ANALYSIS \& PDE

Volume 11 No. 4 2018

Chang-Shou Lin, JUn-Cheng Wer, Wen Yang and Lei Zhang

ON RANK-2 TODA SYSTEMS WITH ARBITRARY SINGULARITIES: LOCAL MASS AND NEW ESTIMATES

ON RANK-2 TODA SYSTEMS WITH ARBITRARY SINGULARITIES: LOCAL MASS AND NEW ESTIMATES

Chang-Shou Lin, Jun-cheng Wei, Wen Yang and Lei Zhang

For all rank-2 Toda systems with an arbitrary singular source, we use a unified approach to prove:
(1) The pair of local masses $\left(\sigma_{1}, \sigma_{2}\right)$ at each blowup point has the expression

$$
\sigma_{i}=2\left(N_{i 1} \mu_{1}+N_{i 2} \mu_{2}+N_{i 3}\right),
$$

where $N_{i j} \in \mathbb{Z}, i=1,2, j=1,2,3$.
(2) At each vortex point p_{t} if $\left(\alpha_{t}^{1}, \alpha_{t}^{2}\right)$ are integers and $\rho_{i} \notin 4 \pi \mathbb{N}$, then all the solutions of Toda systems are uniformly bounded.
(3) If the blowup point q is a vortex point p_{t} and $\alpha_{t}^{1}, \alpha_{t}^{2}$ and 1 are linearly independent over Q, then

$$
u^{k}(x)+2 \log \left|x-p_{t}\right| \leq C .
$$

The Harnack-type inequalities of 3 are important for studying the bubbling behavior near each blowup point.

1. Introduction

Let (M, g) be a Riemann surface without boundary and $K=\left(k_{i j}\right)_{n \times n}$ be the Cartan matrix of a simple Lie algebra of rank n. For example, for the Lie algebra $\operatorname{sl}(n+1)$ (the so-called A_{n}) we have

$$
\boldsymbol{K}=\left(\begin{array}{rrrrr}
2 & -1 & 0 & \cdots & 0 \tag{1-1}\\
-1 & 2 & -1 & \cdots & 0 \\
\vdots & & & & \vdots \\
0 & \cdots & -1 & 2 & -1 \\
0 & \cdots & 0 & -1 & 2
\end{array}\right)
$$

In this paper we consider the solution $u=\left(u_{1}, \ldots, u_{n}\right)$ of the following system defined on M :

$$
\begin{equation*}
\Delta_{g} u_{i}+\sum_{j=1}^{n} k_{i j} \rho_{j}\left(\frac{h_{j} e^{u_{j}}}{\int_{M} h_{j} e^{u_{j}} d V_{g}}-1\right)=\sum_{p_{t} \in S} 4 \pi \alpha_{t}^{i}\left(\delta_{p_{t}}-1\right) \tag{1-2}
\end{equation*}
$$

where Δ_{g} is the Laplace-Beltrami operator $\left(-\Delta_{g} \geq 0\right), S$ is a finite set on M, h_{1}, \ldots, h_{n} are positive and smooth functions on $M, \alpha_{t}^{i}>-1$ is the strength of the Dirac mass $\delta_{p_{t}}$ and $\rho=\left(\rho_{1}, \ldots, \rho_{n}\right)$ is a constant vector with nonnegative components. Here for simplicity we just assume that the total area of M is 1 .

[^0]Obviously, (1-2) remains the same if u_{i} is replaced by $u_{i}+c_{i}$ for any constant c_{i}. Thus we might assume that each component of $u=\left(u_{1}, \ldots, u_{n}\right)$ is in

$$
\stackrel{\circ}{H}^{1}(M):=\left\{v \in L^{2}(M), \nabla v \in L^{2}(M) \text { and } \int_{M} v d V_{g}=0\right\} .
$$

Then (1-2) is the Euler-Lagrange equation for the following nonlinear functional $J_{\rho}(u)$ in $\stackrel{\circ}{H}^{1}(M)$:

$$
J_{\rho}(u)=\frac{1}{2} \int_{M} \sum_{i, j=1}^{n} k^{i j} \nabla_{g} u_{i} \nabla_{g} u_{j} d V_{g}-\sum_{i=1}^{n} \rho_{i} \log \int_{M} h_{i} e^{u_{i}} d V_{g}
$$

where $\left(k^{i j}\right)_{n \times n}=\boldsymbol{K}^{-1}$.
It is hard to overestimate the importance of system (1-2), as it covers a large number of equations and systems deeply rooted in geometry and physics. Even if (1-2) is reduced to a single equation with Dirac sources, it is a mean-field equation that describes metrics with conic singularities. Finding metrics with constant curvature with prescribed conic singularity is a classical problem in differential geometry and extensive references can be found in [Bartolucci and Tarantello 2002; Battaglia and Malchiodi 2014; Eremenko et al. 2014; Lin et al. 2012; 2015; Lin and Zhang 2010; 2013; 2016; Troyanov 1989; 1991; Yang 1997]. Recently profound relations among mean-field equations, the classical Lamé equation, hyperelliptic curves, modular forms and the Painlevé equation have been discovered and developed in [Chai et al. 2015; Chen et al. 2016].

The general form of (1-2) has close ties with algebraic geometry and integrable systems. Here we just briefly explain the relation between the $\operatorname{sl}(n+1)$-Toda system and the holomorphic curves in projective spaces: Let f be a holomorphic curve from a domain D of \mathbb{R}^{2} into $\mathbb{C P}^{n}$. Then f can be lifted locally to \mathbb{C}^{n+1} and we use $v(z)=\left[v_{0}(z), \ldots, v_{n}(z)\right]$ to denote the lift and f_{k} the k-th associated curve,

$$
f_{k}: D \rightarrow G(k, n+1) \subset \mathbb{C P}^{n}\left(\Lambda^{k} \mathbb{C}^{n+1}\right), \quad f_{k}(z)=\left[v(z) \wedge \nu^{\prime}(z) \wedge \cdots \wedge v^{(k-1)}(z)\right]
$$

where $v^{(j)}$ is the j-th derivative of v with respect to z. Let

$$
\Lambda_{k}(z)=v(z) \wedge \cdots \wedge v^{(k-1)}(z)
$$

Then the well-known infinitesimal Plüker formula gives

$$
\begin{equation*}
\frac{\partial^{2}}{\partial z \partial \bar{z}} \log \left\|\Lambda_{k}(z)\right\|^{2}=\frac{\left\|\Lambda_{k-1}(z)\right\|^{2}\left\|\Lambda_{k+1}(z)\right\|^{2}}{\left\|\Lambda_{k}(z)\right\|^{4}} \quad \text { for } k=1,2, \ldots, n, \tag{1-3}
\end{equation*}
$$

where we put $\left\|\Lambda_{0}(z)\right\|^{2}=1$ as convention and the norm $\|\cdot\|^{2}=\langle\cdot, \cdot\rangle$ is defined by the Fubini-Study metric in $\mathbb{C P}\left(\Lambda^{k} \mathbb{C}^{n+1}\right)$. Here we observe that (1-3) holds only for $\left\|\Lambda_{k}(z)\right\|>0$, i.e., for all the unramified points $z \in M$. Now we set $\left\|\Lambda_{n+1}(z)\right\|=1$ by normalization (analytically extended at the ramification points) and

$$
U_{k}(z)=-\log \left\|\Lambda_{k}(z)\right\|^{2}+k(n-k+1) \log 2, \quad 1 \leq k \leq n
$$

For every ramified point p we use $\left\{\gamma_{p, 1}, \ldots, \gamma_{p, n}\right\}$ to denote the total ramification index at p and set

$$
u_{i}^{*}=\sum_{j=1}^{n} k_{i j} U_{j}, \quad \alpha_{p, i}=\sum_{j=1}^{n} k_{i j} \gamma_{p, j}
$$

Then we have

$$
\begin{equation*}
\Delta u_{i}^{*}+\sum_{j=1}^{n} k_{i j} e^{u_{j}^{*}}-K_{0}=4 \pi \sum_{p \in S} \alpha_{p, i} \delta_{p}, \quad i=1, \ldots, n \tag{1-4}
\end{equation*}
$$

where K_{0} is the Gaussian curvature of the metric g.
Therefore any holomorphic curve from M to $\mathbb{C P}{ }^{n}$ is associated with a solution $u^{*}=\left(u_{1}^{*}, \ldots, u_{n}^{*}\right)$ of (1-4). Conversely, given any solution $u^{*}=\left(u_{1}^{*}, \ldots, u_{n}^{*}\right)$ of (1-4) in \mathbb{S}^{2}, it is possible to construct a holomorphic curve of \mathbb{S}^{2} into $\mathbb{C P}^{n}$ which has the given ramification index $\gamma_{p, i}$ at p if $\gamma_{p, i} \in \mathbb{N}$. One can see [Lin et al. 2012] for the details of this construction. Therefore, (1-4) is related to the following problem in more general setting: given a set of ramified points on M and its ramification indices at these points, can we find holomorphic curves into $\mathbb{C P}^{n}$ that satisfy the given ramification information?

Equation (1-2) is also related to many physical models from gauge field theory. For example, to describe the physics of high critical temperature superconductivity, a model related to the Chern-Simons model was proposed, which can be reduced to an $n \times n$ system with exponential nonlinearity if the gauge potential and the Higgs field are algebraically restricted. The Toda system with (1-1) is one of the limiting equations if a coupling constant tends to zero. For extensive discussions on the relationship between the Toda system and its background in Physics we refer the readers to [Bennett 1934; Ganoulis et al. 1982; Lee 1991; Mansfield 1982; Yang 2001].

In this article we are concerned with rank-2 Toda systems. There are three types of Cartan matrices of rank 2:

$$
A_{2}=\left(\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right), \quad B_{2}\left(=C_{2}\right)=\left(\begin{array}{rr}
2 & -1 \\
-2 & 2
\end{array}\right), \quad G_{2}=\left(\begin{array}{rr}
2 & -1 \\
-3 & 2
\end{array}\right) .
$$

One of our main theorems is the following estimate:
Theorem 1.1. Let $\left(k_{i j}\right)_{2 \times 2}$ be one of the matrices above, h_{i} be positive C^{1} functions on $M, \alpha_{t}^{i} \in \mathbb{N} \cup\{0\}$, $t \in\{1,2, \ldots, N\}$ and K be a compact subset of $M \backslash S$. If $\rho_{i} \notin 4 \pi \mathbb{N}$, then there exists a constant $C\left(K, \rho_{1}, \rho_{2}\right)$ such that for any solution $u=\left(u_{1}, u_{2}\right)$ of (1-2)

$$
\left|u_{i}(x)\right| \leq C \quad \text { for all } x \in K, i=1,2
$$

Our proof of Theorem 1.1 is based on the analysis of the behavior of solutions $u^{k}=\left(u_{1}^{k}, u_{2}^{k}\right)$ near each blowup point. A point $p \in M$ is called a blowup point if, along a sequence of points $p_{k} \rightarrow p$,

$$
\max _{i=1,2}\left\{\tilde{u}_{1}^{k}\left(p_{k}\right), \tilde{u}_{2}^{k}\left(p_{k}\right)\right\} \rightarrow+\infty
$$

where

$$
\tilde{u}_{i}^{k}(x)=u_{i}^{k}(x)+4 \pi \sum_{t} \alpha_{t}^{k} G\left(x, p_{t}\right)
$$

and $G(x, y)$ is the Green's function of the Laplacian operator on M.
Suppose u^{k} is a sequence of solutions of (1-2). When $n=1$, it has been proved that if u^{k} blows up somewhere, the mass distribution $\rho h e^{u^{k}} /\left(\int_{M} h e^{u^{k}}\right)$ will concentrate; that is, for a set of finite points
$p_{1}, p_{2}, \ldots, p_{L}$ and positive numbers m_{1}, \ldots, m_{L}

$$
\frac{\rho h e^{u^{k}}}{\int_{M} h e^{u^{k}}} \rightarrow \sum_{i=1}^{L} m_{i} \delta_{p_{i}} \quad \text { as } k \rightarrow \infty
$$

In other words, " u_{k} concentrates" means $u^{k}(x) \rightarrow-\infty$ if x is not a blowup point. This "blowup implies concentration" was first noted by Brezis and Merle [1991] and was later proved by Li [1999], Li and Shafrir [1994] and Bartolucci and Tarantello [2002]. But for $n \geq 2$, this phenomenon might fail in general. A component u_{i}^{k} is called not concentrating if $u_{i}^{k} \nrightarrow-\infty$ away from blowup points, or equivalently, \tilde{u}_{i}^{k} converges to some smooth function w_{i} away from blowup points. It is natural to ask whether it is possible to have all components not concentrating. For $n=2$, we prove it is impossible.

Theorem 1.2. Suppose u^{k} is a sequence of blowup solutions of a rank-2 Toda system (1-2). Then at least one component of u^{k} satisfies $u_{i}^{k}(x) \rightarrow-\infty$ if x is not contained in the blowup set.

The first example of such nonconcentration phenomenon was proved by Lin and Tarantello [2016]. The new phenomenon makes the study of systems ($n \geq 2$) much more difficult than the mean-field equation ($n=1$). Recently, Battaglia [2015] and Lin, Yang and Zhong [Lin et al. 2017] independently proved the result of Theorem 1.2 for $n \geq 3$.

