,V1} ≤
2̃2

δ4 =:22,

max{‖1χ‖∞,V3, ‖|∇χ |‖∞,V3} ≤23,

where 2̃2 depends only on the dimension and 23 is an absolute constant. We set u = χF. We apply
Proposition 3.2 with ρ = R3 to the function u and obtain for all α ≥ α0 ≥ 1∫

B(R3)

(
αR2

3w
1−2α
|∇u|2+α3w−1−2α

|u|2
)

dx ≤ C2 R4
3

∫
B(R3)

w2−2α
|1u|2 dx .

Since w≤ 1 on B(R3) we can replace the exponent of the weight function w at all three places by 2−2α;
i.e., ∫

B(R3)

(
αR2

3w
2−2α
|∇u|2+α3w2−2α

|u|2
)

dx ≤ C2 R4
3

∫
B(R3)

w2−2α
|1u|2 dx =: I. (22)

For the right-hand side we use

1u = 2(∇χ)(∇F)+ (1χ)F + (1F)χ,

and 1F = VL F , and obtain

I ≤ 3C2 R4
3

∫
B(R3)

w2−2α(4|(∇χ)(∇F)|2+ |(1χ)F |2+‖V ‖2
∞
|χF |2

)
dx =: I1+ I2+ I3.

If we choose α sufficiently large, i.e.,

α ≥ (6C2 R4
3‖V ‖

2
∞
)1/3 =: α̃0,

we can subsume the term I3 into the left-hand side of (22). We obtain for all

α ≥ α1 :=max{α0, α̃0} (23)

the estimate ∫
B(R3)

(
αR2

3w
2−2α
|∇u|2+ 1

2α
3w2−2α

|u|2
)

dx ≤ I1+ I2.
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For the “new” left-hand side we have the lower bound

I1+ I2 ≥

∫
B(R3)

(
αR2

3w
2−2α
|∇u|2+ 1

2α
3w2−2α

|u|2
)

dx ≥
1
2

(
R3

R2

)2α−2

‖F‖2H1(V2)
.

For I1 and I2 we have the estimates

I1 ≤ 3C2 R4
3

[
422

2

(
eR3

r1

)2α−2∫
V1

|∇F |2+ 422
3

(
eR3

r3

)2α−2∫
V3

|∇F |2
]
,

I2 ≤ 3C2 R4
3

[
22

2

(
eR3

r1

)2α−2∫
V1

|F |2+22
3

(
eR3

r3

)2α−2∫
V3

|F |2
]
.

Putting everything together, the Carleman estimate from Proposition 3.2 implies for α ≥ α1

‖F‖2H1(V2)
≤ 24C2 R4

3

[
22

2

(
eR2

r1

)2α−2

‖F‖2H1(V1)
+22

3

(
eR2

r3

)2α−2

‖F‖2H1(V3)

]
. (24)

By translation, (24) is still true if we replace V1, V2 and V3 by its translates V1(z j ), V2(z j ) and V3(z j ) for
all j ∈ QL . Hence,∑

j∈QL

‖F‖2H1(V2(z j ))
≤ 24C2 R4

3

[
22

2

(
eR2

r1

)2α−2∑
j∈QL

‖F‖2H1(V1(z j ))
+22

3

(
eR2

r3

)2α−2∑
j∈QL

‖F‖2H1(V3(z j ))

]
.

(25)
For all L ∈Nodd Lemma 3.3 tells us that

⋃
k∈Q5

⋃
j∈QL

V2(z j+kL)⊃ X1=3L×[−1, 1] and the left-hand
side is bounded from below by∑

j∈QL

‖F‖2H1(V2(z j ))
=

1
5d

∑
k∈Q5

∑
j∈QL

‖F‖2H1(V2(z j+kL)) ≥
1
5d ‖F‖

2
H1(X1)

.

Since V1(z j )∩Rd+1
+ ⊂ S1(z j ), S1(zi )∩ S1(z j )=∅ for i 6= j , and since F is antisymmetric with respect

to its last coordinate, we have∑
j∈QL

‖F‖2H1(V1(z j ))
≤ 2

∑
j∈QL

‖F‖2H1(S1(z j ))
= 2‖F‖2H1(U1(L))

.

For the second summand on the right-hand side of (25), we find by Lemma 3.3(iii) that there exists a
constant Kd such that ∑

j∈QL

‖F‖2H1(V3(z j ))
≤ Kd‖F‖2H1(

⋃
j∈QL

V3(z j ))
.

Moreover, since
⋃

j∈QL
V3(z j )⊂ X̃ R3 =3L+R3 ×[−R3, R3], we have∑

j∈QL

‖F‖2H1(V3(z j ))
≤ Kd‖F‖H1(X̃ R3 )

.

