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ON A BILINEAR STRICHARTZ ESTIMATE ON IRRATIONAL TORI

CHENJIE FAN, GIGLIOLA STAFFILANI, HONG WANG AND BOBBY WILSON

We prove a bilinear Strichartz-type estimate for irrational tori via a decoupling-type argument, as used by
Bourgain and Demeter (2015), recovering and generalizing a result of De Silva, Pavlović, Staffilani and
Tzirakis (2007). As a corollary, we derive a global well-posedness result for the cubic defocusing NLS on
two-dimensional irrational tori with data of infinite energy.

1. Introduction

Bourgain and Demeter [2015] proved the full range of Strichartz estimates for the Schrödinger equation
on tori as a consequence of the `2 decoupling theorem. In this paper we prove in full generality the analog
of the improved Strichartz estimate that first appeared in [De Silva et al. 2007] for rational tori.

1A. Statement of the problem and main results. Let T D R=Z be the one-dimensional torus, and let
˛1; : : : ; ˛d�1 2

�
1
2
; 1
�
; we define d -dimensional torus Td as Td D T�˛1T� � � � �˛d�1T. We say that

the torus is irrational if at least one ˛i is irrational. The torus is rational otherwise. For any �� 1, we
define Td

�
as a rescaling of Td by �; i.e.,

Td� D �Td D .�T/� .˛1�T/� � � � � .˛d�1�T/:

When �!1, one should think of T� as a large torus approximating Rd. We consider the following
Cauchy problem for the linear Schrödinger equation on Td

�
:�

iut ��uD 0; .t; x/ 2 R�Td
�
;

u.0; x/D u0; u0 2 L
2.Td

�
/:

(1-1)

Let U�.t/u0 be the solution to (1-1), and let

ƒ� WD
1

�

�
Z�

1

˛1
Z� � � � �

1

˛d�1
Z

�
:

One has

U�.t/u0.x/D
1

�d=2

X
k2ƒ�

e2�kix�j2�kj
2it
Ou0.k/: (1-2)

Our main theorem is the following bilinear refined Strichartz estimate.
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Theorem 1.1. Let �1; �2 2 L2.T�/ be two initial data such that supp O�i � fk W jkj �Nig, i D 1; 2, for
some large N1 �N2, and let �.t/ be a time cut-off function, supp �� Œ0; 1�. Then when d D 2,

k�.t/U��1 � �.t/U��2kL2x;t
.N �

2

�
1

�
C
N2

N1

�1=2
k�1kL2k�2kL2 ; (1-3)

and when d � 3

k�.t/U��1 � �.t/U��2kL2x;t
.N �

2

�
N d�3
2

�
C
N d�1
2

N1

�1=2
k�1kL2k�2kL2 : (1-4)

We note that when d D 2, N1 D N2, and � D 1, estimate (1-3) recovers the Strichartz inequality
for the (irrational) torus after an application of Hölder’s inequality, up to an N �

2 -loss. When �!1,
estimates (1-3) and (1-4) are consistent with the bilinear Strichartz inequality in RdC1 [Bourgain 1998].
Up to the N �

2 -loss, inequality (1-3) is sharp.
Furthermore, when � � N1, the estimates fall into the so-called semiclassical regime in which the

geometry of T� is irrelevant. We refer to [Hani 2012] for the same estimate (without N �
2 -loss) on general

compact manifolds. On the torus, our result improves the estimate in that paper for ��N1. Estimates
(1-3) and (1-4) rely on the geometry of the torus and cannot hold on general compact manifolds.

Remark 1.2. It may also be interesting to consider trilinear estimates. In fact when one considers the
quintic nonlinear Schrödinger equation, as in [Herr et al. 2011; Ionescu and Pausader 2012], trilinear
estimates are fundamental. See also [Ramos 2016].

We will derive Theorem 1.1 from some bilinear decoupling-type estimates. We first introduce some
basic notation.

Let P be the truncated paraboloid in RdC1,

P D f.�; j�j2/ W � 2 Rd; j�j. 1g: (1-5)

For any function f supported on P, we define

Ef D bfd�; (1-6)

where � is the measure on P.
Note a function supported on P can be naturally understood as a function supported on the ball

B D f� 2 Rd W j�j. 1g.
By a slight abuse of notation, for a function f supported in the ball B in Rd, we also define

Ef .x; t/D

Z
B

e�2�i.��xCj�j
2t/f .�/ d�: (1-7)

One can see that the two definitions of Ef are essentially the same since P projects onto B.
We decompose P as a finitely overlapping union of caps � of radius ı. Here a cap � of radius ı is the

set � D f� 2 P W j� � �0j. ıg for some fixed �0 2 P. We define Ef� D1f�d� , where f� is f restricted
to � . We use a similar definition also when f is a function supported on the unit ball in Rd. We have
Ef D

P
� Ef� .

Now, we are ready to state our main decoupling-type estimate.
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Theorem 1.3. Given � � 1, N1 � N2 � 1, let f1 be supported on P where j�j � 1, and let f2 be
supported on P where j�j �N2=N1. Let�Df.t; x/2 Œ0; N 2

1 �� Œ0; .�N1/
2�d g. For a finitely overlapping

covering of the ball B D fj�j � 1g of caps f�g, j� j D 1=.�N1/, we have the following estimate. For any
small � > 0, when d D 2,

kEf1Ef2kL2avg.w�/
.� .N2/��d=2

�
1

�
C
N d�1
2

N1

�1=2 2Y
jD1

� X
j� jD1=.�N1/

kEfj;�k
2
L4avg.w�/

�1=2
; (1-8)

and when d � 3,

kEf1Ef2kL2avg.w�/
.� .N2/��d=2

�
N d�3
2

�
C
N d�1
2

N1

�1=2 2Y
jD1

� X
j� jD1=.�N1/

kEfj;�k
2
L4avg.w�/

�1=2
; (1-9)

where w� is a weight adapted to �.

The presence of the weight w in these estimates is standard. We list the basic properties of w in
Section 1D, and one can refer to [Bourgain and Demeter 2017] for more details. The notation Lavg.w�/

2

is explained in Section 1C.
The proof of Theorem 1.3 gives another proof of the linear decoupling theorem in [Bourgain and

Demeter 2015] in dimension d D 2, and does not rely on multilinear Kakeya or multilinear restriction
theorems in R3. The proof of Theorem 1.3 in dimension d � 3 relies instead on linear decoupling in
RdC1 [Bourgain and Demeter 2015].

Remark 1.4. The estimates in Theorems 1.1 and 1.3 are sharp up to an N �
2 . See the Appendix for

examples.

Remark 1.5. The N �
2 -loss in Theorem 1.1 is typical if one wants to directly use a decoupling-type

argument. It may be possible to remove N �
2 in the mass supercritical setting (in our case, this means

d � 3), using the approach in [Killip and Vişan 2016], where the scale-invariant Strichartz estimates are
studied.

Remark 1.6. Similar bilinear estimates for dimension d � 3 were also considered in [Killip and Vişan
2016] for nonrescaled tori; see Lemma 3.3 in that paper. On the other hand in this work we also consider
the d D 2 case, which is mass critical.

1B. Background and motivation. System (1-1) and the bilinear estimates (1-3) and (1-4) naturally
appear in the study of the following nonlinear Schrödinger equation on the nonrescaled tori:�

iut C�uD juj
2u;

u.0/D u0 2H
s.Td /:

(1-10)

Let us focus for a moment on the d D 2 case. The Cauchy problem is said to be locally well-posed in
H s.Td / if for any initial data u0 2H s.Td / there exists a time T D T .ku0ks/ such that a unique solution
to the initial value problem exists on the time interval Œ0; T �. We also require that the data-to-solution
map is continuous from H s.Td / to C 0t H

s
x.Œ0; T ��Td /. If T D1, we say that a Cauchy problem is

globally well-posed.
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The initial value problem (1-10) is locally well-posed for initial data u0 2H s, s > 0, via Strichartz
estimates. Note that using iteration, by the energy conservation law, i.e.,

E.u.t//DE.u0/D
1

2

Z
jruj2C

1

4

Z
juj4;

all initial data in H 1.T2/ give rise to a global solution. Next, by the nowadays standard I-method
[Colliander et al. 2002] by considering a modified version of the energy, in the rational torus case, it was
proved in [De Silva et al. 2007] that (1-10) is indeed globally well-posed for initial data in H s, s > 2

3
.

The key estimate there was in fact (1-3) for linear solutions on rescaled tori, which we prove here to be
available also for irrational tori.

The proof for (1-3) presented in [De Silva et al. 2007] is only for rational tori since it relies on certain
types of counting lemmata that cannot directly work on irrational tori. One of the main purposes of this
work in fact is to extend results on rational tori to irrational ones.