As mentioned before, our proofs of Theorems 1.1 and 1.2 are based on the asymptotic behavior of local bubbling solutions. For simplicity we set up the situation as follows:

Let $u^{k}=\left(u_{1}^{k}, u_{2}^{k}\right)$ be a sequence of solutions of

$$
\begin{equation*}
\Delta u_{i}^{k}+\sum_{j=1}^{2} k_{i j} h_{j}^{k} e^{u_{j}^{k}}=4 \pi \alpha_{i} \delta_{0} \quad \text { in } B(0,1), i=1,2 \tag{1-5}
\end{equation*}
$$

where $\alpha_{i}>-1 . B(0,1)$ is the unit ball in \mathbb{R}^{2} (we use $B(p, r)$ to denote the ball centered at p with radius r) and $\left(k_{i j}\right)_{2 \times 2}$ is A_{2}, B_{2} or G_{2}. Throughout the paper, h_{1}^{k}, h_{2}^{k} are smooth functions satisfying $h_{1}^{k}(0)=h_{2}^{k}(0)=1$ and

$$
\begin{equation*}
\frac{1}{C} \leq h_{i}^{k} \leq C, \quad\left\|h_{i}^{k}\right\|_{C^{1}(B(0,1))} \leq C \quad \text { in } B(0,1), i=1,2 \tag{1-6}
\end{equation*}
$$

For solutions $u^{k}=\left(u_{1}^{k}, u_{2}^{k}\right)$ we assume

$$
\left\{\begin{array}{l}
0 \text { is the only blowup point of } u^{k}, \tag{1-7}\\
\left|u_{i}^{k}(x)-u_{i}^{k}(y)\right| \leq C \quad \text { for all } x, y \in \partial B(0,1), i=1,2, \\
\quad \int_{B(0,1)} h_{i}^{k} e^{u_{i}^{k}} \leq C, \quad i=1,2
\end{array}\right.
$$

For this sequence of blowup solutions we define the local mass by

$$
\begin{equation*}
\sigma_{i}=\lim _{r \rightarrow 0} \lim _{k \rightarrow \infty} \frac{1}{2 \pi} \int_{B(0, r)} h_{i}^{k} e^{u_{i}^{k}}, \quad i=1,2 \tag{1-8}
\end{equation*}
$$

It is known that 0 is a blowup point if and only if $\left(\sigma_{1}, \sigma_{2}\right) \neq(0,0)$. The proof is to use ideas from [Brezis and Merle 1991] and has become standard now. We refer the readers to [Lee et al. 2017] for a
complete proof. One important property of $\left(\sigma_{1}, \sigma_{2}\right)$ is the so-called Pohozaev identity (P.I. in short)

$$
\begin{equation*}
k_{21} \sigma_{1}^{2}+k_{12} k_{21} \sigma_{1} \sigma_{2}+k_{12} \sigma_{2}^{2}=2 k_{21} \mu_{1} \sigma_{1}+2 k_{12} \mu_{2} \sigma_{2} \tag{1-9}
\end{equation*}
$$

where $\mu_{i}=1+\alpha_{i}$. Take A_{2} as an example; the P.I. is

$$
\sigma_{1}^{2}-\sigma_{1} \sigma_{2}+\sigma_{2}^{2}=2 \mu_{1} \sigma_{1}+2 \mu_{2} \sigma_{2}
$$

The proof of (1-9) was given in [Lin et al. 2015] where we initiated an algorithm to calculate all the possible (finitely many) values of local masses and (1-9) played an essential role. But the argument there seems not very efficient. In this work we add major new ingredients to our approach and improve the classification of (σ_{1}, σ_{2}) to the following sharper form:
Theorem 1.3. Let u^{k} be a sequence of blowup solutions of (1-5) which also satisfies (1-6) and (1-7). Suppose σ_{1} and σ_{2} are local masses defined by (1-8). Then σ_{i} can be written as

$$
\sigma_{i}=2\left(N_{i, 1} \mu_{1}+N_{i, 2} \mu_{2}+N_{i, 3}\right), \quad i=1,2
$$

for some $N_{i, 1}, N_{i, 2}, N_{i, 3} \in \mathbb{Z}(i=1,2)$.
Theorem 1.3 is proved in Sections 5 and 6. In Section 5, we give an explicit procedure to calculate the local masses. Take the A_{2} system as an example; we start with $\sigma_{1}=0$ and the P.I. gives $\sigma_{2}=2 \mu_{2}$. With $\sigma_{2}=2 \mu_{2}$, the P.I. gives $\sigma_{1}=2 \mu_{1}+2 \mu_{2}$ and so on. Let $\Gamma\left(\mu_{1}, \mu_{2}\right)$ be the set obtained by the above algorithm. Then $\Gamma\left(\mu_{1}, \mu_{2}\right)$ is equal to:
(i) $\left(2 \mu_{1}, 0\right),\left(2 \mu_{1}, 2 \mu_{1}+2 \mu_{2}\right),\left(2 \mu_{1}+2 \mu_{2}, 2 \mu_{1}+2 \mu_{2}\right),\left(2 \mu_{1}+2 \mu_{2}, 2 \mu_{2}\right),\left(0,2 \mu_{2}\right) \quad$ for A_{2},
(ii) $\left(2 \mu_{1}, 0\right),\left(2 \mu_{1}, 4 \mu_{1}+2 \mu_{2}\right),\left(4 \mu_{1}+2 \mu_{2}, 4 \mu_{1}+2 \mu_{2}\right),\left(4 \mu_{1}+2 \mu_{2}, 4 \mu_{1}+4 \mu_{2}\right)$, $\left(0,2 \mu_{2}\right),\left(2 \mu_{1}+2 \mu_{2}, 2 \mu_{2}\right),\left(2 \mu_{1}+2 \mu_{2}, 4 \mu_{1}+4 \mu_{2}\right) \quad$ for B_{2},
(iii) $\left(2 \mu_{1}, 0\right),\left(2 \mu_{1}, 6 \mu_{1}+2 \mu_{2}\right),\left(6 \mu_{1}+2 \mu_{2}, 6 \mu_{1}+2 \mu_{2}\right),\left(6 \mu_{1}+2 \mu_{2}, 12 \mu_{1}+6 \mu_{2}\right)$, $\left(8 \mu_{1}+4 \mu_{2}, 12 \mu_{1}+6 \mu_{2}\right),\left(8 \mu_{1}+4 \mu_{2}, 12 \mu_{1}+8 \mu_{2}\right),\left(0,2 \mu_{2}\right),\left(2 \mu_{1}+2 \mu_{2}, 2 \mu_{2}\right)$, $\left(2 \mu_{1}+2 \mu_{2}, 6 \mu_{1}+6 \mu_{2}\right),\left(6 \mu_{1}+4 \mu_{2}, 6 \mu_{1}+6 \mu_{2}\right),\left(6 \mu_{1}+4 \mu_{2}, 12 \mu_{1}+8 \mu_{2}\right) \quad$ for G_{2}.
Definition 1.4. A pair of local masses $\left(\sigma_{1}, \sigma_{2}\right) \in \Gamma\left(\mu_{1}, \mu_{2}\right)$ is called special if

$$
\left(\sigma_{1}, \sigma_{2}\right)= \begin{cases}\left(2 \mu_{1}+2 \mu_{2}, 2 \mu_{1}+2 \mu_{2}\right) & \text { for } A_{2} \\ \left(4 \mu_{1}+2 \mu_{2}, 4 \mu_{1}+4 \mu_{2}\right) & \text { for } B_{2} \\ \left(8 \mu_{1}+4 \mu_{2}, 12 \mu_{1}+8 \mu_{2}\right) & \text { for } G_{2}\end{cases}
$$

The analysis of local solutions in [Lin et al. 2015] describes a method to pick a family of points $\Gamma_{k}=\left\{0, x_{1}^{k}, \ldots, x_{N}^{k}\right\}$ (if 0 is a singular point, otherwise 0 can be deleted from Γ_{k}) such that a tiny ball $B\left(x_{i}^{k}, l_{j}^{k}\right)$ contributes an amount of mass (which is quantized), and the following Harnack-type inequality holds:

$$
\begin{equation*}
u_{i}^{k}(x)+2 \log \operatorname{dist}\left(x, \Sigma_{k}\right) \leqslant C \quad \text { for all } x \in B(0,1) \tag{1-10}
\end{equation*}
$$

When $\alpha_{1}=\alpha_{2}=0$, we can use Theorem 1.3 to calculate all the pairs of even positive integers satisfying (1-9) and the set is exactly the same as $\Gamma(1,1)$.

It is interesting to see whether any pair of the above really consists of the local masses of some sequence of blowup solutions of (1-2). For $\boldsymbol{K}=A_{2}$ the existence of such a local blowup sequence has been obtained; see [Musso et al. 2016; Lin and Yan 2013].

After Σ_{k} is picked, the difficulty at the next step is how to calculate the mass contributed from outside $B\left(x_{j}^{k}, l_{j}^{k}\right) j=1,2, \cdots, N$. In Section 6 , we see that the mass outside this union could be very messy. However, the picture is very clean if $\left(\alpha_{1}, \alpha_{2}\right)$ satisfies the following Q-condition:

$$
\alpha_{1}, \alpha_{2} \text { and } 1 \text { are linearly independent over } Q .
$$

Theorem 1.5. Suppose $\left(\alpha_{1}, \alpha_{2}\right)$ satisfies the Q-condition. Then $\left(\sigma_{1}, \sigma_{2}\right) \in \Gamma\left(\mu_{1}, \mu_{2}\right)$. Furthermore, for any sequence of solutions of (1-5) satisfying (1-6) and (1-7), the following Harnack-type inequality holds:

$$
u_{i}^{k}(x)+2 \log |x| \leqslant C \quad \text { for } x \in B(0,1)
$$

For (1-2), let $\mu_{1, t}=\alpha_{t}^{1}+1$ and $\mu_{2, t}=\alpha_{t}^{2}+1$ at a vortex point $p_{t} \in S$, and define

$$
\begin{equation*}
\Gamma_{i}=\left\{2 \pi\left(\Sigma_{t \in J} \sigma_{i, t}+2 n\right) \mid\left(\sigma_{1, t}, \sigma_{2, t}\right) \in \Gamma\left(\mu_{1, t}, \mu_{2, t}\right), J \subseteq S, n \in \mathbb{N} \cup\{0\}\right\} \tag{1-11}
\end{equation*}
$$

Based on Theorem 1.5, Theorem 1.1 can be extended to the following version:
Theorem 1.6. Let h_{i} be positive C^{1} functions on M, and K be a compact set in M. For every point $p_{t} \in S$, if either both $\alpha_{t}^{1}, \alpha_{t}^{2} \in \mathbb{N} \cup\{0\}$ or $\left(\alpha_{t}^{1}, \alpha_{t}^{2}\right)$ satisfies the Q-condition, then for $\rho_{i} \notin \Gamma_{i}$ and $u=\left(u_{1}, u_{2}\right)$ a solution of (1-2), there exists a constant C such that

$$
\left|u_{i}(x)\right| \leqslant C \quad \text { for all } x \in K
$$

The organization of this article is as follows. In Section 2 we establish the global mass for the entire solutions of some singular Liouville equation defined in \mathbb{R}^{2}. Then in Section 3 we review some fundamental tools proved in the previous work [Lin et al. 2015]. In Section 4 we present two crucial lemmas, which play the key role in the proof of main results. In Sections 5 and 6 we discuss the local mass on each bubbling disk centered at 0 and not at 0 respectively, and then all the main results are established based on previous discussions.

2. Total mass for Liouville equation

The main purpose of this section is to prove an estimate of the total mass for the solutions of the equation

$$
\left\{\begin{array}{l}
\Delta u+e^{u}=\sum_{i=1}^{N} 4 \pi \alpha_{i} \delta_{p_{i}} \quad \text { in } \mathbb{R}^{2}, \tag{2-1}\\
\int_{\mathbb{R}^{2}} e^{u}<\infty
\end{array}\right.
$$

where p_{1}, \ldots, p_{N} are distinct points in \mathbb{R}^{2} and $\alpha_{i}>-1$ for all $1 \leqslant i \leqslant N$.
Theorem 2.1. Suppose u is a solution of (2-1) and $\alpha_{1}, \ldots, \alpha_{N}$ are positive integers. Then $\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} e^{u}$ is an even integer.

Proof. It is known that any solution u of (2-1) has, at infinity, the asymptotic behavior

$$
\begin{equation*}
u(z)=-2 \alpha_{\infty} \log |z|+O(1), \quad \alpha_{\infty}>1 \tag{2-2}
\end{equation*}
$$

and u satisfies

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} e^{u} d x=2 \sum_{i=1}^{N} \alpha_{i}+2 \alpha_{\infty} \tag{2-3}
\end{equation*}
$$

We shall prove that $\alpha_{\infty}+\sum_{i=1}^{N} \alpha_{i}$ is an even integer. A classical Liouville theorem (see [Chou and Wan 1994]) says that u can be written as

$$
\begin{equation*}
u=\log \frac{8\left|f^{\prime}(z)\right|^{2}}{\left(1+|f(z)|^{2}\right)^{2}}, \quad z \in \mathbb{R}^{2} \tag{2-4}
\end{equation*}
$$

for some meromorphic function f. In general, $f(z)$ is multivalued and any vertex p_{i} is a branch point. However if $\alpha_{i} \in \mathbb{N} \cup\{0\}$, then $f(z)$ is single-valued. Furthermore (2-2) implies that $f(z)$ is meromorphic at infinity. Hence for any solution u of (2-1) there is a meromorphic function f on $\mathbb{S}^{2}=\mathbb{C} \cup\{\infty\}$ such that (2-4) holds. Then

$$
\begin{aligned}
4 \pi\left(\sum_{j=1}^{N} \alpha_{j}+\alpha_{\infty}\right)=\int_{\mathbb{R}^{2}} e^{u} & =8 \int_{\mathbb{R}^{2}} \frac{\left|f^{\prime}(z)\right|^{2}}{\left(1+|f(z)|^{2}\right)^{2}} d x d y \\
& =8(\operatorname{deg} f) \int_{\mathbb{R}^{2}} \frac{d \tilde{x} d \tilde{y}}{\left(1+|w|^{2}\right)^{2}}=8 \pi(\operatorname{deg} f)
\end{aligned}
$$

where $\operatorname{deg}(f)$ is the degree of f as a map from $\mathbb{S}^{2}=\mathbb{C} \cup\{\infty\}$ onto \mathbb{S}^{2}, and $w=f(z)=\tilde{x}+i \tilde{y}$. Thus we have

$$
\sum_{j=1}^{N} \alpha_{j}+\alpha_{\infty}=2 \operatorname{deg}(f)
$$

Theorem 2.2. Suppose u is a solution of

$$
\left\{\begin{array}{l}
\Delta u+e^{u}=4 \pi \alpha_{0} \delta_{p_{0}}+\sum_{i=1}^{N} 4 \pi \alpha_{i} \delta_{p_{i}} \quad \text { in } \mathbb{R}^{2} \tag{2-5}\\
\int_{\mathbb{R}^{2}} e^{u}<\infty
\end{array}\right.
$$

where $p_{0}, p_{1}, \ldots, p_{N}$ are distinct points in \mathbb{R}^{2} and $\alpha_{1}, \ldots, \alpha_{N}$ are positive integers, $\alpha_{0}>-1$. Then $\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} e^{u}$ is equal to $2\left(\alpha_{0}+1\right)+2 k$ for some $k \in \mathbb{Z}$ or $2 k_{1}$ for some $k_{1} \in \mathbb{N}$.
Proof. As in Theorem 2.1, there is a developing map $f(z)$ of u such that

$$
\begin{equation*}
u(z)=\log \frac{8\left|f^{\prime}(z)\right|^{2}}{\left(1+|f(z)|^{2}\right)^{2}}, \quad z \in \mathbb{C} \tag{2-6}
\end{equation*}
$$

On one hand by (2-5), $u_{z z}-\frac{1}{2} u_{z}^{2}$ is a meromorphic function in $\mathbb{C} \cup\{\infty\}$ because away from the Dirac masses

$$
4\left(u_{z z}-\frac{1}{2} u_{z}^{2}\right)_{\bar{z}}=-\left(e^{u}\right)_{z}+u_{z} e^{u}=0
$$

By $u(z)=2 \alpha_{i} \log \left|z-p_{i}\right|+O(1)$ near p_{i} we have

$$
u_{z z}-\frac{1}{2} u_{z}^{2}=-2\left(\sum_{j=0}^{N} \frac{1}{2} \alpha_{j}\left(\frac{1}{2} \alpha_{j}+1\right)\left(z-p_{j}\right)^{-2}+A_{j}\left(z-p_{j}\right)^{-1}+B\right)
$$

where $A_{0}, \ldots, A_{N}, B \in \mathbb{C}$ are some constants. On the other hand by (2-6), a straightforward computation shows that

$$
\begin{equation*}
u_{z z}-\frac{1}{2} u_{z}^{2}=\frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{3}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2} \tag{2-7}
\end{equation*}
$$

Using the Schwarz derivative of f,

$$
\{f ; z\}=\frac{f^{\prime \prime \prime}(z)}{f^{\prime}(z)}-\frac{3}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}
$$

and letting

$$
I(z)=\sum_{j=0}^{N} \frac{1}{2} \alpha_{j}\left(\frac{1}{2} \alpha_{j}+1\right)\left(z-p_{j}\right)^{-2}+A_{j}\left(z-p_{j}\right)^{-1}+B
$$

we can write the equation for f as

$$
\begin{equation*}
\{f, z\}=-2 I(z) \tag{2-8}
\end{equation*}
$$

A well-known classic theorem (see [Whittaker and Watson 1927]) says that for any two linearly independent solutions y_{1} and y_{2} of

$$
\begin{equation*}
y^{\prime \prime}(z)=I(z) y(z) \tag{2-9}
\end{equation*}
$$

the ratio y_{2} / y_{1} always satisfies

$$
\left\{y_{2} / y_{1} ; z\right\}=-2 I(z)
$$

By (2-8) and a basic result of the Schwarz derivative, $f(z)$ can be written as the ratio of two linearly independent solutions. This is how (2-1) is related to the complex ODE (2-9). We refer the readers to [Chai et al. 2015] for the details.

