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LARGE SETS AVOIDING PATTERNS

ROBERT FRASER AND MALABIKA PRAMANIK

We construct subsets of Euclidean space of large Hausdorff dimension and full Minkowski dimension
that do not contain nontrivial patterns described by the zero sets of functions. The results are of two types.
Given a countable collection of v-variate vector-valued functions fq : (R

n)v → Rm satisfying a mild
regularity condition, we obtain a subset of Rn of Hausdorff dimension m/(v− 1) that avoids the zeros
of fq for every q. We also find a set that simultaneously avoids the zero sets of a family of uncountably
many functions sharing the same linearization. In contrast with previous work, our construction allows for
nonpolynomial functions, as well as uncountably many patterns. In addition, it highlights the dimensional
dependence of the avoiding set on v, the number of input variables.

1. Introduction

Identification of geometric and algebraic patterns in large sets has been a focal point of interest in modern
analysis, geometric measure theory and additive combinatorics. A fundamental and representative result
in the discrete setting that has been foundational in the development of a rich theory is Szemerédi’s
theorem [1975], which states that every subset of the integers with positive asymptotic density contains
an arbitrarily long arithmetic progression. There is now an abundance of similar results in the continuum
setting, all of which guarantee existence of configurations under appropriate assumptions on size, often
stated in terms of Lebesgue measure, Hausdorff dimension or Banach density. While this body of work
has contributed significantly to our understanding of such phenomena, a complete picture concerning
existence or avoidance of patterns in sets is yet to emerge. In this paper, we will be concerned with
the “avoidance” aspect of the problem. Namely, given a function f : Rnv

→ Rm satisfying certain
conditions, how large a set E ⊂ Rn can one construct that carries no nontrivial solution of the equation
f (x1, . . . , xv)= 0? In other words, we aim to find as large a set E as possible such that f (x1, . . . , xv) is
nonzero for any choice of distinct points x1, . . . , xv ∈ E.

In the discrete regime, results of this type can be traced back to Salem and Spencer [1942] and Behrend
[1946], who identified large subsets of the integers avoiding progressions. The Euclidean formulation of
this problem appears to be of relatively recent vintage. Keleti [1999] constructed a subset E of the real
numbers of full Hausdorff dimension avoiding all nontrivial “one-dimensional rectangles”. More precisely,
this means that there exist no solutions of the equation x2− x1− x4+ x3 = 0 with x1 < x2 ≤ x3 < x4,
xi ∈ E, 1≤ i ≤ 4. In particular, such a set contains no nontrivial arithmetic progression, as can be seen
by setting x2 = x3. A counterpoint to [Keleti 1999] is a result of Łaba and the second author [Łaba and

MSC2010: 28A78, 28A80, 26B10, 05B30.
Keywords: geometric measure theory, configurations, Hausdorff dimension, Minkowski dimension.
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Pramanik 2009], who established existence of three-term progressions in special “random-like” subsets
of R that support measures satisfying an appropriate ball condition and a Fourier decay estimate. Higher-
dimensional variants of this theme may be found in [Chan et al. 2016; Henriot et al. 2016]. On the other
hand, large Hausdorff dimensionality, while failing to ensure specific patterns, is sometimes sufficient
to ensure existence or even abundance of certain configuration classes; see for instance [Greenleaf and
Iosevich 2012; Greenleaf et al. 2015; 2017; Bennett et al. 2016]. Harangi, Keleti, Kiss, Maga, Máthé,
Mattila, and Strenner [Harangi et al. 2013] showed that sets of sufficiently large Hausdorff dimension
contain points that generate specific angles.

Nonexistence of patterns such as the one proved by Keleti [1999] is the primary focus of this article. A
main contribution of [Keleti 1999] is best described as a Cantor-type construction with memory, where selec-
tion of basic intervals at each stage is contingent on certain selections made at a much earlier step of the con-
struction, so as to prevent certain algebraic relations from taking place. This idea has been instrumental in a
large body of subsequent work involving nonexistence of configurations. For example, Keleti [2008] used
this to show that for any countable set A, it is possible to construct a full-dimensional subset E of R such that

x2− x1+ a(x3− x2)= 0

has no solutions for any a ∈ A, where x1, x2 and x3 are distinct points in E. Maga [2010] exploited this idea
to demonstrate a full-dimensional subset E ⊂Rn not containing the vertices of any parallelogram. He also
constructed a full-dimensional planar set that misses all similar copies of a given triangle. Other results in
this direction of considerable generality, extending their predecessors in [Keleti 1999; 2008; Maga 2010],
are due to Máthé [2012]. Given any countable collection of polynomials pj :R

nm j→R of degree at most d
with rational coefficients, the main result of [Máthé 2012] ensures the existence of a subset E⊆Rn of Haus-
dorff dimension n/d such that pj (x1, . . . , xm j ) is nonzero for any choice of distinct points x1, . . . , xm j ∈ E.
The same conclusion continues to hold if the polynomials pj are replaced by pj (8j,1(x1), . . . , 8j,m j (xm j )),
where 8j,k are C1-diffeomorphisms of Rn. Interestingly, the Hausdorff dimension bound in [Máthé 2012],
while depending on the ambient dimension n and the maximum degree d of the polynomials, is independent
of the number of input vectors m j in pj , which may continue to grow without bound.

This paper uses similar ideas to present two results in a somewhat different direction. The first
complements Máthé’s result mentioned above. It applies to a countable family of functions f :Rnv

→Rm

with a fixed v that are not necessarily polynomials with rational coefficients. Further, in contrast with
[Máthé 2012], the Hausdorff dimension of the obtained set depends on the number of vector variables v.
The second result is of a perturbative flavour, and gives a set of positive Hausdorff dimension that
simultaneously avoids zeros of all functions with a common linearization and bounded higher-order terms.
To the best of our knowledge, such uniform avoidance results are new. Some points of tenuous similarity
may be found in [Harangi et al. 2013], where the authors construct sets that avoid angles within a specific
range, but the ideas, methods and goals are very different.

1A. Main results. Our first result is most general in dimension one, where we need very mild restrictions
on the functions whose zeros we want to avoid. The higher-dimensional, vector-valued version of this
result applies with some additional restrictions. We state these two separately.
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Theorem 1.1. For any η > 0 and integer v ≥ 3, let fq : R
v
→ R be a countable family of functions in v

variables with the following properties:

(a) There exists rq <∞ such that fq ∈ Crq ([0, η]v).

(b) For each q , some partial derivative of fq of order rq ≥ 1 does not vanish at any point of [0, η]v.

Then there exists a set E ⊆ [0, η] of Hausdorff dimension at least 1/(v−1) and Minkowski dimension 1
such that fq(x1, . . . , xv) is not equal to zero for any v-tuple of distinct points x1, . . . , xv ∈ E and any
function fq .

Theorem 1.2. Fix η>0 and positive integers m, n, v such that v≥3, and m≤n(v−1). Let fq :R
nv
→Rm

be a countable family of C2 functions with the following property: for every q on [0, η]nv , the derivative
D fq(x1, . . . , xv) has full rank at every point (x1, . . . , xv) in the zero set of fq such that xr 6= xs for
all r 6= s.

Then there exists a set E⊆[0, η]n of Hausdorff dimension at least m/(v−1) and Minkowski dimension n
such that fq(x1, . . . , xv) is not equal to zero for any v-tuple of distinct points x1, . . . , xv ∈ En and any
function fq .

Remarks. (a) If one seeks to avoid zeros of a single function f , then Theorem 1.1 is nontrivial only
when the components of ∇ f (x) sum to zero at every point x in the zero set of f . If this is not the case,
then there is necessarily some interval I such that f (x1, . . . , xv) is nonzero for points xi in the interval I.

(b) The points x1, . . . , xv ∈ E that ensure f (x1, . . . , xv) 6= 0 in Theorems 1.1 and 1.2 are taken to
be distinct. This assumption, while needed for the proof, is often nonrestrictive for the purpose of
applications. In fact, one can typically augment the family { fq} by {gq}, where the function gq equals fq

with certain input variables coincident, and apply the theorems above to the augmented family provided
the nonvanishing derivative assumptions are met. For instance, Keleti’s function f (x1, x2, x3, x4) =

(x2 − x1)− (x4 − x3) = −x1 + x2 + x3 − x4 identifies “one-dimensional rectangles” in general, and
three-term arithmetic progressions only if x2 = x3. In order to obtain a set that avoids both using
our setup, we would need to apply our Theorem 1.1 to the collection { f, g}, where g(x1, x2, x3, x4)=

f (x1, x2, x2, x4)=−x1+ 2x2− x4.

(c) Theorem 1.2 is sharp in certain instances, for example when m = n(v − 1). On the other hand,
Theorem 1.1 need not be sharp for specific choices of fq , as Keleti’s example shows. Our result would
only ensure a set of Hausdorff dimension 1

3 for this example. Given the similarity in our respective
methods of proof, the contrast in the results requires a word of explanation. In [Keleti 1999], one had
explicit knowledge of the function f (which was linear), and hence of the structure of its zero set. This
arithmetic structure was exploited heavily in the construction. Our assumptions on { fq} are too weak to
offer explicit information concerning algebraic dependencies in the zero set, and hence our proof is based
on a “worst-case analysis”, which is true generically, but results in worse bounds. However, our method
of proof is robust enough to accommodate special structures in zero sets, and yields better dimensional
bounds in those settings. We substantiate this comment with more precise details at the appropriate
juncture of the proof; see the remark on page 1092.
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(d) Our conjecture is that the dimensional lower bound of 1/(v− 1) in Theorem 1.1 is sharp for certain
generic functions, but we are currently unaware of any result in the literature that addresses the optimality
of this bound in the setup that we describe. Partial evidence in support of this conjecture in provided in
[Körner 2009], where the author constructs a set of Fourier dimension 1/(v− 1) avoiding all v-variate
rational linear relations. We hope to return to this issue in the future.

(e) Even though our results do not recover those of [Keleti 2008; Maga 2010; Máthé 2012] in all instances
where these results are applicable, the Hausdorff dimension provided in Theorems 1.1 and 1.2 offers
new bounds in settings where previously none were available, for instance where the functions are
nonpolynomials with mild regularity. It also improves the bound given in [Máthé 2012] for polynomials
with rational coefficients in the regime where the degree d is much larger than the number of variables v.
On the other hand, for polynomials of low degree the result in [Máthé 2012] improves ours, obtaining the
best bound when d = 1.

(f) Finding the optimal dimension of a zero-avoiding set for a specific and explicitly stated function
remains an interesting open question. For the quadratic polynomial f (x1, x2, x3)= (x3− x1)− (x2− x1)

2,
the zero-avoiding set is guaranteed to be of Hausdorff dimension at least 1

2 , both according to [Máthé
2012] and Theorem 1.1. It is not known whether this bound is optimal.

Our second result is about a set on which no function f with a given linearization and controlled
higher-order term is zero.

Theorem 1.3. Given any constant K > 0 and a vector α ∈ Rv such that

α · u 6= 0 for every u ∈ {0, 1}v with u 6= 0, u 6= (1, 1, . . . , 1), (1-1)
and such that

v∑
j=1

αj = 0, (1-2)

there exists a positive constant c(α) and a set E = E(K , α) ⊆ [0, 1] of Hausdorff dimension c(α) > 0
with the following property.

The set E does not contain any nontrivial solution of the equation

f (x1, . . . , xv)= 0, (x1, . . . , xv) not all identical,

for any C2 function f of the form

f (x1, . . . , xv)=
v∑

j=1

αj x j +G(x1, . . . , xv), (1-3)

where

|G(x)| ≤ K
v∑

j=2

(x j − x1)
2. (1-4)

Remarks. (a) The condition (1-1) implies that α does not lie in any coordinate hyperplane.

(b) The proof of Theorem 1.3 can be used to obtain a corresponding result with finitely many linearizations.
There is a loss in the Hausdorff dimension as more linear functions are added to the family, so the proof
fails for families of functions with countably many linearizations.
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(c) It is interesting to note that the dimensional constant c(α) does not depend on K. Of course the set E
does, and is uniform for all functions f obeying (1-3) and (1-4) with a fixed value of K.

1B. Layout. Section 2 is devoted to geometric applications of Theorems 1.1, 1.2 and 1.3. Optimality
of these results (or lack thereof) in various settings is discussed, and comparison with earlier work is
presented. Section 3 is a collection of geometric algorithms needed for the proofs of Theorems 1.1 and 1.2.
The proofs themselves are executed in Sections 4 and 5.

2. Examples

2A. Subsets of curves avoiding isosceles triangles. This subsection is given over to the following ques-
tion: suppose we are given a small segment of a simple C2 curve 0 ⊂ Rn with nonvanishing curvature
bounded above by K, parameterized by a C2 function γ : [0, η]→ Rn with nonvanishing derivative. How
large can the Hausdorff dimension of a subset E ⊆ [0, η] be if there do not exist three points x1, x2, x3 ∈ E
such that {γ (x1), γ (x2), γ (x3)} ⊆ 0 are the vertices of an isosceles triangle?

The existence of an isosceles triangle with vertices on 0 will be determined using one of the functions

f1(t1, t2, t3)= |γ (t1)− γ (t2)|2− |γ (t2)− γ (t3)|2, (2-1)

f2(t1, t2, t3)= d(γ (t1), γ (t2))− d(γ (t2), γ (t3)). (2-2)

Here d is the “signed distance” along the curve 0 defined by

d(γ (t1), γ (t2))=
{
|γ (t1)− γ (t2)| if t1 ≥ t2,
−|γ (t1)− γ (t2)| if t1 < t2.

(2-3)

For reasons to be explained shortly, we will want to avoid the zero set of f1 or f2. In order to apply
Theorem 1.1, we need to verify that these functions are differentiable. This is evident for f1. In Lemma A.1
of the Appendix, we have shown that the signed distance d is differentiable, which provides the same
conclusion for f2.

Let f be either the function f1 or f2 given in (2-1) or (2-2). In either case, we have that if f (t1, t2, t3)=0,
then γ (t1), γ (t2), γ (t3) form the vertices of an isosceles triangle or points in an arithmetic progression.
Conversely, let x, y, z be distinct points of 0 that form an isosceles triangle, with |x − y| = |y− z|. Then
there exist t1 < t2 < t3 such that some permutation of γ (t1), γ (t2), γ (t3) will be the points x, y, z. It is
not difficult to see that if η is sufficiently small depending on |γ ′(0)| and the curvature K, then y can be
neither γ (t1) nor γ (t3). We include a proof of this in Lemma A.2 in the Appendix. Therefore y = γ (t2),
in which case f (t1, t2, t3)= 0.

2A1. A set avoiding isosceles triangles along a single curve. We will first discuss the problem of avoiding
isosceles triangles along a single curve 0. For this variant of the problem, γ may be any parameterization
of 0 satisfying the conditions laid out above.

Let us first consider the case where 0 is parameterized by a polynomial function γ of degree d with
rational coefficients; i.e., γ (t)= (p1(t), p2(t), . . . , pn(t)). Let us observe that the result in [Máthé 2012]
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does not apply to the nonpolynomial function f2(t1, t2, t3), but does apply to

f1(t1, t2, t3)=
[
(p1(t1)−p1(t2))2+· · ·+(pn(t1)−pn(t2))2

]
−
[
(p1(t2)−p1(t3))2+· · ·+(pn(t2)−pn(t3))2

]
,

which is a polynomial of degree at most 2d . Applying [Máthé 2012] then gives a subset of 0 of Hausdorff
dimension 1/(2d) that does not contain the vertices of any isosceles triangle.

If 0 is a general (not necessarily polynomial) C2 curve with parameterization γ (t), and f (t1, t2, t3) is
either f1 or f2 described above, then Theorem 1.1 demonstrates the existence of a subset E of [0, 1] of
Hausdorff dimension 1

2 such that f (t1, t2, t3) 6= 0 for any choice of t1, t2, t3 ∈ E. Under γ , this lifts to a
subset of 0 of Hausdorff dimension 1

2 that does not contain the vertices of an isosceles triangle. Even
for the case of functions with a rational polynomial parameterization, this set has a larger Hausdorff
dimension than the one provided by [Máthé 2012].

Incidentally, it is instructive to compare the above with the case where the curve γ is a line, even though
the curvature for the latter is zero. Here we will view three-term arithmetic progressions as degenerate
isosceles triangles. Set γ (t)=at+b for some a, b∈Rn, a 6=0. Then the function f (t1, t2, t3)= t1+t3−2t2
is equal to zero precisely when γ (t1), γ (t2) and γ (t3) lie in arithmetic progression. Keleti’s result [1999],
as well as [Máthé 2012], applied to this f show that there is a subset of 0 of Hausdorff dimension 1
that does not contain any arithmetic progressions. Theorem 1.1 on the other hand provides a set with
Hausdorff dimension 1

2 , which is suboptimal.

2A2. A set avoiding isosceles triangles along all curves with bounded curvature. We will also ask a
question related to the one above, this time considering only C2 curves given by arclength parameterization.
How large a set E ⊂ [0, 1] can we construct such that γ (E) does not contain any isosceles triangle for
any γ : [0, 1] → Rn with |γ ′(t)| ≡ 1 and with curvature at most K ?

For any such curve γ , the function f2 defined in (2-2) will be differentiable everywhere, with ∂ f2/∂t1=
∂ f2/∂t3 ≡ 1 and ∂ f2/∂t2 ≡−2, as we have verified in Lemma A.1(b). Thus the function f2 will satisfy
the conditions of Theorem 1.3. One therefore obtains a subset E ⊂ [0, 1] of positive Hausdorff dimension
such that f2(t1, t2, t3) 6= 0 whenever t1, t2, t3 ∈ E are distinct, no matter which γ we choose in this class.
Thus the points parameterized by E manage to avoid isosceles triangles on all curves 0 with a fixed
bounded curvature.

How large a Hausdorff dimension can we get? A careful scrutiny of Lemma 5.1, Proposition 5.2 and
Theorem 1.3 shows that one can ensure sets of Hausdorff dimension at least log 2/log 3. For more details,
we refer the reader to the proofs of these results in Section 5A and the remarks following them.

2A3. Discussion on optimality. Clearly Theorem 1.2 is optimal when m = n(v− 1). On the other hand,
we can use Theorem 1.3 together with the example above to give a polynomial with rational coefficients
for which neither [Máthé 2012] nor Theorem 1.1 gives the optimal bounds. Consider a polynomial of the
form

p(t1, t2, t3)= t1− 2t2+ t3+ q(t1, t2, t3),

where q(t1, t2, t3) is a nontrivial homogeneous quadratic polynomial in (t2− t1) and (t3− t1) with rational
coefficients. We are of course interested in finding a set E (as large as possible) such that p(t1, t2, t3) 6= 0
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for any choice of distinct points t1, t2, t3 ∈ E. Both [Máthé 2012] and Theorem 1.1 provide such a set E,
with dimension at least 1

2 in both cases. Theorem 1.3 provides such a set E as well. Note that p has the
same linearization as the functions f described in the previous section above. Hence, as described at the
end of Section 2A2, the set E obtained via Theorem 1.3 is a set of dimension at least log 2/log 3> 1

2 ,
proving the claimed suboptimality statement.

In fact, we can use this framework to construct other examples. Notice that it is possible to ask
for sets E that avoid triangles that are not necessarily isosceles, for instance triangles where the side-
length ratio is a prescribed constant κ . The results in [Keleti 1999; Máthé 2012] and Theorem 1.1 all
apply to give a set with the same Hausdorff dimension 1

2 as above not containing t1, t2, t3 such that
|γ (t2)− γ (t1)| = κ|γ (t3)− γ (t1)|. However, the Hausdorff dimension bound in Theorem 1.3 becomes
worse as κ moves farther away from 1. Still, for κ close to 1, Theorem 1.3 outperforms Theorem 1.1,
giving rise to a family of polynomials whose zeros can be avoided by a set of unusually large Hausdorff
dimension.

2B. A subset of a curve not containing certain kinds of trapezoids. The following is a geometric ex-
ample of Theorem 1.2. Call a trapezoid ABC D with AD parallel to BC “special” if the side lengths
obey the restriction |BC |2 = |AB||C D|. Given a curve 0 ⊂ R2 parameterized by a smooth function
γ : [0, η] → R2, we aim to find a subset E of [0, η] with the following property: for any choice of
t1 < t2 < t3 < t4 in E, the trapezoid ABC D with

A = γ (t1), B = γ (t2), C = γ (t3), D = γ (t4)

is not special. For simplicity and ease of exposition, we may assume that the components of γ ′ are strictly
positive on [0, η] and that the curvature is also of constant sign, say 0 is strictly convex.

Notice that the special trapezoid assumption places two essentially independent conditions on γ (t1),
γ (t2), γ (t3), and γ (t4). One is that two sides need to be parallel, and the other is the condition on the
side lengths. Accordingly, we define two functions f1 and f2 as follows:

f1(t1, t2, t3, t4)= det
[
(γ (t4)− γ (t1))t , (γ (t3)− γ (t2))t

]
, (2-4)

f2(t1, t2, t3, t4)= d(γ (t4), γ (t3)) d(γ (t2), γ (t1))− d(γ (t3), γ (t2))2. (2-5)

Here in (2-4), at and bt represent the transpose of the planar row vectors a = (a1, a2) and b = (b1, b2)

respectively, while

det[at , bt
] = det

[
a1 b1

a2 b2

]
= a1b2− a2b1

denotes the (signed) length of the cross-product a× b. Alternatively, det[at , bt
] may be interpreted as the

signed area of the parallelogram whose sides are the vectors a and b. The determinant vanishes if either
a or b is zero, or if the two vectors are parallel.

Returning to (2-4) and (2-5), f1 is zero if and only if AD is parallel to BC , while f2 is zero if and
only if |BC |2 = |AB||C D|. We therefore seek to avoid the zeros of the smooth vector-valued function
f = ( f1, f2). We verify in Lemma A.3 of the Appendix that the derivative D f is of full rank on the zero
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set of f . Applying Theorem 1.2 with n = 1, m = 2, v = 4, we obtain a set E of Hausdorff dimension 2
3

such that the points on 0 indexed by E avoids special trapezoids as explained above. Thus, there is a
subset of 0 of Hausdorff dimension 2

3 that does not contain any special trapezoids.

3. Avoidance of zeros on a single scale

The proofs of Theorems 1.1 and 1.2 are based on an iterative construction whose primary building block
relies on an algorithm: given a set T ⊆ Rnv contained in the domain of a suitably nonsingular function
f : Rnv

→ Rm, one identifies a subset S ⊆ T that stays away from the zero set of f . This zero-avoiding
subset S, which is a union of cubes in Rnv (and as such of positive Lebesgue measure and full Hausdorff
dimension), does not immediately yield the set we seek because it is typically not the v-fold Cartesian
product of a set in Rn with itself, and hence does not meet the specifications of the theorems. However,
the algorithm can be used iteratively on many different scales and for many functions in the construction
of the set E whose existence has been asserted in the theorems. Our objective in this section is to describe
this algorithm. The versions that we need for Theorems 1.1 and 1.2 are very similar in principle, although
the exact statements differ somewhat. These appear in Propositions 3.1 and 3.4 below respectively.

3A. Building block in dimension one. Let f be a real-valued C1 function of v variables and nonvanish-
ing gradient defined in a neighbourhood of the origin containing [0, 1]v. Suppose that we are given an
index i0 ∈ {1, 2, . . . , v}, an integer M ≥ 1, a small constant c0> 0 and compact subsets T1, . . . , Tv ⊆[0, 1]
with the following properties:

Each Ti is a union of closed intervals of length M−1 with disjoint interiors.
Let us denote by JM(Ti ) this collection of intervals. (3-1)

int(Ti )∩ int(Ti ′)=∅ if i 6= i ′. (3-2)∣∣∣∣ ∂ f
∂xi0

(x)
∣∣∣∣≥ c0 and |∇ f (x)| ≤ c−1

0 for all x ∈ T1× · · ·× Tv. (3-3)

Proposition 3.1. Given f,M, i0, c0 and T = (T1, . . . , Tv) obeying (3-1) and (3-3) above, there exist a
small rational constant c1 > 0 and an integer N0 (depending on all these quantities), for which the
following conclusions hold.

There is a sequence of arbitrarily large integers N ≥ N0 with N/M, c1 N ∈N such that for each N in
this sequence, one can find compact subsets Si ⊆ Ti for all 1≤ i ≤ v such that:

(a) There are no solutions of f (x)= 0 with x ∈ S1× · · ·× Sv.

(b) For each J ∈ JM(Ti ), let us decompose J into closed intervals of length N−1 with disjoint interiors
and call the resulting collection of intervals IN (J, i). Then for each i 6= i0 and each I ∈ IN (J, i),
the set Si ∩ I is an interval of length c1 N 1−v.

(c) For every J ∈ JM(Ti0), there exists I ′N (J, i0)⊆ IN (J, i0) with

#(I ′N (J, i0))≥
(

1− 1
M

)
#(IN (J, i0)) (3-4)
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such that for each I ∈ I ′N (J, i0),

|Si0 ∩ I | ≥
c1

N
. (3-5)

Unlike part (b), Si0 ∩ I need not be an interval; however, it can be written as a union of intervals of
length c1 N 1−v with disjoint interiors.

Proof. Without loss of generality, we may set i0 = v. For i 6= v, we define

Si =
⋃{
[ai , ai + c1 N 1−v

] : [ai , bi ] = I ∈ IN (J, i) for some J ∈ JM(Ti )
}
,

where the small positive constant c1 and the integer N will be specified shortly. In other words, Si

consists of the leftmost c1 N 1−v-subintervals of all the 1/N -intervals that constitute Ti . It is clear that the
conclusion (b) holds for this choice of Si .

We now proceed to define the subcollection I ′N (J, v) and the set Sv that obey the requirements in (c).
Consider the collection

AN :=

v−1∏
i=1

{
ai : [ai , bi ] = I ∈ IN (J, i) for some J ∈ JM(Ti )

}
consisting of (v−1)-tuples of the form a′ = (a1, . . . , av−1), where each ai is a left endpoint of an interval
in IN (J, i) for some J ∈ JM(Ti ). For each i , the number of possible choices for 1/N -intervals I ⊆ [0, 1]
and hence for ai is at most N. Thus

#(AN )≤ N v−1. (3-6)

We will prove in Lemma 3.2 below that for every fixed a′ ∈ AN ,

#{xv : f (a′, xv)= 0} ≤ M. (3-7)

Assuming this for the moment, define

B := {xv : ∃ a′ ∈ AN such that f (a′, xv)= 0}.

In light of (3-6) and (3-7), we find that

#(B)≤ M N v−1. (3-8)

The subcollection I ′N (J, v)⊆ IN (J, v) specified in part (c) is chosen as follows: we declare

I ∈ I ′N (J, v) if #(B∩ I )≤ M3 N v−2.

In view of (3-8) and the pigeonhole principle, it follows that

#
(
IN (J, v) \ I ′N (J, v)

)
≤

M N v−1

M3 N v−2 =
N

M2 . (3-9)

The fact that #(IN (J, v))= N/M then implies (3-4).
We now decompose each I ∈ I ′N (J, v) into consecutive subintervals of length C0c1/N v−1 with disjoint

interiors, and denote the successive intervals by Ĩ`(I ):

I =
⋃
{ Ĩ`(I ) : 1≤ `≤ N v−2/(C0c1)}.
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Here C0 is a constant integer depending on f , M and T1, . . . Tv, as has been specified in Lemma 3.3
below. The integer N is chosen large enough so that N v−2/(C0c1) is an integer. All intervals Ĩ`(I )
that intersect B, together with their adjacent neighbours, are then discarded. This still leaves open the
possibility that the subintervals Ĩ`(I ) at the edges of I, namely `= 1 and `= N v−2/(C0c1), are proximate
to a part of B lying in an adjacent interval I ′, so we remove these edge subintervals as well. The remaining
subset of Tv is defined to be Sv. More specifically,

Sv =
⋃{

Ĩ`(I ) : Ĩk(I )∩B=∅ for
I ∈ I ′N (J, v), J ∈JM(Tv),

|k− `| ≤ 1, 1< ` < N v−2/(C0c1)

}
.

Clearly Sv can be viewed a union of intervals of length c1/N v−1. The definition of I ′N (J, v) implies that
the total length of the discarded subintervals in each I ∈ I ′N (J, v) is at most 3C0c1 M3 N v−2/N v−1

=

3M3C0c1/N. The claim (3-5) now follows by choosing c1 > 0 small enough so as to satisfy 3M3C0c1 <

(1− c1).
Finally, Lemma 3.3 below shows that given x ′= (x1, . . . , xv−1)∈ S1× S2×· · ·× Sv−1, any xv obeying

f (x ′, xv)= 0 should necessarily lie within a C0c1/N v−1 neighbourhood of B. Since the set Sv ⊆ Tv was
created so as to avoid these neighbourhoods, conclusion (b) follows. �

Remark. We take this opportunity to point out the distinction of our selection algorithm as compared
to, say, [Keleti 1999; Máthé 2012]. The length c1 N 1−v of the intervals Si ∩ I (for i 6= i0) is the main
contributing factor to the dimensional lower bound of Theorem 1.1. These intervals can be chosen slightly
differently and also possibly longer if additional information is available about the zero set of f , as
indicated in part (c) of the remark on page 1085.

For example, suppose that f : Rv→ R is a linear function, say

f (x1, . . . , xv)=
v∑

i=1

αi xi (3-10)

with nonzero integer coefficients as in [Keleti 1999], and that i0=v. Without loss of generality suppose also
that in the notation of Proposition 3.1 each Ti is a finite union of intervals J of the form Z/M+[0, 1/M].
Then for i < v, a possible choice of Si could be as follows: for each I = [k/N , (k+ 1)/N ] ∈ IN (J, i)
with k any integer, we set

Si ∩ I :=
[

k
N
,

k+ c1

N

]
for some small positive constant c1 to be chosen shortly. If xi ∈ Si for i < v, then any xv with
f (x1, x2, . . . , xv)= 0 has to be of the form

xv =−
1
αv

v−1∑
i=1

αi xi , so that dist
(

xv,
Z

|αv|N

)
<

1
4|αv|N

, where c1

v−1∑
i=1

|αi |<
1
4
.

Let us then choose Sv as follows: for any I = |αv|−1
[k/N , (k+ 1)/N ] ⊆ Tv,

Sv ∩ I :=
1
|αv|

[
k
N
+

1− c1

2N
,

k
N
+

1+ c1

2N

]
.
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This implies

dist
(

Sv ∩ I,
Z

|αv|N

)
>

1
4|αv|N

,

provided c1 > 0 is chosen small enough. Thus the construction above ensures that S1 × S2 · · · × Sv
contains no zeros of f . Further, the size of this Cartesian product is significantly larger than the one
obtained in Proposition 3.1. Tracking these new choices of Si through the rest of the proof yields a set E
of full Hausdorff dimension that avoids all zeros of (3-10), which is the result of [Keleti 1999].

Lemma 3.2. For f and AN as in Proposition 3.1, the inequality (3-7) holds for every fixed a′ ∈ AN .

Proof. Given a′ ∈ AN , we claim that for every J ∈ JM(Tv), there exists at most one xv ∈ J such that
f (a′, xv)= 0. Since the number of J ∈ JM(Tv) is at most M, the desired conclusion would follow once
the claim is established.

To prove the claim, let us assume if possible that there exist xv, yv ∈ J , xv 6= yv , such that f (a′, xv)=
f (a′, yv)=0. By Rolle’s theorem, this ensures the existence of some point zv ∈ J where ∂ f/∂xv(a′, xv)=0.
But this contradicts the hypothesis (3-3) that the partial derivative ∂ f/∂xv is nonzero on T1×· · ·× Tv . �

Lemma 3.3. Let f , M and T1, . . . , Tv be as in Proposition 3.1. Then there exists a constant C0 depending
on these quantities, and in particular on c0, such that for the choice of S1, S2, . . . , Sv−1 as specified in
the proof of the proposition,

dist(xv,B)≤
C0c1

N v−1

for any xv obeying f (x)= 0, with x ′ = (x1, . . . , xv−1) ∈ S1× · · ·× Sv−1.

Proof. Let J= J1× · · ·× Jv = J′× Jv ∈
∏v

i=1 JM(Ti ) be a v-dimensional cube of side length 1/M such
that the zero set of f intersects J. The nonvanishing derivative condition (3-3) then implies, in view
of the implicit function theorem, that there exists a (v−1)-variate C1 function gJ defined on J′ and a
constant C0 > 0 depending on c0, M , T1, . . . , Tv such that

f (x)= 0, x ∈ J, implies xv = gJ(x ′), x ′ ∈ J′, (3-11)

|∇gJ| ≤
C0
√
v

on J′. (3-12)

Given x = (x ′, xv) ∈ S1× · · · × Sv such that f (x)= 0, let Jx denote the v-dimensional 1/M-cube J

in which x lies, and let I′x = I1× · · ·× Iv−1 =
∏v−1

i=1 [ai , bi ] ∈
∏v−1

i=1 IN (Ji , i) be the (v−1)-dimensional
subcube of J′x of side length 1/N containing x ′. Then

xv = gJ(x ′), a′ = (a1, . . . , av−1) ∈ AN , gJ(a′) ∈ B, and |x ′− a′| ≤
c1
√
v

N v−1 .

Further, (3-12) implies

dist(xv,B)≤ |gJ(a′)− gJ(x ′)| ≤ ‖∇gJ‖∞ |x ′− a′| ≤
C0
√
v
×

c1
√
v

N v−1 =
C0c1

N v−1 ,

which is the conclusion of the lemma. �
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3B. Building block in higher dimensions. Given positive integers m, n≥ 1 and v≥ 3 with m≤ n(v−1),
let f : Rnv

→ Rm be a C2 function whose zero set has nontrivial intersection with [0, 1]nv. Suppose that
M ≥ M0 is a large integer, c0 > 0 is a small constant and T1, . . . , Tv ⊆ [0, 1]n are sets with the following
properties:

Each Ti is expressible as a union of closed axis-parallel cubes of side length M−1

with disjoint interiors, the collection of which will be called JM(Ti ).
As before, int(Ti )∩ int(Ti ′)=∅ if i 6= i ′.

(3-13)

On {x ∈ T1× · · ·× Tv : f (x)= 0} the matrix D f is of full rank, with
the singular values of D f bounded above and below by c−1

0 and c0 respectively. (3-14)

On [0, 1]nv, the matrix norm of the Hessian D2 f is bounded above by c−1
0 . (3-15)

Proposition 3.4. Given f,M and c0 as above, there exists a rational constant c1 > 0 and an integer N0

depending on these quantities for which the following conclusions hold. For N ≥ N0, set `= c1 N n(1−v)/m .
If N is such that N/M , 1/(`N ) ∈ Z, then one can find compact subsets Si ⊆ Ti for all 1≤ i ≤ v such that:

(a) There are no solutions to f (x)= 0 with x ∈ S1× · · ·× Sv.

(b) For each 1≤ i ≤ v and J ∈JM(Ti ), let us decompose J into closed axis-parallel cubes of length N−1

with disjoint interiors and call the resulting collection of cubes IN (J, i). There exists I ′N (J, i) ⊆
IN (J, i) such that

Si ⊆
⋃
{I : J ∈ JM(Ti ), I ∈ I ′N (J, i)}.

More precisely, for each I ∈ I ′N (J, i), the set Si ∩ I is a single axis-parallel cube of side length
` = c1 N n(1−v)/m , provided i 6= v. For i = v and I ∈ I ′N (J, v), the set Sv ∩ I is not necessarily a
single cube of side length `, but a union of such cubes, with the property that

|Sv ∩ I | ≥
(

1− 1
M

) 1
N n . (3-16)

(c) The subcollections I ′N (J, i) of cubes are large subsets of the ambient collection IN (J, i), in the sense
that for all 1≤ i ≤ v, J ∈ JM(Ti ),

#(I ′N (J, i))≥
(

1− 1
M

)
#(IN (J, i)). (3-17)

Remarks. (a) The proof will show that the constant c1 in Proposition 3.4 may be chosen as a small
constant multiple of M−R, where R = [(n+ 1)v+ 1]/m. For the purposes of application, M is negligible
compared to N, and hence the specific power of M that appears in the expression for ` is not critical to
the proof. The power of N, which is −(n/m)(v− 1), is of utmost importance and the principal reason
that the Hausdorff dimension of the set E ⊆ Rn in Theorem 1.2 is equal to m/(v− 1).

(b) The restriction m ≤ n(v− 1) justifies on one hand the dimensional constraint on the set E which lies
in Rn. On a technical note, it is also necessary for the assumption `� N−1 that permeates the proof. If
m < n(v−1), the chosen value of `= ε0 M−R N−n(v−1)/m will be less than 1/N if N is sufficiently large.
If m = n(v− 1), the chosen value of ` will be less than 1/N provided that M is sufficiently large.
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(c) The special treatment of the variable xv in the proposition is for convenience only. The result holds
for xv replaced by xi0 for any 1≤ i0 ≤ v.

Proof. Let Z f ={x = (x1, . . . , xv)∈ ([0, 1]n)v : f (x)=0} be the zero set of the function f , which we wish
to avoid. The assumptions (3-14) and (3-15) ensure that Z f ∩ (T1× · · ·× Tv) is an (nv−m)-dimensional
submanifold of [0, 1]nv; see for example [Sharpe 1997, Theorem 2.13]. Further, the coarea formula gives
that Z f is coverable by at most Cεm−nv many cubes of side length ε, for all sufficiently small ε. Here
C is a large constant depending only on c0 and independent of ε. The proof consists of projecting Z f

successively onto the coordinates x1, x2, . . . and selecting the sets Si so as to avoid the projected zero
sets. The main ingredient of this argument is described in Lemma 3.5. We ask the reader to view the
statement of the lemma first. Assuming the lemma, the remainder of the proof proceeds as follows.

Fix a parameter `� 1/N soon to be specified. Recalling that Iα−1(J, i) denotes the collection of
axis-parallel subcubes of side length α that constitute a partition of J ∈JM(Ti ), let us define the collection
of “bad boxes” B1 as

B1 =

{
Q ∈

v∏
i=1

I`−1(Ji , i) : Q ∩ Z f 6=∅ for some Ji ∈ JM(Ti )

}
. (3-18)

In other words, a box of side length ` in T1× · · ·× Tv is considered bad if it contains a point in the zero
set of the function f . The discussion in the preceding paragraph shows that

#(B1)≤ C`m−nv, (3-19)

where C is a constant that depends only on the function f and the value c0.
The construction of S1, . . . , Sv now proceeds as follows. At the first step, we project the boxes in B1

onto their (x2, . . . , xv)-coordinates (each n-dimensional), and use Lemma 3.5 below with r = v, T = T1,
T ′ = T2 × · · · × Tv and B = B1 to arrive at a set S1 ⊆ T1 and a family of n(v−1)-dimensional boxes
B′ = B2 obeying the conclusions of that lemma. Clearly the set S1 obeys the requirements of part (b) of
the proposition. Lemma 3.5 also ensures that

#(B2)≤ Mn+1 N n`n#(B1)≤ C Mn+1 N n`m−n(v−1),

and that f (x) 6= 0 for any x = (x1, x ′) such that x1 ∈ S1 and any x ′ ∈ T2 · · · × Tv that is not contained in
the cubes constituting B2.

We now inductively follow a procedure similar to the above. At the end of step j , we will have
selected sets S1 ⊆ T1, . . . , Sj ⊆ Tj and will be left with a family Bj+1 of n(v− j)-dimensional cubes of
side length `, such that

#(Bj+1)≤ C M (n+1) j N jn`m−n(v− j) (3-20)

and
f (x ′′, x ′) 6= 0 for

x ′′ = (x1, . . . , x j ) ∈

j∏
i=1

Si , x ′ ∈
v∏

i= j+1

Ti , x ′ not contained in any of the cubes in Bj+1. (3-21)

We can then apply Lemma 3.5 with

T = Tj+1, T ′ = Tj+2× · · ·× Tv, B= Bj+1,
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to arrive at a set Sj+1 ⊆ Tj+1 meeting the requirement of part (b) of the proposition. The lemma also
gives a family B′ = Bj+2 of n(v− j−1)-dimensional cubes of side length `, whose cardinality obeys the
inequality (3-20) with j replaced by j + 1, allowing us to carry the induction forward.

We continue this construction for v−1 steps, obtaining sets S1, . . . , Sv−1 and a collection Bv consisting
of at most C M (n+1)(v−1)N n(v−1)`m−n cubes of side length ` and dimension n contained in Tv . The set Sv
is then defined according to the prescription of Lemma 3.6, the conclusion of which verifies part (a) of
the proposition for S1, . . . , Sv. �

3B1. Projections of bad boxes. It remains to justify the projection mechanism used repeatedly in
Proposition 3.4. We set this up below.

Fix 2 ≤ r ≤ v, and consider sets T ⊆ [0, 1]n and T ′ ⊆ [0, 1]n(r−1) expressible as unions of closed
axis-parallel cubes of side length M−1 and disjoint interiors. As before, we denote by JM(T ) and JM(T ′)
the respective collections of these cubes. Given any J ∈ JM(T ), we decompose J into axis-parallel
subcubes of side length N−1; the corresponding collection is termed IN (J ). We will also need to fix a
subset B ⊆ T × T ′, which we view as a union of a collection B of cubes of side length `. Here M, N and
` are as specified in Proposition 3.4. Since `/N is taken to be an integer, we may assume that each cube
in B is contained in exactly one cube in IN (J ).

Lemma 3.5. Given T , T ′, B as above, there exist sets S ⊆ T , B ′ ⊆ T ′ and a collection of boxes B′ ⊆ T′

with the following properties:

(a) The set S is a union of closed axis-parallel cubes with side length ` and disjoint interiors. More
precisely, for every J ∈ JM(T ), there exists I ′N (J )⊆ IN (J ) such that

#(I ′N (J ))≥ (1−M−1)#(IN (J )),

and S ∩ I is a single `-cube for each I ∈ I ′N (J ). For I ∈ IN (J ) \ I ′N (J ), the interior of the set S ∩ I
is empty.

(b) The set B ′ is the union of the `-cubes in B′.

(c) #(B′)≤ Mn+1 N n`n#(B).

(d) (S× T ′)∩ B ⊆ S× B ′.

Proof. Fix J ∈ JM(T ). For I ∈ IN (J ), define a “slab”

WN [I ] :=
⋃
{Q = I × I ′ ⊆ T × T ′ : Q is a cube of side length N−1

}.

Thus a slab is the union of all of the axis-parallel boxes in T × T ′ of side length 1/N whose projection
onto the x1-coordinate is the cube I. Similarly, given an n-dimensional cube I of side length `, we define
a “wafer” W`−1[I ] to be the union of all cubes of side length ` that project onto I in the x1-space. Let us
observe that a slab is an essentially disjoint union of exactly N−n`−n wafers, and that the total number of
wafers supported by J is M−n`−n. A wafer in turn is a union of `-cubes.

Let us agree to call a wafer W`−1[I ] “good” if it contains at most Mn+1`n#(B) boxes of B. The
pigeonhole principle dictates that the proportion of bad wafers is ≤ 1/M . We will call a slab WN [I ]
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“good” if it contains at least one good wafer. Again pigeonholing implies that no more than a 1/M-fraction
of the slabs can be bad. Let us define I ′N (J ) as the collection all cubes I ∈ IN (J ) such that WN [I ] is
good. For each cube I ∈ I ′N (J ), we select one cube I0 = I0(I )⊂ I of side length ` such that W`−1[I0] is
a good wafer. The set S is now defined to be the union of all selected `-cubes I0(I ), with I ∈ I ′N (J ) and
J ∈ JM(T ). Clearly, S satisfies part (a) of the lemma.

Let B ′ be the union of the collection B′ of all `-cubes Q′ ⊆ T ′ such that Q× Q′ ∈ B for some `-cube
Q ⊆ S. Then (b) and (d) hold by definition. The selection algorithm for S gives that for a given cube
Q ⊆ S, the number of Q′ such that Q×Q′ ∈B is ≤ Mn+1`n#(B). On the other hand, each Q ⊆ S comes
from a distinct slab. Hence the total number of possible choices for Q ⊆ S is no more than the total
number of slabs, which is bounded above by N n. Combining all of this we get (c) as desired. �

A version of the lemma above is needed for the extreme case r = 1. We needed this in the final step of
the iterative process described in Proposition 3.4, specifically in the construction of Sv.

Lemma 3.6. Fix parameters `� N−1
� M−1. Let T ⊆ [0, 1]n be a union of closed axis-parallel cubes

with side length M−1 and disjoint interiors. Let B ⊆ T be a union of similar cubes with side length `.
Decompose T into similar axis-parallel cubes of side length N−1, denoting the corresponding collection
by T. The collection of `-cubes composing B is termed B. Suppose that

#(B)≤ C M (n+1)(v−1)N n(v−1)`m−n,

with
`≤ C−1/m M−(1/m)((n+1)v+1)N−n(v−1)/m .

Then there exist S ⊆ T and T∗ ⊆ T such that

(a) S ∩ B =∅,

(b) #(T∗)≥ (1− 1/M)#(T),

(c) S is a union of a large number of `-cubes coming from T∗. More precisely, |S∩ I | ≥ (1−M−1)N−n

for each I ∈ T∗.

Proof. Decomposing each cube I ∈T into subcubes of side length `, we declare I to be good if it contains
≤ Mn+1 N−n#(B) subcubes that are in B. As in the proof of Lemma 3.5, the pigeonhole principle ensures
that the fraction of bad cubes in T is at most M−1. Define T∗ to be the collection of good cubes in T,
and S to be the union of all subcubes of side length ` that are contained in the cubes of T∗ but which are
disjoint from B. The relation between `, M and N implies that for every I ∈ T∗,

|I ∩ B| ≤ Mn+1 N−n#(B)`n
≤ C M (n+1)vN n(v−2)`m

≤ M−1 N−n,

which justifies the size conclusion for S. �

4. Proof of Theorems 1.1 and 1.2

We present the construction of the set E in Theorem 1.1 in complete detail. The construction for
Theorem 1.2 is similar. The small variations needed for this have been discussed in Section 4C.
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4A. A sequence of differential operators. We will need to define a sequence of privileged derivatives in
order to prove Theorem 1.1. For η and rq as in the statement of Theorem 1.1, let αq be a v-dimensional
multi-index with |αq | = rq such that ∂αq fq/∂xαq is nonvanishing everywhere on [0, η]. Here ∂β/∂xβ

denotes, following standard convention, the differential operator ∂β1+···+βv/∂xβ1
1 · · · ∂xβvv of order |β| =

β1+ · · · = βv , if β = (β1, . . . , βv). We now define for each q a finite sequence of privileged differential
operators of diminishing order

Dk
q =

∂αqk

∂xαqk
, 0≤ k ≤ rq . (4-1)

Here αq,rq = αq , and αq,k−1 is obtained by reducing the largest entry of αqk by 1 and leaving the others
unchanged. If there are multiple entries of αqk with the largest value, we pick any one. Clearly |αqk | = k.

4B. Construction of E. The construction is of Cantor type with a certain memory-retaining feature
inspired by the constructions of Keleti [1999; 2008]. This distinctive feature is the existence of an
accompanying queue that is, on one hand, generated by the construction and on the other, contributes to
it. More precisely, the j-th iteration of the construction is predicated on the j-th member of the queue;
at the same time the j-th step also adds a large number of new members to the queue, which become
significant at a later stage.

Step 0: At the initializing step, we set for k = 1, . . . , v,

Ik[0] =
[
(k− 1)

η

v
,

kη
v

]
, E0 = {I1[0], . . . , Iv[0]}, M0 =

v

η
.

Letting 60 denote the collection of injective mappings from {1, . . . , v− 1} into {1, . . . , v}, we define an
ordered queue

Q0 = {(1,m, Iσ [0]) : 0≤ m ≤ r1− 1, σ ∈60},

where

Iσ [0] = (Iσ(1)[0], . . . , Iσ(v−1)[0]).

The ordering in Q0 is as follows: Viewing 60 as a collection of (v−1)-tuples with values from {1, . . . , v},
we first endow 60 with the lexicographic ordering, writing 60 = {σ1 < σ2 < · · · }. Then (1,m, Iσr [0])
precedes (1,m′, Iσr ′

[0]) in the list Q0 if one of the following scenarios holds: (a) r < r ′, no matter what
m,m′ might be, or (b) r = r ′ and m > m′.

Step 1: Consider the first member of Q0, which is (1, r1− 1, Iσ1[0]). Recalling the definition (4-1), we
proceed to verify the hypotheses of Proposition 3.1, with

f = Dr1−1
1 f1, (Ti : i 6= v)= Iσ1[0], M = M0.

Here i0 = i0(1) is the unique index in {1, 2, . . . , v} such that ∂ f/∂xi0 = Dr1
1 f1, which is nonzero on

[0, η]. The set Tv will be the complement in [0, η] of
⋃

i {Ti : i 6= v}. The conclusion of Proposition 3.1
therefore holds for some small constant d0 = c1(M0,T) > 0 and for arbitrarily large integers N1 obeying
the divisibility criteria of the proposition. We choose such an integer N1 large enough so that N1 > eM0/d0.
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Proposition 3.1 then ensures the existence of subsets Sj ⊂ Tj for 1≤ j ≤ v, each of which is a union of
intervals of length `1 = d0/N v−1

1 with

Dr1−1
1 f1(x) 6= 0 for x = (x1, . . . , xv) ∈ S1× · · ·× Sv.

These constitute the basic intervals for the first stage.
Let E1 = {I1[1], I2[1], . . . , IL1[1]} be an enumeration of the first-stage basic intervals, and 61 the

collection of injective mappings from {1, . . . , v− 1} to {1, . . . , L1}. We view an element of 61 as an
ordered (v−1)-tuple of distinct indices from {1, . . . , L1}. As before, 61 is arranged lexicographically. Set

Q′1 = {(q, k, Iσ [1]) : 1≤ q ≤ 2, 0≤ k ≤ rq − 1, σ ∈61},

with Iσ [1] = (Iσ(1)[1], . . . , Iσ(v−1)[1]). The list Q′1 is assigned the following ordering. An element of
the form (q, k, Iσ [1]) will precede (q ′, k ′, Iσ ′[1]) if one of the following conditions holds:

(a) σ < σ ′ (irrespective of the relative values of q, q ′, k, k ′), or

(b) σ = σ ′, q < q ′ (irrespective of the relative values of k, k ′), or

(c) σ = σ ′, q = q ′ and k > k ′.

The list Q′1 is appended to Q0 to arrive at the updated queue Q1 at the end of the first step.

The general step: In general, at the end of step j , we have the following quantities:

• The j-th iterate of the construction E j , which is the union of the j-th level basic intervals of length
`j = dj−1/N v−1

j . Here dj is a sequence of small constants obtained as c1 from repeated applications of
Proposition 3.1 and depending on the collection of functions { fq : q ≤ j}. In particular, dj only depends
on parameters involved in the first j steps of the construction. The sequence Nj is chosen to be rapidly
increasing. For instance, choosing

Nj+1 > exp
[ j∏

k=1

(
Nk

dk

)R ]
for all j ≥ 1 (4-2)

and some fixed large constant R would suffice.

• The collection of the j-th level basic intervals that constitute E j , which we denote by

Ej = {I1[ j], I2[ j], . . . , IL j [ j]}.

• The updated queue Qj =Qj−1 ∪Q′j , with

Q′j = {(q, k, Iσ [ j]) : 1≤ q ≤ j + 1, 0≤ k ≤ rq − 1, σ ∈6j }.

Here 6j is the collection of all injective maps from {1, . . . , v− 1} to {1, . . . , L j }, which is viewed as
the collection of all (v−1)-dimensional vectors with distinct entries taking values in {1, . . . , L j } and
endowed with the lexicographical order. The new list Q′j is ordered in the same way as described in
Step 1 and appended to Qj−1. Notice that the number of members in the list Qj is much larger than j .
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We also know that Dk
q fq(x) is nonzero for certain choices of k, q , and x with k ≤ rq − 1. Specifically,

given any tuple of the form (q, k, I) that appears among the first j members of the list Qj , the construction
yields that

|Dk
q fq(x)|> 0 if xi ∈ E j ∩ Ii for i 6= v, xv ∈ E j \ (I1 ∪ · · · ∪ Iv−1). (4-3)

Here the (v−1)-tuple of intervals I has been labelled as I = (Ii : i 6= v). We will continue to use this
notation for the remainder of this subsection.

At step j + 1, we refer to the ( j+1)-th entry of the queue Qj , which we denote by (q0, k0, I). Set i0 to
be the distinguished index such that

∂

∂xi0

[Dk0
q0

fq0] = Dk0+1
q0

fq0 .

Two cases can occur, depending on whether k0 is maximal for the given q0 or not. If it is, that means
k0 = rq0 − 1 for some 1≤ q0 ≤ j + 1. We want to apply Proposition 3.1 with M−1

= `j , the index i0 as
described in the paragraph above, and

f = D
rq0−1
q0 fq0, Ti =

{
E j ∩ Ii if i 6= v,
E j \

⋃
i 6=v Ti if i = v.

(4-4)

In this case, the nonvanishing derivative condition required for the application of Proposition 3.1 is
ensured by the hypothesis of Theorem 1.1.

The other possibility is when k0 < rq0 − 1. Given the specified ordering on Qj , we conclude that
(q0, k0+ 1, I) must be the j-th member of Qj , and hence, by the induction hypothesis, (4-3) holds with
q = q0 and k = k0+ 1. We can now apply Proposition 3.1 with f = Dk0

q0 fq0 , M−1
= `j , and the same

choices of i0 and T1, . . . , Tv as in (4-4) above.
In either case, we obtain a collection Ej+1 of ( j+1)-th level basic cubes of length `j+1 = dj/N v−1

j+1 ,
the union of which is E j+1, and for which (4-3) holds with q = q0, k = k0 and j replaced by j + 1. This
completes the induction.

The set E is now defined as E =
⋂
∞

j=1 E j . We will establish shortly that E meets the requirements of
Theorem 1.1.

4C. Modifications to the construction of E for Theorem 1.2. The main distinction for Theorem 1.2 is
that we only need to consider the first derivative D fq of fq , so there is no need for the higher-order
differential operators Dk

q , and hence no need for distinguished indices i0. What this means is that the
elements of the queue Q′j are of the form (q, Iσ [ j]), where q ranges from 1 to j and Iσ is a tuple of
cubes instead of intervals, and one needs to appeal to Proposition 3.4 instead of Proposition 3.1. The
number of subcubes of [0, η]nv at the initializing step needs to be chosen large enough, so that their side
lengths do not exceed M−1

0 , as specified in the hypotheses of Proposition 3.4. This is simply to ensure
that Proposition 3.4 is applicable. The small parameters dj and large parameters Nj are still assumed to
obey a relation of the form (4-2), with the constant R possibly depending on v, n,m. The side length `j

of a j-th level basic cube is now
`j = dj−1 N−n(v−1)/m

j . (4-5)



LARGE SETS AVOIDING PATTERNS 1101

From this point onward, no distinction will be made between Theorem 1.1 and the m = 1, n = 1 case
of Theorem 1.2. The computation of the Hausdorff and Minkowski dimensions of the set E in these two
cases proceeds in exactly the same manner.

4D. Nonexistence of solutions. Fix any q ≥ 1, and a tuple x = (x1, . . . , xv) of distinct points in E. Since
`j → 0, the minimum separation between the points x1, . . . , xv exceeds `j for some j . In other words,
there exists a step j ≥ q in the construction of E where these points lie in distinct basic intervals (in the
case of Theorem 1.1) or cubes (in the case of Theorem 1.2) of that step. Suppose that I∗ = (I ∗1 , . . . , I ∗v−1)

is the tuple of j -th stage basic intervals such that xi ∈ I ∗i for 1≤ i ≤ v−1 and xv ∈ E j \ (I ∗1 ∪ · · ·∪ I ∗v−1).
Then the tuple (q, 0, I∗) (or (q, I∗) in the case of Theorem 1.2) belongs to the list Qj . Suppose that it is
the j0-th member of Qj , j0� j . This tuple then plays a decisive role at the j0-th step of the construction,
at the end of which we obtain (either from Proposition 3.1 or 3.4) that fq does not vanish on

∏v
i=1 E j0∩ I ∗i .

Since x lies in this set, we are done.

4E. Hausdorff dimension of E. Frostman’s lemma dictates that the Hausdorff dimension of a Borel
set E is the supremum value of α > 0 for which one can find a probability measure supported on E with
supx,r µ(B(x; r))/rα <∞, where B(x; r) denotes a ball centred at x of radius r . Keeping in mind that
any ball is coverable by a fixed number of cubes, we aim to construct a probability measure µ on E with
the property that for every ε > 0, there exists Cε > 0 such that

µ(I )≤ Cεl(I )m/(v−1)−ε for all cubes I. (4-6)

Here l(I ) denotes the side length of I.
Let us recall that Ej denotes the collection of all basic cubes with side length `j at step j of the

construction. Decomposing each cube in Ej into equal subcubes of length 1/Nj+1, we denote by Fj+1 the
resulting collection of subcubes that contain a cube from Ej+1. Let Fj+1 be the union of the cubes in Fj+1.
We define a sequence of measures νj+1 and µj supported respectively on Fj+1 and E j as follows. The
measure µ0 is the uniform measure on [0, η]n . Given µj , the measure νj+1 will be supported on Fj+1 and
will be defined by evenly splitting the measure µj of each cube in Ej among its children in Fj+1. Given νj ,
the measure µj will be supported on E j and will be defined by evenly splitting the measure νj of each
cube in Fj among its children in Ej . It follows from the mass distribution principle that the measures µj

have a weak limit µ. We claim that µ obeys the desired requirement (4-6).
The proof of the claim rests on the following proposition, which describes the mass distribution on the

basic cubes of the construction.

Proposition 4.1. Let K ∈ Ej , J ∈ Fj+1 with J ⊂ K. Then:

(a) µ(K )/|K | ≤ µ(J )/|J | ≤ 2µ(K )/|K |.

(b) µ(J )≤ Mj |J |, where Mj =
∏ j

k=1 2(`k Nk)
−n.

Proof. We first prove part (a). Each K ∈ Ej decomposes into (`j Nj+1)
n subcubes of side length 1/Nj+1.

Propositions 3.1 and 3.4 assert that at least a (1−1/M)-fraction of these subcubes contain a cube from
Ej+1 and hence lie in Fj+1. The number of descendants J ∈ Fj+1 of a given cube K ∈ Ej is therefore
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at most (`j Nj+1)
n
= |K |/|J | and at least 1

2(`j Nj+1)
n
= |K |/(2|J |). Since µ(K ) is evenly distributed

among such J, part (a) follows.
We prove part (b) by applying part (a) iteratively. Suppose that J is the cube in Fj that contains K.

Then
µ(J )
|J |
≤ 2

µ(K )
|K |

≤ 2
µ(J )
|K |
=

2|J |
|K |

µ(J )

|J |
=

2
(`j Nj )n

µ(J )

|J |
. �

We are now ready to apply Proposition 4.1 to prove (4-6). Suppose that I is a cube with side length
between `j+1 and `j . There are two possibilities: either 1/Nj+1 ≤ l(I )≤ `j or `j+1 ≤ l(I ) < 1/Nj+1.

In the first case I can be covered by at most C |I |N n
j+1 cubes of side length 1/Nj+1, all of which could

be in Fj+1. If J is a generic member of Fj+1, we obtain from Proposition 4.1 that

µ(I )≤ C |I |N n
j+1µ(J )≤ C |I |N n

j+1 Mj |J | ≤ C Mj |I |

≤ C
2Mj−1

(`j Nj )n
|I | ≤ C Mj−1d−m/(v−1)

j−1 `
m/(v−1)−n
j |I | ≤ Cε`

m/(v−1)−n−ε
j |I | ≤ Cεl(I )m/(v−1)−ε.

Here the penultimate inequality follows from the relation (4-5) and the rapid growth condition (4-2) .
Let us turn to the complementary case, when `j+1 ≤ l(I )≤ N−1

j+1. If µ(I ) > 0, the cube I intersects at
least one cube J in Fj+1 in which case it is contained in the union of at most 3n

− 1 cubes of the same
dimension adjacent to it. Proposition 4.1 then yields

µ(I )≤Cnµ(J )≤Cn Mj |J | =Cn Mj N−n
j+1=Cn Mj d

−m/(v−1)
j `

m/(v−1)
j+1 ≤Cε`

m/(v−1)−ε
j+1 ≤Cεl(I )m/(v−1)−ε,

applying (4-2) as before at the penultimate stage. This establishes the claim (4-6).

4F. Minkowski dimension of E. In order to establish the full Minkowski dimension of E, we show that
for any ε > 0, there exists cε > 0 such that

N`(E)≥ cε`−n+ε for any 0< `� 1. (4-7)

Here N`(A) denotes the `-covering number of a Borel set A, i.e., the smallest number of closed cubes of
side length ` required to cover A. Given 0< `� 1, we first fix the index j such that `j+1 ≤ ` < `j . As
before, we study two cases.

4F1. Case 1. If ` ∈ [`j+1, 1/Nj+1), we select I ∈ Ej of side length `j to be one of the “special cubes”
for step j + 1; i.e.,

I ⊆ Ti0( j+1) for Theorem 1.1,
I ⊆ Tv[ j + 1] for Theorem 1.2.

(4-8)

Here i0( j + 1) ∈ {1, . . . , v} denotes the preferred index at step j + 1 of the construction, based on which
Proposition 3.1 is applied. On the other hand, Tv[ j + 1] denotes the choice of Tv at the ( j+1)-th step for
the purpose of applying Proposition 3.4. In either case, I ∈ Ej can be partitioned into (`j Nj+1)

n subcubes
of side length 1/Nj+1. It follows from (3-4) and (3-17) in Propositions 3.1 and 3.4 that at least half of
these subcubes lie in Fj+1. Further, the conclusions (3-5) and (3-16) of the propositions say that for
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each J ∈ Fj+1, J ⊂ I ,

|J ∩ E j+1| ≥

{
dj N−1

j+1 for Theorem 1.1,
1
2 N−n

j+1 for Theorem 1.2,

so that combining the two
|J ∩ E j+1| ≥ dj N−n

j+1 for any n. (4-9)

Let Q` be a collection of cubes of side length ` that cover I ∩ E, with #(Q`)=N`(I ∩ E). Given any
Q ∈Q`, let Q∗ denote the axis-parallel cube with the same centre as Q, but side length 4`

√
n. Our main

claim is that
I ∩ E j+1 =

⋃
{J ∩ E j+1 : J ⊆ I, J ∈ Fj+1} (4-10)

⊆

⋃
{Q∗ : Q ∈Q`},

(4-11)

so that
|I ∩ E j+1| ≤ #(Q`)(4

√
n`)n. (4-12)

Assuming the claim for now, the proof of (4-7) proceeds as follows,

N`(E)≥N`(I ∩ E)= #(Q`)≥ cn
|I ∩ E j+1|

`n ≥ cn

∑
J

{
|J ∩ E j+1|

`n : J ⊆ I, J ∈ Fj+1

}

≥
cn

`n ×
(`j Nj+1)

n

2
× dj N−n

j+1 = cn
dj`

n
j

2`n ≥ cε,n`−n+ε .

Let us pause for a moment to explain the steps above. The second inequality in the sequence follows
from (4-12) with cn = (4

√
n)−n. The third inequality uses (4-10) and the disjointness of the cubes J ; the

fourth follows from (4-9) and the counting argument for #(Fj+1) preceding it. The final inequality is a
consequence of the rapid growth condition (4-2) and the assumption `≤ 1/Nj+1. Together they imply
that for any ε > 0, there is a constant cε > 0 such that dj`

n
j ≥ cεN−εj+1 ≥ cε`ε .

Proof of the claim. It remains to verify (4-10)–(4-12). The equality in (4-10) is part of the definitions
of Ej and Fj+1. The estimate (4-12) is an easy consequence of (4-11). To establish (4-11), pick any
x ∈ I ∩ E j+1. Since E j+1 is by definition a union of the cubes in Ej+1, there must exist a basic interval
I ′ ∈ Ej+1 containing x . The set I ′ ∩ E is nonempty by construction, so we pick an element y in this set.
Then |x − y| ≤ diam(I ′) =

√
n`j+1. Since y ∈ I ∩ E, there must be a cube Q y ∈ Q` containing y; let

c(Q y) denote the centre of Q y . The assumption `≥ `j+1 gives that

|x − c(Q y)| ≤ |x − y| + |y− c(Q y)| ≤
√

n`j+1+
1
2`
√

n ≤ 2`
√

n.

This means that x ∈ Q∗y , as desired. �

4F2. Case 2. In the second case, where ` ∈ [1/Nj+1, `j ), the analysis is similar, with minor variations in
numerology. Since ` is larger, we need to start from a coarser scale. Pick a cube I ∈ Ej−1 that is “special”
for the j-th step, in the sense that (4-8) holds with j replaced by j − 1. As before, we decompose I into
cubes J ∈ Fj ; the number of such cubes J is at least 1

2(`j−1 Nj )
n . Let Q` again denote a covering of
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I ∩ E by `-cubes, with #(Q`)=N`(I ∩ E). Set Fj to be the union of the intervals in Fj . This time, we
will need the following analogues of (4-10)–(4-12), to be proven shortly:

I ∩ Fj+1 =
⋃
{J ∩ Fj+1 : J ⊆ I, J ∈ Fj } ⊆

⋃
{Q∗ : Q ∈Q`}, (4-13)

so that
|I ∩ Fj+1| ≤ #(Q`)(4

√
n`)n. (4-14)

Further,
|J ∩ Fj+1| ≥

1
2 dj−1 N−n

j for each J ∈ Fj , J ⊆ I. (4-15)

Assuming these, an argument analogous to the previous case leads to

N`(E)≥N`(E ∩ I )= #(Q`)≥ cn`
−n
|I ∩ Fj+1|

≥ cn`
−n
∑
{|J ∩ Fj+1| : J ⊆ I, J ∈ Fj }

≥ cn`
−n 1

2(`j−1 Nj )
n
×

1
2 dj−1 N−n

j = cn
dj−1`

n
j−1

4`n ≥ cε,n`−n+ε .

The second inequality in the sequence above uses (4-14), and the fourth uses (4-15). The last step uses
the assumption ` < `j , which implies in view of (4-2) that

`ε < `εj < c−1
ε dj−1`

n
j−1 for every ε > 0.

Proof of the claim. Returning to the claims surrounding I ∩ Fj+1, we briefly comment on (4-13) and
(4-15), whose proofs constitute the only points of departure from the previous case. Let us start with
(4-13). For any x ∈ I ∩ Fj+1, we focus on a cube J ′ ∈ Fj+1 such that x ∈ J ′. Choosing y ∈ J ′ ∩ E and
Q y ∈Q` containing y, we see that |x − y| ≤ diam(J ′)=

√
n/Nj+1. Keeping in mind that ` ≥ 1/Nj+1,

one obtains

|x − c(Q y)| ≤ |x − y| + |y− c(Q y)| ≤

√
n

Nj+1
+ `
√

n ≤ 2`
√

n,

where c(Q y) denotes the centre of Q y , as before. This in turn implies (4-13).
To prove (4-15), let us fix J ∈ Fj , J ⊆ I , and observe that J ∩ E j is a union of basic `j -cubes. The

special choice of I ∈ Ej−1 dictates that (4-9) holds with j replaced by j − 1; i.e., |J ∩ E j | ≥ dj−1 N−n
j .

Thus, the number of basic `j -cubes in J ∩ E j at the j -th level is at least dj−1 N−n
j /`n

j . At step j +1, each
j-th level basic cube contributes at least 1

2(`j Nj+1)
n subcubes of side length 1/Nj+1 to Fj+1, according

to Propositions 3.1 and 3.4. Combining all of this yields,

|J ∩ Fj+1| ≥
dj−1 N−n

j

`n
j
×

1
2(`j Nj+1)

n
× N−n

j+1 =
1
2 dj−1 N−n

j ,

as claimed. �

5. Zero sets of functions with a common linearization

We now turn our attention to the proof of Theorem 1.3. Not surprisingly in view of the other results in
this paper, it is also predicated on an iterative algorithm, which has been encapsulated in Proposition 5.2
below. The following lemma provides a preparatory step.
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Let α ∈ Rv be as in the statement of Theorem 1.3, and let C be a nonempty proper subset of the
index set {1, 2, . . . , v}. Let δ > 0. Consider disjoint intervals [a1, b1] and [a2, b2] of length λ, with
a1 < b1 ≤ a2 < b2. We define two quantities εleft and εright depending on C, a1, b1, a2, b2 and δ as follows:

εleft := sup
{
ε :

∣∣∣∣ v∑
j=1

αj z j

∣∣∣∣≥ δλ for
z j ∈ [a1, a1+ ελ] for all j /∈ C,
z j ∈ [a2, a2+ ελ] for all j ∈ C

}
, (5-1)

εright := sup
{
ε :

∣∣∣∣ v∑
j=1

αj z j

∣∣∣∣≥ δλ for
z j ∈ [a1, a1+ ελ] for all j /∈ C,
z j ∈ [b2− ελ, b2] for all j ∈ C

}
. (5-2)

Lemma 5.1. Given any α∈Rv as in Theorem 1.3, there exists δ0>0 depending only on α such that for any
λ> 0 and any choice of intervals I1 = [a1, b1] and I2 = [a2, b2] of equal length λ with a1 < b1 ≤ a2 < b2,
the following property holds. For any δ < δ0, there exists ε0 = ε0(C, δ) (not depending on a1, a2, b1, b2,
or λ) such that max(εleft, εright)≥ ε0.

In particular, there exist subintervals Î1 ⊆ I1 and Î2 ⊆ I2 with |̂I1| = |̂I2| = ε0λ and dist(̂I1, Î2)≥

(1− ε0)λ such that

|α · x | ≥ δλ for all x ∈ Rv such that
{

x j ∈ Î1 for j 6∈ C,
x j ∈ Î2 for j ∈ C.

Proof. Set g(y)=
∑

j αj yj , and consider g(z∗), where z∗= (z∗1, . . . , z∗v) is defined to be the v-dimensional
vector with z∗j = a1 if j /∈ C and z∗j = a2 if j ∈ C. Setting C∗ =

∑
j |αj |, we note that

|g(z)− g(z∗)| ≤ C∗ελ whenever |z j − z∗j | ≤ ελ, 1≤ j ≤ v. (5-3)

If |g(z∗)|> (δ+ ε0C∗)λ, then (5-3) implies that |g(z)| ≥ δλ for any z as in (5-1). Therefore εleft ≥ ε0,
and the conclusion of the lemma holds with Î1 = [a1, a1 + ε0λ], Î2 = [a2, a2 + ε0λ]. Otherwise,
let ẑ = (ẑ1, . . . , ẑv) be the v-dimensional vector with ẑ j = a1 if j /∈ C and ẑ j = b2 if j ∈ C. Then
g(ẑ)= g(z∗)+α · (ẑ− z∗)= g(z∗)± (b2− a2)C0 = g(z∗)± λC0, where C0 =

∣∣∑
j∈C αj

∣∣> 0. Thus, for
z as in (5-2), we obtain the estimate

|g(z)| ≥ |g(ẑ)| − |α · (z− ẑ)| ≥ |C0λ± g(z∗)| −C∗ε0λ

≥ C0λ− (δ+C∗ε0)λ−C∗ε0λ≥ C0λ− (δ+ 2ε0C∗)λ,

which is greater than or equal to δλ provided that δ < 1
2C0 =: δ0 and ε0 ≤ (C0 − 2δ)/(2C∗). One

has εright ≥ ε0 for this choice of ε0, with the conclusion of the lemma verified for Î1 = [a1, a1+ ε0λ],
Î2 = [b2− ε0λ, b2]. �

Remarks. (a) Let us consider the example α = (1,−2, 1), which corresponds to a linear function g
that picks out three-term arithmetic progressions. Choose C to be {3}. For x1, x2 ∈ [a1, a1 + ελ] and
x3 ∈ [a2, a2+ ελ], it is easy to see that

x1− 2x2+ x3 ≥ a1+ a2− 2(a1+ ελ)= a2− a1− 2ελ≥ (1− 2ε)λ.
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We can thus take εleft =
1
2(1− δ). On the other hand, if x1, x2 ∈ [a1, a1+ ελ] and x3 ∈ [b2− ελ, b2], then

x1− 2x2+ x3 ≥ a1+ b2− ελ− 2(a1+ ελ)= b2− a1− 3ελ≥ (2− 3ε)λ.

Thus εright =
1
3(2− δ). The point is that, in the above lemma, it is possible in certain instances for both

εleft and εright to be bounded from below. The lemma guarantees that at least one of them will be.

(b) It is important to be aware that the above proof does not necessarily give the best possible ε0 for
a given δ because the signs of the components of α are not taken into account. When dealing with a
specific α, it is often possible to improve the bound on ε0 given above.

Proposition 5.2. Given any α ∈ Rv obeying the hypotheses of Theorem 1.3, there exist fixed small
constants 0< ε < 3

4 and δ(ε) > 0 depending on α with the following property.
Let I be any interval say of length `, and let I1 and I2 denote the two halves of I. Then one can find

subintervals I ′1 and I ′2 of I1 and I2 of length ε` such that

|α · x | ≥ δ` for every sufficiently small δ ≤ δ(ε),

and for any choice of x1, x2, . . . , xv ∈ I ′1 ∪ I ′2, not all of which are in I ′i for a single i = 1, 2. The
subintervals I ′1 and I ′2 are separated by at least 1

4`.

Proof. Let {C1,C2, . . . ,CR} be an enumeration of all nonempty, proper subsets of {1, 2, . . . , v}. Given
any x = (x1, . . . , xv) such that x j ∈ I for all j but not all the x j lie in a single I1 or I2, there exists
1≤ m ≤ R such that j ∈ Cm if and only if x j ∈ I2. Set

Cm :=

∣∣∣∣∑
j∈Cm

αj

∣∣∣∣ and δ0 =
1
2 min(C1, . . . ,CR),

so that Lemma 5.1 can be applied for any δ < δ0 and any C= Cm , 1≤ m ≤ R.
Starting with I1 and I2, we apply Lemma 5.1 with C= C1, I1 = I1, I2 = I2 and λ= 1

2`. For a small
but fixed δ1 > 0 with 2δ1 ≤ δ0, this gives a constant ε1 = ε0(C1, 2δ1) > 0 and two subintervals I (1)1 ⊆ I1

and I (1)2 ⊆ I2 of length 1
2ε1` obeying the conclusions of the lemma. Without loss of generality, we can

assume that ε1 ≤
1
2 , so that

dist(I (1)1 , I (1)2 )≥ (1− ε1)
1
2`≥

1
4`. (5-4)

For 2≤ k ≤ R, we continue to apply Lemma 5.1 recursively, with the same value δ1, and

C= Ck, I1 = I (k−1)
1 , I2 = I (k−1)

2 , λ= 1
2ε1 · · · εk−1`.

At the end of the k-th step, this yields a constant εk = ε0(Ck, 2δ) and subintervals I (k)1 ⊆ I (k−1)
1 ⊆ I1,

I (k)2 ⊆ I (k−1)
2 ⊆ I2 each of length 1

2ε1 · · · εk` such that for any m ≤ k,

|α · x | ≥ δ1ε1 · · · εk−1` for all x such that
{

x j ∈ I (k)1 for j 6∈ Cm,

x j ∈ I (k)2 for j ∈ Cm .

The conclusion of the proposition then holds for

I ′1 = I (R)1 , I ′2 = I (R)2 , ε =
1
2

R∏
k=1

εk and δ(ε)= δ1ε1 · · · εR−1.
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The separation condition is an easy consequence of the one in Lemma 5.1. Specifically, since I ′i ⊆ I (1)i
for i = 1, 2, the relation (5-4) yields

dist(I ′1, I ′2)≥ dist(I (1)1 , I (1)2 )≥ 1
4`. �

Remarks. (a) Tracking the parameters from Lemma 5.1, we find that the constant ε claimed in
Proposition 5.2 obeys the estimate

ε ≥
1
2

R∏
m=1

(Cm − 2δ1)

(2C∗)
, (5-5)

where recall

C∗ =
v∑

j=1

|αj |

and Cm and δ1 are as in the proof of the proposition.

(b) In view of the remarks made at the end of Lemma 5.1, it is not surprising that the bound on ε in
the preceding inequality is not always optimal. Returning to the example α = (1,−2, 1), we leave the
reader to verify that given any small δ > 0 and I = [a, a+ `], the choice I ′1 =

[
a, a+ 1

3(1− δ)`
]

and
I ′2 =

[
a+ 1

3(2+ δ)`, a+ `
]

meets the requirements of the proposition. Thus for this α, the best choice of
ε is at least 1

3(1− δ), which is much better than the one provided by the proof.

5A. Proof of Theorem 1.3. Take ε and δ = δ(ε) to be the positive α-dependent constants given by
Proposition 5.2. Recall that g(x1, . . . , xv)=

∑v
j=1 αj x j .

Start with E0= [0, η] where 0<η� 1 is chosen sufficiently small so as to ensure 2Kvη< δ. Applying
Proposition 5.2 with I = E0, we arrive at subintervals I ′1 = J1 ⊆

[
0, 1

2η
]

and I ′2 = J2 ⊆
[ 1

2η, η
]

of
length `1 = εη that obey its conclusions. Let E1 = J1 ∪ J2 with |J1| = |J2| = `1. In general, if E j is a
disjoint union of 2 j basic intervals of length `j = ε

jη, then at step j + 1, we apply Proposition 5.2 to
each such interval to find two subintervals of length `j+1 = ε`j = ε

j+1η and separated by a length of at
least 1

4`j , which form the basic intervals of E j+1.
Defining E =

⋂
∞

j=1 E j , we now show that f (x1, . . . , xv) 6= 0 if x1, . . . , xv are not all identical and f is
of the form (1-3). For any such choice of x1, . . . , xv , there exists a largest index j such that x1, x2, . . . , xv
all lie in a basic interval I at step j . This means that if I ′1 and I ′2 are the two subintervals of I generated
by Proposition 5.2, then x1, . . . , xv lie in I ′1 ∪ I ′2, but not all of them lie in a single I ′i . If I is of length `j ,
it follows from Proposition 5.2 that |g(x)| ≥ δ`j . But | f (x)− g(x)| ≤ Kv`2

j according to (1-4), so this
implies | f (x)| ≥ 1

2δ`j for `j < η.
We recall that the ( j+1)-th step of the construction generates exactly two children from each parent,

and these are separated by at least 1
4`j . It now follows from standard results, see for instance [Falconer

2003, Example 4.6, page 64], that the Hausdorff dimension of E is bounded from below by

lim
j→∞

log(2 j )

− log(2`j/4)
= lim

j→∞

log(2 j )

− log(ε jη/2)
=

log 2
− log ε

.

This establishes the existence of the set claimed by the theorem, with c(α)= log 2/ log(1/ε), where ε is
at least as large as the bound given in (5-5). �
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Remark. We return to the example α = (1,−2, 1) that we have been following across this section to
show that the avoiding set in this instance can be chosen to have Hausdorff dimension log 2/ log 3. We
have referred to this fact in certain examples occurring in Sections 2A2 and 2A3.

Choose a slowly decreasing sequence δj = 1/( j +C) for some fixed large constant C . We have seen,
in part (b) of the remark on page 1107, that ε(δj )= εj can be chosen as 1

3(1− δj ). Let us now use the
same Cantor construction as in the proof given above, but using the parameter δj at step j instead of a
fixed δ. The following consequences are immediate:

`j = ε1 · · ·εjη so that `j ≤
Cη3− j

j+C
,

|g(x)|≥δj`j and | f (x)−g(x)|≤Kv`2
j so that | f (x)|≥(δj−Kv`j )`j≥

(
1

j+C
−

KvηC
j+C

3− j
)
`j>0,

where x = (x1, . . . , xv) is as in the second paragraph of Section 5A. This proves the nonexistence of
nontrivial zeros of f . Further, the Hausdorff dimension is bounded from below by

lim
j→∞

log(2 j )

− log(2`j/4)
= lim

j→∞

log(2 j )

− log
(
3− jη

∏ j
k=1(1− δk)/2

) = log 2
log 3

,

establishing the claim.

Appendix

We collect here the proofs of a few technical facts mentioned in Section 2.

Lemma A.1. Given a C2 parameterization γ : [0, η] → Rn of a curve 0, let us recall the definition of the
signed distance function d from (2-3). Set F(t1, t2)= d(γ (t1), γ (t2)). Then:

(a) F is differentiable on [0, η]2.

(b) If γ is the arclength parameterization, i.e., |γ ′(t)| ≡ 1, then

∂F
∂t1
(t, t)= 1, ∂F

∂t2
(t, t)=−1.

Proof. Since differentiability is obvious for t1 6= t2, it suffices to verify it when t1 = t2 = t . We consider
two cases. If h ≥ k, then

F(t + h, t + k)= d(γ (t + h), γ (t + k))= |γ (t + h)− γ (t + k)|

= |γ ′(t)||h− k| + O(h2
+ k2)

= |γ ′(t)|(h− k)+ O(h2
+ k2).

On the other hand if h < k, we have

d(γ (t + h), γ (t + k))=−|γ (t + h)− γ (t + k)|

= −|γ ′(t)||h− k| + O(h2
+ k2)

= |γ ′(t)|(h− k)+ O(h2
+ k2).
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This establishes the first part of the lemma, with

∂F
∂t1
(t, t)= |γ ′(t)|, ∂F

∂t2
(t, t)=−|γ ′(t)|.

The second part is now obvious. �

Lemma A.2. Let γ : [0, η] → Rn be an injective parameterization of a C2 curve with

γ ′(0) 6= 0 and sup{‖γ ′′(t)‖ : t ∈ [0, η]} ≤ K .

If η is sufficiently small depending on |γ ′(0)| and K, then there are no isosceles triangles γ (t1), γ (t2),
γ (t3) with 0≤ t1 < t2 < t3 ≤ η whose sides of equal length meet at γ (t1) or at γ (t3).

Proof. Since d has already been shown to be differentiable in the previous lemma, we compute

d(γ (t3), γ (t1))− d(γ (t2), γ (t1))=
∫ t3

t2

∂

∂t
d(γ (t), γ (t1))=

∫ t3

t2
γ ′(t) ·

γ (t)− γ (t1)
|γ (t)− γ (t1)|

. (A-1)

For t, t1 ∈ [0, η] with t > t1, we obtain

γ (t)− γ (t1)
|γ (t)− γ (t1)|

=
[γ ′(t1)(t − t1)+ O(K (t − t1)2)]
|[γ ′(t1)(t − t1)+ O(K (t − t1)2)]|

=
γ ′(t1)+ O(Kη)
|γ ′(t1)+ O(Kη)|

=
γ ′(0)+ O(Kη)
|γ ′(0)+ O(Kη)|

=
γ ′(0)
|γ ′(0)|

[
1+ O

(
Kη
|γ ′(0)|

)]
.

