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Firstly, bilinear Fourier restriction estimates — which are well known for free waves — are extended
to adapted spaces of functions of bounded quadratic variation, under quantitative assumptions on the
phase functions. This has applications to nonlinear dispersive equations, in particular in the presence
of resonances. Secondly, critical global well-posedness and scattering results for massive Dirac—Klein—
Gordon systems in dimension three are obtained, in resonant as well as in nonresonant regimes. The results
apply to small initial data in scale-invariant Sobolev spaces exhibiting a small amount of angular regularity.
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1. Introduction

The Fourier restriction conjecture was shaped in the 1970s by work of Stein, among others, and has
generated significant advances in the field of harmonic analysis and dispersive partial differential equations
since then; see, e.g., [Stein 1993; Tao 2004] for a survey and references.

As an example, let n =2 and C be a compact subset of the cone, say C = {(|&],£): 3 < || <2} C R T,
and g be a Schwartz function on R”!. Equivalently to the Fourier restriction operator R : g — £|c,
consider its adjoint, the Fourier extension operator

ef) = [ TIED pe)ag

for smooth f with supp( f) contained in the unit annulus. The function £ f can be viewed as the inverse
Fourier transform of a surface-measure supported on the cone C, and defines a function on R**! which
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solves the wave equation. The Fourier restriction conjecture for the cone is equivalent to establishing the
corresponding Fourier extension estimate

IESNLr @1y S NS e

within the optimal range of p, g. In the special case ¢ = 2 this holds if and only if p > 2n +2)/(n — 1),
and in the literature on dispersive equations this is stated as

—it|V
le™ ¥ fllp ey S 1S 122

and called a Strichartz estimate [1977] for the wave equation; see also [Keel and Tao 1998].

In the course of proving Fourier extension estimates for the cone, it became apparent that a key role
was played by bilinear estimates. Indeed, a major breakthrough was achieved by Wolff [2001], when he
proved that for every p > (n +3)/(n + 1), n = 2, we have

—it|V —it|V
He it| |f€ i] |gHLf’X(Rn+1)§”f”L)zC”g”L%,

provided the supports of f and g are angularly separated and contained in the unit annulus. As a result
Wolff was able to prove the linear restriction conjecture for C in dimension n = 3. It is important to note
that, in the presence of angular separation, a larger set of p can be covered in the bilinear estimate than
would follow from a simple application of Holder’s inequality together with the linear estimates.

In parallel to these developments, bilinear estimates proved useful in the context of nonlinear dispersive
equations; see, e.g., [Klainerman and Machedon 1993; Bourgain 1998; Foschi and Klainerman 2000].
The perturbative approach to dispersive equations is based on constructing adapted function spaces in
which nonlinear terms can be effectively estimated. Bilinear estimates for solutions to the homogeneous
equation, which go beyond simple almost orthogonality considerations, give precise control over dynamic
interactions of products of linear solutions. However, to apply these homogeneous estimates to the
nonlinear problem necessitates the transfer of such genuinely bilinear estimates to adapted function spaces.

Such a transference principle was implemented first in X* b spaces; see [Ginibre et al. 1997, Lemma 2.3]
and [Klainerman and Selberg 2002, Proposition 3.7]. Let us briefly illustrate it by looking at the following
example. Suppose that u, v € L% L2 are superpositions of modulated solutions of the homogeneous
equation, i.e.,

u(l):/eit)ceitlede’ v(t):/eimlemV'GA/d/\/,
R R

which is true for u,v € X%? if b > % Suppose in addition, that the spatial Fourier supports of u, v are
angularly separated. Then, for any p > (n + 3)/(n + 1), Wolff’s estimate transfers to

vl o < [ [ ||e”'V'FAe”'V'Gy||Lgx(Rn+1)dm’s( L1z dx)( | 16z dxf),

which is equivalent to the bilinear estimate holding for functions in X 0.5 Another strategy involves
certain atomic function spaces introduced in [Koch and Tataru 2005]. Suppose that

u(t) = Z 1J(f)€it|v|f], v(t) = Z 1J/(l)€it|v|g_]/

Jez J'eT’
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for finite partitions Z,Z" of R and fy, gy € L)zc. Then, under the above angular separation assumption,
Wolft’s bound implies

it|V it|V
vy, sy < (Z 2 e Vifre 'gf’”ff’x(wm)

Jez J'er

N|=
N|=

(X ||fJ||{%)'l’(Z lerlZ,)

JeT J'er’

As a consequence, we deduce that Wolff’s bilinear estimate holds for angularly separated functions in
the atomic space U ?; see Definition 3.4 below. This is one instance of the transference principle in U2,
which has been formalised in [Hadac et al. 2009, Proposition 2.19].

For many applications, the above superposition requirements are too strong, partly due to the duality
theory for the spaces X 0.5 for b > % and U? for p < 2. Nevertheless, variations of the above strategies
have been successfully employed in numerous applications to nonlinear global-in-time problems in the
case p > 2. In the case p < 2, the only result we are aware of is [Sterbenz and Tataru 2010, Lemma 5.7
and its proof], where this approach is used in conjunction with an interpolation argument to give a partial
result only; see Remark 6.2 for further details.

It turned out that one of the most powerful function spaces in the context of adapted function spaces
is the space of functions of bounded quadratic variation V2, which is slightly bigger than U?2. Our first
main result of this paper is the corresponding transference principle in V2 for a quite general class of
surfaces in Theorem 1.1 below.

We start with some definitions. Define Z = {(#;);ez :t; € Rand ¢t; <t; 1} to be the set of increasing
sequences of real numbers and 1 < p < co. Given a function p : R — L2, we define the p-variation of p

to be 1

olvn = sup (S hot)=p-niZ; )

tj)€Z \jez
The Banach space V7 is then defined to be all right continuous functions p : R — L2 such that

lellve = llpllpeer2 + lolve < oo.

Given a phase © : R" — R we let qu denote the space of all functions u such that e/ ®(1V)y ¢ P

equipped with the obvious norm |[u|| vy = e * Iy ||y . In other words, the space qu contains all
functions u € L% L2 such that the pull-back along the linear flow has bounded p-variation; in particular

we have
itd(—iV
I Y Fllype = 1 £l 2-

Before stating Theorem 1.1, we need to introduce the assumptions that we impose on our phases, which
are motivated by [Lee and Vargas 2010; Bejenaru 2017]. Examples will be discussed in Section 2. Let
®; :R" —Rand A; be a convex subset of {{x < || < 16}. Given h = (a,h) € R'™" and {;, k} = {1, 2}
we define the hypersurfaces

Tj) =& eAN(Ax+h): ;) = P(E—h) +aj.

With this notation, we are ready to state the main assumption; cf. [Bejenaru 2017; Lee and Vargas 2010].
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Assumption 1 (transversality/curvature/regularity). There exist D1, D> > 0 and N € N such that for
Dy, &5 : R" — R the following hold true:

() Forevery {j, k}=1{1,2}, peR!T" £ ¢ ¢ X (h), and n € Ay we have the estimate

[(VO;(§) = VO (EN A (VO (§) = VO ()| = D1§ —£|.
(ii)) We have ®; € C N(A ;) with the derivative bound

sup  [[0°D;[Loo(a;) < Do
1<|k|<N
The condition (i) in Assumption 1 is somewhat difficult to interpret, but one immediate consequence is
the bound ,
D,|§—¢'|

VO, (5) =V, (&) = ’ H
VD, (&) i (DI V@1l + VP2 Lo o

which holds for every £, £’ € 2 (). To some extent, this is a curvature condition, as it shows that the
normal direction varies on X (h). Another consequence of (i) is that for every £ € A1, n € A, we have
the transversality bound

D,
min{[|[V2®y||zc0, [|[V2Pa o0}

V@1 (§) —Voa2(n)| = (1-2)
This follows by simply observing that for every £ € A there is h € R1*" such that £ € X (). Our first
main result can now be stated as follows.

Theorem 1.1. Letn =2 2, p > (n+3)/(n + 1), and D1, D2, Ro > 0. For j = 1,2, let Aj, AT C
{% << 16} with Aj convex and A}'f +1/Ro C Aj. There exists N € N and a constant C > 0 such
that, for any phases ®1 and ®, satisfying Assumption 1, and any u € Vzl, NS Vd%z with supp ui(t) C AT,
supp 0(t) C A3, we have

uvllzp, @reny < Cllullyz Tollyz -

Note that the constants N and C depend on the parameters p > (n + 3)/(n + 1), n = 2, and
Dy, D>, Ry > 0, but are otherwise independent of the phase ®;, the sets A, A}k, and the functions u
and v. Moreover, as the conditions in Assumption 1 are invariant under translations, the condition that
AjC {% <|El < 16} can be replaced with the condition that the sets A ; are simply contained in balls of
radius 16. In other words, the location of the sets A; plays no role. We refer the reader to Corollary 6.1
for a generalisation of Theorem 1.1 to mixed norms. Further, we refer to Corollary 6.4 for a generalisation
to more general frequency scales in the case of hyperboloids, which is also shown to be sharp.

Let us summarise the developments for solutions to the homogeneous equation, i.e.,

Uy = eitd:‘l(—iV)f v = eitd’z(—iV)g'
First estimates of this type for nontrivial p < 2 are due to Bourgain [1991; 1995] in the case of the

cone, i.e., ®1(§) = P,(&£) = |€|. Subsequently, these have been improved by Tao, Vargas and Vega [Tao
et al. 1998], Moyua, Vargas and Vega [Moyua et al. 1999], Tao and Vargas [2000a], before finally Tao
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[2001] proved the endpoint case p = (n + 3)/(n + 1); see also Remark 5.1. Actually, we observe that the
vector-valued inequality in [Tao 2001] is strong enough to deduce the estimate in U? in the case of the
wave equation; see Remark 5.2. Related estimates for null-forms have been proved by Tao and Vargas
[2000b], Klainerman, Rodnianski and Tao [Klainerman et al. 2002], Lee and Vargas [2008], and Lee,
Rogers and Vargas [Lee et al. 2008]. In the case of the paraboloid, i.e., ®1(£) = ®,(£) = |£|? the result
for homogeneous solutions is due to Tao [2003], with generalisations by Lee [2006a; 2006b], Lee and
Vargas [2010], and Bejenaru [2017] under more general curvature and transversality conditions, as well
as by Buschenhenke, Miiller and Vargas [2017] for surfaces of finite type. For our approach, the most
important references are [Tao 2003] concerning notation and general line of proof and [Lee and Vargas
2010; Bejenaru 2017], concerning the assumptions on the phases and its consequences. Throughout the
paper, we shall point out similarities and differences in more detail.

We would like to highlight the fact that we explicitly track the dependence of the constants on the
phases in Theorem 1.1 based on the global, quantitative Assumption 1; in particular we avoid abstract
localisation arguments. This is helpful for applications to dispersive equations, as we will see below. The
main novelty of this result, however, lies in the fact that it holds for Vq%j -functions in the range p < 2.

