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We provide a quantitative study of nonnegative solutions to nonlinear diffusion equations of porous medium-
type of the form ∂t u+Lum

= 0, m > 1, where the operator L belongs to a general class of linear operators,
and the equation is posed in a bounded domain�⊂RN. As possible operators we include the three most com-
mon definitions of the fractional Laplacian in a bounded domain with zero Dirichlet conditions, and also a
number of other nonlocal versions. In particular, L can be a fractional power of a uniformly elliptic operator
with C1 coefficients. Since the nonlinearity is given by um with m > 1, the equation is degenerate parabolic.

The basic well-posedness theory for this class of equations was recently developed by Bonforte and
Vázquez (2015, 2016). Here we address the regularity theory: decay and positivity, boundary behavior, Har-
nack inequalities, interior and boundary regularity, and asymptotic behavior. All this is done in a quantitative
way, based on sharp a priori estimates. Although our focus is on the fractional models, our results cover
also the local case when L is a uniformly elliptic operator, and provide new estimates even in this setting.

A surprising aspect discovered in this paper is the possible presence of nonmatching powers for the
long-time boundary behavior. More precisely, when L = (−1)s is a spectral power of the Dirichlet
Laplacian inside a smooth domain, we can prove that
• when 2s > 1− 1/m, for large times all solutions behave as dist1/m near the boundary;
• when 2s ≤ 1− 1/m, different solutions may exhibit different boundary behavior.

This unexpected phenomenon is a completely new feature of the nonlocal nonlinear structure of this model,
and it is not present in the semilinear elliptic equation Lum

= u.
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1. Introduction

In this paper we address the question of obtaining a priori estimates, positivity, boundary behavior,
Harnack inequalities, and regularity for a suitable class of weak solutions of nonlinear nonlocal diffusion
equations of the form

∂t u+LF(u)= 0 posed in Q = (0,∞)×�, (1-1)

where �⊂ RN is a bounded domain with C1,1 boundary, N ≥ 2,1 and L is a linear operator representing
diffusion of local or nonlocal type, the prototype example being the fractional Laplacian (the class of
admissible operators will be precisely described below). Although our arguments hold for a rather general
class of nonlinearities F : R→ R, for the sake of simplicity we shall focus on the model case F(u)= um

with m > 1.
The use of nonlocal operators in diffusion equations reflects the need to model the presence of long-

distance effects not included in evolution driven by the Laplace operator, and this is well documented in
the literature. The physical motivation and relevance of the nonlinear diffusion models with nonlocal
operators has been mentioned in many references; see for instance [Athanasopoulos and Caffarelli 2010;
Bonforte and Vázquez 2014; 2015; de Pablo et al. 2011; 2012; Vázquez 2014b]. Because u usually
represents a density, all data and solutions are supposed to be nonnegative. Since the problem is posed in
a bounded domain, we need boundary or external conditions that we assume to be of Dirichlet type.

This kind of problem has been extensively studied when L=−1 and F(u)= um, m> 1, in which case
the equation becomes the classical porous medium equation [Vázquez 2004; 2007; Dahlberg and Kenig
1988; Daskalopoulos and Kenig 2007]. Here, we are interested in treating nonlocal diffusion operators,
in particular fractional Laplacian operators. Note that, since we are working on a bounded domain, the
concept of fractional Laplacian operator admits several nonequivalent versions, the best known being the
restricted fractional Laplacian (RFL), the spectral fractional Laplacian (SFL), and the censored fractional
Laplacian (CFL); see Section 2A for more details. We use these names because they already appeared in
some previous works [Bonforte et al. 2015; Bonforte and Vázquez 2016], but we point out that the RFL
is usually known as the standard fractional Laplacian, or plainly fractional Laplacian, and the CFL is
often called the regional fractional Laplacian.

The case of the SFL operator with F(u) = um, m > 1, was already studied by the first and third
authors in [Bonforte and Vázquez 2015; 2016]. In particular, in [Bonforte and Vázquez 2016] the authors
presented a rather abstract setting where they were able to treat not only the usual fractional Laplacians
but also a large number of variants that will be listed below for the reader’s convenience. Besides, rather
general increasing nonlinearities F were allowed. The basic questions of existence and uniqueness of
suitable solutions for this problem were solved in [Bonforte and Vázquez 2016] in the class of “weak dual
solutions”, an extension of the concept of solution introduced in [Bonforte and Vázquez 2015] that has
proved to be quite flexible and efficient. A number of a priori estimates (absolute bounds and smoothing
effects) were also derived in that generality.

1Our results work also in dimension N = 1 if the fractional exponent (that we shall introduce later) belongs to the range
0< s < 1

2 . The interval 1
2 ≤ s < 1 requires some minor modifications that we prefer to avoid in this paper.
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Since these basic facts are settled, here we focus our attention on the finer aspects of the theory, mainly
sharp boundary estimates and decay estimates. Such upper and lower bounds will be formulated in
terms of the first eigenfunction 81 of L, which under our assumptions will satisfy 81 � dist( · , ∂�)γ

for a certain characteristic power γ ∈ (0, 1] that depends on the particular operator we consider. Typical
values are γ = s (SFL), γ = 1 (RFL), and γ = s− 1

2 for s > 1
2 (CFL); see Sections 2A and 10A. As a

consequence, we get various kinds of local and global Harnack-type inequalities.
It is worth mentioning that some of the boundary estimates that we obtain for the parabolic case are

essentially elliptic in nature. The study of this issue for stationary problems is done in a companion paper
[Bonforte et al. 2017b]. This has the advantage that many arguments are clearer, since the parabolic
problem is more complicated than the elliptic one. Clarifying such differences is one of the main
contributions of our present work.

Thanks to these results, in the last part of the paper we are able to prove both interior and boundary
regularity, and to find the large-time asymptotic behavior of solutions.

Let us indicate here some notation of general use. The symbol∞ will always denote +∞. Given a, b,
we use the notation a � b whenever there exist universal constants c0, c1 > 0 such that c0 b ≤ a ≤ c1b.
We also use the symbols a ∨ b = max{a, b} and a ∧ b = min{a, b}. We will always consider bounded
domains � with boundary of class C2. In the paper we use the short form “solution” to mean “weak dual
solution”, unless differently stated.

1A. Presentation of the results on sharp boundary behavior. • A basic principle in the paper is that
the sharp boundary estimates depend not only on L but also on the behavior of the nonlinearity F(u)
near u = 0, i.e., in our case, on the exponent m > 1. The elliptic analysis performed in the companion
paper [Bonforte et al. 2017b] combined with some standard arguments will allow us to prove that, in all
cases, u(t) approaches the separate-variable solution U(x, t)= t−1/(m−1)S(x) in the sense that

‖t1/(m−1)u(t, · )− S‖L∞(�) t→∞
−−−→ 0, (1-2)

where S is the solution of the elliptic problem (see Theorems 3.2 and 7.1). The behavior of the profile
S(x) is shown to be, when 2sm 6= γ (m− 1),

S(x)�81(x)σ/m, σ :=min
{

1,
2sm

γ (m− 1)

}
. (1-3)

Thus, the behavior strongly depends on the new parameter σ , more precisely, on whether this parameter is
equal to 1 or less than 1. As we shall see later, σ encodes the interplay between the “elliptic scaling power”
2s/(m− 1), the “eigenfunction power” γ , and the “nonlinearity power” m. When 2sm = γ (m− 1) we
have σ = 1, but a logarithmic correction appears:

S(x)�81(x)1/m(1+ | log81(x)|)1/(m−1). (1-4)

• This fact and the results in [Bonforte et al. 2017a] prompted us to look for estimates of the form

c0(t)
8
σ/m
1 (x0)

t1/(m−1) ≤ u(t, x0)≤ c1
8
σ/m
1 (x0)

t1/(m−1) for all t > 0, x0 ∈�, (1-5)
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where c0(t) and c1 are positive and independent of u, eventually with a logarithmic term appearing
when 2sm = γ (m− 1), as in (1-4). We will prove in this paper that the upper bound holds for the three
mentioned fractional Laplacian choices, and indeed for the whole class of integrodifferential operators
we will introduce below; see Theorem 4.1. Also, separate-variable solutions saturate the upper bound.

The issue of the validity of a lower bound as in (1-5) is instead much more elusive. A first indication
for this is the introduction of a function c0(t) depending on t , instead of a constant. This seems to reflect
the fact that the solution may take some time to reach the boundary behavior that is expected to hold
uniformly for large times. Indeed, recall that in the classical PME [Aronson and Peletier 1981; Vázquez
2004; 2007], for data supported away from the boundary, some “waiting time” is needed for the support
to reach the boundary.

• As proved in [Bonforte et al. 2017a], the stated lower bound holds for the RFL with c0(t)∼ (1∧t)m/(m−1).
In particular, in this nonlocal setting, infinite speed of propagation holds. Here, we show that this holds
also for the CFL and a number of other operators; see Theorem 5.2. Note that for the RFL and the CFL
we have 2sm > γ (m− 1), in particular σ = 1, which simplifies formula (1-5).

A combination of an upper and a lower bound with matching behavior (with respect to x and t) will be
called a global Harnack principle, and holds for all t > 0 for these operators; see Theorems 6.1 and 6.2.

• When L is the SFL, we shall see that the lower bound may fail. Of course, solutions by separation of
variables satisfy the matching estimates in (1-5), eventually with an extra logarithmic term in the limit
case, as in (1-4), but it came as a complete surprise to us that for the SFL the situation is not the same for
“small” initial data. More precisely:

(i) We can prove that the following bounds always hold for all times:

c0

(
1∧

t
t∗

)m/(m−1)
81(x0)

t1/(m−1) ≤ u(t, x0)≤ c1
8
σ/m
1 (x0)

t1/(m−1) (1-6)

(when 2sm = γ (m−1), a logarithmic correction (1+| log81(x)|)1/(m−1) appears in the right-hand side);
see Theorem 5.1. These are nonmatching estimates.

(ii) For 2sm > γ (m− 1), the sharp estimate (1-5) holds for any nonnegative nontrivial solution for large
times t ≥ t∗; see Theorem 5.3.

(iii) Anomalous boundary behavior. Consider now the SFL with σ < 1 (resp. 2sm = γ (m− 1)).2 In this
case we can find initial data for which the upper bound in (1-6) is not sharp. Depending on the initial
data, there are several possible rates for the long-time behavior near the boundary. More precisely:

(a) When u0 ≤ A81, we have u(t)≤ F(t)81/m
1 �8

σ/m
1 (resp. 81/m

1 �8
1/m
1 (1+| log81|)

1/(m−1)) for
all times; see Theorem 5.4. In particular

lim
x→∂�

u(t, x)
81(x)σ/m = 0

(
resp. lim

x→∂�

u(t, x)
81(x)1/m(1+ | log81(x)|)1/(m−1) = 0

)
(1-7)

for any t > 0.

2Since for the SFL γ = 1, we have σ < 1 if and only if 0< s < s∗ := (m− 1)/(2m) < 1
2 . Note that s∗→ 0 as we tend to the

linear case m = 1, so this exceptional regime does not appear for linear diffusions, both fractional and standard.
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(b) When u0 ≤ A81−2s/γ
1 , we have u(t)≤ F(t)81−2s/γ

1 for small times; see Theorem 4.4. Notice that
when σ < 1 we have always 1− 2s/γ > σ/m. This sets a limitation on the improvement of the
lower bound, which is confirmed by another result: in Theorem 5.5 we show that lower bounds of
the form u(T, x)≥ κ8α1 (x) for data u0(x)≤ A81(x) are possible only for α ≥ 1− 2s/γ .

(c) On the other hand, for “large” initial data, Theorem 6.2 shows that the desired matching estimates
from above and below hold.

After discovering this strange boundary behavior, we looked for numerical confirmation. In Section 9
we will explain the numerical results obtained in [Cusimano et al. 2017]. Note that, if one looks for
universal bounds independent of the initial condition, Figures 2–3 below seem to suggest that the bounds
provided by (1-6) are optimal for all times and all operators.

• The current interest in more general types of nonlocal operators led us to a more general analysis where
the just-explained alternative has been extended to a wide class of integrodifferential operators, subject only
to a list of properties that we call (A1), (A2), (L1), (L2), (K2), (K4); a number of examples are explained
in Section 2. These general classes appear also in the study of the elliptic problem [Bonforte et al. 2017b].

1B. Asymptotic behavior and regularity. Our quantitative lower and upper estimates admit formulations
as local or global Harnack inequalities. They are used at the end of the paper to settle two important
issues.

Sharp asymptotic behavior. Exploiting the techniques in [Bonforte et al. 2015], we can prove a sharp
asymptotic behavior for our nonnegative and nontrivial solutions when the upper and lower bounds have
matching powers. Such sharp results hold true for a quite general class of local and nonlocal operators. A
detailed account is given in Section 7.