Putting everything together we obtain for all α ≥ α1

1
5d ‖F‖

2
H1(X1)

≤ D̃2(α)‖F‖2H1(U1(L))
+ D̂2(α)‖F‖H1(X̃ R3 )

, (26)



SCALE-FREE UNIQUE CONTINUATION PRINCIPLE FOR SPECTRAL PROJECTORS 1067

where

D̃2(α)= 48C2 R4
32

2
2

(
eR2

r1

)2α−2

and D̂2(α)= 24C2 R4
32

2
3Kd

(
eR2

r3

)2α−2

. (27)

If we let c1 = 48C22
2
2 R4

3r2
1/(eR2)

2, c2 = 24C22
2
3Kd R4

3r2
3/(eR2)

2,

p+ = 2 ln
(

eR2

r1

)
> 0 and p− = 2 ln

(
eR2

r3

)
< 0,

then (26) reads as

1
5d ‖F‖

2
H1(X1)

≤ c1ep+α
‖F‖2H1(U1(L))

+ c2ep−α
‖F‖2H1(X̃ R3 )

. (28)

We choose α such that

eα =

(
c2

c1

‖F‖2
H1(X̃ R3 )

‖F‖2H1(U1(L))

)1/(p+−p−)

. (29)

If α ≥ α1 we obtain from (28) that

1
5d ‖F‖

2
H1(X1)

≤ 2cγ1 c1−γ
2 ‖F‖2γH1(U1(L))

‖F‖2−2γ
H1(X̃ R3 )

, where γ =
−p−

p+− p−
. (30)

If α < α1, we proceed as in the last part of the proof of Proposition 3.4; i.e., we conclude from (29) that

‖F‖2H1(X̃ R3 )
<

c1

c2
eα1(p+−p−)

‖F‖2H1(U1(L))
,

and thus

‖F‖2H1(X1)
≤ ‖F‖2(p

+
−p−)/(p+−p−)

H1(X̃ R3 )
< ‖F‖2(1−γ )

H1(X̃ R3 )

(
c1

c2
eα1(p+−p−)

)γ
‖F‖2γH1(U1(L))

. (31)

We calculate
γ =

ln 2
ln(r3/r1)

, (32)

set

D2
2 =max

{
5d192 · 94C22

2
3Kde4d2

(
222

2r2
1

22
3Kdr2

3

)γ
,

(
222

2

22
3Kd

(
r3

r1

)2(α1−1))γ}
(33)

and conclude the statement of the proposition from (30) and (31). �

Proofs of Theorem 2.2 and Corollary 2.6.

Proposition 3.6. For all T > 0, all measurable and bounded V : Rd
→ R, all L ∈Nodd, all E ≥ 0 and all

φ ∈ Ran(χ(−∞,E](HL)) we have

T
2

∑
k∈N

Ek≤E

|αk |
2
≤

‖F‖2H1(3RL×[−T,T ])

Rd ≤ 2T (1+ (1+‖V ‖∞)T 2)
∑
k∈N

Ek≤E

βk(T )|αk |
2,

where
βk(T )=

{
1 if Ek ≤ 0,
e2T
√

Ek if Ek > 0.
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Proof. For the function F :3RL ×R→ C we have for T > 0

‖F‖2H1(3RL×[−T,T ]) =

∫ T

−T

∫
3RL

(
|∂d+1 F |2+ |∇ ′F |2+ |F |2

)
dx .

Note that ‖φk‖L2(3RL ) = Rd. By Green’s theorem we have∫
3RL

|∇
′F |2 dx ′ =

∫
3RL

(
−

d∑
i=1

∂2
i F
)

F dx ′ =−
∫
3RL

V |F |2 dx ′+
∫
3RL

(∂2
d+1 F)F dx ′

for all xd+1 ∈ R. First we estimate

‖F‖2H1(3RL×[−T,T ]) =

∫ T

−T

∫
3RL

(
|∂d+1 F |2− V |F |2+ (∂2

d+1 F)F + |F |2
)

dx

≤

∫ T

−T

∫
3RL

(
|∂d+1 F |2+ (∂2

d+1 F)F + (1+‖V ‖∞)|F |2
)

dx = 2Rd
∑
k∈N

Ek≤E

|αk |
2 Ik,

where

Ik :=

∫ T

0

(
(1+‖V ‖∞) sk(xd+1)

2
+ s′k(xd+1)

2
+ s′′k (xd+1) sk(xd+1)

)
dxd+1

= (1+‖V ‖∞)
∫ T

0
sk(xd+1)

2 dxd+1+ s′k(T ) sk(T ).

If Ek ≤ 0, we estimate using sk(t)≤ t and s ′k(t)sk(t)≤ t for t > 0

Ik ≤
1
3(1+‖V ‖∞)T

3
+ T ≤ ((1+‖V ‖∞)T 3

+ T )βk(T ).

For Ek > 0 we use sinh(ωk t)/ωk ≤ t cosh(ωk t) for t > 0 and cosh(ωk T )2 ≤ e2ωk T to obtain

Ik = (1+‖V ‖∞)
∫ T

0

sinh2(ωk xd+1)

ω2
k

dxd+1+ sinh(ωk T ) cosh(ωk T )/ωk

≤ ((1+‖V ‖∞)T 3 cosh2(ωk T )+ T cosh2(ωk T ))≤ ((1+‖V ‖∞)T 3
+ T )βk(T ).

This shows the upper bound. For the lower bound we drop the gradient term and obtain

‖F‖2H1(3RL×[−T,T ]) ≥

∫ T

−T

∫
3RL

(|∂d+1 F |2+ |F |2) dx = 2 · Rd
∑
k∈N

Ek≤E

|αk |
2 Ĩk,

where

Ĩk :=

∫ T

0
[sk(xd+1)

2
+ s′k(xd+1)

2
] dxd+1.