For (2-9), there is an associated monodromy representation ρ from $\pi_{1}\left(\mathbb{C} \backslash\left\{p_{0}, p_{1}, \ldots, p_{N}\right\} ; q\right)$ to $\operatorname{GL}(2 ; \mathbb{C})$, where q is a base point. Note that at any singular point p_{j}, the local exponents are $\frac{1}{2} \alpha_{j}+1$ and $-\frac{1}{2} \alpha_{j}$. It is known from [Lin et al. 2012, Section 7] that e^{-u} can be locally written as

$$
e^{-u}=\left|v_{1}\right|^{2}+\left|v_{2}\right|^{2}=\left\langle\left(v_{1}, v_{2}\right)^{t},\left(v_{1}, v_{2}\right)^{t}\right\rangle
$$

where ν_{1}, ν_{2} are the two fundamental solutions of (2-9). After encircling the singular point p_{j} once, we have $e^{-u}=\left\langle\rho_{j}\left(\nu_{1}, \nu_{2}\right)^{t}, \rho_{j}\left(\nu_{1}, \nu_{2}\right)^{t}\right\rangle$ and the value does not change. Therefore, we conclude that ρ_{j} is unitary and

$$
\rho_{j}=\rho\left(\gamma_{j}\right)=C_{j}\left(\begin{array}{cc}
e^{\pi i \alpha_{j}} & 0 \\
0 & e^{-\pi i \alpha_{j}}
\end{array}\right) C_{j}^{-1}
$$

where $\gamma_{j} \in \pi_{1}\left(\mathbb{C} \backslash\left\{p_{0}, \ldots, p_{N}\right\}, q\right)$ encircles p_{j} only once, $0 \leq j \leq N$, while the monodromy at ∞ is ρ_{∞}. Then we have

$$
\rho_{\infty} \rho_{N} \cdots \rho_{0}=I_{2 \times 2}
$$

Note that $\rho_{j}= \pm I_{2 \times 2}$ for $1 \leq j \leq N$. Hence

$$
\rho_{\infty}^{-1}=D_{0}\left(\begin{array}{cc}
e^{\pi i \sum_{j=0}^{N} \alpha_{j}} & 0 \\
0 & e^{-\pi i \sum_{j=0}^{N} \alpha_{j}}
\end{array}\right) D_{0}^{-1}
$$

for some constant invertible matrix D_{0}.

On the other hand, the local exponents at ∞ can be computed as follows. Let $\hat{y}(z)=y\left(\frac{1}{z}\right)$, where y is a solution of (2-9). Then we have

$$
\begin{equation*}
\hat{y}^{\prime \prime}(z)+\frac{2}{z} \hat{y}^{\prime}(z)=\hat{I}(z) \hat{y}(z) \tag{2-10}
\end{equation*}
$$

where $\hat{I}(z)=I\left(\frac{1}{z}\right) z^{-4}$. Since $I(z)$ is the Schwarz derivative of $f(z)$, by direct computation $\hat{I}(z)$ is the Schwarz derivative of $f\left(\frac{1}{z}\right)$. As before we let $\hat{u}(z)=u\left(\frac{1}{z}\right)-4 \log |z|$. Then $f\left(\frac{1}{z}\right)$ is the developing map of $\hat{u}(z)$. Since

$$
\hat{u}(z)=2\left(\alpha_{\infty}-2\right) \log |z|+O(1) \quad \text { near } 0
$$

(because $u(z)=-2 \alpha_{\infty} \log |z|+O(1)$ at infinity), we have

$$
\hat{I}(z)=\frac{1}{2} \alpha_{\infty}\left(\frac{1}{2} \alpha_{\infty}-1\right) z^{-2}+\text { higher-order terms of } z \quad \text { near } 0
$$

By (2-10) we see that the local exponents of (2-9) are $-\frac{1}{2} \alpha_{\infty}$ and $\frac{1}{2} \alpha_{\infty}-1$. Hence $e^{\pi i \alpha_{\infty}}$ equals either $e^{\pi i \sum_{j=0}^{N} \alpha_{j}}$ or $e^{-\pi i \sum_{j=0}^{N} \alpha_{j}}$, which yields

$$
\begin{equation*}
\alpha_{\infty}=-\sum_{j=0}^{N} \alpha_{j}+2 k \quad \text { or } \quad \alpha_{\infty}=\sum_{j=0}^{N} \alpha_{j}+2 k \tag{2-11}
\end{equation*}
$$

for some $k \in \mathbb{Z}$. Since

$$
\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} e^{u}=\sum_{j=0}^{N} \alpha_{j}+\alpha_{\infty}
$$

we either have $\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} e^{u}=2 k$ for some $k \in \mathbb{N}$ if the first case holds or $\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} e^{u}=2\left(\alpha_{0}+1\right)+2 k^{\prime}$ for $k^{\prime}=\sum_{i=1}^{N} \alpha_{i}+k-1$ if the second case holds.
Remark 2.3. After proving Theorems 2.1 and 2.2, we found a stronger version of both theorems in [Eremenko et al. 2014]. Because we only need the present form of both theorems, we include our proofs here to make the paper more self-contained.

3. Review of bubbling analysis from a selection process

Let $u^{k}=\left(u_{1}^{k}, u_{2}^{k}\right)$ be solutions of (1-5) such that (1-6) and (1-7) hold. In this section we review the process to select a set $\Sigma_{k}=\left\{0, x_{1}^{k}, \ldots, x_{n}^{k}\right\}$ and balls $B\left(x_{i}^{k}, l_{k}\right)$ such that u^{k} has nonzero local masses in $B\left(x_{i}^{k}, l_{k}\right)$. This selection process was first carried out in [Lin et al. 2015]. We briefly review it below.

The set Σ_{k} is constructed by induction. If (1-5) has no singularity, we start with $\Sigma_{k}=\varnothing$. If (1-5) has a singularity, we start with $\Sigma_{k}=\{0\}$. By induction suppose Σ_{k} consists of $\left\{0, x_{1}^{k}, \ldots, x_{m-1}^{k}\right\}$. Then we consider

$$
\begin{equation*}
\max _{x \in B_{1}} \max _{i=1,2}\left(u_{i}^{k}(x)+2 \log \operatorname{dist}\left(x, \Sigma_{k}\right)\right) \tag{3-1}
\end{equation*}
$$

If the maximum is bounded from above by a constant independent of k, the process stops and Σ_{k} is exactly equal to $\left\{0, x_{1}^{k}, \ldots, x_{m-1}^{k}\right\}$. However if the maximum tends to infinity, let q_{k} be where (3-1) is achieved and we set

$$
d_{k}=\frac{1}{2} \operatorname{dist}\left(q_{k}, \Sigma_{k}\right)
$$

and

$$
S_{i}^{k}(x)=u_{i}^{k}(x)+2 \log \left(d_{k}-\left|x-q_{k}\right|\right) \quad \text { in } B\left(q_{k}, d_{k}\right), i=1,2 .
$$

Suppose i_{0} is the component that attains

$$
\begin{equation*}
\max _{i} \max _{x \in \bar{B}\left(q_{k}, d_{k}\right)} S_{i}^{k} \tag{3-2}
\end{equation*}
$$

at p_{k}. Then we set

$$
\tilde{l}_{k}=\frac{1}{2}\left(d_{k}-\left|p_{k}-q_{k}\right|\right)
$$

and scale u_{i}^{k} by

$$
\begin{equation*}
v_{i}^{k}(y)=u_{i}^{k}\left(p_{k}+e^{-\frac{1}{2} u_{i_{0}}^{k}\left(p_{k}\right)} y\right)-u_{i_{0}}^{k}\left(p_{k}\right) \quad \text { for }|y| \leq R_{k} \doteq e^{\frac{1}{2} u_{i_{0}}^{k}\left(p_{k}\right)} \tilde{l}_{k} \tag{3-3}
\end{equation*}
$$

It can be shown that $R_{k} \rightarrow \infty$ and v_{i}^{k} is bounded from above over any fixed compact subset of \mathbb{R}^{2}. Thus by passing to a subsequence, v_{i}^{k} satisfies one of the following two alternatives:
(a) $\left(v_{1}^{k}, v_{2}^{k}\right)$ converges in $C_{\text {loc }}^{2}\left(\mathbb{R}^{2}\right)$ to $\left(v_{1}, v_{2}\right)$ which satisfies

$$
\begin{equation*}
\Delta v_{i}+\sum_{j=1}^{2} k_{i j} e^{v_{j}}=0 \quad \text { in } \mathbb{R}^{2}, i=1,2 \tag{3-4}
\end{equation*}
$$

(b) Either v_{1}^{k} converges to

$$
\begin{equation*}
\Delta v_{1}+2 e^{v_{1}}=0 \quad \text { in } \mathbb{R}^{2} \tag{3-5}
\end{equation*}
$$

and $v_{2}^{k} \rightarrow-\infty$ over any fixed compact subset of \mathbb{R}^{2} or v_{2}^{k} converges to $\Delta v_{2}+2 e^{v_{2}}=0$ in \mathbb{R}^{2} and $v_{1}^{k} \rightarrow-\infty$ over any fixed compact subset of \mathbb{R}^{2}.

Therefore in either case, we could choose $l_{k}^{*} \rightarrow \infty$ such that

$$
\begin{equation*}
v_{i}^{k}(y)+2 \log |y| \leq C \quad \text { for } i=1,2 \text { and }|y| \leqslant l_{k}^{*} \tag{3-6}
\end{equation*}
$$

and

$$
\int_{B\left(0, l_{k}^{*}\right)} h_{i}^{k} e^{v_{i}^{k}} d y=\int_{\mathbb{R}^{2}} e^{v_{i}(y)}+o(1)
$$

By scaling back to u_{i}^{k}, we add p_{k} in Σ_{k} with

$$
l_{k}=e^{-\frac{1}{2} u_{i_{0}}^{k}\left(p_{k}\right)} l_{k}^{*}
$$

We can continue in this way until the Harnack-type inequality (1-10) holds.
We summarize what the selection process has done in the following proposition (a detailed proof for a more general case can be found in [Lin et al. 2015, Proposition 2.1]):
Proposition 3A. Let u^{k} be described as above. Then there exist a finite set $\Sigma_{k}:=\left\{0, x_{1}^{k}, \ldots, x_{m}^{k}\right\}$ (if 0 is not a singular point, then 0 can be deleted from Σ_{k}) and positive numbers $l_{1}^{k}, \ldots, l_{m}^{k} \rightarrow 0$ as $k \rightarrow \infty$ such that the following hold:
(1) There exists $C>0$ independent of k such that (1-10) holds and all the components have fast decay on $\partial B\left(x_{j}^{k}, l_{j}^{k}\right), j=1, \ldots, m$. (The definition of fast decay can be found in Definition 3.1 below).
(2) In $B\left(x_{j}^{k}, l_{j}^{k}\right)(j=1, \ldots, m)$, let $R_{j, k}=e^{\frac{1}{2} u_{i_{0}}^{k}\left(x_{j}^{k}\right)} l_{j}^{k}, u_{i_{0}}^{k}\left(x_{j}^{k}\right)=\max _{i} u_{i}^{k}\left(x_{j}^{k}\right)$ and

$$
\begin{equation*}
v_{i}^{k}(y)=u_{i}^{k}\left(x_{j}^{k}+e^{-\frac{1}{2} u_{i_{0}}^{k}\left(x_{j}^{k}\right)} y\right)-u_{i_{0}}^{k}\left(x_{j}^{k}\right) \tag{3-7}
\end{equation*}
$$

for $|y| \leq R_{j, k} ;$ then $v^{k}=\left(v_{1}^{k}, v_{2}^{k}\right)$ satisfies either (a) or (b).
(3) $B\left(x_{j}^{k}, l_{j}^{k}\right) \cap B\left(x_{i}^{k}, l_{i}^{k}\right)=\varnothing, i \neq j$.

The inequality (1-10) is a Harnack-type inequality, because it implies the following result.
Proposition 3B. Suppose u^{k} satisfies (1-5)-(1-7) and

$$
u_{i}^{k}(x)+2 \log \left|x-x_{0}\right| \leq C \quad \text { for } x \in B\left(x_{0}, 2 r_{k}\right)
$$

Then

$$
\begin{equation*}
\left|u_{i}^{k}\left(x_{1}\right)-u_{i}^{k}\left(x_{2}\right)\right| \leq C_{0} \quad \text { for } \frac{1}{2} \leq \frac{\left|x_{1}-x_{0}\right|}{\left|x_{2}-x_{0}\right|} \leq 2 \text { and } x_{1}, x_{2} \in B\left(x_{0}, r_{k}\right) \tag{3-8}
\end{equation*}
$$

The proof of Proposition 3B is standard, see [Lin et al. 2015, Lemma 2.4], so we omit it here. Let $x_{l}^{k} \in \Sigma_{k}$ and $\tau_{l}^{k}=\frac{1}{2} \operatorname{dist}\left(x_{l}^{k}, \Sigma_{k} \backslash\left\{x_{l}^{k}\right\}\right)$; then (3-8) implies

$$
\begin{equation*}
u_{i}^{k}(x)=\bar{u}_{x_{l}^{k}, i}^{k}(r)+O(1), \quad x \in B\left(x_{l}^{k}, \tau_{l}^{k}\right) \tag{3-9}
\end{equation*}
$$

where $r=\left|x_{l}^{k}-x\right|$ and $\bar{u}_{x_{l}^{k}, i}^{k}$ is the average of u_{i}^{k} on $\partial B\left(x_{l}^{k}, r\right)$,

$$
\begin{equation*}
\bar{u}_{x_{l}^{k}, i}^{k}(r)=\frac{1}{2 \pi r} \int_{\partial B\left(x_{l}^{k}, r\right)} u_{i}^{k} d S \tag{3-10}
\end{equation*}
$$

and $O(1)$ is independent of r and k.
Next we introduce the notions of slow decay and fast decay in our bubbling analysis.
Definition 3.1. We say u_{i}^{k} has fast decay on $\partial B\left(x_{0}, r_{k}\right)$ if along a subsequence

$$
u_{i}^{k}(x)+2 \log \left|x-x_{0}\right| \leq-N_{k} \quad \text { for all } x \in \partial B\left(x_{0}, r_{k}\right)
$$

for some $N_{k} \rightarrow \infty$ and we say u_{i}^{k} has slow decay if there is a constant C independent of k such that

$$
u_{i}^{k}(x)+2 \log \left|x-x_{0}\right| \geq-C \quad \text { for all } x \in \partial B\left(x_{0}, r_{k}\right)
$$

Furthermore, we say u_{i}^{k} is fast-decaying in $B\left(x_{0}, s_{k}\right) \backslash B\left(x_{0}, r_{k}\right)$ if u_{i}^{k} has fast decay on $\partial B\left(x_{0}, l_{k}\right)$ for any $l_{k} \in\left[r_{k}, s_{k}\right]$.

