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NONAUTONOMOUS MAXIMAL Lp-REGULARITY UNDER
FRACTIONAL SOBOLEV REGULARITY IN TIME

STEPHAN FACKLER

We prove nonautonomous maximal Lp-regularity results on UMD spaces, replacing the common Hölder
assumption by a weaker fractional Sobolev regularity in time. This generalizes recent Hilbert space results
by Dier and Zacher. In particular, on Lq.�/ we obtain maximal Lp-regularity for p � 2 and elliptic
operators in divergence form with uniform VMO-modulus in space and W ˛;p-regularity for ˛ > 1

2
in

time.

1. Introduction

In this work we improve some known results on maximal Lp-regularity of nonautonomous abstract
Cauchy problems with time-dependent domains of the form�

Pu.t/CA.t/u.t/D f .t/;

u.0/D u0:
(NACP)

In particular, we obtain new stronger results if the operators A.t/ are elliptic operators in divergence form.
Let us right away start with the definition.

Definition 1.1. For a family .A.t//t2Œ0;T � of closed linear operators on some Banach space X the
problem (NACP) has maximal Lp-regularity if for all f 2 Lp.Œ0; T �IX/ and all initial values u0 in the
real interpolation space .D.A.0//; X/1=p;p there exists a unique solution u 2 Lp.Œ0; T �IX/ satisfying
u.t/ 2D.A.t// for almost all t 2 Œ0; T � as well as Pu;A. � /u. � / 2Lp.Œ0; T �IX/ and if there exists C > 0
such that one has the maximal regularity a priori estimate

kukW 1;p.Œ0;T �IX/CkA. � /u. � /kLp.Œ0;T �IX/ � C.kf kLp.Œ0;T �IX/Cku0k.D.A.0//;X/1=p;p /:

Observe thatW 1;p.Œ0; T �IX/ ,!C.Œ0; T �IX/ and therefore the initial condition makes sense. Maximal
regularity results have profound applications to nonlinear parabolic problems, as we will exemplify in
Section 8.

We now give a summary of the previously known results on maximal Lp-regularity. The autonomous
case A.t/D A is well understood. Here, maximal Lp-regularity holds for one p 2 .1;1/ if and only if
it holds for all p 2 .1;1/. Further, maximal Lp-regularity for u0D 0 implies maximal Lp-regularity for
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all u0 2D.A;X/1=p;p. On Hilbert spaces an operator A has maximal Lp-regularity if and only if �A
generates an analytic semigroup. In non-Hilbert spaces, not every generator of an analytic semigroup has
maximal regularity; see [Kalton and Lancien 2000; Fackler 2014]. Here, an additional R-boundedness
assumption is needed. We refer to Section 3, [Denk et al. 2003] and [Kunstmann and Weis 2004] for details.

Let us come to the nonautonomous case. Here the best understood setting is that of nonautonomous
forms on Hilbert spaces. For this let V;H be two complex Hilbert spaces with a dense embedding
V ,!H. A mapping a W Œ0; T ��V �V ! C is called a coercive, bounded sesquilinear form if a.t; � ; � /
is sesquilinear for all t 2 Œ0; T � and if there exist ˛;M > 0 such that for all u; v 2 V

Re a.t; u; u/� ˛kuk2V ;

ja.t; u; v/j �MkukV kvkV :
(1-1)

This induces operators A.t/ W V ! V 0. We denote their parts in H by A.t/. It has been shown in [Haak
and Ouhabaz 2015] that the operators .A.t//t2Œ0;T � satisfy maximal Lp-regularity for all p 2 .1;1/ if
t 7!A.t/ is ˛-Hölder continuous for some ˛ > 1

2
. For ˛ > 1

2
and maximal L2-regularity this has been

improved to the fractional Sobolev regularity A 2 PW ˛;2.Œ0; T �IB.V; V 0// [Dier and Zacher 2017]. If one
considers elliptic divergence form operators

L.t/D� div.A.t/r � /

for coefficients A.t/ D .aij .t// realized by the form method (see Section 7), this translates into the
regularity of the mappings t 7! aij .t; � / 2 L

1, i.e., aij 2 PW ˛;2.Œ0; T �IL1/ for some ˛ > 1
2

. The less
regularity one needs here, the more applicable the results are to nonlinear problems in the form of a
priori estimates. In the special case of elliptic operators in divergence form, some more refined results
are available; see [Auscher and Egert 2016; Fackler 2017b]. However, all results have in common
that one needs some differentiability in time of order at least 1

2
. This is no coincidence. Recent

counterexamples to Lions’ problem by the author [Fackler 2017a] show that maximal Lp-regularity can
fail if A 2 C 1=2.Œ0; T �IB.V; V 0//. For more details see the recent survey on maximal L2-regularity of
nonautonomous forms [Arendt et al. 2017]. Dealing with nonlinear problems, one needs some form of
Sobolev embedding to carry out the usual iteration procedure. In higher dimensional cases maximal
regularity on X DL2.�/ is too weak for the embeddings to hold. Therefore one is interested in maximal
regularity on X D Lq.�/ for q big enough.

Nonautonomous maximal Lp-regularity on Banach spaces is far more involved. The classical works
for time-dependent domains are [Hieber and Monniaux 2000a; 2000b]. Although the general method used
there is applicable on Banach spaces, maximal Lp-regularity was first only obtained on Hilbert spaces in
a nonform setting [Hieber and Monniaux 2000a] and in [Hieber and Monniaux 2000b] extrapolated to
X D Lq.�/ for smooth bounded domains � and elliptic operators assuming aij 2 C ˛.Œ0; T �IC 1.�//
for some ˛ > 1

2
. A true generalization of this approach to Banach spaces was obtained in [Portal and

Štrkalj 2006] using the emerging concept of R-boundedness. Already the results in [Hieber and Monniaux
2000b] indicate a fundamental new issue in the non-Hilbert space setting. Whereas on L2 the coefficients
only need to be measurable in space, on Lq all known results require some regularity in space. Recently,
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the author lowered the needed regularity in space and showed maximal Lp-regularity on Lq.�/ for
elliptic operators in divergence form if the coefficients have a uniform VMO-modulus [Fackler 2015].

The aim of this work is to generalize the results in both [Dier and Zacher 2017] and [Fackler 2015].
We show maximal Lp-regularity on UMD Banach spaces assuming fractional Sobolev regularity as in
[Dier and Zacher 2017]. To give a flavor of the proved results let us formulate a particular consequence
of our general result for elliptic operators in divergence form.

Theorem 1.2. Let��Rn be a bounded C 1-domain, T >0 and aij 2L1.Œ0; T ���/ for i; j D 1; : : : ; n.
Assume further that there exists ı > 0 such that for almost all .t; x/ 2 Œ0; T � �� and all � 2 Cn the
ellipticity estimate

Re
nX

i;jD1

aij .t; x/�i N�j � ıj�j
2

holds and that for t 2 Œ0; T � the functions x 7!aij .t; x/ lie in VMO.�/ with uniform VMO-modulus. Then
for all q 2 .1;1/ the nonautonomous problem (NACP) associated to the operators .� divAr�/t2Œ0;T �
has maximal Lp-regularity

(a) for p 2 .1; 2� if aij 2 PW 1=2C";2.Œ0; T �IL1.�// for some " > 0,

(b) for p 2 Œ2;1/ if aij 2 PW 1=2C";p.Œ0; T �IL1.�// for some " > 0.

Here, the divergence form operators on Lq.�/ are compatible with the operator on L2.�/ obtained
via the form method (for a precise definition see Section 7). Note that in comparison to [Hieber and
Monniaux 2000b], the regularity in space is lowered from C 1.�/ to VMO.�/ and the time regularity
C 1=2C" is replaced by PW 1=2C";p in the case p � 2. This is the lower time regularity we aim for and
leads to more refined results in nonlinear PDE, as we illustrate in Section 8. The general result makes use
of some more technical definitions and we postpone its formulation to Section 3.

The obtained results are even new in the Hilbert space case as [Dier and Zacher 2017] fully relies on
Hilbert space methods and therefore only deals with the case p D 2. Our result is the first improvement
of the time regularity on non-Hilbert spaces since the classical work [Acquistapace and Terreni 1987].
Since we establish maximal Lp-regularity for elliptic operators on Lq.�/ for q > 2, we obtain existence
results for strong solutions of quasilinear parabolic equations in divergence form. Such results cannot be
obtained with maximal regularity results on Hilbert spaces. We further show that our results are optimal
in the sense that in general we cannot relax the regularity to some ˛ � 1

2
.

Note that, in contrast, elliptic operators in nondivergence form have time-independent domains and
one can therefore obtain maximal Lp-regularity only assuming the time dependence to be measurable;
see for example [Gallarati and Veraar 2017b; Dong and Kim 2016] for recent results. However, note that
in correspondence with our results, one still needs a variant of VMO-regularity in space.

This work is structured as follows. The first sections introduce the necessary mathematical background.
The main result and the strategy of proof is then presented in Section 3. The proof of the main result is
given in Section 6. As a consequence, we obtain in Theorem 7.4 the stated result for elliptic operators.
Section 8 uses this result to establish strong solutions of quasilinear elliptic equations. We discuss the
optimality of our results in Section 9.



1146 STEPHAN FACKLER

2. Extrapolation spaces and the fundamental identity

Using ideas established in [Acquistapace and Terreni 1987] and their previous works, we show that maximal
Lp-regularity solutions of (NACP) satisfy a certain integral equation. It turns out that this equation is better
approachable with analytic tools. We recall some basic definitions first and introduce the fundamental
concept of extrapolation spaces. For ' 2 .0; �/ we denote by†' WD fz 2Cnf0g W jarg zj<'g the sector of
angle '. If � does not lie in the spectrum �.A/�C of A, we write R.�;A/D .��A/�1 for its resolvent.