Using this, the integrand in (A-1) may be estimated as follows:

γ ′(t) ·
γ (t)− γ (t1)
|γ (t)− γ (t1)|

= [γ ′(0)+ O(Kη)] ·
γ ′(0)
|γ ′(0)|

[
1+ O

(
Kη
|γ ′(0)|

)]
≥

1
2 |γ
′(0)| 6= 0,

provided Kη is small relative to |γ ′(0)|. This shows that

d(γ (t3), γ (t1))− d(γ (t2), γ (t1))≥ 1
2 |γ
′(0)|(t3− t2) 6= 0,

proving that γ (t1) cannot be the vertex at the intersection of two equal sides in an isosceles triangle. A
similar argument works for γ (t3). �

Lemma A.3. Given a curve 0 as described in Section 2B, let us recall the function f = ( f1, f2) given
by (2-4) and (2-5). Then D f (t) is of full rank at every point t = (t1, t2, t3, t4) with distinct entries and
f (t)= 0.

Proof. To prove that D f has rank 2 on the zero set of f , it suffices to show that the 2× 2 submatrix with
entries ∂ fi/∂tj with i = 1, 2 and j = 1, 4 is nonsingular. We will do this by proving that ∂ f1/∂tj are
nonzero and of the same sign for j = 1, 4, whereas for ∂ f2/∂tj the signs are reversed.

We begin by computing ∂ f1/∂tj on the zero set of f1, where

γ2(t3)− γ2(t2)
γ1(t3)− γ1(t2)

=
γ2(t4)− γ2(t1)
γ1(t4)− γ1(t1)

. (A-2)
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Feeding this into the formula for the derivatives, we find that

∂ f1

∂t1
=−γ ′1(t1)(γ2(t3)− γ2(t2))+ γ ′2(t1)(γ1(t3)− γ1(t2))= γ ′1(t1)(γ1(t3)− γ1(t2))F1,

∂ f1

∂t4
= γ ′1(t4)(γ2(t3)− γ2(t2))− γ ′2(t4)(γ1(t3)− γ1(t2))= γ ′1(t4)(γ1(t3)− γ1(t2))F4,

where

F1 =−
γ2(t4)− γ2(t1)
γ1(t4)− γ1(t1)

+
γ ′2(t1)
γ ′1(t1)

and F4 =
γ2(t4)− γ2(t1)
γ1(t4)− γ1(t1)

−
γ ′2(t4)
γ ′1(t4)

.

Since γ ′1 is assumed to be of fixed positive sign on [0, η], we have

sign
(
∂ f1

∂t1
·
∂ f1

∂t4

)
= sign(F1 F4).

But γ ′2(tj )/γ
′

1(tj ) is the slope of the tangent to the curve 0 at the point tj , whereas (γ2(t4)− γ2(t1))/
(γ1(t4)− γ1(t1)) is the slope of the chord joining t1 and t4. Since we have assumed that 0 is strictly
convex, this yields that F1 and F4 are of the same sign, which is the desired conclusion.

We turn to ∂ f2/∂tj for j = 1, 4. Let us observe that f2 is nonzero if t4− t3 and t2− t1 have opposite
signs. In what follows, we will therefore restrict to the case where (t4− t3)(t2− t1) > 0. We find that

∂

∂t4
d(γ (t4), γ (t3))= γ ′(t4) ·

γ (t4)− γ (t3)
|γ (t4)− γ (t3)|

,

so
∂ f2

∂t4
= γ ′(t4) ·

γ (t4)− γ (t3)
|γ (t4)− γ (t3)|

d(γ (t2), γ (t1)).

Similarly
∂ f2

∂t1
=−γ ′(t1) ·

γ (t2)− γ (t1)
|γ (t2)− γ (t1)|

d(γ (t4), γ (t3)).

In the regime where (t4 − t3)(t2 − t1) > 0, these two quantities are of opposite signs, completing the
proof. �
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ON MINIMIZERS OF AN ISOPERIMETRIC PROBLEM WITH
LONG-RANGE INTERACTIONS UNDER A CONVEXITY CONSTRAINT

MICHAEL GOLDMAN, MATTEO NOVAGA AND BERARDO RUFFINI

We study a variational problem modeling the behavior at equilibrium of charged liquid drops under
a convexity constraint. After proving the well-posedness of the model, we show C 1;1-regularity of
minimizers for the Coulombic interaction in dimension two. As a by-product we obtain that balls are the
unique minimizers for small charge. Eventually, we study the asymptotic behavior of minimizers, as the
charge goes to infinity.

1. Introduction

We are interested in the existence and regularity of minimizers of the problem

minfFQ;˛.E/ WE � RN convex body; jEj D V g; (1-1)

where, for E � RN, V;Q > 0 and ˛ 2 Œ0; N /, we have set

FQ;˛.E/ WD P.E/CQ2I˛.E/: (1-2)

Here P.E/ WD HN�1.@E/ stands for the perimeter of E and, letting P.E/ be the set of probability
measures supported on the closure of E, we set for ˛ 2 .0;N /,

I˛.E/ WD inf
�2P.E/

Z
E�E

d�.x/ d�.y/

jx�yj˛
; (1-3)

and for ˛ D 0,

I0.E/ WD inf
�2P.E/

Z
E�E

log
�

1

jx�yj

�
d�.x/ d�.y/: (1-4)

Notice that, up to rescaling, we can assume, as we shall do for the rest of the paper, that V D 1.
Starting from the seminal work [Strutt (Lord Rayleigh) 1882] (in the Coulombic case N D 3, ˛ D 1),

the functional (1-2) has been extensively studied in the physical literature to model the shape of charged
liquid drops; see [Goldman et al. 2015]. In particular, it is known that the ball is a linearly stable critical
point for (1-1) if the charge Q is not too large; see for instance [Fontelos and Friedman 2004]. However,
quite surprisingly, the authors showed in [Goldman et al. 2015] that, without the convexity constraint,
(1-2) never admits minimizers under a volume constraint for any Q> 0 and ˛ <N �1. In particular, this
implies that in this model a charged drop is always nonlinearly unstable. This result is in sharp contrast
with experiments, see for instance [Zeleny 1917; Taylor 1964], where there is evidence of stability of the

MSC2010: 49J30, 49J45, 49S05.
Keywords: nonlocal isoperimetric problem, convexity constraint.
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ball for small charges. This suggests that the energy FQ;˛.E/ does not include all the physically relevant
contributions.

As shown in [Goldman et al. 2015], a possible way to gain well-posedness of the problem is requiring
some extra regularity of the admissible sets. In this paper, we consider an alternative type of constraint,
namely the convexity of admissible sets. This assumption seems reasonable as long as the minimizers
remain strictly convex, that is, for small enough charges. Let us point out that in [Muratov and Novaga
2016], still another regularizing mechanism is proposed. There, well-posedness is obtained by adding an
entropic term which prevents charges from concentrating too much on the boundary of E. We point out
that it has been recently shown in [Muratov et al. 2016] that in the borderline case ˛ D 1, N D 2 such a
regularization is not needed for the model to be well-posed. For a more exhaustive discussion about the
physical motivations and the literature on related problems we refer to the papers [Muratov and Novaga
2016; Goldman et al. 2015].

Using the compactness properties of convex sets, our first result is the existence of minimizers for
every charge Q> 0.

Theorem 1.1. For every ˛ 2 Œ0; N / and every Q, (1-1) admits a minimizer.

We then study the regularity of minimizers. As often in variational problems with convexity constraints,
regularity (or singularity) of minimizers is hard to deal with in dimensions larger than two; see [Lamboley
et al. 2012, 2016]. We thus restrict ourselves to N D 2. Since our analysis strongly uses the regularity of
equilibrium measures, i.e., the minimizer of (1-3), we are further reduced to studying the case ˛ DN � 2
(that is, ˛ D 0 in this case). The second main result of the paper is then:

Theorem 1.2. Let N D 2 and ˛ D 0. Then for every Q> 0, the minimizers of (1-1) are of class C 1;1.

Since we are able to prove uniform C 1;1 estimates as Q goes to zero, building upon our previous
stability results established in [Goldman et al. 2015], we get:

Corollary 1.3. If N D 2 and ˛ D 0, for Q small enough, the only minimizers of (1-1) are balls.

The proof of Theorem 1.2 is based on the natural idea of comparing the minimizers with a competitor
made by “cutting out the angles”. However, the nonlocal nature of the problem makes the estimates
nontrivial. As already mentioned, a crucial point is an estimate on the integrability of the equilibrium
measures. This is obtained by drawing a connection with harmonic measures (see Section 3). Let us point
out1 that, up to proving the regularity of the shape functional I0 and computing its shape derivative, one
could have obtained a proof of Theorem 1.2 by applying the abstract regularity result of [Lamboley et al.
2012]. Nevertheless, since our proof has a nice geometrical flavor and since regularity of I0 is not known
in dimension two (see for instance [Jerison 1996; Crasta et al. 2005; Novaga and Ruffini 2015] for the
proof in higher dimensions), we decided to keep it.

We remark that, differently from the two-dimensional case, when N D 3 we expect the onset of
singularities at a critical value Qc > 0, with the shape of a spherical cone with a prescribed angle. Such
singularities are also observed in experiments and are usually called Taylor cones; see [Taylor 1964;

1This was suggested to us by J. Lamboley.
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Zeleny 1917]. At the moment we are not able to show the presence of such singularities in our model,
and this will be the subject of future research.

Eventually, in Section 6, we study the behavior of the optimal sets when the charge goes to infinity.
Even though this regime is less significant from the point of view of the applications, we believe that it is
still mathematically interesting. Building on �-convergence results, we prove:

Theorem 1.4. Let ˛ 2 Œ0; 1/ andN � 2. Then, every minimizerEQ of (1-1) satisfies (up to a rigid motion)

Q�
2N.N�1/
1C.N�1/˛EQ! Œ0; LN;˛�� f0g

N�1;

where the convergence is in the Hausdorff topology and where

LN;˛ WD

�
˛.N � 1/I˛.Œ0; 1�/

N
N�2
N�1!

1
N�1

N�1

� .N�1/
1C˛.N�1/

for ˛ 2 .0; 1/ and LN;0 WD
.N � 1/N�1

!N�1NN�2
;

!N being the volume of the unit ball in RN. For ˛ D 1 and N D 2; 3, we have

Q�
2.N�1/
N .logQ/�1C

1
N EQ! Œ0; LN;1�� f0g

N�1;

where

LN;1 WD

 
4.N � 1/

N
N�2
N�1!

1
N�1

N�1

!N�1
N

:

An obvious consequence of this result is that the ball cannot be a minimizer for Q large enough. For a
careful analysis of the loss of linear stability of the ball we refer to [Fontelos and Friedman 2004].

2. Existence of minimizers

We now show that the minimum in (1-1) is achieved. We begin with a simple lemma linking estimates on
the energy with estimates on the size of the convex body.

Lemma 2.1. LetN �2, and �1; : : : ;�N >0. LettingE WD
QN
iD1Œ0; �i �, V WDjEj andˆ WDV �

N�2
N�1P.E/,

it holds that2

max
i
�i .ˆN�1 and min

i
�i � V

1
N�1ˆ�1; (2-1)

where the involved constants depend only on the dimension. Moreover, letting imax be such that �imax D

maxi �i , it holds for ˛ > 0 that

�imax & I˛.E/�
1
˛ and �i . I˛.E/

1
˛ˆN�2V

1
N�1 for i ¤ imax; (2-2)

and for ˛ D 0,

�imax & exp.�I0.E// and �i . exp.I0.E//ˆN�2V
1

N�1 for i ¤ imax; (2-3)

where the constants implicitly appearing in (2-2) and (2-3) depend only on N and ˛.
2Here and in the rest of the paper, we write f . g if there exists C > 0 such that f � Cg. If f . g and g . f , we will

simply write f � g.
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Proof. Without loss of generality, we can assume that �1 � �2 � � � � � �N . Then, since V D
QN
iD1 �i and

P.E/.
QN�1
iD1 �i , taking the ratio of these two quantities, we obtain �N & VP.E/�1 D V

1
N�1ˆ�1.

Now, since the �i are decreasing (in particular �i � �N for all i ), this implies

ˆ& V �
N�2
N�1

N�1Y
iD1

�i D V
�N�2
N�1 �1

N�1Y
iD2

�i & V �
N�2
N�1�1V

N�2
N�1ˆ�.N�2/;

yielding (2-1).
Assume now that ˛ > 0. Then, from diam.E/ � �1, we get I˛.E/ & ��˛1 . If N D 2, together with

�1�2 D V, this implies (2-2). If N � 3, we infer as above that

ˆ& V �
N�2
N�1 �1�2

N�1Y
iD3

�i & V �
N�2
N�1 I˛.E/�

1
˛ �2V

N�3
N�1ˆ�.N�3/ & V �

1
N�1ˆ�.N�3/I˛.E/�

1
˛ �2:

This gives (2-2). The case ˛ D 0 follows analogously, using the fact that I0.E/� C � log�1. �

The next result follows directly from John’s lemma [1948].

Lemma 2.2. There exists a dimensional constant CN > 0 such that for every convex body E � RN, up to
a rotation and a translation, there exists R WD

QN
iD1Œ0; �i � such that

R�E � CNR:

As a consequence diam.E/� diam.R/, jEj � jRj, P.E/� P.R/ and I˛.E/� I˛.R/ for ˛ > 0 (and
exp.�I0.E//� exp.�I0.R//).

With these two preliminary results at hand, we can prove existence of minimizers for (1-1).

Theorem 2.3. For every Q> 0 and ˛ 2 Œ0; N /, (1-1) has a minimizer.

Proof. Let En be a minimizing sequence and let us prove that diam.En/ is uniformly bounded. Let
Rn be the parallelepipeds given by Lemma 2.2. Since diam.En/� diam.Rn/, it is enough to estimate
diam.Rn/ from above. Let us begin with the case ˛ > 0. In this case, since I˛.Rn/� 0, by (2-1), applied
with V D 1, we get

diam.Rn/. P.Rn/N�1 . FQ;˛.En/N�1:

In the case ˛ D 0, from (2-1) and (2-3) applied to V D 1, we get

P.Rn/& exp
�
�
I0.Rn/
N � 1

�
so that

FQ;0.Rn/& exp
�
�
I0.Rn/
N � 1

�
CQ2 I0.Rn/:

From this we obtain that jI0.Rn/j is bounded and thus also P.Rn/ is bounded, whence, arguing as above,
we obtain a uniform bound on diam.Rn/.

Since the En are convex sets, up to a translation, we can extract a subsequence which converges in the
Hausdorff (and L1) topology to some convex body E of volume 1. Since the perimeter functional is lower
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semicontinuous with respect to the L1 convergence, and the Riesz potential I˛ is lower semicontinuous
with respect to the Hausdorff convergence, see [Landkof 1972; Saff and Totik 1997; Goldman et al. 2015,
Proposition 2.2], we get that E is a minimizer of (1-1). �

3. Regularity of the planar charge distribution for the logarithmic potential

We now focus on the case N D 2 and ˛D 0. Relying on classical results on harmonic measures, we show
that for every convex set E, the corresponding optimal measure � for I0.E/ is absolutely continuous with
respect to H1 @E with Lp estimates. Upon making that connection between � and harmonic measures,
this fact is fairly classical. However, since we could not find a proper reference, we recall (and slightly
adapt) a few useful results. Let us point out that most definitions and results of this section extend to the
case N � 3 and ˛ DN � 2, and to more general classes of sets. In particular, for bounded Lipschitz sets,
the fact that harmonic measures are absolutely continuous with respect to the surface measure with Lp

densities for p > 2 was established in [Dahlberg 1977], and extended later to more general domains; see
for instance [Kenig and Toro 1997; 1999; Jerison and Kenig 1982]. The interest for harmonic measures
stems from the fact that they bear a lot of geometric information; see in particular [Alt and Caffarelli
1981; Kenig and Toro 1999]. The main result of this section is the following.

Theorem 3.1. Let En be a sequence of compact convex bodies converging to a convex body E and let
�n be the associated equilibrium measures. Then, �n D fnH1 @En and there exists p > 2 and M > 0

(depending only on E) such that fn 2 Lp.@En/ with

kfnkLp.@En/ �M:

Moreover, if E is smooth, then p can be taken arbitrarily large.

Remark 3.2. By applying the previous result with En D E, we get that the equilibrium measure of a
convex set is always in some Lp.@E/ with p > 2. We stress also that the exponent p and the bound on
the Lp norm of its equilibrium measure depend indeed on the set: for instance, a sequence of convex
sets with smooth boundaries converging to a square cannot have equilibrium measures with densities
uniformly bounded in Lp for p > 4.

We will define here � WD Ec. Let us recall the definition of harmonic measures; see [Garnett and
Marshall 2005; Kenig and Toro 1999].

Definition 3.3. Let� be a Lipschitz open set (bounded or unbounded) such that R2n@� has two connected
components, and let X 2�. We denote by GX� the Green function of � with pole at X , i.e., the unique
distributional solution of

��GX� D ıX in � and GX� D 0 on @�;

and by !X� the harmonic measure of � with pole at X, that is, the unique (positive) measure such that for
every f 2 C 0.@�/, the solution u of

��uD 0 in � and uD f on @�
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satisfies

u.X/D

Z
@�

f .y/ d!X� .y/:

If � is unbounded with @� bounded and 0 2�c, we call !1� the harmonic measure of � with pole at
infinity, that is, the unique probability measure on @� satisfyingZ

@�

� d!1 D

Z
�

u�� for all � 2 C1c .R
2/;

where u is the solution of8̂̂̂<̂
ˆ̂:
��uD 0 in �;

u > 0 in �;
uD 0 on @�;

limjzj!C1
˚
u.z/� 1

2�
log jzj

	
exists and is finite:

(3-1)

When it is clear from the context, we omit the dependence of GX, !X or !1 on the domain �.

Remark 3.4. For smooth domains, it is not hard to check that !X D @�GXH1 @�, and that !1 D
@�uH1 @�, where � is the inward unit normal to �. Moreover, for � unbounded, if h1 is the harmonic
function in � with h1.z/D� 1

2�
log jzj on @�, then the function u from (3-1) can also be defined by

u.z/D 1
2�

log jzjCh1.z/.

We may now make the connection between harmonic measures and equilibrium measures. For E a
Lipschitz bounded open set containing 0, let � be the optimal measure for I0.E/ and let

v.x/ WD

Z
@E

� log.jx�yj/ d�.y/:

Since
��v D 2�� in R2; v < I0.E/ in Ec and v D I0.E/ on @E;

if we let u WD .2�/�1.I0.E/� v/, we see that it satisfies (3-1) for �DEc. Therefore, �D !1Ec (recall
that �.@E/D 1). For Lipschitz sets �, it is well known that !1 is absolutely continuous with respect
to H1 @� with density in Lp.@�/ for some p > 1; see [Garnett and Marshall 2005, Theorem 4.2].
However, we will need a stronger result, namely that it is in Lp.@�/ for some p > 2, with estimates on
the Lp norm depending only on the geometry of �.

Given a convex body E and a point x 2 @E, we call the angle of @E at x the angle spanned by the
tangent cone

S
�>0 �.E � x/.

We now state a crucial lemma which relates in a quantitative way the regularity of E with the
integrability properties of the corresponding harmonic measure. This result is a slight adaptation of
[Warschawski and Schober 1966, Theorem 2].

Lemma 3.5. Let E be a convex body containing the origin in its interior, let N� 2 .0; �� be the minimal
angle of @E, and let pc WD �=.� � N�/C 1 if N� < � and pc WD C1 if N� D � . Let also En be a sequence
of convex bodies converging to E in the Hausdorff topology. Then, for every 1 � p < pc , there exists
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C.p; @E/ such that for n large enough (depending on p), every conformal map  n W Ecn ! B1 with
 n.1/D 0 satisfies Z

@En

j 0nj
p
� C.p; @E/; (3-2)

where we indicate by j 0nj the absolute value of the derivative of  n (seen as a complex function). In
particular, for n large enough,  0n 2 L

p.@En/ for some p > 2.

Proof. The scheme of the proof follows that of [Warschawski and Schober 1966, Theorem 2, Equation (9)];
thus we limit ourselves to pointing out the main differences. We begin by noticing that although Theorem 2
of that paper is written for bounded sets, up to composing with the map z! z�1, this does not create any
difficulties.

We first introduce some notation from [Warschawski and Schober 1966]. Given a convex body E we
let @E D f
.s/ W s 2 Œ0; L�g be an arc-length parametrization of @E. Notice that, for every s, the left and
right derivatives 
 0

˙
.s/ exist and the angle v.s/ between 
 0.s/ and a fixed direction, say e1, is a function of

bounded variation. Up to changing the orientation of @E, we can assume that v is increasing. We then let

N� WDmax
s
Œv.sC/� v.s�/�� 0;

where v.s˙/ are the left and right limits at s of v. Notice that N� D � � N� is the minimal angle of @E.
Letting 'n WD  �1n , we want to prove that there exists C.p; @E/ such thatZ

@B1

j'0nj
�p
� C.p; @E/

for n large enough and for p < �= N�. By a change of variables, this yields (3-2). Let p < p0 < �= N�, and
let as in [Warschawski and Schober 1966],

h WD
1

2�
.p N�C�/ and h0 WD

1

2�
.p0 N�C�/;

so that
�h

p
>
�h0

p0
> N�:

Let now vn (respectively v) be the angle functions corresponding to the sets En (respectively E). As
in [Warschawski and Schober 1966], there exists ı > 0 such that for s� s0 � ı,

v.s/� v.s0/�
�h0

p0
:

By the convexity ofEn and by the convergence ofEn toE, for n large enough and for s�s0� ı we get that

vn.s/� vn.s0/�
�h

p
:

Let Ln WDH1.@En/ and let us extend vn to R by letting for s � 0,

vn.s/ WD vn
�
Ln

j
s

Ln

k�
C vn

�
s�Ln

j
s

Ln

k�
;



1120 MICHAEL GOLDMAN, MATTEO NOVAGA AND BERARDO RUFFINI

and similarly for s � 0, so that vn is an increasing function with .vn/0 periodic of period Ln. Let now
kn WD dLn=ıe 2 N and ın WD L=kn. By the convergence of En to E, we have kn and ın are uniformly
bounded from above and below. For t 2 Œ0; ın�, and 0� j � kn, let stj WD t C jın. SinceZ ın

0

kn�1X
jD0

Z st
jC1

st
j

vn.s/� vn.stj /

s� stj
ds dt D

kn�1X
jD0

Z ın

0

Z ın

0

vn.sC t C jın/� v
n.t C jın/

s
dt ds

D

Z ın

0

1

s

kn�1X
jD0

Z ın

0

vn.sC t C jın/� v
n.t C jın/ dt ds

D

Z ın

0

1

s

�Z LnCs

Ln

vn.t/ dt �

Z s

0

vn.t/dt

�
ds

� 2ın sup
Œ0;2Ln�

jvnj. ınkvk1;

we can find Nt 2 .0; ın/ such that
kn�1X
jD0

Z s
Nt
jC1

s
Nt
j

vn.s/� vn.s Ntj /

s� s Ntj

ds . kvk1:

For notational simplicity, let us simply define sj WD s Ntj . Arguing as above, we can further assume that

kn�1X
jD0

Z sjC1

sj

vn.sjC1/� v
n.s/

sjC1� s
ds . kvk1:

The proof then follows almost exactly as in [Warschawski and Schober 1966, Theorem 2], by replacing
the pointwise quantity

Gnj WD sup
sj<s<sjC1

vn.s/� vn.sj /

s� sj

by the integral ones. There is just one additional change in the proof: letting

0� �nj WD v
n.sjC1/� v

n.sj /�
�h

p
;

we see that in the estimates of [Warschawski and Schober 1966, Theorem 2], the quantity max�n
j
¤0 1=�

n
j

appears and could be unbounded in n. Let 
n.s/ be the arc-length parametrization of @En and let �n.s/
be such that 
n.s/D 'n.ei�n.s//. For 0 < r < 1 and j 2 Œ0; kn� 1�, if �nj ¤ 0, we have

1

�nj

Z sjC1

sj

dvn.s/

Z �n.sjC1/

�n.sj /

dt

jei�n.s/� reit jh
.

1

1� h
:

Using this estimate, the proof concludes exactly as in [Warschawski and Schober 1966, Theorem 2]. �

We can now prove Theorem 3.1.

Proof of Theorem 3.1. Without loss of generality we can assume that the sets En and E contain the origin
in their interior. As observed above, we then have �n D !1Ecn . Let  n be a conformal mapping from Ecn
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to B1 with  n.1/D 0. We have

�n D !
1
Ecn
D . �1n /] !

0
B1
D . �1n /]

H1 @B1

2�
D
j 0nj

2�
H1 @En:

Then, Lemma 3.5 gives the desired estimate. �

We will also need a similar estimate for C 1;ˇ sets.

Lemma 3.6. Let E be a convex set with boundary of class C 1;ˇ. Then, the optimal charge distribution �
is of class C 0;ˇ and in particular it is in L1.@E/. Moreover, k�kC0;ˇ depends only on the C 1;ˇ norm
of @E.

Proof. Up to translation we can assume that 0 2E with dist.0; @E/� c (with c depending only on the
C 1;ˇ character of @E). By [Pommerenke 1992, Theorem 3.6], there exists a conformal mapping  of
class C 1;ˇ which maps Ec into B1 with  .1/D 0 and k kC1;ˇ.Ec/ controlled by the C 1;ˇ character
of @E. Since, as before, �D . �1/]!0B1 , the claim follows by Lemma 3.5. �

4. C 1;1-regularity of minimizers for N D 2 and ˛D 0

We now show that any minimizer of (1-1) has boundary of class C 1;1. We begin by showing that we
can drop the volume constraint by adding a volume penalization to the functional. This penalization is
commonly used in isoperimetric-type problems; see for instance [Esposito and Fusco 2011; Goldman and
Novaga 2012]. Let ƒ be a positive number and define the functional

Gƒ.E/ WD P.E/CQ2I0.E/Cƒ
ˇ̌
jEj � 1

ˇ̌
:

Lemma 4.1. For every Q0 > 0, there exists ƒ> 0 such that, if ƒ>ƒ and Q �Q0, the minimizers of

min
E�R2;E convex

Gƒ.E/ (4-1)

are also minimizers of (1-1) and vice versa. Furthermore, the diameter of the minimizers of (4-1) is
uniformly bounded by a constant depending only on Q0.

Proof. Let us fix Q0 > 0 and let Q<Q0. Let B be a ball with jBj D 1. Then for any E � R2 such that
Gƒ.E/� Gƒ.B/ we have

diam.E/�Q2 log.diam.E//� Gƒ.E/� Gƒ.B/D FQ;0.B/. 1;

where the constant involved depends only on Q0. For such sets, diam.E/ is bounded by a constant R
depending only on Q0, and thus I0.E/ � I0.BR/. This implies that every minimizing sequence is
uniformly bounded so that, up to passing to a subsequence, it converges in Hausdorff distance to a
minimizer of Gƒ whose diameter is bounded by R. Moreover, for

ƒ>ƒ WD P.B/CQ20.I0.B/CjI0.BR/j/

we have that jEj> 0. Indeed, for jEj D 0 the inequality Gƒ.E/� Gƒ.B/ implies ƒ�ƒ.
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Notice that the minimum in (4-1) is always less than or equal to the minimum in (1-1). We are thus
left to prove the opposite inequality. Assume that E is not a minimizer for FQ;0. In this case we get

� WD
ˇ̌
jEj � 1

ˇ̌
> 0:

From the uniform bound on the diameter of E we deduce that ƒ� is itself also bounded by a constant
(again depending only on Q0). From now on we assume that jEj< 1, or equivalently, jEj D 1�� , since
the other case is analogous. Let us define

F WD
1

.1� �/
1
2

E;

so that jF j D 1. Then, by the minimality of E, the homogeneity of the perimeter and recalling that

I0.�E/D I0.E/� log.�/;

a Taylor expansion gives

ƒ� D Gƒ.E/�FQ;0.E/� Gƒ.F /�FQ;0.E/

D P.E/.1� �/�
1
2 CQ2I0.E/C 1

2
log.1� �/�FQ;0.E/

� P.E/..1� �/�
1
2 � 1/� 1

2
P.E/�;

so that ƒ� 1
2
P.E/. 1. Therefore, if ƒ is large enough, we must have � D 0 or equivalently that E is

also a minimizer of FQ;0. �

Let nowE be a minimizer of (4-1). In order to prove the regularity ofE, we shall construct a competitor
in the following way: Since E is a convex body, there exists "0 such that for "� "0, and every x0 2 @E,
we have @E \ @B".x0/D fx"1; x

"
2g (in particular jx0� x"i j D "). Let us fix x0. For "� "0, let x"1, x"2 be

given as above and let L" be the line joining x"1 to x"2. Denote by HC" the half-space with boundary L"
containing x0 (and H�" be its complementary). We then define our competitor as

E" WDE \H
�
" :

Let us fix some further notation (see Figure 1):

� We denote by … W @E \HC" ! L" the projection of the cap of @E inside HC" , on L". We shall extend
… to the whole @E as the identity, outside @E \HC" .

� If fH1 @E is the optimal measure for I0.E/, we let f" WD…]f (which is defined on @E") so that
�" WD f"H

1 @E" is a competitor for I0.E"/.
� For x; y 2 @E, we denote by 
".x; y/ the acute angle between the line Lx;y joining x to y and L" (if
Lx;y is parallel to L", we set 
".x; y/D 0).

� If y D x0, then we define 
".x/ WD 
".x; x0/.

� We let 
" WD 
".x"1/D 
".x
"
2/.

� We let @B3".x0/\ @E D fx3"1 ; x
3"
2 g. As before, we define HC3" as the half-space bounded by Lx3"1 ;x3"2

containing x0 andH�3" as its complement. Let then†" WD@E\HC" , †3" WD@E\HC3" and �" WD@E\H�3".
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L"


".x; y/

x"1 "

x0 †" x"2

†3"

x3"2

�"

3"y

x3"1

x

Figure 1

� We let �V WD jEj � jE"j, �P WD P.E/�P.E"/ and �I0 WD I0.E"/� I0.E/.

We point out some simple remarks:

� Thanks to Theorem 3.1 we have that the optimal measure f satisfies f 2Lp.@E/ for some pDp.E/>2.

� If E is a convex body then 
" is bounded away from �
2

and jx3"1 � x
"
1j � jx

3"
2 � x

"
2j � ".

� The quantities �V, �P and �I0 are nonnegative by definition.

� All the constants involved up to now depend only on the Lipschitz character of @E. In particular, if En
is a sequence of convex bodies converging to a convex body E, then these constants depend only on the
geometry of E.

Before stating the main result of this section, we prove two regularity lemmas.

Lemma 4.2. Let 0 < ˇ � 1 and C; "0 > 0 be given. Then, every convex body E such that for every
x0 2 @E and every "� "0,

�V � C"2Cˇ; (4-2)

is C 1;ˇ with C 1;ˇ -norm depending only on the Lipschitz character of @E, "0 and C .

Proof. Let x0 2 @E be fixed. Since E is convex, there exist R > 0 and a convex function u W I ! R

such that @E \BR.x0/ D f.t; u.t// W t 2 I g for some interval I � R. Furthermore, ku0kL1 . 1. Let
Nx 2 @E \BR.x0/. Without loss of generality, we can assume that Nx D 0D .0; u.0//. By the convexity
of u, up to adding a linear function, we can further assume that u� 0 in I. Thanks to the Lipschitz bound
on u, for x D .t; u.t// 2 @E \BR.x0/, we have

jxj D .t2Cju.t/j2/
1
2 � t: (4-3)

Let now " > 0. For ı > 0, let �1� tı1 < 0 < t
ı
2 � 1 such that xıi D .t

ı
i ; u.t

ı
i // for i D 1; 2 (see the

notation above). By (4-3), there exists � > 0, depending only on the Lipschitz character of u, such that
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2".u."/Cu.�"//

2

u.�"/

u."/

�V

�" "
t
�"
1 t

�"
2

R "
�"
u

Figure 2

jt�"i j � ". Without loss of generality, we can now assume that u.�"/� u."/. In particular, considering
the �V associated to �", we have that (see Figure 2)

�V � 2"u."/�
2".u."/�u.�"//

2
�

Z "

�"

u.t/ dt

D ".u."/Cu.�"//�

Z "

�"

u.t/ dt:

Since u is decreasing in Œ�"; 0� and increasing in Œ0; "�, this means that both

"u."/�

Z "

0

u. "2Cˇ and "u.�"/�

Z 0

�"

u. "2Cˇ (4-4)

hold. Let us prove that this implies that for jt j small enough

u.t/. jt j1Cˇ: (4-5)

We can assume without loss of generality that t > 0. By (4-4) and the monotonicity of u,

tu.t/� Ct2Cˇ C

Z t
2

0

uC

Z t

t
2

u� Ct2Cˇ C 1
2
t
�
u
�
1
2
t
�
Cu.t/

�
;

from which we obtain
u.t/�u

�
1
2
t
�
. t1Cˇ:

Applying this for k � 0 to tk D 2�kt and summing over k we obtain

u.t/.
1X
kD0

.2�kt /1Cˇ . t1Cˇ;

that is, (4-5).
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In other words, we have proven that u is differentiable in zero with u0.0/D 0 and that for jt j small
enough,

ju.t/�u.0/�u0.0/t j. jt j1Cˇ:

Since the point zero was arbitrarily chosen, this yields that u is differentiable everywhere and that for
t; s 2 I with jt � sj small enough,

ju.t/�u.s/�u0.s/.t � s/j. jt � sjˇC1;

which is equivalent to the C 1;ˇ regularity of @E.3 �

Lemma 4.3. Suppose that the minimizer E for (4-1) has boundary of class C 1;ˇ for some 0 < ˇ < 1.
Then, there exists R > 0 (depending only on the C 1;ˇ character of @E) such that for every x0 2 @E,
x 2†" and y 2 BR.x0/,


".x; y/. "ˇ Cjx�yjˇ: (4-6)

Proof. Without loss of generality, we can assume that x0 D 0. As in the proof of Lemma 4.2, since
E is convex and of class C 1;ˇ in the ball BR.0/ for a small enough R, we know that @E is a graph
over its tangent of a C 1;ˇ function u. Up to a rotation, we can further assume that this tangent is
horizontal so that for some interval I � R, we have @E \BR.0/D f.t; u.t// W t 2 I g. In particular, if
x D .t; u.t// 2 @E \BR.0/, ju.t/j. jt j1Cˇ and ju0.t/j. jt jˇ.

For x D .t; u.t// 2 †" and y D .s; u.s// 2 BR.0/, let Q
".x; y/ be the angle between Lx;y and the
horizontal line; i.e., tan. Q
".x; y//Dju.t/�u.s/j=jt � sj. Let us begin by estimating Q
". First, if jx�yj. "
(which thanks to (4-3) amounts to jt � sj. " and thus jt jC jsj. " since x 2†"),

Q
".x; y/�
ju.t/�u.s/j

jt � sj
� sup
r2Œs;t�

ju0.r/j. "ˇ:

Otherwise, if jx�yj � ", since jxj. ", we have jx�yj � jyj � jsj and thus

Q
".x; y/.
ju.t/jC ju.s/j

jt � sj
.
"1Cˇ Cjsj1Cˇ

jsj
. jsjˇ . jx�yjˇ:

Putting these estimates together, we find

Q
".x; y/. "ˇ Cjx�yjˇ : (4-7)

Let �" be the angle between L" and the horizontal line (see Figure 3). Since 
".x; y/D Q
"˙ �", (4-6)
holds provided that we can show

�" . "ˇ: (4-8)

Let t"1; t
"
2 � " be such that x"1 D .�t"1; u.�t

"
1// and x"2 D .t"2; u.t

"
2//. We see that �" is maximal if

u.�t"1/D 0, and then t"1 D ". In that case, tan �" D u.t"2/=."C t
"
2/.

3Indeed, for js�t j� "1, we have ju0.t/�u0.s/j� jt�sj�1.ju.t/�u.s/�u0.s/.t�s/jCju.s/�u.t/�u0.t/.s�t /j/. jt�sjˇ.
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u

y
L"

x"1
x

x"2
"

�"
t

tan. Q
".x; y//D
ju.t/�u.s/j
jt�sj

Figure 3

Since u.t"2/. "1Cˇ, and t2" . ", we obtain

�" � tan �" .
"1Cˇ

"
D "ˇ;

proving (4-8). This concludes the proof of (4-6). �

We pass now to the main result of this section.

Theorem 4.4. Every minimizer of (4-1) is C 1;1. Moreover, for every Q0 and every Q �Q0, the C 1;1

character of @E depends only on Q0, the Lipschitz character of @E and kf kLp.@E/.

Proof. Let E be a minimizer of (4-1), x0 2 @E be fixed and let "� "0. With the above notation in force,
we begin by observing that using E" as a competitor, by the minimality of E for (4-1), we have

Q2�I0 ��P �ƒ�V: (4-9)

We are thus going to estimate �I0, �P and �V in terms of " and 
". This will give us a quantitative
decay estimate for 
". This in turn, in light of (4-10) below and Lemma 4.2, will provide the desired
regularity of E.

Step 1 .volume estimate/: In this first step, we prove that

�V � "2
": (4-10)

By construction, we have
�V D jEj � jE"j D jE \H

C
" j:

By convexity, we first have that the triangle with vertices x0, x"1, x"2 is contained inside E \HC" . By
convexity again, letting Nx"1 be the point of @B".x0/ diametrically opposed to x"1 (and similarly for Nx"2),
we get that E \HC" is contained in the union of the triangles of vertices x"1, x"2, Nx"1 and x"1, x"2, Nx"2 (see
Figure 4).

Therefore, we obtain
�V � "2 cos 
" sin 
" � "2
":
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Nx"1

Nx"2

x0

†"

2" sin.
"/

x"22" cos.
"/

"x"1

�"

Figure 4. �V is contained in the union of the triangles of vertices x"1; x
"
2; Nx

"
1 and x"1; x

"
2; Nx

"
2.

Step 2 .perimeter estimate/: Since the triangle with vertices x0; x"1; x
"
2 is contained inside E \HC" , it

holds that
�P D P.E/�P.E"/� 2".1� cos 
"/& "
2" : (4-11)

Step 3 .nonlocal energy estimate/: We now estimate �I0. Since �" is a competitor for I0.E"/, recalling
that … is the identity outside †", we have

�I0 D I0.E"/� I0.E/

�

Z
@E"�@E"

f".x/f".y/ log
�

1

jx�yj

�
�

Z
@E�@E

f .x/f .y/ log
�

1

jx�yj

�
D

Z
@E�@E

f .x/f .y/ log
�

1

j….x/�….y/j

�
�

Z
@E�@E

f .x/f .y/ log
�

1

jx�yj

�
D

Z
@E�@E

f .x/f .y/ log
�

jx�yj

j….x/�….y/j

�
:

Since for x; y 2†c" , we have j….x/�….y/j D jx�yj, we get

�I0 �
Z
†3"�†3"

f .x/f .y/ log
�

jx�yj

j….x/�….y/j

�
C 2

Z
†"

Z
�"

f .x/f .y/ log
�
jx�yj

j….x/�yj

�
DW I1C 2I2:

We first estimate I1:

I1 D

Z
†3"�†3"

f .x/f .y/ log
�
1C
jx�yj � j….x/�….y/j

j….x/�….y/j

�
�

Z
†3"�†3"

f .x/f .y/
jx�yj � j….x/�….y/j

j….x/�….y/j
:

Since for any x; y 2†3" we have (with equality if x; y 2†"),

cos.
".x; y//jx�yj � j….x/�….y/j;
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x
x0

�=2

2z….x/x
z


".x; y/

x"1

y

x"2

"

L"

….x/

Figure 5. The angle 2z….x/x equals 
".x; y/.

we get

I1 �

Z
†3"�†3"

f .x/f .y/

�
1

cos.
".x; y//
� 1

�
.
Z
†3"�†3"


2" .x; y/f .x/f .y/: (4-12)

Using then Hölder’s inequality (recall that f 2 Lp.@E/ for some p > 2) to getZ
†3"

f �

�Z
†3"

f p
�1
p

H1.†3"/
p�1
p . "

p�1
p ; (4-13)

and 
".x; y/. 1, we obtain

I1 . "2
p�1
p : (4-14)

We can now estimate I2:

I2 D

Z
†"

Z
�"

f .x/f .y/ log
�
1C

�
jx�yj � j….x/�yj

j….x/�yj

��
�

Z
†"

Z
�"

f .x/f .y/

�
jx�yj � j….x/�yj

j….x/�yj

�
:

Denote by z the projection of ….x/ on the line containing x and y. Then, since the projection is a
1-Lipschitz function, it holds that jz�yj � j….x/�yj. Thus,

jx�yj � jy �….x/j D jx� zjC jz�yj � jy �….x/j � jx� zj:

Arguing as in Step 1, we get jx �….x/j � j Nx"2 � x
"
2j . "
". Furthermore, the angle 2z….x/x equals


".x; y/ (see Figure 5), so that

jx�yj � jy �….x/j � jx� zj D jx�….x/j sin.
".x; y//. "
"
".x; y/:
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On the other hand, since jy � xj � 2" (indeed jx� x0j � " and jy � x0j � 3"), we have

jy �….x/j � jy � xj � jx�….x/j& jy � xj � "& jy � xj:
Therefore,

I2 . "
"
Z
†"

Z
�"

f .x/f .y/
".x; y/

jy � xj
: (4-15)

There exists M > 0 which depends only on the Lipschitz character of @E such that for x 2 †" and
y 2 �"\BM .x0/,

jy � xj � min
iD1;2

jy � x"i j:

Let �N" WD �"\BM .x0/ and �F" WD �"\B
c
M .x0/. We then have

I2 . "
"
�Z

†"��
N
"

f .x/f .y/
".x; y/

mini jy � x"i j
C

Z
†"��

F
"

f .x/f .y/
".x; y/

�
DW IN2 C I

F
2 :

We begin by estimating IF2 . Since 
".x; y/. 1, using Hölder’s inequality we find

IF2 . "
"
�Z

�"

f

��Z
†"

f

�
� "
"kf kLpH1.�"/1�

1
p kf kLpH1.†"/1�

1
p

. "
"H1.†"/1�
1
p

. "2�
1
p 
":

(4-16)

We can now estimate IN2 . Recall that

IN2 WD "
"

Z
†"��

N
"

f .x/f .y/
".x; y/

mini jy � x"i j
: (4-17)

As before, we use 
".x; y/. 1 together with Hölder’s inequality applied twice to getZ
†"��

N
"

f .x/f .y/
".x; y/

mini jy � x"i j
. "1�

1
p

�Z
�N"

1

mini jy � x"i j
p
p�1

�p�1
p

:

Since E is convex, its boundary can be locally parametrized by Lipschitz functions so that, if M is small
enough (depending only on the Lipschitz regularity of @E), then for y 2 �N" , we have

min
i
`.y; Qx"i /�min

i
jy � Qx"i j

(where `.x; y/ denotes the geodesic distance on @E). From this we getZ
�N"

1

mini jy � x"i j
p
p�1

. "�
1
p�1 :
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From this we conclude that

IN2 . 
""
2� 2

p : (4-18)

Step 4 .C 1;ˇ regularity/: We now prove that E has boundary of class C 1;ˇ. To this aim, we can assume
that�V ��P. Indeed, if�V &�P, thanks to (4-10) and (4-11), we would get 
". " and thus�V . "3,
which by Lemma 4.2 would already ensure the C 1;1 regularity of @E. Using (4-9), (4-11), (4-14), (4-16)
and (4-18), we get

Q2."1�
2
p C 
"."

1� 1
p C "1�

2
p //& 
2" : (4-19)

Now since "1�
1
p . "1�

2
p , this reduces further to

Q2."1�
2
p C 
""

1� 2
p /& 
2" : (4-20)

We can now distinguish two cases. Either Q2"2.
1
2
� 1
p
/ & 
2" and then 
" .Q".

1
2
� 1
p
/ or Q2
""

1� 2
p & 
2"

and then 
" .Q2"1�
2
p. Thus in both cases, since p > 2, we find 
" .Q"ˇ for some ˇ > 0 and we can

conclude, by means of (4-10) and Lemma 4.2, that @E is C 1;ˇ.

Step 5 .C 1;1 regularity/: Thanks to Lemma 3.6, we get that f 2L1 with kf kL1 depending only on the
Lipschitz character of @E and on kf kLp . Using this new information, we can improve (4-14), (4-16) and
(4-18) to

I1 . "2; IF2 . 
""
2; and IN2 . 
""

2
jlog "j: (4-21)

Arguing as in Step 4, we find 
" .Q"
1
2 and thus @E is of class C 1;

1
2 . In order to get higher regularity,

we need to get a better estimate on 
".x; y/.
Going back to (4-12) and using (4-6) with ˇ D 1

2
, we find the improved estimate

I1 . "3: (4-22)

If we also use (4-6) in (4-17), we obtain

IN2 . "
"
Z
†"��

N
"

"
1
2 Cjx�yj

1
2

mini jy � Qx"i j

. "
"
Z
†"��

N
"

"
1
2 Cminifjx� Qx"i j

1
2 Cjy � Qx"i j

1
2 g

mini jy � Qx"i j

. "
"
Z
†"��

N
"

"
1
2 Cmini jy � Qx"i j

1
2

mini jy � Qx"i j

. "2
"
Z
�N"

"
1
2

mini jy � Qx"i j
C

1

mini jy � Qx"i j
1
2

. "2
"."
1
2 jlog "jC 1/. "2
":

As in the beginning of Step 4, we can assume that �V � �P, so that by (4-9) and (4-11) we have
Q2�I0 &�P & "
2" . By the previous estimate for IN2 , (4-22) and the second inequality in (4-21) we
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eventually get
Q2"2
" �Q

2."3C "2
"/& "
2" ;

which leads to 
" .Q2". By using again Lemma 4.2, the proof is concluded. �

5. Minimality of the ball for N D 2 andQ small

We now use the regularity result obtained in Section 4 to prove that for small charges, the only minimizers
of FQ;0 in dimension two are balls.

Theorem 5.1. Let N D 2 and ˛ D 0. There exists Q0 > 0 such that for Q<Q0, up to translations, the
only minimizer of (1-1) is the ball.

Proof. Let EQ be a minimizer of FQ;0 and let B be a ball of measure 1. By the minimality of EQ, we
have

P.EQ/�P.B/�Q
2.I0.B/� I0.EQ//�Q2.I0.B/CjI0.EQ/j/: (5-1)

By Lemma 4.1 the diameter of EQ is uniformly bounded and so is jI0.EQ/j. Using the quantitative
isoperimetric inequality, see [Fusco et al. 2008], we infer

jEQ�Bj
2 . P.EQ/�P.B/�Q2.I0.B/CjI0.EQ/j/:

This implies that EQ converges to B in L1 as Q ! 0. From the convexity of EQ, this implies the
convergence also in the Hausdorff metric. Since the sets EQ are all uniformly bounded and of fixed
volume, they are uniformly Lipschitz. Theorem 4.4 then implies that @EQ are C 1;1-regular sets with
C 1;1 norm uniformly bounded. Therefore, thanks to the Arzelà–Ascoli theorem, we can write

@EQ D f.1C'Q.x//x W x 2 @Bg;

with k'QkC1;ˇ converging to 0 as Q! 0 for every ˇ < 1. From Lemma 3.6 we infer that the optimal
measures �Q for EQ are uniformly C 0;ˇ and in particular are uniformly bounded. Using now [Goldman
et al. 2015, Proposition 6.3], we get that for small enough Q,

k�Qk
2
L1.P.EQ/�P.B//& I0.B/� I0.EQ/:

Putting this into (5-1), we then obtain

P.EQ/�P.B/.Q2.P.EQ/�P.B//;

from which we deduce that for Q small enough, P.EQ/D P.B/. Since, up to translations, the ball is
the unique solution of the isoperimetric problem, this implies EQ D B. �

6. Asymptotic behavior asQ! C1

We now characterize the limit shape of (suitably rescaled) minimizers of FQ;˛, with ˛ 2 Œ0; 1�, as the
charge Q tends to C1. For this, we fix a sequence Qn!C1.
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The case ˛ 2 Œ0; 1/. For n 2 N, we let Vn WDQ
�
2N.N�1/
1C.N�1/˛

n (so that Vn! 0 as n!C1) and

An;˛ WD fE � RN convex body, jEj D Vng;

yFn;˛.E/ WD V
�N�2
N�1

n P.E/C I˛.E/ for E 2An;˛:

It is straightforward to check that if E is a minimizer of (1-1), then the rescaled set

yE WDQ
�

2.N�1/
1C.N�1/˛

n E

is a minimizer of yFn;˛ in the class An;˛.
We begin with a compactness result for a sequence of sets of equibounded energy.

Proposition 6.1. Let ˛ 2 Œ0; 1/ and let En 2An;˛ be such that

sup
n

yFn;˛.En/ <C1:

Then, up to extracting a subsequence and up to rigid motions, the sets En converge in the Hausdorff
topology to the segment Œ0; L�� f0gN�1 for some L 2 .0;C1/.

Proof. The bound on I˛.En/ directly implies with (2-2) (or (2-3) in the case ˛ D 0) that the diameter of
En is uniformly bounded from below.

Let us show that the diameter of En is also uniformly bounded from above. Arguing as in Theorem 2.3,
let Rn D

QN
iD1Œ0; �

n
i � be the parallelepipeds given by Lemma 2.2, and assume without loss of generality

that �n1 � �
n
2 � � � � � �

n
N . In the case ˛ > 0, (2-1) directly gives the bound, while for ˛ D 0, we get

using (2-1) and (2-3), that jI0.Rn/j is uniformly bounded, from which the bound on the diameter follows,
using once again (2-1). Moreover, from (2-2) and (2-3), we obtain that �ni � V

1
N�1
n (where the constants

depend on yFn;˛.En/) for i D 2; : : : ; N. The convex bodies En are therefore compact in the Hausdorff
topology and any limit set is a nontrivial segment of length L 2 .0;C1/. �

In the proof of the �-convergence result we will use the following result.

Lemma 6.2. Let 0 < 
 < ˇ with ˇ � 1, V > 0 and L> 0, then

min
�Z L

0

f 
 W

Z L

0

f ˇ D V; f concave and f � 0
�
D
.ˇC 1/



ˇ


 C 1
L1�



ˇ V



ˇ : (6-1)

Proof. For L; V > 0, let

M.L; V / WDmin
�Z L

0

f 
 W

Z L

0

f ˇ D V; f concave and f � 0
�
:

Let us now prove (6-1). By scaling, we can assume that LDV D 1. Thanks to the concavity and positivity
constraints, existence of a minimizer for (6-1) follows. Let f be such a minimizer. Let us prove that we
can assume that f is nonincreasing. Notice first that by definition, it holds that

M.1; 1/D

Z 1

0

f 
:



A LONG-RANGE-ISOPERIMETRIC PROBLEM UNDER A CONVEXITY CONSTRAINT 1133

Up to a rearrangement, we can assume that f is symmetric around the point 1
2

, so that f is nonincreasing
in
�
1
2
; 1
�

and Z 1

1
2

f 
 D 1
2
M.1; 1/DM

�
1
2
; 1
2

�
:

Finally letting Of .x/ WD f
�
1
2

�
xC 1

2

��
for x 2 Œ0; 1�, we have that Of is nonincreasing, admissible for (6-1)

and Z 1

0

Of 
 D 2

Z 1

1
2

f 
 DM.1; 1/;

so that Of is also a minimizer for (6-1).
Assume now that f is not affine in .0; 1/. Then there is Nx > 0 such that for all 0 < x � Nx

f .x/ > f .0/� .f .0/�f .1//x:

Let Qf WD �� .��f .1//x with � > f .0/ chosen so thatZ 1

0

f ˇ�1 Qf D

Z 1

0

f ˇ: (6-2)

Now, let g WD Qf � f . Since f C g D Qf is concave, for every 0 � t � 1, we have f C tg is a concave
function. For ı 2 R, let ft;ı WD f C t .gC ı.1� x//. Let finally ıt be such thatZ 1

0

f
ˇ

t;ıt
D

Z 1

0

f ˇ:

Thanks to (6-2) and since ˇ�1, we have jıt jDO.t/. Since ft;ıt is concave, by the minimality of f we getZ 1

0

f



t;ıt
�

Z 1

0

f 
 � 0:

Dividing by t and taking the limit as t goes to zero, we obtainZ 1

0

f 
�1g � 0:

Let z 2 .0; 1/ be the unique point such that Qf .z/Df .z/ (so that Qf .x/>f .x/ for x <z and Qf .x/<f .x/
for x > z). We then have

0�

Z 1

0

f ˇ�1
Qf �f

f ˇ�


D

Z z

0

f ˇ�1
Qf �f

f ˇ�

C

Z 1

z

f ˇ�1
Qf �f

f ˇ�


<
1

f ˇ�
 .z/

�Z z

0

f ˇ�1. Qf �f /C

Z 1

z

f ˇ�1. Qf �f /

�
D

1

f ˇ�
 .z/

Z 1

0

f ˇ�1. Qf �f /;

which contradicts (6-2).
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We are left to study the case when f is linear. Assume that f .1/ > 0 and let

ı WD

R 1
0 f

ˇ�1R 1
0 xf

ˇ�1
> 1;

so that in particular,
R 1
0 f

ˇ�1.1� ıx/D 0. Up to adjusting the volume as in the previous case, for t > 0
small enough, f C t .1� ıx/ is admissible. From this, arguing as above, we find thatZ 1

0

f 
�1.1� ıx/� 0:

By splitting the integral around the point Nz D ı�1 2 .0; 1/ and proceeding as above, we get again a
contradiction. As a consequence, we obtain that f .x/D �.1�x/, with �D .ˇC 1/

1
ˇ so that the volume

constraint is satisfied. This concludes the proof of (6-1). �

We now prove the following �-convergence result.

Theorem 6.3. For ˛ 2 Œ0; 1/, the functionals yFn;˛ �–converge in the Hausdorff topology, as n!C1,
to the functional

yF˛.E/ WD

8̂<̂
:
CN L

1
N�1 C I˛.Œ0; 1�/=L˛ if E ' Œ0; L�� f0gN�1 and ˛ > 0;

CN L
1

N�1 C I0.Œ0; 1�/� logL if E ' Œ0; L�� f0gN�1 and ˛ D 0;
C1 otherwise,

where E ' F means that E D F up to a rigid motion, and CN WD !
1

N�1

N�1N
N�2
N�1 with !N the volume of

the ball of radius 1 in RN (so that for N D 2 we have C2 D 2).

Proof. By Proposition 6.1 we know that the �-limit is C1 on the sets which are not segments.
Let us first prove the �-limsup inequality. Given L2 .0;C1/, we are going to construct En symmetric

with respect to the hyperplane f0g �RN�1. For t 2
�
0; L
2

�
, we let

r.t/ WD

�
NVn

!N�1L

� 1
N�1

�
1�

2t

L

�
and then

En\ .R
C
�RN�1/ WD

˚
.t; BN�1r.t/ / W t 2

�
0; L
2

�	
;

where BN�1
r.t/

is the ball of radius r.t/ in RN�1. With this definition, jEnj D Vn, so that En 2An;˛ . We
then compute

P.En/D 2

Z L
2

0

HN�2.SN�2/r.t/N�2
p
1Cjr 0j2

D 2.N � 1/ !N�1

�
NVn

!N�1L

�N�2
N�1

Z L
2

0

�
1�

2t

L

�N�2�
1C

cN

L2

�
Vn

L

� 2
N�1

�1
2

D CNV
N�2
N�1
n L

1
N�1 C o.V

N�2
N�1
n /:
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Letting �˛ be the optimal measure for I˛
��
�
L
2
; L
2

��
, we then have

yFn;˛.En/� CNL
1

N�1 C I˛.Œ0; L�/C o.1/;

which gives the �-limsup inequality.
We now turn to the �-liminf inequality. Let En 2 An;˛ be such that En ! Œ0; L�� f0gN�1 in the

Hausdorff topology. Since I˛ is continuous under Hausdorff convergence, it is enough to prove that

lim inf
n!C1

V
�N�2
N�1

n P.En/� CN L
1

N�1 : (6-3)

Let Ln WD diam.En/. By Hausdorff convergence, we have that Ln! L. Moreover, up to a rotation and
a translation, we can assume that Œ0; Ln�� f0gN�1 �En. For N D 2, we directly obtain P.En/� 2Ln,
which gives (6-3). We thus assume from now on that N � 3. Let zEn be the set obtained from En after a
Schwarz symmetrization around the axis R� f0gN�1. By Brunn’s principle [1887], zEn is still a convex
set with P.En/� P. zEn/ and jEnj D j zEnj. We thus have

zEn D
[

t2Œ0;Ln�

ftg �BN�1r.t/

for an appropriate function r.t/, and, by Fubini’s theorem,Z LN

0

r.t/N�1 D
Vn

!N�1
:

By the coarea formula [Ambrosio et al. 2000, Theorem 2.93], we then get

P. zEn/�HN�2.SN�2/
Z Ln

0

r.t/N�2
p
1Cjr 0.t/j2 �HN�2.SN�2/

Z Ln

0

r.t/N�2:

Applying then Lemma 6.2 with 
 DN � 2 and ˇ DN � 1, we obtain (6-3). �

Remark 6.4. For ˛ 2 Œ0; 1/ and N � 2, it is easy to optimize yF˛ in L and obtain the values LN;˛ given
in Theorem 1.4.

From Proposition 6.1, Theorem 6.3 and the uniqueness of the minimizers for yF˛, we directly obtain
the following asymptotic result for minimizers of (1-1).

Corollary 6.5. Let ˛ 2 Œ0; 1/ and N � 2. Then, up to rescalings and rigid motions, every sequence En of
minimizers of (1-1) converges in the Hausdorff topology to Œ0; LN;˛�� f0gN�1.

The caseN D 2; 3 and ˛D 1. In the case ˛� 1, the energy I˛ is infinite on segments and thus a �-limit
of the same type as the one obtained in Theorem 6.3 cannot be expected. Nevertheless in the Coulombic
case N D 3, ˛D 1 we can use a dual formulation of the nonlocal part of the energy to obtain the �-limit.
As a by-product, we can also treat the case N D 2, ˛ D 1.

For N D 2; 3 and n 2 N, we let

An;1 WD fE � R3 convex body, jEj DQ�2.N�1/n .logQn/�.N�1/g;

yFn;1.E/ WDQ2.N�2/n .logQn/N�2 P.E/C
I1.E/
logQn

for E 2An;1:
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As before, if E is a minimizer of (1-1), then the rescaled set

yE WDQ
�
2.N�1/
N

n .logQn/�
.N�1/
N E

is a minimizer of yFn;1 in An;1.
Let C" WD Œ0; 1��B" � R3 be a narrow cylinder of radius " > 0 (where B" denotes a two-dimensional

ball of radius "). We begin by proving the following estimate on I1.C"/:

Proposition 6.6. It holds that

lim
"!0

I1.C"/
jlog "j

D 2: (6-4)

As a consequence, for every L> 0,

lim
"!0

I1.Œ0; L��B"/
jlog "j

D
2

L
: (6-5)

Proof. The equality in (6-4) is well known; see for instance [Maxwell 1877]. We include here a proof for
the reader’s convenience.

To show that
lim
"!0
jlog "j�1I1.C"/� 2;

we use �" WD .1=.�"2//�C" as a test measure in the definition of I1.C"/. Then, noting that for every
y 2 C", Z

C"Cy

dz

jzj
�

Z
Œ� 1
2
; 1
2
��B"

dz

jzj
;

we obtain

I1.C"/�
1

�2"4

Z
C"�C"

dx dy

jx�yj
D

1

�2"4

Z
C"

�Z
C"Cy

dz

jzj

�
dy

�
1

�"2

Z 1
2

� 1
2

Z
B"

1

.z21 Cj.z2; z3/j
2/
1
2

D
4

"2

Z 1
2

0

Z "

0

r

.z21 C r
2/
1
2

D
4

"2

Z 1
2

0

q
z21 C "

2� z1

D
4

"2

�
1

8

p
1C 4"2�

1

8
C
"2

2
log
�
1

2"
C

r
1C

1

4"2

��
D 2jlog "jC o.jlog "j/:

In order to show the opposite inequality, we recall the following definition of capacity of a set E:

Cap.E/ WDmin
�Z

R3
jr�j2 W �E � �; � 2H

1
0 .R

3/

�
:

Then, if E is compact, we have [Landkof 1972; Goldman et al. 2015]

I1.E/D
4�

Cap.E/
:
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Thus (6-4) will be proved once we show that

Cap.C"/jlog "j � 2� C o.1/: (6-6)

For this, let � > 0 and � > 0 to be fixed later and let

f�.x
0/ WD

8<:
1 for jx0j � ";
1� log.jx0j="/=log.�="/ for "� jx0j � �;
0 for jx0j � �

and

��.z/ WD

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0 for z � ��;
.zC�/=� for ��� z � 0;
1 for 0� z � 1;
1� .z� 1/=� for 1� z � 1C�;
0 for z � 1C�:

We finally let �.x0; z/ WD f�.x0/��.z/. Since ��; f� � 1 and j�0�j � �
�1, by the definition of Cap.C"/,

we have

Cap.C"/�
Z 1

0

2�

log.�="/2

Z �

"

1

r
CC

�
�

log.�="/
C
�2

�

�
�

2�

log.�="/
CC

�
�

log.�="/
C
�2

�

�
:

We now choose � WD jlog "j�1 � " and � WD jlog�j�1 D .logjlog "j/�1 so that log.�="/ D jlog "j C
logjlog "j, �! 0 and �� �; thus

�

log.�="/
C
�2

�
D o.jlog "j�1/

and we find (6-6).
The equality in (6-5) then follows by scaling. �

As a simple corollary we get the two-dimensional result

Corollary 6.7. lim
"!0

I1.Œ0; 1�� Œ0; "�/
jlog "j

D 2: (6-7)

Proof. The upper bound is obtained as above by testing with �" WD "�1�Œ0;1��Œ0;"�. By identifying
Œ0; 1�� Œ0; "� with Œ0; 1�� Œ0; "�� f0g � C" we get that I1.Œ0; 1�� Œ0; "�/ � I1.C"/. This gives, together
with (6-4), the corresponding lower bound. �

We can now prove a compactness result analogous to Proposition 6.1.

Proposition 6.8. LetEn 2An;1 be such that supn yFn;1.En/<C1. Then, up to extracting a subsequence
and up to rigid motions, the sets En converge in the Hausdorff topology to a segment Œ0; L�� f0gN for
some L 2 .0;C1/.
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Proof. We argue as in the proof of Proposition 6.1. Since the case N D 2 is easier, we focus on N D 3.
Let RnD

Q3
iD1Œ0; �i;n� be given by Lemma 2.2 and let us assume without loss of generality that i 7!�i;n

is decreasing. Then (2-1) applied with V DQ�4n .logQn/�2, directly yields an upper bound on �1;n (and
thus on diam.En/).

We now show that the diameter of En is also uniformly bounded from below. Unfortunately, (2-2)
does not give the right bound and we need to refine it using (6-4). As in Proposition 6.1, the energy bound
I1.En/. logQn, directly implies that

�1;n &
1

logQn
;

from which, using (2-1) and
Q3
iD1 �i;n �Q

�4
n .logQn/�2, we get

�2;n .Q�2n :

In particular, it follows that
�2;n

�1;n
.

logQn
Q2n

:

By Proposition 6.6, letting "n WDQ�2n logQn we get

�1;n logQn & �1;nI1.En/� �1;nI1.Rn/

D I1
� 3Y
iD1

�
0;
�i;n

�1;n

��
& I1.C"n/

� jlog "nj � logQn;
which implies

�1;n & 1;

and gives a lower bound on the diameter of En.
Arguing as in the proof of (2-2), we then get

�3;n � �2;n .Q�2n .logQn/�1: (6-8)

It follows that the sets En are compact in the Hausdorff topology, and any limit set is a segment of
length L 2 .0;C1/. �

Arguing as in Theorem 6.3, we obtain the following result.

Theorem 6.9. The functionals yFn;1 �-converge in the Hausdorff topology to the functional

yF1.E/ WD
�
CN L

1
N�1 C

4
L

if E ' Œ0; L�� f0gN�1;
C1 otherwise,

where CN is defined as in Theorem 6.3.

Proof. Since the case N D 2 is easier, we focus on N D 3. The compactness and lower bound for the
perimeter are obtained exactly as in Theorem 6.3. For the upper bound, for L > 0 and n 2 N, we define
En as in the proof of Theorem 6.3 by first letting Vn WDQ�4n .logQn/�2 (recall that N D 3) and then
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for t 2
�
0; L
2

�
,

r.t/ WD

�
3Vn

�L

�1
2
�
1�

2t

L

�
and

En\ .R
C
�R2/ WD

[
t2Œ0;L

2
�

ftg �B2r.t/;

where B2
r.t/

is the ball of radius r.t/ in R2.
As in the proof of Theorem 6.3, we have

lim
n!C1

Q2n logQn P.En/D C3L
1
2 :

Let �n be the optimal measure for I1.En/, and let

"n WD

�
3Vn

�L

�1
2

:

For L> ı > 0, we have
�
�
L�ı
2
; L�ı
2

�
�B2"n �En so that by (6-5),

I1.En/� I1
�h
�
L�ı

2
;
L�ı

2

i
�B2"n

�
D
jlogVnj
.L� ı/

C o.jlogVnj/:

Recalling that jlogVnj D 4jlogQnjC o.jlogQnj/, we then get

lim
n!C1

I1.En/
log.Qn/

�
4

L� ı
:

Letting ı! 0C, we obtain the upper bound.
We are left to prove the lower bound for the nonlocal part of the energy. Let En be a sequence of

convex sets such that En! Œ0; L�� f0g2 and such that jEnj D Q�4n .logQn/�2. We can assume that
supn yFn;1.En/ < C1, since otherwise there is nothing to prove. Let ı > 0. Up to a rotation and a
translation, we can assume that Œ0; L� ı�� f0g2 � En � Œ0; LC ı��R2 for n large enough. Let now
x1 D .x11 ; x

1
2 ; x

1
3/ be such that

j.x12 ; x
1
3/j D max

x2En
j.x2; x3/j:

Up to a rotation of axis R� f0g2, we can assume that x1 D .a; `n1; 0/ for some `n1 � 0. Let finally x2 be
such that

jx2 � e3j D max
x2En

jx � e3j

so that x2D .b; c; `n2/ with `n2 � `
n
1 . Since by definition En � Œ0; LC ı�� Œ�`n1; `

n
1�� Œ�`

n
2; `

n
2�, we have

Q�4n .logQn/�2D jEnj. `n1`
n
2.LC ı/. On the other hand, by convexity, the tetrahedron T with vertices

0, x1, x2 and .L� ı; 0; 0/ is contained in En. We thus have jEnj � jT j. Since

jT j D 1
8
j det.x1; x2; .L� ı; 0; 0//j D 1

8
.L� ı/`n1`

n
2;
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we also have Q�4n .logQn/�2 & `n1`
n
2.L� ı/. Arguing as in the proof of (2-2), we get from the energy

bound, .L� ı/`n1 .Q�2n .logQn/�1, and thus

`n1`
n
2 &

1

.L� ı/Q4n.logQn/2
:

From this we get `n1 � `
n
2 � Q

�2
n .logQn/�1, where the constants involved might depend on L. We

therefore have En � Œ0; LC ı��BCQ�2n .logQn/�1 for C large enough. From this we infer that

lim inf
n!C1

I1.En/
logQn

� lim inf
n!C1

I1
�
Œ0; LC ı��BCQ�2n .logQn/�1

�
logQn

� 2 lim inf
n!C1

I1
�
Œ0; LC ı��BCQ�2n .logQn/�1

�
log.CQ�2n .logQn/�1/

� 4.LC ı/�1;

where the last inequality follows from (6-5). Letting ı! 0, we conclude the proof. �

Remark 6.10. As before, optimizing yF1 with respect to L, one easily obtains the values of LN;1 given
in Theorem 1.4.

Remark 6.11. By analogy with results obtained in the setting of minimal Riesz energy point configurations
[Hardin and Saff 2005; Martínez-Finkelshtein et al. 2004], we believe that for every N � 2, ˛ > 1 and
L> 0, (6-5) can be generalized to

lim
"!0

I˛.Œ0; L�� Œ0; "�N�1/
"1�˛

D
C˛

L˛
(6-9)

for some constant C˛ depending only on ˛. This result would permit one to extend Theorem 6.9 beyond
˛ D 1. Let us point out that showing that the right-hand side of (6-9) is bigger than the left-hand side can
be easily obtained by plugging in the uniform measure as a test measure. However, we are not able to
prove the reverse inequality.
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NONAUTONOMOUS MAXIMAL Lp-REGULARITY UNDER
FRACTIONAL SOBOLEV REGULARITY IN TIME

STEPHAN FACKLER

We prove nonautonomous maximal Lp-regularity results on UMD spaces, replacing the common Hölder
assumption by a weaker fractional Sobolev regularity in time. This generalizes recent Hilbert space results
by Dier and Zacher. In particular, on Lq.�/ we obtain maximal Lp-regularity for p � 2 and elliptic
operators in divergence form with uniform VMO-modulus in space and W ˛;p-regularity for ˛ > 1

2
in

time.

1. Introduction

In this work we improve some known results on maximal Lp-regularity of nonautonomous abstract
Cauchy problems with time-dependent domains of the form�

Pu.t/CA.t/u.t/D f .t/;

u.0/D u0:
(NACP)

In particular, we obtain new stronger results if the operators A.t/ are elliptic operators in divergence form.
Let us right away start with the definition.

Definition 1.1. For a family .A.t//t2Œ0;T � of closed linear operators on some Banach space X the
problem (NACP) has maximal Lp-regularity if for all f 2 Lp.Œ0; T �IX/ and all initial values u0 in the
real interpolation space .D.A.0//; X/1=p;p there exists a unique solution u 2 Lp.Œ0; T �IX/ satisfying
u.t/ 2D.A.t// for almost all t 2 Œ0; T � as well as Pu;A. � /u. � / 2Lp.Œ0; T �IX/ and if there exists C > 0
such that one has the maximal regularity a priori estimate

kukW 1;p.Œ0;T �IX/CkA. � /u. � /kLp.Œ0;T �IX/ � C.kf kLp.Œ0;T �IX/Cku0k.D.A.0//;X/1=p;p /:

Observe thatW 1;p.Œ0; T �IX/ ,!C.Œ0; T �IX/ and therefore the initial condition makes sense. Maximal
regularity results have profound applications to nonlinear parabolic problems, as we will exemplify in
Section 8.

We now give a summary of the previously known results on maximal Lp-regularity. The autonomous
case A.t/D A is well understood. Here, maximal Lp-regularity holds for one p 2 .1;1/ if and only if
it holds for all p 2 .1;1/. Further, maximal Lp-regularity for u0D 0 implies maximal Lp-regularity for

This work was supported by the DFG grant AR 134/4-1 “Regularität evolutionärer Probleme mittels Harmonischer Analyse
und Operatortheorie”. The author thanks the anonymous referee for his extremely helpful and careful review that significantly
improved the presentation of the article.
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all u0 2D.A;X/1=p;p. On Hilbert spaces an operator A has maximal Lp-regularity if and only if �A
generates an analytic semigroup. In non-Hilbert spaces, not every generator of an analytic semigroup has
maximal regularity; see [Kalton and Lancien 2000; Fackler 2014]. Here, an additional R-boundedness
assumption is needed. We refer to Section 3, [Denk et al. 2003] and [Kunstmann and Weis 2004] for details.

Let us come to the nonautonomous case. Here the best understood setting is that of nonautonomous
forms on Hilbert spaces. For this let V;H be two complex Hilbert spaces with a dense embedding
V ,!H. A mapping a W Œ0; T ��V �V ! C is called a coercive, bounded sesquilinear form if a.t; � ; � /
is sesquilinear for all t 2 Œ0; T � and if there exist ˛;M > 0 such that for all u; v 2 V

Re a.t; u; u/� ˛kuk2V ;

ja.t; u; v/j �MkukV kvkV :
(1-1)

This induces operators A.t/ W V ! V 0. We denote their parts in H by A.t/. It has been shown in [Haak
and Ouhabaz 2015] that the operators .A.t//t2Œ0;T � satisfy maximal Lp-regularity for all p 2 .1;1/ if
t 7!A.t/ is ˛-Hölder continuous for some ˛ > 1

2
. For ˛ > 1

2
and maximal L2-regularity this has been

improved to the fractional Sobolev regularity A 2 PW ˛;2.Œ0; T �IB.V; V 0// [Dier and Zacher 2017]. If one
considers elliptic divergence form operators

L.t/D� div.A.t/r � /

for coefficients A.t/ D .aij .t// realized by the form method (see Section 7), this translates into the
regularity of the mappings t 7! aij .t; � / 2 L

1, i.e., aij 2 PW ˛;2.Œ0; T �IL1/ for some ˛ > 1
2

. The less
regularity one needs here, the more applicable the results are to nonlinear problems in the form of a
priori estimates. In the special case of elliptic operators in divergence form, some more refined results
are available; see [Auscher and Egert 2016; Fackler 2017b]. However, all results have in common
that one needs some differentiability in time of order at least 1

2
. This is no coincidence. Recent

counterexamples to Lions’ problem by the author [Fackler 2017a] show that maximal Lp-regularity can
fail if A 2 C 1=2.Œ0; T �IB.V; V 0//. For more details see the recent survey on maximal L2-regularity of
nonautonomous forms [Arendt et al. 2017]. Dealing with nonlinear problems, one needs some form of
Sobolev embedding to carry out the usual iteration procedure. In higher dimensional cases maximal
regularity on X DL2.�/ is too weak for the embeddings to hold. Therefore one is interested in maximal
regularity on X D Lq.�/ for q big enough.

Nonautonomous maximal Lp-regularity on Banach spaces is far more involved. The classical works
for time-dependent domains are [Hieber and Monniaux 2000a; 2000b]. Although the general method used
there is applicable on Banach spaces, maximal Lp-regularity was first only obtained on Hilbert spaces in
a nonform setting [Hieber and Monniaux 2000a] and in [Hieber and Monniaux 2000b] extrapolated to
X D Lq.�/ for smooth bounded domains � and elliptic operators assuming aij 2 C ˛.Œ0; T �IC 1.�//
for some ˛ > 1

2
. A true generalization of this approach to Banach spaces was obtained in [Portal and

Štrkalj 2006] using the emerging concept of R-boundedness. Already the results in [Hieber and Monniaux
2000b] indicate a fundamental new issue in the non-Hilbert space setting. Whereas on L2 the coefficients
only need to be measurable in space, on Lq all known results require some regularity in space. Recently,
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the author lowered the needed regularity in space and showed maximal Lp-regularity on Lq.�/ for
elliptic operators in divergence form if the coefficients have a uniform VMO-modulus [Fackler 2015].

The aim of this work is to generalize the results in both [Dier and Zacher 2017] and [Fackler 2015].
We show maximal Lp-regularity on UMD Banach spaces assuming fractional Sobolev regularity as in
[Dier and Zacher 2017]. To give a flavor of the proved results let us formulate a particular consequence
of our general result for elliptic operators in divergence form.

Theorem 1.2. Let��Rn be a bounded C 1-domain, T >0 and aij 2L1.Œ0; T ���/ for i; j D 1; : : : ; n.
Assume further that there exists ı > 0 such that for almost all .t; x/ 2 Œ0; T � �� and all � 2 Cn the
ellipticity estimate

Re
nX

i;jD1

aij .t; x/�i N�j � ıj�j
2

holds and that for t 2 Œ0; T � the functions x 7!aij .t; x/ lie in VMO.�/ with uniform VMO-modulus. Then
for all q 2 .1;1/ the nonautonomous problem (NACP) associated to the operators .� divAr�/t2Œ0;T �
has maximal Lp-regularity

(a) for p 2 .1; 2� if aij 2 PW 1=2C";2.Œ0; T �IL1.�// for some " > 0,

(b) for p 2 Œ2;1/ if aij 2 PW 1=2C";p.Œ0; T �IL1.�// for some " > 0.

Here, the divergence form operators on Lq.�/ are compatible with the operator on L2.�/ obtained
via the form method (for a precise definition see Section 7). Note that in comparison to [Hieber and
Monniaux 2000b], the regularity in space is lowered from C 1.�/ to VMO.�/ and the time regularity
C 1=2C" is replaced by PW 1=2C";p in the case p � 2. This is the lower time regularity we aim for and
leads to more refined results in nonlinear PDE, as we illustrate in Section 8. The general result makes use
of some more technical definitions and we postpone its formulation to Section 3.

The obtained results are even new in the Hilbert space case as [Dier and Zacher 2017] fully relies on
Hilbert space methods and therefore only deals with the case p D 2. Our result is the first improvement
of the time regularity on non-Hilbert spaces since the classical work [Acquistapace and Terreni 1987].
Since we establish maximal Lp-regularity for elliptic operators on Lq.�/ for q > 2, we obtain existence
results for strong solutions of quasilinear parabolic equations in divergence form. Such results cannot be
obtained with maximal regularity results on Hilbert spaces. We further show that our results are optimal
in the sense that in general we cannot relax the regularity to some ˛ � 1

2
.

Note that, in contrast, elliptic operators in nondivergence form have time-independent domains and
one can therefore obtain maximal Lp-regularity only assuming the time dependence to be measurable;
see for example [Gallarati and Veraar 2017b; Dong and Kim 2016] for recent results. However, note that
in correspondence with our results, one still needs a variant of VMO-regularity in space.

This work is structured as follows. The first sections introduce the necessary mathematical background.
The main result and the strategy of proof is then presented in Section 3. The proof of the main result is
given in Section 6. As a consequence, we obtain in Theorem 7.4 the stated result for elliptic operators.
Section 8 uses this result to establish strong solutions of quasilinear elliptic equations. We discuss the
optimality of our results in Section 9.
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2. Extrapolation spaces and the fundamental identity

Using ideas established in [Acquistapace and Terreni 1987] and their previous works, we show that maximal
Lp-regularity solutions of (NACP) satisfy a certain integral equation. It turns out that this equation is better
approachable with analytic tools. We recall some basic definitions first and introduce the fundamental
concept of extrapolation spaces. For ' 2 .0; �/ we denote by†' WD fz 2Cnf0g W jarg zj<'g the sector of
angle '. If � does not lie in the spectrum �.A/�C of A, we write R.�;A/D .��A/�1 for its resolvent.

Definition 2.1. A linear operator A W D.A/! X on a Banach space X is sectorial of angle ' if the
spectrum �.A/ of A is contained in †' for some ' 2

�
0; �
2

�
and if

sup
� 62†'

.j�jC 1/kR.�;A/k<1:

A family of linear operators Ai WD.Ai /! X for i 2 I is uniformly sectorial if �.Ai /�†' for some
' 2

�
0; �
2

�
and all i 2 I and if there exists C > 0 with

sup
� 62†'

.j�jC 1/kR.�;Ai /k � C for all i 2 I:

Recall that a closed operator A is sectorial if and only if �A generates an exponentially stable analytic
semigroup [Engel and Nagel 2000, Chapter II, Section 4 and Chapter V, Section I]. In particular, A is
invertible.

In the following we need interpolation and extrapolation spaces associated to a sectorial operator A on
some Banach space X , a fully developed theory carefully presented in [Amann 1995]. We only discuss
spaces associated to the complex interpolation method Œ � ; � �� [Bergh and Löfström 1976, Chapter 4]. The
results to be obtained hold for several other, but not all, scales of interpolation and extrapolation spaces.
As a unified treatment would lead to a more abstract presentation, we focus on this important setting.

We define X1;A D D.A/ endowed with the norm x 7! kAxk and X�1;A as the completion of X
with respect to the norm x 7! kA�1xk. For � 2 .0; 1/ we further let X�;A D ŒX;X1;A�� and X��;A D
ŒX;X�1;A�� . The operator A W X1;A ! X and its extension A�1 W X ! X�1;A are isometries. By
interpolation, for � 2 .0; 1/ the part A�� of A�1 in X��;A is an isometry A�� WX1��;A!X��;A. The
operator A�1 is sectorial on X�1;A with �.A�1/ D �.A/ and satisfies the same sectorial estimates as
A. By interpolation, the same holds for the operators A�� on X��;A. Considering duality, if X is
reflexive, one has .X�;A/0 'X 0��;A and .A� /0 D A0�� with respect to the pairing induced by h � ; � iX;X 0 .
Extrapolation spaces allow us to define a weaker notion of solution for (NACP).

Proposition 2.2. Let .A.t//t2Œ0;T � for T > 0 be uniformly sectorial operators on some Banach space
X . If u is a maximal Lp-regularity solution of (NACP) for the initial value u0 D 0 in the sense of
Definition 1.1, then for every fixed t 2 Œ0; T � one has in X�1;A.t/

u.t/D

Z t

0

e�.t�s/A�1.t/.A�1.t/�A.s//u.s/ dsC

Z t

0

e�.t�s/A.t/f .s/ ds

DW

Z t

0

K1.t; s/u.s/ dsC

Z t

0

K2.t; s/f .s/ ds DW .S1u/.t/C .S2f /.t/: (2-1)
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Proof. Fix t 2 .0; T /. Consider v W Œ0; t �!X given by v.s/D e�.t�s/A.t/u.s/. Then v is differentiable
in X almost everywhere and for almost every s 2 .0; t/ we have

Pv.s/D A.t/e�.t�s/A.t/u.s/C e�.t�s/A.t/ Pu.s/

D e�.t�s/A�1.t/.A�1.t/�A.s//u.s/C e
�.t�s/A.t/f .s/:

Notice that .A�1.t/�A.s//u.s/ 2 X�1;A.t/ for almost every s 2 .0; T /. The fundamental theorem of
calculus gives

v.t/D v.0/C

Z t

0

Pv.s/ ds:

Inserting the explicit terms for v and Pv and using u.0/D 0 yields (2-1). �

3. Formulation of the main result and strategy of proof

The crucial assumption we make is that on a certain extrapolation space the operators get independent of t .
For concrete differential operators endowed with some boundary condition this is often satisfied. For this
we refer to [Triebel 1978, Section 4.3] for operators with smooth coefficients and to the results originating
from the positive solution of the Kato square root problem in [Auscher et al. 2002] for operators with
rough coefficients (see also Section 7).