Now, we turn to the application of Theorem 1.1 to nonlinear dispersive equations with a quadratic
nonlinearity which exhibit resonances. Roughly speaking, by a resonance we mean the scenario that
a product of two solutions to the homogeneous equation creates another solution of the homogeneous
equation; see Section 8 for details. This leads to the lack of oscillations in the Duhamel integral and hence
to strong nonlinear effects. In many instances, one finds that the Fourier supports intersect transversally
in the resonant sets. As an example, we mention the local well-posedness theory for the Zakharov
system [Bejenaru et al. 2009; Bejenaru and Herr 2011], where this is exploited in terms of a nonlinear
Loomis—Whitney inequality [Bennett et al. 2005; Bejenaru et al. 2010; Bennett and Bez 2010; Koch
and Steinerberger 2015]. This is a special case of the multilinear restriction theory [Bennett et al. 2006;
Bennett and Bez 2010]. Here, we will exploit transversality in resonant sets via Theorem 1.1 and prove
global-in-time estimates which go beyond the range of linear Strichartz estimates.

With this approach, we address the Dirac—Klein—Gordon system

—iyHo + My =¢ v,
0 +m*¢ =y Ty%y.

Here, ¥ : R1*t3 — C* is a spinor field, T = ¢!, ¢ : R1T3 — R is a scalar field, [J := 92 — Ay is the
d’ Alembertian operator, and M, m = 0. We use the summation convention with respectto u =0, ..., 4,

(1-3)

and the Dirac matrices y* € C**# are given by

. 0 of
0 .
= 1,1,-1,-1 J = ;
yw =diag(1,1,-1,-1), vy (—01 0),

with the Pauli matrices
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We are interested in the system (1-3) with the initial condition
Y(0)=vo:R>—>C* and (4(0),3:4(0)) = (¢o,¢1) : R> > RxR. (1-4)
In the massless case, (1-3) can be rescaled and the scale-invariant Sobolev space for (¥, ¢o, ¢1) is
L2(R3: C* x H2 (R R) x H™2(R3;R).

Let ()7 = (1— AgZ)% denote o angular derivatives; see Section 7B for precise definitions. Our second
main result is the following.

Theorem 1.2. Suppose that either 2M = m > 0 and 0 > 0, or that m > 2M > 0 and 0 > %. Then, for
initial data satisfying

I{2)YollL2@m3) + 1{2) Poll 123y + I{2) 1l g-1/2,3) K 1,
the system (1-3)—(1-4) is globally well-posed and solutions (W, ¢) scatter to free solutions as t — +o0.

As the proof relies on contraction arguments in adapted function spaces, the notion of global well-
posedness in Theorem 1.2 includes persistence of regularity and the local Lipschitz continuity of the flow
map and it provides a certain uniqueness class. Note that the angular regularity does not affect the scaling
of the spaces. In summary, Theorem 1.2 establishes global well-posedness and scattering in the critical
Sobolev space for small initial data with a bit of angular regularity.

In the case 2M > m > 0, which we call nonresonant regime due to Lemma 8.7, this theorem improves
Wang’s result [2015] by both relaxing the angular regularity hypothesis and replacing Besov spaces
by Sobolev spaces. We also mention the previous subcritical result [Bejenaru and Herr 2017] without
additional angular regularity, where the possibility of a Besov endpoint result with an € > 0 of angular
regularity was discussed in Remark 4.2. In the case m > 2M > 0, which we call the resonant regime due
to Lemma 8.7, this appears to be the first global well-posedness and scattering result in critical spaces for
(1-3). A similar comment applies to the case 2M = m > 0, which we call the weakly resonant regime. It is
the resonant regime where we employ Theorem 1.1; see also Remark 7.6. Concerning further comments
on the number of angular derivatives required in the resonant case, we refer to Remark 8.4.

We shall only mention a few selected results on this well-studied system (1-3). We refer the reader
to [D’Ancona et al. 2007] for previous local results and to [Chadam and Glassey 1974; Bachelot 1988;
Bejenaru and Herr 2017; Wang 2015] for previous global results on this system. Concerning its relevance
in physics we refer the reader to [Bjorken and Drell 1964].

The organisation of the paper is as follows: In Section 2, we discuss a sufficient condition on the phases,
verify Assumption 1 in the case of the Schrodinger, the wave, and the Klein—Gordon equations, and derive
important consequences, in particular the dispersive inequality, and a bilinear estimate for homogeneous
solutions in L%’ - In Section 3, we study wave packets, atomic spaces and tubes. In Section 4, we state
and prove a crucial localised version of Theorem 1.1. The proof proceeds by performing an induction-on-
scales argument, and reducing the problem to obtaining a crucial L2-bound which in turn follows from a
combinatorial estimate. Section 5 is devoted to the globalisation lemma, which removes the localisation
assumption used in Section 4, and hence concludes the proof of Theorem 1.1. In Section 6, we generalise
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Theorem 1.1 to mixed norms and, in the case of hyperboloids, give an extension to general scales and
discuss counterexamples. In Section 7 we prepare the analysis of the Dirac—Klein—Gordon system and
prove Theorem 1.2 under the hypothesis that certain bilinear estimates hold true. In Section 8 we discuss
some auxiliary estimates and finally provide proofs of the bilinear estimates used in Section 7.

2. On Assumption 1: examples and consequences

We now discuss examples, and consider in detail a number of key consequences of Assumption 1. All of
this is known to experts, at least in the specific cases we are interested in. The main objective is to verify
that Assumption 1 allows for a unified treatment which allows us to track the dependence of constants on
the phases.

2A. A sufficient condition. Let diam(A;) = supg g/¢ A; |&§ —&’|. The condition (i) in Assumption 1 is
somewhat difficult to check (essentially since we insist on a global condition rather than just a local condi-
tion using the Hessian of ®;). In practise it is easier to check the following marginally stronger conditions.

Lemma 2.1. Assume that the following three conditions hold:
(1) ForallE e Ay andne A,
VO1(§) —Vda(n)| = A1 (2-1)

(i) For j = 1,2, and everyh € R and £, &' € £, (h)

(V0,(6) = Ve, (€)= | > Aals — €. 22)
(iii) The sets A1 and A, satisfy
diam(A 1) + diam(A,) < 4142 (2-3)

2(IV2@1lloe(ay) + V2 @2 oo (ar)*
Then, condition (i) in Assumption 1 holds with D1 = %AlA 2.
Proof. The first step is to observe that for vectors x, y € R”, and w € S"~! we have

[xAyl=lyllx-o] =[xyl (2-4)

Indeed, this follows from

Xy
X—"—=y

e Ay =Xy =) = [y)? BE

k)l

which implies

= |yl

xy 1
x-w——zy-w‘>|y|(|x-w|——|y~w|).
[y [y

In particular, if we let x = V®;(§) —V®;(£'), y = V®;(§) — VP (n), and w = (§ —&')/|E — &’|, then
since |x| < [|V2®; Lo (a ;)1 —&'| (using the convexity of A;), the lower bound (i) in Assumption 1

X-y
IXAy|=|y|'x——2y
|yl
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would follow from (2-2), (2-4), and the transversality condition (2-1), provided that
-8 _ A14>

§=&11 ~ 21V2DjllLoo(a)

The proof of (2-5) requires the condition £, £ € X () together with the assumption (2-3) on the size of
the sets A ;. Let

(VO; () = Vor(n)-

(2-5)

0j(x,2) =Pj(x)—P;(z2) = VP, (2) - (x —2).
A computation gives
VO;(2)-(x—y) = (®;(x)=0; (x,2) =@ (2) =V (2)-2) = (; (¥) —0; (¥, 2) = (2) = VP (2) )
=®;(x)—P;(y)+0;(y.z)—0j(x,z2),

and hence, using the assumption &, £’ € X, (), we see that

(VO; (§) = VOr(n) - (&)
= (6) — ;) +0;(E.5) — (0 (5 —h) — P (§' —h) + 0k (' —h.n) — 0k (§ —h. 1))
=0j(§.§) +ox(E—h,n) —orE —h.n).

If we now observe that

1
0j(x,2)=0j(y,2) = /0 [VO; (y+1(x—y) = VP;(2)]-(x—y) dt < ||[V?®; || oo(a ;) diam(A )| x — y|

we then deduce the bound

E-¢ . :
(VO;(§) — V(1)) - £ < diam(A1)[[V?®1 || oo(a,) + diam(A2) [ V2@ oo (a,).-
Consequently (2-5) follows from (2-3). O

2B. The Schrodinger, the wave and the Klein—Gordon equations. We now consider some examples of
phases satisfying Assumption 1. It is enough to check the conditions in Lemma 2.1. In particular, by
making the sets A; slightly smaller if necessary, it suffices to ensure that the transversality condition
(2-1) and curvature condition (2-2) hold.

Firstly, consider the Schrédinger case

D;(£) = 31€1%
Then the condition (2-1) in Lemma 2.1 becomes

V@1 (§) — VDo (n)| = & —nl:
thus we simply require that the sets A; have some separation. Assuming that the diameters of the sets A ;
are sufficiently small, we just need to ensure that (2-2) holds. However (2-2) is just
§-¢
§ =&l

(VO;(§) = VP;(E)-

and so (2-2) clearly holds (with constant A, = 1).

=[§ ¢
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Secondly, consider the case
1
®;(§) = (§)m; = (m] +€1%)2,

where the mass satisfies m; = 0. To simplify notation, we assume that for § € A; there is a constant
A > 0 such that

1
Z < (E)m, <A
To check the transversality condition (2-1) we note that
Vo1(6) - Vo(n)|* = ‘L -
Edmi (M,

:( €l Il )2+ 21¢| |l (1_M)
O ) Emr s U R
_ (mzlél+m1|77|)(mz|é|—m1|77|))2 20e ) (_S-n) _
(<s>m1<n>m2(|s|<n>m2+|n|<s>m1) T Om i) G0

(in particular, we always have transversality if |£| &~ || ~ 1 and m| < my).
On the other hand, to check the condition (2-2), we use the following elementary bound.

Lemma 2.2. Let £ =2 and (a,h) €e R If x, y € {z e R : |z| = |z — h| + a} we have the inequality

2

Xy > = yP? x x—h|* |x —h|?
X[ Iyl IxI - x—hl| 16]x||yllx —h[>+4(x —hl+ |[x))?[y|?
Proof. The condition x € {z € R : |z| = |z — h| + a} implies |x — h|? = (|x| —a)? and hence
X |h|? —a?
—h=——+a.
|x| 2|x|
Therefore
x oy hP=d 1 1 Ix—h|| x x—h 2“| .
i e e = x| =1yl
x| [¥] 2lh1 - flxl Ayl 20AllylTIx] [x —Al

where we used the identities # = x — (x —h) and a = |x| —|x —h|. The lemma now follows by noting that

2

T O

X
= y2 = lxllyl| = = =
x| Iyl

We now show that (2-2) holds. A computation gives

/ / &7 &P g& £

VO;(§)—-V; -(E— = — —

(Ve © =V ED- == i " en oy €

B - +m? - E-& +m?
(E)m; (§")m;

X y |?

x| 1yl

= |(E)m, +(E")m;

(E)m; + (E')m,
2

’
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where we let x = (m;, £) and y = (m;, ). If we now note that the surface ®;(£§) = Oy (6§ —h) + a can
be written as |x| = |y — k| + a with i’ = (my —m;, h), then an application of Lemma 2.2 gives

/ ’ Aéll /2

(VO (§) = V®;(E) - (E~¢&)| = YL

Therefore, by Lemma 2.1, we see that (i) in Assumption 1 holds with D1 = A3 /(64A4°). Note that the
above argument also applies in the case of the wave equation m1 = my = 0.

