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1. Introduction

1A. The result. Let Q C R? be an open set and let u € Wlé;p (£2) be a local weak solution in 2 of the
orthotropic p-Laplace equation

2
D ([P ) = 0. (1-1)
i=1

This means that for every Q' € Q and every ¢ € Wol’p (27), we have

2
Z»/;Z |“xi |p—2 Ux; Px; dx =0. (1-2)

i=1
In the recent literature, such an equation has sometimes been called the pseudo p-Laplace equation. We
decided to adopt the terminology orthotropic p-Laplace equation in order to emphasize the role played
by the coordinate system. Indeed, let us recall that if u € Wléép (R2) is a local weak solution of the usual
p-Laplace equation, i.e.,

2
> (VulP? ux)x; =0,

i=1
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then for every linear isometry A : R? — R2, we know u o 4 is still a local weak solution of this equation
on A~1(Q). This property fails to be true for (1-1), but it still holds if A belongs to the dihedral group D,
i.e., the group of symmetries of the square (—1, 1) x (—1, 1).

Equation (1-1) is the prototype of degenerate/singular elliptic equations with orthotropic structure,
interest in which arose for example in the context of optimal transport problems with congestion effects.
We refer to the introduction of [Brasco and Carlier 2014] for a detailed description of the framework and
the model leading to these kinds of equations.

A function u € W, (l)’cp (£2) is a local weak solution if and only if it is a local minimizer of the functional

2
1
F(p: Q) = Z;/Q/ ox; [P dx, @ e WhP(Q), @ € R
i=1

This easily follows from the convexity of the functional §. We recall that u € W];’CP (R2) is a local
minimizer of § if

Su; Q) <F(p; Q) foreveryu—g¢ e Wol’p(Q’), Q eq.

In the recent paper [Bousquet et al. 2016], we proved that for p > 2 any such local minimizer is a
locally Lipschitz function; actually, the case 1 < p < 2 is a mere application of [Fonseca and Fusco 1997,
Theorem 2.2]. The aim of this paper is to go one step further and prove the following additional regularity.

Main Theorem. Every local minimizer U € I/V];;p (R) of the functional § is a C' function.

Remark 1.1. It is easy to see that the function
_p_ _p_
u(xy,X2) = |x1]77T = |x2| 77T, (x1,x7) €R?,

1
is a local weak solution of (1-1). Observe that for p > 2, we have u is not C2, but only C LT, We
conjecture this to be the sharp regularity of local weak solutions.

1B. Method of proof. The proof of the Main Theorem is greatly inspired by that of [Santambrogio and
Vespri 2010, Theorem 11], which in turn exploits an idea introduced in [DiBenedetto and Vespri 1995].
However, since our equation is much more singular/degenerate than theirs, most of the estimates have to be
recast and the argument needs various nontrivial adaptations. In order to neatly explain the method of proof
and highlight the differences with respect to [Santambrogio and Vespri 2010], let us first recall their result.
In [Santambrogio and Vespri 2010] it is shown that in R?, local weak solutions of the variational

equation
divVHVu) =0 (1-3)

are such that x — V H(Vu(x)) is continuous, provided that

« VH(Vu) e W2 N L,

loc?

e H:R?—[0,00) is a C? convex function such that there exist M > 0 and 0 < A < A for which

Mz|PT2IEP < (DPH(2)€,€) < Alz|P72|g> forevery £ € R [z] = M. (1-4)
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The last assumption implies that (1-3) is a degenerate/singular elliptic equation, with confined degener-
acy/singularity. Indeed, on the set where the gradient of a Lipschitz solution u satisfies |Vu| > M, the
equation behaves as a uniformly elliptic equation. By using the terminology of [Bousquet et al. 2016],
we can say that (1-3) has a p-Laplacian-type structure at infinity.

The proof of the continuity of VH(Vu) in [Santambrogio and Vespri 2010] relies on the following
De Giorgi-type lemma: given a ball Bg of radius R, if a component Hy,; (Vu) of the vector field VH (Vu)
has large oscillations only on a small portion of Bg, then the global oscillation of Hy, (Vu) on the ball B I
is reduced (in a precise quantitative sense). Such a result amounts to an L°° estimate for (a nonlinear
function of) the gradient, which in turn relies on the Caccioppoli inequality for the linearized equation

div(D*H(Vu) Vuy,) = 0. (1-5)

On the contrary, if Hy,; (Vu) has large oscillations on a large portion of Bg, then one exploits the fact
that a function W12 N L™ in the plane is such that either

(A1) its Dirichlet energy in a crown contained in By is large; or

(A2) the function itself is large on a circle contained in Bpg.

When (A2) occurs, the structure of the linearized equation (1-5) allows us to prove a minimum principle
for Hy; (Vu), which implies that Hy, (Vu) is large on the whole disc bounded by the above-mentioned
circle. This again leads to a decay of the oscillation of Hy, (Vu) (this time because the infimum increases
when shrinking the ball).

Then the continuity result of [Santambrogio and Vespri 2010] is achieved by constructing inductively a
decreasing sequence of balls and using the dichotomy above at each step. The important point is that since
Hy, (Vu) has finite Dirichlet energy, then possibility (A1) can occur only finitely many times. Hence, the
oscillation of Hy; (Vu) decays to 0, as desired.

Unfortunately, our (1-1) does not have a p-Laplacian structure at infinity; i.e., (1-4) is not satisfied.
Indeed, in our case we have

2
o=y

i=1
so that

p—2
D*H(z)=(p—1) ['leo |Zz|(;’_2:| . z=(z1,22) €RZ
In particular, D? H(z) is degenerate/singular on the union of the two axes {z;=0} U {z,=0} and our
equation does not fit in the framework of [Santambrogio and Vespri 2010]. Thus, even if the proof of
the Main Theorem follows the guidelines illustrated above, we will have to overcome the additional
difficulties linked to the more degenerate/singular structure of (1-5). In particular, in the case p > 2,
we need a new Caccioppoli inequality, which weirdly mixes different components of the gradient (see
Proposition 3.1). This is one of the main novelties of the paper.
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Remark 1.2 (stream functions). For 1 < p < oo, let us set p’ = p/(p —1). When Q C R? is simply
connected, to every local weak solution u € Wkl)’cp (2) of (1-1) one can associate a stream function
vE Wl;ép (£2), such that

Uy, = |uxz|f”_2 Uy, and vy, = —|uxl|"’_2 Uy, -

Existence of such a function v is a straightforward consequence of the Poincaré Lemma, once it is
observed that (1-1) implies that the vector field

(luxl |p—2 Uxy, |“x2|p_2 uxz)

is divergence free (in the distributional sense). It is readily seen that v is a weak solution of

2
/_
D (ox |17 72 vy = 0.

i=1
This would allow us to reduce the proof of the Main Theorem to the case 1 < p < 2 only. However, this
kind of argument is very specific to the homogeneous equation and already fails in the case

2
Z(luxi |P_2 ux,-)xi =AreR,
i=1
which we note is covered by our method (indeed, observe that the previous equation and (1-1) have
the same linearization (1-5), thus the Main Theorem still applies). More generally, we observe that our
method of proof can be adapted to treat the case, as in [Santambrogio and Vespri 2010], of

2
-2
Z(Wx,- |p uxi)xi =f
i=1
under suitable (not sharp) assumptions' on f. For these reasons, we avoided using this argument based
on stream functions.

1C. Plan of the paper. First, it should be noticed that almost every section is divided in two parts, one
for the degenerate case p > 2 and the other for the singular one 1 < p < 2 (the case p = 2 corresponds to
the standard Laplacian). Though the methods of proof for the two cases look very much the same, there
are some important differences which lead us to think that it is better to separate the two cases.

In Section 2 we introduce the technical machinery and present some basic integrability properties of
solutions and their derivatives, needed throughout the whole paper. Section 3 is devoted to some new
Caccioppoli inequalities for the gradient of a local minimizer. The core of the paper is represented by
Sections 4 and 5, concerning decay estimates for a nonlinear function of the gradient (case p > 2) or for
the gradient itself (case 1 < p < 2). Finally, the proof of the Main Theorem is postponed to Section 6.
The paper ends with Appendices A and B containing technical facts.

1As 1n the case of the ordinary p-Laplacian, see [Kuusi and Mingione 2013, Corollary 1 6] the sharp assumption should be
fe L10C , the latter being a Lorentz space. For p > 2 our proof requires |u xj | 2 uy; € VVlOC (2), a result which is true only
when [ enjoys suitable differentiability properties.
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2. Preliminaries

2A. Notation. Given A > 0 and a ball B C R? of radius R > 0, we denote by A B the ball with the same
center and radius AR.
We define for every ¢ > —1 the function g4 : R — R as
gq()=1t|?t, teR. (2-1)

Then g4 is a homeomorphism and g;l =84, Observe that
q

119t <a << < IaI_# a,
a fact that will be used repeatedly.

LetU € Wlégp (£2) be a given local minimizer of §. We fix a ball B € Q2. There exists Ag > 1 such
that Ap B € Q as well. If {p¢}¢~0 C C5°(B;) is a smooth convolution kernel (here, By refers to the ball
with center 0 and radius ¢), we define U® := U * p, € WP (Q,), where Q := {x € Q : dist(x, Q) > ¢}.
By the definition of U¥ there exists 0 < g9 < 1 such that for every 0 < & < &g

1U¢w1omy = IVU Loy + 1U Loy S IVU LG B) + 1U L2 g B)- (2-2)

2B. Regularization scheme, case p > 2. As in [Bousquet et al. 2016], we consider the minimization
problem

2
1 -1
min{Z—/ |wxl.|pabc—i-p2 8/ |Vw|? dx : w—UgeWol’p(B)}. (2-3)
— P JB B
i=1

Since the functional is strictly convex, there exists a unique solution u%, which is C? on B; see, e.g.,
[Bousquet et al. 2016, Theorem 2.4] for the Lipschitz regularity and [Giusti 2003, Theorems 8.6 and 10.18]
for the higher regularity. Moreover, u? satisfies the Euler—Lagrange equation

2
Z /B(|uf€i P=2 4 (p—1)e) Uy, ¢x; dx =0 forevery ¢ € Wol’p(B).

i=1
We take ¢ € C? with compact support in B. Then for j € {1, 2}, the partial derivative @x; 1s still an
admissible test function. An integration by parts leads to

2
Zquu;y‘z e ul, ox dx =0, j=1.2. (2-4)

i=1
As usual, by a density argument, the equation still holds with ¢ € WOI’Z(B). We now collect some uniform

estimates on u®.

