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SCALE-FREE UNIQUE CONTINUATION PRINCIPLE FOR
SPECTRAL PROJECTORS, EIGENVALUE-LIFTING AND
WEGNER ESTIMATES FOR RANDOM SCHRÖDINGER

OPERATORS



ANALYSIS AND PDE
Vol. 11, No. 4, 2018

dx.doi.org/10.2140/apde.2018.11.1049 msp

SCALE-FREE UNIQUE CONTINUATION PRINCIPLE FOR
SPECTRAL PROJECTORS, EIGENVALUE-LIFTING AND

WEGNER ESTIMATES FOR RANDOM SCHRÖDINGER OPERATORS

IVICA NAKIĆ, MATTHIAS TÄUFER, MARTIN TAUTENHAHN AND IVAN VESELIĆ

We prove a scale-free, quantitative unique continuation principle for functions in the range of the spectral
projector χ(−∞,E](HL) of a Schrödinger operator HL on a cube of side L ∈ N, with bounded potential.
Previously, such estimates were known only for individual eigenfunctions and for spectral projectors
χ(E−γ,E](HL) with small γ . Such estimates are also called, depending on the context, uncertainty
principles, observability estimates, or spectral inequalities. Our main application of such an estimate
is to find lower bounds for the lifting of eigenvalues under semidefinite positive perturbations, which
in turn can be applied to derive a Wegner estimate for random Schrödinger operators with nonlinear
parameter-dependence. Another application is an estimate of the control cost for the heat equation in a
multiscale domain in terms of geometric model parameters. Let us emphasize that previous uncertainty
principles for individual eigenfunctions or spectral projectors onto small intervals were not sufficient to
study such applications.

1. Introduction

We prove a quantitative unique continuation inequality, announced in [Nakić et al. 2015b], for functions
in the range of the spectral projector χ(−∞,E](HL) of a Schrödinger operator HL on a cube of side L ∈N.
Depending on the area of mathematics and the context, estimates of this type have various names: quanti-
tative unique continuation principles (UCP), uncertainty principles, spectral inequalities, observability
or sampling estimates, or bounds on the vanishing order. For our applications it is crucial (i) to exhibit
explicitly the dependence of the quantitative unique continuation inequality on the model parameters, and
(ii) to allow energy intervals (−∞, E] of arbitrary length, that is, for arbitrary E . If the observability or
sampling set respects in a certain way the underlying lattice structure, our estimate is independent of L;
for this reason we call it scale-free. This property is crucial for applications where one studies spectral
properties of the Schrödinger operator HL in the thermodynamic limit L ↗∞.

A key motivation to study scale-free quantitative unique continuation estimates comes from the theory
of random Schrödinger operators, in particular with nonlinear dependence on the random variables. The
class of operators considered here includes the random breather model as studied in [Combes et al. 1996;
2001; Täufer and Veselić 2015; 2016]. Models with nonlinear randomness constitute a step towards a
better understanding of the universality of Anderson localization.
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We establish eigenvalue-lifting estimates, Wegner bounds, and the continuity of the integrated density
of states. (We defer precise definitions to Section 2.) In fact, there are a number of previous papers which
have derived a scale-free UCP and eigenvalue-lifting estimates under special assumptions.

Naturally, the first situation to be considered was the case where the Schrödinger operator is the pure
Laplacian H =−1, i.e., the background potential V vanishes identically. For instance, [Kirsch 1996]
derives a UCP which is valid for energies in an interval at zero, i.e., the bottom of the spectrum, if one has
a periodic arrangement of sampling sets. The proof uses detailed information about hitting probabilities of
Brownian motion paths, and is related to Harnack inequalities. A very elementary approach to eigenvalue-
lifting estimates is provided by the spatial averaging trick, used in [Bourgain and Kenig 2005; Germinet
et al. 2007] in periodic situations, and extended to nonperiodic situations in [Germinet 2008]. It is
applicable to energies near zero. A different approach for eigenvalue-lifting was derived in [Boutet de
Monvel et al. 2006]. In [Boutet de Monvel et al. 2011] it was shown how one can conclude an uncertainty
principle at low energies based on an eigenvalue-lifting estimate. Related results have been derived for
energies near spectral edges in [Kirsch et al. 1998; Combes et al. 2001] using resolvent comparison.
In one space dimension, eigenvalue-lifting results and Wegner estimates have been proven in [Veselić
1996; Kirsch and Veselić 2002]. There a periodic arrangement of the sampling set is assumed. The proof
carries over to the case of nonperiodic arrangements verbatim, which has been spelled out and used in the
context of quantum graphs in [Helm and Veselić 2007]. In the case that both the deterministic background
potential and the sampling set are periodic, an uncertainty principle and a Wegner estimate, which are
valid for arbitrary bounded energy regions, have been proven in [Combes et al. 2003; 2007]. These papers
make use of Floquet theory; hence they are a priori restricted to periodic background potentials as well as
periodic sampling sets. An alternative proof for the result in [Combes et al. 2007], with more explicit
control of constants, has been worked out in [Germinet and Klein 2013]. The case where the background
potential is periodic but the impurities need not be periodically arranged has been considered in [Boutet de
Monvel et al. 2006; Germinet 2008] for low energies. Our main theorem unifies and generalizes all the
results mentioned so far and makes the dependence on the model parameters quantitative. Indeed, our
scale-free unique continuation principle answers positively a question asked in [Rojas-Molina and Veselić
2013]. A partial answer was given already in [Klein 2013]. While [Rojas-Molina and Veselić 2013]
concerns the case of a single eigenfunctions, [Klein 2013] uses a very nice perturbation argument to treat
linear combinations of eigenfunctions corresponding to eigenvalues which lie in an interval whose size is
smaller than an explicitly determined number. For a broader discussion we refer to the summer school
notes [Täufer et al. 2016].

A second application of our scale-free UCP is in the control theory of the heat equation. Here one asks
whether one can drive a given initial state to a desired state with a control function living in a specified
subset, and what the minimal L2-norm of the control function (called control cost) is. Recently, the search
for optimal placement of the control set and the dependence of the control cost on geometric features of
this set has received much attention; see, e.g., [Privat et al. 2015b; 2015a]. Our scale-free UCP gives an
explicit estimate of the control cost with respect to the model parameters in multiscale domains. While
this is of interest in itself, our main motivation to include the application to control theory in our paper is
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to bring to attention the relation between methods and ideas from this field and the theory of random
Schrödinger operators. This relation has not been explored before and it seems that it can be effectively
used in other problems of random operators.

Other authors have applied our main result, as announced in [Nakić et al. 2015b], to prove decorrelation
estimates for eigenvalues of random Schrödinger operators [Shirley 2015] and lower bounds on averaged
spectral shift functions [Dietlein et al. 2017]. We will generalize the methods of the present paper to
certain unbounded domains in Rd in a forthcoming paper, while two of us have extended the results to
certain infinite-dimensional spectral subspaces in [Täufer and Tautenhahn 2017].

Our proof of the scale-free unique continuation estimate uses two Carleman and nested interpolation
bounds to obtain propagation of smallness estimates, an idea used before, e.g., in [Lebeau and Robbiano
1995; Jerison and Lebeau 1999]. Roughly speaking, one of the Carleman estimates establishes propagation
of smallness from a set of codimension one to a small ball, and the other one from a small ball to a larger
ball. To obtain explicit estimates we need explicit weight functions. The first Carleman estimate includes
a boundary term and uses a parabolic weight function as proposed in [Jerison and Lebeau 1999]. The
second Carleman estimate is similar to the ones in [Escauriaza and Vessella 2003; Bourgain and Kenig
2005]. However, neither of the two is quite sufficient for our purposes, so we use a variant developed
in [Nakić et al. 2015a]. A similar result was established recently in [Davey 2014]. Moreover, at first
sight it seems that one can get our result simply by summing up doubling estimates (which are a standard
consequence of Carleman estimates). However, the prefactor in the doubling estimate depends on the
ambient space, in particular its diameter. In our case we consider a family of domains 3L , L ∈N, and
the diameter grows unboundedly in L; hence the constant in the doubling estimate becomes worse and
worse. Thus, to eliminate the L-dependence we have to use techniques developed in the context of
random Schrödinger operators to accommodate for the multiscale structure of the underlying domain and
sampling set.

In the next section we state our main results. Section 3 is devoted to the proof of the scale-free unique
continuation principle, Section 4 to proofs concerning random Schrödinger operators, and Section 5 to
the observability estimate of the control equation, while certain technical aspects are deferred to the
Appendix.

2. Results

Scale-free unique continuation and eigenvalue lifting. Let d ∈ N. For L > 0 we denote by 3L =

(−L/2, L/2)d ⊂ Rd the cube with side length L , and by 1L the Laplace operator on L2(3L) with
Dirichlet, Neumann or periodic boundary conditions. Moreover, for a measurable and bounded V :Rd

→R

we denote by VL :3L → R its restriction to 3L given by VL(x)= V (x) for x ∈3L , and by

HL =−1L + VL on L2(3L)

the corresponding Schrödinger operator. Note that HL has purely discrete spectrum. For x ∈ Rd and
r > 0 we denote by B(x, r) the ball with center x and radius r with respect to Euclidean norm. If the ball
is centered at zero we write B(r)= B(0, r).
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Definition 2.1. Let G>0 and δ>0. We say that a sequence z j ∈Rd, j ∈(GZ)d, is (G,δ)-equidistributed, if

for all j ∈ (GZ)d we have B(z j , δ)⊂3G + j.

Corresponding to a (G, δ)-equidistributed sequence we define for L ∈ GN the set

Wδ(L)=
⋃

j∈(GZ)d

B(z j , δ)∩3L .

Theorem 2.2. There is N = N (d) such that for all δ ∈
(
0, 1

2

)
, all (1, δ)-equidistributed sequences, all

measurable and bounded V : Rd
→ R, all L ∈ N, all E ≥ 0 and all φ ∈ Ran(χ(−∞,E](HL)) we have

‖φ‖2L2(Wδ(L))
≥ Csfuc‖φ‖

2
L2(3L )

, (1)
where

Csfuc = Csfuc(d, δ, E, ‖V ‖∞) := δN (1+‖V ‖2/3∞ +
√

E).

The result can be formulated in terms of spectral projectors. This is the convenient form to use in the
context of random Schrödinger operators.

Corollary 2.3. Under the same assumptions as in the above theorem, we have in the sense of quadratic
forms

χ(−∞,E](HL) χWδ(L) χ(−∞,E](HL)≥ δ
N (1+‖V ‖2/3∞ +

√
E)χ(−∞,E](HL). (2)

Here χWδ(L) denotes the multiplication operator with a characteristic function, and χ(−∞,E](HL) denotes
a spectral projector.

The crucial point here is that we allow energy intervals (−∞, E] of arbitrary length. It is not possible
to achieve this result with the methods of [Rojas-Molina and Veselić 2013; Klein 2013]. For t, L > 0
and a measurable and bounded V : Rd

→ R we define the Schrödinger operator Ht,L =−t1L + VL on
L2(3L). By scaling we obtain the following corollary.

Corollary 2.4. Let N = N (d) be the constant from Theorem 2.2. Then, for all G, t > 0, all δ ∈ (0,G/2),
all (G, δ)-equidistributed sequences, all measurable and bounded V : Rd

→ R, all L ∈ GN, all E ≥ 0
and all φ ∈ Ran(χ(−∞,E](Ht,L)) we have

‖φ‖2L2(Wδ(L))
≥ CG,t

sfuc‖φ‖
2
L2(3L )

,

where

CG,t
sfuc = CG,t

sfuc(d, δ, E, ‖V ‖∞) :=
(
δ

G

)N (1+G4/3
‖V ‖2/3∞ /t2/3

+G
√

E/t )

.