Definition 3.1. For � 2 Œ0; 1� a family .A.t//t2Œ0;T � of sectorial operators on some Banach space X is
called �-stable if there exists a Banach space X�;A and K � 0 such that for all t 2 Œ0; T � the spaces
X�;A.t/ and X�;A agree as vector spaces and

K�1kxk�;A � kxk�;A.t/ �Kkxk�;A for all x 2X�;A (3-1)

and if the same also holds for some space X��1;A and all spaces X��1;A.t/.

Note that .A.t//t2Œ0;T � is 1-stable if and only if the domains D.A.t// agree for all t 2 Œ0; T � and
their norms are uniformly equivalent. Further, as already mentioned in the Introduction, even for the
autonomous case A.t/D A, maximal Lp-regularity may fail on non-Hilbert spaces. This has to do with
particular features of harmonic analysis on Banach spaces. In particular, it is by now well-understood that
the classical multiplier results only hold in the vector-valued setting if one makes additional assumptions
both on the Banach space and the multiplier. We now introduce the necessary background.

Definition 3.2. A Banach space X is called a UMD space if for one, or by Hörmander’s condition all
p 2 .1;1/, the vector-valued Hilbert transform

.Hf /.x/D lim
"#0

Z
jt j�"

f .x� t /

t
dt

initially defined on C1c .R
nIX/ extends to a bounded operator Lp.RIX/! Lp.RIX/.

In different words, on UMD spaces one of the most basic Fourier multipliers m.�/ D 1R>0.�/ is
bounded. Only on those spaces a reasonable multiplier theory can be developed. For our purposes it is
sufficient to know that Hilbert and Lp-spaces for p 2 .1;1/ are UMD spaces and that all UMD spaces
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are reflexive. For detailed information on UMD spaces we refer to [Rubio de Francia 1986; Burkholder
2001], whereas more on R-boundedness, to be defined now, can be found in [Denk et al. 2003; Kunstmann
and Weis 2004].

Definition 3.3. Let X and Y be Banach spaces. A subset T �B.X; Y / is called R-bounded if there exists
a constant C � 0 such that for all n 2N, T1; : : : ; Tn 2 T , x1; : : : ; xn 2X and all independent identically
distributed random variables "1; : : : ; "n on some probability space .�;†;P/ with P."k D˙1/D

1
2

one
has

E





 nX
kD1

"kTkxk






Y

� CE





 nX
kD1

"kxk






X

:

The smallest constant C � 0 for which this holds is denoted by R.T /. Further, we define RadX as the
closure in L1.�;†;PIX/ of finite sums of the form

Pn
kD1 "kxk .

Note that the definition of R-boundedness depends only on the distribution of the random variables
and is therefore independent of the probability space. The same holds for the definition of RadX up to
canonical isomorphisms. We write RX!Y to indicate between which spaces the mapping is considered if
it is not clear from the context. Every R-bounded set is bounded in B.X; Y /. If both X D Y are Hilbert
spaces, then the converse holds as well. Further, Kahane’s contraction principle sates that fz Id W jzj � 1g
has R-bound at most 2 on every Banach space. By a celebrated theorem of Weis [2001], on a UMD space
the autonomous problem A.t/D A has maximal Lp-regularity for one and then for all p 2 .1;1/ if and
only if A is R-sectorial, the R-boundedness analogue of sectorial operators, up to shifts.

Definition 3.4. A linear operator A WD.A/!X on a Banach space X is called R-sectorial of angle ' if
�.A/ of A is contained in †' for some ' 2

�
0; �
2

�
and if

Rf.j�jC 1/R.�;A/ W � 62†'g<1:

A family of linear operators Ai WD.Ai /!X for i 2 I is uniformly R-sectorial if �.Ai /�†' for some
' 2

�
0; �
2

�
and all i 2 I and if there exists C > 0 with

Rf.j�jC 1/R.�;Ai / W � 62†'g � C for all i 2 I:

The main point in our maximal Lp-regularity result is that it only assumes the operators to lie in a
fractional Sobolev space.

Definition 3.5. Let X be a Banach space, p 2 .1;1/ and ˛ 2 .0; 1/. A Bochner-measurable function
f W Œ0; T �!X lies in the homogeneous fractional Sobolev space PW ˛;p.Œ0; T �IX/ provided

kf k PW ˛;p.Œ0;T �IX/
D

�Z T

0

Z T

0

kf .t/�f .s/k
p
X

jt � sj1C˛p
ds dt

�1=p
<1:

The inhomogeneous Sobolev space W ˛;p.Œ0; T �IX/ is the space of all f 2 Lp.Œ0; T �IX/ such that
kf k PW ˛;p.Œ0;T �IX/

<1.
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We remark that there exist equivalent definitions of fractional Sobolev spaces based on Littlewood–
Paley decompositions [Amann 2000, Section 3, (3.5)]. The usual embedding results for Sobolev spaces
into Hölder spaces hold: for ˛ 2 .0; 1/ and p 2 .1;1/ with ˛ > 1

p
one has W ˛;p.Œ0; T �IX/ ,!

C ˛�1=p.Œ0; T �IX/ [Simon 1990, Corollary 26]. We are now ready to present our general maximal
Lp-regularity result that in particular implies Theorem 1.2 presented in the Introduction.

Theorem 3.6. For T > 0 and � 2 .0; 1� let .A.t//t2Œ0;T � be a �-stable family of uniformly R-sectorial
operators on some UMD space X with fractional regularity A�1 2 PW ˛;q.Œ0; T �IB.X�;A; X��1;A//. Then
the nonautonomous problem (NACP) has maximal Lp-regularity

(a) for p 2
�
1; 1
1��

�
, q D 1

1��
and ˛ > 1� � ,

(b) for p 2
�
1
1��

;1
�
, q D p and ˛ > 1� � .

Let us compare the above conditions with the Acquistapace–Terreni condition [1987] used in [Hieber
and Monniaux 2000b; Portal and Štrkalj 2006]. Apart from some uniform R-boundedness assumptions
they require that there exist constants 0� 
 < ˇ � 1 such that for all t; s 2 Œ0; T � and all � 62†' for some
' 2

�
0; �
2

�
one has the estimate

A.t/R.�;A.t//.A.t/�1�A.s/�1/

B.X/ . jt � sjˇ

1Cj�j1�

:

In principle, no regularity assumptions on the domain like �-stability are made. However, in concrete
examples some stability is usually necessary and one chooses 
 D 1� � to verify the estimate; see for
example [Fackler 2015]. Then one requires ˇ > 1� � and one arrives at the usual Hölder regularity
assumptions. However, for example for elliptic operators with irregular coefficients substantial effort is
needed to verify the above inequality from the assumed Hölder regularity on the coefficients. Exactly this
is done in [Fackler 2015], where as intermediate steps reformulations of the problem that are close to —
but more general than — our setting are used.

The improvement of C ˛- to PW ˛;p-regularity has direct consequences to applications of maximal
regularity to nonlinear PDE. As one can see in Theorem 8.1 and Remark 8.2 our result gives existence
results under more relaxed regularity assumptions.

Strategy of proof. In Section 4, we first show existence and uniqueness of less regular integrated solutions
than is needed for maximalLp-regularity. This can be done only assuming some continuity on the operators
A.t/ on the extrapolation spaces. Afterwards in Section 5, we show that we can bootstrap the regularity
of these solutions if the operators are ˛-Hölder continuous for some arbitrarily small exponent ˛ > 0.
With respect to this we note that our assumptions on the fractional Sobolev space are in a such way that
the fractional Sobolev space embeds into the space of ˛-Hölder continuous functions for some ˛ > 0.
After that we show in Section 6 that this higher regularity of the solutions implies maximal Lp-regularity.

4. Existence and uniqueness of integrated solutions

In this section we show that under certain assumptions a unique solution of (2-1) exists. We next show by
interpolation that, given an R-sectorial operator, one obtains corresponding R-boundedness estimates on
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the induced extrapolation spaces. The following result is not new [Haak et al. 2006, Lemma 6.9]; we give
a proof for the sake of completeness. For its proof we use the fact that for an interpolation couple .X; Y /
of UMD spaces we have by [Kaip and Saal 2012, Proposition 3.14]

ŒRad.X/;Rad.Y /�� D Rad.ŒX; Y �� /: (4-1)

Here one uses the facts that ŒL1.�;†;PIX/;L1.�;†;PIY /�� D L1.�;†;PI ŒX; Y �� / and that the
Rad.X/-spaces are complemented in the vector-valued L1.�;†;PIX/-spaces if X is UMD.

Lemma 4.1. Let A WD.A/! X be an R-sectorial operator on a UMD space X . Then for all �2; �1 2
Œ�1; 1� with �2 > �1 and �2� �1 � 1 one has with ' as in Definition 3.4 and with constants independent
of A

RX�1;A!X�2;Af.1Cj�j/1�.�2��1/R.�;A/ W � 62†'g.RX!Xf.j�jC 1/R.�;A/ W � 62†'g:

Proof. The assertion holds for �1 D �2 2 f�1; 1g. By complex interpolation and (4-1) this extends to
�1 D �2 2 Œ�1; 1�. Since AR.�;A/D �R.�;A/� Id, one has for all �1 2 Œ�1; 0�

RX�1;A!X�1C1;AfR.�;A/ W � 62†'g<1:

For the case of general �2 with �2��1�1 consider for given n2N, �1; : : : ; �n 62�†' and x1; : : : ; xn2X
the mapping S D fz 2 C W Re z 2 Œ0; 1�g ! Rad.X�1;A/CRad.X�1C1;A/ given by

Tz W
nX
kD1

"kxk 7!

nX
kD1

"k.1C�k/
zR.�k;�A/xk :

The mapping z 7! Tz is continuous on S and analytic in the interior of S and it follows from Kahane’s
contraction principle that the norms of Tit and T1Cit as operators in B.Rad.X�1;A/;Rad.X�1C1;A// and
B.Rad.X�1;A/;Rad.X�1;A// are bounded by ejt j' up to a uniform constant. Hence, it follows from the
generalized Stein interpolation theorem [Voigt 1992] and (4-1) that for ˛ 2 .0; 1/

T˛ W Rad.X�1;A/! Rad.X�1C˛;A/;

which gives the statement by unwinding the definitions of R-boundedness. �

Remark 4.2. Curiously, the above result fails for the negative Laplacian and the real interpolation
method [Haak et al. 2006, Example 6.13]. Hence, this is one step where one cannot work with arbitrary
extrapolation spaces.

We establish the existence of a unique solution of (2-1) assuming Hölder regularity of arbitrarily low
order.

Definition 4.3. A function f W Œ0; T �!X with values in some Banach space X is ˛-Hölder continuous
for ˛2 .0; 1� if kf .t/�f .s/k�C jt�sj˛ for some C �0 and all t; s 2 Œ0; T �. We denote by C ˛.Œ0; T �IX/
the space of all such functions.

We are now ready to prove the existence of integrated solutions.
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Proposition 4.4. For T > 0 and � 2 .0; 1� let .A.t//t2Œ0;T � be a � -stable family of uniformly R-sectorial
operators on some UMD spaceX . Suppose there exist ˛2 .0; 1� withA�12C ˛.Œ0; T �IB.X�;A; X��1;A//.
Then for all p 2 .1;1/ and f 2 Lp.Œ0; T �IX/ there exists a unique solution u of the integral equation
(2-1) in Lp.Œ0; T �IX�;A/. Further, one has u 2W 1;p.Œ0; T �IX��1;A/\L

p.Œ0; T �IX�;A/,�
Pu.t/CA��1.t/u.t/D f .t/;

u.0/D 0;
(WNACP)

and kukLp.Œ0;T �IX�;A/ only depends on kf kLp.Œ0;T �IX��1;A/, T, ˛, � , K in (3-1) and the constants in the
Hölder and R-sectorial estimates.

Proof. First note that by the uniform sectorial estimates and the properties of extrapolation spaces we
have the uniform estimate

ke�.t�s/A�1.t/kB.X��1;A;X�;A/ . jt � sj
�1:

Using this together with the assumed Hölder regularity on A�1. � / we get

kK1.t; s/kB.X�;A;X�;A/ . jt � sj
˛�1: (4-2)

By Young’s inequality for convolutions we then have the norm estimate

kS1ukLp.Œ0;T �IX�;A/ �

Z T

0

s˛�1 dskukLp.Œ0;T �IX�;A/ D ˛
�1T ˛kukLp.Œ0;T �IX�;A/:

Let us show the uniqueness of solutions of (2-1) in Lp.Œ0; T �IX�;A/. Since the equation is linear, it
suffices to consider a solution with uD S1u. Now, for sufficiently small T0 we have kS1k< 1. Hence,
Id�S1 is invertible and consequently ujŒ0;T0� D 0. Using this information we see that (2-1) for t > T0
reduces to

u.t/D

Z t

T0

e�.t�s/A�1.t/.A�1.t/�A�1.s//u.s/ ds:

By the same argument as before we see that the operator defined by the right-hand side is bounded and
invertible on Lp.ŒT0; 2T0�IX�;A/. Hence, ujŒT0;2T0� D 0. Iterating this argument finitely many times
gives uD 0.

Since t 7! A��1 2 B.X�;A; X��1;A/ is a fortiori continuous, it follows from perturbation arguments
and Lemma 4.1 that (WNACP) has nonautonomous maximal Lp-regularity for all p 2 .1;1/; see [Prüss
and Schnaubelt 2001, Theorem 2.5; Arendt et al. 2007, Theorem 2.7]. This means there exists a unique
w 2 W 1;p.Œ0; T �IX��1;A/ \ L

p.Œ0; T �IX�;A/ satisfying (WNACP) and the corresponding maximal
Lp-regularity estimate. Using the same argument as in Proposition 2.2, we see that w satisfies (2-1). By
the uniqueness shown in the first part, we have w D u. �

5. Bootstrapping regularity

Again, assuming Hölder regularity of arbitrarily small order, we improve the regularity of the obtained
integrated solutions with the help of the following bootstrapping result.
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Proposition 5.1. For T > 0 and � 2 .0; 1� let .A.t//t2Œ0;T � be a �-stable family of uniformly sectorial
operators on some Banach space X satisfying A�1 2 C ˛.Œ0; T �IB.X�;A; X��1;A// for some ˛ 2 .0; 1�.
If either

(a) p 2
�
1
1��

;1
�

and q 2 .1;1�, or

(b) p D 1
1��

and q 2 .1;1/, or

(c) p 2
�
1; 1
1��

�
and q 2

�
1; p
1�p.1��/

�
,

then there exists Cpq > 0 depending only on T, K in (3-1) and the constants of the sectorial and
Hölder estimates such that for all solutions u 2 Lp.Œ0; T �IX�;A/ of (2-1) for some right-hand side
f 2 Lp.Œ0; T �IX/ one has

kukLq.Œ0;T �IX�;A/ � Cpq.kukLp.Œ0;T �IX�;A/Ckf kLp.Œ0;T �IX//:

Proof. By Young’s inequality for convolutions and the kernel estimate (4-2) we have for q; p; r 2 .1;1/
with 1

r
C

1
p
D 1C 1

q
the estimate�Z T

0

k.S1u/.t/k
q
X�;A

dt

�1=q
�

�Z T

0

�Z t

0

.t � s/˛�1ku.s/kX�;A ds

�q
dt

�1=q
. ks 7! s˛�1kLr;1

�Z T

0

ku.s/k
p
X�;A

ds

�1=p
:

The weak Lr norm is finite for r 2
�
1; 1
1�˛

�
. Hence, S1 is a bounded operator Lp.Œ0; T �IX�;A/!

Lq.Œ0; T �IX�;A/ for all p 2
�
1; 1
˛

�
and q 2

�
1; p
1�p˛

�
. If p > 1

˛
, then

k.S1u/.t/kX�;A �

�Z t

0

kK1.t; s/k
p0 ds

�1=p0�Z t

0

ku.s/k
p
X�;A

ds

�1=p
�

�Z t

0

jt � sjp
0.˛�1/ ds

�1=p0
kukLp.Œ0;T �IX�;A/:

Hence, S1 W Lp.Œ0; T �IX�;A/! L1.Œ0; T �IX�;A/ is bounded for p > 1
˛

.
Interpolating the analytic estimate

ke�.t�s/A.t/kB.X;D.A.t// . jt � sj�1

with the boundedness of the semigroups ke�.t�s/A.t/kB.X/ . 1, one sees that the kernel of S2 satisfies

kK2.t; s/kB.X;X�;A.t// D ke
�.t�s/A.t/

kB.X;X�;A.t// . jt � sj
��: (5-1)

Using Young’s inequality together with the kernel estimate (5-1) and �-stability, we obtain for p; q; r 2
.1;1/ with 1

r
C

1
p
D 1C 1

q
the estimate�Z T

0

k.S2f /.t/k
q
X�;A

dt

�1=q
.
�Z T

0

�Z t

0

.t � s/��kf .s/kX ds

�q
dt

�1=q
. ks 7! s��kLr;1

�Z T

0

kf .s/k
p
X ds

�1=p
:
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This time the Lr;1-norm is finite for r 2 .1; ��1�. Hence, S2 W Lp.Œ0; T �IX/! Lq.Œ0; T �IX�;A/ is
bounded for all p < 1

1��
and q 2

�
1; p
1�p.1��/

�
. Further, one has S2 WLp.Œ0; T �IX/!L1.Œ0; T �IX�;A/

for p > 1
1��

. For the stated result, we iterate the obtained regularity improvement finitely often to
bootstrap the regularity of u. �

6. Maximal regularity results under fractional Sobolev regularity

In this section we come to the heart of the proof. To the solution obtained in Proposition 4.4 we apply
A�1.t/ to both sides of (2-1). This gives A�1.t/u.t/D A�1.t/.S1u/.t/CA�1.t/.S2f /.t/. We show
that both summands lie in Lp.Œ0; T �IX/. The second summand requires some preliminary work. We
rely on the following Hölder continuity of the R-boundedness constant.

Lemma 6.1. For � 2 .0; 1� let .A.t//t2R be a � -stable family of uniformly R-sectorial operators on some
UMD space X . Suppose there exists ˛ 2 .0; 1� with A�1 2 C ˛.Œ0; T �IB.X�;A; X��1;A//. Then for all
k 2 N0 there exists a constant Ck > 0 depending only on K in (3-1) and the constants in the Hölder and
R-sectorial estimate of Definition 3.4 such that for all t; h 2 R

RX!X
�
.1Cj�j/k

�
@

@�

�k�
i�.R.i�; A.t C h//�R.i�; A.t///

�
W � 2 R

�
� Ckjhj

˛:

Proof. We first establish the case k D 0. For all t; h 2 R the resolvent identity gives

R.i�; A.t C h//�R.i�; A.t//DR.i�; A�1.t C h//ŒA�1.t/�A�1.t C h/�R.i�; A.t//:

By the assumed Hölder regularity on A�1 and Lemma 4.1 we get for all t; h 2 R

RX!Xfi�.R.i�; A.t C h//�R.i�; A.t///g

.RX��1;A!Xf.1Cj�j/�R.i�; A�1.t C h//gkA�1.t C h/�A�1.t/kB.X�;A;X��1;A/
�RX!X�;Af.1Cj�j/1��R.i�; A.t//g

. jhj˛:

For the case k � 1 notice that the map S W z 7! R.z;A.t C h// � R.z;A.t// 2 B.X/ is analytic on
the complement of some shifted sector †' C " and that the above estimate holds there by the same
argument. It follows from the Cauchy integral representation of derivatives [Kunstmann and Weis 2004,
Example 2.16] that for S.z/D z.R.z; A.t C h//�R.z;A.t///

R
n
.1Cjzj/k

�
d

dz

�k
S.z/ W z 62†'

o
.R

n
S
�
i�C

"

2

�
W � 2 R

o
. jhj˛: �

Proposition 6.2. For T > 0 and � 2 .0; 1� let .A.t//t2R be a � -stable family of uniformly R-sectorial op-
erators on some UMD space X . Suppose there exists ˛ 2 .0; 1� with A�1 2 C ˛.Œ0; T �IB.X�;A; X��1;A//.
Then A. � /S2 W Lp.Œ0; T �IX/! Lp.Œ0; T �IX/ is bounded for all p 2 .1;1/ and its norm only depends
on p, K in (3-1) and the constants in the Hölder and R-sectorial estimates.
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Proof. It is shown in [Hieber and Monniaux 2000b, p. 1053; Fackler 2015, Section 2.4.1] that the
boundedness of A. � /S2 follows from the boundedness of the pseudodifferential operator

. ySf /.t/D

Z 1
�1

a.t; �/ Of .�/e2�it� d�

for the operator-valued symbol a W R�R! B.X/ given by

a.t; �/D

8<:
i�R.i�; A.0//; t < 0;

i�R.i�; A.t//; t 2 Œ0; T �;

i�R.i�; A.T //; t > T:

Such operators are well-studied and understood. Applying [Hytönen and Portal 2008, Theorem 17] and
[Hytönen and Portal 2008, Remark 20] (the dependence on the constants is not explicitly stated) in the
one-dimensional and one-parameter case, we see that S W Lp.Œ0; T �IX/! Lp.Œ0; T �IX/ is bounded for
all p 2 .1;1/ provided

R
�
.1Cj�j/k

�
@

@�

�k�
a.t C h; �/� a.t; �/

�
W � 2 R

�
. jhj˛

holds for some ˛ 2 .0; 1� and all k D 0; 1; 2. This is the R-analogue of the condition considered by
Yamazaki [1986] and therefore called an R-Yamazaki symbol. The fact that a is indeed an R-Yamazaki
symbol has been verified in Lemma 6.1. �

The next proposition shows that in many cases it is sufficient to show maximal Lp-regularity for initial
value zero. This is well known in the autonomous case. The arguments have been used before; see for
example [Dier and Zacher 2017, Theorem 6.2].

Proposition 6.3. Let X be a Banach space, p 2 .1;1/, T > 0 and .A.t//t2Œ0;T � a family of uniformly
sectorial operators:

(a) Suppose that the nonautonomous operator .B.t//t2Œ0;TC1�,

B.t/D

�
A.0/ for t 2 Œ0; 1�;
A.t � 1/ for t 2 Œ1; T C 1�;

has maximal Lp-regularity for u0 D 0. Then .A.t//t2Œ0;T � has maximal Lp-regularity for all initial
values u0 2 .D.A.0//; X/1=p;p . Further, the maximal regularity estimate only additionally depends on a
constant controlled by the sectorial estimate for A.0/.

(b) Suppose additionally that for all t02.0;T � the nonautonomous problem associated to .Ct0.t//t2Œ0;t0C2�,
where

Ct0.t/D

8<:
A.0/ for t 2 Œ0; 1�;
A.t � 1/ for t 2 Œ1; 1C t0�;
A.t0/ for t 2 Œ1C t0; 2C t0�;

has maximal Lp-regularity for u0 D 0. Then the unique solution of (NACP) for .A.t//t2Œ0;T � satisfies
u.t/ 2 .D.A.t//; X/1=p;p for all t 2 Œ0; T � and u0 2 .D.A.0//; X/1=p;p.
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Proof. We start with the first part. By the characterization of real interpolation spaces via the trace
method [Lunardi 1995, Proposition 1.2.10] and a cut-off argument, there is some C > 0 such that for all
u0 2 .D.A.0//; X/1=p;p there exists v 2W 1;p.Œ0; 1�IX/\Lp.Œ0; 1�ID.A.0/// with v.0/D 0, v.1/Du0
and

kA.0/vkLp.Œ0;1�IX/CkPvkLp.Œ0;1�IX/ � Cku0k.D.A.0//;X/1=p;p :

For given f 2 Lp.Œ0; T �IX/ we define g 2 Lp.Œ0; T C 1�IX/ as

g.t/D

�
Pv.t/CA.0/v.t/ for t 2 Œ0; 1/;
f .t � 1/ for t 2 Œ1; T C 1�:

By assumption .B.t//t2Œ0;TC1� has maximal Lp-regularity for u0 D 0. We denote by w the unique
solution of (NACP) for .B.t//t2Œ0;TC1� with right-hand side g. By the uniqueness of mild solutions in the
autonomous case we have w D v on Œ0; 1�. In particular, we have w.1/D v.1/D u0. As a consequence
we see that u.t/D w.t C 1/ solves (NACP) for u.0/D w.1/D u0. Further,

kukW 1;p.Œ0;T �IX/CkA. � /u. � /kLp.Œ0;T �IX/ . kgkLp.Œ0;TC1�IX/
. kf kLp.Œ0;T �IX/Cku0k.D.A.0//;X/1=p;p :

For the uniqueness observe that a second solution Qu of (NACP) with right-hand side f and u.0/D u0
yields a solution z D . PvCA.0/v/1Œ0;1/C Qu. � � 1/1Œ1;t0C1/ of (NACP) for .B.t//t2Œ0;TC1� that agrees
with u. � � 1/ on Œ1; T C 1� by the uniqueness of solutions.

For the second part and fixed t0 2 .0; T � let z be the solution of (NACP) for .Ct0.t//t2Œ0;t0C2� and
the right-hand side Qg D g 1Œ0;t0C1�. Then z agrees with the solution w of the first part on Œ0; t0 C 1�
and solves the autonomous problem Pz.s/ C A.t0/z.s/ D 0 on Œt0 C 1; t0 C 2�. Since functions in
W 1;p.Œt0C 1; t0C 2�IX/\L

p.Œt0C 1; t0C 2�ID.A.t0/// take values in the corresponding trace spaces
[Amann 1995, Theorem III.4.10.2], we have u.t0/ 2 .D.A.t0//; X/1=p;p. �

We are now ready to prove our general maximal regularity result.

Theorem 6.4. For T > 0 and � 2 .0; 1� let .A.t//t2Œ0;T � be a �-stable family of uniformly R-sectorial
operators on some UMD space X with fractional regularity A�1 2 PW ˛;q.Œ0; T �IB.X�;A; X��1;A//. Then
the nonautonomous problem (NACP) has maximal Lp-regularity

(a) for p 2
�
1; 1
1��

�
, q D 1

1��
and ˛ > 1� � ,

(b) for p 2
�
1
1��

;1
�
, q D p and ˛ > 1� � .

In this case the unique maximal Lp-regularity solution u of (NACP) satisfies u.t/ 2 .D.A.t//; X/1=p;p
for all t 2 Œ0; T � and there exists a constant Cp > 0 with

kukW 1;p.Œ0;T �IX/CkA. � /u. � /kLp.Œ0;T �IX/ � C.kf kLp.Œ0;T �IX/Cku0k.D.A.0//;X/1=p;p /;

which only depends on T, ˛, � , K in (3-1), kA�1k PW ˛;q.Œ0;T �IB.X�;A;X��1;A//
and the constants in the

R-sectorial estimates.
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Proof. First note that under the made regularity assumptions, we haveA�12C 
 .Œ0; T �IB.X�;A; X��1;A//
for some 
 > 0. Further, let u 2W 1;p.Œ0; T �IX��1;A/\L

p.Œ0; T �IX�;A/ be the unique solution of (2-1)
given by Proposition 4.4. We show that u has the higher regularity A�1.t/u.t/ 2 Lp.Œ0; T �IX/. For this
we use the decomposition of A�1.t/u.t/ given by (2-1).

Let us start with the integrability ofA�1.t/.S1u/.t/. We will omit subindices in the following estimates.
For g 2 Lp

0

.Œ0; T �IX 0/ we have, where A0.t/ is the adjoint,Z T

0

Z t

0

˝
g.t/; A.t/e�.t�s/A.t/.A.t/�A.s//u.s/

˛
X 0;X

ds dt

D

Z T

0

Z t

0

˝
A0.t/e�.t�s/A

0.t/g.t/; .A.t/�A.s//u.s/
˛
X 0
1��;A0.t/

;X��1;A.t/
ds dt: (6-1)

We now distinguish between the cases p 2
�
1
1��

;1
�
, p D 1

1��
and p 2

�
1; 1
1��

�
. In the first case we

know from Proposition 5.1 that u 2 L1.Œ0; T �IX�;A/. Hence, up to constants (6-1) is dominated by

�Z T

0

Z T

0

k.A.t/�A.s//u.s/k
p
X��1;A

jt�sj1Cp˛
ds dt

�1=p
�

�Z T

0

Z t

0

kA0.t/e�.t�s/A
0.t/g.t/k

p0

X1��;A0.t/
jt�sjp

0.1=pC˛/ds dt

�1=p0

. kAk PW ˛;pkukL1.Œ0;T �IX�;A/

�Z T

0

Z t

0

.t�s/p
0.1=pC˛C��2/dskg.t/k

p0

X 0 dt

�1=p0
:

The inner integral is finite because of the assumption ˛ > 1� � . Since g 2 Lp
0

.Œ0; T �IX 0/ is arbitrary,
we get A�1. � /S1u 2 Lp.Œ0; T �IX/. The case p D 1

1��
follows similarly, using u 2 Lq

0

.Œ0; T �IX�;A/

for some big q0 and the fact that the condition ˛ > 1� � leaves a little room. Let us come to the case
p 2

�
1; 1
1��

�
. Here Proposition 5.1 shows that u 2 Lp=.1�p.1��//.Œ0; T �IX�;A/. Hence, using Hölder’s

inequality, for ˇ > 0 the expression in (6-1) is dominated by

�Z T

0

Z T

0

kA.t/�A.s/k
1=.1��/

B.X�;A;X��1;A/

jt � sj1C˛.1��/
�1

ds dt

�1���Z T

0

Z t

0

.t � s/p
0.˛Cˇ�1/ dskg.t/k

p0

X 0 dt

�1=p0
�

�Z T

0

Z T

s

.t � s/�ˇp=.1�p.1��// dtku.s/k
p=.1�p.1��//
X�;A

ds

�1=p�.1��/
:

The last integral is finite for ˇ < � � 1
p0

. Since ˛ > 1� � , we can find ˇ 2
�
0; � � 1

p0

�
for which the

second integral is finite as well.
Further,A�1. � /.S2f /. � / lies inLp.Œ0; T �IX/ by Proposition 6.2. This shows that the solution satisfies

u.t/ 2 D.A.t// for almost all t 2 Œ0; T � and A. � /u. � / 2 Lp.Œ0; T �IX/. Since u solves (WNACP), it
follows that Pu 2 Lp.Œ0; T �IX/. This shows maximal Lp-regularity in the case u0 D 0. It remains to
verify the maximal regularity estimate. By the estimates obtained in the first part of the proof we have for
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some case-dependent q0 2 .p;1�

kA. � /u. � /kLp.Œ0;T �IX/ D kA�1. � /u. � /kLp.Œ0;T �IX/

� kA�1. � /.S1u/. � /kLp.Œ0;T �IX/CkA�1. � /.S2f /. � /kLp.Œ0;T �IX/

. kAk PW ˛;qkukLq0 .Œ0;T �IX�;A/Ckf kLp.Œ0;T �IX/

. Cpq0kAk PW ˛;q .kukLp.Œ0;T �IX�;A/Ckf kLp.Œ0;T �IX//Ckf kLp.Œ0;T �IX/

. Cpq0kAk PW ˛;qkf kLp.Œ0;T �IX/Ckf kLp.Œ0;T �IX/:

Here we have used the estimates obtained in the first part of the proof, Proposition 5.1 and Proposition 4.4
in the third, fourth and fifth lines respectively. Since u solves (NACP) and the operators .A.t//t2Œ0;T � are
uniformly sectorial, this implies the maximal regularity estimate for u0 D 0.

The case of general initial values u0 2 .D.A.0//; X/1=p;p follows from Proposition 6.3. Here we use
the fact that for q > ˛�1 functions in PW ˛;q can be extended with the same regularity by their values at
the endpoints [Dier and Zacher 2017, Proposition 7.8]. �

Remark 6.5. Compared to the result in [Portal and Štrkalj 2006] we need a weaker R-boundedness result.
Further, the time regularity is lowered to some fractional Sobolev space at the cost of more regularity on
the domain spaces. In order to obtain maximal Lp-regularity for all p 2 Œ.1��/�1;1/ our result requires
A�1 2

T
p2Œ.1��/�1;1/

S
">0
PW 1��C";p.Œ0; T �IB.X�;A; X��1;A//. This is slightly less restrictive than

the ˛-Hölder continuity for some ˛ > 1� � assumed usually.

For nonautonomous problems given by sesquilinear forms on Hilbert spaces one obtains by the same
line of thought the following improvement of [Dier and Zacher 2017], where only the case p D 2 was
treated. Let us shortly recall how the form setting is related to the general setting considered by us.
Given, as in (1-1), a coercive, bounded nonautonomous sesquilinear form on some Hilbert space V
one gets operators A.t/ W V ! V 0 with A.t/u D a.t; u; � /. Given a second Hilbert space with dense
embedding V ,!H and the associated triple V ,!H ,! V 0 one considers their restrictions A.t/ on H,
i.e., D.A.t//D fu 2 V WA.t/u 2H g. One then obtains an associated problem (NACP) for .A.t//t2Œ0;T �
on H. The spaces V and V 0 can be seen as replacements of X1=2;A and X�1=2;A. Hence, .A.t// is
1
2

-stable in some sense.

Corollary 6.6. Let V;H be Hilbert spaces with dense embedding V ,!H and let a W Œ0; T ��V �V !C

be a coercive, bounded nonautonomous sesquilinear form as in (1-1). Then the associated problem (NACP)
on H has maximal Lp-regularity

(a) for p 2 .1; 2� provided A 2 PW 1=2C";2.Œ0; T �IB.V; V 0// for some " > 0,

(b) for p 2 Œ2;1/ provided A 2 PW 1=2C";p.Œ0; T �IB.V; V 0// for some " > 0.

The constants in the maximal Lp-regularity estimate only depend on T, ", the constants ˛, M in (1-1)
and the fractional Sobolev norm of A.

Proof. Repeat the previous proof for X DH and replace X1=2;A and X�1=2;A with V and V 0. �
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Note that V and V 0 only agree with the complex interpolation spaces X1=2;A.t/ and X�1=2;A.t/ if the
operators A.t/ satisfy the so-called Kato square root property; see [Auscher 2002] for a short introduction
to this topic. However, this is not necessary to carry out the argument. In the UMD setting the case � D 1

2

is also of particular interest. We obtain the following corollary relevant for concrete applications (which
holds for other values of � as well).

Corollary 6.7. Let T > 0 and .A.t//t2Œ0;T � be uniformly sectorial on a UMD space X such that for some
! 2

�
0; �
2

�
and M > 0 the imaginary powers satisfy

kA.t/isk �Me!jsj

uniformly for all t 2 Œ0; T � and s 2 R. Further, suppose that there exist Banach spaces X1=2 and X�1=2
for which for all t 2 Œ0; T � the spaces D.A.t/1=2/ and D.A.t/�1=2/ agree with X1=2 and X�1=2 as
vector spaces and the respective norms are uniformly equivalent for some constant K > 0. Then the
nonautonomous Cauchy problem (NACP) for .A.t//t2Œ0;T � has maximal Lp-regularity

(a) for p 2 .1; 2� if A�1 2 PW 1=2C";2.Œ0; T �IB.X1=2; X�1=2// for some " > 0,

(b) for p 2 Œ2;1/ if A�1 2 PW 1=2C";p.Œ0; T �IB.X1=2; X�1=2// for some " > 0.

The constants in the maximal Lp-regularity estimates only depend on p, T, ", K in (3-1), M, !, the
fractional Sobolev norm of A�1 and the constants in the sectorial estimates.

Proof. Since the operators A.t/ have uniformly bounded imaginary powers, it follows from [Denk et al.
2003, Theorem 4.5] that for ' 2 .!; �/

sup
t2Œ0;T �

Rf�R.�;A.t// W � 62†'g<1:

Since uniformly bounded analytic families are uniformly R-bounded on compact subsets of a common
domain [Weis 2001, Proposition 2.6], the operators .A.t//t2Œ0;T � are uniformly R-sectorial. Further,
the fractional domains spaces D.A.t/1=2/ and D.A.t/�1=2/ are uniformly equivalent to X1=2;A.t/ and
X�1=2;A.t/ [Fackler 2015, Proposition 2.5]. As a consequence of the assumptions, the family .A.t//t2Œ0;T �
is 1
2

-stable. This means that we can apply Theorem 6.4. �

Remark 6.8. Corollary 6.7 holds under the slightly weaker assumption that the operators .A.t//t2Œ0;T �
are uniformly R-sectorial. For this one uses the scale X�;ADD.A� / for j� j 2 .0; 1/ and repeats the proof
of Theorem 6.4. The main difference is that one has to use [Haak et al. 2006, Lemma 6.9(1)] instead
of Lemma 4.1.

7. Nonautonomous maximal regularity for elliptic operators

We now illustrate the consequences of our results for nonautonomous problems governed by elliptic
operators in divergence form. We concentrate on pure second-order operators with VMO-coefficients
subject to Dirichlet boundary conditions, as the used results are already involved and spread over the



NONAUTONOMOUS MAXIMAL Lp -REGULARITY UNDER FRACTIONAL SOBOLEV REGULARITY IN TIME 1159

literature in this special case. On a bounded domain��Rn we consider bounded measurable coefficients
AD .aij / W�! Cn�n and the bounded sesquilinear form

a WW
1;2
0 .�/�W

1;2
0 .�/! C; .u; v/ 7!

Z
�

Arurv:

Further, we assume that .aij / satisfies for some ı > 0 and all � 2 Cn the estimate

Re
nX

i;jD1

aij .x/�i N�j � ıj�j
2:

Then the operator L2 on L2.�/ associated to a is sectorial. Further, one has for u 2D.L2/�W
1;2
0 .�/

the identity L2uD� div.Aru/ in the sense of distributions. One can show that if � has C 1-boundary
and if the coefficients lie in VMO, then L2 induces for all q 2 .1;1/ compatible sectorial operators Lq
on Lq.�/ (see the proof of Theorem 7.2). These operators are realizations of � div.Ar � / on Lq.�/.
For further details on the form method we refer to [Ouhabaz 2005].

Definition 7.1. Let � � Rn be a bounded domain. A bounded measurable function f W �! C is of
vanishing mean oscillation if one has infr>0 �f .r/D 0 for the modulus

�f .r/ WD sup
BWd.B/�r

�
1

jB \�j

Z
B\�

jf .x/�fB\�j
2 dx

�1=2
;

where f�\B denotes the mean of f over B\� and the supremum is taken over all balls B �Rn centered
in � whose diameter d.B/ does not exceed r .

We need the following variant of the Kato square root property on Lq.�/.

Theorem 7.2. Let n 2 N, � � Rn be a bounded C 1-domain, q 2 .1;1/ and A D .aij /1�i;j�n 2

L1.�ICn�n/ be complex-valued coefficients with

Re
nX

i;jD1

aij .x/�i N�j � ıj�j
2 for all � 2 Cn;

for some ı > 0 and almost every x 2�. Let Lq be the realization of � div.Ar � / on Lq.�/ subject to
Dirichlet boundary conditions. If aij 2 VMO.�/ for all i; j D 1; : : : ; n, then there exists �0 � 0 such
that the following holds:

(a) LqC� is a sectorial operator on Lq.�/ for all �� �0 and

kf kqCkrf kq ' k.LqC�/
1=2f kq for all f 2W 1;q

0 .�/:

(b) The operator Lq extends to an isomorphism W
1;q
0 .�/ �!� W �1;q.�/.

The constant �0 only depends on �, q, �aij , ı and kAk1. With an additional dependence on �, the same
holds for the constant in the equivalence in (a), the isomorphism in (b) and the sectorial estimates of the
operators LqC�.

Proof. Under the made assumptions, the operator L2 satisfies local Gaussian estimates [Auscher and
Tchamitchian 2001a, Theorem 7]. Although not explicitly stated, the coefficients in the estimate only
depend on the claimed constants. This has several consequences. First, for � sufficiently large the operator
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L2C� satisfies global Gaussian estimates [Auscher and Tchamitchian 1998, Section 1.4.5, Theorem 18]
and extends to a sectorial operator Lq C � on Lq.�/. Secondly, it essentially follows from [Auscher
and Tchamitchian 2001b, Theorem 4] that k.LqC�/1=2kq . kf kqCkrf kq . Here are two additional
points to consider. First, the theorem is only stated in the case �D 0. The case �¤ 0 can be obtained by
including terms of lower order in the argument or by arguing as in [Auscher and Tchamitchian 1998,
p. 135]. The second point is the not explicitly stated dependence on the constants. However, taking a
close look at the proof in [Auscher and Tchamitchian 2001b] one sees that most auxiliary results give the
explicit dependence on the constants (in [Auscher and Tchamitchian 2001b, p. 162] such a dependence is
explicitly stated in a special case). One crucial point needed here is the dependence in the case p D 2,
which is well known. This can be found in [Axelsson et al. 2006, Theorem 1] for a broad class of Lipschitz
domains and a combination of [Egert et al. 2014, Theorem 4.2; 2016, Theorems 3.1 and 3.3 and Section 6]
yields the dependence for general bounded Lipschitz domains and therefore a fortiori for C 1-domains.

Now, as in [Auscher and Tchamitchian 1998, p. 135], the converse inequality follows if .LqC�/�1

extends to a bounded operator from W �1;q.�/D .W
1;q0

0 .�//0 into W 1;q
0 .�/. Notice that

kukW �1;q.�/ D inf
�
kgkqC

nX
kD1

kFkkq W g; Fk 2 L
q.�/ with uD gC divF

�
:

It is shown in [Dong and Kim 2010, Theorem 4] that for � � 0 there exists C � 0 such that for all
Fk; g 2 L

q.�/ there is a unique u 2W 1;q
0 .�/ with � div.Aru/C�uD gC divF and

kukW 1;q.�/ � C

�
kgkqC

nX
kD1

kFkkq

�
:

Here, our required dependence on the constants can be found in the lemmata in [Dong and Kim 2010,
Section 7]. Note that the above estimate is exactly the boundedness of .�CLq/�1 WW �1;q.�/!W

1;q
0 .�/,

which is a uniform isomorphism by the uniqueness of u 2W 1;q
0 .�/. �

Remark 7.3. The estimate kL1=2f kq . krf kq is known under more general assumptions on the
coefficients and the domain [Auscher and Tchamitchian 2001b, Theorem 4]. The same holds for the
boundedness of .LqC�/�1 WW �1;q.�/!W

1;q
0 .�/ for which originating from [Krylov 2007] many

results have been obtained in the last years. For a complete list of references we refer to the introduction
of [Dong and Kim 2016] and for a proof of similar results within the framework of maximal regularity to
[Gallarati and Veraar 2017a; 2017b].

Theorem 7.4. Let��Rn be a bounded C 1-domain, T >0 and aij 2L1.Œ0; T ���/ for i; j D 1; : : : ; n.
Assume further that the following properties are satisfied:

(1) There exists ı > 0 such that for almost all .t; x/ 2 Œ0; T ��� and all � 2 Cn

Re
nX

i;jD1

aij .t; x/�i N�j � ıj�j
2:

(2) The functions x 7! aij .t; x/ lie in VMO.�/ and there is � W Œ0; 1�! Œ0;1� with limr#0 �.r/D 0 and
�aij .t;� / � � for all t 2 Œ0; T � and i; j D 1; : : : ; n.
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For q 2 .1;1/ let Lq.t/ D � div.A.t/r � / be realizations on Lq.�/. Then for all q 2 .1;1/ the
nonautonomous problem (NACP) associated to .Lq.t//t2Œ0;T � has maximal Lp-regularity

(a) for p 2 .1; 2� if aij 2 PW 1=2C";2.Œ0; T �IL1.�// for some " > 0,

(b) for p 2 Œ2;1/ if aij 2 PW 1=2C";p.Œ0; T �IL1.�// for some " > 0.

The maximal Lp-regularity estimate depends only on p; q; T;�; ı; �; "; kaij k1 and the homogeneous
Sobolev norm in (a) or (b).

Proof. Thanks to the Gaussian estimates discussed in the proof of Theorem 7.2, for sufficiently large � the
operators Lq.t/C� have uniformly bounded imaginary powers with k.Lq.t/C�/isk �Me!jsj for some
M > 0 and ! 2

�
0; �
2

�
. This follows from the general result [Duong and Robinson 1996, Theorem 4.3]

(which even gives a bounded H1-calculus), which does not state the dependence on the constants
explicitly. Further, it follows from Theorem 7.2 that D..Lq.t/C�/1=2/'W

1;q
0 .�/ holds uniformly in

t 2 Œ0; T �. Moreover, the operator Lq.t/C� extends to an isomorphism W
1;q
0 .�/

�
�!W �1;q.�/ which

is uniform in t 2 Œ0; T �. Consequently, for u 2 Lq.�/ one has

kukD..Lq.t/C�/�1=2/ D k.Lq.t/C�/
�1=2ukLq.�/

D k.Lq.t/C�/
1=2.Lq.t/C�/

�1ukLq.�/ ' k.Lq.t/C�/
�1uk

W
1;q
0 .�/

' kukW �1;q.�/:

Therefore X1=2 DW 1;q.�/ and X�1=2 DW �1;q.�/ in Corollary 6.7.
It remains to check the time regularity. For u 2W 1;2

0 .�/\W
1;q
0 .�/ and v 2W 1;2

0 .�/\W
1;q0

0 .�/

one has ˇ̌
hLq.t/u�Lq.s/u; vi

ˇ̌
D

ˇ̌̌̌Z
�

.A.t/�A.s//rurv

ˇ̌̌̌
� kA.t/�A.s/k1krukqkrvkq0 :

By density this extends to all u 2W 1;q
0 .�/ and all v 2W 1;q0

0 .�/. Hence, it follows that Lq. � /C� 2
PW ˛;r.Œ0; T �IB.W 1;q

0 .�/;W �1;q.�/// with ˛ and r as in the assumptions. Now, Corollary 6.7 applies
and yields maximal Lp-regularity for .Lq.t/C�/t2Œ0;T � and � big enough. By a rescaling argument this
is equivalent to the maximal Lp-regularity of .Lq.t//t2Œ0;T �. �

8. Applications to quasilinear parabolic problems

We now use Theorem 7.4 to solve quasilinear parabolic equations. It may be a little bit confusing that in
the result below Hölder assumptions on the coefficients are made. The point for concrete applications is
not that we can replace Hölder regularity by fractional Sobolev regularity, but that the fractional Sobolev
regularity in Theorem 7.4 allows us to loosen the assumed Hölder regularity. We will comment on this
point later.

Theorem 8.1. Let �� Rn be a bounded C 1-domain and T > 0. For coefficients AD .aij / W C! Cn�n,
p 2 Œ2;1/, q 2 .1;1/, an inhomogeneous part f 2Lp.Œ0; T �ILq.�// and an initial value u0 2Lq.�/
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satisfying the condition u0 2
�
D.divA.u0/r � /; Lq.�/

�
1=p;p

consider the problem8̂<̂
:
@

@t
u.t; x/� div.A.u.t; x//ru.t; x//D f .t; x/;

u.t; x/D 0 on Œ0; T �� @�;
u.0; x/D u0.x/ on �:

(QLP)

Suppose that the following assumptions are satisfied:

(1) The coefficients aij are ˇ-Hölder continuous for some ˇ > 1
2

.

(2) For all M > 0 there exist ı.M/ > 0 such that for all juj �M

Re
nX

i;jD1

aij .u/�i N�j � ı.M/j�j2 for all � 2 Cn:

If q > n and ˇ > q
2.q�n/

, then there exists C � 0 such that for

kf kLp.Œ0;T �ILq.�//Cku0k.D.divA.u0/r�/;Lq.�//1=p;p � C

the quasilinear problem (QLP) has a solution

u 2W 1;p.Œ0; T �ILq.�//\BUC.Œ0; T ���/

with u.t/ 2 D.divA.u.t; � //r � / for almost every t 2 Œ0; T � and divA.u/ru 2 Lp.Œ0; T �ILq.�//. A
fortiori, u 2 C ˛�1=p.Œ0; T �IC 1�˛�n=q.�// for ˛ 2

�
1
p
; 1� n

q

�
.

Proof. Choose ˛ 2
�
1
2ˇ
; 1� n

q

�
, which is possible by our assumptions. Now, choose ı > 0 with ˛�ı > 1

2ˇ

and ˛C ı < 1� n
q

. Further, let

MD fv 2W ˛�ı;p.Œ0; T �IW
1�˛�ı;q
0 .�// W v.0/D u0g

and MR for R > 0 be the ball B.0;R/ in MR. For v 2MR consider the problem8̂<̂
:
@

@t
u.t; x/� div.A.v.t; x//ru.t; x//D f .t; x/;

u.t; x/D 0 on Œ0; T �� @�;
u.0; x/D u0.x/ on �:

(LP)

Since ˛Cı < 1� n
q

and ˛�ı > 1
2ˇ
�
1
2
�
1
p

, we have v 2W ˛�ı;p.Œ0; T �IBUC.�// and M is compactly
embedded in BUC.Œ0; T � ��/. By the Arzelà–Ascoli theorem, the functions in MR are uniformly
equicontinuous on Œ0; T ���. As a consequence (2) of Theorem 7.4 is satisfied and one can find uniform
ellipticity constants for A ı v with v 2MR. For " > 0 with r WD .˛� ı� "/ˇ > 1

2
we have

kaij ı vk
p

PW r;p.Œ0;T �IL1.�//
D

Z T

0

Z T

0

kaij .v.t; � //� aij .v.s; � //k
p
1

jt � sj1Cpr
ds dt

.
Z T

0

Z T

0

kv.t; � /� v.s; � /k
ˇp
1

jt � sj1Cpr
ds dt D kvk

ˇp

PW rˇ�1;ˇp.Œ0;T �IL1.�//

D kvk
ˇp

PW ˛�ı�";ˇp.Œ0;T �IL1.�//
. kvkˇp

PW ˛�ı;p.Œ0;T �IL1.�//
: (8-1)
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This means that the coefficients A ı v satisfy the assumptions of Theorem 7.4. Hence, (LP) has a unique
solution u and there is CR � 0 independent of v 2MR with

kukW 1;p.Œ0;T �ILq.�//CkdivA.v/rukLp.Œ0;T �ILq.�// � CR.kf kLp.Œ0;T �ILq.�//Cku0k/;

where the norm of u0 is taken in .D.divA.u0/r � /; Lq.�//1=p;p. Further, by the real interpolation
formula for vector-valued Besov spaces [Amann 2000, Corollary 4.3] one has for � 2

�
1
2
; 1� 1

q

�
and

sufficiently small " > 0, uniformly in v 2MR, the embeddings

u 2W 1;p.Œ0; T �ILq.�//\Lp.Œ0; T �IW
1;q
0 .�// ,!

�
Lp.Œ0; T �IW

1;q
0 .�//;W 1;p.Œ0; T �ILq.�//

�
�;p

,!W ��";p
�
Œ0; T �I .W

1;q
0 .�/; Lq.�//�;p

�
DW ��";p.Œ0; T �IB

1��;q
0;p .�//

,!W ��";p.Œ0; T �IW
1���";q
0 .�//: (8-2)

All estimates hold uniformly for v 2MR. The embedding (8-2) implies that for sufficiently small

kf kLp.Œ0;T �ILq.�//Cku0k.D.divA.u0/r�/;Lq.�//1=p;p

we obtain a well-defined map

SR WMR!MR; v 7! u; where u is the solution of (LP):

It follows from (8-2) and the compact embedding results for vector-valued Sobolev spaces [Amann 2000,
Theorem 5.1] that SRMR is a precompact subset of MR. We next show that SR is continuous. For this
let vn! v in MR and let un D SRvn. After passing to a subsequence we may assume that vn! v in
BUC.Œ0; T ���/ and that un converges weakly to some u in

W 1;p.Œ0; T �ILq.�//\Lp.Œ0; T �IW
1;q
0 .�//:

Now, let g 2 Lp
0

.Œ0; T �IW
1;q0

0 .�//. Note that AT .vn/rg! AT .v/rg in Lq
0

.�/ by the dominated
convergence theorem. Since un solves (LP) we haveZ T

0

hf .t/; g.t/i dt D

Z T

0

h Pun.t/; g.t/i dt C

Z T

0

hA.vn.t//run.t/;rg.t/i dt

D

Z T

0

h Pun.t/; g.t/i dt C

Z T

0

hrun.t/; A
T .vn.t//rg.t/i dt:

Taking limits on both sides of the equation, we getZ T

0

hf .t/; g.t/i dt D

Z T

0

h Pu.t/; g.t/i dt C

Z T

0

hA.v.t//ru.t/;rg.t/i dt:

Since g is arbitrary and u0 D un.0/! u.0/, this implies that u solves (LP) on W �1;q.�/, i.e., is the
unique integrated solution of (LP) given by Proposition 4.4. Hence, SRv D u. Since the same argument
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works for arbitrary subsequences, we have shown that SR is continuous. Now, by Schauder’s fixed point
theorem there is some u 2MR with SRuD u. Using Theorem 7.4 for v D u we see that

kukW 1;p.Œ0;T �ILq.�//CkdivA.u/rukLp.Œ0;T �ILq.�//
� C.kf kLp.Œ0;T �ILq.�//Cku0k.D.divA.u0/r � /;Lq.�//1=p;p /: �

Remark 8.2. We illustrate the benefits of Theorem 7.4 for quasilinear equations with the help of
Theorem 8.1. First, maximal regularity results for nonautonomous problems governed by elliptic operators
before [Fackler 2015] assumed C 1-regularity in space. In particular, such results cannot deal with Hölder
continuous coefficients aij as in Theorem 8.1 because the composition aij ı v in (8-1) would fail to have
the necessary C 1-smoothness.

Further, in (8-1) one needs from a conceptual point of view that the composition operator v 7! aij ı v

maps into the Sobolev space PW ˛;p.Œ0; T �IL1.�// for some ˛ > 1
2

in order to apply Theorem 7.4.
Although v lies in some fractional Sobolev space and one only requires the image to lie in a different
fractional Sobolev space, the only useful sufficient condition the author is aware of is to assume that the
coefficients aij are Hölder continuous. Nevertheless, the less restrictive fractional Sobolev assumption in
Theorem 7.4 is useful as it allows us to relax the assumed regularity. To illustrate this point explicitly, let
us calculate the necessary regularity if one needs to check that aij ı v is in C ˛.Œ0; T �IL1.�// for some
˛ > 1

2
. Using the same notation as before one has

kaij .v.t; � //� aij .v.s; � //k1 . kv.t; � /� v.s; � /kˇ1:

Now, ignoring the technical aspect of having an additional ı > 0 of room, for functions v 2W ˛;p.Œ0; T �I

W 1�˛;q.�// we have for ˛ 2
�
1
p
; 1� n

q

�
the embedding

W ˛;p.Œ0; T �IW 1�˛;q.�// ,! C ˛�1=p.Œ0; T �IBUC.�//:

Consequently, we have

kaij .v.t; � //� aij .v.s; � //k1 . jt � sjˇ.˛�1=p/:

Since ˛ < 1� n
q

, for maximal regularity with Hölder assumptions one needs

ˇ �
�
1�

n

q
�
1

p

�
>
1

2
() ˇ >

q

2.q�n� q=p/
:

In particular, this is a stronger condition than ˇ > q
2.q�n/

, as used in Theorem 8.1. This improvement
comes from the fact that the p-integrability is for free in the fractional Sobolev result, whereas in the
Hölder case one has to sacrifice some differentiation order for the Sobolev embeddings.

Remark 8.3. We can only deduce the existence of solutions for small data in Theorem 7.4 because the
constant in the maximal regularity estimate depends on the VMO-modulus of the coefficients and their
fractional Sobolev norm. If one has estimates on solutions of (QLP) independent of these regularity data,
the Leray–Schauder principle would yield solutions for arbitrary f and u0.
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Further note that the reasoning of Theorem 8.1 works for a far more general class of problems. For
example, the coefficients A.u/ may depend in a nonlocal way on u, e.g., on the history of the solution as
in [Amann 2005; 2006].

9. Optimality of the results

In this section we show that the maximal regularity results obtained in Theorem 6.4 are optimal or close
to optimal. In fact, even in the form setting considered in Corollary 6.6, maximal regularity may fail
if one relaxes the assumed regularity, i.e., for maximal Lp-regularity A 2 PW ˛;p.Œ0; T �IB.V; V 0// for
some ˛ > 1

2
. It was shown in [Fackler 2017a, Theorem 5.1] that there is a symmetric nonautonomous

form with A 2 C 1=2.Œ0; T �IB.V; V 0// and f 2 L1.Œ0; T �IV / for which the unique solution given by
Proposition 4.4 satisfies Pu.t/ 62H for almost all t 2 Œ0; T �, although u 2L1.Œ0; T �IV / holds as one aims
for in the bootstrapping result given in Proposition 5.1. As a consequence, maximal Lp-regularity fails
for all p 2 Œ1;1�. Note that C 1=2.Œ0; T �IB.V; V 0// ,! PW ˛;q.Œ0; T �IB.V; V 0// for all ˛ 2

�
0; 1
2

�
and all

q 2 Œ1;1�. Hence, Theorem 6.4 fails for ˛ < 1
2

in all possible variants.
This leaves open the critical case ˛ D 1

2
. Note that for q 2 .1; 2/ the space PW 1=2;q.Œ0; T �IB.V; V 0//

contains piecewise constant forms. Hence, as observed by Dier [2014, Section 5.2], the failure of
the Kato square root property for general forms implies that maximal L2-regularity may not hold for
q < 2. Example 7.2 in [Fackler 2017b] shows that for p > 2 maximal Lp-regularity on L2.�/ for
A 2 PW 1=2;q.Œ0; T �IL.V; V 0// with q 2 .1; 2/ does not even hold for elliptic operators. Note that for
p 2 .1; 2/ these arguments based on the incompatibility of trace spaces break down.

Refining the arguments in [Fackler 2017a], we show that for symmetric forms maximal Lp-regularity
may fail for all p 2 Œ1;1� under the regularity A 2 PW 1=2;q.Œ0; T �IB.V; V 0// for some q > 2.

Example 9.1. We take H D L2
��
0; 1
2

��
and V D L2

��
0; 1
2

�
; w
�

with w.x/ D .xjlog xj/�3=2. Further,
we consider u.t; x/D c.x/.sin.t'.x//C d/ for '.x/D w.x/, c.x/D x � jlog xj and some sufficiently
large d > 0. Note that for all t 2 Œ0; T �

k Pu.t/k2H '

Z 1=2

0

jc.x/'.x/j2 dx D

Z 1=2

0

x�1
1

jlog xj
dx D1:

Hence, Pu.t/ 62H for all t 2 Œ0; T �. Following the ideas and arguments in [Fackler 2017a] we now show
that u is indeed an integrated solution of a nonautonomous problem associated to some coercive, bounded
symmetric sesquilinear form a W Œ0; T ��V �V !C and inhomogeneous part f .t/Du.t/2L1.Œ0; T �IV /.
For this one defines the form a.t; � ; � / on the set hu.t/i �V as

a.t; c �u.t/; v/D c
�
.f .t/jv/H � h Pu.t/; viV 0;V

�
(9-1)

and then extends the form to V �V by the same procedure as in [Fackler 2017a, Section 4]. Following
Section 5 of that paper, one checks the regularity of the extended forms. By the explicit formula for
the extension, one sees that it suffices to control the regularity of (duality) products of the functions
u W Œ0; T �! V , w�1u W Œ0; T �! V and Pu W Œ0; T �! V 0. Since PW ˛;p \L1 is an algebra under pointwise
multiplication, the regularity question boils down to the regularity of these individual functions. Further,
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one sees that for our concrete choice of u, the relevant fractional norms are dominated by that of
u W Œ0; T �! V . Hence, one only has to check the regularity of u W Œ0; T �! V , which we do now.

We show explicitly that u 2 PW 1=2;q.Œ0; T �IV / for all q 2 .2;1/. Note that on the one hand

jsin.t'.x//� sin.s'.x//j2 � jt � sj2'2.x/D jt � sj2x�3jlog xj�3: (9-2)

On the other hand the left-hand side can clearly be estimated by 4. Now, let  .x/ D 2x3=2jlog xj3=2.
Then (9-2) gives the sharper estimate if and only if jt � sj �  .x/ or equivalently x �  �1.jt � sj/.
Splitting the fractional norm, we obtain�Z T

0

Z T

0

ku.t/�u.s/k
q
V

jt � sj1Cq=2
dt ds

�1=q
D

�Z T

0

Z T�t

�t

ku.t/�u.t C r/k
q
V

jr j1Cq=2
dr dt

�1=q
.
�Z T

0

Z T�t

�t

�Z  �1.jrj/

0

x1=2jlog xj1=2 dx
�q=2 dr

jr j1Cq=2
dt

�1=q
C

�Z T

0

Z T�t

�t

�Z 1=2

 �1.jrj/

x�5=2jlog xj�5=2 dx
�q=2 dr

jr j1�q=2
dt

�1=q
: (9-3)

Now, for the innermost integral of the first term we have for F.x/D x3=2jlog xj1=2Z  �1.jrj/

0

x1=2jlog xj1=2 dx .
Z  �1.jrj/

0

F 0.x/ dx D F. �1.jr j//

.  . �1.jr j//
ˇ̌
log �1.jr j/

ˇ̌�1
D jr j

ˇ̌
log �1.jr j/

ˇ̌�1 . jr jjlog r j�1:

Analogously, for the second term we have for F.x/D�x�3=2jlog xj�5=2Z 1=2

 �1.jrj/

x�5=2jlog xj�5=2 dx .
Z 1=2

 �1.jrj/

F 0.x/ dx � �F. �1.jr j//

.
1

 . �1.jr j//

ˇ̌
log �1.jr j/

ˇ̌�1 . jr j�1 jlog r j�1:

Hence, (9-3) is dominated up to a constant by the finite expression�Z T

0

jlog r j�q=2
dr

jr j

�1=q
for q > 2.

Hence, for maximal L2-regularity of forms the only case left open is that of PW 1=2;2.Œ0; T �IB.V; V 0//
regularity, which we are not able to answer at the moment. Note that there is also a positive result
assuming some half differentiability. Namely, it was shown by Auscher and Egert [2016] that for elliptic
operators one has maximal L2-regularity if the coefficients aij satisfy @1=2aij 2 BMO. This in particular
implies aij 2 PH 1=2;q for all q 2 .1;1/, which in turn implies aij 2 PW 1=2;q for all q� 2, which in general
is not sufficient for maximal Lp-regularity by the above example. In the other direction, the inclusion
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PW 1=2;q ,! PH 1=2;q does only hold for q 2 .1; 2�. Hence, for q 2 .1; 2/ the space PH 1=2;q contains step
functions. Note that in the critical case one has PH 1=2;2 D PW 1=2;2; i.e., the Besov and the Bessel scale
give rise to the same problem.
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TRANSFERENCE OF BILINEAR RESTRICTION ESTIMATES TO
QUADRATIC VARIATION NORMS AND THE DIRAC–KLEIN–GORDON SYSTEM

TIMOTHY CANDY AND SEBASTIAN HERR

Firstly, bilinear Fourier restriction estimates — which are well known for free waves — are extended
to adapted spaces of functions of bounded quadratic variation, under quantitative assumptions on the
phase functions. This has applications to nonlinear dispersive equations, in particular in the presence
of resonances. Secondly, critical global well-posedness and scattering results for massive Dirac–Klein–
Gordon systems in dimension three are obtained, in resonant as well as in nonresonant regimes. The results
apply to small initial data in scale-invariant Sobolev spaces exhibiting a small amount of angular regularity.
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1. Introduction

The Fourier restriction conjecture was shaped in the 1970s by work of Stein, among others, and has
generated significant advances in the field of harmonic analysis and dispersive partial differential equations
since then; see, e.g., [Stein 1993; Tao 2004] for a survey and references.

As an example, let n>2 and C be a compact subset of the cone, say C D
˚
.j�j; �/ W 1

2
6 j�j62

	
�RnC1,

and g be a Schwartz function on RnC1. Equivalently to the Fourier restriction operator R W g 7! OgjC,
consider its adjoint, the Fourier extension operator

Ef .t; x/D
Z

Rn
e�i.t;x/�.j�j;�/f .�/ d�

for smooth f with supp.f / contained in the unit annulus. The function Ef can be viewed as the inverse
Fourier transform of a surface-measure supported on the cone C, and defines a function on RnC1 which
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solves the wave equation. The Fourier restriction conjecture for the cone is equivalent to establishing the
corresponding Fourier extension estimate

kEf kLpt;x.RnC1/ . kf kLq.Rn/

within the optimal range of p; q. In the special case q D 2 this holds if and only if p � .2nC 2/=.n� 1/,
and in the literature on dispersive equations this is stated as

ke�it jrjf kLpt;x.RnC1/
. kf kL2x

and called a Strichartz estimate [1977] for the wave equation; see also [Keel and Tao 1998].
In the course of proving Fourier extension estimates for the cone, it became apparent that a key role

was played by bilinear estimates. Indeed, a major breakthrough was achieved by Wolff [2001], when he
proved that for every p > .nC 3/=.nC 1/, n> 2, we have

e�it jrjfe�it jrjg



L
p
t;x.R

nC1/
. kf kL2xkgkL2x ;

provided the supports of Of and Og are angularly separated and contained in the unit annulus. As a result
Wolff was able to prove the linear restriction conjecture for C in dimension nD 3. It is important to note
that, in the presence of angular separation, a larger set of p can be covered in the bilinear estimate than
would follow from a simple application of Hölder’s inequality together with the linear estimates.

In parallel to these developments, bilinear estimates proved useful in the context of nonlinear dispersive
equations; see, e.g., [Klainerman and Machedon 1993; Bourgain 1998; Foschi and Klainerman 2000].
The perturbative approach to dispersive equations is based on constructing adapted function spaces in
which nonlinear terms can be effectively estimated. Bilinear estimates for solutions to the homogeneous
equation, which go beyond simple almost orthogonality considerations, give precise control over dynamic
interactions of products of linear solutions. However, to apply these homogeneous estimates to the
nonlinear problem necessitates the transfer of such genuinely bilinear estimates to adapted function spaces.

Such a transference principle was implemented first inXs;b spaces; see [Ginibre et al. 1997, Lemma 2.3]
and [Klainerman and Selberg 2002, Proposition 3.7]. Let us briefly illustrate it by looking at the following
example. Suppose that u; v 2 L1t L

2
x are superpositions of modulated solutions of the homogeneous

equation, i.e.,

u.t/D

Z
R

eit�eit jrjF� d�; v.t/D

Z
R

eit�
0

eit jrjG�0 d�
0;

which is true for u; v 2X0;b if b > 1
2

. Suppose in addition, that the spatial Fourier supports of u; v are
angularly separated. Then, for any p > .nC 3/=.nC 1/, Wolff’s estimate transfers to

kuvkLpt;x.RnC1/
�

Z
R

Z
R

keit jrjF�e
it jrjG�0kLpt;x.RnC1/

d�d�0 .
�Z

R

kF�kL2x d�

��Z
R

kG�0kL2x d�
0

�
;

which is equivalent to the bilinear estimate holding for functions in X0;b. Another strategy involves
certain atomic function spaces introduced in [Koch and Tataru 2005]. Suppose that

u.t/D
X
J2I

1J .t/e
it jrjfJ ; v.t/D

X
J 02I0

1J 0.t/e
it jrjgJ 0
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for finite partitions I; I 0 of R and fJ ; gJ 0 2 L2x . Then, under the above angular separation assumption,
Wolff’s bound implies

kuvkLpt;x.RnC1/
�

�X
J2I

X
J 02I0

keit jrjfJ e
it jrjgJ 0k

p

L
p
t;x.R

nC1/

�1
p

.
�X
J2I

kfJ k
p

L2x

�1
p
�X
J 02I0

kgJ 0k
p

L2x

�1
p

:

As a consequence, we deduce that Wolff’s bilinear estimate holds for angularly separated functions in
the atomic space U p; see Definition 3.4 below. This is one instance of the transference principle in U p,
which has been formalised in [Hadac et al. 2009, Proposition 2.19].

For many applications, the above superposition requirements are too strong, partly due to the duality
theory for the spaces X0;b for b > 1

2
and U p for p � 2. Nevertheless, variations of the above strategies

have been successfully employed in numerous applications to nonlinear global-in-time problems in the
case p � 2. In the case p < 2, the only result we are aware of is [Sterbenz and Tataru 2010, Lemma 5.7
and its proof], where this approach is used in conjunction with an interpolation argument to give a partial
result only; see Remark 6.2 for further details.

It turned out that one of the most powerful function spaces in the context of adapted function spaces
is the space of functions of bounded quadratic variation V 2, which is slightly bigger than U 2. Our first
main result of this paper is the corresponding transference principle in V 2 for a quite general class of
surfaces in Theorem 1.1 below.

We start with some definitions. Define Z D f.tj /j2Z W tj 2 R and tj < tjC1g to be the set of increasing
sequences of real numbers and 1� p <1. Given a function � W R! L2x , we define the p-variation of �
to be

j�jV p D sup
.tj /2Z

�X
j2Z

k�.tj /� �.tj�1/k
p

L2x

�1
p

:

The Banach space V p is then defined to be all right continuous functions � W R! L2x such that

k�kV p D k�kL1t L
2
x
Cj�jV p <1:

Given a phase ˆ W Rn! R we let V pˆ denote the space of all functions u such that e�itˆ.�ir/u 2 V p

equipped with the obvious norm kukV pˆ D ke
�itˆ.�ir/ukV p . In other words, the space V pˆ contains all

functions u 2 L1t L
2
x such that the pull-back along the linear flow has bounded p-variation; in particular

we have
keitˆ.�ir/f kV pˆ

D kf kL2x :

Before stating Theorem 1.1, we need to introduce the assumptions that we impose on our phases, which
are motivated by [Lee and Vargas 2010; Bejenaru 2017]. Examples will be discussed in Section 2. Let

ĵ WR
n!R and ƒj be a convex subset of

˚
1
16
6 j�j6 16

	
. Given hD .a; h/2R1Cn and fj; kgD f1; 2g

we define the hypersurfaces

†j .h/D f� 2ƒj \ .ƒkC h/ W ĵ .�/Dˆk.� � h/C ag:

With this notation, we are ready to state the main assumption; cf. [Bejenaru 2017; Lee and Vargas 2010].
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Assumption 1 (transversality/curvature/regularity). There exist D1;D2 > 0 and N 2 N such that for
ˆ1; ˆ2 W R

n! R the following hold true:

(i) For every fj; kg D f1; 2g, h 2 R1Cn, �; � 0 2†j .h/, and � 2ƒk we have the estimateˇ̌
.r ĵ .�/�r ĵ .�

0//^ .r ĵ .�/�rˆk.�//
ˇ̌
>D1j� � �

0
j:

(ii) We have ĵ 2 C
N .ƒj / with the derivative bound

sup
16j�j6N

k@� ĵ kL1.ƒj / 6D2:

The condition (i) in Assumption 1 is somewhat difficult to interpret, but one immediate consequence is
the bound

jr ĵ .�/�r ĵ .�
0/j>

D1j� � �
0j

krˆ1kL1 Ckrˆ2kL1
; (1-1)

which holds for every �; � 0 2†j .h/. To some extent, this is a curvature condition, as it shows that the
normal direction varies on †j .h/. Another consequence of (i) is that for every � 2ƒ1, � 2ƒ2 we have
the transversality bound

jrˆ1.�/�rˆ2.�/j>
D1

minfkr2ˆ1kL1 ; kr2ˆ2kL1g
: (1-2)

This follows by simply observing that for every � 2ƒ1 there is h 2 R1Cn such that � 2†1.h/. Our first
main result can now be stated as follows.

Theorem 1.1. Let n > 2, p > .nC 3/=.nC 1/, and D1;D2;R0 > 0. For j D 1; 2, let ƒj ; ƒ�j �˚
1
16
6 j�j6 16

	
with ƒj convex and ƒ�j C 1=R0 �ƒj . There exists N 2 N and a constant C > 0 such

that, for any phases ˆ1 and ˆ2 satisfying Assumption 1, and any u 2 V 2ˆ1 , v 2 V 2ˆ2 with supp Ou.t/�ƒ�1 ,
supp Ov.t/�ƒ�2 , we have

kuvkLpt;x.R1Cn/
6 CkukV 2ˆ1

kvkV 2ˆ2
:

Note that the constants N and C depend on the parameters p > .n C 3/=.n C 1/, n > 2, and
D1;D2;R0 > 0, but are otherwise independent of the phase ĵ , the sets ƒj , ƒ�j , and the functions u
and v. Moreover, as the conditions in Assumption 1 are invariant under translations, the condition that
ƒj �

˚
1
16
6 j�j6 16

	
can be replaced with the condition that the sets ƒj are simply contained in balls of

radius 16. In other words, the location of the sets ƒj plays no role. We refer the reader to Corollary 6.1
for a generalisation of Theorem 1.1 to mixed norms. Further, we refer to Corollary 6.4 for a generalisation
to more general frequency scales in the case of hyperboloids, which is also shown to be sharp.

Let us summarise the developments for solutions to the homogeneous equation, i.e.,

uD eitˆ1.�ir/f; v D eitˆ2.�ir/g:

First estimates of this type for nontrivial p < 2 are due to Bourgain [1991; 1995] in the case of the
cone, i.e., ˆ1.�/Dˆ2.�/D j�j. Subsequently, these have been improved by Tao, Vargas and Vega [Tao
et al. 1998], Moyua, Vargas and Vega [Moyua et al. 1999], Tao and Vargas [2000a], before finally Tao
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[2001] proved the endpoint case pD .nC3/=.nC1/; see also Remark 5.1. Actually, we observe that the
vector-valued inequality in [Tao 2001] is strong enough to deduce the estimate in U 2 in the case of the
wave equation; see Remark 5.2. Related estimates for null-forms have been proved by Tao and Vargas
[2000b], Klainerman, Rodnianski and Tao [Klainerman et al. 2002], Lee and Vargas [2008], and Lee,
Rogers and Vargas [Lee et al. 2008]. In the case of the paraboloid, i.e., ˆ1.�/Dˆ2.�/D j�j2, the result
for homogeneous solutions is due to Tao [2003], with generalisations by Lee [2006a; 2006b], Lee and
Vargas [2010], and Bejenaru [2017] under more general curvature and transversality conditions, as well
as by Buschenhenke, Müller and Vargas [2017] for surfaces of finite type. For our approach, the most
important references are [Tao 2003] concerning notation and general line of proof and [Lee and Vargas
2010; Bejenaru 2017], concerning the assumptions on the phases and its consequences. Throughout the
paper, we shall point out similarities and differences in more detail.

We would like to highlight the fact that we explicitly track the dependence of the constants on the
phases in Theorem 1.1 based on the global, quantitative Assumption 1; in particular we avoid abstract
localisation arguments. This is helpful for applications to dispersive equations, as we will see below. The
main novelty of this result, however, lies in the fact that it holds for V 2

ĵ
-functions in the range p � 2.

Now, we turn to the application of Theorem 1.1 to nonlinear dispersive equations with a quadratic
nonlinearity which exhibit resonances. Roughly speaking, by a resonance we mean the scenario that
a product of two solutions to the homogeneous equation creates another solution of the homogeneous
equation; see Section 8 for details. This leads to the lack of oscillations in the Duhamel integral and hence
to strong nonlinear effects. In many instances, one finds that the Fourier supports intersect transversally
in the resonant sets. As an example, we mention the local well-posedness theory for the Zakharov
system [Bejenaru et al. 2009; Bejenaru and Herr 2011], where this is exploited in terms of a nonlinear
Loomis–Whitney inequality [Bennett et al. 2005; Bejenaru et al. 2010; Bennett and Bez 2010; Koch
and Steinerberger 2015]. This is a special case of the multilinear restriction theory [Bennett et al. 2006;
Bennett and Bez 2010]. Here, we will exploit transversality in resonant sets via Theorem 1.1 and prove
global-in-time estimates which go beyond the range of linear Strichartz estimates.

With this approach, we address the Dirac–Klein–Gordon system

�i
�@� CM D� ;

��Cm2� D �
0 :
(1-3)

Here,  W R1C3! C4 is a spinor field,  � D N t , � W R1C3! R is a scalar field, � WD @2t ��x is the
d’Alembertian operator, and M;m> 0. We use the summation convention with respect to �D 0; : : : ; 4,
and the Dirac matrices 
� 2 C4�4 are given by


0 D diag.1; 1;�1;�1/; 
j D

�
0 �j

��j 0

�
;

with the Pauli matrices

�1 D

�
0 1

1 0

�
; �2 D

�
0 �i

i 0

�
; �3 D

�
1 0

0 �1

�
:
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We are interested in the system (1-3) with the initial condition

 .0/D  0 W R
3
! C4 and .�.0/; @t�.0//D .�0; �1/ W R

3
! R�R: (1-4)

In the massless case, (1-3) can be rescaled and the scale-invariant Sobolev space for . 0; �0; �1/ is

L2.R3IC4/� PH
1
2 .R3IR/� PH�

1
2 .R3IR/:

Let h�i� D .1��S2/
�
2 denote � angular derivatives; see Section 7B for precise definitions. Our second

main result is the following.

Theorem 1.2. Suppose that either 2M >m> 0 and � > 0, or that m> 2M > 0 and � > 7
30

. Then, for
initial data satisfying

kh�i� 0kL2.R3/Ckh�i
��0kH1=2.R3/Ckh�i

��1kH�1=2.R3/� 1;

the system (1-3)–(1-4) is globally well-posed and solutions . ; �/ scatter to free solutions as t !˙1.

As the proof relies on contraction arguments in adapted function spaces, the notion of global well-
posedness in Theorem 1.2 includes persistence of regularity and the local Lipschitz continuity of the flow
map and it provides a certain uniqueness class. Note that the angular regularity does not affect the scaling
of the spaces. In summary, Theorem 1.2 establishes global well-posedness and scattering in the critical
Sobolev space for small initial data with a bit of angular regularity.

In the case 2M >m> 0, which we call nonresonant regime due to Lemma 8.7, this theorem improves
Wang’s result [2015] by both relaxing the angular regularity hypothesis and replacing Besov spaces
by Sobolev spaces. We also mention the previous subcritical result [Bejenaru and Herr 2017] without
additional angular regularity, where the possibility of a Besov endpoint result with an � > 0 of angular
regularity was discussed in Remark 4.2. In the case m> 2M > 0, which we call the resonant regime due
to Lemma 8.7, this appears to be the first global well-posedness and scattering result in critical spaces for
(1-3). A similar comment applies to the case 2M Dm>0, which we call the weakly resonant regime. It is
the resonant regime where we employ Theorem 1.1; see also Remark 7.6. Concerning further comments
on the number of angular derivatives required in the resonant case, we refer to Remark 8.4.

We shall only mention a few selected results on this well-studied system (1-3). We refer the reader
to [D’Ancona et al. 2007] for previous local results and to [Chadam and Glassey 1974; Bachelot 1988;
Bejenaru and Herr 2017; Wang 2015] for previous global results on this system. Concerning its relevance
in physics we refer the reader to [Bjorken and Drell 1964].

The organisation of the paper is as follows: In Section 2, we discuss a sufficient condition on the phases,
verify Assumption 1 in the case of the Schrödinger, the wave, and the Klein–Gordon equations, and derive
important consequences, in particular the dispersive inequality, and a bilinear estimate for homogeneous
solutions in L2t;x . In Section 3, we study wave packets, atomic spaces and tubes. In Section 4, we state
and prove a crucial localised version of Theorem 1.1. The proof proceeds by performing an induction-on-
scales argument, and reducing the problem to obtaining a crucial L2-bound which in turn follows from a
combinatorial estimate. Section 5 is devoted to the globalisation lemma, which removes the localisation
assumption used in Section 4, and hence concludes the proof of Theorem 1.1. In Section 6, we generalise
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Theorem 1.1 to mixed norms and, in the case of hyperboloids, give an extension to general scales and
discuss counterexamples. In Section 7 we prepare the analysis of the Dirac–Klein–Gordon system and
prove Theorem 1.2 under the hypothesis that certain bilinear estimates hold true. In Section 8 we discuss
some auxiliary estimates and finally provide proofs of the bilinear estimates used in Section 7.

2. On Assumption 1: examples and consequences

We now discuss examples, and consider in detail a number of key consequences of Assumption 1. All of
this is known to experts, at least in the specific cases we are interested in. The main objective is to verify
that Assumption 1 allows for a unified treatment which allows us to track the dependence of constants on
the phases.

2A. A sufficient condition. Let diam.ƒj /D sup�;�02ƒj j� � �
0j. The condition (i) in Assumption 1 is

somewhat difficult to check (essentially since we insist on a global condition rather than just a local condi-
tion using the Hessian of ĵ ). In practise it is easier to check the following marginally stronger conditions.

Lemma 2.1. Assume that the following three conditions hold:

(i) For all � 2ƒ1 and � 2ƒ2
jrˆ1.�/�rˆ2.�/j>A1: (2-1)

(ii) For j D 1; 2, and every h 2 R1Cn and �; � 0 2†j .h/ˇ̌̌̌
.r ĵ .�/�r ĵ .�

0// �
� � � 0

j� � � 0j

ˇ̌̌̌
>A2j� � �

0
j: (2-2)

(iii) The sets ƒ1 and ƒ2 satisfy

diam.ƒ1/C diam.ƒ2/6
A1A2

2.kr2ˆ1kL1.ƒ1/Ckr
2ˆ2kL1.ƒ2//

2
: (2-3)

Then, condition (i) in Assumption 1 holds with D1 D
1
2
A1A2.

Proof. The first step is to observe that for vectors x; y 2 Rn, and ! 2 Sn�1 we have

jx ^yj> jyjjx �!j � jxjjy �!j: (2-4)

Indeed, this follows from

jx ^yj2 D jxj2 jyj2� .x �y/2 D jyj2
ˇ̌̌̌
x�

x �y

jyj2
y

ˇ̌̌̌2
;

which implies

jx ^yj D jyj

ˇ̌̌̌
x�

x �y

jyj2
y

ˇ̌̌̌
> jyj

ˇ̌̌̌
x �! �

x �y

jyj2
y �!