If Ek = 0, the lower bound Ĩk ≥ T follows immediately. Else, we have sk(t)2 ≥ sin2(ωk t)/ωk and
s′k(t)

2
≥ cos(ωk t), whence

Ĩk ≥

∫ T

0

sin2(ωk xd+1)

ω2
k

+ cos2(ωk xd+1) dxd+1 ≥

∫ T

0
cos2(ωk xd+1) dxd+1 =

T
2
+

sin(2ωk T )
4ωk

.
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Now, if 2ωk T < π , the sinus term is positive and we drop it to find Ĩk ≥ T/2. If 2ωk T ≥ π , we have
sin(2ωk T )≥−1 and estimate

Ĩk ≥
T
2
−

1
4ωk
=

T
2
−

π

4πωk
≥

T
2
−

T
2π
≥

T
4
. �

Proof of Theorem 2.2. First we consider the case L ∈Nodd. We note that Proposition 3.6 remains true if
we replace 3RL by 3L and Rd by 1; i.e., for all T > 0 and L ∈ Nodd we have

T
2

∑
k∈N

Ek≤E

|αk |
2
≤ ‖F‖2H1(3L×[−T,T ]) ≤ 2T (1+ (1+‖V ‖∞)T 2)

∑
k∈N

Ek≤E

βk(T )|αk |
2. (34)

We have X̃ R3 ⊂3RL ×[−R3, R3]. By (34) and Proposition 3.6 we have

‖F‖2
H1(X̃ R3 )

‖F‖2H1(X1)

≤

‖F‖2H1(3RL×[−R3,R3])

‖F‖2H1(X1)

≤ D̃2
3 D2

4

with

D̃2
3 =

∑
Ek≤E θk |αk |

2∑
Ek≤E |αk |

2 and D2
4 = 4 · Rd R3(1+ (1+‖V ‖∞)R2

3),

where θk = βk(R3). We use Propositions 3.4 and 3.5 and obtain

‖F‖H1(X̃ R3 )
≤ D̃3 D4‖F‖H1(X1) ≤ Dγ

1 D2 D̃3 D4‖F‖
1−γ
H1(X̃ R3 )

‖(∂d+1 F)0‖
γ /2
L2(Wδ(L))

‖F‖γ /2H1(U3(L))
.

Since U3(L)⊂ X̃ R3 we have

‖F‖H1(X̃ R3 )
≤ D2

1 D2/γ
2 D̃2/γ

3 D2/γ
4 ‖(∂d+1 F)0‖L2(Wδ(L)).

By (34), the square of the left-hand side is bounded from below by

‖F‖2H1(X̃ R3 )
≥ ‖F‖2H1(3L×[−R3,R3])

≥
1
2 R3

∑
k∈N

Ek≤E

|αk |
2.

Putting everything together we obtain by using (∂d+1 F)0 = φ

1
2 R3

∑
k∈N

Ek≤E

|αk |
2
≤ D4

1(D2 D̃3 D4)
4/γ
‖φ‖2L2(Wδ(L))

.

In order to end the proof we will give an upper bound on D̃3 which is independent of αk , k ∈N. For this
purpose, we recall that θk = βk(R3). Since θk ≤ e2R3

√
E for all k ∈ N with Ek ≤ E , we have

D̃4
3 ≤ D4

3 := e4R3
√

E.

Hence, using
∑

Ek≤E |αk |
2
= ‖φ‖2L2(3L )

, we obtain for all L ∈ Nodd the estimate

C̃sfuc‖φ‖
2
L2(3L )

≤ ‖φ‖2L2(Wδ(L))
,
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where C̃sfuc = C̃sfuc(d, δ, E, ‖V ‖∞)= D−4
1 (D2 D3 D4)

−4/γ. From the definitions of Di , i ∈ {1, 2, 3, 4},
and γ one calculates that

C̃sfuc ≥ δ
Ñ
(

1+‖V ‖2/3∞ +
√

E
)

with some constant Ñ = Ñ (d). Now we treat the case of L ∈Neven= {2, 4, 6, . . .}. By a scaling argument
as in Corollary 2.2 of [Rojas-Molina and Veselić 2013], we immediately obtain that for all G > 0,
δ ∈ (0,G/2), L/G ∈ Nodd and all (G, δ)-equidistributed sequences qj we have

‖φ‖2L2(W q
δ (L))
≥ C̃G

sfuc‖φ‖
2
L2(3L )

(35)

and C̃G
sfuc(d, δ, E, ‖V ‖∞) = C̃sfuc(d, δ/G, EG2, ‖V ‖∞G2). Here W q

δ (L) denotes the set Wδ(L) corre-
sponding to the sequence qj . Now we define

G =
{

L/(L/2− 1) if L ∈ 4N,

2 otherwise,

which satisfies G ∈ [2, 4] and L/G ∈ Nodd. Since G ≥ 2, every elementary cell 3G + j , j ∈ (GZ)d,
contains at least one elementary cell 31 + j , j ∈ Zd. Hence we can choose a (G, δ)-equidistributed
subsequence qj of z j . We apply (35) to this subsequence and obtain

‖φ‖2L2(Wδ(L))
≥ ‖φ‖2L2(W q

δ (L))
≥ C̃G

sfuc‖φ‖L2(3L ).

Note that Wδ(L) corresponds to the sequence z j . Putting everything together we obtain the statement of
the theorem with

min
{
C̃sfuc, inf

G∈[2,4]
C̃G

sfuc
}
≥ δ

N
(

1+‖V ‖2/3∞ +
√

E
)
=: Csfuc

and some constant N = N (d). For the last inequality we use that
(1

4

)Ñ
≥ δ2Ñ. �

Proof of Corollary 2.6. We denote the normalized eigenfunctions of −1L + A+ B corresponding to the
eigenvalues λi (−1L + A+ B) by φi . Then we have

λi (−1L + A+ B)= 〈φi , (−1L + A+ B)φi 〉

= max
φ∈Span{φ1,...,φi }

‖φ‖=1

〈φ, (−1L + A)φ〉+ 〈φ, Bφ〉

≥ max
φ∈Span{φ1,...,φi }

‖φ‖=1

〈φ, (−1L + A)φ〉+α〈φ, χWδ(L)φ〉.