Note that the set Wδ(L) depends on G and the choice of the (G, δ)-equidistributed sequence. In
particular, there is a constant M = M(d,G, t)≥ 1 such that

CG,t
sfuc ≥ δ

M(1+‖V ‖2/3∞ +
√
|E |). (3)

We also emphasize that Theorem 2.2 and Corollary 2.4 also hold for E < 0, since

Ran(χ(−∞,E](H))⊂ Ran(χ(−∞,0](H))

for any self-adjoint operator H.
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Remark 2.5 (previous results). If L = G the result is closely related to doubling estimates and bounds
on the vanishing order; see [Lebeau and Robbiano 1995; Kukavica 1998; Jerison and Lebeau 1999; Bakri
2013]. These results, however, do not study the dependence of the bound on geometric data, e.g., the
diameter of the domain or manifold. In the context of random Schrödinger operators results like (1)
have been proven before under additional assumptions and using other methods: for V ≡ 0 and energies
close to the minimum of the spectrum in [Kirsch 1996; Bourgain and Kenig 2005], near spectral edges of
periodic Schrödinger operators in [Kirsch et al. 1998], and for periodic geometries Wδ(L) and potentials
in [Combes et al. 2003]. More recently and using similar methods to ours, bounds like (1) have been
established for individual eigenfunctions in [Rojas-Molina and Veselić 2013]. This has then been extended
in [Klein 2013] to linear combinations of eigenfunctions corresponding to eigenvalues which are close
to each other. For more references and a broader discussion of the history see, e.g., [Rojas-Molina and
Veselić 2013; Klein 2013; Täufer et al. 2016].

As an application to spectral theory we have the following corollary. A proof is given at the end of
Section 3.

Corollary 2.6. Let E, α,G > 0, δ ∈ (0,G/2), L ∈ GN and A, B : 3L → R be measurable, bounded
potentials and assume that

B ≥ αχWδ(L)

for a (G, δ)-equidistributed sequence. Denote the eigenvalues of a self-adjoint operator H with discrete
spectrum by λi (H), enumerated increasingly and counting multiplicities. Then for all i ∈ N with
λi (−1+ A+ B)≤ E , we have

λi (−1L + A+ B)≥ λi (−1L + A)+αCG,1
sfuc(d, δ, E, ‖A+ B‖∞).

Remark 2.7 (generalizations). In [Täufer and Tautenhahn 2017] it has been proven that Corollary 2.4
holds also if χ(−∞,E](HL) is replaced by exp(−t HL) for sufficiently large t > 0. An adaptation of our
methods allows us to treat Schrödinger operators H on the whole of Rd instead on cubes. This will be
discussed in our forthcoming paper. An important consequence of this result is a lifting estimate for
boundaries of the essential spectrum, quite analogous to Corollary 2.6. Finally, let us remark that an
analog of Theorem 2.2 for the case V ≡ 0 where the equidistributed set needs only to be measurable (and
not open) has been established in [Egidi and Veselić 2016] using different methods.

Application to random breather Schrödinger operators. An important application of our result is in the
spectral theory of random Schrödinger operators. The above scale-free unique continuation estimate is
the key for proving the Wegner estimate formulated below, which is a bound on the expected number of
eigenvalues in a short energy interval of a finite box restriction of our random Hamiltonian. Together
with a so-called initial scale estimate, Wegner estimates facilitate a proof of Anderson localization via
multiscale analysis. For more background on multiscale analysis and localization and on Wegner estimates
consult, e.g., the monographs [Stollmann 2001] and [Veselić 2008], respectively.

The main point is that the potentials we are dealing with here exhibit a nonlinear dependence on the
random parameters ωj . Due to this challenge, it is not clear how to apply previously established versions
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of (1), as discussed in Remark 2.5, to such models. We emphasize that our scale-free unique continuation
principle and Wegner estimate are valid for all bounded energy intervals, not only near the bottom of the
spectrum.

Let us introduce a simple, but paradigmatic example of the models we are considering. (The general
case will be studied in the next paragraph.)

Let D be a countable set to be specified later. For 0≤ ω− < ω+ < 1 we define the probability space
(�,A,P) with

�=×
j∈D

R, A=
⊗
j∈D

B(R) and P=
⊗
j∈D

µ,

where B(R) is the Borel σ -algebra and µ is a probability measure with suppµ⊂ [ω−, ω+] and a bounded
density νµ. Hence, the projections ω 7→ ωk give rise to a sequence of independent and identically
distributed random variables ωj , j ∈ D. We denote by E the expectation with respect to the measure P.
The standard random breather model is defined as

Hω =−1+ Vω(x) with Vω(x)=
∑
j∈Zd

χBωj
(x − j), (4)

and the restriction of Hω to the box 3L is denoted by Hω,L . Here obviously D = Zd. Denote by
χ[E−ε,E+ε](Hω,L) the spectral projector of Hω,L . We formulate now a version of our general Theorem 2.10
applied to the standard random breather model.

Theorem 2.8 (Wegner estimate for the standard random breather model). Assume that [ω−, ω+] ⊂
[
0, 1

4

]
,

fix E0 ∈ R, and set εmax =
1
4 · 8
−N (2+|E0+1|1/2), where N is the constant from Theorem 2.2. Then there is

C = C(d, E0) ∈ (0,∞) such that for all ε ∈ (0, εmax] and E ≥ 0 with [E − ε, E + ε] ⊂ (−∞, E0], we
have

E
[
Tr[χ[E−ε,E+ε](Hω,L)]

]
≤ C‖ν‖∞ε[N (2+|E0+1|1/2)]−1

|ln ε|d Ld.

Theorem 2.8 implies local Hölder continuity of the integrated density of states (IDS) and is sufficient
for the multiscale analysis proof of spectral localization; see the next paragraph.

Remark 2.9 (previous results on the random breather model). The paper [Combes et al. 1996] introduced
random breather potentials, while a Wegner estimate was proven in [Combes et al. 2001], however,
excluding any bounded and any continuous single site potential; see the Appendix. Lifshitz tails for
random breather Schrödinger operators were proven in [Kirsch and Veselić 2010]. All of the papers
mentioned so far approached the breather model using techniques which have been developed for the
alloy-type model. Consequently, at some stage the nonlinear dependence on the random variables was
linearized, giving rise to certain differentiability conditions. As a result, characteristic functions of cubes
or balls, which would be the most basic example one can think of, were excluded as single-site potentials.
Only [Veselić 2007] considers a simple nondifferentiable example, namely the standard random breather
potential in one dimension, and proves a Lifshitz tail estimate. This will be extended to multidimensional
models in the forthcoming paper [Schumacher and Veselić 2017].
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More general nonlinear models and localization. We formulate now a Wegner estimate for a general
class of models, which includes the standard random breather potential, considered in the last paragraph
as a special case. We state also an initial scale estimate which implies localization.

Here, in the general setting, we assume that D ⊂ Rd is a Delone set; i.e., there are 0< G1 < G2 such
that for any x ∈ Rd we have ]{D∩ (3G1 + x)} ≤ 1 and ]{D∩ (3G2 + x)} ≥ 1. Here, ]{ · } stands for the
cardinality. In other words, Delone sets are relatively dense and uniformly discrete subsets of Rd. For
more background about Delone sets, see, for example, the contributions in [Kellendonk et al. 2015]. The
reader unacquainted with the concept of a Delone set can always think of D = Zd.

Furthermore, let {ut : t ∈ [0, 1]} ⊂ L∞0 (R
d) be functions such that there are Gu ∈ N, umax ≥ 0,

α1, β1 > 0 and α2, β2 ≥ 0 with

∀t ∈ [0, 1], supp ut ⊂3Gu ,

∀t ∈ [0, 1], ‖ut‖∞ ≤ umax,

∀t ∈ [ω−, ω+], δ ≤ 1−ω+, ∃x0 ∈3Gu , ut+δ − ut ≥ α1δ
α2χB(x0,β1δ

β2 ).

(5)

We define the family of Schrödinger operators Hω, ω ∈�, on L2(Rd) given by

Hω := −1+ Vω, where Vω(x)=
∑
j∈D

uωj (x − j).

Note that for all ω ∈ [0, 1]D we have

‖Vω‖∞ ≤ Ku := umaxdGu/G1e
d
;

see Lemma 4.1. Assumption (5) includes many prominent models of random Schrödinger operators —
linear and nonlinear. We give some examples.

Standard random breather model: Let µ be the uniform distribution on
[
0, 1

4

]
and let ut(x) = χB(0,t),

j ∈ Zd. Then Vω =
∑

j∈Zd χB( j,ωj ) is the characteristic function of a disjoint union of balls with random
radii. This model was introduced in the previous subsection.

General random breather models: Let 0≤ u ∈ L∞0 (R
d) and define ut(x) := u(x/t) for t > 0 and u0 :≡ 0

and assume that the family {ut : t ∈ [0, 1]} satisfies (5). Natural examples are discussed in the Appendix.
They include the characteristic function of bounded convex sets, the hat-potential (1− |x |)χ{|x |<1} or the
bump function exp(1/(|x |2− 1))χ{|x |<1}. Then Vω(x)=

∑
j∈Zd uωj (x − j) is a sum of random dilations

of a single-site potential u at each lattice site j ∈ Zd.

Alloy-type model: Let 0 ≤ u ∈ L∞0 (R
d), u ≥ α > 0, on some open set and let ut(x) := tu(x). Then

Vω(x)=
∑

j∈Zd ωj u(x − j) is a sum of copies of u at all lattice sites j ∈ Zd, multiplied with ωj .

Delone-alloy-type model: Let D ⊂ Rd be a Delone set, 0≤ u ∈ L∞0 (R
d), u ≥ α > 0, on some nonempty

open set and let ut(x) := tu(x). Then Vω(x)=
∑

j∈D ωj u(x − j) is a sum of copies of u at all Delone
points j ∈ D, multiplied with ωj . See [Germinet et al. 2015] for background on such models.

For L > 0 we denote by Hω,L the restriction of Hω to L2(3L) with Dirichlet boundary conditions.
Following the methods developed in [Hundertmark et al. 2006], we obtain a Wegner estimate under our
general assumption (5).
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Theorem 2.10 (Wegner estimate). For all E0 ∈ R there are constants C, κ, εmax > 0, depending only
on d, E0, Ku , Gu , G2, α1, α2, β1, β2, ω+ and ‖νµ‖∞, such that for all L ∈ (G2+Gu)N, all E ∈ R and
ε ≤ εmax with [E − ε, E + ε] ⊂ (−∞, E0] we have

E
[
Tr[χ[E−ε,E+ε](Hω,L)]

]
≤ Cε1/κ

|ln ε|d Ld . (6)

Theorem 2.11 (initial scale estimate). Let κ be as in Theorem 2.10 for E0 = dπ2
+ Ku . Assume that

there are t0,C > 0 such that

0 ∈ suppµ and for all t ∈ [0, t0], µ([0, t])≤ Ctdκ.

Then there is L0 = L0(t0, δmax, κ,Gu,G1)≥ 1 such that for all L ∈ (G2+Gu)N, L ≥ L0, we have

P

({
ω ∈� : λ1(Hω,L)− λ1(H0,L)≥

1
L3/2

})
≥ 1−

C
Ld/2 ,

where H0,L is obtained from Hω,L by setting ωj to zero for all j ∈ D.

Remark 2.12 (discussion on initial scale estimate). Theorem 2.11 may serve as an initial scale estimate
for a proof of localization via multiscale analysis. More precisely, by using the Combes–Thomas estimate,
an initial scale estimate in some neighborhood of a := inf σ(H0) follows. Note that the exponents 3

2 and
d
2 in Theorem 2.11 can be modified to some extent by adapting the proof and the assumption on the
measure µ. Localization in a neighborhood Ia of a follows via multiscale analysis, e.g., à la [Stollmann
2001]. The question of whether σ(Hω)∩ Ia 6=∅ for almost all ω ∈� has to be settled. This is, however,
satisfied for all examples mentioned above. In the special case of the standard random breather model one
can get rid of the assumption on µ by proving and using the Lifshitz tail behavior of the integrated density
of states; see [Veselić 2007] for the one-dimensional case, and the forthcoming paper of Schumacher and
Veselić for the multidimensional one.