ˇ̌̌̌
> jyj

�
jx �!j �

jxj

jyj
jy �!j

�
:

In particular, if we let x Dr ĵ .�/�r ĵ .�
0/, y Dr ĵ .�/�rˆk.�/, and ! D .� � � 0/=j� � � 0j, then

since jxj 6 kr2 ĵ kL1.ƒj /j� � �
0j (using the convexity of ƒj ), the lower bound (i) in Assumption 1
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would follow from (2-2), (2-4), and the transversality condition (2-1), provided thatˇ̌̌̌
.r ĵ .�/�rˆk.�// �

� � � 0

j� � � 0j

ˇ̌̌̌
6

A1A2

2kr2 ĵ kL1.ƒj /
: (2-5)

The proof of (2-5) requires the condition �; � 0 2†j .h/ together with the assumption (2-3) on the size of
the sets ƒj . Let

�j .x; z/D ĵ .x/� ĵ .z/�r ĵ .z/ � .x� z/:

A computation gives

r ĵ .z/ �.x�y/D
�
ĵ .x/��j .x; z/� ĵ .z/�r ĵ .z/ �z

�
�
�
ĵ .y/��j .y; z/� ĵ .z/�r ĵ .z/ �z

�
D ĵ .x/� ĵ .y/C�j .y; z/��j .x; z/;

and hence, using the assumption �; � 0 2†j .h/, we see that

.r ĵ .�/�rˆk.�// � .� � �
0/

D ĵ .�/� ĵ .�
0/C �j .�

0; �/�
�
ĵ .� � h/�ˆk.�

0
� h/C �k.�

0
� h; �/� �k.� � h; �/

�
D �j .�

0; �/C �k.� � h; �/� �k.�
0
� h; �/:

If we now observe that

�j .x; z/��j .y; z/D

Z 1

0

Œr ĵ .yC t .x�y//�r ĵ .z/� �.x�y/ dt 6 kr2 ĵ kL1.ƒj / diam.ƒj /jx�yj

we then deduce the boundˇ̌̌̌
.r ĵ .�/�rˆk.�// �

� � � 0

j� � � 0j

ˇ̌̌̌
6 diam.ƒ1/kr2ˆ1kL1.ƒ1/C diam.ƒ2/kr2ˆ2kL1.ƒ2/:

Consequently (2-5) follows from (2-3). �

2B. The Schrödinger, the wave and the Klein–Gordon equations. We now consider some examples of
phases satisfying Assumption 1. It is enough to check the conditions in Lemma 2.1. In particular, by
making the sets ƒj slightly smaller if necessary, it suffices to ensure that the transversality condition
(2-1) and curvature condition (2-2) hold.

Firstly, consider the Schrödinger case

ĵ .�/D
1
2
j�j2:

Then the condition (2-1) in Lemma 2.1 becomes

jrˆ1.�/�rˆ2.�/j D j� � �jI

thus we simply require that the sets ƒj have some separation. Assuming that the diameters of the sets ƒj
are sufficiently small, we just need to ensure that (2-2) holds. However (2-2) is justˇ̌̌̌

.r ĵ .�/�r ĵ .�
0// �

� � � 0

j� � � 0j

ˇ̌̌̌
D j� � � 0j

and so (2-2) clearly holds (with constant A2 D 1).
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Secondly, consider the case

ĵ .�/D h�imj D .m
2
j Cj�j

2/
1
2 ;

where the mass satisfies mj > 0. To simplify notation, we assume that for � 2 ƒj there is a constant
A > 0 such that

1

A
6 h�imj 6 A:

To check the transversality condition (2-1) we note thatˇ̌
rˆ1.�/�rˆ2.�/

ˇ̌2
D

ˇ̌̌̌
�

h�im1
�

�

h�im2

ˇ̌̌̌2
D

�
j�j

h�im1
�
j�j

h�im2

�2
C

2j�jj�j

h�im1h�im2

�
1�

� � �

j�jj�j

�

D

�
.m2j�jCm1j�j/.m2j�j �m1j�j/

h�im1h�im2.j�jh�im2 Cj�jh�im1/

�2
C

2j�jj�j

h�im1h�im2

�
1�

� � �

j�jj�j

�
(2-6)

(in particular, we always have transversality if j�j � j�j � 1 and m1�m2).
On the other hand, to check the condition (2-2), we use the following elementary bound.

Lemma 2.2. Let `> 2 and .a; h/ 2 R1C`. If x; y 2 fz 2 R` W jzj D jz� hjC ag we have the inequalityˇ̌̌̌
x

jxj
�
y

jyj

ˇ̌̌̌2
> jx�yj2

ˇ̌̌̌
x

jxj
�
x� h

jx� hj

ˇ̌̌̌4
jx� hj2

16jxjjyjjx� hj2C 4.jx� hjC jxj/2 jyj2
:

Proof. The condition x 2 fz 2 R` W jzj D jz� hjC ag implies jx� hj2 D .jxj � a/2 and hence

x

jxj
� hD

jhj2� a2

2jxj
C a:

Therefore ˇ̌̌̌
x

jxj
�
y

jyj

ˇ̌̌̌
>
jhj2� a2

2jhj

ˇ̌̌̌
1

jxj
�
1

jyj

ˇ̌̌̌
D
jx� hj

2jhjjyj

ˇ̌̌̌
x

jxj
�
x� h

jx� hj

ˇ̌̌̌2ˇ̌
jxj � jyj

ˇ̌
;

where we used the identities hD x�.x�h/ and aD jxj�jx�hj. The lemma now follows by noting that

jx�yj2 D jxjjyj

ˇ̌̌̌
x

jxj
�
y

jyj

ˇ̌̌̌2
C
ˇ̌
jxj � jyj

ˇ̌2
: �

We now show that (2-2) holds. A computation givesˇ̌
.r ĵ .�/�r ĵ .�

0// � .� � � 0/
ˇ̌
D

ˇ̌̌̌
j�j2

h�imj
C
j� 0j2

h� 0imj
�
� � � 0

h�imj
�
� � � 0

h�imj

ˇ̌̌̌

D

ˇ̌̌̌
h�imj Ch�

0
imj �

� � � 0Cm2j

h�imj
�
� � � 0Cm2j

h� 0imj

ˇ̌̌̌
D
h�imj Ch�

0imj

2

ˇ̌̌̌
x

jxj
�
y

jyj

ˇ̌̌̌2
;
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where we let x D .mj ; �/ and y D .mj ; � 0/. If we now note that the surface ĵ .�/Dˆk.� � h/C a can
be written as jxj D jy � h0jC a with h0 D .mk �mj ; h/, then an application of Lemma 2.2 givesˇ̌

.r ĵ .�/�r ĵ .�
0// � .� � � 0/

ˇ̌
>

A4
1

32A6
j� � � 0j2:

Therefore, by Lemma 2.1, we see that (i) in Assumption 1 holds with D1 DA5
1=.64A

6/. Note that the
above argument also applies in the case of the wave equation m1 Dm2 D 0.

2C. The dispersive inequality. To simplify the statements to follow, we fix constants R0>1, D1;D2>0

and N > nC 1, and assume that we have phases ˆ1, ˆ2 satisfying Assumption 1 and sets ƒj , ƒ�j with
ƒj convex and ƒ�j C 1=R0 �ƒj �

˚
1
16
6 j�j6 16

	
.

As a consequence of the curvature-type bound (1-1) relative to the (n�1)-dimensional surface †j .h/,
we expect that we should have the dispersive inequality

keit ĵ .�ir/f kL1x . t
�n�1

2 kf kL1x (2-7)

for f 2 L1 with supp Of �ƒj . To prove this decay in practise, the standard approach would involve a
stationary phase argument. However, as we only have curvature information on the surfaces †j .h/, and
these surfaces are somewhat involved to work with, the standard approach via stationary phase arguments,
keeping track of the constants, seems difficult to implement. Consequently, we instead present a different
argument, using an approach via wave packets. Roughly speaking, fixing some large time t �R, the idea
is to cover ƒj with balls of size R�

1
2 and decompose eit ĵ .�ir/f as

eit ĵ .�ir/f D
X

�02R�1=2Zn\supp Of

K�0 �f

for some smooth kernels K�0.t; x/ with kK�0.t/kL1x 6 R
�n
2 . Then since †j .h/ is a hypersurface, by

restricting to points close to †j .h/ we should have

keit ĵ .�ir/f kL1x 6 kf kL1x





 X
�02R�1=2Zn\supp Of

K�0.t; x/






L1x

. kf kL1x R
1
2 sup

h





 X
�02R�1=2Zn\.†j .h/CR�1=2/

K�0.t; x/






L1x

:

The condition (i) in Assumption 1 then shows that, for times t �R, the spatial supports of the kernels
K�0.t; x/ are essentially disjoint, and hence



 X

�02R�1=2Zn\.†j .h/CR�1=2/

K�0.t; x/






L1x

� sup
�02R�1=2Zn\.†j .h/CR�1=2/

kK�0.t/kL1x .R
�n
2 � t�

n
2 ;

which would then give the desired dispersive estimate (2-7).
In the remainder of this subsection, we fill in the details of the argument sketched above. We first

require a technical lemma involving the surfaces †j .h/.
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Lemma 2.3. Let fj; kgDf1; 2g, hD.a;h/2R1Cn, and r>2.D2=D1/R0. Assume �02.ƒ�jC1=.2R0//\

.ƒ�
k
ChC1=.2R0// and ˇ̌

ĵ .�0/�ˆk.�0� h/� a
ˇ̌
6 1
r
:

Then j�0�†j .h/j6D2=.D1r/.

Proof. Define F.�/Dˆ1.�/�ˆ2.��h/�a; by replacing F with �F if necessary, we may assume that
F.�0/> 0. We need to show there exists j� � �0j6D2=.D1r/ such that F.�/D 0. To this end, let �.s/
be the solution to

@s�.s/D�
rF.�.s//

jrF.�.s//j
; �.0/D �0:

Note that, for times s 2 Œ0;D2=.rD1/�, we have j�.s/� �0j6 s. On the other hand, since jF.�0/j6 1=r
by assumption, the transversality property (1-2) implies

F.�.s//D F.�0/�

Z s

0

jrF.�.s0//j ds0 6
1

r
� s

D1

D2
:

Consequently F.�.s// must be zero for some s 2 Œ0;D2=.rD1/� and hence the result follows. �

We now come to the proof of the dispersive inequality.

Lemma 2.4 (dispersion). Let j D 1; 2. For any f 2 L1x with supp Of � ƒ�j C 1=.2R0/ and any t > 1
we have

keit ĵ .�ir/f kL1x . t
�n�1

2 kf kL1x ;

where the implied constant depends only R0;D1;D2, and n� 2.

Proof. It is enough to consider the case j D 1 and R 6 t 6 2R with R > .10R0/
2. Since ƒ�2C 1=.2R0/

contains a ball of size .2R0/
�1, we can find a finite set H � Rn such that #H . Rn

0 and ƒ1 DS
h2H ƒ1\ .ƒ

�
2C 1=.2R0/h/. In particular, by decomposing supp Of into O.Rn

0 / sets, it is enough to
consider the case supp Of � .ƒ�1C 1=.2R0//\ .ƒ

�
2C 1=.2R0/C h/. Let � 2 C10 .j�j6 1/ such thatX

k2Zn

�.� � k/D 1:

The support assumption on Of , together with the fact that R > .10R0/
2, implies

.eitˆ1.�ir/f /.x/D
X

�02R�1=2Zn\. supp OfC 1
10R0

/

K�0.t/�f .x/;

where K�0.t; x/D
R

Rn
�.R

1
2 .� � �0//e

itˆ1.�/eix�� d�. Since R 6 t 6 2R, our goal is to show that



 X
�02R�1=2Zn\. supp OfC 1

10R0
/

jK�0.t; x/j






L1x

.R�
n�1
2 :
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We would like to write this sum in a way which involves the hypersurfaces †1.h/. Fix 0 < ı �

D1=.D1 CD2/ and let ı� D .D1=D2/ı. Given �0 2 R�
1
2Z \ .supp Of C 1=.10R0//, we can find

a 2 ı�R�
1
2Z with jaj6 2D2 such that

jˆ1.�0/�ˆ2.�0� h/� aj6 ı�R�
1
2 :

Therefore, an application of Lemma 2.3 with r DR
1
2 =ı� implies �0 2†1.a; h/C ıR�

1
2 ; hence we haveX

�02R�1=2Zn\. supp OfC 1
10R0

/

jK�0.t; x/j6
X

a2ı�R�1=2Z
jaj62D2

X
�02R�1=2Zn\.†1.a;h/CıR�1=2/

jK�0.t; x/j

.R
1
2 sup

h

X
�02R�1=2Zn\.†1.h/CıR�1=2/

jK�0.t; x/j:

We now exploit the localisation of the kernel, together with the partial curvature condition (1-1). Write

K�0.t; x/DR
�n
2

Z
Rn
�.�/eitŒˆ1.R

�1=2�C�0/�R
�1=2rˆ1.�0/��� eiR

�1=2.xCtrˆ1.�0//�� d�:

Integrating by parts nC 1 times gives

jK�0.t; x/j.R
�n
2

�
1CR�

1
2

ˇ̌
xC trˆ1.�0/

ˇ̌��n�1
: (2-8)

Let � 00 2R
� 1
2Zn\ .†1.a; h/CR

� 1
2 / denote the minimum of jxC trˆ1.�0/j. We claim that for every

�0 2R
� 1
2Zn\ .†1.a; h/CR

� 1
2 / we have

jxC trˆ1.�0/j> 1
4
D1Rj�0� �

0
0j: (2-9)

Assuming this holds for the moment, we would then obtainX
�02R�1=2Zn\. supp OfC 1

10R0
/

jK�0.t; x/j.R
1
2 sup

h

X
�02R�1=2Zn\.†1.h/CR�1=2/

jK�0.t; x/j

.R�
n�1
2

X
�02R�1=2Zn

.1CR
1
2 j�0� �

0
0j/
�n�1 .R�

n�1
2

as required. Thus it only remains to verify (2-9). This is immediate if RD1j�0� �
0
0j6 2jxC trˆ1.�

0
0/j.

Thus we may assume that RD1j�0� �
0
0j> 2jxC trˆ1.�

0
0/j. Note that this implies j� � �0j>R�

1
2 . By

construction, there exists �; � 0 2†1.h/ such that j� � �0j6 ıR�
1
2 , j� 0� � 00j6 ıR

� 1
2 . Therefore, applying

the lower bound (1-1), we deduce that

jxCtrˆ1.�0/j> t jrˆ.�/�rˆ.� 0/j�jxCtrˆ1.� 00/j�t jrˆ1.�0/�rˆ1.�/j�t jrˆ1.�
0
0/�rˆ1.�

0/j

>RD1j���
0
j�jxCtrˆ1.�

0
0/j�4D2ıR

1
2

> 1
2
RD1j�0��

0
0j�4.D1CD2/ıR

1
2 > 1

4
RD1j�0��

0
0j;

provided that we choose ı�D1=.D1CD2/. Hence we obtain (2-9) and thus result follows. �
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Remark 2.5. By the standard T T �-argument, this implies the linear Strichartz-type estimates for wave
admissible pairs. We omit the details and refer to [Keel and Tao 1998].

2D. Classical bilinear estimate in L2
t;x . The main use of the transversality property (1-2) contained

in Assumption 1 is to deduce the following well-known bilinear estimate, which dates back at least to
[Bourgain 1998, Lemma 111] in the case of the Schrödinger equation and nD 2.

Lemma 2.6. Let 0 < r < 1 and f; g 2 L2x . Assume that the supports of Of and Og are contained in balls of
radius r intersected with ƒ1 and ƒ2 respectively, and for all � 2ƒ1 and � 2ƒ2

jrˆ1.�/�rˆ2.�/j> C0: (2-10)

Then,

keitˆ1.�ir/feitˆ2.�ir/gkL2t;x.R1Cn/
.
�
rn�1

C0

�1
2

kf kL2xkgkL2x :

Proof. For mD 1; : : : ; n let

�m D

�
.�; �/ 2ƒ1 �ƒ2 W j@mˆ1.�/� @mˆ2.�/j>

C0

2n

�
:

Condition (2-10) and the support assumptions on Of and Og imply that we have the decomposition�3
eitˆ1.�ir/feitˆ2.�ir/g

�
.�/D

nX
mD1

Z
Rn

Of .� � �/ Og.�/1�m.� � �; �/ e
it.ˆ1.���/Cˆ2.�// d�:

Consider the mD 1 term and write �D .�1; �0/ 2 R�Rn�1. The change of variables .�1; �0/ 7! .�; �0/,
where � Dˆ1.� � �/Cˆ2.�/, givesZ

Rn

Of .� � �/ Og.�/1�1.� � �; �/ e
it.ˆ1.���/Cˆ2.�// d�

D

Z
R

Z
Rn�1

Of .� � ��/ Og.��/

@1ˆ1.� � ��/� @1ˆ2.��/
1�1.� � �

�; ��/ d�0 eit� d�;

where �� D .�1Œ�; �; �0�; �0/. Thus an application of Plancherel, followed by Hölder in �0, shows that



Z
Rn

Of .� � �/ Og.�/1�m.� � �; �/ e
it.ˆ1.���/Cˆ2.�// d�






L2
t;�

D





Z
Rn�1

Of .� � ��/ Og.��/

@1ˆ1.� � ��/� @1ˆ2.��/
1�1.� � �

�; ��/ d�0





L2
�;�

6 .2r/
n�1
2
2n

C
1
2

0





 Of .� � ��/ Og.��/

j@1ˆ1.� � ��/� @1ˆ2.��/j
1
2






L2
�;�;�0

D 2n

�
.2r/n�1

C0

�1
2

kf kL2xkgkL2x ;

where the last equality follows by undoing the change of variables. Since the terms with 1 < m6 n are
identical, the lemma follows. �
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2E. Geometric consequences. The last step in the proof of Theorem 1.1 requires a combinatorial Kakeya-
type bound. This bound relies on the fact that certain tubes intersect transversally, and is the main reason
for introducing the condition (i) in Assumption 1. The following is motivated by [Lee and Vargas 2010;
Bejenaru 2017]; see also Section 9 of [Tao 2003].

Let h 2 R1Cn and define the conic hypersurface

Cj .h/D f.r;�rr ĵ .�// W r 2 R; � 2†j .h/g:

A computation shows that the tangent plane to Cj .h/ is spanned by the vectors

.1;�r ĵ .�// and H ĵ .�/v for v 2 T�†j .h/;

where H ĵ .�/ denotes the Hessian of ĵ at � . On the other hand, as we will see in the proof Lemma 2.7
below, the condition (i) in Assumption 1 impliesˇ̌

.1;�r ĵ .�//^ .1;�rˆk.�//^ .0;r ĵ .�/�r ĵ .�
0//
ˇ̌
& j� � � 0j

for every �; � 0 2†j .h/. Hence, letting � 0! � in †j .h/, we can interpret (i) in Assumption 1 as saying
that, for every v 2 T�†j .h/, we haveˇ̌

.1;�r ĵ .�//^ .1;�rˆk.�//^ .0;H ĵ .�/v/
ˇ̌
& jvj:

In particular, the vector .1;�rˆk.�// must be transversal to the surface Cj .h/ for every � 2 ƒk . A
more quantitative version of this statement — and the one we make use of in practice — is given by the
following.

Lemma 2.7. Let h 2 R1Cn and fj; kg D f1; 2g. For every � 2ƒj and p; q 2 Ck.h/ we haveˇ̌
.p� q/^ .1;�r ĵ .�//

ˇ̌
>

D1jp� qj

.1CkrˆkkL1.ƒk//kr
2ˆkkL1.ƒk/

:

Proof. Let w;w0; w00 2 Rn. The identity

jx ^y ^ zj D inf
v2spanfx;yg

jv^ zj

jvj
jx ^yj

implies ˇ̌
.1; w00/^ .1; w/^ .0; w�w0/

ˇ̌
D
ˇ̌
.1; w00/^ .0; w�w00/^ .0; w�w0/

ˇ̌
D inf
v2W

jv^ .1; w00/j

jvj

ˇ̌
.0; w�w00/^ .0; w�w0/

ˇ̌
> j.w�w00/^ .w�w0/j;

where W D spanf.0; w �w00/; .0; w �w0/g. Consequently, applying the wedge product identity once
more, we deduce that for every v 2 spanf.1; w/; .0; w�w0/g

jv^ .1; w00/j>
j.w�w00/^ .w�w0/j

.1Cjwj/jw�w0j
jvj: (2-11)
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Fix � 2 ƒj and p; q 2 Ck.h/. By definition, this implies that we have �; � 0 2 †j .h/ and r; r 0 > 0

such that p D .r;�rrˆk.�// and q D .r 0;�r 0rˆk.� 0//. Clearly, due to the convexity of ƒk we have
jrˆk.�/�rˆk.�

0/j 6 kr2ˆkkL1.ƒk/j� � �
0j. If we now let w D �rˆk.�/, w0 D �rˆk.� 0/, and

w00 D�r ĵ .�/ in (2-11), then we deduce from (i) in Assumption 1 that

jv^ .1;�r ĵ .�//j>
D1jvj

.1CkrˆkkL1.ƒk//kr
2ˆkkL1.ƒk/

for every v 2 spanf.1;�rˆk.�//; .0;rˆk.�/�rˆk.� 0//g. Taking v D p � q and observing that we
can write

.p� q/D .r � r 0/.1;�rˆk.�//C r
0.0;rˆk.�/�rˆk.�

0//;

the required bound now follows. �

3. Wave packets, atomic spaces, and tubes

We now discuss the wave packet decomposition. To some extent, we follow the arguments in [Tao
2003], but use a slightly different notation by using projections labelled by phase-space points as in [Lee
and Vargas 2010]. Again, this helps us to carefully track constants. In addition, we consider certain
atomic decompositions. Concerning the phases ĵ , it turns out that the only property we require in the
construction of wave packets below, is (ii) in Assumption 1. Consequently, throughout this section, we
fix constants R0 > 1, D2 > 0 and N > nC1, and assume that for j D 1; 2 we have sets ƒj , ƒ�j with ƒj
convex and ƒ�j C 1=R0 �ƒj �

˚
1
16
6 j�j6 16

	
, and phases ĵ Wƒj ! R such that

sup
16j�j6N

k@� ĵ kL1.ƒj / 6D2:

3A. Wave packets. Let R > 1 and define the cylinder

QR D
˚
.t; x/ 2 R1Cn W 1

2
R < t < R; jxj<R

	
;

and X DR
1
2Zn �R�

1
2Zn. Define

Xj D f.x0; �0/ 2 X W �0 2ƒ�j C 3R
� 1
2 g

to be the set of phase points which are within 3R�
1
2 of ƒ�j . Note that provided R > .3R0/2, if 
 D

.x0; �0/ 2 Xj , then �0 2 ƒj . Given a point 
 D .x0; �0/ 2 X in phase-space, we let x.
/ D x0 and
�.
/D �0 denote the projections onto the first and second components respectively. Fix �; � 2 S.Rn/
such that supp O�� fj�j6 1g, supp � � fj�j6 1g, and for all x; � 2 RnX

k2Zn

�.x� k/D
X
k2Zn

�.� � k/D 1:

Given 
 2 X and f 2 L2x.R
n/, define the phase-space localisation operator

.L
f /.x/D �

�
x� x.
/

R
1
2

��
�

�
�ir � �.
/

R�
1
2

�
f

�
.x/:
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Note that by definition we have

f D
X

2X

L
f; supp bL
f � f� 2 Rn W j� � �.
/j6 2R�
1
2 g:

Moreover, letting

w
 .x/D

�
1C
jx� x.
/j

R
1
2

�N�1CnC1
2

;

for any � � X we have the orthogonality bounds



X

2�

L
f






L2x

.
�X

2�

kw
 .x/L
f .x/k
2
L2x

�1
2

. kf kL2x : (3-1)

To simplify notation, we define the slightly larger phase-space localisation operators L]
 D !
 .x/L
 . It
is worth noting that L]
f no longer has compact Fourier support; this does not pose any problems in the
arguments to follow, as the only properties that we require are the trivial bound kL
f kL2x 6 kL

]

f kL2x

and the orthogonality bound in (3-1).
To define wave packets, we conjugate the phase-space localisation operatorL
 with the flow eit ĵ .�ir/.

Definition 3.1 (wave packets). Let j D 1; 2, R> .3R0/2, and u 2L1t L
2
x.R

1Cn/. Given a point 
j 2Xj ,
we define

.P
ju/.t/D e
it ĵ .�ir/L
j .e

�it ĵ .�ir/u.t//:

Similarly, we define
.P]
ju/.t/D e

it ĵ .�ir/L]
j .e
�it ĵ .�ir/u.t//:

We also require the associated tubes T
 .

Definition 3.2 (tubes). Let j D 1; 2 and 
j 2 Xj . Then we define the tube T
j � R1Cn as

T
j D
˚
.t; x/ 2 R1Cn W 1

2
R 6 t 6R;

ˇ̌
x� x.
/C tr ĵ .�.
//

ˇ̌
6R

1
2

	
:

The most important properties of the wave packets P
ju are summarised in the following.

Proposition 3.3 (properties of wave packets). Let j D 1; 2. For any R > .3R0/
2, f 2 L2x with

supp Of � ƒ�j , and u D eit ĵ .�ir/f , we have u D
P

j2Xj P
ju, supp1P
ju � fj� � �.
/j 6 2R�

1
2 g,

and given any �j � Xj we have the orthogonality bound



 X

j2�j

P
ju





L1t L

2
x

.
� X

j2�j

kL]
j f k
2
L2x

�1
2

. kf kL2x : (3-2)

Moreover, the wave packets P
ju are concentrated on the tubes T
j in the sense that for every r >R 1
2 ,

and any ball B � R1Cn, we have the bound



 X

j2�j

dist.T
j ;B/>r

P
ju





L1t;x.B\QR/

.
�
r

R
1
2

�nC3
2
�N� X


j2�j

kL]
j f k
2
L2x

�1
2

: (3-3)

Here, the implied constants depend only on R0;D2; N and n> 2.
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Proof. This result is somewhat standard; see for instance [Tao 2003, Lemma 4.1] and [Lee 2006a,
Lemma 2.2] for related estimates. We only prove the localisation property (3-3), as the remaining
properties follow directly from the definition of P
 , together with the analogous properties of the phase-
space localisation operator L
 . Let 
j D .x0; �0/ and write

P
ju.t; x/D
Z

Rn

2.L
j f /.�/eit ĵ .�/eix�� d�

D

Z
Rn
K�0.t; x�y/.L
j f /.y/ dy;

where, as in the proof of Lemma 2.4, the kernel is given byK�0.t; x/D
R

Rn
�.R

1
2 .���0//e

it ĵ .�/eix�� d� .
Note that, as in (2-8), integrating by parts N �1 times, and using the fact that jt j6R, R� 1, we deduce
that

K�0.t; x/.R
�n
2

�
1C
jxC tr ĵ .�0/j

R
1
2

�1�N
:

Plugging this bound into the identity for P
ju.t; x/, we deduce that

jP
ju.t; x/j.R
�n
2

�
1C
jx� x0C tr ĵ .�0/j

R
1
2

�1�N Z
Rn

�
1C
jy � x0j

R
1
2

�N�1
jL
j f .y/j dy

.R�
n
4

�
1C
jx� x0C tr ĵ .�0/j

R
1
2

�1�N
kL]
j f kL2x :

Since there are O.R
n
2 / choices of �0, andˇ̌

x� x0C tr ĵ .�0/
ˇ̌
D
ˇ̌
.t; x/� .t; x0� tr ĵ .�0//

ˇ̌
> dist..t; x/; T
j /;

an application of Hölder’s inequality gives for any .t; x/ 2 BX

j2�j

dist.T
j ;B/>r

jP
ju.t; x/j

.R�
n
4

� X

j2Xj

dist.T
j ;B/>r

�
1C
jx� x0C tr ĵ .�0/j

R
1
2

�2�2N�1
2
� X

j2�j

kL]
j f k
2
L2x

�1
2

.
�
r

R
1
2

�nC3
2
�N

sup
�0

� X
x02R1=2Zn

�
1C
jx� x0C tr ĵ .�0/j

R
1
2

��n�1�1
2
� X

j2�j

kL]
j f k
2
L2x

�1
2

.
�
r

R
1
2

�nC3
2
�N� X


j2�j

kL]
j f k
2
L2x

�1
2

as required. �
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3B. Atomic spaces and wave packets. Closely related to the V p spaces, are the slightly smaller U p

spaces; see [Koch and Tataru 2005; Hadac et al. 2009; Koch et al. 2014].

Definition 3.4. Let 1�p<1. A function � WR!L2x is called a U p atom if there exists a decomposition
�D

P
J2I 1J .t/fJ subordinate to a finite partition

I D f.�1; t1/; Œt2; t3/; : : : ; ŒtN ;1/g

of R such that

kfJ k`pJL
2
x
WD

�X
J2I

kfJ k
p

L2x

�1
p

6 1:

The atomic Banach space U p is then defined as

U p D

�X
j

cj�j W .cj / 2 `
1.N/; �j a U p atom

�
with the induced norm

k�kUp D inf
�D

P
k ck�k

�ka Up atom

X
k

jckj:

The space U pˆ is the set of all u W R! L2x such that e�itˆ.�ir/u 2 U p with the obvious norm.

Let uD
P
J 1J .t/eit ĵ .�ir/fJ be aU 2

ĵ
atom. Since 1J .t/ commutes with spatial Fourier multipliers,

we have
P
juD

X
J

1J .t/e
it ĵ .�ir/L
j fJ ;

P]
juD
X
J

1J .t/e
it ĵ .�ir/L]
j fJ :

Proposition 3.3 gives the following.

Corollary 3.5 (wave packets for U 2
ĵ

atoms). Let j D 1; 2. For any R > .3R0/
2 and U 2

ĵ
atom u DP

J 1J .t/eit ĵ .�ir/fJ with supp Ou�ƒ�j , we have uD
P

j2Xj P
ju, supp1P
ju�fj���.
/j62R�

1
2 g,

and given any �j � Xj we have the orthogonality bound



 X

j2�j

P
ju





L1t L

2
x

.
� X

j2�j

kL]
j fJ k
2
`2JL

2
x

�1
2

. kfJ k`2JL2x : (3-4)

Moreover, the wave packets P
ju are concentrated on the tubes T
j in the sense that for every r >R 1
2 ,

and any ball B � R1Cn, we have the bound



 X

j2�j

dist.T
j ;B/>r

P
ju





L1t;x.B\QR/

.
�
r

R
1
2

�nC3
2
�N� X


j2�j

kL]
j fJ k
2
`2JL

2
x

�1
2

: (3-5)

Here, the implied constants depend only on R0;D2; N and n> 2.



TRANSFERENCE OF BILINEAR RESTRICTION ESTIMATES AND THE DKG-SYSTEM 1189

3C. Sets and relations of tubes. We repeat the definitions and notation used by Tao [2003], but as above
we adopt the point of view that the basic objects are the phase-space elements 
 2 Xj , rather than the
associated tubes T
j .

For ı > 0, let B be a collection of (space-time) balls of radius R1�ı which form a finitely overlapping
cover of QR. Similarly let q denote a collection of finitely overlapping cubes q of radius R

1
2 which cover

the cylinder QR. Let Rıq denote a cube of radius RıC
1
2 with the same centre as q. Given a collection

�j � Xj , and a cube q 2 q, we define

�j .q/D f
j 2 �j W T
j \R
ıq ¤¿g;

so �j .q/ is the subcollection of our phase-space decomposition such that the associated tube T
j intersects
a slight enlargement of the cube q 2 q. In the remainder of this subsection, the implied constants may
depend on n> 2 only. Given 16 �1; �2 .R100n, define

q.�1; �2/D fq 2 q W �j 6 #�j .q/ < 2�j ; j D 1; 2g:

Thus, roughly, q.�1; �2/ restricts to those elements of q which are intersected by �j tubes T
j , 
j 2 �j .
Given 
j 2 �j , we let

�.
j ; �1; �2/D #fq 2 q.�1; �2/ W T
j \R
ıq 6D¿g

and for every 16 �j .R100n we define

�j Œ�j ; �1; �2�D f
j 2 �j W �j 6 �.
j ; �1; �2/ < 2�j g:

So �j Œ�j ; �1; �2� essentially restricts to 
j 2 �j such that the associated tubes T
j intersect �j cubes in
q.�1; �2/. Clearly [

16�j; �1; �2.R100n

�j .�j ; �1; �2/D �j :

The following relation � between balls in B and 
j 2 �j plays a key role in the arguments to follow.

Definition 3.6. Given 
j 2 �j Œ�j ; �1; �2�, we let B.
j ; �j ; �1; �2/ 2 B denote a ball which maximises

#
˚
q 2 q.�1; �2/ W T
j \R

ıq 6D¿; q\B.
j ; �j ; �1; �2/ 6D¿
	
:

If B 2 B, and 
j 2 �j Œ�j ; �1; �2�, we then define 
j ��j; �1; �2 B if B � 10B.
j ; �j ; �1; �2/. To
extend this definition to general points 
j 2 �j , we simply say that 
j � B if there exists some
16 �j ; �1; �2 .R100n such that 
j ��j; �1; �2 B .

Remark 3.7. This definition has the following important consequences:

(i) Let 
j 2 �j and consider the set fB 2 B W 
j � Bg. Since there are at most O.R�/ dyadic
16 �j ; �1; �2 6R100n such that 
j 2 �j Œ�j ; �1; �2�, and only O.1/ balls B such that 
j ��j; �1; �2 B,
we have

#fB 2 B W 
j � Bg6
X

16�j; �1; �26R100n


j2�j Œ�j ;�1;�2�

#fB 2 B W 
j ��j; �1; �2 Bg.
X

16�j; �1; �26R100n

1.R�:
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(ii) Fix 16 �1; �1; �2 .R100n and let 
j 2 �j Œ�j ; �1; �2�. By definition, we have

�j 6 #fq 2 q.�1; �2/ W T
j \R
ıq 6D¿g

6
X
B2B

#
˚
q 2 q.�1; �2/ W T
j \R

ıq 6D¿; q\B 6D¿
	

6 #B #
˚
q 2 q.�1; �2/ W T
j \R

ıq 6D¿; q\B.
j ; �1; �1; �2/ 6D¿
	
;

where we used the maximal property of the ball B.
j ; �j ; �1; �2/. Therefore, as #B . R.nC1/ı, we
deduce the lower bound

#
˚
q 2 q.�1; �2/ W T
j \R

ıq 6D¿; q\B.
j ; �j ; �1; �2/ 6D¿
	
&R�.nC1/ı�j :

4. A local bilinear restriction estimate

The main step in the proof of Theorem 1.1 is proving the following spatially localised version in U 2ˆ.

Theorem 4.1. Let n>2 and ˛>0. Let R0>1 and D1;D2>0. For j D1; 2, letƒj ; ƒ�j �
˚
1
16
6 j�j616

	
with ƒj convex and ƒ�j C 1=R0 � ƒj . There exists N 2 N and a constant C > 0 such that, for any
phases ˆ1 and ˆ2 satisfying Assumption 1, any u 2U 2ˆ1 , v 2U 2ˆ2 with supp Ou.t/�ƒ�1 , supp Ov.t/�ƒ�2 ,
and any R > 1, we have

kuvk
L
.nC3/=.nC1/
t;x .QR/

6 CR2˛kukU 2ˆ1
kvkU 2ˆ2

:

In the remainder of this section we give the proof of Theorem 4.1. The proof is broken up into three
key steps. The first step is to use an induction-on-scales argument to reduce to proving an L2t;x bound.
We then use the localisation properties of the wave packet decomposition to show that the L2t;x bound
follows from a combinatorial Kakeya-type bound. The final step is prove the combinatorial estimate
using a “bush” argument.

4A. Induction on scales. Let ˛ > 0 and fix R0 > 1, D1;D2 > 0. Fix N D ..˛C 1/=˛/.100n/2. For
j D 1; 2, let ƒj ; ƒ�j �

˚
1
16
6 j�j 6 16

	
with ƒj convex and ƒ�j C 1=R0 � ƒj . It is enough to show

that there exists a constant C > 0 such that, for any phases ˆ1 and ˆ2 satisfying Assumption 1, any
R > .3R0/

2, and any U 2
ĵ

atoms u D
P
J 1J .t/eitˆ1.�ir/fJ , v D

P
J 0 1J 0.t/e

itˆ2.�ir/gJ 0 , with
supp Of �ƒ�1 , supp OgJ 0 �ƒ�2 , we have

kuvk
L
.nC3/=.nC1/
t;x .QR/

6 CR2˛: (4-1)

To simplify the notation to follow, we now work under the assumption that any implicit constants may
now depend on ˛, n> 2, and the constants R0;D1;D2, but will be independent of R and the particular
choice of phases ĵ satisfying Assumption 1.

The proof of (4-1) proceeds along the same lines as Tao’s argument for the paraboloid [2003]. Namely,
we use an induction-on-scales argument to deduce the estimate at scale R by applying a weaker estimate
at a smaller scale R1�ı. We start by observing that it suffices to show that, for every �j � Xj such that
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#�j 6R10n, and any ˇ > ˛, we have



 X

j2�j

P
1uP
2v





L
.nC3/=.nC1/
t;x .QR/

.Rˇ .#�1#�2/
1
2 sup

j2�j

kL]
1fJ k`2JL
2
x
kL]
2gJ 0k`2

J 0
L2x
: (4-2)

To deduce (4-1) from (4-2), we let

X1.�1/D
˚

1 2 X1 W �1 6 kL]
1fJ k`2JL2x 6 2�1; T
1 \ 2QR 6D¿

	
and X2.�2/ similarly, where �j 2 2Z. An application of Corollary 3.5 gives the decomposition u DP

j2Xj P
ju, as well as the bounds



 X


12X1
T
1\2QRD¿

P
1u





L1t;x.QR/

.R�99n

and � X

j2Xj

kP
1uk
2

L1t L
2
x

�1
2

.
� X

j2Xj

kL]
1fJ k
2
`2JL

2
x

�1
2

. 1:

The analogous bounds hold for v. Moreover #f
j 2 Xj W T
j \ 2QR 6D ¿g . RnC1. Collecting these
properties together, we deduce that X1.�1/D¿ for �1� 1 and



u� X

R�100n6�1.1

X

12X1.�1/

P
1u





L1t;x.QR/

.R�90n:

A similar argument shows that



v� X
R�100n6�2.1

X

22X2.�2/

P
2v





L1t;x.QR/

.R�90n:

Therefore, applying the bound (4-2) with �j D Xj .�j / and ˇ D ˛, we obtain

kuvk
L
.nC3/=.nC1/
t;x .QR/

6




uv� X

R�100n6�j.1

X

j2Xj .�j /

P
1uP
2v





L
.nC3/=.nC1/
t;x .QR/

C

X
R�100n6�j.1





 X

j2Xj .�j /

P
1uP
2v





L
.nC3/=.nC1/
t;x .QR/

. 1Clog.R/R˛ sup
�j

�
.#X1.�1/#X2.�2//

1
2 sup

j2Xj .�j /

kL]
1fJ k`2JL
2
x
kL]
2gJ 0k`2

J 0
L2x

�
.R2˛;

where the last line follows from the orthogonality properties of the phase-space localisation operators
(3-1). Hence (4-1) follows.

The proof of (4-2) proceeds via an induction-on-scales argument. The first step is to note that we
already have (4-2) provided we take ˇ > 0 sufficiently large. Indeed, a crude argument by Hölder and
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Bernstein inequalities implies the bound with ˇ D .nC 1/=.nC 3/ (which could be improved by using
linear Strichartz estimates as indicated in Remark 2.5). Suppose we could show that, if (4-2) holds for
some ˇ > ˛, then for every � > 0 we have



 X

j2�j

P
1uP
2v





L
.nC3/=.nC1/
t;x .QR/

.R2�.R.1�ı/ˇ CRDı/.#�1#�2/
1
2 sup

j2�j

kL]
1fJ k`2JL
2
x
kL]
2gJ 0k`2

J 0
L2x
; (4-3)

where ı D ˛=.DC˛/ and D > 0 is some constant which depends only on the dimension n. Then, since
Dı < ˛, by taking � > 0 sufficiently small, we deduce that we must have (4-2) for some ˇ0 < ˇ. Iterating
this argument then gives (4-2) for ˇ D ˛. Consequently, our aim is to prove (4-3), under the assumption
that we already have (4-2) for some ˇ > ˛.

We now fix �j � Xj such that #�j 6 R10n, and ˇ > ˛. Let B denote a collection of balls B
of radius R1�ı which form a finitely overlapping cover of QR. Let � denote the relation between
points 
j 2 �j and balls B 2 B given by Definition 3.6. It is important to note that the relation � depends
only on the fixed sets �j , and not on u and v. We have the decomposition



 X

j2�j

P
1uP
2v





L
.nC3/=.nC1/
t;x .QR/

6
X
B2B





 X

j2�j

j�B

P
1uP
2v





L
.nC3/=.nC1/
t;x .B/

C

X
B2B





 X

j2�j


1 6�B or 
2 6�B

P
1uP
2v





L
.nC3/=.nC1/
t;x .B/

:

For the first term, which contains the tubes which are concentrated onB , we apply the induction assumption
at scale R1�ı to deduce thatX
B2B





 X

j2�j

j�B

P
1uP
2v





L
.nC3/=.nC1/
t;x .B/

.R.1�ı/ˇ
X
B2B

�
#f
1 2 �1 W 
1 � Bg#f
2 2 �2 W 
2 � Bg

� 1
2 sup

j2�j

kL]
1fJ k`2JL
2
x
kL]
2gJ 0k`2

J 0
L2x

.R�R.1�ı/ˇ .#�1#�2/
1
2 sup

j2�j

kL]
1fJ k`2JL
2
x
kL]
2gJ 0k`2

J 0
L2x
;

where the last line follows from (i) in Remark 3.7. For the second term, as we can now safely lose
factors of Rı ; we may ignore the sum over the balls B (as there are only O.Rı.nC1// balls). Thus, after
replacing D with D�n� 1, we need to prove the bound



 X


j2�j

1 6�B or 
2 6�B

P
1uP
2v





L
.nC3/=.nC1/
t;x .B/

.R�CDı.#�1#�2/
1
2 sup

j2�j

kL]
1fJ k`2JL
2
x
kL]
2gJ 0k`2

J 0
L2x
: (4-4)
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To this end, an application of Hölder together with the orthogonality property of the tube decomposition
gives 



 X


j2�j

1 6�B or 
2 6�B

P
1uP
2v





L1t;x.B/

.R
� X

12�1

kL]
1fJ k
2
`2JL

2
x

� 1
2
� X

22�2

kL]
2gJ 0k
2
`2
J 0
L2x

�1
2

.R.#�1#�2/
1
2 sup

j2�j

kL]
1fJ k`2JL
2
x
kL]
2gJ 0k`2

J 0
L2x
:

In particular, the convexity of the Lp norms implies (4-4) follows from the L2t;x bound



 X

j2�j


1 6�B or 
2 6�B

P
1uP
2v





L2t;x.B/

.R�CDı�
n�1
4 .#�1#�2/

1
2 sup

j2�j

kL]
1fJ k`2JL
2
x
kL]
2gJ 0k`2

J 0
L2x
: (4-5)

Thus we have reduced the problem of obtaining the L
nC3
nC1

t;x estimate (4-3) to proving the L2t;x bound (4-5).

Remark 4.2. The fact that the above reduction can be done in U 2ˆ, is the key reason why we can extend
the homogeneous bilinear Fourier restriction estimates to U 2ˆ.

Our goal in the following two subsections is to prove the bound (4-5), and thus complete the proof of
Theorem 4.1. As in the previous subsections, we essentially follow the argument of Tao [2003], but apply
the results of Section 2 in place of analogous results for the paraboloid. The general strategy is to first
use the transversality via Lemma 2.6 to reduce to counting intersections of tubes. The number of tubes
is then controlled by using (i) in Assumption 1 via Lemma 2.7 together with a “bush” argument. The
notation for various cubes and tubes introduced in Section 3C is used heavily in what follows.

4B. The L2 bound: initial reductions and transversality. Recall that the ball B 2B is now fixed. WriteX

j2�j


1 6�B or 
2 6�B

P
1uP
2v D
X

j2�j

1 6�B

P
1uP
2vC
X

j2�j


1�B and 
2 6�B

P
1uP
2v:

We only prove the bound for the first term, as an identical argument can handle the second term (just
replace �1 with f
1 2 �1 W 
1 � Bg and reverse the roles of u and v). The first step is to make a number
of reductions exploiting the spatial localisation properties of the wave packets, together with a dyadic
pigeon-hole argument to fix various quantities. To this end, decompose into cubes q 2 q:



 X


j2�j

1 6�B

P
1uP
2v





L2t;x.B/

6
� X
q2q
q�2B





 X

j2�j

1 6�B

P
1uP
2v




2
L2t;x.q/

�1
2

:

Note that the concentration property of the wave packet decomposition implies



 X

12�1

T
1\R
ıqD¿

P
1u





L1t;x.q/

.R�ı.N�
nC3
2
/.#�1/

1
2 sup

12�1

kL]
1fJ k`2JL
2
x
:
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A similar bound holds for v. By our choice of N, we have ı
�
N � .nC 3/=2

�
> 100n. Therefore, as

#�j .R10n and #q .R2n, it suffices to prove� X
q2q
q�2B





 X

j2�j .q/

1 6�B

P
1uP
2v




2
L2t;x.q/

�1
2

.R�CDı�
n�1
4 .#�1/

1
2 .#�2/

1
2 sup

j2�j

kL]
1fJ k`2JL
2
x
kL]
2gJ 0k`2

J 0
L2x
: (4-6)

Let � 6�B1 .q/D f
1 2 �1.q/ W 
1 6� Bg and decompose into� X
q2q
q�2B





 X

j2�j .q/

1 6�B

P
1uP
2v




2
L2t;x.q/

�1
2

6
X
16�1

�1; �2.R100n

� X
q2q.�1;�2/
q�2B





 X

12�

6�B
1 .q/\�1Œ�1;�1;�2�


22�2.q/

P
1uP
2v




2
L2t;x.q/

� 1
2

:

Clearly, as we can freely lose R�, (4-6) follows from proving the estimate for fixed �1; �1; �2,� X
q2q.�1;�2/
q�2B





 X

12�

6�B
1 .q/\�1Œ�1;�1;�2�


22�2.q/

P
1uP
2v




2
L2t;x.q/

�1
2

.R�CDı�
n�1
4 .#�1/

1
2 .#�2/

1
2 sup

j2�j

kL]
1fJ k`2JL
2
x
kL]
2gJ 0k`2

J 0
L2x
: (4-7)

To make the notation slightly less cumbersome, we introduce the shorthand

��1 .q/D �
6�B
1 .q/\�1Œ�1; �1; �2�:

Given q 2 q and h 2 R1Cn, we define the set

���1 .q; h/D ���1 Œ�1; �1; �2�.q; h/D f
1 2 �
�
1 .q/ W �.
1/ 2†1.h/CO.R�

1
2 /g:

Thus ���1 .q; h/ consists of all 
1 2 ��1 .q/ such that �.
1/ lies within CR�
1
2 of the surface †1.h/. If we

expand the square of the L2t;x in (4-7) we get



 X

12�

�
1 .q/


22�2.q/

P
1uP
2v




2
L2t;x.q/

6
X


12�
�
1 .q/


 022�2.q/

X

 012�

�
1 .q/

X

22�2.q/

ˇ̌
hP
1uP
2v;P
 01uP
 02viL2t;x

ˇ̌
:

We now exploit the Fourier localisation properties of the wave packets to deduce that the inner product
vanishes unless

�.
1/C �.
2/D �.

0
1/C �.


0
2/CO.R�

1
2 /;

ˆ1.�.
1//Cˆ2.�.
2//Dˆ1.�.

0
1//Cˆ2.�.


0
2//CO.R�

1
2 /:

(4-8)
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In particular, if we take h
1;
 02D
�
ˆ1.�.
1//�ˆ2.�.


0
2//; �.
1/��.


0
2/
�
, then an application of Lemma 2.3

implies



 X

12�

�
1 .q/


22�2.q/

P
1uP
2v




2
L2t;x.q/

6
X


12�
�
1 .q/


 022�2.q/

X

 012�

��
1 .q;h


1;

0
2
/

X

22�2.q/

�.
2/D�.

0
1/C�.


0
2/��.
1/CO.R�1=2/

ˇ̌
hP
1uP
2v;P
 01uP
 02viL2t;x

ˇ̌
:

On the other hand, an application of Lemma 2.6 easily gives the U 2ˆ bound

kP
1uP
2vkL2t;x .R
�n�1

4 kL]
1fJ k`2JL
2
x
kL]
2gJ 0k`2

J 0
L2x
:

If we now note that, for fixed 
1, 
 02, and 
 01 and any q 2 q, we have

#
˚

2 2 �2 W T
2 \R

ıq 6D 0; �.
2/D �.

0
1/C �.


0
2/� �.
1/CO.R�

1
2 /
	
.Rnı

then an application of Cauchy–Schwarz gives



 X

12�

�
1 .q/


22�2.q/

P
1uP
2v




2
L2t;x.q/

.RDı�
n�1
2 #��1 .q/#�2.q/ sup

h
#���1 .q; h/ sup


j2�j

kL]
1fJ k
2

`2JL
2
x
kL]
2gJ 0k

2

`2
J 0
L2x
:

Consequently the bound (4-7) follows from the combinatorial estimateX
q2q.�1;�2/
q�2B

#��1 .q/#�2.q/ sup
h2R1Cn

#���1 .q; h/.RDı#�1#�2: (4-9)

We now simplify this bound slightly by exploiting the dyadic localisations we performed earlier. More
precisely, by definition, for every q 2 q.�1; �2/, we have #�2.q/ 6 2�2. On the other hand, by
exchanging the order of summation, recalling the shorthand ��1 .q/ D �

6�B
1 .q/\ �1Œ�1; �1; �2�, and

using the definition of the set �1Œ�1; �1; �2�, we deduce thatX
q2q.�1;�2/
q�2B

#��1 .q/6
X

q2q.�1;�2/

#
�
�1.q/\�Œ�1; �1; �2�

�
D

X

12�Œ�1;�1;�2�

#fq 2 q.�1; �2/ W T
1 \R
ıq 6D 0g6 2�1#�1

Therefore, we have reduced the bound (4-9) to proving the combinatorial Kakeya-type estimate

sup
h2R1Cn

q2q.�1;�2/;q�2B

���1 Œ�1; �1; �2�.q; h/.RDı
#�2
�1�2

: (4-10)

The proof of this bound is the focus of the next subsection.
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4C. The L2 bound: the combinatorial estimate. We have reduced the proof of Theorem 4.1 to obtaining
the combinatorial bound (4-10), which is essentially well known to experts as it does not see the difference
between homogeneous solutions and V 2

ĵ
-functions. For completeness, we include the proof here. We

follow the “bush” argument used in [Tao 2003], making some minor adjustments only to relate it to
Assumption 1. Recall that we have fixed a ball B 2 B. Fix any h 2 R1Cn and q0 2 q.�1; �2/ with
q0 � 2B . Our goal is to prove

#���1 .q0; h/.RDı
#�2
�1�2

:

The first step is to exploit the fact that 
1 is not concentrated on B. Recall from Section 3C that for

1 2 �1 we have defined the ball B.
1; �1; �1; �2/ 2 B to be (a) maximiser for the quantity

#
˚
q 2 q.�1; �2/ W T
j \R

ıq 6D¿; q\B.
j ; �j ; �1; �2/ 6D¿
	
:

Let 
1 2 ���1 .q0; h/. By construction this implies 
1 2 �
6�B
1 .q0/, and hence by the definition of the

relation �, we have B 6� 10B.
1; �1; �1; �2/. Since q0 � 2B and the balls in B have radius R1�ı, we
must have dist.q0; B.
1; �1; �1; �2// & R1�ı. In particular, by (ii) in Remark 3.7, we have for every

1 2 �

��
1 .q0; h/

#
˚
q 2 q.�1; �2/ W T
1 \R

ıq 6D¿; dist.q; q0/&R1�ı
	

& #
˚
q 2 q.�1; �2/ W T
1 \R

ıq 6D¿; q\B.
1; �1; �1; �2/ 6D¿
	
&R�Dı�1:

On the other hand, since for q 2 q.�1; �2/ we have #�2.q/> �2, we deduce that

#
˚
.q; 
2/ 2 q.�1; �2/��2 W T
1 \R

ıq 6D¿; T
2 \R
ıq 6D¿; dist.q; q0/&R1�ı

	
&R�Dı�1�2:

Summing up over 
1 2 ���1 .q0; h/ and then changing the order of summation gives

�1�2#���1 .q0;h/

.RDı
X


12�
��
1 .q0;h/

#
˚
.q;
2/2 q.�1;�2/��2 WT
1\R

ıq 6D¿; T
2\R
ıq 6D¿; dist.q;q0/&R1�ı

	
DRDı

X

22�2

#
˚
.q;
1/2 q.�1;�2/��

��
1 .q0;h/ WT
1\R

ıq 6D¿; T
2\R
ıq 6D¿; dist.q;q0/&R1�ı

	
:

Therefore the required bound (4-10) follows from the lemma below; see [Tao 2003, Lemma 8.1].

Lemma 4.3. Let q0 2 q, h 2 R1Cn, and 
2 2 �2. Then

#
˚
.q; 
1/ 2 q.�1; �2/��

��
1 .q0; h/ W T
1 \R

ıq 6D¿; T
2 \R
ıq 6D¿; dist.q; q0/&R1�ı

	
.RDı:

Proof. Define the bush (or “fan”) at q0 by

Bush.q0/D
[


12�
��
1 .q0;h/

T
1 :
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Thus Bush.q0/�R1Cn is the union of all tubes T
1 (associated to phase-space elements 
1 2���1 .q0; h/)
passing through a neighbourhood of the cube q0. Our goal is then to bound the sumX

q2q.�1;�2/

q�Bush.q0/\T
2CO.R1=2Cı/
dist.q;q0/&R1�ı

#
˚

1 2 �

��
1 .q0; h/ W T
1 \R

ıq 6D¿
	
: (4-11)

We first count the number of possible cubes in the outer summation. The idea is to first show that

Bush.q0/� .t0; x0/C C1.h/CO.R
1
2
CDı/; (4-12)

where .t0; x0/ denotes the centre of the cube q0, and the conic hypersurface C1.h/ is given by

C1.h/D f.r;�rrˆ1.�// W r 2 R; � 2†1.h/g:

If we had (4-12), an application of Lemma 2.7 would then show that Bush.q0/\T
2 is contained in a
ball of radius R

1
2
CDı, and hence the outer summation in (4-11) only contains O.RDı/ terms. To show

the inclusion (4-12), suppose that .t; x/ 2 Bush.q0/. Then .t; x/ 2 T
1 for some 
1 2 ���1 .q0; h/. By
construction, we have �.
/D ��CO.R�

1
2 / for some ��2†1.h/. On the other hand, since T
1\R

ıq0 6D0,
we have

x�x0C .t � t0/rˆ1.�.
1//D Œx�x.
/C trˆ1.�.
1//�� Œx0�x.
/C t0rˆ1.�.
1//�DO.R
1
2
Cı/:

Therefore, since jt � t0j.R, we can write

.t; x/�.t0; x0/

D
�
t�t0;�.t�t0/rˆ1.�

�/
�
C
�
0; x�x0C.t�t0/rˆ1.�.
1//

�
C
�
0; .t�t0/Œrˆ1.�

�/�rˆ1.
.�//�
�

D
�
t�t0;�.t�t0/rˆ1.�

�/
�
CO.R

1
2
Cı/

and hence we have (4-12). Consequently, the outer sum in (4-11) is only over O.RCı/ cubes.
Fix q 2 q.�1; �2/ with dist.q; q0/&R1�ı. As the outer sum in (4-11) only adds O.RDı/, the required

bound now follows from

#
˚

1 2 �1 W �.
1/ 2†1.h/CO.R�

1
2 /; T
1 \R

ıq 6D¿; T
1 \R
ıq0 6D¿

	
.Rı: (4-13)

The point is that since the cubes q and q0 are at a distance R1�ı apart, the condition that T
1 must
intersect both cubes, essentially fixes the tube T
1 . Since �.
1/ 2 †1.h/CO.R�

1
2 /, the bound (1-1)

implies that fixing the tube T
1 also more or less fixes the phase-space element 
1 (note that without the
bound (1-1), the set in (4-13) could potentially contain far more than O.Rı/ points). In more detail, let


1; 

0
1 2

˚

1 2 �1 W �.
1/ 2†1.h/CO.R�

1
2 /; T
1 \R

ıq 6D¿; T
1 \R
ıq0 6D¿

	
:

In light of (1-1), the estimate (4-13) would follow from the bounds

jx.
1/� x.

0
1/j.R

1
2
Cı ; jv.
1/� v.


0
1/j.R

� 1
2
Cı; (4-14)
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where for ease of notation we define the velocity as v.
1/Dˆ1.�.
1//. We now exploit the condition
that the tubes T
1 and T
 01 intersect the cubes q and q0. Let .tq; xq/ denote the centre of the cube q and
.t0; x0/ the centre of q0. Since jv.
1/j6D2 and

x0� xqC .t0� tq/v.
1/D .x0� x.
1/C t0v.
1//� .xq � x.
1/C tqv.
1//DO.R
1
2
CDı/;

the separation of the cubes q and q0 implies R1�Cı . jt0� tqj.R. A computation shows that

.t0� tq/.v.
1/� v.

0
1//DO.R

1
2
CDı/; x.
1/� x.


0
1/D t0.v.


0
1/� v.
1//CO.R

1
2
CDı/;

and hence the bound on jt0� tqj gives (4-14). �

5. The globalisation lemma

We now complete the proof of Theorem 1.1 by showing that it follows from the localised bound in
Theorem 4.1. The proof of Theorem 1.1 proceeds by using a strategy sketched in Section 8 of [Klainerman
et al. 2002], together with an interpolation argument to replace U 2

ĵ
with V 2

ĵ
.

Proof of Theorem 1.1. The first step is to show that by exploiting the (approximate) finite speed of
propagation of frequency-localised waves, the bilinear estimate on QR implies the same estimate holds
on IR �Rn with IR D Œ0; R�. The second step is to remove the remaining temporal localisation and
R˛-factor by using duality, together with the dispersive decay in Lemma 2.4. Finally we use a simple
interpolation argument to replace U 2

ĵ
with the larger V 2

ĵ
space.

Step 1: fromQR to IR�Rn. LetR> .10R0/
2, u2U 2

ĵ
and v2U 2

ĵ
, with supp Ou�ƒ�1 and supp Ov�ƒ�2 .

Assuming Theorem 4.1, our goal is to prove that for every ˛ > 0 we have

kuvk
L
.nC3/=.nC1/
t;x .IR�Rn/

.R˛kukU 2
ĵ

kvkU 2
ĵ

: (5-1)

It is enough to consider the case where u and v are atoms; thus we have the decomposition

uD
X
J

1J .t/e
itˆ1.�ir/fJ ; v D

X
J 0

1J 0.t/e
itˆ2.�ir/gJ 0 ;

with X
J

kfJ k
2
L2
C

X
J 0

kgJ 0k
2
L2
6 1;

and we may assume that supp OfJ �ƒ�1 and supp OgJ 0 �ƒ�2 (using sharp Fourier cutoffs). By translation
invariance, the bound (5-1) then follows from
kuvk

L
.nC3/=.nC1/
t;x .QR/

.R˛
�X
J



.1CR�1jxj/�.nC1/fJ

2L2x
�1
2
�X
J 0



.1CR�1jxj/�.nC1/gJ 0

2L2x
�1
2

(5-2)

since we can then sum up over the centres of balls (or cubes) of radius R which cover Rn. The inequality
(5-2) is a reflection of the fact that, as u and v are localised to frequencies of size � 1, we expect that the
waves eit ĵ .�ir/fJ should travel with velocity 1. In particular, u and v on QR should only depend on
the data in fjxj.Rg. It turns out that this is true, modulo a rapidly decreasing tail.
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Let � 2 S with supp O��fj�j6 1g and �& 1 on jxj6 1. To prove (5-2), we start by noting that since the
left-hand integral is only over QR, we may replace uv with �.R�1x/u.t; x/�.R�1x/v.y/. We can write

�
�
x

R

�
.eit ĵ .�ir/f /.x/D

Z
Rn

Z
Rn
Rn O�.R.� � �// eit ĵ .�/ Of .�/ d� ei��x d�

D

Z
Rn

Z
Rn
Rn O�.R.� � �// Of .�/F.t; R.� � �/; �/ d� ei��xei ĵ .�/ d�; (5-3)

where F.t; �; �/D �.�; �/eit. ĵ .
�
R
C�/� ĵ .�// and � 2 C10

�
fj�j 6 2g � .ƒ�j C 1=R0/

�
with �D 1 on

fj�j6 2g �ƒ�j . The oscillating component of F is essentially constant for jt j6R. To exploit this, we
expand F using a Fourier series to get

F.t; �; �/D
X
k2Z2n

ck.t/e
ik�.�;�/; ck.t/D

Z
R2n

F.t; �; �/eik�.�;�/ d� d�;

and by (ii) in Assumption 1, the coefficients satisfy jck.t/j.R0;D2
.1Cjk1j/

�2.nC1/.1Cjk2j/
�2.nC1/

with k D .k1; k2/. Applying this expansion to �.R�1x/u and �.R�1x/v we obtain the decompositions

�.R�1x/uD
X
J

X
k

ck.t/1J .t/e
itˆ1.�ir/fk;J ;

�.R�1x/v D
X
J 0

X
k

c0k.t/1J 0.t/e
itˆ2.�ir/gk;J 0 ;

(5-4)

where the coefficients ck , c0
k

are independent of J and J 0, and the functions fk;J and gk;J 0 are given by

fk;J .x/D �
�
x

R
C k1

�
fJ .xC k2/; gk;J 0.x/D �

�
x

R
C k1

�
gJ 0.xC k2/;

with k D .k1; k2/. Note that supp Ofk;J � ƒ�1 C 1=.2R0/ since R > .10R0/
2, thus the fk;J satisfy the

support conditions in Theorem 4.1 (with ƒ�j replaced with ƒ�j C 1=R0, and R0 replaced with 2R0). A
similar comment applies to the gk0;J . Therefore, plugging the decomposition (5-4) into the left-hand side
of (5-2), we deduce via an application of Theorem 4.1 that

kuvk
L
.nC3/=.nC1/
t;x .QR/

.
X

k;k02Zn�Zn

.1Cjkj/�2.nC1/.1Cjk0j/�2.nC1/

�





X
J;J 0

1J .t/e
itˆ1.�ir/fk;J 1J 0.t/e

itˆ2.�ir/gk0;J 0






L
.nC3/=.nC1/
t;x .QR/

.R˛
X
k;k0

.1Cjkj/�2.nC1/.1Cjk0j/�2.nC1/

�

�X
J



.1CR�1jx�k1CRk2j/�.nC1/fJ

2L2x
�1
2
�X
J 0



.1CR�1jx�k01CRk02j/�.nC1/gJ 0

2L2x
�1
2

.R˛
�X
J



.1CR�1jxj/�.nC1/fJ

2L2x
�1
2
�X
J 0



.1CR�1jxj/�.nC1/gJ 0

2L2x
�1
2

:

Thus we obtain (5-2) and hence (5-1).
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Step 2: from IR�Rn to R1Cn. Let u 2U 2ˆ1 and v 2U 2ˆ2 , with supp Ou�ƒ�1 and supp Ov �ƒ�2 . Our goal
is to show that for every p > .nC 3/=.nC 1/

kuvkLpt;x
. kukU 2ˆ1

kvkU 2ˆ2
: (5-5)

In fact the argument below gives the marginally stronger (though essentially equivalent) bound

kuvkLpt L.nC3/=.nC1/x
. kukU 2ˆ1

kvkU 2ˆ2
: (5-6)

To deduce (5-5) from (5-6), note that the dispersive estimate in Lemma 2.4, together with the abstract
Strichartz estimates of [Keel and Tao 1998, Theorem 1.2], implies there exists 1 < a < b <1 such that
kuvkLat L

b
x
. 1. On the other hand, the Fourier support assumptions imply that we have the trivial bound

kuvkL1t L
p
x .R1Cn/

. 1 for every p > 1. Thus interpolation gives (5-5) from (5-6).
We now turn to the proof of (5-6). As in Step 1, we may assume that u and v are atoms with the

decomposition

uD
X
J

1J .t/e
itˆ1.�ir/fJ ; v D

X
J 0

1J 0.t/e
itˆ2.�ir/gJ 0 ;

with supp OfJ �ƒ�1 , supp OgJ 0 �ƒ�2 , andX
J

kfJ k
2
L2
C

X
J 0

kgJ 0k
2
L2
6 1:

By real interpolation it is enough to show that for every q > .nC 3/=.nC 1/ we have

kuvk
L
q;1
t L

.nC3/=.nC1/
x

. 1;

where Lq;1t is the Lorentz norm. Applying duality, this follows from the estimateZ
�

kuvk
L
.nC3/=.nC1/
x

dt . j�j
1
q0 (5-7)

for every measurable �� R. Define the Fourier localised solution operator

Uj .t/Œh�D eit ĵ .�ir/Pƒ�
j
h;

where we let
1Pƒ�

j
h.�/D �ƒ�

j
.�/ Oh.�/

with � 2 C10 .ƒ
�
j C 1=.10R0// and �D 1 on ƒ�j . If we interpolate Lemma 2.4 with the trivial L1t L

2
x

bound and apply duality, we deduce that for every 16 a 6 2Z
.t;t 0/2���
jt�t 0j&R

˝
U�j .t/ŒG.t/�; U

�
j .t
0/ŒG.t 0/�

˛
L2x
dt dt 0 . j�j2R�

n�1
2
. 2
a
�1/
kGk2L1t L

a
x
; (5-8)

where U�j denotes the L2x adjoint of Uj . The dispersive bound (5-8) together with the bilinear estimate
(5-1) are the key inequalities required in the proof of (5-7).

We now begin the proof of (5-7). If j�j. 1, then (5-7) follows by putting uv 2 L1t L
nC3
nC1
x and using

the Sobolev embedding. Thus we may assume that j�j � 1. Let us set J 0� WD�\ J
0. An application
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of duality givesZ
�

kuvk
L
.nC3/=.nC1/
x

dt 6 sup
kF k

L1t L
.nC3/=2
x

61

ˇ̌̌̌Z
�

hF; uviL2x dt

ˇ̌̌̌

D sup
kF k

L1t L
.nC3/=2
x

61

ˇ̌̌̌X
J 0

Z
J 0�

hF; uU2.t/ŒgJ 0 �iL2x dt
ˇ̌̌̌

. sup
kF k

L1t L
.nC3/=2
x

61

�X
J 0





Z
J 0�

U�2 .t/ŒF Nu� dt




2
L2x

�1
2

:

If we expand the square of the L2x norm, we have via (5-8)X
J 0





Z
J 0�

U�2 .t/ŒF Nu� dt




2
L2x

D

X
J 0

Z
t;t 02J 0�

˝
U�2 .t/ŒF Nu�; U

�
2 .t
0/ŒF Nu�

˛
L2x
dt dt 0

D

X
J 0

Z
t;t 02J 0�
jt�t 0j&R

˝
U�2 .t/ŒF Nu�; U

�
2 .t
0/ŒF Nu�

˛
L2x
dt dt 0

C

X
J 0

X
jI�I 0j6R

Z
J 0�\I

Z
J 0�\I

0

˝
U�2 .t/ŒF Nu�; U

�
2 .t
0/ŒF Nu�

˛
L2x
dt dt 0

. j�j2R�
n�1
2
. 2
a
�1/
kF Nuk2L1t L

a
x
C

X
J 0;I





 Z
J 0�\I

U�2 .t/ŒF Nu� dt




2
L2x

. j�j2R�
2.n�1/
nC3 kF k2

L1t L
.nC3/=2
x

kuk2
L1t L

2
x
C

X
J 0;I





Z
J 0�\I

U�2 .t/ŒF Nu� dt




2
L2x

;

where
1

a
D

2

nC3
C
1

2
:

Here we always take I (and I 0) to be a decomposition of R into intervals of size R. We now essentially
repeat the previous argument, but expand u instead of v to obtainX

J 0;I





Z
J 0�\I

U�2 .t/ŒF Nu� dt




2
L2x

6 supP
J 0;I kgJ 0;I k

2

L2x

61

ˇ̌̌̌X
J 0;I

Z
J 0�\I

hF; NuU2.t/gJ 0;I iL2x dt
ˇ̌̌̌2

. supP
J 0;I kgJ 0;I k

2

L2x

61

ˇ̌̌̌X
J;I

Z
J�\I

hU�1 .t/ŒF NvI �; fJ iL2x dt
ˇ̌̌̌2

. supP
J 0;I kgJ 0;I k

2

L2x

61

X
J





X
I

Z
J�\I

U�1 .t/ŒF NvI � dt




2
L2x

;

where we take

vI D
X
J 0

1J 0.t/U2.t/gJ 0;I :
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Again expanding out the L2x norm, and applying (5-8), we haveX
J





X
I

Z
J�\I

U�1 .t/ŒF NvI � dt




2
L2x

D

X
J

X
jI�I 0j�R

Z
J�\I

Z
J�\I 0

˝
U�1 .t/ŒF NvI �; U1.t

0/ŒF NvI 0 �
˛
L2x
dt dt 0

C

X
J

X
jI�I 0j.R

Z
J�\I

Z
J�\I 0

˝
U�1 .t/ŒF NvI �; U

�
1 .t
0/ŒF NvI 0 �

˛
L2x
dt dt 0

. j�j2R�
2.n�1/
nC3 kF k2

L1t L
.nC3/=2
x

sup
I

kvIk
2
L1t L

2
x
C

X
J;I





Z
J�\I

U1.t/ŒF vI � dt




2
L2x

:

Collecting the above chain of estimates together, and using the fact that

kvIk
2

L1t L
2
x
6
X
I;J 0

kgJ 0;Ik
2

L2x
6 1

together with another application of duality, we see thatZ
�

kuvk
L
.nC3/=.nC1/
x

dt . j�jR�
n�1
nC3 C sup

kF k
L1t L

.nC3/=2
x

61P
I;J 0 kgI;J 0k

2

L2x

61

�X
J;I





Z
J�\I

U1.t/ŒF NvI � dt




2
L2x

�1
2

6 j�jR�
n�1
nC3 C supP

I;J 0 kgI;J 0k
2

L2xP
I;J kfI;J k

2

L2x

61

X
I

Z
�\I

kuIvIkL.nC3/=.nC2/x
dt;

where we define uI D
P
I;J 1J .t/U1.t/ŒfI;J �. Observe thatX

I

kuIk
2

U 2ˆ1

6
X
I;J

kfI;J k
2

L2x
6 1;

and that uI satisfies the support properties in Theorem 4.1 (withƒ�j replaced byƒ�jC1=.10R0/, and R0 re-
placed by 2R0). A similar comment applies to vI . Consequently, an application of (5-1) gives for any ˛>0X

I

Z
�\I

kuIvIkL.nC3/=.nC1/x
dt 6 j�j

2
nC3

X
I

kuIvIkL.nC3/=.nC1/t;x .I�Rn/

. j�j
2
nC3R˛

�X
I;J

kfI;J k
2
L2x

�1
2
�X
I;J 0

kgI;J 0k
2
L2x

�1
2

6 j�j
2
nC3R˛

and therefore Z
�

kuvk
L
.nC3/=.nC1/
x

dt . j�jR�
n�1
nC3 Cj�j

2
nC3R˛:

To complete the proof, we choose R D j�jC with C > 0 sufficiently large so that j�jR�
n�1
nC3 6 j�j

1
q0 .

On the other hand, since q > .nC 3/=.nC 1/, we can take

˛ D
1

2C

�
nC 1

nC 3
�
1

q

�
;
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which implies
j�j

2
nC3R˛ D j�j

2
nC3
C˛C 6 j�j

1
q0 :

Therefore we obtain (5-7) as required.

Step 3: fromU 2ˆ to V 2ˆ. Let p>.nC3/=.nC1/, u2V 2ˆ1 and v2V 2ˆ2 , with supp Ou�ƒ�1 and supp Ov�ƒ�2 .
An application of [Koch and Tataru 2005, Lemma 6.4]; see also [Hadac et al. 2009, Propositions 2.5
and 2.20], gives a decomposition uD

P
k2N uk and v D

P
k2N vk such that uk , vk retain the correct

Fourier support properties (we can just use sharp Fourier cutoffs here) and for any r >2we have the bounds

kukkU rˆ1
. 2k.

2
r
�1/
kukV 2ˆ1

; kvkkU rˆ2
. 2k.

2
r
�1/
kvkV 2ˆ2

:

Let .nC3/=.nC1/ < q < p, and take � D q=p < 1. Then an application of (5-5) (with pD q), together
with the convexity of Lp norms, gives

kuvkLpt;x
6
X
k;k0

kukvk0kLpt;x
6
X
k;k0

kukvk0k
�
L
q
t;x

kukvk0k
1��
L1t;x

6
X
k0;k

�
kukkU 2ˆ1

kvk0kU 2ˆ2

���
kukkU1ˆ1

kvk0kU1ˆ2

�1��
. kukV 2ˆ1

kvkV 2ˆ2

X
k;k0

2�k.1��/2�k
0.1��/ . kukV 2ˆ1

kvkV 2ˆ2
;

where we used the Sobolev embedding and the fact that the Fourier support of u; v is contain in the unit
ball to control the L1t;x norm. Thus Theorem 1.1 follows. �

Remark 5.1. The argument in Step 3 above, using (5-6), also implies the slightly stronger estimate

kuvk
L
p
t L

.nC3/=.nC1/
x .R1Cn/

6 CkukV 2ˆ1
kvkV 2ˆ2

:

This is well known in the case of homogeneous solutions; see, e.g., [Tao 2003]. However, the estimate in
the endpoint p D q D .nC 3/=.nC 1/ remains open. For homogeneous solutions it is known only in the
case of the cone [Tao 2001].

Remark 5.2. In fact, since Tao’s endpoint result [2001, Theorem 1.1] holds for Hilbert-space-valued
waves, we observe that one can deduce the U 2-estimate for the cone directly. This follows by noting that,
given U 2-atoms uD

P
I2I 1IuI and v D

P
J2J 1J vJ , we have

juvj �

�X
I2I

juI j
2

�1
2
�X
J2J

jvJ j
2

�1
2

D jU jjV j:

with `2-valued waves U and V .

6. Mixed norms and generalisations to small scales

We now give some consequences of the bilinear estimate in Theorem 1.1. Namely, we state an extension
to mixed LqtL

r
x spaces, and, in the case of the hyperboloid, we give a small-scale version of Theorem 1.1.

The small-scale estimate will play a key role in our application to the Dirac–Klein–Gordon system.
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6A. Mixed norms. Let ˆ1 and ˆ2 be phases satisfying Assumption 1. A standard T T � argument, see
for instance [Keel and Tao 1998], together with Lemma 2.4 implies that, provided

1

q
C
n�1

2r
6 n�1

4

and q > 2, we have the Strichartz-type bound

keit ĵ .�ir/f kLqt L
r
x.R1Cn/

. kf kL2x : (6-1)

As in Step 3 of the proof of the globalisation lemma, by decomposing V 2 into U a atoms, see [Koch and
Tataru 2005, Lemma 6.4] or [Hadac et al. 2009, Propositions 2.5 and 2.20], we see that

kuvkLat L
b
x
. kukV 2ˆ1

kvkV 2ˆ2
for any

1

a
C
n�1

2b
6 n�1

2
:

Interpolating with Theorem 1.1 then gives the following mixed norm version.

Corollary 6.1. Let n> 2 and assume that a > 1,

1

a
C
nC1

2b
<
nC1

2
;

and

1

a
C
n�1

4b
<

(
nC1
4
; n> 3;

1
2
C

5
12b

; nD 2:
(6-2)

Let ˆ1, ˆ2, and u; v be as in the statement of Theorem 1.1. Then

kuvkLat L
b
x
. kukV 2ˆ1

kvkV 2ˆ2
:

Remark 6.2. Let p > .nC 3/=.nC 1/. It is possible to deduce a weaker version of Theorem 1.1 and
Corollary 6.1 directly from the homogeneous estimate

keitˆ1.�ir/feitˆ2.�ir/gkLpt;x.R1Cn/
. kf kL2xkgkL2x ; (6-3)

where the phases satisfy the conditions in Assumption 1, and f; g 2 L2 have the required support
conditions. We sketch the argument as follows. By interpolating (6-3) with the trivial L1t L

2
x bound, we

deduce that for every a > 2 we have

keitˆ1.�ir/feitˆ2.�ir/gk
Lat L

.nC1/=n
x

. kf kL2xkgkL2x :

By decomposing V 2 functions into U a atoms [Koch and Tataru 2005; Hadac et al. 2009; Koch et al.
2014] and using the convexity of the Lp spaces, we see that for a > 2

kuvk
Lat L

.nC1/=n
x

. kukV 2ˆ1
kvkV 2ˆ2

:
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Consequently, as in the proof of Corollary 6.1, by interpolating with the standard Strichartz estimates, we
obtain

kuvkLat L
b
x
. kukV 2ˆ1

kvkV 2ˆ2

provided that a > 1,
1

a
C
nC1

2b
<
nC1

2
;

and

1

a
<

8<:
n�1
nC3

�
n
2
�
nC1
2b

�
C
1
2
; n> 3;

1
2
; nD 2:

(6-4)

In particular, the homogeneous bounds contained in [Lee and Vargas 2010; Bejenaru 2017] imply a weaker
version of our main result, with (6-2) in Corollary 6.1 replaced with (6-4). Note that condition (6-4) is
much more restrictive than (6-2). This is most apparent in the low-dimensional cases; for instance if nD 2
then Corollary 6.4 allows a < 2, while (6-4) only allows the somewhat trivial (from a V 2 perspective)
a > 2. To summarise, our main result, Theorem 1.1 not only clarifies the dependence of the constant on
the global properties of the phases ˆ1 and ˆ2, but also presents a significant strengthening of the allowed
exponents for the V 2 estimate.

We observe that the above argument, namely deducing a V 2 bound directly from the homogeneous
estimate, has been used in [Sterbenz and Tataru 2010, Lemma 5.7 and its proof] in the case of the cone.

Remark 6.3. In the special case of the hyperboloid, ĵ D h�imj , or the paraboloid, ĵ D j�j
2, the

Strichartz bound (6-1) holds in the larger region

1

q
C
n

2r
6 n
4
:

This can be used to improve the range of exponents in Corollary 6.1; in particular (6-2) can be replaced
with

1

a
C
n

3b
<
nC1

3
:

However, it is important to note that, in the case of the hyperboloid, some care has to be taken as the
constant will now depend on the masses mj .

6B. Small scale bilinear restriction estimates. In the case of hyperboloids we now generalise Theorem 1.1,
similarly to [Lee and Vargas 2008] in the case of the cone. Given 0 < ˛ . 1, we define C˛ to be a
collection of finitely overlapping caps of radius ˛ on the sphere Sn�1. If � 2 C˛, we define !.�/ to be
the centre of the cap �.

We consider the case ĵ .�/D � j̇ h�i and define the corresponding V 2
˙;m space as V 2

˙;m D V
2
ĵ

;
thus

kukV 2
˙;m

D ke˙ithrimu.t/kV 2 : (6-5)

We define the corresponding U 2
˙;m space similarly. Rescaling Theorem 1.1 then gives the following

optimal result.
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Corollary 6.4. Let p > .nC 3/=.nC 1/, 06m1; m2 6 1:

(i) For any �&m1Cm2, .m1Cm2/=�. ˛ . 1, �; �0 2 C˛ with �.˙1�;˙2�0/� ˛, and

supp Ou�
�
j�j � �;

�

j�j
2 �

�
; supp Ov �

�
j�j � �;

�

j�j
2 �0

�
;

we have the bilinear estimate

kuvkLpt;x
. ˛n�1�

nC1
p �n�

nC1
p kukV 2

˙1;m1

kvkV 2
˙2;m2

:

(ii) For any �&m1Cm2, 0 < ˛� .m1Cm2/=�, �; �0 2 C˛, c1 � c2 � � with

�.˙1�;˙2�
0/. ˛; jm1c1�m2c2j � ˛�2;

and

supp Ou�
�ˇ̌
j� �!.�/j � c1

ˇ̌
� ˛�2;

�

j�j
2 �

�
; supp Ov �

�ˇ̌
j� �!.�0/j � c2

ˇ̌
� ˛�2; �

j�j
2 �0

�
;

we have the bilinear estimate

kuvkLpt;x
. ˛n�

nC2
p �nC1�

nC2
p kukV 2

˙1;m1

kvkV 2
˙2;m2

:

Proof. Fix˙1DC and˙2D˙, the remaining cases follow from a reflection. We start with (i). If ˛� 1,
then the estimate follows from rescaling in x together with an application of Theorem 1.1. Thus we may
assume that 0<˛� 1, and after a rotation, that � is centred at e1 and �0 is centred at˙.1�˛2/

1
2 e1C˛e2.