Regularity. By a variant of the techniques used in [Bonforte et al. 2017a], we can show interior Hölder
regularity. In addition, if the kernel of the operator satisfies some suitable continuity assumptions, we
show that solutions are classical in the interior and are Hölder continuous up to the boundary if the upper
and lower bounds have matching powers. We refer to Section 8 for details.

2. General class of operators and their kernels

The interest of the theory developed here lies both in the sharpness of the results and in the wide range of
applicability. We have just mentioned the most relevant examples appearing in the literature, and more are
listed at the end of this section. Actually, our theory applies to a general class of operators with definite
assumptions, and this is what we want to explain now.

Let us present the properties that have to be assumed on the class of admissible operators. Some of
them already appeared in [Bonforte and Vázquez 2016]. However, to further develop our theory, more
hypotheses need to be introduced. In particular, while the paper above only uses the properties of the
Green function, here we shall make some assumptions also on the kernel of L (whenever it exists). Note
that assumptions on the kernel K of L are needed for the positivity results, because we need to distinguish
between the local and nonlocal cases. The study of the kernel K is performed in Section 10.
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For convenience of reference, the list of used assumptions is (A1), (A2), (K2), (K4), (L1), (L2). The
first three are assumed in all operators L that we use.

• Basic assumptions on L. The linear operator L : dom(L)⊆ L1(�)→ L1(�) is assumed to be densely
defined and sub-Markovian; more precisely, it satisfies(A1)and(A2)below:

(A1) L is m-accretive on L1(�);

(A2) If 0≤ f ≤ 1 then 0≤ e−tL f ≤ 1.

Under these assumptions, in [Bonforte and Vázquez 2016], the first and third authors proved existence,
uniqueness, weighted estimates, and smoothing effects.

• Assumptions on the kernel. Whenever L is defined in terms of a kernel K (x, y) via the formula

L f (x)= P.V.
∫

RN
( f (x)− f (y)) K (x, y) dy,

assumption (L1) states that there exists κ� > 0 such that

inf
x,y∈�

K (x, y)≥ κ� > 0. (L1)

We note that condition holds both for the RFL and the CFL; see Section 2A.

Whenever L is defined in terms of a kernel K (x, y) and a zero-order term via the formula

L f (x)= P.V.
∫

RN
( f (x)− f (y)) K (x, y) dy+ B(x) f (x),

assumption (L2) states that

K (x, y)≥ c0δ
γ(x)δγ(y), c0 > 0, and B(x)≥ 0, (L2)

where, from now on, we adopt the notation δ(x) := dist(x, ∂�). This condition is satisfied by the SFL in
a stronger form; see Section 10 and Lemma 10.1.

• Assumptions on L−1. In order to prove our quantitative estimates, we need to be more specific about the
operator L. Besides satisfying(A1)and (A2), we will assume that it has a left-inverse L−1

:L1(�)→L1(�)

that can be represented by a kernel G (the letter “G” standing for Green function) as

L−1
[ f ](x)=

∫
�

G(x, y) f (y) dy,

where G satisfies the following assumption for some s ∈ (0, 1]: there exist constants γ ∈ (0, 1] and
c0,�, c1,� > 0 such that, for a.e. x, y ∈�,

c0,�δ
γ(x)δγ(y)≤ G(x, y)≤

c1,�

|x − y|N−2s

(
δγ(x)
|x − y|γ

∧ 1
)(

δγ(y)
|x − y|γ

∧ 1
)
. (K2)

(Here and below we use the labels (K2) and (K4) to be consistent with the notation in [Bonforte and
Vázquez 2016].) Hypothesis (K2) introduces an exponent γ which is a characteristic of the operator and
will play a big role in the results. Notice that defining an inverse operator L−1 implies that we are taking into
account the Dirichlet boundary conditions. See more details in Section 2 of [Bonforte and Vázquez 2016].
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The lower bound in (K2) is weaker than the known bounds on the Green function for many examples
under consideration; indeed, the following stronger estimate holds in many cases:

G(x, y)�
1

|x − y|N−2s

(
δγ(x)
|x − y|γ

∧ 1
)(

δγ(y)
|x − y|γ

∧ 1
)
. (K4)

Remarks. (i) The labels (A1), (A2), (K1), (K2), (K4) are consistent with the notation in [Bonforte and
Vázquez 2016]. The label (K3) was used to mean hypothesis (K2) written in terms of 81 instead of δγ.

(ii) In the classical local case L = −1, the Green function G satisfies (K4) only when N ≥ 3, as the
formulas slightly change when N = 1, 2. In the fractional case s ∈ (0, 1) the same problem arises when
N = 1 and s ∈

[1
2 , 1

)
. Hence, treating also these cases would require a slightly different analysis based

on different but related assumptions on G. Since our approach is very general, we expect it to work also
in these remaining cases without any major difficulties. However, to simplify the presentation, from now
on we assume that

either N ≥ 2 and s ∈ (0, 1) or N = 1 and s ∈
(
0, 1

2

)
.

The role of the first eigenfunction of L. We showed in [Bonforte et al. 2017b] that, under assumption (K1),
the operator L is compact, has a discrete spectrum, and has a first nonnegative bounded eigenfunction 81;
assuming also (K2), we have

81(x)� δγ(x)= dist(x, ∂�)γ for all x ∈�. (2-1)

Hence, 81 encodes the parameter γ that takes care of describing the boundary behavior. We recall that
we are assuming that the boundary of � is smooth enough, for instance C1,1.

Remark. We note that our assumptions allow us to cover all the examples of operators described in
Sections 2A and 10A.

2A. Main examples of operators and properties. When working in the whole RN, the fractional Lapla-
cian admits different definitions that can be shown to be all equivalent. On the other hand, when we
deal with bounded domains, there are at least three different operators in the literature, which we call the
restricted (RFL), the spectral (SFL) and the censored fractional Laplacian (CFL). We will show below
that these different operators exhibit quite different behaviors, so the distinction between them has to be
taken into account. Let us present the statement and results for the three model cases, and we refer to
Section 10A for further examples. Here, we collect the sharp results about the boundary behavior, namely
the global Harnack inequalities from Theorems 6.1, 6.2, and 6.3.

The parameters γ and σ . The strong difference between the various operators L is reflected in the
different boundary behavior of their nonnegative solutions. We will often use the exponent γ , which
represents the boundary behavior of the first eigenfunction 81� dist( · , ∂�)γ ; see [Bonforte et al. 2017b].
Both in the parabolic theory of this paper and the elliptic theory of [Bonforte et al. 2017b] the parameter
σ =min{1, 2sm/(γ (m− 1))} introduced in (1-3) plays a big role.
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2A1. The RFL. We define the fractional Laplacian operator acting on a bounded domain by using the
integral representation on the whole space in terms of a hypersingular kernel; namely

(−1RN )s g(x)= cN ,s P.V.
∫

RN

g(x)− g(z)
|x − z|N+2s dz, (2-2)

where cN ,s > 0 is a normalization constant, and we “restrict” the operator to functions that are zero outside
�. We denote such operator by L= (−1|�)s , and call it the restricted fractional Laplacian3 (RFL). The
initial and boundary conditions associated to the fractional diffusion equation (1-1) are u(t, x) = 0 in
(0,∞)×RN

\� and u(0, · )= u0. As explained in [Bonforte et al. 2015], such boundary conditions can
also be understood via the Caffarelli–Silvestre extension [2007]. The sharp expression of the boundary
behavior for the RFL was investigated in [Ros-Oton and Serra 2014]. We refer to [Bonforte et al. 2015]
for a careful construction of the RFL in the framework of fractional Sobolev spaces, and [Blumenthal and
Getoor 1960] for a probabilistic interpretation.

This operator satisfies the assumptions (A1), (A2), (L1), and also (K2) and (K4) with γ = s < 1. Let
us present our results in this case. Note that we have σ = 1 for all 0< s < 1, and Theorem 6.1 shows the
sharp boundary behavior for all times; namely for all t > 0 and a.e. x ∈� we have

κ

(
1∧

t
t∗

)m/(m−1) dist(x, ∂�)s/m

t1/(m−1) ≤ u(t, x)≤ κ̄
dist(x, ∂�)s/m

t1/(m−1) . (2-3)

The critical time t∗ is given by a weighted L1 norm; namely

t∗ := κ∗‖u0‖
−(m−1)
L1
81
(�)

,

where κ∗ > 0 is a universal constant. Moreover, solutions are classical in the interior and we prove sharp
Hölder continuity up to the boundary. These regularity results were first obtained in [Bonforte et al.
2017a]; we give here different proofs valid in the more general setting of this paper. See Section 8 for
further details.

2A2. The SFL. Starting from the classical Dirichlet Laplacian 1� on the domain �, the so-called
spectral definition of the fractional power of 1� may be defined via a formula in terms of the semigroup
associated to the Laplacian; namely

(−1�)
s g(x)=

1
0(−s)

∫
∞

0
(et1�g(x)− g(x))

dt
t1+s =

∞∑
j=1

λs
j ĝj φj (x), (2-4)

where (λj , φj ), j = 1, 2, . . . , is the normalized spectral sequence of the standard Dirichlet Laplacian
on �, ĝj =

∫
�

g(x)φj (x) dx , and ‖φj‖L2(�) = 1. We denote this operator by L= (−1�)s , and call it the
spectral fractional Laplacian (SFL) as in [Cabré and Tan 2010]. The initial and boundary conditions
associated to the fractional diffusion equation (1-1) are u(t, x) = 0 on (0,∞)× ∂� and u(0, · ) = u0.

3In the literature this is often called the fractional Laplacian on domains, but this simpler name may be confusing when the
spectral fractional Laplacian is also considered; see [Bonforte and Vázquez 2015]. As discussed in this paper, there are other
natural versions.
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Such boundary conditions can also be understood via the Caffarelli–Silvestre extension; see [Bonforte
et al. 2015]. Following ideas of [Song and Vondraček 2003], we use the fact that this operator admits a
kernel representation,

(−1�)
s g(x)= cN ,s P.V.

∫
�

[g(x)− g(z)]K (x, z) dz+ B(x)g(x), (2-5)

where K is a singular and compactly supported kernel, which degenerates at the boundary, and B �
dist( · , ∂�)−2s (see [Song and Vondraček 2003] or Lemma 10.1 for further details). This operator satisfies
the assumptions (A1), (A2), (L2), and also (K2) and (K4) with γ = 1. Therefore, σ can be less than 1,
depending on the values of s and m.

As we shall see, in our parabolic setting, the degeneracy of the kernel is responsible for a peculiar
change of the boundary behavior of the solutions (with respect to the previous case) for small and large
times. Here, the lower bounds change both for short and large times, and they strongly depend on σ
and on u0: we called this phenomenon anomalous boundary behavior in Section 1A. More precisely,
Theorem 6.3 shows that for all t > 0 and all x ∈� we have

κ

(
1∧

t
t∗

)m/(m−1) dist(x, ∂�)
t1/(m−1) ≤ u(t, x)≤ κ̄

dist(x, ∂�)σ/m

t1/(m−1) (2-6)

(when 2sm = γ (m − 1), a logarithmic correction (1+ | log81(x)|)1/(m−1) appears in the right-hand
side). Such lower behavior is somehow minimal, in the sense that it holds in all cases. The basic
asymptotic result (see (1-2) or Theorem 7.1) suggests that the lower bound in (2-6) could be improved
by replacing dist(x, ∂�) with dist(x, ∂�)σ/m, at least for large times. This is shown to be true for σ = 1
(see Theorem 5.3), but it is false for σ < 1 (see Theorem 5.4), since there are “small” solutions with
nonmatching boundary behavior for all times; see (1-7).

It is interesting that, in this case, one can appreciate the interplay between the “elliptic scaling power”
2s/(m−1) related to the invariance of the equation LSm

= S under the scaling S(x) 7→ λ−2s/(m−1)S(λx),
the “eigenfunction power” γ = 1, and the “nonlinearity power” m, made clear through the parameter
σ/m. Also in this case, thanks to the strict positivity in the interior, we can show interior space-time
regularity of solutions, as well as sharp boundary Hölder regularity for large times whenever upper and
lower bounds match.

2A3. The CFL. In the simplest case, the infinitesimal operator of the censored stochastic processes has
the form

Lg(x)= P.V.
∫
�

g(x)− g(y)
|x − y|N+2s dy, with 1

2 < s < 1. (2-7)

This operator was introduced in [Bogdan et al. 2003] (see also [Chen et al. 2010] and [Bonforte and
Vázquez 2016] for further details and references).

