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1. Introduction

1A. The result. Let �� R2 be an open set and let u 2W
1;p

loc .�/ be a local weak solution in � of the
orthotropic p-Laplace equation

2X
iD1

.juxi
j
p�2 uxi

/xi
D 0: (1-1)

This means that for every �0 b� and every ' 2W
1;p

0
.�0/, we have

2X
iD1

Z
�0
juxi
j
p�2 uxi

'xi
dx D 0: (1-2)

In the recent literature, such an equation has sometimes been called the pseudo p-Laplace equation. We
decided to adopt the terminology orthotropic p-Laplace equation in order to emphasize the role played
by the coordinate system. Indeed, let us recall that if u 2W

1;p
loc .�/ is a local weak solution of the usual

p-Laplace equation, i.e.,
2X

iD1

.jrujp�2 uxi
/xi
D 0;
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then for every linear isometry A W R2! R2, we know u ıA is still a local weak solution of this equation
on A�1.�/. This property fails to be true for (1-1), but it still holds if A belongs to the dihedral group D2,
i.e., the group of symmetries of the square .�1; 1/� .�1; 1/.

Equation (1-1) is the prototype of degenerate/singular elliptic equations with orthotropic structure,
interest in which arose for example in the context of optimal transport problems with congestion effects.
We refer to the introduction of [Brasco and Carlier 2014] for a detailed description of the framework and
the model leading to these kinds of equations.

A function u 2W
1;p

loc .�/ is a local weak solution if and only if it is a local minimizer of the functional

F.'I�0/ WD

2X
iD1

1

p

Z
�0
j'xi
j
p dx; ' 2W

1;p
loc .�/; �

0 b�� R2:

This easily follows from the convexity of the functional F. We recall that u 2 W
1;p

loc .�/ is a local
minimizer of F if

F.uI�0/� F.'I�0/ for every u�' 2W
1;p

0
.�0/; �0 b�:

In the recent paper [Bousquet et al. 2016], we proved that for p � 2 any such local minimizer is a
locally Lipschitz function; actually, the case 1< p < 2 is a mere application of [Fonseca and Fusco 1997,
Theorem 2.2]. The aim of this paper is to go one step further and prove the following additional regularity.

Main Theorem. Every local minimizer U 2W
1;p

loc .�/ of the functional F is a C 1 function.

Remark 1.1. It is easy to see that the function

u.x1;x2/D jx1j
p

p�1 � jx2j
p

p�1 ; .x1;x2/ 2 R2;

is a local weak solution of (1-1). Observe that for p > 2, we have u is not C 2, but only C 1; 1
p�1. We

conjecture this to be the sharp regularity of local weak solutions.

1B. Method of proof. The proof of the Main Theorem is greatly inspired by that of [Santambrogio and
Vespri 2010, Theorem 11], which in turn exploits an idea introduced in [DiBenedetto and Vespri 1995].
However, since our equation is much more singular/degenerate than theirs, most of the estimates have to be
recast and the argument needs various nontrivial adaptations. In order to neatly explain the method of proof
and highlight the differences with respect to [Santambrogio and Vespri 2010], let us first recall their result.

In [Santambrogio and Vespri 2010] it is shown that in R2, local weak solutions of the variational
equation

divrH.ru/D 0 (1-3)

are such that x 7! rH.ru.x// is continuous, provided that

� rH.ru/ 2W
1;2

loc \L1loc;

� H W R2! Œ0;1/ is a C 2 convex function such that there exist M � 0 and 0< ��ƒ for which

� jzjp�2
j�j2 � hD2H.z/ �; �i �ƒ jzjp�2

j�j2 for every � 2 R2; jzj �M: (1-4)
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The last assumption implies that (1-3) is a degenerate/singular elliptic equation, with confined degener-
acy/singularity. Indeed, on the set where the gradient of a Lipschitz solution u satisfies jruj �M, the
equation behaves as a uniformly elliptic equation. By using the terminology of [Bousquet et al. 2016],
we can say that (1-3) has a p-Laplacian-type structure at infinity.

The proof of the continuity of rH.ru/ in [Santambrogio and Vespri 2010] relies on the following
De Giorgi–type lemma: given a ball BR of radius R, if a component Hxi

.ru/ of the vector field rH.ru/

has large oscillations only on a small portion of BR , then the global oscillation of Hxi
.ru/ on the ball BR

2

is reduced (in a precise quantitative sense). Such a result amounts to an L1 estimate for (a nonlinear
function of) the gradient, which in turn relies on the Caccioppoli inequality for the linearized equation

div.D2H.ru/ruxi
/D 0: (1-5)

On the contrary, if Hxi
.ru/ has large oscillations on a large portion of BR, then one exploits the fact

that a function W 1;2\L1 in the plane is such that either

(A1) its Dirichlet energy in a crown contained in BR is large; or

(A2) the function itself is large on a circle contained in BR.

When (A2) occurs, the structure of the linearized equation (1-5) allows us to prove a minimum principle
for Hxi

.ru/, which implies that Hxi
.ru/ is large on the whole disc bounded by the above-mentioned

circle. This again leads to a decay of the oscillation of Hxi
.ru/ (this time because the infimum increases

when shrinking the ball).
Then the continuity result of [Santambrogio and Vespri 2010] is achieved by constructing inductively a

decreasing sequence of balls and using the dichotomy above at each step. The important point is that since
Hxi

.ru/ has finite Dirichlet energy, then possibility (A1) can occur only finitely many times. Hence, the
oscillation of Hxi

.ru/ decays to 0, as desired.
Unfortunately, our (1-1) does not have a p-Laplacian structure at infinity; i.e., (1-4) is not satisfied.

Indeed, in our case we have

H.z/D

2X
iD1

jzi j
p

p

so that

D2H.z/D .p� 1/

�
jz1j

p�2 0

0 jz2j
p�2

�
; z D .z1; z2/ 2 R2:

In particular, D2H.z/ is degenerate/singular on the union of the two axes fz1D0g [ fz2D0g and our
equation does not fit in the framework of [Santambrogio and Vespri 2010]. Thus, even if the proof of
the Main Theorem follows the guidelines illustrated above, we will have to overcome the additional
difficulties linked to the more degenerate/singular structure of (1-5). In particular, in the case p > 2,
we need a new Caccioppoli inequality, which weirdly mixes different components of the gradient (see
Proposition 3.1). This is one of the main novelties of the paper.
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Remark 1.2 (stream functions). For 1 < p <1, let us set p0 D p=.p � 1/. When � � R2 is simply
connected, to every local weak solution u 2 W

1;p
loc .�/ of (1-1) one can associate a stream function

v 2W
1;p0

loc .�/, such that

vx1
D jux2

j
p�2 ux2

and vx2
D�jux1

j
p�2 ux1

:

Existence of such a function v is a straightforward consequence of the Poincaré Lemma, once it is
observed that (1-1) implies that the vector field�

jux1
j
p�2 ux1

; jux2
j
p�2 ux2

�
is divergence free (in the distributional sense). It is readily seen that v is a weak solution of

2X
iD1

.jvxi
j
p0�2 vxi

/xi
D 0:

This would allow us to reduce the proof of the Main Theorem to the case 1< p � 2 only. However, this
kind of argument is very specific to the homogeneous equation and already fails in the case

2X
iD1

.juxi
j
p�2 uxi

/xi
D � 2 R;

which we note is covered by our method (indeed, observe that the previous equation and (1-1) have
the same linearization (1-5), thus the Main Theorem still applies). More generally, we observe that our
method of proof can be adapted to treat the case, as in [Santambrogio and Vespri 2010], of

2X
iD1

.juxi
j
p�2 uxi

/xi
D f

under suitable (not sharp) assumptions1 on f . For these reasons, we avoided using this argument based
on stream functions.

1C. Plan of the paper. First, it should be noticed that almost every section is divided in two parts, one
for the degenerate case p > 2 and the other for the singular one 1< p < 2 (the case pD 2 corresponds to
the standard Laplacian). Though the methods of proof for the two cases look very much the same, there
are some important differences which lead us to think that it is better to separate the two cases.

In Section 2 we introduce the technical machinery and present some basic integrability properties of
solutions and their derivatives, needed throughout the whole paper. Section 3 is devoted to some new
Caccioppoli inequalities for the gradient of a local minimizer. The core of the paper is represented by
Sections 4 and 5, concerning decay estimates for a nonlinear function of the gradient (case p > 2) or for
the gradient itself (case 1< p � 2). Finally, the proof of the Main Theorem is postponed to Section 6.
The paper ends with Appendices A and B containing technical facts.

1As in the case of the ordinary p-Laplacian, see [Kuusi and Mingione 2013, Corollary 1.6], the sharp assumption should be
f 2L

2;1
loc , the latter being a Lorentz space. For p > 2 our proof requires juxj j

p�2
2 uxj 2W

1;2
loc .�/; a result which is true only

when f enjoys suitable differentiability properties.
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2. Preliminaries

2A. Notation. Given � > 0 and a ball B � R2 of radius R> 0, we denote by �B the ball with the same
center and radius �R.

We define for every q > �1 the function gq W R! R as

gq.t/D jt j
q t; t 2 R: (2-1)

Then gq is a homeomorphism and g�1
q D g� q

qC1
. Observe that

jt jq t � ˛ () t � j˛j�
q

qC1 ˛;

a fact that will be used repeatedly.
Let U 2W

1;p
loc .�/ be a given local minimizer of F. We fix a ball B b�. There exists �B > 1 such

that �B B b� as well. If f�"g">0 � C1
0
.B"/ is a smooth convolution kernel (here, B" refers to the ball

with center 0 and radius "), we define U " WDU ��" 2W 1;p.�"/, where �" WD fx 2� W dist.x; @�/ > "g.
By the definition of U " there exists 0< "0 < 1 such that for every 0< " < "0

kU "
kW 1;p.B/ D krU "

kLp.B/CkU
"
kLp.B/ � krU kLp.�B B/CkU kLp.�B B/: (2-2)

2B. Regularization scheme, case p > 2. As in [Bousquet et al. 2016], we consider the minimization
problem

min
� 2X

iD1

1

p

Z
B

jwxi
j
p dxC

p� 1

2
"

Z
B

jrwj2 dx W w�U "
2W

1;p
0

.B/

�
: (2-3)

Since the functional is strictly convex, there exists a unique solution u", which is C 2 on B; see, e.g.,
[Bousquet et al. 2016, Theorem 2.4] for the Lipschitz regularity and [Giusti 2003, Theorems 8.6 and 10.18]
for the higher regularity. Moreover, u" satisfies the Euler–Lagrange equation

2X
iD1

Z
B

.ju"xi
j
p�2
C .p� 1/ "/u"xi

'xi
dx D 0 for every ' 2W

1;p
0

.B/:

We take ' 2 C 2 with compact support in B. Then for j 2 f1; 2g, the partial derivative 'xj is still an
admissible test function. An integration by parts leads to

2X
iD1

Z
B

.ju"xi
j
p�2
C "/u"xi xj

'xi
dx D 0; j D 1; 2: (2-4)

As usual, by a density argument, the equation still holds with ' 2W
1;2

0
.B/. We now collect some uniform

estimates on u".

Lemma 2.1 (uniform energy estimate). There exists a constant C D C.p/ > 0 such that for every
0< " < "0 the following estimate holds:Z

B

jru"jp dx � C

�Z
�B B

jrU jp dxC "
p

p�2 jBj

�
: (2-5)

Moreover, the family fu"g0<"<"0
converges weakly in W 1;p.B/ and strongly in Lp.B/ to U.
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Proof. The estimate (2-5) is standard, it is sufficient to test the minimality of u" against U ", which
is admissible. In particular, the family fu"g0<"<"0

is uniformly bounded in W 1;p.B/. Moreover, by
[Bousquet et al. 2016, Lemma 2.9] there exists a sequence f"kgk2N � .0; "0/ such that u"k converges
weakly in W 1;p.B/ and strongly in Lp.B/ to a solution w of

min
� 2X

iD1

1

p

Z
B

j'xi
j
p dx W ' �U 2W

1;p
0

.B/

�
:

Since U is a local minimizer of F and the solution of this problem is unique (by strict convexity), we get
w D U and full convergence of the whole family. �

Lemma 2.2 (uniform regularity estimates). For every 0< " < "0 and every Br b B we have

ku"kL1.Br / � C; (2-6)

kru"kL1.Br / � C; (2-7)Z
Br

ˇ̌
r.ju"xj j

p�2
2 u"xj /

ˇ̌2
dx � C; j D 1; 2; (2-8)

for some constant C > 0 independent of " > 0.

Proof. The proof of the L1 estimate (2-6) is standard; it can be obtained as in [Giusti 2003, Theorem 7.5].
The standing assumption required throughout [Giusti 2003, Chapter 7], namely the property (7.2) there,
is satisfied in our framework since for every z 2 R2 one has

1

C
jzjp �

1

p

2X
iD1

jzi j
p
C

p� 1

2
" jzj2 � C .jzjpC 1/

for some C D C.p/ > 0.
The Lipschitz estimate (2-7) is more delicate and is one of the main outcomes of [Bousquet et al. 2016].