The concept of fast decay is important for evaluating the Pohozaev identities. The following proposition is a direct consequence of [Lin et al. 2015, Proposition 3.1] and it says if both components are fast-decaying on the boundary, the Pohozaev identity holds for the local masses.

In the following proposition, we let $B=B\left(x^{k}, r_{k}\right)$. If $x^{k} \neq 0$, we assume $0 \notin B\left(x^{k}, 2 r_{k}\right)$.
Proposition 3C. Suppose both u_{1}^{k}, u_{2}^{k} have fast decay on ∂B, where B is given above. Then $\left(\sigma_{1}, \sigma_{2}\right)$ satisfies the P.I. (1-9), where

$$
\sigma_{i}=\lim _{k \rightarrow 0} \frac{1}{2 \pi} \int_{B} h_{i}^{k} e^{u_{i}^{k}}, \quad i=1,2
$$

We refer the readers to [Lin et al. 2015, Proposition 3.1] for the proof.

4. Two lemmas

In this section, we prove two crucial lemmas which play the key role in Sections 5 and 6. For Lemma 4.1, we assume:
(i) The Harnack inequality

$$
u_{i}^{k}(x)+2 \log |x| \leq C \quad \text { for } \frac{1}{2} l_{k} \leq|x| \leq 2 s_{k}, i=1,2,
$$

holds for both components.
(ii) Both components u_{i}^{k} have fast decay on $\partial B\left(0, l_{k}\right)$ and $\sigma_{i}^{k}\left(B\left(0, l_{k}\right)\right)=\sigma_{i}+o(1)$ for $i=1$, 2, where

$$
\sigma_{i}=\lim _{r \rightarrow 0} \lim _{k \rightarrow \infty} \frac{1}{2 \pi} \int_{B\left(0, r s_{k}\right)} h_{i}^{k} e^{u_{i}^{k}}, \quad i=1,2
$$

(iii) One of $u_{i}^{k}, i=1,2$, has slow decay on $\partial B\left(0, s_{k}\right)$.

Lemma 4.1. (a) Assume (i) and (ii). If u_{i}^{k} has slow decay on $\partial B\left(0, s_{k}\right)$, then

$$
2 \mu_{i}-\sum_{j=1}^{2} k_{i j} \sigma_{j}>0
$$

(b) Assume (i), (ii) and (iii). Let u_{i}^{k} be a slow-decaying component on $\partial B\left(0, s_{k}\right)$. Then the other component has fast decay on $\partial B\left(0, s_{k}\right)$.
Proof. (a) Suppose that u_{i}^{k} has slow decay on $\partial B\left(0, s_{k}\right)$. Then the scaling

$$
v_{j}^{k}(y)=u_{j}^{k}\left(s_{k} y\right)+2 \log s_{k}, \quad j=1,2 \text { for } y \in B_{2}
$$

gives

$$
\Delta v_{j}^{k}(y)+\sum_{l=1}^{2} k_{j l} h_{l}^{k}\left(s_{k} y\right) e^{v_{l}^{k}(y)}=4 \pi \alpha_{j} \delta_{0} \quad \text { in } y \in B_{2}
$$

If the other component also has slow decay on $\partial B\left(0, s_{k}\right)$, then $\left(v_{1}^{k}, v_{2}^{k}\right)$ converges to $\left(v_{1}, v_{2}\right)$ which satisfies

$$
\begin{equation*}
\Delta v_{j}(y)+\sum_{l=1}^{2} k_{j l} e^{v_{l}}=0 \quad \text { in } B_{2} \backslash\{0\}, j=1,2 . \tag{4-1}
\end{equation*}
$$

If the other component has fast decay on $\partial B\left(0, s_{k}\right)$, then $v_{i}^{k}(y)$ converges to $v_{i}(y)$ and $v_{j}(y) \rightarrow-\infty$, $j \neq i$. Furthermore, $v_{i}(y)$ satisfies

$$
\begin{equation*}
\Delta v_{i}(y)+2 e^{v_{i}}=0 \quad \text { in } B_{2} \backslash\{0\} \tag{4-2}
\end{equation*}
$$

For any $r>0$,

$$
\begin{aligned}
\int_{\partial B(0, r)} \frac{\partial v_{i}(y)}{\partial v} d S & =\lim _{k \rightarrow \infty}\left(4 \pi \alpha_{i}-\sum_{j=1}^{2} \int_{B(0, r)} k_{i j} h_{j}^{k} e^{v_{j}^{k}} d y\right) \\
& =4 \pi \alpha_{i}-2 \pi \sum_{j=1}^{2} k_{i j} \sigma_{j}+o(1) \doteqdot 4 \pi \beta_{i}+o(1)
\end{aligned}
$$

which implies the right-hand sides of both (4-1) and (4-2) should be replaced by $4 \pi \beta_{i} \delta_{0}$. If $\beta_{i} \leq-1$, we can use the finite energy assumption (see the bottom assumption in (1-7)) to conclude that either (4-1) or (4-2) has no solutions. Hence $\alpha_{i}-\frac{1}{2} \sum_{j=1}^{2} k_{i j} \sigma_{j}>-1$ and then (a) is proved.
(b) Since both components have fast decay on $\partial B\left(0, l_{k}\right)$, the pair (σ_{1}, σ_{2}) satisfies the P.I. (1-9). By a simple manipulation, the P.I. (1-9) can be written as

$$
\begin{equation*}
k_{21} \sigma_{1}\left(4 \mu_{1}-k_{12} \sigma_{2}-k_{11} \sigma_{1}\right)+k_{12} \sigma_{2}\left(4 \mu_{2}-k_{21} \sigma_{1}-k_{22} \sigma_{2}\right)=0 \tag{4-3}
\end{equation*}
$$

Note by (a),

$$
4 \mu_{i}-\sum_{l=1}^{2} k_{i l} \sigma_{l}>2 \mu_{i}-\sum_{l=1}^{2} k_{i l} \sigma_{l} \geqslant 0
$$

Hence for $j \neq i$

$$
2 \mu_{j}-\sum_{l=1}^{2} k_{j l} \sigma_{l}<4 \mu_{j}-\sum_{l=1}^{2} k_{j l} \sigma_{l}<0
$$

where the last inequality is due to (4-3). By (a) again, u_{j}^{k} does not have slow decay on $\partial B\left(0, s_{k}\right)$.
Our second lemma says that a fast-decaying component does not change its energy more than $o(1)$, regardless of the behavior of the other component.

Lemma 4.2. Suppose the Harnack-type inequality holds for both components over $r \in\left[\frac{1}{2} l_{k}, 2 s_{k}\right]$. If u_{i}^{k} is fast-decaying on $r \in\left[l_{k}, s_{k}\right]$, then

$$
\sigma_{i}^{k}\left(B\left(0, s_{k}\right)\right)=\sigma_{i}^{k}\left(B\left(0, l_{k}\right)\right)+o(1)
$$

Proof. Obviously the conclusion holds if $s_{k} / l_{k} \leqslant C$. So we assume $s_{k} / l_{k} \rightarrow+\infty$. The Harnack-type inequality implies $u_{i}^{k}(x)=\bar{u}_{i}^{k}(r)+o(1)$ for $\frac{1}{2} l_{k} \leqslant|x| \leqslant 2 s_{k}$. Thus we obtain from (1-5) that

$$
\frac{d}{d r}\left(\bar{u}_{i}^{k}(r)+2 \log r\right)=\frac{2 \mu_{i}-\sum_{j=1}^{2} k_{i j} \sigma_{j}^{k}(r)}{r}, \quad l_{k} \leqslant r \leqslant s_{k}, i=1,2,
$$

where $\sigma_{j}^{k}(r)=\sigma_{j}^{k}(B(0, r))$ and $\sigma_{j}=\lim _{k \rightarrow+\infty} \sigma_{j}^{k}\left(l_{k}\right), j=1,2$.
Without loss of generality, we assume that $u_{j}^{k}, j \neq i$, is fast-decaying on $\partial B\left(0, l_{k}\right)$. Otherwise, we may choose \tilde{l}_{k} such that $l_{k} \ll \tilde{l}_{k}$, u_{i}^{k} remains fast-decaying for $r \in\left[l_{k}, \tilde{l}_{k}\right]$ and $\sigma_{i}^{k}(B(0, r))$ does not change more than $o(1)$, while u_{j}^{k} is fast-decaying on $\partial B\left(0, \tilde{l}_{k}\right)$. If $s_{k} / \tilde{l}_{k} \leqslant C$, we get the conclusion as explained above. If $s_{k} / \tilde{l}_{k} \rightarrow+\infty$, by a little abuse of notation, we may replace \tilde{l}_{k} by l_{k}. Then both u_{1}^{k}, u_{2}^{k} have fast decay on $\partial B\left(0, l_{k}\right)$, and the P.I. holds at l_{k}, which implies that at least one component (say l) satisfies

$$
4 \mu_{l}-\sum_{j=1}^{2} k_{l j} \sigma_{j}^{k}\left(l_{k}\right)<0
$$

Thus,

$$
\begin{equation*}
\frac{d}{d r}\left(\bar{u}_{l}^{(k)}(r)+2 \log r\right) \leqslant-\frac{2 \mu_{l}+o(1)}{r} \quad \text { at } r=l_{k} \tag{4-4}
\end{equation*}
$$

Suppose $r_{k} \in\left[l_{k}, s_{k}\right]$ is the largest r such that

$$
\begin{equation*}
\frac{d}{d r}\left(\bar{u}_{l}^{(k)}(r)+2 \log r\right) \leqslant-\frac{\mu_{l}}{r} \quad \text { for } r \in\left[l_{k}, r_{k}\right] \tag{4-5}
\end{equation*}
$$

Thus, either the equality holds at $r=r_{k}$ or $r_{k}=s_{k}$. For simplicity, we let $\varepsilon=\mu_{l}$. By integrating (4-4) from l_{k} up to $r \leqslant r_{k}$, we have

$$
\bar{u}_{l}^{(k)}(r)+2 \log r \leqslant \bar{u}_{l}^{(k)}\left(l_{k}\right)+2 \log \left(l_{k}\right)+\varepsilon \log \left(\frac{l_{k}}{r}\right)
$$

that is for $|x|=r$,

$$
e^{u_{l}^{k}(x)} \leqslant O(1) e^{\bar{u}_{l}^{k}(r)} \leqslant O(1) e^{-N_{k}} l_{k}^{\varepsilon} r^{-(2+\varepsilon)},
$$

where we used $\bar{u}_{l}^{(k)}\left(l_{k}\right)+2 \log l_{k} \leqslant-N_{k}$ by the assumption of fast decay. Thus

$$
\int_{l_{k} \leqslant|x| \leqslant r_{k}} e^{u_{l}^{k}(x)} d x \leqslant O(1) e^{-N_{k}} l_{k}^{\varepsilon} \int_{l_{k}}^{r_{k}} r^{-(1+\varepsilon)} d r=O(1) \frac{e^{-N_{k}}}{\varepsilon} \rightarrow 0
$$

as $k \rightarrow+\infty$. Hence

$$
\begin{equation*}
\sigma_{l}^{k}\left(r_{k}\right)=\sigma_{l}^{k}\left(l_{k}\right)+o(1) \tag{4-6}
\end{equation*}
$$

If both components are fast-decaying on $r \in\left[l_{k}, r_{k}\right]$, then $\lim _{k \rightarrow+\infty}\left(\sigma_{1}^{k}\left(r_{k}\right), \sigma_{2}^{k}\left(r_{k}\right)\right)=\left(\hat{\sigma}_{1}, \hat{\sigma}_{2}\right)$ also satisfies the P.I. (1-9). If $\hat{\sigma}_{j}>\sigma_{j}$, then $j \neq l$ by (4-6). We choose $r_{k}^{*} \leq r_{k}$ such that $\sigma_{j}\left(r_{k}^{*}\right)=\sigma_{j}^{k}\left(l_{k}\right)+\varepsilon_{0}$ for small ε_{0}, and let $\sigma_{j}^{*}=\lim _{k \rightarrow 0} \sigma_{j}\left(r_{k}^{*}\right)$. Then σ_{j}^{*} and σ_{l} satisfies the P.I. (1-9) and it yields a contradiction provided ε_{0} is small. Thus, we have $\sigma_{m}^{k}\left(r_{k}\right)=\sigma_{m}^{k}\left(l_{k}\right)+o(1), m=1,2$. Then (4-4) holds at $r=r_{k}$, which implies $r_{k}=s_{k}$, and Lemma 4.2 is proved in this case.

If one of the components does not have fast decay on $\left[l_{k}, r_{k}\right]$, then we have $l=i$ and $u_{j}^{k}, j \neq i$, has slow decay on $\partial B\left(0, r_{k}^{*}\right)$ for some $r_{k}^{*} \leq r_{k}$. If $s_{k} / r_{k} \leq C$, then (4-6) implies the lemma. If $s_{k} / r_{k} \rightarrow+\infty$, then by the scaling of u_{j}^{k} at $r=r_{k}^{*}$, the standard argument implies that there is a sequence of $r_{k}^{*} \ll \tilde{r}_{k}=R_{k} r_{k}^{*} \ll s_{k}$ such that both components have fast decay on \tilde{r}_{k} and

$$
\sigma_{i}^{k}\left(\tilde{r}_{k}\right)=\sigma_{i}\left(r_{k}^{*}\right)+o(1)=\sigma_{i}\left(l_{k}\right)+o(1) \quad \text { and } \quad \sigma_{j}^{k}\left(\tilde{r}_{k}\right) \geq \sigma_{j}^{k}\left(l_{k}\right)+\varepsilon_{0}
$$

for $j \neq i$ and $\varepsilon_{0}>0$. Therefore the assumption of Lemma 4.2 holds at $r \in\left[\tilde{r}_{k}, s_{k}\right]$. Then we repeat the argument starting from (4-4) and the lemma can be proved in a finite steps.

Remark 4.3. Both lemmas will be used in Section 6 (and Section 5) for the case with singularity at 0 (and without singularity at 0).