By Corollary 2.4, we conclude that for all φ ∈ Span{φ1, . . . , φi }, ‖φ‖ = 1, we have

〈φ, χWδ(L)φ〉 ≥ CG,1
sfuc(d, δ, E, ‖A+ B‖∞)

and furthermore, by the variational characterization of eigenvalues, we find

max
φ∈Span{φ1,...,φi }

‖φ‖=1

〈φ, (−1L + A)φ〉 ≥ inf
dimD=i

max
φ∈D
‖φ‖=1

〈φ, (−1L + A)φ〉 = λi (−1L + A).

Thus, we obtain the statement of the corollary. �
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4. Proof of Wegner and initial scale estimates

Recall that 0 < G1 < G2 are the numbers from the Delone property such that ]{D ∩ (3G1 + x)} ≤ 1,
]{D∩(3G2+x)} ≥ 1 for any x ∈Rd, and that for all t ∈ [0, 1] we have supp ut ⊂3Gu . Let δmax := 1−ω+
and Ku := umaxdGu/G1e

d. For ω∈ [ω−, ω+]D and δ≤ δmax, we use the notation Vω+δ for the potential Vω,
where every ωj , j ∈ D, has been replaced by ωj + δ. The following lemma is a consequence of the
properties of a Delone set, in particular ]3L ∩D ≤ dL/G1e

d, and our assumption (5).

Lemma 4.1. (i) For all ω ∈ [ω−, ω+]D, all 0 < δ ≤ δmax and all L ∈ (G2 + Gu)N, the difference
Vω+δ − Vω is on 3L bounded from below by α1δ

α2 times the characteristic function of Wβ1δ
β2 (L)

which corresponds to a (G2+Gu, β1δ
β2)-equidistributed sequence.

(ii) For all ω ∈ [0, 1]D we have ‖Vω‖∞ ≤ Ku .

(iii) For all L ∈ (G2+Gu)N, we have

]
{

j ∈ D : ∃t ∈ [0, 1], supp ut( · − j)∩3L 6=∅
}
≤ d(L +Gu)/G1e

d
≤ (2L/G1)

d.

Proof of Theorem 2.10. Note that for all E0 ∈ R, λi (Hω,L) ≤ E0 implies, by Lemma 4.1(ii), that
λi (Hω+δ,L)≤ E0+‖Vω+δ−Vω‖≤ E0+2Ku . Now we apply Corollary 2.6 with A=Vω and B=Vω+δ−Vω
(both restricted to 3L ). Together with Lemma 4.1(i), we obtain for all E0 ∈ R, all L ∈ GuN, all
ω ∈ [ω−, ω+]

D, all δ ≤ δmax and all i ∈ N with λi (Hω,L)≤ E0 the inequality

λi (Hω+δ,L)≥ λi (Hω,L)+α1δ
α2CG2+Gu ,1

sfuc (d, β1δ
β2, E0+ 2Ku, Ku).

In particular, there is κ = κ(d, ω+, α1, α2, β1, β2,G2,Gu, Ku, E0) > 0 such that

λi (Hω+δ,L)≥ λi (Hω,L)+ δκ. (36)

Now let ε > 0, satisfying ε ≤ εmax := δ
κ
max/4. We choose δ := (4ε)1/κ, whence

λi (Hω+δ,L)≥ λi (Hω,L)+ 4ε. (37)

Let ρ ∈ C∞(R, [−1, 0]) be smooth, nondecreasing such that ρ =−1 on (−∞;−ε] and ρ = 0 on [ε;∞).
We can assume ‖ρ ′‖∞ ≤ 1/ε. It holds that

χ[E−ε;E+ε](x)≤ ρ(x − E + 2ε)− ρ(x − E − 2ε)= ρ(x − E − 2ε+ 4ε)− ρ(x − E − 2ε)

for all x ∈ R and together with (37) this implies

E
[
Tr[χ[E−ε;E+ε](Hω,L)]

]
≤ E

[
Tr[ρ(Hω,L − E − 2ε+ 4ε)− ρ(Hω,L − E − 2ε)]

]
≤ E

[
Tr[ρ(Hω+δ,L − E − 2ε)− ρ(Hω,L − E − 2ε)]

]
. (38)

Now let 3̃L := { j ∈ D : ∃t ∈ [0, 1], supp ut( · − j) ∩3L 6= ∅} be the set of lattice sites which can
influence the potential within 3L . Note that ]3̃L ≤ (2L/G1)

d. We enumerate the points in 3̃L by
k : {1, . . . , ]3̃L} → D, n 7→ k(n). The upper bound in (38) will be expanded in a telescopic sum by
changing the |3̃L | indices from ωj to ωj + δ successively. In order to do that some notation is needed.
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Given ω ∈ [ω−, ω+]D, n ∈ {1, . . . , |3̃L |}, δ ∈ [0, δmax] and t ∈ [ω−, ω+], we define ω̃(n,δ)(t) ∈ [ω−, 1]D

inductively via

(ω̃(1,δ)(t))j :=

{
t if j = k(1),
ωj else

and (ω̃(n,δ)(t))j :=

{
t if j = k(n),
(ω̃(n−1,δ)(ωj + δ))j else.