Based on the discussion we just made, as a corollary of Theorem 1.1, we have:

Corollary 1.7. The initial value problem (1-10) defined on any torus T2 is globally well-posed for initial
data in H s.T2/ with s > 2

3
.

Remark 1.8. Results such as Corollary 1.7 usually also give a control on the growth of Sobolev norms
of the global solutions. We do not address this particular question here. We instead refer the reader to the
recent work [Deng and Germain 2017].

The original Strichartz estimates needed to prove the local well-posedness of Cauchy problems such
as (1-10) were first obtained in [Bourgain 1993] via number-theoretical-related counting arguments for
rational tori. Recently, the striking proof of the `2 decoupling theorem [Bourgain and Demeter 2015]
provided a completely different approach from which all the desired Strichartz estimates on tori, both
rational and irrational, follow. This approach in particular does not depend on counting lattice points.
See also [Guo et al. 2014; Deng et al. 2017]. The method of proof we implement in this present work is
mostly inspired by [Bourgain and Demeter 2015] and the techniques used to prove the `2 decoupling
theorem.

We quickly recall the main result in [Bourgain and Demeter 2015]. Let P be a unit parabola in RdC1,
covered by finitely overlapping caps � of radius 1=R. Let f be a function defined on P ; then one has for
any � > 0 small,

kEf kLp.wB
R2
/ .� R�.R2/d=4�.dC2/=.2p/

�X
�

kEf�k
2
Lp.B

R2
/

�1=2
; p �

2.d C 2/

d
: (1-11)

Note that (1-11) corresponds to Theorem 1.1 in [Bourgain and Demeter 2015], and the dimension n in the
estimate (2) there corresponds to our d C 1. Also note that the linear decoupling (1-11) not only works
for those f exactly supported on P, but those f supported in an R�2 neighborhood of P, and in this
case, cap � would be replaced by the R�2 neighborhood of the original � ; see Theorem 1.1 in [Bourgain
and Demeter 2015].
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We remark that one key feature of this decoupling-type estimate is that one needs to work on a larger
scale in physical space, i.e., the scale R2 rather than R, in order to observe the decoupling phenomena.
The proper observational scale dictated by Heisenberg’s uncertainty principle is R.

Indeed, one principle, which is usually called parallel decoupling, indicates that if decoupling happens
in a small region, then decoupling happens in a large region as well. We state a bilinear version of parallel
decoupling below.

Lemma 1.9 [Bourgain and Demeter 2015; 2017]. Let D be a domain, and D DD1 [D2 [ � � � [DJ ,
Di \Dj D∅. If for some constant A> 0 and for functions h1; h2, defined on the unit parabola, one has

kEh1Eh2kL2avg.wDi /
� A

2Y
jD1

� X
j� jD1=.�N1/

kEhj;�k
2
L4avg.wDi /

�1=2
; i D 1; : : : ; J; (1-12)

then one also has

kEh1Eh2kL2avg.wD/
� A

2Y
jD1

� X
j� jD1=.�N1/

kEhj;�k
2
L4avg.wD/

�1=2
: (1-13)

The proof of this particular formulation of parallel decoupling follows by Minkowski’s inequality.
As it exists, parallel decoupling is a principle rather than a concrete lemma. We state the version here

solely for concreteness. It should be easy to generalize the lemma under different conditions.

1C. Notation. We write A. B if A� CB for a constant C > 0, and A� B if both A. B and B . A.
We say A .� B if the constant C depends on �. Similarly for A �� B . For a Borel set, E � Rd, we
denote the diameter of E by jEj and the Lebesgue measure of E by m.E/.

We will use the usual function space Lp. We also use a (weighted) average version of Lp space; i.e.,

kgkLpavg.A/
D

�

/

Z
A

jgjp
�1=p

WD

�
1

m.A/

Z
A

jgjp
�1=p

;

kgkLpavg.wA/
D

�
1

m.A/

Z
jgjpwA

�1=p
;

where wA is a weight function described below.
For any function f , we use Of to denote its Fourier transform. When we say unit ball, we refer to a ball of

radius r � 1. We will often identify a torus as a bounded domain in Euclidean space; for example, we will
view .R=Z/d as Œ0; 1�d �Rd. In this work,� is used to denote the domain Œ0; N 2

1 ��Œ0; .�N1/
2�d �RdC1.

1D. The weight wA. If h is a Schwartz function whose Fourier transform, Oh, is supported in a ball of
radius 1=R, we expect h to be essentially constant on balls of radius R, and essentially

khkLpavg.BR/
� khkL2avg.BR/

� khkL1.BR/: (1-14)

Expression (1-14) is not rigorous, and the introduction of the weight wBR is a standard way to overcome
this technical difficulty. We refer to Lemma 4.1 in [Bourgain and Demeter 2017] for a more detailed
discussion of the weight function.
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For any bounded open convex set A, the weight function wA might change from line to line and from
the left-hand side of the inequality to the right-hand side, and satisfies the properties:

�
R
wA �m.A/.

� wA & 1 on A, and rapidly (polynomial-type) decays outside A.

We will usually define A to be a ball, or the product of balls in this paper.
Furthermore, let BR be a ball centered at 0, and let �BR be a function such that b�BR is about

1=.m.B1=R// on B1=R, and supported in B2=R. Then �BR is about 1 on BR, and decays faster than any
polynomial outside of BR. Additionally, �2BR is positive, decays faster than any polynomial outside of
BR and is Fourier-supported in B4=R. We take translations B 0 of BR to cover the whole space, and we
denote by �B 0 the corresponding translation of �BR and wBR.B

0/Dmaxx2B 0 wBR . We have the useful
property,

wBR.x/�
X
B 0

wBR.B
0/1B 0.x/.

X
B 0

wBR.B
0/�2B 0.x/. wBR.x/: (1-15)

The last inequality follows from the fact that �2B 0 decays faster than any polynomial outside of B 0.

Lemma 1.10. For a function f supported in B1=R, for any p <1,

kEf kL1.BR/ . kEf kLpavg.�BR /
:

We refer to the proof of Corollary 4.3 in [Bourgain and Demeter 2017] with the weight on the left-hand
side being 1BR so that on the right-hand side we have a fast decay weight.

Remark 1.11. In general, Lemma 1.10 should hold for any convex set A and the dual convex body A�.

2. Proof of Theorem 1.1 assuming Theorem 1.3

Assume Theorem 1.3, and let us prove Theorem 1.1. The argument below comes from the proof of
discrete restriction and the Strichartz estimate on irrational tori assuming the `2 decoupling estimate; see
Theorems 2.2 and 2.3 in [Bourgain and Demeter 2015]. The argument originally comes as observation
due to Bourgain [2013]. We record it here for completeness.

Let �1; �2 be as in Theorem 1.1. We rescale �1 to be supported in the unit ball and rescale �2 to be
supported in a ball of radius �N2=N1. Recall,

U�.t/�j .x; t/D
1

�d=2

X
k2ƒ�
k�N1

e2�ik�x�j2�kj
2t O�j .k/: (2-1)

We perform a change of variables � D k=N1 and we let

hj .�/D
1

�d=2

X
�2ƒ�N1
j�j�1

O�j .�N1/ı�.�/; j D 1; 2: (2-2)

Note one can directly check that

U�.t/�j .x; t/DEhj .�2�N1x; .2�/
2N 2

1 t /: (2-3)
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Without loss of generality, we suppress the constants �2� and .2�/2.
Let Q0D Œ0; N 2

1 ��Td
�N1

and let us view Td
�N1

as a compact set in Rd. In particular, one can construct
the associated weight function wQ0 . Direct computation (via change of variables) gives

kU�.t/�1U�.t/�2kL2.Œ0;1��Td
�
/ �N

�.dC2/=2
1 m.Q0/

1=2
kEh1Eh2kL2avg.Q0/

(2-4)

and due to the periodicity of Ehi , i D 1; 2, one has

kEh1Eh2kL2avg.�/
D kEh1Eh2kL2avg.Q0/

: (2-5)

For a covering f�g of caps of radius 1=.�N1/, each cap � contains at most one �� 2ƒ�N1 , corresponding
to k� DN1�� 2ƒ�. Then

kEhj;�kL4avg.wQ0 /
� hj .�� /�

1

�d
O�j .k� /;

and

2Y
jD1

� X
j� jD1=.�N1/

kEhj k
2
L4avg.wQ0 /

�1=2
� ��d

2Y
jD1

�
1

�d

X
k2ƒ�

j O�j .k/j
2

�1=2
� ��dk�1kL2k�2kL2 :

For convenience of notation let

D�;N1;N2 WD

�
1=�CN2=N1 when d D 2;

N d�3
2 =�CN d�1

2 =N1 when d � 3:
(2-6)

Recall that �D Œ0; N1�2 � Œ0; .�N1/2�d ; we apply Theorem 1.3 with fj D hj , and we have

kEh1Eh2kL2avg.w�/
.� .N2/��d=2D1=2�;N1;N2

2Y
jD1

� X
j� jD1=.�N1/

kEhj;�k
2
L4avg.w�/

�1=2
: (2-7)

Note that � can be covered by Q such that fQg are finitely overlapping and each Q is a translation
of Q0. Since Ehj are periodic on x, estimate (2-7) is equivalent to

kEh1Eh2kL2avg.wQ0 /
.� .N2/��d=2D1=2�;N1;N2

2Y
jD1

� X
j� jD1=.�N1/

kEhj;�k
2
L4.wQ0 /

�1=2
: (2-8)

Plugging (2-8) into (2-4) gives

kU�.t/�1U�.t/�2kL2.Œ0;1��Td
�
/ .N

�.dC2/=2
1 �N1m.T

d
�N1

/1=2��d �.N2/
��d=2D

1=2

�;N1;N2
k�1kL2k�2kL2

� .N2/
�D

1=2

�;N1;N2
k�1kL2k�2kL2

and Theorem 1.1 follows.