Definition 2.1. A linear operator A W D.A/! X on a Banach space X is sectorial of angle ' if the
spectrum �.A/ of A is contained in †' for some ' 2

�
0; �
2

�
and if

sup
� 62†'

.j�jC 1/kR.�;A/k<1:

A family of linear operators Ai WD.Ai /! X for i 2 I is uniformly sectorial if �.Ai /�†' for some
' 2

�
0; �
2

�
and all i 2 I and if there exists C > 0 with

sup
� 62†'

.j�jC 1/kR.�;Ai /k � C for all i 2 I:

Recall that a closed operator A is sectorial if and only if �A generates an exponentially stable analytic
semigroup [Engel and Nagel 2000, Chapter II, Section 4 and Chapter V, Section I]. In particular, A is
invertible.

In the following we need interpolation and extrapolation spaces associated to a sectorial operator A on
some Banach space X , a fully developed theory carefully presented in [Amann 1995]. We only discuss
spaces associated to the complex interpolation method Œ � ; � �� [Bergh and Löfström 1976, Chapter 4]. The
results to be obtained hold for several other, but not all, scales of interpolation and extrapolation spaces.
As a unified treatment would lead to a more abstract presentation, we focus on this important setting.

We define X1;A D D.A/ endowed with the norm x 7! kAxk and X�1;A as the completion of X
with respect to the norm x 7! kA�1xk. For � 2 .0; 1/ we further let X�;A D ŒX;X1;A�� and X��;A D
ŒX;X�1;A�� . The operator A W X1;A ! X and its extension A�1 W X ! X�1;A are isometries. By
interpolation, for � 2 .0; 1/ the part A�� of A�1 in X��;A is an isometry A�� WX1��;A!X��;A. The
operator A�1 is sectorial on X�1;A with �.A�1/ D �.A/ and satisfies the same sectorial estimates as
A. By interpolation, the same holds for the operators A�� on X��;A. Considering duality, if X is
reflexive, one has .X�;A/0 'X 0��;A and .A� /0 D A0�� with respect to the pairing induced by h � ; � iX;X 0 .
Extrapolation spaces allow us to define a weaker notion of solution for (NACP).

Proposition 2.2. Let .A.t//t2Œ0;T � for T > 0 be uniformly sectorial operators on some Banach space
X . If u is a maximal Lp-regularity solution of (NACP) for the initial value u0 D 0 in the sense of
Definition 1.1, then for every fixed t 2 Œ0; T � one has in X�1;A.t/

u.t/D

Z t

0

e�.t�s/A�1.t/.A�1.t/�A.s//u.s/ dsC

Z t

0

e�.t�s/A.t/f .s/ ds

DW

Z t

0

K1.t; s/u.s/ dsC

Z t

0

K2.t; s/f .s/ ds DW .S1u/.t/C .S2f /.t/: (2-1)
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Proof. Fix t 2 .0; T /. Consider v W Œ0; t �!X given by v.s/D e�.t�s/A.t/u.s/. Then v is differentiable
in X almost everywhere and for almost every s 2 .0; t/ we have

Pv.s/D A.t/e�.t�s/A.t/u.s/C e�.t�s/A.t/ Pu.s/

D e�.t�s/A�1.t/.A�1.t/�A.s//u.s/C e
�.t�s/A.t/f .s/:

Notice that .A�1.t/�A.s//u.s/ 2 X�1;A.t/ for almost every s 2 .0; T /. The fundamental theorem of
calculus gives

v.t/D v.0/C

Z t

0

Pv.s/ ds:

Inserting the explicit terms for v and Pv and using u.0/D 0 yields (2-1). �

3. Formulation of the main result and strategy of proof

The crucial assumption we make is that on a certain extrapolation space the operators get independent of t .
For concrete differential operators endowed with some boundary condition this is often satisfied. For this
we refer to [Triebel 1978, Section 4.3] for operators with smooth coefficients and to the results originating
from the positive solution of the Kato square root problem in [Auscher et al. 2002] for operators with
rough coefficients (see also Section 7).

Definition 3.1. For � 2 Œ0; 1� a family .A.t//t2Œ0;T � of sectorial operators on some Banach space X is
called �-stable if there exists a Banach space X�;A and K � 0 such that for all t 2 Œ0; T � the spaces
X�;A.t/ and X�;A agree as vector spaces and

K�1kxk�;A � kxk�;A.t/ �Kkxk�;A for all x 2X�;A (3-1)

and if the same also holds for some space X��1;A and all spaces X��1;A.t/.

Note that .A.t//t2Œ0;T � is 1-stable if and only if the domains D.A.t// agree for all t 2 Œ0; T � and
their norms are uniformly equivalent. Further, as already mentioned in the Introduction, even for the
autonomous case A.t/D A, maximal Lp-regularity may fail on non-Hilbert spaces. This has to do with
particular features of harmonic analysis on Banach spaces. In particular, it is by now well-understood that
the classical multiplier results only hold in the vector-valued setting if one makes additional assumptions
both on the Banach space and the multiplier. We now introduce the necessary background.

Definition 3.2. A Banach space X is called a UMD space if for one, or by Hörmander’s condition all
p 2 .1;1/, the vector-valued Hilbert transform

.Hf /.x/D lim
"#0

Z
jt j�"

f .x� t /

t
dt

initially defined on C1c .R
nIX/ extends to a bounded operator Lp.RIX/! Lp.RIX/.

In different words, on UMD spaces one of the most basic Fourier multipliers m.�/ D 1R>0.�/ is
bounded. Only on those spaces a reasonable multiplier theory can be developed. For our purposes it is
sufficient to know that Hilbert and Lp-spaces for p 2 .1;1/ are UMD spaces and that all UMD spaces
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are reflexive. For detailed information on UMD spaces we refer to [Rubio de Francia 1986; Burkholder
2001], whereas more on R-boundedness, to be defined now, can be found in [Denk et al. 2003; Kunstmann
and Weis 2004].

Definition 3.3. Let X and Y be Banach spaces. A subset T �B.X; Y / is called R-bounded if there exists
a constant C � 0 such that for all n 2N, T1; : : : ; Tn 2 T , x1; : : : ; xn 2X and all independent identically
distributed random variables "1; : : : ; "n on some probability space .�;†;P/ with P."k D˙1/D

1
2

one
has

E

 nX
kD1

"kTkxk


Y

� CE

 nX
kD1

"kxk


X

:

The smallest constant C � 0 for which this holds is denoted by R.T /. Further, we define RadX as the
closure in L1.�;†;PIX/ of finite sums of the form

Pn
kD1 "kxk .

Note that the definition of R-boundedness depends only on the distribution of the random variables
and is therefore independent of the probability space. The same holds for the definition of RadX up to
canonical isomorphisms. We write RX!Y to indicate between which spaces the mapping is considered if
it is not clear from the context. Every R-bounded set is bounded in B.X; Y /. If both X D Y are Hilbert
spaces, then the converse holds as well. Further, Kahane’s contraction principle sates that fz Id W jzj � 1g
has R-bound at most 2 on every Banach space. By a celebrated theorem of Weis [2001], on a UMD space
the autonomous problem A.t/D A has maximal Lp-regularity for one and then for all p 2 .1;1/ if and
only if A is R-sectorial, the R-boundedness analogue of sectorial operators, up to shifts.

Definition 3.4. A linear operator A WD.A/!X on a Banach space X is called R-sectorial of angle ' if
�.A/ of A is contained in †' for some ' 2

�
0; �
2

�
and if

Rf.j�jC 1/R.�;A/ W � 62†'g<1:

A family of linear operators Ai WD.Ai /!X for i 2 I is uniformly R-sectorial if �.Ai /�†' for some
' 2

�
0; �
2

�
and all i 2 I and if there exists C > 0 with

Rf.j�jC 1/R.�;Ai / W � 62†'g � C for all i 2 I:

The main point in our maximal Lp-regularity result is that it only assumes the operators to lie in a
fractional Sobolev space.

Definition 3.5. Let X be a Banach space, p 2 .1;1/ and ˛ 2 .0; 1/. A Bochner-measurable function
f W Œ0; T �!X lies in the homogeneous fractional Sobolev space PW ˛;p.Œ0; T �IX/ provided

kf k PW ˛;p.Œ0;T �IX/
D

�Z T

0

Z T

0

kf .t/�f .s/k
p
X

jt � sj1C˛p
ds dt

�1=p
<1:

The inhomogeneous Sobolev space W ˛;p.Œ0; T �IX/ is the space of all f 2 Lp.Œ0; T �IX/ such that
kf k PW ˛;p.Œ0;T �IX/

<1.
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We remark that there exist equivalent definitions of fractional Sobolev spaces based on Littlewood–
Paley decompositions [Amann 2000, Section 3, (3.5)]. The usual embedding results for Sobolev spaces
into Hölder spaces hold: for ˛ 2 .0; 1/ and p 2 .1;1/ with ˛ > 1

p
one has W ˛;p.Œ0; T �IX/ ,!

C ˛�1=p.Œ0; T �IX/ [Simon 1990, Corollary 26]. We are now ready to present our general maximal
Lp-regularity result that in particular implies Theorem 1.2 presented in the Introduction.

Theorem 3.6. For T > 0 and � 2 .0; 1� let .A.t//t2Œ0;T � be a �-stable family of uniformly R-sectorial
operators on some UMD space X with fractional regularity A�1 2 PW ˛;q.Œ0; T �IB.X�;A; X��1;A//. Then
the nonautonomous problem (NACP) has maximal Lp-regularity

(a) for p 2
�
1; 1
1��

�
, q D 1

1��
and ˛ > 1� � ,

(b) for p 2
�
1
1��

;1
�
, q D p and ˛ > 1� � .