2C. The dispersive inequality. To simplify the statements to follow, we fix constants Ro =1, Dy, D, >0
and N > n + 1, and assume that we have phases ®1, ®, satisfying Assumption 1 and sets A ;, A}k with
Aj convex and AT +1/Ro CAj C {% < |§] < 16}.

As a consequence of the curvature-type bound (1-1) relative to the (n—1)-dimensional surface X, (h),
we expect that we should have the dispersive inequality

i (—i _n—1
e TV fllLee ST f NI 2-7)

for f € L1 with supp f C Aj. To prove this decay in practise, the standard approach would involve a
stationary phase argument. However, as we only have curvature information on the surfaces X; (), and
these surfaces are somewhat involved to work with, the standard approach via stationary phase arguments,
keeping track of the constants, seems difficult to implement. Consequently, we instead present a different
argument, using an approach via wave packets. Roughly speaking, fixing some large time ¢ &~ R, the idea
is to cover A; with balls of size R~z and decompose e’ ®/ =iv) f as

eitql'j(—iV)f — Z KE() * f
g0€R~1/27" Nsupp f

for some smooth kernels Kg, (¢, x) with || Kg,(¢)[ 10 < R™5. Then since T i (h) is a hypersurface, by
restricting to points close to X (h) we should have

> Ke, (1, X)

£0€R~1/27nNsupp f

1
<1 £l R? sup

it®;(—iV
e V) fll oo < I f I

oo
X

> Kg, (t, x)

g0eR=1/2270\(S; (1) +R~1/2)

o0
X

The condition (i) in Assumption 1 then shows that, for times ¢ ~ R, the spatial supports of the kernels
K¢, (1, x) are essentially disjoint, and hence

H > Kg, (1, x)

E0€R™1/22"N(Z; (h)+R™1/2)

_n _n
~ sup |Keo(0)llee S R7% ~ 173,
LY &eR™1/2270(E, (h)+R1/2)

which would then give the desired dispersive estimate (2-7).
In the remainder of this subsection, we fill in the details of the argument sketched above. We first
require a technical lemma involving the surfaces X; (h).
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Lemma2.3. Let{j k}=1{1,2}, h=(a,h)eR'"" andr=2(D,/D1)Ry. Assume &y < (A}'.‘+1/(2R0))ﬂ
(Ap+h+1/(2Ry)) and

| (60) — Dk (60— ) —a] < 1.
Then |Eg — X (h)| < D2 /(Dqr).

Proof. Define F (&) = ®1(&) — ®,(§ —h) —a; by replacing F' with —F if necessary, we may assume that
F(&p) = 0. We need to show there exists |§ —&g| < D»/(Dqr) such that F(§) = 0. To this end, let £(s)

be the solution to
VF((s))

IVF(E$)I

Note that, for times s € [0, D5 /(r D1)], we have |£(s) — &p| < s. On the other hand, since |F(§p)| < 1/r
by assumption, the transversality property (1-2) implies

ds(s) = — §(0) = &o.

g 1 D
F(E(s) = F(Eo)— / VEES)) ds' < - 521
0 r D2
Consequently F(&(s)) must be zero for some s € [0, D2/(r D1)] and hence the result follows. O

We now come to the proof of the dispersive inequality.

Lemma 2.4 (dispersion). Let j = 1,2. For any f € L1 with supp f C A;‘ + 1/(2Ry) and any t = 1
we have

itd:(—iV _n—1
e ® V) fllpeo S 72| fll
where the implied constant depends only Ro, D1, D5, and n > 2.

Proof. Tt is enough to consider the case j = 1 and R <t < 2R with R > (10R()2. Since A3 +1/(2Ro)
contains a ball of size (2Ro)~!, we can find a finite set H C R" such that #H < Rj and A1 =
Uner A1 N (A5 +1/(2Ro)h). In particular, by decomposing supp f into O(R{) sets, it is enough to
consider the case supp f C (AT +1/(2Ro)) N (A +1/(2Rp) + h). Let p € C§°(|€] < 1) such that

D pE—k)=1.

kezn

The support assumption on f , together with the fact that R > (10R)?, implies

"V f)(x) = > K, (1) * f(x).

goeR~1/2771(supp f“‘ﬁ)

where Kg, (t,x) = [gn p(R%(E —£0))elt®1®eixE g£ Since R <t < 2R, our goal is to show that

H > |Kso(l,x)|‘

§oeR~1/2270(supp f + 1075

n—1

R 7.

N
L
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We would like to write this sum in a way which involves the hypersurfaces X1(h). Fix 0 < § <
D1/(D1 + Dy) and let 8* = (D1/D,)8. Given & € R=2Z N (supp / + 1/(10Rp)), we can find
a €8*R™27 with |a| < 2D such that

|1 (§0) — a(Eo—h) —a| <5*R 2.

Therefore, an application of Lemma 2.3 with r = R2 /8% implies & € X1 (a, h) + 8R_%; hence we have

> Ke(t. )| < ) > | Kegy (1. %)

SOeR—l/zznn(supprrﬁ) ae|8a*|‘§2—D”zzz g0€R™1/27'N(Z1 (a,h)+8R~1/2)
1
< R2 sup > |Ke, (1, %))

Y t0eR=172270(T) (h)+5R-1/2)

We now exploit the localisation of the kernel, together with the partial curvature condition (1-1). Write

Kg, (1, x) = R_g/ p(g)eil[‘bl(R_1/2$+€0)—R_1/2V‘1>1(Eo)'S] PR 2(x+1V P (§0))§ dE.
Rn

Integrating by parts n 4 1 times gives
n 1 —n—
|Keo(1.)] S R™3(1+ R72|x + 1V (50)|) " (2-8)

Let &) e R™27"N (Z1(a,h) + R_%) denote the minimum of |x + ¢tV ®;(&p)|. We claim that for every
&o € R™27"N (Z1(a,h) + R_%) we have

|x +1V®1(§0)| = ;D1 R0 — &l (2-9)

Assuming this holds for the moment, we would then obtain

1
> | Ky (1.x)| S RZ sup > | K, (1.%))|
&€R~1/2270(supp / + 1575 ) " gheR-1/2200 () () +R1/2)
SR Y (+RG-§D TSR
S()ER_I/ZZ”

as required. Thus it only remains to verify (2-9). This is immediate if RD1[§o —&)| < 2|x +1V®(§))].
Thus we may assume that RD g —&)| = 2|x + VP (&)|. Note that this implies |£ —&o| = Rz By
construction, there exists &, £’ € X1 () such that |§ —&p| < SR™2, €' =& < SR~ . Therefore, applying
the lower bound (1-1), we deduce that

X +1V 1 (£0)| = t|[VD(E)—VOE) | —|x +1 VD ()|~ VD1 (E0)— V1 (£)|—1 |V D1 (E)) — VD1 (£)]
> RDy ||~ |x+1V D1 (§))|—4D25R?
S %R01|§0—56|—4(D1+D2)5R% > 1 RD1[§0—£|,

provided that we choose § < D1/(D1 + D»). Hence we obtain (2-9) and thus result follows. O
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Remark 2.5. By the standard 7 T *-argument, this implies the linear Strichartz-type estimates for wave
admissible pairs. We omit the details and refer to [Keel and Tao 1998].

2D. Classical bilinear estimate in Ltz, ++ The main use of the transversality property (1-2) contained
in Assumption 1 is to deduce the following well-known bilinear estimate, which dates back at least to
[Bourgain 1998, Lemma 111] in the case of the Schrédinger equation and n = 2.

Lemma 2.6. Let0O <r <land f,g € LJZC. Assume that the supports of f and g are contained in balls of
radius r intersected with A1 and A, respectively, and for all € € A1 and n € A»

IV®1(§) — V&2 (n)| = Co. (2-10)
Then,

1
n—1\7%

)
ez o < () 1/ ialelia,

”eit<I>1 (—iV)feitCDz(—iV)
Proof. Form =1,...,n let
Co
m =1 (E.1) € Ay x Ao 2 [ImP1(§) —Om P2 = ¢
Condition (2-10) and the support assumptions on f and g imply that we have the decomposition

- — n
(e T1EV) felt P2 W g) ) = 5 / S E =g, (¢ —n.m e EDTL0) gy,
m=1"R"

Consider the m = 1 term and write n = (11, ) € R x R?~1. The change of variables (11, 1') — (z, 1),
where T = @1 (§ —n) + P2(n), gives

| FE=nitia, = na e @ Emrem g

_ =" e
_[R/R"—' D101E %) — 010y (p) ST dnedr

where n* = (n1[z, €, ], ). Thus an application of Plancherel, followed by Holder in 1/, shows that

H /Rn fE=mElg,, E—n, e P1EDT2) g,

2
Lz,é

fE=1M80") £ o
= 1 —n*, d
/R e R PP
n—1 2 F(E— n*)o(n* 2n—1%
< 2| LERD ] o (BN
e @i —n o020 22, 0

where the last equality follows by undoing the change of variables. Since the terms with 1 <m < n are
identical, the lemma follows. U
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2E. Geometric consequences. The last step in the proof of Theorem 1.1 requires a combinatorial Kakeya-
type bound. This bound relies on the fact that certain tubes intersect transversally, and is the main reason
for introducing the condition (i) in Assumption 1. The following is motivated by [Lee and Vargas 2010;
Bejenaru 2017]; see also Section 9 of [Tao 2003].

Let h € R'*" and define the conic hypersurface

Ci(h) ={(r,—rV®;(§)):reR, §€X;(h)}.
A computation shows that the tangent plane to C; (h) is spanned by the vectors
(1,=Vo,;(§)) and H®;j()v forveTegXj(h),

where H®; (§) denotes the Hessian of ®; at §&. On the other hand, as we will see in the proof Lemma 2.7
below, the condition (i) in Assumption 1 implies

(1 =V®; () A (1, VO () A (0. VO; (§) = VP; (§)| 2 1§ - &

for every £,&" € X;(h). Hence, letting §& — & in X;(h), we can interpret (i) in Assumption 1 as saying
that, for every v € T¢ X (h), we have

[(1,=V®; (£) A (1, =V () A (0, HD; (§)v)| 2 [v].

In particular, the vector (1, —=V®; (1)) must be transversal to the surface C;(h) for every n € Ag. A
more quantitative version of this statement— and the one we make use of in practice —is given by the
following.