Application to control theory. We consider the controlled heat equation with heat generation term (−V )
∂t u−1u+ V u = f χω, u ∈ L2([0, T ]×�),
u = 0 on (0, T )× ∂�,
u(0, · )= u0, u0 ∈ L2(�),

(7)

where ω is an open subset of the connected �⊂ Rd, T > 0 and V ∈ L∞(�). In (7) u is the state and f
is the control function which acts on the system through the control set ω.

Definition 2.13. For initial data u0 ∈ L2(�) and time T > 0, the set of reachable states R(T, u0) is

R(T, u0)=
{
u(T, · ) : there exists f ∈ L2([0, T ]×ω) such that u is solution of (7) with RHS

}
.

The system (7) is called null controllable at time T if 0 ∈ R(T ; u0) for all u0 ∈ L2(�). The controllability
cost C(T, u0) at time T for the initial state u0 is

C(T, u0)= inf
{
‖ f ‖L2([0,T ]×ω) : u is solution of (7) and u(T, · )= 0

}
.
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Since the system is linear, null controllability implies that the range of the semigroup generated by
the heat equation is reachable too. It is well known that null controllability holds for any time T > 0,
connected � and any nonempty and open set ω ⊂ � on which the control acts; see [Fursikov and
Imanuvilov 1996].

It is also known, see for instance [Tucsnak and Weiss 2009, Theorem 11.2.1], that null controllability
of the system (7) at time T is equivalent to final state observability on the set ω at time T of the system

∂t u−1u+ V u = 0, u ∈ L2([0, T ]×�),
u = 0 on (0, T )× ∂�,
u(0, · )= u0, u0 ∈ L2(�).

(8)

Definition 2.14. The system (8) is called final state observable on the set ω at time T if there exists
κT = κT (�, ω, V ) such that for every initial state u0 ∈ L2(�) the solution u ∈ L2([0, T ] ×�) of (8)
satisfies

‖u(T, · )‖2� ≤ κT ‖u‖2L2([0,T ]×ω). (9)

Moreover, the controllability cost C(T, u0) of (7) coincides with the infimum over all observability
costs

√
κT in (9) times ‖u0‖�; see, for example, the proof of [Tucsnak and Weiss 2009, Theorem 11.2.1].

The problem of obtaining explicit bounds on C(T, u0) received much consideration in the literature, see,
for example, [Güichal 1985; Fernández-Cara and Zuazua 2000; Phung 2004; Tenenbaum and Tucsnak
2007; Miller 2006; 2004; 2010; Ervedoza and Zuazua 2011; Lissy 2012], especially the case of small
time, i.e., when T goes to zero. The dependencies of the controllability cost on T and ‖V ‖∞ are today
well understood; see, for example, [Zuazua 2007]. However, the dependence on the geometry of the
control set is less clear: in the known estimates the geometry enters only in terms of the distance to the
boundary or in terms of the geometrical optics condition. To find an optimal control set is a very difficult
problem; see for instance the recent articles [Privat et al. 2015a; 2015b].

We are interested in the situation �=3L ⊂ Rd and ω =Wδ(L) for a (G, δ)-equidistributed sequence
with L ∈ GN, G > 0 and δ < G/2. In this specific setting we will give an estimate on the controllability
cost. The novelty of our result is that the observability cost is independent of the scale L and the specific
choice of the (G, δ)-equidistributed sequence. Moreover, the dependencies on ‖V ‖∞ and on the size
of the control set via δ are known explicitly. As far as we are aware, this is the first time that such a
scale-free estimate is obtained.

By the equivalence between null-controllability and final state observability, it is sufficient to construct
an estimate of the form (9). In order to find such an estimate, we will combine Corollary 2.4 with results
from [Miller 2010] to obtain the following theorem.

Theorem 2.15. For every G > 0, δ ∈ (0,G/2) and KV ≥ 0 there is T ′ = T ′(G, δ, KV ) > 0 such that
for all T ∈ (0, T ′], all (G, δ)-equidistributed sequences, all measurable and bounded V : Rd

→ Rd with
‖V ‖∞ ≤ KV and all L ∈ GN, the system

∂t u−1Lu+ VLu = 0, u ∈ L2([0, T ]×3L),

u = 0 on (0, T )× ∂3L ,

u(0, · )= u0, u0 ∈ L2(3L)
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is final state observable on the set Wδ(L) with cost κT satisfying

κT ≤ 4a0b0e2c∗/T,

where a0 = (δ/G)−N (1+G4/3
‖V ‖2/3∞ ), b0 = e2‖V ‖∞ , c∗ ≤ ln(G/δ)2(N G + 4/ ln 2)2 and N = N (d) is the

constant from Theorem 2.2.

Remark 2.16. (i) The same result holds also in the case of the controlled heat equation with periodic or
Neumann boundary conditions with obvious modifications.

(ii) Null controllability of the heat equation implies a stronger type of controllability, so-called approximate
controllability. Following [Fernández-Cara and Zuazua 2000], one can find an estimate for the cost of
approximate controllability from the proof of Theorem 2.15. We will not pursue it in this paper.

3. Proof of the scale-free unique continuation principle

Carleman inequalities. We denote by Rd+1
+ := {x ∈ Rd+1

: xd+1 ≥ 0} the (d+1)-dimensional half-space
and by B+r := {x ∈ Rd+1

+ : |x | < r} the (d+1)-dimensional half-ball. For x ∈ Rd+1 we denote by
x ′ the projection on the first d coordinates; i.e., for x = (x1, . . . , xd+1) ∈ Rd+1 we use the notation
x ′ = (x1, . . . , xd) ∈ Rd. By |x | and |x ′| we denote the Euclidean norms and by 1 the Laplacian on Rd+1.
For functions f ∈ C∞(Rd+1

+ ) we use the notation f0 = f |xd+1=0.
In the appendix of [Lebeau and Robbiano 1995], the authors state a Carleman estimate for complex-

valued functions with support in B+r by using a real-valued weight function ψ ∈ C∞(Rd+1) satisfying
the two conditions

for all x ∈ B+r we have (∂d+1ψ)(x) 6= 0, (10)

and for all ξ ∈ Rd+1 and x ∈ B+r there holds

2〈ξ,∇ψ〉 = 0,

|ξ |2 = |∇ψ |2

}
=⇒

d+1∑
j,k=1

(∂jkψ)
(
ξjξk + (∂jψ)(∂kψ)

)
> 0. (11)

As proposed in [Jerison and Lebeau 1999] we choose r < 2 −
√

2 and the special weight function
ψ : Rd+1

→ R,

ψ(x)=−xd+1+
1
2 x2

d+1−
1
4 |x
′
|
2. (12)

Note that ψ(x) ≤ 0 for all x ∈ B+2 . This function ψ indeed satisfies the assumptions (10) and (11).
Condition (10) is trivial for r < 1. In order to show the implication (11) we show

|ξ |2 = |∇ψ |2 =⇒

d+1∑
j,k=1

∂jkψ(ξjξk + ∂jψ∂kψ) > 0. (13)

We use the hypothesis of (13) and calculate
d+1∑

j,k=1

∂jkψ(ξjξk + ∂jψ∂kψ)=−
1
2

d∑
i=1

ξ 2
i + ξ

2
d+1−

1
8 |x
′
|
2
+ (xd+1−1)2 = 3

2ξ
2
d+1−

1
4 |x
′
|
2
+

1
2(xd+1−1)2.
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Since |x ′|2 ≤ r2 and (xd+1− 1)2 ≥ (1− r)2, assumption (13) is satisfied if r < 2−
√

2. Now let

C∞c,0(B
+

r )=
{
g : Rd+1

+
→ C : g ≡ 0 on {xd+1 = 0}, ∃φ ∈ C∞(Rd+1) with

suppφ ⊂ {x ∈ Rd+1
: |x |< r} and g ≡ φ on Rd+1

+

}
.

Hence, as a corollary of Proposition 1 in the appendix of [Lebeau and Robbiano 1995] we have:

Proposition 3.1. Let ψ ∈ C∞(Rd+1
;R) be as in (12) and ρ ∈ (0, 2−

√
2). Then there are constants

β0,C1 ≥ 1 such that for all β ≥ β0, and all g ∈ C∞c,0(B
+
ρ ) we have∫

Rd+1
e2βψ(β|∇g|2+β3

|g|2)≤ C1

(∫
Rd+1

e2βψ
|1g|2+β

∫
Rd

e2βψ0 |(∂d+1g)0|2
)
.

We will need another Carleman estimate with a weight function whose level sets can be explicitly
controlled.

Proposition 3.2 [Nakić et al. 2015a]. Let ρ > 0 and w : Rd
→ R,

w(x)=
|x |
ρ

∫
|x |/ρ

0

1− e−t

t
dt.

In particular,

for all x ∈ B(ρ),
|x |
ρe
≤ w(x)≤

|x |
ρ
.

Then there are constants α0,C2 ≥ 1 depending only on the dimension such that for all α ≥ α0, and all
u ∈W 2,2(Rd) with support in B(ρ) \ {0} we have∫

Rd

(
αρ2w1−2α

|∇u|2+α3w−1−2α
|u|2

)
dx ≤ C2ρ

4
∫

Rd
w2−2α

|1u|2 dx .

This variant of the Carleman estimate is essentially given in [Escauriaza and Vessella 2003], albeit
that paper concerns parabolic operators. For elliptic operators, in [Bourgain and Kenig 2005] a weaker
statement than Proposition 3.2, without the gradient term on the left-hand side, was spelled out and proven
explicitly. A version of Proposition 3.2 for divergence-type elliptic operators is stated in [Kenig et al. 2011].
While this covers more general operators than we are interested in here, it lacks a quantitative statement
about the admissible functions u. An explicit proof of Proposition 3.2, i.e., for the pure Laplacian, was
first given in [Klein and Tsang 2016]. See also [Nakić et al. 2015a] for the case of divergence-type
elliptic operators. The paper [Davey 2014] also contains a Carleman estimate which is less explicit than
Proposition 3.2, but would still be sufficient for the purpose of the proof of Theorem 2.2.

Extension to larger boxes. For each measurable and bounded V : Rd
→ R and each L ∈ N we denote

the eigenvalues of the corresponding operator HL by Ek , k ∈ N, enumerated in increasing order and
counting multiplicities, and fix a corresponding sequence φk , k ∈ N, of normalized eigenfunctions. Note
that we suppress the dependence of Ek and φk on V and L .

Given V and L we define an extension of the potential VL and the eigenfunctions φk to the set 3RL for
some R ∈Nodd = {1, 3, 5, . . .} to be chosen later on. The extension will depend on the type of boundary
conditions we are considering for the Laplace operator.
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Extension for periodic boundary conditions: We extend the potential VL as well as the function φk , defined
on the box 3L , periodically to Ṽ , ψ̃ : Rd

→ R and then restrict them to 3RL . By the very definition of
the operator domain of 13L with periodic boundary conditions the extension ψ̃ is locally in the Sobolev
space W 2,2(Rd).

Extension for Dirichlet and Neumann boundary conditions: The potential VL will be extended by
symmetric reflections with respect to the hypersurfaces forming the boundaries of 3L . In the first step
we extend VL :3L → R to the set

{x ∈33L : xi ∈ (−L/2, L/2), i ∈ {2, . . . , d}}

by

VL(x)=


VL(x) if x ∈3L ,

0 if x1 ∈ {−L/2, L/2},
VL(L − x1, x2, . . . , xd) if x1 > L/2,
VL(−L − x1, x2, . . . , xd) if x1 <−L/2.

Now we iteratively extend VL in the remaining d − 1 directions using the same procedure and obtain a
function VL :33L → R. Iterating this procedure we obtain a function VL :3RL → R. The extensions of
the eigenfunctions will depend on the boundary conditions. In the case of Dirichlet boundary conditions,
we extend an eigenfunction similarly to the potential by antisymmetric reflections, while in the case of
Neumann boundary conditions, we extend by symmetric reflections.