Let us compare the above conditions with the Acquistapace–Terreni condition [1987] used in [Hieber
and Monniaux 2000b; Portal and Štrkalj 2006]. Apart from some uniform R-boundedness assumptions
they require that there exist constants 0�  < ˇ � 1 such that for all t; s 2 Œ0; T � and all � 62†' for some
' 2

�
0; �
2

�
one has the estimateA.t/R.�;A.t//.A.t/�1�A.s/�1/B.X/ . jt � sjˇ

1Cj�j1�
:

In principle, no regularity assumptions on the domain like �-stability are made. However, in concrete
examples some stability is usually necessary and one chooses  D 1� � to verify the estimate; see for
example [Fackler 2015]. Then one requires ˇ > 1� � and one arrives at the usual Hölder regularity
assumptions. However, for example for elliptic operators with irregular coefficients substantial effort is
needed to verify the above inequality from the assumed Hölder regularity on the coefficients. Exactly this
is done in [Fackler 2015], where as intermediate steps reformulations of the problem that are close to —
but more general than — our setting are used.

The improvement of C ˛- to PW ˛;p-regularity has direct consequences to applications of maximal
regularity to nonlinear PDE. As one can see in Theorem 8.1 and Remark 8.2 our result gives existence
results under more relaxed regularity assumptions.

Strategy of proof. In Section 4, we first show existence and uniqueness of less regular integrated solutions
than is needed for maximalLp-regularity. This can be done only assuming some continuity on the operators
A.t/ on the extrapolation spaces. Afterwards in Section 5, we show that we can bootstrap the regularity
of these solutions if the operators are ˛-Hölder continuous for some arbitrarily small exponent ˛ > 0.
With respect to this we note that our assumptions on the fractional Sobolev space are in a such way that
the fractional Sobolev space embeds into the space of ˛-Hölder continuous functions for some ˛ > 0.
After that we show in Section 6 that this higher regularity of the solutions implies maximal Lp-regularity.

4. Existence and uniqueness of integrated solutions

In this section we show that under certain assumptions a unique solution of (2-1) exists. We next show by
interpolation that, given an R-sectorial operator, one obtains corresponding R-boundedness estimates on
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the induced extrapolation spaces. The following result is not new [Haak et al. 2006, Lemma 6.9]; we give
a proof for the sake of completeness. For its proof we use the fact that for an interpolation couple .X; Y /
of UMD spaces we have by [Kaip and Saal 2012, Proposition 3.14]

ŒRad.X/;Rad.Y /�� D Rad.ŒX; Y �� /: (4-1)

Here one uses the facts that ŒL1.�;†;PIX/;L1.�;†;PIY /�� D L1.�;†;PI ŒX; Y �� / and that the
Rad.X/-spaces are complemented in the vector-valued L1.�;†;PIX/-spaces if X is UMD.

Lemma 4.1. Let A WD.A/! X be an R-sectorial operator on a UMD space X . Then for all �2; �1 2
Œ�1; 1� with �2 > �1 and �2� �1 � 1 one has with ' as in Definition 3.4 and with constants independent
of A

RX�1;A!X�2;Af.1Cj�j/1�.�2��1/R.�;A/ W � 62†'g.RX!Xf.j�jC 1/R.�;A/ W � 62†'g:

Proof. The assertion holds for �1 D �2 2 f�1; 1g. By complex interpolation and (4-1) this extends to
�1 D �2 2 Œ�1; 1�. Since AR.�;A/D �R.�;A/� Id, one has for all �1 2 Œ�1; 0�

RX�1;A!X�1C1;AfR.�;A/ W � 62†'g<1:

For the case of general �2 with �2��1�1 consider for given n2N, �1; : : : ; �n 62�†' and x1; : : : ; xn2X
the mapping S D fz 2 C W Re z 2 Œ0; 1�g ! Rad.X�1;A/CRad.X�1C1;A/ given by

Tz W
nX
kD1

"kxk 7!

nX
kD1

"k.1C�k/
zR.�k;�A/xk :

The mapping z 7! Tz is continuous on S and analytic in the interior of S and it follows from Kahane’s
contraction principle that the norms of Tit and T1Cit as operators in B.Rad.X�1;A/;Rad.X�1C1;A// and
B.Rad.X�1;A/;Rad.X�1;A// are bounded by ejt j' up to a uniform constant. Hence, it follows from the
generalized Stein interpolation theorem [Voigt 1992] and (4-1) that for ˛ 2 .0; 1/

T˛ W Rad.X�1;A/! Rad.X�1C˛;A/;

which gives the statement by unwinding the definitions of R-boundedness. �

Remark 4.2. Curiously, the above result fails for the negative Laplacian and the real interpolation
method [Haak et al. 2006, Example 6.13]. Hence, this is one step where one cannot work with arbitrary
extrapolation spaces.

We establish the existence of a unique solution of (2-1) assuming Hölder regularity of arbitrarily low
order.

Definition 4.3. A function f W Œ0; T �!X with values in some Banach space X is ˛-Hölder continuous
for ˛2 .0; 1� if kf .t/�f .s/k�C jt�sj˛ for some C �0 and all t; s 2 Œ0; T �. We denote by C ˛.Œ0; T �IX/
the space of all such functions.

We are now ready to prove the existence of integrated solutions.
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Proposition 4.4. For T > 0 and � 2 .0; 1� let .A.t//t2Œ0;T � be a � -stable family of uniformly R-sectorial
operators on some UMD spaceX . Suppose there exist ˛2 .0; 1� withA�12C ˛.Œ0; T �IB.X�;A; X��1;A//.
Then for all p 2 .1;1/ and f 2 Lp.Œ0; T �IX/ there exists a unique solution u of the integral equation
(2-1) in Lp.Œ0; T �IX�;A/. Further, one has u 2W 1;p.Œ0; T �IX��1;A/\L

p.Œ0; T �IX�;A/,�
Pu.t/CA��1.t/u.t/D f .t/;

u.0/D 0;
(WNACP)

and kukLp.Œ0;T �IX�;A/ only depends on kf kLp.Œ0;T �IX��1;A/, T, ˛, � , K in (3-1) and the constants in the
Hölder and R-sectorial estimates.

Proof. First note that by the uniform sectorial estimates and the properties of extrapolation spaces we
have the uniform estimate

ke�.t�s/A�1.t/kB.X��1;A;X�;A/ . jt � sj
�1:

Using this together with the assumed Hölder regularity on A�1. � / we get

kK1.t; s/kB.X�;A;X�;A/ . jt � sj
˛�1: (4-2)

By Young’s inequality for convolutions we then have the norm estimate

kS1ukLp.Œ0;T �IX�;A/ �

Z T

0

s˛�1 dskukLp.Œ0;T �IX�;A/ D ˛
�1T ˛kukLp.Œ0;T �IX�;A/:

Let us show the uniqueness of solutions of (2-1) in Lp.Œ0; T �IX�;A/. Since the equation is linear, it
suffices to consider a solution with uD S1u. Now, for sufficiently small T0 we have kS1k< 1. Hence,
Id�S1 is invertible and consequently ujŒ0;T0� D 0. Using this information we see that (2-1) for t > T0
reduces to

u.t/D

Z t

T0

e�.t�s/A�1.t/.A�1.t/�A�1.s//u.s/ ds:

By the same argument as before we see that the operator defined by the right-hand side is bounded and
invertible on Lp.ŒT0; 2T0�IX�;A/. Hence, ujŒT0;2T0� D 0. Iterating this argument finitely many times
gives uD 0.

Since t 7! A��1 2 B.X�;A; X��1;A/ is a fortiori continuous, it follows from perturbation arguments
and Lemma 4.1 that (WNACP) has nonautonomous maximal Lp-regularity for all p 2 .1;1/; see [Prüss
and Schnaubelt 2001, Theorem 2.5; Arendt et al. 2007, Theorem 2.7]. This means there exists a unique
w 2 W 1;p.Œ0; T �IX��1;A/ \ L

p.Œ0; T �IX�;A/ satisfying (WNACP) and the corresponding maximal
Lp-regularity estimate. Using the same argument as in Proposition 2.2, we see that w satisfies (2-1). By
the uniqueness shown in the first part, we have w D u. �

5. Bootstrapping regularity

Again, assuming Hölder regularity of arbitrarily small order, we improve the regularity of the obtained
integrated solutions with the help of the following bootstrapping result.
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Proposition 5.1. For T > 0 and � 2 .0; 1� let .A.t//t2Œ0;T � be a �-stable family of uniformly sectorial
operators on some Banach space X satisfying A�1 2 C ˛.Œ0; T �IB.X�;A; X��1;A// for some ˛ 2 .0; 1�.
If either

(a) p 2
�
1
1��

;1
�

and q 2 .1;1�, or

(b) p D 1
1��

and q 2 .1;1/, or

(c) p 2
�
1; 1
1��

�
and q 2

�
1; p
1�p.1��/

�
,

then there exists Cpq > 0 depending only on T, K in (3-1) and the constants of the sectorial and
Hölder estimates such that for all solutions u 2 Lp.Œ0; T �IX�;A/ of (2-1) for some right-hand side
f 2 Lp.Œ0; T �IX/ one has

kukLq.Œ0;T �IX�;A/ � Cpq.kukLp.Œ0;T �IX�;A/Ckf kLp.Œ0;T �IX//:

Proof. By Young’s inequality for convolutions and the kernel estimate (4-2) we have for q; p; r 2 .1;1/
with 1

r
C

1
p
D 1C 1

q
the estimate�Z T

0

k.S1u/.t/k
q
X�;A

dt

�1=q
�

�Z T

0

�Z t

0

.t � s/˛�1ku.s/kX�;A ds

�q
dt

�1=q
. ks 7! s˛�1kLr;1

�Z T

0

ku.s/k
p
X�;A

ds

�1=p
:

The weak Lr norm is finite for r 2
�
1; 1
1�˛

�
. Hence, S1 is a bounded operator Lp.Œ0; T �IX�;A/!