In this case γ = s− 1
2 < 2s; hence σ = 1 for all 1

2 < s < 1, and Theorem 6.1 shows that for all t > 0
and x ∈� we have

κ

(
1∧

t
t∗

)m/(m−1) dist(x, ∂�)(s−1/2)/m

t1/(m−1) ≤ u(t, x)≤ κ̄
dist(x, ∂�)(s−1/2)/m

t1/(m−1) .
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Again, we have interior space-time regularity of solutions, as well as sharp boundary Hölder regularity
for all times.

2A4. Other examples. There a number of examples to which our theory applies, besides the RFL, CFL
and SFL, since they satisfy the list of assumptions listed in the previous section. Some are listed in the
last Section 10; see more detail in [Bonforte and Vázquez 2016].

3. Reminders about weak dual solutions

We denote by Lp
81
(�) the weighted Lp space Lp(�, 81 dx), endowed with the norm

‖ f ‖Lp
81
(�) =

(∫
�

| f (x)|p81(x) dx
)1/p

.

Weak dual solutions: existence and uniqueness. We recall the definition of weak dual solutions used in
[Bonforte and Vázquez 2016]. This is expressed in terms of the inverse operator L−1, and encodes the
Dirichlet boundary condition. This is needed to build a theory of bounded nonnegative unique solutions
to (1-1) under the assumptions of the previous section. Note that in [Bonforte and Vázquez 2016] we
used the setup with the weight δγ = dist( · , ∂�)γ, but the same arguments generalize immediately to the
weight 81; indeed under assumption (K2), these two setups are equivalent.

Definition 3.1. A function u is a weak dual solution to the Dirichlet problem for (1-1) in (0,∞)×� if:

• u ∈ C((0,∞) : L1
81
(�)) and um

∈ L1((0,∞) : L1
81
(�)).

• The identity ∫
∞

0

∫
�

L−1u
∂ψ

∂t
dx dt −

∫
∞

0

∫
�

umψ dx dt = 0 (3-1)

holds for every test function ψ such that ψ/81 ∈ C1
c ((0,∞) : L

∞(�)).

• A weak dual solution to the Cauchy–Dirichlet problem (CDP) is a weak dual solution to the homo-
geneous Dirichlet problem for (1-1) such that u ∈ C([0,∞) : L1

81
(�)) and u(0, x)= u0 ∈ L1

81
(�).

This kind of solution was first introduced in [Bonforte and Vázquez 2015]; see also [Bonforte and
Vázquez 2016]. Roughly speaking, we are considering the weak solution to the “dual equation” ∂tU =−um,
where U = L−1u, posed on the bounded domain � with homogeneous Dirichlet conditions. Such a weak
solution is obtained by approximation from below as the limit of the unique mild solution provided by
the semigroup theory [Bonforte and Vázquez 2016], and it was used in [Vázquez 2014a] with space
domain RN in the study of Barenblatt solutions. We call those solutions minimal weak dual solutions, and
it has been proven in Theorems 4.4 and 4.5 of [Bonforte and Vázquez 2016] that such solutions exist and
are unique for any nonnegative data u0 ∈ L1

81
(�). The class of weak dual solutions includes the classes

of weak, mild and strong solutions, and is included in the class of very weak solutions. In this class of
solutions the standard comparison result holds.
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Explicit solution. When trying to understand the behavior of positive solutions with general nonnegative
data, it is natural to look for solutions obtained by separation of variables. These are given by

UT (t, x) := (T + t)−1/(m−1)S(x), T ≥ 0, (3-2)

where S solves the elliptic problem {
LSm
= S in (0,+∞)×�,

S = 0 on the boundary.
(3-3)

The properties of S have been thoroughly studied in the companion paper [Bonforte et al. 2017b], and we
summarize them here for the reader’s convenience.

Theorem 3.2 (properties of asymptotic profiles). Assume that L satisfies (A1), (A2), and (K2). Then
there exists a unique positive solution S to the Dirichlet problem (3-3) with m > 1. Moreover, let σ be as
in (1-3), and assume that

• either σ = 1 and 2sm 6= γ (m− 1);

• or σ < 1 and (K4) holds.

Then there exist positive constants c0 and c1 such that the following sharp absolute bounds hold true for
all x ∈�:

c081(x)σ/m
≤ S(x)≤ c181(x)σ/m. (3-4)

When 2sm = γ (m− 1) then, assuming (K4), for all x ∈� we have

c081(x)1/m(1+ | log81(x)|)1/(m−1)
≤ S(x)≤ c181(x)1/m(1+ | log81(x)|)1/(m−1). (3-5)

Remark. As observed in the proof of Theorem 7.2, by applying Theorem 6.1 to the separate-variables
solution t−1/(m−1)S(x) we deduce that (3-4) is still true when σ < 1 if, instead of assuming (K4), we
suppose that

K (x, y)≤ c1|x − y|−(N+2s)

for a.e. x, y ∈ RN and that 81 ∈ Cγ (�).

When T = 0, the solution U0 in (3-2) is commonly named “friendly giant”, because it takes initial data
u0 ≡+∞ (in the sense of a pointwise limit as t→ 0) but is bounded for all t > 0. This term was coined
in the study of the standard porous medium equation.

In Sections 4 and 5 we will state and prove our general results concerning upper and lower bounds
respectively. These sections are the crux of this paper. The combination of such upper and lower bounds
will then be summarized in Section 6. Consequences of these results in terms of asymptotic behavior and
regularity estimates will be studied in Sections 7 and 8 respectively.

4. Upper boundary estimates

We present a general upper bound that holds under the sole assumptions (A1), (A2), and (K2), and hence
is valid for all our examples.
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Theorem 4.1 (absolute boundary estimates). Let (A1), (A2), and (K2) hold. Let u ≥ 0 be a weak
dual solution to the CDP corresponding to u0 ∈ L1

81
(�), and let σ be as in (1-3). Then, there exists a

computable constant k1 > 0, depending only on N, s, m, and �, such that for all t ≥ 0 and all x ∈�

u(t, x)≤
k1

t1/(m−1)

{
81(x0)

σ/m if γ 6= 2sm/(m− 1),
81(x0)

1/m(1+ | log81(x0)|)
1/(m−1) if γ = 2sm/(m− 1).

(4-1)

This absolute bound proves a strong regularization which is independent of the initial datum. It
improves the absolute bound in [Bonforte and Vázquez 2016] in the sense that it exhibits a precise
boundary behavior. The estimate gives the correct behavior for the solutions UT in (3-2) obtained by
separation of variables; see Theorem 3.2. It turns out that the estimate will be sharp for all nonnegative,
nontrivial solutions in the case of the RFL and the CFL. We will also see below that the estimate is
not always the correct behavior for the SFL when data are small, as explained in the Introduction (see
Section 4A, and Theorem 5.4 in Section 5).

Proof of Theorem 4.1. This subsection is devoted to the proof of Theorem 4.1. The first steps are based
on a few basic results of [Bonforte and Vázquez 2016] that will also be used in the rest of the paper.

Step 1: pointwise and absolute upper estimates.

Pointwise estimates. We begin by recalling the basic pointwise estimates which are crucial in the proof
of all the upper and lower bounds of this paper.

Proposition 4.2 [Bonforte and Vázquez 2015; 2016]. It holds that∫
�

u(t, x)G(x, x0) dx ≤
∫
�

u0(x)G(x, x0) dx for all t > 0. (4-2)

Moreover, for every 0< t0 ≤ t1 ≤ t and almost every x0 ∈�, we have

tm/(m−1)
0

tm/(m−1)
1

(t1− t0) um(t0, x0)≤

∫
�

[u(t0, x)− u(t1, x)]G(x, x0) dx ≤ (m− 1)
tm/(m−1)

t1/(m−1)
0

um(t, x0). (4-3)

Absolute upper bounds. Using the estimates above, in Theorem 5.2 of [Bonforte and Vázquez 2016] the
authors proved that solutions corresponding to initial data u0 ∈ L1

81
(�) satisfy

‖u(t)‖L∞(�) ≤
K1

t1/(m−1) for all t > 0, (4-4)

with a constant K1 independent of u0. For this reason, this is called “absolute bound”.

Step 2: upper bounds via Green function estimates. The proof of Theorem 4.1 requires the following
general statement; see [Bonforte et al. 2017b, Proposition 6.5]:

Lemma 4.3. Let (A1), (A2), and (K2) hold, and let v :�→ R be a nonnegative bounded function. Let σ
be as in (1-3), and assume that, for a.e. x0 ∈�,

v(x0)
m
≤ κ0

∫
�

v(x)G(x, x0) dx . (4-5)
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Then, there exists a constant κ̄∞ > 0, depending only on s, γ , m, N, �, such that the following bound
holds true for a.e. x0 ∈�:∫

�

v(x)G(x, x0) dx ≤ κ̄∞κ
1/(m−1)
0

{
81(x0)

σ if γ 6= 2sm/(m− 1),
81(x0)(1+ | log81(x0)|

m/(m−1)) if γ = 2sm/(m− 1).
(4-6)

Step 3: end of the proof of Theorem 4.1. We already know that u(t) ∈ L∞(�) for all t > 0 by (4-4).
Also, choosing t1 = 2t0 in (4-3) we deduce that, for t ≥ 0 and a.e. x0 ∈�,

um(t, x0)≤
2m/(m−1)

t

∫
�

u(t, x)G(x, x0) dx . (4-7)

The above inequality corresponds exactly to hypothesis (4-5) of Lemma 4.3 with the value κ0=2m/(m−1)t−1.
As a consequence, inequality (4-6) holds, and we conclude that for a.e. x0 ∈� and all t > 0∫

�

u(t, x)G(x, x0)dx ≤
κ̄∞2m/(m−1)2

t1/(m−1)

{
81(x0)

σ if γ 6= 2sm/(m−1),
81(x0)(1+| log81(x0)|

m/(m−1)) if γ = 2sm/(m−1).
(4-8)

Hence, combining this bound with (4-7), we get

um(t, x0)≤
km

1

tm/(m−1)

{
81(x0)

σ if γ 6= 2sm/(m− 1),
81(x0)(1+ | log81(x0)|

m/(m−1)) if γ = 2sm/(m− 1).

This proves the upper bounds (4-1) and concludes the proof. �

4A. Upper bounds for small data and small times. As mentioned in the Introduction, the above upper
bounds may not be realistic when σ < 1. We have the following estimate for small times if the initial
data are sufficiently small.

Theorem 4.4. Let L satisfy (A1), (A2), and (L2). Suppose also that L has a first eigenfunction 81 �

dist(x, ∂�)γ, and assume that σ < 1. Finally, we assume that for all x, y ∈�

K (x, y)≤
c1

|x − y|N+2s

(
81(x)
|x − y|γ

∧ 1
)(

81(y)
|x − y|γ

∧ 1
)

and B(x)≤ c181(x)−2s/γ. (4-9)

Let u ≥ 0 be a weak dual solution to the CDP corresponding to u0 ∈ L1
81
(�). Then, for every initial data

u0 ≤ A81−2s/γ
1 for some A > 0, we have

u(t)≤
8

1−2s/γ
1

(A1−m − C̃t)m−1
on [0, TA], where TA :=

1

C̃ Am−1
,

and the constant C̃ > 0, that depends only on N, s, m, λ1, c1, and �.

Remark. This result applies to the SFL. Notice that when σ < 1 we have always 1−2s/γ > σ/m; hence
in this situation small data have a smaller behavior at the boundary than the one predicted in Theorem 4.1.
This is not true for “big” data, for instance for solutions obtained by separation of variables, as already said.
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Proof. In view of our assumption on the initial datum, namely u0 ≤ A81−2s/γ
1 , by comparison it is enough

to prove that the function

ū(t, x)= F(t)81(x)1−2s/γ, F(t)=
1

(A1−m − C̃t)m−1
,

is a supersolution (i.e., ∂t ū ≥−Lūm) in (0, TA)×� provided we choose C̃ sufficiently large.
To this aim, we use the following elementary inequality, whose proof is left to the interested reader:

for any η > 1 and any M > 0 there exists b̃ = b̃(M) > 0 such that letting η̃ := η∧ 2

aη− bη ≤ η bη−1(a− b)+ b̃|a− b|η̃ for all 0≤ a, b ≤ M . (4-10)

We apply inequality (4-10) to a =81(y) and b =81(x), η = m(1− 2s/γ ), noticing that η > 1 if and
only if σ < 1, and we obtain (recall that 81 is bounded)

ūm(t, y)− ūm(t, x)= F(t)m
(
81(y)m(1−2s/γ )

−81(x)m(1−2s/γ ))
= F(t)m(81(y)η−81(x)η)

≤ η F(t)m81(x)η−1
[81(y)−81(x)] + b̃ F(t)m |81(y)−81(x)|η̃

≤ η F(t)m81(x)η−1
[81(y)−81(x)] + b̃ F(t)mcη̃γ |x − y|η̃γ,

where in the last step we have used that |81(y)−81(x)| ≤ cγ |x − y|γ. Since B ≤ c18
−2s/γ
1 ,∫

RN
[81(y)−81(x)]K (x, y) dy =−L81(x)+ B(x)81(x)≤−λ181(x)+ c181(x)1−2s/γ.