Lemma 2.1 (uniform energy estimate). There exists a constant C = C(p) > 0 such that for every
0 < & < gg the following estimate holds:

/|Vu8|de§C(/ |VU|de+epfz|B|). (2-5)
B A B

Moreover, the family {u®}o<g<g, converges weakly in WP (B) and strongly in L?(B) to U.



818 PIERRE BOUSQUET AND LORENZO BRASCO

Proof. The estimate (2-5) is standard, it is sufficient to test the minimality of u#® against U?, which
is admissible. In particular, the family {u¥}g<¢<¢, is uniformly bounded in W7 (B). Moreover, by
[Bousquet et al. 2016, Lemma 2.9] there exists a sequence {ex }xen C (0, &9) such that u®* converges
weakly in W17 (B) and strongly in L?(B) to a solution w of

2
min{Z%/BkoxiV’ dx : 9—U € Wol’p(B)}.
i=1

Since U is a local minimizer of § and the solution of this problem is unique (by strict convexity), we get
w = U and full convergence of the whole family. O

Lemma 2.2 (uniform regularity estimates). For every 0 < ¢ < gy and every B, € B we have

luf|| oo,y < C. (2-6)

[Vu®|pooc,) < C, (2-7)

V(s |2 us ) Pdx<C, j=1.2 (2-8)
B, *i *i =5 =0

for some constant C > 0 independent of € > 0.

Proof. The proof of the L°° estimate (2-6) is standard; it can be obtained as in [Giusti 2003, Theorem 7.5].
The standing assumption required throughout [Giusti 2003, Chapter 7], namely the property (7.2) there,
is satisfied in our framework since for every z € R? one has

2
1 1 p—1
clr=5 i_Zl|z,~|P+ —elz?<C (=7 +1)
for some C = C(p) > 0.
The Lipschitz estimate (2-7) is more delicate and is one of the main outcomes of [Bousquet et al. 2016].
Indeed, we know from Proposition 4.1 of that paper that there exists C = C(p) > 0 such that for every
B, €@ BREB

R\ 244
[t Lo (B,) < C(R ) |:][ |Vu®|? dx + l} , i=1,2. (2-9)

With the notation introduced in [Bousquet et al. 2016], this corresponds to the particular case 6; = 8§, =0
and f = 0 there. By combining this with (2-5), we get (2-7).

We now prove the W 1+2 estimate for the nonlinear function of Vu?®. We take 1 € Cg°(B) a standard
cut-off function such that

0<n=<l, n=1 on B, n=0 onR?\Bg, |Vn|§R .
—r

Then we test (2-4) against ¢ = uij n?. With standard manipulations, we get the Caccioppoli inequality

2 2
> f (s, 1772 + ) [ul, P P dx < C )y f (us, 1772 + ) |ug, 12 [ |* dx.

i=1 i=1
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By dropping the term containing ¢ on the left and observing that
4

— p=2 2
we get
2 5 s C 2
p=2 -2 2
> [Nt i P = S 3 [ e P o
i=1 r i=1 R
where we used the properties of 1. In order to conclude, it is sufficient to use again (2-5). O

From the bounds obtained in Lemma 2.2, we can deduce the following convergence result.
Proposition 2.3 (convergence). With the notation above, for every B, € B we have:

(i) {u®}o<e<s, converges uniformly to U on B,.
(i) {[u, |% us, Yo<e<e, converges to |Usy, |pT_2 Uy, weakly in W 2(B,) and strongly in L*(B,). In
particular, we have
—2
Uy, |2 Uy, € WH2(B,).
(iil) {Vu®}o<g<g, converges to VU strongly in LP (B, ).

Proof. We already know from Lemma 2.1 that u® converges to U weakly in W7 (B) and strongly
in L?(B).

In view of (2-6) and (2-7), the Arzela—Ascoli theorem implies that the convergence is indeed uniform
on B, for every B, € B.

By (2-8), there exists a sequence {&x }xen C (0, &9) such that

p=2 .
{|ufclf| 2 ufcl,(-}kENv 1= 1727

converges to some function V; € W1-2(B,) weakly in W 2(B,) and strongly in L?(B,). In particular,
this is a Cauchy sequence in L2?(B,). By using the elementary inequality

—2 n—2
—s? <C|lt]"Z t—1s|"Z s> 15€R,

where C > 0 depends only on p, we obtain that {ufff }ken 1s a Cauchy sequence as well, this time in
L?(B;). This implies
lim [|[Vu® —VU|Lr,) =0.
k—+o00
We now prove that V; = Uy, |pT_2 Uy, . We use the elementary inequality
p—2 -2 —2 -2
|2 =152 s| = C ()7 +151"7 )t —s|, t.s€eR,
valid for some C = C(p) > 0. Then we obtain
-2 —2 -2 -2
/ 15k 1"2" sk —|U | "> U |*dx < C / (14581 "2 U |7 )? sl — Uy |2 dx
B, By

p—2
_ — 2p p p
sc(/ (|ui’;|p22+|Uxi|p22)P2dx) (/ qug;:—Ux,-lpdx).
B, B,
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—2
By using the strong convergence of the gradients proved above, this implies that V; = | Uy, |pT Uy, . Since

the above argument can be repeated for every subsequence of {1°}9<z<¢,, it follows from the uniqueness
of the limit that the convergence holds true for the whole family {1°}o<¢<¢,, both in (ii) and (iii). O

From the convergence results stated in the above proposition, we can obtain some regularity properties
for the local minimizer U, which we state in the following theorem. These properties, which come with
local scaling-invariant a priori estimates, have already been established in [Bousquet et al. 2016; Brasco
and Carlier 2013; Fonseca and Fusco 1997].

Theorem 2.4 (a priori estimates, p > 2). Every local minimizer U € Wkl);p (2) of the functional § is a

. . . p
locally Lipschitz function, such that for every a > 5 we have

Ui |*7 Uyy € Wo2(Q), i =1,2,

loc

Moreover, for every Br € Q we have

p
(s e =€ (£, vOPa).i=1 @1
Bgr
20
D
[ wuetvpPar<ca(f vura) i1 -12)
Bgr,> Bgr

for some C(p) > 0.

Proof. Let us prove the estimates (2-11) and (2-12). By taking the limit as ¢ goes to 0 in (2-9) and using
the convergence result of Proposition 2.3, we obtain

244
||Ux1'||L°°(BR/2)§C|:][ |VU|pdx—i—1i| . =12

Bgr
In order to obtain (2-11), it is sufficient to observe that if U is a local minimizer of §, then for every A > 0
the function AU is still a local minimizer of the same functional. Thus the previous Lipschitz estimate
holds true; i.e.,

244
kllUxillLoo(BR/z)fC[kp][ |VU|1’dx—|—1:| , i=1,2.
Bgr
This can be rewritten as

» _p .
AT U 17 g~ C M7 f, VUPdrsc i=12

for a different constant C = C(p) > 0. If we now maximize the left-hand side with respect to A > 0, we
get (2-11) as desired.

We already know from Proposition 2.3 that |Uy; |pT_2 Uy; € Wléc’z (£2). By passing to the limit in (2-10)
and using the convergences at our disposal from Proposition 2.3, we obtain

= C
f V(U |7 Uxi)|2dx§—2/ IVU|? dx,
BR/2 R BR
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which is (2-12) for o = P . In order to prove (2-12) for a general o > £, it is sufficient to observe that

|Ux,|a : Ux, = “Ux, Ux ‘ |Ux | Ux (2-13)

i

and the function ¢ |l| 7 1is C. By using that

|Ux,.|% Ux, € W22 (Q) N LE(R),

loc

we get that |Uy, |*71 Uy, €
(2-13) implies

(Q) N L (S2) as well. Finally, to prove the estimate, we observe that

loc

— 2 —
/B |V(|Ux; 1“7 Uy,)|" dx < Co® ||le.||i";o(gm)/ }V(|Ux| Ux)\ dx.
R/2

By using (2-11) and (2-12) for a = 12’ , we get the desired conclusion. O
We proceed with a technical result which will be needed to handle the case p > 2.

Lemma 2.5. Let p > 2 and let U € VVlé’Cp (2) still denote a local minimizer of §. Let B € R and set
t —
F(1) = g/ 151°2° (s— B)+ ds, 1e€R
B

Then F(Uy;) € wl 2(Q) and we have

loc
(|Ux | Ux, )X (Ux, B+ = (F(UX/' Nx, ae inSL. (2-14)

Proof. In order to prove that F(Uy;) € WI;CZ (£2), we can observe that if we introduce the function

2p » |¢|2—P)/ P ¢ b2
G =Fu 7 =4 [© W -pas
then we have
p=2
F(UXj) = G(|Ux}| 2 UXj)- (2-15)

. . . p=2 . .
With the simple change of variable 7 = |s| 2 s, the function G can be rewritten as

t 2—p
G(1) =f| (e7° 7~ )4 dr.

Bl(r—2/2

Hence, G is a C! function. By using Theorem 2.4 and (2-15), we thus get that F(Uy,) € wl 2( Q).

loc
In order to prove (2-14), we use the approximation scheme introduced in this section. For every € > 0,

thanks to the smoothness of u#¢, we have

p=2
(5, 177wl ) (U, = B4 = (F(UZ,))x- (2-16)
By Proposition 2.3, we know that Vu® converges to VU strongly in L?(B,) and

uS, 1" uS, weakl in W1'2(B,) o |Uy|"2" U
”x,-| uy; weakly converges in (By) to |Us;| x; -

This implies that the left-hand side of (2-16) converges weakly in L!(B,) to the left-hand side of (2-14).
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By using the uniform bounds of Lemma 2.2, the local Lipschitz character of G and the relation (2-15),
we get

p=2 2 p=2 2
/Br|VF(ufcj)|2dx:/Br‘VG(|ufcj| 2 ufc])} dxfC/Br‘V(|ufcj| 2 “fc,)‘ dx <C,

and
1im/ |F(Uy,) = Fu, )| dx = lim/ G(U "7 Usy) = Gl | "7 ul, )| dx
e—>0 /B, J e—0Jp, j j

—2 —2
=C lim/ }|U,C].|pT ij—|uf€j|pTufcj‘2dx=O,
B,

e—>0

where we used Proposition 2.3 for the last limit. We thus obtain that F (ufcj) converges weakly in W 1-2(B,)
and strongly in L?(B,) to F(U x;)- We can then pass to the limit in the right-hand side of (2-16). [

We end this subsection with two results on the solutions u® of the problem (2-3). The first one is a
standard minimum principle.