Similarly to [Lee and Vargas 2008], we define the rescaled functions

u�;˛.t; x/D u

�
t

˛2�
;
x1

�
C

t

˛2�
;
x0

˛�

�
; v�;˛.t; x/D v

�
t

˛2�
;
x1

�
C

t

˛2�
;
x0

˛�

�
(where we write x D .x1; x0/ 2 R�Rn�1) and the phases

ˆ1.�/D
�1

˛2�

�
.m21C�

2�21 C˛
2�2j� 0j2/

1
2 ���1

�
; ˆ2.�/D

�1

˛2�

�
.m22C�

2�21 C˛
2�2j� 0j2/

1
2 ���1

�
;

with associated sets

ƒ1 D f�1 � 1; j�
0
j � 1g; ƒ2 D f�1 �˙1; �2 � 1; j�

00
j � 1g

where we write � D .�1; �2; � 00/ 2 R�R�Rn�2). A computation gives supp Ou�;˛ �ƒ1 and

Œe�itˆ1.�ir/u�;˛.t/�.x/D

�
e
i t

˛2�
hrim1u

�
t

˛2�

���
x1

�
;
x0

˛�

�
:

Similarly we can check that supp Ov�;˛ �ƒ2 and

Œe�itˆ2.�ir/v�;˛.t/�.x/D

�
e
˙i t

˛2�
hrim2v

�
t

˛2�

���
x1

�
;
x0

˛�

�
:
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Therefore, after rescaling together with an application of Theorem 1.1, it is enough to check that the
phases ĵ satisfy Assumption 1 on the sets ƒj . To this end, we start by noting that we can write

rˆ1.�/D
1

.��2m21C �
2
1 C˛

2j� 0j2/
1
2

 
�.m1=.˛�//

2� j� 0j2

.��2m21C �
2
1 C˛

2j� 0j2/
1
2 C �1

; � 0

!
;

which shows that (ii) in Assumption 1 holds with D2 depending only on N and n. A similar argument
shows that ˆ2 satisfies (ii) in Assumption 1. On the other hand, to check condition (i) in Assumption 1,
we invoke Lemma 2.1. First, we observe that for any � 2ƒ1, � 2ƒ2, we haveˇ̌

rˆ1.�/�rˆ2.�/
ˇ̌
>
ˇ̌
@2ˆ1.�/� @2ˆ2.�/

ˇ̌
D

ˇ̌̌̌
ˇ �2

.��2m21C �
2
1 C˛

2j� 0j2/
1
2

�
�2

.��2m22C �
2
1C˛

2j�0j2/
1
2

ˇ̌̌̌
ˇ& 1;

and hence we can take A1 � 1. It remains to check (2-2) in Lemma 2.1. We make use of the following
elementary inequality; if .h�; a�/ 2 RnC1 �R1 and x; y 2 fz 2 RnC1 W jzj D jz� h�jC a�g, thenˇ̌̌̌

x

jxj
�
y

jyj

ˇ̌̌̌2
>

1

4jxjjyj

�
jx ^yj2

jxjjyj
C
j.x� h�/^ .y � h�/j2

jx� h�jjy � h�j

�
: (6-6)

To prove (6-6), we start by observing that since x; y 2 fjzj D jz� h�jC a�g, we haveˇ̌̌̌
x

jxj
�
y

jyj

ˇ̌̌̌2
D

1

jxjjyj

�
jx�yj2�

ˇ̌
jxj � jyj

ˇ̌2�
D

1

jxjjyj

�ˇ̌
.x� h�/� .y � h�/

ˇ̌2
�
ˇ̌
jx� h�j � jy � h�j

ˇ̌2�
D
jx� h�jjy � h�j

jxjjyj

ˇ̌̌̌
x� h�

jx� h�j
�
y � h�

jy � h�j

ˇ̌̌̌2
:

The inequality (6-6) now follows from the identity j! �!�j2 > 1
2
j! ^!�j2 for !;!� 2 SnC1. We now

return to checking (2-2) in Lemma 2.1; we only check the case j D 1 as the remaining case is identical.
Let �; � 2†1.a; h/ for some .a; h/ 2 R1Cn such that � � h; �� h 2ƒ2. A computation givesˇ̌
.r ĵ .�/�r ĵ .�// � .� � �/

ˇ̌
D ˛�2

ˇ̌̌̌�
.�1; ˛

2� 0/

j.��1m1; �1; ˛2� 0/j
�

.�1; ˛
2�0/

j.��1m1; �1; ˛� 0/j

�
� .� � �/

ˇ̌̌̌
D ˛�2

j.��1m1; �1; ˛�
0/jC j.��1m1; �1; ˛�

0/j

2

ˇ̌̌̌
.��1m1; �1; ˛�

0/

j.��1m1; �1; ˛� 0/j
�
.��1m1; �1; ˛

2�0/

j.��1m1; �1; ˛� 0/j

ˇ̌̌̌2
� ˛�2

ˇ̌̌̌
x

jxj
�
y

jyj

ˇ̌̌̌2
; (6-7)

where we take x D .��1m1; �1; ˛� 0/ and y D .��1m1; �1; ˛�0/. Note that the condition � 2 †1.a; h/
becomes jxj D jx� h�jC a� with h� D .��1m2���1m1; h1; ˛h0/ and a� D ˛2a. In particular, since
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jxj � jyj � jx� h�j � jy � h�j � 1, an application of (6-6) givesˇ̌̌̌
x

jxj
�
y

jyj

ˇ̌̌̌2
& jx ^yj2Cj.x� h�/^ .y � h�/j2: (6-8)

The required bound (2-2) with A2 � 1 now follows in the region j�1� �1j. j� 0� �0j by noting that

jx ^yj> ˛j�1�0� �1� 0j> ˛
�
j� 0� �0jj�1j � j�

0
jj�1� �1j

�
� ˛j� 0� �0j � ˛j� � �j

and applying the inequalities (6-7) and (6-8). On the other hand, if j�1 � �1j � j� 0 � �0j, then as
� � h; �� h 2ƒ2, we have

j.x� h�/^ .y � h�/j> ˛j.�1� h1/.�2� h2/� .�1� h1/.�2� h2/j

> ˛
�
j�1� �1jj�2� h2j � j�2� �2jj�1� h1j

�
� ˛j�1� �1j � ˛j� � �j;

which again gives (2-2) with A2 � 1. Thus the phases ĵ satisfy Assumption 1 with D1 �D2 � 1 and
therefore part (i) follows.

We now turn to the proof of part (ii). The argument is similar to (i), but we need a further rescaling to
exploit the radial separation condition. As before, after rotating, we may assume that !.�1/D e1. Define
the rescaled functions

u#
�;˛.t; x/D u

�
t

˛2�
;
x1

˛�2
C

tc1

˛2�hc1im1
;
x0

˛�

�
; v#

�;˛.t; x/D v

�
t

˛2�
;
x1

˛�2
C

tc1

˛2�hc1im1
;
x0

˛�

�
(where, as previously, we write x D .x1; x0/ 2 R�Rn�1) and the phases

ˆ1.�/D
�1

˛2�

�
.m21C .˛�

2�1/
2
C˛2�2j� 0j2/

1
2 �

˛�2c1

hc1im1
�1

�
;

ˆ2.�/D
�1

˛2�

�
.m22C .˛�

2�1/
2
C˛2�2j� 0j2/

1
2 �

˛�2c1

hc1im1
�1

�
with associated sets

ƒ1 D

�ˇ̌̌̌
�1�

1

˛�2
c1

ˇ̌̌̌
� 1; j� 0j � 1

�
; ƒ2 D

�ˇ̌̌̌
�1�

1

˛�2
c2

ˇ̌̌̌
� 1; j� 0j. 1

�
:

As previously, a computation shows that supp Ou#
�;˛
�ƒ1, supp Ov#

�;˛
�ƒ2 and we have the identities

Œe�itˆ1.�ir/u#
�;˛.t/�.x/D

�
eithrim1u

�
t

˛2�

���
x1

˛�2
;
x0

˛�

�
;

Œe�itˆ2.�ir/v#
�;˛.t/�.x/D

�
e˙ithrim2v

�
t

˛2�

���
x1

˛�2
;
x0

˛�

�
:

Thus, as in the proof of (i), after rescaling and an application of Theorem 1.1, it is enough to check that
the phases ĵ satisfy Assumption 1 on the sets ƒj . To this end, note that we can write

@1ˆ1 D
m21=.˛�

3/..˛�2�1/
2� c21/� .c1=�/

2˛�j� 0j2

f .˛��1; ˛� 0/
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for some smooth function f with f � 1 on ƒ1. Since @M
�1
Œ.˛�2�1/

2 � c21 � . ˛�3 for all M > 0 and
�1 2ƒ, we see that ˆ1 satisfies (ii) in Assumption 1 with constant depending only on n and N. A similar
argument, using the fact that

�

˛

ˇ̌̌̌
c1

hc1im1
�

c2

hc2im2

ˇ̌̌̌
� 1;

shows that ˆ2 also satisfies (ii) in Assumption 1. On the other hand, to check (i) in Assumption 1, we
use Lemma 2.1. Concerning the transversality condition (2-1), we observe that for � 2ƒ1, � 2ƒ2, we
have j�1j � j�1j � 1=.˛�/ and

j�21m
2
2� �

2
1m

2
1j �

m1Cm2

˛�
; ˛2

ˇ̌
�21 j�

0
j
2
� �21j�

0
j
2
ˇ̌
. ��2� ��2

m1Cm2

˛�
:

Thereforeˇ̌
rˆ1.�/�rˆ2.�/

ˇ̌
D

ˇ̌̌̌
.�2�1; �

0/

.��2m21C˛
2�2�21 C˛

2j� 0j2/
1
2

�
.�2�1; �

0/

.��2m22C˛
2�2�21C˛

2j�0j2/
1
2

ˇ̌̌̌
& �3˛

ˇ̌
�21 .�

�2m22C˛
2�2�21C˛

2
j�0j2/� �21.�

�2m21C˛
2�2�21 C˛

2
j� 0j2/

ˇ̌
�m1Cm2 & 1;

so that (2-1) holds with A1�1. We now check the curvature condition (2-2) for j D1. Let �; �2†1.a; h/.
Repeating the computation (6-7) we deduce thatˇ̌

.rˆ1.�/�rˆ1.�// � .� � �/
ˇ̌
� ˛�2

ˇ̌̌̌
x

jxj
�
y

jyj

ˇ̌̌̌2
& ˛�2

�
jx ^yj2Cj.x� h�/^ .y � h�/j2

�
;

where x D .��1m1; ˛��1; ˛� 0/, y D .��1m1; ˛��1; ˛�0/, h� D .��1m2���1m1; ˛�h1; ˛h0/, and we
used the fact that x, y, x� h�, y � h� all have length 1. It thus remains to show that

jx ^yjC j.x� h�/^ .y � h�/j& ˛j� � � 0j

since then (2-2) holds with A2 � 1. If j�1� �1j. j� 0� �0j we simply observe as previously that

jx ^yj> ˛j˛��1�0�˛��1� 0j> ˛
�
j� 0� �0j˛� j�1j � j�

0
j˛� j�1� �1j

�
� ˛j� 0� �0j � ˛j� � �j

On the other hand, if j�1� �1j& j� 0� �0j, then as � � h; �� h 2ƒ2, we have

jx ^yjC j.x� h�/^ .y � h�/j> ˛m1j�1� �1jC˛m2j.�1� h1/� .�1� h2/j& ˛j� � �j:

An identical argument shows that ˆ2 also satisfies the curvature condition. Thus the phases ĵ satisfy
Assumption 1 with D1 �D2 � 1 and therefore part (ii) follows. �

The ˛ and � dependence in Corollary 6.4 is sharp. At least for (ii), this can be seen with the following
example. Let

�j D fj�1� cj j � ˛�2; j� 0j � ˛�g;

with jc1� c2j. ˛�2, c1 � c2 � �, and ˛� ��1. Define Of .�/D 1�1.�/, Og.�/D 1�2.�/ and

uD eithrif; v D eithrig:
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Then

kukV 2
hri
D kf kL2x D j�1j

1
2

and similarly kvkV 2
hri
D j�2j

1
2 . On the other hand we have

.uv/.t; x/D

Z
Rn

Z
Rn
Ou.t; �/ Ov.t; �/eix�.�C�/ d� d�D

Z
�1

Z
�2

eit.h�iCh�i/eix�.�C�/ d� d�:

The idea is to try and find a set A� R1Cn such that the phase is essentially constant for .t; x/ 2 A. We
start by noting that for � 2�1 we have

h�i �
1C c1�1

hc1i
� ��3

ˇ̌
.1Cj�j2/.1C c21/� .1C c1�1/

2
ˇ̌
D ��3

ˇ̌
.�1� c1/

2
C .1C c21/j�

0
j
2
ˇ̌
� ˛2�;

and hence ˇ̌̌̌
h�i � hc1i

�1
�
c1

hc1i
�1

ˇ̌̌̌
. ˛2�:

Similarly, since ˇ̌̌̌
c1

hc1i
�
c2

hc2i

ˇ̌̌̌
� ��2jc1hc2i � c2hc1ij � �

�3
jc1� c2j �

˛

�
;

we deduce that for � 2�2ˇ̌̌̌
h�i�hc2i

�1
�

�
c2

hc2i
�
c1

hc1i

�
c2�

c1

hc1i
�1

ˇ̌̌̌
6
ˇ̌̌̌
h�i�hc2i

�1
�
c2

hc2i
�1

ˇ̌̌̌
C

ˇ̌̌̌
c1

hc1i
�
c2

hc2i

ˇ̌̌̌
j�1� c2j. ˛2�:

In particular, for jt j� .˛2�/�1, jx1C.c1=hc1i/t j� .˛�2/�1, and jx0j� .˛�/�1, the phase is essentially
constant and hence

j.uv/.t; x/j D

ˇ̌̌̌Z
�1

Z
�2

e
it.h�i�hc1i�1�

c1
hc1i

�1/e
it.h�i�hc2i�1�.

c2
hc2i
�
c1
hc1i
/c2�

c1
hc1i

�1/

� e
i.x1Ct

c1
hc1i
/.�1C�1�c1�c2/Cx0�.�0C�0/ d� d�

ˇ̌̌̌
& j�1jj�2j;

which then implies

kuvkLpt;x
& .˛nC2�nC2/�

1
p � j�1jj�2j:

Therefore, if the estimate

kuvkLpt;x
6 C.˛; �/kukV 2

hri
kvkV 2

hri

holds, then we must have

.˛�/�
nC2
p j�1jj�2j. C j�1j

1
2 j�2j

1
2 :

Since j�1j � j�2j � ˛n�nC1, after rearranging, this becomes C & ˛n�
nC2
p �nC1�

nC2
p , which matches

the bound obtained in Corollary 6.4.
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7. The Dirac–Klein–Gordon system

We now set up notation and reduce the DKG system to the first-order system (7-3). We then give the
proof of Theorem 1.2, up to the crucial nonlinear estimates, which are postponed to Section 8. In the
remainder of this article, as we now only consider the DKG system, the dimension is fixed to nD 3.

7A. Notation and setup. Fix a smooth function � 2 C10 .R/ such that supp � �
˚
1
2
< t < 2

	
andX

�22Z

�

�
t

�

�
D 1;

and let �1 D
P
�61 �.t=�/ with �1.0/D 1. Similarly, we let Q� be a finitely overlapping collection of

cubes of diameter �=1000 covering R3, and fix .�q/q2Q� to be a corresponding subordinate partition of
unity. We now define the standard dyadic Fourier cutoffs, for � 2 2N, � > 1, q 2Q, d 2 2Z

P� D �

�
j � irj

�

�
; P1 D �1.j � irj/; Pq D �q.j � irj/; C

˙;m
d
D �

�
�i@t ˙h�irim

d

�
:

We also let C˙;m
6d
D
P
d 06d C

˙;m
d 0

, and any related multipliers such as C˙;m
>d

are defined analogously.
To simplify notation somewhat, we make the convention that

Cd D C
C;1
d
; C˙d D…˙C

˙;M
d

;

where M will denote the mass of the spinor in (1-3) and …˙ is as defined below. Given ˛ 6 1, we let
.��/�2C˛ be a smooth partition of unity subordinate to the conic sectors f� 6D 0; �=j�j 2 �g, and define
the angular Fourier localisation multipliers as

R� D ��.�ir/:

We use the well-known fact that for any 1� p; q �1 the modulation cutoff multipliers are uniformly
disposable in LqtL

r
x for certain scales; namely we have the bounds

kC
˙;m
d

P�R�ukLqt L
r
x
CkC

˙;m
6d

P�R�ukLqt L
r
x
. kP�R�ukLqt Lrx ; (7-1)

provided that � 2 C˛ and d &˛2� and ˛&��1; see, e.g., [Bejenaru and Herr 2015, Lemma 4.1]. Similarly,
by writing

C
˙;m
d
D e�ithrim�

�
�i@t

d

�
e˙ithrim ;

and using the fact that convolution with L1t .R/ functions is bounded on V 2, we deduce that for every
d 2 2Z

kC
˙;m
6d

ukV 2
˙;m

. kukV 2
˙;m

: (7-2)

To deal with solutions to the Dirac equation, we follow the, by now, standard approach used in
[D’Ancona et al. 2007; Bejenaru and Herr 2017] and define the projections

…˙.�/D
1

2

�
I ˙

1

h�iM
.�j 


0
j CM
0/

�
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and the associated Fourier multiplier 2.…˙f /.�/D…˙.�/ Of .�/. A computation shows that …C…� D
…�…C D 0 and …2

˙
D…˙. Moreover, given any spinor  we have

 D…C C…� ; .�i
�@�CM/…˙ D 

0.�i@t ˙h�iriM / :

As in [Bejenaru and Herr 2017], we can now reduce the original system (1-3) to a first-order system as
follows. Suppose we have a solution . ˙; �C/ to

.�i@t ˙hriM / ˙ D…˙.<.�C/

0 /

.�i@t Chrim/�C D hri
�1
m . �
0 /

 ˙.0/D f˙;

�C.0/D gC;

(7-3)

where  D…C CC…� � and the data .f˙; gC/ satisfies …˙f˙ D f˙. If we let � D<.�C/, then
since  �
0 is real-valued, we deduce that

2.�C ihri�1m @t�/D �CC ihri
�1
m @t�CC .�C� ihri�1m @t�C/

D 2�C� hri
�2
m . �
0 /Chri�2m . �
0 /D 2�C:

Consequently, if we take gC D �.0/C ihri�1m @t�.0/, a simple computation shows that . ; �/ is a
solution to the original DKG system (1-3). Note that, after rescaling, it suffices to consider the case
mD 1. Therefore, to prove Theorem 1.2, it is enough to construct global solutions to the reduced system
(7-3) with mD 1.

7B. Analysis on the sphere. We require some basic facts on analysis on the sphere S2, which can be
found in, for instance, [Stein and Weiss 1971; Strichartz 1972; Sterbenz 2005]. Let Y` denote the set of
homogeneous harmonic polynomials of degree `, and let y`;n, nD 0; : : : ; 2`, be an orthonormal basis for
Y` with respect to the inner product

hy`;n; y`0;n0iL2.S2/ D

Z
S2
Œy`;n.!/�

�y`0;n0.!/ dS.!/:

Given f 2 L2.R3/, we have the orthogonal (in L2.R3/) decomposition

f .x/D
X
`

2X̀
nD0

hf .jxj!/; y`;n.!/iL2!.S2/y`;n

�
x

jxj

�
:

For N > 1, we define the spherical Littlewood–Paley projections

.HNf /.x/D
X
`2N

2X̀
nD0

�

�
`

N

�
hf .jxj � /; y`;niL2.S2/y`;n

�
x

jxj

�
;

.H1f /.x/D
X
`2N

2X̀
nD0

�61.`/hf .jxj � /; y`;niL2.S2/ y`;n

�
x

jxj

�
:
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Fractional powers of the angular derivatives h�i are then defined as

h�i�f D
X
N22N

N �HNf: (7-4)

If we let �ij D xi@j � xj @i denote the standard infinitesimal generators of the rotations on R3, then a
computation gives

k�ijHNf kL2x.R3/ �N kHNf kL2x.R3/:

In addition, if �S2 denotes the Laplacian on the sphere of radius jxj, then �S2 D
P
j<k �

2
ij . These facts

are not explicitly required in the following, and we shall only make use of the spectral definition (7-4).
More important for our purposes, are the basic properties of the multipliers HN .

Lemma 7.1. Let N > 1. Then HN is uniformly (in N ) bounded on Lp.R3/, and HN commutes with all
radial Fourier multipliers. Moreover, if N 0 > 1, then either N �N 0 or

HN…˙HN 0 D 0:

Proof. The first claim follows from [Strichartz 1972]. To prove the second claim, let T be a radial Fourier
multiplier with cTf .�/ D �.j�j/ Of .�/. It is enough to show that, if f .x/ D a.jxj/y`.x=jxj/ for some
y` 2 Y`, then Tf D b.jxj/y`.x=jxj/ for some b.jxj/ depending on a and � . But this follows directly
from [Stein and Weiss 1971, page 158]. To prove the final claim, suppose that N �N 0 or N �N 0. Our
goal is to show that HN…˙HN 0 D 0. Since HN commutes with radial Fourier multipliers, it is enough to
show that HN .@jf /D 0 in the case f .x/D a.jxj/y`0.x=jxj/ with y`0 2 Y`0 and 1

2
N 0 6 `0 6 2N 0. Since

@j D .xj =jxj/@r C
P
k.xk=jxj

2/�jk , where @r D .x=jxj/ � r, and @r.y`0.x=jxj//D 0, we can reduce
further to just showing that HN .xk�jky`0/D 0, which corresponds to checking that

hy`; xk�kjy`0iL2.S2/ D 0 (7-5)

for every 1
2
N 6 ` 6 2N. Since xk�kjy`0 is a polynomial of order `0C 1, by the orthogonality of the

polynomials y`, (7-5) clearly holds if ` > `0C 1. On the other hand, after an application of integration by
parts, we obtain

hy`; xk�kjy`0iL2.S2/ D h�kj .xky`/; y`0iL2.S2/

since �kj .xky`/ is a polynomial of order `C 1; we see that again (7-5) holds if `0 > `C 1. �

An application of Lemma 7.1 shows that HN commutes with the P� and Cd multipliers since we may
write C˙;m

d
D e�ithrim�.�i@t=d/e

˙ithrim . On the other hand, it is important to note that HN does not
commute with the cube and cap localisation operators R� and Pq .

7C. Norms and the energy inequality. Fix 0 < � � 1,

1

2
<
1

a
<
1

2
C

�

1000
;

and b D 3=a� 1, and define

kuk
Y
˙;m
�;N

D �
1
a
�b sup

d22Z

dbkC
˙;m
d

P�HNukLat L
2
x
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and
kuk

F
˙;m
�;N

D kP�HNukV 2
˙;m

Ckuk
Y
˙;m
�;N

:

We also let

kukF s;�
˙;m
D

�X
�>1

X
N>1

�2sN 2�
kuk2

F
˙;m
�;N

�1
2

and define the Banach space

F
s;�
˙;m D

˚
u 2 C.R; h�i��H s/ W kukF s;�

˙;m
<1

	
:

For the remainder of this section, let �M D � if M > 1
2

and �M D 7
30
C � if 0 < M < 1

2
. Thus

�M corresponds to amount of angular regularity in the statement of Theorem 1.2. We will construct a
solution . ˙; �C/ 2 F

0;�M
˙;M �F

1
2
;�M
˙;1 to the reduced system (7-3). Thus we work in a frequency-localised

V 2 space, with the additional component Y ˙;m
�;N

needed to control the solution in the high modulation
region; for the latter see [Bejenaru and Herr 2015, Section 4].

There are three basic properties of V 2
˙;m which we exploit in the following. The first is a simple bound

in the high-modulation region; see [Hadac et al. 2009, Corollary 2.18] for a proof.

Lemma 7.2. Let m> 0 and 26 q 61. For any d 2 2Z we have

kC
˙;m
d

ukLqt L
2
x
. d�

1
q kukV 2

˙;m

:

The second key property is a standard energy inequality, which reduces the problem of estimating a
Duhamel integral in F˙;M

�;N
to controlling a trilinear integral.

Lemma 7.3. Let F 2 L1t L
2
x , and suppose that

sup
kP�HN vkV2

˙;m

.1

ˇ̌̌̌Z
R

hP�HN v.t/; F .t/iL2x dt

ˇ̌̌̌
<1:

If u 2 C.R; L2x/ satisfies �i@tu˙hrimuD F, then P�HNu 2 V 2˙;m and we have the bound

kP�HNukV 2
˙;m

. kP�HNu.0/kL2 C sup
kP�HN vkV2

˙;m

.1

Z
R

hP�HN v.t/; F .t/iL2x dt: (7-6)

Proof. See [Koch and Steinerberger 2015] or [Hadac et al. 2009, Proposition 2.10] for details on the
duality. It is also possible to prove this directly as follows. Clearly it is enough to consider the case
u.0/D 0, thus u.t/D

R t
0 e
�i.t�s/hrimF.s/ ds. Let K >0 and .tk/2Z . A computation gives the identity� X

jkj<K



e˙itkhrimP�HNu.tk/� e˙itk�1hrimP�HNu.tk�1/

2L2x
�1
2

D

Z
R

hP�HN v.s/; F.s/iL2x ds

with
v.s/D A�1

X
jkj<K

1Œtk�1;tk/.s/
�
e�i.s�tk/hrimu.tk/� e

�i.s�tk�1/hrimu.tk�1/
�
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and

AD

� X
jkj<K

ke˙itkhrimP�HNu.tk/� e
˙itk�1hrimP�HNu.tk�1/k

2
L2x

�1
2

:

It is easy to check that
kP�HN vkV 2

˙;m

. 1:

Thus, by taking the sup over the above inequality, and then letting K!1 we deduce the bound (7-6).
Since u is also continuous, we obtain u 2 V 2

˙;m as required. �

Note that the norm on v can in fact be taken to be the stronger U 2
˙;m norm, but we do not require this

improvement here.
The final result we require on the V 2

˙;m spaces, concerns the question of scattering.

Lemma 7.4. Let u 2 V 2
˙;m. Then there exists f 2 L2x such that ku.t/� e�ithrif kL2x ! 0 as t !1.

Clearly, this result can be extended to elements of the space F s;�M
˙;m . In other words, if we construct a

solution in F s;�M
˙;m , then we immediately deduce the solution must scatter to a linear solution as t !˙1.

7D. Proof of Theorem 1.2. We now come to the proof of Theorem 1.2. In light of Lemma 7.4, it is
enough to construct a solution . ˙; �C/ 2 F

0;�M
˙;M �F

1
2
;�M
C;1 to the reduced system (7-3). Note that we

may always assume that  ˙ D …˙ ˙, provided that this is satisfied at t D 0. Define the Duhamel
integral

I˙m ŒF �D
Z t

0

e�i.t�s/hrimF.s/ ds:

Note that I˙m ŒF � solves the equation

.�i@t ˙hrim/I˙m ŒF �D F

with vanishing data at t D 0. Moreover, we can check that for every 1 < p <1 we have

kC
˙;m
d

I˙m ŒF �kLpt L2x . d
�1
kC
˙;m
d

F kLpt L
2
x
: (7-7)

If we had the bounds 

…˙1I˙1M Œ�
0…˙2'�



F
0;�M
˙1;M

. k�k
F
1=2;�M
C;1

k'k
F
0;�M
M;˙2

;

hri�1IC1 Œ.…˙1 /�
0…˙2'�

F 1=2;�M
C;1

. k k
F
0;�M
M;˙1

k'k
F
0;�M
M;˙2

;
(7-8)

then a standard fixed-point argument in F 0;�M
˙;M � F

1
2
;�M
C;1 would give the required solution to (7-3),

provided of course that the data .f˙; gC/ satisfied

kh�i�M f˙kL2 Ckh�i
�M gCkH1=2� 1:

Let
��;N D P�HN�;  �1;N1 D P�1HN1 ; '�2;N2 D P�2HN2':

We have the following frequency-localised estimates.
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Theorem 7.5. Fix M > 0. Then there exists � > 0 such that

…˙1I˙1M Œ��;N 

0…˙2'�2;N2 �




F
˙1;M

�1;N1

. �
1
2 .minfN;N2g/�M

�
minf�; �1; �2g
maxf�; �1; �2g

��
k�k

F
C;1
�;N

k'k
F
˙2;M

�2;N2
(7-9)

and

IC1 Œ.…˙1 �1;N1/�
0…˙2'�2;N2 �

FC;1�;N

. �
1
2 .minfN1; N2g/�M

�
minf�; �1; �2g
maxf�; �1; �2g

��
k k

F
˙1;M

�1;N1

k'k
F
˙2;M

�2;N2

: (7-10)

Remark 7.6. The proof of Theorem 7.5 in the resonant regime 0 < M < 1
2

relies on the small-scale
V 2 estimates in Corollary 6.4. However, it is possible to prove a weaker version of Theorem 7.5, with �M
replaced with some larger � , provided only that a robust version of the homogeneous bilinear restriction
estimate (6-3) holds. More precisely, by following the proof of Corollary 6.4, and then interpolating with
the Klein–Gordon Strichartz estimates as in Remarks 6.2 and 6.3, it is possible to show that (6-3) implies
the V 2 bound

kuvkLat L
b
x.R1C3/

. �1C
1
a
� 1
b kukV 2

˙1;m1

kvkV 2
˙2;m2

in the range
1

a
C
2

b
< 2;

1

a
C
6

5b
<
7

5
;

where u and v have Fourier support in 1-separated angular wedges of size 1�1�� at distance � from the
origin. The case aD 2� and b D 4

3
C can be used together with the L2Ct L4�x angular Strichartz bound

from [Cho and Lee 2013, Theorem 1.1] instead of the argument used in the high-high case in the proof of
Theorem 8.8 below. However, the estimate obtained is weaker than the one in Theorem 7.5. Moreover,
it still requires a robust version of the homogeneous bilinear estimate (6-3) for which we can track the
dependence of the constant on the phases ĵ due to the lack of homogeneity of the Klein–Gordon phase.
Irrespective of fact the Theorem 1.1 applies to V 2-functions, a key advantage of our formulation of
Theorem 1.1, in comparison to [Bejenaru 2017; Lee and Vargas 2010], is that it allows us to read off the
above-mentioned dependence.

The standard Littlewood–Paley trichotomy implies that the left-hand sides of (7-9) and (7-10) are zero
unless

maxf�; �1; �2g �medf�; �1; �2g&minf�; �1; �2g (7-11)

and
maxfN;N1; N2g �medfN;N1; N2g&minfN;N1; N2g

It is now easy to check that the bilinear estimates (7-8), follow from Theorem 7.5. Consequently, we have
reduced the proof of Theorem 1.2 to proving the frequency-localised bilinear estimates in Theorem 7.5.
As the proof of Theorem 7.5 requires a number of preliminary results, we postpone the proof until
Section 8D.
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8. Linear and multilinear estimates

In this section our goal is give the proof of Theorem 7.5. To this end, we first provide some linear estimates
and adapt them to our functional setup, prove an auxiliary trilinear estimate in V 2, and eventually give
the proof of the crucial Theorem 7.5 in Section 8D.

8A. Auxiliary estimates. As is well known, see for example [D’Ancona et al. 2007], the system (7-3)
exhibits null structure. To exploit the null structure of the product  �
0 , we start by noting that for any
x; y 2 R3, we have the identity

Œ…˙1f �
�
0…˙2g

D Œ.…˙1 �…˙1.x//f �
�
0…˙2gC Œ…˙1.x/f �

�
0.…˙2 �…˙2.y//gCf
�…˙1.x/


0…˙2.y/g:

This is then exploited by using the null-form-type bound

j…˙1.x/

0…˙2.y/j. �.˙1x;˙2y/C

ˇ̌
˙1jxj˙2 jyj

ˇ̌
hxihyi

; (8-1)

which follows from (2-6) by observing that

…˙1.x/

0…˙2.y/D…˙1.x/

�
…˙1.x/


0
� 
0…�2.y/

�
…˙2.y/

D…˙1.x/

��
˙2�j

h�iM
�
˙1�j

h�iM

�

j C

�
˙1M

h�iM
C
˙2M

h�iM

�
I

�
…˙2.y/;

together with the following lemma; see [Bejenaru 2017, Lemma 3.3] for a similar statement to part (i).

Lemma 8.1. Let 1 < r <1:

(i) If �> 1, ˛ & ��1, � 2 C˛, then

�…˙1 �…˙1.�!.�//�R�P�f 

Lrx . ˛kR�P�ukLrx :
(ii) If �> 1, 0 < ˛ . ��1, � 2 C˛, q 2Q�2˛ with centre �0, then

�…˙1 �…˙1.�0/�R�PqP�f 

Lrx . ˛kR�PqP�ukLrx :

Proof. Concerning part (i), see [Bejenaru 2017, Proof of Lemma 3.3]. Concerning part (ii), we may
assume j�0j � � and, due to boundedness, we may replace the symbol of R�PqP� by a smooth cutoff �E
to the parallelepiped E with centre �0 of side lengths ˛�2 � ˛� � ˛� with long side pointing in the
direction �0. After rotating �0 to �0 D j�0j.1; 0; 0/, the operator has the symbol

m.�/D

�̇
Bj
�

�j

h�iM
�

�0;j

h�0iM

�
˙
1
2

0
�

1

h�iM
�

1

h�0iM

��
�E .�/

for certain B1; B2; B3 2 C4�4. It suffices to prove the kernel bound

j.F�1x m/.x/j. ˛4�4.1C˛�2jx1jC˛�jx0j/�4; x D .x1; x
0/; (8-2)
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as it implies kF�1x mkL1.R3/ . ˛. In the support of �E we obtain, from (2-6) and a simple computation,

jm.�/j. ��3
ˇ̌
j�j � j�0j

ˇ̌
C �.�; �0/C�

�2
ˇ̌
j�j � j�0j

ˇ̌
. ˛:

From the localisation of �E , where j@`
�1
.�j =h�iM /j. ��`�1, and the Leibniz rule, we conclude for ` > 0

j@`�1m.�/j. ˛.˛�
2/�`C

X
0<`16`

��`1�1.˛�2/`1�` . ˛.˛�2/�`:

Integration by parts now implies (8-2) if ˛�2jx1j � ˛�jx0j. For k D 2; 3, we have j@`
�k
.�j =h�iM /j. ��`

within the support of �E ; hence we conclude for ` > 0

j@`�km.�/j. ˛.˛�/
�`
C

X
0<`16`

��`1.˛�/`1�` . ˛.˛�/�`:

Integration by parts now implies (8-2) in the region where ˛�2jx1j6 ˛�jxkj. �

The proof of Theorem 7.5 requires a number of standard linear estimates for homogeneous solutions to
the Klein–Gordon equation. We start by recalling the Strichartz estimates for the wave and Klein–Gordon
equations.

Lemma 8.2 (wave Strichartz). Let m> 0 and 2 < q 61. If 0 < �6 �, N > 1, and 1=r D 1=2� 1=q
then for every q 2Q� we have

ke�ithrimPqP�f kLqt L
r
x
. �

1
2
� 1
r �

1
2
� 1
r kPqP�f kL2x :

Moreover, by spending additional angular regularity we have

ke�ithrimP�HNf kLqt L
4
x
. �

3
4
� 1
qN kP�HNf kL2x :

Proof. The proof of the first estimate can be found in [Bejenaru and Herr 2017, Lemma 3.1]. The second
follows by simple modification of the argument in the appendix to [Sterbenz 2005]. More precisely, after
interpolating with the L1t L

2
x estimate, we need to show that

ke�ithrimHNP�f kL2tL
r
x
.N�3.

1
2
� 1
r
/� 1

2 kHN�f kL2x :

After rescaling, and following the argument on [Sterbenz 2005, pp. 226–227], it is enough to prove that
for every � > 0 we have the space-time Morawetz-type bound

k.1Cjxj/�
1
2
��
rukL2t;x

. k.@tu.0/;ru.0//kL2x (8-3)

for functions u with �uCmuD 0, and the constant in (8-3) is independent of m. However the proof of
(8-3) follows the same argument as the wave case in [Sterbenz 2005]; the only change is to replace the
wave-energy-momentum tensor with the Klein–Gordon version

Q˛ˇ D
1
2

�
@˛�@ˇ�C @ˇ�@˛� �g˛ˇ .@


�@
�Cm
2
j�j2/

�
:

We omit the details. �
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The amount of angular regularity required for the L2Ct L4x Strichartz estimate to hold, is much less than
that stated in Lemma 8.2. In fact, in [Sterbenz 2005], it is shown that the same estimate holds with N

1
2
C.

However, as the sharp number of angular derivatives is not required in the arguments we use in the present
paper, we have elected to simply state the result with a whole angular derivative. On the other hand, the
number of angular derivatives required in the following Klein–Gordon regime, plays a crucial role.

Lemma 8.3 (Klein–Gordon Strichartz). Let m> 0 and 3
10
< 1=r < 5

14
. Then for every � > 0 we have

ke�ithrimP�HNf kLrt;x . �
2� 5

rN 7. 1
r
� 3
10
/C�
kP�HNf kL2x :

Proof. This is a special case of [Cho and Lee 2013, Theorem 1.1]. �

Remark 8.4. Without angular regularity, the optimal Lrt;x Strichartz estimate for the Klein–Gordon
equation is r D 10

3
; see for instance [Machihara et al. 2003]. However, in the resonant region, we are

forced to take r slightly below 3; thus the additional angular regularity is essential to obtain the additional
integrability in time. In other words, the angular regularity is used not just to obtain the scale-invariant
endpoint, but also plays a crucial role in controlling the resonant interaction. Note that the number of
angular derivatives required in Lemma 8.3 is not expected to be optimal, and any improvement in this
direction has an impact on Theorem 1.2.

We have seen that the addition of angular regularity improves the range of available Strichartz estimates.
An alternative way to exploit additional angular regularity is given by the following angular-concentration-
type bound.

Lemma 8.5 [Sterbenz 2005, Lemma 5.2]. Let 26 p <1, and 06 s < 2=p. If �;N > 1, ˛ & ��1, and
� 2 C˛ we have

kR�P�HNf kLpx .R3/ . ˛
sN s
kP�HNf kLpx .R3/:

Finally, we need to estimate various square sums of norms. As we work in V 2, this causes a slight loss
in certain estimates. However, as we have some angular derivatives to work with, this loss can always be
absorbed elsewhere.

Lemma 8.6. Let .Pj /j2J and .Mj /j2J be a collection of spatial Fourier multipliers. Suppose that the
symbols of Pj have finite overlap, and

kMjPjf kL2x . ıkPjf kL2x
for some ı > 0.

(i) Let q > 2, r > 2. Suppose that there exists A > 0 such that for every j we have the bound

ke�ithrimPjf kLqt L
r
x
6 AkPjf kL2x :

Then for every � > 0 we have�X
j2J

kMjPj vk
2
L
q
t L
r
x

�1
2

. ı.#J /�AkvkV 2
˙;m

:
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(ii) Fix p0 > 1. Suppose that there exists A > 0 such that kPjf kL1x . Akf kL2x . Moreover, suppose
that for every p > p0 there exists Bp > 0, and for any j 2 J there exists Kj � J with #Kj . 1 such
that for every k 2 Kj

kPjuPkvkLpt;x
. BpkPjukU 2

˙1;m1

kPkvkU 2
˙2;m2

:

Then for every q > p0 and p0=q < � < 1 we haveX
j2J ;k2Kj

kPjuMkPkvkLqt;x
. ı.#J /1��A1��B��qkukV 2

˙1;m1

kvkV 2
˙2;m2

:

Proof. We start with the proof of (i). Let 2 6 p 6 q and suppose that � D
P
I2I 1I .t/e�ithrimfI is

a U p atom; thus
P
I kfIk

p

L2x
6 1. The assumed linear estimate, together with the finite overlap of the

Fourier multipliers Pj implies�X
j2J

kMjPj�k
p

L
q
t L
r
x

�1
p

6
�X
I2I

X
j2J

ke�ithrimMjPjfIk
p

L
q
t L
r
x

�1
p

6 A
�X
j2J

X
I2I

kMjPjfIk
p

L2x

�1
p

6 ıA
�X
I2I

�X
j2J

kPjfIk
2

L2x

�p
2
�1
p

. ıA:

Consequently the atomic definition of U p
˙;m then implies that for any 26 p 6 q�X

j2J

kMjPjuk
p

L
q
t L
r
x

�1
p

. AıkukUp
˙;m

: (8-4)

Let v 2 V 2
˙;m. There exists a decomposition v D

P
`2N v` such that for every p > 2 we have

kv`kUp
˙;m
. 2`.

2
p
�1/
kvkV 2

˙;m

I

see, e.g., [Koch and Tataru 2005, Lemma 6.4] or [Hadac et al. 2009, Propositions 2.5 and 2.20]. An
application of Hölder’s inequality, together with (8-4) gives for any 2 < p 6 q�X

j2J

kMjPj vk
2
L
q
t L
r
x

�1
2

. .#J /
1
2
� 1
p

X
`2N

�X
j2J

kMjPj v`k
p

L
q
t L
r
x

�1
p

. ıA.#J /
1
2
� 1
p

X
`2N

kv`kUp
˙;m

. ıA.#J /
1
2
� 1
p kvkV 2

˙;m

X
`2N

2`.
2
p
�1/

. ıA.#J /
1
2
� 1
p kvkV 2

˙;m

:

Thus (i) follows by taking p sufficiently close to 2.



TRANSFERENCE OF BILINEAR RESTRICTION ESTIMATES AND THE DKG-SYSTEM 1221

We now turn to the proof of (ii). As in the proof of (i), we have the decompositions uD
P
`2N u`

and v D
P
`2N v` with ku`kU r

˙1;m1

. 2`. 2r�1/ and kv`kU r
˙2;m2

. 2`. 2r�1/ for every r > 2. Let q > p0
and p0=q < � < 1. Then the convexity of the Lq norms together with Hölder’s inequality, our assumed
bilinear estimate, and the U 2 summation argument used in (i) impliesX
j2J ;k2Kj

kPjuMkPkvkLqt;x

. .#J /1��
X
`;`02N

� X
j2J ;k2Kj

kPjuMkPkvkL�qt;x

���
sup
j;k2J

kPju`MkPkv`0kL1t;x

�1��
. ı.#J /1��A1��B��q

X
`;`02N

.ku`kU 2
˙1;m1

kv`kU 2
˙2;m2

/� .ku`kU1
˙1;m1

kv`0kU1
˙2;m2

/1��

. ı.#J /1��A1��B��qkukV 2
˙1;m1

kvkV 2
˙2;m2

X
`;`02N

2�`.1��/2�`
0.1��/

. ı.#J /1��A1��B��qkukV 2
˙1;m1

kvkV 2
˙2;m2

:

Therefore (ii) follows. �

Clearly the previous lemma allows us to extend Corollary 6.4, and the linear estimates discussed above,
to frequency-localised functions in V 2

˙;m. For instance, for any 16 �. �, ˛ & ��1, and � > 0, q > 2,
we have by Lemma 8.2� X

q2Q�

X
�2C˛

kR�Pqu�;N k
2

L4t;x

�1
2

. ˛��
�
�

�

�1
4
��

�
1
2 ku�;N kV 2

˙;m

; (8-5)

�X
�2C˛

kR�u�;N k
2
L
q
t L
4
x

�1
2

. ˛���
3
4
� 1
qN ku�;N kV 2

˙;m

; (8-6)

where we use the shorthand u�;N D P�PNu. Similarly, an application of Corollary 6.4, Lemma 8.1, and
(ii) in Lemma 8.6 gives for every q > 3

2
and � > 0� X

�;�002C
��1

X
q;q002Q�

jq�q00j�� or j���00j���1



R�00Pq00��;N �.…C�…C.�!.�///R�Pq �;N1��

2Lqt;x.R1C3/
�1
2

.��k��;N kV 2
C;1
k �;N1kV 2

C;M
; (8-7)

where !.�/ denotes the centre of the cap � 2 C��1 . This bilinear bound plays a key role in controlling
the solution to the DKG system in the resonant region.

8B. General resonance identity. After an application of Lemma 7.3, proving the bilinear estimates in
Theorem 7.5 for the V 2 component of the norm, reduces to estimating trilinear expressions of the formZ

R1C3
� �
0' dx dt: (8-8)
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Suppose �,  , and ' have small modulation; thus supp Q� �fj�Ch�ij6 dg, supp Q �fj�˙1 h�iM j6 dg,
and supp Q' � fj� ˙2 h�iM j6 dg for some d 2 2Z. If � 2 supp O and � 2 supp O', then it is easy to check
that the integral (8-8) vanishes unlessˇ̌

h� � �i�1 h�iM ˙2 h�iM
ˇ̌
. d:

To exploit this, we define the modulation function

M˙1;˙2.�; �/D
ˇ̌
h� � �i�1 h�iM ˙2 h�iM

ˇ̌
:

Clearly we have the symmetry properties MC;C.�; �/ DM�;�.�; �/ and M˙;�.�; �/ DM˙;�.�; �/.
The proof of our global existence results requires a careful analysis of the zero sets of M˙1;˙2 ; the key
tool is the following.

Lemma 8.7. Let M > 0:

(i) (Nonresonant interactions). We have

M�;C.�; �/& h�iC h�i; M˙;˙.�; �/&
1

h� � �i

�
.j�j � j�j/2

h�ih�i
C j�jj�j�2.�; �/C 1

�
;

M�;�.�; �/&
j� � �jj�j

h�iC h�i
�2.� � �;��/; MC;C.�; �/&

j� � �jj�j

h�iC h�i
�2.� � �; �/:

(ii) (Resonant interactions). We have

MC;�.�; �/�
1

h�iC h�i

ˇ̌̌̌
M 2 .j�j � j�j/2

h�iM h�iM Cj�jj�jCM 2
Cj�jj�jC � � �C

4M 2� 1

2

ˇ̌̌̌
;

MC;�.�; �/&
1

h�i

ˇ̌̌̌
.j�j �M j� � �j/2

h�iM h� � �iC j�jj� � �jCM
Cj�jj� � �j � � � .� � �/C

2M � 1

2

ˇ̌̌̌
:

Proof. We begin by noting that, if we let m1; m2; m3 > 0, then for any x; y 2 Rn we have the identityˇ̌
hx�yi2m3 � .hxim1 ˙hyim2/

2
ˇ̌

D
ˇ̌
�2hxim1hyim2 � 2x �yC .m

2
3�m

2
1�m

2
2/
ˇ̌

D
ˇ̌
2
�
hxim1hyim2 � .jxjjyjCm1m2/

�
C 2.jxjjyj˙ x �y/˙ ..m1˙m2/

2
�m23/

ˇ̌
D 2

ˇ̌̌̌
.m1jyj �m2jxj/

2

hxim1hyim2 CjxjjyjCm1m2
Cjxjjyj˙ x �y˙

.m1˙m2/
2�m23

2

ˇ̌̌̌
: (8-9)

We now turn to (i). The bound for M�;C is clear. On the other hand, by taking x D �, y D �,
m1 Dm2 DM, m3 D 1 in (8-9), we have

M˙;˙.�; �/>
ˇ̌
h� � �i � jh�iM � h�iM j

ˇ̌
�

1

h� � �i

ˇ̌
h� � �i2� .h�iM � h�iM /

2
ˇ̌

�
1

h� � �i

�
.j�j � j�j/2

h�ih�i
C j�jj�j�2.�; �/C 1

�
:
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Similarly, taking x D � � � and y D � , gives

M�;�.�; �/D

ˇ̌
h�i2M � .h� � �iC h�iM /

2
ˇ̌

h�iM Ch� � �iC h�iM

&
j� � �jj�j

h�iC h�i
�2.� � �;��/:

Using the symmetry M�;�.�; �/DMC;C.�; �/ gives the remaining bound in (i). To prove (ii), we note
that another application of (8-9) gives

MC;�.�; �/�
1

h�iC h�i

ˇ̌
h� � �i2� .h�iM Ch�iM /

2
ˇ̌

�
1

h�iC h�i

ˇ̌̌̌
M 2 .j�j � j�j/2

h�iM h�iM Cj�jj�jCM 2
Cj�jj�jC � � �C

4M 2� 1

2

ˇ̌̌̌
;

from which the first inequality in (ii) follows. The second inequality in (ii) follows from a similar
application of (8-9). �

8C. The trilinear estimates. Suppose we would like to bound an expression of the form P�HNI˙m ŒF �
in V 2
˙;m. An application of the energy inequality, Lemma 7.3, implies we have

kP�HN I˙m ŒF �kV 2
˙;m

. sup
kP�HNukV2

˙;m

.1

ˇ̌̌̌Z
R1C3

.P�HNu/
�F dx dt

ˇ̌̌̌
:

Thus to bound the V 2 component of kI˙m ŒF �kF˙;m
�;N

, it is enough to control
R

R1C3
.P�HNu/

�F dx dt . Con-
sequently, to estimate the V 2 component of the norms in Theorem 7.5, the key step is to prove the following
trilinear estimate. To simplify notation somewhat, we define B� D .minf�; �1; �2g=maxf�; �1; �2g/� if
M > 1

2
, and if 0 <M < 1

2
we let

B� D

(
.minf�; �1; �2g=maxf�; �1; �2g/�; ��maxf�1; �2g or ��minf�1; �2g;

1C��
1
6
C� .minfN;N1; N2g/

7
30; �� �1 � �2:

Theorem 8.8. Let M > 0. For every �=100 < ı� 1 we haveˇ̌̌̌Z
R3C1

��;N .…˙1 �1;N1/
�
0…˙2'�2;N2 dx dt

ˇ̌̌̌
. �

1
2 .minfN;N2g/ıBmin f ı

8
; 1
2a
� 1
4
gk�kFC;1�;N

k �1;N1kV 2
˙1;M

k'k
F
˙2;M

�2;N2

(8-10)

andˇ̌̌̌Z
R3C1

��;N .…˙1 �1;N1/
�
0…˙2'�2;N2 dx dt

ˇ̌̌̌
. �

1
2 .minfN1; N2g/ıBmin f ı

8
; 1
2a
� 1
4
gk��;N kV 2C;1

k k
F
˙1;M

�1;N1

k'k
F
˙2;M

�2;N2

: (8-11)
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In the region �2� �1 we have the slightly stronger boundˇ̌̌̌Z
R3C1

��;N .…˙1 �1;N1/
�
0…˙2'�2;N2 dx dt

ˇ̌̌̌

. �
1
2 .minfN;N2g/ı

�
�1

�2

�ı
8

k��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

: (8-12)

Similarly, when �� �1, we haveˇ̌̌̌Z
R3C1

��;N .…˙1 �1;N1/
�
0…˙2'�2;N2 dx dt

ˇ̌̌̌

. �
1
2 .minfN1; N2g/ı

�
�

�1

�ı
8

k��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

: (8-13)

Proof. We begin by decomposing the modulation (or distance to the relevant characteristic surface) as

��;N .…˙1 �1;N1/
�
0…˙2'�2;N2

D

X
d22Z

Cd��;N .C
˙1
�d
 �1;N1/

�
0C˙2
�d
'�2;N2 CC<d��;N .C

˙1
d
 �1;N1/

�
0C˙2
�d
'�2;N2

CC<d��;N .C
˙1
<d
 �1;N1/

�
0C˙2
d
'�2;N2

D

X
d22Z

A0CA1CA2:

Keeping in mind (7-11), we now divide the proof into cases depending on the relative sizes of the
frequency and the modulation. Namely, we consider separately the low-modulation cases

�1 � �2� � and d . �; ��minf�1; �2g and d .minf�1; �2g; �1 � �2 � � and d . �;

and the high-modulation cases

�1 � �2 & � and d � �; ��minf�1; �2g and d �minf�1; �2g:

Clearly, this covers all possible frequency combinations. The first case in the low-modulation regime,
where the two spinors are high-frequency, is the easiest, as this case interacts very favourably with the
null structure. The second case, when ��minf�1; �2g, is more difficult, and is the main obstruction to
the scale-invariant Sobolev result. The final case, when �� �1� �2, is the only resonant interaction, and
this is where the bilinear estimates in Corollary 6.4 play a crucial role. In the remaining high-modulation
cases d � minf�; �1; �2g, the null structure of the system no longer plays any role, and we need to
exploit the Y ˙;m

�;N
norms to gain the off-diagonal decay term.

High-low, I: �� �1 � �2 and d . �. Our goal is to show thatX
d��1

ˇ̌̌̌Z
R1C3

A0 dx dt

ˇ̌̌̌
C

ˇ̌̌̌Z
R1C3

A1 dx dt

ˇ̌̌̌
C

ˇ̌̌̌Z
R1C3

A2 dx dt

ˇ̌̌̌

. �
1
2N ı

min

�
�

�1

�1
4

k��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

; (8-14)

where we let Nmin DminfN;N1; N2g. Clearly this gives the bounds (8-10), (8-11), and (8-13).
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We now prove the bound (8-14). An application of Lemma 8.7 implies that we must have ˙1 D˙2
and moreover, that the sum over the modulation is restricted to the region ��1 . d .� (in particular this
case is nonresonant). To estimate the first term, A0, we note that after another application of Lemma 8.7,
we have the almost orthogonal decomposition

A0 D
X

�;�02C˛
j���0j.˛

X
q;q02Q�
jq�q0j.�

Cd��;N .C
˙1
�d
R�Pq �1;N1/

�
0C˙2
�d
R�0Pq0'�2;N2 ;

where ˛ D .d�/
1
2��11 . Then, using the null-structure by writing

C˙1
6d
R�P�1 D C

˙1;M
6d

.…˙1 �…˙1.�1!//R�P�1 CC
˙1;M
6d

…˙1.�1!�/R�P�1

(here !� denotes the centre of the cap �) and applying Lemma 8.1, together with the uniform disposability
of C˙1;M

6d
from (7-1), we obtain for every � > 0ˇ̌̌̌Z

A0 dx dt

ˇ̌̌̌
.

X
�;�02C˛
j���0j.˛

X
q;q02Q�
jq�q0j.�

˛kCd��;N kL2t;x
kR�Pq �1;N1kL4t;x

kR�0Pq0'�2;N2kL4t;x

. �
1
2˛��

�
�

�1

�1
2
��

k��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

; (8-15)

where we used Lemma 7.2 to control the L2t;x norm of the high-modulation term, and the bound (8-5).
On the other hand, we have the decomposition

A0 D
X

�;�0;�002Cˇ
j���0j;j�00˙2�

0j.ˇ

CdR�00��;N .C
˙1
�d
R� �1;N1/

�
0C˙2
�d
R�0'�2;N2 ;

where ˇ D d
1
2��

1
2 , again by almost orthogonality and Lemma 8.7. As above, we obtain for every � > 0ˇ̌̌̌Z

A0 dx dt

ˇ̌̌̌
.

X
�;�0;�002Cˇ

j���0j;j�00˙2�
0j.ˇ

ˇkCdR�00��;N kL2t;x
kR� �1;N1kL4t;x

kR�0'�2;N2kL4t;x

. ˇ1��d�
1
2�.ˇNmin/

1
4 k��;N kV 2

C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

; (8-16)

where we used the angular concentration Lemma 8.5 on the lowest angular-frequency term. Combining
(8-15) and (8-16), by taking � > 0 sufficiently small, we obtain for every 0 < ı� 1

X
��1.d.�

ˇ̌̌̌Z
A0dxdt

ˇ̌̌̌
.

X
��1.d.�

�
d

�

�ı
4

N ı
min

�
�

�

�1
4

�
1
2 kP�HN�kV 2

C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

.N ı
min

�
�

�

�1
4

�
1
2 k��;N kV 2

C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

;
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which gives (8-14) for the A0 term. Next, we deal with the A1 term. The argument is similar to the
above, but the initial decomposition is slightly different as we no longer require the cube decomposition.
Instead, we need to decompose the � term into caps to ensure that the C<d multiplier is disposable. In
more detail, the resonance bound in Lemma 8.7 gives

A1 D
X

�;�02C˛
j���0j.˛

X
�002Cˇ

j�00˙2�
0j.ˇ

C<dR�00��;N .C
˙1
d
R� �1;N1/

�
0C˙2
�d
R�0'�2;N2 ;

where ˛ D .d�=�21/
1
2 and ˇ D .d=�/

1
2 . By exploiting the null structure as previously, we then obtain

for every � > 0ˇ̌̌̌Z
A1 dx dt

ˇ̌̌̌
.

X
�;�02C˛
j���0j.˛

X
�002Cˇ

j�00˙2�
0j.ˇ

˛kR�00��;N kL4t;x
kC˙1
d
R� �1;N1kL2t;x

kR�0'�2;N2kL4t;x

. ˛1���
1
2d�

1
2�

1
2

2 k��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

; (8-17)

where we used Lemma 7.2 to control the L2t;x norm of the high-modulation term, and again used (8-5). To
gain a power of d , we again exploit the angular concentration estimate by exploiting a similar argument
to (8-16) to deduce thatˇ̌̌̌Z

A1 dx dt

ˇ̌̌̌
.

X
�;�0;�002Cˇ

j���0j;j�00˙2�
0j.ˇ

ˇkR�00��;N kL4t;x
kC˙1
d
R� �1;N1kL2t;x

kR�0'�2;N2kL4t;x

. ˇ1��d�
1
2�

1
2�

1
2 .ˇNmin/

1
4 k��;N kV 2

C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

: (8-18)

Combining (8-17) and (8-18) as in the A0 case, and summing up over ��1 . d . � with � sufficiently
small, we obtain (8-14). The remaining term A2 can be handled in an identical manner to the A1. Thus
the bound (8-14) follows.

High-low, II: �� minf�1; �2g and d . minf�1; �2g. Let fj; kg D f1; 2g and �j > �k . Our goal is to
prove that

X
d.�k

ˇ̌̌̌Z
R1C3

A0 dx dt

ˇ̌̌̌
C

ˇ̌̌̌Z
R1C3

Aj dx dt

ˇ̌̌̌
. �

1
2N ı

min

�
�k

�

�1
8

k��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

: (8-19)

On the other hand, for the Ak term, we have the weaker bounds

X
d.�k

ˇ̌̌̌Z
R1C3

Ak dxdt

ˇ̌̌̌
.�

1
2

�
�k

�

�ı
8

.minfN;Nj g/ık��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

(8-20)
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and X
d.�k

ˇ̌̌̌Z
R1C3

Ak dx dt

ˇ̌̌̌
. �

1
2

�
�k

�

� 1
2a
� 1
4

N ı
k k��;N kV 2

C;1

(
k k

F
˙1;M

�1;N1

k'�2;N2kV 2
˙2;M

; k D 1;

k �1;N1kV 2
˙1;1

k'k
F
˙2;M

�2;N2

; k D 2;
(8-21)

where
1

2
<
1

a
<
1

2
C

�

1000

is as in the definition of the Y ˙;m
�;N

norm. Clearly (8-19), (8-20), and (8-21) give the estimates claimed
in Theorem 8.8. Note that we have a weaker bound when the low-frequency term has modulation away
from the hyperboloid, and for this interaction, we are forced to exploit the Y ˙;m

�;N
norms.

We begin the proof of (8-19), (8-20), and (8-21) by observing that since the estimate is essentially
symmetric in  and ', it is enough to consider the case �� �1� �2; in other words, we only consider
the case j D 1 and k D 2. As in the previous case, Lemma 8.7 implies that we only have a nonzero
contribution if ˙1 DC and ��12 . d . �2. To control the A0 term, we decompose into caps of radius
ˇD .d=�2/

1
2 and cubes of diameter �2. Lemma 8.7 implies that we have the almost orthogonality identity

A0 D
X

�;�02Cˇ
j��2�

0j.ˇ

X
q;q02Q�2
jq�q0j.�2

Pq0Cd��;N .PqR�CC�d �1;N1/
�
0R�0C˙2�d'�2;N2 :

Thus exploiting the null structure as previously, disposing of the C˙;m
d

multipliers using (7-1), and
applying the L4t;x Strichartz estimate, we obtain for every � > 0ˇ̌̌̌Z

R1C3
A0 dx dt

ˇ̌̌̌
.

X
�;�02Cˇ
j��2�

0j.ˇ

X
q;q02Q�2
jq�q0j.�2

ˇkPq0Cd��;N kL2t;x
kPqR� �1;N1kL4t;x

kR�0'�2;N2kL4t;x

. ˇ���
1
2

�
�2

�

�1
4
��

k��;N kV 2
C;1
k �1;N1kV 2

C;M
k'�2;N2kV 2

˙2;M

: (8-22)

On the other hand, by decomposing into

A0 D
X

�;�0;�002Cˇ
j��2�

0j;j�00˙2�
0j.ˇ

R�00Cd��;N .R�CC�d �1;N1/
�
0R�0C˙2�d'�2;N2

and using the angular concentration bound Lemma 8.5 on the smallest angular-frequency term, a similar
argument givesˇ̌̌̌Z

R1C3
A0 dx dt

ˇ̌̌̌
.

X
�;�0;�002Cˇ

j��2�
0j;j�00˙2�

0j.ˇ

ˇkCdR�00��;N kL2t;x
kR� �1;N1kL4t;x

kR�0'�2;N2kL4t;x

. �
1
2ˇ

1
4
��N

1
4

mink��;N kV 2
C;1
k �1;N1kV 2

C;M
k'�2;N2kV 2

˙2;M

: (8-23)
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As in the previous case, combining (8-22) and (8-23) with � sufficiently small gives (8-19) for the A0 term.
The A1 term can be estimated by an identical argument (since the high-modulation term is again at
frequency �). To control the A2 component, we start by again applying Lemma 8.7 and decomposing into
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where as usual ˇD.d=�2/
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: (8-24)

Note that we get no high frequency gain here (in fact we have a slight loss due to the sum over cubes). On
the other hand, by decomposing all three terms into caps of size ˇ, using null structure, theLqtL

4
x Strichartz

estimate in Lemma 8.2, and Bernstein’s inequality followed by Lemma 7.2 for '�2;N2 , we obtain for any
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(8-25)

(schematically, we are putting the product into L1�t L2Cx �L
2C
t L4x �L

2C
t L4�x ). Switching the roles of

��;N and  �1;N1 , and combining (8-24) and (8-25) with q close to 2, and � > 0 sufficiently small, we
obtain (8-20).

It remains to prove (8-21); thus we need to consider the case where ' also has the smallest angular
frequency. We begin by again using Lemma 8.7 to get the decomposition
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where ˇ D .d=�2/
1
2 . An application of Bernstein’s inequality, Lemma 7.2, and the angular concentration

lemma for ', together with the null-form bound, and Lemma 8.2, implies that for any � > 0 sufficiently
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which gives (8-21) since
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:

High-high: �� �1 � �2 and d . �. Our goal is to prove that if M > 1
2

, then for any ı > 0 we have
the boundX
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while if 0 <M < 1
2

, for every s; ı > 0, we haveˇ̌̌̌Z
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The key difference from the previous cases, is that if 0 < M 6 1
2

, we no longer have the nonresonant
bound d &��1, and thus we also have to estimate the resonant interactions d ���1. This is particularly
challenging in light of the fact that in the strongly resonant regime, 0 <M < 1

2
, there is no gain from

the null structure when d � ��1. However, we do have transversality in the region d � ��1, and
consequently, we can apply the key bilinear restriction estimate in Corollary 6.4. On the other hand, in
the weakly resonant regime, M D 1

2
, somewhat surprisingly and in stark contrast to the cases M 6D 1

2
,

the null structure gives cancellation for all modulation scales.
We start by considering the nonresonant region ��1 . d . �. By decomposing into caps of radius

ˇ D .d=�/
1
2 , an application of Lemma 8.7 gives the identity
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Thus by applying the L4t;x Strichartz bound, exploiting the null structure as previously (here we need
the assumption d & ��1), and using the angular concentration bound in Lemma 8.5 on Nmin, we obtain
for every � > 0ˇ̌̌̌Z
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Taking ı > 0 and � > 0 sufficiently small, and summing up over the modulation ��1 . d . � then gives
(8-26) and (8-27) for A0 in the region ��1 . d . �. A similar argument bounds the A1 and A2 terms
in (8-26) and (8-27), provided the sum over modulation is restricted to ��1 . d . �.

We now consider the case d���1. Note that ifM > 1
2

, then using Lemma 8.7, we see that A0DA1D
A2D 0 and thus (8-26) is immediate. On the other hand, if we are in the weakly resonant regime M D 1

2
,

then another application of Lemma 8.7 implies that˙1DC and˙2D�, and we have the decomposition
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where ˇ D .d=�/
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where we used the angular concentration bound in Lemma 8.5 on the term with smallest angular frequency.
Choosing � > 0 sufficiently small, and summing up over 0 < d � ��1 then gives (8-26) for the A0 term.
An identical argument bounds the A1 and A2 terms.

It remains to prove (8-27) when 0 < d � ��1. Another application of Lemma 8.7, implies that we
must have ˙1 DC and ˙2 D�, as well as the key orthogonality identityX
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Note that the summation is restricted to terms for which R�00Pq00C���1��;N and R�PqCC���1 �1;N1
have either angular orthogonality or radial orthogonality. In either case, we may apply Corollary 6.4,
via the bound (8-7), the null structure bound in Lemma 8.1, and the Klein–Gordon angular Strichartz
estimate in Lemma 8.3, to deduce that for every 3

2
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9
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where for ease of reading we suppressed the …˙.!�/ matrices used to extract the null-form gain of ��1.
Choosing q sufficiently close to 3

2
, and � > 0 sufficiently small, then gives (8-27) in the case N2 DNmin.

To deal with remaining cases, we just reverse the roles of �,  , and ', again apply Lemma 8.7 to deduce
the required transversality, and always use the angular Strichartz estimate from Lemma 8.3 on the term
with smallest angular frequency. This completes the proof of (8-27).

High modulation, I: �. �1 � �2 and d � �. In this region, our goal is to prove that
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and for every ı > 0, the weaker bounds
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where a is as in the definition of the Y ˙;m
�;N

norm. We start with proving the estimates (8-29) and (8-30),
under the additional restriction of the sums to the range d & �1.

To bound the A0 component, decomposing  and ' into cubes of size �, together with an application
of the L4t;x Strichartz estimate gives for all � > 0ˇ̌̌̌Z
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As in the proof of (8-25), if we instead apply the LqtL
4
x bound, together with Bernstein’s inequality for
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(schematically, we are putting the product into L2Ct L4�x �L
2C
t L4x �L

1�
t L2Cx ). Switching the roles of

 �1;N1 and '�2;N2 , and combining (8-31) and (8-32) with q sufficiently close to 2 and � > 0 sufficiently
small, followed by summing up over d & �1, we obtain (8-29). On the other hand, to obtain (8-30), we
again use Lemma 8.2 to deduce thatˇ̌̌̌Z
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which then gives (8-30) if we choose � sufficiently small as
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�
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We now turn to the estimates for A1 and A2. By symmetry, it is enough to consider the A1 term. After
decomposing into cubes of size � and applying the L4t;x Strichartz estimate, we obtainˇ̌̌̌Z
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Summing up over d & �1 and choosing � sufficiently small then gives (8-28).
Next, we consider the parts of the sums where �� d � �1. Since M˙1;˙2 . d � �1, we must have
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Concerning the first term, using null-structure,ˇ̌̌̌Z
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which can be summed up with respect to �� d � �1. The second term in (8-33) can be treated along
the same lines.

Similarly, for A1 we have the decompositionZ
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The first term can be estimated the same way as the first contribution to A0. For the second term, we
use the decompositionˇ̌̌̌Z

R1C3
C�d��;N .C

˙1
d
 �1;N1/

�
0C˙2
�d
'�2;N2 dx dt

ˇ̌̌̌
.
�

�1

X
q;q02Q�
jq�q0j.�

k��;N kL1t;xkPqC
˙1
d
 �1;N1kL2t;x

kPq0C˙2�d'�2;N2kL2t;x

.
�
d

�

��1� �
�1

�1��
�
1
2 k��;N kV 2

C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

;

which, as above, can be summed up with respect to �� d � �1.
A similar argument treats the A2 term.

High modulation, II: ��minf�1; �2g and d �minf�1; �2g. Our goal is to prove the boundX
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As the estimate is essentially symmetric in �1 and �2, we may assume that �1 > �2.
First, we consider the contribution to the sum where d &�. The bound for A0 follows by decomposing

into cubes of size �2 and applying the standard L4t;x Strichartz estimate to obtainˇ̌̌̌Z
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which easily gives (8-35) in the range d & � for the A0 term, provided we choose � sufficiently small.
The proof for the A1 term is identical (as we do not exploit any null structure here). On the other hand,
to estimate the A2 term, we again decompose into cubes of size �2 and apply the L4t;x Strichartz estimate
to deduce thatˇ̌̌̌Z
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Therefore (8-35) follows in the range d & �.
Second, we consider the contribution to the sum where �2� d � �. Concerning A0, as in the first

high modulation case, we have the decomposition (8-33). To bound the first term in (8-33), we haveˇ̌̌̌Z
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To bound the second term in (8-33), we haveˇ̌̌̌Z
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Concerning A1, as in the first high-modulation case, we have the decomposition (8-34), and we can
repeat the argument above for the A0 terms.

Concerning A2, we have the decompositionZ
R1C3

A2 dx dt D

Z
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C�d��;N .C
˙1
6d
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�
0C˙2
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'�2;N2 dx dt

C

Z
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C�d��;N .C
˙1
�d
 �1;N1/

�
0C˙2
d
'�2;N2 dx dt:

The first term can be treated in the same manner as the second contribution to A0. For the second term
we haveˇ̌̌̌Z
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C�d��;N .C
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�d
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�
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d
'�2;N2 dx dt
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1
x

.
�
d

�2

��1��2
�

�1
2

�
1
2 k��;N kV 2

C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

: �
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8D. Proof of Theorem 7.5. We begin with the proof of (7-9). An application of the energy inequality in
Lemma 7.3 gives

P�1HN1…˙1I˙1M Œ��;N 


0…˙2'�2;N2 �



V 2
˙1;M

. sup
k �1;N1kV2

˙1;M

.1

ˇ̌̌̌ Z
R1C3

��;N .…˙1 �1;N1/
�
0…˙2'�2;N2 dxdt

ˇ̌̌̌
:

Therefore an application of (8-10) in Theorem 8.8 implies
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. �
1
2 .minfN;N2g/

�
4 Bmin f �

32
; 1
2a
� 1
4
gk�kFC;1�;N

k'k
F
˙2;M

�2;N2

; (8-36)

which gives the required bound (7-9) for the F˙1;M
�1;N1

component of the norm. To complete the proof of
(7-9), it remains show that there exists � > 0 such that

…˙1I˙1M Œ��;N 


0…˙2'�2;N2 �



Y
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: (8-37)

To this end, we consider separately the cases �1� �2 and �1 & �2. In the former region, note that an
application of (8-12) in Theorem 8.8 together with the energy inequality Lemma 7.3, and the L2t;x bound
in Lemma 7.2, gives
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: (8-38)

On the other hand, since we are localised away from the hyperboloid we have by (7-7) together with
Lemma 8.2
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: (8-39)

Repeating this argument but instead putting � 2L
12
5

t L
4
x and ' 2L4t;x we deduce that, since �1� �2��,

d�
� 1
3

1
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: (8-40)

Note that this bound is far too weak to be useful on its own, as we have �1� �2. On the other hand, if
we combine (8-38) and (8-40), and use the convexity of the Lpt spaces, we deduce that if we let 0 < � < 1
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be given by
1

a
D
2�

3
C
1��

2
;

then, as this forces b D 1
2
.1C �/, we deduce that
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:

Since
1

2
<
1

a
<
1

2
C

�

1000
;

it is easy enough to check that 1
32
�.1� �/� 1

3
� > 0, and hence (8-37) holds when �1� �2. We now

consider the case �1 & �2. The proof is similar to the previous case; the main difference is that we need
a more refined version of the bound (8-40). To this end, by decomposing ' into cubes of size minf�; �2g,
we deduce that by Lemma 8.2 and Lemma 8.6, for every �0 > 0

P�1HN1C˙1d I˙1M Œ��;N 


0…˙2'�2;N2 �



L
3=2
t L2x

. d�1


�k��;N 
0…˙2Pq'�2;N2k2L2x� 12

L3=2t

. d�1k��;N kL12=5t L4x

� X
q2Qminf�;�2g

kPq'�2;N2k
2
L4t;x

�1
2

. d�1�
1
3N.minf�; �2g/

1
4
��0�

1
4
C�0

2 k��;N kV 2
C;1
k'�2;N2kV 2

˙2;M

:
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2 (for �0 sufficiently small) and �2. �1, by using the bound (8-39),
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Note that, unlike the bound (8-41), we have no high-frequency loss here. As in the case �1� �2, we now
combine the bound (8-36) with (8-41), and deduce by the convexity of the Lpt norm and Lemma 7.2 that
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:

Since 0 < � � � , we obtain (8-37). Therefore, the bound (7-9) follows.
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We now turn to the proof of the second inequality (7-10). The argument is similar to the proof of
(7-9) so we will be brief. An application of the energy inequality in Lemma 7.3 together with (8-11) in
Theorem 8.8 implies
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: (8-42)

Therefore it only remains to prove that there exists � > 0 such that
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: (8-43)

Similar to the proof of (8-37), we consider separately the cases �� �1 and �& �1. In the former case,
as in (8-41), since we are localised away from the hyperboloid we have by (7-7) together withLemma 8.2
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Since �1 � �2, we can replace the max and min in (8-44) with �
1
3
C 1
2

1 . If we now combine (8-44) with
the energy inequality in Lemma 7.3, the bound (8-13) in Theorem 8.8, and Lemma 7.2, we deduce that
by the convexity of the Lpt spaces that
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where as previously, we have
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which implies b D 1
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� > 0, and hence (8-43) holds when �� �1. We now

consider the case �& �1. Since we now have
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an application of (8-44), together with (8-42), Lemma 7.2 gives
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:

Since 0 < � � � and 1=a > 1=2, we obtain (8-43). Therefore, the bound (7-9) follows. This completes
the proof of Theorem 7.5.
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WELL-POSEDNESS AND SMOOTHING EFFECT FOR
GENERALIZED NONLINEAR SCHRÖDINGER EQUATIONS

PIERRE-YVES BIENAIMÉ AND ABDESSLAM BOULKHEMAIR

We improve the result obtained by one of the authors, Bienaimé (2014), and establish the well-posedness
of the Cauchy problem for some nonlinear equations of Schrödinger type in the usual Sobolev space
H s.Rn/ for s > n

2
C 2 instead of s > n

2
C 3. We also improve the smoothing effect of the solution and

obtain the optimal exponent.

1. Introduction

Consider the nonlinear Cauchy problem�
@tuD iL uCF.u;rxu; Nu;rx Nu/; t 2 R; x 2 Rn;

u.x; 0/D u0.x/ 2H s.Rn/;
(1)

where the function F is sufficiently regular in C�Cn �C�Cn, the operator L has the form

L D
X

j�j0

@2
xj
�

X
j>j0

@2
xj
;

with a fixed j0 2 f1; 2; : : : ; ng, and H s.Rn/, s 2R, is the usual Sobolev space on Rn. Thus, L generalizes
the Laplace operator but is not elliptic unless j0 D n. Hence, such equations are generalizations of the
nonlinear Schrödinger (NLS) equations.

In this paper, we continue the work undertaken in [Bienaimé 2014] and study the local existence and the
smoothing effect of the solutions of the Cauchy problem (1) with essentially the following goal: to obtain
the optimal index s of regularity for which (1) is well-posed. In fact, since the partial differential equation
is of second order and is semilinear, the optimal condition on s should be s > n

2
C 1. Unfortunately, up to

now and due to issues that occur when estimating the remainder obtained after the linearization of the
nonlinear equation, we have not been able to prove the desired result under such a condition. In any case,
we shall return to this question in a future work. In this paper, we establish the following:

Theorem 1.1. Assume that F vanishes to the third order at 0; that is, F and its partial derivatives up to
the second order vanish at 0. Then, for every s > n

2
C 2 and every initial data u0 2H s.Rn/, there exists

a real number T > 0 such that the Cauchy problem (1) has a unique solution u which is defined on the
interval Œ0;T � and satisfies

u 2 C.Œ0;T �IH s.Rn//

MSC2010: 47G20, 47G30.
Keywords: Cauchy problem, well-posedness, smoothing effect, nonlinear equation, Schrödinger, paradifferential,

pseudodifferential, operator, paralinearization.
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and

kjJ sC 1
2 ukjT

def
D sup
�2Zn

�Z T

0

Z
Rn

jhx��i��0J sC 1
2 u.x; t/j2 dx dt

�1
2

<1;

where J D .1 ��/
1
2 , � D

PkDn
kD1 @

2
xk

and �0 >
1
2

is fixed. Moreover, given a bounded subset B of
H s.Rn/, there exists a real number T > 0 such that, for every u0 2 B, the associated solution u of (1)
exists on the interval Œ0;T � and the map which associates u to u0 is Lipschitz continuous from B into the
space

fw 2 C.Œ0;T �IH s.Rn// W kjJ sC 1
2wkjT <1g:

In [Bienaimé 2014], this theorem is proved under the assumption s > n
2
C 3. We also improve the

result with respect to the smoothing effect of the solution since �0 D 2 there. Note that the assumption
�0 >

1
2

in the above theorem seems to be sharp; we refer for example to the survey article [Robbiano
2013] on the subject of Kato’s smoothing effect. Recall that at the origin of [Bienaimé 2014] was the
significant work of C. E. Kenig, G. Ponce and L. Vega [Kenig et al. 1998], who first studied (1) with such
a nonelliptic L and established the local existence and the smoothing effect of the solutions assuming
that F is a polynomial and s � s0, the index s0 being sufficiently large. Note that these authors did not
give an idea about the value of s0, but by going back to the details of their proof, one can see that s0 is of
the order of n

2
C 10nC 1. These authors also studied the case where F (is a polynomial and) vanishes to

the second order at 0. However, it seems that in that case we need to work in weighted Sobolev spaces.

The Cauchy problem (1) was extensively studied in the 90s mainly when L D�, that is, in the case of
the Schrödinger equation. See the introduction of [Kenig et al. 1998]. The case L ¤� is less well-known.
Nevertheless, it is motivated by several equations coming from the applications such as Ishimori-type
equations or Davey–Stewartson-type systems. For more details, we refer the reader to the instructive
introduction of [Kenig et al. 1998]. Let us now quote some papers which are more or less related to this
subject. In [Kenig et al. 2004], the authors extended their results of 1998 to the quasilinear case assuming
essentially that the corresponding dispersive operator L is elliptic and nontrapping. The nonelliptic case
is treated in [Kenig et al. 2006; 2005]. In [Bejenaru and Tataru 2008], the authors solved the Cauchy
problem (1) for s > n

2
C 1 in modified Sobolev spaces and assuming F.u;rxu; Nu;rx Nu/ bilinear. More

recently, in [Marzuola et al. 2012; 2014], the authors considered the quasilinear Schrödinger equation

i@tuC
X
j ;k

gj ;k.u;rxu/@j@kuD F.u;rxu/

and obtained the local well-posedness of the associated Cauchy problem for s > n
2
C 3 in the quadratic

case (with modified Sobolev spaces) and for s > n
2
C

5
2

in the nonquadratic case. However, they assume
the smallness of the data and they do not seem to obtain the smoothing effect of the solutions.

The proof of Theorem 1.1 follows the same ideas as that of [Kenig et al. 1998; Bienaimé 2014]. Of
course, the general plan is unoriginal: linearization of the nonlinear equation, then, establishing energy
estimates for solutions of the linear equation, and finally, solving the nonlinear equation by means of an
appropriate fixed-point theorem. Like [Bienaimé 2014], we start by applying a paralinearization, that is, a
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linearization in the sense of [Bony 1981] instead of the classical linearization. This leads us to the use
of the paradifferential calculus whose main interest lies in the fact that it eliminates the usual losses of
regularity due to commutators. One obtains a paralinear equation and most of the proof of the theorem is
concerned with the study of such an equation, that is, the well-posedness in the Sobolev spaces of the
associated Cauchy problem by means of energy and smoothing effect estimates. As did Kenig, Ponce and
Vega, we establish the smoothing effect estimate by using Doi’s argument [1994] via Gårding’s inequality,
and we prove the energy estimates by following an idea of [Takeuchi 1992], that is, by constructing a
nonclassical invertible pseudodifferential operator C which allows estimates for C u if u is a solution of
the paralinear equation. Finally, we solve the nonlinear Cauchy problem (1) by applying these estimates
to an integrodifferential equation which is equivalent to (1) and obtain the solution as the fixed point of
an appropriate contraction in an appropriate complete metric space.

Now, in order to give a more precise idea about our proof, let us indicate the differences with that
given in [Bienaimé 2014]. In fact, there are three main differences:

� We simplify certain arguments of that paper; for example, we no longer need to use the general Hör-
mander symbol spaces Sm

�;ı
; we only use Sm

1;0
and Sm

0;0
. Also, we only use the original paradifferential

operators (see Section 2) and not the variant introduced in [Bienaimé 2014].

� The linear theorem, that is, Theorem 3.1 (see Section 3), is proved for general paradifferential operators
Tb1

and Tb2
of order 0 instead of paramultiplication operators. Note also that we allow the operators

C1 and C2 to be abstract bounded operators.

� The third difference lies in the nonlinear part (see Section 4) and is crucial for our improvement of
the result of [Bienaimé 2014]: we use anisotropic Sobolev spaces and an interpolation inequality (see
Proposition A.5) to estimate the remainder of the paralinearized equation.

2. Notations and preliminary results

Some notation used in the paper:

� J s D .1��/
s
2 D hDis is the operator whose symbol is h�is D .1C �2/

s
2 .

� Dxk
D�i@xk

, Dx D�i@x .

� j˛j D
PjDn

jD1 j̨ if ˛ 2 Nn.

� �v D .�v1; : : : ; �vn/ and rv D .rv1; : : : ;rvn/ if v D .v1; : : : ; vn/.

� S .Rn/ denotes the Schwartz space of rapidly decreasing functions in Rn.

� D.Rn/ denotes the space of smooth functions with compact support in Rn.

� D 0.Rn/ denotes the space of distributions in Rn.

� S 0.Rn/ denotes the space of tempered distributions in Rn.

� Ou or F .u/ denotes the Fourier transform of u.

� H s.Rn/D fu 2S 0.Rn/ W h�is Ou 2L2.Rn/g is the usual Sobolev space of regularity s.



1244 PIERRE-YVES BIENAIMÉ AND ABDESSLAM BOULKHEMAIR

� kuks D
�R

Rnh�i
2sj Ou.�/j2 d�

� 1
2 denotes the norm of u in H s.Rn/.

� kukE denotes the norm of u in the space E.

� Hörmander’s classes of symbols: if m 2 R and 
; ı 2 Œ0; 1�,

Sm

;ı D

˚
a 2 C1.Rn

�Rn/ W j@˛x@
ˇ

�
a.x; �/j �A˛;ˇh�i

m�
 jˇjCıj˛j for all ˛; ˇ 2 Nn
	
:

� If % > 0 is an integer, C %.Rn/ denotes the set of functions in Rn which are bounded, of class C m and
their derivatives up to m are bounded. If % > 0 is not an integer, C %.Rn/ denotes the Hölder class, that
is, the set of u in C Œ%�.Rn/ such that

9C 2 R; 8.x;y/ 2 Rn
�Rn; j@˛u.x/� @˛u.y/j � C jx�yj%�Œ%�:

� Op S denotes the set of pseudodifferential operators whose symbols belong to S .

The following statement summarizes the pseudodifferential calculus associated to Hörmander’s classes
of symbols Sm


;ı
:

Theorem 2.1. If a 2 Sm

;ı

, b 2 Sm0


;ı
, m;m0 2 R, and 0� ı < 
 � 1 or 0� ı � 
 < 1, then:

(i) a.x;D/b.x;D/D c.x;D/ with c 2 SmCm0


;ı
. Moreover,

c.x; �/D

Z
e�iy:�a.x; �C �/b.xCy; �/

dy d�

.2�/n

D

X
j�j<N

1

�!
@��a.x; �/D

�
xb.x; �/C

X
j�jDN

1

�!