The function ω̃(n,δ) : [ω−, 1] → [ω−, 1]D is the rank-1 perturbation of ω in the k(n)-th coordinate with
the additional requirement that all sites k(1), . . . , k(n− 1) have already been blown up by δ. We define

2n(t) := Tr[ρ(Hω̃(n,δ)(t),L − E − 2ε)] for n = 1, . . . , |3̃L |.

Note that
21(ωk(1))= Tr[ρ(Hω,L − E − 2ε)],

2n(ωk(n))=2n−1(ωk(n−1)+ δ) for n = 2, . . . , |3̃L | and

2
|3̃L |

(ωk(|3̃L |)
+ δ)= Tr[ρ(Hω+δ,L − E − 2ε)].

Hence the upper bound in (38) is

E
[
Tr[ρ(Hω+δ,L − E − 2ε)] −Tr[ρ(Hω,L − E − 2ε]

]
= E

[
2
|3̃L |

(ωk(|3̃L |)
+ δ)−21(ωk(1))

]
=

|3̃L |∑
n=1

E
[
2n(ωk(n)+ δ)−2n(ωk(n))

]
.

Due to the product structure of the probability space, we can apply Fubini’s theorem to each summand
and obtain

E
[
2n(ωk(n)+ δ)−2n(ωk(n))

]
= E

[∫ ω+

ω−

2n(ωk(n)+ δ)−2n(ωk(n)) dµ(ωk(n))

]
.

Note that 2n : [ω−, 1] → R is monotone and bounded. We will use the following lemma.

Lemma 4.2. Let −∞ < ω− < ω+ ≤ +∞. Assume that µ is a probability distribution with bounded
density νµ and support in the interval [ω−, ω+] and let 2 be a nondecreasing, bounded function. Then
for all δ > 0 ∫

R

[2(λ+ δ)−2(λ)] dµ(λ)≤ ‖νµ‖∞ · δ[2(ω++ δ)−2(ω−)].

Proof of Lemma 4.2. We calculate∫
R

[2(λ+ δ)−2(λ)] dµ(λ)

≤ ‖νµ‖∞

∫ ω+

ω−

[2(λ+ δ)−2(λ)] dλ= ‖νµ‖∞

[∫ ω++δ

ω−+δ

2(λ) dλ−
∫ ω+

ω−

2(λ) dλ
]

= ‖νµ‖∞

[∫ ω++δ

ω+

2(λ) dλ−
∫ ω−+δ

ω−

2(λ) dλ
]
≤ ‖νµ‖∞ · δ[2(ω++ δ)−2(ω−)]. �
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Thus, we find for all n = 1, . . . , |3̃L |∫ ω+

ω−

[
2n(ωk(n)+ δ)−2n(ωk(n)) dµ(ωk(n))

]
≤ ‖νµ‖∞ · δ[2n(ω++ δ)−2n(ω−)].

We will also need the following result; see, e.g., Theorem 2 in [Hundertmark et al. 2006].

Proposition 4.3. Let H0 := −1+ A be a Schrödinger operator with a bounded potential A ≥ 0, and
let H1 := H0+ B for some bounded B ≥ 0 with compact support. Denote the corresponding Dirichlet
restrictions to 3 by H3

0 and H3
1 , respectively. There are constants K1, K2 depending only on d and

monotonously on diam supp B such that for any smooth, bounded function g : R→ R with compact
support in (−∞, E0] and the property that g(H3

1 )− g(H3
0 ) is trace class we have

Tr[g(H3
1 )− g(H3

0 )] ≤ K1eE0 + K2(ln(1+‖g′‖∞)d)‖g′‖1.

Proposition 4.3 implies:

Lemma 4.4. Let 0< ε ≤ εmax. Then 2n(ω++ δ)−2n(ω−)≤ (K1eE0 + 2d K2)|ln ε|d, where K1, K2 are
as in Proposition 4.3 and thus only depend on d and on Gu .

Proof of Lemma 4.4. Let g( · ) := ρ( · − E − 2ε)). By our choice of ρ, we know g has support in
(−∞, E0], ‖g′‖∞ ≤ 1/ε and ‖g′‖1 = 1. We define the operators

H3
0 := H(ω̃(n,δ)(ω−), L) and H3

1 := H(ω̃(n,δ)(ω++ δ), L).

They are lower semibounded operators with purely discrete spectrum and since g has support in (−∞, E0],
the difference g(H3

1 )− g(H3
0 ) is trace class. By the previous proposition

2n(ω++ δ)−2n(ω−)= Tr[g(H3
1 )− g(H3

0 )] ≤ K1eE0 + K2(ln(1+ 1/ε))d.

To conclude, note that ε ≤ εmax <
1
2 and thus ln(1+ 1/ε)≤ 2|ln ε| and 1≤ |ln ε| ≤ |ln ε|d. �

Putting everything together and recalling δ = (4ε)1/κ we find

E
[
Tr[χ[E−ε,E+ε](Hω,L)]

]
≤ (K1eE0 + 2d K2)‖νµ‖∞ · δ|ln ε|d |3̃L |

≤ (K1eE0 + 2d K2)‖νµ‖∞ · (4ε)1/κ |ln ε|d(2/G1)
d Ld . �

Proof of Theorem 2.11. We follow the ideas developed in [Barbaroux et al. 1997; Kirsch et al. 1998].
Let t ≤ δmax, Vt,L be the restriction of Vω to 3L obtained by setting all random variables to t , and
Ht,L = −13L + VL ,t on L2(3L) with Dirichlet boundary conditions. Note that H0,L = −13L + V0,L

and that the first eigenvalue of Ht,L is bounded from above by d(π/L)2 + Ku . Inequality (36) with
E0 = dπ2

+ Ku , ωk = 0, k ∈D, and δ = t yields that there is κ = κ(d, δmax, α1, α2, β1, β2,G2,Gu, Ku)

such that for all t ≤ δmax

λ1(Ht,L)≥ λ1(H0,L)+ tκ.

