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LARGE SETS AVOIDING PATTERNS

ROBERT FRASER AND MALABIKA PRAMANIK

We construct subsets of Euclidean space of large Hausdorff dimension and full Minkowski dimension
that do not contain nontrivial patterns described by the zero sets of functions. The results are of two types.
Given a countable collection of v-variate vector-valued functions fq : (R

n)v → Rm satisfying a mild
regularity condition, we obtain a subset of Rn of Hausdorff dimension m/(v− 1) that avoids the zeros
of fq for every q. We also find a set that simultaneously avoids the zero sets of a family of uncountably
many functions sharing the same linearization. In contrast with previous work, our construction allows for
nonpolynomial functions, as well as uncountably many patterns. In addition, it highlights the dimensional
dependence of the avoiding set on v, the number of input variables.

1. Introduction

Identification of geometric and algebraic patterns in large sets has been a focal point of interest in modern
analysis, geometric measure theory and additive combinatorics. A fundamental and representative result
in the discrete setting that has been foundational in the development of a rich theory is Szemerédi’s
theorem [1975], which states that every subset of the integers with positive asymptotic density contains
an arbitrarily long arithmetic progression. There is now an abundance of similar results in the continuum
setting, all of which guarantee existence of configurations under appropriate assumptions on size, often
stated in terms of Lebesgue measure, Hausdorff dimension or Banach density. While this body of work
has contributed significantly to our understanding of such phenomena, a complete picture concerning
existence or avoidance of patterns in sets is yet to emerge. In this paper, we will be concerned with
the “avoidance” aspect of the problem. Namely, given a function f : Rnv

→ Rm satisfying certain
conditions, how large a set E ⊂ Rn can one construct that carries no nontrivial solution of the equation
f (x1, . . . , xv)= 0? In other words, we aim to find as large a set E as possible such that f (x1, . . . , xv) is
nonzero for any choice of distinct points x1, . . . , xv ∈ E.

In the discrete regime, results of this type can be traced back to Salem and Spencer [1942] and Behrend
[1946], who identified large subsets of the integers avoiding progressions. The Euclidean formulation of
this problem appears to be of relatively recent vintage. Keleti [1999] constructed a subset E of the real
numbers of full Hausdorff dimension avoiding all nontrivial “one-dimensional rectangles”. More precisely,
this means that there exist no solutions of the equation x2− x1− x4+ x3 = 0 with x1 < x2 ≤ x3 < x4,
xi ∈ E, 1≤ i ≤ 4. In particular, such a set contains no nontrivial arithmetic progression, as can be seen
by setting x2 = x3. A counterpoint to [Keleti 1999] is a result of Łaba and the second author [Łaba and
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Pramanik 2009], who established existence of three-term progressions in special “random-like” subsets
of R that support measures satisfying an appropriate ball condition and a Fourier decay estimate. Higher-
dimensional variants of this theme may be found in [Chan et al. 2016; Henriot et al. 2016]. On the other
hand, large Hausdorff dimensionality, while failing to ensure specific patterns, is sometimes sufficient
to ensure existence or even abundance of certain configuration classes; see for instance [Greenleaf and
Iosevich 2012; Greenleaf et al. 2015; 2017; Bennett et al. 2016]. Harangi, Keleti, Kiss, Maga, Máthé,
Mattila, and Strenner [Harangi et al. 2013] showed that sets of sufficiently large Hausdorff dimension
contain points that generate specific angles.

Nonexistence of patterns such as the one proved by Keleti [1999] is the primary focus of this article. A
main contribution of [Keleti 1999] is best described as a Cantor-type construction with memory, where selec-
tion of basic intervals at each stage is contingent on certain selections made at a much earlier step of the con-
struction, so as to prevent certain algebraic relations from taking place. This idea has been instrumental in a
large body of subsequent work involving nonexistence of configurations. For example, Keleti [2008] used
this to show that for any countable set A, it is possible to construct a full-dimensional subset E of R such that

x2− x1+ a(x3− x2)= 0

has no solutions for any a ∈ A, where x1, x2 and x3 are distinct points in E. Maga [2010] exploited this idea
to demonstrate a full-dimensional subset E ⊂Rn not containing the vertices of any parallelogram. He also
constructed a full-dimensional planar set that misses all similar copies of a given triangle. Other results in
this direction of considerable generality, extending their predecessors in [Keleti 1999; 2008; Maga 2010],
are due to Máthé [2012]. Given any countable collection of polynomials pj :R

nm j→R of degree at most d
with rational coefficients, the main result of [Máthé 2012] ensures the existence of a subset E⊆Rn of Haus-
dorff dimension n/d such that pj (x1, . . . , xm j ) is nonzero for any choice of distinct points x1, . . . , xm j ∈ E.
The same conclusion continues to hold if the polynomials pj are replaced by pj (8j,1(x1), . . . , 8j,m j (xm j )),
where 8j,k are C1-diffeomorphisms of Rn. Interestingly, the Hausdorff dimension bound in [Máthé 2012],
while depending on the ambient dimension n and the maximum degree d of the polynomials, is independent
of the number of input vectors m j in pj , which may continue to grow without bound.

This paper uses similar ideas to present two results in a somewhat different direction. The first
complements Máthé’s result mentioned above. It applies to a countable family of functions f :Rnv

→Rm

with a fixed v that are not necessarily polynomials with rational coefficients. Further, in contrast with
[Máthé 2012], the Hausdorff dimension of the obtained set depends on the number of vector variables v.
The second result is of a perturbative flavour, and gives a set of positive Hausdorff dimension that
simultaneously avoids zeros of all functions with a common linearization and bounded higher-order terms.
To the best of our knowledge, such uniform avoidance results are new. Some points of tenuous similarity
may be found in [Harangi et al. 2013], where the authors construct sets that avoid angles within a specific
range, but the ideas, methods and goals are very different.

1A. Main results. Our first result is most general in dimension one, where we need very mild restrictions
on the functions whose zeros we want to avoid. The higher-dimensional, vector-valued version of this
result applies with some additional restrictions. We state these two separately.
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Theorem 1.1. For any η > 0 and integer v ≥ 3, let fq : R
v
→ R be a countable family of functions in v

variables with the following properties:

(a) There exists rq <∞ such that fq ∈ Crq ([0, η]v).

(b) For each q , some partial derivative of fq of order rq ≥ 1 does not vanish at any point of [0, η]v.

Then there exists a set E ⊆ [0, η] of Hausdorff dimension at least 1/(v−1) and Minkowski dimension 1
such that fq(x1, . . . , xv) is not equal to zero for any v-tuple of distinct points x1, . . . , xv ∈ E and any
function fq .

Theorem 1.2. Fix η>0 and positive integers m, n, v such that v≥3, and m≤n(v−1). Let fq :R
nv
→Rm

be a countable family of C2 functions with the following property: for every q on [0, η]nv , the derivative
D fq(x1, . . . , xv) has full rank at every point (x1, . . . , xv) in the zero set of fq such that xr 6= xs for
all r 6= s.

Then there exists a set E⊆[0, η]n of Hausdorff dimension at least m/(v−1) and Minkowski dimension n
such that fq(x1, . . . , xv) is not equal to zero for any v-tuple of distinct points x1, . . . , xv ∈ En and any
function fq .

Remarks. (a) If one seeks to avoid zeros of a single function f , then Theorem 1.1 is nontrivial only
when the components of ∇ f (x) sum to zero at every point x in the zero set of f . If this is not the case,
then there is necessarily some interval I such that f (x1, . . . , xv) is nonzero for points xi in the interval I.

(b) The points x1, . . . , xv ∈ E that ensure f (x1, . . . , xv) 6= 0 in Theorems 1.1 and 1.2 are taken to
be distinct. This assumption, while needed for the proof, is often nonrestrictive for the purpose of
applications. In fact, one can typically augment the family { fq} by {gq}, where the function gq equals fq

with certain input variables coincident, and apply the theorems above to the augmented family provided
the nonvanishing derivative assumptions are met. For instance, Keleti’s function f (x1, x2, x3, x4) =

(x2 − x1)− (x4 − x3) = −x1 + x2 + x3 − x4 identifies “one-dimensional rectangles” in general, and
three-term arithmetic progressions only if x2 = x3. In order to obtain a set that avoids both using
our setup, we would need to apply our Theorem 1.1 to the collection { f, g}, where g(x1, x2, x3, x4)=

f (x1, x2, x2, x4)=−x1+ 2x2− x4.

(c) Theorem 1.2 is sharp in certain instances, for example when m = n(v − 1). On the other hand,
Theorem 1.1 need not be sharp for specific choices of fq , as Keleti’s example shows. Our result would
only ensure a set of Hausdorff dimension 1

3 for this example. Given the similarity in our respective
methods of proof, the contrast in the results requires a word of explanation. In [Keleti 1999], one had
explicit knowledge of the function f (which was linear), and hence of the structure of its zero set. This
arithmetic structure was exploited heavily in the construction. Our assumptions on { fq} are too weak to
offer explicit information concerning algebraic dependencies in the zero set, and hence our proof is based
on a “worst-case analysis”, which is true generically, but results in worse bounds. However, our method
of proof is robust enough to accommodate special structures in zero sets, and yields better dimensional
bounds in those settings. We substantiate this comment with more precise details at the appropriate
juncture of the proof; see the remark on page 1092.
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(d) Our conjecture is that the dimensional lower bound of 1/(v− 1) in Theorem 1.1 is sharp for certain
generic functions, but we are currently unaware of any result in the literature that addresses the optimality
of this bound in the setup that we describe. Partial evidence in support of this conjecture in provided in
[Körner 2009], where the author constructs a set of Fourier dimension 1/(v− 1) avoiding all v-variate
rational linear relations. We hope to return to this issue in the future.

(e) Even though our results do not recover those of [Keleti 2008; Maga 2010; Máthé 2012] in all instances
where these results are applicable, the Hausdorff dimension provided in Theorems 1.1 and 1.2 offers
new bounds in settings where previously none were available, for instance where the functions are
nonpolynomials with mild regularity. It also improves the bound given in [Máthé 2012] for polynomials
with rational coefficients in the regime where the degree d is much larger than the number of variables v.
On the other hand, for polynomials of low degree the result in [Máthé 2012] improves ours, obtaining the
best bound when d = 1.

(f) Finding the optimal dimension of a zero-avoiding set for a specific and explicitly stated function
remains an interesting open question. For the quadratic polynomial f (x1, x2, x3)= (x3− x1)− (x2− x1)

2,
the zero-avoiding set is guaranteed to be of Hausdorff dimension at least 1

2 , both according to [Máthé
2012] and Theorem 1.1. It is not known whether this bound is optimal.

Our second result is about a set on which no function f with a given linearization and controlled
higher-order term is zero.

Theorem 1.3. Given any constant K > 0 and a vector α ∈ Rv such that

α · u 6= 0 for every u ∈ {0, 1}v with u 6= 0, u 6= (1, 1, . . . , 1), (1-1)
and such that

v∑
j=1

αj = 0, (1-2)

there exists a positive constant c(α) and a set E = E(K , α) ⊆ [0, 1] of Hausdorff dimension c(α) > 0
with the following property.