Lemma 2.6 (a minimum principle, p > 2). With the notation above, let B, € B. We have

p—2 p—2
& 5 ,,€ & S & .
|”x,-| 2 uy, >C ondB, < |ux],| 7 Uy, >C inB,.

Proof. In the differentiated equation (2-4) we insert the test function
p=2 .
q)z {(C_lufcjl 2 ufc])“l‘ n Br,
0 in B\ B,,
which is admissible thanks to the hypothesis. Observe that

e 1P E < e <157 ¢ 217
S, 172 u — uy =I|Cl7 C (2-17)

Xj —

thus we obtain

2
— p=2

> (Jug, 1772+ o) Juf | 2 | |? dx = 0.
Ut @-p)/p ! I e

i1 {xeB,~.uij|C| C}

Observe that the two terms are nonnegative; thus for i = j we can also infer

3
e 15(p=2)1,,¢ 2
uy, |2 |y, x,; 17 dx

0= /
{xeBr:uij <|c|@-»/p C}

2
=(—4 )/ (I, 13D w5, ) | dx
3p—2 {XEB,A:quj§|C|(2—D)/p C} 7 i/ xj

4\’ : 3(p— p=2
(31,—_2) fB\(mm{lufcjlz(” D, 1015 ), [,

where we used that

2—p —2
WS, <ICI 7 C = ug, 3PP us < |C| C. (2-18)
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This gives
(mln{|u8 |4(p Dyt | |C] E C}), ’ =0 ae.in By,

so that the Sobolev function
m1n{|u8 |4(p Dyt |C| £ C}
does not depend on the variable x; in B,. By assumption, this function is constant on dB,. The last two

facts imply
min{|u§, 3772 w5, €| €} =|C|F € ac.in By,

which is the desired conclusion, thanks to (2-17) and (2-18). O
Finally, we will need the following result about convergence of traces.

Lemma 2.7. Let B, € B. With the notation above, there exists a sequence {&y }ren C (0, &9) such that
for almost every s € [0, r], we have

im0 5 Uy ey =0 =12

Proof. We first observe that

p=2 p=2
{lufcjl 2 quj_|ij| ? ij}0<e<eo

weakly converges to 0 in W !+2(B,), thanks to Proposition 2.3. Thus for every 0 < < 1, there exists a
subsequence which strongly converges to 0 in the fractional Sobolev space W2(B, ). We take % <t<l
and observe that the previous convergence implies that we can extract again a subsequence which strongly
converges to 0 in W%2(dBy) for almost every s € [0, r] (see Lemma B.2). In order to conclude, it is now
sufficient to use that for % < 1 < 1, the space W2 (3By) is continuously embedded in C°(9By), since
0B; is one-dimensional; see [Adams 1975, Theorem 7.57]. O

2C. Regularization scheme, case 1 < p < 2. In this case, the functional in (2-3) is not smooth enough,
in particular is not C2. Thus the regularized problem is now

mln{ /(a+|wx,| )2 iw—Uf e Wol’p(B)}. (2-19)
i=1

This problem admits a unique solution ##, which is C? on B; see again [Bousquet et al. 2016, Theorem 2.4]
and [Giusti 2003, Theorems 8.6 and 10.18]. Moreover, the solution u® satisfies the corresponding Euler—
Lagrange equation; i.e.,

Z/(e+|ux|) 2 ul, ox; dx =0 forevery(peW P(B). (2-20)
i=1

We still have the following uniform estimate. The proof is standard routine and is left to the reader.
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Lemma 2.8 (uniform energy estimate). There exists a constant C = C(p) > 0 such that for every
0 < & < gg the following estimate holds

[|Vu£|pdx§C(/ |VU|de+g’z’|B|). 2-21)
B Ag B

Moreover, the family {u®}o<¢<¢, converges weakly in WP (B) and strongly in LP(B) to U.
We will rely on the following Caccioppoli inequality to obtain certain bounds on the family {1°}o<¢<g,-

Proposition 2.9 (Caccioppoli inequality for the gradient, 1 < p <2). Let{ : R — R be a C! monotone
function; then for every n € C?* with compact support in B we have

2
p—2
> [ etlut, )2 I8 I P
i=1
—1
=€ [ EHVu ) B I8 eIV et C [ (o419 P) 2 [g(u, | (VnP+nl D2 dx - 2-22)
for some C = C(p) > 0.

Proof. Suppose ¢ € C?; then the general result can be obtained by a standard approximation argument. To

obtain (2-22), we use a trick by Fonseca and Fusco [1997] to avoid using the upper bound on the Hessian of
2

H.(z) = Z % (e + |zi|2)%, zeR?;
i=1
see also [Esposito and Mingione 1998; Fonseca et al. 2002].
We start by testing (2-20) against ¢ = ({ (ufcj) n?%) x;- Thus we get

2
p—2
S [ e s, Y, €05, ) =0,

i=1
By using the smoothness of #® and 7, we have

By using an integration by parts, we thus obtain
2 2
p=2 p=2
3 [ (b, Y ) € 2 3 [ el 1 G g b =0

i=1 i=1
With simple manipulations, this becomes

2
p=2
[ el YT ) s P P

i=1 2 p—4
+(p-2) Z/B<s+ S, )7 (s, 128w, s, o, 12 P dx

i=1

2
p=2
=23 [ ), S

i=1

2
p—2
#230 [ P s, £, i v .

i=1
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We now observe that

/<e+|ux,| V2 ) S, 12 0P dix
i=1 2 = 2 2d
+(p- )Z (et lus BT, P8l P P dx
i=1
—Zf(erluxl)z e+ (p— 1) 5, 1) @S, ) s, 1o dx
i=1
so that the left-hand side of (2-23) has a sign. Thus we obtain?
Z/<e+|ux| V52 (e (p— 1) [, 1) 16, ) [, o, 12 P dix

i=1
<2 Z/(me 2 G I ]
i=1
+2 Z/(8+Iu 1252 i, 116 ) Gy | . (2224)

i=1
We now estimate the left-hand side of (2-24) from below

Z/<e+|ux|>z e+ (p— 1) |us, 1) | @ ) [, 1P P dix

i=1

> (p-1) Z/<e+|ux,| V218w ) 1, P 0P dx

i=1

Z/ (6 + S, 1) 2 16, ) |, x,|2n2dx
i=1
2 Z/<e+|w 2527 16wl ) 1, P 0P dx,
i=1
where we used that p —2 < 0. We will use the last term as a sponge term in order to absorb the second

derivatives of u® contained in the right-hand side.
As for the first term in the right-hand side of (2-24),

p=2
fB(e+|u§;,.|2> 7, 116Gl [, 1 | dx
r—1
= [ I BT I g L
p—1
= [ 19U YT ) iy [0

1 D T p—2
<5 / (s+|W|2>z|c’(ui,.)||Vn|2dx+—/<s+|w8|2> 2 W) S, 5, 1P 0P dx.
T JBg 2 B

2Recall that by hypothesis, ¢’ has constant sign.
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Also, for the last term of (2-24), we simply get
p—2 p—1
[l B2 5 ) 0 | = [ 19072 5005 )] (90 + Il D% i,
R

By using these estimates in (2-24) and taking 7 = pT_l in order to absorb the Hessian term on the

right-hand side, we obtain
2
p=2
[ (el 7 8 o, P o
i=1
p p—l1
=C [ TP wE)IVIP dx+C [ Va5, )| (Tl D) v, 229
R R
which is exactly (2-22). O

We now collect some bounds on the family {1°}o<s<g,-

Lemma 2.10 (uniform estimates, 1 < p <2). Let 1 < p < 2; then for every B, € B we have

u®llLoo(B,) + Vbl Lo B,y = C, (2-26)
2
pr=2 .
> [ et P g P ec =1 @-27)
i=1 r
/ IVus, [Pdx<C, j=12, (2-28)
B,

for some C > 0 independent of e.

Proof. The L® estimate can be found in [Giusti 2003, Chapter 7] again, while the Lipschitz estimate
follows from [Fonseca and Fusco 1997, Theorem 2.2]. More precisely, for every ball By such that B, € B,

sup(e + |[Vuf|}) 2 dx < C ][ (e +|Vuf|*)? dx. (2-29)
Bs BZS

By covering a given ball B, € B with a finite number of balls By such that B,; € B and using the bound
on the L? norm of Vu?, one easily gets the Lipschitz estimate in (2-26) for some constant C > 0 which
may depend on B, but not on ¢.

In order to prove (2-27), we introduce two balls B, € Bg € B and a standard cut-off function € C?
such that

C
1D < ———

0<n<l, =1 B,. =0 R\ Bg, V| < , )
=n< n on B, n on R”\ Bg Vil = 2— SR

By taking ¢(z) =t in (2-22), one gets

2

2,222 2 2
S [ s, ) o
i=1

< C/(s +|Vuf)2) 2 | V)2 dx + C/(e +VusD) T |us, | (IVnl* +D?nl) dx.  (2-30)

By recalling the uniform bound on the L? norm of Vu?, (2-30) gives (2-27).
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We now observe that

2 2
p=2 =2
S [l BT o dx = 3 [ o 90 P

i=1 i=1

2
p=2
>3 e+ 1V o) 2 fB s, P dx.

i=1

By appealing to (2-30), this yields

C 2—p j2

e 2 2 == g12\5

o fdx £ ———— + [|Vu co 2 + |Vu 2 dx.
/,lux] xl| X = (R r)2 (8 || ||[ (BR)) / (8 | | )

In order to conclude, it is sufficient to use (2-26) for the ball Bg € B and again the uniform estimate on
the L? norm of Vu?. O

Proposition 2.11. With the notation above, for every B, € B, we have:
(1) {u®}o<e<e, converges uniformly to U on B,.

(2) {Vutlo<cp<s, converges to VU weakly in W12(B,) and strongly in L*(B,). In particular, we have
0
Ux; €W L2(B,).