Lq.Œ0; T �IX�;A/ for all p 2
�
1; 1
˛

�
and q 2

�
1; p
1�p˛

�
. If p > 1

˛
, then

k.S1u/.t/kX�;A �

�Z t

0

kK1.t; s/k
p0 ds

�1=p0�Z t

0

ku.s/k
p
X�;A

ds

�1=p
�

�Z t

0

jt � sjp
0.˛�1/ ds

�1=p0
kukLp.Œ0;T �IX�;A/:

Hence, S1 W Lp.Œ0; T �IX�;A/! L1.Œ0; T �IX�;A/ is bounded for p > 1
˛

.
Interpolating the analytic estimate

ke�.t�s/A.t/kB.X;D.A.t// . jt � sj�1

with the boundedness of the semigroups ke�.t�s/A.t/kB.X/ . 1, one sees that the kernel of S2 satisfies

kK2.t; s/kB.X;X�;A.t// D ke
�.t�s/A.t/

kB.X;X�;A.t// . jt � sj
��: (5-1)

Using Young’s inequality together with the kernel estimate (5-1) and �-stability, we obtain for p; q; r 2
.1;1/ with 1

r
C

1
p
D 1C 1

q
the estimate�Z T

0

k.S2f /.t/k
q
X�;A

dt

�1=q
.
�Z T

0

�Z t

0

.t � s/��kf .s/kX ds

�q
dt

�1=q
. ks 7! s��kLr;1

�Z T

0

kf .s/k
p
X ds

�1=p
:
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This time the Lr;1-norm is finite for r 2 .1; ��1�. Hence, S2 W Lp.Œ0; T �IX/! Lq.Œ0; T �IX�;A/ is
bounded for all p < 1

1��
and q 2

�
1; p
1�p.1��/

�
. Further, one has S2 WLp.Œ0; T �IX/!L1.Œ0; T �IX�;A/

for p > 1
1��

. For the stated result, we iterate the obtained regularity improvement finitely often to
bootstrap the regularity of u. �

6. Maximal regularity results under fractional Sobolev regularity

In this section we come to the heart of the proof. To the solution obtained in Proposition 4.4 we apply
A�1.t/ to both sides of (2-1). This gives A�1.t/u.t/D A�1.t/.S1u/.t/CA�1.t/.S2f /.t/. We show
that both summands lie in Lp.Œ0; T �IX/. The second summand requires some preliminary work. We
rely on the following Hölder continuity of the R-boundedness constant.

Lemma 6.1. For � 2 .0; 1� let .A.t//t2R be a � -stable family of uniformly R-sectorial operators on some
UMD space X . Suppose there exists ˛ 2 .0; 1� with A�1 2 C ˛.Œ0; T �IB.X�;A; X��1;A//. Then for all
k 2 N0 there exists a constant Ck > 0 depending only on K in (3-1) and the constants in the Hölder and
R-sectorial estimate of Definition 3.4 such that for all t; h 2 R

RX!X
�
.1Cj�j/k

�
@

@�

�k�
i�.R.i�; A.t C h//�R.i�; A.t///

�
W � 2 R

�
� Ckjhj

˛:

Proof. We first establish the case k D 0. For all t; h 2 R the resolvent identity gives

R.i�; A.t C h//�R.i�; A.t//DR.i�; A�1.t C h//ŒA�1.t/�A�1.t C h/�R.i�; A.t//:

By the assumed Hölder regularity on A�1 and Lemma 4.1 we get for all t; h 2 R

RX!Xfi�.R.i�; A.t C h//�R.i�; A.t///g

.RX��1;A!Xf.1Cj�j/�R.i�; A�1.t C h//gkA�1.t C h/�A�1.t/kB.X�;A;X��1;A/
�RX!X�;Af.1Cj�j/1��R.i�; A.t//g

. jhj˛:

For the case k � 1 notice that the map S W z 7! R.z;A.t C h// � R.z;A.t// 2 B.X/ is analytic on
the complement of some shifted sector †' C " and that the above estimate holds there by the same
argument. It follows from the Cauchy integral representation of derivatives [Kunstmann and Weis 2004,
Example 2.16] that for S.z/D z.R.z; A.t C h//�R.z;A.t///

R
n
.1Cjzj/k

�
d

dz

�k
S.z/ W z 62†'

o
.R

n
S
�
i�C

"

2

�
W � 2 R

o
. jhj˛: �

Proposition 6.2. For T > 0 and � 2 .0; 1� let .A.t//t2R be a � -stable family of uniformly R-sectorial op-
erators on some UMD space X . Suppose there exists ˛ 2 .0; 1� with A�1 2 C ˛.Œ0; T �IB.X�;A; X��1;A//.
Then A. � /S2 W Lp.Œ0; T �IX/! Lp.Œ0; T �IX/ is bounded for all p 2 .1;1/ and its norm only depends
on p, K in (3-1) and the constants in the Hölder and R-sectorial estimates.



1154 STEPHAN FACKLER

Proof. It is shown in [Hieber and Monniaux 2000b, p. 1053; Fackler 2015, Section 2.4.1] that the
boundedness of A. � /S2 follows from the boundedness of the pseudodifferential operator

. ySf /.t/D

Z 1
�1

a.t; �/ Of .�/e2�it� d�

for the operator-valued symbol a W R�R! B.X/ given by

a.t; �/D

8<:
i�R.i�; A.0//; t < 0;

i�R.i�; A.t//; t 2 Œ0; T �;

i�R.i�; A.T //; t > T:

Such operators are well-studied and understood. Applying [Hytönen and Portal 2008, Theorem 17] and
[Hytönen and Portal 2008, Remark 20] (the dependence on the constants is not explicitly stated) in the
one-dimensional and one-parameter case, we see that S W Lp.Œ0; T �IX/! Lp.Œ0; T �IX/ is bounded for
all p 2 .1;1/ provided

R
�
.1Cj�j/k

�
@

@�

�k�
a.t C h; �/� a.t; �/

�
W � 2 R

�
. jhj˛

holds for some ˛ 2 .0; 1� and all k D 0; 1; 2. This is the R-analogue of the condition considered by
Yamazaki [1986] and therefore called an R-Yamazaki symbol. The fact that a is indeed an R-Yamazaki
symbol has been verified in Lemma 6.1. �

The next proposition shows that in many cases it is sufficient to show maximal Lp-regularity for initial
value zero. This is well known in the autonomous case. The arguments have been used before; see for
example [Dier and Zacher 2017, Theorem 6.2].

Proposition 6.3. Let X be a Banach space, p 2 .1;1/, T > 0 and .A.t//t2Œ0;T � a family of uniformly
sectorial operators:

(a) Suppose that the nonautonomous operator .B.t//t2Œ0;TC1�,

B.t/D

�
A.0/ for t 2 Œ0; 1�;
A.t � 1/ for t 2 Œ1; T C 1�;

has maximal Lp-regularity for u0 D 0. Then .A.t//t2Œ0;T � has maximal Lp-regularity for all initial
values u0 2 .D.A.0//; X/1=p;p . Further, the maximal regularity estimate only additionally depends on a
constant controlled by the sectorial estimate for A.0/.

(b) Suppose additionally that for all t02.0;T � the nonautonomous problem associated to .Ct0.t//t2Œ0;t0C2�,
where

Ct0.t/D

8<:
A.0/ for t 2 Œ0; 1�;
A.t � 1/ for t 2 Œ1; 1C t0�;
A.t0/ for t 2 Œ1C t0; 2C t0�;

has maximal Lp-regularity for u0 D 0. Then the unique solution of (NACP) for .A.t//t2Œ0;T � satisfies
u.t/ 2 .D.A.t//; X/1=p;p for all t 2 Œ0; T � and u0 2 .D.A.0//; X/1=p;p.
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Proof. We start with the first part. By the characterization of real interpolation spaces via the trace
method [Lunardi 1995, Proposition 1.2.10] and a cut-off argument, there is some C > 0 such that for all
u0 2 .D.A.0//; X/1=p;p there exists v 2W 1;p.Œ0; 1�IX/\Lp.Œ0; 1�ID.A.0/// with v.0/D 0, v.1/Du0
and

kA.0/vkLp.Œ0;1�IX/CkPvkLp.Œ0;1�IX/ � Cku0k.D.A.0//;X/1=p;p :

For given f 2 Lp.Œ0; T �IX/ we define g 2 Lp.Œ0; T C 1�IX/ as

g.t/D

�
Pv.t/CA.0/v.t/ for t 2 Œ0; 1/;
f .t � 1/ for t 2 Œ1; T C 1�:

By assumption .B.t//t2Œ0;TC1� has maximal Lp-regularity for u0 D 0. We denote by w the unique
solution of (NACP) for .B.t//t2Œ0;TC1� with right-hand side g. By the uniqueness of mild solutions in the
autonomous case we have w D v on Œ0; 1�. In particular, we have w.1/D v.1/D u0. As a consequence
we see that u.t/D w.t C 1/ solves (NACP) for u.0/D w.1/D u0. Further,

kukW 1;p.Œ0;T �IX/CkA. � /u. � /kLp.Œ0;T �IX/ . kgkLp.Œ0;TC1�IX/
. kf kLp.Œ0;T �IX/Cku0k.D.A.0//;X/1=p;p :

For the uniqueness observe that a second solution Qu of (NACP) with right-hand side f and u.0/D u0
yields a solution z D . PvCA.0/v/1Œ0;1/C Qu. � � 1/1Œ1;t0C1/ of (NACP) for .B.t//t2Œ0;TC1� that agrees
with u. � � 1/ on Œ1; T C 1� by the uniqueness of solutions.