Lemma 2.7. Leth € R and {j, k} = {1,2}. Foreveryne A; and p,q € C.(h) we have

Di|p—q|
(1 + Vil Lo a ) IIVZPr [l Loo(ag)

((p—) A (1, =V D;(n)| =

Proof. Let w, w’, w” € R™. The identity

v Az|

[x AyAz|= inf

XA
vespan{x,y} [V] henyl

implies
(L w) A w) A0, w=—w)| = |1, w)A 0, w—w") A0, w—w)|

A 1’ 4
= inf M‘(O,w—w”)/\(o,w—w/)}
veW |v|

= [(w—w") A (w—w)l,
where W = span{(0, w — w"), (0, w — w’)}. Consequently, applying the wedge product identity once
more, we deduce that for every v € span{(1, w), (0, w — w’)}

" l(w—w") A (w—w)|
lva (1, w")| = A+ whlw—w] |v]. (2-11)
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Fix n € Aj and p,q € Cr(h). By definition, this implies that we have £, & € X;(h) and r,r’ > 0
such that p = (r, —rV®,(§)) and g = (r/, —r’'V®, (§')). Clearly, due to the convexity of Ay we have
VO, () = VO, (EN] < [V2Dx [l Loo(a[E —&']. Tf we now let w = =V & (§), w' = =V Py (¢'), and
w” = -V ®;(n) in (2-11), then we deduce from (i) in Assumption 1 that

D |v]
(1 + [Vl Loo (ar) I V2 Pr [l Lo (ag)
for every v € span{(1, —=V®,(§)), (0, VP, (§) — VO, (£'))}. Taking v = p — g and observing that we
can write

oA (1, =V&;(n)| =

(p—q) = (r=r") (1, =V O, (§)) +1'(0, VO, (§) — VP, (§)),

the required bound now follows. O

3. Wave packets, atomic spaces, and tubes

We now discuss the wave packet decomposition. To some extent, we follow the arguments in [Tao
2003], but use a slightly different notation by using projections labelled by phase-space points as in [Lee
and Vargas 2010]. Again, this helps us to carefully track constants. In addition, we consider certain
atomic decompositions. Concerning the phases ®;, it turns out that the only property we require in the
construction of wave packets below, is (ii) in Assumption 1. Consequently, throughout this section, we
fix constants Rg = 1, D> >0 and N > n + 1, and assume that for j = 1,2 we have sets A, A;‘ with A
convex and AT +1/Ro CAj C {1—16 < |&| <16}, and phases ®; : A; — R such that

sup  [|0°®; | Loo(a ;) < Da.

1<|k|SN
3A. Wave packets. Let R > 1 and define the cylinder
Or={(t.x)eR"™": 1R <1 <R, |x| <R},
and X = R27" x R™27". Define
) =1{(x0.80) € X :§0 € A} +3R 2}
to be the set of phase points which are within 3R™Z of A;'-‘. Note that provided R > (3R)?% if y =
(x0,%0) € &, then &y € A;. Given a point y = (xo,&p) € & in phase-space, we let x(y) = xo and

£(y) = &o denote the projections onto the first and second components respectively. Fix 1, p € S(R")
such that supp /) C {|€| < 1}, suppp C {|&] < 1}, and for all x, £ € R"

donx—k)y= ) pE—k) =1
kezn kezn
Given y € X and f € L%([R{”), define the phase-space localisation operator

(Lyf)x) = n(x_—x(”) [p(L_?(”)f](xy
R2 R 2
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Note that by definition we have

— _1
f=) Lyf, suppLyf Cl§eR":|E—&(y)| <2R2}.
yEX
Moreover, letting

’

_ N-14+241
w, (x) = (1+ |x x](y)l)

2

for any I' C X we have the orthogonality bounds
Siof| 5
L%

yel
To simplify notation, we define the slightly larger phase-space localisation operators L’f, =wy(x)Ly. It
is worth noting that L?, f no longer has compact Fourier support; this does not pose any problems in the

> ||wy(x)Lyf(x)||i)zc)2 <17l G1)

yel

arguments to follow, as the only properties that we require are the trivial bound ||L,, f'|| 12 S ||L$, £l L2
and the orthogonality bound in (3-1).

To define wave packets, we conjugate the phase-space localisation operator L, with the flow e
Definition 3.1 (wave packets). Let j = 1,2, R > (3R¢)? and u € L°L2(R'™™). Given a point y; € A},
we define

itd;(~iV)

(Py,u)(t) = e/*® (—iV)Lyj (=1 TV 1),
Similarly, we define
(Pﬁj W) (t) = e ®i (—iV)LQ)i/j (€% V).
We also require the associated tubes 7.

Definition 3.2 (tubes). Let j = 1,2 and y; € X;. Then we define the tube Ty, C RIT" as

Ty, = {(t.x) eR™" IR <1 < R.|x —x(y) +1V®; ()] < R},

The most important properties of the wave packets Py, u are summarised in the following.

Proposition 3.3 (properties of wave packets). Let j = 1,2. For any R = (3Ro)% f € L2 with
supp f € A% and u = /") £ we have u =Y, ¢ Py, supp Py u C {[§ —£(y)] < 2R3},
and given any I';j C X; we have the orthogonality bound

T
L®L?

v €Ly
. 1
Moreover, the wave packets Py, u are concentrated on the tubes Ty, in the sense that for every r = R2,

and any ball B C R*" we have the bound
N !
< (—) ( YLk Sz, ) | (3-3)

| 5 e (a
VjGFj Lt,x(BmQR) R2 J/jEFj

dist(Ty; ,B)>r

1
> 1L 712;) 151z, (32

vl

Here, the implied constants depend only on Ry, D>, N andn = 2.



TRANSFERENCE OF BILINEAR RESTRICTION ESTIMATES AND THE DKG-SYSTEM 1187

Proof. This result is somewhat standard; see for instance [Tao 2003, Lemma 4.1] and [Lee 2006a,
Lemma 2.2] for related estimates. We only prove the localisation property (3-3), as the remaining
properties follow directly from the definition of P, together with the analogous properties of the phase-
space localisation operator L. Let y; = (xo, §0) and write

Py;u(t, x) = An (Ly, ))(§)e"®i® ¥ g
- /R" Ke,(t,x = y)(Ly; /)(¥) dy,

where, as in the proof of Lemma 2.4, the kernel is given by K¢, (f, x) = [gn p(R2 (E—&))e!'®/ ®eixt g,
Note that, as in (2-8), integrating by parts N — 1 times, and using the fact that || < R, R > 1, we deduce
that
n tVo; 1-N
Kg(t.x) SR™2 (1 n w) ‘
R2

Plugging this bound into the identity for Py, u(z, x), we deduce that

n x — xo +1V®; (50) \' Y ly —xo \V !
Py u(t, x)] < R z(1+ — 1+ |Ly, fV)|dy
R2 R7 R2

X—Xx9+tVD;
(1+| ot i (§0)|
R2

ENN

SR

1-N
) 1L fllja.

Since there are (’)(R%) choices of &g, and

[ — X0 + 1Y, (50)| = | (1, ) — (1, x0 — 1 V®; (£0))|
= dist((z, x), Ty, ),

an application of Holder’s inequality gives for any (¢, x) € B

> Pyux)
v; €l
dist(Tyj ,B)=r ) )
o |x —x0 +1V®; (£0) \* V)2 2
SR ( ) (1+ T >k fI2,
V) €X;j R> y; €Ly

dist(Tyj ,B)=r

r TN X — xo + 1V, (50)| \ "1\ :
() 5 )
R> fo xo€R/27n R> vj€l;
nt3_ N 1
r 2 2
< (R—) (% ||L§_,.f||§2)
2 X

v €l
as required. O
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3B. Atomic spaces and wave packets. Closely related to the V2 spaces, are the slightly smaller U”
spaces; see [Koch and Tataru 2005; Hadac et al. 2009; Koch et al. 2014].

Definition 3.4. Let 1 < p < oco. A function p: R — L2 is called a U? atom if there exists a decomposition
p = jer 17(t) f7 subordinate to a finite partition

T ={(—00.,11),[t2.13), ..., [tn.00)}

of R such that

1

p
iz = (S 1007, <1

JeT

The atomic Banach space U? is then defined as

U? = {chpj (cj) € LL(N), pjaUP atom}
J
with the induced norm
lpllr = inf > gl

P=2k Ck Pk A
dxa UP atom

The space U} is the set of all u : R — L2 such that e~ ®(=iV)y € UP with the obvious norm.

Letu=) ;1; (1)elt®i (1Y) £ bea U<12>j atom. Since 1y (#) commutes with spatial Fourier multipliers,
we have

Pyu=Y 1,0 % VL, f;,
J

Phu=> 150" ®TVLE 15,
J

Proposition 3.3 gives the following.

Corollary 3.5 (wave packets for U(% atoms). Let j = 1,2. For any R > (3R¢)? and U(% atom u =

37 1s(t)e!*® V) f£5 with supp i CA* we have u —Zy ex; Pyt suppPyju c{l&— E()/)| <2R™ 2},
and given any I'j C X; we have the orthogonallty bound

Z Pyju

vl

Nl—

(Z}M‘ﬁwy)wwm%@. (3-4)

L‘Z’OL y; €T

. 1
Moreover, the wave packets P, ;U are concentrated on the tubes T,,j in the sense that for everyr = Rz,
and any ball B C RI*7 e have the bound

= )
P, s(—) ( ILE £ ). (3-5)
H Z Vi 152 (BNQx) R Z vi/ I3 L3

vj €Ly vj€L;
dist(Tyj ,B)>r

Here, the implied constants depend only on Ry, D>, N andn = 2.
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3C. Sets and relations of tubes. We repeat the definitions and notation used by Tao [2003], but as above
we adopt the point of view that the basic objects are the phase-space elements y € X, rather than the
associated tubes Ty, .

For § > 0, let B be a collection of (space-time) balls of radius R'~% which form a finitely overlapping
cover of Q g. Similarly let ¢ denote a collection of finitely overlapping cubes ¢ of radius R? which cover
the cylinder O g. Let R%g denote a cube of radius RS2 with the same centre as q. Given a collection
I'; C X;, and a cube g € ¢, we define

Tj(q) =1y €T;: Ty, N R°q # 2},

so I'; () is the subcollection of our phase-space decomposition such that the associated tube Ty, intersects
a slight enlargement of the cube g € ¢. In the remainder of this subsection, the implied constants may
depend on n = 2 only. Given 1 < 1, a < R1007 define

q(p1, p2) ={q € q 1 pj <#Ij(q) <2u;, j =1,2}.
Thus, roughly, g (111, u2) restricts to those elements of ¢ which are intersected by w; tubes Ty, y; € T';.
Given y; € I'j, we let

Ayj. . p2) =#q € q(ua. pa) : Ty, N RO g # @)

and for every 1 < A; < R199" we define

UjlAj i pal ={y; € Tj i Aj S A(yj. s p2) <245}

So I'j[Aj, 1, u2] essentially restricts to y; € I'; such that the associated tubes 7),; intersect A; cubes in
q(p1, n2). Clearly
U Lj(.p1 pu2) =T
lﬂlj, 1, MzsRIOOn

The following relation ~ between balls in B and y; € I'; plays a key role in the arguments to follow.

Definition 3.6. Given y; € I';[A;, w1, 2], we let B(y;, A;, i1, u2) € B denote a ball which maximises

#lgeq(ui,p2): Ty, NROG# @, N B(yj, Aj, 11, w2) # D).