The extensions of the functions and VL and φk , k ∈ N, to the set 3RL will again be denoted by VL

and φk , k ∈ N. The reader should be reminded that (the extended) VL :3RL → R does in general not
coincide with VRL :3RL→R. Note that for all three boundary conditions, VL :3RL→R takes values in
[−‖V ‖∞, ‖V ‖∞], the extended φk are elements of W 2,2(3RL) with corresponding boundary conditions
and they satisfy 1φk = (VL − Ek)φk on 3RL . Furthermore, the orthogonality relations remain valid.

Ghost dimension. For a measurable and bounded V :Rd
→R, L ∈N, E ≥ 0 and φ ∈Ran(χ(−∞,E](HL))

we have

φ =
∑
k∈N

Ek≤E

αkφk, with αk = 〈φk, φ〉.

Since the φk extend to 3RL as explained in the previous subsection, the function φ also extends to 3RL .
We set ωk :=

√
|Ek | and define the function F :3RL ×R→ C by

F(x, xd+1)=
∑
k∈N

Ek≤E

αkφk(x) sk(xd+1),

where sk : R→ R is given by

sk(t)=


sinh(ωk t)/ωk, Ek > 0,
t, Ek = 0,
sin(ωk t)/ωk, Ek < 0.
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Note that we suppress the dependence of φ and φk on V, L , E . Furthermore, the sums are finite since HL

is lower semibounded with purely discrete spectrum. The function F satisfies

1F =
d+1∑
i=1

∂2
i F = VL F on 3RL ×R

and

∂d+1 F(x, 0)=
∑
k∈N

Ek≤E

αkφk(x) for x ∈3RL .

In particular, for all x ∈3L we have ∂d+1 F(x, 0)= φ. This way we recover the original function we are
interested in.

Let us also fix the geometry. For δ ∈
(
0, 1

2

)
we choose

ψ1 =−
1
16δ

2, ψ2 =−
1
8δ

2, ψ3 =−
1
4δ

2,

r1 =
1
2 −

1
8

√
16− δ2, r2 = 1, r3 = 6e

√
d,

R1 = 1− 1
4

√
16− δ2, R2 = 3

√
d, R3 = 9e

√
d,

and define for i ∈ {1, 2, 3} the sets

Si :=
{

x ∈ Rd+1
: ψ(x) > ψi , xd+1 ∈ [0, 1]

}
⊂ Rd+1

+
,

Vi := B(Ri ) \ B(ri )⊂ Rd+1.

Let R ∈ N be the least power of 3 larger than 2R3 + 2. For i ∈ {1, 2, 3} and x ∈ Rd we denote
by Si (x) = Si + (x, 0) and Vi (x) = Vi + (x, 0) the translates of the sets Si ⊂ Rd+1 and Vi ⊂ Rd+1.
Moreover, for L ∈ N and a (1, δ)-equidistributed sequence z j ∈ Rd, j ∈ Zd, we define QL = Zd

∩3L ,
Ui (L)=

⋃
j∈QL

Si (z j ), X1=3L×[−1, 1] and X̃ R3 =3L+2R3×[−R3, R3]. Note that Wδ(L) is a disjoint
union. In the following lemma we collect some consequences of our geometric setting. We will first
restrict our attention to the case L ∈ Nodd, and consider the case of even integers thereafter.

Lemma 3.3. (i) For all δ ∈
(
0, 1

2

)
we have S1 ⊂ S2 ⊂ S3 ⊂ B+δ ⊂ Rd+1

+ .

(ii) For all L ∈ Nodd with L ≥ 5, all δ ∈
(
0, 1

2

)
and all (1, δ)-equidistributed sequences z j we have⋃

j∈QL
V2(z j )⊃ X1.

(iii) There is a constant Kd , depending only on d, such that for all L ∈ Nodd, all δ ∈
(
0, 1

2

)
, all (1, δ)-

equidistributed sequences z j , all measurable and bounded V : Rd
→ R, all E ≥ 0 and all φ ∈

Ran(χ(−∞,E](HL)) we have∑
j∈QL

‖F‖2H1(V3(z j ))
≤ Kd‖F‖2H1(

⋃
j∈QL

V3(z j ))
.

(iv) For all L ∈Nodd, δ ∈
(
0, 1

2

)
and all (1, δ)-equidistributed sequences z j we have

⋃
j∈QL

V3(z j )⊂ X R3 .

We note that part (ii) of Lemma 3.3 will be applied with L replaced by 5L .
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X1

V2(z j1)

V2(z j2)

x1

x2

Figure 1. Illustration for (ii) in the case d = 1, L = 5 and for some configuration z j ,
j ∈ QL . The set

[
−

1
2 ,

1
2

]
×[−1, 1] is covered by V2(z j1) and V2(z j2).

Proof. Parts (i) and (iv) are obvious.
To show (ii), we first prove that

[
−

1
2 ,

1
2

]d
× [−1, 1] can be covered by the sets V2(z j ). Let us take

j1 = (−1, 0, . . . , 0), j2 = (−2, 0, . . . , 0), j1, j2 ∈ QL .
Then [

−
1
2 ,

1
2

]d
×[−1, 1] ⊂ V2(z j1)∪ V2(z j2); (14)

see Figure 1. Indeed, let x= (x1, . . . , xd+1) be an arbitrary point from
[
−

1
2 ,

1
2

]d
×[−1, 1]. Then (14) is not

satisfied only if |(z j1, 0)−x |2<1 and |(z j2, 0)−x |2> R2
2 . Since z j1 ∈

(
−

3
2+δ,−

1
2−δ

)
×
(
−

1
2+δ,

1
2−δ

)d−1

and z j2 ∈
(
−

5
2 + δ,−

3
2 − δ

)
×
(
−

1
2 + δ,

1
2 − δ

)d−1, it follows that(
−

1
2 − δ− x1

)2
+ x2

d+1 < 1 and
(
−

5
2 + δ− x1

)2
+ (d − 1)(1− δ)2+ x2

d+1 > 9d.

Plugging the first relation into the second, we obtain

9d < (d − 1)(1− δ)2+ 2(1− δ)(3+ 2x1)+ 1≤ (d − 1)(1− δ)2+ 8(1− δ)+ 1.

But this relation is satisfied only for d < 1. Since L ≥ 5 the same argument applies to cover every
elementary cell

([
−

1
2 ,

1
2

]
+ i
)
×[−1, 1], i ∈ QL , by two neighboring sets V2(z j ).

Now we turn to the proof of (iii). Since R ≥ 2R3 + 2, the function F is defined on V3(z j ) for all
j ∈ QL . For all x ∈

⋃
j∈QL

V3(z j ), the number of indices j ∈ QL such that V3(z j ) 3 x is bounded from
above by (2R3+ 2)d. Hence,

for all x ∈ X̃ R3,
∑
j∈QL

χV3(z j )(x)≤ (2R3+ 2)dχ⋃
j∈QL

V3(z j )(x),

and thus ∑
j∈QL

‖F‖2H1(V3(z j ))
=

∫
X̃ R3

(∑
j∈QL

χV3(z j )(x)
)
(|F(x)|2+ |∇F(x)|2) dx

≤ (2R3+ 2)d‖F‖2
H1(

⋃
j∈QL

V3(z j ))
.

Hence we can take Kd = (2R3+ 2)d. �
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Interpolation inequalities.

Proposition 3.4. For all δ ∈
(
0, 1

2

)
, all (1, δ)-equidistributed sequences z j , all measurable and bounded

V : Rd
→ R, all L ∈ Nodd, all E ≥ 0 and all φ ∈ Ran(χ(−∞,E](HL)):

(a) There is β1 = β1(d, ‖V ‖∞)≥ 1 such that for all β ≥ β1 we have

‖F‖2H1(U1(L))
≤ D̃1(β)‖F‖2H1(U3(L))

+ D̂1(β)‖(∂d+1 F)0‖2L2(Wδ(L))
,

where β1 is given in (16), and D̃1(β) and D̂1(β) are given in (17).

(b) We have

‖F‖H1(U1(L)) ≤ D1‖(∂d+1 F)0‖
1/2
L2(Wδ(L))

‖F‖1/2H1(U3(L))
,

where D1 is given in (21).

Proof. First we recall that 1F = VL F, ∂d+1 F(x ′, 0) = φ(x ′) and B+δ ⊃ S3. Now we choose a cutoff
function χ ∈ C∞(Rd+1

; [0, 1]) with suppχ ⊂ S3, χ(x)= 1 if x ∈ S2 and

max{‖1χ‖∞, ‖|∇χ |‖∞} ≤
2̃1

δ4 =:21,

where 2̃1 = 2̃1(d) depends only on the dimension. This is due to the fact that the distance of S2

and Rd+1
+ \ S3 is bounded from below by δ2/16. Let ϕ be a nonnegative function in C∞c (R

d) with the
properties that ‖ϕ‖1 = 1 and suppϕ ⊂ B(1). For ε > 0 we define ϕε : Rd

→ R+0 by ϕε(x)= ε−dϕ(x/ε).
The function ϕε belongs to C∞c (R

d) and satisfies suppϕε ⊂ (ε). Now we continuously extend the
eigenfunctions φk :3RL → R to the set Rd by zero and define for ε > 0 the function Fε : Rd

×R by

Fε(x, xd+1)=
∑
k∈N

Ek≤E

αk(ϕε ∗φk)(x) sk(xd+1).

By construction, the function g = χFε is an element of C∞c,0(B
+

δ ). Hence, we can apply Proposition 3.1
with g = χFε and ρ = 1

2 and obtain for all β ≥ β0 ≥ 1∫
S3

e2βψ(β|∇(χFε)|2+β3
|χFε|2

)
≤ C1

∫
S3

e2βψ
|1(χFε)|2+βC1

∫
B(δ)

e2βψ0 |(∂d+1(χFε))0|2. (15)

Note that β0 and C1 only depend on the dimension. By [Ziemer 1989, Theorem 1.6.1(iii)] we have
ϕε ∗φk→ φk , ∇(ϕε ∗φk)→∇φk and 1(ϕε ∗φk)→1φk in L2(S3) as ε tends to zero. Consequently, the
same holds for Fε, ∇Fε and 1Fε and thus we obtain (15) with Fε replaced by F. For the first summand
on the right-hand side we have the upper bound∫

S3

e2βψ
|1(χF)|2 ≤ 3

∫
S3

e2βψ(4|∇χ |2|∇F |2+ |1χ |2|F |2+ |1F |2|χ |2
)

≤ 3e2βψ2

∫
S3\S2

(
422

1|∇F |2+22
1|F |

2)
+

∫
S3

3e2βψ
|VL Fχ |2

≤ 1222
1e2βψ2‖F‖2H1(S3)

+ 3‖V ‖2
∞

∫
S3

e2βψ
|χF |2.
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The second summand is bounded from above by βC1
∫

B(δ)|(∂d+1 F)0|2, since F = 0 and ψ ≤ 0 on
{xd+1 = 0}. Hence,

β

∫
S3

e2βψ
|∇(χF)|2+(β3

−3‖V ‖2
∞

C1)

∫
S3

e2βψ
|χF |2≤12C12

2
1e2βψ2‖F‖2H1(S3)

+C1β‖(∂d+1 F)0‖2L2(B(δ)).

Additionally to β ≥ β0 we choose β ≥ (6‖V ‖2
∞

C1)
1/3
=: β̃0. This ensures that for all

β ≥ β1 :=max{β0, β̃0} (16)
we have

1
2

∫
S3

e2βψ(β|∇(χF)|2+β3
|χF |2

)
≤ 12C12

2
1e2βψ2‖F‖2H1(S3)

+C1β‖(∂d+1 F)0‖2L2(B(δ)).