Thus, recalling that η, η̃ > 1 and that 81 is bounded, it follows that

−L[ūm
](x)=

∫
RN
[ūm(t, y)− ūm(t, x)]K (x, y) dy+ B(x)ūm(t, x)

≤ η F(t)m81(x)η−1
[−λ181(x)+ c181(x)1−2s/γ

]

+ B(x)F(t)m8η1(x)+ b̃ cm̃
γ F(t)m

∫
RN
|x − y|η̃γ K (x, y) dy

≤ c̃F(t)m
(
81(x)η−2s/γ

+

∫
RN
|x − y|η̃γ K (x, y) dy

)
. (4-11)

Next, we claim that, as a consequence of (4-9),∫
RN
|x − y|η̃γ K (x, y) dy ≤ c481(x)1−2s/γ. (4-12)

Postponing for the moment the proof of the above inequality, we first show how to conclude: combining
(4-11) and (4-12) we have

−Lūm
≤ c5 F(t)m81(x)1−2s/γ

= F ′(t)81(x)1−2s/γ
= ∂t ū,

where we used that F ′(t)= c5 F(t)m̃ provided C̃ = c5(m− 1). This proves that ū is a supersolution in
(0, T )×�. Hence the proof is concluded once we prove inequality (4-12); for this, using hypothesis
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(4-9) and choosing r =81(x)1/γ we have∫
RN
|x − y|η̃γ K (x, y) dy ≤ c1

∫
Br (x)

1
|x − y|N+2s−η̃γ

dy+ c181(x)
∫
�\Br (x)

1
|x − y|N+2s+γ−η̃γ

dy

≤ c2r η̃γ−2s
+ c1

81(x)
r2s

∫
�\Br (x)

1
|x − y|N+γ−η̃γ

dy

= c2r η̃γ−2s
+ c3

81(x)
r2s ≤ c481(x)1−2s/γ,

where we used that η̃γ − 2s > 0 and η̃ > 1. �

Remark. For operators for which the previous assumptions hold with B ≡ 0, we can actually prove a
better upper bound for “smaller data”:

Corollary 4.5. Under the assumptions of Theorem 4.4, assume that moreover B ≡ 0 and u0 ≤ A81 for
some A > 0. Then, we have

u(t)≤
81

(A1−m − C̃t)m−1
on [0, TA], where TA :=

1

C̃ Am−1
,

and the constant C̃ > 0 depends only on N, s, m, λ1, c1, and �.

Proof. We have to show that ū(t, x) = F(t)81(x) is a supersolution: we essentially repeat the proof
of Theorem 4.4 with γ = m (formally replace 1 − 2s/γ by 1), taking into account that B ≡ 0 and
u0 ≤ A81. �

5. Lower bounds

This section is devoted to the proofs of all the lower bounds summarized later in the main theorems,
Theorems 6.1, 6.2, and 6.3. The general situation is quite involved to describe, so we will separate several
cases and we will indicate for which examples it holds for the sake of clarity.

Infinite speed of propagation: universal lower bounds. First, we are going to quantitatively establish that
all nonnegative weak dual solutions of our problems are in fact positive in � for all t > 0. This result is
valid for all nonlocal operators considered in this paper.

Theorem 5.1. Let L satisfy (A1), (A2), and (L2). Let u ≥ 0 be a weak dual solution to the CDP
corresponding to u0 ∈ L1

81
(�). Then there exists a constant κ0 > 0 such that the following inequality

holds:

u(t, x)≥ κ0

(
1∧

t
t∗

)m/(m−1)
81(x)

t1/(m−1) for all t > 0 and a.e. x ∈�. (5-1)

Here t∗ = κ∗‖u0‖
−(m−1)
L1
81
(�)

, and the constants κ0 and κ∗ depend only on N, s, γ , m, c0, c1, and �.

Notice that, for t ≥ t∗, the dependence on the initial data disappears from the lower bound, as the
inequality reads as

u(t)≥ κ0
81

t1/(m−1) for all t ≥ t∗,
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where κ0 is an absolute constant. Assumption (L2) on the kernel K of L holds for all examples mentioned
in Section 10A.

Clearly, the power in this lower bound does not match the one of the general upper bounds of
Theorem 4.1; hence we cannot expect these bounds to be sharp. However, when σ < 1, for small times
and small data and when B ≡ 0, the lower bounds (5-1) match the upper bounds of Corollary 4.5; hence
they are sharp. Theorem 5.1 shows that, even in the “worst case scenario”, there is a quantitative lower
bound for all positive times, and shows infinite speed of propagation.

Matching lower bounds, I. Actually, in many cases the kernel of the nonlocal operator satisfies a stronger
property, namely infx,y∈� K (x, y)≥ κ� > 0 and B ≡ 0, in which case we can actually obtain sharp lower
bounds for all times. Here we do not consider the potential logarithmic correction that may appear in the
“critical case” 2sm = γ (m− 1); indeed, as far as examples are concerned, the next theorem applies to the
RFL and the CFL, for which 2sm > γ (m− 1).

Theorem 5.2. Let L satisfy (A1), (A2), and (L1). Furthermore, suppose that L has a first eigenfunction
81 � dist( · , ∂�)γ. Let σ be as in (1-3) and assume that

• either σ = 1;

• or σ < 1, K (x, y)≤ c1|x − y|−(N+2s) for a.e. x, y ∈ RN, and 81 ∈ Cγ (�).

Let u ≥ 0 be a weak dual solution to the CDP corresponding to u0 ∈ L1
81
(�). Then there exists a constant

κ1 > 0 such that the following inequality holds:

u(t, x)≥ κ1

(
1∧

t
t∗

)m/(m−1)
81(x)σ/m

t1/(m−1) for all t > 0 and a.e. x ∈�, (5-2)

where t∗ = κ∗‖u0‖
−(m−1)
L1
81
(�)

. The constants κ∗ and κ1 depend only on N, s, γ , m, κ�, c1, �, and ‖81‖Cγ (�).

Remarks. (i) As in the case of Theorem 5.1, for large times the dependence on the initial data disappears
from the lower bound and we have absolute lower bounds.

(ii) The boundary behavior is sharp when 2sm 6= γ (m−1) in view of the upper bound from Theorem 4.1.

(iii) This theorem applies to the RFL and the CFL, but not to the SFL (or, more generally, spectral powers
of elliptic operators); see Sections 2A and 2. In the case of the RFL, this result was obtained in
Theorem 1 of [Bonforte et al. 2017a].

We have already seen the example of the separate-variables solutions (3-2) that have a very definite
behavior at the boundary ∂�. The analysis of general solutions leads to completely different situations
for σ = 1 and σ < 1.

Matching lower bounds, II: The case σ = 1. When σ = 1 we can establish a quantitative lower bound
near the boundary that matches the separate-variables behavior for large times (except in the case
2sm = γ (m− 1) where the result is false, see Theorem 5.4 below). We do not need the assumption of
nondegenerate kernel, so the SFL can be considered.
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Theorem 5.3. Let (A1), (A2), and (K2) hold, and let σ = 1. Let u ≥ 0 be a weak dual solution to the
CDP corresponding to u0 ∈ L1

81
(�). There exists a constant κ2 > 0 such that

u(t, x)≥ κ2
81(x)1/m

t1/(m−1) for all t ≥ t∗ and a.e. x ∈�. (5-3)

Here, t∗ = κ∗‖u0‖
−(m−1)
L1
81
(�)

, and the constants κ∗ and κ2 depend only on N, s, γ , m, and �.

Remarks. (i) At first sight, this theorem may seem weaker than the previous positivity result. However,
this result has wider applicability since it holds under the only assumption (K2) on G. In particular
it is valid in the local case s = 1, where the finite speed of propagation makes it impossible to have
global lower bounds for small times.

(ii) When L=−1 the result has been proven in [Aronson and Peletier 1981; Vázquez 2004] by quite
different methods. On the other hand, our method is very general and immediately applies to the
case when L is an elliptic operator with C1 coefficients; see Section 10A.

(iii) This result fixes a small error in Theorem 7.1 of [Bonforte and Vázquez 2015], where the power σ
was not present.

The anomalous lower bounds with small data. As shown in Theorem 5.1, the lower bound u(t)&81 is
always valid. We now discuss the possibility of improving this bound.

Let S solve the elliptic problem (3-3). It follows by comparison whenever u0 ≥ ε0S with ε0 > 0 then
u(t) ≥ S/(T0+ t)1/(m−1), where T0 = ε

1−m
0 . Since S � 8σ/m

1 under (K4) (up to a possible logarithmic
correction in the critical case, see Theorem 3.2), there are initial data for which the lower behavior
is dictated by 81(x)σ/m t−1/(m−1). More generally, as we shall see in Theorem 7.1, given any initial
datum u0 ∈ L1

81
(�) the function v(t, x) := t1/(m−1)u(t, x) always converges to S in L∞(�) as t→∞,

independently of the value of σ . Hence, one may conjecture that there should exist a waiting time t∗ > 0
after which the lower behavior is dictated by 81(x)σ/m t−1/(m−1), in analogy with what happens for the
classical porous medium equation. As we shall see, this is actually false when σ < 1 or 2sm = γ (m− 1).
Since for large times v(t, x) must look like S(x) in uniform norm away from the boundary (by the interior
regularity that we will prove later), the contrasting situation for large times could be described as a
“dolphin’s head” with the “snout” flatter than the “forehead”. As t→∞ the forehead progressively fills
the whole domain.

The next result shows that, in general, we cannot hope to prove that u(t) is larger than 81/m
1 . In

particular, when σ < 1 or 2sm = γ (m− 1), this shows that the behavior u(t)� S cannot hold.

Theorem 5.4. Let (A1), (A2), and (K2) hold, and u≥0 be a weak dual solution to the CDP corresponding
to a nonnegative initial datum u0 ∈ L1

81
(�). Assume that u0(x) ≤ C081(x) a.e. in � for some C0 > 0.

Then there exists a constant κ̂ , depending only N, s, γ , m, and �, such that

u(t, x)m ≤ C0 κ̂
81(x)

t
for all t > 0 and a.e. x ∈�.
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In particular, if σ < 1 (resp. 2sm = γ (m− 1)), then

lim
x→∂�

u(t, x)
81(x)σ/m = 0

(
resp. lim

x→∂�

u(t, x)
81(x)1/m(1+ | log81(x)|)1/(m−1) = 0

)
for any t > 0.

The proposition above could make one wonder whether the sharp general lower bound could be given
by 81/m

1 , as in the case σ = 1. Recall that, under rather minimal assumptions on the kernel K associated
to L, we have a universal lower bound for u(t) in terms of 81 (see Theorem 5.1). Here we shall see that,
under (K4), the bound u(t)&81/m

1 is false for σ < 1.

Theorem 5.5. Let (A1), (A2), and (K4) hold, and let u ≥ 0 be a weak dual solution to the CDP
corresponding to a nonnegative initial datum u0 ≤ C081 for some C0 > 0. Assume that there exist
constants κ , T , α > 0 such that

u(T, x)≥ κ8α1 (x) for a.e. x ∈�.

Then α ≥ 1− 2s/γ . In particular α > 1/m if σ < 1.

We devote the rest of this section to the proof of the above results, and to this end we collect in the
first two subsections some preliminary lower bounds and results about approximate solutions.

5A. Lower bounds for weighted norms. Here we prove some useful lower bounds for weighted norms,
which follow from the L1-continuity for ordered solutions in the version proved in Proposition 8.1 of
[Bonforte and Vázquez 2016].

Lemma 5.6 (backward-in-time L1
81

lower bounds). Let u be a solution to the CDP corresponding to the
initial datum u0 ∈ L1

81
(�). For all

0≤ τ0 ≤ t ≤ τ0+
1

(2K̄ )1/(2sϑγ )‖u(τ0)‖
m−1
L1
81
(�)

(5-4)

we have
1
2

∫
�

u(τ0, x)81(x) dx ≤
∫
�

u(t, x)81(x) dx, (5-5)

where ϑγ := 1/[2s+ (N + γ )(m− 1)] and K̄ > 0 is a computable constant.