For the second part and fixed t0 2 .0; T � let z be the solution of (NACP) for .Ct0.t//t2Œ0;t0C2� and
the right-hand side Qg D g 1Œ0;t0C1�. Then z agrees with the solution w of the first part on Œ0; t0 C 1�
and solves the autonomous problem Pz.s/ C A.t0/z.s/ D 0 on Œt0 C 1; t0 C 2�. Since functions in
W 1;p.Œt0C 1; t0C 2�IX/\L

p.Œt0C 1; t0C 2�ID.A.t0/// take values in the corresponding trace spaces
[Amann 1995, Theorem III.4.10.2], we have u.t0/ 2 .D.A.t0//; X/1=p;p. �

We are now ready to prove our general maximal regularity result.

Theorem 6.4. For T > 0 and � 2 .0; 1� let .A.t//t2Œ0;T � be a �-stable family of uniformly R-sectorial
operators on some UMD space X with fractional regularity A�1 2 PW ˛;q.Œ0; T �IB.X�;A; X��1;A//. Then
the nonautonomous problem (NACP) has maximal Lp-regularity

(a) for p 2
�
1; 1
1��

�
, q D 1

1��
and ˛ > 1� � ,

(b) for p 2
�
1
1��

;1
�
, q D p and ˛ > 1� � .

In this case the unique maximal Lp-regularity solution u of (NACP) satisfies u.t/ 2 .D.A.t//; X/1=p;p
for all t 2 Œ0; T � and there exists a constant Cp > 0 with

kukW 1;p.Œ0;T �IX/CkA. � /u. � /kLp.Œ0;T �IX/ � C.kf kLp.Œ0;T �IX/Cku0k.D.A.0//;X/1=p;p /;

which only depends on T, ˛, � , K in (3-1), kA�1k PW ˛;q.Œ0;T �IB.X�;A;X��1;A//
and the constants in the

R-sectorial estimates.
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Proof. First note that under the made regularity assumptions, we haveA�12C  .Œ0; T �IB.X�;A; X��1;A//
for some  > 0. Further, let u 2W 1;p.Œ0; T �IX��1;A/\L

p.Œ0; T �IX�;A/ be the unique solution of (2-1)
given by Proposition 4.4. We show that u has the higher regularity A�1.t/u.t/ 2 Lp.Œ0; T �IX/. For this
we use the decomposition of A�1.t/u.t/ given by (2-1).

Let us start with the integrability ofA�1.t/.S1u/.t/. We will omit subindices in the following estimates.
For g 2 Lp

0

.Œ0; T �IX 0/ we have, where A0.t/ is the adjoint,Z T

0

Z t

0

˝
g.t/; A.t/e�.t�s/A.t/.A.t/�A.s//u.s/

˛
X 0;X

ds dt

D

Z T

0

Z t

0

˝
A0.t/e�.t�s/A

0.t/g.t/; .A.t/�A.s//u.s/
˛
X 0
1��;A0.t/

;X��1;A.t/
ds dt: (6-1)

We now distinguish between the cases p 2
�
1
1��

;1
�
, p D 1

1��
and p 2

�
1; 1
1��

�
. In the first case we

know from Proposition 5.1 that u 2 L1.Œ0; T �IX�;A/. Hence, up to constants (6-1) is dominated by

�Z T

0

Z T

0

k.A.t/�A.s//u.s/k
p
X��1;A

jt�sj1Cp˛
ds dt

�1=p
�

�Z T

0

Z t

0

kA0.t/e�.t�s/A
0.t/g.t/k

p0

X1��;A0.t/
jt�sjp

0.1=pC˛/ds dt

�1=p0

. kAk PW ˛;pkukL1.Œ0;T �IX�;A/

�Z T

0

Z t

0

.t�s/p
0.1=pC˛C��2/dskg.t/k

p0

X 0 dt

�1=p0
:

The inner integral is finite because of the assumption ˛ > 1� � . Since g 2 Lp
0

.Œ0; T �IX 0/ is arbitrary,
we get A�1. � /S1u 2 Lp.Œ0; T �IX/. The case p D 1

1��
follows similarly, using u 2 Lq

0

.Œ0; T �IX�;A/

for some big q0 and the fact that the condition ˛ > 1� � leaves a little room. Let us come to the case
p 2

�
1; 1
1��

�
. Here Proposition 5.1 shows that u 2 Lp=.1�p.1��//.Œ0; T �IX�;A/. Hence, using Hölder’s

inequality, for ˇ > 0 the expression in (6-1) is dominated by

�Z T

0

Z T

0

kA.t/�A.s/k
1=.1��/

B.X�;A;X��1;A/

jt � sj1C˛.1��/
�1

ds dt

�1���Z T

0

Z t

0

.t � s/p
0.˛Cˇ�1/ dskg.t/k

p0

X 0 dt

�1=p0
�

�Z T

0

Z T

s

.t � s/�ˇp=.1�p.1��// dtku.s/k
p=.1�p.1��//
X�;A

ds

�1=p�.1��/
:

The last integral is finite for ˇ < � � 1
p0

. Since ˛ > 1� � , we can find ˇ 2
�
0; � � 1

p0

�
for which the

second integral is finite as well.
Further,A�1. � /.S2f /. � / lies inLp.Œ0; T �IX/ by Proposition 6.2. This shows that the solution satisfies

u.t/ 2 D.A.t// for almost all t 2 Œ0; T � and A. � /u. � / 2 Lp.Œ0; T �IX/. Since u solves (WNACP), it
follows that Pu 2 Lp.Œ0; T �IX/. This shows maximal Lp-regularity in the case u0 D 0. It remains to
verify the maximal regularity estimate. By the estimates obtained in the first part of the proof we have for
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some case-dependent q0 2 .p;1�

kA. � /u. � /kLp.Œ0;T �IX/ D kA�1. � /u. � /kLp.Œ0;T �IX/

� kA�1. � /.S1u/. � /kLp.Œ0;T �IX/CkA�1. � /.S2f /. � /kLp.Œ0;T �IX/

. kAk PW ˛;qkukLq0 .Œ0;T �IX�;A/Ckf kLp.Œ0;T �IX/

. Cpq0kAk PW ˛;q .kukLp.Œ0;T �IX�;A/Ckf kLp.Œ0;T �IX//Ckf kLp.Œ0;T �IX/

. Cpq0kAk PW ˛;qkf kLp.Œ0;T �IX/Ckf kLp.Œ0;T �IX/:

Here we have used the estimates obtained in the first part of the proof, Proposition 5.1 and Proposition 4.4
in the third, fourth and fifth lines respectively. Since u solves (NACP) and the operators .A.t//t2Œ0;T � are
uniformly sectorial, this implies the maximal regularity estimate for u0 D 0.

The case of general initial values u0 2 .D.A.0//; X/1=p;p follows from Proposition 6.3. Here we use
the fact that for q > ˛�1 functions in PW ˛;q can be extended with the same regularity by their values at
the endpoints [Dier and Zacher 2017, Proposition 7.8]. �

Remark 6.5. Compared to the result in [Portal and Štrkalj 2006] we need a weaker R-boundedness result.
Further, the time regularity is lowered to some fractional Sobolev space at the cost of more regularity on
the domain spaces. In order to obtain maximal Lp-regularity for all p 2 Œ.1��/�1;1/ our result requires
A�1 2

T
p2Œ.1��/�1;1/

S
">0
PW 1��C";p.Œ0; T �IB.X�;A; X��1;A//. This is slightly less restrictive than

the ˛-Hölder continuity for some ˛ > 1� � assumed usually.

For nonautonomous problems given by sesquilinear forms on Hilbert spaces one obtains by the same
line of thought the following improvement of [Dier and Zacher 2017], where only the case p D 2 was
treated. Let us shortly recall how the form setting is related to the general setting considered by us.
Given, as in (1-1), a coercive, bounded nonautonomous sesquilinear form on some Hilbert space V
one gets operators A.t/ W V ! V 0 with A.t/u D a.t; u; � /. Given a second Hilbert space with dense
embedding V ,!H and the associated triple V ,!H ,! V 0 one considers their restrictions A.t/ on H,
i.e., D.A.t//D fu 2 V WA.t/u 2H g. One then obtains an associated problem (NACP) for .A.t//t2Œ0;T �
on H. The spaces V and V 0 can be seen as replacements of X1=2;A and X�1=2;A. Hence, .A.t// is
1
2

-stable in some sense.

Corollary 6.6. Let V;H be Hilbert spaces with dense embedding V ,!H and let a W Œ0; T ��V �V !C

be a coercive, bounded nonautonomous sesquilinear form as in (1-1). Then the associated problem (NACP)
on H has maximal Lp-regularity

(a) for p 2 .1; 2� provided A 2 PW 1=2C";2.Œ0; T �IB.V; V 0// for some " > 0,

(b) for p 2 Œ2;1/ provided A 2 PW 1=2C";p.Œ0; T �IB.V; V 0// for some " > 0.

The constants in the maximal Lp-regularity estimate only depend on T, ", the constants ˛, M in (1-1)
and the fractional Sobolev norm of A.

Proof. Repeat the previous proof for X DH and replace X1=2;A and X�1=2;A with V and V 0. �
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Note that V and V 0 only agree with the complex interpolation spaces X1=2;A.t/ and X�1=2;A.t/ if the
operators A.t/ satisfy the so-called Kato square root property; see [Auscher 2002] for a short introduction
to this topic. However, this is not necessary to carry out the argument. In the UMD setting the case � D 1

2

is also of particular interest. We obtain the following corollary relevant for concrete applications (which
holds for other values of � as well).