5. Local mass on the bubbling disk centered at $\boldsymbol{x}_{\boldsymbol{l}}^{\boldsymbol{k}} \neq 0$

5A. In this subsection we study the local behavior of u^{k} near x_{l}^{k}, where $x_{l}^{k} \neq 0$. For simplicity, we use x^{k} instead of x_{l}^{k} and $\bar{u}_{i}^{k}(r)$ rather than $\bar{u}_{x_{l}^{k}, i}^{k}(r)$. Let

$$
\tau^{k}=\frac{1}{2} \operatorname{dist}\left(x^{k}, \Sigma_{k} \backslash\left\{x^{k}\right\}\right), \quad \sigma_{i}^{k}(r)=\frac{1}{2 \pi} \int_{B\left(x^{k}, r\right)} h_{i}^{k} e^{u_{i}^{k}}, \quad i=1,2
$$

By Proposition 3A, $l_{k} \leq \tau^{k}$. Clearly $u^{k}=\left(u_{1}^{k}, u_{2}^{k}\right)$ satisfies

$$
\Delta u_{i}^{k}+\sum_{j=1}^{2} k_{i j} h_{j}^{k} e^{u_{j}^{k}}=0 \quad \text { in } B\left(x^{k}, \tau^{k}\right)
$$

For a sequence s_{k}, we define

$$
\hat{\sigma}_{i}\left(s_{k}\right)=\left\{\begin{array}{l}
\lim _{k \rightarrow+\infty} \sigma_{i}^{k}\left(s_{k}\right) \text { if } u_{i}^{k} \text { has fast decay on } \partial B\left(x^{k}, s_{k}\right) \tag{5-1}\\
\lim _{r \rightarrow 0} \lim _{k \rightarrow+\infty} \sigma_{i}^{k}\left(r s_{k}\right) \text { if } u_{i}^{k} \text { has slow decay on } \partial B\left(x^{k}, s_{k}\right)
\end{array}\right.
$$

Recall that both components of u^{k} have fast decay on $\partial B\left(x^{k}, l_{k}\right)$. This is the starting point of the following proposition, which is a special case of Proposition 5.2 below.

In Proposition 5.1, $\left(\mu_{1}, \mu_{2}\right)$ will be $(1,1)$ in both lemmas of Section 4.
Proposition 5.1. Let $u^{k}=\left(u_{1}^{k}, u_{2}^{k}\right)$ be the solution of (1-5) satisfying (1-7) and $\hat{\sigma}_{i}\left(s_{k}\right)$ be defined in (5-1). The following holds:
(1) At least one component u^{k} has fast decay on $\partial B\left(x^{k}, \tau^{k}\right)$.
(2) $\left(\hat{\sigma}_{1}\left(\tau^{k}\right), \hat{\sigma}_{2}\left(\tau^{k}\right)\right)$ satisfies the P.I. (1-9) with $\mu_{1}=\mu_{2}=1$.
(3) $\left(\hat{\sigma}_{1}\left(\tau^{k}\right), \hat{\sigma}_{2}\left(\tau^{k}\right)\right) \in \Gamma(1,1)$.

Proof. If $\tau_{k} / l_{k} \leqslant C$, (1)-(3) hold obviously for τ^{k}. So we assume $\tau^{k} / l_{k} \rightarrow+\infty$. First we remark that if u^{k} is fully bubbling in $B\left(x^{k}, l_{k}\right)$ (i.e., (1) in Proposition 3A holds), $\left(\hat{\sigma}_{1}\left(l_{k}\right), \hat{\sigma}_{2}\left(l_{k}\right)\right)$ is special (see Definition 1.4) and satisfies

$$
2 \mu_{i}-\sum_{j=1}^{2} k_{i j} \hat{\sigma}_{j}\left(l_{k}\right)<0, \quad i=1,2
$$

Then by Lemma 4.1, both u_{i}^{k} have fast decay on $\partial B\left(0, \tau^{k}\right)$ and Proposition 5.1 follows immediately.
Now we assume v_{i}^{k} defined in (3-7) and satisfies case (2) in Proposition 3A. We already know that both components have fast decay at $r=l_{k}$. If both components remain fast-decaying as r increases from l_{k} to τ^{k}, Lemma 4.2 implies

$$
\sigma_{1}^{k}\left(\tau^{k}\right)=\sigma_{1}^{k}\left(l_{k}\right)+o(1), \quad \sigma_{2}^{k}\left(\tau^{k}\right)=\sigma_{2}^{k}\left(l_{k}\right)+o(1)
$$

and we are done. So we only consider the case that at least one component changes to a slow-decaying component. For simplicity, we assume that u_{1}^{k} changes to a slow-decaying component for some $r_{k} \gg l_{k}$. By Lemma 4.2,

$$
\sigma_{1}^{k}\left(B\left(x^{k}, r_{k}\right)\right) \geqslant \sigma_{1}^{k}\left(B\left(x^{k}, l_{k}\right)\right)+c_{0} \quad \text { for some } c_{0}>0
$$

We might choose $s_{k} \leqslant r_{k}$ such that

$$
\sigma_{1}^{k}\left(B\left(x^{k}, s_{k}\right)\right)=\sigma_{1}^{k}\left(B\left(x^{k}, l_{k}\right)\right)+\varepsilon_{0}
$$

and

$$
\sigma_{1}^{k}\left(B\left(x^{k}, r\right)\right)<\sigma_{1}^{k}\left(B\left(x^{k}, l_{k}\right)\right)+\varepsilon_{0} \quad \text { for all } r<s_{k}
$$

where $\varepsilon_{0}<\frac{1}{2} c_{0}$ is small.

Then Lemmas 4.1 and 4.2 together imply that u_{1}^{k} has slow decay on $\partial B\left(x^{k}, s_{k}\right)$ and u_{2}^{k} has fast decay on $\partial B\left(x^{k}, s_{k}\right)$ with

$$
\hat{\sigma}_{1}\left(s_{k}\right)=\sigma_{1}^{k}\left(l_{k}\right)+o(1) \quad \text { and } \quad \hat{\sigma}_{2}\left(s_{k}\right)=\sigma_{2}^{k}\left(l_{k}\right)+o(1)
$$

Let $v_{i}^{k}(y)=u_{i}^{k}\left(x^{k}+s_{k} y\right)+2 \log s_{k}$. If $\tau^{k} / s_{k} \leq C$, there is nothing to prove. So we assume $\tau^{k} / s_{k} \rightarrow \infty$. Then $v_{1}^{k}(y)$ converges to $v_{1}(y)$ and $v_{2}^{k}(y) \rightarrow-\infty$ in any compact set of \mathbb{R}^{2} as $k \rightarrow+\infty$ and $v_{1}(y)$ satisfies

$$
\begin{equation*}
\Delta v_{1}+2 e^{v_{1}}=-2 \pi \sum_{j=1}^{2}\left(k_{1 j} \hat{\sigma}_{j}\left(l_{k}\right)\right) \delta(0) \quad \text { in } \mathbb{R}^{2} \tag{5-2}
\end{equation*}
$$

Hence there is a sequence $N_{k}^{*} \rightarrow+\infty$ as $k \rightarrow+\infty$ that satisfies
(1) $N_{k}^{*} s_{k} \leq \tau^{k}$,
(2) $\int_{B\left(0, N_{k}^{*}\right)} e^{v_{1}} d y=\int_{\mathbb{R}^{2}} e^{v_{1}} d y+o(1)$,
(3) $v_{i}^{k}(y)+2 \log |y| \leqslant-N_{k}, i=1,2$, for $|y|=N_{k}^{*}$.

Scaling back to u_{i}^{k}, we obtain that $u_{i}^{k}, i=1,2$, have fast decay on $\partial B\left(x^{k}, N_{k}^{*} s_{k}\right)$.
We could use the classification theorem of [Prajapat and Tarantello 2001] to calculate the total mass of v_{1}, but instead we use the P.I. (1-9) to compute it. We know that both $\left(\hat{\sigma}_{1}\left(l_{k}\right), \hat{\sigma}_{2}\left(l_{k}\right)\right)$ and $\left(\hat{\sigma}_{1}\left(N_{k}^{*} s_{k}\right), \hat{\sigma}_{2}\left(N_{k}^{*} s_{k}\right)\right)$ satisfy the P.I. and $\hat{\sigma}_{2}\left(N_{k}^{*} s_{k}\right)=\hat{\sigma}_{2}\left(l_{k}\right)$ by Lemma 4.2. With a fixed $\sigma_{2}=\hat{\sigma}_{2}\left(l_{k}\right)$, P.I. (1-9) is a quadratic polynomial in σ_{1}; then $\hat{\sigma}_{1}\left(l_{k}\right)$ and $\hat{\sigma}_{1}\left(N_{k}^{*} s_{k}\right)$ are two roots of the polynomial. From it, we can easily calculate $\hat{\sigma}_{1}\left(N_{k}^{*} s_{k}\right)$.

By a direct computation, we have

$$
\left(\hat{\sigma}_{1}\left(N_{k}^{*} s_{k}\right), \hat{\sigma}_{2}\left(N_{k}^{*} s_{k}\right)\right) \in \Gamma(1,1) \quad \text { if }\left(\hat{\sigma}_{1}\left(l_{k}\right), \hat{\sigma}_{2}\left(l_{k}\right)\right) \in \Gamma(1,1)
$$

Thus (1)-(3) hold at $r=N_{k}^{*} s_{k}$. By denoting $N_{k}^{*} s_{k}$ as l_{k}, we can repeat the same argument until $\tau^{k} / l_{k} \leqslant C$. Hence Proposition 5.1 is proved.

5B. Local mass in a group that does not contain 0 . In this subsection we collect some $x_{i}^{k} \in \Sigma_{k}$ into a group S, a subset of Σ_{k} satisfying the following S-conditions:
(1) $0 \notin S$ and $|S| \geq 2$.
(2) If $|S| \geq 3$ and $x_{i}^{k}, x_{j}^{k}, x_{l}^{k}$ are three distinct elements in S, then

$$
\operatorname{dist}\left(x_{i}^{k}, x_{j}^{k}\right) \leq C \operatorname{dist}\left(x_{j}^{k}, x_{l}^{k}\right)
$$

for some constant C independent of k.
(3) For any $x_{m}^{k} \in \Sigma_{k} \backslash S$, we have $\operatorname{dist}\left(x_{m}^{k}, S\right) / \operatorname{dist}\left(x_{i}^{k}, x_{j}^{k}\right) \rightarrow \infty$ as $k \rightarrow \infty$, where $x_{i}^{k}, x_{j}^{k} \in S$.

We write S as $S=\left\{x_{1}^{k}, \ldots, x_{m}^{k}\right\}$ and let

$$
\begin{equation*}
l^{k}(S)=2 \max _{1 \leq j \leq m} \operatorname{dist}\left(x_{1}^{k}, x_{j}^{k}\right) \tag{5-3}
\end{equation*}
$$ Recall $\tau_{l}^{k}=\frac{1}{2} \operatorname{dist}\left(x_{l}^{k}, \Sigma_{k} \backslash\left\{x_{l}^{k}\right\}\right)$; by (2) and (3) above we have $l^{k}(S) \sim \tau_{i}^{k}$ for $1 \leq i \leq m$. Let

$$
\tau_{S}^{k}=\frac{1}{2} \operatorname{dist}\left(x_{1}^{k}, \Sigma_{k} \backslash S\right)
$$

Then by (3) above we have $\tau_{S}^{k} / \tau_{i}^{k} \rightarrow \infty$ for any $x_{i}^{k} \in S$.
By Proposition 5.1, we know that at least one of u_{i}^{k} has fast decay on $\partial B\left(x_{1}^{k}, \tau_{1}^{k}\right)$. Suppose u_{1}^{k} has fast decay on $\partial B\left(x_{1}^{k}, \tau_{1}^{k}\right)$. Then

$$
\begin{equation*}
u_{1}^{k} \text { has fast decay on } \partial B\left(x_{1}^{k}, l^{k}(S)\right) \tag{5-4}
\end{equation*}
$$

and we get

$$
\begin{aligned}
\sigma_{1}^{k}\left(B\left(x_{1}^{k}, l^{k}(S)\right)\right) & =\frac{1}{2 \pi} \int_{B\left(x_{1}^{k}, l^{k}(S)\right)} h_{1}^{k} e^{u_{1}^{k}} d x \\
& =\frac{1}{2 \pi} \int_{\bigcup_{j=1}^{m} B\left(x_{j}^{k}, \tau_{j}^{k}\right)} h_{1}^{k} e^{u_{1}^{k}}+\frac{1}{2 \pi} \int_{B\left(x_{1}^{k}, l^{k}(S)\right) \backslash\left(\cup_{j=1}^{m} B\left(x_{j}^{k}, \tau_{j}^{k}\right)\right)} h_{1}^{k} e^{u_{1}^{k}}
\end{aligned}
$$

Since u_{1}^{k} has fast decay outside of $B\left(x_{j}^{k}, \tau_{j}^{k}\right)$, we have

$$
e^{u_{1}^{k}(x)} \leq o(1) \max _{j}\left\{\left|x-x_{j}^{k}\right|^{-2}\right\} \quad \text { for } x \notin \bigcup_{j=1}^{k} B\left(x_{j}^{k}, \tau_{j}^{k}\right)
$$

and the second integral is $o(1)$. Hence by Proposition 5.1,

$$
\begin{equation*}
\sigma_{1}^{k}\left(B\left(x_{1}^{k}, l^{k}(S)\right)\right)=2 m_{1}+o(1) \quad \text { for some } m_{1} \in \mathbb{N} \cup\{0\} \tag{5-5}
\end{equation*}
$$

Similarly if u_{2}^{k} has fast decay on $\partial B\left(x_{1}^{k}, \tau_{1}^{k}\right)$, we have

$$
\begin{equation*}
\sigma_{2}^{k}\left(B\left(x_{1}^{k}, l^{k}(S)\right)\right)=2 m_{2}+o(1) \quad \text { for some } m_{2} \in \mathbb{N} \cup\{0\} \tag{5-6}
\end{equation*}
$$

If u_{2}^{k} has slow decay on $\partial B\left(x_{1}^{k}, \tau_{1}^{k}\right)$, then it is easy to see that u_{2}^{k} has slow decay on $\partial B\left(x_{j}^{k}, \tau_{j}^{k}\right)$. By Proposition 5.1 we denote $n_{i, j} \in \mathbb{N}$ by

$$
2 n_{i, j}=\lim _{r \rightarrow 0} \lim _{k \rightarrow \infty} \sigma_{i}^{k}\left(B\left(x_{j}^{k}, r \tau_{j}^{k}\right)\right), \quad 1 \leq j \leq m, i=1,2
$$

Define $\hat{n}_{i, j}$ by

$$
\hat{n}_{i, j}=-\sum_{l=1}^{2} k_{i l} n_{l, j}
$$

Then the slow decay of u_{2}^{k} on $\partial B\left(x_{j}^{k}, \tau_{j}^{k}\right)$ implies $1+\hat{n}_{2, j}>0$. Since $\hat{n}_{2, j} \in \mathbb{Z}$ we have $\hat{n}_{2, j} \geq 0$.
Furthermore, if we scale u^{k} by

$$
v_{i}^{k}(y)=u_{i}^{k}\left(x_{1}^{k}+l^{k}(S) y\right)+2 \log l^{k}(S), \quad i=1,2,
$$

the sequence v_{2}^{k} converges to $v_{2}(y)$ and v_{1}^{k} tends to $-\infty$ over any compact subset of $\mathbb{R}^{2} \backslash\{0\}$. Then v_{2} satisfies

$$
\begin{equation*}
\Delta v_{2}(y)+2 e^{v_{2}(y)}=4 \pi \sum_{j=1}^{m} \hat{n}_{2, j} \delta_{p_{j}} \quad \text { in } \mathbb{R}^{2} \tag{5-7}
\end{equation*}
$$

where $p_{j}=\lim _{k \rightarrow \infty}\left(x_{j}^{k}-x_{1}^{k}\right) / l^{k}(S)$. By Theorem 2.1

$$
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} e^{v_{2}}=2 N \quad \text { for some } N \in \mathbb{N}
$$

Thus using the argument in Proposition 5.1, we conclude that there is a sequence of $N_{k}^{*} \rightarrow \infty$ such that both $u_{i}^{k}(i=1,2)$ have fast decay on $\partial B\left(x_{1}^{k}, N_{k}^{*} l^{k}(S)\right)$ and $\sigma_{i}^{k}\left(B\left(x_{1}^{k}, N_{k}^{*} l^{k}(S)\right)\right)=2 m_{i}+o(1)$. Denote $N_{k}^{*} l^{k}(S)$ by l_{k} for simplicity; we see that (5-5) and (5-6) hold at l_{k}. Then by using Lemmas 4.1 and 4.2 we continue this process to obtain the following conclusion:

$$
\begin{equation*}
\text { At least one component of } u^{k} \text { has fast decay on } \partial B\left(x_{1}^{k}, \tau_{S}^{k}\right) \tag{5-8}
\end{equation*}
$$

Let $\hat{\sigma}_{i}^{k}\left(B\left(x_{1}^{k}, \tau_{S}^{k}\right)\right)$ be defined as in (5-1). Then

$$
\begin{equation*}
\hat{\sigma}_{i}^{k}\left(B\left(x_{1}^{k}, \tau_{S}^{k}\right)\right)=2 m_{i}(S), \quad \text { where } m_{i}(S) \in \mathbb{N} \cup\{0\} \tag{5-9}
\end{equation*}
$$

and the pair $\left(2 m_{1}(S), 2 m_{2}(S)\right)$ satisfies the P.I. (1-9).
Denote the group S by S_{1}. Based on this procedure, we can continue to select a new group S_{2} such that the S-conditions holds except we have to modify condition (2). In (2), we consider S_{1} as a single point as long as we compare the distance of distinct elements in S_{2}.