Proof. We recall the inequality of Proposition 8.1 of [Bonforte and Vázquez 2016], adapted to our case:
for all 0≤ τ0 ≤ τ, t we have∫

�

u(τ, x)81(x) dx ≤
∫
�

u(t, x)81(x) dx + K̄‖u(τ0)‖
2s(m−1)ϑγ+1
L1
81
(�)

|t − τ |2sϑγ . (5-6)

Choosing τ = τ0 in the above inequality, we get[
1− K9‖u(τ0)‖

2s(m−1)ϑγ
L1
81
(�)

|t − τ0|
2sϑγ

] ∫
�

u(τ0, x)81(x) dx ≤
∫
�

u(t, x)81(x) dx . (5-7)

Then (5-5) follows from (5-4). �

We also need a lower bound for Lp
81
(�) norms.
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Lemma 5.7. Let u be a solution to the CDP corresponding to the initial datum u0 ∈ L1
81
(�). Then the

following lower bound holds true for any t ∈ [0, t∗] and p ≥ 1:

c2

(∫
�

u0(x)81(x) dx
)p

≤

∫
�

u p(t, x)81(x) dx . (5-8)

Here t∗ = c∗‖u0‖
−(m−1)
L1
81
(�)

, where c2, c∗ > 0 are positive constants that depend only on N, s, m, p, �.

The proof of this lemma is an easy adaptation of the proof of Lemma 2.2 of [Bonforte et al. 2017a], so
we skip it. Notice that c∗ has explicit form given in [Bonforte and Vázquez 2015; 2016; Bonforte et al.
2017a], while the form of c2 is given in the proof of Lemma 2.2 of [Bonforte et al. 2017a].

5B. Approximate solutions. To prove our lower bounds, we will need a special class of approximate
solutions uδ. We will list now the necessary details. In the case when L is the restricted fractional
Laplacian (RFL), see Section 10A, these solutions have been used in Appendix II of [Bonforte et al.
2017a], where complete proofs can be found; the proof there holds also for the operators considered here.
The interested reader can easily adapt the proofs in that paper to the current case.

Let us fix δ > 0 and consider the problem
∂tvδ =−L[(vδ + δ)m − δm

] for any (t, x) ∈ (0,∞)×�,
vδ(t, x)= 0 for any (t, x) ∈ (0,∞)× (RN

\�),

vδ(0, x)= u0(x) for any x ∈�.
(5-9)

Next, we define
uδ := vδ + δ.

We summarize here the basic properties of uδ.
Approximate solutions uδ exist, are unique, and bounded for all (t, x) ∈ (0,∞) × � whenever

0≤ u0 ∈ L1
81
(�). Also, they are uniformly positive: for any t ≥ 0,

uδ(t, x)≥ δ > 0 for a.e. x ∈�. (5-10)

This implies that the equation for uδ is never degenerate in the interior, so solutions are as smooth as the
linear parabolic theory with the kernel K allows them to be (in particular, in the case of the fractional
Laplacian, they are C∞ in space and C1 in time). Also, by a comparison principle, for all δ > δ′ > 0,

uδ(t, x)≥ uδ′(t, x) for all t ≥ 0 and a.e. x ∈�, (5-11)

uδ(t, x)≥ u(t, x) for all t ≥ 0 and a.e. x ∈�. (5-12)

Furthermore, they converge in L1
81
(�) to u as δ→ 0:

‖uδ(t)− u(t)‖L1
81
(�) ≤ ‖uδ(0)− u0‖L1

81
(�) = δ‖81‖L1(�). (5-13)

As a consequence of (5-11) and (5-13), we deduce that uδ converges pointwise to u at almost every point:
more precisely, for all t ≥ 0,

u(t, x)= lim
δ→0+

uδ(t, x) for a.e. x ∈�. (5-14)
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5C. Proof of Theorem 5.1. The proof consists in showing that

u(t, x)≥ u(t, x) := k0 t81(x)

for all t ∈ [0, t∗] and a.e. x ∈ �, where the parameter k0 > 0 will be fixed later. Note that, once the
inequality u ≥ u on [0, t∗] is proved, we conclude as follows: since t 7→ t1/(m−1) u(t, x) is nondecreasing
in t > 0 for a.e. x ∈� [Bonforte and Vázquez 2016, (2.3)], we have

u(t, x)≥
(

t∗
t

)1/(m−1)

u(t∗, x)≥ k0 t∗

(
t∗
t

)1/(m−1)

81(x) for all t ≥ t∗.

Then, the result will follow κ0 = k0tm/(m−1)
∗ (note that, as we shall see below, k0tm/(m−1)

∗ can be chosen
independently of u0). Hence, we are left with proving that u ≥ u on [0, t∗].

Step 1: reduction to an approximate problem. Let us fix δ > 0 and consider the approximate solutions uδ
constructed in Section 5B. We shall prove that uδ ≥ u on [0, t∗]×�, so that the result will follow by the
arbitrariness of δ.

Step 2: We claim that u(t, x) < uδ(t, x) for all 0 ≤ t ≤ t∗ and x ∈ �, for a suitable choice of k0 > 0.
Assume that the inequality u< uδ is false in [0, t∗]×�, and let (tc, xc) be the first contact point between u
and uδ . Since uδ= δ > 0= u on the lateral boundary, (tc, xc)∈ (0, t∗]×�. Now, since (tc, xc)∈ (0, t∗]×�
is the first contact point, we necessarily have

uδ(tc, xc)= u(tc, xc) and uδ(t, x)≥ u(t, x) for all t ∈ [0, tc], x ∈�. (5-15)

Thus, as a consequence,

∂t uδ(tc, xc)≤ ∂t u(tc, xc)= k081(xc). (5-16)

Next, we observe the following Kato-type inequality holds: for any nonnegative function f ,

L( f m)≤ m f m−1L f. (5-17)

Indeed, by convexity, f (x)m − f (y)m ≤ m[ f (x)]m−1( f (x)− f (y)); therefore

L( f m)(x)=
∫

RN
[ f (x)m − f (y)m] K (x, y) dy+ B(x) f (x)m

≤ m[ f (x)]m−1
∫

RN
[ f (x)− f (y)] K (x, y) dy+ B(x) f (x)m

= m[ f (x)]m−1
(∫

RN
[ f (x)− f (y)] K (x, y) dy+ B(x) f (x)

)
− (m− 1)B(x) f (x)m

≤ m[ f (x)]m−1L f (x).

As a consequence of (5-17), since tc ≤ t∗ and 81 is bounded,

L(um)(t, x)≤ mum−1L(u)= m[k0t81(x)]m−1 k0tL(81)(x)

= mλ1[k0t81(x)]m ≤ κ1(t∗k0)
m81(x). (5-18)
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Then, using (5-16) and (5-18), we establish an upper bound for −L(um
δ − um)(tc, xc) as follows:

−L[um
δ − um

](tc, xc)= ∂t uδ(tc, xc)+L(um)(tc, xc)≤ k0 [1+ κ1tm
∗

km−1
0 ]81(xc). (5-19)

Next, we want to prove lower bounds for −L(um
δ −ψ

m)(tc, xc), and this is the point where the nonlocality
of the operator enters, since we make essential use of hypothesis (L2). We recall that by (5-15) we have
um
δ (tc, xc)= um(tc, xc), so that assumption (L2) gives

−L[um
δ − um

](tc, xc)=−L[um
δ − um

](tc, xc)+ B(xc)[um
δ (tc, xc)− um(tc, xc)]

= −

∫
RN

[
(um
δ (tc, xc)− um

δ (tc, y))− (um(tc, xc)− um(tc, y))
]
K (xc, y) dy

=

∫
�

[um
δ (tc, y)− um(tc, y)]K (xc, y) dy

≥ c081(xc)

∫
�

[um
δ (tc, y)− um(tc, y)]81(y) dy,

from which it follows (since um
= [k0t81(x)]m ≤ κ2(t∗k0)

m)

−L[um
δ − um

](tc, xc)≥ c081(xc)

∫
�

um
δ (tc, y)81(y) dy− c081(xc)

∫
�

um(tc, y)81(y) dy.

≥ c081(xc)

∫
�

um
δ (tc, y)81(y) dy− c081(xc)κ3 (t∗k0)

m. (5-20)

Combining the upper and lower bounds (5-19) and (5-20) we obtain

c081(xc)

∫
�

um
δ (tc, y)81(y) dy ≤ k0 [1+ (κ1+ κ3)tm

∗
km−1

0 ]81(xc). (5-21)

Hence, recalling (5-8), we get

c2

(∫
�

u0(x)81(x) dx
)m

≤

∫
�

um
δ (tc, y)81(y) dy ≤

k0

c0

[
1+ (κ1+ κ3)tm

∗
km−1

0

]
.

Since t∗ = κ∗‖u0‖
−(m−1)
L1
81
(�)

, this yields

c2κ
m/(m−1)
∗

t−m/(m−1)
∗

≤
k0

c0

[
1+ (κ1+ κ3)tm

∗
km−1

0

]
,

which gives the desired contradiction provided we choose k0 so that κ0 := k0tm/(m−1)
∗ is universally

small. �

5D. Proof of Theorem 5.2. The proof proceeds along the lines of the proof of Theorem 5.1, so we will
just briefly mention the common parts.

We want to show that
u(t, x) := κ0 t 81(x)σ/m, (5-22)

is a lower barrier for our problem on [0, t∗]×� provided κ0 is small enough. More precisely, as in the
proof of Theorem 5.1, we aim to prove that u < uδ on [0, t∗] ×�, as the lower bound for t ≥ t∗ then
follows by monotonicity.
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Assume by contradiction that the inequality u(t, x)< uδ(t, x) is false inside [0, t∗]×�. Since u< uδ on
the parabolic boundary, letting (tc, xc) be the first contact point, we necessarily have (tc, xc) ∈ (0, t∗]×�.
The desired contradiction will be obtained by combining the upper and lower bounds (which we prove
below) for the quantity −L[um

δ − um
](tc, xc), and then choosing κ0 > 0 suitably small. In this direction,

it is convenient in what follows to assume that

κ0 ≤ 1∧ t−m/(m−1)
∗

so that κm−1
0 tm

∗
≤ 1. (5-23)

Upper bound. We first establish the following upper bound: there exists a constant Ā > 0 such that

−L[um
δ − um

](tc, xc)≤ ∂t uδ(tc, xc)+Lum(tc, xc)≤ Āκ0. (5-24)

To prove this, we estimate ∂t uδ(tc, xc) and Lum(tc, xc) separately. First we notice that, since (tδ, xδ) is
the first contact point, we have

uδ(tδ, xδ)= u(tδ, xδ) and uδ(t, x)≥ u(t, x) for all t ∈ [0, tδ], x ∈�. (5-25)

Hence, since tδ ≤ t∗,

∂t uδ(tδ, xδ)≤ ∂t u(tδ, xδ)= κ081(x)σ/m
≤ κ0 ‖81‖

σ/m
L∞(�) = A1κ0, (5-26)

where we defined A1 := ‖81‖
σ/m
L∞(�). Next we estimate Lum(tc, xc), using the Kato-type inequality (5-17);

namely L[um
] ≤ mum−1Lu. This implies

L[um
](t, x)≤ mum−1(t, x)Lu(t, x)= m(κ0 t)m81(x)σ(m−1)/mL8σ1 (x)

≤ m(κ0 t∗)m‖81‖
σ(m−1)/m
L∞(�) ‖L8σ1 ‖L∞(�) := A2κ0. (5-27)

Since κm−1
0 tm

∗
≤ 1, see (5-23), in order to prove that A2 is finite it is enough to bound ‖L8σ1 ‖L∞(�). When

σ = 1 we simply have L81 =−λ181; hence A2 ≤ mλ1‖81‖
2−1/m
L∞(�) . When σ < 1, we use the assumption

81 ∈ Cγ (�) to estimate

|8σ1 (x)−8
σ
1 (y)| ≤ |81(x)−81(y)|σ ≤ C |x − y|γ σ for all x, y ∈�. (5-28)

Hence, since γ σ = 2sm/(m− 1) > 2s and K (x, y)≤ c1|x − y|−(N+2s), we see that

|L8σ1 (x)| =
∣∣∣∣∫

RN
[8σ1 (x)−8

σ
1 (y)]K (x, y) dy

∣∣∣∣
≤

∫
�

|x − y|γ σ K (x, y) dy+C‖81‖
σ
L∞(�)

∫
RN \B1

|y|−(N+2s) dy <∞;

hence A2 is again finite. Combining (5-26) and (5-27), we obtain (5-24) with Ā := A1+ A2.