The set E does not contain any nontrivial solution of the equation

f (x1, . . . , xv)= 0, (x1, . . . , xv) not all identical,

for any C2 function f of the form

f (x1, . . . , xv)=
v∑

j=1

αj x j +G(x1, . . . , xv), (1-3)

where

|G(x)| ≤ K
v∑

j=2

(x j − x1)
2. (1-4)

Remarks. (a) The condition (1-1) implies that α does not lie in any coordinate hyperplane.

(b) The proof of Theorem 1.3 can be used to obtain a corresponding result with finitely many linearizations.
There is a loss in the Hausdorff dimension as more linear functions are added to the family, so the proof
fails for families of functions with countably many linearizations.
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(c) It is interesting to note that the dimensional constant c(α) does not depend on K. Of course the set E
does, and is uniform for all functions f obeying (1-3) and (1-4) with a fixed value of K.

1B. Layout. Section 2 is devoted to geometric applications of Theorems 1.1, 1.2 and 1.3. Optimality
of these results (or lack thereof) in various settings is discussed, and comparison with earlier work is
presented. Section 3 is a collection of geometric algorithms needed for the proofs of Theorems 1.1 and 1.2.
The proofs themselves are executed in Sections 4 and 5.

2. Examples

2A. Subsets of curves avoiding isosceles triangles. This subsection is given over to the following ques-
tion: suppose we are given a small segment of a simple C2 curve 0 ⊂ Rn with nonvanishing curvature
bounded above by K, parameterized by a C2 function γ : [0, η]→ Rn with nonvanishing derivative. How
large can the Hausdorff dimension of a subset E ⊆ [0, η] be if there do not exist three points x1, x2, x3 ∈ E
such that {γ (x1), γ (x2), γ (x3)} ⊆ 0 are the vertices of an isosceles triangle?

The existence of an isosceles triangle with vertices on 0 will be determined using one of the functions

f1(t1, t2, t3)= |γ (t1)− γ (t2)|2− |γ (t2)− γ (t3)|2, (2-1)

f2(t1, t2, t3)= d(γ (t1), γ (t2))− d(γ (t2), γ (t3)). (2-2)

Here d is the “signed distance” along the curve 0 defined by

d(γ (t1), γ (t2))=
{
|γ (t1)− γ (t2)| if t1 ≥ t2,
−|γ (t1)− γ (t2)| if t1 < t2.

(2-3)

For reasons to be explained shortly, we will want to avoid the zero set of f1 or f2. In order to apply
Theorem 1.1, we need to verify that these functions are differentiable. This is evident for f1. In Lemma A.1
of the Appendix, we have shown that the signed distance d is differentiable, which provides the same
conclusion for f2.

Let f be either the function f1 or f2 given in (2-1) or (2-2). In either case, we have that if f (t1, t2, t3)=0,
then γ (t1), γ (t2), γ (t3) form the vertices of an isosceles triangle or points in an arithmetic progression.
Conversely, let x, y, z be distinct points of 0 that form an isosceles triangle, with |x − y| = |y− z|. Then
there exist t1 < t2 < t3 such that some permutation of γ (t1), γ (t2), γ (t3) will be the points x, y, z. It is
not difficult to see that if η is sufficiently small depending on |γ ′(0)| and the curvature K, then y can be
neither γ (t1) nor γ (t3). We include a proof of this in Lemma A.2 in the Appendix. Therefore y = γ (t2),
in which case f (t1, t2, t3)= 0.

2A1. A set avoiding isosceles triangles along a single curve. We will first discuss the problem of avoiding
isosceles triangles along a single curve 0. For this variant of the problem, γ may be any parameterization
of 0 satisfying the conditions laid out above.

Let us first consider the case where 0 is parameterized by a polynomial function γ of degree d with
rational coefficients; i.e., γ (t)= (p1(t), p2(t), . . . , pn(t)). Let us observe that the result in [Máthé 2012]
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does not apply to the nonpolynomial function f2(t1, t2, t3), but does apply to

f1(t1, t2, t3)=
[
(p1(t1)−p1(t2))2+· · ·+(pn(t1)−pn(t2))2

]
−
[
(p1(t2)−p1(t3))2+· · ·+(pn(t2)−pn(t3))2

]
,

which is a polynomial of degree at most 2d . Applying [Máthé 2012] then gives a subset of 0 of Hausdorff
dimension 1/(2d) that does not contain the vertices of any isosceles triangle.

If 0 is a general (not necessarily polynomial) C2 curve with parameterization γ (t), and f (t1, t2, t3) is
either f1 or f2 described above, then Theorem 1.1 demonstrates the existence of a subset E of [0, 1] of
Hausdorff dimension 1

2 such that f (t1, t2, t3) 6= 0 for any choice of t1, t2, t3 ∈ E. Under γ , this lifts to a
subset of 0 of Hausdorff dimension 1

2 that does not contain the vertices of an isosceles triangle. Even
for the case of functions with a rational polynomial parameterization, this set has a larger Hausdorff
dimension than the one provided by [Máthé 2012].

Incidentally, it is instructive to compare the above with the case where the curve γ is a line, even though
the curvature for the latter is zero. Here we will view three-term arithmetic progressions as degenerate
isosceles triangles. Set γ (t)=at+b for some a, b∈Rn, a 6=0. Then the function f (t1, t2, t3)= t1+t3−2t2
is equal to zero precisely when γ (t1), γ (t2) and γ (t3) lie in arithmetic progression. Keleti’s result [1999],
as well as [Máthé 2012], applied to this f show that there is a subset of 0 of Hausdorff dimension 1
that does not contain any arithmetic progressions. Theorem 1.1 on the other hand provides a set with
Hausdorff dimension 1

2 , which is suboptimal.

2A2. A set avoiding isosceles triangles along all curves with bounded curvature. We will also ask a
question related to the one above, this time considering only C2 curves given by arclength parameterization.
How large a set E ⊂ [0, 1] can we construct such that γ (E) does not contain any isosceles triangle for
any γ : [0, 1] → Rn with |γ ′(t)| ≡ 1 and with curvature at most K ?

For any such curve γ , the function f2 defined in (2-2) will be differentiable everywhere, with ∂ f2/∂t1=
∂ f2/∂t3 ≡ 1 and ∂ f2/∂t2 ≡−2, as we have verified in Lemma A.1(b). Thus the function f2 will satisfy
the conditions of Theorem 1.3. One therefore obtains a subset E ⊂ [0, 1] of positive Hausdorff dimension
such that f2(t1, t2, t3) 6= 0 whenever t1, t2, t3 ∈ E are distinct, no matter which γ we choose in this class.
Thus the points parameterized by E manage to avoid isosceles triangles on all curves 0 with a fixed
bounded curvature.

How large a Hausdorff dimension can we get? A careful scrutiny of Lemma 5.1, Proposition 5.2 and
Theorem 1.3 shows that one can ensure sets of Hausdorff dimension at least log 2/log 3. For more details,
we refer the reader to the proofs of these results in Section 5A and the remarks following them.

2A3. Discussion on optimality. Clearly Theorem 1.2 is optimal when m = n(v− 1). On the other hand,
we can use Theorem 1.3 together with the example above to give a polynomial with rational coefficients
for which neither [Máthé 2012] nor Theorem 1.1 gives the optimal bounds. Consider a polynomial of the
form

p(t1, t2, t3)= t1− 2t2+ t3+ q(t1, t2, t3),

where q(t1, t2, t3) is a nontrivial homogeneous quadratic polynomial in (t2− t1) and (t3− t1) with rational
coefficients. We are of course interested in finding a set E (as large as possible) such that p(t1, t2, t3) 6= 0
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for any choice of distinct points t1, t2, t3 ∈ E. Both [Máthé 2012] and Theorem 1.1 provide such a set E,
with dimension at least 1

2 in both cases. Theorem 1.3 provides such a set E as well. Note that p has the
same linearization as the functions f described in the previous section above. Hence, as described at the
end of Section 2A2, the set E obtained via Theorem 1.3 is a set of dimension at least log 2/log 3> 1

2 ,
proving the claimed suboptimality statement.

In fact, we can use this framework to construct other examples. Notice that it is possible to ask
for sets E that avoid triangles that are not necessarily isosceles, for instance triangles where the side-
length ratio is a prescribed constant κ . The results in [Keleti 1999; Máthé 2012] and Theorem 1.1 all
apply to give a set with the same Hausdorff dimension 1

2 as above not containing t1, t2, t3 such that
|γ (t2)− γ (t1)| = κ|γ (t3)− γ (t1)|. However, the Hausdorff dimension bound in Theorem 1.3 becomes
worse as κ moves farther away from 1. Still, for κ close to 1, Theorem 1.3 outperforms Theorem 1.1,
giving rise to a family of polynomials whose zeros can be avoided by a set of unusually large Hausdorff
dimension.

2B. A subset of a curve not containing certain kinds of trapezoids. The following is a geometric ex-
ample of Theorem 1.2. Call a trapezoid ABC D with AD parallel to BC “special” if the side lengths
obey the restriction |BC |2 = |AB||C D|. Given a curve 0 ⊂ R2 parameterized by a smooth function
γ : [0, η] → R2, we aim to find a subset E of [0, η] with the following property: for any choice of
t1 < t2 < t3 < t4 in E, the trapezoid ABC D with

A = γ (t1), B = γ (t2), C = γ (t3), D = γ (t4)

is not special. For simplicity and ease of exposition, we may assume that the components of γ ′ are strictly
positive on [0, η] and that the curvature is also of constant sign, say 0 is strictly convex.

Notice that the special trapezoid assumption places two essentially independent conditions on γ (t1),
γ (t2), γ (t3), and γ (t4). One is that two sides need to be parallel, and the other is the condition on the
side lengths. Accordingly, we define two functions f1 and f2 as follows:

f1(t1, t2, t3, t4)= det
[
(γ (t4)− γ (t1))t , (γ (t3)− γ (t2))t

]
, (2-4)

f2(t1, t2, t3, t4)= d(γ (t4), γ (t3)) d(γ (t2), γ (t1))− d(γ (t3), γ (t2))2. (2-5)

Here in (2-4), at and bt represent the transpose of the planar row vectors a = (a1, a2) and b = (b1, b2)

respectively, while

det[at , bt
] = det

[
a1 b1

a2 b2

]
= a1b2− a2b1

denotes the (signed) length of the cross-product a× b. Alternatively, det[at , bt
] may be interpreted as the

signed area of the parallelogram whose sides are the vectors a and b. The determinant vanishes if either
a or b is zero, or if the two vectors are parallel.

Returning to (2-4) and (2-5), f1 is zero if and only if AD is parallel to BC , while f2 is zero if and
only if |BC |2 = |AB||C D|. We therefore seek to avoid the zeros of the smooth vector-valued function
f = ( f1, f2). We verify in Lemma A.3 of the Appendix that the derivative D f is of full rank on the zero
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set of f . Applying Theorem 1.2 with n = 1, m = 2, v = 4, we obtain a set E of Hausdorff dimension 2
3

such that the points on 0 indexed by E avoids special trapezoids as explained above. Thus, there is a
subset of 0 of Hausdorff dimension 2

3 that does not contain any special trapezoids.