Indeed, we know from Proposition 4.1 of that paper that there exists C D C.p/ > 0 such that for every
Br b BR b B

ku"xi
kL1.Br / � C

�
R

R� r

�8�

/

Z
BR

jru"jp dxC 1

�2C 1
p

; i D 1; 2: (2-9)

With the notation introduced in [Bousquet et al. 2016], this corresponds to the particular case ı1D ı2D 0

and f D 0 there. By combining this with (2-5), we get (2-7).
We now prove the W 1;2 estimate for the nonlinear function of ru". We take � 2 C1

0
.B/ a standard

cut-off function such that

0� �� 1; �� 1 on Br ; �� 0 on R2
nBR; jr�j �

C

R� r
:

Then we test (2-4) against ' D u"xj �
2. With standard manipulations, we get the Caccioppoli inequality

2X
iD1

Z
.ju"xi
j
p�2
C "/ ju"xi xj

j
2 �2 dx � C

2X
iD1

Z
.ju"xi
j
p�2
C "/ ju"xj j

2
j�xi
j
2 dx:
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By dropping the term containing " on the left and observing that

ju"xi
j
p�2
ju"xi xj

j
2
D

4

p2

ˇ̌
.ju"xi
j

p�2
2 u"xi

/xj
ˇ̌2
;

we get
2X

iD1

Z
Br

ˇ̌
.ju"xi
j

p�2
2 u"xi

/xj
ˇ̌2

dx �
C

.R� r/2

2X
iD1

Z
BR

.ju"xi
j
p�2
C "/ ju"xj j

2 dx; (2-10)

where we used the properties of �. In order to conclude, it is sufficient to use again (2-5). �

From the bounds obtained in Lemma 2.2, we can deduce the following convergence result.

Proposition 2.3 (convergence). With the notation above, for every Br b B we have:

(i) fu"g0<"<"0
converges uniformly to U on Br .

(ii) fju"xi
j

p�2
2 u"xi

g0<"<"0
converges to jUxi

j
p�2

2 Uxi
weakly in W 1;2.Br / and strongly in L2.Br /. In

particular, we have
jUxi
j

p�2
2 Uxi

2W 1;2.Br /:

(iii) fru"g0<"<"0
converges to rU strongly in Lp.Br /.

Proof. We already know from Lemma 2.1 that u" converges to U weakly in W 1;p.B/ and strongly
in Lp.B/.

In view of (2-6) and (2-7), the Arzelà–Ascoli theorem implies that the convergence is indeed uniform
on Br for every Br b B.

By (2-8), there exists a sequence f"kgk2N � .0; "0/ such that

fju"k
xi
j

p�2
2 u"k

xi
gk2N; i D 1; 2;

converges to some function Vi 2W 1;2.Br / weakly in W 1;2.Br / and strongly in L2.Br /. In particular,
this is a Cauchy sequence in L2.Br /. By using the elementary inequality

jt � sjp � C
ˇ̌
jt j

p�2
2 t � jsj

p�2
2 s

ˇ̌2
; t; s 2 R;

where C > 0 depends only on p, we obtain that fu"k
xi
gk2N is a Cauchy sequence as well, this time in

Lp.Br /. This implies
lim

k!C1
kru"k �rU kLp.Br / D 0:

We now prove that Vi D jUxi
j

p�2
2 Uxi

. We use the elementary inequalityˇ̌
jt j

p�2
2 t � jsj

p�2
2 s

ˇ̌
� C

�
jt j

p�2
2 Cjsj

p�2
2

�
jt � sj; t; s 2 R;

valid for some C D C.p/ > 0. Then we obtainZ
Br

ˇ̌
ju"k

xi
j

p�2
2 u"k

xi
�jUxi

j
p�2

2 Uxi

ˇ̌2
dx�C

Z
Br

�
ju"k

xi
j

p�2
2 CjUxi

j
p�2

2

�2
ju"k

xi
�Uxi

j
2 dx

�C

�Z
Br

�
ju"k

xi
j

p�2
2 CjUxi

j
p�2

2

� 2p
p�2 dx

�p�2
p
�Z

Br

ju"k
xi
�Uxi

j
p dx

�2
p

:
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By using the strong convergence of the gradients proved above, this implies that Vi DjUxi
j

p�2
2 Uxi

. Since
the above argument can be repeated for every subsequence of fu"g0<"<"0

, it follows from the uniqueness
of the limit that the convergence holds true for the whole family fu"g0<"<"0

, both in (ii) and (iii). �

From the convergence results stated in the above proposition, we can obtain some regularity properties
for the local minimizer U , which we state in the following theorem. These properties, which come with
local scaling-invariant a priori estimates, have already been established in [Bousquet et al. 2016; Brasco
and Carlier 2013; Fonseca and Fusco 1997].

Theorem 2.4 (a priori estimates, p > 2). Every local minimizer U 2W
1;p

loc .�/ of the functional F is a
locally Lipschitz function, such that for every ˛ � p

2
we have

jUxi
j
˛�1 Uxi

2W
1;2

loc .�/; i D 1; 2:

Moreover, for every BR b� we have

kUxi
kL1.BR=2/ � C

�
/

Z
BR

jrU jp dx

�1
p

; i D 1; 2; (2-11)

Z
BR=2

ˇ̌
r.jUxi

j
˛�1 Uxi

/
ˇ̌2

dx � C ˛2

�

/

Z
BR

jrU jp dx

�2˛
p

; i D 1; 2; (2-12)

for some C.p/ > 0.

Proof. Let us prove the estimates (2-11) and (2-12). By taking the limit as " goes to 0 in (2-9) and using
the convergence result of Proposition 2.3, we obtain

kUxi
kL1.BR=2/ � C

�

/

Z
BR

jrU jp dxC 1

�2C 1
p

; i D 1; 2:

In order to obtain (2-11), it is sufficient to observe that if U is a local minimizer of F, then for every �> 0

the function �U is still a local minimizer of the same functional. Thus the previous Lipschitz estimate
holds true; i.e.,

� kUxi
kL1.BR=2/ � C

�
�p /

Z
BR

jrU jp dxC 1

�2C 1
p

; i D 1; 2:

This can be rewritten as

�
p

2pC1 kUxi
k

p
2pC1

L1.BR=2/
�C �p /

Z
BR

jrU jp dx � C; i D 1; 2;

for a different constant C D C.p/ > 0. If we now maximize the left-hand side with respect to � > 0, we
get (2-11) as desired.

We already know from Proposition 2.3 that jUxi
j

p�2
2 Uxi

2W
1;2

loc .�/. By passing to the limit in (2-10)
and using the convergences at our disposal from Proposition 2.3, we obtainZ

BR=2

ˇ̌
r.jUxi

j
p�2

2 Uxi
/
ˇ̌2

dx �
C

R2

Z
BR

jrU jp dx;
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which is (2-12) for ˛ D p
2

. In order to prove (2-12) for a general ˛ > p
2

, it is sufficient to observe that

jUxi
j
˛�1 Uxi

D
ˇ̌
jUxi
j

p�2
2 Uxi

ˇ̌ 2
p
˛�1
jUxi
j

p�2
2 Uxi

; (2-13)

and the function t 7! jt j
2˛�p

p t is C 1. By using that

jUxi
j

p�2
2 Uxi

2W
1;2

loc .�/\L1loc.�/;

we get that jUxi
j˛�1 Uxi

2W
1;2

loc .�/\L1loc.�/ as well. Finally, to prove the estimate, we observe that
(2-13) impliesZ

BR=2

ˇ̌
r.jUxi

j
˛�1 Uxi

/
ˇ̌2

dx � C ˛2
kUxi
k

2˛�p

L1.BR=2/

Z
BR=2

ˇ̌
r.jUxi

j
p�2

2 Uxi
/
ˇ̌2

dx:

By using (2-11) and (2-12) for ˛ D p
2

, we get the desired conclusion. �

We proceed with a technical result which will be needed to handle the case p > 2.

Lemma 2.5. Let p > 2 and let U 2W
1;p

loc .�/ still denote a local minimizer of F. Let ˇ 2 R and set

F.t/D
p

2

Z t

ˇ

jsj
p�2

2 .s�ˇ/C ds; t 2 R:

Then F.Uxj / 2W
1;2

loc .�/ and we have

.jUxj j
p�2

2 Uxj /xk
.Uxj �ˇ/C D .F.Uxj //xk

a.e. in �: (2-14)

Proof. In order to prove that F.Uxj / 2W
1;2

loc .�/, we can observe that if we introduce the function

G.t/D F.jt j
2�p

p t/D
p

2

Z jt j.2�p/=p t

ˇ

jsj
p�2

2 .s�ˇ/C ds;

then we have
F.Uxj /DG.jUxj j

p�2
2 Uxj /: (2-15)

With the simple change of variable � D jsj
p�2

2 s, the function G can be rewritten as

G.t/D

Z t

jˇj.p�2/=2 ˇ

.j� j
2�p

p � �ˇ/C d�:

Hence, G is a C 1 function. By using Theorem 2.4 and (2-15), we thus get that F.Uxj / 2W
1;2

loc .�/.
In order to prove (2-14), we use the approximation scheme introduced in this section. For every " > 0,

thanks to the smoothness of u", we have

.ju"xj j
p�2

2 u"xj /xk
.u"xj �ˇ/C D .F.u

"
xj
//xk

: (2-16)

By Proposition 2.3, we know that ru" converges to rU strongly in Lp.Br / and

ju"xj j
p�2

2 u"xj weakly converges in W 1;2.Br / to jUxj j
p�2

2 Uxj :

This implies that the left-hand side of (2-16) converges weakly in L1.Br / to the left-hand side of (2-14).
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By using the uniform bounds of Lemma 2.2, the local Lipschitz character of G and the relation (2-15),
we get Z

Br

jrF.u"xj /j
2 dx D

Z
Br

ˇ̌
rG.ju"xj j

p�2
2 u"xj /

ˇ̌2
dx � C

Z
Br

ˇ̌
r.ju"xj j

p�2
2 u"xj /

ˇ̌2
dx � C;

and

lim
"!0

Z
Br

ˇ̌
F.Uxj /�F.u"xj /

ˇ̌2
dx D lim

"!0

Z
Br

ˇ̌
G.jUxj j

p�2
2 Uxj /�G.ju"xj j

p�2
2 u"xj /

ˇ̌2
dx

� C lim
"!0

Z
Br

ˇ̌
jUxj j

p�2
2 Uxj � ju

"
xj
j

p�2
2 u"xj

ˇ̌2
dx D 0;

where we used Proposition 2.3 for the last limit. We thus obtain that F.u"xj / converges weakly in W 1;2.Br /

and strongly in L2.Br / to F.Uxj /. We can then pass to the limit in the right-hand side of (2-16). �

We end this subsection with two results on the solutions u" of the problem (2-3). The first one is a
standard minimum principle.

Lemma 2.6 (a minimum principle, p > 2). With the notation above, let Br b B. We have

ju"xj j
p�2

2 u"xj � C on @Br () ju"xj j
p�2

2 u"xj � C in Br :

Proof. In the differentiated equation (2-4) we insert the test function

ˆD

�
.C � ju"xj j

p�2
2 u"xj /C in Br ;

0 in B nBr ;

which is admissible thanks to the hypothesis. Observe that

ju"xj j
p�2

2 u"xj � C ” u"xj � jC j
2�p

p C I (2-17)

thus we obtain
2X

iD1

Z
fx2Br Wu

"
xj
�jC j.2�p/=p C g

.ju"xi
j
p�2
C "/ ju"xj j

p�2
2 ju"xi xj

j
2 dx D 0:

Observe that the two terms are nonnegative; thus for i D j we can also infer

0D

Z
fx2Br Wu

"
xj
�jC j.2�p/=p C g

ju"xj j
3
2
.p�2/

ju"xjxj
j
2 dx

D

�
4

3p� 2

�2 Z
fx2Br Wu

"
xj
�jC j.2�p/=p C g

ˇ̌�
ju"xj j

3
4
.p�2/ u"xj

�
xj

ˇ̌2
dx

D

�
4

3p� 2

�2 Z
Br

ˇ̌�
min

˚
ju"xj j

3
4
.p�2/ u"xj ; jC j

p�2
2p C

	�
xj

ˇ̌2
dx;

where we used that

u"xj � jC j
2�p

p C () ju"xj j
3
4
.p�2/ u"xj � jC j

p�2
2p C: (2-18)
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This gives �
min

˚
ju"xj j

3
4
.p�2/ u"xj ; jC j

p�2
2p C

	�
xj
D 0 a.e. in Br ;

so that the Sobolev function

min
˚
ju"xj j

3
4
.p�2/ u"xj ; jC j

p�2
2p C

	
does not depend on the variable xj in Br . By assumption, this function is constant on @Br . The last two
facts imply

min
˚
ju"xj j

3
4
.p�2/ u"xj ; jC j

p�2
2p C

	
D jC j

p�2
2p C a.e. in Br ;

which is the desired conclusion, thanks to (2-17) and (2-18). �

Finally, we will need the following result about convergence of traces.