The rest of the paper details the proof of Theorem 1.3.
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3. An overview of the proof of Theorem 1.3

First, we reduce the proof of Theorem 1.3 to the following proposition.

Proposition 3.1. Let �1 be a cap of radius N2=N1 supported at � with j�j � 1. Let �2 be a cap of
radius N2=N1 supported at � with j�j �N2=N1. Let fj be a function supported in �j . Then for any small
� > 0, when d D 2

kEf1Ef2kL2avg.w�/
.� .N2/��d=2

�
1

�
C
N2

N1

�1=2 2Y
jD1

� X
j� jD1=.�N1/

���j

kEfj;�k
2
L4avg.w�/

�1=2
; (3-1)

and when d � 3,

kEf1Ef2kL2avg.w�/
.� .N2/��d=2

�
N d�3
2

�
C
N d�1
2

N1

�1=2 2Y
jD1

� X
j� jD1=.�N1/

���j

kEfj;�k
2
L4avg.w�/

�1=2
: (3-2)

Now, let f1; f2 be as in Proposition 3.1. We define K0.�;N1; N2/ to be the best constant such that

kEf1Ef2kL2avg.w�/
� �d=2K0.�;N1; N2/

2Y
jD1

� X
j� jD1=.�N1/

kEfj;�k
2
L4avg.w�/

�1=2
: (3-3)

We also let zK.�;N1; N2/ and K.�;N1; N2/ be defined as the best constants such that

kEf1Ef2kL2avg.wŒ0;N2
1
��Œ0;�N1�

d /
��d=2 zK.�;N1;N2/

2Y
jD1

� X
j� jD1=.�N1/

kEfj;�k
2
L4avg.wŒ0;N2

1
��Œ0;�N1�

d /

�1=2
;

(3-4)

kEf1Ef2kL2avg.wB
N2
1

/��
d=2K.�;N1;N2/

2Y
jD1

� X
j� jD1=.�N1/

kEfj;�k
2
L4avg.wB

N2
1

/

�1=2
: (3-5)

Below we will prove that

K0.�;N1; N2/.N �
2

�
1

�
C
N2

N1

�1=2
; d D 2;

K0.�;N1; N2/.N �
2

�
N d�3
2

�
C
N d�1
2

N1

�1=2
; d � 3:

(3-6)

We point out here that by parallel decoupling, Lemma 1.9, one always has

K0.�;N1; N2/.K.�;N1; N2/;

K0.�;N1; N2/. zK.�;N1; N2/:
(3-7)

The proof of Proposition 3.1 or equivalently (3-6) proceeds as follows. We first show:
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Lemma 3.2. When ��N1,

zK.�;N1; N2/.N �
2

N
.d�1/=2
2

N
1=2
1

: (3-8)

Note that when ��N1, Proposition 3.1 follows from (3-7) and Lemma 3.2.
Then, we show:

Lemma 3.3. When ��N1,

K.�;N1; N2/.N �
2

�
1

�
C
N2

N1

�1=2
; d D 2;

K.�;N1; N2/.N �
2

�
N d�3
2

�
C
N d�1
2

N1

�1=2
; d D 3:

(3-9)

From (3-7), clearly Proposition 3.1 follows from Lemmas 3.2 and 3.3.
The proof of Lemma 3.3 in dimension d D 2 relies on induction (of scale N2). The proof of Lemma 3.3

in dimension in d � 3 is easier and more straightforward, (in some sense, it also relies on induction, but
it is enough to induct only once.)

We first show the base case:

Lemma 3.4. When ��N1 and N2 . 1, we have K.�;N1; N2/. 1=�1=2.

Lemma 3.4 is not as useful in dimension d � 3, we indeed have a better estimate:

Lemma 3.5. When d � 3, ��N1 and ��N1=N 2
2 , we have K.�;N1; N2/. .N d�3

2 =�/1=2.

We then show the following lemma, which ensures that we only need to induct until ��N1=N2, when
d D 2, and until N1=N2 when d � 3.

Lemma 3.6. Let ��N1.

Let d D 2. Assume we have K.�;N1; N2/� ��1=2 when � < N1=N2. Then

K.�;N1; N2/�N
�
2

N
.d�1/=2
2

N
1=2
1

when ��
N1

N2
:

Let d � 3. Assume we have K.�;N1; N2/� .N d�3
2 =�/1=2 when � < N1=N 2

2 . Then

K.�;N1; N2/�N
�
2

N
d�1=.2/
2

N
1=2
1

when ��
N1

N 2
2

:

Note that when d � 3, Lemmas 3.5 and 3.6 imply Lemma 3.3. In dimension d D 2, we use induction
(we rely on the so-called parabolic rescaling) to finish the proof of Lemma 3.3.

We end this section with an outline of the structure of the rest of the paper. We show that Proposition 3.1
implies Theorem 1.3 in Section 4. Lemmas 3.2, 3.4, and 3.6 all rely on the exploration of the so-called
transversality, which essentially allows us to reduce the dimensionality of the problem. We first explore
transversality in Section 5 and then we prove Lemmas 3.2, 3.4, and 3.6 in Section 6.



928 CHENJIE FAN, GIGLIOLA STAFFILANI, HONG WANG AND BOBBY WILSON

The details of the induction procedure (which is nontrivial) that is used to prove Lemma 3.3 in
dimension d D 2 are given in Section 5. We remark here the proof of Lemma 3.3 relies on Lemma 3.2.

Finally, we prove Lemma 3.5 at the end of Section 7, which, together with Lemma 3.6 will conclude
the proof of Lemma 3.3 in dimension d � 3.

4. Proposition 3.1 implies Theorem 1.3

We first introduce one standard but important tool in the following lemma.

Lemma 4.1 [Bourgain and Demeter 2015; 2017]. Let fg˛g be a family of functions such that supp Og˛
are finitely overlapped cubes of length �. Let A be bounded convex open set tiled by finitely overlapped
cubes Q of side length � ��1. Then for the wA adapted to A, the following holds:

/

Z
A

ˇ̌̌̌X
g˛

ˇ̌̌̌2
wA .

X 1

m.A/

Z
jg˛j

2wA:

Proof. Since we can sum up the weight function over a finitely overlapping cover fQg of A, that is,
wA D

P
Q�AwQ, it suffices to prove the result for ADQ. Recall by inequality (1-15), we can cover

the whole space Rn by translations Q0 of Q:

/

Z
Q

ˇ̌̌̌X
g˛

ˇ̌̌̌2
wQ dx �

1

m.Q/

X
Q0

Z
Q0
wQ.Q

0/

ˇ̌̌̌X
g˛

ˇ̌̌̌2

�
1

m.Q/

X
Q0

wQ.Q
0/

Z ˇ̌̌̌X
g˛

ˇ̌̌̌2
�2Q0

D
1

m.Q/

X
Q0

wQ.Q
0/

Z
j Og˛ � O�Q0 j

2

.
1

m.Q/

X
Q0

wQ.Q
0/
X
˛

Z
jg˛j

2�2Q0 .
1

m.Q/

X
˛

Z
jg˛j

2wQ: �

Now we can reduce Proposition 3.1 to a bilinear decoupling on two .N2=N1/-diameter caps.

Lemma 4.2. Theorem 1.3 is equivalent to Proposition 3.1.

Proof. Let f1; f2 be as in Theorem 1.3. Then f1 D
P
j� jDN2=N1

f1;� and the f1;� are supported on
finitely overlapping caps of diameter N2=N1.