3. Avoidance of zeros on a single scale

The proofs of Theorems 1.1 and 1.2 are based on an iterative construction whose primary building block
relies on an algorithm: given a set T ⊆ Rnv contained in the domain of a suitably nonsingular function
f : Rnv

→ Rm, one identifies a subset S ⊆ T that stays away from the zero set of f . This zero-avoiding
subset S, which is a union of cubes in Rnv (and as such of positive Lebesgue measure and full Hausdorff
dimension), does not immediately yield the set we seek because it is typically not the v-fold Cartesian
product of a set in Rn with itself, and hence does not meet the specifications of the theorems. However,
the algorithm can be used iteratively on many different scales and for many functions in the construction
of the set E whose existence has been asserted in the theorems. Our objective in this section is to describe
this algorithm. The versions that we need for Theorems 1.1 and 1.2 are very similar in principle, although
the exact statements differ somewhat. These appear in Propositions 3.1 and 3.4 below respectively.

3A. Building block in dimension one. Let f be a real-valued C1 function of v variables and nonvanish-
ing gradient defined in a neighbourhood of the origin containing [0, 1]v. Suppose that we are given an
index i0 ∈ {1, 2, . . . , v}, an integer M ≥ 1, a small constant c0> 0 and compact subsets T1, . . . , Tv ⊆[0, 1]
with the following properties:

Each Ti is a union of closed intervals of length M−1 with disjoint interiors.
Let us denote by JM(Ti ) this collection of intervals. (3-1)

int(Ti )∩ int(Ti ′)=∅ if i 6= i ′. (3-2)∣∣∣∣ ∂ f
∂xi0

(x)
∣∣∣∣≥ c0 and |∇ f (x)| ≤ c−1

0 for all x ∈ T1× · · ·× Tv. (3-3)

Proposition 3.1. Given f,M, i0, c0 and T = (T1, . . . , Tv) obeying (3-1) and (3-3) above, there exist a
small rational constant c1 > 0 and an integer N0 (depending on all these quantities), for which the
following conclusions hold.

There is a sequence of arbitrarily large integers N ≥ N0 with N/M, c1 N ∈N such that for each N in
this sequence, one can find compact subsets Si ⊆ Ti for all 1≤ i ≤ v such that:

(a) There are no solutions of f (x)= 0 with x ∈ S1× · · ·× Sv.

(b) For each J ∈ JM(Ti ), let us decompose J into closed intervals of length N−1 with disjoint interiors
and call the resulting collection of intervals IN (J, i). Then for each i 6= i0 and each I ∈ IN (J, i),
the set Si ∩ I is an interval of length c1 N 1−v.

(c) For every J ∈ JM(Ti0), there exists I ′N (J, i0)⊆ IN (J, i0) with

#(I ′N (J, i0))≥
(

1− 1
M

)
#(IN (J, i0)) (3-4)
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such that for each I ∈ I ′N (J, i0),

|Si0 ∩ I | ≥
c1

N
. (3-5)

Unlike part (b), Si0 ∩ I need not be an interval; however, it can be written as a union of intervals of
length c1 N 1−v with disjoint interiors.

Proof. Without loss of generality, we may set i0 = v. For i 6= v, we define

Si =
⋃{
[ai , ai + c1 N 1−v

] : [ai , bi ] = I ∈ IN (J, i) for some J ∈ JM(Ti )
}
,

where the small positive constant c1 and the integer N will be specified shortly. In other words, Si

consists of the leftmost c1 N 1−v-subintervals of all the 1/N -intervals that constitute Ti . It is clear that the
conclusion (b) holds for this choice of Si .

We now proceed to define the subcollection I ′N (J, v) and the set Sv that obey the requirements in (c).
Consider the collection

AN :=

v−1∏
i=1

{
ai : [ai , bi ] = I ∈ IN (J, i) for some J ∈ JM(Ti )

}
consisting of (v−1)-tuples of the form a′ = (a1, . . . , av−1), where each ai is a left endpoint of an interval
in IN (J, i) for some J ∈ JM(Ti ). For each i , the number of possible choices for 1/N -intervals I ⊆ [0, 1]
and hence for ai is at most N. Thus

#(AN )≤ N v−1. (3-6)

We will prove in Lemma 3.2 below that for every fixed a′ ∈ AN ,

#{xv : f (a′, xv)= 0} ≤ M. (3-7)

Assuming this for the moment, define

B := {xv : ∃ a′ ∈ AN such that f (a′, xv)= 0}.

In light of (3-6) and (3-7), we find that

#(B)≤ M N v−1. (3-8)

The subcollection I ′N (J, v)⊆ IN (J, v) specified in part (c) is chosen as follows: we declare

I ∈ I ′N (J, v) if #(B∩ I )≤ M3 N v−2.

In view of (3-8) and the pigeonhole principle, it follows that

#
(
IN (J, v) \ I ′N (J, v)

)
≤

M N v−1

M3 N v−2 =
N

M2 . (3-9)

The fact that #(IN (J, v))= N/M then implies (3-4).
We now decompose each I ∈ I ′N (J, v) into consecutive subintervals of length C0c1/N v−1 with disjoint

interiors, and denote the successive intervals by Ĩ`(I ):

I =
⋃
{ Ĩ`(I ) : 1≤ `≤ N v−2/(C0c1)}.
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Here C0 is a constant integer depending on f , M and T1, . . . Tv, as has been specified in Lemma 3.3
below. The integer N is chosen large enough so that N v−2/(C0c1) is an integer. All intervals Ĩ`(I )
that intersect B, together with their adjacent neighbours, are then discarded. This still leaves open the
possibility that the subintervals Ĩ`(I ) at the edges of I, namely `= 1 and `= N v−2/(C0c1), are proximate
to a part of B lying in an adjacent interval I ′, so we remove these edge subintervals as well. The remaining
subset of Tv is defined to be Sv. More specifically,

Sv =
⋃{

Ĩ`(I ) : Ĩk(I )∩B=∅ for
I ∈ I ′N (J, v), J ∈JM(Tv),

|k− `| ≤ 1, 1< ` < N v−2/(C0c1)

}
.

Clearly Sv can be viewed a union of intervals of length c1/N v−1. The definition of I ′N (J, v) implies that
the total length of the discarded subintervals in each I ∈ I ′N (J, v) is at most 3C0c1 M3 N v−2/N v−1

=

3M3C0c1/N. The claim (3-5) now follows by choosing c1 > 0 small enough so as to satisfy 3M3C0c1 <

(1− c1).
Finally, Lemma 3.3 below shows that given x ′= (x1, . . . , xv−1)∈ S1× S2×· · ·× Sv−1, any xv obeying

f (x ′, xv)= 0 should necessarily lie within a C0c1/N v−1 neighbourhood of B. Since the set Sv ⊆ Tv was
created so as to avoid these neighbourhoods, conclusion (b) follows. �

Remark. We take this opportunity to point out the distinction of our selection algorithm as compared
to, say, [Keleti 1999; Máthé 2012]. The length c1 N 1−v of the intervals Si ∩ I (for i 6= i0) is the main
contributing factor to the dimensional lower bound of Theorem 1.1. These intervals can be chosen slightly
differently and also possibly longer if additional information is available about the zero set of f , as
indicated in part (c) of the remark on page 1085.

For example, suppose that f : Rv→ R is a linear function, say

f (x1, . . . , xv)=
v∑

i=1

αi xi (3-10)

with nonzero integer coefficients as in [Keleti 1999], and that i0=v. Without loss of generality suppose also
that in the notation of Proposition 3.1 each Ti is a finite union of intervals J of the form Z/M+[0, 1/M].
Then for i < v, a possible choice of Si could be as follows: for each I = [k/N , (k+ 1)/N ] ∈ IN (J, i)
with k any integer, we set

Si ∩ I :=
[

k
N
,

k+ c1

N

]
for some small positive constant c1 to be chosen shortly. If xi ∈ Si for i < v, then any xv with
f (x1, x2, . . . , xv)= 0 has to be of the form

xv =−
1
αv

v−1∑
i=1

αi xi , so that dist
(

xv,
Z

|αv|N

)
<

1
4|αv|N

, where c1

v−1∑
i=1

|αi |<
1
4
.

Let us then choose Sv as follows: for any I = |αv|−1
[k/N , (k+ 1)/N ] ⊆ Tv,

Sv ∩ I :=
1
|αv|

[
k
N
+

1− c1

2N
,

k
N
+

1+ c1

2N

]
.
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This implies

dist
(

Sv ∩ I,
Z

|αv|N

)
>

1
4|αv|N

,

provided c1 > 0 is chosen small enough. Thus the construction above ensures that S1 × S2 · · · × Sv
contains no zeros of f . Further, the size of this Cartesian product is significantly larger than the one
obtained in Proposition 3.1. Tracking these new choices of Si through the rest of the proof yields a set E
of full Hausdorff dimension that avoids all zeros of (3-10), which is the result of [Keleti 1999].

Lemma 3.2. For f and AN as in Proposition 3.1, the inequality (3-7) holds for every fixed a′ ∈ AN .

Proof. Given a′ ∈ AN , we claim that for every J ∈ JM(Tv), there exists at most one xv ∈ J such that
f (a′, xv)= 0. Since the number of J ∈ JM(Tv) is at most M, the desired conclusion would follow once
the claim is established.

To prove the claim, let us assume if possible that there exist xv, yv ∈ J , xv 6= yv , such that f (a′, xv)=
f (a′, yv)=0. By Rolle’s theorem, this ensures the existence of some point zv ∈ J where ∂ f/∂xv(a′, xv)=0.
But this contradicts the hypothesis (3-3) that the partial derivative ∂ f/∂xv is nonzero on T1×· · ·× Tv . �

Lemma 3.3. Let f , M and T1, . . . , Tv be as in Proposition 3.1. Then there exists a constant C0 depending
on these quantities, and in particular on c0, such that for the choice of S1, S2, . . . , Sv−1 as specified in
the proof of the proposition,

dist(xv,B)≤
C0c1

N v−1

for any xv obeying f (x)= 0, with x ′ = (x1, . . . , xv−1) ∈ S1× · · ·× Sv−1.

Proof. Let J= J1× · · ·× Jv = J′× Jv ∈
∏v

i=1 JM(Ti ) be a v-dimensional cube of side length 1/M such
that the zero set of f intersects J. The nonvanishing derivative condition (3-3) then implies, in view
of the implicit function theorem, that there exists a (v−1)-variate C1 function gJ defined on J′ and a
constant C0 > 0 depending on c0, M , T1, . . . , Tv such that

f (x)= 0, x ∈ J, implies xv = gJ(x ′), x ′ ∈ J′, (3-11)

|∇gJ| ≤
C0
√
v

on J′. (3-12)

Given x = (x ′, xv) ∈ S1× · · · × Sv such that f (x)= 0, let Jx denote the v-dimensional 1/M-cube J

in which x lies, and let I′x = I1× · · ·× Iv−1 =
∏v−1

i=1 [ai , bi ] ∈
∏v−1

i=1 IN (Ji , i) be the (v−1)-dimensional
subcube of J′x of side length 1/N containing x ′. Then

xv = gJ(x ′), a′ = (a1, . . . , av−1) ∈ AN , gJ(a′) ∈ B, and |x ′− a′| ≤
c1
√
v

N v−1 .