Lemma 2.7. Let Br b B. With the notation above, there exists a sequence f"kgk2N � .0; "0/ such that
for almost every s 2 Œ0; r �, we have

lim
k!C1

ju"k
xj
j

p�2
2 u"k

xj
� jUxj j

p�2
2 Uxj


L1.@Bs/

D 0; j D 1; 2:

Proof. We first observe that ˚
ju"xj j

p�2
2 u"xj � jUxj j

p�2
2 Uxj

	
0<"<"0

weakly converges to 0 in W 1;2.Br /, thanks to Proposition 2.3. Thus for every 0< � < 1, there exists a
subsequence which strongly converges to 0 in the fractional Sobolev space W �;2.Br /. We take 1

2
< � < 1

and observe that the previous convergence implies that we can extract again a subsequence which strongly
converges to 0 in W �;2.@Bs/ for almost every s 2 Œ0; r � (see Lemma B.2). In order to conclude, it is now
sufficient to use that for 1

2
< � < 1, the space W �;2.@Bs/ is continuously embedded in C 0.@Bs/, since

@Bs is one-dimensional; see [Adams 1975, Theorem 7.57]. �

2C. Regularization scheme, case 1 < p � 2. In this case, the functional in (2-3) is not smooth enough,
in particular is not C 2. Thus the regularized problem is now

min
� 2X

iD1

1

p

Z
B

."Cjwxi
j
2/

p
2 W w�U "

2W
1;p

0
.B/

�
: (2-19)

This problem admits a unique solution u", which is C 2 on B; see again [Bousquet et al. 2016, Theorem 2.4]
and [Giusti 2003, Theorems 8.6 and 10.18]. Moreover, the solution u" satisfies the corresponding Euler–
Lagrange equation; i.e.,

2X
iD1

Z
B

."Cju"xi
j
2/

p�2
2 u"xi

'xi
dx D 0 for every ' 2W

1;p
0

.B/: (2-20)

We still have the following uniform estimate. The proof is standard routine and is left to the reader.
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Lemma 2.8 (uniform energy estimate). There exists a constant C D C.p/ > 0 such that for every
0< " < "0 the following estimate holdsZ

B

jru"jp dx � C

�Z
�B B

jrU jp dxC "
p
2 jBj

�
: (2-21)

Moreover, the family fu"g0<"<"0
converges weakly in W 1;p.B/ and strongly in Lp.B/ to U.

We will rely on the following Caccioppoli inequality to obtain certain bounds on the family fu"g0<"<"0
.

Proposition 2.9 (Caccioppoli inequality for the gradient, 1< p � 2). Let � W R! R be a C 1 monotone
function; then for every � 2 C 2 with compact support in B we have

2X
iD1

Z
."Cju"xi

j
2/

p�2
2 j�0.u"xj /j ju

"
xj xi
j
2 �2 dx

�C

Z
."Cjru"j2/

p
2 j�0.u"xj /j jr�j

2 dxCC

Z
."Cjru"j2/

p�1
2 j�.u"xj /j

�
jr�j2Cj�j jD2�j

�
dx (2-22)

for some C D C.p/ > 0.

Proof. Suppose � 2C 2; then the general result can be obtained by a standard approximation argument. To
obtain (2-22), we use a trick by Fonseca and Fusco [1997] to avoid using the upper bound on the Hessian of

H".z/ WD

2X
iD1

1

p
."Cjzi j

2/
p
2 ; z 2 R2

I

see also [Esposito and Mingione 1998; Fonseca et al. 2002].
We start by testing (2-20) against ' D .�.u"xj / �

2/xj . Thus we get
2X

iD1

Z
B

."Cju"xi
j
2/

p�2
2 u"xi

.�.u"xj / �
2/xj xi

dx D 0:

By using the smoothness of u" and �, we have

.�.u"xj / �
2/xj xi

D .�.u"xj / �
2/xi xj D

�
�0.u"xj /u"xj xi

�2
C 2 �.u"xj / � �xi

�
xj

D
�
�0.u"xj /u"xj xi

�2
�
xj
C 2

�
�.u"xj / � �xi

�
xj
:

By using an integration by parts, we thus obtain

�

2X
iD1

Z
B

�
."Cju"xi

j
2/

p�2
2 u"xi

�
xj
�0.u"xj /u

"
xj xi

�2 dxC2

2X
iD1

Z
B

."Cju"xi
j
2/

p�2
2 u"xi

.�.u"xj /��xi
/xj dxD0:

With simple manipulations, this becomes
2X

iD1

Z
B

."Cju"xi
j
2/

p�2
2 �0.u"xj / ju

"
xj xi
j
2 �2 dx

C .p� 2/

2X
iD1

Z
B

."Cju"xi
j
2/

p�4
2 ju"xi

j
2 �0.u"xj / ju

"
xj xi
j
2 �2 dx

D 2

2X
iD1

Z
B

."Cju"xi
j
2/

p�2
2 u"xi

�0.u"xj /u"xj xj
� �xi

dx

C 2

2X
iD1

Z
B

."Cju"xi
j
2/

p�2
2 u"xi

�.u"xj / .� �xi
/xj dx: (2-23)
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We now observe that
2X

iD1

Z
B

."Cju"xi
j
2/

p�2
2 �0.u"xj / ju

"
xj xi
j
2 �2 dx

C .p� 2/

2X
iD1

Z
B

."Cju"xi
j
2/

p�4
2 ju"xi

j
2 �0.u"xj / ju

"
xj xi
j
2 �2 dx

D

2X
iD1

Z
B

."Cju"xi
j
2/

p�4
2 ."C .p� 1/ ju"xi

j
2/ �0.u"xj / ju

"
xj xi
j
2 �2 dx

so that the left-hand side of (2-23) has a sign. Thus we obtain2

2X
iD1

Z
B

."Cju"xi
j
2/

p�4
2 ."C .p� 1/ ju"xi

j
2/ j�0.u"xj /j ju

"
xj xi
j
2 �2 dx

� 2

2X
iD1

Z
B

."Cju"xi
j
2/

p�2
2 ju"xi

j j�0.u"xj /j ju
"
xj xj
j � j�xi

j dx

C 2

2X
iD1

Z
B

."Cju"xi
j
2/

p�2
2 ju"xi

j j�.u"xj /j j.� �xi
/xj j dx: (2-24)

We now estimate the left-hand side of (2-24) from below
2X

iD1

Z
B

."Cju"xi
j
2/

p�4
2 ."C .p� 1/ ju"xi

j
2/ j�0.u"xj /j ju

"
xj xi
j
2 �2 dx

� .p� 1/

2X
iD1

Z
B

."Cju"xi
j
2/

p�2
2 j�0.u"xj /j ju

"
xj xi
j
2 �2 dx

�
p� 1

2

2X
iD1

Z
B

."Cju"xi
j
2/

p�2
2 j�0.u"xj /j ju

"
xj xi
j
2 �2 dx

C
p� 1

2

2X
iD1

Z
B

."Cjru"j2/
p�2

2 j�0.u"xj /j ju
"
xj xi
j
2 �2 dx;

where we used that p� 2< 0. We will use the last term as a sponge term in order to absorb the second
derivatives of u" contained in the right-hand side.

As for the first term in the right-hand side of (2-24),Z
B

."Cju"xi
j
2/

p�2
2 ju"xi

j j�0.u"xj /j ju
"
xj xj
j � j�xi

j dx

�

Z
B

."Cju"xi
j
2/

p�1
2 j�0.u"xj /j ju

"
xj xj
j � j�xi

j dx

�

Z
B

."Cjru"j2/
p�1

2 j�0.u"xj /j ju
"
xj xj
j � j�xi

j dx

�
1

2�

Z
BR

."Cjru"j2/
p
2 j�0.u"xj /j jr�j

2 dxC
�

2

Z
B

."Cjru"j2/
p�2

2 j�0.u"xj /j ju
"
xj xj
j
2 �2 dx:

2Recall that by hypothesis, �0 has constant sign.
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Also, for the last term of (2-24), we simply getZ
B

."Cju"xi
j
2/

p�2
2 ju"xi

j j�.u"xj /j j.� �xi
/xj j dx �

Z
BR

."Cjru"j2/
p�1

2 j�.u"xj /j
�
jr�j2Cj�j jD2�j

�
dx:

By using these estimates in (2-24) and taking � D p�1
2

in order to absorb the Hessian term on the
right-hand side, we obtain

2X
iD1

Z
B

."Cju"xi
j
2/

p�2
2 j�0.u"xj /j ju

"
xj xi
j
2 �2 dx

�C

Z
BR

."Cjru"j2/
p
2 j�0.u"xj /j jr�j

2 dxCC

Z
BR

."Cjru"j2/
p�1

2 j�.u"xj /j
�
jr�j2Cj�j jD2�j

�
dx; (2-25)

which is exactly (2-22). �

We now collect some bounds on the family fu"g0<"<"0
.

Lemma 2.10 (uniform estimates, 1< p � 2). Let 1< p � 2; then for every Br b B we have

ku"kL1.Br /Ckru"kL1.Br / � C; (2-26)
2X

iD1

Z
Br

."Cju"xi
j
2/

p�2
2 ju"xi xj

j
2
� C; j D 1; 2; (2-27)Z

Br

jru"xj j
2 dx � C; j D 1; 2; (2-28)

for some C > 0 independent of ".

Proof. The L1 estimate can be found in [Giusti 2003, Chapter 7] again, while the Lipschitz estimate
follows from [Fonseca and Fusco 1997, Theorem 2.2]. More precisely, for every ball Bs such that B2sbB,

sup
Bs

."Cjru"j2/
p
2 dx � C /

Z
B2s

."Cjru"j2/
p
2 dx: (2-29)

By covering a given ball Br bB with a finite number of balls Bs such that B2s bB and using the bound
on the Lp norm of ru", one easily gets the Lipschitz estimate in (2-26) for some constant C > 0 which
may depend on Br but not on ".

In order to prove (2-27), we introduce two balls Br b BR b B and a standard cut-off function � 2 C 2

such that

0� �� 1; �� 1 on Br ; �� 0 on R2
nBR; jr�j �

C

R� r
; jD2�j �

C

.R� r/2
:

By taking �.t/D t in (2-22), one gets
2X

iD1

Z
."Cju"xi

j
2/

p�2
2 ju"xj xi

j
2 �2 dx

� C

Z
."Cjru"j2/

p
2 jr�j2 dxCC

Z
."Cjru"j2/

p�1
2 ju"xj j

�
jr�j2CjD2�j

�
dx: (2-30)

By recalling the uniform bound on the Lp norm of ru", (2-30) gives (2-27).
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We now observe that
2X

iD1

Z
B

."Cju"xi
j
2/

p�2
2 ju"xj xi

j
2 �2 dx �

2X
iD1

Z
B

."Cjru"j2/
p�2

2 ju"xj xi
j
2 �2 dx

�

2X
iD1

."Ckru"k2L1.BR/
/

p�2
2

Z
Br

ju"xj xi
j
2 dx:

By appealing to (2-30), this yieldsZ
Br

ju"xj xi
j
2 dx �

C

.R� r/2
."Ckru"k2L1.BR/

/
2�p

2

Z
BR

."Cjru"j2/
p
2 dx:

In order to conclude, it is sufficient to use (2-26) for the ball BR b B and again the uniform estimate on
the Lp norm of ru". �

Proposition 2.11. With the notation above, for every Br b B, we have:

(1) fu"g0<"<"0
converges uniformly to U on Br .

(2) fru"g0<"<"0
converges to rU weakly in W 1;2.Br / and strongly in L2.Br /. In particular, we have

Uxi
2W 1;2.Br /:

(3)
˚
."Cju"xi

j2/
p�2

4 u"xi

	
0<"<"0

converges to jUxi
j

p�2
2 Uxi

weakly in W 1;2.Br / and strongly in L
4
p .Br /.

In particular, we have
jUxi
j

p�2
2 Uxi

2W 1;2.Br /:

Proof. We already know from Lemma 2.8 that u" converges to U weakly in W 1;p.B/ and strongly
in Lp.B/.

By (2-26) and the Arzelà–Ascoli theorem, the convergence of fu"g0<"<"0
to U is uniform on Br for

every Br b B.
From estimates (2-26) and (2-28), we get that fu"xi

g0<"<"0
is uniformly bounded in W 1;2.Br /. By

the Rellich–Kondrašov theorem, we can infer strong convergence in L2.Br / to Uxi
for every i D 1; 2.