— - 4

3) {(S—Hufc,- |2)pTZ us, }0<8<80 converges to |Uy; |pTZ Ux, weakly in W12 (B, ) and strongly in L (B,).
In particular, we have

p—=2

|7z

|Ux; Uy, € Wl’z(Br)-

Proof. We already know from Lemma 2.8 that u® converges to U weakly in W7 (B) and strongly
in L?(B).

By (2-26) and the Arzela—Ascoli theorem, the convergence of {1®}o<g<¢, to U is uniform on B, for
every B, € B.

From estimates (2-26) and (2-28), we get that {uii}0<8<80 is uniformly bounded in W 1-2(B,). By
the Rellich—-Kondragov theorem, we can infer strong convergence in L2(B,) to Uy, foreveryi =1,2.

We now observe that

2
p=2 2 p—2 p=6 p=2
V(e +[uf, 1))+ uf)|" = 5 (et JuSe, )75 Ju, 1P Vg, + (e +uf, 1)+ Vg,
p—6 P 2
= (e+us |7 |Vul, |? 5 us. 1>+
< (e+ lug, 1) Va2
where we used that 1 < p < 2. By (2-27), this implies
p—=2 .
{(8+ |u§€1|2) * uii}0<s<so’ L= 1’2’ (2_31)

is bounded in W1-2(B,). Again by the Rellich-Kondra$ov theorem we can assume that, up to a sub-
sequence (we do not relabel), it converges to some function V; € W1-2(B,) weakly in W12(B,) and
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strongly in L2(B,). We Jow show at the same time that V; = |Uy; |pT_2 Uy, and that actually we have
strong convergence in L7 (B, ). Indeed, by using the elementary inequality of Corollary A.3, we obtain

p—2 p=2 4
fB|(8+|uf€i|2) T ul, —|Uxg;| 2 Uy |? dx
r

_ — 4
§C/ (6 + 15, 1) 4, — (e + |Ux,|)) 5 Uy |? dx
By 5, P2 p=2 4
+c/ (e + 1Ux |25 Usy — U, |2 U |7
B,

p—

e 2 2\ 222 P—2 4
SCB|uX1_UXl| dx+CB|(8+|Ux’|) 4 Ux’_lle| 2 Uxi}pdx.

By using the strong convergence of the gradients proved above (for the first term) and the dominated
-2

convergence theorem (for the second one), this implies V; = |Uy; |pT Uy; and the convergence of the

full original sequence in (2-31) weakly in W !-2(B,) and strongly in L7 (B,). O

Using the above convergence result, one can establish the following regularity properties for the local
minimizer U.

Theorem 2.12 (a priori estimates, 1 < p < 2). Every local minimizer U € Wl;;p (2) of the functional §
is a locally Lipschitz function such that for every o > % we have

Ux, "7 Uy € WH(Q), i =1,2.

loc

In particular, we have VU € W1’2(Q; R?). Moreover, for every Bg € Q, we have

loc

1
4
1Ux; |l Loo(Br,2) = Cl(][B VU |? dx) . =12, (2-32)
R

o

o

[ vt upPacza(f mora)’ =1 03
Br/> Bgr

for some C1 = C1(p) > 0and Cy = Co(p,a) > 0.

Proof. Local Lipschitz regularity and the scaling invariant estimate (2-32) follow from [Fonseca and
Fusco 1997, Theorem 2.2].

We already know from Proposition 2.11 that |Uy; |pT_2 Uy, € ngéz (2). In order to get (2-33) for
a = £, we first recall that

p—2 2 p=2
[V (e s, 175 w5 )™ = (e fuss, 1) 727 Vs 12

We multiply the above inequality by the cut-off function n? as in (2-30), associated to the balls B i € Bg.
Integrating the resulting inequality, we get

p—2 2 p—=2
[V, )Py s [ i, )5 v P a
Br/2 Br



C! REGULARITY OF ORTHOTROPIC p-HARMONIC FUNCTIONS IN THE PLANE 829

Using (2-30), this implies
|V ((e + [u |2)pTﬂu£ )}Za’x<£ (e + |Vut}) % dx
Xj Xj ~ R2 Jp '
R/2 R

By taking the limit in the previous inequality and using the convergences of Proposition 2.11, we get
(2-33) fora = £.
The last part of the statement now follows as in Theorem 2.4 above (observe that this time 0 < % <. O

Remark 2.13. For later reference, we observe that for every k, j =1, 2,
p=2 p p=2
(|ij| 2 UXj Vxi = 5 |ij| 2 ijxk a.c. on {UXj # 0}. (2-34)

Since the function ¢ |l|pT_2t isnot C! for 1 < p < 2, or locally Lipschitz, the identity (2-34) does not
follow from the chain rule in a straightforward way. We start instead from the following identity, which
results from the classical chain rule for smooth functions:

e+ 2 ut |?
— )6 (2-35)

e 124352 e 1222 ¢ _
(8+|1/lx].| ) 4 ((8+|ux]'| ) 4 ux]')xk _( 8+|U§|2 ijk'
J

On the left-hand side, (¢ + |qu] |2)ijp is uniformly bounded on Bgr € B and converges (up to a

subsequence) almost everywhere to |Uy; |2_Tp, while
—2 —2
(e+ |qu] |2)pTuxj)Xk weakly converges in L?(Bg) to (|Ux; |FTij ) -

Hence, the product converges weakly in L2(Bg) to |Ux; |2_Tp (|Ux; |pT_2 Usx;)x;.-
A similar argument proves that the right-hand side of (2-35) converges to % U, x) weakly in L?(Bg).
We have thus proved that for almost every x € Bg,

2-p p=2 P
|UXj| 2 (|ij| 2 UXj)XkZEUxJ'xk-

The identity (2-34) follows at once.

As in the case p > 2, we end this subsection on the case 1 < p < 2 with two additional results on the
solutions u® of the problem (2-19).

Lemma 2.14 (a minimum principle, 1 < p <2). Let B, € B. With the notation above, we have

ut. >C ondB, <+ ufchC in B,.

Xj

Proof. By inserting in (2-20) a test function of the form ¢x; with ¢ smooth with compact support in B
and integrating by parts, we get

2
> [ (1, T g, o dx =0,

i=1
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This is the same as

Z/(8+|ux|)2 fcqu)x,dx—i_(p 2)2/(£+|“x|)2 |ux,| uxx (px,dx_o

i=1 i=1

By the regularity of u? the previous identity is still true for functions ¢ € WOI’Z(B). In the previous
identity, we insert the test function

0 in B\ B,

which is admissible thanks to the hypothesis on ufcj. We obtain

2

p=2
Z/ (8+|u§ci|2) 2 u x,x,| dx
i=1

{xeBr:uij <C}
p—4
(- 2)2/ o Y W P g P =0

{x€B,:u 8

This can be rewritten as

Z/ (e + s, 192" (o 4+ (p— 1) [, 1) uf, 5, 1> dx =0,
{x€B;:us <C}

which in turn implies

Z/ us, . Pdx =0; ., / Vi, | dx = 0.
{x€B;:us <C} {xGBr:uijSC}

From this identity, we get that the Sobolev function

(C =)+,
is constant in B, and thanks to the fact that uij > C on dB,, we get
(C —ufcj)+ =0 in B,
as desired. O

Lemma 2.15. Let B, € B. With the notation above, there exists a sequence {ej }ren C (0, &9) such that
for almost every s € [0, r], we have

. . _ L
k_lgrrloo luys = Ux;llLe@p,) =0, j=1.2.

Proof. Observe that {ufcj — Ux; }o<e<e, Weakly converges to 0 in W12(B,), thanks to Proposition 2.11.
The proof then runs similarly to that of Lemma 2.7. O



C! REGULARITY OF ORTHOTROPIC p-HARMONIC FUNCTIONS IN THE PLANE 831

3. Caccioppoli inequalities

3A. The case p > 2. One of the key ingredients in the proof of the Main Theorem for p > 2 is the
following “weird” Caccioppoli inequality for the gradient of the local minimizer U. Observe that the
inequality contains quantities like the product of different components of VU.

Proposition 3.1. Let ® : R — R be a C? function such that ® ®” > 0 and ¢ : R — R™ be a nonnegative
convex function. For every B €@ 2, every n € C§°(B) and every j,k € {1,2},

2
Z/|(|sz|p; UXi)Xk|2[(D/(ka)]2 Q(ij)nz dx
i=1 ) % ) %
=< C(Z/ |Ux,-|1’—2 qD(ka)4 |77xf|2 dx) (Z/ |Uxi|1’—2 ;(ij)z |nxi|2 dx). (3-1)
i=l i=1

Proof. By a standard approximation argument, one can assume ¢ to be a smooth function. We fix ¢ > 0
and we take as above u® the minimizer of (2-3), subject to the boundary condition u® — U? € Wol’p (B).
We divide the proof in two parts: we first show (3-1) for #® and then prove that we can take the limit.