Further, (3-12) implies

dist(xv,B)≤ |gJ(a′)− gJ(x ′)| ≤ ‖∇gJ‖∞ |x ′− a′| ≤
C0
√
v
×

c1
√
v

N v−1 =
C0c1

N v−1 ,

which is the conclusion of the lemma. �
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3B. Building block in higher dimensions. Given positive integers m, n≥ 1 and v≥ 3 with m≤ n(v−1),
let f : Rnv

→ Rm be a C2 function whose zero set has nontrivial intersection with [0, 1]nv. Suppose that
M ≥ M0 is a large integer, c0 > 0 is a small constant and T1, . . . , Tv ⊆ [0, 1]n are sets with the following
properties:

Each Ti is expressible as a union of closed axis-parallel cubes of side length M−1

with disjoint interiors, the collection of which will be called JM(Ti ).
As before, int(Ti )∩ int(Ti ′)=∅ if i 6= i ′.

(3-13)

On {x ∈ T1× · · ·× Tv : f (x)= 0} the matrix D f is of full rank, with
the singular values of D f bounded above and below by c−1

0 and c0 respectively. (3-14)

On [0, 1]nv, the matrix norm of the Hessian D2 f is bounded above by c−1
0 . (3-15)

Proposition 3.4. Given f,M and c0 as above, there exists a rational constant c1 > 0 and an integer N0

depending on these quantities for which the following conclusions hold. For N ≥ N0, set `= c1 N n(1−v)/m .
If N is such that N/M , 1/(`N ) ∈ Z, then one can find compact subsets Si ⊆ Ti for all 1≤ i ≤ v such that:

(a) There are no solutions to f (x)= 0 with x ∈ S1× · · ·× Sv.

(b) For each 1≤ i ≤ v and J ∈JM(Ti ), let us decompose J into closed axis-parallel cubes of length N−1

with disjoint interiors and call the resulting collection of cubes IN (J, i). There exists I ′N (J, i) ⊆
IN (J, i) such that

Si ⊆
⋃
{I : J ∈ JM(Ti ), I ∈ I ′N (J, i)}.

More precisely, for each I ∈ I ′N (J, i), the set Si ∩ I is a single axis-parallel cube of side length
` = c1 N n(1−v)/m , provided i 6= v. For i = v and I ∈ I ′N (J, v), the set Sv ∩ I is not necessarily a
single cube of side length `, but a union of such cubes, with the property that

|Sv ∩ I | ≥
(

1− 1
M

) 1
N n . (3-16)

(c) The subcollections I ′N (J, i) of cubes are large subsets of the ambient collection IN (J, i), in the sense
that for all 1≤ i ≤ v, J ∈ JM(Ti ),

#(I ′N (J, i))≥
(

1− 1
M

)
#(IN (J, i)). (3-17)

Remarks. (a) The proof will show that the constant c1 in Proposition 3.4 may be chosen as a small
constant multiple of M−R, where R = [(n+ 1)v+ 1]/m. For the purposes of application, M is negligible
compared to N, and hence the specific power of M that appears in the expression for ` is not critical to
the proof. The power of N, which is −(n/m)(v− 1), is of utmost importance and the principal reason
that the Hausdorff dimension of the set E ⊆ Rn in Theorem 1.2 is equal to m/(v− 1).

(b) The restriction m ≤ n(v− 1) justifies on one hand the dimensional constraint on the set E which lies
in Rn. On a technical note, it is also necessary for the assumption `� N−1 that permeates the proof. If
m < n(v−1), the chosen value of `= ε0 M−R N−n(v−1)/m will be less than 1/N if N is sufficiently large.
If m = n(v− 1), the chosen value of ` will be less than 1/N provided that M is sufficiently large.
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(c) The special treatment of the variable xv in the proposition is for convenience only. The result holds
for xv replaced by xi0 for any 1≤ i0 ≤ v.

Proof. Let Z f ={x = (x1, . . . , xv)∈ ([0, 1]n)v : f (x)=0} be the zero set of the function f , which we wish
to avoid. The assumptions (3-14) and (3-15) ensure that Z f ∩ (T1× · · ·× Tv) is an (nv−m)-dimensional
submanifold of [0, 1]nv; see for example [Sharpe 1997, Theorem 2.13]. Further, the coarea formula gives
that Z f is coverable by at most Cεm−nv many cubes of side length ε, for all sufficiently small ε. Here
C is a large constant depending only on c0 and independent of ε. The proof consists of projecting Z f

successively onto the coordinates x1, x2, . . . and selecting the sets Si so as to avoid the projected zero
sets. The main ingredient of this argument is described in Lemma 3.5. We ask the reader to view the
statement of the lemma first. Assuming the lemma, the remainder of the proof proceeds as follows.

Fix a parameter `� 1/N soon to be specified. Recalling that Iα−1(J, i) denotes the collection of
axis-parallel subcubes of side length α that constitute a partition of J ∈JM(Ti ), let us define the collection
of “bad boxes” B1 as

B1 =

{
Q ∈

v∏
i=1

I`−1(Ji , i) : Q ∩ Z f 6=∅ for some Ji ∈ JM(Ti )

}
. (3-18)

In other words, a box of side length ` in T1× · · ·× Tv is considered bad if it contains a point in the zero
set of the function f . The discussion in the preceding paragraph shows that

#(B1)≤ C`m−nv, (3-19)

where C is a constant that depends only on the function f and the value c0.
The construction of S1, . . . , Sv now proceeds as follows. At the first step, we project the boxes in B1

onto their (x2, . . . , xv)-coordinates (each n-dimensional), and use Lemma 3.5 below with r = v, T = T1,
T ′ = T2 × · · · × Tv and B = B1 to arrive at a set S1 ⊆ T1 and a family of n(v−1)-dimensional boxes
B′ = B2 obeying the conclusions of that lemma. Clearly the set S1 obeys the requirements of part (b) of
the proposition. Lemma 3.5 also ensures that

#(B2)≤ Mn+1 N n`n#(B1)≤ C Mn+1 N n`m−n(v−1),

and that f (x) 6= 0 for any x = (x1, x ′) such that x1 ∈ S1 and any x ′ ∈ T2 · · · × Tv that is not contained in
the cubes constituting B2.

We now inductively follow a procedure similar to the above. At the end of step j , we will have
selected sets S1 ⊆ T1, . . . , Sj ⊆ Tj and will be left with a family Bj+1 of n(v− j)-dimensional cubes of
side length `, such that

#(Bj+1)≤ C M (n+1) j N jn`m−n(v− j) (3-20)

and
f (x ′′, x ′) 6= 0 for

x ′′ = (x1, . . . , x j ) ∈

j∏
i=1

Si , x ′ ∈
v∏

i= j+1

Ti , x ′ not contained in any of the cubes in Bj+1. (3-21)

We can then apply Lemma 3.5 with

T = Tj+1, T ′ = Tj+2× · · ·× Tv, B= Bj+1,
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to arrive at a set Sj+1 ⊆ Tj+1 meeting the requirement of part (b) of the proposition. The lemma also
gives a family B′ = Bj+2 of n(v− j−1)-dimensional cubes of side length `, whose cardinality obeys the
inequality (3-20) with j replaced by j + 1, allowing us to carry the induction forward.

We continue this construction for v−1 steps, obtaining sets S1, . . . , Sv−1 and a collection Bv consisting
of at most C M (n+1)(v−1)N n(v−1)`m−n cubes of side length ` and dimension n contained in Tv . The set Sv
is then defined according to the prescription of Lemma 3.6, the conclusion of which verifies part (a) of
the proposition for S1, . . . , Sv. �

3B1. Projections of bad boxes. It remains to justify the projection mechanism used repeatedly in
Proposition 3.4. We set this up below.

Fix 2 ≤ r ≤ v, and consider sets T ⊆ [0, 1]n and T ′ ⊆ [0, 1]n(r−1) expressible as unions of closed
axis-parallel cubes of side length M−1 and disjoint interiors. As before, we denote by JM(T ) and JM(T ′)
the respective collections of these cubes. Given any J ∈ JM(T ), we decompose J into axis-parallel
subcubes of side length N−1; the corresponding collection is termed IN (J ). We will also need to fix a
subset B ⊆ T × T ′, which we view as a union of a collection B of cubes of side length `. Here M, N and
` are as specified in Proposition 3.4. Since `/N is taken to be an integer, we may assume that each cube
in B is contained in exactly one cube in IN (J ).

Lemma 3.5. Given T , T ′, B as above, there exist sets S ⊆ T , B ′ ⊆ T ′ and a collection of boxes B′ ⊆ T′

with the following properties:

(a) The set S is a union of closed axis-parallel cubes with side length ` and disjoint interiors. More
precisely, for every J ∈ JM(T ), there exists I ′N (J )⊆ IN (J ) such that

#(I ′N (J ))≥ (1−M−1)#(IN (J )),

and S ∩ I is a single `-cube for each I ∈ I ′N (J ). For I ∈ IN (J ) \ I ′N (J ), the interior of the set S ∩ I
is empty.

(b) The set B ′ is the union of the `-cubes in B′.

(c) #(B′)≤ Mn+1 N n`n#(B).

(d) (S× T ′)∩ B ⊆ S× B ′.

Proof. Fix J ∈ JM(T ). For I ∈ IN (J ), define a “slab”

WN [I ] :=
⋃
{Q = I × I ′ ⊆ T × T ′ : Q is a cube of side length N−1

}.

Thus a slab is the union of all of the axis-parallel boxes in T × T ′ of side length 1/N whose projection
onto the x1-coordinate is the cube I. Similarly, given an n-dimensional cube I of side length `, we define
a “wafer” W`−1[I ] to be the union of all cubes of side length ` that project onto I in the x1-space. Let us
observe that a slab is an essentially disjoint union of exactly N−n`−n wafers, and that the total number of
wafers supported by J is M−n`−n. A wafer in turn is a union of `-cubes.

Let us agree to call a wafer W`−1[I ] “good” if it contains at most Mn+1`n#(B) boxes of B. The
pigeonhole principle dictates that the proportion of bad wafers is ≤ 1/M . We will call a slab WN [I ]
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“good” if it contains at least one good wafer. Again pigeonholing implies that no more than a 1/M-fraction
of the slabs can be bad. Let us define I ′N (J ) as the collection all cubes I ∈ IN (J ) such that WN [I ] is
good. For each cube I ∈ I ′N (J ), we select one cube I0 = I0(I )⊂ I of side length ` such that W`−1[I0] is
a good wafer. The set S is now defined to be the union of all selected `-cubes I0(I ), with I ∈ I ′N (J ) and
J ∈ JM(T ). Clearly, S satisfies part (a) of the lemma.