We choose t = L−7/(4κ) and L sufficiently large such that t <min{δmax, t0}. Then,

λ1(Ht,L)− λ1(H0,L)≥ L−7/4.
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Let �0 := {ω ∈ � : λ1(Hω,L) ≥ λ1(Ht,L)}. Since the potential values in 3L only depend on ωk ,
k ∈3L+Gu ∩D, we calculate using ]3L+Gu ∩D≤d(L+Gu)/G1e

d and our assumption on the measure µ
that

P(�0)≥ 1−P(∃γ ∈3L+Gu ∩D, ωγ ≤ t)≥ 1−
⌈

L +Gu

G1

⌉d

µ([0, t])≥ 1−
⌈

L +Gu

G1

⌉d C
L7d/4 .

Since d(L +Gu)/G1e
d
≤ L5d/4 for L sufficiently large, we obtain the statement of the theorem. �

5. Proof of the observability estimate

We want to apply [Miller 2010, Theorem 2.2] where we choose A = 1L − VL on L2(3L) with
Dirichlet boundary conditions, C = χWδ(L) and C0 = Id. Note that A is self-adjoint with spectrum
contained in (−∞, ‖V ‖∞]. For λ > 0 we define the increasing sequence of spectral subspaces Eλ :=
Ranχ[−λ,∞)(1L − VL).

We need to check [Miller 2010, (5),(6),(7)]. By spectral calculus, we have for all λ > 0

‖e(1L−VL )t u‖3L ≤ e−λt
‖u‖3L , u ∈ E⊥λ = Ranχ(−∞,−λ)(1L − VL), t > 0.

Furthermore, Corollary 2.4 implies for all λ > 0 and u ∈ Eλ

‖u‖23L
≤ a0e−N ln(δ/G)G

√
λ
‖u‖2Wδ(L).

For T ≤ 1 we have e2T ‖V ‖∞/T ≤ e2‖V ‖∞e2/T, whence

‖eT (1−V )u‖23L
≤

e2T ‖V ‖∞

T

∫ T

0
‖et (1−V )u‖23L

dt ≤ e2‖V ‖∞e2/T
∫ T

0
‖et (1−V )u‖23L

dt.

Thus we found [Miller 2010, (5),(6),(7)] with m0 = 1, m = 0, α = ν = 1
2 , a0 and b0 as in the theorem,

a =−(N/2) ln(δ/G)G > 0, b = 1 and β = 1. By [Miller 2010, Theorem 2.2 and Corollary 1(i)], there
exists T ′ > 0 such that for all T ≤ T ′

κT ≤ 4a0b0e2c∗/T, where c∗ = 4(
√

a+ 2−
√

a)−4.

From the proof in [Miller 2010], it can be inferred that T ′ only depends on m0, α, β, a, b, a0, b0 and on
our choice of T ≤ 1. Thus, in our case, T ′ only depends on G, δ and ‖V ‖∞.

Using
√

a+ 2−
√

a =
∫ a+2

a (2
√

x)−1 dx ≥ (a+ 2)−1/2 and the fact that from δ ≤ G/2, it follows that
2≤ 2a/amin, where amin := (N/2) ln(2)G, and we obtain

c∗ ≤ 4(a+ 2)2 ≤ 4a2(1+ 2/amin)
2
= ln(G/δ)2(N G+ 4/ ln 2)2.

Appendix: On single-site potentials for the breather model

Our assumptions. In this section we discuss our conditions on the single-site potential in the random
breather model. Recall that the ωj were supported in [ω−, ω+] ⊂ [0, 1), whence we consider t ∈ [ω−, ω+]
and δ ∈ [0, 1−ω+].
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Definition A.1. We say that a family {ut }t∈[0,1] of measurable functions ut : R
d
→ R satisfies:

• condition (A) if the ut are uniformly bounded, have uniform compact support and if there are
α1, β1 > 0 and α2, β2 ≥ 0 such that for all t ∈ [ω−, ω+], δ ≤ 1−ω+ there is x0 = x0(t, δ) ∈Rd with

ut+δ − ut ≥ α1δ
α2χB(x0,β1δ

β2 ), (39)

• condition (B) if ut is the dilation of a function u by t , defined as ut(x) := u(x/t) for t > 0 and
u0 ≡ 0, where u is the characteristic function of a bounded, convex, open set K with 0 ∈ K,

• condition (C) if ut is the dilation of a measurable function u which is positive, radially symmetric,
compactly supported, bounded with monotonously decreasing radial part ru : [0,∞)→ [0,∞) and
such there is a point x̃ > 0 where ru is differentiable, r ′u(x̃) < 0 and ru(x̃) > 0,

• condition (D) if ut is the dilation of a measurable function u which is positive, radially symmetric,
radially decreasing, compactly supported, bounded and which has a discontinuity away from 0,

• condition (E) if u1−t is the dilation of a measurable function which is nonpositive, radially symmetric,
radially increasing, compactly supported, bounded, and such there is a point x̃ > 0 where the radial
part ru is differentiable, r ′u(x̃) > 0 and ru(x̃) < 0.