Since β ≥ 1, S3 ⊃ S1, χ = 1 and e2βψ
≥ e2βψ1 on S1, we obtain

e2βψ1‖F‖2H1(S1)
≤ 24C12

2
1e2βψ2‖F‖2H1(S3)

+ 2C1‖(∂d+1 F)0‖2L2(B(δ)).

We apply this inequality for translates Si (z j ) and obtain by summing over j ∈ QL = Zd
∩3L

e2βψ1
∑
j∈QL

‖F‖2H1(S1(z j ))
≤ 24C12

2
1e2βψ2

∑
j∈QL

‖F‖2H1(S3(z j ))
+ 2C1

∑
j∈QL

‖(∂d+1 F)0‖2L2(B(z j ,δ))
.

Recall that Ui (L)=
⋃

j∈QL
Si (z j ) and Wδ(L)=

⋃
j∈QL

B(z j , δ). Hence, for all β ≥ β1 we have

‖F‖2H1(U1(L))
≤ D̃1‖F‖2H1(U3(L))

+ D̂1‖(∂d+1 F)0‖2L2(Wδ(L))
,

where
D̃1(β)= 24C12

2
1e2β(ψ2−ψ1) and D̂1(β)= 2C1e−2βψ1 . (17)

We choose β such that

eβ =
[

1
1222

1

‖(∂d+1 F)0‖2L2(Wδ(L)

‖F‖2H1(U3(L))

]1/(2ψ2)

. (18)

Now we distinguish two cases. If β ≥ β1 we obtain by using ψ1 = 2ψ2

‖F‖2H1(U1(L))
≤ 8
√

3C121‖F‖H1(U3(L))‖(∂d+1 F)0‖L2(Wδ(L)). (19)

If β < β1 we use Lemma 5.2 of [Le Rousseau and Lebeau 2012]. In particular, one concludes from (18)
that

‖F‖2H1(U3(L))
<

1
1222

1
e−2β1ψ2‖(∂d+1 F)0‖2L2(Wδ(L))

.

This gives us in the case β < β1

‖F‖2H1(U1(L))
≤ ‖F‖2H1(U3(L))

<
e−β1ψ2

√
1221

‖F‖H1(U3(L))‖(∂d+1 F)0‖L2(Wδ(L)). (20)

If we set

D2
1 =max

{
8
√

3C121,
e−β1ψ2

21
√

12

}
, (21)

we conclude the statement of the proposition from inequalities(19) and (20). �
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Now we deduce from the second Carleman estimate, Proposition 3.2, another interpolation inequality.

Proposition 3.5. For all δ ∈
(
0, 1

2

)
, all (1, δ)-equidistributed sequences z j , all measurable and bounded

V : Rd
→ R, all L ∈ Nodd, all E ≥ 0 and all φ ∈ Ran(χ(−∞,E](HL)):

(a) There is α1 = α1(d, ‖V ‖∞)≥ 1 such that for all α ≥ α1 we have

‖F‖2H1(X1)
≤ D̃2(α)‖F‖2H1(U1(L))

+ D̂2(α)‖F‖H1(X̃ R3 )
,

where α1 is given in (23), and D̃2(α) and D̂2(α) are given in (27).

(b) We have
‖F‖H1(X1) ≤ D2‖F‖

γ

H1(U1(L))
‖F‖1−γ

H1(X̃ R3 )
,

where γ and D2 are given in (32) and (33).

Proof. We choose a cutoff function χ ∈ C∞c (R
d+1
; [0, 1]) with suppχ ⊂ B(R3) \ B(r1), χ(x) = 1 if

x ∈ B(r3) \ B(R1),

max{‖1χ‖∞,V1, ‖|∇χ |‖∞,V1} ≤
2̃2

δ4 =:22,

max{‖1χ‖∞,V3, ‖|∇χ |‖∞,V3} ≤23,

where 2̃2 depends only on the dimension and 23 is an absolute constant. We set u = χF. We apply
Proposition 3.2 with ρ = R3 to the function u and obtain for all α ≥ α0 ≥ 1∫

B(R3)

(
αR2

3w
1−2α
|∇u|2+α3w−1−2α

|u|2
)

dx ≤ C2 R4
3

∫
B(R3)

w2−2α
|1u|2 dx .

Since w≤ 1 on B(R3) we can replace the exponent of the weight function w at all three places by 2−2α;
i.e., ∫

B(R3)

(
αR2

3w
2−2α
|∇u|2+α3w2−2α

|u|2
)

dx ≤ C2 R4
3

∫
B(R3)

w2−2α
|1u|2 dx =: I. (22)

For the right-hand side we use

1u = 2(∇χ)(∇F)+ (1χ)F + (1F)χ,

and 1F = VL F , and obtain

I ≤ 3C2 R4
3

∫
B(R3)

w2−2α(4|(∇χ)(∇F)|2+ |(1χ)F |2+‖V ‖2
∞
|χF |2

)
dx =: I1+ I2+ I3.

If we choose α sufficiently large, i.e.,

α ≥ (6C2 R4
3‖V ‖

2
∞
)1/3 =: α̃0,

we can subsume the term I3 into the left-hand side of (22). We obtain for all

α ≥ α1 :=max{α0, α̃0} (23)

the estimate ∫
B(R3)

(
αR2

3w
2−2α
|∇u|2+ 1

2α
3w2−2α

|u|2
)

dx ≤ I1+ I2.
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For the “new” left-hand side we have the lower bound

I1+ I2 ≥

∫
B(R3)

(
αR2

3w
2−2α
|∇u|2+ 1

2α
3w2−2α

|u|2
)

dx ≥
1
2

(
R3

R2

)2α−2

‖F‖2H1(V2)
.

For I1 and I2 we have the estimates

I1 ≤ 3C2 R4
3

[
422

2

(
eR3

r1

)2α−2∫
V1

|∇F |2+ 422
3

(
eR3

r3

)2α−2∫
V3

|∇F |2
]
,

I2 ≤ 3C2 R4
3

[
22

2

(
eR3

r1

)2α−2∫
V1

|F |2+22
3

(
eR3

r3

)2α−2∫
V3

|F |2
]
.

Putting everything together, the Carleman estimate from Proposition 3.2 implies for α ≥ α1

‖F‖2H1(V2)
≤ 24C2 R4

3

[
22

2

(
eR2

r1

)2α−2

‖F‖2H1(V1)
+22

3

(
eR2

r3

)2α−2

‖F‖2H1(V3)

]
. (24)

By translation, (24) is still true if we replace V1, V2 and V3 by its translates V1(z j ), V2(z j ) and V3(z j ) for
all j ∈ QL . Hence,∑

j∈QL

‖F‖2H1(V2(z j ))
≤ 24C2 R4

3

[
22

2

(
eR2

r1

)2α−2∑
j∈QL

‖F‖2H1(V1(z j ))
+22

3

(
eR2

r3

)2α−2∑
j∈QL

‖F‖2H1(V3(z j ))

]
.

(25)
For all L ∈Nodd Lemma 3.3 tells us that

⋃
k∈Q5

⋃
j∈QL

V2(z j+kL)⊃ X1=3L×[−1, 1] and the left-hand
side is bounded from below by∑

j∈QL

‖F‖2H1(V2(z j ))
=

1
5d

∑
k∈Q5

∑
j∈QL

‖F‖2H1(V2(z j+kL)) ≥
1
5d ‖F‖

2
H1(X1)

.

Since V1(z j )∩Rd+1
+ ⊂ S1(z j ), S1(zi )∩ S1(z j )=∅ for i 6= j , and since F is antisymmetric with respect

to its last coordinate, we have∑
j∈QL

‖F‖2H1(V1(z j ))
≤ 2

∑
j∈QL

‖F‖2H1(S1(z j ))
= 2‖F‖2H1(U1(L))

.

For the second summand on the right-hand side of (25), we find by Lemma 3.3(iii) that there exists a
constant Kd such that ∑

j∈QL

‖F‖2H1(V3(z j ))
≤ Kd‖F‖2H1(

⋃
j∈QL

V3(z j ))
.

Moreover, since
⋃

j∈QL
V3(z j )⊂ X̃ R3 =3L+R3 ×[−R3, R3], we have∑

j∈QL

‖F‖2H1(V3(z j ))
≤ Kd‖F‖H1(X̃ R3 )

.

Putting everything together we obtain for all α ≥ α1

1
5d ‖F‖

2
H1(X1)

≤ D̃2(α)‖F‖2H1(U1(L))
+ D̂2(α)‖F‖H1(X̃ R3 )

, (26)



SCALE-FREE UNIQUE CONTINUATION PRINCIPLE FOR SPECTRAL PROJECTORS 1067

where

D̃2(α)= 48C2 R4
32

2
2

(
eR2

r1

)2α−2

and D̂2(α)= 24C2 R4
32

2
3Kd

(
eR2

r3

)2α−2

. (27)

If we let c1 = 48C22
2
2 R4

3r2
1/(eR2)

2, c2 = 24C22
2
3Kd R4

3r2
3/(eR2)

2,

p+ = 2 ln
(

eR2

r1

)
> 0 and p− = 2 ln

(
eR2

r3

)
< 0,

then (26) reads as

1
5d ‖F‖

2
H1(X1)

≤ c1ep+α
‖F‖2H1(U1(L))

+ c2ep−α
‖F‖2H1(X̃ R3 )

. (28)

We choose α such that

eα =

(
c2

c1

‖F‖2
H1(X̃ R3 )

‖F‖2H1(U1(L))

)1/(p+−p−)

. (29)

If α ≥ α1 we obtain from (28) that

1
5d ‖F‖

2
H1(X1)

≤ 2cγ1 c1−γ
2 ‖F‖2γH1(U1(L))

‖F‖2−2γ
H1(X̃ R3 )

, where γ =
−p−

p+− p−
. (30)

If α < α1, we proceed as in the last part of the proof of Proposition 3.4; i.e., we conclude from (29) that

‖F‖2H1(X̃ R3 )
<

c1

c2
eα1(p+−p−)

‖F‖2H1(U1(L))
,

and thus

‖F‖2H1(X1)
≤ ‖F‖2(p

+
−p−)/(p+−p−)

H1(X̃ R3 )
< ‖F‖2(1−γ )

H1(X̃ R3 )

(
c1

c2
eα1(p+−p−)

)γ
‖F‖2γH1(U1(L))

. (31)

We calculate
γ =

ln 2
ln(r3/r1)

, (32)

set

D2
2 =max

{
5d192 · 94C22

2
3Kde4d2

(
222

2r2
1

22
3Kdr2

3

)γ
,

(
222

2

22
3Kd

(
r3

r1

)2(α1−1))γ}
(33)

and conclude the statement of the proposition from (30) and (31). �

Proofs of Theorem 2.2 and Corollary 2.6.

Proposition 3.6. For all T > 0, all measurable and bounded V : Rd
→ R, all L ∈Nodd, all E ≥ 0 and all

φ ∈ Ran(χ(−∞,E](HL)) we have

T
2

∑
k∈N

Ek≤E

|αk |
2
≤

‖F‖2H1(3RL×[−T,T ])

Rd ≤ 2T (1+ (1+‖V ‖∞)T 2)
∑
k∈N

Ek≤E

βk(T )|αk |
2,

where
βk(T )=

{
1 if Ek ≤ 0,
e2T
√

Ek if Ek > 0.
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Proof. For the function F :3RL ×R→ C we have for T > 0

‖F‖2H1(3RL×[−T,T ]) =

∫ T

−T

∫
3RL

(
|∂d+1 F |2+ |∇ ′F |2+ |F |2

)
dx .