Let B ′ be the union of the collection B′ of all `-cubes Q′ ⊆ T ′ such that Q× Q′ ∈ B for some `-cube
Q ⊆ S. Then (b) and (d) hold by definition. The selection algorithm for S gives that for a given cube
Q ⊆ S, the number of Q′ such that Q×Q′ ∈B is ≤ Mn+1`n#(B). On the other hand, each Q ⊆ S comes
from a distinct slab. Hence the total number of possible choices for Q ⊆ S is no more than the total
number of slabs, which is bounded above by N n. Combining all of this we get (c) as desired. �

A version of the lemma above is needed for the extreme case r = 1. We needed this in the final step of
the iterative process described in Proposition 3.4, specifically in the construction of Sv.

Lemma 3.6. Fix parameters `� N−1
� M−1. Let T ⊆ [0, 1]n be a union of closed axis-parallel cubes

with side length M−1 and disjoint interiors. Let B ⊆ T be a union of similar cubes with side length `.
Decompose T into similar axis-parallel cubes of side length N−1, denoting the corresponding collection
by T. The collection of `-cubes composing B is termed B. Suppose that

#(B)≤ C M (n+1)(v−1)N n(v−1)`m−n,

with
`≤ C−1/m M−(1/m)((n+1)v+1)N−n(v−1)/m .

Then there exist S ⊆ T and T∗ ⊆ T such that

(a) S ∩ B =∅,

(b) #(T∗)≥ (1− 1/M)#(T),

(c) S is a union of a large number of `-cubes coming from T∗. More precisely, |S∩ I | ≥ (1−M−1)N−n

for each I ∈ T∗.

Proof. Decomposing each cube I ∈T into subcubes of side length `, we declare I to be good if it contains
≤ Mn+1 N−n#(B) subcubes that are in B. As in the proof of Lemma 3.5, the pigeonhole principle ensures
that the fraction of bad cubes in T is at most M−1. Define T∗ to be the collection of good cubes in T,
and S to be the union of all subcubes of side length ` that are contained in the cubes of T∗ but which are
disjoint from B. The relation between `, M and N implies that for every I ∈ T∗,

|I ∩ B| ≤ Mn+1 N−n#(B)`n
≤ C M (n+1)vN n(v−2)`m

≤ M−1 N−n,

which justifies the size conclusion for S. �

4. Proof of Theorems 1.1 and 1.2

We present the construction of the set E in Theorem 1.1 in complete detail. The construction for
Theorem 1.2 is similar. The small variations needed for this have been discussed in Section 4C.
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4A. A sequence of differential operators. We will need to define a sequence of privileged derivatives in
order to prove Theorem 1.1. For η and rq as in the statement of Theorem 1.1, let αq be a v-dimensional
multi-index with |αq | = rq such that ∂αq fq/∂xαq is nonvanishing everywhere on [0, η]. Here ∂β/∂xβ

denotes, following standard convention, the differential operator ∂β1+···+βv/∂xβ1
1 · · · ∂xβvv of order |β| =

β1+ · · · = βv , if β = (β1, . . . , βv). We now define for each q a finite sequence of privileged differential
operators of diminishing order

Dk
q =

∂αqk

∂xαqk
, 0≤ k ≤ rq . (4-1)

Here αq,rq = αq , and αq,k−1 is obtained by reducing the largest entry of αqk by 1 and leaving the others
unchanged. If there are multiple entries of αqk with the largest value, we pick any one. Clearly |αqk | = k.

4B. Construction of E. The construction is of Cantor type with a certain memory-retaining feature
inspired by the constructions of Keleti [1999; 2008]. This distinctive feature is the existence of an
accompanying queue that is, on one hand, generated by the construction and on the other, contributes to
it. More precisely, the j-th iteration of the construction is predicated on the j-th member of the queue;
at the same time the j-th step also adds a large number of new members to the queue, which become
significant at a later stage.

Step 0: At the initializing step, we set for k = 1, . . . , v,

Ik[0] =
[
(k− 1)

η

v
,

kη
v

]
, E0 = {I1[0], . . . , Iv[0]}, M0 =

v

η
.

Letting 60 denote the collection of injective mappings from {1, . . . , v− 1} into {1, . . . , v}, we define an
ordered queue

Q0 = {(1,m, Iσ [0]) : 0≤ m ≤ r1− 1, σ ∈60},

where

Iσ [0] = (Iσ(1)[0], . . . , Iσ(v−1)[0]).

The ordering in Q0 is as follows: Viewing 60 as a collection of (v−1)-tuples with values from {1, . . . , v},
we first endow 60 with the lexicographic ordering, writing 60 = {σ1 < σ2 < · · · }. Then (1,m, Iσr [0])
precedes (1,m′, Iσr ′

[0]) in the list Q0 if one of the following scenarios holds: (a) r < r ′, no matter what
m,m′ might be, or (b) r = r ′ and m > m′.

Step 1: Consider the first member of Q0, which is (1, r1− 1, Iσ1[0]). Recalling the definition (4-1), we
proceed to verify the hypotheses of Proposition 3.1, with

f = Dr1−1
1 f1, (Ti : i 6= v)= Iσ1[0], M = M0.

Here i0 = i0(1) is the unique index in {1, 2, . . . , v} such that ∂ f/∂xi0 = Dr1
1 f1, which is nonzero on

[0, η]. The set Tv will be the complement in [0, η] of
⋃

i {Ti : i 6= v}. The conclusion of Proposition 3.1
therefore holds for some small constant d0 = c1(M0,T) > 0 and for arbitrarily large integers N1 obeying
the divisibility criteria of the proposition. We choose such an integer N1 large enough so that N1 > eM0/d0.
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Proposition 3.1 then ensures the existence of subsets Sj ⊂ Tj for 1≤ j ≤ v, each of which is a union of
intervals of length `1 = d0/N v−1

1 with

Dr1−1
1 f1(x) 6= 0 for x = (x1, . . . , xv) ∈ S1× · · ·× Sv.

These constitute the basic intervals for the first stage.
Let E1 = {I1[1], I2[1], . . . , IL1[1]} be an enumeration of the first-stage basic intervals, and 61 the

collection of injective mappings from {1, . . . , v− 1} to {1, . . . , L1}. We view an element of 61 as an
ordered (v−1)-tuple of distinct indices from {1, . . . , L1}. As before, 61 is arranged lexicographically. Set

Q′1 = {(q, k, Iσ [1]) : 1≤ q ≤ 2, 0≤ k ≤ rq − 1, σ ∈61},

with Iσ [1] = (Iσ(1)[1], . . . , Iσ(v−1)[1]). The list Q′1 is assigned the following ordering. An element of
the form (q, k, Iσ [1]) will precede (q ′, k ′, Iσ ′[1]) if one of the following conditions holds:

(a) σ < σ ′ (irrespective of the relative values of q, q ′, k, k ′), or

(b) σ = σ ′, q < q ′ (irrespective of the relative values of k, k ′), or

(c) σ = σ ′, q = q ′ and k > k ′.

The list Q′1 is appended to Q0 to arrive at the updated queue Q1 at the end of the first step.

The general step: In general, at the end of step j , we have the following quantities:

• The j-th iterate of the construction E j , which is the union of the j-th level basic intervals of length
`j = dj−1/N v−1

j . Here dj is a sequence of small constants obtained as c1 from repeated applications of
Proposition 3.1 and depending on the collection of functions { fq : q ≤ j}. In particular, dj only depends
on parameters involved in the first j steps of the construction. The sequence Nj is chosen to be rapidly
increasing. For instance, choosing

Nj+1 > exp
[ j∏

k=1

(
Nk

dk

)R ]
for all j ≥ 1 (4-2)

and some fixed large constant R would suffice.

• The collection of the j-th level basic intervals that constitute E j , which we denote by

Ej = {I1[ j], I2[ j], . . . , IL j [ j]}.

• The updated queue Qj =Qj−1 ∪Q′j , with

Q′j = {(q, k, Iσ [ j]) : 1≤ q ≤ j + 1, 0≤ k ≤ rq − 1, σ ∈6j }.

Here 6j is the collection of all injective maps from {1, . . . , v− 1} to {1, . . . , L j }, which is viewed as
the collection of all (v−1)-dimensional vectors with distinct entries taking values in {1, . . . , L j } and
endowed with the lexicographical order. The new list Q′j is ordered in the same way as described in
Step 1 and appended to Qj−1. Notice that the number of members in the list Qj is much larger than j .
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We also know that Dk
q fq(x) is nonzero for certain choices of k, q , and x with k ≤ rq − 1. Specifically,

given any tuple of the form (q, k, I) that appears among the first j members of the list Qj , the construction
yields that

|Dk
q fq(x)|> 0 if xi ∈ E j ∩ Ii for i 6= v, xv ∈ E j \ (I1 ∪ · · · ∪ Iv−1). (4-3)

Here the (v−1)-tuple of intervals I has been labelled as I = (Ii : i 6= v). We will continue to use this
notation for the remainder of this subsection.

At step j + 1, we refer to the ( j+1)-th entry of the queue Qj , which we denote by (q0, k0, I). Set i0 to
be the distinguished index such that

∂

∂xi0

[Dk0
q0

fq0] = Dk0+1
q0

fq0 .

Two cases can occur, depending on whether k0 is maximal for the given q0 or not. If it is, that means
k0 = rq0 − 1 for some 1≤ q0 ≤ j + 1. We want to apply Proposition 3.1 with M−1

= `j , the index i0 as
described in the paragraph above, and

f = D
rq0−1
q0 fq0, Ti =

{
E j ∩ Ii if i 6= v,
E j \

⋃
i 6=v Ti if i = v.

(4-4)

In this case, the nonvanishing derivative condition required for the application of Proposition 3.1 is
ensured by the hypothesis of Theorem 1.1.

The other possibility is when k0 < rq0 − 1. Given the specified ordering on Qj , we conclude that
(q0, k0+ 1, I) must be the j-th member of Qj , and hence, by the induction hypothesis, (4-3) holds with
q = q0 and k = k0+ 1. We can now apply Proposition 3.1 with f = Dk0

q0 fq0 , M−1
= `j , and the same

choices of i0 and T1, . . . , Tv as in (4-4) above.
In either case, we obtain a collection Ej+1 of ( j+1)-th level basic cubes of length `j+1 = dj/N v−1

j+1 ,
the union of which is E j+1, and for which (4-3) holds with q = q0, k = k0 and j replaced by j + 1. This
completes the induction.

The set E is now defined as E =
⋂
∞

j=1 E j . We will establish shortly that E meets the requirements of
Theorem 1.1.