Since jf2j is supported in a cap of diameter N2=N1, the supports of fbEf 1;� �bEf2g� are in finitely
overlapping cubes of length N2=N1. Since the scale of � is larger than N1=N2, i.e., it contains a ball of
radius >N1=N2, by Lemma 4.1,

/

Z
�

jEf1Ef2j
2w� dx �

X
j� jDN2=N1

ˇ̌̌̌

/

Z
�

Ef1;�Ef2

ˇ̌̌̌2
w� dx:

Now apply Proposition 3.1 for f1;� and f2 for each � ; Theorem 1.3 follows. �
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5. Transversality

Let f1; f2 be as in Proposition 3.1; then f1 is supported around .0; 0; : : : ; 0; 1; 1/ and f2 is supported
around .0; 0; : : : ; 0/. The main goal of this section is to explore the transversality between .0; 0; : : : ; 0; 1/
and .0; 0; 0; : : : ; 0/, or more precisely, the transversality between the unit normal vectors of the truncated
parabola at these two points. The main lemma in this section is Lemma 5.1 below, and Corollary 5.7
which essentially follows from Lemma 5.1.

We first introduce some basic notation. Let fe1; : : : ; ed g be the standard basis of Rd. We will encounter
caps of radius v around .0; 0; : : : ; 0/ and .0; : : : ; 0; 1; 1/ on the parabola. Note around those two points,
when v is small (which is always the case in our work), one may view those caps as their natural
projection to Rd�1. And their image is essentially a square/cap of radius v. We say that a .v; v2/-plate
is a d -dimensional rectangle with the short side on the ed�1-direction such that its image under the
orthogonal projection to Rd�1 is a .v� v� � � � � v� v2/-rectangle.

Lemma 5.1. Given j�j<1, let f1 be a function supported on a cap of radius � , centered at .0; : : : ; 0; 1; 1/
on the truncated parabola P, and let f2 be a function supported on a cap of radius � centered at
.0; : : : ; 0; 0; 0/ on the paraboloid. For a covering f�ig of suppfi with .�; �2/ plates, with the shorter
side on the ed�1-direction, we have the following decoupling inequality: for any R > ��2,Z

jEf1Ef2j
2wBR .

X
�1;�2

Z
jEf1;�1Ef2;�2 j

2wBR : (5-1)

Remark 5.2. We thank J. Ramos for pointing out that Lemma 5.1 is a particular case of Proposition 2 in
[Ramos 2016]. We still write a proof in this paper for clarity.

Proof. The proof is similar to the proof of the L4 Strichartz estimate on the one-dimensional torus. From
the inequality (1-15), we only need to prove thatZ

B 0
jEf1Ef2j

2 .
X
�1;�2

Z
jEf1;�1Ef2;�2 j

2�2B 0

for all translations B 0 of BR. NowZ
B 0
jEf1Ef2j

2
�

X
�1;�2;�3;�4

Z
B 0
Ef1;�1Ef2;�2Ef 1;�3Ef 2;�4�

2
B 0 : (5-2)

Let �i 2 �i , �i D
�
�i;1; : : : ; �i;d�1;

Pd�1
jD1 .�

j
i /
2
�
� . N�i ; �i;d�1; j N�i j

2 C .�d�1i /2/, i D 1; 2; 3; 4. We
have

j N�i j. �; i D 1; 2; 3; 4;

j�i;d�1� 1j. �; i D 1; 3;

j�i;d�1j. �; i D 2; 4:

(5-3)

Essentially, for any �1; �2; �3; �4 such thatZ
Ef1;�1Ef2;�2Ef 1;�3Ef 2;�4�

2
B 0 ¤ 0;
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one must have for some �i 2 �i ,

�1� �3 D �2� �4CO.R
�1/;

j�1j
2
� j�3j

2
D j�j22� j�j

2
4CO.R

�1/;
(5-4)

and the second formula in (5-4) implies

.�1;d�1� �3;d�1/.�1;d�1C �3;d�1/DO.j�2j
2
Cj�4j

2/CO.j N�1j
2
CjN�3j

2/CO.R�1/: (5-5)

Plugging into (5-3), one has j�1;d�1� �3;d�1j. v2, which again implies j�2;d�1� �4;d�1j. v2.
To summarize,

R
Ef1;�1Ef2;�2Ef 1;�3Ef 2;�4�

2
B 0 ¤ 0 implies the distance between �1 and �3 and

the distance between �2 and �4 are both bounded by v2, which essentially means �i D �iC2, i D 1; 2.
Applying this fact to (5-2), Lemma 5.1 follows. �

Remark 5.3. A quantitative version of estimate (5-1) can be stated as follows: assume that the support of
f1 is centered at .0; 1=K; .1=K/2/ rather than .0; 0; 1/. From the proof we can attain the same estimate
as in (5-1) by introducing an additional constant K,Z

jEf1Ef2j
2wBR .K

X
�1;�2

Z
jEf1;�1Ef2;�2 j

2wBR : (5-6)

Indeed, the proof essentially only relies on the fact that for �i 2 suppfi , i D 1; 2, the difference between
the d � 1 components is at least 1=K. Similar arguments also hold for the estimate in Lemma 5.5; see
Corollary 5.7 below.

Remark 5.4. We remark that for any ˛ < � , a function which is supported on a cap of radius ˛ can be
naturally understood as a function supported on a cap of radius � .

Lemma 5.1 facilitates the decomposition of caps of radius v into plates of size .v; v2/. We can further
decompose those into caps of radius v2.

Lemma 5.5. With the same notation as in Lemma 5.1, R � ��2, let suppfi be covered by finitely
overlapping caps �i of radius v2, i D 1; 2. ThenZ

jEf1Ef2j
2wBR . �

�.d�1/
X
j�i jD�2

Z
jEf1;�1Ef2;�2 j

2wBR : (5-7)

Proof. Clearly, we need only to prove (5-7) for every ball of radius ��2 contained in BR, and then sum
them together. (This is the same principle of parallel decoupling, Lemma 1.9.)

Fix a pair of .�; �2/ plates �1; �2:Z
jEf1;�1Ef2;�2 j

2wBR D

Z ˇ̌̌̌ X
�2��2
j�2jD�

2

Ef1;�1Ef2;�2

ˇ̌̌̌2
wBR

� ��.d�1/
X
�2��2
j�2jD�

2

jEf1;�1Ef2;�2 j
2wBR.

X
�j��j
j�j jD�

2

jEf1;�1Ef2;�2 j
2wBR : (5-8)

The last inequality follows from Lemma 4.1 and Lemma 4.2. �
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Remark 5.6. Similar to Remark 5.4, for �2 < ˛ < � , a cap of scale � naturally lies in a cap of scale
p
˛.

Thus if we let f1 be a function supported on a cap of radius ˛ centered at .0; : : : ; 0; 1; 1/ on the paraboloid,
and we let f2 be a function supported on a cap of radius ˛ centered at .0; : : : ; 0; 0; 0/ on the paraboloid,
then by arguing similar to the proof of Lemma 5.5, we have for R � ˛�1,Z

jEf1Ef2j
2wBR .

�
�

˛

�d�1 X
j�i jD˛

Z
jEf1;�1Ef2;�2 j

2wBR : (5-9)

If we directly use the Hölder inequality for all caps in the support of fi to estimate as in (5-8), then the
interpolation in the proof of Lemma 5.5 will give us a constant v�d rather than v�.d�1/ in (5-7), since
one has v�d caps for each fi . The bilinear transversality, i.e., the transversality between .0; 0; : : : ; 0/ and
.0; : : : ; 0; 1; 1/, helps in reducing the dimension by 1 since in one direction we can use L4 orthogonality,
as shown in Lemma 5.1. Thus here we are able to improve the constant in (5-7) to v�.d�1/.

Corollary 5.7. Using the same notation as in Lemma 5.1, there exists a constant C such that for any � , ı,
and R�1 � ı � � ,Z

jEf1Ef2j
2wBR .

�
�

ı

�d�1 ˇ̌̌̌ log ı
log �

ˇ̌̌̌C X
j�i jDı

Z
jEf1;�1Ef2;�2 j

2wBR :

Proof. The proof is most clear when ı D �2
n

for some n. Let us first handle this case and then go to the
general case. One may use induction. (This induction, however, does not rely on parabolic rescaling.) If
nD 0, there is nothing to prove.

Assume the result holds for the case nD k. Let us turn to the case nD kC 1, where ı D v2
kC1

, and
so ı1=2 D v2

k

; thus by the induction assumption, we haveZ
jEf1Ef2j

2wBR .
�
�

ı1=2

�d�1
2Ck

X
j�i jDı1=2

Z
jEf1;�1Ef2;�2 j

2wBR : (5-10)

Now note that R � .ı�1=2/2. By Lemma 5.5, we have for each pair .�1; �2/ in (5-10) thatZ
jEf1;�1Ef2;�2 j

2wBR . .ı
1=2/�.d�1/

X
�i��i
j�i jDı

Z
jEf1;�1Ef2;�2 j

2wBR : (5-11)

The case nD kC 1 clearly follows if one plugs (5-11) into (5-10), taking the constant C large enough.
Now we turn to the general case. We only need to work on the case �2

nC1

< ı < �2
n

. Recall that
previously, when ı D �2

n

, we used induction as �! v2! �2
2

! � � � ! �2
n

D ı, and in each step we
used Lemma 5.5 to finish the induction �2

k

! �2
kC1

.
In the case �2

nC1

< ı < �2
n

we have �2
n

< ı1=2, and we use induction as before for � ! �2 !