Note that ‖φk‖L2(3RL ) = Rd. By Green’s theorem we have∫
3RL

|∇
′F |2 dx ′ =

∫
3RL

(
−

d∑
i=1

∂2
i F
)

F dx ′ =−
∫
3RL

V |F |2 dx ′+
∫
3RL

(∂2
d+1 F)F dx ′

for all xd+1 ∈ R. First we estimate

‖F‖2H1(3RL×[−T,T ]) =

∫ T

−T

∫
3RL

(
|∂d+1 F |2− V |F |2+ (∂2

d+1 F)F + |F |2
)

dx

≤

∫ T

−T

∫
3RL

(
|∂d+1 F |2+ (∂2

d+1 F)F + (1+‖V ‖∞)|F |2
)

dx = 2Rd
∑
k∈N

Ek≤E

|αk |
2 Ik,

where

Ik :=

∫ T

0

(
(1+‖V ‖∞) sk(xd+1)

2
+ s′k(xd+1)

2
+ s′′k (xd+1) sk(xd+1)

)
dxd+1

= (1+‖V ‖∞)
∫ T

0
sk(xd+1)

2 dxd+1+ s′k(T ) sk(T ).

If Ek ≤ 0, we estimate using sk(t)≤ t and s ′k(t)sk(t)≤ t for t > 0

Ik ≤
1
3(1+‖V ‖∞)T

3
+ T ≤ ((1+‖V ‖∞)T 3

+ T )βk(T ).

For Ek > 0 we use sinh(ωk t)/ωk ≤ t cosh(ωk t) for t > 0 and cosh(ωk T )2 ≤ e2ωk T to obtain

Ik = (1+‖V ‖∞)
∫ T

0

sinh2(ωk xd+1)

ω2
k

dxd+1+ sinh(ωk T ) cosh(ωk T )/ωk

≤ ((1+‖V ‖∞)T 3 cosh2(ωk T )+ T cosh2(ωk T ))≤ ((1+‖V ‖∞)T 3
+ T )βk(T ).

This shows the upper bound. For the lower bound we drop the gradient term and obtain

‖F‖2H1(3RL×[−T,T ]) ≥

∫ T

−T

∫
3RL

(|∂d+1 F |2+ |F |2) dx = 2 · Rd
∑
k∈N

Ek≤E

|αk |
2 Ĩk,

where

Ĩk :=

∫ T

0
[sk(xd+1)

2
+ s′k(xd+1)

2
] dxd+1.

If Ek = 0, the lower bound Ĩk ≥ T follows immediately. Else, we have sk(t)2 ≥ sin2(ωk t)/ωk and
s′k(t)

2
≥ cos(ωk t), whence

Ĩk ≥

∫ T

0

sin2(ωk xd+1)

ω2
k

+ cos2(ωk xd+1) dxd+1 ≥

∫ T

0
cos2(ωk xd+1) dxd+1 =

T
2
+

sin(2ωk T )
4ωk

.
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Now, if 2ωk T < π , the sinus term is positive and we drop it to find Ĩk ≥ T/2. If 2ωk T ≥ π , we have
sin(2ωk T )≥−1 and estimate

Ĩk ≥
T
2
−

1
4ωk
=

T
2
−

π

4πωk
≥

T
2
−

T
2π
≥

T
4
. �

Proof of Theorem 2.2. First we consider the case L ∈Nodd. We note that Proposition 3.6 remains true if
we replace 3RL by 3L and Rd by 1; i.e., for all T > 0 and L ∈ Nodd we have

T
2

∑
k∈N

Ek≤E

|αk |
2
≤ ‖F‖2H1(3L×[−T,T ]) ≤ 2T (1+ (1+‖V ‖∞)T 2)

∑
k∈N

Ek≤E

βk(T )|αk |
2. (34)

We have X̃ R3 ⊂3RL ×[−R3, R3]. By (34) and Proposition 3.6 we have

‖F‖2
H1(X̃ R3 )

‖F‖2H1(X1)

≤

‖F‖2H1(3RL×[−R3,R3])

‖F‖2H1(X1)

≤ D̃2
3 D2

4

with

D̃2
3 =

∑
Ek≤E θk |αk |

2∑
Ek≤E |αk |

2 and D2
4 = 4 · Rd R3(1+ (1+‖V ‖∞)R2

3),

where θk = βk(R3). We use Propositions 3.4 and 3.5 and obtain

‖F‖H1(X̃ R3 )
≤ D̃3 D4‖F‖H1(X1) ≤ Dγ

1 D2 D̃3 D4‖F‖
1−γ
H1(X̃ R3 )

‖(∂d+1 F)0‖
γ /2
L2(Wδ(L))

‖F‖γ /2H1(U3(L))
.

Since U3(L)⊂ X̃ R3 we have

‖F‖H1(X̃ R3 )
≤ D2

1 D2/γ
2 D̃2/γ

3 D2/γ
4 ‖(∂d+1 F)0‖L2(Wδ(L)).

By (34), the square of the left-hand side is bounded from below by

‖F‖2H1(X̃ R3 )
≥ ‖F‖2H1(3L×[−R3,R3])

≥
1
2 R3

∑
k∈N

Ek≤E

|αk |
2.

Putting everything together we obtain by using (∂d+1 F)0 = φ

1
2 R3

∑
k∈N

Ek≤E

|αk |
2
≤ D4

1(D2 D̃3 D4)
4/γ
‖φ‖2L2(Wδ(L))

.

In order to end the proof we will give an upper bound on D̃3 which is independent of αk , k ∈N. For this
purpose, we recall that θk = βk(R3). Since θk ≤ e2R3

√
E for all k ∈ N with Ek ≤ E , we have

D̃4
3 ≤ D4

3 := e4R3
√

E.

Hence, using
∑

Ek≤E |αk |
2
= ‖φ‖2L2(3L )

, we obtain for all L ∈ Nodd the estimate

C̃sfuc‖φ‖
2
L2(3L )

≤ ‖φ‖2L2(Wδ(L))
,
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where C̃sfuc = C̃sfuc(d, δ, E, ‖V ‖∞)= D−4
1 (D2 D3 D4)

−4/γ. From the definitions of Di , i ∈ {1, 2, 3, 4},
and γ one calculates that

C̃sfuc ≥ δ
Ñ
(

1+‖V ‖2/3∞ +
√

E
)

with some constant Ñ = Ñ (d). Now we treat the case of L ∈Neven= {2, 4, 6, . . .}. By a scaling argument
as in Corollary 2.2 of [Rojas-Molina and Veselić 2013], we immediately obtain that for all G > 0,
δ ∈ (0,G/2), L/G ∈ Nodd and all (G, δ)-equidistributed sequences qj we have

‖φ‖2L2(W q
δ (L))
≥ C̃G

sfuc‖φ‖
2
L2(3L )

(35)

and C̃G
sfuc(d, δ, E, ‖V ‖∞) = C̃sfuc(d, δ/G, EG2, ‖V ‖∞G2). Here W q

δ (L) denotes the set Wδ(L) corre-
sponding to the sequence qj . Now we define

G =
{

L/(L/2− 1) if L ∈ 4N,

2 otherwise,

which satisfies G ∈ [2, 4] and L/G ∈ Nodd. Since G ≥ 2, every elementary cell 3G + j , j ∈ (GZ)d,
contains at least one elementary cell 31 + j , j ∈ Zd. Hence we can choose a (G, δ)-equidistributed
subsequence qj of z j . We apply (35) to this subsequence and obtain

‖φ‖2L2(Wδ(L))
≥ ‖φ‖2L2(W q

δ (L))
≥ C̃G

sfuc‖φ‖L2(3L ).

Note that Wδ(L) corresponds to the sequence z j . Putting everything together we obtain the statement of
the theorem with

min
{
C̃sfuc, inf

G∈[2,4]
C̃G

sfuc
}
≥ δ

N
(

1+‖V ‖2/3∞ +
√

E
)
=: Csfuc

and some constant N = N (d). For the last inequality we use that
(1

4

)Ñ
≥ δ2Ñ. �

Proof of Corollary 2.6. We denote the normalized eigenfunctions of −1L + A+ B corresponding to the
eigenvalues λi (−1L + A+ B) by φi . Then we have

λi (−1L + A+ B)= 〈φi , (−1L + A+ B)φi 〉

= max
φ∈Span{φ1,...,φi }

‖φ‖=1

〈φ, (−1L + A)φ〉+ 〈φ, Bφ〉

≥ max
φ∈Span{φ1,...,φi }

‖φ‖=1

〈φ, (−1L + A)φ〉+α〈φ, χWδ(L)φ〉.

By Corollary 2.4, we conclude that for all φ ∈ Span{φ1, . . . , φi }, ‖φ‖ = 1, we have

〈φ, χWδ(L)φ〉 ≥ CG,1
sfuc(d, δ, E, ‖A+ B‖∞)

and furthermore, by the variational characterization of eigenvalues, we find

max
φ∈Span{φ1,...,φi }

‖φ‖=1

〈φ, (−1L + A)φ〉 ≥ inf
dimD=i

max
φ∈D
‖φ‖=1

〈φ, (−1L + A)φ〉 = λi (−1L + A).

Thus, we obtain the statement of the corollary. �
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4. Proof of Wegner and initial scale estimates

Recall that 0 < G1 < G2 are the numbers from the Delone property such that ]{D ∩ (3G1 + x)} ≤ 1,
]{D∩(3G2+x)} ≥ 1 for any x ∈Rd, and that for all t ∈ [0, 1] we have supp ut ⊂3Gu . Let δmax := 1−ω+
and Ku := umaxdGu/G1e

d. For ω∈ [ω−, ω+]D and δ≤ δmax, we use the notation Vω+δ for the potential Vω,
where every ωj , j ∈ D, has been replaced by ωj + δ. The following lemma is a consequence of the
properties of a Delone set, in particular ]3L ∩D ≤ dL/G1e

d, and our assumption (5).

Lemma 4.1. (i) For all ω ∈ [ω−, ω+]D, all 0 < δ ≤ δmax and all L ∈ (G2 + Gu)N, the difference
Vω+δ − Vω is on 3L bounded from below by α1δ

α2 times the characteristic function of Wβ1δ
β2 (L)

which corresponds to a (G2+Gu, β1δ
β2)-equidistributed sequence.

(ii) For all ω ∈ [0, 1]D we have ‖Vω‖∞ ≤ Ku .

(iii) For all L ∈ (G2+Gu)N, we have

]
{

j ∈ D : ∃t ∈ [0, 1], supp ut( · − j)∩3L 6=∅
}
≤ d(L +Gu)/G1e

d
≤ (2L/G1)

d.

Proof of Theorem 2.10. Note that for all E0 ∈ R, λi (Hω,L) ≤ E0 implies, by Lemma 4.1(ii), that
λi (Hω+δ,L)≤ E0+‖Vω+δ−Vω‖≤ E0+2Ku . Now we apply Corollary 2.6 with A=Vω and B=Vω+δ−Vω
(both restricted to 3L ). Together with Lemma 4.1(i), we obtain for all E0 ∈ R, all L ∈ GuN, all
ω ∈ [ω−, ω+]

D, all δ ≤ δmax and all i ∈ N with λi (Hω,L)≤ E0 the inequality

λi (Hω+δ,L)≥ λi (Hω,L)+α1δ
α2CG2+Gu ,1

sfuc (d, β1δ
β2, E0+ 2Ku, Ku).