4C. Modifications to the construction of E for Theorem 1.2. The main distinction for Theorem 1.2 is
that we only need to consider the first derivative D fq of fq , so there is no need for the higher-order
differential operators Dk

q , and hence no need for distinguished indices i0. What this means is that the
elements of the queue Q′j are of the form (q, Iσ [ j]), where q ranges from 1 to j and Iσ is a tuple of
cubes instead of intervals, and one needs to appeal to Proposition 3.4 instead of Proposition 3.1. The
number of subcubes of [0, η]nv at the initializing step needs to be chosen large enough, so that their side
lengths do not exceed M−1

0 , as specified in the hypotheses of Proposition 3.4. This is simply to ensure
that Proposition 3.4 is applicable. The small parameters dj and large parameters Nj are still assumed to
obey a relation of the form (4-2), with the constant R possibly depending on v, n,m. The side length `j

of a j-th level basic cube is now
`j = dj−1 N−n(v−1)/m

j . (4-5)
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From this point onward, no distinction will be made between Theorem 1.1 and the m = 1, n = 1 case
of Theorem 1.2. The computation of the Hausdorff and Minkowski dimensions of the set E in these two
cases proceeds in exactly the same manner.

4D. Nonexistence of solutions. Fix any q ≥ 1, and a tuple x = (x1, . . . , xv) of distinct points in E. Since
`j → 0, the minimum separation between the points x1, . . . , xv exceeds `j for some j . In other words,
there exists a step j ≥ q in the construction of E where these points lie in distinct basic intervals (in the
case of Theorem 1.1) or cubes (in the case of Theorem 1.2) of that step. Suppose that I∗ = (I ∗1 , . . . , I ∗v−1)

is the tuple of j -th stage basic intervals such that xi ∈ I ∗i for 1≤ i ≤ v−1 and xv ∈ E j \ (I ∗1 ∪ · · ·∪ I ∗v−1).
Then the tuple (q, 0, I∗) (or (q, I∗) in the case of Theorem 1.2) belongs to the list Qj . Suppose that it is
the j0-th member of Qj , j0� j . This tuple then plays a decisive role at the j0-th step of the construction,
at the end of which we obtain (either from Proposition 3.1 or 3.4) that fq does not vanish on

∏v
i=1 E j0∩ I ∗i .

Since x lies in this set, we are done.

4E. Hausdorff dimension of E. Frostman’s lemma dictates that the Hausdorff dimension of a Borel
set E is the supremum value of α > 0 for which one can find a probability measure supported on E with
supx,r µ(B(x; r))/rα <∞, where B(x; r) denotes a ball centred at x of radius r . Keeping in mind that
any ball is coverable by a fixed number of cubes, we aim to construct a probability measure µ on E with
the property that for every ε > 0, there exists Cε > 0 such that

µ(I )≤ Cεl(I )m/(v−1)−ε for all cubes I. (4-6)

Here l(I ) denotes the side length of I.
Let us recall that Ej denotes the collection of all basic cubes with side length `j at step j of the

construction. Decomposing each cube in Ej into equal subcubes of length 1/Nj+1, we denote by Fj+1 the
resulting collection of subcubes that contain a cube from Ej+1. Let Fj+1 be the union of the cubes in Fj+1.
We define a sequence of measures νj+1 and µj supported respectively on Fj+1 and E j as follows. The
measure µ0 is the uniform measure on [0, η]n . Given µj , the measure νj+1 will be supported on Fj+1 and
will be defined by evenly splitting the measure µj of each cube in Ej among its children in Fj+1. Given νj ,
the measure µj will be supported on E j and will be defined by evenly splitting the measure νj of each
cube in Fj among its children in Ej . It follows from the mass distribution principle that the measures µj

have a weak limit µ. We claim that µ obeys the desired requirement (4-6).
The proof of the claim rests on the following proposition, which describes the mass distribution on the

basic cubes of the construction.

Proposition 4.1. Let K ∈ Ej , J ∈ Fj+1 with J ⊂ K. Then:

(a) µ(K )/|K | ≤ µ(J )/|J | ≤ 2µ(K )/|K |.

(b) µ(J )≤ Mj |J |, where Mj =
∏ j

k=1 2(`k Nk)
−n.

Proof. We first prove part (a). Each K ∈ Ej decomposes into (`j Nj+1)
n subcubes of side length 1/Nj+1.

Propositions 3.1 and 3.4 assert that at least a (1−1/M)-fraction of these subcubes contain a cube from
Ej+1 and hence lie in Fj+1. The number of descendants J ∈ Fj+1 of a given cube K ∈ Ej is therefore
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at most (`j Nj+1)
n
= |K |/|J | and at least 1

2(`j Nj+1)
n
= |K |/(2|J |). Since µ(K ) is evenly distributed

among such J, part (a) follows.
We prove part (b) by applying part (a) iteratively. Suppose that J is the cube in Fj that contains K.

Then
µ(J )
|J |
≤ 2

µ(K )
|K |

≤ 2
µ(J )
|K |
=

2|J |
|K |

µ(J )

|J |
=

2
(`j Nj )n

µ(J )

|J |
. �

We are now ready to apply Proposition 4.1 to prove (4-6). Suppose that I is a cube with side length
between `j+1 and `j . There are two possibilities: either 1/Nj+1 ≤ l(I )≤ `j or `j+1 ≤ l(I ) < 1/Nj+1.

In the first case I can be covered by at most C |I |N n
j+1 cubes of side length 1/Nj+1, all of which could

be in Fj+1. If J is a generic member of Fj+1, we obtain from Proposition 4.1 that

µ(I )≤ C |I |N n
j+1µ(J )≤ C |I |N n

j+1 Mj |J | ≤ C Mj |I |

≤ C
2Mj−1

(`j Nj )n
|I | ≤ C Mj−1d−m/(v−1)

j−1 `
m/(v−1)−n
j |I | ≤ Cε`

m/(v−1)−n−ε
j |I | ≤ Cεl(I )m/(v−1)−ε.

Here the penultimate inequality follows from the relation (4-5) and the rapid growth condition (4-2) .
Let us turn to the complementary case, when `j+1 ≤ l(I )≤ N−1

j+1. If µ(I ) > 0, the cube I intersects at
least one cube J in Fj+1 in which case it is contained in the union of at most 3n

− 1 cubes of the same
dimension adjacent to it. Proposition 4.1 then yields

µ(I )≤Cnµ(J )≤Cn Mj |J | =Cn Mj N−n
j+1=Cn Mj d

−m/(v−1)
j `

m/(v−1)
j+1 ≤Cε`

m/(v−1)−ε
j+1 ≤Cεl(I )m/(v−1)−ε,

applying (4-2) as before at the penultimate stage. This establishes the claim (4-6).

4F. Minkowski dimension of E. In order to establish the full Minkowski dimension of E, we show that
for any ε > 0, there exists cε > 0 such that

N`(E)≥ cε`−n+ε for any 0< `� 1. (4-7)

Here N`(A) denotes the `-covering number of a Borel set A, i.e., the smallest number of closed cubes of
side length ` required to cover A. Given 0< `� 1, we first fix the index j such that `j+1 ≤ ` < `j . As
before, we study two cases.

4F1. Case 1. If ` ∈ [`j+1, 1/Nj+1), we select I ∈ Ej of side length `j to be one of the “special cubes”
for step j + 1; i.e.,

I ⊆ Ti0( j+1) for Theorem 1.1,
I ⊆ Tv[ j + 1] for Theorem 1.2.

(4-8)

Here i0( j + 1) ∈ {1, . . . , v} denotes the preferred index at step j + 1 of the construction, based on which
Proposition 3.1 is applied. On the other hand, Tv[ j + 1] denotes the choice of Tv at the ( j+1)-th step for
the purpose of applying Proposition 3.4. In either case, I ∈ Ej can be partitioned into (`j Nj+1)

n subcubes
of side length 1/Nj+1. It follows from (3-4) and (3-17) in Propositions 3.1 and 3.4 that at least half of
these subcubes lie in Fj+1. Further, the conclusions (3-5) and (3-16) of the propositions say that for
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each J ∈ Fj+1, J ⊂ I ,

|J ∩ E j+1| ≥

{
dj N−1

j+1 for Theorem 1.1,
1
2 N−n

j+1 for Theorem 1.2,

so that combining the two
|J ∩ E j+1| ≥ dj N−n

j+1 for any n. (4-9)

Let Q` be a collection of cubes of side length ` that cover I ∩ E, with #(Q`)=N`(I ∩ E). Given any
Q ∈Q`, let Q∗ denote the axis-parallel cube with the same centre as Q, but side length 4`

√
n. Our main

claim is that
I ∩ E j+1 =

⋃
{J ∩ E j+1 : J ⊆ I, J ∈ Fj+1} (4-10)

⊆

⋃
{Q∗ : Q ∈Q`},

(4-11)

so that
|I ∩ E j+1| ≤ #(Q`)(4

√
n`)n. (4-12)

Assuming the claim for now, the proof of (4-7) proceeds as follows,

N`(E)≥N`(I ∩ E)= #(Q`)≥ cn
|I ∩ E j+1|

`n ≥ cn

∑
J

{
|J ∩ E j+1|

`n : J ⊆ I, J ∈ Fj+1

}

≥
cn

`n ×
(`j Nj+1)

n

2
× dj N−n

j+1 = cn
dj`

n
j

2`n ≥ cε,n`−n+ε .

Let us pause for a moment to explain the steps above. The second inequality in the sequence follows
from (4-12) with cn = (4

√
n)−n. The third inequality uses (4-10) and the disjointness of the cubes J ; the

fourth follows from (4-9) and the counting argument for #(Fj+1) preceding it. The final inequality is a
consequence of the rapid growth condition (4-2) and the assumption `≤ 1/Nj+1. Together they imply
that for any ε > 0, there is a constant cε > 0 such that dj`

n
j ≥ cεN−εj+1 ≥ cε`ε .

Proof of the claim. It remains to verify (4-10)–(4-12). The equality in (4-10) is part of the definitions
of Ej and Fj+1. The estimate (4-12) is an easy consequence of (4-11). To establish (4-11), pick any
x ∈ I ∩ E j+1. Since E j+1 is by definition a union of the cubes in Ej+1, there must exist a basic interval
I ′ ∈ Ej+1 containing x . The set I ′ ∩ E is nonempty by construction, so we pick an element y in this set.
Then |x − y| ≤ diam(I ′) =

√
n`j+1. Since y ∈ I ∩ E, there must be a cube Q y ∈ Q` containing y; let

c(Q y) denote the centre of Q y . The assumption `≥ `j+1 gives that

|x − c(Q y)| ≤ |x − y| + |y− c(Q y)| ≤
√

n`j+1+
1
2`
√

n ≤ 2`
√

n.