Caccioppoli for u®. We consider (2-4) with k in place of j and plug in the test function

o =W, ) S’ with W) = (1) &' (1),

where 7 is as in the statement. In order to simplify the notation, we write u in place of u* in what follows.
Since

Ox; = Uxy x; qj,(“xk) C(UXj) 772 + W(ux,) (é‘(uxj ))xi 772 + 20 0x; Wuxy,) é‘(uxj),

we obtain
2

S [ 772 4000 W) S ) 7

1=

2
== 3 [ 72 2t i) (€ i 7

i=1

2
=5 / (g 1772 4 8) iy Wlotg) i) sy . (3-2)

i=1

For the second term in the right-hand side, the Young inequality implies
2 [ 1772 € Wl ) 11

1 - _
< g 1772 €00 @) B 7 4 2 [ i 1772 4 €) @ )P S ) 2 v

where we used the definition of W. The first term can be absorbed into the left-hand side of (3-2), thanks
to the fact that

\IJ/ — (@ q)l)/ — q>/2 + ® @// 2 @/2'
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Hence, for the moment we have obtained

2
S [ 772 60 0 )

i=1

2
<2y / (e, 1772 + ) litx i |19 )] | ) ), | 7 dx

i=1

2
14y / (It 1772 + ) D(ut )L (1) 12, dx. (33)

i=1
In the particular case when ¢ = 1, we observe for later use that

2 2
Z /('”xi |p—2 +¢) ‘(CD(ux,{))x,- }2 772 dx = Z /(|uXi |p—2 +¢€) ufcixk CI),(”xk)2 772 dx

i=1 i=1

2
=4 /(|”x,~ 1772 + &) Dlux,)’ 13, dx. (3-4)
i=1
We go back to (3-3). By Holder’s inequality, we can estimate the last term of the right-hand side:

2
Z /(|“xi |P_2 +¢) cb(uxk)z C(ux;) ﬂii dx

i=1 1

2 % 2 3
< (Z / (lux; |P72 + &) @(ux,)* 13, dx) (Z / (lux; |P72 +8) S (ux;) 03, dx). (3-5)
i=1 i=1

In a similar fashion, for the first term in the right-hand side of (3-3), we have

n? dx

2
Z/(qui P72 4e) [t | W () (1)) v,

i=1

2 % 2 %
< (Z [tusireerid,, W(uXk)znzdx) (Z [ 7746 @l 1 o dx)
i=1

i=1

2 % 2 %
=§(Z / (|ux,.|1’—2+e>|(d><uXk)2)x,-|2n2dx) (Z / <|ux,~|1’—2+e)}@(ux,.))x,-}znzdx). (3-6)

i=1 i=1

In the last equality, we have used the fact that

ko W) = 5 (P )H)x)>

It follows from (3-3), (3-5) and (3-6) that

2
S [ 1972 4 00 @),
i=1 5 % 5 %
< (Z [ 77400 (@, 1 P dx) (Z [l 400 @G 1 0 dx)
i=1

i=1 i o %
+4(Z/(|”xi|p_2 +8) D(ux,)* 03, dx) (Z/(|”x,-|p_2 +e) Elux) 1, dx) '
i=1 i=1
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By (3-4) with?® ®2 in place of ®, one has

2 2
_ 2 _
> / (lux, 1772 + &) [(®(ux, ) ), | 0P dx <4 / (lux; 1772 + &) D(ux,)* 0, dx.
i=1 i=1
Similarly, by using (3-4) with ¢ in place of ® and j in place of k,
2 2
_ 2 -
[ 1772 409 [l [P x =4 3 [ 17724 €08l i
i=1 i=1

Hence, we have obtained

2
3 [ 772 4 000, @) €l 1

i=1

2 ) ) \
< C(/ Z(qui P72+ &) Dux,)* 03, dx) (/ Z(Wxi P72 4 2) E ()2 02, dx)

i=1 i=1
for some universal constant C > 0. We now observe that

4 p=2 2
-2 2 -2.,2 - .
(|uxi |P + 8) ux,-xk Z |uxi |P uxixk = p2 }(|MX,'| 2 “xi)xk} ’

thus, by restoring the original notation u?, we get

2
p—2
Z/|(|uil| : ”fc,-)xk

i=1 5 % 2 %
<o [ r o owy ok ax) (2 [u 12 +ersws, ), ax) . G
i=1 i=1

Passing to the limit ¢ — 0. By Lemma 2.2, for every B, € B the gradient Vu? is uniformly bounded in

2
(15, )2 E(uS,) o dx

L°°(B;). Moreover, by Proposition 2.3, up to a subsequence (we do not relabel), it converges almost every-

where to VU. By recalling that n has compact support in B, the dominated convergence theorem implies

that the right-hand side of (3-7) converges to the corresponding quantity with U in place of #® and ¢ = 0.
As for the left-hand side, we use the fact that for a subsequence (still denoted by u?)

H CD/(uik) \ Z(ui]) nHLOO(spt(n)) =C, q)/(uik) V C(”fc]) n— q)/(ka) {(ij) n ac,

and that
e 1252 ¢ . 1,2 p=2
luy,| 2 uy, weakly convergesin W =(spt(n)) to |Ux;| 2" Uy,

still by Proposition 2.3. Hence, we can infer weak convergence in L2 (spt(n)) of
p=2
(S, |72 uSe ) @' (us,) VEus,) .
Finally, by semicontinuity of the L2 norm with respect to weak convergence, one gets
p=2 2 .. p=2 2
/‘(|Ux,| 2 Ux,-)xk‘ CID/(ka)2 C(Ux,-) 772 dx < h;n_)lglf/|(|uii| 2 ufci)xk q)/(ufck)z g(ufc]) 772 dx.

This yields the desired estimate (3-1) for U. O

3Observe that @2 still verifies ®2 (®2)” > 0. Indeed, (®2)” = 2 (P')? +2 & &” > 0, by hypothesis.
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3B. The case 1 < p < 2. In this case, the Caccioppoli inequality we need is more standard.

Proposition 3.2. Let { : R — R be a C' monotone function. For every B € Q, every n € Cg°(B) and

every j = 1,2 we have

2
S U 2o
(Us, #0)

i=1
EC/ IVUIPTH(IVULIE (Ui + 15 (Ux)1) (IV01? + 0l [ D7) dx,  (3-8)
where Z : R — R is the C' function defined by

t
Z(t) = /0 JIT®)]ds. (3-9)

Proof. We fix ¢ > 0 and we take as above u® the minimizer of (2-19), subject to the boundary condition
ut—U¥® e Wol’p (B). Then by Proposition 2.9, we have

2
p—2

> [ s, Y i o, P

i=1

) p—1
sC/<e+|Vu8|2>’z’ |§’(u§,.>||Vn|2dx+C/(e+|Vu€|2> 2 1SS ) (IVnl? + Inl [ D?n]) dx
for some C = C(p) > 0. Since p < 2,

p=2 p=2 2
(o + [u%, )2 18 WS P 0” = (64 s, 1) us,) VIS @)l m)™

Hence,

2 . .
3 [ (it 58, ) VIl )

i=1

—1
sc/<e+|w|2>’z’ &) |Vn|2dx+c/<e+|w|2>”z @S, ) (IVaP+Inl [D>nl)dx. (3-10)

In order to pass to the limit as e goes to 0, we observe that by Lemma 2.10, for every B, € B the gradient
Vu? is uniformly bounded in L°°(B;). Moreover, by Proposition 2.11 it converges almost everywhere to
VU (up to a subsequence). By recalling that 7 has compact support in B, the dominated convergence
theorem implies that the right-hand side of the above inequality converges to the corresponding quantity
with U in place of u® and ¢ = 0.

As for the left-hand side, we observe that by Proposition 2.11

—2 -2
e+|uf [T ut. weakly converges in W12(spt(n)) to  |Uy,|"Z Uk,
Xi Xi g i i

and (up to a subsequence),

IVIE@ED 0] poouiy <€ VI 1> VIE Wl ae.
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Thus as in the case p > 2, we can infer weak convergence in L2 (spt(n)) of
p=2
(e 1S, P25, ), VI @)1,

By the same semicontinuity argument as before, we get

MMZ/&%MI) ) MW)UM>Zﬂm& 52 U )y VIE W) ] .

i=1

The right-hand side is greater than or equal to

>

‘(|Ux,|7Ux,)x,‘ |§ (Ux,)|77 dx—p Z/ “Ux,|7Ux,x,‘ |§ (Ux,)|77 dx.
i=1

{Uy, # {Uy, #0}

The last equality follows from (2-34). Now, applying the standard chain rule for the C! function Z
defined in (3-9) (remember also that Uy; € Wl 2(SZ) N L (2)) yields

loc loc

limian[ (& + Juf, 12 )T U3y, VI @Ws,) 17)” dx

e—>0 5
= pT ;/Ux[ }IUx,-II"2 (Z(Ux,)x: | 0% dx.

In view of (3-10), this completes the proof. O

4. Decay estimates for a nonlinear function of the gradient for p > 2
We already know from Theorem 2.4 that

p=2
|Ux;| 2 Uy, (Q)ﬂLlOC(Q).

loc

This nonlinear function of the gradient of U will play a crucial role in the sequel for the case p > 2. Thus
we introduce the expedient notation

|ij| ij, j:1,2.

For every Bg € €2, we will also use the following notation:

mj =infv;, V;j=vj—mj;, Mj=supV;=oscv;, j=1,2, 4-1)
BpRr Br Bgr
Lg =1+|VU| Loo(Bg)- (4-2)

4A. A De Giorgi-type lemma. We first need the following result on the decay of the oscillation of v;.
This is the analogue of [Santambrogio and Vespri 2010, Lemma 4]. As explained in the Introduction,
our operator is much more degenerate then the one considered in that paper; thus the proof has to be
completely recast. We crucially rely on the Caccioppoli inequality of Proposition 3.1.
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Lemma 4.1. Let Bg € 2 and 0 < o < 1. By using the notation in (4-1) and (4-2), there exists a constant
v =v(p, o, Lg) > 0 such that if

2p+4(1-2)
{V; > (1 —a) M;}N Bg| <v M; *”| Brl.

then
0=V =(1-5) M. onByg.

Proof. We first observe that if M; = 0, then V; identically vanishes in Bg and there is nothing to prove.
Thus, we can assume that M; > 0.
Forn = 1, we set

R R
ko =M (1-%=2), Ry=5 42y An={V; >ka} 0 B,

where the ball B, is concentric with Bg. Let ¢, be a smooth cut-off function such that
0<6;=1.  6,=1 onBr,,. 6,=0 R \B, [V6|=C>.
Recalling the definition (2-1) of g4, we then set for every n > 1
B = & ke (mj - n) = - eul 7 Oy + ), (43)
with m; defined in (4-1). We start from (3-1) with the choices

() =1, L(O)=0—Pn)}: and 7=6
Observe that

g(Ux,-):(ij_,Bn)i>0 = Vi >ky,
and also*

SIS

4
0<¢{(Uy;) = ‘g;le(vj)—g;le(mj -l-k,,)}2 <C|vj—mj—ky|? < CMj ae.on Bg,. (4-4)

By using (4-4) and the definition of A,, we then obtain

2
> [ 1w s 6

i=1 5 % ) %
< (X [ 10172 0 6 P ) (3 [ 101725002 601 2 )

i=1 i=1

4 3 :
<CLgM} (/B |v9,,|2) (/A |v0,,|2) .
R n

n

In view of the properties of 6,, it follows that

=

2 2 2 P (2" 1 1 nyp s | Anl
Zf|(vi)xk| {(Ux)) b dx < CLE M () 1Br\ Br, ¥ |4al? = C 4" LE M7 22

i=1

“4In the second inequality we use that 7 — g;lz (t) is %—Hblder continuous.
e
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for some C = C(p) > 0. Here, we have used that

837
|Br,\ Br,,,| =7(Ry—R2, ) =7 (R —

R2
2n+1 27TR:7T2—n

R
n+1) (Rn + Rn—i—l) =
In the left-hand side, we only keep the term i = j and use that by Lemma 2.5
where

(vj)xk \ K(ij-) = (F(Ux, ))xk,

F(z)——/ 512 VTG ds =2 / 515 (s — Bu)s ds. 1 €R
We thus obtain

/\(F(ij D] 02 dx < C 4" L M,

=

7 14|
R
Summing over k = 1, 2, this yields an estimate for the gradient of F(Uy,), i.e

2 p ot 14n]2
/\V(F(UX]))\ bidx<C4" Ly M/
Since mj <mj +k, <mj + M;

R
Hence, by the definition of B, see (4-3)

(4-5)
supp, vj and by the definition of Lg, we have |m; + k,| < L}

|Bnl = Lg.
By keeping this in mind and using Lemma A.1 below.