We now observe thatˇ̌
r.."Cju"xi

j
2/

p�2
4 u"xi

/
ˇ̌2
D

ˇ̌̌̌
p� 2

2
."Cju"xi

j
2/

p�6
4 ju"xi

j
2
ru"xi

C ."Cju"xi
j
2/

p�2
4 ru"xi

ˇ̌̌̌2
D ."Cju"xi

j
2/

p�6
2 jru"xi

j
2

ˇ̌̌̌
p

2
ju"xi
j
2
C "

ˇ̌̌̌2
� ."Cju"xi

j
2/

p�2
2 jru"xi

j
2;

where we used that 1< p � 2. By (2-27), this implies˚
."Cju"xi

j
2/

p�2
4 u"xi

	
0<"<"0

; i D 1; 2; (2-31)

is bounded in W 1;2.Br /. Again by the Rellich–Kondrašov theorem we can assume that, up to a sub-
sequence (we do not relabel), it converges to some function Vi 2W 1;2.Br / weakly in W 1;2.Br / and
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strongly in L2.Br /. We now show at the same time that Vi D jUxi
j

p�2
2 Uxi

and that actually we have
strong convergence in L

4
p .Br /. Indeed, by using the elementary inequality of Corollary A.3, we obtainZ

Br

ˇ̌
."Cju"xi

j
2/

p�2
4 u"xi

� jUxi
j

p�2
2 Uxi

ˇ̌ 4
p dx

� C

Z
Br

ˇ̌
."Cju"xi

j
2/

p�2
4 u"xi

� ."CjUxi
j
2/

p�2
4 Uxi

ˇ̌ 4
p dx

CC

Z
Br

ˇ̌
."CjUxi

j
2/

p�2
4 Uxi

� jUxi
j

p�2
2 Uxi

ˇ̌ 4
p dx

� C

Z
Br

ju"xi
�Uxi

j
2 dxCC

Z
Br

ˇ̌
."CjUxi

j
2/

p�2
4 Uxi

� jUxi
j

p�2
2 Uxi

ˇ̌ 4
p dx:

By using the strong convergence of the gradients proved above (for the first term) and the dominated
convergence theorem (for the second one), this implies Vi D jUxi

j
p�2

2 Uxi
and the convergence of the

full original sequence in (2-31) weakly in W 1;2.Br / and strongly in L
4
p .Br /. �

Using the above convergence result, one can establish the following regularity properties for the local
minimizer U.

Theorem 2.12 (a priori estimates, 1< p � 2). Every local minimizer U 2W
1;p

loc .�/ of the functional F
is a locally Lipschitz function such that for every ˛ � p

2
we have

jUxi
j
˛�1 Uxi

2W
1;2

loc .�/; i D 1; 2:

In particular, we have rU 2W
1;2

loc .�IR
2/. Moreover, for every BR b�, we have

kUxj kL1.BR=2/ � C1

�

/

Z
BR

jrU jp dx

�1
p

; j D 1; 2; (2-32)

Z
BR=2

ˇ̌
r.jUxj j

˛�1 Uxj /
ˇ̌2

dx � C2

�

/

Z
BR

jrU jp dx

�2˛
p

; j D 1; 2; (2-33)

for some C1 D C1.p/ > 0 and C2 D C2.p; ˛/ > 0.

Proof. Local Lipschitz regularity and the scaling invariant estimate (2-32) follow from [Fonseca and
Fusco 1997, Theorem 2.2].

We already know from Proposition 2.11 that jUxi
j

p�2
2 Uxi

2W
1;2

loc .�/. In order to get (2-33) for
˛ D p

2
, we first recall thatˇ̌

r
�
."Cju"xj j

2/
p�2

4 u"xj

�ˇ̌2
� ."Cju"xj j

2/
p�2

2 jru"xj j
2:

We multiply the above inequality by the cut-off function �2 as in (2-30), associated to the balls BR
2
bBR .

Integrating the resulting inequality, we getZ
BR=2

ˇ̌
r
�
."Cju"xj j

2/
p�2

4 u"xj

�ˇ̌2
dx �

Z
BR

."Cju"xj j
2/

p�2
2 jru"xj j

2�2 dx:
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Using (2-30), this impliesZ
BR=2

ˇ̌
r
�
."Cju"xj j

2/
p�2

4 u"xj

�ˇ̌2
dx �

C

R2

Z
BR

."Cjru"j2/
p
2 dx:

By taking the limit in the previous inequality and using the convergences of Proposition 2.11, we get
(2-33) for ˛ D p

2
.

The last part of the statement now follows as in Theorem 2.4 above (observe that this time 0< p
2
�1). �

Remark 2.13. For later reference, we observe that for every k; j D 1; 2,

.jUxj j
p�2

2 Uxj /xk
D

p

2
jUxj j

p�2
2 Uxjxk

a.e. on fUxj 6D 0g: (2-34)

Since the function t 7! jt j
p�2

2 t is not C 1 for 1< p < 2, or locally Lipschitz, the identity (2-34) does not
follow from the chain rule in a straightforward way. We start instead from the following identity, which
results from the classical chain rule for smooth functions:

."Cju"xj j
2/

2�p
4

�
."Cju"xj j

2/
p�2

4 u"xj

�
xk
D

�
"C p

2
ju"xj j

2

"Cju"xj j
2

�
u"xjxk

: (2-35)

On the left-hand side, ." C ju"xj j
2/

2�p
4 is uniformly bounded on BR b B and converges (up to a

subsequence) almost everywhere to jUxj j
2�p

2 , while�
."Cju"xj j

2/
p�2

4 uxj

�
xk

weakly converges in L2.BR/ to .jUxj j
p�2

2 Uxj /xk
:

Hence, the product converges weakly in L2.BR/ to jUxj j
2�p

2 .jUxj j
p�2

2 Uxj /xk
.

A similar argument proves that the right-hand side of (2-35) converges to p
2

Uxjxk
weakly in L2.BR/.

We have thus proved that for almost every x 2 BR,

jUxj j
2�p

2 .jUxj j
p�2

2 Uxj /xk
D

p

2
Uxjxk

:

The identity (2-34) follows at once.

As in the case p > 2, we end this subsection on the case 1< p � 2 with two additional results on the
solutions u" of the problem (2-19).

Lemma 2.14 (a minimum principle, 1< p � 2). Let Br b B. With the notation above, we have

u"xj � C on @Br () u"xj � C in Br :

Proof. By inserting in (2-20) a test function of the form 'xj with ' smooth with compact support in B

and integrating by parts, we get

2X
iD1

Z
B

�
."Cju"xi

j
2/

p�2
2 u"xi

�
xj
'xi

dx D 0:
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This is the same as
2X

iD1

Z
B

."Cju"xi
j
2/

p�2
2 u"xi xj

'xi
dxC .p� 2/

2X
iD1

Z
B

."Cju"xi
j
2/

p�4
2 ju"xi

j
2 u"xi xj

'xi
dx D 0:

By the regularity of u", the previous identity is still true for functions ' 2 W
1;2

0
.B/. In the previous

identity, we insert the test function

ˆD

�
.C �u"xj /C in Br ;

0 in B nBr ;

which is admissible thanks to the hypothesis on u"xj . We obtain

2X
iD1

Z
fx2Br Wu

"
xj
�C g

."Cju"xi
j
2/

p�2
2 ju"xi xj

j
2 dx

C .p� 2/

2X
iD1

Z
fx2Br Wu

"
xj
�C g

."Cju"xi
j
2/

p�4
2 ju"xi

j
2
ju"xi xj

j
2 dx D 0:

This can be rewritten as

2X
iD1

Z
fx2Br Wu

"
xj
�C g

."Cju"xi
j
2/

p�4
2

�
"C .p� 1/ ju"xi

j
2
�
ju"xj xi

j
2 dx D 0;

which in turn implies

2X
iD1

Z
fx2Br Wu

"
xj
�C g

ju"xj xi
j
2 dx D 0I i.e.,

Z
fx2Br Wu

"
xj
�C g

jru"xj j
2 dx D 0:

From this identity, we get that the Sobolev function

.C �u"xj /C;

is constant in Br and thanks to the fact that u"xj � C on @Br , we get

.C �u"xj /C D 0 in Br

as desired. �

Lemma 2.15. Let Br b B. With the notation above, there exists a sequence f"kgk2N � .0; "0/ such that
for almost every s 2 Œ0; r �, we have

lim
k!C1

ku"k
xj
�Uxj kL1.@Bs/ D 0; j D 1; 2:

Proof. Observe that fu"xj �Uxj g0<"<"0
weakly converges to 0 in W 1;2.Br /, thanks to Proposition 2.11.

The proof then runs similarly to that of Lemma 2.7. �
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3. Caccioppoli inequalities

3A. The case p > 2. One of the key ingredients in the proof of the Main Theorem for p > 2 is the
following “weird” Caccioppoli inequality for the gradient of the local minimizer U. Observe that the
inequality contains quantities like the product of different components of rU.

Proposition 3.1. Let ˆ W R! R be a C 2 function such that ˆˆ00 � 0 and � W R! RC be a nonnegative
convex function. For every B b�, every � 2 C1

0
.B/ and every j ; k 2 f1; 2g,

2X
iD1

Z ˇ̌
.jUxi

j
p�2

2 Uxi
/xk

ˇ̌2
Œˆ0.Uxk

/�2 �.Uxj / �
2 dx

� C

� 2X
iD1

Z
jUxi
j
p�2ˆ.Uxk

/4 j�xi
j
2 dx

�1
2
� 2X

iD1

Z
jUxi
j
p�2 �.Uxj /

2
j�xi
j
2 dx

�1
2

: (3-1)

Proof. By a standard approximation argument, one can assume � to be a smooth function. We fix " > 0

and we take as above u" the minimizer of (2-3), subject to the boundary condition u"�U " 2W
1;p

0
.B/.

We divide the proof in two parts: we first show (3-1) for u" and then prove that we can take the limit.

Caccioppoli for u". We consider (2-4) with k in place of j and plug in the test function

' D‰.u"xk
/ �.u"xj / �

2; with ‰.t/Dˆ.t/ˆ0.t/;

where � is as in the statement. In order to simplify the notation, we write u in place of u" in what follows.
Since

'xi
D uxk xi

‰0.uxk
/ �.uxj / �

2
C‰.uxk

/ .�.uxj //xi
�2
C 2 � �xi

‰.uxk
/ �.uxj /;

we obtain
2X

iD1

Z
.juxi
j
p�2
C "/u2

xi xk
‰0.uxk

/ �.uxj / �
2 dx

D�

2X
iD1

Z
.juxi
j
p�2
C "/uxi xk

‰.uxk
/ .�.uxj //xi

�2 dx

�2

2X
iD1

Z
.juxi
j
p�2
C "/uxi xk

‰.uxk
/ �.uxj / � �xi

dx: (3-2)

For the second term in the right-hand side, the Young inequality implies

2

Z
.juxi
j
p�2
C "/uxi xk

‰.uxk
/ �.uxj / � �xi

dx

�
1

2

Z
.juxi
j
p�2
C "/u2

xi xk
ˆ0.uxk

/2 �.uxj / �
2 dxC 2

Z
.juxi
j
p�2
C "/ˆ.uxk

/2 �.uxj / �
2
xi

dx;

where we used the definition of ‰. The first term can be absorbed into the left-hand side of (3-2), thanks
to the fact that

‰0 D .ˆˆ0/0 Dˆ02Cˆˆ00 �ˆ02:
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Hence, for the moment we have obtained
2X

iD1

Z
.juxi
j
p�2
C "/u2

xi xk
ˆ0.uxk

/2 �.uxj / �
2 dx

� 2

2X
iD1

Z
.juxi
j
p�2
C "/ juxi xk

j j‰.uxk
/j
ˇ̌
.�.uxj //xi

ˇ̌
�2 dx

C 4

2X
iD1

Z
.juxi
j
p�2
C "/ˆ.uxk

/2�.uxj / �
2
xi

dx: (3-3)

In the particular case when � � 1, we observe for later use that
2X

iD1

Z
.juxi
j
p�2
C "/

ˇ̌
.ˆ.uxk

//xi

ˇ̌2
�2 dx D

2X
iD1

Z
.juxi
j
p�2
C "/u2

xi xk
ˆ0.uxk

/2 �2 dx

� 4

2X
iD1

Z
.juxi
j
p�2
C "/ˆ.uxk

/2 �2
xi

dx: (3-4)

We go back to (3-3). By Hölder’s inequality, we can estimate the last term of the right-hand side:
2X

iD1

Z
.juxi
j
p�2
C "/ˆ.uxk

/2 �.uxj / �
2
xi

dx

�

� 2X
iD1

Z
.juxi
j
p�2
C "/ˆ.uxk

/4 �2
xi

dx

�1
2
� 2X

iD1

Z
.juxi
j
p�2
C "/ �.uxj /

2 �2
xi

dx

�1
2

: (3-5)