�2
2

! � � � ! �2
n

, and we use (5-9) to use induction again from �2
n

to ı. This ends the proof. �

6. Proofs of Lemmas 3.2, 3.4 and 3.6

We are now prepared to use transversality to prove Lemmas 3.2, 3.4, and 3.6. Recall Lemma 3.2 concerns
zK.�;N1; N2/ defined in (3-4). Furthermore, Lemmas 3.4 and 3.6 refer to K.�;N1; N2/ defined in (3-5).
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6A. Proof of Lemma 3.2. For convenience of notation, we let �1 WD Œ0; N 2
1 �� Œ0; �N1�

d. Note that one
can use finite overlapped balls of radius N 2

1 to cover �1 since ��N1. We want to prove

kEf1Ef2kL2avg.!�1 /
.� �d=2N �

2

N d�1
2

N1

2Y
jD1

� X
j� jD1=.�N1/

kEfj;�k
2
L4avg.w�1 /

�1=2
: (6-1)

We first apply Corollary 5.7 with ı DN�21 , � DN2=N1, RDN 2
1 . Note that ı � v. Then we haveZ

jEf1Ef2j
2wB

N2
1

. .N1N2/d�1
ˇ̌̌̌

logN1
logN1� logN2

ˇ̌̌̌C X
j�j jD1=N

2
1

Z
jEf1;�1Ef2;�2 j

2wB
N2
1

. .N1N2/d�1N �
2

X
j�j jD1=N

2
1

2Y
jD1

kEfj;�j k
2
L4.wB

N2
1

/
: (6-2)

Remark 6.1. We avoid the case when N1 DN2, and thus lnN1� lnN2 D 0, by first decomposing caps
of diameter N2=N1 into caps of diameter N2=.2N1/ with loss of a fixed constant, then continuing with
the proof as above. In all of what follows, one may assume, without loss of generality, that N1 � 2N2.

Via the principle of parallel decoupling, Lemma 1.9, or by summing different BN 21 together, we haveZ
jEf1Ef2j

2w�1 . .N1N2/
d�1N �

2

X
j�j jD1=N

2
1

2Y
jD1

kEfj;�j k
2
L4.w�1/

: (6-3)

Next we would like to show that

kEfj;�j k
2
L4.w�1 /

�

�
�

N1

�d=2 X
� 0
j
��j

j� 0
j
jD1=.�N1/

kEfj;� 0
j
k
2
L4.w�1 /

: (6-4)

It suffices to show

kEfj;�j k
2
L4avg.�1/

�

�
�

N1

�d=2 X
� 0
j
��j

j� 0
j
jD1=.�N1/

kEfj;� 0
j
k
2
L4avg.w�1 /

and sum up as in Lemma 4.1.
Each function Efj;� 0

j
is Fourier-supported in � 0j , in particular, Fourier-supported in a cylinder of

radius 1=.�N1/, height 1=N 2
1 , and �1 is tiled by cylinders of radius �N1, height N 2

1 in the t-direction.
The proof of Lemma 4.1 works the same:

kEfj;�j k
2
L2avg.�1/

.
X
� 0
j
��j

j� 0
j
jD1=.�N1/

kEfj;� 0
j
k
2
L2avg.wBR /

.
X
� 0
j
��j

j� 0
j
jD1=.�N1/

kEfj;� 0
j
k
2
L4avg.wBR /

:
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For the L1-estimate, we apply the Cauchy–Schwarz inequality:

kEfj;�j k
2
L1.�1/

�

�
�

N1

�d X
� 0
j
��j

j� 0
j
jD1=.�N1/

kEfj;� 0
j
k
2
L1.�1/

.
�
�

N1

�d X
� 0
j
��j

j� 0
j
jD1=.�N1/

kEfj;� 0
j
k
2
L4avg.w�1 /

:

The last inequality is an application of Lemma 1.10. Note f� 0
j

is supported in a ball of scale 1=.�N1/,
and inside a box C of size .1=N 2

1 /� .1=.�N1//� � � �� .1=.�N1//. We can make a affine transform of C
into a cube Q� of scale �N1 , which on the physical side would transform �1 into a cube of scale �N1.
We apply Lemma 1.10 after the affine transformation and then transform back. (Note in that setting, cube
is no different than a ball.)

We apply Hölder’s inequality to conclude the argument.

6B. Proof of Lemma 3.4. Let ��N1. We first note that we can use finitely overlapping balls B�N1 to
cover � and that N2 . 1. Applying Corollary 5.7 with ı D 1=.�N1/ and � DN2=N1 we haveZ

jEf1Ef2j
2wB�N1 . .�N2/

d�1

ˇ̌̌̌
log�C logN1

logN1� logN2

ˇ̌̌̌C X
j�j jD1=.�N1/

Z
jEf1;�1Ef2;�2 j

2wB�N1

. .�N2/d�1N �
2

X
j�j jD1=.�N1/

2Y
jD1

kEfj;�j k
2
L4.wB�N1

/
:

With parallel decoupling, Lemma 1.9, the desired estimate follows. (As remarked in Remark 6.1, one can
assume N1 � 2N2.)

6C. Proof of Lemma 3.6. Let ��N1.
We have the following two cases:

� Case 1: d D 2, N1 � ��N1=N2, and N 02 D .N1=�/.

� Case 2: d � 3, N1 � ��N1=N 2
2 , and N 02 D .N1=�/

1=2.

It is easy to check that we only need to show

K.�;N1; N2/.K.�;N1; N 02/
�
N1

N 02

N2

N1

�.d�1/=2
: (6-5)

We claim that

kEf1Ef2kL4avg.wB
N2
1

/ .
�
N1

N 02

N2

N1

�.d�1/=2 2Y
jD1

� X
j� jDN 02=.N1/

kEfj;�k
2
L4avg.wB

N2
1

/

�1=2
: (6-6)

Since ��N1, we cover BN 21 with balls of radius �N1. Thus by parallel decoupling, to prove (6-6), we
only need to show

kEf1Ef2kL4avg.wB�N1
/ .

�
N1

N 02

N2

N1

�.d�1/=2 2Y
jD1

� X
j� jD1=.�N1/

kEfj;�k
2
L4avg.wB�N1

/

�1=2
: (6-7)
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Note that since �N1 � N1=N 02, estimate (6-7) follows from Corollary 5.7 by setting ı D N2=N1,
� DN 02=N1 via interpolation and local constant arguments as in Section 6A.

By the definition of K.�;N1; N2/, we have that for any �1; �2 in (6-7),

kEf1;�1Ef2;�2kL4avg.wB�N1
/ . �d=2K.�;N1; N 02/

2Y
jD1

� X
j� 0
j
jD1=.�N1/

�j��j

kEfj;� 0
j
k
2
L4avg.w�/

�1=2
: (6-8)

Plugging (6-8) into (6-7), clearly (6-5) follows.

7. Induction procedure and proof of Lemma 3.3

To conclude the proof of Proposition 3.1, we are left with the proof of Lemma 3.3. For this lemma the
proof relies on induction on N2. The base case N2 . 1 is resolved by Lemma 3.4, and by Lemma 3.6 we
need only to induct until �D .N2/d�1=N1.

Let f1; f2 be as in Lemma 3.3. Applying Lemma 5.1, taking v D N1=N2 and R D N 2
1 , we can

decouple the N2=N1 caps into .N2=N1; N 2
2 =N

2
1 / plates without any loss; i.e.,Z

jEf1Ef2j
2wB

N2
1

.
X
�1;�2

Z
jEf1;�1Ef2;�2 j

2wB2N1
: (7-1)

Here �i are plates as described in Lemma 5.1. We focus on the case when d D 2 in R3; the high-
dimensional case will be explained in the end. When d D 2, the underlying plates become strips. We
start with some preparation before the induction.

7A. Preliminary preparation for the induction. We fix a pair of .N2=N1; N 2
2 =N

2
1 / strips �1; �2 from

estimate (7-1). We decompose �j into a union of .N2=.KN1//� .N 2
2 =N

2
1 / strips fsj g.