0< F(Uy,) < C(IUy " + |Bal =

(4-6)
) (ij
This implies that F(Uyx;) = 0 on Bg,\ A, and also that

By = CL (Ux, —Bn)%-

0< F(Uy,) < C Ly b §(Ux)<CL

M 17
for some C = C(p) > 0. In the last inequality, we have used (4-4). Hence

8
[|ve | (F(ij))zdx§CL§‘2MP/ V6,2 dx

_ A,
<C4"Lb ZM"| |

D=

(4-7)
4
<C4"LEM/ [4n]2
R
b
where in the last inequality we used that |A,,|% <./m Rand M; <2L2. By adding (4-5) and (4-7), with
some simple manipulations we get

/ |V(F(Uy,) 6p)|* <C4" LB M,
BRn

D=

7 14|
R ’
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where as usual C = C(p) > 0. We now rely on the following Poincaré inequality for the function

F(Ux;) 6y € Wy (B,):

[{x € Br, : F(Uy;) 6, > 0} /B |V(F(Uy;) 0)* dx > c/ | F(Ux;) 6n]* dx.
Rn

Bg,

This inequality can be obtained as follows: for every bounded open set  C R, the Sobolev embedding

WOI’1 (Q) — L?(Q) implies that for every f € WOI’Z(Q),
2

[ c(/ v/ dx)2 - c(/{#o} v/ dx) =Clivi s 201 [ 19R ax

where C is a universal constant.
Since 6, = 1 on Bg, | and by construction

|An| = |{F(ij)9n > 0}|,

one gets 4

nrpb p
3

4 ,
/ |F(ij)|2dx§C R | Anl?
B R
Rn-l—l

for some C = C(p) > 0. By using that F is nondecreasing and

Apy1={Vj > kn+1} N Br,,, = {Usx; > Bn+1} N Br, >
we obtain
/B FUPdx= [ [FUP dx = [Arii] FBaa®
R

n+1 Ant1
This gives 4

4n LP M.E
R 3
|Ant1| F(Bns1)* =C T]|

Apnl2.
We now use the lower bound of Lemma A.1 to get

F(,Bn+1)2 >c(But1— ﬂn)p+2-
Remember that

Bn = g;le(le +kn) and  Buiq = g;("@ + kn+1)-
If we use again that for every 5,7 € R,

o2 (D) = guma ()] = € (1017 +151"27) 10 =51,

then one gets

(4-8)

(4-9)

—2 —2
Kt —kn|PF2 = | (k1 +m7) = Gen +mj)| "2 < C(1Busa] 2 + 1812 )7 2 (Bugr — Bu)? 2

By using (4-6) and (4-9) we obtain
2_4

p=—4
|kn+1 _kn|p+2 = CLR 2 F(:Bn—f-l)z-
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so that by (4-8), p2—4+t2p
2

4
n Iz
|An+1| |kn+1 _kn|p+2 =C

M

3
R L | 4y)3.

R
By the definition of k,, the previous inequality gives

3
Ausrl _ (21059 oogiee | Sope2) (14n] )
R2 ~ aPt2 R J R2 )

Since Mj > 0, the right-hand side is well-defined. If we now set Y, = |4,/ R?, this finally yields

p2=4+2p

4_p-2 3
Ypr1 = (CoLp 2 M ? ) (224" Y,?  forevery n € N\ {0},

for some Cy = Cy(«r, p) which can be supposed to be larger than 1. If follows from Lemma B.1 that

2PtH=6 2 2p+4(1-2
lim Y, =0, provided that ¥, < (—)L; p=2p 2044 (1=5)
n—+o00 C02 J
The condition on Y; means
2p+4(1-2 2PEH=6 5
[{V; > (1—a) Mj} N Br| < v M; r+4(1-3) |Br|, withv:= % Ly (4-10)
0
By assuming this condition and recalling the definition of Y,,, we get
Vi< tim ky=(1-5)M; ae onBg. O
n—>+o00 2 2

Remark 4.2 (quality of the constant v). For later reference, it is useful to record that

2p+4(1-2)

This follows by direct computation, using the definition of v and observing that
£ r
Mj < 2||vjllLeo(Br) = 2 1Ux; [ foo( ey = 2 (LR —1)2.
Also observe that by its definition (4-10), the constant v is monotone nonincreasing as a function of the
radius of the ball Bg (since R > Lg is monotone nondecreasing and 4 — p% —2 p < 0 for p > 2).
4B. Alternatives.

Lemma 4.3. We still use the notation in (4-1) and (4-2). Let B € 2 and let v be the constant in
Lemma 4.1 for a = %. If we set

v . 2p+4(1-2
s T D
2
then exactly one of the two following alternatives occur:

osc Ujf%OSCUj, B1)
Bsr Bgr

2p+4(1-2)
[B . Vo[> dx > 557 v M} M; " (B2)
R\D§R
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Proof. We can suppose that M; > 0, otherwise there is nothing to prove. We have two possibilities: either

1{V; > 2 M;} 1 Bg| <v M”+4(1 | Bz,

or not. In the first case, by Lemma 4.1 with o = % we obtain

7

0SC Vj = 0SC Vj = 7 0SCVj,
Bsgr Bgr/> 3 Bgr

which corresponds to alternative (B1) in the statement. In the first inequality we used that § < %; see

Remark 4.2.

In the second case, we appeal to Lemma B.3 with the choices

2p+4(1-2
q=2, ¢=V;, M=M; and V=vM,-p ( ”),
with § as in the statement above. It follows that
e either

’ 2, 2p+4(1-2)
/B \B |VI/J| dx > WUM M ,
R\Bsr

e or the subset of [§R, R] given by
A={s€[SR,R]:V; = 3 Mj, H'-ae.on By}
has positive measure.

If the first possibility occurs, then we are done since this coincides with alternative (B,).
In the second case, we consider u? the solution of the regularized problem (2-3) in a ball B € 2 such
that B € B. Then we know from Lemma 2.7

. hrJIrl ”|u8k| o usk —vj ”LOO(BBS) =0 forae.sel0,R],

for an infinitesimal sequence {&j }en. Since A has positive measure, we can then choose a radius s € A
such that the previous convergence holds. For every n € N\ {0}, by taking k large enough we thus obtain

|ufc’]€|pT_2 usk = SMj+mj—L 3'-ae ondB;.
We can now apply the minimum principle of Lemma 2.6 with C = % M; +mj— ,ll and get
|2 utk = S My +mj— L in By, @-11)
Thanks to Proposition 2.3, we know that {|u | EnlT X k31 en converges strongly in L2(By) to v;. It then
follows from (4-11) that
vj = % M +mj —% a.e. in By; thatis, V; > %Mj —% a.e. in By.
Hence, by the arbitrariness of n we get

oscvj <oscvj <sup V; —inf V; < %M
Bsr B, Br B

which implies again alternative (B1). ]
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5. Decay estimates for the gradient for 1 < p <2
SA. A De Giorgi-type lemma. For every Bg € €2, we introduce the alternative notation

mj:infoj, Vj:ij—m]-, Mj:suijzochxj, j=12, (5-1)
Br Bgr Bgr

and still use the notation (4-2) for Lp.

Lemma 5.1. Let Bg € Q2 and 0 < o < 1. By using the notation in (5-1) and (4-2), there exists a constant
v =v(p,a, Lg) > 0 such that if

[{V; > (1—a) M;} N Bg| < v M7 |Bgl,
then
o
0=V =(1-%)M; onByg.

Proof. We first observe that if M; = 0, then V; identically vanishes in Bg and there is nothing to prove.
Thus, we can assume that M; > 0.
Forn > 1, we set

o= M;(1-5 = 22). Ry=R R

272 —2 7t

where the ball Bg, is concentric with Bg. Let 6, be a cut-off function such that

Ap =1{V; > ky} N Bg,,.

0<6,<1, 6,=1 onBg,,. 6, =0 onR*\Bpg,
VO, <C2 and |D26,|<C
We then set for every n > 1
For every § > 0, we take a C'! nondecreasing function £5 : R — [0 + oo) such that
£5(t)=0 fort <0, &5 < C fort eR, E(1)=C forr >,

for some universal constant C' > 0. This has to be thought of as a smooth approximation of the “positive
part” function, up to the constant C > 0. One can take for example the function &5 of the form

0 fort <0,
Es(1) = 113/82 for0 <t <§é,
3tr—28 fort>34.