In particular, there is κ = κ(d, ω+, α1, α2, β1, β2,G2,Gu, Ku, E0) > 0 such that

λi (Hω+δ,L)≥ λi (Hω,L)+ δκ. (36)

Now let ε > 0, satisfying ε ≤ εmax := δ
κ
max/4. We choose δ := (4ε)1/κ, whence

λi (Hω+δ,L)≥ λi (Hω,L)+ 4ε. (37)

Let ρ ∈ C∞(R, [−1, 0]) be smooth, nondecreasing such that ρ =−1 on (−∞;−ε] and ρ = 0 on [ε;∞).
We can assume ‖ρ ′‖∞ ≤ 1/ε. It holds that

χ[E−ε;E+ε](x)≤ ρ(x − E + 2ε)− ρ(x − E − 2ε)= ρ(x − E − 2ε+ 4ε)− ρ(x − E − 2ε)

for all x ∈ R and together with (37) this implies

E
[
Tr[χ[E−ε;E+ε](Hω,L)]

]
≤ E

[
Tr[ρ(Hω,L − E − 2ε+ 4ε)− ρ(Hω,L − E − 2ε)]

]
≤ E

[
Tr[ρ(Hω+δ,L − E − 2ε)− ρ(Hω,L − E − 2ε)]

]
. (38)

Now let 3̃L := { j ∈ D : ∃t ∈ [0, 1], supp ut( · − j) ∩3L 6= ∅} be the set of lattice sites which can
influence the potential within 3L . Note that ]3̃L ≤ (2L/G1)

d. We enumerate the points in 3̃L by
k : {1, . . . , ]3̃L} → D, n 7→ k(n). The upper bound in (38) will be expanded in a telescopic sum by
changing the |3̃L | indices from ωj to ωj + δ successively. In order to do that some notation is needed.
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Given ω ∈ [ω−, ω+]D, n ∈ {1, . . . , |3̃L |}, δ ∈ [0, δmax] and t ∈ [ω−, ω+], we define ω̃(n,δ)(t) ∈ [ω−, 1]D

inductively via

(ω̃(1,δ)(t))j :=

{
t if j = k(1),
ωj else

and (ω̃(n,δ)(t))j :=

{
t if j = k(n),
(ω̃(n−1,δ)(ωj + δ))j else.

The function ω̃(n,δ) : [ω−, 1] → [ω−, 1]D is the rank-1 perturbation of ω in the k(n)-th coordinate with
the additional requirement that all sites k(1), . . . , k(n− 1) have already been blown up by δ. We define

2n(t) := Tr[ρ(Hω̃(n,δ)(t),L − E − 2ε)] for n = 1, . . . , |3̃L |.

Note that
21(ωk(1))= Tr[ρ(Hω,L − E − 2ε)],

2n(ωk(n))=2n−1(ωk(n−1)+ δ) for n = 2, . . . , |3̃L | and

2
|3̃L |

(ωk(|3̃L |)
+ δ)= Tr[ρ(Hω+δ,L − E − 2ε)].

Hence the upper bound in (38) is

E
[
Tr[ρ(Hω+δ,L − E − 2ε)] −Tr[ρ(Hω,L − E − 2ε]

]
= E

[
2
|3̃L |

(ωk(|3̃L |)
+ δ)−21(ωk(1))

]
=

|3̃L |∑
n=1

E
[
2n(ωk(n)+ δ)−2n(ωk(n))

]
.

Due to the product structure of the probability space, we can apply Fubini’s theorem to each summand
and obtain

E
[
2n(ωk(n)+ δ)−2n(ωk(n))

]
= E

[∫ ω+

ω−

2n(ωk(n)+ δ)−2n(ωk(n)) dµ(ωk(n))

]
.

Note that 2n : [ω−, 1] → R is monotone and bounded. We will use the following lemma.

Lemma 4.2. Let −∞ < ω− < ω+ ≤ +∞. Assume that µ is a probability distribution with bounded
density νµ and support in the interval [ω−, ω+] and let 2 be a nondecreasing, bounded function. Then
for all δ > 0 ∫

R

[2(λ+ δ)−2(λ)] dµ(λ)≤ ‖νµ‖∞ · δ[2(ω++ δ)−2(ω−)].

Proof of Lemma 4.2. We calculate∫
R

[2(λ+ δ)−2(λ)] dµ(λ)

≤ ‖νµ‖∞

∫ ω+

ω−

[2(λ+ δ)−2(λ)] dλ= ‖νµ‖∞

[∫ ω++δ

ω−+δ

2(λ) dλ−
∫ ω+

ω−

2(λ) dλ
]

= ‖νµ‖∞

[∫ ω++δ

ω+

2(λ) dλ−
∫ ω−+δ

ω−

2(λ) dλ
]
≤ ‖νµ‖∞ · δ[2(ω++ δ)−2(ω−)]. �
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Thus, we find for all n = 1, . . . , |3̃L |∫ ω+

ω−

[
2n(ωk(n)+ δ)−2n(ωk(n)) dµ(ωk(n))

]
≤ ‖νµ‖∞ · δ[2n(ω++ δ)−2n(ω−)].

We will also need the following result; see, e.g., Theorem 2 in [Hundertmark et al. 2006].

Proposition 4.3. Let H0 := −1+ A be a Schrödinger operator with a bounded potential A ≥ 0, and
let H1 := H0+ B for some bounded B ≥ 0 with compact support. Denote the corresponding Dirichlet
restrictions to 3 by H3

0 and H3
1 , respectively. There are constants K1, K2 depending only on d and

monotonously on diam supp B such that for any smooth, bounded function g : R→ R with compact
support in (−∞, E0] and the property that g(H3

1 )− g(H3
0 ) is trace class we have

Tr[g(H3
1 )− g(H3

0 )] ≤ K1eE0 + K2(ln(1+‖g′‖∞)d)‖g′‖1.

Proposition 4.3 implies:

Lemma 4.4. Let 0< ε ≤ εmax. Then 2n(ω++ δ)−2n(ω−)≤ (K1eE0 + 2d K2)|ln ε|d, where K1, K2 are
as in Proposition 4.3 and thus only depend on d and on Gu .

Proof of Lemma 4.4. Let g( · ) := ρ( · − E − 2ε)). By our choice of ρ, we know g has support in
(−∞, E0], ‖g′‖∞ ≤ 1/ε and ‖g′‖1 = 1. We define the operators

H3
0 := H(ω̃(n,δ)(ω−), L) and H3

1 := H(ω̃(n,δ)(ω++ δ), L).

They are lower semibounded operators with purely discrete spectrum and since g has support in (−∞, E0],
the difference g(H3

1 )− g(H3
0 ) is trace class. By the previous proposition

2n(ω++ δ)−2n(ω−)= Tr[g(H3
1 )− g(H3

0 )] ≤ K1eE0 + K2(ln(1+ 1/ε))d.

To conclude, note that ε ≤ εmax <
1
2 and thus ln(1+ 1/ε)≤ 2|ln ε| and 1≤ |ln ε| ≤ |ln ε|d. �

Putting everything together and recalling δ = (4ε)1/κ we find

E
[
Tr[χ[E−ε,E+ε](Hω,L)]

]
≤ (K1eE0 + 2d K2)‖νµ‖∞ · δ|ln ε|d |3̃L |

≤ (K1eE0 + 2d K2)‖νµ‖∞ · (4ε)1/κ |ln ε|d(2/G1)
d Ld . �

Proof of Theorem 2.11. We follow the ideas developed in [Barbaroux et al. 1997; Kirsch et al. 1998].
Let t ≤ δmax, Vt,L be the restriction of Vω to 3L obtained by setting all random variables to t , and
Ht,L = −13L + VL ,t on L2(3L) with Dirichlet boundary conditions. Note that H0,L = −13L + V0,L

and that the first eigenvalue of Ht,L is bounded from above by d(π/L)2 + Ku . Inequality (36) with
E0 = dπ2

+ Ku , ωk = 0, k ∈D, and δ = t yields that there is κ = κ(d, δmax, α1, α2, β1, β2,G2,Gu, Ku)

such that for all t ≤ δmax

λ1(Ht,L)≥ λ1(H0,L)+ tκ.

We choose t = L−7/(4κ) and L sufficiently large such that t <min{δmax, t0}. Then,

λ1(Ht,L)− λ1(H0,L)≥ L−7/4.
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Let �0 := {ω ∈ � : λ1(Hω,L) ≥ λ1(Ht,L)}. Since the potential values in 3L only depend on ωk ,
k ∈3L+Gu ∩D, we calculate using ]3L+Gu ∩D≤d(L+Gu)/G1e

d and our assumption on the measure µ
that

P(�0)≥ 1−P(∃γ ∈3L+Gu ∩D, ωγ ≤ t)≥ 1−
⌈

L +Gu

G1

⌉d

µ([0, t])≥ 1−
⌈

L +Gu

G1

⌉d C
L7d/4 .

Since d(L +Gu)/G1e
d
≤ L5d/4 for L sufficiently large, we obtain the statement of the theorem. �

5. Proof of the observability estimate

We want to apply [Miller 2010, Theorem 2.2] where we choose A = 1L − VL on L2(3L) with
Dirichlet boundary conditions, C = χWδ(L) and C0 = Id. Note that A is self-adjoint with spectrum
contained in (−∞, ‖V ‖∞]. For λ > 0 we define the increasing sequence of spectral subspaces Eλ :=
Ranχ[−λ,∞)(1L − VL).

We need to check [Miller 2010, (5),(6),(7)]. By spectral calculus, we have for all λ > 0

‖e(1L−VL )t u‖3L ≤ e−λt
‖u‖3L , u ∈ E⊥λ = Ranχ(−∞,−λ)(1L − VL), t > 0.

Furthermore, Corollary 2.4 implies for all λ > 0 and u ∈ Eλ

‖u‖23L
≤ a0e−N ln(δ/G)G

√
λ
‖u‖2Wδ(L).

For T ≤ 1 we have e2T ‖V ‖∞/T ≤ e2‖V ‖∞e2/T, whence

‖eT (1−V )u‖23L
≤

e2T ‖V ‖∞

T

∫ T

0
‖et (1−V )u‖23L

dt ≤ e2‖V ‖∞e2/T
∫ T

0
‖et (1−V )u‖23L

dt.

Thus we found [Miller 2010, (5),(6),(7)] with m0 = 1, m = 0, α = ν = 1
2 , a0 and b0 as in the theorem,

a =−(N/2) ln(δ/G)G > 0, b = 1 and β = 1. By [Miller 2010, Theorem 2.2 and Corollary 1(i)], there
exists T ′ > 0 such that for all T ≤ T ′

κT ≤ 4a0b0e2c∗/T, where c∗ = 4(
√

a+ 2−
√

a)−4.

From the proof in [Miller 2010], it can be inferred that T ′ only depends on m0, α, β, a, b, a0, b0 and on
our choice of T ≤ 1. Thus, in our case, T ′ only depends on G, δ and ‖V ‖∞.

Using
√

a+ 2−
√

a =
∫ a+2

a (2
√

x)−1 dx ≥ (a+ 2)−1/2 and the fact that from δ ≤ G/2, it follows that
2≤ 2a/amin, where amin := (N/2) ln(2)G, and we obtain

c∗ ≤ 4(a+ 2)2 ≤ 4a2(1+ 2/amin)
2
= ln(G/δ)2(N G+ 4/ ln 2)2.

Appendix: On single-site potentials for the breather model

Our assumptions. In this section we discuss our conditions on the single-site potential in the random
breather model. Recall that the ωj were supported in [ω−, ω+] ⊂ [0, 1), whence we consider t ∈ [ω−, ω+]
and δ ∈ [0, 1−ω+].



SCALE-FREE UNIQUE CONTINUATION PRINCIPLE FOR SPECTRAL PROJECTORS 1075

Definition A.1. We say that a family {ut }t∈[0,1] of measurable functions ut : R
d
→ R satisfies:

• condition (A) if the ut are uniformly bounded, have uniform compact support and if there are
α1, β1 > 0 and α2, β2 ≥ 0 such that for all t ∈ [ω−, ω+], δ ≤ 1−ω+ there is x0 = x0(t, δ) ∈Rd with

ut+δ − ut ≥ α1δ
α2χB(x0,β1δ

β2 ), (39)

• condition (B) if ut is the dilation of a function u by t , defined as ut(x) := u(x/t) for t > 0 and
u0 ≡ 0, where u is the characteristic function of a bounded, convex, open set K with 0 ∈ K,

• condition (C) if ut is the dilation of a measurable function u which is positive, radially symmetric,
compactly supported, bounded with monotonously decreasing radial part ru : [0,∞)→ [0,∞) and
such there is a point x̃ > 0 where ru is differentiable, r ′u(x̃) < 0 and ru(x̃) > 0,

• condition (D) if ut is the dilation of a measurable function u which is positive, radially symmetric,
radially decreasing, compactly supported, bounded and which has a discontinuity away from 0,

• condition (E) if u1−t is the dilation of a measurable function which is nonpositive, radially symmetric,
radially increasing, compactly supported, bounded, and such there is a point x̃ > 0 where the radial
part ru is differentiable, r ′u(x̃) > 0 and ru(x̃) < 0.