Z 1

0

.1� �/N�1r�;� .x; �/ d�;

where

r�;� .x; �/D

Z
e�iy:�@��a.x; �C ��/D

�
xb.xCy; �/

dy d�

.2�/n
;

and the S
mCm0�N.
�ı/


;ı
seminorms of r�;� are bounded by products of seminorms of a and b uniformly

in � 2 Œ0; 1�.

(ii) a.x;D/� D a�.x;D/ with a� 2 Sm

;ı

. Moreover,

a�.x; �/D

Z
e�iy:�

Na.xCy; �C �/
dy d�

.2�/n

D

X
j�j<N

1

�!
@��D

�
x Na.x; �/C

X
j�jDN

1

�!

Z 1

0

.1� �/N�1r��;� .x; �/ d�;

where

r��;� .x; �/D

Z
e�iy:�@��D

�
x Na.xCy; �C ��/

dy d�

.2�/n
;

and the S
m�N.
�ı/


;ı
seminorms of r�

�;�
are bounded by seminorms of a uniformly in � 2 Œ0; 1�.

See [Taylor 1991], for instance, for the proof. We shall also often need the following version of the
Calderón–Vaillancourt theorem:
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Theorem 2.2. Let a W Rn �Rn ! C be a bounded function. Assume that, for all ˛; ˇ 2 Nn such that
j˛j C jˇj � nC 1, there exists a constant C˛;ˇ > 0 such that j@˛x@

ˇ

�
a.x; �/j � C˛;ˇ 2 R2n. Then, the

pseudodifferential operator a.x;D/ is bounded in L2.Rn/ and its operator norm is estimated by

sup
j˛jCjˇj�nC1

k@˛x@
ˇ

�
akL1 :

See [Coifman and Meyer 1978] for the proof.
The following technical lemma, which is a consequence of Theorem 2.1, will be very useful in many

of our proofs:

Lemma 2.3. Let a 2 Sm
0;0

, m; � 2 R and � 2 Rn. Then:

(i) We have hx ��i�a.x;D/hx ��i�� D a�.x;D/, where a� 2 Sm
0;0

and the seminorms of a� are
bounded by seminorms of a uniformly in �.

(ii) If � � 0 and if , in addition, a.x; �/ is rapidly decreasing with respect to x � �, then we have
hx��i�a.x;D/hx��i� D b�.x;D/, where b� 2 Sm

0;0
, b� is also rapidly decreasing in x�� and

the seminorms of b� are estimated uniformly in � by expressions of the form

sup
j˛jCjˇj�N

khx��i2� h�i�m@˛xD
ˇ

�
akL1 :

Here, the fact that the symbol a.x; �/ is rapidly decreasing with respect to x�� means that, for every
integer N and all multi-indices ˛; ˇ, the function hx��iN h�i�m@˛xD

ˇ

�
a is bounded in Rn�Rn, and we

shall often meet such symbols in this paper.

Proof. (i) When � � 0, we can use Theorem 2.1(i) and integrations by parts to obtain

a�.x; �/D hx��i
� .2�/�n

Z
e�iy:�a.x; �C �/hxCy ��i�� dy d�

D hx��i� .2�/�n

Z
e�iy:�J N

� Œh�i
�N a.x; �C �/� hyi�N J N

y ŒhxCy ��i�� � dy d�;

where N is a large and even integer. Hence, by taking derivatives and bounding, and next by applying
Peetre’s inequality,

ja�.x; �/j � Ckh�i�makC N hx��i�
Z
h�i�N

h�C �imhyi�N
hxCy ��i�� dy d�

� 2
�Cjmj

2 Ckh�i�makC N h�im
Z
h�ijmj�N

hyi��N dy d�D C 0h�imkh�i�makC N ;

where C and C 0 are constants which are independent of �, and N is taken for example such that
N � jmjC � C nC 1. Of course, the derivatives of a� are treated in the same manner.

The case � < 0 follows from the preceding case by considering the adjoint

a�.x;D/
�
D hx��i��a.x;D/�hx��i�

and by applying Theorem 2.1(ii).

(ii) By using the formula in Theorem 2.1(ii) once more, it is easy to see that, if a is rapidly decreasing
with respect to x��, then the symbol a� is also rapidly decreasing with respect to x�� and that, for all
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N 2 N, ˛; ˇ 2 Nn, there exist M 2 N and a nonnegative constant CN;˛;ˇ which does not depend on �
such that

khx��iN h�i�m@˛xD
ˇ

�
a�kL1 � CN;˛;ˇ sup

j˛0jCjˇ0j�M

khx��iN h�i�m@˛
0

x D
ˇ0

�
akL1 :

Now, by following the same argument as that used in the first part, one can check that the same claim
holds exactly when we replace a� by a� in the above assertion; in particular, we have the estimate

khx��iN h�i�m@˛xD
ˇ

�
a�kL1 � CN;˛;ˇ sup

j˛0jCjˇ0j�M

khx��iN h�i�m@˛
0

x D
ˇ0

�
akL1 ;

and since we can write obviously b�.x; �/D hx��i
2�a�.x; �/, this achieves the proof of the lemma. �

When studying the nonlinear equation, the following result is important in order to explain the
assumption made on the nonlinearity F .

Lemma 2.4. For all s � 0 and all � > n
2

, there exists a constant C > 0 such that, for all v 2H s.Rn/,
the sequence � 7! khx��i��vks is in `2.Zn/ andX

�

khx��i��vk2s � Ckvk2s :

In particular, if s > n
2

, u; v 2 H s.Rn/ and � is a smooth and rapidly decreasing function, then, � 7!
k�.x��/uvks is in `1.Zn/ and X

�

k�.x��/uvks � Ckukskvks:

Proof. The case s D 0 is obvious and follows from the fact that
P
�hx��i

�2� is a bounded function.
The case where s is a positive integer reduces to the case s D 0 by taking derivatives via Leibniz formula.
The general case is obtained by interpolation. Indeed, since the map v 7! hx � �i��v is linear and
bounded from H s into `2.Zn;H s/ for integral indices s D s1; s2, it will be also bounded from H s0 into
`2.Zn;H s0/ for any real s0 between s1 and s2. This follows from the fact that

Œ`2.Zn;H s1/; `2.Zn;H s2/�� D `
2.Zn; ŒH s1;H s2 �� /

for 0< � < 1. See for example [Bergh and Löfström 1976, Theorem 5.1.2, page 107].
The second part is a consequence of the first one and the fact that H s.Rn/ is an algebra if s > n

2
. �

Let us now recall some results on paradifferential operators.

Definition 2.5. We define the class †m
% where m2R and %� 0 to be the class of symbols a.x; �/ defined

on Rn �Rn which are C1 in � and C % in x, in the sense that

for all ˛ 2 Nn; j@˛� a.x; �/jh�i�mCj˛j
2 C %.Rn

�Rn/;
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C % being replaced by L1 when % D 0. If a 2 †m
% , then m is the order of a and % is its regularity.

Following J.-M. Bony, we associate to a symbol a in †m
% the paradifferential operator Ta;� defined by

the expression

1Ta;�u.�/D .2�/�n

Z
Rn

�.� � �; �/F1.a/.� � �; �/ Ou.�/ d�;

where � is what one calls a paratruncature, that is, a C1 function in Rn �Rn satisfying the following
properties:

(i) There exists " > 0 such that " < 1 and �.�; �/D 0 if j�j � "j�j, �; � 2 Rn.

(ii) There exist "0 > 0, "00 > 0 such that "0 < " and �.�; �/D 1 if j�j � "0j�j and j�j � "00.

(iii) For all ˛ 2 N2n, there exists A˛ > 0 such that for all � 2 R2n, we have h�ij˛jj@˛�.�/j �A˛.

The first important result on paradifferential operators is that, even if one can show that Ta;�D Qa.x;D/

with some Qa 2 Sm
1;1

, they are bounded in the Sobolev spaces in the usual manner. In fact, we have:

Theorem 2.6. Assume that � satisfies only the first and third properties among the above ones. Then,
for every real s, the operator Ta;� is bounded from H s.Rn/ into H s�m.Rn/ and its operator norm is
estimated by a seminorm of a in †m

% . In particular, if aD a.x/ 2 L1.Rn/, then, for every real s, the
operator Ta;� is bounded in H s.Rn/ with an operator norm bounded by a constant times kakL1 .

Proof. See [Bony 1981; Meyer 1981; Taylor 1991]. �

Concerning the dependence with respect to the paratruncature �, one can say the following:

Theorem 2.7. If % > 0 and �1, �2 are paratruncatures, then the operator Ta;�1
�Ta;�2

is bounded from
H s.Rn/ into H s�mC%.Rn/ and its operator norm is estimated by a seminorm of a in †m

% .

Proof. See [Bony 1981; Meyer 1981; Taylor 1991]. �

This result shows that the dependence of Ta;� on � is less important than that on a. It also explains
why the remainders in the paradifferential theory are only %-regularizing. From now on, we shall write
Ta instead of Ta;� unless it is needed.

Note also that a possible choice of the paratruncature that we shall often use in the sequel is given by

�.�; �/D �1.�=j�j/.1� 1.�//;

where  1; �1 2 C1.Rn/,  1 D 1 in a neighbourhood of 0,  1 D 0 out of B.0; "00/, and �1 D 1 on
B.0; "0/, supp.�/� B.0; "/, with " and "0 satisfying 0 < "0 < " < 1. In this case, Ta;� D Qa.x;D/ with
the following expression of Qa:

Qa.x; �/D .1� 1.�//j�j
n

Z
Rn

F�1.�1/.j�j.x�y//a.y; �/ dy: (2)

The following lemma gives some properties of Qa which will be needed in the sequel and often used
implicitly.
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Lemma 2.8. Let %� 0 and a 2†m
% . Then, Qa is smooth and

j@
ˇ

�
@˛x Qa.x; �/j �A˛;ˇh�i

m�jˇj if j˛j � %; (3)

j@
ˇ

�
@˛x Qa.x; �/j �A˛;ˇh�i

m�jˇjCj˛j�% if j˛j> %; (4)

where A˛;ˇ are nonnegative constants; more precisely, the A˛;ˇ can be estimated by seminorms of a

in †m
% . In particular, Qa 2 Sm

1;1
.

Moreover, if � is a smooth function with support in some compact subset of Rn and ��.x/D �.x��/,
� 2 Zn, then, for all N 2 N, we have

hx��iN j@
ˇ

�
@˛x

e��a.x; �/j �A˛;ˇ;N h�i
m�jˇj if j˛j � %; (5)

hx��iN j@
ˇ

�
@˛x

e��a.x; �/j �A˛;ˇ;N h�i
m�jˇjCj˛j�% if j˛j> %; (6)

where the A˛;ˇ;N do not depend on � and are estimated by seminorms of a in †m
% .

Proof. For the first part we refer to [Meyer 1981; Taylor 1991]. The second part follows from the first
one by using, for example, for even N the decomposition

hx��iN D
X
˛

.x�y/˛

˛!
@˛y hy ��i

N

together with the expression (2). �

When dealing with nonlinear terms, we shall frequently use the following classical result:

Proposition 2.9. If F is a C1 (or sufficiently regular) function in Cm, F.0/ D 0 and u1; : : : ;um are
functions in H s.Rn/, s > n

2
, then, F.u1; : : : ;um/ 2H s.Rn/ and we have precisely

kF.u1; : : : ;um/ks � C
�
k.u1; : : : ;um/kL1

�
k.u1; : : : ;um/ks;

where � 7! C.�/ is a nonnegative and nondecreasing function.

An important property of the paradifferential operators consists in the fact that they are necessary to
write down Bony’s linearization formula, a formula that we recall here.

Theorem 2.10 (Bony’s linearization formula). For all real functions u1; : : : ;um 2H
n
2
C%.Rn/, % > 0,

and every function F of m real variables which is C1 (or sufficiently regular) and vanishes in 0, we have

F.u1; : : : ;um/D

iDmX
iD1

T@ui
F ui C r with r 2H

n
2
C2%.Rn/:

Proof. See [Bony 1981; Meyer 1981; Meyer 1982]. �

The remainder r in the above formula depends of course on .u1; : : : ;um/. The following result
essentially shows that r is a locally Lipschitz function of .u1; : : : ;um/. More precisely:
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Theorem 2.11. If uD .u1; : : : ;um/2H s.Rn;Rm/, sD n
2
C%, %>0, let us denote by r.u/ the remainder

in Bony’s formula. For all u; v 2H s.Rn;Rm/, we have then

kr.u/� r.v/ksC% � �.kuks; kvks/ku� vks;

where �.kuks; kvks/ is bounded if u and v vary in a bounded subset of H s.Rn;Rm/.

Proof. See [Bienaimé 2014]. �

Remark. In the case of our equation, that is (1), even if u has complex values, we shall be able to apply
Bony’s formula to the nonlinear expression F.u;ru; Nu;r Nu/ where u 2H

n
2
C1C%.Rn/. Indeed, we can

write

F.u;ru; Nu;r Nu/DG.Re.u/;r Re.u/; Im.u/;r Im.u//

where G.x1;x2;y1;y2/ D F.x1C iy1;x2C iy2;x1 � iy1;x2 � iy2/ which is a function from R2nC2

into C. We apply then Bony’s formula to G and obtain that

F.u;ru; Nu;r Nu/D T@x1
G Re.u/CT@x2

Gr Re.u/CT@y1
G Im.u/CT@y2

Gr Im.u/C r.u/:

At last, by using the fact that Re.u/D uCNu
2

, Im.u/D u�Nu
2i

, @z D
1
2
.@x� i@y/ and @Nz D 1

2
.@xC i@y/, and

then the linearity of Tb with respect to b, we obtain the formula used in this paper:

F.u; Nu;ru;r Nu/D T@uF uCT@ NuF NuCT@ruFruCT@r NuFr NuC r.u/

with r.u/ 2H
n
2
C2%.Rn/ if u 2H

n
2
C1C%.Rn/.

We shall also often need the following result similar to Lemma 2.3:

Lemma 2.12. Let a 2 †0
0
.Rn/, � 2 D.Rn/, ��.x/ D �.x ��/, � 2 Rn and s 2 R, and consider the

paradifferential operator T��a D T��a;� (where the paratruncature � does not necessarily satisfy the
second property of Definition 2.5). Then, for all � � 0, the operator hx��i�T��ahx��i

� is bounded
in H s.Rn/ and there exist N 2 N and a nonnegative constant C such that, for every � 2 Rn,

khx��i�T��ahx��i
�
kL.H s/ � C sup

j˛j�N

kh�ij˛j@˛� akL1 :

Proof. First, one can assume that � is an integer and even an even integer. Let us denote by a� the
symbol ��a and consider first the operator Ta�hx��i

�. Recall that Ta� D Qa�.x;D/ with

Qa�.x; �/D .1� 1.�//j�j
n

Z
Rn

F�1.�1/.j�j.x�y//a�.y; �/ dy: (7)

where  1; �1 2 C1.Rn/,  1 D 1 in a neighbourhood of 0,  1 D 0 out of B.0; "00/, and �1 D 1 on
B.0; "0/, supp.�/ � B.0; "/, with " and "0 satisfying 0 < "0 < " < 1. Hence, we can write for arbitrary
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u 2S .Rn/,

Ta�hx��i
�u.x/D .2�/�n

Z
eix�
Qa�.x; �/F .hx��i

�u/.�/ d�

D .2�/�n

Z
eix�
Qa�.x; �/hD� C�i

�
Ou.�/ d�

D .2�/�n

Z
hD� ��i

� Œeix�
Qa�.x; �/� Ou.�/ d�

D .2�/�n
X
˛

1

˛!
D˛

x Œhx��i
� �

Z
eix� @˛� Qa�.x; �/ Ou.�/ d�;

where we have applied integrations by parts and the Leibniz formula. So, we have proved that

Ta�hx��i
�
D

X
˛

1

˛!
D˛

x Œhx��i
� �.@˛� Qa�/.x;D/;

where the sum is of course finite. Now, let us consider the operator .@˛
�
Qa�/.x;D/ and let us remark that,

for example,

@�k
Qa�.x; �/D .1� 1.�//j�j

n

Z
Rn

F�1.�1/.j�j.x�y//@�k
a�.y; �/ dy

� .1� 1.�//j�j
n

Z
Rn

F�1.�2/.j�j.x�y//a�.y; �/
�k

j�j2
dy

� @k 1.�/j�j
n

Z
Rn

F�1.�1/.j�j.x�y//a�.y; �/ dy;

where �2.�/D
Pn

jD1 �j@j�1.�/. This shows that

.@�k
Qa�/.x;D/D

3X
lD1

T��al ;�l ;

where the al are symbols in †�1
0

and the �l are paratruncatures which satisfy the first and third properties
of Definition 2.5. By induction, .@˛

�
Qa�/.x;D/ is then a finite sum of operators of the same form as

Ta� D Ta�;� (of order � �j˛j), and note also that the seminorms of the associated symbols are bounded
uniformly in � by a seminorm of a. Hence, Ta�hx � �i

� is a finite sum of operators of the form
P .x��/Ta� , where P is a polynomial (of degree � � ), and consequently the problem is reduced to the
study of the operator hx��i�Ta� only. Now, the symbol of the latter can be written as

hx��i� Qa�.x; �/D
X
j˛j��

1

˛!
.1� 1.�//j�j

n

Z
Rn

.x�y/˛F�1.�1/.j�j.x�y//@˛y Œhy ��i
� �a�.y; �/ dy

D

X
j˛j�L

1

˛!
.1� 1.�//j�j

n

Z
Rn

F�1.�˛1/.j�j.x�y//�˛.y ��/a˛.y; �/ dy;

where �˛
1

and �˛ are similar to �1 and � respectively, and a˛ 2†
�j˛j
0

with seminorms bounded by
those of a. Hence, hx ��i�Ta� is a finite sum of operators of the same form as Ta� whose symbols
have seminorms bounded uniformly in � by a seminorm of a. Eventually, the lemma follows from
Theorem 2.6. �
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Let us also recall the Gårding inequality which will be used crucially to prove the smoothing effect
estimate.

Theorem 2.13 (sharp Gårding inequality for systems). Let a.x; �/ be a k � k matrix whose elements are
in Sm

1;0
and which satisfies ˝

.a.x; �/C a�.x; �//�; �
˛
� 0

for all � 2 Ck and all .x; �/ such that j�j �A0, where a� denotes the adjoint matrix of a and h � ; � i is the
usual hermitian scalar product of Ck. Then, there exist a nonnegative constant A and an integer N such
that, for all u 2S .Rn;Ck/, we have

Reha.x;D/u;ui � �A sup
j˛jCjˇj�N

kh�ijˇj�m@˛x@
ˇ

�
akL1kuk

2
m�1

2

;

where A depends only on n, k and A0.

Proof. See [Taylor 1991; Tataru 2002] for example. �

3. The paralinear equation

In this section, we solve the Cauchy problem for the paralinear equation, that is, the linear equation
obtained from (1) by applying Bony’s linearization formula (Theorem 2.10).

Recall that Q� is the cube �C Œ0; 1�n, � 2 Zn and that Q�� is a larger cube with side length 2, for
example, �C

�
�

1
2
; 3

2

�n.

Theorem 3.1. Given s 2 R, consider the following linear Cauchy problem:�
@tuD iL uCTb1

:rxuCTb2
:rx NuCC1uCC2 NuCf .x; t/;

u.x; 0/D u0 2H s.Rn/:
(8)

We assume that C1 and C2 are bounded operators in H s.Rn/ and in H sC2.Rn/, that b1; b2 2†
m
% , % > 0,

and more precisely that

bk.x; �/D
X
�2Zn

˛k;�'k;�.x; �/;
X
�

j˛k;�j �Ak ; k D 1; 2;

supp.x 7! 'k;�.x; �//�Q��; sup
jˇj�N0

kh�ijˇj@
ˇ

�
'k;�kC% � 1;

(9)

and kCkkL.H s/; kCkkL.H sC2/ � Ak , k D 1; 2, N0 being a large and fixed integer. We further assume
that b2.x; �/ is even in � and that f 2L1

loc.R;H
s.Rn//. Then, problem (8) has a unique solution u which

is in C.R;H s.Rn// and satisfies, for all T > 0,

sup
�T�t�T

ku.t/k2s �A.ku0k
2
s C IT .J

sf;J su//; (10)

kjJ sC 1
2 ukj2T �A.ku0k

2
s C IT .J

sf;J su//; (11)
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where the constant A depends only on n, s, %, T , A1, and A2, and the expression IT .v; w/ is a finite sum
of terms of the form

sup
�2Zn

Z T

�T

jhG�v;wij dt

with G� 2 Op S0
0;0

and the seminorms of its symbol (up to N0) are uniformly bounded by a constant that
depends only on s, n, %, A1 and A2.

Recall that kjukj2
T
D sup�

R T
�T

R
Rnhx��i

�2�0 ju.x; t/j2 dt dx, where �0 >
1
2

is fixed.

Proof. Let us start by noting that the uniqueness is an obvious matter. Indeed, if u1 and u2 are solutions
of (8), then, u1�u2 is a solution of (8) with u0 D 0 and f D 0, and the conclusion follows from (10).

As for the existence, as is customary with linear differential equations, it will follow from the a priori
estimates (10) and (11) by using more or less standard arguments of functional analysis, and the proof of
Theorem 3.1 will consist essentially in establishing them.

Another useful remark is that it will be sufficient to prove the theorem in C.RC;H
s.Rn// instead of

C.R;H s.Rn// and the estimates (10) and (11) on Œ0;T � instead of Œ�T;T �. In fact, if the theorem is
proved on RC, one can apply it to v.t/ D u.�t/, which satisfies a Cauchy problem of the same type
as (8). The result is then that v.�t/ will extend u to R� and satisfy (8) on R�, in addition to the fact that
the estimates (10) and (11) are also extended to Œ�T; 0�.

So, let us assume that u 2 C.Œ0;T �IH s.Rn// is a solution of the Cauchy problem (8).
In what follows, it will be quite convenient to use the notation

�N .'/D sup
1�j�N

sup
j˛jCjˇj�N

kh�ijˇj@˛x@
ˇ

�
'k

j
L1

;

and note that such a quantity is not a norm in general but it is well-defined for ' 2 S0
1;0

. Note also that, if
M � 1, �N .'/

M � �NM .'/, a remark that will be often used implicitly.
In fact, the inequalities (10) and (11) will be deduced from the following ones:

Proposition 3.2. Assume that the functions 'k;� defining the bk are C1; that is, 'k;� 2 S0
1;0

, k D 1; 2.
Then, there exist a positive real number A and an integer N such that, for all R � 1, there exists a
pseudodifferential operator C 2 Op S0

0;0
such that, for all T > 0, any solution u 2 C.Œ0;T �IH s.Rn// of

the Cauchy problem (8) satisfies

sup
0�t�T

kC u.t/k2s

� kC u0k
2
s C 2

Z T

0

jhC J sf;C J suij dt CA sup
k;�

�N .'k;�/
�
RT sup

0�t�T

ku.t/k2s C
1

R
kjJ sC 1

2 ukj2T

�
:

Moreover, regarding the operator C, we have the following precise bounds for v 2H s.Rn/ :

kC vks �A sup
�
�N .'1;�/kvks;

kvks �A sup
�
�N .'1;�/kC vksC

A

R
sup
�
�N .'1;�/

2
kvks:
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Proposition 3.3. Under the same assumptions as above and with the same elements A, R, C and N,
there exist also pseudodifferential operators  j .x;D/ 2 Op S0

1;0
, j D 1; 2; 3; 4, such that, for all T > 0,

any solution u 2 C.Œ0;T �IH s.Rn// of the Cauchy problem (8) satisfies

kjJ sC 1
2 ukj2T �A

�
1CT CT sup

�;k

�N .'k;�/
�

sup
Œ0;T �

kuk2s CA

4X
jD1

sup
�2Zn

Z T

0

jh j .x��;D/J
sf;J suij dt;

kjJ sC 1
2 C ukj2T �A

�
1CTCT sup

�;k

�N .'k;�/
�

sup
Œ0;T �

kC uk2sCA

4X
jD1

sup
�

Z T

0

jh j .x��;D/C J sf;C J suij dt

CA sup
k;�

�N .'k;�/
�
RT sup

0�t�T

ku.t/k2s C
1

R
kjJ sC 1

2 ukj2T

�
:

Admitting these propositions (see Sections 5 and 6 for their proofs), let us go on and finish the proof of
Theorem 3.1. In order to apply the above inequalities we have to regularize the bk , k D 1; 2, by setting

'k;�;m.x; �/Dmn

Z
Rn

�.m.x�y//'k;�.y; �/ dy and bk;m D

X
�

˛k;�'k;�;m;

where � is a nonnegative C1 function with support in the unit ball and whose integral is equal to 1. Note
that 'k;�;m has its support (with respect to x) in a compact set which is slightly larger that Q�� but this
has no effect on the proofs. Since we can write

@tuD iL uCTb1;m
:rxuCTb2;m

:rx NuCC1uCC2 NuCfm;

where
fm D f CTb1�b1;m

:ruCTb2�b2;m
:r Nu;

we can apply Proposition 3.2 to obtain

sup
Œ0;T �

kCmuk2s � kCmu0k
2
s C 2

Z T

0

jhCmJ sfm;CmJ suij dt

CA sup
k;�

�N .'k;�;m/
�
RT sup

Œ0;T �

kuk2s C
1

R
kjJ sC 1

2 ukj2T

�
;

where the operator C is denoted here by Cm to indicate its dependence on m. Now, clearly, we have

�N .'k;�;m/�AmN 2

sup
1�j�N

sup
jˇj�N

kh�ijˇj@
ˇ

�
'k;�k

j
L1
�AmN 2

:

Hence,

sup
Œ0;T �

kCmuk2s � kCmu0k
2
s C 2

Z T

0

jhCmJ sf;CmJ suij dt C 2

Z T

0

jhCmJ sTb1�b1;m
ru;CmJ suij dt

C2

Z T

0

jhCmJ sTb2�b2;m
r Nu;CmJ suij dt CAmN 2

�
RT sup

Œ0;T �

kuk2s C
1

R
kjJ sC 1

2 ukj2T

�
;

and the problem now is to estimate the third and fourth terms in the right-hand side of this inequality.
This is done in the following lemma.
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Lemma 3.4. Let Qu stand for u or Nu, and � D inff%; 1g. Then, there exists a constant A such that, for all
k 2 f1; 2g, m� 1, R� 1 and m0 �m,Z T

0

ˇ̌
hCmJ sTbk�bk;m

r Qu;CmJ sui
ˇ̌
dt

�

�
Am2N 2

m0�
C

Am03N 2

R

�
kjJ sC 1

2 ukj2T CAm03N 2

T sup
Œ0;T �

kuk2s C
A

m�
kjJ sC 1

2 Cmukj2T :

See the Appendix for the proof of this lemma. Applying this lemma yields

sup
Œ0;T �

kCmuk2s � kCmu0k
2
s C 2

Z T

0

jhCmJ sf;CmJ suij dt C
A

m�
kjJ sC 1

2 Cmukj2T

C

�
Am2N 2

m0�
C

Am03N 2

R

�
kjJ sC 1

2 ukj2T CAm03N 2

RT sup
Œ0;T �

kuk2s ;

an inequality that we can improve, thanks to Proposition 3.3, as follows:

sup
Œ0;T �

kCmuk2s � kCmu0k
2
s C 2

Z T

0

jhCmJ sf;CmJ suij dt

C
A

m�

4X
jD1

sup
�

Z T

0

jh j .x��;D/CmJ sf;CmJ suij dt C
A.1CT mN /

m�
sup
Œ0;T �

kCmuk2s

C

�
Am2N 2

m0�
C

Am03N 2

R

�
kjJ sC 1

2 ukj2T CAm03N 2

RT sup
Œ0;T �

kuk2s

� kCmu0k
2
s C 2

Z T

0

jhCmJ sf;CmJ suij dt

C
A

m�

4X
jD1

sup
�

Z T

0

jh j .x��;D/CmJ sf;CmJ suij dt C
A.1CT mN /

m�
sup
Œ0;T �

kCmuk2s

C

�
Am2N 2

m0�
C

Am03N 2

R

� 4X
jD1

sup
�

Z T

0

jh j .x��;D/J
sf;J suij dt

C

�
Am2N 2

m0�
C

Am03N 2

R

�
.1CT mN / sup

Œ0;T �

kuk2s CAm03N 2

RT sup
Œ0;T �

kuk2s :

Next, by taking m such that, for example, m� � 4A and T such that T mN � 1, we get

sup
Œ0;T �

kCmuk2s � 2kCmu0k
2
sC4

Z T

0

jhCmJ sf;CmJ suijdtC

4X
jD1

sup
�

Z T

0

jh j .x��;D/CmJ sf;CmJ suijdt

C

�
2Am2N 2

m0�
C

2Am03N 2

R

� 4X
jD1

sup
�

Z T

0

jh j .x��;D/J
sf;J suijdt

C

�
Am2N 2

m0�
C

Am03N 2

R
CAm03N 2

RT

�
sup
Œ0;T �

kuk2s ;
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and by using the second part of Proposition 3.2, we obtain

sup
Œ0;T �

kuk2s

�Am2N 2

�
m2N 2

ku0k
2
sC

Z T

0

jhCmJ sf;CmJ suijdtC

4X
jD1

sup
�

Z T

0

jh j .x��;D/CmJ sf;CmJ suijdt

�

C

�
Am4N 2

m0�
C

Am05N 2

R

� 4X
jD1

sup
�

Z T

0

jh j .x��;D/J
sf;J suijdtCC.m;m0;R;T / sup

Œ0;T �

kuk2s ;

where

C.m;m0;R;T /D
Am4N 2

m0�
C

Am05N 2

R
CAm05N 2

RT C
Am4N 2

R2
:

Finally, since m is fixed (and depends only on A), we take m0 such that Am4N 2

=m0� � 1
8

, then we take
R such that Am05N 2

=R� 1
8

and Am4N 2

=R2 �
1
8

, and last we take T such that Am05N 2

RT � 1
8

. With
these choices, we have of course C.m;m0;R;T / � 1

2
, which allows to bound supŒ0;T � kuk

2
s and to get

(10) (and also (11), thanks to Proposition 3.3) with

IT .v; w/D

Z T

0

jhC ?C v;wij dt C

4X
jD1

sup
�

Z T

0

jhC ? j .x��;D/C v;wij dt

C sup
�

Z T

0

jh j .x��;D/v; wij dt:

In fact, we have proved (10) and (11) only for T DT0 and T0 is sufficiently small. Let us show, if T0<T ,
that they hold true in the whole interval Œ0;T � where the solution u is defined. Indeed, note first that the
T0 as determined above depends only on the constant A (so, only on n, s, %, A1 and A2) but not on the
given function (or distribution) f . Next, take a T1 � T0 such that T1 D T=n1, with some integer n1 � 2.
Then, if we consider the function v.x; t/D u.x; t CT1/, we note that v is a solution (defined at least in
Œ0;T �T1�) of (8) with v.0/D u.T1/ and g.x; t/D f .x; t CT1/ instead of f .x; t/. It follows from the
above arguments that v satisfies (10) and (11) for T D T0 and hence for T D T1. Since

sup
ŒT1;2T1�

kuk2s D sup
Œ0;T1�

kvk2s �A
�
ku.T1/k

2
s C IT1

.J sg;J sv/
�
�A

�
ku.T1/k

2
s C I2T1

.J sf;J su/
�

�A
�
Aku0k

2
s CAIT1

.J sf;J su/C I2T1
.J sf;J su/

�
� .A2

CA/
�
ku0k

2
s C I2T1

.J sf;J su/
�
;

we obtain that u satisfies (10) and (11) for T D 2T1 and with the constant A2CA instead of A. Repeating
this argument, we obtain that u satisfies (10) and (11) on Œ0; n1T1� D Œ0;T � and with the constantPn1

jD1
Aj 'AT=T1 instead of A.

As for the existence, let us consider the approximating Cauchy problem�
@tuD iL uCTb1

rh."D/uCTb2
rh."D/ NuCC1uCC2 NuCf .x; t/;

u.x; 0/D u0 2H s.Rn/;
(12)

where h is a nonnegative C1 function on Rn which is equal to 1 near 0 and has a compact support. It is
easy to see, if

R T
0 kf ks dt <C1, that the above problem has a unique solution, denoted by u", which is



1256 PIERRE-YVES BIENAIMÉ AND ABDESSLAM BOULKHEMAIR

in C.Œ0;T �IH s.Rn//. Indeed, the Cauchy problem (12) is clearly equivalent to the integral equation

uD eitL u0C

Z t

0

ei.t�t 0/L
�
Tb1
rh."D/uCTb2

rh."D/ NuCC1uCC2 NuCf .x; t
0/
�

dt 0

and one can easily show that the map defined by the right-hand side of this equation is a contraction
in C.Œ0;T"�IH

s.Rn// with some T" > 0 sufficiently small, which allows one to apply the fixed-point
theorem and to get a solution u". Now, since T" does not depend on the data u0 and f , one can extend
u" to a solution of (12) on the whole interval Œ0;T �.

The idea now is to let " tend to 0. This is possible because u" satisfies the estimates (10) and (11) and
even uniformly with respect to ". Indeed, it is sufficient to remark that the Cauchy problem (12) is of the
same type as (8) because we can write

Tbk
rh."D/D Tbk;"

r;

where bk;".x; �/ D bk.x; �/h."�/ and bk;" satisfies the assumptions of Theorem 3.1 uniformly in ".
Hence, we have in particular

sup
Œ0;T �

ku"k
2
s �Aku0k

2
s CAIT .J

sf;J su"/;

and it follows from the Calderón–Vaillancourt theorem that

AIT .J
sf;J su"/�AA0 sup

Œ0;T �

ku"ks

Z T

0

kf ks dt � 1
2

sup
Œ0;T �

ku"k
2
s C

1
2
.AA0/2

�Z T

0

kf ks dt

�2

;

so that,

sup
Œ0;T �

ku"ks �Aku0ksCA

Z T

0

kf ks dt: (13)

Next, to check the convergence of u", let us consider v D u"�u"0 . It is clear that v is the solution of (12)
with u0 D 0 and

f D Tb1
r.h."D/� h."0D//u"0 CTb2

r.h."D/� h."0D// Nu"0 :

Therefore, it follows from (13) that

sup
Œ0;T �

kvks �A

Z T

0



Tb1
r.h."D/� h."0D//u"0 CTb2

r.h."D/� h."0D// Nu"0




s
dt; (14)

and from the boundedness of the Tbk
in the Sobolev spaces that

sup
Œ0;T �

kvks �Aj"� "0j

Z T

0

ku"0ksC2 dt �Aj"� "0jT sup
Œ0;T �

ku"0ksC2; (15)

that is, thanks to (13),

sup
Œ0;T �

ku"�u"0ks �Aj"� "0j

�
ku0ksC2C

Z T

0

kf ksC2 dt

�
; (16)
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which proves that .u"/ is a Cauchy sequence in C.Œ0;T �IH s.Rn// if one assumes that u0 2H sC2.Rn/

and f 2L1.Œ0;T �IH sC2.Rn//. In this case, u"! u in C.Œ0;T �IH s.Rn// when "! 0, and by passing
to the limit in (12), we obtain that u is a solution of (8). Moreover, by passing to the limit in (13), we get

sup
Œ0;T �

kuks �A

�
ku0ksC

Z T

0

kf ks dt

�
: (17)

Now, if we have only u0 2 H s.Rn/ and f 2 L1.Œ0;T �IH s.Rn//, by density of the smooth functions,
we can take sequences .uj

0
/ in H sC2.Rn/ and .f j / in L1.Œ0;T �IH sC2.Rn// such that kuj

0
�u0ks! 0

and
R T

0 kf
j � f ks dt ! 0, and we can consider the solution uj of (8) associated to the data u

j
0

and f j.
Then, uj �uk is the solution of (8) associated to the data u

j
0
�uk

0
and f j �f k. Hence, thanks to (17),

sup
Œ0;T �

kuj
�uk
ks �A

�
ku

j
0
�uk

0ksC

Z T

0

kf j
�f k

ks dt

�
;

which shows that .uj / is a Cauchy sequence in C.Œ0;T �IH s.Rn// which is then convergent to some
u 2 C.Œ0;T �IH s.Rn//. Of course, u is a solution of (8) and satisfies the estimates (10), (11) and also
(17). This achieves the proof of Theorem 3.1. �

4. The nonlinear equation

Consider the nonlinear Cauchy problem�
@tuD iL uCF.u;rxu; Nu;rx Nu/; t 2 R; x 2 Rn;

u.x; 0/D u0.x/ 2H s.Rn/;
(18)

where the function F.u; v; Nu; Nv/ is sufficiently regular in C�Cn �C�Cn and vanishes to the third order
at 0, the operator L has the form

L D
X
j�k

@2
xj
�

X
j>k

@2
xj
;

with a fixed k 2 f1; 2; : : : ; ng, H s.Rn/ is the usual Sobolev space on Rn, and s D n
2
C 2C %, % > 0.

Using Bony’s linearization formula, (18) is equivalent to�
@tuD iL uCTb1

rxuCTb2
rx NuCTa1

uCTa2
NuCR.u;rxu; Nu;rx Nu/;

u.x; 0/D u0.x/ 2H s.Rn/;
(19)

where R.u;rxu; Nu;rx Nu/ is Bony’s remainder and

b1 D @vF.u;rxu; Nu;rx Nu/; b2 D @ NvF.u;rxu; Nu;rx Nu/;

a1 D @uF.u;rxu; Nu;rx Nu/; a2 D @ NuF.u;rxu; Nu;rx Nu/:

Recall that R.u;rxu; Nu;rx Nu/ 2H 2.s�1/�n
2 .Rn/ if u 2H s.Rn/, s > n

2
C 1. Note also that it follows

from Proposition 2.9 that the bj and aj , j D 1 or 2, are in H s�1.Rn/ if u 2H s.Rn/, s > n
2
C1, and that

kbjks�1 � C.kukL1 ; krukL1/kuks; kajks�1 � C.kukL1 ; krukL1/kuks; j D 1; 2:
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Moreover, by introducing the notation

b0
1 D @vF.u0;rxu0; Nu0;rx Nu0/; b0

2 D @ NvF.u0;rxu0; Nu0;rx Nu0/;

a0
1 D @uF.u0;rxu0; Nu0;rx Nu0/; a0

2 D @ NuF.u0;rxu0; Nu0;rx Nu0/;

the above Cauchy problem is in fact equivalent to�
@tuD iL uCTb0

1
rxuCTb0

2
rx NuCTa0

1
uCTa0

2
NuC zR.u;rxu; Nu;rx Nu/;

u.x; 0/D u0.x/ 2H s.Rn/;
(20)

where

zR.u;rxu; Nu;rx Nu/D Tb1�b0
1
rxuCTb2�b0

2
rx NuCTa1�a0

1
uCTa2�a0

2
NuCR.u;rxu; Nu;rx Nu/: (21)

Clearly, the last Cauchy problem is of the same type as (8), which is studied in Theorem 3.1, and in
fact we are going to apply that theorem to�

@tuD iL uCTb0
1
rxuCTb0

2
rx NuCTa0

1
uCTa0

2
NuCf;

u.x; 0/D u0.x/ 2H s.Rn/:
(22)

This is possible because b0
1

and b0
2

satisfy the assumptions of Theorem 3.1. Indeed, it follows from the
Taylor formula and the assumptions on F that one can write for example

b0
1 D @vF.z0/D u0G1.z0/Crxu0G2.z0/C Nu0G3.z0/Crx Nu0G4.z0/; (23)

where z0 D .u0;rxu0; Nu0;rx Nu0/ and G1, G2, G3 and G4 are sufficiently regular and vanish at 0. Since
s � 1 > n

2
, we know that the Gi.z0/ are in H s�1.Rn/ and it follows from (23) and Lemma 2.4 that b0

1

satisfies the assumption (9) of Theorem 3.1; that is, one can write

b0
1 D

X
�

˛1;�'1;�;

where ˛1;� D kq�b0
1
kH s�1 , '1;� D q�b0

1
=˛1;�, and

P
� q� D 1 is a smooth partition of unity with

q�.x/D q.x��/ and supp.q/�Q�
0

. Note that we have precisely the boundX
�

kq�b0
1kH s�1 � C

�
ku0kH s�1kG1.z0/kH s�1 Ckrxu0kH s�1kG2.z0/kH s�1

CkNu0kH s�1kG3.z0/kH s�1 Ckrx Nu0kH s�1kG4.z0/kH s�1

�
;

with some positive constant C. Of course, the same is true for b0
2

. Moreover, since a0
1

and a0
2

are bounded
(they are in H s�1.Rn/), the paramultiplication operators Ta0

1
and Ta0

2
are bounded in H s.Rn/.

Now, by application of Theorem 3.1 to (22), let us consider the unique solution of (22) with f D 0

and denote it by U.t/u0.
Next, for T > 0, let us define the norms �1.w/, �2.w/, �3.w/ and �.w/ by

�1.w/D sup
Œ0;T �

kwks; �2.w/D kjJ
sC 1

2wkjT ; �3.w/D sup
Œ0;T �

k@twks�2; �.w/D max
1�i�3

�i.w/;
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the space Z by

Z D
˚
w 2 C.Œ0;T �IH s.Rn// W w.x; 0/D u0.x/ and �.w/�K

	
;

where the positive constant K is to be determined later, and, for w 2 C.Œ0;T �IH s.Rn//, the operator ‡
by

‡w.t/D U.t/u0C

Z t

0

U.t � t 0/ zR.w.t 0/;rxw.t
0/; Nw.t 0/;rx Nw.t

0// dt 0:

Let us first remark that ‡w satisfies�
@t‡w D iL‡wCTb0

1
rx‡wCTb0

2
rx‡wCTa0

1
‡wCTa0

2
‡wC zR.w;rxw; Nw;rx Nw/;

‡w.0/D u0;
(24)

and that a fixed point of ‡ will be a solution of (20), hence, a solution of (18). So, in what follows, we
are going to study �.‡w/ in order to prove that ‡ has a fixed point in the complete metric space .Z; �/.
Let us also note that since the life time T will be small, we can assume from now on that T � 1.

We start by applying Theorem 3.1 to (24). It follows from (10) and (11) that

maxf�1.‡w/
2; �2.‡w/

2
g �A.ku0k

2
s C IT .J

s zR;J s‡w//; (25)

where, for simplicity, zRD zR.w;rxw; Nw;rx Nw/ and IT .u; v/ is a finite sum of terms of the form

sup
�2Zn

Z T

0

jhG�u; vij dt;

where G� 2 Op S0
0;0

and the seminorms of its symbol are uniformly bounded with respect to �. Recall
that the constant A depends only on n, s and u0 and we remark right now a fact that will be useful later:
if we let u0 vary in a bounded subset of H s.Rn/, it follows from the linear theory that we can take the
constant A in the above inequality that depends only on that bounded set. The same remark holds for
sup� kG�kL.L2/ or the seminorms of the operators G� uniformly in �.

Thus, we have to estimate uniformly in � the sumZ T

0

jhG�J sTb1�b0
1
rxw;J

s‡wij dt C

Z T

0

jhG�J sTb2�b0
2
rx Nw;J

s‡wij dt

C

Z T

0

jhG�J sTa1�a0
1
w;J s‡wij dt C

Z T

0

jhG�J sTa2�a0
2
Nw;J s‡wij dt

C

Z T

0

jhG�J sR.w;rxw; Nw;rx Nw/;J
s‡wij dt: (26)

First, let us consider the third term. It follows from the preceding remark, the Cauchy–Schwarz inequality,
the Calderón–Vaillancourt theorem and Theorem 2.6 thatZ T

0

jhG�J sTa1�a0
1
w;J s‡wij dt �Aka1� a0

1kL1

Z T

0

kwksk‡wks dt;
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and from Proposition 2.9 that

ka1� a0
1kL1 � C.kwks/kwksCC.ku0ks/ku0ks � C.K/KCC.ku0ks/ku0ks � 2C.K/K:

Hence, Z T

0

jhG�J sTa1�a0
1
w;J s‡wij dt �AT C.K/�1.w/�1.‡w/�AT C.K/�.w/�.‡w/; (27)

with a modified constant C.K/.
The fourth term of (26) is treated in the same manner.
Now, let us estimate the first term of (26). Using a smooth partition of unity 1 D

P
�2Zn �� , with

��.x/D �.x� �/ and � having a compact support, we can write

hG�J sTb1�b0
1
rxw;J

s‡wi

D

X
�

hJ�
1
2 G�J sT��.b1�b0

1
/rxw;J

sC 1
2‡wi

D

X
�

hG�;�hx� �i
�0T��.b1�b0

1
/hx� �i

�0H�hx� �i
��0J sC 1

2w; hx� �i��0J sC 1
2‡wi;

where

G�;� D hx� �i
�0J�

1
2 G�J s

hx� �i��0 ; H� D hx� �i
��0J�s� 1

2rhx� �i�0 :

Next, it follows from the pseudodifferential composition formula and from Lemma 2.3 that G�;� is in
Op S

s� 1
2

0;0
, H� is in Op S

1
2
�s

1;0
, and that their seminorms are uniformly bounded with respect to � and �.

Going back to the first term of (26), these considerations in addition to Lemma 2.12 allow us to estimate
it as follows:Z T

0

jhG�J sTb1�b0
1
rxw;J

s‡wij dt

�

X
�

Z T

0

kG�;�hx� �i
�0T��.b1�b0

1
/hx� �i

�0H�kL.L2/





 J sC 1
2w

hx� �i�0






0





J sC 1
2‡w

hx� �i�0






0

dt

�A
X
�

Z T

0

khx� �i�0T��.b1�b0
1
/hx� �i

�0k
L.H s� 1

2 /





 J sC 1
2w

hx� �i�0






0





J sC 1
2‡w

hx� �i�0






0

dt

�A
X
�

Z T

0

k��.b1� b0
1/kL1





 J sC 1
2w

hx� �i�0






0





J sC 1
2‡w

hx� �i�0






0

dt

�A
X
�

sup
Œ0;T �

k��.b1� b0
1/kL1 kjJ

sC 1
2wkjT kjJ

sC 1
2‡wkjT :

Now, it follows from the Taylor formula that we can write

b1� b0
1 D @vF.z/� @vF.z0/

D .w�u0/G1.z0; z/Crx.w�u0/G2.z0; z/C . Nw� Nu0/G3.z0; z/Crx. Nw� Nu0/G4.z0; z/;
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where, for simplicity, z0 D .u0;rxu0; Nu0;rx Nu0/ and z D .w;rxw; Nw;rx Nw/, and the Gk are functions
of the form Z 1

0

Fk.z0C �.z� z0// d�;

where Fk is a second-order partial derivative of F. Next, it follows from the assumption on F that
Gk.0; 0/D 0 for all k, from which one deduces easily that

k��.b1� b0
1/kL1 � C.k.z0; z/kL1/ k��.z0; z/kL1 k Q��.z0; z/kL1 ;

where Q�� is similar to �� , and, by using the Sobolev injection, that is, Proposition A.5(i), that

k��.b1� b0
1/kL1 � C.k.z0; z/kL1/ k��.z0; z/kH � .Œ0;T �IH s0 / k Q��.z0; z/kH � .Œ0;T �IH s0 /

� C.K/ k��.u0; w/kH � .Œ0;T �IH s0C1/ k Q��.u0; w/kH � .Œ0;T �IH s0C1/;

where � > 1
2

and s0 > n
2

. Thus, to obtain the summability in � of k��.b1 � b0
1
/kL1 , it is sufficient to

prove that k��.u0; w/kH � .Œ0;T �IH s0C1/ is square summable in �. To this end and to get an explicit bound
for the sum, let us apply the interpolation inequality of Proposition A.5. This yields, by taking 1

2
< � < 1,

k��.u0; w/kH � .Œ0;T �IH s0C1/

�Ak��.u0; w/k
1��
L2.Œ0;T �IH s0C2/

k��.u0; w/k
�
H 1.Œ0;T �IH s00 /

�A
�
k��.u0; w/kL2.Œ0;T �IH s0C2/Ck��.u0; w/k

1��
L2.Œ0;T �IH s0C2/

k��@twk
�
L2.Œ0;T �IH s00 /

�
;

where s00 is such that .1� �/.s0C 2/C �s00 D s0C 1, that is, s00 D s0C 2� 1
�

. One can choose s0 and �
such that s00D s�2, that is, such that s0D s�4C 1

�
. In fact, if � D 1

2
C", then s0D n

2
C%�4"=.1C2"/,

which is larger than n
2

if " is small enough. With such a choice, we also have s0C2< s, so, the expressions
k��.u0; w/kL2.Œ0;T �IH s0C2/ and k��@twkL2.Œ0;T �IH s00 / are both square summable in �, which shows that
k��.u0; w/kH � .Œ0;T �IH s0C1/ is itself square summable in � and that, by applying Hölder’s inequality,X
�

k��.u0;w/k
2
H � .Œ0;T �IH s0C1/

�A
X
�

k��.u0;w/k
2
L2.Œ0;T �IH s/

CA

�X
�

k��.u0;w/k
2
L2.Œ0;T �IH s/

�1���X
�

k��@twk
2
L2.Œ0;T �IH s�2/

��
�A

�
T �1.w/

2
C.T �1.w/

2/1�� .T �3.w/
2/�

�
�AT �.w/2;

where, of course, the constant A changes from one inequality to the other. Consequently,X
�

k��.b1� b0
1/kL1 �AC.K/T �.w/2;

which allows us finally to bound the first term of (26) as follows:Z T

0

ˇ̌
hG�J sTb1�b0

1
rxw;J

s‡wi
ˇ̌
dt �AC.K/T �.w/2�2.w/�2.‡w/

�AC.K/K2T �.w/�.‡w/: (28)
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The second term of (26) is treated in the same manner.
Let us now consider the last term of (26). As above, let z stand for .w;rxw; Nw;rx Nw/. As z 2

H s�1.Rn/ D H
n
2
C1C%.Rn/, it follows from Bony’s formula, that is, Theorem 2.10, that R.z/ 2

H 2.s�1/�n
2 .Rn/DH sC%.Rn/ and that

kR.z/ksC% � C.K/kzks�1 � C.K/kwks:

Hence,Z T

0

jhG�J sR.z/;J s‡wij dt �A

Z T

0

kR.z/ksk‡wks dt �AC.K/

Z T

0

kwksk‡wks dt

�AC.K/T �1.w/�1.‡w/�AC.K/T �.w/�.‡w/: (29)

Thus, we have bounded all the terms of (26), which leads to the estimate

maxf�1.‡w/; �2.‡w/g �Aku0ksC
p

AC.K/T �.w/�.‡w/; (30)

where the constants A and C.K/ have changed of course.
It remains to estimate �3.‡w/. Recall that ‡w satisfies the Cauchy problem (24). Hence, applying

Theorem 2.6 yields

k@t‡wks�2 � k‡wksCA.kb0
1kL1 Ckb

0
2kL1/k‡wks�1

CA.ka0
1kL1 Cka

0
2kL1/k‡wks�2CA.kb1� b0

1kL1 Ckb2� b0
2kL1/kwks�1

CA.ka1� a0
1kL1 Cka2� a0

2kL1/kwks�2CkR.z/ks�2

�Ak‡wksCA
�
kb1� b0

1kL1 Ckb2� b0
2kL1

Cka1� a0
1kL1 Cka2� a0

2kL1
�
kwksCkR.z/ks�2: (31)

Now, as before, it follows from Proposition A.5 that

kbj � b0
j kL1 �Akbj � b0

j kH � .Œ0;T �IH s0 / �Akbj � b0
j k

1��
L2.Œ0;T �IH s0C1/

kbj � b0
j k
�
H 1.Œ0;T �IH s00 /

;

where j D 1; 2, � > 1
2

, s0 > n
2

and s00 is such that .1� �/.s0 C 1/C �s00 D s0. In fact, we can take
s00 D s�3, which corresponds to s0 D sC 1

�
�4D n

2
C%C 1

�
�2; so, s0 < s�2 and if � is close enough

to 1
2

, then, s0 > n
2

. Therefore, with such a choice, we have

kbj � b0
j kL1 �Akbj � b0

j kL2.Œ0;T �IH s�1/CAkbj � b0
j k

1��
L2.Œ0;T �IH s�1/

k@tbjk
�
L2.Œ0;T �IH s�3/

:

Next, applying Proposition 2.9 yields

kbj � b0
j k

2
L2.Œ0;T �IH s�1/

D

Z T

0

kbj � b0
j k

2
s�1 dt

�

Z T

0

�
C.kzkL1/kzks�1CC.kz0kL1/kz0ks�1

�2
dt � C.K/2T �1.w/

2;
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and

k@tbjk
2
L2.Œ0;T �IH s�3/

D

Z T

0

k.@vF /
0.z/@tzk

2
s�3 dt �A

Z T

0

k.@vF /
0.z/k2s�2k@tzk

2
s�3 dt

�A

Z T

0

k.@vF /
0.z/k2s�2k@twk

2
s�2 dt �AT C.K/2�3.w/

2;

which imply that

kbj � b0
j kL1 �AC.K/

p
T �1.w/CAC.K/

p
T �1.w/

1���3.w/
�
�AC.K/

p
T �.w/:

Of course, the same inequality holds for kaj �a0
j kL1 , j D 1; 2. Note that we have applied the following

classical lemma:

Lemma 4.1. If s > n
2

and jr j � s, then H r .Rn/:H s.Rn/�H r .Rn/ with continuous injection.

Finally, it follows from Theorem 2.10 and Theorem 2.11 that

kR.z/ks�2 D kR.z/kn
2
C% � kR.z/�R.z0/kn

2
C%CkR.z0/kn

2
C%

� C1.kzknC%
2

; kz0knC%
2

/kz� z0knC%
2

CC2.kz0knC%
2

/kz0knC%
2

� C1.kwknC%
2
C1
; ku0knC%

2
C1
/kw�u0knC%

2
C1
CC2.ku0knC%

2
C1
/ku0knC%

2
C1

� C.K/kw�u0knC%
2
C1
CAku0knC%

2
C1
;

and, using once again Proposition A.5, we obtain

sup
Œ0;T �

kw�u0ks0 �Akw�u0kH � .Œ0;T �IH s0 / �Akw�u0k
1��
L2.Œ0;T �IH s0C1/

kw�u0k
�
H 1.Œ0;T �IH s00 /

�Akw�u0kL2.Œ0;T �IH s0C1/CAkw�u0k
1��
L2.Œ0;T �IH s0C1/

k@twk
�
L2.Œ0;T �IH s00 /

�Akw�u0kL2.Œ0;T �IH s/CAkw�u0k
1��
L2.Œ0;T �IH s/

k@twk
�
L2.Œ0;T �IH s�2/

�A
p

T �1.w/CA
p

T �1.w/
1���3.w/

�
�A
p

T �.w/;

where s0 D nC%
2
C 1< s, � > 1

2
, s00 D nC%

2
C 2� 1

�
and s00 � s� 2 if � is close to 1

2
. Hence,

sup
Œ0;T �

kR.z/ks�2 �Aku0knC%
2
C1
CAC.K/

p
T �.w/:

Thus, we have bounded all the terms of (31) and the result is that

�3.‡w/�A�1.‡w/CAC.K/
p

T �.w/�1.w/CAku0knC%
2
C1
CAC.K/

p
T �.w/

�Aku0ksC
p

AC.K/T �.w/�.‡w/CAC.K/
p

T �.w/; (32)

where, of course, we have used (30). Therefore,

�.‡w/�Aku0ksC
p

AC.K/T �.w/�.‡w/CAC.K/
p

T �.w/

�Aku0ksC
1
2
AC.K/T �.w/C 1

2
�.‡w/CAC.K/

p
T �.w/;
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which leads to

�.‡w/� 2Aku0ksCAC.K/T �.w/C 2AC.K/
p

T �.w/;

that is, an estimate which is, by changing the constants and taking T � 1, of the form

�.‡w/�Aku0ksCAC.K/
p

T �.w/: (33)

This is the main nonlinear estimate. In fact, when u0 ¤ 0, by taking K D 2Aku0ks for example, and
then, T > 0 such that

T �

�
Aku0ks

AC.K/K

�2

D

�
1

2AC.K/

�2

;

it follows from (33) that �.‡w/�K when �.w/�K, that is, ‡.Z/�Z. When u0 D 0, it suffices to
take K > 0 and T � 1=A2C.K/2 to obtain the same result.

Let us now show that ‡ WZ!Z is a contraction mapping. In fact, the arguments are similar to the
above ones and we shall be brief. If w1; w2 2Z, then W D ‡w1�‡w2 satisfies the Cauchy problem�

@tW D iL W CTb0
1
rxW CTb0

2
rxW CTa0

1
W CTa0

2
W C zR.z1/� zR.z2/;

W .0/D 0;
(34)

where, as before, zj D .wj ;rxwj ; Nwj ;rx Nwj /, j D 1; 2. Applying Theorem 3.1 to (34) gives

maxf�1.W /2; �2.W /2g �AIT .J
s. zR.z1/� zR.z2//;J

sW /; (35)

and, consequently, we have to estimate uniformly in � the integralZ T

0

jhG�J s. zR.z1/� zR.z2//;J
sW ij dt:

It follows from (21) that

zR.z1/� zR.z2/D Tb1.z1/�b0
1
r.w1�w2/CTb1.z1/�b1.z2/rw2

CTb2.z1/�b0
2
r. Nw1� Nw2/CTb2.z1/�b2.z2/r Nw2

CTa1.z1/�a0
1
.w1�w2/CTa1.z1/�a1.z2/w2

CTa2.z1/�a0
2
. Nw1� Nw2/CTa2.z1/�a2.z2/ Nw2

CR.z1/�R.z2/; (36)

and we have to estimate the integral corresponding to each term of the above sum. Let us first consider
the terms of the third line in (36). By the same argument as that used to obtain (27), we haveZ T

0

ˇ̌˝
G�J s.Ta1.z1/�a0

1
.w1�w2/CTa1.z1/�a1.z2/w2/;J

sW
˛ˇ̌

dt �AT C.K/�.w1�w2/�.W /;

where we also applied Proposition 2.9 for the second term. Of course, we have the same estimate for the
integral corresponding to the terms of the fourth line in (36).
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As for the terms of the first line in (36), applying an argument similar to that yielding (28), one obtainsZ T

0

ˇ̌˝
G�J s.Tb1.z1/�b0

1
r.w1�w2/CTb1.z1/�b1.z2/rw2/;J

sW
˛ˇ̌

dt

�A;C.K/T
�
�.w1/

2�2.w1�w2/C�.w1�w2/.�.w1/C�.w2//�2.w2/
�
�2.W /

�AC.K/T
�
�.w1/

2
C�.w1/�.w2/C�.w2/

2
�
�.w1�w2/�.W /

�AC.K/K2T �.w1�w2/�.W /;

and the same estimate holds for the terms of the second line in (36).
Last, for the terms of the fifth line in (36), applying Theorem 2.11 and estimating as in (29), we obtainZ T

0

jhG�J s.R.z1/�R.z2//;J
sW ijdt �A

Z T

0

kz1�z2ks�1kW ks dt �AC.K/

Z T

0

kw1�w2kskW ks dt

�AC.K/T �1.w1�w2/�1.W /

�AC.K/T �.w1�w2/�.W /:

Summing up and going back to (35), we can conclude that

maxf�1.W /2; �2.W /2g �AC.K/T �.w1�w2/�.W /:

It remains to estimate �3.W /. Using the fact that W satisfies the Cauchy problem (34) and an argument
similar to that yielding (32), we obtain

�3.W /�A�1.W /CAC.K/
p

T .�.w1/�1.w1�w2/C�.w1�w2/�1.w2//CAC.K/
p

T �.w1�w2/

�A�1.W /CAC.K/
p

T .�.w1/C�.w2//�.w1�w2/CAC.K/
p

T �.w1�w2/

�
p

AC.K/T �.w1�w2/�.W /CAC.K/
p

T �.w1�w2/:

Summing up, we have obtained

�.W /�
p

AC.K/T �.w1�w2/�.W /CAC.K/
p

T �.w1�w2/:

Hence,
�.W /� 1

2
AC.K/T �.w1�w2/C

1
2
�.W /CAC.K/

p
T �.w1�w2/I

that is,
�.W /D �.‡w1�‡w2/�AC.K/

p
T �.w1�w2/;

with modified constants. This clearly implies, if T is taken small enough, that ‡ WZ!Z is a contraction
mapping and, thus, it has a unique fixed point u in Z which is a solution of (18). In fact, this is the
solution of (18) in C.Œ0;T �;H s.Rn// because the above method gives the local uniqueness and we obtain
eventually the full uniqueness by applying a classical bootstrap argument. This proves the first part of
Theorem 1.1.

The second part of Theorem 1.1 concerns the continuity of the solution operator u0 7! u and we
start its proof by remarking that this operator maps bounded subsets of H s.Rn/ into bounded subsets
of C.Œ0;T �;H s.Rn//. In fact, if B is a bounded subset of H s.Rn/, as remarked at the beginning of this
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section, the constant A and the bounds of the seminorms of the operators G� can be taken to depend only
on B; that is, if u0 2 B, the estimates proven above and satisfied by ‡ can be rewritten as

�.‡w/�A.B/ku0ksCA.B/C.K/
p

T �.w/; (37)

�.‡w1�‡w2/�A.B/C.K/
p

T �.w1�w2/; (38)

where A.B/ depends only on n, s and B, which implies that the constants K and T can be chosen
depending only on B. Hence, for all u0 2 B, the associated solutions u are all defined on the same
interval Œ0;T � and are all in the ball of radius K. As for the continuity, let B be a bounded subset of
H s.Rn/, u0;u

�
0
2 B, u;u� the respective associated solutions and w D u� u�. Then, w satisfies the

Cauchy problem�
@tw D iLwCDu�D�u�C zR� zR� D iLwCDwC .D�D�/u�C zR� zR�;

w.x; 0/D u0.x/�u�
0
.x/;

(39)

where

Dw D Tb0
1
rwCTb0

2
r NwCTa0

1
wCTa0

2
Nw; D�w D T

b
0;�

1

rwCT
b

0;�

2

r NwCT
a

0;�

1

wCT
a

0;�

2

Nw;

zRD zR.u;ru; Nu;r Nu/ zR� D zR.u�;ru�; Nu�;r Nu�/:

Of course, the b0
j , a0

j correspond to u0 whereas the b
0;�
j , a

0;�
j correspond to u�

0
. Applying Theorem 3.1

gives us the inequality

maxf�1.w/
2; �2.w/

2
g �A.B/ku0�u�0k

2
s CA.B/IT

�
J s..D�D�/u�C zR� zR�/;J sw

�
: (40)

As it can be seen easily by going back to (21), we can write

zR� zR� D Tb1.u/�b0
1
rwCTb1.u/�b1.u�/ru�CT

b
0;�

1
�b0

1

ru�

CTb2.u/�b0
2
r NwCTb2.u/�b2.u�/r Nu

�
CT

b
0;�

2
�b0

2

r Nu�

CTa1.u/�a0
1
wCTa1.u/�a1.u�/u

�
CT

a
0;�

1
�a0

1

u�

CTa2.u/�a0
2
NwCTa2.u/�a2.u�/ Nu

�
CT

a
0;�

2
�a0

2

Nu�

CR.u;ru; Nu;r Nu/�R.u�;ru�; Nu�;r Nu�/; (41)

and we also have

.D�D�/u� D T
b0

1
�b

0;�

1

ru�CT
b0

2
�b

0;�

2

r Nu�CT
a0

1
�a

0;�

1

u�CT
a0

2
�a

0;�

2

Nu�:

Using the same arguments as before to estimate the integrals corresponding to each of the above terms
yields

maxf�1.w/
2; �2.w/

2
g �A.B/ku0�u�0k

2
s CA1.B/C1.K/T

�
�.w/ku0�u�0ksC�.w/

2
�
; (42)

which becomes, after a change of the constants and assuming T � 1,

maxf�1.w/; �2.w/g �A.B/ku0�u�0ksCA.B/C.K/
p

T �.w/: (43)
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Next, using (39) and similar arguments, one can easily get

�3.w/�A.B/C.K/.ku0�u�0ksC�1.w//;

which becomes, after use of (43) and a possible change of the constants,

�3.w/�A.B/C.K/.ku0�u�0ksC
p

T �.w//:

Hence,
�.w/�A.B/C.K/ku0�u�0ksCA.B/C.K/

p
T �.w/; (44)

which, by taking T � .1=2A.B/C.K//2 (for example), leads to the Lipschitz estimate

�.w/D �.u�u�/� 2A.B/C.K/ku0�u�0ks; (45)

and this achieves the proof of Theorem 1.1.

5. Proof of Proposition 3.2

We shall only give the main steps for the convenience of the reader and refer to [Bienaimé 2014] for the
full details.

Let us start by remarking that it is sufficient to treat the case sD 0. Indeed, if vD J su and v0D J su0,
it is easy to see that u is a solution of (8) if and only if v satisfies�

@tv D iL vCTb1
:rxvCTb2

:rx NvC zC1vC zC2 NvC Qf .x; t/;

v.x; 0/D v0 2L2.Rn/;
(46)

where Qf D J sf and zCk D J sCkJ�sC ŒJ s;Tbk
:rx �J

�s , k D 1 or 2, and, thanks to the paradifferential
calculus, the zCk are bounded operators in L2.Rn/.

The idea of proof is that of [Kenig et al. 1998], inspired by [Takeuchi 1992], and consists in constructing
a pseudodifferential operator C which is bounded and invertible in L2.Rn/ and estimating supŒ0;T � kC uk0

instead of estimating directly supŒ0;T � kuk0. Since d
dt
hC u;C ui D hC @tu;C uiC hC u;C @tui and u is

a solution of (8), we obtain that
d

dt
kC uk20 D hiC L u;C uiC hC Tb1

ru;C uiC hC Tb2
r Nu;C ui

C hC C1u;C uiC hC C2 Nu;C uiC hCf;C ui

C hC u; iC L uiC hC u;C Tb1
ruiC hC u;C Tb2

r Nui

C hC u;C C1uiC hC u;C C2 NuiC hC u;Cf i; (47)

and since
hiL C u;C uiC hC u; iL C ui D 0;

we have finally

d

dt
kC uk20 D 2 Reh.i ŒC;L �CC Tb1

r/u;C uiC 2 RehC Tb2
r Nu;C ui

C 2 RehC u;Cf iC 2 Re
�
hC C1u;C uiC hC C2 Nu;C ui

�
:
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The idea of [Kenig et al. 1998] is precisely to choose C so that the operator i ŒC;L �CC Tb1
r will be

small in some sense. Here, we will make a refinement by writing b1 D b0
1
C ib00

1
with real b0

1
, b00

1
, and by

considering the operator i ŒC;L �C iC Tb00
1
r instead. This has been already used by [Bienaimé 2014]

and essentially allows one to construct a real operator C, that is, with the property C uDC Nu, which will
be convenient in certain arguments. Now, clearly,ˇ̌

2 Re
�
hC C1u;C uiC hC C2 Nu;C ui

�ˇ̌
� 2.A1CA2/kC k

2
L .L2/

kuk20;

and integrating on Œ0;T 0�, T 0 � T, yields

kC u.T 0/k22 � kC u0k
2
0C 2

ˇ̌̌̌
Re
Z T 0

0

h.i ŒC;L �C iC Tb00
1
r/u;C ui dt

ˇ̌̌̌
C 2

ˇ̌̌̌
Re
Z T 0

0

hC Tb0
1
ru;C ui dt

ˇ̌̌̌
C 2

ˇ̌̌̌
Re
Z T 0

0

hC Tb2
r Nu;C ui dt

ˇ̌̌̌
C 2

ˇ̌̌̌
Re
Z T 0

0

hC u;Cf i dt

ˇ̌̌̌
C 2.A1CA2/kC k

2
L .L2/

Z T 0

0

ku.t/k20 dt; (48)

and our task will be to estimate appropriately each of the terms in the right-hand side of this inequality.
The most difficult one is ˇ̌̌̌Z T

0

˝
.i ŒC;L �C iC Tb00

1
r/u;C u

˛
dt

ˇ̌̌̌
and C will be constructed so that this term will be small with respect to some parameters to be defined
later. To this end, let us denote by c the symbol of C and define

p.x; �/D�2�]:rxc.x; �/� c.x; �/ Qb001.x; �/:�; (49)

where �] D .�1; : : : ; �j0
;��j0C1; : : : ;��n/ and Qb00

1
is such that Tb00

1
D Qb00

1
.x;D/; see (2). The problem

lies essentially in the fact that p.x; �/ is not the true principal symbol of the pseudodifferential (or
paradifferential) operator i ŒC;L �C iC Tb00

1
r since C will be merely in the class OpS0

0;0
. Nevertheless,

the constructed C will allow us to obtain good estimates.
Set c.x; �/D exp.
 .x; �// and 
 .x; �/D

P
�2Zn ˛1;�
�.x; �/, where the ˛1;� are the coefficients of

b1 in its decomposition with respect to the '1;�, see (9), and the 
�.x; �/ are defined a little later. Note
here that one can assume the ˛1;� real (and even nonnegative) without loss of generality. We can then
write

p.x; �/D c.x; �/
X
�

˛1;�

�
�2�]:rx
�.x; �/� Q'1;�.x; �/:�

�
;

and this suggests considering the function

��.x; �/D
1

2

Z 1
0

Im. Q'1;�/.xC s�]; �/:� ds:

One can show that such a function is smooth and satisfies, for all multi-indices ˛; ˇ,

j@˛x@
ˇ

�
��.x; �/j �A˛;ˇ sup

ˇ0�ˇ

kh�ijˇ
0j@˛x@

ˇ0

�
'1;�kL1hx��i

jˇj
h�i�jˇj; (50)



WELL-POSEDNESS AND SMOOTHING EFFECT FOR GENERALIZED NONLINEAR SCHRÖDINGER 1269

and, moreover,
�2�]:rx��.x; �/� Im. Q'1;�/.x; �/:� D 0: (51)

See [Kenig et al. 1998; Bienaimé 2014] for the proof. To get an even function, we replace �� by

��.x; �/D
1
2
.��.x; �/C ��.x;��//;

which satisfies the same properties as ��, and then set


�.x; �/D �

�
j�j

R

�
 

�
Rhx��i

h�i

�
��.x; �/;

where � and  are smooth (real) functions on R such that �.t/D 1 if t � 2, �.t/D 0 if t � 1,  .x/D 1

if jt j � 1,  D 0 outside some compact set and R is a large parameter that will be fixed later. One can
easily check that 
� 2 S0

0;0
and that its seminorms are uniformly bounded with respect to � and R. The

following lemma gives the main properties of the operator C and its symbol

c.x; �/D exp.
 .x; �//D exp
�X
�

˛1;�
�.x; �/

�
:

Lemma 5.1. (i) The symbol c.x; �/ is real and even in �.

(ii) The symbol c.x; �/ is in the class S0
0;0

. More precisely, for all ˛; ˇ 2 Nn,

j@˛x@
ˇ

�
c.x; �/j �

A˛;ˇ

Rjˇj
sup

1�j�j˛jCjˇj

sup
�

sup
˛0�˛Iˇ0�ˇ

kh�ijˇ
0j@˛

0

x@
ˇ0

�
'1;�k

j
L1
�

A˛;ˇ

Rjˇj
sup
�
�j˛jCjˇj.'1;�/:

(iii) There exist N 2 N and A> 0 such that, for all R� 1 and all v 2L2.Rn/,

kC vk0 �A sup
�
�N .'1;�/kvk0;

kvk0 �A sup
�
�N .'1;�/kC vksC

A

R
sup
�
�N .'1;�/

2
kvks:

(iv) The symbol

p.x; �/D�2�]:rxc.x; �/� c.x; �/ Qb001.x; �/:�

is in S0
0;0

and its seminorms (of order �M ) are estimated by AR sup� �MC1.'1;�/.

Even if here the function '1;� is more general, the proof follows the same lines as that of [Bienaimé
2014, Lemmas 3.5 and 3.6] and we refer to it. These properties are sufficient to allow us to get the
following estimates:

Lemma 5.2. Let b.x; �/ be a symbol satisfying

b.x; �/D
X
�2Zn

˛�'�.x; �/; '� 2 S0
1;0;

X
�

j˛�j �A0;

x 7! '�.x; �/ is rapidly decreasing in x��;

(52)
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and let Qu stand for u or Nu. Then, there exist N 2N and A> 0 such that, for all T > 0, T 0 2 Œ0;T �, R� 1

and every H D h.x;D/ in Op S0
0;0

, the following estimates hold true:

(i)
Z T 0

0

ˇ̌
h.C Tbr � .c Qb/.x;D/r/ Qu;Hui

ˇ̌
dt �

A

R
khkC N sup

�
�N .'1;�/ sup

�
k'�kC N kjJ

1
2 ukj2T .

(ii)
Z T 0

0

ˇ̌
h.i ŒC;L �C iC Tb00

1
r/u;Hui

ˇ̌
dt �AkhkC N sup

�
�N .'1;�/

�
RT sup

Œ0;T �

kuk20C
1

R
kjJ

1
2 ukj2T

�
.

(iii)
Z T 0

0

ˇ̌
hŒC;J sTbJ�s

r� Qu;Hui
ˇ̌
dt �AkhkC N sup

�
�N .'1;�/ sup

�
k'�kC N

�
T sup
Œ0;T �

kuk20C
kjJ

1
2 ukj2

T

R

�
.

Remark. The case s ¤ 0 in (iii) is needed in the Appendix.

Proof. Using the pseudodifferential calculus, we can write the symbol e.x; �/ of the operator E D

C Tbr � .c Qb/.x;D/r as e D
P
� ˛�e�, where e� is given by

e�.x; �/D
1

.2�/n

nX
jD1

Z 1

0

Z
e�iy�@�j c.x; �C t�/@xj Q'�.xCy; �/:� dy d� dt; (53)

and we first remark that e� 2Op S1
0;0

and that using the fast decrease of Q'�.x; �/ in x�� and integrations
by parts yields the fact that e�.x; �/ is itself rapidly decreasing in x��. Next, setting E� D e�.x;D/,
we can write

hE Qu;Hui D
X
�

˛�hE� Qu;Hui D
X
�

˛�hH
�E� Qu;ui

D

X
�

˛�
˝
hx��i�0 zH hx��i��0hx��i�0 zE�hx��i

�0 Qu�;u�
˛
;

where zH D J�
1
2 H�J

1
2 , zE� D J�

1
2 E�J�

1
2 and u� D hx � �i

��0J
1
2 u. Now, it follows from the

pseudodifferential calculus (Theorem 2.1) that zH and zE� are in OpS0
0;0

and that we can estimate the
seminorms of zH and zE� by those of H and E� respectively. Moreover, it is easy to see that the symbol
of zE� inherits the fast decrease in x � � which implies, by virtue of Lemma 2.3, that the operator
hx��i�0 zE�hx��i

�0 is also in OpS0
0;0

and that its seminorms are estimated by those of E� uniformly
in �. The same property holds for the operator hx��i�0 zH hx��i��0 , as it follows also from Lemma 2.3.
This allows us to apply the Calderón–Vaillancourt theorem to obtainZ T 0

0

jhE Qu;Huijdt �
X
�

j˛�j

Z T 0

0

khx��i�0 zH hx��i��0kL .L2/khx��i
�0 zE�hx��i

�0kL .L2/ku�k
2
0 dt

�AkhkC N1 sup
�

X
j˛jCjˇj�N1

khx��i2�0@˛x@
ˇ

�
e�kL1kjJ

1
2 ukj2T

�
A

R
khkC N1 sup

�
�N2

.'1;�/sup
�
k'�kC N2kjJ

1
2 ukj2T ; (54)

which proves (i).
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To prove (ii), note first that the symbol of i ŒC;L � is given by

�2�]:rxc.x; �/C .Lxc/.x; �/

and that of iC Tb00
1
r can be written as

ic.x; �/ Qb001.x; �/:i�C
1

.2�/n

nX
jD1

Z 1

0

Z
e�iy�@�j c.x; �C t�/@xj

Qb001.xCy; �/:i� dy d� dt:

Thus, the symbol of the operator i ŒC;L �C iC Tb00
1
r is given by

.Lxc/.x; �/Cp.x; �/C ie.x; �/;

where p.x; �/ is given by (49), e D
P
� ˛�e� and e�.x; �/ is given by (53) with ˛� D ˛1;� and

'� D Im.'1;�/. Hence, applying Lemma 5.1 and the Calderón–Vaillancourt theorem yields the estimateZ T 0

0

ˇ̌˝
..Lxc/.x;D/Cp.x;D//u;Hu

˛ˇ̌
dt �ART khkC N1 sup

�
�N1

.'1;�/
2 sup
Œ0;T �

kuk20;

and applying part (i) gives the estimateZ T 0

0

jh.ie.x;D/u;Huij dt �
A

R
khkC N2 sup

�
�N2

.'1;�/
2
kjJ

1
2 ukj2T ;

which proves (ii).
To prove (iii), we first treat the case sD 0 and note that the symbol of ŒC;Tbr�DC Tbr�TbrC can

be written simply as e.x; �/� e0.x; �/, where e.x; �/ is the symbol of the operator E studied in (i) and

e0.x; �/D
1

.2�/n

nX
jD1

Z 1

0

Z
e�iy�@�j .

Qb.x; �C t�/:.�C t�//@xj c.xCy; �/ dy d� dt:

Since @�j . Qb.x; �/:�/ is of order 0, the symbol e0.x; �/ is in fact in S0
0;0

and the seminorms of e0 are
estimated by a product of seminorms of Qb and c. Hence, by using the decomposition of b as above, we getZ T 0

0

jhe0.x;D/ Qu;Huij dt �AT khkC N1 sup
�
k'�kC N2 sup

�
�N2

.'1;�/ sup
Œ0;T �

kuk20;

which, together with (54), yields (iii) in the case s D 0. If s ¤ 0, it follows from the pseudodifferential
and paradifferential calculi that J sTbJ�s D Tb# , where b# D

P
� ˛� � and  � is given by

 �.x; �/D
1

.2�/n

Z
e�iy�

h�C �is'�.xCy; �/h�i�s dy d�;

which implies that  � is also rapidly decreasing in x�� and that it is in S0
1;0

with seminorms estimated
by those of '�. This shows that the case s ¤ 0 follows from the case s D 0 and achieves the proof of
Lemma 5.2. �
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Lemma 5.3. Let b be as in the preceding lemma. Then, there exist N 2 N and A> 0 such that, for all
T > 0, T 0 2 Œ0;T � and R� 1, the following estimates hold true:

(i) If b.x; �/ is even in � , thenZ T 0

0

jhC Tbr Nu;C uij dt �A sup
�
�N .'1;�/ sup

�
k'�kC N

�
T sup

0�t�T

kuk20C
1

R
kjJ

1
2 ukjT

�
:

(ii) If b is real, thenˇ̌̌̌
Re
Z T 0

0

hC Tbru;C ui dt

ˇ̌̌̌
�A sup

�
�N .'1;�/ sup

�
k'�kC N

�
T sup

0�t�T

kuk20C
1

R
kjJ

1
2 ukjT

�
:

Proof. Since C is real, we can write

hC Tbr Nu;C ui D hTbrC Nu;C uiC hŒC;Tbr� Nu;C ui D hTbrC u;C uiC hŒC;Tbr� Nu;C ui:

Now, the integral corresponding to hŒC;Tbr� Nu;C ui is treated by Lemma 5.2(iii). As for the other term, we
note that it is of the form hTbr Nv; vi, so it suffices to study such a term. Since b.x; �/ is even in � , we have

hTbr Nv; vi D hv;Tbr Nvi D h Nv;T Nbrvi D h.T Nbr/
�
Nv; vi;

and it follows from the pseudodifferential (or paradifferential) calculus that

.T Nbr/
�
D�Tbr CE1; (55)

where E1 is of type S0
1;0

and its seminorms (up to some finite order) are estimated by those of b. Hence,

hTbr Nv; vi D �hTbr Nv; viC hE1 Nv; vi;

and hTbr Nv; vi D
1
2
hE1 Nv; vi, that is, hTbrC u;C ui D 1

2
hE1C u;C ui, and (i) follows just by applying

the Calderón–Vaillancourt theorem and Lemma 5.1.
To prove (ii), we write as before

hC Tbru;C ui D hTbrC u;C uiC hŒC;Tbr�u;C ui;

and then apply Lemma 5.2(iii) to reduce the problem to the study of RehTbrC u;C ui. Now, it follows
from (55) and the fact that b is real that we have

2 RehTbrC u;C ui D hTbrC u;C uiC hC u;TbrC ui D h.Tbr C .Tbr/
�/C u;C ui D hE1C u;C ui

and the proof ends like that of (i). The lemma is thus proved. �

It is clear now that applying Lemmas 5.1, 5.2 and 5.3 to the inequality (48) yields Proposition 3.2.

6. Proof of Proposition 3.3

By the same argument as that used in the beginning of the proof of Proposition 3.2, it is sufficient to
establish the first estimate in the case s D 0.
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The proof follows the same ideas as that of [Kenig et al. 1998; Bienaimé 2014]. The difference is that
here the Tbk

, k D 1; 2, are general paradifferential operators of order 0 instead of merely multiplication
or paramultiplication operators.