In a similar fashion, for the first term in the right-hand side of (3-3), we have
2X

iD1

Z
.juxi
j
p�2
C"/ juxi xk

j j‰.uxk
/j
ˇ̌
.�.uxj //xi

ˇ̌
�2 dx

�

� 2X
iD1

Z
.juxi
j
p�2
C"/u2

xi xk
‰.uxk

/2�2 dx

�1
2
� 2X

iD1

Z
.juxi
j
p�2
C"/

ˇ̌
.�.uxj //xi

ˇ̌2
�2 dx

�1
2

D
1

2

� 2X
iD1

Z
.juxi
j
p�2
C"/

ˇ̌
.ˆ.uxk

/2/xi

ˇ̌2
�2 dx

�1
2
� 2X

iD1

Z
.juxi
j
p�2
C"/

ˇ̌
.�.uxj //xi

ˇ̌2
�2 dx

�1
2

: (3-6)

In the last equality, we have used the fact that

u2
xi xk

‰.uxk
/2 D 1

4
..ˆ.uxk

/2/xi
/2:

It follows from (3-3), (3-5) and (3-6) that
2X

iD1

Z
.juxi
j
p�2
C "/u2

xi xk
ˆ0.uxk

/2�.uxj /�
2 dx

�

� 2X
iD1

Z
.juxi
j
p�2
C "/

ˇ̌
.ˆ.uxk

/2/xi
j
2�2 dx

�1
2
� 2X

iD1

Z
.juxi
j
p�2
C "/

ˇ̌
.�.uxj //xi

ˇ̌2
�2 dx

�1
2

C 4

� 2X
iD1

Z
.juxi
j
p�2
C "/ˆ.uxk

/4 �2
xi

dx

�1
2
� 2X

iD1

Z
.juxi
j
p�2
C "/ �.uxj /

2 �2
xi

dx

�1
2

:
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By (3-4) with3 ˆ2 in place of ˆ, one has
2X

iD1

Z
.juxi
j
p�2
C "/

ˇ̌
.ˆ.uxk

/2/xi

ˇ̌2
�2 dx � 4

2X
iD1

Z
.juxi
j
p�2
C "/ˆ.uxk

/4 �2
xi

dx:

Similarly, by using (3-4) with � in place of ˆ and j in place of k,
2X

iD1

Z
.juxi
j
p�2
C "/

ˇ̌
.�.uxj //xi

ˇ̌2
�2 dx � 4

2X
iD1

Z
.juxi
j
p�2
C "/ �.uxj /

2 �2
xi

dx:

Hence, we have obtained
2X

iD1

Z
.juxi
j
p�2
C "/u2

xi xk
ˆ0.uxk

/2 �.uxj / �
2 dx

� C

�Z 2X
iD1

.juxi
j
p�2
C "/ˆ.uxk

/4 �2
xi

dx

�1
2
�Z 2X

iD1

.juxi
j
p�2
C "/ �.uxj /

2 �2
xi

dx

�1
2

for some universal constant C > 0. We now observe that

.juxi
j
p�2
C "/u2

xi xk
� juxi

j
p�2u2

xi xk
D

4

p2

ˇ̌
.juxi
j

p�2
2 uxi

/xk

ˇ̌2
I

thus, by restoring the original notation u", we get
2X

iD1

Z ˇ̌
.ju"xi
j

p�2
2 u"xi

/xk

ˇ̌2
ˆ0.u"xk

/2 �.u"xj / �
2 dx

� C

� 2X
iD1

Z
.ju"xi
j
p�2
C "/ˆ.u"xk

/4 �2
xi

dx

�1
2
� 2X

iD1

Z
.ju"xi
j
p�2
C "/ �.u"xj /

2 �2
xi

dx

�1
2

: (3-7)

Passing to the limit "! 0. By Lemma 2.2, for every Br b B the gradient ru" is uniformly bounded in
L1.Br /. Moreover, by Proposition 2.3, up to a subsequence (we do not relabel), it converges almost every-
where to rU. By recalling that � has compact support in B, the dominated convergence theorem implies
that the right-hand side of (3-7) converges to the corresponding quantity with U in place of u" and "D 0.

As for the left-hand side, we use the fact that for a subsequence (still denoted by u")ˆ0.u"xk
/
p
�.u"xj / �


L1.spt.�// � C; ˆ0.u"xk

/
p
�.u"xj / �!ˆ0.Uxk

/
p
�.Uxj / � a.e.;

and that
ju"xi
j

p�2
2 u"xi

weakly converges in W 1;2.spt.�// to jUxi
j

p�2
2 Uxi

;

still by Proposition 2.3. Hence, we can infer weak convergence in L2.spt.�// of

.ju"xi
j

p�2
2 u"xi

/xk
ˆ0.u"xk

/
p
�.u"xj / �:

Finally, by semicontinuity of the L2 norm with respect to weak convergence, one getsZ ˇ̌
.jUxi

j
p�2

2 Uxi
/xk

ˇ̌2
ˆ0.Uxk

/2 �.Uxj / �
2 dx � lim inf

"!0

Z ˇ̌
.ju"xi
j

p�2
2 u"xi

/xk

ˇ̌2
ˆ0.u"xk

/2 �.u"xj / �
2 dx:

This yields the desired estimate (3-1) for U. �
3Observe that ˆ2 still verifies ˆ2 .ˆ2/00 � 0. Indeed, .ˆ2/00 D 2 .ˆ0/2C 2ˆˆ00 � 0, by hypothesis.
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3B. The case 1 < p � 2. In this case, the Caccioppoli inequality we need is more standard.

Proposition 3.2. Let � W R! R be a C 1 monotone function. For every B b�, every � 2 C1
0
.B/ and

every j D 1; 2 we have

2X
iD1

Z
fUxi
6D0g

jUxi
j
p�2

ˇ̌
.Z.Uxj //xi

ˇ̌2
�2 dx

� C

Z
jrU jp�1

�
jrU j j�0.Uxj /jC j�.Uxj /j

� �
jr�j2Cj�j jD2�j

�
dx; (3-8)

where Z W R! R is the C 1 function defined by

Z.t/D

Z t

0

p
j�0.s/j ds: (3-9)

Proof. We fix " > 0 and we take as above u" the minimizer of (2-19), subject to the boundary condition
u"�U " 2W

1;p
0

.B/. Then by Proposition 2.9, we have

2X
iD1

Z
."Cju"xi

j
2/

p�2
2 j�0.u"xj /j ju

"
xj xi
j
2 �2 dx

� C

Z
."Cjru"j2/

p
2 j�0.u"xj /j jr�j

2 dxCC

Z
."Cjru"j2/

p�1
2 j�.u"xj /j

�
jr�j2Cj�j jD2�j

�
dx

for some C D C.p/ > 0. Since p < 2,

."Cju"xi
j
2/

p�2
2 j�0.u"xj /j ju

"
xj xi
j
2 �2
�
��
."Cju"xi

j
2/

p�2
4 u"xi

�
xj

p
j�0.u"xj /j �

�2
:

Hence,
2X

iD1

Z ��
."Cju"xi

j
2/

p�2
4 u"xi

�
xj

p
j�0.u"xj /j�

�2
�C

Z
."Cjru"j2/

p
2 j�0.u"xj /j jr�j

2 dxCC

Z
."Cjru"j2/

p�1
2 j�.u"xj /j

�
jr�j2Cj�j jD2�j

�
dx: (3-10)

In order to pass to the limit as " goes to 0, we observe that by Lemma 2.10, for every Br bB the gradient
ru" is uniformly bounded in L1.Br /. Moreover, by Proposition 2.11 it converges almost everywhere to
rU (up to a subsequence). By recalling that � has compact support in B, the dominated convergence
theorem implies that the right-hand side of the above inequality converges to the corresponding quantity
with U in place of u" and "D 0.

As for the left-hand side, we observe that by Proposition 2.11

."Cju"xi
j
2/

p�2
4 u"xi

weakly converges in W 1;2.spt.�// to jUxi
j

p�2
2 Uxi

;

and (up to a subsequence),pj�0.u"xj /j �L1.spt.�// � C;
p
j�0.u"xj /j �!

p
j�0.Uxj /j � a.e.
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Thus as in the case p > 2, we can infer weak convergence in L2.spt.�// of�
."Cju"xi

j
2/

p�2
4 u"xi

�
xj

p
j�0.u"xj /j �:

By the same semicontinuity argument as before, we get

lim inf
"!0

2X
iD1

Z ��
."Cju"xj j

2/
p�2

4 u"xi

�
xj

p
j�0.u"xj /j�

�2
dx �

2X
iD1

Z ˇ̌
.jUxi

j
p�2

2 Uxi
/xj

p
j�0.Uxj /j �

ˇ̌2
dx:

The right-hand side is greater than or equal to

2X
iD1

Z
fUxi
6D0g

ˇ̌
.jUxi

j
p�2

2 Uxi
/xj
ˇ̌2
j�0.Uxj /j �

2 dx D
p2

4

2X
iD1

Z
fUxi
6D0g

ˇ̌
jUxi
j

p�2
2 Uxi xj

ˇ̌2
j�0.Uxj /j �

2 dx:

The last equality follows from (2-34). Now, applying the standard chain rule for the C 1 function Z

defined in (3-9) (remember also that Uxj 2W
1;2

loc .�/\L1loc.�/) yields

lim inf
"!0

2X
iD1

Z ��
."Cju"xj j

2/
p�2

4 u"xi

�
xj

p
j�0.u"xj /j �

�2
dx

�
p2

4

2X
iD1

Z
fUxi
6D0g

jUxi
j
p�2

ˇ̌
.Z.Uxj //xi

ˇ̌2
�2 dx:

In view of (3-10), this completes the proof. �

4. Decay estimates for a nonlinear function of the gradient for p > 2

We already know from Theorem 2.4 that

jUxj j
p�2

2 Uxj 2W
1;2

loc .�/\L1loc.�/:

This nonlinear function of the gradient of U will play a crucial role in the sequel for the case p > 2. Thus
we introduce the expedient notation

vj D jUxj j
p�2

2 Uxj ; j D 1; 2:

For every BR b�, we will also use the following notation:

mj D inf
BR

vj ; Vj D vj �mj ; Mj D sup
BR

Vj D osc
BR

vj ; j D 1; 2; (4-1)

LR D 1CkrU kL1.BR/: (4-2)

4A. A De Giorgi-type lemma. We first need the following result on the decay of the oscillation of vj .
This is the analogue of [Santambrogio and Vespri 2010, Lemma 4]. As explained in the Introduction,
our operator is much more degenerate then the one considered in that paper; thus the proof has to be
completely recast. We crucially rely on the Caccioppoli inequality of Proposition 3.1.
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Lemma 4.1. Let BR b� and 0< ˛ < 1. By using the notation in (4-1) and (4-2), there exists a constant
� D �.p; ˛;LR/ > 0 such that ifˇ̌

fVj > .1�˛/Mj g\BR

ˇ̌
� �M

2pC4.1� 2
p
/

j jBRj;

then
0� Vj �

�
1�

˛

2

�
Mj ; on B R

2
:

Proof. We first observe that if Mj D 0, then Vj identically vanishes in BR and there is nothing to prove.
Thus, we can assume that Mj > 0.

For n� 1, we set

kn DMj

�
1�

˛

2
�
˛

2n

�
; Rn D

R

2
C

R

2n
; An D fVj > kng\BRn

;

where the ball BRn
is concentric with BR. Let �n be a smooth cut-off function such that

0� �n � 1; �n � 1 on BRnC1
; �n � 0 on R2

nBRn
; jr�nj � C

2n

R
:

Recalling the definition (2-1) of gq , we then set for every n� 1

ˇn D g�1
p�2

2

.mj C kn/D jmj C knj
2�p

p .mj C kn/; (4-3)

with mj defined in (4-1). We start from (3-1) with the choices

ˆ.t/D t; �.t/D .t �ˇn/
2
C and �D �n:

Observe that
�.Uxj /D .Uxj �ˇn/

2
C > 0 () Vj > kn;

and also4

0� �.Uxj /�
ˇ̌
g�1

p�2
2

.vj /�g�1
p�2

2

.mj C kn/
ˇ̌2
� C jvj �mj � knj

4
p � CM

4
p

j a.e. on BRn
: (4-4)

By using (4-4) and the definition of An, we then obtain
2X

iD1

Z
j.vi/xk

j
2 �.Uxj / �

2
n

� C

� 2X
iD1

Z
jUxi
j
p�2
jUxk
j
4
j.�n/xi

j
2 dx

�1
2
� 2X

iD1

Z
jUxi
j
p�2 �.Uxj /

2
j.�n/xi

j
2 dx

�1
2

� C L
p
R

M
4
p

j

�Z
BRn

jr�nj
2

�1
2
�Z

An

jr�nj
2

�1
2

:

In view of the properties of �n, it follows that
2X

iD1

Z
j.vi/xk

j
2 �.Uxj / �

2
n dx � C L

p
R

M
4
p

j

�
2n

R

�2
jBRn
nBRnC1

j
1
2 jAnj

1
2 � C 4n L

p
R

M
4
p

j

jAnj
1
2

R

4In the second inequality we use that t 7! g�1
p�2

2

.t/ is 2
p -Hölder continuous.
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for some C D C.p/ > 0. Here, we have used that

jBRn
nBRnC1

j D �.R2
n�R2

nC1/D � .Rn�RnC1/ .RnCRnC1/�
R

2nC1
2� RD �

R2

2n
:

In the left-hand side, we only keep the term i D j and use that by Lemma 2.5

.vj /xk

p
�.Uxj /D .F.Uxj //xk

;

where

F.t/D
p

2

Z t

ˇn

jsj
p�2

2

p
�.s/ ds D

p

2

Z t

ˇn

jsj
p�2

2 .s�ˇn/C ds; t 2 R:

We thus obtain Z ˇ̌
.F.Uxj //xk

ˇ̌2
�2

n dx � C 4n L
p
R

M
4
p

j

jAnj
1
2

R
:

Summing over k D 1; 2, this yields an estimate for the gradient of F.Uxj /, i.e.,Z ˇ̌
r.F.Uxj //

ˇ̌2
�2

n dx � C 4n L
p
R

M
4
p

j

jAnj
1
2

R
: (4-5)

Since mj � mj C kn � mj CMj D supBR
vj and by the definition of LR, we have jmj C knj � L

p
2

R
.