If B € B, and y; € I'j[A;, ju1, u2], we then define yj ~j; 1, 4, B if B C 10B(yj,Aj, 1, p2). To
extend this definition to general points y; € I';, we simply say that y; ~ B if there exists some
1< Aj, w1, p2 < RO such that y; ~Ag e B

Remark 3.7. This definition has the following important consequences:

(i) Let y; € I'; and consider the set {B € B : y; ~ B}. Since there are at most O(R€) dyadic
1< Aj, w1, o < RY9% guch that yj € T'j[A;, j11, 12], and only O(1) balls B such that y; ~Ag 1 o Bs
we have

#HBeB:y ~ B} < > #{B€B1yj ~3, pus B} S > 1 < RS
1A, w1, L2 <R'O" 1<Aj, ju1, o2 <R1007
Vi €[ m1,12]
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(ii) Fix 1 <A1, @1, 2 < R and let y; € Tj[A}, i1, p2]. By definition, we have
A <#lgequi.pa): Ty, N RYq # o}

<Y #lgequipa): Ty, NRq# 2. qN B # &}
BeB

<#B#{geq(ui.1u2): Ty, NR°q # . q O\ B(yj. A1 p1. 112) # D),

where we used the maximal property of the ball B(y;,A;, 1, 12). Therefore, as #8 < R®H+13 e
deduce the lower bound

#lgeq(ui )Ty, NRPq# 2. qNB(y; Aj, 1. o) # @} 2 RO,

4. A local bilinear restriction estimate

The main step in the proof of Theorem 1.1 is proving the following spatially localised version in qu).

Theorem 4.1. Letn>2anda>0. Let Ro=1and Dy, D2>0. For j =1,2,let Aj, A% C {{ <& <16}
with Aj convex and A;‘ +1/Ro C Aj. There exists N € N and a constant C > 0 such that, for any
phases ©1 and ©, satisfying Assumption 1, any u € Uzl, vE U<12>2 with supp u(t) C AT, supp 0(t) C A%,
and any R = 1, we have

2a
||uv||ngx+3)/(n+1)(QR) <CR ||u||U(%1 ||v||U(%2.

In the remainder of this section we give the proof of Theorem 4.1. The proof is broken up into three
key steps. The first step is to use an induction-on-scales argument to reduce to proving an L% . bound.
We then use the localisation properties of the wave packet decomposition to show that the Li . bound
follows from a combinatorial Kakeya-type bound. The final step is prove the combinatorial estimate
using a “bush” argument.

4A. Induction on scales. Let o > 0 and fix Rg =1, Dy, D5 > 0. Fix N = ((o + 1)/a)(100n)2. For
j=1,2,1let Aj,A;-‘ C {%6 HES 16} with A; convex and A;‘ +1/Ro C A;. It is enough to show
that there exists a constant C > 0 such that, for any phases ®; and ®, satisfying Assumption 1, any
R > (§R0)2, and any Uq%j atoms u = Y, L;)e "1 CV £ v =31, 1,(0)e! "2 V) g 4, with
supp f C AT, supp g;r C A3, we have

||uv”L§,"x+3)/("+”(QR) < CR*. (4-1)

To simplify the notation to follow, we now work under the assumption that any implicit constants may
now depend on «, n = 2, and the constants R, D, D>, but will be independent of R and the particular
choice of phases ®; satisfying Assumption 1.

The proof of (4-1) proceeds along the same lines as Tao’s argument for the paraboloid [2003]. Namely,
we use an induction-on-scales argument to deduce the estimate at scale R by applying a weaker estimate
at a smaller scale R'~5. We start by observing that it suffices to show that, for every I'; C ; such that
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#I'; < R'%" and any B > &, we have

1
< RP@T#T)2 sup 1LY, fillz 2 105,800l 2, 120 (4-2)

E Py uPy,v
Y1 V2
LD Q) v; €T

vj €Ly

To deduce (4-1) from (4-2), we let

) = {neXiivi <L, fillp 2 <2vi. Ty N2QR # 2}

and X5 (v2) similarly, where v; € 27, An application of Corollary 3.5 gives the decomposition u =
>y ex; Py;u, as well as the bounds

H > Puu < R97
J/]GXI L[o,c))c(QR)

Ty, N2Q R=2

and 1
2 2
2 2
(Z ||7>y,u||L?oL%) 5( ) ||L”y1ff||53L%) <.
V) €X; V) €X;

The analogous bounds hold for v. Moreover #{y; € X : Ty, N2QR # &} < R™t1 Collecting these
properties together, we deduce that X (v1) = @ for v; > 1 and

u— Z Z Py u <R,
R=100n<y; 51 y1€x1(v1) LE5 (@)
A similar argument shows that
v— > > P < R0
R—1001 <1y <1 y2€X5 (v2) LY (QR)

Therefore, applying the bound (4-2) with I'; = X (v;) and B = o, we obtain

||uv ||L21x+3)/(n+1)(QR)

UvL— Z Z Py uPy,v

R-100n<y; <1 y;€X;(v))
+ >

R—100n<y; 51

<

3 1
Lgflx"r )/ (n+ )(QR)

Z Py, uPy,v
Vi €X; (vj)

1
< I+log(R)R* sup((#X1 (v)#X2(v2))2 sup 1LY, frll 12 I1L5,807 02, 12) S R,
v )/jEXj(\)j) J

3 1
L(tfzx+ )/ (n+ )(QR)

where the last line follows from the orthogonality properties of the phase-space localisation operators
(3-1). Hence (4-1) follows.

The proof of (4-2) proceeds via an induction-on-scales argument. The first step is to note that we
already have (4-2) provided we take 8 > 0 sufficiently large. Indeed, a crude argument by Hoélder and
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Bernstein inequalities implies the bound with § = (n + 1)/(n + 3) (which could be improved by using
linear Strichartz estimates as indicated in Remark 2.5). Suppose we could show that, if (4-2) holds for
some B > «, then for every € > 0 we have

Z Py uPy,v
vj€l;

3 1
L;,nx+ )/ (n+ )(QR)

< RROTDP 4 RPO @I HT2)2 sup 1LY, fill 12 1L ,80 02 120 (4-3)
v; €l
where § = «/(D + «) and D = 0 is some constant which depends only on the dimension 7. Then, since
D§ < a, by taking € > 0 sufficiently small, we deduce that we must have (4-2) for some B’ < B. Iterating
this argument then gives (4-2) for 8 = «. Consequently, our aim is to prove (4-3), under the assumption
that we already have (4-2) for some 8 > a.

We now fix I'; C &; such that #I'; < R'0" and B > a. Let B denote a collection of balls B
of radius R'~% which form a finitely overlapping cover of Qg. Let ~ denote the relation between
points y; € I'; and balls B € B given by Definition 3.6. It is important to note that the relation ~ depends
only on the fixed sets I'j, and not on u and v. We have the decomposition

Z Py uPy,v
v;i€l;

3 1
ngx-i- )/ (n+ )(QR)

<

BeB

> PpuPy,v +> Y PpuPy

y; €L BeB y; €Ly
vj~B v1#Bory2#B

ngx+3)/(n+l)(3) L;ﬁj3)/(n+1)(3)

For the first term, which contains the tubes which are concentrated on B, we apply the induction assumption
at scale R'~% to deduce that

Z Z Py uPy,v

Lgf1x+3)/(n+l)(B)

BeB "y;ely
yj~B
1
SRUTDED (#y1 eTiiyi~ By#y2 € T2t ya ~ BY)? sup LY, frll2p2lLS, 8002 12
BeB v €l ’ 7
— 1
< RERUDBHT #T,)2 sup 1%, il 21118012, 12
Vi€l

where the last line follows from (i) in Remark 3.7. For the second term, as we can now safely lose
factors of R%; we may ignore the sum over the balls B (as there are only O(R@®+D) balls). Thus, after
replacing D with D —n — 1, we need to prove the bound

H Z Py uPy,v

yjeI‘j
V1#B or y2#B

L§Z1X+3)/(n+l)(B)

1
S REPIGATIHT)2 sup L, frllz 12 LS80 2, 120 (44)

v €l
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To this end, an application of Holder together with the orthogonality property of the tube decomposition
gives
1

1
2 2
<R E Lt 2 [T
L;,x(B)N ( | ylfJ”e%ﬁ() (Z IL},87 ”43/%2(

r1€l y2€ls

“ > PpuPyv

vj €l
Y1#Bory2#B

1
< RGT1#2)2 sup (1LY, £l 2 115,807 2, 12

J/jGFj

In particular, the convexity of the L? norms implies (4-4) follows from the L% . bound

_n—1 1
H Z Py, uPy,v . §R€+D8 T (#I#12)2 sgg ||L§,l fJ||€3L)2€||L§,2gJ/||(3/L%. 4-5)
y; €l; t.x Vi€lj
Vl?‘Blor)fz%B

n+3
Thus we have reduced the problem of obtaining the L ,”;CH estimate (4-3) to proving the L%’ . bound (4-5).

Remark 4.2. The fact that the above reduction can be done in Uc%, is the key reason why we can extend
the homogeneous bilinear Fourier restriction estimates to U, c%.

Our goal in the following two subsections is to prove the bound (4-5), and thus complete the proof of
Theorem 4.1. As in the previous subsections, we essentially follow the argument of Tao [2003], but apply
the results of Section 2 in place of analogous results for the paraboloid. The general strategy is to first
use the transversality via Lemma 2.6 to reduce to counting intersections of tubes. The number of tubes
is then controlled by using (i) in Assumption 1 via Lemma 2.7 together with a “bush” argument. The
notation for various cubes and tubes introduced in Section 3C is used heavily in what follows.

4B. The L? bound: initial reductions and transversality. Recall that the ball B € B is now fixed. Write

Z Py uPy,v = Z Py uPy,v + Z Py uPy,v.
v €L V€l ;€L
Y1#Bory2#B Y1#B y1~B and y2# B
We only prove the bound for the first term, as an identical argument can handle the second term (just
replace I'; with {y; € I'1 : y1 ~ B} and reverse the roles of u and v). The first step is to make a number
of reductions exploiting the spatial localisation properties of the wave packets, together with a dyadic
pigeon-hole argument to fix various quantities. To this end, decompose into cubes g € ¢:

2 1
2
Z Py uPy,v < Z Z Py uPy,v .
L?.(B) L7.@@)
vj €L f.x a€q Ty, €T; 1xd
V1#B 9C2B B

Note that the concentration property of the wave packet decomposition implies

_§(N—nE3 1
<R S(N-2% )(#1“1)2 sup ||L§,l fJ”(%L%'
LS(q) el
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A similar bound holds for v. By our choice of N, we have §(N — (n + 3)/2) = 100n. Therefore, as
#I'; < R'0" and #g < R?", it suffices to prove

2 3
(] X pawrnr| )
qqcequ ;€L (q) Lix(@)
"o < REPIIT G T E sup L2 follg 2 1L gl e (46)
~ 1 2 Sup /I L2y, 8712, 13-
;€L !
Let FZLB(q) ={y1 € T'1(q) : y1 # B} and decompose into
2 3
(] X e, )
qeq el; r.x\q
928 yjyenéjl(?q) 2 1
<> (2] x mm, )
1< a€q(iu1,12)" y, €7 B (g)NT A p01 1.xd
s RI00n | gcap o Ve g/(i)er;(t[])l i,42]

Clearly, as we can freely lose R€, (4-6) follows from proving the estimate for fixed A1, 1, U2,

2\
( 3 ” 3 Py Py, )

€q(u1.n2)" y ery? 1@

q qCMZIaBUQ y1€T 2 (@NT1[A1,01,02]

q y2€T2(q)

_n—1 1 1
SREPITIE@r)2 @22 sup LY, frllz 2 LE,80 2, 12 (D)
v €Ly

To make the notation slightly less cumbersome, we introduce the shorthand

TH(q) =T72(q) N Ti[Ar. 1. o).