Since
@tuD iL uCTb1

:ruCTb2
:r NuCC1uCC2 NuCf;

@t NuD�iL NuCT Nb1
:r NuCT Nb2

:ruCC 1 NuCC 2uC Nf;

where the operators C k are defined by C kuD Ck Nu, one starts by remarking that the vector unknown
w D

�
u
Nu

�
satisfies the system

@tw D iHwCBwCCwCF; (56)

where

H D

�
L 0

0 �L

�
; B D

�
Tb1
r Tb2

r

T Nb2
r T Nb1

r

�
; C D

�
C1 C2

C 1 C 2

�
; F D

�
f
Nf

�
;

and the idea then is to estimate the expression h‰w;wi by means of Gårding’s inequality for systems via
Doi’s argument. Here,

‰ D

�
‰0 0

0 �‰0

�
;

and ‰0 is an appropriate pseudodifferential operator in OpS0
1;0

to be chosen a little later. By using (56),
one gets easily

@t h‰w;wi D h‰@tw;wiC h‰w; @twi

D
˝
.i Œ‰;H �CB�‰C‰BCC �‰C‰C /w;w

˛
Ch‰F; wiC h‰w;Fi; (57)

and, as one can check also easily, the principal symbol of the first-order operator

i Œ‰;H �CB�‰C‰BCC �‰C‰C

is given by

M.x; �/D

 
2�]:rx 0.x; �/�2�: Im. Qb1/.x; �/ 0.x; �/ 2i�: Qb2.x; �/ 0.x; �/

�2i�:
NQb2.x; �/ 0.x; �/ 2�]:rx 0.x; �/�2�: Im. Qb1/.x; �/ 0.x; �/

!
;

where  0 denotes the symbol of ‰0. Now, for  0, we shall make the following choice which follows the
idea of [Doi 1994]. Define

p.x; �/D h�i�1
nX

jD1

�
]
j h.xj / with h.t/D

Z t

0

hsi�2�0 ds;

p�.x; �/D p.x��; �/CA0

X
�02Zn

.j˛1;�0 jC j˛2;�0 j/p.x��
0; �/;

 0.x; �/D  �.x; �/D exp.�p�.x; �//:

Here, the ˛1;�0 and ˛2;�0 are the coefficients of b1 and b2 in their decompositions with respect to the
'1;�0 and '2;�0 respectively, see (9), A0 is a large constant that will be determined later and � 2 Zn
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is fixed for the moment. However, from now on, we shall write ‰� and  � instead of ‰0 and  0 to
emphasize the dependance on �. First, note that p� and  � are in S0

1;0
and that their seminorms are

uniformly bounded with respect to �. Next, with these notations, the symbol M.x; �/ can be rewritten as

M.x; �/D 2 �.x; �/

 
��]:rxp�.x; �/� �: Im. Qb1/.x; �/ i�: Qb2.x; �/

�i�:
NQb2.x; �/ ��]:rxp�.x; �/� �: Im. Qb1/.x; �/

!
:

Consider now the matrix Z.x; �/D�M.x; �/�V .x; �/, where

V .x; �/D
2 �.x; �/j�j

2

h�ihx��i2�0

�
1 0

0 1

�
:

Z.x; �/ is a matrix of symbols in S1
1;0

and, in order to apply Gårding’s inequality, we are going to show
that, for large � , it is a nonnegative matrix, that is, hZ.x; �/v; vi � 0 for all v 2 C2. In fact, Z.x; �/ is of
the form

2 �.x; �/

�
˛ ˇ
Ň ˛

�
;

where

˛ D �]:rxp�.x; �/�
j�j2

h�ihx��i2�0
C �: Im. Qb1/.x; �/ and ˇ D�i�: Qb2.x; �/;

and it is sufficient to show that the two eigenvalues ˛˙ jˇj of
�˛
Ň
ˇ
˛

�
are nonnegative, or, equivalently,

that ˛ � jˇj, that is,

�]:rxp�.x; �/�
j�j2

h�ihx��i2�0
C �: Im. Qb1/.x; �/� j� i�: Qb2.x; �/j: (58)

Now, the main reason for the choice of the symbol p� is that it allows to get the following inequality:

�]:rxp�.x; �/D �
]:rxp.x��; �/CA0

X
�02Zn

.j˛1;�0 jC j˛2;�0 j/�
]:rxp.x��0; �/

D

nX
jD1

�2
j

h�ihxj ��j i
2�0
CA0

X
�02Zn

.j˛1;�0 jC j˛2;�0 j/

nX
jD1

�2
j

h�ihxj ��
0
j i

2�0

�
j�j2

h�ihx��i2�0
CA0

X
�02Zn

.j˛1;�0 jC j˛2;�0 j/
j�j2

h�ihx��0i2�0
I (59)

that is,

�]:rxp�.x; �/�
j�j2

h�ihx��i2�0
�A0

X
�02Zn

.j˛1;�0 jC j˛2;�0 j/
j�j2

h�ihx��0i2�0
: (60)

Besides, we have
Qbk.x; �/D

X
�02Zn

˛k;�0 Q'k;�0.x; �/; k D 1; 2;
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and it follows from Lemma 2.8 that

hx��0i2�0 j Q'k;�0.x; �/j �A.n/;

with a constant A.n/ which depends only on the dimension. Hence,

ji�: Qbk.x; �/j �A.n/
X
�02Zn

j˛k;�0 j
j�j

hx��0i2�0
�
p

2A.n/
X
�02Zn

j˛k;�0 j
j�j2

h�ihx��0i2�0
; k D 1; 2;

if j�j � 1, which, together with (60), implies (58) by taking A0 �
p

2A.n/. Thus, the matrix symbol
Z.x; �/ is nonnegative, and since it is also hermitian, Z.x; �/CZ.x; �/� is also nonnegative and we can
apply Gårding’s inequality for systems:

RehZ.x;D/w;wi � �A
�
1C sup
j˛jCjˇj�N

sup
k;�0
kh�ijˇj@˛x@

ˇ

�
'k;�0kL1

�
kwk20; (61)

where the constant A depends only on A1, A2 and the dimension n and the integer N depends only on
the dimension n. Now, going back to (57), we can rewrite it as

@t h‰w;wi D
˝
.�Z.x;D/�V .x;D/CE/w;w

˛
Ch‰F; wiC h‰w;Fi;

where E is a bounded operator in L2.Rn/, and integrating it on Œ0;T � yieldsZ T

0

hV .x;D/w;wi dt D h‰w.0/; w.0/i � h‰w.T /; w.T /i

�

Z T

0

hZ.x;D/w;wi dt C

Z T

0

hEw;wi dt C

Z T

0

h‰F; wi dt C

Z T

0

h‰w;Fi dt:

Taking the real part, using (61) and estimating, we obtain

Re
Z T

0

hV .x;D/w;wi dt

�A sup
Œ0;T �

kwk20CAT
�
1C sup

k;�0
�N .'k;�0/

�
sup
Œ0;T �

kwk20C

ˇ̌̌̌Z T

0

h‰F; wi dt

ˇ̌̌̌
C

ˇ̌̌̌Z T

0

h‰w;Fi dt

ˇ̌̌̌
;

and since  �.x; �/� exp.�A/ and, for j�j � 1,

V .x; �/� e�A h�i

hx��i2�0

�
1 0

0 1

�
;

a second application of Gårding’s inequality gives us

Re
Z T

0

˝
J

1
2 hx��i�2�0J

1
2w;w

˛
dt

�A sup
Œ0;T �

kwk20
�
1CT CT sup

k;�0
�N .'k;�0/

�
C

ˇ̌̌̌Z T

0

h‰F; wi dt

ˇ̌̌̌
C

ˇ̌̌̌Z T

0

h‰w;Fi dt

ˇ̌̌̌
;

with a modified constant A. Since we can write

h‰F; wi D h‰�f;ui � h‰�f;ui
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and a similar expression for h‰w;Fi, by going back to u, we get eventuallyZ T

0

khx��i��0J
1
2 uk20 dt �A sup

Œ0;T �

kuk20
�
1CTCT sup

k;�0
�N .'k;�0/

�
C

Z T

0

jh‰�f;uijdtC

Z T

0

jh‰�f;uijdtC

Z T

0

jh‰��f;uijdtC

Z T

0

jh‰��f;uijdt;

which yields the first part of Proposition 3.3 by taking the supremum over all � 2 Zn.
As for the second estimate of Proposition 3.3, we first remark that, since C is real, C u satisfies

@tC uD iL C uCTb0
1
:rC uCTb2

:rC uCC1C uCC2C uC Qf;

where k D 1; 2, b1 D b0
1
C ib00

1
with real b0

1
, b00

1
, and

Qf D .i ŒC;L �CC Tib00
1
r/uC ŒC;Tb0

1
:r�uC ŒC;Tb2

:r� NuC ŒC;C1�uC ŒC;C2� NuCCf:

Hence, we can apply the first estimate of Proposition 3.3 to C u obtaining

kjJ sC 1
2 C ukj2T �A

�
1CT CT sup

k;�

�N .'k;�/
�

sup
Œ0;T �

kC uk2s C

4X
jD1

sup
�

Z T

0

jh‰j ;�J s Qf ;J sC uij dt; (62)

where ‰j ;� D  j .x��;D/. Thus, we are led to estimate essentially the termsZ T

0

ˇ̌˝
J s.i ŒC;L �CC Tib00

1
r/u; ‰�j ;�J sC u

˛ˇ̌
dt

C

Z T

0

ˇ̌˝
J s ŒC;Tb0

1
:r�/u; ‰�j ;�J sC u

˛ˇ̌
dt C

Z T

0

ˇ̌˝
J s ŒC;Tb2

:r� Nu; ‰�j ;�J sC u
˛ˇ̌

dt:

Indeed, since the operators ‰j ;�J s ŒC;C1�J
�s and ‰j ;�J s ŒC;C2�J

�s are bounded in L2 (and so is
J sC J�s), the corresponding terms are easily estimated by

AT sup
�
�N .'1;�/ sup

0�t�T

ku.t/k2s :

We need now for the other terms the following simple lemma:

Lemma 6.1. If a 2 Sm
0;0

, then, for any real s,

J sa.x;D/J�s
D a.x;D/C e.x;D/;

where e 2 Sm�1
0;0

and the seminorms of e are bounded by those of a.

Proof. It suffices to apply the pseudodifferential calculus and to remark that

e.x; �/D
1

.2�/n

nX
jD1

Z 1

0

Z
e�iy�@�j .h�C t�is/@xj a.xCy; �/h�i�s dy d� dt: �
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We apply the lemma successively with

a.x;D/D i ŒC;L �CC Tib00
1
r;

a.x;D/D ŒC;Tb0
1
:r�;

a.x;D/D ŒC;Tb2
:r�:

Since here mD 1, we obtain that at each time the operator e.x;D/ is bounded in L2 and that its operator
norm is estimated by the seminorms of a. Next, it follows from the pseudodifferential calculus that
‰�j ;� 2 OpS0

1;0
and their seminorms are uniformly bounded with respect to �, and, consequently, also

that ‰�j ;�J sC J�s 2 OpS0
0;0

and their seminorms are uniformly estimated by those of C . Hence, the
integrals corresponding to the operators e.x;D/ are easily estimated by

ART sup
k;�

�N .'k;�/ sup
0�t�T

ku.t/k2s :

Thus, it remains to estimate the sumZ T

0

ˇ̌˝
.i ŒC;L �CC Tib00

1
r/J su; ‰�j ;�J sC u

˛ˇ̌
dt

C

Z T

0

ˇ̌˝
ŒC;Tb0

1
:r�J su; ‰�j ;�J sC u

˛ˇ̌
d t C

Z T

0

ˇ̌˝
ŒC;Tb2

:r�J s
Nu; ‰�j ;�J sC u

˛ˇ̌
dt;

to which we apply Lemma 5.2 with S D‰�j ;�J sC J�s. We obtain eventually

4X
jD1

sup
�

Z T

0

jh‰j ;�J s Qf ;J sC uij dt

�

4X
jD1

sup
�

Z T

0

jh‰j ;�J sCf;J sC uij dt CA sup
k;�

�N .'k;�/
�
RT sup

Œ0;T �

kuk2s C
1

R
kjJ sC 1

2 ukj2T

�
;

which, together with (62), implies the second estimate of Proposition 3.3.

Appendix

Proof of Lemma 3.4. We need the following general estimate:

Lemma A.1. Let b satisfy

b.x; �/D
X
�2Zn

˛�'�.x; �/;
X
�

j˛�j �A0;

supp.x 7! '�.x; �//�Q��; sup
�

sup
jˇj�N0

kh�ijˇj@
ˇ

�
'�kL1 <1;

(63)

where N0 is a sufficiently large integer, and let Qu stand for u or Nu. Then, there exist N 2 N and A > 0

such that, for all T > 0 and every S1 D s1.x;D/, S2 D s2.x;D/ in Op S0
0;0

, we haveZ T

0

jhS1J sTbJ�s
r Qu;S2uij dt �Aks1kC N ks2kC N sup

�
sup
jˇj�N

kh�ijˇj@
ˇ

�
'�kL1kjJ

1
2 ukj2T :
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Proof. One can write

hS1J sTbJ�s
r Qu;S2ui

D

X
�

˛�hS1J sT'�J�s
r Qu;S2ui D

X
�

˛�hS
�
2 S1J sT'�J�s

r Qu;ui

D

X
�

˛�
˝
hx��i�0J�

1
2 S�2 S1J sT'�J�s

rJ�
1
2 hx��i�0hx��i��0J

1
2 Qu; hx��i��0J

1
2 u
˛

D

X
�

˛�
˝
S�hx��i

�0T'�hx��i
�0J� Qu�;u�

˛
where

S�Dhx��i
�0J�

1
2 S�2 S1J s

hx��i��0; J�Dhx��i
��0J�s

rJ�
1
2 hx��i�0; u�Dhx��i

��0J
1
2 u:

Now, it follows from the pseudodifferential calculus (Theorem 2.1) and from Lemma 2.3 that S� and
J� are in Op S s� 1

2
0;0

and Op S
1
2
�s

0;0
respectively, and that we can estimate their seminorms uniformly in �.

Next, it follows from Lemma 2.12 that the operator norm of hx��i�0T'�hx��i
�0 acting in H s� 1

2 .Rn/

is estimated by supjˇj�N kh�i
jˇj@

ˇ

�
'�kL1 uniformly in �. Hence, the application of the Cauchy–Schwarz

inequality and the Calderón–Vaillancourt theorem allows us to obtainZ T

0

jhS1J sTbJ�s
r Qu;S2uij dt

�

X
�

j˛�jkS�kL .H s�1=2;L2/khx��i
�0T'�hx��i

�0kL .H s�1=2/kJ�kL .L2;H s�1=2/

Z T

0

ku�k
2
0 dt

�Aks1kC N ks2kC N sup
�

sup
jˇj�N

kh�ijˇj@
ˇ

�
'�kL1kjJ

1
2 ukj2T ;

which proves the lemma. �
Now, let us write Tbk�bk;m

D Tbk�bk;m0
CTbk;m0�bk;m

and apply Lemma A.1 first to b D bk � bk;m0

with S1 D S2 DCm. We obtainZ T

0

jhCmJ sTbk�bk;m0
r Qu;CmJ suij dt

D

Z T

0

jhCmJ sTbk�bk;m0
J�s
r Qv;Cmvij dt

�A sup
�
�N .'1;�;m/

2 sup
�

sup
jˇj�N

kh�ijˇj@
ˇ

�
.'k;��'k;�;m0/kL1kjJ

1
2 vkj2T ;

�A
m2N 2

m0�
sup
�

sup
jˇj�N

kh�ijˇj@
ˇ

�
'k;�kC�kjJ

1
2
Csukj2T �A

m2N 2

m0�
kjJ

1
2
Csukj2T ;

where v D J su and � D inff%; 1g. As for the study of the other term, we write

hCmJ sTbk;m0�bk;m
r Qu;CmJ sui

D hCmJ sTbk;m0�bk;m
J�s
r Qv;Cmvi

D hJ sTbk;m0�bk;m
J�s
rCm Qv;CmviC hŒCm;J

sTbk;m0�bk;m
J�s
r� Qv;Cmvi; (64)
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and then apply Lemma 5.2(iii) to the second term in (64) to obtainZ T

0

jhŒCm;J
sTbk;m0�bk;m

J�s
r� Qv;Cmvij dt

�A sup
�
�N .'1;�;m/

2 sup
�
k'k;�;m0 �'k;�;mkC N

�
T sup
Œ0;T �

kvk20C
1

R
kjJ

1
2 vkj2T

�
�Am02N 2

.m0N CmN /
�
T sup
Œ0;T �

kuk2s C
1

R
kjJ sC 1

2 ukj2T

�
�Am02N 2CN

�
T sup
Œ0;T �

kuk2s C
1

R
kjJ sC 1

2 ukj2T

�
:

Finally, recalling that Cm NuDCmu and applying Lemma A.1 to the first term in (64) with S1 D S2 D Id,
we getZ T

0

jhJ sTbk;m0�bk;m
J�s
rCm Qv;Cmvijdt

�Asup
�

sup
jˇj�N

kh�ijˇj@
ˇ

�
.'k;�;m0�'k;�;m/kL1kjJ

1
2 Cmvkj

2
T

�A
�

sup
�

sup
jˇj�N

kh�ijˇj@
ˇ

�
.'k;�;m0�'k;�/kL1Csup

�
sup
jˇj�N

kh�ijˇj@
ˇ

�
.'k;��'k;�;m/kL1

�
kjJ

1
2 Cmvkj

2
T

�

�
A

m0�
C

A

m�

�
sup
�

sup
jˇj�N

kh�ijˇj@
ˇ

�
'k;�kC�kjJ

1
2 Cmvkj

2
T

�

�
A

m0�
C

A

m�

�
kjJ

1
2 Cmvkj

2
T �

A

m�
kjJ

1
2 Cmvkj

2
T :

It remains to compare kjJ
1
2 Cmvkj

2
T
D kjJ

1
2 CmJ sukj2

T
with kjJ sC 1

2 Cmukj2
T

. Of course, one can write
J

1
2 CmJ suDJ sC 1

2 J�sCmJ su and it follows from Lemma 6.1 that J�sCmJ s�CmDEm is in Op S�1
0;0

and the seminorms of Em are bounded by those of Cm. Hence, since J sC 1
2 EmJ�s is in Op S

� 1
2

0;0
,

kjJ sC 1
2 Emukj2T D sup

�

Z T

0

Z
jhx��i��0J sC 1

2 Emuj2 dx dt

�

Z T

0

Z
jJ sC 1

2 Emuj2 dx dt

�A sup
�
�N .'1;�;m/

2

Z T

0

Z
jJ suj2 dx dt �AT m2N 2

sup
Œ0;T �

kuk2s

and
kjJ

1
2 Cmvkj

2
T � 2kjJ sC 1

2 Cmukj2T C 2AT m2N 2

sup
Œ0;T �

kuk2s ;

which implies thatZ T

0

jhJ sTbk;m0�bk;m
J�s
rCm Qv;Cmvij dt �

A

m�
kjJ sC 1

2 Cmukj2T CAT m2N 2

sup
Œ0;T �

kuk2s ;
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where, of course, the constant A has changed. Summing up, we have proven thatZ T

0

jhCmJ sTbk�bk;m
r Qu;CmJ suij dt

�
Am2N 2

m0�
kjJ sC 1

2 ukj2T CAm02N 2CN
�
T sup
Œ0;T �

kuk2s C
1

R
kjJ sC 1

2 ukj2T

�
C

A

m�
kjJ sC 1

2 Cmukj2T I (65)

that is, we have proven Lemma 3.4.

Anisotropic Sobolev spaces. There are several notions of anisotropic Sobolev space in the literature.
However, we have not been able to find a reference with the results we need in this paper. Therefore, we
are going to define our spaces and next prove the results we need.

We denote by .x;y/ the variable in Rn �Rn0 and by .�; �/ its Fourier dual variable.

Definition A.2. If s; s0 2 R, we denote by H s;s0.Rn � Rn0/ the space of tempered distributions u in
Rn �Rn0 such that the integral Z

Rn�Rn0
h�i2s

h�i2s0
j Ou.�; �/j2 d� d� (66)

is finite.

We call this space an anisotropic Sobolev space. Note that this is different, for example, from the
classical space H r;s of [Lions and Magenes 1968]. Clearly, H s;s0.Rn �Rn0/ is a Hilbert space when it is
provided with the obvious scalar product. We also denote by kuks;s0 the norm of u in this space and, of
course, it is equal to the square root of (66).

Additionally, note that the space H s;s0.Rn � Rn0/ in the above definition coincides with the space
H s.Rn;H s0.Rn0// and, by symmetry, with H s0.Rn0;H s.Rn//.

In this paper, we need the following two results on anisotropic Sobolev spaces. The first one is the
Sobolev injection:

Proposition A.3. If s > n
2

and s0 > n0

2
, then H s;s0.Rn�Rn0/�L1.Rn�Rn0/ with continuous injection.

Proof. If u 2H s;s0, then

Ou.�; �/D h�i�s
h�i�s0 :h�ish�is

0

Ou.�; �/I

hence, Ou 2 L2:L2 � L1 and kukL1 � Ck OukL1 � C 0kuks;s0 , where C and C 0 are constants which are
independent of u. �

The other result is an interpolation inequality:

Proposition A.4. If s D .1� �/s1C �s2 and s0 D .1� �/s0
1
C �s0

2
, where � 2 Œ0; 1�, s1; s2; s

0
1
; s0

2
2 R,

then, for any u 2H s1;s
0
1.Rn �Rn0/\H s2;s

0
2.Rn �Rn0/, we have

kuks;s0 � kuk
1��
s1;s
0
1

kuk�
s2;s
0
2

:
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Proof. Indeed, we have

kuk2s;s0 D

Z
Rn�Rn0

h�i2.1��/s1C2�s2h�i2.1��/s
0
1
C2�s0

2 j Ou.�; �/j2 d� d�

D

Z
Rn�Rn0

�
h�is1h�is

0
1 j Ou.�; �/j

�2.1��/�
h�is2h�is

0
2 j Ou.�; �/j

�2�
d� d�

�

�Z
Rn�Rn0

h�i2s1h�i2s0
1 j Ou.�; �/j2d�d�

�1���Z
Rn�Rn0

h�i2s2h�i2s0
2 j Ou.�; �/j2 d� d�

��
D kuk

2.1��/

s1;s
0
1

kuk2�
s2;s
0
2

;

where we have applied Hölder’s inequality. �

Actually, we need the above results for anisotropic Sobolev spaces on domains � in Rn �Rn0, and
since the theory of such spaces is less simple, we shall restrict ourselves to the case that arises in this
paper, that is, the case �D I �Rn where I is a bounded interval in R, and only to the case s � 0. First,
let us set, by definition,

H s;s0.�/DH s.I;H s0.Rn//;

in the sense that u.x;y/ is in H s;s0.�/ if and only if

@˛xJ s0

y u 2L2.�/ for j˛j � s

and Z
I�I�Rn

j@˛xJ s0

y u.x;y/� @˛xJ s0

y u.x0;y/j2

jx�x0j1C2�
dx dx0 dy <1 if 0< � D s� Œs� < 1:

Of course, the norm in this space is defined by

kuk2s;s0;� D
X
j˛j�s

k@˛xJ s0

y uk2
L2.�/

if s 2 N;

and

kuk2s;s0;� D
X
j˛j�Œs�

k@˛xJ s0

y uk2
L2.�/

C

Z
I�I�Rn

j@˛xJ s0

y u.x;y/� @˛xJ s0

y u.x0;y/j2

jx�x0j1C2�
dx dx0 dy otherwise.

Now, we can prove for H s;s0.�/ the results analogous to the above ones.

Proposition A.5. (i) If s > 1
2

and s0 > n
2

, then H s;s0.�/�L1.�/ with continuous injection.

(ii) If s D .1� �/s1C �s2 and s0 D .1� �/s0
1
C �s0

2
, where � 2 Œ0; 1�, s1 � 0, s2 � 0, s0

1
; s0

2
2 R, then

there exists a constant C such that, for any u 2H s1;s
0
1.�/\H s2;s

0
2.�/, we have

kuks;s0;� � Ckuk1��
s1;s
0
1
;�
kuk�

s2;s
0
2
;�
:

Proof. Since we cannot use directly the Fourier transformation, the idea is to construct a bounded linear
extension operator

P� WH
s;s0.�/!H s;s0.R�Rn/; (67)
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that is, it satisfies P�uj� D u, for all u 2 H s;s0.�/. Indeed, assume that such a P� exists. Then, for
u 2H s;s0.�/ with s > 1

2
and s0 > n

2
,

kukL1.�/ D kP�ukL1.�/ � kP�ukL1.R�Rn/ � CkP�uks;s0 � C 0kuks;s0;�;

where we have applied Proposition A.3 and the boundedness of P�, and this proves (i).
Furthermore, under the assumptions of (ii), we have

kuks;s0;� D kP�uks;s0;� � kP�uks;s0;R�Rn ;

and it is a classical fact that there exists a constant C such that, for all v 2H s.Rd /,X
j˛j�Œs�

k@˛vk2
L2.Rd /

C

Z
Rd�Rd

j@˛v.x/� @˛v.x0/j2

jx�x0jdC2�
dx dx0 � Ckvk2s I

now, applying this inequality to v.x/ D J s0

y P�u.x;y/, with d D 1, and integrating with respect to y

gives
kP�uk2s;s0;R�Rn � CkP�uk2s;s0 :

Finally, applying Proposition A.4 and the boundedness of P� yields

kuks;s0;� �
p

CkP�uks;s0 �
p

CkP�uk1��
s1;s
0
1

kP�uk�
s2;s
0
2

� C 0kuk1��
s1;s
0
1
;�
kuk�

s2;s
0
2
;�
;

which establishes (ii).
It remains to construct P� as in (67). In fact, the classical theory of Sobolev spaces already provides a

bounded linear extension operator
PI WH

s.I/!H s.R/ (68)

such that PI ujI D u for all u 2H s.I/. If u 2H s;s0.�/, let us set

P�u.x;y/D .PI /xu.x;y/:

Clearly, this defines a linear operator such that P�uj� D u. Let us show the boundedness of P� W

H s;s0.�/!H s;s0.R�Rn/. It follows from the definition that x 7! J s0

y u.x;y/ is in the Sobolev space
H s.I/ for almost all y 2 Rn. Hence, x 7! .PI /xJ s0

y u.x;y/ is in H s.R/ for almost all y 2 Rn and there
exists a constant C which depends neither on u nor on y such that

k.PI /xJ s0

y u.x;y/kH s.R/ � CkJ s0

y u.x;y/kH s.I / for a.e. y 2 Rn:

Since .PI /xJ s0

y uD J s0

y P�u, this inequality can be written more explicitly asZ
R

jJ s
xJ s0

y P�u.x;y/j2 dx � C 2
X
j˛j�Œs�

Z
I

j@˛xJ s0

y u.x;y/j2 dx

CC 2

Z
I�I

j@˛xJ s0

y u.x;y/� @˛xJ s0

y u.x0;y/j2

jx�x0j1C2�
dx dx0 for a.e. y 2 Rn:
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Integrating over Rn with respect to y gives

kP�uk2s;s0 � C 2
kuk2s;s0;�;

which proves the boundedness of P� and achieves the proof of the proposition. �
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THE SHAPE OF LOW ENERGY CONFIGURATIONS OF
A THIN ELASTIC SHEET WITH A SINGLE DISCLINATION

HEINER OLBERMANN

We consider a geometrically fully nonlinear variational model for thin elastic sheets that contain a
single disclination. The free elastic energy contains the thickness h as a small parameter. We give an
improvement of a recently proved energy scaling law, removing the next-to-leading-order terms in the
lower bound. Then we prove the convergence of (almost-)minimizers of the free elastic energy towards
the shape of a radially symmetric cone, up to Euclidean motions, weakly in the spaces W 2,2(B1 \ Bρ;R3)

for every 0< ρ < 1, as the thickness h is sent to 0.

1. Introduction

1.1. Setup and previous work. The present article continues a program [Müller and Olbermann 2014a;
Olbermann 2016; 2017] to explore thin elastic sheets with a single disclination from the variational point
of view. The free energy that we consider consists of two parts: (1) the nonconvex membrane energy,
which penalizes the difference between the metric that is induced by the deformation and the reference
metric, which is the metric of the (singular) cone; (2) the bending energy, which penalizes curvature. The
bending energy contains a factor h2, where the small parameter h is to be thought of as the thickness of
the sheet (see (1) below for the definition). Choosing the cone as configuration, one gets infinite energy:
While the membrane term vanishes, the bending energy is infinite for this choice. Energetically, there is a
competition of the membrane and the bending terms; neither will vanish for configurations of low energy.

Intuitively, it seems quite clear how configurations of low energy should look: they should be identical
to the cone far away from the disclination, and near the disclination, there should be some smoothing of
the cone, at a scale h (the only length scale in the problem). For such configurations, one gets an energy
of C∗h2 log(1/h) plus terms of order h2, where C∗ is an explicitly known constant; see Lemma 4 below.
It is natural to conjecture that such a scaling behavior should indeed hold true for minimizers. However, a
proof of an ansatz-free lower bound with the same scaling is much more difficult than the straightforward
construction for the upper bound. In the literature, lower bounds for this setting have been ansatz based
[Lidmar et al. 2003; Seung and Nelson 1988; Yavari and Goriely 2013], or have assumed radial symmetry
[Müller and Olbermann 2014a].

The idea underlying the recent proofs of ansatz-free lower bounds [Olbermann 2016; 2017] is to control
the Gauss curvature (or a linearization thereof) by interpolation between the membrane and the bending
term energy. The control over the Gauss curvature allows for a certain control over the Gauss map (or

MSC2010: 49Q10, 74K20.
Keywords: nonlinear elasticity, thin elastic sheets, d-cones, Hessian determinant.
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the deformation gradient). This information in turn yields lower bounds for the bending energy, using
an inequality of Sobolev/isoperimetric type. For the corresponding result from [Olbermann 2017], see
(2) below. This lower bound does not quite achieve the conjectured scaling behavior, in that there exist
next-to-leading-order terms O(h2 log log(1/h)) which are not present in the upper bound.

Here, we are going to improve the results from [Olbermann 2017] in two ways: First, we give an
improved lower bound for the elastic energy, which proves the conjecture that the minimum of the
energy is given by C∗h2 log(1/h)+ O(h2). The observation that allows for this improvement is that
it is unnecessary to use interpolation to control the Gauss curvature and the Gauss map (or rather, the
linearized Gauss curvature and the deformation gradient). It is enough to use the membrane energy alone
to obtain the necessary control, and make more efficient use of the Sobolev/isoperimetric inequality.

Second, we use this improved lower bound to show a statement about the shape of configurations that
satisfy the energy bounds. We prove that (almost-)minimizers converge to the conical deformation, up to
Euclidean motions. It is remarkable that that much information about deformations of small energy can
be obtained, considering that we are dealing with a highly nonconvex variational problem. Hitherto, such
results had only been achieved for situations in which the energy scales were O(h2) or less [Friesecke
et al. 2002; Pakzad 2004; Hornung 2011a]. The results of these papers will also play an important role in
our proof.

1.2. Statement of results. Let B1 := {x ∈ R2
: |x |< 1} be the sheet in the reference configuration. The

singular cone may be described by the mapping y1 : B1→ R3,

y1(x)=
√

1−12x +1|x |e3.

Here, 0<1< 1 is the height of the singular cone, and is determined by the deficit of the disclination at
the origin. The reference metric on B1 is given by

g1(x)= Dy1(x)T Dy1(x)

= (1−12)Id2×2+1
2 x̂ ⊗ x̂

= Id2×2−1
2 x̂⊥⊗ x̂⊥,

where x̂ = x/|x | and x̂⊥ = (−x2, x1)/|x |. The induced metric of a deformation y ∈W 2,2(B1;R
3) is

gy = DyT Dy.

The free elastic energy Ih,1 :W 2,2(B1;R
3)→ R is defined by

Ih,1(y)=
∫

B1

(
|gy − g1|2+ h2

|D2 y|2
)

dL2, (1)

where dL2 denotes two-dimensional Lebesgue measure. In [Olbermann 2017], we proved the existence
of a constant C = C(1) > 0 such that

2π12h2
(

log 1
h
− 2 log log 1

h
−C

)
≤ min

y∈W 2,2(B1;R3)
Ih,1(y)≤ 2π12h2

(
log 1

h
+C

)
. (2)
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Our first aim in the present article is to improve the lower bound for the free elastic energy. The
improvement consists in getting rid of the log log(1/h) terms on the left-hand side:

Theorem 1. There exist positive constants C1,C2,C3 that only depend on1 with the following properties.
First,

2π12h2
(

log 1
h
−C1

)
≤ min

y∈W 2,2(B1;R3)
Ih,1(y)≤ 2π12h2

(
log 1

h
+C2

)
(3)

for all h ∈
(
0, 1

3

)
. Furthermore, if y satisfies

Ih,1(y)≤ 2π12h2
(

log 1
h
+C2

)
, (4)

then ∫
B1\BR

|D2 y|2 dL2
≤ 2π12 log 1

R
+C3 for all R ∈ (3h, 1), (5)∫

B1

|gy − g1|2 dL2
≤ C3h2. (6)

As a consequence of Theorem 1, we will be able to prove convergence of (almost)-minimizers of the
functional (1) towards the singular cone as h→ 0:

Theorem 2. Let yh
∈W 2,2(B1;R

3) be a sequence with

Ih,1(yh)≤ 2π12h2
(

log 1
h
+C2

)
.

Then there exists a subsequence yh(k) and a Euclidean motion T such that for every 0< ρ < 1,

yh(k)⇀ T y1 in W 2,2(B1 \ Bρ;R3). (7)

1.3. Scientific context. In the proof of Theorem 1 we show a certain focusing of the elastic energy near
the disclination. Phenomena with such elastic energy focusing are also observed in many other settings.
In particular, crumpled elastic sheets display networks of vertices and ridges. The investigation of these
“sharp” structures in the physics community started in the mid-1990s. For a historical account and an
exhaustive list of references, see the very recommendable overview article [Witten 2007]. There has
been quite some activity in the analysis of ridge-like structures in particular; see [Lobkovsky 1996;
DiDonna and Witten 2001; Lobkovsky and Witten 1997; Kramer and Witten 1997; Lobkovsky et al.
1995; Venkataramani 2004]. Energy focusing in conical shapes has been investigated in [Ben Amar and
Pomeau 1997; Cerda et al. 1999; Cerda and Mahadevan 1998; 2005]. Disclinations in thin elastic sheets
are particularly interesting as a modeling device for icosahedral elastic structures. This is a popular model
for virus capsids [Seung and Nelson 1988; Lidmar et al. 2003] or carbon nanocones [Romanov 2003],
the structure one obtains when inserting a single five-valent vertex into a graphene sheet (of otherwise
six-valent vertices). The disclinations are located at the vertices of the elastic icosahedra.

In the mathematical literature on thin elastic sheets, there have been two strands of investigation: On
the one hand, there are the rigorous derivations of elastic plate models from three-dimensional finite
elasticity by means of 0-convergence; see [Friesecke et al. 2002; 2006; Lewicka et al. 2010]. On the
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other hand, there has been quite some effort to investigate the qualitative properties of low-energy states
in the variational formulation of elasticity, obtained through an analysis of the scaling of the free elastic
energy with respect to the relevant parameters in the model; see, e.g., [Bella and Kohn 2014a; 2014b;
Ben Belgacem et al. 2002; Kohn and Nguyen 2013]. The present paper belongs of course to the latter
group. In more detail, rigorous scaling laws similar to the ones we prove here have been derived for a
single fold [Conti and Maggi 2008] and for the so-called d-cone [Müller and Olbermann 2014b; Brandman
et al. 2013]. The variational problems considered in these references however are of a very special kind:
the constraints on the shape of the elastic sheet are quite restrictive, and the lower bounds use these
constraints in an essential way; see [Olbermann 2017] for a detailed discussion. This is not the case for
our setting, whence our method of proof, which we developed in [Olbermann 2016; 2017] and which we
refine here, is completely different.

1.4. Connection to convex integration and rigidity results. The Nash–Kuiper theorem [Nash 1954;
Kuiper 1955a; 1955b] states that given a two-dimensional Riemannian manifold (M, g), a short1 immer-
sion y0 :M→R3, and ε>0, there exists an isometric immersion y1∈C1(M;R3) such that ‖y1−y0‖C0 <ε.
This is relevant in our context, since the leading-order term in the energy (1) measures the distance of the
deformation y from an isometric immersion with respect to the target metric g1. By the Nash–Kuiper
theorem, there exists a vast amount of deformations y that have arbitrarily small membrane energy. A
priori, these are all good candidates for energy minimization. One needs a principle that shows that all of
these deformations are associated with large bending energy. The energy scaling law from Theorem 1
shows that none of these maps can beat the upper bound construction energetically. Theorem 2 shows
the “stronger” statement that maps with low energy cannot look anything like the approximations of
C1 isometric immersions that appear in the proof of the Nash–Kuiper theorem.

The Nash–Kuiper result is an instance of convex integration, a concept that has been developed
systematically by Gromov [1986]. In particular, the theorem states that solutions to isometric immersion
problems are highly nonunique if one requires only C1-regularity. In stark contrast, there is the uniqueness
in the Weyl problem: given a sufficiently smooth metric g on S2 with positive Gauss curvature, there
exists a unique isometric immersion y : S2

→ R3 of C2-regularity. Such uniqueness is often called
rigidity. The dichotomy of convex integration versus rigidity also appears in other contexts, such as the
Monge–Ampère equation [Lewicka and Pakzad 2017] and the incompressible Euler equation [Constantin
et al. 1994; Isett 2016].

Concerning the uniqueness of solutions in the Weyl problem, the proof is due to Pogorelov [1973]. In
fact, he proved that solutions are unique up to Euclidean motions in the class of immersions of bounded
extrinsic curvature. The latter is the class of immersions for which the pull-back of the volume form
on S2 under the Gauss map is a well-defined signed Radon measure. For smooth maps, this is just the
measure K dA, where K is the Gauss curvature and dA is the volume element. We see that control over
the Gauss curvature excludes constructions in the style of Nash–Kuiper. This is also the basic concept

1An immersion y : M→ R3 is short with respect to the metric g on M if for every curve γ : [0, 1] → M , the length of y ◦ γ
is shorter (measured with the Euclidean metric on R3) than γ (measured with g).
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underlying our proof (with the modification that we consider a linearized version of Gauss curvature).
We believe that this hints at a link between questions about rigidity of surfaces and variational problems
in the theory of thin elastic sheets.

Notation. For a closed line segment {a+ t (b− a) : t ∈ [0, 1]} ⊂ R2, we write [a, b]. For a semiclosed
line segment {a+ t (b− a) : t ∈ (0, 1]} ⊂ R2, we write (a, b]. Throughout the text, we will assume the
deficit of the disclination 0<1< 1 to be fixed. A statement such as “ f ≤ Cg” is shorthand for “there
exists a constant C > 0 that only depends on 1 such that f ≤ Cg”. The value of C may change within
the same line.

For r > 0, we let Br = {x ∈ R2
: |x |< r}. The two-sphere {x ∈ R3

: |x | = 1} is denoted by S2.
The one-dimensional Hausdorff measure is denoted by H1.
The pairing between a Radon measure µ and a continuous function f will be denoted by 〈µ, f 〉.

2. Proof of Theorem 1

As in [Olbermann 2017], the proof of the energy scaling law rests on two observations. First, by the weak
formulation of the Hessian determinant,

3∑
i=1

det D2 yi = (y,1 · y,2),12−
1
2(|y,1|

2),22−
1
2(|y,2|

2),11 for y ∈ C2(B1;R
3), (8)

we get that the quantity
∑3

i=1 det D2 yi is close to
∑3

i=1 det D2 y1i = π1
2δ0 (the latter equation holding

in the sense of distributions), where δ0 denotes the Radon measure defined by 〈δ0, f 〉 = f (0). The
expression

∑3
i=1 det D2 yi is best thought of as the “linearized Gauss curvature”: for a metric of the form

gy = Id2×2+ εG, the Gauss curvature is

K = ε
3∑

i=1

det D2 yi + O(ε2).

Second, the following Sobolev/isoperimetric inequality translates estimates for integrals of the Hessian
determinant into lower bounds for boundary integrals of the tangential part of the second derivative.

Lemma 3. For v ∈ C2(B1) and 0≤ r ≤ 1,∫
∂Br

|D2v| dH1
≥

(
4π
∣∣∣∣∫

Br

det D2v dx
∣∣∣∣)1/2

. (9)

This inequality has been used in the literature in a number of places; see, e.g., [Müller 1990]. The
proof of the statement above (including the sharp constant) can be found in [Olbermann 2017].

The main observation that allows for an improvement of the lower bound from [Olbermann 2017] is
that we may get a lower bound for the quantity on the left-hand side in (9) from the smallness of the
membrane energy directly by integrating a suitable test function against the membrane term gy − g1. In
our previous paper we obtained such an estimate by interpolation instead, which also uses the control
over the bending energy. This is unnecessary, and gives slightly worse estimates.
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The following calculation indicates how to use the smallness of the membrane term to obtain estimates
on integrals of the linearized curvature. Let 8 ∈ L1(B1) be such that D28 is a vector-valued Radon
measure with support in B1. In this case, we have 8 ∈ C0(B1), see [Demengel 1984, Theorem 3.3], and
for all y ∈ C2(B1;R

3) we have∫
B1

( 3∑
i=1

det D2 yi (x)
)
8(x) dL2

−π12
〈δ0,8〉

=

∫
B1

(
(y,1 · y,2− y1,1 · y

1
,2)8,12−

1
2(|y,1|

2
− |y1,1 |

2)8,22−
1
2(|y,2|

2
− |y1,2 |

2)8,11
)

dL2

=−
1
2

∫
B1

(gy − g1) : cof D28 dL2. (10)

Here,

cof D28=

(
8,22 −8,12

−8,21 8,11

)
denotes the cofactor matrix of D28. Note that cof is linear on 2× 2 matrices, and hence cof D28 is a
well-defined Radon measure under our assumptions. After these preliminary remarks, we construct the
upper bound in the statement of Theorem 1. It is obtained by a simple mollification of y1 on a ball of
size h centered at the origin.

Lemma 4. We have

inf
y∈W 2,2(B1;R3)

Ih,1(y)≤ 2π12h2
(

log 1
h
+C

)
,

where C = C(1) does not depend on h.

Proof. This is the same upper bound construction as in [Olbermann 2017] (see Lemma 2 in that reference),
and we will be brief. We choose η ∈ C∞([0,∞)) with η = 0 on

[
0, 1

2

]
, η = 1 on [1,∞), and |η′| ≤ C ,

|η′′| ≤ C . We set

yh(x)= η
(
|x |
h

)
y1(x).

One easily shows
|gyh − g1| ≤ C and |D2 yh| ≤ Ch−1 on Bh,

gyh − g1 = 0 and |D2 yh(x)| =
1

|x |
on B1 \ Bh .

This implies ∫
B1

|gyh − g1|2 dL2
≤

∫
Bh

C dL2
≤ Ch2,

∫
B1

|D2 yh|
2 dL2

≤

∫
B1\Bh

12

|x |2
dL2
+

∫
Bh

C
h2 dL2

= 2π12
∫ 1

h

dr
r
+C = 2π12 log 1

h
+C.

This implies the claim of the lemma. �
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Proof of Theorem 1. The upper bound is proved by Lemma 4; hence we may choose C2 to be the constant
from that lemma. Now it suffices to show the following: there exist C1,C3 such that if y ∈W 2,2(B1;R

3)

satisfies (4), then also the lower bound in (3) and (5), (6) hold true.
Let y ∈ W 2,2(B1;R

3) satisfy (4). By density of C2 in W 2,2, we may assume y ∈ C2(B1;R
3) for a

proof of the remaining statements. Let 0< r < 1. Using Lemma 3, we have for i = 1, 2, 3

1
2π

∫
∂Br

|D2 yi | dH1
≥

(
1
π

∣∣∣∣∫
Br

det D2 yi dL2
∣∣∣∣)1/2

.

Applying Jensen’s inequality, we get

1
2πr

∫
∂Br

|D2 yi |
2 dH1

≥

(
1

2πr

∫
∂Br

|D2 yi | dH1
)2

.

Combining these two estimates, we obtain∫
∂Br

|D2 yi |
2 dH1

≥
2
r

∣∣∣∣∫
Br

det D2 yi dL2
∣∣∣∣.

By the triangle inequality, ∫
∂Br

|D2 y|2 dH1
≥

2
r

∣∣∣∣∫
Br

∑
i

det D2 yi dL2
∣∣∣∣. (11)

Now choose h0 = h0(y) ∈ [h, 2h] such that∫
∂Bh0

|gy − g1|2 dH1
≤ h−1

∫
B1

|gy − g1|2 dL2. (12)

Choosing R ∈ (h0+ h, 1) and integrating (11) over the range r ∈ [h0, R], we get∫
BR\Bh0

|D2 y|2 dL2
≥ 2

∣∣∣∣∫ R

h0

1
r

(∫
Br

∑
i

det D2 yi dL2
)

dr
∣∣∣∣

= 2
∣∣∣∣∫ R

h0

(∫
B1

χBr (x)
r

∑
i

det D2 yi (x) dL2(x)
)

dr
∣∣∣∣

= 2
∣∣∣∣∫

B1

8

(∑
i

det D2 yi

)
dL2

∣∣∣∣, (13)

where we have used Fubini’s theorem to change the order of integration, and have defined the test function

8(x) :=
∫ R

h0

1
r
χBr (x) dr =


log(R/h0) if |x | ≤ h0,

log(R/|x |) if h0 < |x | ≤ R,
0 else.

We add and subtract the term 2π12
〈δ0,8〉, use the triangle inequality and obtain∫

BR\Bh0

|D2 y|2 dL2
≥ 2π12 log R

h0
− 2

∣∣∣∣π12
〈δ0,8〉−

∫
B1

8

(∑
i

det D2 yi

)
dL2

∣∣∣∣. (14)
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Now we set

A(R) :=
∫

B1

8

(∑
i

det D2 yi

)
dL2
−π12

〈δ0,8〉 = −
1
2

∫
B1

(gy − g1) : cof D28 dL2, (15)

where we have used (10) in the second line. An explicit computation yields

D8(x)=−
x
|x |2

χBR\Bh0
(x),

D28(x)=
(
−Id2×2+ 2x̂ ⊗ x̂

)
|x |−2χBR\Bh0

(x)+ |x |−1 x̂ ⊗ x̂
(
H1 ∂BR −H1 ∂Bh0

)
.

Inserting these computations in (15), we have

|A(R)| ≤
∫

BR\Bh0

|gy − g1|
|x |2

dL2
+

1
2R

∫
∂BR

|gy − g1| dH1
+

1
2h0

∫
∂Bh0

|gy − g1| dH1. (16)

By Cauchy–Schwarz,∫
BR\Bh0

|gy − g1|
|x |2

dL2
≤

(∫
BR\Bh0

|gy − g1|2 dL2
)1/2(∫

BR\Bh0

|x |−4 dL2
)1/2

≤

(∫
BR\Bh0

|gy − g1|2 dL2
)1/2√

2πh−1
0 ,

∫
∂BR

|gy − g1| dH1
≤C
√

R
(∫

∂BR

|gy − g1|2 dH1
)1/2

,

∫
∂Bh0

|gy − g1| dH1
≤C

√
h0

(∫
∂Bh0

|gy − g1|2 dH1
)1/2

.

(17)

Now choose R0 ∈ [R− h, R] such that∫
∂BR0

|gy − g1|2 dH1
≤ h−1

∫
B1

|gy − g1|2 dL2.

Together with (12) and (17), inequality (16) becomes

|A(R0)| ≤ C
Em(y)1/2

h0
,

where Em(y) is the membrane energy,

Em(y) :=
∫

B1

|gy − g1|2 dL2.

The lower bound for the bending energy (13) becomes∫
BR0\Bh0

|D2 y|2 dL2
≥ 2π12 log

R0

h0
−C

Em(y)1/2

h0
. (18)
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We use (18) with R ↑ 1 to estimate the membrane energy by

Em(y)≤ 2π12h2
(

log 1
h
+C2

)
− 2π12h2 log 1

h0
+Ch2 Em(y)1/2

h0
≤ C(h2

+ hEm(y)1/2). (19)

Using Young’s inequality ab ≤ 1
2((εa)

2
+ (b/ε)2), with ε = C−1, we have

ChEm(y)1/2 ≤ 1
2 Em(y)+Ch2,

and inserting this in (19), we get
Em(y)≤ Ch2,

which proves (6). Furthermore, inserting this in (18), we have∫
BR0\Bh0

|D2 y|2 dL2
≥ 2π12 log

R0

h
−C.

Sending R→ 1, this proves the lower bound in (3). Furthermore,∫
B1\BR

|D2 y|2 dL2
≤ h−2(Ih,1(y)− Em(y))−

∫ R0

h0

|D2 y|2 dL2

≤ 2π12
(

log 1
h
+C2

)
− 2π12 log

R0

h

≤ 2π12 log 1
R
+C,

which proves (5). This completes the proof of the theorem. �

3. Proof of Theorem 2

3.1. Isometric immersions of a singular cone. The plan of the proof is as follows: The crucial inequality
(5) shows that on a fixed annulus B1 \ BR , the W 2,2 norm of a sequence of deformations yh satisfying
Ih,1(yh)≤ 2π12h2(log 1/h+C) is bounded as h→ 0. One gets weak convergence of a subsequence
in W 2,2 to a limit deformation that is an isometric immersion with respect to g1 (since the membrane
energy of the limit function vanishes by Em(yh)≤Ch2

→ 0). We may apply the results on W 2,2 isometric
immersions from [Hornung 2011a; Pakzad 2004] to the limit, which means that the limit deformation is
developable. Using our energy estimates, we can show that in fact, it must be identical to the singular
cone y1 up to a Euclidean motion.

The fact that flat surfaces are locally developable is a classical result from the differential geometry of
surfaces. For functions in W 2,2, this statement has been proved in [Pakzad 2004; Hornung 2011a; 2011b]:

Theorem 5 [Hornung 2011a, Theorem 2]. Let � ⊂ R2 with Lipschitz boundary. Let y ∈ W 2,2(�;R3)

with DyT Dy = Id2×2 almost everywhere. Then y ∈ C1(�) and there exists a set L y of mutually disjoint
closed line segments in � with endpoints on ∂� with the following property. For every x ∈�, exactly one
of the following alternatives hold: either D2 y = 0 in a neighborhood of x , or there exists L ∈ L y with
x ∈ L and Dy is constant on L.
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B1,1 ι1
B1 \R−

Figure 1. The domain B1,1 and the map ι1 : B1,1→ B1 \R−.

Lemma 6. Let y be as in Theorem 5, and �̃ ⊆ �. Let ỹ be the restriction of y to �̃. Then for every
L̃ ∈ L ỹ there exists exactly one L ∈ L y such that L̃ ⊆ L. In particular, L y is unique.

Proof. From the properties of L y , it is clear that there can be at most one L with the stated property.
Suppose there is L̃ ∈ L ỹ such that there does not exist L ∈ L y with L̃ ⊆ L . Choose x0 ∈ L̃ \ ∂�̃, and
choose r > 0 such that B(x0, 2r)⊂ �̃. For every x ∈ L̃ ∩ B(x0, r) the following holds true:

There does not exist a neighborhood of x on which D2 y vanishes. Hence there exists a line segment
L x ∈ L y that intersects L̃ only in x such that Dy is constant on L x . Hence Dy(z) = Dy(x) = Dy(x0)

for all z ∈ L x .
Since the line segments {L x : x ∈ L̃ ∩ B(x0, r)} are mutually disjoint and their endpoints are outside

B(x0, r), we have that there exists a neighborhood U of x0 that is covered by the union of these line
segments,

U ⊂
⋃

x∈L̃∩B(x0,r)

L x .

This implies that Dy is constant on U, a contradiction. �

We will need a variant of Theorem 5 for functions whose domain is a singular cone.
To be able to use Theorem 5, we are going to consider the cone in a flat reference configuration. Let

arccos : [−1, 1] → [0, π] denote the inverse of cos : [0, π] → [−1, 1]. Define

B1,1 :=

{
x=(x1, x2) ∈ B1 \ {0} : 0≤ arccos

x1

|x |
<
√

1−12π

}
.

Let R− := {(x1, 0) : x1 ≤ 0}, and let ϕ : R2
\ R− → R be the angular coordinate satisfying x =

|x |(cosϕ(x), sinϕ(x)) with values in (−π, π). We define the map ι≡ ι1 : R2
\R−→ B1 by

ι(x)=
(
|x | cos

ϕ(x)
√

1−12
, |x | sin

ϕ(x)
√

1−12

)
.

For a sketch of B1,1 and ι1, see Figure 1.
On ι(B1,1)= B1 \R−, the map ι has a well-defined inverse, which we denote by

j : B1 \R−→ B1,1.
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∂+1

∂−1

L

Lad

Figure 2. The subsets ∂+1 , ∂
−

1 of the boundary and adjoint line segments L , Lad.

Furthermore, let φ1 := (1−
√

1−12)2π and let the rotation S1 ∈ SO(2) be defined by

S1 =
(

cosφ1 − sinφ1
sinφ1 cosφ1

)
.

Finally, let
∂1 := ∂B1,1 \ (∂B1 ∪ {0}).

Note that ∂1 has two connected components, one contained in the upper half-plane and one in the lower
half-plane. We will denote them by ∂+1 and ∂−1 respectively; see Figure 2. The rotation matrix S1 has
been chosen such that S1∂+1 = ∂

−

1 .
We define

W 2,2
iso (B1,1) :=

{
Y ∈W 2,2

loc (B1,1 \ {0};R3)

: gY = Id2×2, Y (S1x)= Y (x) and DY (S1x)= DY (x)S1 for every x ∈ ∂+1
}

(20)

This definition is chosen such that if y ∈W 2,2
loc (B1 \ {0};R3) with DyT Dy = g1, then y ◦ ι ∈W 2,2

iso (B1,1).
To Y ∈W 2,2

iso (B1,1), we may apply Theorem 5 with �= B1,1 \ Bρ to obtain a set L(ρ)Y of line segments
with the properties stated there. For ρ < ρ ′ we have by the uniqueness of the line segments stated in
Lemma 6 that every line segment in L(ρ

′)
Y is contained in exactly one line segment of L(ρ)Y .

Hence, by sending ρ → 0, we get a set of (relatively) closed mutually disjoint line segments in
B1,1 \ {0}, denoted by LY .

If a line segment in LY has only one endpoint in B1,1 \{0}, then we say by slight abuse of terminology
that one of its endpoints is the origin.

Remark 7. We note in passing that with obvious modifications of the previous construction, one may
extend Theorem 5 to maps with conical singularities, i.e., to maps y ∈W 2,2

loc (� \ {x0};R
3) with x0 ∈�

and DyT Dy = Id2×2 almost everywhere.

Next, we are going to define an “adjoint” line segment Lad to any L ∈ LY with an endpoint x ∈ ∂1.
Note that for such L , there exists v ∈ ∂B1 and q > 0 such that

L = {x + tv : t ∈ [0, q]}.

First let us assume x ∈ ∂+1 . By the definition of W 2,2
iso (B1,1) in (20), we have that x ′ := S1x ∈ ∂−1 , and

DY (x ′)= DY (x)S1. Moreover, there has to exist Lad
∈ L y with x ′ ∈ Lad, and

Lad
= {x ′+ t S1v : t ∈ R} ∩ B1,1.
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L

FL

L

Figure 3. In the left panel, we have the segments that belong to LY , and L ∈ LY is a bad
line segment. We can flatten the deformation Y on the side of L whose closure does not
contain the origin, and obtain a deformation FL(Y ), such that LFL (Y ) consists of those
line segments in LY that are on the same side of L as the origin; see the right panel.

This defines Lad for x ∈ ∂+1 ; for x ∈ ∂−1 , we define it analogously, replacing S1 by S−1
1 . For a sketch of

the construction, see Figure 2.
From now on, the line segments in LY for which one of the endpoints is 0 will be called “good”, and

line segments in the complement of the set of good line segments will be called “bad”. The sets of good
and bad line segments will be denoted by L(g)Y , L(b)Y respectively. For any bad line segment, we can lower
the elastic energy by “flattening” the deformation Y on one side of the line segment. This is the idea
behind the following lemma. For a sketch of this operation, see Figure 3.

Lemma 8. For every Y ∈W 2,2
iso (B1,1), there exists Y∞ ∈W 2,2

iso (B1,1) with the following properties:

(i) L(b)Y∞ =∅ and L(g)Y∞ = L(g)Y .

(ii) For 0< ρ < 1, we have∫
B1,1\Bρ

∣∣D2Y∞ : ((Dι)−1
⊗ (Dι)−1)

∣∣2 dL2
≤

∫
B1,1\Bρ

∣∣D2Y : ((Dι)−1
⊗ (Dι)−1)

∣∣2 dL2, (21)

with equality for all 0< ρ < 1 if and only if Y = Y∞.

Proof. For any L ∈ L(b)Y , we may define a modified map FL(Y ) ∈ W 2,2
iso (B1,1) as follows. On L , we

have Y = AL x + bL for some AL ∈ R3×2 and bL ∈ R3. We note that B1,1 \ L has exactly two connected
components. Let EL denote the connected component whose closure does not contain the origin. First let
us assume that none of the endpoints of L is in ∂1. Then we define FL(Y ) ∈W 2,2

iso (B1,1) by

FL(Y )(x)=
{

AL x + bL if x ∈ EL ,

Y (x) else.
(22)

If one of the endpoints of L is in ∂1, then we set

FL(Y )(x)=


AL x + bL if x ∈ EL ,

ALad x + bLad if x ∈ ELad,

Y (x) else.
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Note that this definition indeed satisfies FL(Y ) ∈ W 2,2
iso (B1,1). Obviously, we have D2(FL(Y )) = 0 on

EL (and on ELad) and hence, for all 0< ρ < 1, we have∫
B1,1\Bρ

|D2 FL(Y )(Dι)−1
|
2 dL2

≤

∫
B1,1\Bρ

|D2Y (Dι)−1
|
2 dL2. (23)

We must distinguish two cases in (23): If LFL (Y ) ( LY , then FL(Y ) 6= Y and we must have |D2Y |> 0 on
a subset of positive measure of EL . Hence, inequality must hold in (23) for some ρ, since we have√

1−12 Id2×2 ≤ (Dι)−1
≤ Id2×2 (24)

in the sense of positive definite matrices. Equality in (23) only holds in the case FL(Y )= Y.
On L(b)Y , we may define an order relation by L < L ′ if EL ( EL ′ . Since bad line segments are

mutually disjoint, we have that either L < L ′, L > L ′ or EL ∩ EL ′ =∅. Hence, there exists an at most
countable sequence L1, L2, . . . of maximal bad line segments. If for two maximal line segments L , L ′

we have L ′ = Lad then we exclude exactly one of them from that sequence. Now we define a sequence
Yk ∈W 2,2

iso (B1,1) by
Yk = FLk ◦ · · · ◦ FL1(Y ). (25)

By (23) and (24), D2Yk is bounded in L2. Thus the sequence converges weakly in W 2,2(B1,1 \ Bρ;R3)

for every 0< ρ < 1 to a limit Y∞ ∈W 2,2
iso (B1,1) such that LY∞ does not contain any bad line segments,

and L(g)Y∞ = L(g)Y . The claim (21) follows from (23) and the comment after that equation. �

Remark 9. Letting Y, Y∞ as in Lemma 8, we have that DY∞ is constant on every line segment (0, x)
for x ∈ ∂B1,1 ∩ ∂B1, and

Y∞ ◦ j ∈W 2,2
loc (B1 \ {0};R3), gY∞◦ j = g1.

Furthermore, ∫
B1\Bρ
|D2(Y∞ ◦ j)|2 dL2

≤

∫
B1\Bρ
|D2(Y ◦ j)|2 dL2 for every 0< ρ < 1.

Proof. The first statement in the remark follows from the fact that for every x ′ ∈ B1,1, we have that either
there exists x ∈ ∂B1,1 ∩ ∂B1 such that x ′ ∈ (0, x] ∈ L(g)Y∞ or there exists a sector containing x ′ that has
empty intersection with every L ∈ LY∞ , and hence DY∞ vanishes in the whole sector.

The second and third statements follow immediately from Y∞ ∈W 2,2
iso (B1,1). It remains to prove the

inequality. Let ν = Y,1 ∧ Y,2/|Y,1 ∧ Y,2| be the unit normal. By DY T DY = Id2×2, we have D2Y⊥DY.
Hence

|D2(Y ◦ j)|2 =|D2Y : (Dj ⊗ Dj)+ DY D2 j |2

=|D2Y : (Dj ⊗ Dj)|2+ |DY D2 j |2

=|D2Y : (Dj ⊗ Dj)|2+ |D2 j |2, (26)

where we used DY ∈ O(2, 3) in the last equality. Now the inequality follows from (21) and a change of
variables in the integrals. �
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3.2. Proof of Theorem 2. Given 0< R < 1, we may assume that h� R. Choose R0(h) ∈ [R− h, R]
such that ∫

∂BR0(h)

|gyh − g1|2 dH1
≤ h−1

∫
B1

|gyh − g1|2 dL2.

By Theorem 1, we have∫
B1\BR

|D2 yh| dL2
≤

∫
B1\BR0

|D2 yh| dL2
≤ 2π12 log 1

R
+C, (27)

where C depends neither on h nor on R. This proves the boundedness of yh in W 2,2(B1 \ BR;R
3) and

implies that there exists ŷR ∈W 2,2(B1 \ BR;R
3) such that (for a subsequence)

yh ⇀ ŷR in W 2,2(B1 \ BR;R
3).

After taking a suitable diagonal sequence for R = 1/j , j = 2, 3, . . . , we may assume that ŷR ∈

W 2,2
loc (B1 \ {0};R3) is independent of R. We denote this function by y∗. By Theorem 1, we have∫

B1

|gy∗ − g1| dL2
= 0;

i.e., y∗ is an isometry with respect to g1.
By (27), we have ∫

B1\BR

|D2 y∗|2 dL2
≤ 2π12h2 log 1

R
+C. (28)

Let Y : B1,1→ R3 be defined by
Y := y∗ ◦ ι.

Recalling the definitions from Section 3.1, we have Y ∈W 2,2
iso (B1,1). By an application of Lemma 8 and

Remark 9, we obtain Y∞ ∈ W 2,2
iso (B1,1) such that DY∞ is constant on every line segment (0, x) with

x ∈ ∂B1,1 ∩ ∂B1. Now we set y∞ := Y∞ ◦ j , and obtain that Dy∞ is constant on every line segment
(0, x] with x ∈ ∂B1. Hence there exists a curve γ : ∂B1→ S2 satisfying |γ ′| =

√
1−12 such that

y∞(x)= xγ
(

x
|x |

)
. (29)

Using this expression, explicit computation yields∫
∂Bρ
|D2 y∞|2 dH1

=
1
ρ

∫
∂B1

|D2 y∞|2 dH1. (30)

By Remark 9 and (28), we have that for every 0< ρ < 1,∫
B1\Bρ
|D2 y∞|2 dL2

≤ 2π12 log 1
ρ
+C. (31)

Combining (30) and (31), we see that for every 0< ρ < 1, we have∫
∂Bρ
|D2 y∞|2 dH1

≤
2π12

ρ
,

and the constant C in (31) is in fact 0.
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By gy∞ = g1, we have
3∑

i=1

det D2 y∞i = π1
2δ0

distributionally. We may now estimate using Lemma 3, for any 0< ρ < 1,

π12
=

∫
Bρ

3∑
i=1

det D2 y∞i dL2
≤

∑
i

∣∣∣∣∫
Bρ

det D2 y∞i dL2
∣∣∣∣

≤
1

4π

∑
i

(∫
∂Bρ
|D2 y∞i (x) · x̂

⊥
| dH1(x)

)2

≤
1

4π

∑
i

2πρ
(∫

∂Bρ
|D2 y∞i (x) · x̂

⊥
|
2 dH1(x)

)
≤
ρ

2

∫
∂Bρ
|D2 y∞(x) · x̂⊥|2 dH1(x)≤ π12. (32)

Here, to obtain the third from the second line, we used Jensen’s inequality. By this chain of estimates, all
the inequalities must have been equalities, and we have∑

i

(∫
∂Bρ
|D2 y∞i (x) · x̂

⊥
| dH1(x)

)2

=

∑
i

2πρ
(∫

∂Bρ
|D2 y∞i (x) · x̂

⊥
|
2 dH1(x)

)
and thus

|D2 y∞i (x) · x̂
⊥
|
2
= constant for x ∈ ∂Bρ, i ∈ {1, 2, 3}. (33)

Additionally, (32) implies

|D2 y∞(x) · x̂⊥|2 =
12

ρ2 for x ∈ ∂Bρ . (34)

By (29), we have D2 y∞(x)= |x |−1(γ + γ ′′)⊗ x̂⊥⊗ x̂⊥. Combining this with (33), we get

(γ + γ ′′) · ei = constant on ∂B1

for i = 1, 2, 3. We write ci = (γ + γ
′′) · ei , and have D2 y∞i (x)= (ci/|x |)x̂⊥⊗ x̂⊥, which implies

y∞i (x)= ci |x | + ai · x + bi for i = 1, 2, 3,

for some ai ∈ R2, bi ∈ R. By (33) we obtain

|D2 y∞(x)|2 =
∑

i c2
i

|x |2
=
12

|x |2
,

and thus
∑

i c2
i =1

2. By gy∞ = g1, we have

Id2×2−1
2 x̂⊥⊗ x̂⊥ = (c⊗ x̂ + a)T (c⊗ x + a)= |c|2 x̂ ⊗ x̂ + (c · a)⊗ x̂ + x̂ ⊗ (c · a)+ aT a.

This yields
(1−12)Id2×2 = (c · a)⊗ x̂ + x̂ ⊗ (c · a)+ aT a,
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which can only hold true for all x̂ ∈ ∂B1 if c · a = 0 and aT a = (1−12)Id2×2. This implies

R :=
(

a
√

1−12
,

c
1

)
∈ O(3)

is an orthogonal matrix, and we have

y∞(x)= R
(√

1−12x +1e3|x |
)
+ b.

It remains to show that y∞ = y∗. To see this, note that y∞ ◦ ι= Y∞ satisfies{
(0, x] : x ∈ ∂B1,1 ∩ ∂B1

}
= L(g)Y∞ = L(g)Y ,

where the second equality holds by Lemma 8. This implies that for every x ∈ B1,1 there exists an L ∈ L(g)Y
with x ∈ L . This in turn implies that L(b)Y =∅ (since the line segments in LY are pairwise disjoint). By
Lemma 8, the latter yields Y = Y∞. Composing with j on both sides of this last equation, we obtain
y∗ = y∞. This completes the proof of the theorem. �
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THE THIN-FILM EQUATION CLOSE TO SELF-SIMILARITY

CHRISTIAN SEIS

We study well-posedness and regularity of the multidimensional thin-film equation with linear mobility in
a neighborhood of the self-similar Smyth–Hill solutions. To be more specific, we perform a von Mises
change of dependent and independent variables that transforms the thin-film free boundary problem into
a parabolic equation on the unit ball. We show that the transformed equation is well-posed and that
solutions are smooth and even analytic in time and angular direction. The latter gives the analyticity of
level sets of the original equation, and thus, in particular, of the free boundary.

1. Introduction and main results

1.1. The background. We are concerned with a thin-film equation in arbitrary space dimensions. Our
interest is in the simplest case of linear mobility; that is, we consider the partial differential equation

@tuCr � .ur�u/D 0 (1)

in RN. In this model, u describes the thickness of a viscous thin liquid film on a flat substrate. We will
focus on what is usually referred to as the complete wetting regime, in which the liquid-solid contact
angle at the film boundary is presumed to be zero. Notice that in the three-dimensional physical space,
the dimension N of the substrate is 2.

Equation (1) belongs to the following family of thin-film equations:

@tuCr � .m.u/r�u/D 0; (2)

where the mobility factor is given by m.u/ D u3 C ˇn�3un with ˇ being the slippage length. The
nonlinearity exponent n > 0 depends on the slip condition at the solid-liquid interface: nD 3 models
no-slip conditions and nD 2 models Navier-slip conditions. The case nD 1 is a further relaxation and
the linear mobility considered here is obtained to leader order in the limit u! 0.

The evolution described in (2) was originally derived as a long-wave approximation from the free-
surface problem related to the Navier–Stokes equations and suitable model reductions; see, e.g., [Oron et al.
1997]. At the same time, it can be obtained as the Wasserstein gradient flow of the surface-tension energy
[Otto 1998; Giacomelli and Otto 2001; Matthes et al. 2009] and serves thus as the natural dissipative
model for surface-tension-driven transport of viscous liquids over solid substrates.

The analytical treatment of the equation is challenging and the mathematical understanding is far
from being satisfactory. As a fourth-order problem, the thin-film equation lacks a maximum principle.

MSC2010: primary 35K30; secondary 76A20.
Keywords: thin-film equation, fourth-order equation, self-similar solution, well-posedness.
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Moreover, the parabolicity degenerates where u vanishes and, as a consequence, for compactly supported
initial data (“droplets”), the solution remains compactly supported [Bernis 1996; Bertsch et al. 1998]. The
thin-film equation features thus a free boundary given by @fu > 0g, which in physical terms is the contact
line connecting the phases liquid, solid and vapor. Nonetheless, by using estimates for the surface energy
and compactness arguments Bernis and Friedman [1990] established the existence of weak nonnegative
solutions over a quarter of a century ago. The regularity of these solutions could be slightly improved with
the help of certain entropy-type estimates [Beretta et al. 1995; Bertozzi and Pugh 1996; Dal Passo et al.
1998], but this regularity is not sufficient for proving general uniqueness results. To gain an understanding
of the thin-film equation and its qualitative features, it is thus natural to find and study special solutions
first. In the past ten years, most of the attention has been focused on the one-dimensional setting, for
instance, near stationary solutions [Giacomelli et al. 2008; Giacomelli and Knüpfer 2010], traveling
waves [Giacomelli et al. 2014; Gnann 2016], and self-similar solutions [Gnann 2015; Belgacem et al.
2016]. The only regularity and well-posedness result in higher dimensions available so far is due to John
[2015], who analyzed the equation around stationary solutions. For completeness, we remark the thin-film
equation is also studied with nonzero contact angles; see, e.g., [Otto 1998; Giacomelli and Otto 2001;
2003; Knüpfer 2011; 2015; Knüpfer and Masmoudi 2015; Belgacem et al. 2016; Degtyarev 2017]. The
latter of these works is particularly interesting as it deals with the multidimensional situation.

In the present paper, we will conduct a study similar to John’s and investigate the qualitative behavior
of solutions close to self-similarity. A family of self-similar solutions to (1) is given by

u�.t; x/D
˛N

tN=.NC4/

�
�M �

jxj2

t2=.NC4/

�2
C

;

where ˛N D 1=.8.N C4/.N C2// and �M is a positive number that is determined by the mass constraintZ
u� dx DM;

and the subscript plus sign denotes the positive part of a quantity; i.e., . � /C Dmaxf0; � g. These solutions
were first found by Smyth and Hill [1988] in the one-dimensional case and then rediscovered in [Ferreira
and Bernis 1997]. As in related parabolic settings, the Smyth–Hill solutions play a distinguished role in
the theory of the thin-film equation as they are believed to describe the leading-order large-time asymptotic
behavior of any solution — a fact that is currently known only for strong [Carrillo and Toscani 2002]
and minimizing movement [Matthes et al. 2009] solutions. Besides that, these particular solutions are
considered to feature the same regularity properties as any “typical” solution, at least for large times.
Thus, under suitable assumptions on the initial data, we expect the solutions of (1) to be smooth up to
the boundary of their support. (Notice that this behavior is exclusive for the linear-mobility thin-film
equation; see [Giacomelli et al. 2013].)

In the present work we consider solutions that are in some suitable sense close to the self-similar
Smyth–Hill solution. Instead of working with (1) directly, we will perform a certain von Mises change of
dependent and independent variables, which has the advantage that it freezes the free boundary @fu > 0g
to the unit ball. We will mainly address the following four questions:
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(1) Is there some uniqueness principle available for the transformed equation?

(2) Are solutions smooth?

(3) Can we deduce some regularity for the moving interface @fu > 0g?

(4) Do solutions depend smoothly on the initial data?

We will provide positive answers to all of these questions. In fact, applying a perturbation procedure we
will show that the transformed equation is well-posed in a sufficiently small neighborhood of u�. We
will furthermore show that the unique solution is smooth in time and space. In fact, our results show that
solutions to the transformed equation are analytic in time and in direction tangential to the free boundary.
The latter in particular implies that all level sets and thus also the free boundary line corresponding to the
original solutions are analytic. We finally prove analytic dependence on the initial data.

The fact that solutions depend differentiably (or even better) on the initial data will be of great relevance
in a companion study on fine large-time asymptotic expansions. Indeed, in [Seis � 2018], we investigate
the rates at which solutions converge to the self-similarity at any order. Optimal rates of convergence were
already found by Carrillo and Toscani [2002] and Matthes, McCann and Savaré [Matthes et al. 2009],
and these rates are saturated by spatial translations of the Smyth–Hill solutions. Jointly with McCann
[McCann and Seis 2015] we diagonalized the differential operator obtained after formal linearization
around the self-similar solution. The goal of [Seis � 2018] is to translate the spectral information obtained
in [McCann and Seis 2015] into large-time asymptotic expansions for the nonlinear problem. For this,
it is necessary to rigorously linearize the equation, the framework for which is obtained in the current
paper. This strategy was recently successfully applied to the porous-medium equation near the self-similar
Barenblatt solutions [Seis 2014; 2015]. The present work parallels in parts [Seis 2015] as well as the
pioneering work by Koch [1999] and the further developments by Kienzler [2016] and John [2015].

1.2. Global transformation onto fixed domain. In this subsection it is our goal to transform the thin-film
equation (1) into a partial differential equation that is posed on a fixed domain and that appears to be
more suitable for a regularity theory than the original equation. The first step is a customary change of
variables that translates the self-similarly spreading Smyth–Hill solution into a stationary solution. This
is, for instance, achieved by setting

Ox D
1
p
�M

x

t1=.NC4/
; Ot D

1

N C 4
log t; OuD

N C 4

�2M
tN=.NC4/u;

with the effect that the Smyth–Hill solution becomes


 Ou�. Ox/
1=2
D

1
2
.1� j Oxj2/C; 
 D

p
2.N C 2/; (3)

and the thin-film equation (1) turns into the confined thin-film equation

@Ot OuC
yr � . Ouyr y� Ou/� yr � . Ox Ou/D 0: (4)

It is easily checked that Ou� is indeed a stationary solution to (4) and mass is no longer spreading over all
of RN. Instead, the confinement term pushes all mass towards the stationary Ou� at the origin. To simplify
the notation in the following, we will drop the hats immediately!
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1

p
2v

w.z/

z x 1

Figure 1. The definition of the .z; w/-coordinates.

Now that the Smyth–Hill solution has become stationary, we will perform a change of dependent
and independent variables that parametrizes the solution as a graph over u�. This type of a change of
variables is sometimes referred to as a von Mises transformation. It is convenient to temporarily introduce
the variable v D 
u1=2, so that

p
2v� maps the unit ball onto the upper half-sphere. The new variables

are obtained by projecting the point .x;
p
2v.x// orthogonally onto the graph of

p
2v�: noting thatp

2v.x/Cjxj2 is the hypotenuse of the triangle with the edges .0; 0/, .0; jxj/ and .jxj;
p
2v.x//, the

projection point has the coordinates .z;
p
2v�.z// with

z D
xp

2v.x/Cjxj2
:

We define the new dependent variable w as the distance of the point .x;
p
2v.x// from the sphere; that is,

1Cw D
p
2vCjxj2; (5)

which gives that x D .1Cw/z. This change of variables is illustrated in Figure 1.
The transformation of the thin-film equation (4) under this change of variables leads to straightforward

but tedious computations that we conveniently defer to the Appendix. The new variable w obeys the
equation

@twCL2wCNLw D f Œw� (6)

on B1.0/, where
Lw D���1r � .�2rw/D���wC 2z � rw

is precisely the linear operator that is obtained by linearizing the porous-medium equation @tu��u3=2D0
about the Barenblatt solution; see, e.g., [Seis 2014; 2015]. Before specifying the particular form of the
nonlinearity f Œw�, let us notice that the linear operator L2CNL corresponding to the thin-film dynamics
was previously found by McCann and the author [McCann and Seis 2015] by a formal computation. Its
relation to the porous-medium linear operator L is not surprising but reflects the deep relation between
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both equations. Indeed, as first exploited by Carrillo and Toscani [2002], the dissipation rate of the
porous-medium entropy is just the surface energy that drives the thin-film dynamics. On a more abstract
level, this observation can be expressed by the so-called energy-information relation, first formulated
by Matthes, McCann and Savaré [Matthes et al. 2009], which connects the Wasserstein gradient flow
structures of both equations [Otto 1998; 2001; Giacomelli and Otto 2001].

Let us finally discuss the right-hand side of (6). We can split f Œw� according to f Œw� D f 1Œw�C
f 2Œw�Cf 3Œw�, where

f 1Œw�D p ?R1Œw� ?
�
.rw/2?Crw ?r2w

�
;

f 2Œw�D p ?R1Œw� ? �
�
.r2w/2?Crw ?r3w

�
;

f 3Œw�D p ?R2Œw� ? �
2
�
.r2w/3?Cr Qw ?r2 Qw ?r3wC .rw/2? ?r4w

�
;

and

Ri Œw�D
.rw/k?

.1CwC z � rw/kCi

for some k 2 N0. We will see in Section 3 below that the particular form of the nonlinearity is irrelevant
for the perturbation argument. We have thus introduced a slightly condensed notation to simplify the
terms in the nonlinearity: we write f ? g to denote any arbitrary linear combination of the tensors
(vectors, matrices) f and g. For instance, rm1 Qw ?rm2 Qw is an arbitrary linear combination of products
of derivatives of orders m1 and m2. The iterated application of the ? is abbreviated as f j? D f ? � � �?f
if the latter product has j factors. The conventions f 1? D 1?f and f 0? D 1 apply. We furthermore use
p as an arbitrary representative of a (tensor-valued) polynomial in z. We have only kept track of those
� prefactors, which will be of importance later on.

1.3. The intrinsic geometry and function spaces. In our analysis of the linear equation associated to (6),
i.e.,

@twCL2wCNLw D f (7)

for some general f , we will make use of the framework developed earlier in [Koch 1999; Seis 2015] for
the second-order equation

@twCLw D f: (8)

The underlying point of view in there is the fact that the previous equation can be interpreted as a heat
flow on a weighted manifold, i.e., a Riemannian manifold to which a new volume element (typically a
positive multiple of the one induced by the metric tensor) is assigned. The theories for heat flows on a
weighted manifold parallel those on Riemannian manifolds in many respects; see [Grigor’yan 2006]. For
instance, a Calderón–Zygmund theory is available for (8). The crucial idea in [Koch 1999; Seis 2015] is
to trade the Euclidean distance on B1.0/ for the geodesic distance induced by the heat flow interpretation.
In this way, we equip the unit ball with a non-Euclidean Carnot–Carathéodory metric, see, e.g., [Bellaïche
and Risler 1996], which has the advantage that the parabolicity of the linear equation can be restored.
The same strategy has been applied in similar settings in [Daskalopoulos and Hamilton 1998; Koch 1999;
Kienzler 2016; John 2015; Denzler et al. 2015; Seis 2015].
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We define

d.z; z0/D
jz� z0jp

�.z/C
p
�.z0/C

p
jz� z0j

for any z; z02B1.0/. Notice that d is not a metric as it lacks a proper triangle inequality. This semidistance
is in fact equivalent to the geodesic distance induced on the (weighted) Riemannian manifold associated
with the heat flow (8); see [Seis 2015, Proposition 4.2]. We define open balls with respect to the metric d
by

Bdr .z/D fz
0
2 B1.0/ W d.z; z

0/ < rg;

and set Qdr .z/D
�
1
2
r4; r4

�
�Bdr .z/ and also Q.T /D .T; T C 1/�B1.0/. Properties of intrinsic balls

and volumes will be cited in Section 2.1 below.
With these preparations, we are in the position to introduce the (semi)norms

kwkX.p/ D
X

.`;k;jˇ j/2E

sup
z2B1.0/
0<r�1

r4kCjˇ j�1

�.r; z/2`�jˇ jC1
jQdr .z/j

�1=p
k�`@kt @

ˇ
zwkLp.Qdr .z//

C

X
.`;k;jˇ j/2E

sup
T�1

T k�`@kt @
ˇ
zwkLp.Q.T //;

kf kY.p/ D sup
z2B1.0/
0<r�1

r3

�.r; z/
jQdr .z/j

�1=p
kf kLp.Qdr .z//

C sup
T�1

T kf kLp.Q.T //

for p � 1, where
E D f.0; 1; 0/; .0; 0; 2/; .1; 0; 3/; .2; 0; 4/g:

These norms (or Whitney measures) induce the function spaces X.p/ and Y.p/, respectively, in the
obvious way.

1.4. Statement of the results. In view of the particular form of the nonlinearity it is apparent that any
well-posedness theory for the transformed equation (6) requires an appropriate control of w and rw
to prevent the denominators in Ri Œw� from degenerating. This is achieved when the Lipschitz norm
kwkW 1;1 D kwkL1 C krwkL1 is sufficiently small. A suitable function space for existence and
uniqueness is provided by X.p/\L1.W 1;1/ under minimal assumptions on the initial data. Here we
have used the convention that Lq.X/D Lq..0; T /IX/ for some (possibly infinite) T > 0. Our first main
result is:

Theorem 1 (existence and uniqueness). Let p > N C 4 be given. There exists "; "0 > 0 such that for
every g 2W 1;1 with

kgkW 1;1 � "0

there exists a solution w to the nonlinear equation (6) with initial datum g and w is unique among all
solutions with kwkL1.W 1;1/CkwkX.p/ � ". Moreover, this solution satisfies the estimate

kwkL1.W 1;1/CkwkX.p/ . kgkW 1;1 :
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Theorem 1 contains the first (conditional) uniqueness result for the multidimensional thin-film equation
in a neighborhood of self-similar solutions. Since any solution to the thin-film equation is expected to
converge towards the self-similar Smyth–Hill solution, our result can be considered as a uniqueness result
for large times. Notice that the smallness of the Lipschitz norm of w can be translated back into the
closeness of u to the stationary u�. Indeed, kwkW 1;1 � 1 can be equivalently expressed as

ku�u�kL1.P.u//CkruC xkL1.P.v//� 1

if P.u/D fu > 0g is the positivity set of u. Recall that ru� D�x inside B1.0/.
Our second result addresses the regularity of the unique solution found above.

Theorem 2. Let w be the solution from Theorem 1. Then w is smooth and analytic in time and angular
direction.

It is clear that the smoothness of w immediately translates into the smoothness of u up to the boundary
of its support. Moreover, the analyticity result particularly implies the analyticity of the level sets of u.
Indeed, the level set of u at height �� 0 is given by�

.t; x/ W w.t; r; �/D

r
r2C

2
p
�



� 1

�
if r and � are the radial and angular coordinates, respectively. As a consequence, the temporal and
tangential analyticity of w translates into the analyticity of the level sets of u. Notice that the zero-level
set is nothing but the free boundary @fu D 0g, and thus, Theorem 2 proves the analyticity of the free
boundary of solutions near self-similarity.