Hence, by the definition of ˇn, see (4-3),

jˇnj �LR: (4-6)

By keeping this in mind and using Lemma A.1 below,

0� F.Uxj /� C
�
jUxj j

p�2
2 Cjˇnj

p�2
2

�
.Uxj �ˇn/

2
C � C L

p�2
2

R
.Uxj �ˇn/

2
C:

This implies that F.Uxj /D 0 on BRn
nAn and also that

0� F.Uxj /� C L
p�2

2

R
�.Uxj /� C L

p�2
2

R
M

4
p

j

for some C D C.p/ > 0. In the last inequality, we have used (4-4). Hence,Z
jr�nj

2.F.Uxj //
2 dx � C L

p�2
R

M
8
p

j

Z
An

jr�nj
2 dx

� C 4n L
p�2
R

M
8
p

j

jAnj

R2
� C 4n L

p
R

M
4
p

j

jAnj
1
2

R
;

(4-7)

where in the last inequality we used that jAnj
1
2 �
p
� R and Mj � 2L

p
2

R
. By adding (4-5) and (4-7), with

some simple manipulations we getZ
BRn

jr.F.Uxj / �n/j
2
� C 4n L

p
R

M
4
p

j

jAnj
1
2

R
;
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where as usual C D C.p/ > 0. We now rely on the following Poincaré inequality for the function
F.Uxj / �n 2W

1;2
0
.BRn

/:ˇ̌
fx 2 BRn

W F.Uxj / �n > 0g
ˇ̌ Z

BRn

jr.F.Uxj / �n/j
2 dx � c

Z
BRn

jF.Uxj / �nj
2 dx:

This inequality can be obtained as follows: for every bounded open set �� R2, the Sobolev embedding
W

1;1
0
.�/ ,!L2.�/ implies that for every f 2W

1;2
0
.�/,Z

jf j2 dx � C

�Z
jrf j dx

�2

D C

�Z
ff 6D0g

jrf j dx

�2

� C jfx W f .x/ 6D 0gj

Z
jrf j2 dx;

where C is a universal constant.
Since �n � 1 on BRnC1

and by construction

jAnj �
ˇ̌
fF.Uxj / �n > 0g

ˇ̌
;

one gets Z
BRnC1

jF.Uxj /j
2 dx � C

4n L
p
R

M
4
p

j

R
jAnj

3
2

for some C D C.p/ > 0. By using that F is nondecreasing and

AnC1 D fVj > knC1g\BRnC1
D fUxj > ˇnC1g\BRnC1

;

we obtain Z
BRnC1

jF.Uxj /j
2 dx �

Z
AnC1

jF.Uxj /j
2 dx � jAnC1jF.ˇnC1/

2:

This gives

jAnC1jF.ˇnC1/
2
� C

4n L
p
R

M
4
p

j

R
jAnj

3
2 : (4-8)

We now use the lower bound of Lemma A.1 to get

F.ˇnC1/
2
� c .ˇnC1�ˇn/

pC2: (4-9)

Remember that
ˇn D g�1

p�2
2

.mj C kn/ and ˇnC1 D g�1
p�2

2

.mj C knC1/:

If we use again that for every s; t 2 R,ˇ̌
g p�2

2

.t/�g p�2
2

.s/
ˇ̌
� C

�
jt j

p�2
2 Cjsj

p�2
2

�
jt � sj;

then one gets

jknC1� knj
pC2
D
ˇ̌
.knC1Cmj /� .knCmj /

ˇ̌pC2
� C

�
jˇnC1j

p�2
2 Cjˇnj

p�2
2

�pC2
.ˇnC1�ˇn/

pC2:

By using (4-6) and (4-9) we obtain

jknC1� knj
pC2
� C L

p2�4
2

R
F.ˇnC1/

2:



C 1 REGULARITY OF ORTHOTROPIC p-HARMONIC FUNCTIONS IN THE PLANE 839

so that by (4-8),

jAnC1j jknC1� knj
pC2
� C

4n L
p2�4C2 p

2

R
M

4
p

j

R
jAnj

3
2 :

By the definition of kn, the previous inequality gives

jAnC1j

R2
� C

�
2n .pC4/

˛pC2
L

p2�4C2 p
2

R
M

4
p
�p�2

j

��
jAnj

R2

�3
2

:

Since Mj > 0, the right-hand side is well-defined. If we now set Yn D jAnj=R
2, this finally yields

YnC1 �
�
C0 L

p2�4C2 p
2

R
M

4
p
�p�2

j

�
.2pC4/n Y

3
2

n for every n 2 N n f0g;

for some C0 D C0.˛;p/ which can be supposed to be larger than 1. If follows from Lemma B.1 that

lim
n!C1

Yn D 0; provided that Y1 �
.2pC4/�6

C 2
0

L
4�p2�2 p
R

M
2pC4 .1� 2

p
/

j :

The condition on Y1 means

jfVj > .1�˛/Mj g\BRj � �M
2pC4 .1� 2

p
/

j jBRj; with � WD
.2pC4/�6

C 2
0
�

L
4�p2�2p
R

: (4-10)

By assuming this condition and recalling the definition of Yn, we get

Vj � lim
n!C1

kn D

�
1�

˛

2

�
Mj a.e. on BR

2
: �

Remark 4.2 (quality of the constant �). For later reference, it is useful to record that

�M
2pC4 .1� 2

p
/

j < 1
2
:

This follows by direct computation, using the definition of � and observing that

Mj � 2 kvjkL1.BR/ D 2 kUxj k

p
2

L1.BR/
� 2 .LR � 1/

p
2 :

Also observe that by its definition (4-10), the constant � is monotone nonincreasing as a function of the
radius of the ball BR (since R 7!LR is monotone nondecreasing and 4�p2� 2 p < 0 for p � 2).

4B. Alternatives.

Lemma 4.3. We still use the notation in (4-1) and (4-2). Let BR b � and let � be the constant in
Lemma 4.1 for ˛ D 1

4
. If we set

ı D

r
�

2
M

2pC4 .1� 2
p
/

j ;

then exactly one of the two following alternatives occur:

osc
BıR

vj �
7
8

osc
BR

vj ; (B1)Z
BRnBıR

jrvj j
2 dx � 1

512�
�M 2

j M
2pC4 .1� 2

p
/

j : (B2)
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Proof. We can suppose that Mj > 0, otherwise there is nothing to prove. We have two possibilities: eitherˇ̌˚
Vj >

3
4

Mj

	
\BR

ˇ̌
< �M

2pC4 .1� 2
p
/

j jBRj;

or not. In the first case, by Lemma 4.1 with ˛ D 1
4

we obtain

osc
BıR

vj � osc
BR=2

vj �
7
8

osc
BR

vj ;

which corresponds to alternative (B1) in the statement. In the first inequality we used that ı < 1
2

; see
Remark 4.2.

In the second case, we appeal to Lemma B.3 with the choices

q D 2; ' D Vj ; M DMj and  D �M
2pC4 .1� 2

p
/

j ;

with ı as in the statement above. It follows that

� either Z
BRnBıR

jrVj j
2 dx � 1

512�
�M 2

j M
2pC4 .1� 2

p
/

j ;

� or the subset of ŒıR;R� given by

AD
˚
s 2 ŒıR;R� W Vj �

5
8

Mj ; H1-a.e. on @Bs

	
has positive measure.

If the first possibility occurs, then we are done since this coincides with alternative (B2).
In the second case, we consider u" the solution of the regularized problem (2-3) in a ball B b� such

that BR b B. Then we know from Lemma 2.7

lim
k!C1

ju"k
xj
j

p�2
2 u"k

xj
� vj


L1.@Bs/

D 0 for a.e. s 2 Œ0;R�;

for an infinitesimal sequence f"kgn2N. Since A has positive measure, we can then choose a radius s 2A
such that the previous convergence holds. For every n 2Nn f0g, by taking k large enough we thus obtain

ju"k
xj
j

p�2
2 u"k

xj
�

5
8

Mj Cmj �
1
n
; H1-a.e. on @Bs:

We can now apply the minimum principle of Lemma 2.6 with C D 5
8

Mj Cmj �
1
n

and get

ju"k
xj
j

p�2
2 u"k

xj
�

5
8

Mj Cmj �
1
n

in Bs: (4-11)

Thanks to Proposition 2.3, we know that fju"k
xj j

p�2
2 u

"k
xj gk2N converges strongly in L2.Bs/ to vj . It then

follows from (4-11) that

vj �
5
8

Mj Cmj �
1
n

a.e. in BsI that is, Vj �
5
8

Mj �
1
n

a.e. in Bs:

Hence, by the arbitrariness of n we get

osc
BıR

vj � osc
Bs

vj � sup
BR

Vj � inf
Bs

Vj �
3
8
Mj ;

which implies again alternative (B1). �
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5. Decay estimates for the gradient for 1 < p � 2

5A. A De Giorgi-type lemma. For every BR b�, we introduce the alternative notation

mj D inf
BR

Uxj ; Vj D Uxj �mj ; Mj D sup
BR

Vj D osc
BR

Uxj ; j D 1; 2; (5-1)

and still use the notation (4-2) for LR.

Lemma 5.1. Let BR b� and 0< ˛ < 1. By using the notation in (5-1) and (4-2), there exists a constant
� D �.p; ˛;LR/ > 0 such that ifˇ̌

fVj > .1�˛/Mj g\BR

ˇ̌
� �M 2

j jBRj;

then

0� Vj �

�
1�

˛

2

�
Mj on BR

2
:

Proof. We first observe that if Mj D 0, then Vj identically vanishes in BR and there is nothing to prove.
Thus, we can assume that Mj > 0.