Lower bound. We want to prove that there exists A > 0 such that

−L[um
δ − um

](tc, xc)≥
κ�

‖81‖L∞(�)

∫
�

um
δ (tc, y)81(y) dy− Aκ0. (5-29)
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This follows by (L1) and (5-25):

−L[um
δ − um

](tc, xc)=−

∫
RN

[
(um
δ (tc, xc)− um

δ (tc, y))− (um(tc, xc)− um(tc, y))
]
K (x, y) dy

=

∫
�

[um
δ (tc, y)− um(tc, y)]K (x, y) dy

≥ κ�

∫
�

[um
δ (tc, y)− um(tc, y)] dy

≥
κ�

‖81‖L∞(�)

∫
�

um
δ (tc, y)81(y) dy− Aκ0, (5-30)

where in the last step we used that um(tc, y)= [κ0t8σ/m
1 (y)]m ≤ κ2(κ0t∗)m and κm−1

0 tm
∗
≤ 1; see (5-23).

End of the proof. The contradiction can be now obtained by joining the upper and lower bounds (5-24)
and (5-29). More precisely, we have proved∫

�

um
δ (tc, y)81(y) dy ≤

‖81‖L∞(�)

κ�
( Ā+ A)κ0 := κ̄κ0,

which combined with the lower bound (5-8) yields

c2

(∫
�

u0(x)81(x) dx
)m

≤

∫
�

um
δ (tc, y)81(y) dy ≤ κ̄κ0.

Setting κ0 := (1∧ c2/κ̄)t
−m/(m−1)
∗ , we obtain the desired contradiction. �

5E. Proof of Theorem 5.3. We first recall the upper pointwise estimates (4-3): for all 0 ≤ t0 ≤ t1 ≤ t
and a.e. x0 ∈�, we have∫

�

u(t0, x)G(x, x0) dx −
∫
�

u(t1, x)G(x, x0) dx ≤ (m− 1)
tm/(m−1)

t1/(m−1)
0

um(t, x0). (5-31)

The proof follows by estimating the two integrals on the left-hand side separately.
We begin by using the upper bounds (4-8) to get∫

�

u(t1, x)G(x, x0) dx ≤ κ̄
81(x0)

t1/(m−1)
1

for all (t1, x) ∈ (0,+∞)×�. (5-32)

Then we note that, as a consequence of (K2) and Lemma 5.6,∫
�

u(t0, x)G(x, x0) dx ≥ κ�81(x0)

∫
�

u(t0, x)81(x) dx ≥ 1
2κ�81(x0)

∫
�

u0(x)81(x) dx (5-33)

provided t0 ≤ τ0/‖u0‖
m−1
L1
81
(�)

. Combining (5-31), (5-32), and (5-33), for all t ≥ t1 ≥ t0 ≥ 0 we obtain

um(t, x0)≥
t1/(m−1)
0

m− 1

( 1
2κ�‖u0‖L1

81
(�)− κ̄t−1/(m−1)

1

) 81(x0)

tm/(m−1) .
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Choosing

t0 :=
τ0

‖u0‖
m−1
L1
81
(�)

≤ t1 := t∗ =
κ∗

‖u0‖
m−1
L1
81
(�)

with κ∗ ≥ τ0 ∨

(
κ�

4κ̄

)m−1

so that 1
2κ�‖u0‖L1

81
(�)− κ̄t−1/(m−1)

1 ≥
1
4κ�‖u0‖L1

81
(�), the result follows. �

5F. Proofs of Theorems 5.4 and 5.5.

Proof of Theorem 5.4. Since u0 ≤ C081 and L8= λ181, we have∫
�

u0(x)G(x, x0) dx ≤ C0

∫
�

81(x)G(x, x0) dx = C0L−181(x0)=
C0

λ1
81(x0).

Since t 7→
∫
�

u(t, y)G(x, y) dy is decreasing, see (4-2), it follows that∫
�

u(t, y)G(x0, y) dy ≤
C0

λ1
81(x0) for all t ≥ 0. (5-34)

Combining this estimate with (4-7) concludes the proof. �

Proof of Theorem 5.5. Given x0 ∈ �, set R0 := dist(x0, ∂�). Since G(x, x0) & |x − x0|
−(N−2s) inside

BR0/2(x0) by (K4), using our assumption on u(T ) we get∫
�

G(x, x0)u(T, x) dx &
∫

BR0/2(x0)

81(x)α

|x − x0|N−2s &81(x0)
αR2s

0 .

Recalling that 81(x0)� Rγ0 , this yields

81(x0)
α+2s/γ .

∫
�

G(x, x0)u(T, x) dx .

Combining the above inequality with (5-34) gives

81(x0)
α+2s/γ .81(x0) for all x0 ∈�,

which implies

α ≥ 1− 2s
γ
.

Noticing that 1− 2s/γ > 1/m if and only if σ < 1, this concludes the proof. �

6. Summary of the general decay and boundary results

We now present a summary of the main results, which can be summarized in various forms of upper
and lower bounds, which we call the global Harnack principle, GHP for short. As already mentioned,
such inequalities are important for regularity issues (see Section 8), and they play a fundamental role
in formulating the sharp asymptotic behavior (see Section 7). The proof of such a GHP is obtained by
combining upper and lower bounds, stated and proved in Sections 4 and 5 respectively. There are cases
when the bounds do not match, for which the complicated panorama described in the Introduction holds. As
explained before, as far as examples are concerned, the latter anomalous situation happens only for the SFL.
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Theorem 6.1 (global Harnack principle I). Let L satisfy (A1), (A2), (K2), and (L1). Furthermore, suppose
that L has a first eigenfunction 81 � dist( · , ∂�)γ. Let σ be as in (1-3) and assume that 2sm 6= γ (m− 1)
and

• either σ = 1

• or σ < 1, K (x, y)≤ c1|x − y|−(N+2s) for a.e. x, y ∈ RN, and 81 ∈ Cγ (�).

Let u ≥ 0 be a weak dual solution to the CDP corresponding to u0 ∈ L1
81
(�). Then, there exist constants

κ, κ̄ > 0 such that the following inequality holds:

κ

(
1∧

t
t∗

)m/(m−1)
81(x)σ/m

t1/(m−1) ≤ u(t, x)≤ κ̄
81(x)σ/m

t1/(m−1) for all t > 0, x ∈�. (6-1)

The constants κ, κ̄ depend only on N, s, γ , m, c1, κ�, �, and ‖81‖Cγ (�).

Proof. We combine the upper bound (4-1) with the lower bound (5-2). The expression of t∗ is explicitly
given in Theorem 5.2. �

Degenerate kernels. When the kernel K vanishes on ∂�, there are two combinations of upper/lower
bounds that provide Harnack inequalities, one for small times and one for large times. As we have already
seen, there is a strong difference between the cases σ = 1 and σ < 1.

Theorem 6.2 (global Harnack principle II). Let (A1), (A2), and (K2) hold. Let u ≥ 0 be a weak dual
solution to the CDP corresponding to u0 ∈ L1

81
(�). Assume that

• either σ = 1 and 2sm 6= γ (m− 1);

• or σ < 1, u0 ≥ κ08
σ/m
1 for some κ0 > 0, and (K4) holds.

Then there exist constants κ, κ̄ > 0 such that the following inequality holds:

κ
81(x)σ/m

t1/(m−1) ≤ u(t, x)≤ κ̄
81(x)σ/m

t1/(m−1) for all t ≥ t∗, x ∈�.

If 2sm = γ (m− 1), assuming (K4) and that u0 ≥ κ081(1+ | log81|)
1/(m−1) for some κ0 > 0, then for

all t ≥ t∗ and all x ∈�

κ
81(x)1/m

t1/(m−1) (1+ | log81(x)|)1/(m−1)
≤ u(t, x)≤ κ̄

81(x)1/m

t1/(m−1) (1+ | log81(x)|)1/(m−1).

The constants κ, κ̄ depend only on N, s, γ , m, κ0, κ�, and �.

Proof. In the case σ = 1, we combine the upper bound (4-1) with the lower bound (5-3). The expression
of t∗ is explicitly given in Theorem 5.3. When σ < 1, the upper bound is still given by (4-1), while the
lower bound follows by comparison with the solution S(x)(κ1−m

0 + t)−1/(m−1), recalling that S �8σ/m
1

(see Theorem 3.2). �

Remark. Local Harnack inequalities of elliptic/backward type follow as a consequence of Theorems 6.1
and 6.2, for all times and for large times respectively, see Theorem 8.2.
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Note that, for small times, we cannot find matching powers for a global Harnack inequality (except
for some special initial data), and such a result is actually false for s = 1 (in view of the finite speed of
propagation). Hence, in the remaining cases, we have only the following general result.

Theorem 6.3 (nonmatching upper and lower bounds). Let L satisfy (A1), (A2), (K2), and (L2). Let u ≥ 0
be a weak dual solution to the CDP corresponding to u0 ∈ L1

81
(�). Then, there exist constants κ, κ̄ > 0

such that the following inequality holds when 2sm 6= γ (m− 1):

κ

(
1∧

t
t∗

)m/(m−1)
81(x)

t1/(m−1) ≤ u(t, x)≤ κ̄
81(x)σ/m

t1/(m−1) for all t > 0, x ∈�. (6-2)

When 2sm = γ (m− 1), a logarithmic correction (1+ | log81(x)|)1/(m−1) appears in the right-hand side.

Proof. We combine the upper bound (4-1) with the lower bound (5-1). The expression of t∗ is explicitly
given in Theorem 5.1. �

Remark. As already mentioned in the Introduction, in the nonmatching case, which in examples can
only happen for spectral-type operators, we have the appearance of an anomalous behavior of solutions
corresponding to “small data”: it happens for all times when σ < 1 or 2sm = γ (m − 1), and it can
eventually happen for short times when σ = 1.

7. Asymptotic behavior

An important application of the global Harnack inequalities of the previous section concerns the sharp
asymptotic behavior of solutions. More precisely, we first show that for large times all solutions behave
like the separate-variables solution U(t, x) = S(x) t−1/(m−1) introduced at the end of Section 3. Then,
whenever the GHP holds, we can improve this result to an estimate in relative error.

Theorem 7.1 (asymptotic behavior). Assume that L satisfies (A1), (A2), and (K2), and let S be as in
Theorem 3.2. Let u be any weak dual solution to the CDP. Then, unless u ≡ 0,

‖t1/(m−1)u(t, · )− S‖L∞(�) t→∞
−−−→ 0. (7-1)

Proof. The proof uses rescaling and time monotonicity arguments, and it is a simple adaptation of the
proof of Theorem 2.3 of [Bonforte et al. 2015]. In those arguments, the interior Cα

x (�) continuity is
needed to improve the L1(�) convergence to L∞(�), but the interior Hölder continuity is guaranteed by
Theorem 8.1(i) below. �

We now exploit the GHP to get a stronger result.

Theorem 7.2 (sharp asymptotic behavior). Under the assumptions of Theorem 7.1, assume that u 6≡ 0.
Furthermore, suppose that either the assumptions of Theorem 6.1 or of Theorem 6.2 hold. Set U(t, x) :=
t−1/(m−1)S(x). Then there exists c0 > 0 such that, for all t ≥ t0 := c0‖u0‖

−(m−1)
L1
81
(�)

, we have∥∥∥∥ u(t, · )
U(t, · )

− 1
∥∥∥∥

L∞(�)
≤

2
m− 1

t0
t0+ t

. (7-2)

We remark that the constant c0 > 0 only depends on N, s, γ , m, κ0, κ�, and �.
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Remark. This asymptotic result is sharp, as it can be checked by considering u(t, x)= U(t + 1, x). For
the classical case, that is L=1, we recover the classical results of [Aronson and Peletier 1981; Vázquez
2004] with a different proof.

Proof. Notice that we are in the position to use Theorem 6.1 or 6.2; namely we have

u(t)� t−1/(m−1)S = U(t, · ) for all t ≥ t∗,

where the last equivalence follows by Theorem 3.2. Hence, we can rewrite the bounds above saying that
there exist κ, κ̄ > 0 such that

κ
S(x)

t1/(m−1) ≤ u(t, x)≤ κ̄
S(x)

t1/(m−1) for all t ≥ t∗ and a.e. x ∈�. (7-3)

Since t∗ = κ∗‖u0‖
−(m−1)
L1
81
(�)

, the first inequality implies

S
(t∗+ t0)1/(m−1) ≤ κ

S

t1/(m−1)
∗

≤ u(t∗)

for some t0 = c0‖u0‖
−(m−1)
L1
81
(�)
≥ t∗. Hence, by the comparison principle,

S
(t + t0)1/(m−1) ≤ u(t) for all t ≥ t∗.

On the other hand, it follows by (7-3) that u(t, x)≤UT (t, x) := S(x)(t−T )−1/(m−1) for all t ≥ T provided
T is large enough. If we now start to reduce T, the comparison principle combined with the upper bound
(4-1) shows that u can never touch UT from below in (T,∞)×�. Hence we can reduce T until T = 0,
proving that u ≤ U0; for an alternative proof, see Lemma 5.4 in [Bonforte et al. 2015]. Since t0 ≥ t∗, this
shows that

S(x)
(t + t0)1/(m−1) ≤ u(t, x)≤

S(x)
t1/(m−1) for all t ≥ t0 and a.e. x ∈�.