In the forthcoming paper [Seis � 2018], we will use the gained regularity in time for a construction of
invariant manifolds that characterize the large-time asymptotic behavior at any order.

The proof of existence and uniqueness in Theorem 1 follows from a fixed-point argument and a
maximal regularity theory for the linear equation. Analyticity and regularity are essentially consequences
of an argument first introduced by Angenent [1990] and later improved by Koch and Lamm [2012].

1.5. Notation. One word about constants. In the major part of the subsequent analysis, we will not keep
track of constants in inequalities but prefer to use the sloppy notation a . b if a � Cb for some universal
constant C . Sometimes, however, we have to include constants like e˙Ct when dealing with exponential
growth or decay rates. In such cases, C will always be a positive constant which is generic in the sense
that it will not depend on t or z, for instance. This constant might change from line to line, which allows
us to write things like e2Ct . eCt even for large t .

2. The linear problem

Our goal in this section is the study of the initial value problem for the linear equation (7). In fact, our
analysis also applies to the slightly more general equation�

@twCL2�wCL�w D f in .0;1/�B1.0/;
w.0; � /D g in B1.0/;

(9)
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where L� corresponds to the linearized porous-medium equation considered in [Seis 2014; 2015], defined
by

L�w D����r � .��C1rw/D���wC .� C 1/z � rw

for any smooth function w 2 C1.B/, and n� 0 is arbitrary. The constant � is originally chosen greater
than �1, but we will restrict our attention to the case � > 0 for convenience.

Our notion of a weak solution is the following:

Definition 3 (weak solution). Let 0 < T � 1 and f 2 L2..0; T /IL2� /, g 2 L
2
� . We call w a weak

solution to (9) if w 2 L2..0; T /IL2� / with Lw 2 L2..0; T /IL2� // solves

�

Z T

0

Z
@t�w d�� dt C

Z T

0

Z
L��L�w d�� dt Cn

Z T

0

Z
r� � rw d��C1 dt

D

Z T

0

Z
�f d�� dt C

Z
�.0; � /g d�� (10)

for all � 2 C1.Œ0;1/�B1.0// with spt � � Œ0; T /�B1.0/.

Here we have used the notation L2� for Lebesgue space L2.�� / if �� is the absolute continuous
measure defined by

d�� D �
� dx:

The Hilbert-space theory for (9) is relatively easy and will be developed in Section 2.3 below. In order
to perform a perturbation argument on the nonlinear equation, however, we need to control the solution w
in the Lipschitz norm. The function spaces X.p/ and Y.p/ introduced earlier are suitable for such an
argument. In fact, our objective in this section is the following result for the linear equation (9).

Theorem 4. Let p >N C4 be given. Assume that g 2W 1;1. Then there exists a unique weak solution w
to (9), and this solution satisfies the a priori estimate

kwkW 1;1 CkwkX.p/ . kf kY.p/CkgkW 1;1 :

As mentioned earlier, a change from the Euclidean distance to a Carnot–Carathéodory distance suitable
for the second-order operator L� will be crucial for our subsequent analysis. In the following subsection
we will recall some basic properties of the corresponding intrinsic volumes and balls, which were derived
earlier in [Seis 2015]. Section 2.2 intends to provide some tools that allow us to switch from the spherical
setting to the Cartesian one. Energy estimates are established in Section 2.3. In Section 2.4 we treat the
homogeneous problem and derive Gaussian estimates. A bit of Calderón–Zygmund theory is provided in
Section 2.5. Finally, Section 2.6 contains the theory for the inhomogeneous equation.

2.1. Intrinsic balls and volumes. In the following, we will collect some definitions and properties that
are related to our choice of geometry and that will become relevant in the subsequent analysis of the
linearized equation. Details and derivations can be found in [Seis 2015, Chapter 4].
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It can be shown that the intrinsic balls Bdr .z/ are equivalent to Euclidean balls in the sense that there
exists a constant C <1 such that

BC�1r�.r;z/.z/� B
d
r .z/� BCr�.r;z/.z/ (11)

for any z 2 B1.0/. Here � is defined by

�.r; z/D r _
p
�.z/:

For the local estimates, it will be crucial to notice thatp
�.z0/. r D)

p
�.z/. r for all z 2 Bdr .z0/; (12)p

�.z0/� r D) �.z/� �.z0/ for all z 2 Bdr .z0/: (13)

In particular, it holds that �.r; � /� �.r; z0/ in Bdr .z0/. Moreover, if
p
�.z0/. r , and z0 6D 0, then (11)

implies

BC�1r2

�
z0

jz0j

�
\B1.0/� B

d
r .z0/� BCr2

�
z0

jz0j

�
\B1.0/: (14)

We will sometimes write jAj� D �� .A/ for measurable sets A. The volume of an intrinsic ball can be
calculated as follows:

jBdr .z/j� � r
N �.r; z/NC2�: (15)

In particular, it holds that
jBdr .z/j�

jBdr .z
0/j�
.
�
1C

d.z; z0/

r

�2NC2�
: (16)

2.2. Preliminary results. By the symmetry of L� and the Cauchy–Schwarz inequality in L2� , we have
the interpolation

kr�k2�C1 D

Z
�L�� d�� � k�k� kL��k� : (17)

For further reference, we also quote the maximal regularity estimate

krwk� Ckr
2wk�C2 . kL�wk� I (18)

see [Seis 2015, Lemma 4.6].
Close to the boundary, the operator L� can be approximated with the linear operator studied in [Kienzler

2016],
zL�w D�z��N r � .z

�C1
N rw/D�zN�w� .� C 1/@Nw:

This operator is considered on the half-space RN
C
D fz 2 RN W z > 0g. Defining Q�� D z�Ndz for any

� > �1 and using the notation k � k� for the norm on L2. Q�� / (slightly abusing notation), we have,
analogously to (18), that

krwk� Ckr
2wk�C2 . k zL�wk� : (19)
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Our first lemma shows how the second-order elliptic equation can be transformed onto a problem on
the half-space.

Lemma 5. Suppose that

L�w D �

for some w such that spt.w/ � B1.0/ \ B".eN / for some " > 0. Let ˆ.z/ D
p
1� jz0j2eN � z for

z 2B1.0/. If " is sufficiently small, then ˆ is a diffeomorphism on B1.0/\B".eN /. Moreover, Qw defined
by Qw.ˆ.z//D w.z/ solves the equation

zL� Qw D Q�;

where AD A. Qz/ 2 RN�N and b D b. Qz/ 2 RN are smooth functions with

Q� D � ıˆ�1CA W zr2 QwC b � zr Qw

with jA. Qz/j. j Qzj2, jb. Qz/j. j Qzj.

Proof. It is clear that ˆ is a diffeomorphism from a small ball around z D eN into a small neighborhood
around the origin in RN

C
. Moreover, a direct calculation and Taylor expansion show that

�w D z� QwC
2 Qz0p
1� jQz0j2

� zr
0 Q@N QwC

jQz0j2

1� jQz0j2
Q@2N Qw�

�
N � 1p
1� jQz0j2

C
jQz0j2

.1� jQz0j2/3=2

�
Q@N Qw

D z� QwCA1. Qz/ W zr
2
QwC b1. Qz/ � zr Qw;

z � rw D�
p
1� jQz0j2 Q@N QwC Qz

0
� zr
0
QwC

�
QzN �

jQz0j2p
1� jQz0j2

�
Q@N Qw

D�Q@N QwC b2. Qz/ � zr Qw;

�.z/D
p
1� jQz0j2 QzN �

1
2
Qz2N D QzN C c. Qz/;

where jA1. Qz/j. j Qzj, jb1. Qz/j. 1, jb2. Qz/j. j Qzj, jc. Qz/j. j Qzj2. We easily infer the statement. �

A helpful tool in the derivation of the L2� maximal regularity estimates for our parabolic problem (9)
will be the following estimate for the Cartesian problem.

Lemma 6. Suppose Qw is a smooth solution of the equation

zL� Qw D Q�

for some smooth � . Then

kzr
2
Qwk� Ckzr

3
Qwk�C2Ckzr

4
Qwk�C4 . kzr Q�k� Ckzr2 Q�k�C2:

Proof. We start with the derivation of higher-order tangential regularity. Since zL� commutes with Q@i for
any i 2 f1; : : : ; N � 1g, differentiation yields zL� Q@i Qw D Q@i Q� , and thus via (19),

kzr Q@i Qwk� Ckzr
2 Q@i Qwk�C2 . kzr Q�k� :
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We take second-order derivatives in tangential direction and rewrite the resulting equation as zL�C2 Q@ij QwD
Q@ij Q� � 2Q@ijN Qw, where i; j 2 f1; : : : ; N � 1g. From the above estimate and (19) we obtain

kzr Q@ij Qwk�C2Ckzr
2 Q@ij Qwk�C4 . kzr Q�k� Ckzr2 Q�k�C2:

Transversal derivatives do not commute with zL� . Instead, it holds that Q@N zL� D zL�C1 Q@N � z�0. A double
differentiation in transversal direction yields thus zL�C2 Q@2N Qw D Q@

2
N
Q� C 2z�0 Q@N Qw. We invoke (19) and

obtain with the help of the previous estimate

kzr Q@2N Qwk�C2Ck
zr
2 Q@2N Qwk�C4 . kzr Q�k� Ckzr

2 Q�k�C2:

Finally, the control of Q@2N Qw follows by using the transversally differentiated equation in the sense of
.� C 2/Q@2N Qw D�

Q@N Q� � QzN z�Q@N Qw� z�
0 Qw and the previous bounds. �

2.3. Energy estimates. In this subsection, we derive the basic well-posedness result, maximal regularity
estimates and local estimates in the Hilbert-space setting. We start with existence and uniqueness.

Lemma 7. Let 0 < T �1 and f 2 L2..0; T /IL2� /, g 2 L
2
� . Then there exists a unique weak solution

to (9). Moreover, it holds that

sup
.0;T /

kwk2� C

Z T

0

krwk2� dt C

Z T

0

kr
2wk2�C2 dt .

Z T

0

kf k2� dt Ckgk
2
� :

Proof. Existence of weak solutions can be proved, for instance, by using an implicit Euler scheme. Indeed,
thanks to (18), it is easily seen that for any h > 0 and f 2 L2� the elliptic problem

1

h
wC .L2� CnL� /w D f

has a unique solution w satisfying L�w 2 L2� ; see [Seis 2014, Appendix] for the analogous second-order
problem. This solution satisfies the a priori estimate

1
p
h
kwk� CkL�wk� . kf k� :

With these insights, it is an exercise to construct time-discrete solutions to (9), and standard compactness
arguments allow for passing to the limit, both in the equation and in the estimate. In view of the linearity
of the equation, uniqueness follows immediately. �

Our next result is a maximal regularity estimate for the homogeneous problem.

Lemma 8. Let w be a solution to the initial value problem (9) with g D 0 and f 2 L2..0; T /IL2� // for
some 0 < T �1. Then the mappings t 7! kw.t/k� and t 7! krw.t/k�C1 are continuous on Œ0; T � and
r2w;r3w; �r4w 2 L2..0; T /IL2� // with

k@twkL2.L2� /Ckr
2wkL2.L2� /Ckr

3wkL2.L2
�C2

/Ckr
4wkL2.L2

�C4
/ . kf kL2.L2� /:

In the statement of the lemma, we have written L2.L2� / for L2..0; T /IL2� /.
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Proof. We perform a quite formal argument that can be made rigorous by using the customary approxima-
tion procedures. Choosing � D �Œt1;t2�@tw as a test function in (10), we have the identityZ t2

t1

k@twk
2
� dt C

1
2
kL�w.t2/k2� C

1
2
nkrw.t2/k�C1

D

Z t2

t1

Z
f @tw d�� dt C

1
2
kL�w.t1/k� C 1

2
nkrw.t1/k�C1:

Combining this bound with the estimate from Lemma 7, we deduce that the mappings t 7! kw.t/k� and
t 7! krw.t/k�C1 are continuous. Moreover,Z T

0

k@twk
2
� dt .

Z T

0

kf k2� dt

because g D 0. A similar estimate holds for L�w by virtue of Lemma 7, and the statement thus follows
upon proving

kr
2wk� Ckr

3wk�C2Ckr
4wk�C4 . k�k� Ckr�k� Ckr2�k�C2 (20)

for any solution of the elliptic problem L�wD � , because the right-hand side is bounded by kf k� thanks
to (18) and Lemma 7. It is not difficult to obtain estimates in the interior of B1.0/. For instance, since

L�C2@iw D @i� � zi�wC 2z � r@iw� .� C 1/@iw

is bounded in L2�C2 and because L2� � L
2
�C2, an application of (18) yields

kr
2wk�C2Ckr

3wk�C4 . k@i�k� Ckrwk� Ckr2wk�C2 . k�k� Ckr�k� : (21)

Since � � 1 in the interior of B1.0/, this estimate gives the desired control of the second- and third-order
derivatives in the interior of B1.0/. Fourth-order derivatives can be estimated similarly.

To derive estimates at the boundary of B1.0/, it is convenient to locally flatten the boundary. For this
purpose, we localize the equation with the help of a smooth cut-off function � that is supported in a small
ball centered at a given boundary point, say eN ,

L� .�w/D �� � 2�r� � rw� ���wC .� C 1/z � r�w DW Q�:

A short computation shows that

kQ�k� Ckr Q�k� Ckr
2 Q�k�C2 . k�k� Ckr�k� Ckr2�k�C2;

where we have used (18) and (21) and the Hardy–Poincaré inequality kwk� . krwk�C1 from [Seis 2014,
Lemma 3]. (For this, notice that we can assume that w has zero average because solutions to L�wD � are
unique up to constants.) Establishing (20) for this localized equation is now a straightforward calculation
based on the transformation from Lemma 5 and the a priori estimate from Lemma 6. A covering argument
concludes the proof. �

A crucial step in the derivation of the Gaussian estimates is the following local estimate.
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Lemma 9. Let 0 < O" < " < 1 and 0 < ı < Oı < 1 be given. Let w be a solution to the inhomogeneous
equation (9). Then the following holds for any z0 2 B1.0/, � � 0 and 0 < r . 1:“
Q

.@tw/
2 d�� dt C

�.r; z0/
4

r4

“
Q

jr
2wj2 d�� dt

C
�.r; z0/

2

r2

“
Q

jr
3wj2 d��C2 dt C

“
Q

jr
4wj2 d��C4 dt

.
“
yQ

f 2 d�� dt C
1

r8

“
yQ

w2C r2�.r; z0/
2
jrwj2 d�� dt;

where QD .� C "r2; � C r2/�Bd
ır
.z0/ and yQD .� C O"r2; � C r2/�Bd

Oır
.z0/.

Proof. Because (9) is invariant under time shifts, we may set � D 0. We start by recalling that

L� .�w/D �L�w� 2�r� � rwC .L��/w

for any two functions � and w, and thus, via iteration,

L2� .�w/D �L
2
�w� 2�r� � rL�wCL��L�w� 2L� .�r� � rw/CL� ..L��/w/:

In the sequel, we will choose � as a smooth cut-off function that is supported in the intrinsic space-time
cylinder yQ, and is constantly 1 in the smaller cylinder Q. For such cut-off functions, it holds that
j@kt @

ˇ
z �j. r�2k�jˇ j�.r; z0/�jˇ j. (Here and in the following, the dependency on "; O"; ı and Oı is neglected

in the inequalities.) Then �w solves the equation

@t .�w/CL2� .�w/CnL� .�w/D �f C @t�w� 4L� .�r� � rw/� 4�r.�r�/ W r
2w

� 2�z � r��w� 2.� C 1Cn/�r� � rwC 2L� .�r�/ � rw

CL� ..L��/w/CL��L�wCn.L��/w:

For simplicity, we denote the right-hand side by Qf . Testing against �w and using the symmetry and
nonnegativity properties of L� and the fact that �w D 0 initially, we obtain the estimate“

.L� .�w//2 d�� dt �
“

�w Qf d�� dt:

A tedious but straightforward computation then yieldsˇ̌̌̌Z
�w Qf d��

ˇ̌̌̌
.
�
r2k�f k� CkL� .�w/k� C

1

r2
k�wk� C

�0

r
k�rwk�

��
1

r2
k�wk� C

�0

r
k�rwk�

�
; (22)

where �D �spt.�/ and �0 D �.r; z0/, which in turn implies“
Q

jrwj2 d�� dt C

“
Q

jr
2wj2 d��C2 dt

. r4
“
yQ

f 2 d�� dt C
1

r4

“
yQ

w2C r2�20 jrwj
2 d�� dt (23)
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via (18) and Young’s inequality. We will show the argument for (22) for the leading-order terms only. For
instance, from the symmetry of L� and the fact that j�r�j. �0=r , we deduce thatˇ̌̌̌Z

�wL� .�r� � rw/ d��
ˇ̌̌̌
.
�0

r
kL� .�w/k� k�rwk� :

Similarly, by integration by parts we calculateˇ̌̌̌Z
�w�r.�r�/ W r2w d��

ˇ̌̌̌
.
�20
r2

Z
jr.�w/jjrwj d�� C

1

r2

Z
�jwjjrwj d�� ;

and conclude observing that jr.�w/j. ��10 r�1jwjC jrwj. The remaining terms of Qf can be estimated
similarly.

To gain control over the third-order derivatives of �w, we test the equation with L� .�w/. With the
help of the symmetry and nonnegativity properties of L� , we obtain the estimate“

jrL� .�w/j2 d��C1 dt �
“

L� .�w/ Qf d�� dt:

We have to find suitable estimates for the inhomogeneity term. Because we have to make use of the
previous bound (23), we have to shrink the cylinders Q and yQ such that the new function � is supported
in the set where the old � was constantly 1. We claim that“

Q

jrL�wj2 d��C1 dt . r2
“
yQ

f 2 d�� dt C
1

r6

“
yQ

w2C r2�20 jrwj d�� dt: (24)

Again, we will provide the argument for the leading-order terms only. We use the symmetry of L� , the
bounds on derivatives of � and the scaling of �, see (12) and (13), to estimateˇ̌̌̌Z

L� .�w/L� .�r� � rw/ d��
ˇ̌̌̌
D

ˇ̌̌̌Z
rL� .�w/ � r.�r� � rw/ d��C1

ˇ̌̌̌
. krL� .�w/k�C1

�
�0

r2
k�rwk� C

1

r
k�r2wk�C2

�
:

Similarly, ˇ̌̌̌Z
L� .�w/�r.�r�/ W r2w d��

ˇ̌̌̌
.
1

r2
kL� .�w/k� k�r2wk�C2:

The estimates of the remaining terms have a similar flavor. We deduce (24) with the help of Young’s
inequality and (23).

The estimate (24) is beneficial as it allows us to estimate Qf in L2� . This time, it is enough to study the
term that involves the third-order derivatives of w. We rewrite

L� .�@i�@iw/D �@i�L�@iw� 2�r.�@i�/ � r@iwCL� .�@i�/@iw;

L�@iw D @iL�w� zi�w� .� C 1/@iw;
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and estimate

kL.�@i�@iw/k� .
1

r�0
k�L�@iwk�C2C

1

r2
k�r2wk�C2C

�0

r3
k�rwk�

.
1

r
k�@iL�wk�C1C

1

r2
k�r2wk�C2C

�0

r3
k�rwk� :

Upon redefining Q and yQ as in the derivation of (24), an application of (23) and (24) then yieldsZ r2

"r2
kL.�@i�@iw/k2� dt .

“
yQ

f 2 d�� dt C
1

r8

“
yQ

w2C r2�20 jrwj
2 d�� dt:

The remaining terms of Qf can be estimated in a similar way. Applying the energy estimate from Lemma 8
to the evolution equation for �w, we thus deduce“
Q

.@tw/
2 d�� dt C

“
Q

jr
2wj2 d�� dt C

“
Q

jr
3wj2 d��C2dt C

“
Q

jr
4wj2 d��C4 dt

.
“
yQ

f 2 d�� dt C
1

r8

“
yQ

w2C r2�20 jrwj
2 d�� dt: (25)

Notice that the above bound on the second-order derivatives and (23) together imply

�40
r4

“
Q

jr
2wj2 d�� dt .

“
yQ

f 2 d�� dt C
1

r8

“
yQ

w2C r2�20 jrwj
2 d�� dt:

Similarly, we can produce the factor �20=r
2 in front of the integral containing the third-order derivatives.

Indeed, because rL�w D L�C1rwC z�w�r2wzC .� C 1/rw, the bound (24) yields“
Q

jL�C1rwj2d��C1dt

. r2
“
yQ

f 2d�� dtC
1

r6

“
yQ

w2Cr2�20 jrwj
2d�� dtC

“
yQ

jr
2wj2d��C1dtC

“
yQ

jrwj2d��C1dt:

The second-order term on the right-hand side is controlled with the help of the Cauchy–Schwarz inequality,
(23) and (25). The first-order term is of higher order as a consequence of (23). It remains to invoke (18)
to the effect that“

Q

jr
3wj2 d��C3 dt . r2

“
yQ

f 2 d�� dt C
1

r6

“
yQ

w2C r2�20 jrwj
2 d�� dt:

Combining the latter with (25) yields the statement of the lemma. �

2.4. Estimates for the homogeneous equation. In this subsection, we study the initial value problem
for the homogeneous equation�

@twCL2�wCnL�w D 0 in .0;1/�B1.0/;
w.0; � /D g in B1.0/:

(26)

Our first goal is a pointwise higher-order regularity estimate.
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Lemma 10. Let 0 < " < 1 and 0 < ı < 1 be given. Let w be a solution to the homogeneous equation (26).
If "; ı 2 .0; 1/ and ı is sufficiently small, then the following holds for any z0 2B1.0/, � � 0 and 0 < r . 1:

j@kt @
ˇ
zw.t; z/j

2 .
r�8k�2jˇ j�.r; z0/

�2jˇ j

r4jBdr .z0/j�

Z �Cr4

�

Z
Bdr .z0/

w2C r2�.r; z0/
2
jrwj2 d�� dt

for any .t; z/ 2 .� C "r4; � C r4��Bd
ır
.z0/.

Proof. The lemma is a consequence of the local higher-order regularity estimate“
Q

.@kt @
ˇ
zw/

2 d�� dt . r�8k�2jˇ j�.r; z0/�2jˇ j
“
yQ

w2C r2�.r; z0/
2
jrwj2 d�� dt; (27)

where Q and yQ are defined as in Lemma 9, and a Morrey estimate in the weighted space L2.�� /; see,
e.g., [Seis 2015, Lemma 4.9]. Notice that (27) is trivial for .k; jˇj/ 2 f.0; 1/; .0; 2/g. In the following, we
write �0 D �.r; z0/.

To prove (27) for general choices of k and ˇ, it is convenient to consider separately the two casesp
�.z0/. r and

p
�.z0/� r . The second case is relatively simple: Since � � �.z0/ by (13) in both Q

and yQ, we deduce (27) in the cases .k; jˇj/ 2 f.1; 0/; .0; 2/; .0; 3/; .0; 4/g directly from Lemma 9 (with
f D 0). To gain control on higher-order derivatives, we differentiate with respect to zi ,

@t@iwCL2�@iwCnL�@iw

D�zi�L�w� .� C 1/@iL�w�L� .zi�w/� .� C 1/L�@iw�nzi�w�n.� C 1/@iw:

Denoting by Qf the right-hand side of this identity, applying Lemma 9 yields the estimate“
Q

jr
4@iwj

2 d��C4 dt .
“
yQ

Qf 2 d�� dt C
1

r8

“
yQ

.@iw/
2
C r2�20 jr@iwj

2 d�� dt:

We invoke the previously derived bound and the fact that � � �.z0/ to conclude the statement in the case
.k; jˇj/D .0; 5/. Higher-order derivatives are controlled similarly via iteration.

The proof in the case �.z0/. r is lengthy and tedious. As similar results have been recently obtained
in [John 2015; Kienzler 2016; Seis 2015] and most the involved tools have been already applied earlier in
this paper, we will only outline the argument in the following. Thanks to (14), it is enough to study the
situation where z0 2 @B1.0/, and upon shrinking ı, we may assume that ˆ constructed in Lemma 5 is a
diffeomorphism from B2

ır
.z0/ onto a subset of the half-space. Under ˆ, the homogeneous equation (26)

transforms into
@t QwC zL

2

� QwCn zL� Qw D Qf ;

where Qf is of higher-order at the boundary. Because zL� commutes with tangential derivatives Q@i for
i 2 f1; : : : ; N � 1g, control on higher-order tangential derivatives is deduced from Lemma 9. To obtain
control on vertical derivatives, we recall that Q@N zL� D zL�C1 Q@N � z�0. Arguing as in the proof of Lemma 6
gives the desired estimates. Again, bounds on higher-order derivatives and mixed derivatives are obtained
by iteration. �
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For the proof of the Gaussian estimates and the Whitney-measure estimates for the homogeneous
problem, it is convenient to introduce a family of auxiliary functions �a;b WB1.0/�B1.0/! R, given by

�a;b.z; z0/D
a Od.z; z0/

2p
b2C Od.z; z0/

2
;

where a; b 2 R are given parameters, and

Od.z; z0/
2
D

jz� z0j
2p

�.z/2C �.z0/2Cjz� z0j2
� d.z; z0/

2:

It can be verified by a short computation that �jrz Od2j2 . Od and �jr2z Od
2j. 1, with the consequence thatp

�.z/jrz�a;b.z; z0/j. jaj; (28)

�.z/jr2z�a;b.z; z0/j.
jaj

jbj
(29)

uniformly in z; z0 2 B1.0/. Because g is conformally flat with g � ��1.dz/2, the gradient rg on .M; g/

obeys the scaling rg � �r, and thus (28) can be rewritten as
p
g.rg�;rg�/ . jaj (where we have

dropped the indices and z0). The latter implies that � D �a;b. � ; z0/ is Lipschitz with respect to the
intrinsic topology; that is,

j�a;b.z; z0/��a;b.z
0; z0/j. jaj d.z; z0/: (30)

We derive some new weighted energy estimates.

Lemma 11. Let w be the solution to the homogeneous equation (26). Let a; b 2 R and z0 2 B1.0/ be
given. Define �D �a;b. � ; z0/. Then there exists a constant C > 0 such that for any T > 0 it holds that

sup
Œ0;T �

Z
e2�w2 d�� C

Z T

0

Z
e2�jrwj2C .L� .e�w//2 d�� dt . eC.a

2=b2Ca4/T

Z
e2�g2 d�� :

Proof. The quantity e�w evolves according to

@t .e
�w/CL2� .e

�w/CnL� .e�w/

D�2�re� � rL�wCL�e�L�w� 2L� .�re� � rw/CL� ..L�e�/w/� 2n�re� � rwCn.L�e�/w:

Denoting the right-hand side by Qf and testing with e�w yields

d

dt

1

2

Z
.e�w/2 d�� C

Z
.L� .e�w//2 d�� Cn

Z
jr.e�w/j2 d��C1 D

Z
e�w Qf d�� ; (31)

where we have used once more the symmetry of L� . We claim that the term on the right can be estimated
as follows: Z

e�w Qf d�� . "
�
kL� .e�w/k2� Ckr.e

�w/k�C1
�
C

�
1C

a2

b2
C a4

�
ke�wk2� ; (32)
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where " is some small constant that allows us to absorb the first two terms in the left-hand side of the
energy estimate above. Indeed, multiple integrations by parts and the bounds (28) and (29) yield that the
left-hand side of (31) is bounded by

jajkL��k� kr�k�C1C a2kr�k2�C1C
�
jajC

a2

jbj
C jaj3

�
kr�k�C1k�k�

C a2kr�k�C1 k�k��1C

�
jaj

jbj
C a2

�
kL��k� k�k� C

�
1C

a2

b2
C a4

�
k�k2�

C

�
a2

jbj
C jaj3

�
k�k��1 k�k� CjajkL��k� k�k��1C a2k�k2��1;

where we have set � D e�w. We next claim that

k�k��1 . k�k� Ckr�k�C1: (33)

Indeed, recall the Hardy–Poincaré inequality



� ��Z � d�Q��1






Q��1

. kr�k�C1;

see [Seis 2014, Lemma 3], which holds true for any Q� � � , because � > 0. In particular, k�k��1 .
kr�k�C1C

ˇ̌R
� d���1

ˇ̌
. Notice that for any ˛ 2 .0; Q�/, it holds thatˇ̌̌̌Z

� d�Q��1

ˇ̌̌̌
D

ˇ̌̌̌Z
��˛ d�Q��1�˛

ˇ̌̌̌
.
�Z

�2� d�Q��1�˛

�1=2
. k�kQ��1C˛

by Jensen’s inequality because �Q��1C˛ is a finite measure. Applying the previous two estimates itera-
tively yields (33). Hence, combining (33) and the interpolation inequality (17) with the bound on the
inhomogeneity and using Young’s inequality yields (32).

Now (31) and (32) imply for " sufficiently small that

d

dt

Z
.e�w/2 d�� C

Z
.L� .e�w//2 �� .

�
1C

a2

b2
C a4

�Z
.e�w/2 d�� :

In view of the bound (18) we have the estimate kr.e�w/k� . kL� .e�w/k� . Therefore, invoking the
product rule of differentiation

ke�rwk� � kr.e
�w/k� Cke

�wr�k� . kL� .e�w/k� Cjajke�wk��1:

Observe that (33) and (17) imply

jajke�wk��1 . .jajC a2/ke�wk� CkL� .e�w/k� :

Combining the previous estimates with a Grönwall argument yields the statement of the lemma. �

The following estimate is a major step towards Gaussian estimates.
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Lemma 12. Let w be the solution to the homogeneous equation (26). Let a; b 2 R be given. Then there
exists a constant C > 0 such that for all z; z0 2 B1.0/, 0 < r . 1, t 2

�
1
2
r4; r4

�
, k 2 N0 and ˇ 2 NN0 it

holds that

j@kt @
ˇ
zw.t; z/j.

r�4k�jˇ j�.r; z/�jˇ j

jBdr .z/j
1=2
�

eC.a
2=b2Ca4/t��a;b.z;z0/ke�a;b. � ;z0/gk� :

Proof. For simplicity, we write � D �a;b. � ; z0/ and � D �.r; z/. From Lemma 10 (with z0 D z and
� D 0) we deduce the estimate

j@kt @
ˇ
zw.t; z/j

2 .
r�8k�2jˇ j��2jˇ j

r4jBdr .z/j�
sup
Bdr .z/

e�2�
Z r4

0

Z
Bdr .z/

e2�w2C r2�2e2�jrwj2 d�� dt (34)

for all t 2
�
1
2
r4; r4

�
. We first observe that the Lipschitz estimate (30) implies

sup
Bdr .z/

e�� . e��.z/Ca
4r4:

To estimate the integral expression in (34), we distinguish the cases
p
�.z/� r and

p
�.z/� r . In the

first case, we apply Lemma 11 and obtain

r4
�

sup
Œ0;r4�

Z
e2�w2 d�� C

Z r4

0

Z
e2�jrwj2 d�� dt

�
. r4eC.a

2=b2Ca4/r4
Z
e2�g2 d��

for some C > 0. In the second case, we only focus on second term, i.e., the gradient term. The argument
for the first term remains unchanged. Because � � �.z/ in the domain of integration, see (13), it holds
thatZ r4

0

Z
Bdr .z/

r2�2e2�jrwj2 d�� dt . r2a2
Z r4

0

Z
e2�w2 d�� dt C r

2

Z r4

0

Z
jr.e�w/j2 d��C1 dt;

where we have used (28). By using (17) and Young’s inequality, we further estimate

r2
Z
jr.e�w/j2 d��C1 . r4

Z
.L� .e�w//2 d�� C

Z
.e�w/2 d�� ;

which in turn yieldsZ r4

0

Z
Bdr .z/

r2�2e2�jrwj2 d�� dt . r4.1C r2a2/eC.a
2=b2Ca4/r4

Z
e2�g2 d��

via Lemma 11. Notice that we can eliminate the factor r2a2 in the previous expression upon enlarging
the constant C. Substituting the previous bounds into (34) yields the statement of the lemma. �

For large times, we have exponential decay as established in the lemma that follows.

Lemma 13. Let w be the solution of the initial value problem (9) with f D 0. Then for any k 2 N0,
ˇ 2 NN0 , t � 1

2
and z 2 B1.0/ it holds thatˇ̌̌̌

@kt @
ˇ
z

�
w.t; z/��

Z
g ��

�ˇ̌̌̌
. e��1tkrgk�C1:
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Proof. The proof is an easy consequence of Lemma 10 and a spectral gap estimate for L� . Indeed,
applying Lemma 10 with t D �C 1

4
, "D 1

4
, r D 1 and � � 1

4
to w� c, where c D �

R
w d�� is a constant

of the evolution, we obtain the estimateˇ̌
@kt @

ˇ
z .w.t; z/� c/

ˇ̌
.
Z tC3=4

t�1=4

Z
.w� c/2Cjrwj2 d�� dt:

Thanks to the Hardy–Poincaré inequality [Seis 2014, Lemma 3] and because ��C1 . �� , we can drop
the term .w� c/2 in the integrand. To prove the statement of the lemma, we thus have to establish the
estimate Z tC3=4

t�1=4

jrwj2 d�� dt . e�2�1t
Z
jrgj2 d��C1: (35)

For this purpose, we test the homogeneous equation with w and invoke the symmetry and nonnegativity
properties of L� and obtain the energy estimate

d

dt

1

2

Z
jrwj2 d��C1C

Z
.L�w/2 d�� � 0:

On the one hand, integration in time over
�
t � 1

4
; t C 3

4

�
and the a priori estimate (18) yieldZ tC3=4

t�1=4

jrwj2 d�� dt .
Z ˇ̌
rw

�
t � 1

4

�ˇ̌2
d��C1: (36)

On the other hand, the smallest nonzero eigenvalue �1 of L� yields the spectral gap estimateZ
.L�w/2 d�� D

Z
rw � rL�w d��C1 � �1

Z
jrwj2 d��C1;

which we combine with the energy estimate from above to getZ ˇ̌
rw

�
t � 1

4

�ˇ̌2
d��C1 . e�2�1t

Z
jrgj2 d��C1:

Plugging this estimate into (36) yields (35) as desired. �

We are now in the position to prove the desired maximal regularity estimate for the homogeneous
problem. Let us start with the latter.

Proposition 14. Let w be the solution to the homogeneous equation (26). Then

kwkL1 . kgkL1 ;

kwkX.p/CkrwkL1 . krgkL1 :
Proof. Thanks to the exponential decay estimates from Lemma 13, it is enough to focus on the norms
for small times, T � 1. We fix z0 2 B1.0/ for a moment and let r . 1 and t 2

�
1
2
r4; r4

�
be arbitrarily

given. As before, we set �0 D �.r; z0/. Because w� g.z0/ is a solution to the homogeneous equation
with initial value g�g.z0/, an application of Lemma 12 with aD�1

r
and b D r yields the estimate

ˇ̌
@kt @

ˇ
z jzDz0.w.t; z/�g.z0//

ˇ̌
.
r�4k�jˇ j�

�jˇ j
0

jBdr .z0/j
1=2
�

ke��1=r;r . � ;z0/.g�g.z0//k� : (37)
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Notice that the function � drops out in the exponential prefactor because �.z0; z0/D 0. We claim that

ke��1=r;r . � ;z0/.g�g.z0//k� .minfkgkL1 ; r�0krgkL1gjBdr .z0/j
1=2
� : (38)

The proof of this estimate has been already displayed earlier; see, e.g., the proof of Proposition 4.2
in [Seis 2014]. For the convenience of the reader, we recall the simple argument. Notice first that
jg.z/�g.z0/j.minfkgkL1 ; jz� z0jkrgkL1g. On every annulus

Aj D B
Od
jr.z0/ nB

Od
.j�1/r.z0/

it holds that ��1=r;r.z; z0/� �.j � 1/=
p
2 as can be verified by an elementary computation, and thus,

for s 2 f0; 1g, we haveZ
Aj

e2��1=r;r .z;z0/jz� z0j
2s d�� .z/. j 2sr2s�.jr; z0/2se�

p
2j
jAj j�

as a consequence of (11). Clearly, �.jr; z0/� j�0. We notice that Aj D∅ for each j � 1
r

. On the other
hand, thanks to the volume formula (15), it holds that

jAj j� . j 2.NC�/jBdr .z0/j� :

It remains to notice that the annuli fAj gj2N cover B1.0/ and deduce that

ke��1=r;r . � ;z0/j � �z0j
s
k� . .r�0/sjBdr .z0/j

1=2
�

�X
j2N

e�
p
2j j �

�1=2
for some � D �.s/ > 0. Because the series is convergent, we have thus proved the bound in (38).

We now combine (37) and (38) to the effect of

r4kCjˇ j�
jˇ j
0

ˇ̌
@kt @

ˇ
z jzDz0.w.t; z/�g.z0//

ˇ̌
. kgkL1 ;

r4kCjˇ j�1�
jˇ j�1
0

ˇ̌
@kt @

ˇ
z jzDz0.w.t; z/�g.z0//

ˇ̌
. krgkL1 :

We obtain the uniform bounds on w and rw in the time interval Œ0; 1� by setting .k; jˇj/D .0; 0/ in the
first and .k; jˇj/D .0; 1/ in the second estimate. (Recall that we use Lemma 13 to extend the estimates
to times t � 1.) To control in X.p/, we choose .k; jˇj/ 2 f.1; 0/; .0; 2/; .0; 3/; .0; 4/g, raise the second of
the above estimates to the power p and average over Qr.z/. For instance, if .k; jˇj/D .0; 2/, this leads to

rp

jQdr .z/j

“
Qdr .z/

�.r; z0/
p
jr
2w.t; z0/j

p dz0 dt . krgkpL1 :

If view of (12) and (13), it holds that �.r; z0/� �.r; z/ uniformly in Bdr .z/, and thus, from maximizing
in r and z we obtain

sup
z2B1.0/
0<r.1

r�.r; z/jQdr .z/j
�1=p
kr

2wkLp.Qdr .z//
. krgkL1 :

Higher-order derivatives are bounded analogously. �

Gaussian estimates are contained in the following statement.
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Proposition 15. There exists a unique function G W .0;1/ � B1.0/ � B1.0/ ! R with the following
properties:

(1) If w is the solution to the homogeneous equation (26), then for any k 2 N0, ˇ 2 NN0 and .t; z/ 2
.0;1/�B1.0/

@kt @
ˇ
zw.t; z/D

Z
@kt @

ˇ
zG.t; z; z

0/g.z0/ d�� :

(2) The function G is symmetric in the last two variables; that is,

G.t; z; z0/DG.t; z0; z/

for all .t; z; z0/ 2 .0;1/�B1.0/�B1.0/.

(3) For any z0 2 B1.0/, G0 DG. � ; � ; z0/ solves the homogeneous equation

@tG
0
CL2�G

0
CL�G0 D 0:

Moreover,

��G0
t#0
�! ız0 in the sense of distributions.

(4) It holds that

j@kt @
ˇ
zG.t; z; z

0/j.
4
p
t
�4k�jˇ j

�. 4
p
t ; z/�jˇ j

jBd4pt
.z/j

1=2
� jBd4pt

.z0/j
1=2
�

e�C.d.z;z
0/= 4
p
t /4=3

for all .t; z; z0/ 2 .0; 1��B1.0/�B1.0/ and any k 2 N0 and ˇ 2 NN0 .

(5) It holds that ˇ̌
@kt @

ˇ
z .G.t; z; z

0/� jB1.0/j
�1
� /

ˇ̌
. e��1t

for all .t; z; z0/ 2 Œ1;1/�B1.0/�B1.0/ and any k 2 N0 and ˇ 2 NN0 .

The estimates in the fourth statement are usually referred to as “Gaussian estimates”.

Remark 16. In the fourth statement we may freely interchange the balls centered at z by balls centered
at z0 and vice versa. Likewise, we can substitute �. 4

p
t ; z/ by �. 4

p
t ; z0/. This is a consequence of (16).

The proof of this proposition is (almost) exactly the one of [Seis 2014, Proposition 4.3]. We display
the argument for completeness and the convenience of the reader.

Proof. We first notice that the linear mapping L2� 3 g 7! @kt @
ˇ
zw.t; z/ 2 R is bounded for every fixed

.t; z/ 2 .0;1/�B1.0/ and .k; ˇ/ 2N0 �NN0 . Indeed, for small times, boundedness is a consequence of
Lemma 12 (with aD 0), and for large times, boundedness follows from successively applying Lemmas 13
and 12 (with aD 0), namely j@kt @

ˇ
zw.t; z/j.



w�1
2

�


�
C


rw�1

2

�


�C1
. kgk� . Riesz’ representation

theorem thus provides us with the existence of a unique function Gk;ˇ .t; z; � / 2 L2� such that

@kt @
ˇ
zw.t; z/D

Z
Gk;ˇ .t; z; z

0/g.z0/ d�� .z
0/:
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Setting G DG0;0, uniqueness implies Gk;ˇ D @kt @
ˇ
zG. Notice that G inherits the symmetry in z and z0

from the symmetry of the linear operator L2� CL� via the symmetry of the associated semigroup operator
e.L

2
�CL� /t.
We now turn to the proof of the Gaussian estimates. We shall write �D �a;b. � ; z0/ for some fixed

z0 2 B1.0/ and set � D �.r; z/. We first notice that by Lemma 12, for r � 4
p
t , we have

jBdr .z/j
1=2
� e�.z/

ˇ̌
w
�
1
2
t; z
�ˇ̌
. eC.a

2=b2Ca4/t
ke�gk� ;

and thus, the mapping A defined by

.Ah/.z/D jBdr .z/j
1=2
� e�.z/

Z
G
�
1
2
t; z; z0

�
e��.z

0/h.z0/ d�� .z
0/

for z 2 B1.0/, is a bounded linear mapping from L2� to L1 with

kAkL2�!L1 . e
C.a2=b2Ca4/t:

By the symmetry of the Green’s function, it holds thatZ
Ah� d�� D

“
jBdr .z/j

1=2
� e�.z/G

�
1
2
t; z0; z

�
e��.z

0/h.z0/ d�� .z
0/ d�� .z/

D

Z
e��w�

�
1
2
t
�
h d��

if w� denotes the solution to the homogeneous equation with initial value g� D jBdr . � /j
1=2
� e��, and if

� 2 L1� is such that g� 2 L2� . In particular, the action of the dual A� W .L1/�! L2� on such functions �
is given by A�� D e��w�

�
1
2
t
�
. Because kAkL2�!L1 D kA

�k.L1/�!L2�
, we then have the estimate

e��w��12 t�

� . eC.a2=b2Ca4/tk�kL1� :

An application of Lemma 12 with a replaced by �a then yields thatˇ̌̌̌Z
@kt @

ˇ
zG.t; z; � /jB

d
r . � /j

1=2
� e�� d��

ˇ̌̌̌
.
r�4k�jˇ j��jˇ j

jBdr .z/j
1=2
�

eC.a
2=b2Ca4/tC�.z/

k�kL1� :

By approximation, it is clear that this estimate holds for any � 2 L1� . Thanks to the duality L1 D .L1� /
�,

we thus have

j@kt @
ˇ
zG.t; z; z

0/j.
r�4k�jˇ j��jˇ j

jBdr .z/j
1=2
� jB

d
r .z
0/j
1=2
�

eC.a
2=b2Ca4/tC�.z/��.z0/:

The term ��.z0/ drops out of the exponent upon choosing z0 D z0. To conclude the argument for the
Gaussian estimates, we distinguish two cases: First, if 4

p
t � d.z; z0/, then

1. e�C.d.z;z0/=
4
p
t /4=3;
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and thus the statement follows with a D 0. Otherwise, if 4
p
t � d.z; z0/, we choose a D �` for some

` > 0 and b � d D d.z; z0/ so that the exponent becomes�
`2

d2
C `4

�
t � `d

modulo constant prefactors. We optimize the last two terms in ` by choosing `� .d=t/1=3. It is easily
checked that the exponent is bounded by an expression of the form 1� .d= 4

p
t /4=3, which yields the

desired result.
The remaining properties are immediate consequences of the preceding analysis. �

2.5. Calderón–Zygmund estimates. We will see at the beginning of the next subsection that the kernel
representation of solutions of the homogeneous problem carries over to the ones of the inhomogeneous
problem. This observation is commonly referred to as Duhamel’s principle. To study regularity in the
inhomogeneous problem, the detailed knowledge of the Gaussian kernel provided by Proposition 15 is
very helpful. A major step in the analysis of Whitney measures is the translation of the energy estimates
from weighted L2 to standard Lp spaces. We are thus led to the study of singular integrals in the spirit
of Calderón and Zygmund and the theory of Muckenhoupt weights.

Out of the Euclidean setting, a good framework for these studies is provided by spaces of homogeneous
type, see [Coifman and Weiss 1971], which are metric measure spaces, i.e., metric spaces endowed with a
doubling Borel measure.1 The theory of singular integrals in spaces of homogeneous type was elaborated
by Koch [1999; 2004; 2008]. For the Euclidean theory, we refer to [Stein 1970; 1993].

Let us recall some pieces of the abstract theory. Let .X;D/ be a metric space endowed with a doubling
Borel measure �. A linear operator T on Lq.X; �/ with q 2 .1;1/ is called a Calderón–Zygmund
operator if T can be written as

Tf .x/D

Z
X

K.x; y/f .y/ d�.y/

for all x 2 .sptf /c and f 2 L1.X; �/\Lq.X; �/, where K WX �X ! R is a measurable kernel such
that

y 7!K.x; y/ 2 L1loc.X n fxg; �/;

x 7!K.x; y/ 2 L1loc.X n fyg; �/;

satisfying the following boundedness and Calderón–Zygmund cancellation conditions:

sup
x 6Dy

V.x; y/jK.x; y/j. 1 (39)

and

sup
x 6Dy

sup
x0 6Dy0

V.x; y/^V.x0; y0/jK.x; y/�K.x0; y0/j.
�
D.x; x0/CD.y; y0/

D.x; y/CD.x0; y0/

�ı
(40)

1In fact, Coifman and Weiss introduced the notion of spaces of homogeneous type with quasimetrics instead of metrics.
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for some ı 2 .0; 1�. Here we have used the notation

V.x; y/D �

�
BDD.x;y/

�
xCy

2

��
:

It is worth noting that the doubling property of � implies that we could equivalently have chosen to center
the above balls at x or y.

Finally, we call ! a p-Muckenhoupt weight if

sup
B

�
1

�.B/

Z
B

! d�

��
1

�.B/

Z
B

!�1=.p�1/ d�

�p�1
<1:

The class of p-Muckenhoupt weights is denoted by Ap.X;D;�/.
The theory of singular integrals asserts that any Calderón–Zygmund operator T extends to a bounded

operator on any Lp.X; �/ with p 2 .1;1/; i.e.,

kTf kLp.�/ . kf kLp.�/:

Moreover, if ! 2Ap is a Muckenhoupt weight, then T is also bounded on Lp.�
:
!/, where d.�

:
!/D

!d�.
In order to establish Lp maximal regularity estimates for our problem at hand, we have to study

singular integrals of the form

T`;k;ˇf .t; z/D

Z 1
0

Z
K`;k;ˇ ..t; z/; .t

0; z0//f .t 0; z0/ d�� .z
0/ dt 0;

where K`;k;ˇ ..t; z/; .t 0; z0// D �.0;t/.t 0/�.z/`@kt @
ˇ
zG.t � t

0; z; z0/. In fact, we will see that T`;k;ˇ is a
Calderón–Zygmund operator on the product space .0;1/�B1.0/ provided that `, k, and ˇ are such that

.`; k; jˇj/ 2 E D f.0; 1; 0/; .0; 0; 2/; .1; 0; 3/; .2; 0; 4/g: (41)

We will accordingly refer to any tuple .`; k; ˇ/ in the above class as a Calderón–Zygmund exponent.
The product space X D .0;1/�B1.0/ will be endowed with the metric

D..t; z/; .t 0; z0//D 4
p
jt � t 0jC d.z; z0/4;

which reflects the parabolic scaling of the linear differential operator, and the product measure�D�1˝�� ,
with �1 denoting the one-dimensional Lebesgue. Because d is doubling, so is D, and thus the metric
measure space .X;D;�/ is of homogeneous type in the sense of [Coifman and Weiss 1971] and is thus
suitable for Calderón–Zygmund theory. Notice also that the volume tensor V..t; z/; .t 0; z0// simplifies to

V..t; z/; .t 0; z0//�D..t; z/; .t 0; z0//4
ˇ̌̌
BdD..t;z/;.t 0;z0//

�
zCz0

2

�ˇ̌̌
�
: (42)

Without proof, we state the following lemma:

Lemma 17. If .`; k; ˇ/ is such that (41) holds, then T`;k;ˇ is a Calderón–Zygmund operator.

The proof is almost identical to the one in the porous-medium setting; see Lemmas 4.20 and 4.21 in [Seis
2015]. We will thus refrain from repeating the argument and refer the interested reader to the quoted paper.
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2.6. The inhomogeneous problem. In this subsection, we consider the inhomogeneous problem with
zero initial datum, �

@twCL2�wCnL�w D f in .0;1/�B1.0/;
w.0; � /D 0 in B1.0/:

(43)

Our first observation is that the kernel representation from Proposition 15 carries over to the inhomo-
geneous setting.

Lemma 18 (Duhamel’s principle). If f 2 L2.L2� / and w is the solution to the initial value problem (43),
then

w.t; z/D

Z t

0

Z
G.t � t 0; z; z0/f .t 0; z0/ d�� .z

0/ dt 0

for all .t; z/ 2 .0;1/�B1.0/.

Proof. The statement follows from the fact that G is a fundamental solution, see Proposition 15(3). �

Proposition 19. Let w be the solution to the initial value problem (43). Then, for any p 2 .1;1/ it holds
that

k@twkLp CkrwkLp Ckr
2wkLp Ck�r

3wkLp Ck�
2
r
4wkLp . kf kLp : (44)

Proof. The purpose of this lemma is to carry the energy estimates from Lemma 8 over to the standard
Lp setting. This is achieved by applying the abstract theory recalled in the previous subsection. In fact,
as a consequence of Lemma 18, any function �`@kt @

ˇ
zw has the kernel representation

T`;k;ˇf .t; z/D

Z 1
0

Z
K`;k;ˇ ..t; z/; .t

0; z0//f .t 0; z0/ d�� .z
0/ dt 0;

where
K`;k;ˇ ..t; z/; .t

0; z0//D �.0;t/.t
0/�.z/`@kt @

ˇ
zG.t � t

0; z; z0/:

If .`; k; ˇ/ are Calderón–Zygmund exponents (41), by Lemma 17, the energy estimates from Lemma 8
carry over to any Lp.Lp.�� // space with p 2 .1;1/. Moreover, if � is a Muckenhoupt weight in
Ap.B1; d; �� /, then the operators T`;k;ˇ are bounded on Lp.Lp.��

:
�//. Notice that this is the case

for weights of the form � D �
 precisely if �.� C 1/ < 
 < .p � 1/.� C 1/. In particular, choosing

 D�� , we see that T`;k;ˇ is bounded on Lp D Lp.Lp/ for any p 2 .1;1/ because � > 0. This is the
statement of the proposition apart from the term krwkLp . The control of this term can be deduced, for
instance, from the analogous estimates for the porous-medium equation, see Proposition 4.23 in [Seis
2015], applied to @twCnL�w D f �L2�w. �

In the following, we consider the larger cylinders

yQdr .z0/ WD
�
1
4
r4; r4

�
�Bd2r.z0/ and yQ.T /D

�
1
4
T; T

�
�B1.0/:

Lemma 20. (1) Suppose that sptf � yQdr .z0/ for some z0 2B1.0/ and 0< r . 1. Then for any .`; k; ˇ/
satisfying (41) and any p 2 .1;1/, it holds that

r4jQdr .z0/j
�1=p

k�`@kt @
ˇ
zwkLp.Qdr .z0//

. kf kY.p/:
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(2) Suppose that sptf � yQ.T / for some T � 1. Then it holds for any p 2 .1;1/ thatX
.`;k;jˇ j/2E

T k�`@kt @
ˇ
zwkLp.Q.T // . kf kY.p/:

Proof. We will only prove the first statement. The argument for the second one is very similar. The
desired estimate is an immediate consequence of Proposition 19. Indeed, the latter implies

k�`@kt @
ˇ
zwkLp.Qdr .z0//

. kf k
Lp. yQdr .z0//

:

If now fQdri .zi /gi2I is a finite cover of yQdr .z0/ with radii ri � r and such that
P
i jQ

d
ri
.zi /j. j yQdr .z0/j,

then

kf k
Lp. yQdr .z0//

�

X
i2I

kf kLp.Qdri .zi //
.
1

r4
j yQdr .z0/j

1=p
kf kY.p/:

Notice that j yQdr .z0/j. jQdr .z0/j, because �� ˝�1 is doubling, which concludes the proof. �

In view of the definition of the X.p/ norm, the estimates on the second- and third-order spatial
derivative derived in the previous lemma are not strong enough for balls Bdr .z0/ that are relatively far
away from the boundary in the sense that

p
�.z0/� r . Estimates in such balls, as well as uniform bounds

on w and rw, are derived in the lemma that follows.

Lemma 21. (1) Suppose that sptf � yQdr .z0/ for some z0 2 B1.0/ and 0 < r . 1 and let p > N C 4.
Then it holds for any 0 < t . r4 that

jw.t; z0/jC jrw.t; z0/j. kf kY.p/:

If moreover
p
�.z0/� r , then it holds that

r�.r; z0/ jQ
d
r .z0/j

�1=p
kr

2wkLp.Qdr .z0//
C r2�.r; z0/

2
jQdr .z0/j

�1=p
kr

3wkLp.Qdr .z0//
. kf kY.p/:

(2) Suppose that sptf � yQ.T / for some T � 1. Then it holds for any p > 1C 1
2
N that

kwkL1.Q.T //CkrwkL1.Q.T // . kf kY.p/:

Proof. (1) As a consequence of Lemma 18 and Hölder’s inequality, we have

j@ˇzw.t; z/j �

�Z r4

0

k@ˇzG.�; z; � /k
q

L
q
q�
d�

�1=q
kf kLp ; (45)

where q is such that 1
p
C
1
q
D 1 and ˇ 2 NN0 . The statements thus follow from suitable estimates for the

kernel functions. From Proposition 15 we recall that

j@ˇzG.�; z; z
0/j. 4

p
�
�jˇ j

�. 4
p
�; z/�jˇ j jBd4p� .z/j

�1
� e�C.d.z;z

0/= 4
p
� /4=3: (46)

Let fBd
j 4
p
�
.z/gj2J be a finite cover of B1. ThenZ

e�qC.d.z;z
0/= 4
p
� /4=3 d�q� .z

0/�
X
j2J

e�qC.j�1/
4=3

jBd
j 4
p
�
.z/jq� :
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Notice that by the virtue of (15),

jBd
j 4
p
�
.z/jq� . j 2N jBd4p� .z/jq� � j

2N
jBd4p� .z/j

1�q
jBd4p� .z/j

q
� ;

which in turn impliesZ
e�qC.d.z;z

0/= 4
p
� /4=3 d�q� .z

0/.
�X
j2J

e�q.j�1/
4=3

j 2N
�
jBd4p� .z/j

1�q
jBd4p� .z/j

q
� :

The sum is converging and can thus be absorbed in the (suppressed) constant. We now integrate (46) over
time and space and obtainZ r4

0

k@ˇzG.�; z; � /k
q

L
q
q�
d� .

Z r4

0

4
p
�
�jˇ jq

�. 4
p
�; z/�jˇ jq jBd4p� .z/j

1�q d� (47)

for any z 2 B1.
First, if

p
�.z/. r , then by (12), estimate (47) turns intoZ r4

0

k@ˇzG.�; z; � /k
q

L
q
q�
d� .

Z r4

0

2
p
�
�qjˇ j�.q�1/N

d� . r4�2qjˇ j�2.q�1/N;

provided thatNC2<.2�jˇj/p, which is consistent with the assumptions in the lemma only if jˇj 2 f0; 1g.
It remains to notice that

r4�2.q�1/N . r4qjQdr .z/j
1�q

by virtue of (15). From this and (45), we easily derive the first estimate in the first part of the lemma in
the case where

p
�.z/. r .

Second, if
p
�.z/� r , then (47) becomesZ r4

0

k@ˇzG.�; z; � /k
q

L
q
q�
d� .

p
�.z/

�jˇ jq�.q�1/N
Z r4

0

4
p
�
�jˇ jq�N.q�1/

d�

.
p
�.z/

�jˇ jq�.q�1/N
r4�jˇ jq�.q�1/N;

provided that N C4 < .4�jˇj/p, which is consistent with the assumptions only if jˇj 2 f0; 1; 2; 3g. Now
we notice that p

�.z/
�jˇ jq�.q�1/N

r4�jˇ jq�.q�1/N . r.4�jˇ j/q��jˇ jqjQdr .z/j
1�q;

using (15) again. It is not difficult to see that the latter estimates in combination with (45) imply remaining
estimates in the first part of the lemma.

(2) By Duhamel’s principle in Lemma 18 and the fact that f is concentrated on yQ.T /, we have for any
.t; z/ 2Q.T / and ˇ 2 NN0 that

j@ˇzw.t; z/j �

Z t�1

T=4

Z
j@ˇzG.t � t

0; z; z0/jjf .t 0; z0/j d�� .z
0/ dt 0

C

Z t

t�1

Z
j@ˇzG.t � t

0; z; z0/jjf .t 0; z0/j d�� .z
0/dt 0;
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with the convention that the first integral is zero if 1
4
T � t � 1. If it is nonzero, we use Proposition 15(5)

and estimate the latter byZ t�1

T=4

Z
jf j d�� dt

0 . T 1�1=p kf k
Lp. yQ.T //

� T kf k
Lp. yQ.T //

:

Similarly, applying the same strategy as in part (1) above, we bound the second term by

k@ˇzG. � ; z; � /kLq..0;1/ILqq� / kf kLp. yQ.T // . kf kLp. yQ.T //:

The statement thus follows by choosing jˇj 2 f0; 1g. �

We need some estimates for the off-diagonal parts.

Lemma 22. (1) Suppose that sptf � Œ0; r4/ �B1.0/ n yQdr .z0/ for some z0 2 B1.0/ and 0 < r . 1.
Then it holds for any p 2 .1;1/ that

kwkL1.Qdr .z0//
CkrwkL1.Qdr .z0//

C

X
.`;k;jˇ j/2E

r4kCjˇ j

�.r; z0/2`�jˇ j
k�`@kt @

ˇ
zwkLp.Qdr .z0//

. kf kY.p/:

(2) Suppose that sptf �
�
1
2
; 1
4
T
�
�B1.0/ for some T � 2. Then it holds for any p 2 .1;1/ that

kwkL1.Q.T //CkrwkL1.Q.T //C
X

.`;k;jˇ j/2E

T k�`@kt @
ˇ
zwkLp.Q.T // . kf kY.p/:

Proof. (1) We begin our proof with a helpful elementary estimate: if � and C are given positive constants,
then there exists a new constant zC such that

4
p
t � t 0

��
e�C.d.z;z

0/=
4
p
t�t 0 /4=3 . r��e� zC.d.z;z

0/=r/4=3 (48)

for all .t; z/ 2Qdr .z0/ and .t 0; z0/ 2 Œ0; r4/�B1 n yQdr .z0/. The argument for (48) runs as follows: To
simplify the notation slightly, we write � D t � t 0 and d D d.z; z0/. If z0 2 Bd2r.z0/, then necessarily
t 0 62

�
1
4
r4; r4

�
, and therefore � & r4. It follows that

4
p
�
��
e�C.d=

4
p
� /4=3

�
4
p
� . r��e�C.d=r/

4=3

;

because d.z; z0/� d.z; z0/C d.z0; z0/� 3r . Otherwise, if z0 62 Bd2r.z0/, it holds that 2r � d.z0; z0/�
d.z; z0/C r , and thus 4

p
� . r . d . Using the fact that � 7! 4

p
�
��
e�C.d=

4
p
� /4=3 is increasing for

0 < � . d4, we then estimate

4
p
�
��
e�C.d=

4
p
� /4=3 . r��e� zC.d=r/

4=3

:

This completes the proof of (48).
In the following, C will be a uniform constant whose value may change from line to line.
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Because f D 0 in Qdr .z0/, Duhamel’s principle (Lemma 18) and the Gaussian estimates from
Proposition 15 imply

j@kt @
ˇ
zw.t; z/j

.
Z t

0

Z
4
p
�
�4k�jˇ j

�. 4
p
�; z/�jˇ j

jBd4p�
.z/j�

e�C.d.z;z
0/= 4
p
� /4=3
jf .t � �; z0/j d�� .z

0/ d�

.
Z r4

0

Z �
4
p
�

4
p
� C

p
�.z/

�jˇ jCNC2�
4
p
�
�4k�2jˇ j�2N�2�

e�C.d.z;z
0/= 4
p
� /4=3
jf .t � �; z0/j d�� .z

0/ d�:

As a consequence of (48), Remark 16 and the monotonicity of the function s 7! s=.sC c/ for any fixed
c > 0, we may substitute any 4

p
� by r and find

r4kCjˇ j�1

�.r; z/2`�jˇ jC1
j�.z/`@kt @

ˇ
zw.t; z/j

.
1

jBdr .z/j�

Z r4

0

Z
e�C.d.z;z

0/=r/4=3r�1�.r; z0/�1jf .t 0; z0/j d�� .z
0/ dt 0:

We consider now a finite family of balls fBdr .z0/gi2I covering B1.0/. Since d.z; zi /� d.z; z0/C r for
any z0 2 Bdr .zi / and X

i2I

e�C.d.z;zi /=r/
4=3

<1

uniformly in r and z, we further estimate the right-hand side of the last inequality by

sup
Qz2B1

1

jBdr . Qz/j�

Z r4

0

Z
Bdr .Qz/

r�1�.r; z0/�1jf .t 0; z0/j d�� .z
0/ dt 0: (49)

We claim that this term is controlled by kf kY.p/. To see this, we fix Qz 2 B1.0/ and let rj D
�q

2
3

�j
r .

Applying a non-Euclidean version of Vitali’s covering lemma, see Lemma 2.2.2 in [Koch 1999], we find
a finite family of balls fBdrj .zij /gi2Ij covering Bdr . Qz/ and such thatX

i2Ij

jBdrj .zij /j� . jB
d
r . Qz/j� (50)

uniformly in j , r , and Qz. Then .0; r4/�Bdr . Qz/ is contained in the countable union
S
j2N0

S
i2Ij

Qdrj .zij /.
Invoking Hölder’s inequality we thus findZ r4

0

Z
Bdr .Qz/

r�1�.r; z0/�1jf .t 0; z0/j d�� .z
0/ dt 0

�

X
j2N0

X
i2Ij

�q
2
3

�j
r�1j k�.r; � /

�1
kLqq� .Q

d
rj
.zij //

kf kLp.Qdrj .zij //
;

where, as usual, 1
p
C
1
q
D 1. Notice that �q� is a finite measure for any q 2 .1;1/. From (12) and (13)

we deduce that �.rj ; zij /� �.rj ; z0/� �.r; z0/ for any z0 2 Bdj .zij /, and thus, as a consequence of (15),

k�.r; � /�1kLqq� .Qdrj .zij //
. r4j �.rj ; zij /

�1
jQdrj .zij /j

�1=p
jBdrj .zij /j� :
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Combining the previous two estimates, using (50) and the convergence of the geometric series finally
yields that the term in (49) is bounded by kf kY.p/. We have thus proved that

r4kCjˇ j�1

�.r; z/2`�jˇ jC1
j�.z/`@kt @

ˇ
zw.t; z/j. kf kY.p/:

We easily deduce the statement of the lemma.

(2) To prove the second statement, we use Lemma 18 and Proposition 15(5) to estimate

j@kt @
ˇ
zw.t; z/j.

Z T=4

1=2

e�.t�t
0/�1

Z
jf .t 0; z0/j d�� .z

0/ dt 0

for any .t; z/ 2 Q.T / and any k 2 N0 and ˇ 2 NN0 with k C jˇj � 1. Let M 2 Z be such that
2M � 1

4
T < 2MC1. We then split and compute

j@kt @
ˇ
zw.t; z/j.

MX
mD0

Z 2m

2m�1
e�.t�t

0/�1

Z
jf j d�� dt C

Z T=4

T=8

e�.t�t
0/�1

Z
jf j d�� dt

0

.
MX
mD0

e�.t�2
m/�1kf kLp.Q.2m//C e

�.T=4/�1kf kLp.Q.T=4//

. e�.T=4/�1kf kY.p/:

We easily infer all estimates but the uniform bound on w. To gain control on kwkL1 , we argue similarly
and get

jw.t; z/j.
MC1X
mD0

Z 2m

2m�1

Z
jf j d�� dt

0 .
�MC1X
mD0

1

.2p/m

�
kf kY.p/:

The desired estimate follows from the convergence of the geometric series. �

A combination of the results in this subsection yields the maximal regularity estimate for the inhomo-
geneous problem (43).

Proposition 23. Suppose that p > N C 4. Let w be a solution to the homogeneous problem (43). Then

kwkL1.W 1;1/CkwkX.p/ . kf kY.p/:

Proof. The statement follows immediately from Lemmas 20, 21 and 22 and the superposition principle for
linear equations: For small times, we split f into �f C .1� �/f with � being a smooth cut-off function
such that �D 1 on Qdr .z0/ and �D 0 outside yQdr .z0/ for some arbitrarily fixed r . 1 and z0 2 B1.0/.
For large times, we make a hard temporal cut-off by splitting f into �f C .1� �/f , where � is the
characteristic function on yQ.T /. Notice that to estimate the large times, it is enough to study such f ’s
that are zero in the initial time interval

�
0; 1
2

�
. For details, we refer to [Seis 2015]. �
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3. The nonlinear problem

Our goal is this section is the derivation of Theorems 1 and 2. The existence of a unique solution to the
nonlinear problem is a consequence of a fixed-point argument. We need the following lemma:

Lemma 24. Let w1 and w2 be two functions satisfying

kwikL1.W 1;1/CkwikX.p/ � "; i D 1; 2; (51)

for some small " > 0. Then

kf Œw1��f Œw2�kY.p/ . "
�
kw1�w2kL1.W 1;1/Ckw1�w2kX.p/

�
:

Proof. For notational convenience, we write f ji D f
j Œwi � for any i 2 f1; 2g and j 2 f1; 2; 3g. We will

also just write w instead of w1 or w2 if the index doesn’t matter. We remark that by the virtue of (51), it
holds that

jRkŒw1��RkŒw2�j. kw1�w2kL1.W 1;1/;

jRkŒw�j. 1
for any value of k.

The estimates of the differences of the f ji is very similar. We focus on the leading-order terms, i.e.,
f 31 �f

3
2 . Using (51) and the previous bounds on the Rk , we first notice that

jf 31 �f
3
2 j. �

2
kw1�w2kL1.W 1;1/

�
jr
2wj3Cjr2wjjr3wjC jrwjjr4wj

�
C �2jr2w1�r

2w2j
�
jr
2wj2Cjrwjjr3wj

�
C �2jr3w1�r

3w2jjrwjjr
2wjC �2jr4w1�r

4w2jjrwj
2:

The control of the individual terms is derived very similarly. There are a few obvious cases; for instance
the last term, which is simply controlled by using (51):

�2jr4w1�r4w2jjrwj2

Y.p/ � kwk2L1.W 1;1/

kw1�w2kX.p/ � "kw1�w2kX.p/:

For most of the remaining terms, we have to make use of the following interpolation inequality

kr
i�kmLr�

. k�km�iL1 kr
m�ki

L
p
�
;

provided that mp D ir for some integers i < m, which has been proved in Appendix A of [Seis 2015].
For instance, setting � D �rw for some smooth cut-off function � satisfying �D 1 in Bdr .z0/ and �D 0
outside Bd2r.z0/, we have

�2jr2wj3



Lp.Bdr .z0//
D kr

2wk3
L
3p
2p.B

d
r .z0//

� kr�k3
L
3p
2p

:

Applying the above interpolation inequality and using the fact that � varies on the scale r�.r; z0/ and
� . �.r; z0/2 in Bd2r.z0/, see (12) and (13), we then get

k�2jr2wj3kLp.Bdr .z0//
. krwk2L1

�
k�2r4kLp.Bd2r .z0//

C
�

r
k�r3wkLp.Bd2r .z0//

C
�2

r2
kr

2wkLp.Bd2r .z0//
C
�

r3
krwkLp.Bd2r .z0//

�
;
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where � D �.r; z0/. Integrating in time over
�
1
2
r4; r4

�
, multiplying by r3=� and using (51) then yields

sup
r;z0

r3

�
jQdr .z0/j

�1=p


�2jr2wj3



Lp.Qdr .z0//
. "kwkX.p/:

This type of estimate can be used, for instance, to bound the first term in the above estimate for f 31 �f
3
2

for small times. The remaining terms and the large-time parts of the Y.p/ norm can be controlled in a
similar way. �

We are now in the position to prove Theorems 1 and 2.

Proof of Theorems 1 and 2. To simplify the notation in the following, we denote by X.p/ the intersection
X.p/\L1.W 1;1/ and set k � kX.p/Dk�kX.p/Ck�kL1.W 1;1/. Let " and "0 be two positive constants.
We denote by M" the set of all functions w in X.p/ such that kwkX.p/ � " and by N"0 the set of all
functions g such that kgkW 1;1 � "0. We divide the proof into several steps.

Step 1: existence and uniqueness. For w 2M" and g 2N"0 given, we denote by Qw WD I.w; g/ the unique
solution to the linear problem (43) with inhomogeneity f D f Œw�. By Theorem 4, we have the estimate
k QwkX.p/ . kf Œw�kY.p/ C kgkW 1;1 . Applying Lemma 24 with w1 D w and w2 D 0 and using the
assumptions on w and g, we find that k QwkX.p/ � C."

2C "0/ for some positive constant C . We choose "
and "0 small enough so that C"2 � 1

2
" and C"0 � 1

2
", with the consequence that Qw 2M". This reasoning

implies that for any fixed g 2N"0 , the function Qw. � ; g/ maps the set M" into itself. Moreover, given w1
and w2 in M", we find by linearity and Lemma 24 that

kI.w1; g/� I.w2; g/kX.p/ . kf Œw1��f Œw2�kY.p/ . "kw1�w2kX.p/:

Thus, choosing " even smaller, if necessary, the previous estimate shows that I. � ; g/ is a contraction
on M". By Banach’s fixed-point argument, there exists thus a unique w� 2M" such that w� D I.w�; g/.
In particular, w� solves the nonlinear equation. From the previous choice of ", we moreover deduce that
kw�kX.p/ . kgkW 1;1 .

Step 2: analytic dependence on initial data. In order to show that w� depends analytically on g, we
will apply the analytic implicit function theorem; see [Deimling 1985, Theorem 15.3]. Because the
nonlinearity f D f Œw� is a rational function of w and rw, and thus analytic away from its poles, the
contraction map I is an analytic function on M"�N"0 . We consider the map J WM"�N"0!M" defined
by J.w; g/D w� I.w; g/. Because I is analytic, so is J. It holds that I.0; 0/D 0 and DwI.0; 0/D id.
From the analytic implicit function theorem we deduce the existence of two constants Q" < " and Q"0 < "0
and of an analytic map A WNQ"0!MQ" with A.0/D 0 and such that J.w; g/D 0 if and only if A.g/Dw.
From the uniqueness of the fixed point and the definition of J we then conclude that the map g 7! w� is
analytic from NQ"0 to MQ".

Step 3: analytic dependence on time and tangential coordinates. Let us now change from Euclidean
to spherical coordinates. For z D .z1; : : : ; zN /T 2 B1.0/, we find radius s 2 Œ0; 1� and an angle vector
�D .�1; : : : ; �N�1/

T 2AN�1 WD Œ0; ��N�2�Œ0; 2�� such that znD s
�Qn�1

iD1 sin�i
�

cos�n for n�N�1
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and zN D s
QN�1
iD1 sin�i . By a slight abuse of notation, we write w.t; z/D w.t; s; �/. For � 2 R and

 2AN�1 we define

w��; WD w
�
ı„�; ; „�; .t; s; �/ WD .�t; s; �C t /:

A short computation reveals that w�; solves the equation

@tw
�
�; CH�w��; D f�; Œw

�
�; �;

where

f�; Œw� WD �f Œw�C .1��/H�wC � r�w; H� D L2� CnL� :

Clearly, f1;0 D f . Similarly as above, we denote by I�; .w; g/ the solution to the linear equation with
inhomogeneity f�; Œw� and initial datum g. We furthermore set J�; .w; g/ WD w � I�; .w; g/. It is
obvious that J1;0.0; 0/D 0 and DwJ1;0.0; 0/D id. Applying the analytic implicit function theorem once
more, we find positive constants ı, O" < Q", O"0 < Q"0 and an analytic function A�; .g/D A.�; ; g/ from
BR
ı
.1/�BRN�1

ı
.0/�NO"0 to MO" such that J�; .A�; .g/; g/D 0. In particular, the above uniqueness

result gives that A�; .g/DA.g/ı„�; . We conclude that w�; 2X.p/ depends analytically on � and
 in a neighborhood of .1; 0/ 2 R�RN�1. In particular, there exists a constant ƒ dependent only on N
such that for any k 2 N0 and ˇ0 2 NN�10 , it holds that

@k�@ˇ 0 j.�; /D.1;0/w�; 

X.p/ .ƒ�k�jˇ 0jkŠ ˇŠ kgkW 1;1 :

It remains to notice that

@k�@
ˇ 0

 j.�; /D.1;0/w�; .t; z/D t
kCjˇ 0j@kt @

ˇ 0

� w.t; r; �/

to deduce

tkCjˇ
0j
j@kt @

ˇ 0

� rw.t; r; �/j.ƒ
�k�jˇ 0jkŠ ˇ0Š kgkW 1;1 : (52)

Step 4: regularity in transversal direction. The derivation of the transversal regularity relies on the
analyticity bounds established above together with the Morrey estimate

kvkL1.Qdr .z//
. jQdr .z/j

�1=p
� kvkLp� .Qdr .z//

C r� jQdr .z/j
�1=p
� krvkLp� .Qdr .z//

C r4jQdr .z/j
�1=p
� k@tvkLp� .Qdr .z//

; (53)

which holds for any p > N uniformly in r and z. The proof of this estimate proceeds analogously to the
Euclidean case; see, e.g., [Evans and Gariepy 1992, Chapter 4.5]. We omit the argument.

In the following discussion, we keep r and z fixed and we set � D �.r; z/. For b 2 f2; 3g, we choose
� D .b� 1/p and apply (53) to the effect that

kr
4�b
 @bswkL1.Qdr .z//

. jQdr .z/j
�1=p

.b�1/p
k�b�1r4�b @bswkLp.Qdr .z//

C r� jQdr .z/j
�1=p

.b�1/p
k�b�1r4�b @brrwkLp.Qdr .z//

C r4jQdr .z/j
�1=p

.b�1/p
k�b�1r4�b @br @twkLp.Qdr .z//

:
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We recall from (15) that jQdr .z/j� � �
2� jQdr .z/j and that

p
�. Qz/. � for any Qz 2Bdr .z/ by virtue of (13).

Therefore,

kr
4�b
 @bswkL1.Qdr .z//

. �4�2bjQdr .z/j
�1=p

k�b�2r4�b @bswkLp.Qdr .z//

C r�3�2bjQdr .z/j
�1=p

k�b�1r4�b @brrwkLp.Qdr .z//

C r4�4�2bjQdr .z/j
�1=p

k�b�2r4�b @br @twkLp.Qdr .z//
:

With the help of the analyticity estimates (52), we easily deduce that

r�kt2r2 @
2
swkL1.Qdr .z//

C .r�/2ktr @
3
swkL1.Qdr .z//

. kgkW 1;1 : (54)

An analogous argument yields the corresponding control of the time derivatives, namely

r3

�
k@twkL1.Qdr .z//

. kgkW 1;1 : (55)

In order to deduce control over the fourth-order vertical derivatives, we rewrite the nonlinear equation (6)
as

�@2r .�@
2
rw/D f Œw�� @twC l.o.t.

The terms on the right-hand side are all uniformly controlled thanks to (52), (54) and (55). Similarly, we
may write

���1@r.�
2@rv/D h

for some h such that t�h 2 L1 for some � > 0, and where v D���1@r.�2@rw/. This identity can be
integrated so that

@rv D �
�2

Z 1

r

�h d Qr:

The expression on the right is differentiable with

@2rv D 2�
�3r

Z 1

r

�h d Qr � ��1h:

We deduce that �t�@2rv 2 L
1 and thus �2t�@4rw 2 L

1.
This argument can be iterated and yields the smoothness of w. �

Appendix: Derivation of the transformed equation

Let us write z D ˆt .x/. We will first verify that ˆ defines a diffeomorphism. For this purpose, we
compute the derivatives of ˆ in terms of x and v,

@iˆ
j
D

ıij

.2vCjxj2/1=2
�
xj .@ivC xi /

.2vCjxj2/3=2
:

Recalling the elementary formula det.I �a˝b/D I �a �b for any two vectors a and b, we compute that

detr�.x/D
2v� x � rv

.2vCjxj2/N=2C1
:
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If v is close to the Smyth–Hill solution in the sense that

kv� v�kL1.P.v//CkrvC xkL1.P.v// � "

for some small ", we find that 2v�x � rv � 1�3" and 2vCjxj2 � 1�2", which implies that the Jacobi
determinant is finite if " is sufficiently small.

Let us express the derivative of ˆ in terms of the new variables z and w. Differentiating (5) yields

@ivC xi D .1Cw/rw � @iˆD @iw�
z � rw

1Cw
.@ivC xi /;

and thus

@ivC xi D
1Cw

1CwC z � rw
@iw:

Plugging this and (5) into the expression for the derivatives of ˆ, we find

@iˆ
j
D

ıij

1Cw
�

zj @iw

.1Cw/.1CwC z � rw/
:

Under the assumption that w is such that

kwkL1 CkrwkL1 � "

for some small ", we see by a calculation similar as the one above that ˆ is a diffeomorphism.
We will now compute how the change of variables acts on the confined thin-film equation (3). For

notational convenience, we set
�.z/D 1

2
.1� jzj2/;

and Qw D 1Cw, with the effect that
� Qw2 D v D 
u1=2: (56)

For an arbitrary function f D f .z/, it thus holds that

@i .f .ˆ//D
@if

Qw
�

.z � rf /@i Qw

Qw. QwC z � r Qw/
: (57)

Now, differentiating (56) with respect to xi yields


2@iuD
1

Qw
@i .�

2
Qw4/�

@i Qw

Qw. QwC z � r Qw/
z � r.�2 Qw4/

D�2� Qw3zi C 2
� Qw3@i Qw

QwC z � r Qw
:

Differentiating with respect to xi again, we obtain that


2

2
@2i uD�.�� z

2
i / Qw

2
C

Qw2

QwC z � r Qw
��1@i .�

2@i Qw/

�
Qw2

QwC z � r Qw
�z � r

�
.@i Qw/

2

QwC z � r Qw

�
C .�Cjzj2/

Qw2.@i Qw/
2

. QwC z � r Qw/2
:
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Hence, summing over i and rearranging terms yields


2

2
�u�

QwC z � r Qw

Qw2
D .1� .N C2/�/. QwCz �r Qw/�L QwC .1��/

jr Qwj2

QwC z � r Qw
��z �r

�
jr Qwj2

QwC z � r Qw

�
:

With the help of the ?-notation, the (nonlinear) term in the second line of the above identity can be
rewritten as

p ?

2X
kD1

.r Qw/.k�1/?

. QwC z � r Qw/k
..r Qw/2?C �r Qw ?r2 Qw/:

In what follows, it should become clear why this way of writing drastically simplifies the notation.
With the help of (57), we compute

@i

��
Qw2

QwC z � r Qw
f

�
.ˆ/

�
D

Qw

QwC z � r Qw

�
@if � z � r

�
@i Qwf

QwC z � r Qw

��
for any function f D f .z/, and thus


2

2
.@i�u�xi /�

QwCz�r Qw

Qw
D�N@i Qw�@iL Qw

Cp?
.r Qw/2?Cr Qw?r2 QwC�.r2 Qw/2?C�r Qw?r3 Qw

QwCz�r Qw

Cp?
.r Qw/3?C.r Qw/2??r2 QwC�r Qw?.r2 Qw/2?C�.r Qw/2??r3 Qw

. QwCz�r Qw/2

Cp?
.r Qw/4?C.r Qw/3??r2 QwC�.r Qw/2??.r2 Qw/2?C�.r Qw/3??r3 Qw

. QwCz�r Qw/3

Cp?
.r Qw/5?C�.r Qw/4??r2 QwC�.r Qw/3??.r2 Qw/2?

. QwCz�r Qw/4
:

We notice that the nonlinearity belongs to the class

p ?

4X
kD1

.r Qw/.k�1/?

. QwC z � r Qw/k
?
�
.r Qw/2?Cr Qw ?r2 QwC �.r2 Qw/2?C �r Qw ?r3 Qw

�
:

Similarly to the above, we compute for an arbitrary function f D f .z/ that

@i

��
Qw5

QwC z � r Qw
f

�
.ˆ/

�
D

Qw4

QwC z � r Qw

�
@if C 3

@i Qwf

QwC z � r Qw
� z � r

�
@i Qwf

QwC z � r Qw

��
;

and thus


4

2
r�.ur�u�ux/�

QwCz�r Qw

� Qw4
D .NCL/L Qw

Cp? zR�1Œ Qw�?
�
.r Qw/2?Cr Qw?r2 Qw

�
Cp? zR�1Œ Qw�?�

�
.r2 Qw/2?Cr Qw?r3 Qw

�
Cp? zR�2Œ Qw�?�

2
�
.r2 Qw/3?Cr Qw?r2 Qw?r3 QwC.r Qw/2??r4 Qw

�
;
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where zRi Œ Qw�D ri .r Qw; QwC z � r Qw/ for some rational functions ri that are homogeneous of degree i , i.e.,
ri .sa; sb/D s

iri .a; b/.
We finally turn to the computation of the time derivative. For this notice first that

@tˆt .x/D�

2

2

z

� Qw4
@tu;

and thus, a short computation shows that


2

2
@tuD

� Qw4

QwC z � r Qw
@t Qw:

After a rescaling of time t ! 
2t , and recalling that Qw D 1Cw, we find the transformed equation (6).
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