Set

$$
\tau_{S_{2}}^{k}=\frac{1}{2} \operatorname{dist}\left(x_{1}^{k}, \Sigma_{k} \backslash S_{2}\right) \quad \text { for } x_{1}^{k} \in S_{2}
$$

Then we follow the same argument as above to obtain the same conclusion as (5-8)-(5-9).
If (1-5) does not contain a singularity, the final step is to collect all the x_{i}^{k} into the single biggest group and (5-8)-(5-9) hold. Then we get $\left(\sigma_{1}, \sigma_{2}\right)=\left(2 m_{1}, 2 m_{2}\right)$ (which satisfies the Pohozaev identity), where

$$
\sigma_{i}=\lim _{r \rightarrow 0} \lim _{k \rightarrow \infty} \frac{1}{2 \pi} \int_{B(0, r)} h_{i}^{k} e^{u_{i}^{k}}, \quad i=1,2
$$

By a direct computation, we can prove that the set of all the pairs of even integers solving (1-9) is exactly $\Gamma(1,1)$. This proves Theorem 1.3 if (1-5) has no singularities.

If 0 is a singularity of (1-5) then Σ_{k} can be written as a disjoint union of $\{0\}$ and $S_{j}(j=1, \ldots, m)$. Here each S_{j} is collected by the process described above and is maximal in the following sense:
(i) $0 \notin S,|S| \geq 2$ and for any two distinct points x_{i}^{k}, x_{j}^{k} in S we have

$$
\operatorname{dist}\left(x_{i}^{k}, x_{j}^{k}\right) \ll \tau^{k}(S)
$$

where $\tau^{k}(S)=\operatorname{dist}\left(S, \Sigma_{k} \backslash S\right)$.
(ii) For any $0 \neq x_{i}^{k} \in \Sigma_{k} \backslash S$,

$$
\operatorname{dist}\left(x_{i}^{k}, 0\right) \leq C \operatorname{dist}\left(x_{i}^{k}, S\right)
$$

for some constant C.
For S_{j} we define

$$
\tau_{S_{j}}^{k}=\frac{1}{2} \operatorname{dist}\left(S_{j}, \Sigma_{k} \backslash S_{j}\right)
$$

Then the process described above proves the main result of this section:
Proposition 5.2. Let $S_{j}(j=1, \ldots, m)$ be described as above. Then (5-8)-(5-9) hold, where $B\left(x_{1}^{k}, \tau_{S}^{k}\right)$ is replaced by $B\left(x_{i}^{k}, \tau_{S_{j}}^{k}\right)$ and x_{i}^{k} is any element in S_{j}.

6. Proofs of Theorems 1.2, 1.3, 1.5 and 1.6

In Proposition 5.2, we write $\Sigma_{k}=\{0\} \cup S_{1} \cup \cdots \cup S_{N}$. From the construction, the ratio $\left|x^{k}\right| /\left|\tilde{x}^{k}\right|$ is bounded for any $x^{k}, \tilde{x}^{k} \in S_{j}$. Let

$$
\left\|S_{j}\right\|=\min _{x^{k} \in S_{j}}\left|x^{k}\right|
$$

and arrange S_{j} by

$$
\left\|S_{1}\right\| \leq\left\|S_{2}\right\| \leq \cdots \leq\left\|S_{N}\right\|
$$

Assume l is the largest number such that $\left\|S_{l}\right\| \leq C\left\|S_{1}\right\|$. Then $\left\|S_{l}\right\| \ll\left\|S_{l+1}\right\|$.
We recall the local mass contributed by $x_{j}^{k} \in S_{j}$ is

$$
\left(\hat{\sigma}_{1}\left(B\left(x_{j}^{k}, \tau_{j}^{k}\right)\right), \hat{\sigma}_{2}\left(B\left(x_{j}^{k}, \tau_{j}^{k}\right)\right)\right)=\left(m_{1, j}, m_{2, j}\right), \quad \text { where } m_{1, j}, m_{2, j} \in 2 \mathbb{N} \cup\{0\}
$$

Let

$$
r_{1}^{k}=\frac{1}{2}\left\|S_{1}\right\|
$$

Then we have

$$
u_{i}^{k}(x)+2 \log |x| \leq C \quad \text { for } 0<|x| \leq r_{1}^{k}, i=1,2
$$

Proof of Theorem 1.3. Let

$$
\tilde{u}_{i}^{k}(x)=u_{i}^{k}(x)+2 \alpha_{i} \log |x|, \quad i=1,2 .
$$

Then (1-5) becomes

$$
\Delta \tilde{u}_{i}^{k}(x)+\sum_{j=1}^{2} k_{i j}|x|^{2 \alpha_{j}} h_{j}^{k}(x) e^{\tilde{u}_{j}^{k}(x)}=0, \quad|x| \leq r_{1}^{k}, i=1,2 .
$$

Let

$$
\begin{equation*}
-2 \log \delta_{k}=\max _{i \in I} \max _{x \in \bar{B}\left(0, r_{1}^{k}\right)} \frac{\tilde{u}_{i}^{k}}{1+\alpha_{i}} \tag{6-1}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{v}_{i}^{k}(y)=\tilde{u}_{i}^{k}\left(\delta_{k} y\right)+2\left(1+\alpha_{i}\right) \log \delta_{k}, \quad|y| \leq r_{1}^{k} / \delta_{k}, i=1,2 \tag{6-2}
\end{equation*}
$$

Then \tilde{v}_{i}^{k} satisfies

$$
\begin{equation*}
\Delta \tilde{v}_{i}^{k}(y)+\sum_{j=1}^{2} k_{i j}|y|^{2 \alpha_{j}} h_{j}^{k}\left(\delta_{k} y\right) e^{\tilde{v}_{j}^{k}(y)}=0, \quad|y| \leq r_{1}^{k} / \delta_{k}, i=1,2 \tag{6-3}
\end{equation*}
$$

We have either
(a) $\lim _{k \rightarrow \infty} r_{1}^{k} / \delta_{k}=\infty$, or
(b) $r_{1}^{k} / \delta_{k} \leq C$.

For case (a), our purpose is to prove a result similar to Proposition 5.1:
(1) At most one component of u^{k} has slow decay on $\partial B\left(0, r_{1}^{k}\right)$. As in Section 5 , we define

$$
\hat{\sigma}_{i, 1}= \begin{cases}\lim _{k \rightarrow+\infty} \sigma_{i}^{k}\left(B\left(0, r_{1}^{k}\right)\right) & \text { if } u_{i}^{k} \text { has fast decay on } \partial B\left(0, r_{1}^{k}\right) \\ \lim _{r \rightarrow 0} \lim _{k \rightarrow+\infty} \sigma_{i}^{k}\left(B\left(0, r r_{1}^{k}\right)\right) & \text { if } u_{i}^{k} \text { has slow decay on } \partial B\left(0, r_{1}^{k}\right)\end{cases}
$$

(2) $\left(\hat{\sigma}_{1,1}, \hat{\sigma}_{2,1}\right)$ satisfies the Pohozaev identity (1-9), and
(3) $\hat{\sigma}_{i, 1}=2 \sum_{j=1}^{2} n_{i, j} \mu_{j}+2 n_{i, 3}, n_{i, j} \in \mathbb{Z}, i=1,2, j=1,2,3$.

We carry out the proof in the discussion of the following two cases.
Case 1: If both $\tilde{v}_{i}^{k}(y)$ converge in any compact set of \mathbb{R}^{2}, then $\left(\hat{\sigma}_{1,1}, \hat{\sigma}_{2,1}\right)$ can be obtained by the classification theorem in [Lin et al. 2012]:

$$
\left(\hat{\sigma}_{1,1}, \hat{\sigma}_{2,1}\right)= \begin{cases}\left(2 \mu_{1}+2 \mu_{2}, 2 \mu_{1}+2 \mu_{2}\right) & \text { for } A_{2} \\ \left(4 \mu_{1}+2 \mu_{2}, 4 \mu_{1}+4 \mu_{2}\right) & \text { for } B_{2} \\ \left(8 \mu_{1}+4 \mu_{2}, 12 \mu_{1}+8 \mu_{2}\right) & \text { for } G_{2}\end{cases}
$$

By Lemma 4.1, both u_{i}^{k} have fast decay on $\partial B\left(0, r_{1}^{k}\right)$. So this proves (1)-(3) in this case.
Case 2: Only one \tilde{v}_{i}^{k} converges to $v_{i}(y)$ and the other tends to $-\infty$ uniformly in any compact set. Then it is easy to see that there is $l_{k} \ll r_{1}^{k}$ such that both u_{i}^{k} have fast decay on $\partial B\left(0, l_{k}\right)$ and

$$
\left(\sigma_{1}\left(B\left(0, l_{k}\right)\right), \sigma_{2}\left(B\left(0, l_{k}\right)\right)\right)=\left(2 \mu_{1}, 0\right) \quad \text { or } \quad\left(\sigma_{1}\left(B\left(0, l_{k}\right)\right), \sigma_{2}\left(B\left(0, l_{k}\right)\right)\right)=\left(0,2 \mu_{2}\right)
$$

So this is the same situation as in the starting point for Proposition 5.1. Then the same argument of Proposition 5.1 leads to the conclusion (1)-(3).

The pair $\left(\hat{\sigma}_{1,1}, \hat{\sigma}_{2,1}\right)$ can be calculated by the same method in Proposition 5.1. Then $\left(\hat{\sigma}_{1,1}, \hat{\sigma}_{2,1}\right) \in$ $\Gamma\left(\mu_{1}, \mu_{2}\right)$, which is given in Section 2.

To continue for $r \in\left[r_{1}^{k}, r_{2}^{k}\right]$, where $r_{2}^{k}=\frac{1}{2}\left\|S_{l+1}\right\|$, we separate our discussion into two cases also.
Case 1: One component has slow decay on $\partial B\left(0, r_{1}^{k}\right)$, say u_{1}^{k}. Then we scale

$$
v_{i}^{k}(y)=u_{i}^{k}\left(r_{1}^{k} y\right)+2 \log r_{1}^{k}
$$

By our assumption, $v_{1}^{k}(y)$ converges to $v_{1}(y)$ and $v_{2}^{k}(y) \rightarrow-\infty$ in any compact set. Let $x_{j}^{k} \in S_{j}$ and $y_{j}^{k}=\left(r_{1}^{k}\right)^{-1} x_{j}^{k} \rightarrow p_{j}$ for $j \leq l$. Then $v_{1}(y)$ satisfies

$$
\begin{equation*}
\Delta v_{1}+2 e^{v_{1}}=4 \pi \tilde{\alpha}_{1} \delta_{0}+4 \pi \sum_{j=1}^{l} \tilde{n}_{1, j} \delta_{p_{j}} \tag{6-4}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{n}_{1, j}=-\frac{1}{2} \sum_{i=1}^{2} k_{1 i} m_{i, j} \quad \text { for some } m_{i j} \in \mathbb{Z} \quad \text { and } \quad \tilde{\alpha}_{1}=\alpha_{1}-\frac{1}{2} \sum_{i=1}^{2} k_{1 i} \hat{\sigma}_{i, 1} \tag{6-5}
\end{equation*}
$$

The finiteness of $\int_{\mathbb{R}^{2}} e^{v_{1}}$ implies

$$
\tilde{\alpha}_{1}>-1 \quad \text { and } \quad \tilde{n}_{1, j} \geq 0
$$

By Theorem 2.2, we have

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} e^{v_{1}} d y=2\left(\tilde{\alpha}_{1}+1\right)+2 k_{1}, \quad \frac{1}{2 \pi} \int_{\mathbb{R}^{2}} e^{v_{1}} d y=2 k_{2}, \quad \text { where } k_{1}, k_{2} \in \mathbb{Z} \tag{6-6}
\end{equation*}
$$

As before, we can choose $l_{k}, r_{1}^{k} \ll l_{k} \ll r_{2}^{k}$, such that both u_{i}^{k} have fast decay on $\partial B\left(0, l_{k}\right)$. Then the new pair ($\hat{\sigma}_{1,2}, \hat{\sigma}_{2,2}$), which is defined by

$$
\hat{\sigma}_{t, 2}=\frac{1}{2 \pi} \lim _{k \rightarrow 0} \int_{B\left(0, l_{k}\right)} h_{t}^{k} e^{u_{t}^{k}}, \quad t=1,2,
$$

becomes

$$
\begin{equation*}
\left(\hat{\sigma}_{1,2}, \hat{\sigma}_{2,2}\right)=\left(\hat{\sigma}_{1,1}+\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} e^{v_{1}}+\sum_{j=1}^{l} m_{1, j}, \hat{\sigma}_{2,1}+\sum_{j=1}^{l} m_{2, j}\right) \tag{6-7}
\end{equation*}
$$

for $m_{1 j}, m_{2 j} \in 2 \mathbb{N} \cup\{0\}$. Using (6-6), we get

$$
\hat{\sigma}_{1,2}= \begin{cases}\hat{\sigma}_{1,1}+2 k_{2}+\sum_{j=1}^{l} m_{1, j} & \text { if } \frac{1}{2 \pi} \int_{\mathbb{R}^{2}} e^{v_{1}} d y=2 k_{2} \tag{6-8}\\ 2 \mu_{1}+\hat{\sigma}_{1,1}-\sum_{i=1}^{2} k_{1 i} \hat{\sigma}_{i, 1}+2 k_{1}+\sum_{j=1}^{l} m_{1, j} & \text { if } \frac{1}{2 \pi} \int_{\mathbb{R}^{2}} e^{v_{1}} d y=2\left(\tilde{\alpha}_{1}+1\right)+2 k_{1}\end{cases}
$$