Therefore∣∣∣∣1− u(t, x)
U(t, x)

∣∣∣∣≤ 1−
(

1−
t0

t0+ t

)1/(m−1)

≤
2

m− 1
t0

t0+ t
for all t ≥ t0 and a.e. x ∈�,

as desired. �

8. Regularity results

In order to obtain the regularity results, we basically require the validity of a global Harnack principle,
namely Theorem 6.1, 6.2, or 6.3, depending on the situation under study. For some higher-regularity
results, we will eventually need some extra assumptions on the kernels. For simplicity we assume that L is
described by a kernel, without any lower-order term. However, it is clear that the presence of lower-order
terms does not play any role in the interior regularity.

Theorem 8.1 (interior regularity). Assume that

L f (x)= P.V.
∫

RN
( f (x)− f (y))K (x, y) dy+ B(x) f (x),



972 MATTEO BONFORTE, ALESSIO FIGALLI AND JUAN LUIS VÁZQUEZ

with

K (x, y)� |x − y|−(N+2s) in B2r (x0)⊂�, K (x, y). |x − y|−(N+2s) in RN
\ B2r (x0).

Let u be a nonnegative bounded weak dual solution to the CDP on (T0, T1)×�, and assume that there
exist δ,M > 0 such that

0< δ ≤ u(t, x) for a.e. (t, x) ∈ (T0, T1)× B2r (x0),

0≤ u(t, x)≤ M for a.e. (t, x) ∈ (T0, T1)×�.

(i) Then u is Hölder continuous in the interior. More precisely, there exists α > 0 such that, for all
0< T0 < T2 < T1,

‖u‖Cα/2s,α
t,x ((T2,T1)×Br (x0))

≤ C. (8-1)

(ii) Assume in addition |K (x, y)− K (x ′, y)| ≤ c|x − x ′|β |y|−(N+2s) for some β ∈ (0, 1∧ 2s) such that
β + 2s is not an integer. Then u is a classical solution in the interior. More precisely, for all
0< T0 < T2 < T1,

‖u‖C1+β/2s,2s+β
t,x ((T2,T1)×Br (x0))

≤ C. (8-2)

The constants in the above regularity estimates depend on the solution only through the upper and
lower bounds on u. These bounds can be made quantitative by means of local Harnack inequalities, of
elliptic and forward type, which follow from the global ones.

Theorem 8.2 (local Harnack inequalities of elliptic/backward type). Under the assumptions of Theorem 6.1,
there exists a constant Ĥ > 0, depending only on N, s, γ , m, c1, κ�, �, such that for all balls BR(x0)

such that B2R(x0)⊂�

sup
x∈BR(x0)

u(t, x)≤
Ĥ

(1∧ t/t∗)m/(m−1) inf
x∈BR(x0)

u(t, x) for all t > 0. (8-3)

Moreover, for all t > 0 and all h > 0 we have

sup
x∈BR(x0)

u(t, x)≤ Ĥ
[(

1+
h
t

)(
1∧

t
t∗

)−m ]1/(m−1)

inf
x∈BR(x0)

u(t + h, x). (8-4)

Proof. Recalling (6-1), the bound (8-3) follows easily from the following Harnack inequality for the first
eigenfunction, see for instance [Bonforte et al. 2017b]:

sup
x∈BR(x0)

81(x)≤ HN ,s,γ,� inf
x∈BR(x0)

81(x).

Since u(t, x) ≤ (1 + h/t)1/(m−1)u(t + h, x), by the time monotonicity of t 7→ t1/(m−1) u(t, x), (8-4)
follows. �

Remark. The same result holds for large times t ≥ t∗ as a consequence of Theorem 6.2. Already in the
local case s = 1, these Harnack inequalities are stronger than the known two-sided inequalities valid for
solutions to the Dirichlet problem for the classical porous medium equation, see [Aronson and Caffarelli
1983; Daskalopoulos and Kenig 2007; DiBenedetto 1988; 1993; DiBenedetto et al. 2012], which are
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of forward type and are often stated in terms of the so-called intrinsic geometry. Note that elliptic and
backward Harnack-type inequalities usually occur in the fast diffusion range m < 1 [Bonforte et al. 2012;
Bonforte and Vázquez 2006; 2010; 2014], or for linear equations in bounded domains [Fabes et al. 1986;
Safonov and Yuan 1999].

For sharp boundary regularity we need a GHP with matching powers, like Theorems 6.1 or 6.2, and
when s > γ/2, we can also prove Hölder regularity up to the boundary. We leave to the interested reader
to check that the presence of an extra term B(x)um(t, x) with 0 ≤ B(x) ≤ c1 dist(x, ∂�)−2s (as in the
SFL) does not affect the validity of the next result. Indeed, when considering the scaling in (8-6), the
lower term scales as B̂r um

r with 0≤ B̂r ≤ c1 inside the unit ball B1.

Theorem 8.3 (Hölder continuity up to the boundary). Under assumptions of Theorem 8.1(ii), assume
in addition that 2s > γ . Then u is Hölder continuous up to the boundary. More precisely, for all
0< T0 < T2 < T1 there exists a constant C > 0 such that

‖u‖Cγ /mϑ,γ /m
t,x ((T2,T1)×�)

≤ C with ϑ := 2s− γ
(

1− 1
m

)
. (8-5)

Remark. Since we have u(t, x)�81(x)1/m
� dist(x, ∂�)γ /m (note that 2s > γ implies that σ = 1 and

that 2sm 6= γ (m − 1)), the spacial Hölder exponent is sharp, while the Hölder exponent in time is the
natural one by scaling.

8A. Proof of interior regularity. The strategy to prove Theorem 8.1 follows the lines of [Bonforte et al.
2017a] but with some modifications. The basic idea is that, because u is bounded away from zero and
infinity, the equation is nondegenerate and we can use parabolic regularity for nonlocal equations to
obtain the results. More precisely, interior Hölder regularity will follow by applying Cα/2s,α

t,x estimates of
[Felsinger and Kassmann 2013] for a “localized” linear problem. Once Hölder regularity is established,
under a Hölder continuity assumption on the kernel we can use the Schauder estimates proved in [Dong
and Zhang 2016] to conclude.

8A1. Localization of the problem. Up to a rescaling, we can assume r = 2, T0 = 0, T1 = 1. Also, by a
standard covering argument, it is enough to prove the results with T2 =

1
2 .

Take a cutoff function ρ ∈ C∞c (B4) such that ρ ≡ 1 on B3 and η ∈ C∞c (B2) a cutoff function such that
η ≡ 1 on B1, and define v = ρu. By construction u = v on (0, 1)× B3. Since ρ ≡ 1 on B3, we can write
the equation for v on the small cylinder (0, 1)× B1 as

∂tv(t, x)=−L[vm
](t, x)+ g(t, x)=−Lav(t, x)+ f (t, x)+ g(t, x),

where

La[v](t, x) :=
∫

RN
(v(t, x)− v(t, y))a(t, x, y)K (x, y) dy,

a(t, x, y) :=
vm(t, x)− vm(t, y)
v(t, x)− v(t, y)

η(x − y)+ [1− η(x − y)]

= mη(x − y)
∫ 1

0
[(1− λ)v(t, x)+ λv(t, y)]m−1 dλ+ [1− η(x − y)],
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f (t, x) :=
∫

RN \B1(x)

(
vm(t, x)− vm(t, y)− v(t, x)+ v(t, y)

)
[1− η(x − y)]K (x, y) dy,

g(t, x) := −L[(1− ρm)um
](t, x)=

∫
RN \B3

(1− ρm(y))um(t, y)K (x, y) dy

(recall that (1− ρm)um
≡ 0 on (0, 1)× B3).

8A2. Hölder continuity in the interior. Set b := f + g, with f and g as above. It is easy to check
that, since K (x, y) . |x − y|−(N+2s), we have b ∈ L∞((0, 1)× B1). Also, since 0 < δ ≤ u ≤ M inside
(0, 1)× B1, there exists 3> 1 such that 3−1

≤ a(t, x, y)≤3 for a.e. (t, x, y) ∈ (0, 1)× B1× B1 with
|x − y| ≤ 1. This guarantees that the linear operator La is uniformly elliptic, so we can apply the results
in [Felsinger and Kassmann 2013] to ensure that

‖v‖Cα/2s,α
t,x ((1/2,1)×B1/2)

≤ C
(
‖b‖L∞((0,1)×B1)+‖v‖L∞((0,1)×RN )

)
for some universal exponent α > 0. This proves Theorem 8.1(i).

8A3. Classical solutions in the interior. Now that we know that u ∈ Cα/2s,α
((1

2 , 1
)
× B1/2

)
, we repeat

the localization argument above with cutoff functions ρ and η supported inside
( 1

2 , 1
)
× B1/2 to ensure

that v := ρu is Hölder continuous in
( 1

2 , 1
)
×RN. Then, to obtain higher regularity we argue as follows.

Set β1 := min{α, β}. Thanks to the assumption on K and Theorem 8.1(i), it is easy to check that
Ka(t, x, y) := a(t, x, y)K (x, y) satisfies

|Ka(t, x, y)− Ka(t ′, x ′, y)| ≤ C
(
|x − x ′|β1 + |t − t ′|β1/2s)

|y|−(N+2s)

inside
( 1

2 , 1
)
× B1/2. Also, f, g ∈Cβ1/2s,β1

((1
2 , 1

)
× B1/2

)
. This allows us to apply the Schauder estimates

from [Dong and Zhang 2016], see also [Chang-Lara and Kriventsov 2017], to obtain that

‖v‖
C

1+β1/2s,2s+β
t,x ((3/4,1)×B1/4)

≤ C
(
‖b‖Cβ/2s,β

t,x ((1/2,1)×B1/2)
+‖v‖Cβ/2s,β

t,x ((1/2,1)×RN )

)
.

In particular, u ∈ C1+β1/2s,2s+β1
((3

4 , 1
)
× B1/8

)
. In the case β1 = β we stop here. Otherwise we set

α1 := 2s + β and we repeat the argument above with β2 := min{α1, β} in place of β1. In this way, we
obtain that u ∈C1+β1/2s,2s+β1((1−2−4, 1)×B2−5). Iterating this procedure finitely many times, we finally
obtain

u ∈ C1+β/2s,2s+β((1− 2−k, 1)× B2−k−1)

for some universal k. Finally, a covering argument completes the proof of Theorem 8.1(ii).

8B. Proof of boundary regularity. The proof of Theorem 8.3 follows by scaling and interior estimates.
Notice that the assumption 2s > γ implies σ = 1; hence u(t) has matching upper and lower bounds.

Given x0 ∈�, set r = dist(x0, ∂�)/2 and define

ur (t, x) := r−γ /m u(t0+ rϑ t, x0+ r x), with ϑ := 2s− γ
(

1− 1
m

)
. (8-6)
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Note that, because 2s > γ , we have ϑ > 0. With this definition, we see that ur satisfies the equation
∂t ur +Lr um

r = 0 in �r := (�− x0)/r , where

Lr f (x)= P.V.
∫

RN
( f (x)− f (y))Kr (x, y) dy, Kr (x, y) := r N+2s K (x0+ r x, x0+ r y).

Note that, since σ = 1, it follows by the GHP that u(t)� dist(x, ∂�)γ /m. Hence,

0< δ ≤ ur (t, x)≤ M for all t ∈ [r−ϑT0, r−ϑT1], x ∈ B1,

with constants δ,M>0 that are independent of r and x0. In addition, using again that u(t)�dist(x,∂�)γ /m,
we see that

ur (t, x)≤ C(1+ |x |γ /m) for all t ∈ [r−ϑT0, r−ϑT1] and x ∈ RN.

Noticing that um
r (t, x)≤ C(1+ |x |γ ) and that γ < 2s by assumption, we see that the tails of ur will not

create any problem. Indeed, for any x ∈ B1,∫
RN \B2

um
r (t, y)Kr (x, y)−(N+2s) dy ≤ C

∫
RN \B2

|y|γ |y|−(N+2s) dy ≤ C̄0,

where C̄0 is independent of r . This means that we can localize the problem using cutoff functions as done
in Section 8A1, and the integrals defining the functions f and g will converge uniformly with respect to
x0 and r . Hence, we can apply Theorem 8.1(ii) to get

‖ur‖C1+β/2s,2s+β ([r−ϑT+1/2,r−ϑT+1]×B1/2) ≤ C (8-7)

for all T ∈ [T0, T1− r−ϑ ]. Since γ /m < 2s+β (because γ < 2s), it follows that

‖ur‖L∞([r−ϑT+1/2,r−ϑT+1],Cγ /m(B1/2) ≤ ‖ur‖C1+β/2s,2s+β ([r−ϑT+1/2,r−ϑT0+1]×B1/2) ≤ C.