In the setting of Proposition 3.2, we take
(1) =&s(t—pPn) and 15 =0y

We observe that

§@)=C(t—PBn)+.
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so that
{(Us;) < C (Ux; —=mj —kn)+ < CM; <2C Lg. (5-3)

By using (5-3) and the properties of ¢, one gets from (3-8)
C Zf U, 1772 |Uy, x; 1> 02 dx
1_1 UX]- Zﬂn +8}O{le 7&0}

EC/ IVU|? (IV0u|* + | D?6n]) dx+f IVU P71 £ (Ux)] (1VO]* + | D?6]) dx
Ux >ﬂn {

SCL;;/ (IVOu|* + | D?6y|) dx
{ X Z n

Since p <2 and |Uy,| < Lg a.e., one gets
Z/ |ijx,.|29,$deCL,%[ (IV6u|? + | D*6,]) dx
l_l UX] Zﬂn+8} {UX] Zﬂn}

Here, we have also used the fact that Uy; x; = 0 a.e. on the set {Ux;, = 0}. We now take the limit as §
goes to 0 in the left-hand side. By the monotone convergence theorem, we get

Z/ Uy, x; 12 02 dx < CL§/ (IV6u|? + | D?6,]) dx
UX >;3n

i=1 {UXj >Bn}

In view of the properties of 8, it follows that

Ap
/W(Ux] Bu)+ | 07 dx < C L% 4" | | (5-4)
for some C = C(p) > 0. Observe that
A
[ 190 Wy ot dx < C Lan 22 5-5)

thanks to (5-3). By adding (5-4) and (5-5), we get
2 nor2 |An|
‘v((ij_,Bn)—i- 9n)| dx<C4 L% 52’
Bg, R
where as usual C = C(p) > 0. We rely again on the Poincaré inequality and obtain
2 2
66 € Bry: Wy =B 60> 0} [ V(U = Bu)e 6 = [ |Wy = B buf .
Rn Rp

Since 6, =1 on Bp and by construction

[4n] = [{(Usx; — Bn)+ On

n+1
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one gets
ny?2

4" L
/ (Ux, _ﬂn)i dx=C 2R |4, ]2
Br,, 1, R

for some C = C(p) > 0. By using that

An+1 = {V] > kn-i—l} N BRn+1 = {UX]' > IBn-i-l} N BRnJrl’

we obtain
G R G L
BRn+l An+1
This gives
qn LZ
|An+1| (ﬂn+1 _,Bn)2 = C RZR |An|2-

By recalling the definitions of 8, and k,, the previous inequality gives

| Apt1] 27 N (Aa )
R2 =C ?LRM}' R2 |

Since M; > 0, the right-hand side is well-defined. As before, we set Y, = |A4,|/R? and obtain

Yut1 < (Co L% M;?)16"Y,> for every n € N\ {0},

for some Cy = Cy(r, p) > 1. Again by Lemma B.1 we get

-2
lim Y, =0, provided that Y¥; < ! Ly M},
n——+o00o 0
This means
2 , 1672,
{Vi>(1—oa)Mj} N Br| <v M; |Bg|, withv:= . Ly~

0

By assuming this condition and recalling the definition of Y,, we get

Vi< lim k,,=(1—%)Mj a.e.ont.

n——+00

843

(5-6)

Remark 5.2 (quality of the constant v). For later reference, as in the previous case we observe that

2 1
UM_] <§,

and that the constant v is monotone nonincreasing as a function of R.

5B. Alternatives.

Lemma 5.3. We still use the notation in (5-1) and (4-2). Let Bg € By p € Q2 and let v be the constant in

Lemma 5.1 for o = %. If we set

5=
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then exactly one of the two following alternatives occur:

0sc Uy, <1 osc Uy, . (B1)

SR R

/B . |VUy, | dx > 15— v M} (B2)
R SR

Proof. We can suppose that M; > 0, otherwise there is nothing to prove. We have two possibilities: either
[{Vj >3 M;} N Bg| <v M} |Bg|.

or not. In the first case, by Lemma 5.1 with o = % we obtain

osc Uy; < osc Uy; = %osc Uy,
Bsr Br/2 Bgr

which corresponds to alternative (By) in the statement. In the first inequality we used again that § < %;
see Remark 5.2.
In the second case, we appeal to Lemma B.3 with the choices

g=2, ¢=V;, M=M; and )/=ij-2,
with § as in the statement above. It follows that

o cither

2 1 4
/BR\BaR IVViI®dx = 537 v M,
e or the set
A= {s €[6R, R]:Ux; —mj = % M;, H!-ae. on 8Bs}

has positive measure.

Again, if the first possibility occurs, then we are done since this coincides with alternative (B5).
In the second case, we consider ©® the solution of the regularized problem (2-19) in a ball B € 2 such
that Bg € B. Then we know from Lemma 2.15
klir_ir_loo ||ufc’]‘ —Uyx;llL>@B,) =0 forae.s [0, R],
for an infinitesimal sequence {&g }xen. Since A has positive measure, we can then choose a radius s € A
such that the previous convergence holds. For every n € N\ {0}, by taking k large enough we thus obtain

3 5 . L1 1
Uy, 2 3 Mj+mj—; M -ae ondB;.

By proceeding as in the proof of Lemma 4.3 and using this time the minimum principle of Lemma 2.14
and Proposition 2.11, we obtain

Uy, —mj >3 Mj—1 ae in By
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By arbitrariness of n, we get

osc Uy, < oscUx; < (supUx; —mj) — (inf Ux; —m;) < 3 Mj,
BBR By Bpr B

which implies again alternative (B). O

6. Proof of the Main Theorem

6A. Case p > 2. We already observed that for every g > —1 the function ¢ — 7 |¢|? is a homeomorphism
on R. This implies the following.

Lemma 6.1. Let f : E — R be a measurable function such that for some q > —1 the function | f | f is
continuous. Then f itself is continuous.

In view of this result, in order to prove the Main Theorem in the case p > 2 it is sufficient to prove
that each function
—

p=2 .
Uj=|UxJ| 2 ij, j:1727
is continuous on £2. Thus the Main Theorem for p > 2 is a consequence of the following.

Proposition 6.2. Let p > 2, xo € Q and Ro > 0 such that Bg,(x¢) € 2. We consider the family of balls
{Br(x0)}o<R<R, centered at xo. Then we have
R0 poie, ) =0 F=12
Proof. For simplicity, in what follows we omit indication of the center x( of the balls. Since the map
R — oscp, vj is nondecreasing, we only need to find a decreasing sequence { R, },en converging to 0
such that
lim (osc vj) =0.

n—+00 "Bg,

For simplicity we now drop the index j and write v in place of v;. We set

v 2p+4(1-2
My =oscv and 50:\/—0M0p ( ”),
B, 2

where v is the constant of Lemma 4.1 for R = Ry and o = %. We construct by induction the sequence
of triples {(Ry, My, 8,) }nen defined by

% 2p+4(1-2)
My, :=oscv, &, =1\ — M, P,
Bgr, 2

Rn+1 = 8n Rn,

%. Since 6, < % for every n € N (see

Remark 4.2), the sequence { R, }»en is monotone decreasing and goes to 0. In order to conclude, we just

and v, is the constant of Lemma 4.1 for R = R, and o =

need to prove that
lim M, =0. (6-1)

n—oo
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Observe that we can suppose M, > 0 for every n € N, otherwise there is nothing to prove. We set

_2
I:= neN:/ |Vv|? dx > ! 1),,M,,2p+4(1 ")Mz ,
BRn\BRn+1 ~— 5127w n

and we have

Vo 2p+2+4(1-2) 1 2p+2+4(1-2)
M P M p
Siaw 2 Mo < S 2 M

nel nel

52[ |Vv|2dx§/ |Vu|? dx, (6-2)
nel Y BRu\BRr, | | Bg,
thanks to the fact that v, > vy > 0 for every n € N (see Remark 4.2). We now have two possibilities:
either / is infinite or it is finite. If the first alternative occurs, then (6-2) and the fact that v € WI;C’Z ()
imply

lim M, =0.

Ion—>o00

This means that the monotone sequence { M}, },en has a subsequence which converges to 0; thus we have
(6-1) and this completes the proof in that case.
Otherwise, if I is finite then there exists £ € N such that for every n > £ we have

2p+4(1-2
Vol dx < <L v, 2?07 2
BRn\BRn+1 5127T
By Lemma 4.3, this in turn implies that
M,+1 = osc vf% oscv=%Mn for every n > £.
Rp+1 Bg,
This again implies (6-1). O

6B. Case 1 < p < 2. The case 1 < p < 2 is similar, but more direct. This time the Main Theorem
follows from the result below, whose proof is exactly as above. It is sufficient to use Lemma 5.1 in place
of Lemma 4.1 and Lemma 5.3 in place of Lemma 4.3. We leave the details to the reader.

Proposition 6.3. Let 1 < p <2, xo € Q and Ry > 0 such that Bg,(x¢) € Q2. We consider the family of
balls { BR(x0)}o<R<R, centered at xo. Then we have

Iim( osc Uy,)=0, j=1,2.
R\o(BR(xo) %) /

Appendix A: Inequalities

In the proof of Lemma 5.1 we crucially relied on the following double-sided estimate for the function

p [t p=2
F(t)=§/ Is| 2 (s—B)+ds, teR.
B
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Lemma A.1. Let § € Rand p > 2. There exists a constant C = C(p) > | such that for every t € R,
2

_(Z_ﬂ): <Fn=<C(r "2 4 (max{0, )T )(l—ﬁ)+ (A-1)

Proof. Since F(t) = 0 when ¢ < 8, both inequalities are true in this case. Thus let us assume that # > f.
Moreover, if 8 = 0,

S
o]
(S
=
n

t
P pt2

F(t)=—/s sds=—t 2 fort>0,
2 Jo P+

which implies the result.

