Vol. 11, No. 4, 2018

Download this article
Download this article For screen
For printing
Recent Issues

Volume 12, 1 issue

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editors’ Interests
Scientific Advantages
Submission Guidelines
Submission Form
Editorial Login
Contacts
Author Index
To Appear
 
ISSN: 1948-206X (e-only)
ISSN: 2157-5045 (print)
$C^1$ regularity of orthotropic $p$-harmonic functions in the plane

Pierre Bousquet and Lorenzo Brasco

Vol. 11 (2018), No. 4, 813–854
Abstract

We prove that local weak solutions of the orthotropic p-harmonic equation in 2 are C1 functions.

Keywords
degenerate and singular problems, regularity of minimizers
Mathematical Subject Classification 2010
Primary: 49N60, 49K20, 35B65
Milestones
Received: 31 August 2016
Revised: 30 August 2017
Accepted: 24 October 2017
Published: 12 January 2018
Authors
Pierre Bousquet
Institut de Mathématiques de Toulouse, CNRS UMR 5219
Université de Toulouse
Toulouse
France
Lorenzo Brasco
Dipartimento di Matematica e Informatica
Università degli Studi di Ferrara
Ferrara
Italy
Institut de Mathématiques de Marseille
Aix-Marseille Université
Marseille
France