Given g € ¢ and h € R'*”, we define the set

[*(g.b) = T [A1, o1, u2l(g. b) = {y1 € '] (q) : (1) € Z1(b) +O(R™2)}.

Thus I'}* (g, b) consists of all y; € I'f(¢) such that £(y;) lies within CR™2 of the surface = (6). If we
expand the square of the L% . 1n (4-7) we get

2

Do PauPpv| < 3 Y Y [(PruPru PyuPyu)e |
y1€T} (@) Lix@  y eTy(q) v|eTf(g) y2€T2(q)
y2€T2(q) y5€l2(q)

We now exploit the Fourier localisation properties of the wave packets to deduce that the inner product
vanishes unless

E(n) +E() = E()) +E(s) + O(R™?),

| (4-8)
P1(E(y1) + 2(E(r2)) = P1(E(yD) + P2(E(y2) + O(R™2).
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In particular, if we take by, V= (<I>1 E(y))—P2(5(V5)). E(y1)—& ()/é)), then an application of Lemma 2.3
implies

Z Py, uPy,v

y1€l7(9) 7 (@)
J/2€F2(tI)
< Y > > [(PyyuPy, v, PyuPysv)p2 |,
v1€lf(@) yiel{™(g.h,, VZ y2€l2(q)
v5€l2(q) E)=E(¥D+EWY—E(1)+ORT/2)

On the other hand, an application of Lemma 2.6 easily gives the Uq% bound
_n—1
Iy uPy,vllp2 S RTILE, frll 211,800z, 12
If we now note that, for fixed y,, v, and y; and any ¢ € g, we have

#y2 € Ta 1 Ty, N ROG £ 0, £(12) = E(/) +6(3) —§(y1) + O(R™2)} < R

then an application of Cauchy—Schwarz gives

Z Py uPy,v

y1€T7(q) L7 ,(q)
72€F2(11) D§—n=l
< RPP2HTY (q)#Ta(q) sup#T1* (g, b) sup [ILE, fjllgz L2 IILyngfllez L2
h y; €l
Consequently the bound (4-7) follows from the combinatorial estimate
Y #TT(@#T2(g) sup #T7*(q.b) S RP*HT T, (4-9)
a€q(1u1,12) heR!F™
qC2B

We now simplify this bound slightly by exploiting the dyadic localisations we performed earlier. More
precisely, by definition, for every g € g (w1, it2), we have #I'2(¢) < 2u». On the other hand, by
exchanging the order of summation, recalling the shorthand I'[(¢) = FZL B(q) NTy[A1, m1, u2], and
using the definition of the set I'1[A1, i1, w2], we deduce that

Yo HTT@ s ) #(Ti@ NTh, s, o))

q€q(iu1,142) qEq(1,142)
qC2B

= Y #geq(ui.pa) Ty, NRq # 0} < 2A4#Ty
v1€l[A1,m1,12]
Therefore, we have reduced the bound (4-9) to proving the combinatorial Kakeya-type estimate
#F2
sup ¥, pal(g. b) S RPP— (4-10)

her! 7 Arje
q€q(n1,142),9C2B

The proof of this bound is the focus of the next subsection.
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4C. The L? bound: the combinatorial estimate. We have reduced the proof of Theorem 4.1 to obtaining
the combinatorial bound (4-10), which is essentially well known to experts as it does not see the difference
between homogeneous solutions and V2 -functions. For completeness, we include the proof here. We
follow the “bush” argument used in [Tao 2003], making some minor adjustments only to relate it to
Assumption 1. Recall that we have fixed a ball B € B. Fix any h € R'*" and qo € q (11, j12) with
go C 2B. Our goal is to prove

#1°y
#T1"(qo.b) < R =

The first step is to exploit the fact that y; is not concentrated on B. Recall from Section 3C that for
y1 € I'1 we have defined the ball B(y1, A1, i1, 42) € B to be (a) maximiser for the quantity

#{g € q(u1, pn2) : Ty, NROq# 3, qN By Aj, jt1, jt2) # D).

Let y1 € I'f*(qo0, b). By construction this implies y; € FZL B (g0), and hence by the definition of the
relation ~, we have B ¢ 10B(y1, A1, i1, 42). Since go C 2B and the balls in B have radius R4, we
must have dist(qo, B(y1, A1, 1. 42)) = R'75. In particular, by (ii) in Remark 3.7, we have for every

y1 €I'7*(qo. b)
#q €q(u1, p2) 1 Ty, N Riq + @, dist(q.q0) R1‘3}
2#{qequi ) Ty, NROq #@. qNB(y1. A1, 1. p2) # @) 2 R7P01.

On the other hand, since for ¢ € g (1, (2) we have #1'2(q) = 2, we deduce that

#{(q.y2) € q(u1. p2) x T2 : Ty, NR°q # @, Ty, N Rq # @, dist(q.q0) 2 R* 0} 2 R7P% 41 po.

Summing up over y1 € I'}*(go. h) and then changing the order of summation gives

A1 p2#T1*(qo.h)

SRPS N #{(q.y2) €qur.i2)xT2: Ty, MR g # @, Ty,NRYq # @, dist(q.q0) 2 R~}
y1€f*(q0,h)

=RP5 " #{(g.71) €q(11.112)xT*(q0.h) : Ty, NRPq # @, Ty,NR®q # 2. dist(g.q0) = R'°}.
y2€ln

Therefore the required bound (4-10) follows from the lemma below; see [Tao 2003, Lemma 8.1].
Lemma4.3. Let go € q, h € R'™", and y, € T5. Then
#{(q.71) € 41, 12) XT1*(qo. ) : Ty, N Rq # @, Ty, N Rq # @, dist(q.q0) 2 R} S R,

Proof. Define the bush (or “fan”) at g¢ by

Bush(gp) = U T,,.
y1€*(q0,b)
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Thus Bush(go) C R'*" is the union of all tubes T}, (associated to phase-space elements y1 € I'}*(qgo, b))
passing through a neighbourhood of the cube gg. Our goal is then to bound the sum

> #{y1 € T1*(qo.h) : Ty, NR%q # 2). 4-11)
qa€q(i1,12)
g CBush(go)NTy, +O(R1/2+9)
dist(g,q0)Z R 8

We first count the number of possible cubes in the outer summation. The idea is to first show that
1+D§
Bush(qo) C (0. x0) + C1(h) + O(R2T77), (4-12)
where (g, xo) denotes the centre of the cube g, and the conic hypersurface C;(h) is given by

Ci(h) ={(r.—rV@1(§)) : r R, § € X1 (h)}.

If we had (4-12), an application of Lemma 2.7 would then show that Bush(qo) N 7y, is contained in a
ball of radius R2+2 8 and hence the outer summation in (4-11) only contains O(RP 8) terms. To show
the inclusion (4-12), suppose that (¢, x) € Bush(gg). Then (¢, x) € T}, for some y; € I'f*(¢o.b). By
construction, we have £ (y) = £* +O(R_%) for some £* € X1 (h). On the other hand, since 75, N Rigy+#0,
we have

x—=x0+(—10)VP1(§(y1) =[x —x(y) +tVP1(E(y1)] —[xo—x(y) +1oVP1(§(y1))] = O(R%M)-

Therefore, since |t —to| < R, we can write

(¢, x)— (20, X0)
= (1—to, —(t—10) VO (£¥)) + (0, x —x0 + (1 —10) VP 1 (£ (y1))) + (0, (t —10) [VP1 (") — V1 (¥ (£))])
= (t—to. ~(1—10) V1 (£")) + O(R )

and hence we have (4-12). Consequently, the outer sum in (4-11) is only over O(Rc‘g) cubes.
Fix g € (1, 12) with dist(g, go) = R'~%. As the outer sum in (4-11) only adds O(RP?), the required
bound now follows from

_1
#y1eT1:6(1) € 21(h) + O(R™2), Ty, NR’q # @, Ty, N RPqo # @} < R’. (4-13)

The point is that since the cubes ¢ and go are at a distance R 1-6 apart, the condition that 7}, must
intersect both cubes, essentially fixes the tube 7),,. Since £(y1) € Z1(h) + (’)(R_%), the bound (1-1)
implies that fixing the tube 7),, also more or less fixes the phase-space element y; (note that without the
bound (1-1), the set in (4-13) could potentially contain far more than O(R‘s) points). In more detail, let

_1
y1.71 € {y1 €1 :£(y1) € T1(h) + O(R™2), Ty, N ROq # @, Ty, N RPqo # o}
In light of (1-1), the estimate (4-13) would follow from the bounds

1 _1
Ix(y) —x(YDI S RZTE, Ju(y) —v(yp)| S R72HS, (4-14)
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where for ease of notation we define the velocity as v(y1) = ®1((y1)). We now exploit the condition
that the tubes 7),, and Tl’i intersect the cubes ¢ and qg. Let (¢4, x4) denote the centre of the cube ¢ and
(t0, x0) the centre of go. Since |v(y1)| < D, and

Xo—xg + (to — tg)v(y1) = (xo — x(¥1) + tov(¥1)) — (xg — x (¥1) + tgv(y1)) = O(RZTDE),

the separation of the cubes ¢ and g implies R17Cs < |fo —t4] < R. A computation shows that

(to— ) (0(y1) —v(¥)) = ORZFPY), x(y1) —x(#}) = 1o (¥}) = v(1)) + O(RZ+P?),

and hence the bound on [ty — 74| gives (4-14). O

5. The globalisation lemma

We now complete the proof of Theorem 1.1 by showing that it follows from the localised bound in
Theorem 4.1. The proof of Theorem 1.1 proceeds by using a strategy sketched in Section 8 of [Klainerman
et al. 2002], together with an interpolation argument to replace Udz,j with Vq%j.

Proof of Theorem 1.1. The first step is to show that by exploiting the (approximate) finite speed of
propagation of frequency-localised waves, the bilinear estimate on Q g implies the same estimate holds
on /g x R" with Ip = [0, R]. The second step is to remove the remaining temporal localisation and
R*-factor by using duality, together with the dispersive decay in Lemma 2.4. Finally we use a simple
interpolation argument to replace Uq%j with the larger Vq%j space.