This means that x ∈ Q∗y , as desired. �

4F2. Case 2. In the second case, where ` ∈ [1/Nj+1, `j ), the analysis is similar, with minor variations in
numerology. Since ` is larger, we need to start from a coarser scale. Pick a cube I ∈ Ej−1 that is “special”
for the j-th step, in the sense that (4-8) holds with j replaced by j − 1. As before, we decompose I into
cubes J ∈ Fj ; the number of such cubes J is at least 1

2(`j−1 Nj )
n . Let Q` again denote a covering of



1104 ROBERT FRASER AND MALABIKA PRAMANIK

I ∩ E by `-cubes, with #(Q`)=N`(I ∩ E). Set Fj to be the union of the intervals in Fj . This time, we
will need the following analogues of (4-10)–(4-12), to be proven shortly:

I ∩ Fj+1 =
⋃
{J ∩ Fj+1 : J ⊆ I, J ∈ Fj } ⊆

⋃
{Q∗ : Q ∈Q`}, (4-13)

so that
|I ∩ Fj+1| ≤ #(Q`)(4

√
n`)n. (4-14)

Further,
|J ∩ Fj+1| ≥

1
2 dj−1 N−n

j for each J ∈ Fj , J ⊆ I. (4-15)

Assuming these, an argument analogous to the previous case leads to

N`(E)≥N`(E ∩ I )= #(Q`)≥ cn`
−n
|I ∩ Fj+1|

≥ cn`
−n
∑
{|J ∩ Fj+1| : J ⊆ I, J ∈ Fj }

≥ cn`
−n 1

2(`j−1 Nj )
n
×

1
2 dj−1 N−n

j = cn
dj−1`

n
j−1

4`n ≥ cε,n`−n+ε .

The second inequality in the sequence above uses (4-14), and the fourth uses (4-15). The last step uses
the assumption ` < `j , which implies in view of (4-2) that

`ε < `εj < c−1
ε dj−1`

n
j−1 for every ε > 0.

Proof of the claim. Returning to the claims surrounding I ∩ Fj+1, we briefly comment on (4-13) and
(4-15), whose proofs constitute the only points of departure from the previous case. Let us start with
(4-13). For any x ∈ I ∩ Fj+1, we focus on a cube J ′ ∈ Fj+1 such that x ∈ J ′. Choosing y ∈ J ′ ∩ E and
Q y ∈Q` containing y, we see that |x − y| ≤ diam(J ′)=

√
n/Nj+1. Keeping in mind that ` ≥ 1/Nj+1,

one obtains

|x − c(Q y)| ≤ |x − y| + |y− c(Q y)| ≤

√
n

Nj+1
+ `
√

n ≤ 2`
√

n,

where c(Q y) denotes the centre of Q y , as before. This in turn implies (4-13).
To prove (4-15), let us fix J ∈ Fj , J ⊆ I , and observe that J ∩ E j is a union of basic `j -cubes. The

special choice of I ∈ Ej−1 dictates that (4-9) holds with j replaced by j − 1; i.e., |J ∩ E j | ≥ dj−1 N−n
j .

Thus, the number of basic `j -cubes in J ∩ E j at the j -th level is at least dj−1 N−n
j /`n

j . At step j +1, each
j-th level basic cube contributes at least 1

2(`j Nj+1)
n subcubes of side length 1/Nj+1 to Fj+1, according

to Propositions 3.1 and 3.4. Combining all of this yields,

|J ∩ Fj+1| ≥
dj−1 N−n

j

`n
j
×

1
2(`j Nj+1)

n
× N−n

j+1 =
1
2 dj−1 N−n

j ,

as claimed. �

5. Zero sets of functions with a common linearization

We now turn our attention to the proof of Theorem 1.3. Not surprisingly in view of the other results in
this paper, it is also predicated on an iterative algorithm, which has been encapsulated in Proposition 5.2
below. The following lemma provides a preparatory step.
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Let α ∈ Rv be as in the statement of Theorem 1.3, and let C be a nonempty proper subset of the
index set {1, 2, . . . , v}. Let δ > 0. Consider disjoint intervals [a1, b1] and [a2, b2] of length λ, with
a1 < b1 ≤ a2 < b2. We define two quantities εleft and εright depending on C, a1, b1, a2, b2 and δ as follows:

εleft := sup
{
ε :

∣∣∣∣ v∑
j=1

αj z j

∣∣∣∣≥ δλ for
z j ∈ [a1, a1+ ελ] for all j /∈ C,
z j ∈ [a2, a2+ ελ] for all j ∈ C

}
, (5-1)

εright := sup
{
ε :

∣∣∣∣ v∑
j=1

αj z j

∣∣∣∣≥ δλ for
z j ∈ [a1, a1+ ελ] for all j /∈ C,
z j ∈ [b2− ελ, b2] for all j ∈ C

}
. (5-2)

Lemma 5.1. Given any α∈Rv as in Theorem 1.3, there exists δ0>0 depending only on α such that for any
λ> 0 and any choice of intervals I1 = [a1, b1] and I2 = [a2, b2] of equal length λ with a1 < b1 ≤ a2 < b2,
the following property holds. For any δ < δ0, there exists ε0 = ε0(C, δ) (not depending on a1, a2, b1, b2,
or λ) such that max(εleft, εright)≥ ε0.

In particular, there exist subintervals Î1 ⊆ I1 and Î2 ⊆ I2 with |̂I1| = |̂I2| = ε0λ and dist(̂I1, Î2)≥

(1− ε0)λ such that

|α · x | ≥ δλ for all x ∈ Rv such that
{

x j ∈ Î1 for j 6∈ C,
x j ∈ Î2 for j ∈ C.

Proof. Set g(y)=
∑

j αj yj , and consider g(z∗), where z∗= (z∗1, . . . , z∗v) is defined to be the v-dimensional
vector with z∗j = a1 if j /∈ C and z∗j = a2 if j ∈ C. Setting C∗ =

∑
j |αj |, we note that

|g(z)− g(z∗)| ≤ C∗ελ whenever |z j − z∗j | ≤ ελ, 1≤ j ≤ v. (5-3)

If |g(z∗)|> (δ+ ε0C∗)λ, then (5-3) implies that |g(z)| ≥ δλ for any z as in (5-1). Therefore εleft ≥ ε0,
and the conclusion of the lemma holds with Î1 = [a1, a1 + ε0λ], Î2 = [a2, a2 + ε0λ]. Otherwise,
let ẑ = (ẑ1, . . . , ẑv) be the v-dimensional vector with ẑ j = a1 if j /∈ C and ẑ j = b2 if j ∈ C. Then
g(ẑ)= g(z∗)+α · (ẑ− z∗)= g(z∗)± (b2− a2)C0 = g(z∗)± λC0, where C0 =

∣∣∑
j∈C αj

∣∣> 0. Thus, for
z as in (5-2), we obtain the estimate

|g(z)| ≥ |g(ẑ)| − |α · (z− ẑ)| ≥ |C0λ± g(z∗)| −C∗ε0λ

≥ C0λ− (δ+C∗ε0)λ−C∗ε0λ≥ C0λ− (δ+ 2ε0C∗)λ,

which is greater than or equal to δλ provided that δ < 1
2C0 =: δ0 and ε0 ≤ (C0 − 2δ)/(2C∗). One

has εright ≥ ε0 for this choice of ε0, with the conclusion of the lemma verified for Î1 = [a1, a1+ ε0λ],
Î2 = [b2− ε0λ, b2]. �

Remarks. (a) Let us consider the example α = (1,−2, 1), which corresponds to a linear function g
that picks out three-term arithmetic progressions. Choose C to be {3}. For x1, x2 ∈ [a1, a1 + ελ] and
x3 ∈ [a2, a2+ ελ], it is easy to see that

x1− 2x2+ x3 ≥ a1+ a2− 2(a1+ ελ)= a2− a1− 2ελ≥ (1− 2ε)λ.
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We can thus take εleft =
1
2(1− δ). On the other hand, if x1, x2 ∈ [a1, a1+ ελ] and x3 ∈ [b2− ελ, b2], then

x1− 2x2+ x3 ≥ a1+ b2− ελ− 2(a1+ ελ)= b2− a1− 3ελ≥ (2− 3ε)λ.

Thus εright =
1
3(2− δ). The point is that, in the above lemma, it is possible in certain instances for both

εleft and εright to be bounded from below. The lemma guarantees that at least one of them will be.

(b) It is important to be aware that the above proof does not necessarily give the best possible ε0 for
a given δ because the signs of the components of α are not taken into account. When dealing with a
specific α, it is often possible to improve the bound on ε0 given above.

Proposition 5.2. Given any α ∈ Rv obeying the hypotheses of Theorem 1.3, there exist fixed small
constants 0< ε < 3

4 and δ(ε) > 0 depending on α with the following property.
Let I be any interval say of length `, and let I1 and I2 denote the two halves of I. Then one can find

subintervals I ′1 and I ′2 of I1 and I2 of length ε` such that

|α · x | ≥ δ` for every sufficiently small δ ≤ δ(ε),

and for any choice of x1, x2, . . . , xv ∈ I ′1 ∪ I ′2, not all of which are in I ′i for a single i = 1, 2. The
subintervals I ′1 and I ′2 are separated by at least 1

4`.

Proof. Let {C1,C2, . . . ,CR} be an enumeration of all nonempty, proper subsets of {1, 2, . . . , v}. Given
any x = (x1, . . . , xv) such that x j ∈ I for all j but not all the x j lie in a single I1 or I2, there exists
1≤ m ≤ R such that j ∈ Cm if and only if x j ∈ I2. Set

Cm :=

∣∣∣∣∑
j∈Cm

αj

∣∣∣∣ and δ0 =
1
2 min(C1, . . . ,CR),

so that Lemma 5.1 can be applied for any δ < δ0 and any C= Cm , 1≤ m ≤ R.
Starting with I1 and I2, we apply Lemma 5.1 with C= C1, I1 = I1, I2 = I2 and λ= 1

2`. For a small
but fixed δ1 > 0 with 2δ1 ≤ δ0, this gives a constant ε1 = ε0(C1, 2δ1) > 0 and two subintervals I (1)1 ⊆ I1

and I (1)2 ⊆ I2 of length 1
2ε1` obeying the conclusions of the lemma. Without loss of generality, we can

assume that ε1 ≤
1
2 , so that

dist(I (1)1 , I (1)2 )≥ (1− ε1)
1
2`≥

1
4`. (5-4)

For 2≤ k ≤ R, we continue to apply Lemma 5.1 recursively, with the same value δ1, and

C= Ck, I1 = I (k−1)
1 , I2 = I (k−1)

2 , λ= 1
2ε1 · · · εk−1`.

At the end of the k-th step, this yields a constant εk = ε0(Ck, 2δ) and subintervals I (k)1 ⊆ I (k−1)
1 ⊆ I1,

I (k)2 ⊆ I (k−1)
2 ⊆ I2 each of length 1

2ε1 · · · εk` such that for any m ≤ k,

|α · x | ≥ δ1ε1 · · · εk−1` for all x such that
{

x j ∈ I (k)1 for j 6∈ Cm,

x j ∈ I (k)2 for j ∈ Cm .

The conclusion of the proposition then holds for

I ′1 = I (R)1 , I ′2 = I (R)2 , ε =
1
2

R∏
k=1

εk and δ(ε)= δ1ε1 · · · εR−1.
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The separation condition is an easy consequence of the one in Lemma 5.1. Specifically, since I ′i ⊆ I (1)i
for i = 1, 2, the relation (5-4) yields

dist(I ′1, I ′2)≥ dist(I (1)1 , I (1)2 )≥ 1
4`. �

Remarks. (a) Tracking the parameters from Lemma 5.1, we find that the constant ε claimed in
Proposition 5.2 obeys the estimate

ε ≥
1
2

R∏
m=1

(Cm − 2δ1)

(2C∗)
, (5-5)

where recall

C∗ =
v∑

j=1

|αj |

and Cm and δ1 are as in the proof of the proposition.