Remark A.2. Condition (A) is the abstract assumption we used in the proof of the Wegner estimate for
the random breather model. Conditions (B) to (E) are relatively easy to verify for specific examples of
single-site potentials. In particular, (C) holds for many natural choices of single-site potentials such as the
smooth function χ|x |<1 exp(1/(|x |2− 1)) or the hat-potential χ|x |<1(1− |x |). Furthermore, we note that
if we have families {ut }t∈[0,1] and {vt }t∈[0,1] where ut satisfies (A) and vt+δ − vt ≥ 0 for all t ∈ [ω−, ω+]
and δ ∈ (0, 1−ω+], then the family {ut + vt }t∈[0,1] also satisfies (A).

Lemma A.3. We have that each of the assumptions (B) to (E) implies (A).

Proof. Assume (B). We will show (A) with α1 = 1, α2 = 0, β2 = 1 and β1 = c, and hence it is enough to
show the existence of a cδ-ball in Kt+δ\Kt .

For K ⊂ Rd and t > 0 we define Kt := {x ∈ Rd
: x/t ∈ K } and K0 :=∅. Without loss of generality

let x := (1, 0, . . . , 0) be a point in K which maximizes |x | over K. For λ ∈ R define the half-space
Hλ := {x ∈ Rd

: x1 ≤ λ}, where x1 stands for the first coordinate of x . By scaling, the existence of a
cδ-ball in Kt+δ\Kt is equivalent to the existence of a cδ/(t + δ)-ball in K\Kt/(t+δ). By maximality of
(1, 0, . . . , 0), we have K ⊂ H1 and hence Kt/(t+δ)⊂ Ht/(t+δ). Thus, it is sufficient to find a cδ/(t+δ)-ball
in K\Ht/(t+δ). By convexity of K, the set

{
z ∈ K : z1 =

1
2

}
is nonempty and since K is open, we find

z0 ∈ K with z1 =
1
2 and 0< c < 1

2 such that B(z0, c)⊂ K. We define for λ ∈ [0, 1) the set X (λ)⊂ Rd as
X (λ) := B(z0+ λ((1, 0, . . . , 0)− z0), c · (1− λ)). By convexity and the fact that (1, 0, . . . , 0) ∈ K, we
have X (λ) ⊂ K. In fact, let {xn}n∈N ⊂ K be a sequence with xn → (1, 0, . . . , 0). We define open sets
Xn(λ) by replacing (1, 0, . . . , 0) by xn in the definition of X (λ). By convexity of K, every Xn is a subset
of K , whence

⋃
n∈N Xn(λ)⊂ K. Furthermore we have X (λ)⊂

⋃
n∈N Xn(λ). Thus X (λ)⊂ K. We now

choose λ := t/(t + δ). Then X (λ)∩ Hλ =∅. Noting that c(1− λ)= cδ/(t + δ), we see that X (λ) is the
desired cδ/(t + δ)-ball.
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Now we assume (C). Let r ′u(x̃)=−C1. Then there is ε̃ > 0 such that

ru(x̃ + ε)− ru(x̃) ∈
[
−2εC1,−

ε

2
C1

]
for all |ε|< ε̃. (40)

It is sufficient to prove the following: there are C2,C3 > 0 such that for every 0 ≤ t ≤ ω+ and every
0< δ ≤ 1−ω+ there is x̂ = x̂(t, δ) such that

ru

(
x̂ +C2δ

t + δ

)
− ru

(
x̂
t

)
≥ C3δ. (41)

Indeed, by monotonicity of ru , (41) implies that for every x ∈ [x̂, x̂ +C2δ] we have

ru

(
x

t + δ

)
− ru

(
x
t

)
≥ ru

(
x̂ +C2δ

t + δ

)
− ru

(
x̂
t

)
≥ C3δ,

whence (A) holds with x0 := (x̂ +C2δ/2)e1, α1 = C3, β1 = C2/2, α2 = β2 = 1.
In order to see (41), let x̂ = (t + δ)x̃ . We choose κ ∈

(
0, 1

4

)
and assume that x̃ − 4κε̃ > 0 (this is no

restriction since (40) also holds for smaller ε̃). Furthermore, we define C2 := κε̃. Now we distinguish
two cases. If x̃δ/t ≤ ε̃, then (40) implies

ru

(
x̂ +C2δ

t + δ

)
− ru

(
x̂
t

)
= ru

(
x̃ + κ

ε̃δ

t + δ

)
− ru(x̃)+ ru(x̃)− ru

(
x̃ + x̃

δ

t

)
≥−2κC1

ε̃δ

t + δ
+C1

x̃δ
2t
≥ δ

C1

2
x̃ − 4κε̃

t + δ
.

If x̃δ/t > ε̃, we use ru(x̃)− ru(x̃ + x̃δ/t)≥ ru(x̃)− ru(x̃ + ε̃) and (40) to obtain

ru

(
x̂ +C2δ

t + δ

)
− ru

(
x̂
t

)
≥−2κC1

ε̃δ

t + δ
+C1

ε̃

2
=

C1ε̃

2

(
1−

4κδ
t + δ

)
≥

C1ε̃

2
(1− 4κ).

Hence

ru

(
x̂ +C2δ

t + δ

)
− ru

(
x̂
t

)
≥ C3δ, where C3 :=min

{
C1(x̃ − 4κε̃)

2
,

C1ε̃(1− 4κ)
2(1−ω+)

}
> 0.