Corollary 6.7. Let T > 0 and .A.t//t2Œ0;T � be uniformly sectorial on a UMD space X such that for some
! 2

�
0; �
2

�
and M > 0 the imaginary powers satisfy

kA.t/isk �Me!jsj

uniformly for all t 2 Œ0; T � and s 2 R. Further, suppose that there exist Banach spaces X1=2 and X�1=2
for which for all t 2 Œ0; T � the spaces D.A.t/1=2/ and D.A.t/�1=2/ agree with X1=2 and X�1=2 as
vector spaces and the respective norms are uniformly equivalent for some constant K > 0. Then the
nonautonomous Cauchy problem (NACP) for .A.t//t2Œ0;T � has maximal Lp-regularity

(a) for p 2 .1; 2� if A�1 2 PW 1=2C";2.Œ0; T �IB.X1=2; X�1=2// for some " > 0,

(b) for p 2 Œ2;1/ if A�1 2 PW 1=2C";p.Œ0; T �IB.X1=2; X�1=2// for some " > 0.

The constants in the maximal Lp-regularity estimates only depend on p, T, ", K in (3-1), M, !, the
fractional Sobolev norm of A�1 and the constants in the sectorial estimates.

Proof. Since the operators A.t/ have uniformly bounded imaginary powers, it follows from [Denk et al.
2003, Theorem 4.5] that for ' 2 .!; �/

sup
t2Œ0;T �

Rf�R.�;A.t// W � 62†'g<1:

Since uniformly bounded analytic families are uniformly R-bounded on compact subsets of a common
domain [Weis 2001, Proposition 2.6], the operators .A.t//t2Œ0;T � are uniformly R-sectorial. Further,
the fractional domains spaces D.A.t/1=2/ and D.A.t/�1=2/ are uniformly equivalent to X1=2;A.t/ and
X�1=2;A.t/ [Fackler 2015, Proposition 2.5]. As a consequence of the assumptions, the family .A.t//t2Œ0;T �
is 1
2

-stable. This means that we can apply Theorem 6.4. �

Remark 6.8. Corollary 6.7 holds under the slightly weaker assumption that the operators .A.t//t2Œ0;T �
are uniformly R-sectorial. For this one uses the scale X�;ADD.A� / for j� j 2 .0; 1/ and repeats the proof
of Theorem 6.4. The main difference is that one has to use [Haak et al. 2006, Lemma 6.9(1)] instead
of Lemma 4.1.

7. Nonautonomous maximal regularity for elliptic operators

We now illustrate the consequences of our results for nonautonomous problems governed by elliptic
operators in divergence form. We concentrate on pure second-order operators with VMO-coefficients
subject to Dirichlet boundary conditions, as the used results are already involved and spread over the
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literature in this special case. On a bounded domain��Rn we consider bounded measurable coefficients
AD .aij / W�! Cn�n and the bounded sesquilinear form

a WW
1;2
0 .�/�W

1;2
0 .�/! C; .u; v/ 7!

Z
�

Arurv:

Further, we assume that .aij / satisfies for some ı > 0 and all � 2 Cn the estimate

Re
nX

i;jD1

aij .x/�i N�j � ıj�j
2:

Then the operator L2 on L2.�/ associated to a is sectorial. Further, one has for u 2D.L2/�W
1;2
0 .�/

the identity L2uD� div.Aru/ in the sense of distributions. One can show that if � has C 1-boundary
and if the coefficients lie in VMO, then L2 induces for all q 2 .1;1/ compatible sectorial operators Lq
on Lq.�/ (see the proof of Theorem 7.2). These operators are realizations of � div.Ar � / on Lq.�/.
For further details on the form method we refer to [Ouhabaz 2005].

Definition 7.1. Let � � Rn be a bounded domain. A bounded measurable function f W �! C is of
vanishing mean oscillation if one has infr>0 �f .r/D 0 for the modulus

�f .r/ WD sup
BWd.B/�r

�
1

jB \�j

Z
B\�

jf .x/�fB\�j
2 dx

�1=2
;

where f�\B denotes the mean of f over B\� and the supremum is taken over all balls B �Rn centered
in � whose diameter d.B/ does not exceed r .

We need the following variant of the Kato square root property on Lq.�/.

Theorem 7.2. Let n 2 N, � � Rn be a bounded C 1-domain, q 2 .1;1/ and A D .aij /1�i;j�n 2

L1.�ICn�n/ be complex-valued coefficients with

Re
nX

i;jD1

aij .x/�i N�j � ıj�j
2 for all � 2 Cn;

for some ı > 0 and almost every x 2�. Let Lq be the realization of � div.Ar � / on Lq.�/ subject to
Dirichlet boundary conditions. If aij 2 VMO.�/ for all i; j D 1; : : : ; n, then there exists �0 � 0 such
that the following holds:

(a) LqC� is a sectorial operator on Lq.�/ for all �� �0 and

kf kqCkrf kq ' k.LqC�/
1=2f kq for all f 2W 1;q

0 .�/:

(b) The operator Lq extends to an isomorphism W
1;q
0 .�/ �!� W �1;q.�/.

The constant �0 only depends on �, q, �aij , ı and kAk1. With an additional dependence on �, the same
holds for the constant in the equivalence in (a), the isomorphism in (b) and the sectorial estimates of the
operators LqC�.

Proof. Under the made assumptions, the operator L2 satisfies local Gaussian estimates [Auscher and
Tchamitchian 2001a, Theorem 7]. Although not explicitly stated, the coefficients in the estimate only
depend on the claimed constants. This has several consequences. First, for � sufficiently large the operator
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L2C� satisfies global Gaussian estimates [Auscher and Tchamitchian 1998, Section 1.4.5, Theorem 18]
and extends to a sectorial operator Lq C � on Lq.�/. Secondly, it essentially follows from [Auscher
and Tchamitchian 2001b, Theorem 4] that k.LqC�/1=2kq . kf kqCkrf kq . Here are two additional
points to consider. First, the theorem is only stated in the case �D 0. The case �¤ 0 can be obtained by
including terms of lower order in the argument or by arguing as in [Auscher and Tchamitchian 1998,
p. 135]. The second point is the not explicitly stated dependence on the constants. However, taking a
close look at the proof in [Auscher and Tchamitchian 2001b] one sees that most auxiliary results give the
explicit dependence on the constants (in [Auscher and Tchamitchian 2001b, p. 162] such a dependence is
explicitly stated in a special case). One crucial point needed here is the dependence in the case p D 2,
which is well known. This can be found in [Axelsson et al. 2006, Theorem 1] for a broad class of Lipschitz
domains and a combination of [Egert et al. 2014, Theorem 4.2; 2016, Theorems 3.1 and 3.3 and Section 6]
yields the dependence for general bounded Lipschitz domains and therefore a fortiori for C 1-domains.

Now, as in [Auscher and Tchamitchian 1998, p. 135], the converse inequality follows if .LqC�/�1

extends to a bounded operator from W �1;q.�/D .W
1;q0

0 .�//0 into W 1;q
0 .�/. Notice that

kukW �1;q.�/ D inf
�
kgkqC

nX
kD1

kFkkq W g; Fk 2 L
q.�/ with uD gC divF

�
:

It is shown in [Dong and Kim 2010, Theorem 4] that for � � 0 there exists C � 0 such that for all
Fk; g 2 L

q.�/ there is a unique u 2W 1;q
0 .�/ with � div.Aru/C�uD gC divF and

kukW 1;q.�/ � C

�
kgkqC

nX
kD1

kFkkq

�
:

Here, our required dependence on the constants can be found in the lemmata in [Dong and Kim 2010,
Section 7]. Note that the above estimate is exactly the boundedness of .�CLq/�1 WW �1;q.�/!W

1;q
0 .�/,

which is a uniform isomorphism by the uniqueness of u 2W 1;q
0 .�/. �

Remark 7.3. The estimate kL1=2f kq . krf kq is known under more general assumptions on the
coefficients and the domain [Auscher and Tchamitchian 2001b, Theorem 4]. The same holds for the
boundedness of .LqC�/�1 WW �1;q.�/!W

1;q
0 .�/ for which originating from [Krylov 2007] many

results have been obtained in the last years. For a complete list of references we refer to the introduction
of [Dong and Kim 2016] and for a proof of similar results within the framework of maximal regularity to
[Gallarati and Veraar 2017a; 2017b].

Theorem 7.4. Let��Rn be a bounded C 1-domain, T >0 and aij 2L1.Œ0; T ���/ for i; j D 1; : : : ; n.
Assume further that the following properties are satisfied:

(1) There exists ı > 0 such that for almost all .t; x/ 2 Œ0; T ��� and all � 2 Cn

Re
nX

i;jD1

aij .t; x/�i N�j � ıj�j
2:

(2) The functions x 7! aij .t; x/ lie in VMO.�/ and there is � W Œ0; 1�! Œ0;1� with limr#0 �.r/D 0 and
�aij .t;� / � � for all t 2 Œ0; T � and i; j D 1; : : : ; n.
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For q 2 .1;1/ let Lq.t/ D � div.A.t/r � / be realizations on Lq.�/. Then for all q 2 .1;1/ the
nonautonomous problem (NACP) associated to .Lq.t//t2Œ0;T � has maximal Lp-regularity

(a) for p 2 .1; 2� if aij 2 PW 1=2C";2.Œ0; T �IL1.�// for some " > 0,

(b) for p 2 Œ2;1/ if aij 2 PW 1=2C";p.Œ0; T �IL1.�// for some " > 0.

The maximal Lp-regularity estimate depends only on p; q; T;�; ı; �; "; kaij k1 and the homogeneous
Sobolev norm in (a) or (b).