Remark A.2. Condition (A) is the abstract assumption we used in the proof of the Wegner estimate for
the random breather model. Conditions (B) to (E) are relatively easy to verify for specific examples of
single-site potentials. In particular, (C) holds for many natural choices of single-site potentials such as the
smooth function χ|x |<1 exp(1/(|x |2− 1)) or the hat-potential χ|x |<1(1− |x |). Furthermore, we note that
if we have families {ut }t∈[0,1] and {vt }t∈[0,1] where ut satisfies (A) and vt+δ − vt ≥ 0 for all t ∈ [ω−, ω+]
and δ ∈ (0, 1−ω+], then the family {ut + vt }t∈[0,1] also satisfies (A).

Lemma A.3. We have that each of the assumptions (B) to (E) implies (A).

Proof. Assume (B). We will show (A) with α1 = 1, α2 = 0, β2 = 1 and β1 = c, and hence it is enough to
show the existence of a cδ-ball in Kt+δ\Kt .

For K ⊂ Rd and t > 0 we define Kt := {x ∈ Rd
: x/t ∈ K } and K0 :=∅. Without loss of generality

let x := (1, 0, . . . , 0) be a point in K which maximizes |x | over K. For λ ∈ R define the half-space
Hλ := {x ∈ Rd

: x1 ≤ λ}, where x1 stands for the first coordinate of x . By scaling, the existence of a
cδ-ball in Kt+δ\Kt is equivalent to the existence of a cδ/(t + δ)-ball in K\Kt/(t+δ). By maximality of
(1, 0, . . . , 0), we have K ⊂ H1 and hence Kt/(t+δ)⊂ Ht/(t+δ). Thus, it is sufficient to find a cδ/(t+δ)-ball
in K\Ht/(t+δ). By convexity of K, the set

{
z ∈ K : z1 =

1
2

}
is nonempty and since K is open, we find

z0 ∈ K with z1 =
1
2 and 0< c < 1

2 such that B(z0, c)⊂ K. We define for λ ∈ [0, 1) the set X (λ)⊂ Rd as
X (λ) := B(z0+ λ((1, 0, . . . , 0)− z0), c · (1− λ)). By convexity and the fact that (1, 0, . . . , 0) ∈ K, we
have X (λ) ⊂ K. In fact, let {xn}n∈N ⊂ K be a sequence with xn → (1, 0, . . . , 0). We define open sets
Xn(λ) by replacing (1, 0, . . . , 0) by xn in the definition of X (λ). By convexity of K, every Xn is a subset
of K , whence

⋃
n∈N Xn(λ)⊂ K. Furthermore we have X (λ)⊂

⋃
n∈N Xn(λ). Thus X (λ)⊂ K. We now

choose λ := t/(t + δ). Then X (λ)∩ Hλ =∅. Noting that c(1− λ)= cδ/(t + δ), we see that X (λ) is the
desired cδ/(t + δ)-ball.
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Now we assume (C). Let r ′u(x̃)=−C1. Then there is ε̃ > 0 such that

ru(x̃ + ε)− ru(x̃) ∈
[
−2εC1,−

ε

2
C1

]
for all |ε|< ε̃. (40)

It is sufficient to prove the following: there are C2,C3 > 0 such that for every 0 ≤ t ≤ ω+ and every
0< δ ≤ 1−ω+ there is x̂ = x̂(t, δ) such that

ru

(
x̂ +C2δ

t + δ

)
− ru

(
x̂
t

)
≥ C3δ. (41)

Indeed, by monotonicity of ru , (41) implies that for every x ∈ [x̂, x̂ +C2δ] we have

ru

(
x

t + δ

)
− ru

(
x
t

)
≥ ru

(
x̂ +C2δ

t + δ

)
− ru

(
x̂
t

)
≥ C3δ,

whence (A) holds with x0 := (x̂ +C2δ/2)e1, α1 = C3, β1 = C2/2, α2 = β2 = 1.
In order to see (41), let x̂ = (t + δ)x̃ . We choose κ ∈

(
0, 1

4

)
and assume that x̃ − 4κε̃ > 0 (this is no

restriction since (40) also holds for smaller ε̃). Furthermore, we define C2 := κε̃. Now we distinguish
two cases. If x̃δ/t ≤ ε̃, then (40) implies

ru

(
x̂ +C2δ

t + δ

)
− ru

(
x̂
t

)
= ru

(
x̃ + κ

ε̃δ

t + δ

)
− ru(x̃)+ ru(x̃)− ru

(
x̃ + x̃

δ

t

)
≥−2κC1

ε̃δ

t + δ
+C1

x̃δ
2t
≥ δ

C1

2
x̃ − 4κε̃

t + δ
.

If x̃δ/t > ε̃, we use ru(x̃)− ru(x̃ + x̃δ/t)≥ ru(x̃)− ru(x̃ + ε̃) and (40) to obtain

ru

(
x̂ +C2δ

t + δ

)
− ru

(
x̂
t

)
≥−2κC1

ε̃δ

t + δ
+C1

ε̃

2
=

C1ε̃

2

(
1−

4κδ
t + δ

)
≥

C1ε̃

2
(1− 4κ).

Hence

ru

(
x̂ +C2δ

t + δ

)
− ru

(
x̂
t

)
≥ C3δ, where C3 :=min

{
C1(x̃ − 4κε̃)

2
,

C1ε̃(1− 4κ)
2(1−ω+)

}
> 0.

The fact that (D) implies (A) is a consequence of (B). In fact, a function u as in (D) can be decomposed
as u = v+w, where v is (a multiple of) a characteristic function of a ball, centered at the origin, and w is
positive, radially symmetric and decreasing. Indeed, let x0 be the point of discontinuity with the smallest
norm. Then we can take v = (u(x0−)− u(x0+))χB(0,|x0|), where χA denotes the characteristic function
of the set A.

The function v satisfies (A) by (B) (since balls are convex) and we have wt+δ−wt ≥ 0. By Remark A.2,
the family {ut }t∈[0,1] = {vt +wt }t∈[0,1] also satisfies (A). The case (E) is an adaptation of (C). �

Earlier assumptions. For certain types of random breather potentials, Wegner estimates have been given
before; see [Combes et al. 1996; 2001]. As we will show below, none of these results covers the standard
breather model. The methods of [Combes et al. 1996; 2001] seem to be motivated by reducing, thanks to
linearization, the random breather model to a model of alloy type and then applying methods designed
for the latter one. They are not focused to take advantage of the inherent, albeit nonlinear, monotonicity
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of the random breather model. The following assumptions on the single site potential are considered in
[Combes et al. 1996] and [Combes et al. 2001], respectively.

Definition A.4. We say that a measurable function u : Rd
→ [0,∞) satisfies:

• condition (F) if u is compactly supported, in C2(Rd), nonzero in a neighborhood of the origin and
for some c0 > 0 we have the inequalities

−x · ∇u ≥ 0 for all x ∈ Rd and
∣∣∣∣(x,Hess[u]x)

x · ∇u

∣∣∣∣≤ c0 <∞ for all x ∈ Rd
\{0}, (42)

• condition (G) if u 6≡ 0 is compactly supported, in C1(B1\{0}), and there is ε0 > 0 such that

−x · ∇u− ε0u ≥ 0 for all x ∈ Rd
\{0}. (43)

We have the following lemma.

Lemma A.5. We have that

• (F) never holds,

• (G) implies that u has a singularity at the origin.

Proof. We first show the statements in dimension one. Assume (F) and let x0 :=min supp u. Note that
x0 < 0. By the first inequality in (42) we have that u′ ≥ 0 for x ∈ (x0, 0). The second inequality in (42)
implies

|u′′(x)| ≤
c0u′(x)
|x |

≤
2c0u′(x)
|x0|

for all x ∈ (x0, x0/2),

whence we have

u′(x)=
∫ x

x0

u′′(y) dy ≤
∫ x

x0

|u′′(y)| dy ≤
2c0

|x0|

∫ x

x0

u′(y) dy,

and iteratively

u′(x)≤
(2c0)

n

|x0|n

∫ x

x0

∫ x (1)

x0

· · ·

∫ x (n−1)

x0

u′(x (n)) dx (n) · · · dx (1)

≤ ‖u′‖∞ ·
(2c0)

n

|x0|n

∫ x

x0

∫ x (1)

x0

· · ·

∫ x (n−1)

x0

dx (n) · · · dx (1)

= ‖u′‖∞ ·
(

2c0(x − x0)

|x0|

)n

(n!)−1
→ 0 as n→∞

for all x ∈ (x0, x0/2). We found u′ ≡ 0 on (x0, x0/2), which is a contradiction.

Now we assume (G). The function u cannot have its supremum at a point of differentiability for else
it would have to be zero at its maximum, which would imply u ≡ 0. Condition (43) implies that u
is increasing on the negative half-axis and decreasing on the positive half-axis. We conclude that the
supremum has to be the limit at the only possible nondifferentiable point x = 0 and we will show that
this limit is∞. By monotonicity of u and the assumption u 6≡ 0, there is δ0 > 0 such that

u(x)≥ u(δ0) > 0 on (0, δ0) or u(x)≥ u(−δ0) > 0 on (−δ0, 0).
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Without loss of generality, we assume u(x)≥ u(δ0) > 0 on (0, δ0). Furthermore, from (43) it follows that

−u′(x)≥ ε0
u(x)

x
for x > 0.

Using this inequality we estimate for 0< x < δ0:

u(x)≥ u(x)− u(δ0)=−

∫ δ0

x
u′(s) ds ≥ ε0

∫ δ0

x

u(s)
s

ds

≥ ε0u(δ0)

∫ δ0

x
s−1ds = ε0u(δ0)[ln(δ0)− ln(x)] →∞ as x→ 0.

Now we show the claim in higher dimensions. If the single site potential U : Rd
→ [0,∞) does

not vanish identically there is a point y such that U (y) > 0. Assume without loss of generality that y
lies on the x1-axis and define u : R→ [0,∞) by u(x1) = U (x1, 0, . . . , 0). Note that if U satisfies the
assumption (F) or (G), respectively, then u satisfies (F) or (G) as well and the one-dimensional argument
can be applied to u. Hence, the statement of the lemma also holds for U. �

In the light of the comments made at the beginning of this section, the occurrence of a singularity is not
surprising since in the case of a single-site potential with a polynomial singularity, u(x)= |x |−α, we have

u(x/ωj )= |x/ωj |
−α
= ωαj |x |

−α
= ωαj u(x),

and thus the random breathing would correspond to a multiplication, which would allow to reduce the
breather model to the well-understood alloy-type model Vω(x)=

∑
j ωj u(x − j).
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function and the density of states”, Comm. Math. Phys. 262:2 (2006), 489–503. MR Zbl

[Jerison and Lebeau 1999] D. Jerison and G. Lebeau, “Nodal sets of sums of eigenfunctions”, pp. 223–239 in Harmonic analysis
and partial differential equations (Chicago, IL, 1996), edited by M. Christ et al., Univ. Chicago Press, 1999. MR Zbl

[Kellendonk et al. 2015] J. Kellendonk, D. Lenz, and J. Savinien (editors), Mathematics of aperiodic order, Progress in
Mathematics 309, Springer, 2015. MR Zbl

[Kenig et al. 2011] C. E. Kenig, M. Salo, and G. Uhlmann, “Inverse problems for the anisotropic Maxwell equations”, Duke
Math. J. 157:2 (2011), 369–419. MR Zbl

[Kirsch 1996] W. Kirsch, “Wegner estimates and Anderson localization for alloy-type potentials”, Math. Z. 221:3 (1996),
507–512. MR Zbl
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