Step 1: from Qg to IgxR"™ Let R = (10R)?, u e U%j andv € U%j, with supp i C A} and supp & C AJ.
Assuming Theorem 4.1, our goal is to prove that for every @ > 0 we have
”uv”Lﬁf’j”/(”“)(l;ex[@n) < R“||u||U%j ”U”U%j' (5-1)

It is enough to consider the case where u and v are atoms; thus we have the decomposition

=31,V gy 0 =310 g
J J’
with

ST+ llgar 2, <1,
J J’

and we may assume that supp f 7 C AT and supp g5 C A} (using sharp Fourier cutoffs). By translation
invariance, the bound (5-1) then follows from

1 1
2 2
< R (Z [+ R )™ £ |7 ) (ZH A+ R x) ™ Vg7 ) (5-2)
J J’
since we can then sum up over the centres of balls (or cubes) of radius R which cover R”. The inequality

||uv ||L§’nx+3)/(n+l)(QR)

(5-2) is a reflection of the fact that, as u and v are localised to frequencies of size &~ 1, we expect that the
waves ¢! ®/ (=1V) f7 should travel with velocity 1. In particular, ¥ and v on Q g should only depend on
the data in {|x| < R}. It turns out that this is true, modulo a rapidly decreasing tail.
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Let p € S with supp p C {|é| <1} and p = 1 on |x| < 1. To prove (5-2), we start by noting that since the
left-hand integral is only over Q g, we may replace uv with p(R=1x)u(z, x)p(R~'x)v(y). We can write

X\, itd;(—iV) _ n s _ itd;(n) £ i&x
p(3)e @ = [ R RE=m) OO Fiay et ag
= [ [ R BRG=m) F P RG =) dy e g, (53)

where F(t,&,n) = x(§, n)ei’(d’f (+m)=®; ) ang X € Cgo({|$| <2} x (A}.k + l/Ro)) with y =1 on
{lE] <2} x A;'.‘. The oscillating component of F is essentially constant for |¢| < R. To exploit this, we
expand F using a Fourier series to get

Fuem= Y a@d0 o= [ Faene e agan
kez2n Ran
and by (ii) in Assumption 1, the coefficients satisfy |cx (t)| SRy.D, (1 + k1) 72TV + |ky[)2¢+D
with k = (k1, k2). Applying this expansion to p(R~!x)u and p(R~!x)v we obtain the decompositions

PR =" "cr ()17 0)e" V) fi g,

J k (5-4)
PR ) =" "cp ()1 (1) > Vgy 1,
J' k

where the coefficients cy, c;C are independent of J and J', and the functions fi s and gi ;- are given by
X X
For @)= p(% +h1) fr(r ko), ge () = p( %+t ) g (x + ),

with k = (ky, k). Note that supp f’}\c’j C AT +1/(2Ry) since R = (10R0)? thus the fi ; satisfy the
support conditions in Theorem 4.1 (with A}'.‘ replaced with A;‘ + 1/Ryp, and Ry replaced with 2Ry). A
similar comment applies to the g y. Therefore, plugging the decomposition (5-4) into the left-hand side
of (5-2), we deduce via an application of Theorem 4.1 that

|uv ||ngx—&-3)/(n+l)(QR)

S ) A4k A4k TOED

k.k'ez" x7n
o < 10 ) 100 T g,
’ ’ (n+3)/(n+1)
JJ’ L;x (Qr)
SREY () 2D (1 204D
k.k’

1 1
X(ZH(H—R_I|x—k1+Rk2|)_(n+1)fJ Higc)z(ZH(H—R_I|x—k’1+Rk§|)_("+1)g1, 2%)2
J J’

1 1
SR (TR DD 1 ) (SR g7 )
J J’

Thus we obtain (5-2) and hence (5-1).
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Step 2: from Ig x R" to R1™". Letu € U%l and v € U%Z, with supp i C AT and supp v C A3. Our goal
is to show that forevery p > (n+3)/(n+ 1)

lwvllzg, < Il ol (55

In fact the argument below gives the marginally stronger (though essentially equivalent) bound

luvllLr potn/mrne S ul v3, [lv ”U%z' (5-6)

To deduce (5-5) from (5-6), note that the dispersive estimate in Lemma 2.4, together with the abstract
Strichartz estimates of [Keel and Tao 1998, Theorem 1.2], implies there exists 1 < a < b < oo such that
luv]] LeLh S < 1. On the other hand, the Fourier support assumptions imply that we have the trivial bound
luv]] LeLP@®I+n) S < 1 for every p = 1. Thus interpolation gives (5-5) from (5-6).

We now turn to the proof of (5-6). As in Step 1, we may assume that ¥ and v are atoms with the

U= Z 1J(t)eit¢'1(_iv)fj, V= Z 11,(t)eit<1>2(_iv)gj
J 7

decomposition

with supp f7 C AT, supp gy C A3, and
S+ Y g2 <1
J J’

By real interpolation it is enough to show that for every ¢ > (n 4+ 3)/(n + 1) we have

luv ”L?’“Lﬁ{'“)/(”” <L

where L?’Oo is the Lorentz norm. Applying duality, this follows from the estimate

1
[ luvll, w+3/m+n dt < |QT (5-7)
Q X
for every measurable €2 C R. Define the Fourier localised solution operator

Uj (0)[h] = "I T Ppsh,
where we let

Parh(€) = pax (©)h(E)

with p € Cg° (A;f +1/(10Rp)) and p =1 on A;'.‘. If we interpolate Lemma 2.4 with the trivial L L2
bound and apply duality, we deduce that for every 1 <a <2

L,megxg UFOIGOL UF NGz drdr’ SIQPR™ T GG 2oy, (58)
[t—t’|ZR
where U * denotes the L2 adjoint of {;. The dispersive bound (5-8) together with the bilinear estimate
(5-1) are the key inequalities required in the proof of (5-7).
We now begin the proof of (5-7). If |Q2| < 1, then (5-7) follows by putting uv € L°°L”Jrl and using
the Sobolev embedding. Thus we may assume that || > 1. Let us set J¢, := N J'. An application
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of duality gives

/(F,uv)Lz dt
Q X

/ ||MU||LgCn+3)/(n+l) dt < sup
Q <
”F”L‘;OL&""‘”/Z 1

= sup
||F||L?OL¥1+3)/2$1

< sup (Z

||F||L§>OL¥1+3)/2§1 J’

Z/ (Foulh()[gr]) 2 dt‘

FRRLs
1
L%

/, Uy (¢)[Fu)dt

Q

If we expand the square of the L2 norm, we have via (5-8)

2

2
// Uy (1)[Fu)dt LT Z/ (U5 @)[Fal, U3 (") [Fil), 2 dt di’

7 A 2 7 tr'elg
-y /t ves, WEOUF i), U @[Fa)),; dr d’
J' Tle—t'|ZR
15300 DI B B 710 G N
J' |I-I'|<R Jg/zﬂl Jg/zﬂl/
n—1(2 2
<|QPR™ (5—1)||Fﬁ||]%?oL%+Z / Uy (t)[Fit) dt
T JGNI L2
< |O]2 p—2=p 2 2 * _ g
SIQIFRT F ||F||L?OL¥:+3)/2||”||L?0L§+Z A Uy ()[Fuldt] .
JI Q x
where
12 1
a4 n+3 2

Here we always take I (and ) to be a decomposition of R into intervals of size R. We now essentially
repeat the previous argument, but expand u instead of v to obtain
2 2
< sup
LY Sysleril?,st
X

,ZJ /ngm U (1)[Fi) dt

> / (F.ulla(1)g 1) 2 dt
71Nt
2
< sup
>N ”gj’.llliz <1
X

; /ng1<uik(t)[Fﬁl]a Jr)pzdt

2
S sup
2T ||gJ’.I”iz <1 g
X

’

L%

Z/J mu;“(z)[m,]dz

1

where we take
DR VAGIZIGYIING
J/
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Again expanding out the L)zc norm, and applying (5-8), we have
2
> Z/ UF(1)[For)de
7 7 JonI L)ZC

=2 2 / / (Ut OLF o), th () Fopl) 2 de dt’
J |I-1'[»R7Jenl Janl!
- Z / /JQOIKUT(IHFEI], Z/{ik(l‘/)[FﬁI/])L% dt dt’

J |I-1|<R’ e

2(n 2

nol) 2 2
N o oo SR 0o 2+ ;

<IQPPR™

/ Uy (1) [Foy) di
JonI

L3
Collecting the above chain of estimates together, and using the fact that

2 2
1017 ez < D2 lgunallz; <1
1,J’

together with another application of duality, we see that
N
L}C)

_n—1
< QR 7 + sup Z ||M[U]||L(xn+3)/(n+2) dt,
QNI ’

g ”gl,J’”iz 1
X

g llfrg ”i% <1

_n—1 B
[iolgoearsior e s (S wors
X
Q llFllL‘z’oLgc"+3)/2sl 7.1/ JanI

g ”gI,J’Hiz <1
X

where we define uy = ; ; 15 (t) U1 (¢)[ f1,7]. Observe that
2ol <ol <1,
I 1,J

and that u satisfies the support properties in Theorem 4.1 (with A;‘ replaced by A;‘ +1/(10Rp), and R re-
placed by 2R). A similar comment applies to vy. Consequently, an application of (5-1) gives for any o > 0

2
XI:/;ZN ||u1v1||L§Cn+3)/(n+l) dt <|Q|n+3 XI: ”ulvl”Lgfl)cﬂ)/("H)(IXR")

1
) 2
s R“(Z ||f1,1||i)zc) (
1,J

1

2 2
Slersl;) <leld e
1,J/ ’

< 19|

and therefore
n—1

- 2
[ [uv|l; at3r/m+n dt QRT3 +]Q|7+3 R,
Q x

n— 1
To complete the proof, we choose R = |Q2|¢ with C > 0 sufficiently large so that |Q|R_ﬁ < Q.
On the other hand, since ¢ > (n 4+ 3)/(n + 1), we can take

g L(rtl 1
S 2C\n+3 q)
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which implies
2 2 1
Q7 RY = |7 C < Q|7
Therefore we obtain (5-7) as required.

Step 3: from Uq% to V%. Let p>(n+3)/(n+1), ue Vq%] andv € Vq%z, with supp it C AT and supp 0 C AJ.
An application of [Koch and Tataru 2005, Lemma 6.4]; see also [Hadac et al. 2009, Propositions 2.5
and 2.20], gives a decomposition u = ) ;o Ug and v = ) ;o Uk such that uy, vy retain the correct
Fourier support properties (we can just use sharp Fourier cutoffs here) and for any r = 2 we have the bounds

k(2-1 k(2-1
g, <2°CDlully; + el $25GDolly; .

Let (n+3)/(n+1) <g < p, and take 6 = g/p < 1. Then an application of (5-5) (with p = g), together
with the convexity of L? norms, gives

6 1-60
luvllpy, < D lukvelly, < D luevelya luxvellp
k& k& '

0
< ;(nuku(}%] loelloz )" (e llugs o llugs)

—k(1—0)~—k’(1-0)
< <
= ||u||qu>] ||U||Vq2>2 E 2 2 = ”u”V<12>1 ”U”Vc%za

1-0

k,k’
where we used the Sobolev embedding and the fact that the Fourier support of u, v is contain in the unit
ball to control the L7 norm. Thus Theorem 1.1 follows. |

Remark 5.1. The argument in Step 3 above, using (5-6), also implies the slightly stronger estimate
vl p om0 eay < Cllullyz Mollyz -

This is well known in the case of homogeneous solutions; see, e.g., [Tao 2003]. However, the estimate in
the endpoint p = g = (n + 3)/(n + 1) remains open. For homogeneous solutions it is known only in the
case of the cone [Tao 2001].

Remark 5.2. In fact, since Tao’s endpoint result [2001, Theorem 1.1] holds for Hilbert-space-valued
waves, we observe that one can deduce the U2-estimate for the cone directly. This follows by noting that,
given UZ-atoms u = ) ;c; 1jur andv =3 ;. ; 1yvs, we have

e (Z|u1|2)%(z |vJ|2)é o

IeT JeJg

with £2-valued waves U and V.