The fact that (D) implies (A) is a consequence of (B). In fact, a function u as in (D) can be decomposed
as u = v+w, where v is (a multiple of) a characteristic function of a ball, centered at the origin, and w is
positive, radially symmetric and decreasing. Indeed, let x0 be the point of discontinuity with the smallest
norm. Then we can take v = (u(x0−)− u(x0+))χB(0,|x0|), where χA denotes the characteristic function
of the set A.

The function v satisfies (A) by (B) (since balls are convex) and we have wt+δ−wt ≥ 0. By Remark A.2,
the family {ut }t∈[0,1] = {vt +wt }t∈[0,1] also satisfies (A). The case (E) is an adaptation of (C). �

Earlier assumptions. For certain types of random breather potentials, Wegner estimates have been given
before; see [Combes et al. 1996; 2001]. As we will show below, none of these results covers the standard
breather model. The methods of [Combes et al. 1996; 2001] seem to be motivated by reducing, thanks to
linearization, the random breather model to a model of alloy type and then applying methods designed
for the latter one. They are not focused to take advantage of the inherent, albeit nonlinear, monotonicity
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of the random breather model. The following assumptions on the single site potential are considered in
[Combes et al. 1996] and [Combes et al. 2001], respectively.

Definition A.4. We say that a measurable function u : Rd
→ [0,∞) satisfies:

• condition (F) if u is compactly supported, in C2(Rd), nonzero in a neighborhood of the origin and
for some c0 > 0 we have the inequalities

−x · ∇u ≥ 0 for all x ∈ Rd and
∣∣∣∣(x,Hess[u]x)

x · ∇u

∣∣∣∣≤ c0 <∞ for all x ∈ Rd
\{0}, (42)

• condition (G) if u 6≡ 0 is compactly supported, in C1(B1\{0}), and there is ε0 > 0 such that

−x · ∇u− ε0u ≥ 0 for all x ∈ Rd
\{0}. (43)

We have the following lemma.

Lemma A.5. We have that

• (F) never holds,

• (G) implies that u has a singularity at the origin.

Proof. We first show the statements in dimension one. Assume (F) and let x0 :=min supp u. Note that
x0 < 0. By the first inequality in (42) we have that u′ ≥ 0 for x ∈ (x0, 0). The second inequality in (42)
implies

|u′′(x)| ≤
c0u′(x)
|x |

≤
2c0u′(x)
|x0|

for all x ∈ (x0, x0/2),

whence we have

u′(x)=
∫ x

x0

u′′(y) dy ≤
∫ x

x0

|u′′(y)| dy ≤
2c0

|x0|

∫ x

x0

u′(y) dy,

and iteratively

u′(x)≤
(2c0)

n

|x0|n

∫ x

x0

∫ x (1)

x0

· · ·

∫ x (n−1)

x0

u′(x (n)) dx (n) · · · dx (1)

≤ ‖u′‖∞ ·
(2c0)

n

|x0|n

∫ x

x0

∫ x (1)

x0

· · ·

∫ x (n−1)

x0

dx (n) · · · dx (1)

= ‖u′‖∞ ·
(

2c0(x − x0)

|x0|

)n

(n!)−1
→ 0 as n→∞

for all x ∈ (x0, x0/2). We found u′ ≡ 0 on (x0, x0/2), which is a contradiction.

Now we assume (G). The function u cannot have its supremum at a point of differentiability for else
it would have to be zero at its maximum, which would imply u ≡ 0. Condition (43) implies that u
is increasing on the negative half-axis and decreasing on the positive half-axis. We conclude that the
supremum has to be the limit at the only possible nondifferentiable point x = 0 and we will show that
this limit is∞. By monotonicity of u and the assumption u 6≡ 0, there is δ0 > 0 such that

u(x)≥ u(δ0) > 0 on (0, δ0) or u(x)≥ u(−δ0) > 0 on (−δ0, 0).
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Without loss of generality, we assume u(x)≥ u(δ0) > 0 on (0, δ0). Furthermore, from (43) it follows that

−u′(x)≥ ε0
u(x)

x
for x > 0.

Using this inequality we estimate for 0< x < δ0:

u(x)≥ u(x)− u(δ0)=−

∫ δ0

x
u′(s) ds ≥ ε0

∫ δ0

x

u(s)
s

ds

≥ ε0u(δ0)

∫ δ0

x
s−1ds = ε0u(δ0)[ln(δ0)− ln(x)] →∞ as x→ 0.

Now we show the claim in higher dimensions. If the single site potential U : Rd
→ [0,∞) does

not vanish identically there is a point y such that U (y) > 0. Assume without loss of generality that y
lies on the x1-axis and define u : R→ [0,∞) by u(x1) = U (x1, 0, . . . , 0). Note that if U satisfies the
assumption (F) or (G), respectively, then u satisfies (F) or (G) as well and the one-dimensional argument
can be applied to u. Hence, the statement of the lemma also holds for U. �

In the light of the comments made at the beginning of this section, the occurrence of a singularity is not
surprising since in the case of a single-site potential with a polynomial singularity, u(x)= |x |−α, we have

u(x/ωj )= |x/ωj |
−α
= ωαj |x |

−α
= ωαj u(x),

and thus the random breathing would correspond to a multiplication, which would allow to reduce the
breather model to the well-understood alloy-type model Vω(x)=

∑
j ωj u(x − j).
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