Noticing that

sup
t∈[r−ϑT+1/2,r−ϑT+1]

[ur ]Cγ /m(B1/2) = sup
t∈[T+rϑ/2,r−ϑT+r−ϑ ]

[u]Cγ /m(Br (x0)),

and that T ∈ [T0, T1− r−ϑ ] and x0 are arbitrary, arguing as in [Ros-Oton and Serra 2014] we deduce that,
given T2 ∈ (T0, T1),

sup
t∈[T2,T1]

[u]Cγ /m(�) ≤ C. (8-8)

This proves the global Hölder regularity in space. To show the regularity in time, we start again from
(8-7) to get

‖∂t ur‖L∞([r−ϑT+1/2,r−ϑT+1]×B1/2) ≤ C.

By scaling, this implies
‖∂t u‖L∞([T+rϑ/2,r−ϑT+r−ϑ ]×Br (x0)) ≤ Crγ /m−ϑ,

and by the arbitrariness of T and x0 we obtain (recall that r = dist(x0, ∂�)/2)

|∂t u(t, x)| ≤ C dist(x, ∂�)γ /m−ϑ for all t ∈ [T2, T1], x ∈�. (8-9)

Note that γ /m−ϑ = γ − 2s < 0 by our assumption.
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Now, given t0, t1 ∈ [T2, T1] and x ∈ �, we argue as follows: if |t0− t1| ≤ dist(x, ∂�)ϑ then we use
(8-9) to get (recall that γ /m−ϑ < 0)

|u(t1, x)− u(t0, x)| ≤ C dist(x, ∂�)γ /m−ϑ
|t0− t1| ≤ C |t0− t1|γ /mϑ.

On the other hand, if |t0− t1| ≥ dist(x, ∂�)ϑ, then we use (8-8) and the fact that u vanishes on ∂� to
obtain

|u(t1, x)− u(t0, x)| ≤ |u(t1, x)| + |u(t0, x)| ≤ C dist(x, ∂�)γ /m
≤ C |t0− t1|γ /mϑ.

This proves that u is (γ /mϑ)-Hölder continuous in time, and completes the proof of Theorem 8.3. �

9. Numerical evidence

After discovering the unexpected boundary behavior, we looked for numerical confirmation. This has
been given to us by the authors of [Cusimano et al. 2017], who exploited the analytical tools developed
in this paper to support our results by means of accurate numerical simulations. We include here some
of these simulations, courtesy of the authors. In all the figures we shall consider the spectral fractional
Laplacian, so that γ = 1 (see Section 2A for more details).

We take �= (−1, 1), and we consider as initial datum the compactly supported function

u0(x)= e4−1/((x−1/2)(x+1/2))χ|x |<1/2

appearing in the left of Figure 1. In all the other figures, the solid line represents either 81/m
1 or 81−2s

1 ,
while the dotted lines represent t1/(m−1)u(t) for different values of t , where u(t) is the solution starting
from u0. These choices are motivated by Theorems 5.3 and 5.5. Since the map t 7→ t1/(m−1) u(t, x) is
nondecreasing for all x ∈� [Bonforte and Vázquez 2016, (2.3)], the lower dotted line corresponds to an
earlier time with respect to the higher one.
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Figure 1. On the left, the initial condition u0. On the right, the solid line represents
8

1/m
1 , and the dotted lines represent t1/(m−1)u(t) at t = 1 and t = 5. The parameters are

m = 2 and s = 1
2 ; hence σ = 1. While u(t) appears to behave as 81 � dist( · , ∂�) for

very short times, already at t = 5 it exhibits the matching boundary behavior predicted
by Theorem 5.3.
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Figure 2. In both pictures, the solid line represents 81/m
1 . On the left, the dotted lines

represent t1/(m−1)u(t) at t = 30 and t = 150, with parameters m = 4 and s = 3
4 ; hence

σ = 1. In this case u(t) appears to behave as 81 � dist( · , ∂�) for quite some time, and
only around t = 150 it exhibits the matching boundary behavior predicted by Theorem 5.3.
On the right, the dotted lines represent t1/(m−1)u(t) at t=150 and t=600 with parameters
m = 4 and s = 1

5 ; hence σ = 8
15 < 1. In this case u(t) seems to exhibit a linear boundary

behavior even after long time (this linear boundary behavior is a universal lower bound
for all times by Theorem 5.1). The second picture may lead one to conjecture that, in the
case σ < 1 and u0 .81, the behavior u(t)�81 holds for all times. However, as shown
in Figure 3, there are cases when u(t)�81−2s

1 for large times.
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Figure 3. In both pictures we use the parameters m = 2 and s = 1
10 ; hence σ = 2

5 < 1,
and the solid line represents 81−2s

1 . On the left, the dotted lines represent t1/(m−1)u(t) at
t = 4 and t = 25, on the right we see t = 40 and t = 150. Note that u(t)�81 for short
times. Then, after some time, u(t) starts looking more like 81−2s

1 , and for large times
(t = 150) it becomes much larger than 81−2s

1 .

Comparing Figures 2 and 3, it seems that when σ < 1 there is no hope of finding a universal behavior
of solutions for large times. In particular, the bound provided by (1-6) seems to be optimal.
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10. Complements, extensions and further examples

Elliptic versus parabolic. The exceptional boundary behaviors we have found for some operators and
data came as a surprise to us, since the solution to the corresponding “elliptic setting” LSm

= S satisfies
S � 8σ/m

1 (with a logarithmic correction when 2sm 6= γ (m − 1)); hence separate-variable solutions
always satisfy (1-5) (see (3-2) and Theorem 3.2).

About the kernel of operators of the spectral type. In this section we study the properties of the kernel
of L. While in some situations L may not have a kernel (for instance, in the local case), in other situations
that may not be so obvious from its definition. In the next lemma it is shown in particular that the SFL,
defined by (2-4), admits a representation of the form (2-5). We state hereby the precise result, mentioned
in [Abatangelo 2015] and proven in [Song and Vondraček 2003] for the SFL.

Lemma 10.1 (spectral kernels). Let s ∈ (0, 1), and let L be the s-th spectral power of a linear elliptic
second-order operator A, and let 81 � dist( · , ∂�)γ be the first positive eigenfunction of A. Let
H(t, x, y) be the heat kernel of A, and assume that it satisfies the following bounds: there exist constants
c0, c1, c2 > 0 such that for all 0< t ≤ 1

c0

(
81(x)
tγ /2

∧ 1
)(

81(y)
tγ /2

∧ 1
)

e−c1|x−y|2/t

t N/2 ≤ H(t, x, y)≤ c−1
0

(
81(x)
tγ /2

∧ 1
)(

81(y)
tγ /2

∧ 1
)

e−|x−y|2/(c1 t)

t N/2

(10-1)
and

0≤ H(t, x, y)≤ c281(x)81(y) for all t ≥ 1. (10-2)

Then the operator L can be expressed in the form

L f (x)= P.V.
∫

RN
( f (x)− f (y)) K (x, y) dy+ B(x)u(x) (10-3)

with a kernel K (x, y) supported in �×� satisfying

K (x, y)�
1

|x − y|N+2s

(
81(x)
|x − y|γ

∧ 1
)(

81(y)
|x − y|γ

∧ 1
)

and B(x)�81(x)−2s/γ. (10-4)

The proof of this lemma follows the ideas of [Song and Vondraček 2003]; indeed assumptions of
Lemma 10.1 allow us to adapt the proof of that paper to our case with minor changes.

Method and generality. Our work is part of a current effort aimed at extending the theory of evolution
equations of parabolic type to a wide class of nonlocal operators, in particular operators with general
kernels that have been studied by various authors; see for instance [del Teso et al. 2017; de Pablo et al.
2016; Serra 2015]. Our approach is different from many others: indeed, even if the equation is nonlinear,
we concentrate on the properties of the inverse operator L−1 (more precisely, on its kernel given by the
Green function G), rather than on the operator L itself. Once this setting is well-established and good linear
estimates for the Green function are available, the calculations and estimates are very general. Hence, the
method is applicable to a very large class of equations, both for elliptic and parabolic problems, as well



SHARP GLOBAL ESTIMATES FOR LOCAL AND NONLOCAL POROUS MEDIUM-TYPE EQUATIONS 979

as to more general nonlinearities than F(u)= um ; see also related comments in the works [Bonforte and
Vázquez 2015; 2016; Bonforte et al. 2015].

Finite and infinite propagation. In all cases considered in the paper for s < 1 we prove that the solution
becomes strictly positive inside the domain at all positive times. This is called infinite speed of propagation,
a property that does not hold in the limit s = 1 for any m > 1 [Vázquez 2007] (in that case, finite speed
of propagation holds and a free boundary appears). Previous results on this infinite speed of propagation
can be found in [Bonforte et al. 2017a; de Pablo et al. 2012]. We recall that infinite speed of propagation
is typical of the evolution with nonlocal operators representing long-range interactions, but it is not true
for the standard porous medium equation; hence a trade-off takes place when both effects are combined.
All our models fall on the side of infinite propagation, but we recall that finite propagation holds for a
related nonlocal model called “nonlinear porous medium flow with fractional potential pressure”; see
[Caffarelli and Vázquez 2011].

The local case. Since 2sm > γ (m− 1) when s = 1 (independently of m > 1), our results give a sharp
behavior in the local case after a “waiting time”. Although this is well-known for the classical porous
medium equation, our results apply also to the case of the uniformly elliptic operator in divergence form
with C1 coefficients, and yield new results in this setting. Actually one can check that, even when the
coefficients are merely measurable, many of our results are still true and they provided universal upper
and lower estimates. At least to our knowledge, such general results are completely new.

10A. Further examples of operators. Here we briefly exhibit a number of examples to which our theory
applies, besides the RFL, CFL and SFL already discussed in Section 2. These include a wide class of
local and nonlocal operators. We just sketch the essential points, referring to [Bonforte and Vázquez
2016] for a more detailed exposition.

Censored fractional Laplacian (CFL) and operators with more general kernels. As already mentioned
in Section 2A, assumptions (A1), (A2), and (K2) are satisfied with γ = s− 1

2 . Moreover, it follows by
[Bogdan et al. 2003; Chen et al. 2010] that we can also consider operators of the form:

L f (x)= P.V.
∫
�

( f (x)− f (y))
a(x, y)
|x − y|N+2s dy, with 1

2 < s < 1,

where a(x, y) is a symmetric function of class C1 bounded between two positive constants. The Green
function G(x, y) of L satisfies the stronger assumption (K4); see Corollary 1.2 of [Chen et al. 2010].

Fractional operators with more general kernels. Consider integral operators of the form

L f (x)= P.V.
∫

RN
( f (x)− f (y))

a(x, y)
|x − y|N+2s dy,

where a is a measurable symmetric function, bounded between two positive constants, and satisfying

|a(x, y)− a(x, x)|χ|x−y|<1 ≤ c|x − y|σ , with 0< s < σ ≤ 1,
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for some c > 0 (actually, one can allow even more general kernels; see [Bonforte and Vázquez 2016;
Kim and Kim 2014]). Then, for all s ∈ (0, 1], the Green function G(x, y) of L satisfies (K4) with γ = s;
see Corollary 1.4 of [Kim and Kim 2014].

Spectral powers of uniformly elliptic operators. Consider a linear operator A in divergence form,

A=−
N∑

i, j=1

∂i (ai j∂j ),

with uniformly elliptic C1 coefficients. The uniform ellipticity allows one to build a self-adjoint operator
on L2(�) with discrete spectrum (λk, φk). Using the spectral theorem, we can construct the spectral
power of such operator as

L f (x) :=As f (x) :=
∞∑

k=1

λs
k f̂kφk(x), where f̂k =

∫
�

f (x)φk(x) dx

(we refer to the books [Davies 1990; 1995] for further details), and the Green function satisfies (K2) with
γ = 1; see [Davies 1995, Chapter 4.6]. Then, the first eigenfunction 81 is comparable to dist( · , ∂�).
Also, Lemma 10.1 applies, see for instance [Davies 1995], and allow us to get sharp upper and lower
estimates for the kernel K of L, as in (10-4).

Other examples. As explained in Section 3 of [Bonforte and Vázquez 2016], our theory may also be
applied to: (i) sums of two fractional operators; (ii) the sum of the Laplacian and a nonlocal operator
kernel; (iii) Schrödinger equations for nonsymmetric diffusions; (iv) gradient perturbation of restricted
fractional Laplacians. Finally, it is worth mentioning that our arguments readily extend to operators on
manifolds for which the required bounds hold.
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