We note that if $\left(\hat{\sigma}_{1,1}, \hat{\sigma}_{2,1}\right) \in \Gamma\left(\mu_{1}, \mu_{2}\right)$ and

$$
2 \mu_{1}+\hat{\sigma}_{1,1}-\sum_{i=1}^{2} k_{1 i} \hat{\sigma}_{i, 1}>0
$$

then

$$
\left(2 \mu_{1}+\hat{\sigma}_{1,1}-\sum_{i=1}^{2} k_{1 i} \hat{\sigma}_{i, 1}, \hat{\sigma}_{2,1}\right) \in \Gamma\left(\mu_{1}, \mu_{2}\right)
$$

Let $\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right)=\left(2 \mu_{1}+\hat{\sigma}_{1,1}-\sum_{i=1}^{2} k_{1 i} \hat{\sigma}_{i, 1}, \hat{\sigma}_{2,1}\right)$. We can write

$$
\begin{equation*}
\left(\hat{\sigma}_{1,2}, \hat{\sigma}_{2,2}\right)=\left(\sigma_{1}^{*}+m_{1}, \sigma_{2}^{*}+m_{2}\right) \tag{6-9}
\end{equation*}
$$

with $\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right) \in \Gamma\left(\mu_{1}, \mu_{2}\right)$ and $m_{1}, m_{2} \in 2 \mathbb{Z}$.
Case 2: If both u_{i}^{k} have fast decay on $\partial B\left(0, r_{1}^{k}\right)$, then they have fast decay on $\partial B\left(0, c r_{1}^{k}\right)$, where we choose c bounded such that $\bigcup_{j=1}^{l} S_{j} \subset B\left(0, \frac{1}{2} c r_{1}^{k}\right)$. Then the new pair $\left(\hat{\sigma}_{1,2}, \hat{\sigma}_{2,2}\right)$ becomes

$$
\begin{equation*}
\left(\hat{\sigma}_{1,2}, \hat{\sigma}_{2,2}\right)=\left(\hat{\sigma}_{1,1}+\sum_{j=1}^{l} m_{1, j}, \hat{\sigma}_{2,1}+\sum_{j=1}^{l} m_{2, j}\right) \quad \text { for } m_{1, j}, m_{2, j} \in 2 \mathbb{Z} \tag{6-10}
\end{equation*}
$$

Hence, in this case we can also write

$$
\begin{equation*}
\left(\hat{\sigma}_{1,2}, \hat{\sigma}_{2,2}\right)=\left(\sigma_{1}^{*}+m_{1}, \sigma_{2}^{*}+m_{2}\right) \tag{6-11}
\end{equation*}
$$

with $\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right)=\left(\hat{\sigma}_{1,1}, \hat{\sigma}_{2,1}\right) \in \Gamma\left(\mu_{1}, \mu_{2}\right)$ and $m_{1}, m_{2} \in 2 \mathbb{Z}$. Set $c r_{1}^{k}=l_{k}$. Then we can continue our process starting from l_{k}. After finitely many steps, we can prove that at most one component of u^{k} has slow decay on $\partial B(0,1)$ and their local masses have the expression in (3).

For case (b), i.e., $r_{1}^{k} / \delta_{k} \leq C$, first $\tilde{v}_{i}^{k} \leq 0$ implies $|y|^{2 \alpha_{j}} h_{j}^{k}\left(\delta_{k} y\right) e^{\tilde{v}_{j}^{k}} \leq C$ on $B\left(0, r_{1}^{k} / \delta_{k}\right)$. Then the fact that \tilde{v}_{i}^{k} has bounded oscillation on $\partial B\left(0, r_{1}^{k} / \delta_{k}\right)$ further gives

$$
\tilde{v}_{i}^{k}(x)=\overline{\tilde{v}}_{i}^{k}\left(\partial B\left(0, r_{1}^{k} / \delta_{k}\right)\right)+O(1) \quad \text { for all } x \in B\left(r_{1}^{k} / \delta_{k}\right),
$$

where $\overline{\tilde{v}}_{i}^{k}\left(\partial B\left(0, r_{1}^{k} / \delta_{k}\right)\right)$ stands for the average of \tilde{v}_{i}^{k} on $\partial B\left(0, r_{1}^{k} / \delta_{k}\right)$. Direct computation shows that

$$
\int_{B\left(0, r_{1}^{k}\right)} h_{i}^{k} e^{u_{i}^{k}} d x=\int_{B\left(0, r_{1}^{k} / \delta_{k}\right)}|y|^{2 \alpha_{i}} h_{i}^{k}\left(\delta_{k} y\right) e^{\tilde{v}_{i}^{k}(y)} d y=O(1) e^{\overline{\tilde{v}}_{i}^{k}\left(\partial B\left(0, r_{1}^{k} / \delta_{k}\right)\right)}
$$

Thus if $\overline{\tilde{v}}_{i}^{k}\left(\partial B\left(0, r_{1}^{k} / \delta_{k}\right)\right) \rightarrow-\infty$, we get $\int_{B\left(0, r_{1}^{k}\right)} h_{i}^{k} e^{u_{i}^{k}} d x=o(1)$. On the other hand, we note that $\overline{\tilde{v}}_{i}^{k}\left(\partial B\left(0, r_{1}^{k} / \delta_{k}\right)\right) \rightarrow-\infty$ is equivalent to u_{i}^{k} having fast decay on $\partial B\left(0, r_{1}^{k}\right)$. Consequently $\hat{\sigma}_{i, 1}=0$ if u_{i}^{k} has fast decay on $\partial B\left(0, r_{1}^{k}\right)$. So if both components have fast decay on $\partial B\left(0, r_{1}^{k}\right)$ we have $\left(\hat{\sigma}_{1,1}, \hat{\sigma}_{2,1}\right)=(0,0)$.

If some component of u^{k} has slow decay, say u_{2}^{k}, according to the definition of $\hat{\sigma}_{2,1}$, we have

$$
\begin{align*}
\hat{\sigma}_{2,1} & =\lim _{r \rightarrow 0} \lim _{k \rightarrow+\infty} \sigma_{2}^{k}\left(B\left(0, r r_{1}^{k}\right)\right)=\frac{1}{2 \pi} \lim _{r \rightarrow 0} \lim _{k \rightarrow+\infty} \int_{B\left(0, r r_{1}^{k}\right)} h_{2}^{k} e^{u_{2}^{k}} d x \\
& =\frac{1}{2 \pi} \lim _{r \rightarrow 0} \lim _{k \rightarrow+\infty} \int_{B\left(0, r r_{1}^{k} / \delta_{k}\right)}|y|^{2 \alpha_{2}} h_{2}^{k}\left(\delta_{k} y\right) e^{\tilde{v}_{2}^{k}(y)} d y=0 \tag{6-12}
\end{align*}
$$

where we used $|y|^{2 \alpha_{2}} h_{2}^{k}\left(\delta_{k} y\right) e^{\tilde{v}_{2}^{k}} \leq C$ on $B\left(0, r_{1}^{k} / \delta_{k}\right)$. Then we still get

$$
\left(\hat{\sigma}_{1,1}, \hat{\sigma}_{2,1}\right)=(0,0)
$$

Now we can continue our discussion as in case (a) and Theorem 1.3 is proved completely.
Next, we shall prove Theorem 1.5, that is, $\Sigma_{k}=\{0\}$, by way of contradiction. Suppose Σ_{k} has points other than 0 . Using the notation from the beginning of this section, we have

$$
\Sigma_{k}=\{0\} \cup S_{1} \cup \cdots \cup S_{N}
$$

Now suppose $r_{1}^{k} / \delta_{k} \rightarrow \infty$ as $k \rightarrow \infty$. Let $\left(\hat{\sigma}_{1,2}, \hat{\sigma}_{2,2}\right)$ be the local masses defined by (6-7) for one of the components u_{i}^{k} having slow decay on $\partial B\left(0, r_{1}^{k}\right)$ or by (6-10) for both components having fast decay on $\partial B\left(0, r_{1}^{k}\right)$. We summarize the results in the following:
(i) $\hat{\sigma}_{i, 2}=\sigma_{i}^{*}+m_{i}$, where $\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right) \in \Gamma\left(\mu_{1}, \mu_{2}\right)$ and $m_{i}, i=1,2$, are even integers.
(ii) Both pairs $\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right)$ and $\left(\hat{\sigma}_{1,2}, \hat{\sigma}_{2,2}\right)$ satisfy the Pohozaev identity.

Based on the description above, we now present the proof of Theorem 1.5.
Proof of Theorem 1.5. From the discussion above, we have

$$
\left(\hat{\sigma}_{1,2}, \hat{\sigma}_{2,2}\right)=\left(\sigma_{1}^{*}+m_{1}, \sigma_{2}^{*}+m_{2}\right) .
$$

We note that the conclusion of Theorem 1.5 is equivalent to proving $m_{i}=0, i=1,2$. In order to prove this we first observe that both $\left(\hat{\sigma}_{1,2}, \hat{\sigma}_{2,2}\right)$ and $\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right)$ satisfy the P.I.

$$
\begin{equation*}
k_{21} \sigma_{1}^{2}+k_{12} k_{21} \sigma_{1} \sigma_{2}+k_{12} \sigma_{2}^{2}=2 k_{21} \mu_{1} \sigma_{1}+2 k_{12} \mu_{2} \sigma_{2} \tag{6-13}
\end{equation*}
$$

Thus we can write

$$
\begin{equation*}
k_{21}\left(\sigma_{1}^{*}\right)^{2}+k_{12} k_{21} \sigma_{1}^{*} \sigma_{2}^{*}+k_{12}\left(\sigma_{2}^{*}\right)^{2}=2 k_{21} \mu_{1} \sigma_{1}^{*}+2 k_{12} \mu_{2} \sigma_{2}^{*} \tag{6-14}
\end{equation*}
$$

and

$$
\begin{align*}
k_{21}\left(\sigma_{1}^{*}+m_{1}\right)^{2}+k_{12} k_{21}\left(\sigma_{1}^{*}+m_{1}\right)\left(\sigma_{2}^{*}+m_{2}\right)+ & k_{12}\left(\sigma_{2}^{*}+m_{2}\right)^{2} \\
& =2 k_{21} \mu_{1}\left(\sigma_{1}^{*}+m_{1}\right)+2 k_{12} \mu_{2}\left(\sigma_{2}^{*}+m_{2}\right) \tag{6-15}
\end{align*}
$$

It is easy to obtain the following from (6-15) and (6-14):

$$
\begin{align*}
2 k_{21} m_{1} \sigma_{1}^{*}+k_{12} k_{21} m_{2} \sigma_{1}^{*}+ & k_{12} k_{21} m_{1} \sigma_{2}^{*}+2 k_{12} m_{2} \sigma_{2}^{*} \\
& =2 k_{21} m_{1} \mu_{1}+2 k_{12} m_{2} \mu_{2}-\left(k_{21} m_{1}^{2}+k_{12} k_{21} m_{1} m_{2}+k_{12} m_{2}^{2}\right) \tag{6-16}
\end{align*}
$$

Since $\left(\sigma_{1}^{*}, \sigma_{2}^{*}\right) \in \Gamma\left(\mu_{1}, \mu_{2}\right)$, we set

$$
\sigma_{1}^{*}=l_{1,1} \mu_{1}+l_{1,2} \mu_{2}, \quad \sigma_{2}^{*}=l_{2,1} \mu_{1}+l_{2,2} \mu_{2}
$$

Then we can rewrite (6-16) as

$$
\begin{align*}
& \left(2 k_{21} l_{1,1} m_{1}+k_{12} k_{21} l_{2,1} m_{1}-2 k_{21} m_{1}+2 k_{12} l_{2,1} m_{2}+k_{12} k_{21} l_{1,1} m_{2}\right) \mu_{1} \\
& \quad+\left(2 k_{21} l_{1,2} m_{1}+k_{12} k_{21} l_{2,2} m_{1}+2 k_{12} l_{2,2} m_{2}+k_{12} k_{21} l_{1,2} m_{2}-2 k_{12} m_{2}\right) \mu_{2} \\
& +\left(k_{21} m_{1}^{2}+k_{12} k_{21} m_{1} m_{2}+k_{12} m_{2}^{2}\right)=0 . \tag{6-17}
\end{align*}
$$

Since μ_{1}, μ_{2} and 1 are linearly independent, the coefficients of μ_{1} and μ_{2} must vanish. Equivalently we have

$$
\left(\begin{array}{cc}
2 k_{21} l_{1,1}+k_{12} k_{21} l_{2,1}-2 k_{21} & 2 k_{12} l_{2,1}+k_{12} k_{21} l_{1,1} \tag{6-18}\\
2 k_{21} l_{1,2}+k_{12} k_{21} l_{2,2} & 2 k_{12} l_{2,2}+k_{12} k_{21} l_{1,2}-2 k_{12}
\end{array}\right)\binom{m_{1}}{m_{2}}=0
$$

Let M_{K} be the coefficient matrix

$$
M_{K}=\left(\begin{array}{cc}
2 k_{21} l_{1,1}+k_{12} k_{21} l_{2,1}-2 k_{21} & 2 k_{12} l_{2,1}+k_{12} k_{21} l_{1,1} \\
2 k_{21} l_{1,2}+k_{12} k_{21} l_{2,2} & 2 k_{12} l_{2,2}+k_{12} k_{21} l_{1,2}-2 k_{12}
\end{array}\right)
$$

Our goal is to show that M_{k} is nonsingular, which immediately implies $m_{1}=m_{2}=0$ and completes the proof of Theorem 1.5. The proof of the nonsingularity of M_{k} is divided into the following three cases.
Case 1: $\boldsymbol{K}=A_{2}$. Then we can write (6-18) as

$$
\left(\begin{array}{cc}
2 l_{1,1}-l_{2,1}-2 & 2 l_{2,1}-l_{1,1} \tag{6-19}\\
2 l_{1,2}-l_{2,2} & 2 l_{2,2}-l_{1,2}-2
\end{array}\right)\binom{m_{1}}{m_{2}}=0
$$

We note that

$$
\left(l_{1,1}, l_{1,2}, l_{2,1}, l_{2,2}\right) \in\{(2,0,0,0),(0,0,0,2),(2,2,0,2),(2,0,2,2),(2,2,2,2)\}
$$

Then it is easy to see that M_{K} is nonsingular when $\left(l_{1,1}, l_{1,2}, l_{2,1}, l_{2,2}\right)$ belongs the above set.
$\underline{\text { Case 2: }} \boldsymbol{K}=B_{2}$. Then we can write (6-18) as

$$
\left(\begin{array}{cc}
2 l_{1,1}-l_{2,1}-2 & l_{2,1}-l_{1,1} \tag{6-20}\\
2 l_{1,2}-l_{2,2} & l_{2,2}-l_{1,2}-1
\end{array}\right)\binom{m_{1}}{m_{2}}=0
$$

We note that
$\left(l_{1,1}, l_{1,2}, l_{2,1}, l_{2,2}\right) \in\{(2,0,0,0),(2,0,4,2),(4,2,4,2),(0,0,0,2),(2,2,0,2),(2,2,4,4),(4,2,4,4)\}$
From the above set, we can see that $4 \mid\left(l_{2,1}-l_{1,1}\right)\left(2 l_{1,2}-l_{2,2}\right)$. As a result, if the determinant of M_{K} is 0 , we have to make $4 \mid\left(2 l_{1,1}-l_{2,1}-2\right)$, which forces $l_{2,1} \equiv 2(\bmod 4)$. However, this is impossible according to the above list. Thus M_{k} is nonsingular in this case.