(b) In view of the remarks made at the end of Lemma 5.1, it is not surprising that the bound on ε in
the preceding inequality is not always optimal. Returning to the example α = (1,−2, 1), we leave the
reader to verify that given any small δ > 0 and I = [a, a+ `], the choice I ′1 =

[
a, a+ 1

3(1− δ)`
]

and
I ′2 =

[
a+ 1

3(2+ δ)`, a+ `
]

meets the requirements of the proposition. Thus for this α, the best choice of
ε is at least 1

3(1− δ), which is much better than the one provided by the proof.

5A. Proof of Theorem 1.3. Take ε and δ = δ(ε) to be the positive α-dependent constants given by
Proposition 5.2. Recall that g(x1, . . . , xv)=

∑v
j=1 αj x j .

Start with E0= [0, η] where 0<η� 1 is chosen sufficiently small so as to ensure 2Kvη< δ. Applying
Proposition 5.2 with I = E0, we arrive at subintervals I ′1 = J1 ⊆

[
0, 1

2η
]

and I ′2 = J2 ⊆
[ 1

2η, η
]

of
length `1 = εη that obey its conclusions. Let E1 = J1 ∪ J2 with |J1| = |J2| = `1. In general, if E j is a
disjoint union of 2 j basic intervals of length `j = ε

jη, then at step j + 1, we apply Proposition 5.2 to
each such interval to find two subintervals of length `j+1 = ε`j = ε

j+1η and separated by a length of at
least 1

4`j , which form the basic intervals of E j+1.
Defining E =

⋂
∞

j=1 E j , we now show that f (x1, . . . , xv) 6= 0 if x1, . . . , xv are not all identical and f is
of the form (1-3). For any such choice of x1, . . . , xv , there exists a largest index j such that x1, x2, . . . , xv
all lie in a basic interval I at step j . This means that if I ′1 and I ′2 are the two subintervals of I generated
by Proposition 5.2, then x1, . . . , xv lie in I ′1 ∪ I ′2, but not all of them lie in a single I ′i . If I is of length `j ,
it follows from Proposition 5.2 that |g(x)| ≥ δ`j . But | f (x)− g(x)| ≤ Kv`2

j according to (1-4), so this
implies | f (x)| ≥ 1

2δ`j for `j < η.
We recall that the ( j+1)-th step of the construction generates exactly two children from each parent,

and these are separated by at least 1
4`j . It now follows from standard results, see for instance [Falconer

2003, Example 4.6, page 64], that the Hausdorff dimension of E is bounded from below by

lim
j→∞

log(2 j )

− log(2`j/4)
= lim

j→∞

log(2 j )

− log(ε jη/2)
=

log 2
− log ε

.

This establishes the existence of the set claimed by the theorem, with c(α)= log 2/ log(1/ε), where ε is
at least as large as the bound given in (5-5). �
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Remark. We return to the example α = (1,−2, 1) that we have been following across this section to
show that the avoiding set in this instance can be chosen to have Hausdorff dimension log 2/ log 3. We
have referred to this fact in certain examples occurring in Sections 2A2 and 2A3.

Choose a slowly decreasing sequence δj = 1/( j +C) for some fixed large constant C . We have seen,
in part (b) of the remark on page 1107, that ε(δj )= εj can be chosen as 1

3(1− δj ). Let us now use the
same Cantor construction as in the proof given above, but using the parameter δj at step j instead of a
fixed δ. The following consequences are immediate:

`j = ε1 · · ·εjη so that `j ≤
Cη3− j

j+C
,

|g(x)|≥δj`j and | f (x)−g(x)|≤Kv`2
j so that | f (x)|≥(δj−Kv`j )`j≥

(
1

j+C
−

KvηC
j+C

3− j
)
`j>0,

where x = (x1, . . . , xv) is as in the second paragraph of Section 5A. This proves the nonexistence of
nontrivial zeros of f . Further, the Hausdorff dimension is bounded from below by

lim
j→∞

log(2 j )

− log(2`j/4)
= lim

j→∞

log(2 j )

− log
(
3− jη

∏ j
k=1(1− δk)/2

) = log 2
log 3

,

establishing the claim.

Appendix

We collect here the proofs of a few technical facts mentioned in Section 2.

Lemma A.1. Given a C2 parameterization γ : [0, η] → Rn of a curve 0, let us recall the definition of the
signed distance function d from (2-3). Set F(t1, t2)= d(γ (t1), γ (t2)). Then:

(a) F is differentiable on [0, η]2.

(b) If γ is the arclength parameterization, i.e., |γ ′(t)| ≡ 1, then

∂F
∂t1
(t, t)= 1, ∂F

∂t2
(t, t)=−1.

Proof. Since differentiability is obvious for t1 6= t2, it suffices to verify it when t1 = t2 = t . We consider
two cases. If h ≥ k, then

F(t + h, t + k)= d(γ (t + h), γ (t + k))= |γ (t + h)− γ (t + k)|

= |γ ′(t)||h− k| + O(h2
+ k2)

= |γ ′(t)|(h− k)+ O(h2
+ k2).

On the other hand if h < k, we have

d(γ (t + h), γ (t + k))=−|γ (t + h)− γ (t + k)|

= −|γ ′(t)||h− k| + O(h2
+ k2)

= |γ ′(t)|(h− k)+ O(h2
+ k2).
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This establishes the first part of the lemma, with

∂F
∂t1
(t, t)= |γ ′(t)|, ∂F

∂t2
(t, t)=−|γ ′(t)|.

The second part is now obvious. �

Lemma A.2. Let γ : [0, η] → Rn be an injective parameterization of a C2 curve with

γ ′(0) 6= 0 and sup{‖γ ′′(t)‖ : t ∈ [0, η]} ≤ K .

If η is sufficiently small depending on |γ ′(0)| and K, then there are no isosceles triangles γ (t1), γ (t2),
γ (t3) with 0≤ t1 < t2 < t3 ≤ η whose sides of equal length meet at γ (t1) or at γ (t3).

Proof. Since d has already been shown to be differentiable in the previous lemma, we compute

d(γ (t3), γ (t1))− d(γ (t2), γ (t1))=
∫ t3

t2

∂

∂t
d(γ (t), γ (t1))=

∫ t3

t2
γ ′(t) ·

γ (t)− γ (t1)
|γ (t)− γ (t1)|

. (A-1)

For t, t1 ∈ [0, η] with t > t1, we obtain

γ (t)− γ (t1)
|γ (t)− γ (t1)|

=
[γ ′(t1)(t − t1)+ O(K (t − t1)2)]
|[γ ′(t1)(t − t1)+ O(K (t − t1)2)]|

=
γ ′(t1)+ O(Kη)
|γ ′(t1)+ O(Kη)|

=
γ ′(0)+ O(Kη)
|γ ′(0)+ O(Kη)|

=
γ ′(0)
|γ ′(0)|

[
1+ O

(
Kη
|γ ′(0)|

)]
.

Using this, the integrand in (A-1) may be estimated as follows:

γ ′(t) ·
γ (t)− γ (t1)
|γ (t)− γ (t1)|

= [γ ′(0)+ O(Kη)] ·
γ ′(0)
|γ ′(0)|

[
1+ O

(
Kη
|γ ′(0)|

)]
≥

1
2 |γ
′(0)| 6= 0,

provided Kη is small relative to |γ ′(0)|. This shows that

d(γ (t3), γ (t1))− d(γ (t2), γ (t1))≥ 1
2 |γ
′(0)|(t3− t2) 6= 0,

proving that γ (t1) cannot be the vertex at the intersection of two equal sides in an isosceles triangle. A
similar argument works for γ (t3). �

Lemma A.3. Given a curve 0 as described in Section 2B, let us recall the function f = ( f1, f2) given
by (2-4) and (2-5). Then D f (t) is of full rank at every point t = (t1, t2, t3, t4) with distinct entries and
f (t)= 0.

Proof. To prove that D f has rank 2 on the zero set of f , it suffices to show that the 2× 2 submatrix with
entries ∂ fi/∂tj with i = 1, 2 and j = 1, 4 is nonsingular. We will do this by proving that ∂ f1/∂tj are
nonzero and of the same sign for j = 1, 4, whereas for ∂ f2/∂tj the signs are reversed.

We begin by computing ∂ f1/∂tj on the zero set of f1, where

γ2(t3)− γ2(t2)
γ1(t3)− γ1(t2)

=
γ2(t4)− γ2(t1)
γ1(t4)− γ1(t1)

. (A-2)



1110 ROBERT FRASER AND MALABIKA PRAMANIK

Feeding this into the formula for the derivatives, we find that

∂ f1

∂t1
=−γ ′1(t1)(γ2(t3)− γ2(t2))+ γ ′2(t1)(γ1(t3)− γ1(t2))= γ ′1(t1)(γ1(t3)− γ1(t2))F1,

∂ f1

∂t4
= γ ′1(t4)(γ2(t3)− γ2(t2))− γ ′2(t4)(γ1(t3)− γ1(t2))= γ ′1(t4)(γ1(t3)− γ1(t2))F4,

where

F1 =−
γ2(t4)− γ2(t1)
γ1(t4)− γ1(t1)

+
γ ′2(t1)
γ ′1(t1)

and F4 =
γ2(t4)− γ2(t1)
γ1(t4)− γ1(t1)

−
γ ′2(t4)
γ ′1(t4)

.

Since γ ′1 is assumed to be of fixed positive sign on [0, η], we have

sign
(
∂ f1

∂t1
·
∂ f1

∂t4

)
= sign(F1 F4).

But γ ′2(tj )/γ
′

1(tj ) is the slope of the tangent to the curve 0 at the point tj , whereas (γ2(t4)− γ2(t1))/
(γ1(t4)− γ1(t1)) is the slope of the chord joining t1 and t4. Since we have assumed that 0 is strictly
convex, this yields that F1 and F4 are of the same sign, which is the desired conclusion.

We turn to ∂ f2/∂tj for j = 1, 4. Let us observe that f2 is nonzero if t4− t3 and t2− t1 have opposite
signs. In what follows, we will therefore restrict to the case where (t4− t3)(t2− t1) > 0. We find that

∂

∂t4
d(γ (t4), γ (t3))= γ ′(t4) ·

γ (t4)− γ (t3)
|γ (t4)− γ (t3)|

,

so
∂ f2

∂t4
= γ ′(t4) ·

γ (t4)− γ (t3)
|γ (t4)− γ (t3)|

d(γ (t2), γ (t1)).

Similarly
∂ f2

∂t1
=−γ ′(t1) ·

γ (t2)− γ (t1)
|γ (t2)− γ (t1)|

d(γ (t4), γ (t3)).

In the regime where (t4 − t3)(t2 − t1) > 0, these two quantities are of opposite signs, completing the
proof. �
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