Using the notation “nonadj” short for nonadjacent, and “adj” short for adjacent, we have

jEf�j j
2
D

X
sj

jEfsj j
2
C

X
sj ;s
0
j

adj

jEfsjEfs0j
jC

X
sj ;s
0
j

nonadj

jEfsjEfs0j
j

� 10
X
sj

jEfsj j
2
C

X
sj ;s
0
j

nonadj

jEfsjEfs0j
j D Ij;1C Ij;2 (7-2)

andZ
jEf�1Ef�2 j

2wB
N2
1

�

Z ˇ̌
.Ef 2�1�I1;1/.Ef

2
�2
�I2;1/

ˇ̌
CEf 2�1I2;1CEf

2
�2
I1;1CI1;1I2;1wB

N2
1

.
X

sj ;s
0
j

nonadj

Z
jEfs1Efs01

Efs2Efs02
jwB

N2
1

C

X
s1;s2

Z
jEfs1Efs2 j

2wB
N2
1

: (7-3)

The last inequality follows from Lemmas 4.1 and 4.2.
The reason why we want to have nonadjacent parts is that we would like transversality (after rescaling)

on the other direction. Formula (7-3) will the starting point of our induction.
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For the second term in (7-3), we will later directly use induction (not relying on parallel rescaling) on
N2 and reduce everything to the known base case N2 D 1.

For the first term, using Cauchy–SchwarzZ
jEfs1Efs01

Efs2Efs02
jwB

N2
1

�

�Z
jEfs1Efs01

j
2wB

N2
1

�1=2�Z
jEfs2Efs02

j
2wB

N2
1

�1=2
: (7-4)

We point out here that in what follows we do not rely on the bilinear transversality between s1 and s2
(or s1 and s02), which is already handled in Lemma 5.1. Instead we will rely on the bilinear transversality
between s1 and s01 (or s2; s02), since they are not adjacent. This transversality is most clear when one
applies parabolic rescaling.

Let us now turn to the term
R
jEfs2Efs02

j2w�, when s2; s02 are nonadjacent. The term with s1; s01 is
handled similarly, though one may need to rotate the coordinates.

Finally we point out here that K will be chosen large later and any (fixed) power of K will not impact
the final estimate. In particular, in the following estimates we will not worry about losing powers of K.

Without loss of generality, we assume

� s2 is the strip f.a1; a2; a21C a
2
2/ W ja1j �N

2
2 =N

2
1 ; ja2j �N2=KN1g,

� s02 is the strip f.b1; b2; b21 C b
2
2/ W jb1j �N

2
2 =N

2
1 ; jb2�CN2=KN1j �N2=KN1g, C � 10. (Here

10 is of course just some universal constant.)

7B. Parabolic rescaling. The next step, parabolic scaling, is standard in decoupling-type results; we
give the details here for the convenience of the reader.

Note s2; s02 lie on the same N2=N1 cap. We rescale the N2=N1 cap to radius 1. By a slight abuse of
notation, we regard fsi as a function depending only on two variables .�i;1; �i;2/. For convenience of
notation, we let h1 D fs2 , h2 D fs02 . Let also gi .�i;1; �i;2/ WD hi

�
.N2=N1/�i;1; .N2=N1/�i;2

�
.

Now

� g1 is supported in the strip f.a1; a2; a21C a
2
2/ W ja1j �N2=N1; ja2j � 1=Kg,

� g2 is supported in the strip f.b1; b2; b21 C b
2
2/ W jb1j �N2=N1; jb2�C=Kj � 1=Kg, C � 10.

Note g1, g2 are supported on a pair of transverse .N2=N1/� 1 strips1 due to the nonadjacency of s2; s02.
We point out here the transversality between g1; g2 is not as in the assumption of Lemma 5.1, but it is in
the sense of Remark 5.3, which usually causes a loss of K in the estimate, but this does not matter.

The parabolic scaling says the following:

Claim 7.1. Let

Egi .y1; y2; y3/DEhi ..N1=N2/y1; .N1=N2/y2; .N
2
1 =N

2
2 /y3/;

let D be domain in R3 and let

zD WD f.y1; y2; y3/ W .N1=N2/y1; .N1=N2/y2; .N
2
1 =N

2
2 /y3 2Dg:

1Strictly speaking, we need them to support on a pair of .N2=N1/� .1=100/ strips; we neglect this technical point here.
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Then it follows from a standard change of variables technique that the following two estimates, with the
same constant A, are equivalent:

kEh1Eh2kL2avg.wD/
. A

2Y
jD1

� X
j� jD1=.�N1/

kEfsj ;�k
2
L4avg.wD/

�1=2
; (7-5)

kEg1Eg2kL2avg.w zD/
. A

2Y
jD1

� X
j Q� jD1=.�N2/

kEg
j; Q�
k
2
L4avg.w zD/

�1=2
: (7-6)

We then concentrate on (7-6).
Take D D BN 21 ; then zD D Œ0; N 2

2 �� Œ0; N1N2�
2. (Here, without loss of generality, we regard BN 21 as

Œ0; N 2
1 �
3.) For convenience of notation, we set z�D Œ0; N 2

2 �� Œ0; N1N2�
2. The parabolic rescaling gives:

Lemma 7.2. Assume g1; g2 are two general functions defined on the parabola. Let g1 be supported in
a strip of size .N2=N1/� 1 around .0; 0; 0/, and g2 be supported in a strip of size .N2=N1/� 1 around
.0; 1; 1/. If for some constant A, one has (for all such g1; g2)

kEg1Eg2kL2avg.wz�/
. A

� X
j Q� jD1=.�N2/

kEg
j; Q�
k
2
L4avg.wy�/

�1=2
; (7-7)

then for the same constant A, one has

kEfs2Efs02
kL2avg.wB

N2
1

/

.KCA
� X
j� jD1=.�N1/

kEfs2;�k
2
L4avg.wB

N2
1

/

�1=2� X
j� jD1=.�N1/

kEfs02;�
k
2
L4avg.wB

N2
1

/

�1=2
: (7-8)

Remark 7.3. After rescaling, the relevant g1; g2 should be supported around .0; 0; 0/ and .0; 1=K; 1=K2/
rather than .0; 0; 0/ and .0; 0; 1/. We state our lemma for g1; g2 supported around .0; 0; 0/ and .0; 1; 1/
to be consistent with the statement in Lemma 5.1. This causes a loss of KC, but we emphasize again that
any loss due to a power of K would be irrelevant in the proof.

We end this section by introducing some notation.
Let g1; g2 be as in Lemma 7.2. We define A.�;N1; N2/ to be the best constant such that

kEg1Eg2kL2avg.wz�/
. A.�;N1; N2/

� X
j Q� jD1=.�N2/

kEg
j; Q�
k
2
L4avg.wy�/

�1=2
: (7-9)

Then we can restate Lemma 7.2.

Lemma 7.4. For j D 1; 2, we have

kEfsjEfs0j
kL2avg.wB

N2
1

/

.KCA.�;N1; N2/
� X
j� jD1=.�N1/

kEfsj ;�k
2
L4avg.wB

N2
1

/

�1=2� X
j� jD1=.�N1/

kEfs0
j
;�k

2
L4avg.wB

N2
1

/

�1=2
: (7-10)
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7C. The induction procedure.

7C1. Before induction. Now we are ready to start the induction for the proof of Lemma 3.3. We emphasize
here the induction is on N2 (though mixed with induction on K). Note we are now in dimension d D 2.

We need to show that for all 1�N2 �N1 and ��N1, one has

K.�;N1; N2/.N �
2

�
1

�
C
N2

N1

�1=2
:

Note the base case N2 D 1 is already established in Lemma 3.4. And with Lemma 3.6, we need only to
perform induction until �DN2=N1.

We will work on A.�;N1; N2/ defined in (7-9) to explore the transversality between nonadjacent
strips. The induction process is two-fold in some sense. We will induct on N2 to better understand
K.�;N1; N2/. In turn we find more information about A.�;N1; N2/, which gives a better understanding
of K.�;N1; N2/.

This is a final summary before we start the induction. Recall, we have (7-1) and (7-3); thus we haveZ
jEf1Ef2j

2wB
N2
1

.
Z X
sj ;s
0

j
nonadj

Z
jEfs1Efs01

Efs2Efs02
jwB

N2
1

C

Z
s1;s2

Z
jEfs1Efs2 jwBN2

1

: (7-11)

Also recall that s1; s01; s2; s
0
2 are all .N2=N1/2�.N2=KN1/ strips. The second term can be easily handled

by direct induction, (which is not the main point of the induction procedure explained later). Indeed, if
there were only the second term in (7-11), since s1; s2 are both contained in caps of radius .N2=KN1/,
then (7-11) already reduces the decoupling problem for fi supported in caps of size N2=N1 into the
decoupling problem for fi supported in caps of size N2=KN1, which reduce N2 to N2=K.

We will focus on the first term of (7-11). The Hölder inequality givesZ
jEfs1Efs01

Efs2Efs02
jwB

N2
1

�

2Y
jD1

�Z
jEfsjEfs0j

j
2wB

N2
1

�1=2
: (7-12)

Estimate (7-12) is the starting point of the analysis in the following subsections.
We summarize in the lemma below how (7-12) and (7-11) come together to highlight the relevance of

A.N1; N2; �/ in the induction procedure.