Case 3: $\boldsymbol{K}=G_{2}$. Then we can write ($6-18$) as

$$
\left(\begin{array}{cc}
6 l_{1,1}-3 l_{2,1}-6 & 2 l_{2,1}-3 l_{1,1} \tag{6-21}\\
6 l_{1,2}-3 l_{2,2} & 2 l_{2,2}-3 l_{1,2}-2
\end{array}\right)\binom{m_{1}}{m_{2}}=0
$$

We note that

$$
\begin{array}{r}
\left(l_{1,1}, l_{1,2}, l_{2,1}, l_{2,2}\right) \in\{(2,0,0,0),(2,0,6,2),(6,2,6,2),(6,2,12,6),(8,4,12,6),(8,4,12,8) \\
(0,0,0,2),(2,2,0,2),(2,2,6,6),(6,4,6,6),(6,4,12,8)\}
\end{array}
$$

From the above list, we have $3 \mid l_{2,1}$; then we get $9 \mid\left(2 l_{2,1}-3 l_{1,1}\right)\left(6 l_{1,2}-3 l_{2,2}\right)$. On the other hand, we see that

$$
l_{1,1} \equiv 0,2(\bmod 3) \quad \text { and } \quad l_{2,2} \equiv 0,2(\bmod 3)
$$

which implies $\left(6 l_{1,1}-3 l_{2,1}-6\right)\left(2 l_{2,2}-3 l_{1,2}-2\right)$ is not multiple of 9 ; therefore we have the determinant of M_{K} is not zero. Thus M_{k} is nonsingular when $K=G_{2}$.

Theorem 1.5 is established.
Finally we prove Theorems 1.2 and 1.6.
Proof of Theorems 1.2 and 1.6. Suppose there exists a sequence of blowup solutions $\left(u_{1}^{k}, u_{2}^{k}\right)$ of (1-2) with $\left(\rho_{1}, \rho_{2}\right)=\left(\rho_{1}^{k}, \rho_{2}^{k}\right)$. First, we prove Theorem 1.2. From the previous discussion of this section, we get that at least one component (say u_{1}^{k}) of u^{k} has fast decay on a small ball B near each blowup point q, which means $u_{1}^{k}(x) \rightarrow-\infty$ if $x \notin S$ and x is not a blowup point. Hence Theorem 1.2 holds.

Because the mass distribution of u_{1}^{k} concentrates as $k \rightarrow+\infty$, we get that $\lim _{k \rightarrow+\infty} \rho_{1}^{k}$ is equal to the sum of the local mass σ_{1} at a blowup point q, which implies $\rho_{1} \in \Gamma_{1}$, a contradiction to the assumption. Thus, we finish the proof of Theorem 1.6.

Acknowledgement

We would like to thank the referee for perusing the whole article and for many excellent suggestions.

References

[Bartolucci and Tarantello 2002] D. Bartolucci and G. Tarantello, "The Liouville equation with singular data: a concentrationcompactness principle via a local representation formula", J. Differential Equations 185:1 (2002), 161-180. MR Zbl
[Battaglia 2015] L. Battaglia, Variational aspects of singular Liouville systems, Ph.D. thesis, Scuola Internazionale Superiore di Studi Avanzati, 2015, available at http://preprints.sissa.it/xmlui/handle/1963/34536.
[Battaglia and Malchiodi 2014] L. Battaglia and A. Malchiodi, "A Moser-Trudinger inequality for the singular Toda system", Bull. Inst. Math. Acad. Sin. (N.S.) 9:1 (2014), 1-23. MR Zbl
[Bennett 1934] W. H. Bennett, "Magnetically self-focusing streams", Phys. Rev. 45 (1934), 890-897.
[Brezis and Merle 1991] H. Brezis and F. Merle, "Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x) e^{u}$ in two dimensions", Comm. Partial Differential Equations 16:8-9 (1991), 1223-1253. MR Zbl
[Chai et al. 2015] C.-L. Chai, C.-S. Lin, and C.-L. Wang, "Mean field equations, hyperelliptic curves and modular forms, I", Camb. J. Math. 3:1-2 (2015), 127-274. MR Zbl
[Chen et al. 2016] Z. J. Chen, T. Y. Kuo, and C. S. Lin, "Green function, Painlevè equation, and Eisenstein series of weight one", preprint, 2016. To appear in J. Differential Geom.
[Chou and Wan 1994] K. S. Chou and T. Y.-H. Wan, "Asymptotic radial symmetry for solutions of $\Delta u+e^{u}=0$ in a punctured disc", Pacific J. Math. 163:2 (1994), 269-276. MR Zbl
[Eremenko et al. 2014] A. Eremenko, A. Gabrielov, and V. Tarasov, "Metrics with conic singularities and spherical polygons", Illinois J. Math. 58:3 (2014), 739-755. MR Zbl
[Ganoulis et al. 1982] N. Ganoulis, P. Goddard, and D. Olive, "Self-dual monopoles and Toda molecules", Nuclear Phys. B 205:4 (1982), 601-636. MR
[Lee 1991] K. Lee, "Self-dual nonabelian Chern-Simons solitons", Phys. Rev. Lett. 66:5 (1991), 553-555. MR Zbl
[Lee et al. 2017] Y. Lee, C. S. Lin, J. C. Wei, and W. Yang, "Degree counting and Shadow system for Toda system of rank two: one bubbling", preprint, 2017.
[Li 1999] Y. Y. Li, "Harnack type inequality: the method of moving planes", Comm. Math. Phys. 200:2 (1999), 421-444. MR Zbl
[Li and Shafrir 1994] Y. Y. Li and I. Shafrir, "Blow-up analysis for solutions of $-\Delta u=V e^{u}$ in dimension two", Indiana Univ. Math. J. 43:4 (1994), 1255-1270. MR Zbl
[Lin and Tarantello 2016] C.-S. Lin and G. Tarantello, "When 'blow-up' does not imply 'concentration': a detour from Brézis-Merle's result", C. R. Math. Acad. Sci. Paris 354:5 (2016), 493-498. MR
[Lin and Yan 2013] C.-S. Lin and S. Yan, "Existence of bubbling solutions for Chern-Simons model on a torus", Arch. Ration. Mech. Anal. 207:2 (2013), 353-392. MR Zbl
[Lin and Zhang 2010] C.-S. Lin and L. Zhang, "Profile of bubbling solutions to a Liouville system", Ann. Inst. H. Poincaré Anal. Non Linéaire 27:1 (2010), 117-143. MR Zbl
[Lin and Zhang 2013] C.-S. Lin and L. Zhang, "On Liouville systems at critical parameters, Part 1: One bubble", J. Funct. Anal. 264:11 (2013), 2584-2636. MR Zbl
[Lin and Zhang 2016] C.-S. Lin and L. Zhang, "Energy concentration and a priori estimates for B_{2} and G_{2} types of Toda systems", Int. Math. Res. Not. 2016:16 (2016), 5076-5105. MR
[Lin et al. 2012] C.-S. Lin, J. Wei, and D. Ye, "Classification and nondegeneracy of $\operatorname{SU}(n+1)$ Toda system with singular sources", Invent. Math. 190:1 (2012), 169-207. MR Zbl
[Lin et al. 2015] C.-S. Lin, J.-c. Wei, and L. Zhang, "Classification of blowup limits for SU(3) singular Toda systems", Anal. PDE 8:4 (2015), 807-837. MR Zbl
[Lin et al. 2017] C. S. Lin, W. Yang, and X. X. Zhong, "Apriori Estimates of Toda systems, I: the types of $\boldsymbol{A}_{\boldsymbol{n}}, \boldsymbol{B}_{n}, \boldsymbol{C}_{\boldsymbol{n}}$ and \boldsymbol{G}_{2} ", preprint, 2017.
[Mansfield 1982] P. Mansfield, "Solution of Toda systems", Nuclear Phys. B 208:2 (1982), 277-300. MR Zbl
[Musso et al. 2016] M. Musso, A. Pistoia, and J. Wei, "New blow-up phenomena for $\mathrm{SU}(n+1)$ Toda system", J. Differential Equations 260:7 (2016), 6232-6266. MR Zbl
[Prajapat and Tarantello 2001] J. Prajapat and G. Tarantello, "On a class of elliptic problems in \mathbb{R}^{2} : symmetry and uniqueness results", Proc. Roy. Soc. Edinburgh Sect. A 131:4 (2001), 967-985. MR Zbl
[Troyanov 1989] M. Troyanov, "Metrics of constant curvature on a sphere with two conical singularities", pp. 296-306 in Differential geometry (Peñíscola, 1988), Lecture Notes in Math. 1410, Springer, 1989. MR Zbl
[Troyanov 1991] M. Troyanov, "Prescribing curvature on compact surfaces with conical singularities", Trans. Amer. Math. Soc. 324:2 (1991), 793-821. MR Zbl
[Whittaker and Watson 1927] E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge University Press, 1927.
[Yang 1997] Y. Yang, "The relativistic non-abelian Chern-Simons equations", Comm. Math. Phys. 186:1 (1997), 199-218. MR Zbl
[Yang 2001] Y. Yang, Solitons in field theory and nonlinear analysis, Springer, 2001. MR Zbl
Received 3 Nov 2016. Revised 17 Aug 2017. Accepted 5 Dec 2017.
CHANG-SHOU LIN: cslin@math.ntu.edu.tw
Department of Mathematics, Taida Institute of Mathematical Sciences, National Taiwan University, Taipei, Taiwan
Jun-Cheng Wer: jcwei@math.ubc.ca
Department of Mathematics, University of British Columbia, Vancouver BC, Canada
WEN YANG: math. yangwen@gmail.com
Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
LEI ZHANG: leizhang@ufl.edu
Department of Mathematics, University of Florida, Gainesville, FL, United States

Analysis \& PDE

msp.org/apde

EDITORS

Editor-In-Chief
Patrick Gérard
patrick.gerard@math.u-psud.fr
Université Paris Sud XI
Orsay, France

Board of Editors

Nicolas Burq	Université Paris-Sud 11, France nicolas.burq@math.u-psud.fr	Clément Mouhot	Cambridge University, UK c.mouhot@dpmms.cam.ac.uk
Massimiliano Berti	Scuola Intern. Sup. di Studi Avanzati, Italy berti@sissa.it	Werner Müller	Universität Bonn, Germany mueller@math.uni-bonn.de
Sun-Yung Alice Chang	Princeton University, USA chang@math.princeton.edu	Gilles Pisier	Texas A\&M University, and Paris 6 pisier@math.tamu.edu
Michael Christ	University of California, Berkeley, USA mchrist@math.berkeley.edu	Tristan Rivière	ETH, Switzerland riviere@math.ethz.ch
Alessio Figalli	ETH Zurich, Switzerland alessio.figalli@math.ethz.ch	Igor Rodnianski	Princeton University, USA irod@math.princeton.edu
Charles Fefferman	Princeton University, USA cf@math.princeton.edu	Wilhelm Schlag	University of Chicago, USA schlag@math.uchicago.edu
Ursula Hamenstaedt	Universität Bonn, Germany ursula@math.uni-bonn.de	Sylvia Serfaty	New York University, USA serfaty @cims.nyu.edu
Vaughan Jones	U.C. Berkeley \& Vanderbilt University vaughan.f.jones@ vanderbilt.edu	Yum-Tong Siu	Harvard University, USA siu@math.harvard.edu
Vadim Kaloshin	University of Maryland, USA vadim.kaloshin@gmail.com	Terence Tao	University of California, Los Angeles, USA tao@math.ucla.edu
Herbert Koch	Universität Bonn, Germany koch@math.uni-bonn.de	Michael E. Taylor	Univ. of North Carolina, Chapel Hill, USA met@math.unc.edu
Izabella Laba	University of British Columbia, Canada ilaba@math.ubc.ca	Gunther Uhlmann	University of Washington, USA gunther@math.washington.edu
Gilles Lebeau	Université de Nice Sophia Antipolis, France lebeau@unice.fr	e András Vasy	Stanford University, USA andras@math.stanford.edu
Richard B. Melrose	Massachussets Inst. of Tech., USA rbm@math.mit.edu	Dan Virgil Voiculescu	University of California, Berkeley, USA dvv@math.berkeley.edu
Frank Merle	Université de Cergy-Pontoise, France Frank.Merle@u-cergy.fr	Steven Zelditch	Northwestern University, USA zelditch@math.northwestern.edu
William Minicozzi II	Johns Hopkins University, USA minicozz@math.jhu.edu	Maciej Zworski	University of California, Berkeley, USA zworski@math.berkeley.edu

PRODUCTION

production@msp.org
Silvio Levy, Scientific Editor
See inside back cover or msp.org/apde for submission instructions.
The subscription price for 2018 is US $\$ 275 /$ year for the electronic version, and $\$ 480 /$ year ($+\$ 55$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis \& PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

APDE peer review and production are managed by EditFlow ${ }^{\circledR}$ from MSP.

PUBLISHED BY

mathematical sciences publishers

ANALYSIS \& PDE
 Volume 11 No. 42018

C^{1} regularity of orthotropic p-harmonic functions in the plane 813
Pierre Bousquet and Lorenzo Brasco
Applications of small-scale quantum ergodicity in nodal sets 855
Hamid Hezari
On rank-2 Toda systems with arbitrary singularities: local mass and new estimates 873Chang-Shou Lin, Jun-cheng Wei, Wen Yang and Lei Zhang
Beyond the BKM criterion for the 2D resistive magnetohydrodynamic equations 899
LÉO AGÉLAS
On a bilinear Strichartz estimate on irrational tori 919
Chenjie Fan, Gigliola Staffilani, Hong Wang and Bobby Wilson
Sharp global estimates for local and nonlocal porous medium-type equations in bounded do- 945mains
Matteo Bonforte, Alessio Figalli and Juan Luis Vázquez
Blow-up of a critical Sobolev norm for energy-subcritical and energy-supercritical wave equa- 983
tionsThomas Duyckaerts and Jianwei Yang
Global weak solutions for generalized SQG in bounded domains 1029Huy Quang NGuyen
Scale-free unique continuation principle for spectral projectors, eigenvalue-lifting and Wegner 1049
estimates for random Schrödinger operators
Ivica Nakić, Matthias Täufer, Martin Tautenhahn and Ivan Veselić

[^0]: MSC2010: primary 35 J 47 ; secondary $35 \mathrm{~J} 60,35 \mathrm{~J} 55$.
 Keywords: $\mathrm{SU}(n+1)$-Toda system, asymptotic analysis, a priori estimate, classification theorem, topological degree, blowup solutions, Riemann-Hurwitz theorem.