Case 8 > 0. By Holder’s inequality
(- /3)” ( ) ( ‘=2 (s—p)+ )
(s—B)+ds) = ([ "7 2 s
/ - /ﬂ P
- ‘6B VT L2 =
([ 7 cpea)([ )" <2 roe-p

where we used that (s — )+ < s and this gives the lower bound in (A-1). As for the upper bound, by the

change of variables t = s5/8 one has

X
t _
F(t)= ﬂpTH F+(B), where F(X) = g / rpTz (t—1)dr, ©>1.
1
Observe that
Fe(X)=Lo (x5 —n-xi-n, x>
p+2
Moreover, by convexity of the function X +— X 7 we have
~xE-n=-Lx -,

while a second-order Taylor expansion gives

2 X 2
#(X"?Z—n:g()(—l)qt%/l "2 (X —s)ds < (X—1)+—X (X —1)2

Thus we obtain

2
F+(X)<%X X—12 X>1,
and finally for ¢ > 8
t 2 e
0= £y () <25 - pr

which proves the upper bound in (A-1).
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Case B < 0. This case is slightly more complicated. We introduce the function
P X p=2 p p+2
F-(X)== Is| 2 (s+ 1) ds = ——= (| X] = —l)+(|X| X+1), X >-1.
2 —1 p+ 2
It is sufficient to prove that there exists C > 1 such that
1
E(X—i—l)pJZr <F.(X)<C(X|"T +1) (X + )% (A-2)
Indeed, F(t) = |83 F_(z/|B]) and this would give

—(l—ﬂ) S PO =C ()T +181T) - B

as desired.
The upper bound in (A-2) for —1 < X < 0 can be obtained as before, by using a second-order Taylor
—2
expansion for the first term and using that 7 +— |t|pT T is concave on —1 < 7 < 0. This gives

F_<X)=ﬁ(|X|”z D+ (X)X +1)

2 X
5-%(X+1)+p7/ 5125 (X =5y ds+ 2 (X + 1)
-1

2
< % (X + 1)
Observe that the upper bound is trivial for 0 < X <1, since

%(m”z S H(X]T X+ ) <2<2(X])"T + D) (X + 12

Finally, for X > 1 we still use a second-order Taylor expansion for the first term and the elementary
inequality
XPp1<1x (x+1)?

for the second one. These yield
2 X 2 _
F_(X) < %/ 1s|%2° (X—s)ds—|— XX 12 < (% + %) X" (X +1)2

-1

In order to prove the lower bound, we just observe that the function

p+2
X+1) 2
o XD = vl
F_(X)
is positive continuous on (—1, +00) and such that
o (x+n"? )
im ———————— <+o00 and lim ————— < +o0.
x>+ F_(X) X>to00 F_(X)

Thus it is bounded on (—1, +00) and this concludes the proof of the lower bound. O



C! REGULARITY OF ORTHOTROPIC p-HARMONIC FUNCTIONS IN THE PLANE 849

Lemma A.2. Let 1 < g < 2. Foreveryzy,z1 € RN we have
201972 20— 121972 21| <2279 |z — 21|77 ". (A-3)

Proof. The proof is the same as that of [DiBenedetto 1993, Lemma 4.4], which proves a slightly different
inequality. We first observe that if z; = z there is nothing to prove; thus we can suppose |z; — zg| > 0.
Let us set

zz=0—-t)zg+1tz1, te]0,1].

Then we have

1 d 1
211972 21 — |20/ 20 = /0 E(IZ:I”_2 z)dt =(q— 1)/0 241972 (21 — z) dt.

which implies

1
— — q—2
1201972 29 — |14 221‘5((]—1)|21—Zo|/ |lzol =121 — zol|" " dt, (A-4)
0
where we used that ¢ —2 < 0. We now distinguish two cases:
either |zo| = |z1 —zo| or |zo| <|z1—2zo0l.

In the first case, we have

1 1
q—2 -2
/uzO|—r|zl—ZO|\ dr=/ (20l 1 |21 — 2092 di
0 0

_ 201771 — (20l — |21 = 20! _ |21 — 20772
(g—1) |z1 — 2o Togq-1
which inserted in (A-4) gives the desired conclusion. In the second case, let 0 < k < 1 be such that

’

|zo| = Kk |z0 — z1],

then we have

1 K 1
q—2 _ _
/ |lzo| = |21 — zol|* " dt :/ (120l =1 |21 — zo)? 2dt—|—/ (t1z1 — 2ol — 20?2 dt
0 0 K

_ |2/97! (Iz1 — 20| — 207! —h2-q |71 —z20/77?
(g —1)]z1 —zo (g—1|z1 =zl ~ q—1
In view of (A-4), this gives the desired conclusion. O

Corollary A3. Let 1 < p < 2. Forevery ¢ > 0 and every t, s € R we have
—2 —2 2—
|(s—i—12)pTt—(e:—i—sz)pT s} <27" |z—s|§, t,s €R.
Proof. We use (A-3) with the choices

N=2, ¢g=3(p+2). zo=(t+e) and z;=(s,e).
This implies
(e +12) "% (1. VE) — (e +51) T (5. Vo) <27 | —s]5.
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By further observing that

(e +12)"% (1. Vo) — (e +51) T (5. Vo) | = (e +1) T t—(e+5

we get the conclusion. O

Appendix B: Some general tools

In the proofs of Lemmas 4.1 and 5.1, we used the following classical result. This can be found, for
example, in [Giusti 2003, Lemma 7.1].

Lemma B.1. If {Y} }nen is a sequence of nonnegative numbers satisfying

_1 Bl
Yn+1§cb”Yn1+ﬂ, Yi <c Bb 8% forsomec, B>0,b>1,

then limy— o0 Y, = 0.

The next lemma is a Fubini-type result on the convergence of Sobolev functions. We denote by #! the
one-dimensional Hausdorff measure.

Lemma B.2. Let 0 <t < 1 and 1 < p < oo. Let Br(xy) C R? be the disc centered at x with radius
R > 0 and let {up}nen C WP (Bgr(x0)) be a sequence strongly converging to 0, i.e., such that

_ V4
lim U it | dx+// Jun () L;i(y)l dxdy] —0
n=>00| JBg(x0) BRr(x0)xBgr(x0) |x — y|*FTP

Then there exists a subsequence {up, }ien such that for almost every r € [0, R], {uy; }ien strongly converges

to 0 in WHP (9B, (xp)); i.e.,

) _ . P
i—~oo| J3B, (xo) 9By (x0)xdB, (xo)  |X—y|1TTP

Proof. Let us consider the convergence of the double integral, since the convergence of the L? norm is

similar and simpler to prove. Without loss of generality, we can assume xo = 0. Then we omit indication
of the center of the ball. We use polar coordinates x = g e’ ¥ We need to show that up to a subsequence,
for almost every g € [0, R] we have

iy _ iw\|p
im (walfyeppp., = lim @'~ // |“"(Q?#) U@ s =0, ®B-1)
n—oo o n—o00 0,2 7]x[0,2 7] |el _elw|1+rp

For every u € W%P?(R?) and & > 0, we introduce

00 iy _ iw\|p d
ws(u):=/ // '“(Qéfﬂ) u@e N s 4o ace
e Jo2nx[0.27] |ef? —et@|ltTp oltep

C |u(x) —u()|? —u(y)lp

We claim that
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for some constant C = C(p, ) > 0. Let us assume (B-2) for a moment and explain how to conclude: we
can extend {1, }nen to a sequence {ii, }nen C WP (R?) such that

Up =un on Bg and [“n]Wr P(R2) = =C [un]Wr .P(BR)*
see [Adams 1975, Lemma 7.45]. The latter and (B-2) imply that

nlggo We(iy) =0 for every & > 0.
By the definition of W,, this means that the sequence of functions

/ |un(Qeiﬁ)_”n(Qeiw)|p
[0,2 #]x[0,2 7]

|eiz9_eiw|1+rp dd do

fu(0) = 1+‘C[J

converges to 0 in L!((e, R)). Hence, there exists a subsequence { f,, }ien Which converges almost
everywhere to 0 on (g, R). By taking a sequence {gj }ren converging to 0 and repeating the above
argument for each ¢y, a diagonal argument leads to the existence of a subsequence, still denoted by
{ fn; }ien, which converges almost everywhere to 0 on (0, R). Equivalently, {u, };en satisfies (B-1) for
almost every o € [0, R].

Let us now show (B-2). The proof is similar to that of [Bethuel and Demengel 1995, Lemma A.4]. For
0>¢,t>0and ¥, w e[0,2n] we have

u(ee' ) —u(oe'®)|” < Clutee') —u((o+ 1) e “T7)|” +Clu(e+1) e “*") —u(ge

and (for ¥ # w)
. . m . .
Q—rp—l |elz9_eza)|—rp—1 — (1 +Tp)/ [l +Q|elz9_eza)|]—rp—2 dt.
0

Thus from the definition of W, (1), we obtain with simple manipulations

00 0O id i2teip
— t
Wa(u)EC/// el —ulletne 2 I 15 4w doa.
0 [0,2 w]x[0,2 ]

((+le? —efw]2ie

Observe that

loe (Q+Z)€ }<Z+Q‘e elﬂJZr&)!;
hence,
i
_ t 2
[0,2 7]x[0,2 ] Qezﬂ_(g+[)e |2+tp
idy _ ivy\|p
<& / wlee' ) —uls e DIZ S 49 dy dods,
& Ji0,00)x[0,00) J[0,27]x[0,2 7] |0 €!V —s eV |2FTP
which completes the proof of (B-2). O

The following result is a general fact for bounded Sobolev functions in the plane. This is exactly the
same as [Santambrogio and Vespri 2010, Lemma 5]; we reproduce the proof for the reader’s convenience.
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Lemma B.3. Let ¢ > 1 and let ¢ € W4 (Bg) N L>®(BR) be a function such that 0 < ¢ < M. Let us
suppose that there exists 0 <y < 1 such that

[{¢ >3 M} N Bg| >y |Bgl
If we set § = \/g , one of the following two alternatives occur:

(Aq) either
2—q

R
| Vet Sy
Bgr\Bsr 84-4-(2m)1
(Ay) or the subset of [6R, R] given by
{s€[SR.R]:¢ >3 M, H'-ae on B}
has positive measure.
Proof. We first observe that thanks to the hypothesis we have
e >3 M} (Br\ Bsr)| = |{¢ > 3 M} Br|—{¢ > 3 M} N Bsg|
> v | Brl —|Bsrl
= (y —8%)|Bgl.

By the definition of §, we get

{o > 2 M}N(Bg\ Bsg)| = 3V | Brl.
We define the set
X ={s€[§R,R]:H'({x €0Bs:p(x) =32 M})>0}.
Then

%y|BR|§\{¢>%M}m(BR\BgR)|=/ /BB 1{¢>3/4M}d7-[1ds§27r/ sds <2m R|X|.
X s X

This in turn implies that
x| = 3y R.

Let us now suppose that alternative (A,) does not occur. This implies that
H'({x € 0B :p(x) <3 M})>0 forae.s€[SR,R].
Thus for almost every s € X, we have

3 5
oscop =M —zM =
3B, 4 8

1
M.
By observing that dB; is one-dimensional, we obtain

1

q
§Mgosc<p5/ V| dH! 5(2nR)1—31(/ |Vr<p|qd’H1) ,
0By 0By dB;
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where V, denotes the tangential gradient (by using polar coordinates x = o e’ 9 this is nothing but the
¥-derivative). By taking the power ¢ in the previous estimate and integrating in s € X', we get

1
|V<p|quz// Vo2 dH' > (M) ——— |x|.
/BR\BgR x JaB, (s¢) 2nm R)71

Using the lower-bound on |X| yields alternative (A). O
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