Proof. Thanks to the Gaussian estimates discussed in the proof of Theorem 7.2, for sufficiently large � the
operators Lq.t/C� have uniformly bounded imaginary powers with k.Lq.t/C�/isk �Me!jsj for some
M > 0 and ! 2

�
0; �
2

�
. This follows from the general result [Duong and Robinson 1996, Theorem 4.3]

(which even gives a bounded H1-calculus), which does not state the dependence on the constants
explicitly. Further, it follows from Theorem 7.2 that D..Lq.t/C�/1=2/'W

1;q
0 .�/ holds uniformly in

t 2 Œ0; T �. Moreover, the operator Lq.t/C� extends to an isomorphism W
1;q
0 .�/

�
�!W �1;q.�/ which

is uniform in t 2 Œ0; T �. Consequently, for u 2 Lq.�/ one has

kukD..Lq.t/C�/�1=2/ D k.Lq.t/C�/
�1=2ukLq.�/

D k.Lq.t/C�/
1=2.Lq.t/C�/

�1ukLq.�/ ' k.Lq.t/C�/
�1uk

W
1;q
0 .�/

' kukW �1;q.�/:

Therefore X1=2 DW 1;q.�/ and X�1=2 DW �1;q.�/ in Corollary 6.7.
It remains to check the time regularity. For u 2W 1;2

0 .�/\W
1;q
0 .�/ and v 2W 1;2

0 .�/\W
1;q0

0 .�/

one has ˇ̌
hLq.t/u�Lq.s/u; vi

ˇ̌
D

ˇ̌̌̌Z
�

.A.t/�A.s//rurv

ˇ̌̌̌
� kA.t/�A.s/k1krukqkrvkq0 :

By density this extends to all u 2W 1;q
0 .�/ and all v 2W 1;q0

0 .�/. Hence, it follows that Lq. � /C� 2
PW ˛;r.Œ0; T �IB.W 1;q

0 .�/;W �1;q.�/// with ˛ and r as in the assumptions. Now, Corollary 6.7 applies
and yields maximal Lp-regularity for .Lq.t/C�/t2Œ0;T � and � big enough. By a rescaling argument this
is equivalent to the maximal Lp-regularity of .Lq.t//t2Œ0;T �. �

8. Applications to quasilinear parabolic problems

We now use Theorem 7.4 to solve quasilinear parabolic equations. It may be a little bit confusing that in
the result below Hölder assumptions on the coefficients are made. The point for concrete applications is
not that we can replace Hölder regularity by fractional Sobolev regularity, but that the fractional Sobolev
regularity in Theorem 7.4 allows us to loosen the assumed Hölder regularity. We will comment on this
point later.

Theorem 8.1. Let �� Rn be a bounded C 1-domain and T > 0. For coefficients AD .aij / W C! Cn�n,
p 2 Œ2;1/, q 2 .1;1/, an inhomogeneous part f 2Lp.Œ0; T �ILq.�// and an initial value u0 2Lq.�/



1162 STEPHAN FACKLER

satisfying the condition u0 2
�
D.divA.u0/r � /; Lq.�/

�
1=p;p

consider the problem8̂<̂
:
@

@t
u.t; x/� div.A.u.t; x//ru.t; x//D f .t; x/;

u.t; x/D 0 on Œ0; T �� @�;
u.0; x/D u0.x/ on �:

(QLP)

Suppose that the following assumptions are satisfied:

(1) The coefficients aij are ˇ-Hölder continuous for some ˇ > 1
2

.

(2) For all M > 0 there exist ı.M/ > 0 such that for all juj �M

Re
nX

i;jD1

aij .u/�i N�j � ı.M/j�j2 for all � 2 Cn:

If q > n and ˇ > q
2.q�n/

, then there exists C � 0 such that for

kf kLp.Œ0;T �ILq.�//Cku0k.D.divA.u0/r�/;Lq.�//1=p;p � C

the quasilinear problem (QLP) has a solution

u 2W 1;p.Œ0; T �ILq.�//\BUC.Œ0; T ���/

with u.t/ 2 D.divA.u.t; � //r � / for almost every t 2 Œ0; T � and divA.u/ru 2 Lp.Œ0; T �ILq.�//. A
fortiori, u 2 C ˛�1=p.Œ0; T �IC 1�˛�n=q.�// for ˛ 2

�
1
p
; 1� n

q

�
.

Proof. Choose ˛ 2
�
1
2ˇ
; 1� n

q

�
, which is possible by our assumptions. Now, choose ı > 0 with ˛�ı > 1

2ˇ

and ˛C ı < 1� n
q

. Further, let

MD fv 2W ˛�ı;p.Œ0; T �IW
1�˛�ı;q
0 .�// W v.0/D u0g

and MR for R > 0 be the ball B.0;R/ in MR. For v 2MR consider the problem8̂<̂
:
@

@t
u.t; x/� div.A.v.t; x//ru.t; x//D f .t; x/;

u.t; x/D 0 on Œ0; T �� @�;
u.0; x/D u0.x/ on �:

(LP)

Since ˛Cı < 1� n
q

and ˛�ı > 1
2ˇ
�
1
2
�
1
p

, we have v 2W ˛�ı;p.Œ0; T �IBUC.�// and M is compactly
embedded in BUC.Œ0; T � ��/. By the Arzelà–Ascoli theorem, the functions in MR are uniformly
equicontinuous on Œ0; T ���. As a consequence (2) of Theorem 7.4 is satisfied and one can find uniform
ellipticity constants for A ı v with v 2MR. For " > 0 with r WD .˛� ı� "/ˇ > 1

2
we have

kaij ı vk
p

PW r;p.Œ0;T �IL1.�//
D

Z T

0

Z T

0

kaij .v.t; � //� aij .v.s; � //k
p
1

jt � sj1Cpr
ds dt

.
Z T

0

Z T

0

kv.t; � /� v.s; � /k
ˇp
1

jt � sj1Cpr
ds dt D kvk

ˇp

PW rˇ�1;ˇp.Œ0;T �IL1.�//

D kvk
ˇp

PW ˛�ı�";ˇp.Œ0;T �IL1.�//
. kvkˇp

PW ˛�ı;p.Œ0;T �IL1.�//
: (8-1)
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This means that the coefficients A ı v satisfy the assumptions of Theorem 7.4. Hence, (LP) has a unique
solution u and there is CR � 0 independent of v 2MR with

kukW 1;p.Œ0;T �ILq.�//CkdivA.v/rukLp.Œ0;T �ILq.�// � CR.kf kLp.Œ0;T �ILq.�//Cku0k/;

where the norm of u0 is taken in .D.divA.u0/r � /; Lq.�//1=p;p. Further, by the real interpolation
formula for vector-valued Besov spaces [Amann 2000, Corollary 4.3] one has for � 2

�
1
2
; 1� 1

q

�
and

sufficiently small " > 0, uniformly in v 2MR, the embeddings

u 2W 1;p.Œ0; T �ILq.�//\Lp.Œ0; T �IW
1;q
0 .�// ,!

�
Lp.Œ0; T �IW

1;q
0 .�//;W 1;p.Œ0; T �ILq.�//

�
�;p

,!W ��";p
�
Œ0; T �I .W

1;q
0 .�/; Lq.�//�;p

�
DW ��";p.Œ0; T �IB

1��;q
0;p .�//

,!W ��";p.Œ0; T �IW
1���";q
0 .�//: (8-2)

All estimates hold uniformly for v 2MR. The embedding (8-2) implies that for sufficiently small

kf kLp.Œ0;T �ILq.�//Cku0k.D.divA.u0/r�/;Lq.�//1=p;p

we obtain a well-defined map

SR WMR!MR; v 7! u; where u is the solution of (LP):

It follows from (8-2) and the compact embedding results for vector-valued Sobolev spaces [Amann 2000,
Theorem 5.1] that SRMR is a precompact subset of MR. We next show that SR is continuous. For this
let vn! v in MR and let un D SRvn. After passing to a subsequence we may assume that vn! v in
BUC.Œ0; T ���/ and that un converges weakly to some u in

W 1;p.Œ0; T �ILq.�//\Lp.Œ0; T �IW
1;q
0 .�//:

Now, let g 2 Lp
0

.Œ0; T �IW
1;q0

0 .�//. Note that AT .vn/rg! AT .v/rg in Lq
0

.�/ by the dominated
convergence theorem. Since un solves (LP) we haveZ T

0

hf .t/; g.t/i dt D

Z T

0

h Pun.t/; g.t/i dt C

Z T

0

hA.vn.t//run.t/;rg.t/i dt

D

Z T

0

h Pun.t/; g.t/i dt C

Z T

0

hrun.t/; A
T .vn.t//rg.t/i dt:

Taking limits on both sides of the equation, we getZ T

0

hf .t/; g.t/i dt D

Z T

0

h Pu.t/; g.t/i dt C

Z T

0

hA.v.t//ru.t/;rg.t/i dt:

Since g is arbitrary and u0 D un.0/! u.0/, this implies that u solves (LP) on W �1;q.�/, i.e., is the
unique integrated solution of (LP) given by Proposition 4.4. Hence, SRv D u. Since the same argument
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works for arbitrary subsequences, we have shown that SR is continuous. Now, by Schauder’s fixed point
theorem there is some u 2MR with SRuD u. Using Theorem 7.4 for v D u we see that

kukW 1;p.Œ0;T �ILq.�//CkdivA.u/rukLp.Œ0;T �ILq.�//
� C.kf kLp.Œ0;T �ILq.�//Cku0k.D.divA.u0/r � /;Lq.�//1=p;p /: �

Remark 8.2. We illustrate the benefits of Theorem 7.4 for quasilinear equations with the help of
Theorem 8.1. First, maximal regularity results for nonautonomous problems governed by elliptic operators
before [Fackler 2015] assumed C 1-regularity in space. In particular, such results cannot deal with Hölder
continuous coefficients aij as in Theorem 8.1 because the composition aij ı v in (8-1) would fail to have
the necessary C 1-smoothness.