Lemma 7.5. When ��N1=N2 and ��N1, we have

K.N1; N2; �/.KC
1

�
A.N1; N2; �/CK.N1; N2=K; �/: (7-13)

Note that the assumption of Lemma 7.5 always holds during the induction procedure to prove
Lemma 3.3.

Proof of Lemma 7.5. Applying Lemma 7.4, we have

kEfsjEfs0j
kL2avg.wB

N2
1

/

.KCA.N1; N2; �/
� X
j� jD1=.�N1/

kEfsj ;�k
2
L4avg.wB

N2
1

/

�1=2� X
j� jD1=.�N1/

kEfs0
j
;�k

2
L4avg.wB

N2
1

/

�1=2
: (7-14)
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Plugging (7-14) into (7-12), and then plugging into (7-11), we derive

kEf1Ef2jkl2.wB
N2
1

/.KC�
�
1

�

�1=2 2Y
iD1

� X
j� jD1=.�N1/

kEfi;�k
2
L4avg.wB

N2
1

/

�1=2
C

� X
j� jDN2=.�KN1/

kEfi;�k
2
L4avg.wB

N2
1

/

�1=2
:

(7-15)

Thus we derive

�K.N1; N2; �/.KCA.N1; N2; �/C�K.N1; N2=K; �/: (7-16)

Therefore, Lemma 7.5 follows. �

Now we are ready to start with the induction procedure on N2. We emphasize again that by Lemma 3.6
we only need to consider the case ��N1=N2.

7C2. First induction: Case N 2
2 �N1. It will become clear in the following proof why we choose the

first splitting point at N1 DN 2
2 . We start with an estimate for A.�;N1; N2/. We have:

Lemma 7.6. When N2 �N 2
1 , ��N1, ��N1=N2,

A.�;N1; N2/. �1=2 � ���1=2: (7-17)

Assuming Lemma 7.6 for the moment, let us finish the proof of Lemma 3.3 when N1 �N 2
2 . Applying

Lemma 7.6 with Lemma 7.5, we derive

K.N1; N2; �/.KC�
�
1

�

�1=2
CK.N1; N2=K; �/ (7-18)

when N1 � N 2
2 and � � N1=N2. Choosing 1� K � N �10

2 , performing induction on N2 again, and
recalling that the case N2 . 1 is covered by Lemma 3.4, we have Lemma 3.3 follows when N1 �N 2

2 .

Now, we turn to the proof of Lemma 7.6.

Proof of Lemma 7.6. Since N1 � N 2
2 , we have N2=N1 � 1=N2. (It is exactly because of this that we

decided our first splitting point N1 �N 2
2 ). Thus, the support of g1; g2 appearing in (7-9) is (contained

in) strips of size .1=N2/� 1. Thus, in a ball of radius N 2
2 , we haveZ

jEg1Eg2jwB
N2
2

.
X

j�i jD1=N2
�i�suppgi

Z
jEg1;�1Eg2;�2 jwBN2

2

: (7-19)

The proof of (7-19) is essentially the same as the proof of Lemma 5.1 and we leave it to reader.
Note one can use balls BN 22 to cover z� WD Œ0; N 2

2 �� Œ0; N1N2�
2 (since N1 � N2), thus we extend

(7-19) to Z
jEg1Eg2jwz� .

X
j�i jD1=N2
�i�suppgi

Z
jEg1;�1Eg2;�2 jwz�: (7-20)
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We claim for any fixed �1; �2, one has

kEg1;�1Eg2;�2kL2.wz�/
. ���1=2

2Y
iD1

� X
Q�i��i

k Q�iD1=.�N2/k

kEg
i; Q�i
kL4.wz�/

�1=2
: (7-21)

Plugging (7-21) into (7-20), we have

A.N1; N2; �/. �
�
1

�

�1=2
; (7-22)

and then Lemma 7.6 follows.
Now we are left with the proof of (7-21). Let N 01 D N2, N 02 D N

2
2 =N1 . 1. When N 01 D N2 � �,

recall the definition of zK.�;N1; N2/ in (3-4) and apply Lemma 3.2. Then we have

K.N 01; N
0
2; �/. .N

0
2/
�

�
N 02
N 01

�1=2
.
�
1

�
C
N2

N1

�1=2
. ��1=2: (7-23)

The last inequality in (7-23) follows because we always have ��N1=N2 in the whole induction process.
Note (7-23) implies

kEg1;�1Eg2;�2kL2.w
Œ0;N2

2
��Œ0;�N2�

2 /

. � zK.N 01; N
0
2; �/

2Y
iD1

� X
Q�i��i

k Q�iD1=.�N2/k

kEg
i; Q�i
kL4.w

Œ0;N2
2
��Œ0;�N2�

2 /

�1=2
: (7-24)

Since ��N1, (which is also always the case during the induction process ), z� can be covered by the
translations of Œ0; N 2

2 �� Œ0; �N2�; thus (7-24) implies (7-21) by parallel decoupling, Lemma 1.9.
When ��N 01, since N 02 . 1, by Lemma 3.4, we have

K.�;N 01; N
0
2/. �

�1=2: (7-25)

Thus,

kEg1;�1Eg2;�2kL2.wB
N2
2

/ . ���1=2
2Y
iD1

� X
Q�i��i

k Q�iD1=.�N2/k

kEg
i; Q�i
kL4.wB

N2
2

/

�1=2
: (7-26)

Since one can use BN 22 and its translations to cover z�, (7-26) implies (7-21) by parallel decoupling,
Lemma 1.9. �

7C3. Second induction: Case N 3=2
2 �N1 �N

2
2 .

Lemma 7.7. When N 3=2
2 �N1 �N

2
2 , ��N1 and ��N1=N2, we have

A.�;N1; N2/. �1=2 � ���1=2: (7-27)

Clearly, using Lemma 7.5 and arguing as in Section 7C2, Lemma 3.3 follows from Lemma 7.7 when
N
3=2
2 �N1 �N

2
2 .
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Now we are left with proof of Lemma 7.7, i.e., the estimate (7-27). We will prove that estimate (7-27), in
the caseN 3=2

2 �N1�N
2
2 , follows from the fact that Lemma 3.3 holds whenN 2

2 �N1 (given Lemma 3.2).

Proof of Lemma 7.7. The proof starts similarly to the proof of Lemma 7.6; note now we have N2=N1 �
1=N2. As we derived in (7-19), we have in a ball of radius N 2

1 =N
2
2 ,Z

jEg1Eg2jwB
.N1=N2/

2
.

X
j�i jDN2=N1
�i�suppgi

Z
jEg1;�1Eg2;�2 jwB.N1=N2/2

: (7-28)

Note one can use B.N1=N2/2 and its translations to cover z�; thus we haveZ
jEg1Eg2jwz� .

X
j�i jDN2=N1
�i�suppgi

Z
jEg1;�1Eg2;�2 jwz�: (7-29)

The following procedure is essentially the same as in the first induction. Note that to prove (7-27) we
only need to further show that for fixed �1; �2,

kEg1;�1Eg2;�2kL2.wz�/
. ���1=2

2Y
iD1

� X
Q�i��i

j Q�i jD1=.�N2/

kEg
i; Q�i
kL4.wz�/

�1=2
; (7-30)

where now j�i j DN2=N1.
Let N 01DN2 and N 02DN

2
2 =N1; note we have N 01 � .N

0
2/
2 since N1 �N

3=2
2 . When ��N 01, we have

by Lemma 3.2
kEg1;�1Eg2;�2kL2.w

Œ0;N2
2
��Œ0;�N2�

2 /

. �
�
N 02
N 01

��1=2 2Y
iD1

� X
Q�i��i

j Q�i jD1=.�N2/

kEg
i; Q�i
kL4.w

Œ0;N2��Œ0;�N2�
2 /

�1=2
: (7-31)

Since one can use Œ0; N 2
2 � � Œ0; �N2�

2 to cover z�, (7-30) follows from (7-31) (note that N 02=N
0
1 D

N2=N1 � �
�1).