For n� 1, we set

kn DMj

�
1�

˛

2
�
˛

2n

�
; Rn D

R

2
C

R

2n
; An D fVj > kng\BRn

;

where the ball BRn
is concentric with BR. Let �n be a cut-off function such that

0� �n � 1; �n � 1 on BRnC1
; �n � 0 on R2

nBRn

jr�nj � C
2n

R
and jD2�nj � C

4n

R2
:

We then set for every n� 1

ˇn Dmj C kn: (5-2)

For every ı > 0, we take a C 1 nondecreasing function �ı W R! Œ0C1/ such that

�ı.t/D 0 for t � 0; j� 0ı.t/j � C for t 2 R; � 0ı.t/D C for t � ı;

for some universal constant C > 0. This has to be thought of as a smooth approximation of the “positive
part” function, up to the constant C > 0. One can take for example the function �ı of the form

�ı.t/D

8<:
0 for t � 0;

t3=ı2 for 0< t < ı;

3 t � 2 ı for t � ı:

In the setting of Proposition 3.2, we take

�.t/D �ı.t �ˇn/ and �D �n:

We observe that
�.t/� C .t �ˇn/C;
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so that

�.Uxj /� C .Uxj �mj � kn/C � C Mj � 2C LR: (5-3)

By using (5-3) and the properties of �, one gets from (3-8)

C

2X
iD1

Z
fUxj

�ˇnCıg\fUxi
6D0g

jUxi
j
p�2
jUxj xi

j
2 �2

n dx

� C

Z
fUxj

�ˇng

jrU jp
�
jr�nj

2
CjD2�nj

�
dxC

Z
fUxj

�ˇng

jrU jp�1
j�.Uxj /j

�
jr�nj

2
CjD2�nj

�
dx

� C L
p
R

Z
fUxj

�ˇng

�
jr�nj

2
CjD2�nj

�
dx:

Since p < 2 and jUxi
j �LR a.e., one gets

2X
iD1

Z
fUxj

�ˇnCıg

jUxj xi
j
2 �2

n dx � C L2
R

Z
fUxj

�ˇng

�
jr�nj

2
CjD2�nj

�
dx:

Here, we have also used the fact that Uxj xi
D 0 a.e. on the set fUxi

D 0g. We now take the limit as ı
goes to 0 in the left-hand side. By the monotone convergence theorem, we get

2X
iD1

Z
fUxj

�ˇng

jUxj xi
j
2 �2

n dx � C L2
R

Z
fUxj

�ˇng

�
jr�nj

2
CjD2�nj

�
dx:

In view of the properties of �n, it follows thatZ ˇ̌
r.Uxj �ˇn/C

ˇ̌2
�2

n dx � C L2
R 4n jAnj

R2
(5-4)

for some C D C.p/ > 0. Observe thatZ
jr�nj

2 .Uxj �ˇn/
2
C dx � C L2

R 4n jAnj

R2
; (5-5)

thanks to (5-3). By adding (5-4) and (5-5), we getZ
BRn

ˇ̌
r..Uxj �ˇn/C �n/

ˇ̌2
dx � C 4n L2

R

jAnj

R2
;

where as usual C D C.p/ > 0. We rely again on the Poincaré inequality and obtainˇ̌
fx 2 BRn

W .Uxj �ˇn/C �n > 0g
ˇ̌ Z

BRn

ˇ̌
r..Uxj �ˇn/C �n/

ˇ̌2
dx � c

Z
BRn

ˇ̌
.Uxj �ˇn/C �n

ˇ̌2
dx:

Since �n � 1 on BRnC1
and by construction

jAnj �
ˇ̌˚
.Uxj �ˇn/C �n > 0

	ˇ̌
;
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one gets Z
BRnC1

.Uxj �ˇn/
2
C dx � C

4n L2
R

R2
jAnj

2

for some C D C.p/ > 0. By using that

AnC1 D fVj > knC1g\BRnC1
D fUxj > ˇnC1g\BRnC1

;

we obtain Z
BRnC1

.Uxj �ˇn/
2
C dx �

Z
AnC1

.Uxj �ˇn/
2
C dx � jAnC1j .ˇnC1�ˇn/

2:

This gives

jAnC1j .ˇnC1�ˇn/
2
� C

4n L2
R

R2
jAnj

2: (5-6)

By recalling the definitions of ˇn and kn, the previous inequality gives

jAnC1j

R2
� C

�
42 n

˛2
L2

R M�2
j

��
jAnj

R2

�2

:

Since Mj > 0, the right-hand side is well-defined. As before, we set Yn D jAnj=R
2 and obtain

YnC1 � .C0 L2
R M�2

j / 16n Y 2
n for every n 2 N n f0g;

for some C0 D C0.˛;p/� 1. Again by Lemma B.1 we get

lim
n!C1

Yn D 0; provided that Y1 �
16�2

C0

L�2
R M 2

j ;

This means

jfVj > .1�˛/Mj g\BRj � �M 2
j jBRj; with � WD

16�2

C 2
0
�

L�2
R :

By assuming this condition and recalling the definition of Yn, we get

Vj � lim
n!C1

kn D

�
1�

˛

2

�
Mj a.e. on BR

2
: �

Remark 5.2 (quality of the constant �). For later reference, as in the previous case we observe that

�M 2
j < 1

2
;

and that the constant � is monotone nonincreasing as a function of R.

5B. Alternatives.

Lemma 5.3. We still use the notation in (5-1) and (4-2). Let BR b B2R b� and let � be the constant in
Lemma 5.1 for ˛ D 1

4
. If we set

ı D

q
�

2
M 2

j ;
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then exactly one of the two following alternatives occur:

osc
BıR

Uxj �
7
8

osc
BR

Uxj ; (B1)Z
BRnBıR

jrUxj j
2 dx � 1

512�
�M 4

j : (B2)

Proof. We can suppose that Mj > 0, otherwise there is nothing to prove. We have two possibilities: eitherˇ̌˚
Vj >

3
4

Mj

	
\BR

ˇ̌
< �M 2

j jBRj;

or not. In the first case, by Lemma 5.1 with ˛ D 1
4

we obtain

osc
BıR

Uxj � osc
BR=2

Uxj �
7
8

osc
BR

Uxj ;

which corresponds to alternative (B1) in the statement. In the first inequality we used again that ı < 1
2

;
see Remark 5.2.

In the second case, we appeal to Lemma B.3 with the choices

q D 2; ' D Vj ; M DMj and  D �M 2
j ;

with ı as in the statement above. It follows that

� either Z
BRnBıR

jrVj j
2 dx � 1

512�
�M 4

j ;

� or the set

AD
˚
s 2 ŒıR;R� W Uxj �mj �

5
8

Mj ; H1-a.e. on @Bs

	
has positive measure.

Again, if the first possibility occurs, then we are done since this coincides with alternative (B2).
In the second case, we consider u" the solution of the regularized problem (2-19) in a ball B b� such

that BR b B. Then we know from Lemma 2.15

lim
k!C1

ku"k
xj
�Uxj kL1.@Bs/ D 0 for a.e. s 2 Œ0;R�;

for an infinitesimal sequence f"kgk2N. Since A has positive measure, we can then choose a radius s 2A
such that the previous convergence holds. For every n 2Nn f0g, by taking k large enough we thus obtain

u"xj �
5
8

Mj Cmj �
1
n

H1-a.e. on @Bs:

By proceeding as in the proof of Lemma 4.3 and using this time the minimum principle of Lemma 2.14
and Proposition 2.11, we obtain

Uxj �mj �
5
8

Mj �
1
n

a.e. in Bs:
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By arbitrariness of n, we get

osc
BıR

Uxj � osc
Bs

Uxj �
�
sup
BR

Uxj �mj

�
�
�
inf
Bs

Uxj �mj

�
�

3
8
Mj ;

which implies again alternative (B1). �

6. Proof of the Main Theorem

6A. Case p > 2. We already observed that for every q >�1 the function t 7! t jt jq is a homeomorphism
on R. This implies the following.

Lemma 6.1. Let f WE! R be a measurable function such that for some q > �1 the function jf jqf is
continuous. Then f itself is continuous.

In view of this result, in order to prove the Main Theorem in the case p > 2 it is sufficient to prove
that each function

vj D jUxj j
p�2

2 Uxj ; j D 1; 2;

is continuous on �. Thus the Main Theorem for p > 2 is a consequence of the following.

Proposition 6.2. Let p > 2, x0 2� and R0 > 0 such that BR0
.x0/b�. We consider the family of balls

fBR.x0/g0<R�R0
centered at x0. Then we have

lim
R&0

�
osc

BR.x0/
vj
�
D 0; j D 1; 2:

Proof. For simplicity, in what follows we omit indication of the center x0 of the balls. Since the map
R 7! oscBR

vj is nondecreasing, we only need to find a decreasing sequence fRngn2N converging to 0

such that
lim

n!C1

�
osc
BRn

vj
�
D 0:

For simplicity we now drop the index j and write v in place of vj . We set

M0 D osc
BR0

v and ı0 D

r
�0

2
M

2pC4 .1� 2
p
/

0
;

where �0 is the constant of Lemma 4.1 for RDR0 and ˛ D 1
4

. We construct by induction the sequence
of triples f.Rn;Mn; ın/gn2N defined by

Mn WD osc
BRn

v; ın D

r
�n

2
M

2pC4 .1� 2
p
/

n ; RnC1 D ın Rn;

and �n is the constant of Lemma 4.1 for R D Rn and ˛ D 1
4

. Since ın < 1
2

for every n 2 N (see
Remark 4.2), the sequence fRngn2N is monotone decreasing and goes to 0. In order to conclude, we just
need to prove that

lim
n!1

Mn D 0: (6-1)
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Observe that we can suppose Mn > 0 for every n 2 N, otherwise there is nothing to prove. We set

I WD

�
n 2 N W

Z
BRnnBRnC1

jrvj2 dx �
1

512�
�n M

2pC4 .1� 2
p
/

n M 2
n

�
;

and we have

�0

512�

X
n2I

M
2pC2C4 .1� 2

p
/

n �
1

512�

X
n2I

�n M
2pC2C4 .1� 2

p
/

n

�

X
n2I

Z
BRnnBRnC1

jrvj2 dx �

Z
BR0

jrvj2 dx; (6-2)

thanks to the fact that �n � �0 > 0 for every n 2 N (see Remark 4.2). We now have two possibilities:
either I is infinite or it is finite. If the first alternative occurs, then (6-2) and the fact that v 2W

1;2
loc .�/

imply

lim
I3n!1

Mn D 0:

This means that the monotone sequence fMngn2N has a subsequence which converges to 0; thus we have
(6-1) and this completes the proof in that case.

Otherwise, if I is finite then there exists ` 2 N such that for every n� ` we haveZ
BRnnBRnC1

jrvj2 dx <
1

512�
�n M

2pC4 .1� 2
p
/

n M 2
n :

By Lemma 4.3, this in turn implies that

MnC1 D osc
BRnC1

v � 7
8

osc
BRn

v D 7
8

Mn for every n� `:

This again implies (6-1). �

6B. Case 1 < p � 2. The case 1 < p � 2 is similar, but more direct. This time the Main Theorem
follows from the result below, whose proof is exactly as above. It is sufficient to use Lemma 5.1 in place
of Lemma 4.1 and Lemma 5.3 in place of Lemma 4.3. We leave the details to the reader.

Proposition 6.3. Let 1< p � 2, x0 2� and R0 > 0 such that BR0
.x0/b�. We consider the family of

balls fBR.x0/g0<R�R0
centered at x0. Then we have

lim
R&0

�
osc

BR.x0/
Uxj

�
D 0; j D 1; 2:

Appendix A: Inequalities

In the proof of Lemma 5.1 we crucially relied on the following double-sided estimate for the function

F.t/D
p

2

Z t

ˇ

jsj
p�2

2 .s�ˇ/C ds; t 2 R:
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Lemma A.1. Let ˇ 2 R and p > 2. There exists a constant C D C.p/ > 1 such that for every t 2 R,

1

C
.t �ˇ/

pC2
2

C � F.t/� C
�
jt j

p�2
2 C .maxf0;�ˇg/

p�2
2

�
.t �ˇ/2C: (A-1)

Proof. Since F.t/D 0 when t � ˇ, both inequalities are true in this case. Thus let us assume that t > ˇ.
Moreover, if ˇ D 0,

F.t/D
p

2

Z t

0

s
p�2

2 s ds D
p

pC 2
t

pC2
2 for t > 0;

which implies the result.

Case ˇ > 0. By Hölder’s inequality

.t�ˇ/
p
C

2
p
2

D

�Z t

ˇ

.s�ˇ/C ds

�p
2

D

�Z t

ˇ

s
p�2

p
.s�ˇ/C

s
p�2

p

ds

�p
2

�

�Z t

ˇ

s
p�2

2 .s�ˇ/C ds

��Z t

ˇ

.s�ˇ/C

s
ds

�p�2
2

�
2

p
F.t/ .t�ˇ/

p�2
2

C ;

where we used that .s�ˇ/C � s and this gives the lower bound in (A-1). As for the upper bound, by the
change of variables � D s=ˇ one has

F.t/D ˇ
pC2

2 FC

�
t

ˇ

�
; where FC.X /D

p

2

Z X

1

�
p�2

2 .� � 1/ d�; � > 1:

Observe that

FC.X /D
p

pC 2
.X

pC2
2 � 1/� .X

p
2 � 1/; X > 1:

Moreover, by convexity of the function X 7!X
p
2 we have

�.X
p
2 � 1/� �

p

2
.X � 1/;

while a second-order Taylor expansion gives

p

pC 2
.X

pC2
2 � 1/D

p

2
.X � 1/C

p2

4

Z X

1

s
p�2

2 .X � s/ ds �
p

2
.X � 1/C

p2

8
X

p�2
2 .X � 1/2:

Thus we obtain

FC.X /�
p2

8
X

p�2
2 .X � 1/2; X > 1;

and finally for t > ˇ

F.t/D ˇ
pC2

2 FC

�
t

ˇ

�
�

p2

8
t

p�2
2 .t �ˇ/2;

which proves the upper bound in (A-1).
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Case ˇ < 0. This case is slightly more complicated. We introduce the function

F�.X /D
p

2

Z X

�1

jsj
p�2

2 .sC 1/ ds D
p

pC 2
.jX j

pC2
2 � 1/C .jX j

p�2
2 X C 1/; X > �1:

It is sufficient to prove that there exists C > 1 such that

1

C
.X C 1/

pC2
2 � F�.X /� C .jX j

p�2
2 C 1/ .X C 1/2: (A-2)