Further, in (8-1) one needs from a conceptual point of view that the composition operator v 7! aij ı v

maps into the Sobolev space PW ˛;p.Œ0; T �IL1.�// for some ˛ > 1
2

in order to apply Theorem 7.4.
Although v lies in some fractional Sobolev space and one only requires the image to lie in a different
fractional Sobolev space, the only useful sufficient condition the author is aware of is to assume that the
coefficients aij are Hölder continuous. Nevertheless, the less restrictive fractional Sobolev assumption in
Theorem 7.4 is useful as it allows us to relax the assumed regularity. To illustrate this point explicitly, let
us calculate the necessary regularity if one needs to check that aij ı v is in C ˛.Œ0; T �IL1.�// for some
˛ > 1

2
. Using the same notation as before one has

kaij .v.t; � //� aij .v.s; � //k1 . kv.t; � /� v.s; � /kˇ1:

Now, ignoring the technical aspect of having an additional ı > 0 of room, for functions v 2W ˛;p.Œ0; T �I

W 1�˛;q.�// we have for ˛ 2
�
1
p
; 1� n

q

�
the embedding

W ˛;p.Œ0; T �IW 1�˛;q.�// ,! C ˛�1=p.Œ0; T �IBUC.�//:

Consequently, we have

kaij .v.t; � //� aij .v.s; � //k1 . jt � sjˇ.˛�1=p/:

Since ˛ < 1� n
q

, for maximal regularity with Hölder assumptions one needs

ˇ �
�
1�

n

q
�
1

p

�
>
1

2
() ˇ >

q

2.q�n� q=p/
:

In particular, this is a stronger condition than ˇ > q
2.q�n/

, as used in Theorem 8.1. This improvement
comes from the fact that the p-integrability is for free in the fractional Sobolev result, whereas in the
Hölder case one has to sacrifice some differentiation order for the Sobolev embeddings.

Remark 8.3. We can only deduce the existence of solutions for small data in Theorem 7.4 because the
constant in the maximal regularity estimate depends on the VMO-modulus of the coefficients and their
fractional Sobolev norm. If one has estimates on solutions of (QLP) independent of these regularity data,
the Leray–Schauder principle would yield solutions for arbitrary f and u0.
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Further note that the reasoning of Theorem 8.1 works for a far more general class of problems. For
example, the coefficients A.u/ may depend in a nonlocal way on u, e.g., on the history of the solution as
in [Amann 2005; 2006].

9. Optimality of the results

In this section we show that the maximal regularity results obtained in Theorem 6.4 are optimal or close
to optimal. In fact, even in the form setting considered in Corollary 6.6, maximal regularity may fail
if one relaxes the assumed regularity, i.e., for maximal Lp-regularity A 2 PW ˛;p.Œ0; T �IB.V; V 0// for
some ˛ > 1

2
. It was shown in [Fackler 2017a, Theorem 5.1] that there is a symmetric nonautonomous

form with A 2 C 1=2.Œ0; T �IB.V; V 0// and f 2 L1.Œ0; T �IV / for which the unique solution given by
Proposition 4.4 satisfies Pu.t/ 62H for almost all t 2 Œ0; T �, although u 2L1.Œ0; T �IV / holds as one aims
for in the bootstrapping result given in Proposition 5.1. As a consequence, maximal Lp-regularity fails
for all p 2 Œ1;1�. Note that C 1=2.Œ0; T �IB.V; V 0// ,! PW ˛;q.Œ0; T �IB.V; V 0// for all ˛ 2

�
0; 1
2

�
and all

q 2 Œ1;1�. Hence, Theorem 6.4 fails for ˛ < 1
2

in all possible variants.
This leaves open the critical case ˛ D 1

2
. Note that for q 2 .1; 2/ the space PW 1=2;q.Œ0; T �IB.V; V 0//

contains piecewise constant forms. Hence, as observed by Dier [2014, Section 5.2], the failure of
the Kato square root property for general forms implies that maximal L2-regularity may not hold for
q < 2. Example 7.2 in [Fackler 2017b] shows that for p > 2 maximal Lp-regularity on L2.�/ for
A 2 PW 1=2;q.Œ0; T �IL.V; V 0// with q 2 .1; 2/ does not even hold for elliptic operators. Note that for
p 2 .1; 2/ these arguments based on the incompatibility of trace spaces break down.

Refining the arguments in [Fackler 2017a], we show that for symmetric forms maximal Lp-regularity
may fail for all p 2 Œ1;1� under the regularity A 2 PW 1=2;q.Œ0; T �IB.V; V 0// for some q > 2.

Example 9.1. We take H D L2
��
0; 1
2

��
and V D L2

��
0; 1
2

�
; w
�

with w.x/ D .xjlog xj/�3=2. Further,
we consider u.t; x/D c.x/.sin.t'.x//C d/ for '.x/D w.x/, c.x/D x � jlog xj and some sufficiently
large d > 0. Note that for all t 2 Œ0; T �

k Pu.t/k2H '

Z 1=2

0

jc.x/'.x/j2 dx D

Z 1=2

0

x�1
1

jlog xj
dx D1:

Hence, Pu.t/ 62H for all t 2 Œ0; T �. Following the ideas and arguments in [Fackler 2017a] we now show
that u is indeed an integrated solution of a nonautonomous problem associated to some coercive, bounded
symmetric sesquilinear form a W Œ0; T ��V �V !C and inhomogeneous part f .t/Du.t/2L1.Œ0; T �IV /.
For this one defines the form a.t; � ; � / on the set hu.t/i �V as

a.t; c �u.t/; v/D c
�
.f .t/jv/H � h Pu.t/; viV 0;V

�
(9-1)

and then extends the form to V �V by the same procedure as in [Fackler 2017a, Section 4]. Following
Section 5 of that paper, one checks the regularity of the extended forms. By the explicit formula for
the extension, one sees that it suffices to control the regularity of (duality) products of the functions
u W Œ0; T �! V , w�1u W Œ0; T �! V and Pu W Œ0; T �! V 0. Since PW ˛;p \L1 is an algebra under pointwise
multiplication, the regularity question boils down to the regularity of these individual functions. Further,
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one sees that for our concrete choice of u, the relevant fractional norms are dominated by that of
u W Œ0; T �! V . Hence, one only has to check the regularity of u W Œ0; T �! V , which we do now.

We show explicitly that u 2 PW 1=2;q.Œ0; T �IV / for all q 2 .2;1/. Note that on the one hand

jsin.t'.x//� sin.s'.x//j2 � jt � sj2'2.x/D jt � sj2x�3jlog xj�3: (9-2)

On the other hand the left-hand side can clearly be estimated by 4. Now, let  .x/ D 2x3=2jlog xj3=2.
Then (9-2) gives the sharper estimate if and only if jt � sj �  .x/ or equivalently x �  �1.jt � sj/.
Splitting the fractional norm, we obtain�Z T

0

Z T

0

ku.t/�u.s/k
q
V

jt � sj1Cq=2
dt ds

�1=q
D

�Z T

0

Z T�t

�t

ku.t/�u.t C r/k
q
V

jr j1Cq=2
dr dt

�1=q
.
�Z T

0

Z T�t

�t

�Z  �1.jrj/

0

x1=2jlog xj1=2 dx
�q=2 dr

jr j1Cq=2
dt

�1=q
C

�Z T

0

Z T�t

�t

�Z 1=2

 �1.jrj/

x�5=2jlog xj�5=2 dx
�q=2 dr

jr j1�q=2
dt

�1=q
: (9-3)

Now, for the innermost integral of the first term we have for F.x/D x3=2jlog xj1=2Z  �1.jrj/

0

x1=2jlog xj1=2 dx .
Z  �1.jrj/

0

F 0.x/ dx D F. �1.jr j//

.  . �1.jr j//
ˇ̌
log �1.jr j/

ˇ̌�1
D jr j

ˇ̌
log �1.jr j/

ˇ̌�1 . jr jjlog r j�1:

Analogously, for the second term we have for F.x/D�x�3=2jlog xj�5=2Z 1=2

 �1.jrj/

x�5=2jlog xj�5=2 dx .
Z 1=2

 �1.jrj/

F 0.x/ dx � �F. �1.jr j//

.
1

 . �1.jr j//

ˇ̌
log �1.jr j/

ˇ̌�1 . jr j�1 jlog r j�1:

Hence, (9-3) is dominated up to a constant by the finite expression�Z T

0

jlog r j�q=2
dr

jr j

�1=q
for q > 2.

Hence, for maximal L2-regularity of forms the only case left open is that of PW 1=2;2.Œ0; T �IB.V; V 0//
regularity, which we are not able to answer at the moment. Note that there is also a positive result
assuming some half differentiability. Namely, it was shown by Auscher and Egert [2016] that for elliptic
operators one has maximal L2-regularity if the coefficients aij satisfy @1=2aij 2 BMO. This in particular
implies aij 2 PH 1=2;q for all q 2 .1;1/, which in turn implies aij 2 PW 1=2;q for all q� 2, which in general
is not sufficient for maximal Lp-regularity by the above example. In the other direction, the inclusion
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PW 1=2;q ,! PH 1=2;q does only hold for q 2 .1; 2�. Hence, for q 2 .1; 2/ the space PH 1=2;q contains step
functions. Note that in the critical case one has PH 1=2;2 D PW 1=2;2; i.e., the Besov and the Bessel scale
give rise to the same problem.
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