When ��N 01, since one can use BN 22 to cover z�, to prove (7-30), we need only show

kEg1;�1Eg2;�2kL2.wB
N2
2

/ . ���1=2
2Y
iD1

� X
Q�i��i

k Q�iD1=.�N2/k

kEg
i; Q�i
kL4.wB

N2
2

/

�1=2
; (7-32)

which is equivalent to K.N 01; N
0
2; �/ � 1=�. But recall that N 01 � .N

0
2/
2, thus this is exactly what we

proved in first induction; i.e., Lemma 3.3 holds when N1 �N 2
2 . �

7C4. Later inductions and the conclusion of the induction process. Recall that the first induction covers
the case N1 �N 2

2 and the second inductions covers the case N ˛
2 �N1 �N

2
2 , ˛D 3

2
. The goal now is to

use induction to cover the case N ˛
2 �N1, all the way to ˛ D 1. The arguments here are similar to those

for the second induction presented in Section 7C3. Let N 01 DN2, N 02 DN
2
2 =N1; then N 01 � .N

0
2/
˛ is

equivalent to N1 �N
.2˛�1/=˛
2 . Once we show that Lemma 3.3 holds when N ˛

2 �N1 �N
2
2 , we will be
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able to extend Lemma 7.7 to the case when N .2˛�1/=˛
2 �N1, which in turn proves that Lemma 3.3 holds

when N .2˛�1/=˛
2 �N1 �N

2
2 . The induction would not end until ˛D 1. We finally point out that only an

induction with finite steps is involved.
To show Lemma 3.3 for a fixed �0, we may pick an Q�� �0, and then perform the induction for Q� as above.
After we prove Lemma 3.3 for N1 � N 1CQ�

2 , we are left with the case N1 � N 1CQ�
2 . We first use the

Hölder inequality to shrink the size of the cap from N2=N1 to N 1�2Q�
2 =N1, which only gives a loss of

NC Q�
2 �N

�0
2 . Then we use Lemma 3.3 in the case N1 �N 1CQ�

2 again.
Thus, Lemma 3.3 holds for all the cases for our fixed �0.

7D. The high-dimension case. To handle the case d � 3, we are left with the proof of Lemma 3.5. The
proof is indeed similar to previous arguments in this section and easier. The proof relies on the linear
decoupling estimate in [Bourgain and Demeter 2015].

As mentioned earlier, applying Lemma 5.1, taking v D N2=N1 and R D N 2
1 , we can decouple the

N2=N1 caps into .N2=N1; N 2
2 =N

2
1 / plates without any loss, i.e., (7-1). However, since we are in the case

��N1=N
2
2 , indeed N 2

2 =N
2
1 . 1=.�N1/, we only need a weaker version of (7-1); i.e., we only want to

decouple the N2=N1 caps into .N2=N1; 1=.�N1// plates:Z
jEf1Ef2j

2wB
N2
1

.
X
�1;�2

Z
jEf1;�1Ef2;�2 j

2wB2N1
: (7-33)

Here �i are .N2=N1; 1=.�N1// plates as described in Lemma 5.1. Note (7-33) follows from (7-1).
Now, for each �i fixed, we further decouple �i into .1=N1; 1=.�N1// plates via linear decoupling in

[Bourgain and Demeter 2015], here recalled in (1-11). Note direct application of linear decoupling in
dimension d gives us

kEf�ikL4.wB
N2
1

/ .N �
2 .N

2
2 /
d=4�.dC2/=8

� X
vi��i

kEfvik
2
L4.wB

N2
1

/

�1=2
: (7-34)

However, we are able to use (1-11) when the dimension is d � 1 rather than d , because our plates
are so thin (of scale 1=.�N1/ � 1=N1), which reduces the dimension by 1. Indeed, linear decoupling
(1-11) not only works for those functions which are exactly supported in parabola P but also those which
are supported in an N�21 neighborhood of P. This is consistent with the uncertainty principle, since in
physical space we are of scale N 2

1 , and in frequency space any scale of N�21 cannot be differentiated.
Since our plates are so thin, of scale 1=.�N1/�N�21 , one could indeed view them as N�21 neighborhoods
of some .d�1/-dimensional parabola. To be more specific, use �2 as example, since �2 is supported at
the origin. Let ��1t .�2/ be the pull back image of �2 to the paraboloid. The Fourier inverse transform of
Ef�2 is supported on ��1t .�2/. One can see that if we project along the x1-axis, the projection image of
��1t .�2/ is the .1=.�N1//2-neighborhood of a .d�1/-dimensional paraboloid (a piece of lengthN2=N1).

Now, applying .d�1/-dimensional linear decoupling, we improve (7-34) into

kEf�ikL4.wB
N2
1

/ .N �
2 .N

2
2 /
.d�1/=4�.dC1/=8

� X
vi��i

kEfvik
2
L4.wB

N2
1

/

�1=2
; (7-35)

where vi are .1=N1; 1=.�N1// plates.
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Finally, similarly to the derivation of (6-4), we decouple vi into caps of radius 1=.�N1/,

kEfvik
4
L4.wB

N2
1

/
. �.d�1/

� X
�i�vi

kEf�ik
2
L4.wB

N2
1

/

�2
: (7-36)

We remark that each vi can be covered by �d�1 rather than �d caps of radius 1=.�N1/. Plugging (7-36)
into (7-35), then plugging it into (7-33), we derive

kEf1Ef2kL2avg.wB
N2
1

/ � �
d�1=2N

.d�3/=2
2

2Y
jD1

� X
j� jD1=.�N1/

kEfj;�k
2
L4avg.wB

N2
1

/

�1=2
: (7-37)

Thus, the desired estimate for K.�;N1; N2/ follows.

Appendix: Sharpness of Theorems 1.1 and 1.3

The sharpness (up to N �
2 ) of Theorem 1.3 is provided by the following examples. One can also rescale

those examples to show the sharpness of Theorem 1.1.
We take

Ef1 D
X

�2ƒ�N1
j�j�N2=N1

e2�i.��xCj�j
2t/

and f2 D f1. � � .1; 0; : : : ; 0//. Then jEf1j is about .�N2/d at B.0;N1=N2/ in RdC1. Note that it
follows from the uncertainty principle that it is locally constant in any ball of size N1=N2 and one can
easily compute jEf1.0/j � .�N2/d. Also note jEf1j has periodicity around �N1 in all components of x
(not necessarily in t ). The same is true for jEf2j. Thus,

kEf1Ef2k
2
L2.w�/

& .�N2/4d
ˇ̌̌̌
B

�
0;
N1

N2

�ˇ̌̌̌
.�N1/

d & �5dN 2dC1
1 N 3d�1

2 :

Each cap �j of radius 1=.�N1/ contains at most one point � 2ƒ�N1 . Hence kEfj;�j k
4
L4.w�/

. j�j D
N 2
1 .�N1/

2d :

…2jD1

� X
j�j jD1=.�N1/

kEfj;�j k
2
L4.w�/

�
. .�N2/2dN 2

1 .�N1/
2d . �4dN 2dC2

1 N 2d
2 :

This example shows that the term with N d�1
2 =N1 is sharp for both d D 2 and d � 3.

When d D 2, we consider the example when

Ef1 D
X

�2ƒ�N1
�1D1; j�2j�1=N1

e2�i.��xCj�j
2t/; Ef2 D

X
�2ƒ�N1

�1D0 j�2j�1=N1

e2�i.��xCj�j
2t/:

jEf1j is about � in the box of height N 2
1 (i.e., the t-direction), width N1 (i.e., the-x2 direction) and

length .�N1/2 (i.e., the x1-direction) centered at origin. jEf2j is the same size in the same box. Moreover,
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Ef1 and Ef2 both have periodicity around �N1 in x2:

kEf1Ef2k
2
L2.w�/

& �4N 2
1 �N1 � .�N1/

2
��N1 & �7N 6

1 :

As calculated previously, kEfj;�j k
4
L4.w�/

D j�j, so

…2jD1

� X
j�j jD1=.�N1/

kEfj;�j k
2
L4.w�/

�
. �2 � j�j. �6N 6

1 :

This example shows that when d D 2, the term with 1=� is sharp.
When d � 3, we consider the example with

Ef1 D
X

�2ƒ�N1 ; �1D1

j.�2;:::;�d /j�N2=N1

e2�i.��xCj�j
2t/; Ef2 D

X
�2ƒ�N1 ; �1D0

j.�2;:::;�d /j�N2=N1

e2�i.��xCj�j
2t/:

Notice that we construct the example in d � 3 differently; the support of fj is in a thin plate of radius
N2=N1 instead of 1=N1, as in two-dimensional example.
jEf1j is about .�N2/d�1 in a box of size .N1=N2/� � � � � .N1=N2/� .N1=N2/2 � .�N1/2. jEf2j

is about .�N2/d�1 in the same box. Both Ef1 and Ef2 have periodicity around �N1 in the x2-, . . . ,
xd -directions:

kEf1Ef2k
2
L2.w�/

& .�N1/4.d�1/
�
N1

N2

�dC1
.�N1/

2.�N1/
d�1 & �5d�3N 2dC2

1 N 3d�5
2

and

…2jD1

� X
j�j jD1=.�N1/

kEfj;�j k
2
L4.w�/

�
. .�N2/2.d�1/ � j�j. �4d�2N 2dC2

1 N 2d�2
2

This example shows that when d � 3, the term with N d�3
2 =� is sharp.
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