Indeed, F.t/D jˇj
pC2

2 F�.t=jˇj/ and this would give

1

C
.t �ˇ/

pC2
2 � F.t/� C

�
jt j

p�2
2 Cjˇj

p�2
2

�
.t �ˇ/2;

as desired.
The upper bound in (A-2) for �1<X < 0 can be obtained as before, by using a second-order Taylor

expansion for the first term and using that � 7! j� j
p�2

2 � is concave on �1< � < 0. This gives

F�.X /D
p

pC 2
.jX j

pC2
2 � 1/C .jX j

p�2
2 X C 1/

� �
p

2
.X C 1/C

p2

4

Z X

�1

jsj
p�2

2 .X � s/ dsC
p

2
.X C 1/

�
p2

8
.X C 1/2:

Observe that the upper bound is trivial for 0�X � 1, since
p

pC 2
.jX j

pC2
2 � 1/C .jX j

p�2
2 X C 1/� 2� 2 .jX j

p�2
2 C 1/ .X C 1/2:

Finally, for X > 1 we still use a second-order Taylor expansion for the first term and the elementary
inequality

X
p
2 C 1� 1

2
X

p�2
2 .X C 1/2

for the second one. These yield

F�.X /�
p2

4

Z X

�1

jsj
p�2

2 .X � s/ dsC
1

2
X

p�2
2 .X C 1/2 �

�
p2

8
C

1

2

�
X

p�2
2 .X C 1/2:

In order to prove the lower bound, we just observe that the function

X 7!
.X C 1/

pC2
2

F�.X /
; X > �1;

is positive continuous on .�1;C1/ and such that

lim
X!.�1/C

.X C 1/
pC2

2

F�.X /
<C1 and lim

X!C1

.X C 1/
pC2

2

F�.X /
<C1:

Thus it is bounded on .�1;C1/ and this concludes the proof of the lower bound. �
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Lemma A.2. Let 1< q � 2. For every z0; z1 2 RN we haveˇ̌
jz0j

q�2 z0� jz1j
q�2 z1

ˇ̌
� 22�q

jz0� z1j
q�1: (A-3)

Proof. The proof is the same as that of [DiBenedetto 1993, Lemma 4.4], which proves a slightly different
inequality. We first observe that if z1 D z0 there is nothing to prove; thus we can suppose jz1� z0j> 0.
Let us set

zt D .1� t/z0C t z1; t 2 Œ0; 1�:

Then we have

jz1j
q�2 z1� jz0j

q�2 z0 D

Z 1

0

d

dt
.jzt j

q�2 zt / dt D .q� 1/

Z 1

0

jzt j
q�2 .z1� z0/ dt;

which implies ˇ̌
jz0j

q�2 z0� jz1j
q�2 z1

ˇ̌
� .q� 1/ jz1� z0j

Z 1

0

ˇ̌
jz0j � t jz1� z0j

ˇ̌q�2
dt; (A-4)

where we used that q� 2� 0. We now distinguish two cases:

either jz0j � jz1� z0j or jz0j< jz1� z0j:

In the first case, we haveZ 1

0

ˇ̌
jz0j � t jz1� z0j

ˇ̌q�2
dt D

Z 1

0

.jz0j � t jz1� z0j/
q�2 dt

D
jz0j

q�1� .jz0j � jz1� z0j/
q�1

.q� 1/ jz1� z0j
�
jz1� z0j

q�2

q� 1
;

which inserted in (A-4) gives the desired conclusion. In the second case, let 0< � < 1 be such that

jz0j D � jz0� z1j;

then we haveZ 1

0

ˇ̌
jz0j � t jz1� z0j

ˇ̌q�2
dt D

Z �

0

.jz0j � t jz1� z0j/
q�2 dt C

Z 1

�

.t jz1� z0j � jz0j/
q�2 dt

D
jz0j

q�1

.q� 1/ jz1� z0j
C
.jz1� z0j � jz0j/

q�1

.q� 1/ jz1� z0j
� 22�q jz1� z0j

q�2

q� 1
:

In view of (A-4), this gives the desired conclusion. �

Corollary A.3. Let 1< p � 2. For every "� 0 and every t; s 2 R we haveˇ̌
."C t2/

p�2
4 t � ."C s2/

p�2
4 s

ˇ̌
� 2

2�p
2 jt � sj

p
2 ; t; s 2 R:

Proof. We use (A-3) with the choices

N D 2; q D 1
2
.pC 2/; z0 D .t;

p
"/ and z1 D .s;

p
"/:

This implies ˇ̌
."C t2/

p�2
4 .t;

p
"/� ."C s2/

p�2
4 .s;

p
"/
ˇ̌
� 2

2�p
2 jt � sj

p
2 :
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By further observing thatˇ̌
."C t2/

p�2
4 .t;

p
"/� ."C s2/

p�2
4 .s;

p
"/
ˇ̌
�
ˇ̌
."C t2/

p�2
4 t � ."C s2/

p�2
4 s

ˇ̌
;

we get the conclusion. �

Appendix B: Some general tools

In the proofs of Lemmas 4.1 and 5.1, we used the following classical result. This can be found, for
example, in [Giusti 2003, Lemma 7.1].

Lemma B.1. If fYngn2N is a sequence of nonnegative numbers satisfying

YnC1 � c bn Y 1Cˇ
n ; Y1 � c�

1
ˇ b
�
ˇC1

ˇ2 for some c; ˇ > 0; b > 1;

then limn!C1 Yn D 0.

The next lemma is a Fubini-type result on the convergence of Sobolev functions. We denote by H1 the
one-dimensional Hausdorff measure.

Lemma B.2. Let 0 < � < 1 and 1 � p <1. Let BR.x0/ � R2 be the disc centered at x0 with radius
R> 0 and let fungn2N �W �;p.BR.x0// be a sequence strongly converging to 0, i.e., such that

lim
n!1

�Z
BR.x0/

junj
p dxC

“
BR.x0/�BR.x0/

jun.x/�un.y/j
p

jx�yj2C�p
dx dy

�
D 0:

Then there exists a subsequence funi
gi2N such that for almost every r 2 Œ0;R�, funi

gi2N strongly converges
to 0 in W �;p.@Br .x0//; i.e.,

lim
i!1

�Z
@Br .x0/

juni
j
p dH1

C

“
@Br .x0/�@Br .x0/

juni
.x/�uni

.y/jp

jx�yj1C�p
dH1.x/ dH1.y/

�
D 0:

Proof. Let us consider the convergence of the double integral, since the convergence of the Lp norm is
similar and simpler to prove. Without loss of generality, we can assume x0 D 0. Then we omit indication
of the center of the ball. We use polar coordinates x D % ei #. We need to show that up to a subsequence,
for almost every % 2 Œ0;R� we have

lim
n!1

Œun�
p

W �;p.@B%/
D lim

n!1
%1��p

“
Œ0;2���Œ0;2��

jun.% ei #/�un.% ei !/jp

jei # � ei ! j1C�p
d# d! D 0: (B-1)

For every u 2W �;p.R2/ and " > 0, we introduce

W".u/ WD

Z 1
"

“
Œ0;2���Œ0;2��

ju.% ei #/�u.% ei !/jp

jei # � ei ! j1C�p
d# d!

% d%

%1C�p
:

We claim that

W".u/�
C

"
Œu�

p

W �;p.R2/
D

C

"

“
R2�R2

ju.x/�u.y/jp

jx�yj2C�p
dx dy (B-2)
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for some constant C D C.p; �/ > 0. Let us assume (B-2) for a moment and explain how to conclude: we
can extend fungn2N to a sequence f Qungn2N �W �;p.R2/ such that

Qun D un on BR and Œ Qun�
p

W �;p.R2/
� C Œun�

p

W �;p.BR/
I

see [Adams 1975, Lemma 7.45]. The latter and (B-2) imply that

lim
n!1

W". Qun/D 0 for every " > 0:

By the definition of W", this means that the sequence of functions

fn.%/D
%

%1C�p

Z
Œ0;2���Œ0;2��

jun.% ei #/�un.% ei !/jp

jei # � ei ! j1C�p
d# d!

converges to 0 in L1..";R//. Hence, there exists a subsequence ffni
gi2N which converges almost

everywhere to 0 on .";R/. By taking a sequence f"kgk2N converging to 0 and repeating the above
argument for each "k , a diagonal argument leads to the existence of a subsequence, still denoted by
ffni
gi2N, which converges almost everywhere to 0 on .0;R/. Equivalently, funi

gi2N satisfies (B-1) for
almost every % 2 Œ0;R�.

Let us now show (B-2). The proof is similar to that of [Bethuel and Demengel 1995, Lemma A.4]. For
%� ", t � 0 and #; ! 2 Œ0; 2�� we haveˇ̌

u.% ei #/�u.% ei !/
ˇ̌p
� C

ˇ̌
u.% ei #/�u..%C t/ ei !C#

2 /
ˇ̌p
CC

ˇ̌
u..%C t/ ei !C#

2 /�u.% ei !/
ˇ̌p
;

and (for # 6D !)

%��p�1
jei #
� ei !

j
��p�1

D .1C �p/

Z 1
0

Œt C % jei #
� ei !

j ���p�2 dt:

Thus from the definition of W".u/, we obtain with simple manipulations

W".u/� C

Z 1
0

Z 1
"

Z
Œ0;2���Œ0;2��

ju.% ei #/�u..%C t/ ei #C!
2 /jp

.t C % jei # � ei ! j/2C�p
% d# d! d% dt:

Observe that ˇ̌
% ei #

� .%C t/ ei #C!
2

ˇ̌
� t C %

ˇ̌
ei #
� ei #C!

2

ˇ̌
I

hence,

W".u/� C

Z 1
0

Z 1
"

Z
Œ0;2���Œ0;2��

ju.% ei #/�u..%C t/ ei #C!
2 /jp

j% ei # � .%C t/ ei #C!
2 j2C�p

% d# d! d% dt

� 2
C

"

Z
Œ0;1/�Œ0;1/

Z
Œ0;2���Œ0;2��

ju.% ei #/�u.s ei /jp

j% ei # � s ei j2C�p
% s d# d d% ds;

which completes the proof of (B-2). �

The following result is a general fact for bounded Sobolev functions in the plane. This is exactly the
same as [Santambrogio and Vespri 2010, Lemma 5]; we reproduce the proof for the reader’s convenience.
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Lemma B.3. Let q > 1 and let ' 2W 1;q.BR/\L1.BR/ be a function such that 0 � ' �M. Let us
suppose that there exists 0<  < 1 such thatˇ̌˚

' > 3
4

M
	
\BR

ˇ̌
�  jBRj:

If we set ı D
q

2

, one of the following two alternatives occur:

(A1) either Z
BRnBıR

jr'jq dx �
R2�q

8q � 4 � .2�/q�1
 M q

I

(A2) or the subset of ŒıR;R� given by˚
s 2 ŒıR;R� W ' � 5

8
M; H1-a.e. on @Bs

	
has positive measure.

Proof. We first observe that thanks to the hypothesis we haveˇ̌˚
' > 3

4
M
	
\ .BR nBıR/

ˇ̌
D
ˇ̌˚
' > 3

4
M
	
\BR

ˇ̌
�
ˇ̌˚
' > 3

4
M
	
\BıR

ˇ̌
�  jBRj � jBıRj

D . � ı2/ jBRj:

By the definition of ı, we get ˇ̌˚
' > 3

4
M
	
\ .BR nBıR/

ˇ̌
�

1
2
 jBRj:

We define the set
X D

˚
s 2 ŒıR;R� WH1

�˚
x 2 @Bs W '.x/�

3
4

M
	�
> 0

	
:

Then

1
2
 jBRj �

ˇ̌˚
' > 3

4
M
	
\ .BRnBıR/

ˇ̌
D

Z
X

Z
@Bs

1f'>3=4 M g dH1 ds � 2�

Z
X

s ds � 2� R jX j:

This in turn implies that
jX j � 1

4
 R:

Let us now suppose that alternative (A2) does not occur. This implies that

H1
�˚

x 2 @Bs W '.x/ <
5
8

M
	�
> 0 for a.e. s 2 ŒıR;R�:

Thus for almost every s 2 X , we have

osc
@Bs

' � 3
4

M � 5
8

M D 1
8
M:

By observing that @Bs is one-dimensional, we obtain

1
8
M � osc

@Bs

' �

Z
@Bs

jr�'j dH1
� .2� R/1�

1
q

�Z
@Bs

jr�'j
q dH1

�1
q

;
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where r� denotes the tangential gradient (by using polar coordinates x D % ei #, this is nothing but the
#-derivative). By taking the power q in the previous estimate and integrating in s 2 X , we getZ

BRnBıR

jr'jq dx �

Z
X

Z
@Bs

jr'jq dH1
�
�

1
8
M
�q 1

.2� R/q�1
jX j:

Using the lower-bound on jX j yields alternative (A1). �
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