6. Mixed norms and generalisations to small scales

We now give some consequences of the bilinear estimate in Theorem 1.1. Namely, we state an extension
to mixed L? L” spaces, and, in the case of the hyperboloid, we give a small-scale version of Theorem 1.1.
The small-scale estimate will play a key role in our application to the Dirac—Klein—Gordon system.
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6A. Mixed norms. Let ®; and @, be phases satisfying Assumption 1. A standard 7'T* argument, see

for instance [Keel and Tao 1998], together with Lemma 2.4 implies that, provided
1 n—-1_n—1
— - <
q T Sy

and g > 2, we have the Strichartz-type bound
1€ S g @iemy S 1 g2 (6-1)

As in Step 3 of the proof of the globalisation lemma, by decomposing V2 into U¢ atoms, see [Koch and
Tataru 2005, Lemma 6.4] or [Hadac et al. 2009, Propositions 2.5 and 2.20], we see that

vl zgrg < lellyz Tolyz.
for any

1 n—1_n—1

— - <

a2 S 2
Interpolating with Theorem 1.1 then gives the following mixed norm version.

Corollary 6.1. Let n = 2 and assume that a > 1,

1 n+l1 n+1
a T ST
and
1 n—1 = n=3,
Tt Vi s ~ (6-2)
2t =2

Let ®1, 3, and u, v be as in the statement of Theorem 1.1. Then

uvllzgrg < lullyz Ioly; -
Remark 6.2. Let p > (n 4+ 3)/(n 4+ 1). It is possible to deduce a weaker version of Theorem 1.1 and
Corollary 6.1 directly from the homogeneous estimate

Heitfb](—z‘V)feit¢2(—iV)g||L£x(Rl+n) SUflzz2lglzas (6-3)

where the phases satisfy the conditions in Assumption 1, and f, g € L? have the required support
conditions. We sketch the argument as follows. By interpolating (6-3) with the trivial L?OLJZC bound, we

deduce that for every a > 2 we have
it®1(—iV) £,it®2(—iV
¢! 1(—i )fel 2 (—i )g“L?Lﬁ(”"'])/n < ”f”L)% ||g||L)2(

By decomposing V2 functions into U¢ atoms [Koch and Tataru 2005; Hadac et al. 2009; Koch et al.
2014] and using the convexity of the L? spaces, we see that for a > 2

<
||uv||L?L§Cn+1)/n N ||u||V%] ||U||V£2'
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Consequently, as in the proof of Corollary 6.1, by interpolating with the standard Strichartz estimates, we
obtain

<
lwvllzgry S Nz I0lvz,

provided that a > 1,

1 n+1 n+1
a2 <2
and
n—1(n n+1 1
5 +_7 n23,
1_ (G—%5) 2 (6-4)
a % n=2

In particular, the homogeneous bounds contained in [Lee and Vargas 2010; Bejenaru 2017] imply a weaker
version of our main result, with (6-2) in Corollary 6.1 replaced with (6-4). Note that condition (6-4) is
much more restrictive than (6-2). This is most apparent in the low-dimensional cases; for instance if n = 2
then Corollary 6.4 allows a < 2, while (6-4) only allows the somewhat trivial (from a V2 perspective)
a > 2. To summarise, our main result, Theorem 1.1 not only clarifies the dependence of the constant on
the global properties of the phases ®; and &, but also presents a significant strengthening of the allowed
exponents for the /2 estimate.

We observe that the above argument, namely deducing a V2 bound directly from the homogeneous
estimate, has been used in [Sterbenz and Tataru 2010, Lemma 5.7 and its proof] in the case of the cone.
Remark 6.3. In the special case of the hyperboloid, ®; = (£);, or the paraboloid, ®; = |€|2, the
Strichartz bound (6-1) holds in the larger region

1 n o_n

PRSI
This can be used to improve the range of exponents in Corollary 6.1; in particular (6-2) can be replaced
with

1 n _n+l

— + _— < —

a 3b 3
However, it is important to note that, in the case of the hyperboloid, some care has to be taken as the
constant will now depend on the masses m;.

6B. Small scale bilinear restriction estimates. In the case of hyperboloids we now generalise Theorem 1.1,
similarly to [Lee and Vargas 2008] in the case of the cone. Given 0 < @ < 1, we define C, to be a
collection of finitely overlapping caps of radius o on the sphere S"~ L. If k € Cy, we define w(k) to be
the centre of the cap «.
We consider the case ®;(§) = — % (§) and define the corresponding Vi’m space as Vi,m = Vq%j;
thus
lullyz = 1= @)y, (6-5)

We define the corresponding U i . space similarly. Rescaling Theorem 1.1 then gives the following
optimal result.
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Corollary 6.4. Let p > (n+3)/(n+1), 0<my,my < 1:

(i) Forany A Z my +ma, (my +ma)/A Sa <1, k,k’ € Cy with (1K, £2k') ~ a, and

supp i C {|§| ~A, iEK}, supp 0 C {|§| ~A, £ cx'y,
€] 13
we have the bilinear estimate
n—l—"T'flAn—"—

+1
uv <o 7 ||u v .
vl p, < Il W0l
(ii) Forany A Z my +msy, 0 <a K (my +ma)/A, k,k' € Cy, ¢1 =~ ¢ ~ A with

O(£1k, £2k") S, |mici —maca| ~ ad?,

and
suppu C ||g-a)(/<)|—c1| L aA?, % EK%, supp 0 C { }|§-w(lc’)| —cz‘ < aA?, é—| ex'y,
we have the bilinear estimate
n+2 n+2
woll, r <o 2 ATV ullye v||y2
vy, lullyz | olyz

Proof. Fix £1 = + and +, = =+, the remaining cases follow from a reflection. We start with (i). If « ~ 1,
then the estimate follows from rescaling in x together with an application of Theorem 1.1. Thus we may
assume that 0 < & < 1, and after a rotation, that « is centred at ey and «’ is centred at (1 —az)%el +aes.
Similarly to [Lee and Vargas 2008], we define the rescaled functions

t.x) t x1+ X (t.x) t x1+ r X
U X)=u|l ——,—+——,— ], v ) =v| —, 4+ —, =
A a2’ A a?A ak A a2’ A a?A ad
(where we write x = (x1, x’) € R x R*~1) and the phases
—1 1 :FI 1
®1(8) = ——((m] + 2267 +@®A%E'17)> —Af1),  @2() = o ((m3 + A%E7 +*A%[E'))2 F Ada),
with associated sets

AM=E~1 <]}, M= ~xl.5H~1, <1}

where we write £ = (1, &2, ") € Rx R x R"™2). A computation gives suppii, o C A and

. . i L (V) t x1 x
ok = [ () (3. 55)

Similarly we can check that supp 9, o, C A2 and

(i L (V) t xp x'
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Therefore, after rescaling together with an application of Theorem 1.1, it is enough to check that the
phases ®; satisfy Assumption 1 on the sets A ;. To this end, we start by noting that we can write

1 —(m1/(ad)* = |§']?
Vo) = ——— ( e 5 ).
(A72my + &7 +?[§'[7)2 \(A72m{ + & +?[§'])2 + &
which shows that (ii) in Assumption 1 holds with D, depending only on N and n. A similar argument

shows that &, satisfies (ii) in Assumption 1. On the other hand, to check condition (i) in Assumption 1,
we invoke Lemma 2.1. First, we observe that for any £ € A1, n € As, we have

VO (§) — VD2(n)| = [02P1(§) — 02D2(n)|

52 - n2
1 1
A2m3 4+ €7 +a?8'12)2 (A 2m3 + 7 + 2|0 ?)2

and hence we can take A1 ~ 1. It remains to check (2-2) in Lemma 2.1. We make use of the following
elementary inequality; if (h*,a*) e R*T! xR! and x, y € {z e R**! : |z| = |z — h*| + a*}, then

X 2
__L' .
Xl vl 4yl

1 A yl? — A (y —h*)|?
AyP =B A=Y 6o
x|yl |x —h*||y —h*|
To prove (6-6), we start by observing that since x, y € {|z| = |z —h*| + a*}, we have
X y 2 1 2
2
Xyl =|x||y|(|x—y| —[IxI=1y1[%)

2 2
=W(\(x—h*)—(y—h*){ —|lx 1" =y =h*[]")
Cx=h*|ly=h*|| x—h*  y—h*|?

|x[1y] |x—h*| |y —h*|

The inequality (6-6) now follows from the identity |w — w*|? = %|a) Aw*|? for w, w* € S"T1. We now
return to checking (2-2) in Lemma 2.1; we only check the case j = 1 as the remaining case is identical.
Let £,n € Z1(a, h) for some (a,h) € R'™" such that £ —h,n—h € A,. A computation gives

[(V®;(§) = V®; () (€~ 1)
( (r.e?8)  (m,e?n) )'(5—7))'
(A7 my, §1,028)] [(A7Imy, €1, af))]
:a—2|(/\_1m1,§1,0!5/)| + |(k‘1m1,n1,om/)|‘ A lmi kL eg) AT my e P
2 (A my, 0D (A7 my, €1, af))]

— y 2

2

AR 6-7)

x| 1yl

-2

~

where we take x = (A" 'my, &1, a€’) and y = (A" 'my, 01, an’). Note that the condition £ € X1 (a, h)
becomes |x| = |x —h*| 4+ a* with h* = (A" my — A7 my, by, ah’) and a* = o?a. In particular, since
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|x| &~ |y| ~ |x —h*| ~ |y —h*| ~ 1, an application of (6-6) gives
x oy
o Dy| RREAYE IR Ay =R (6-8)

The required bound (2-2) with A, &~ 1 now follows in the region |§; — 11| < |€/ — 1’| by noting that

Ix Ayl = alern’ —méE' | = a(|§ —n'l|E] = 1E11E —ml) ~ alf —n'| ~ als -7
and applying the inequalities (6-7) and (6-8). On the other hand, if [§; — n1| > |§' — 1/|, then as
§—h,n—h e A,, we have
|(x =h*) A (v = 1) = el (61 —h1) (12 — h2) — (11 —h1) (62 — )|
= a(|&1 —milln2 = ha| = €2 = n2lln — h1l) ~ alér — m| ~ al§ —nl,

which again gives (2-2) with A, ~ 1. Thus the phases ®; satisfy Assumption 1 with D1 ~ D> ~ 1 and
therefore part (i) follows.

We now turn to the proof of part (ii). The argument is similar to (i), but we need a further rescaling to
exploit the radial separation condition. As before, after rotating, we may assume that w(k1) = e;. Define
the rescaled functions

X teq x’ X teq x’
# #
u I, x)=u s + ,— |, v fr,x)=v , + , —
ha(l: ) ((m ar? " a2A(c1)m, a/\) da(lX) (azx ar? | a2A(c1)m, oz)t)

(where, as previously, we write x = (x1, x’) € R x R?~!) and the phases

— . 2
@1(8) = ﬁ((m% @i a2 P - ),

(Cl)nn
alcq
2(6) = ((m2 @)+ PR F sl)
with associated sets
Alz%gl_ 1,|§-"|<<1}, AZZ{El 2| K 1, |§|<1}

As previously, a computation shows that supp ﬁ’i o C A1, supp ﬁﬁ « C A2 and we have the identities

—it®P(— ZV) # ml L i x_/
e LI = [ u(azk)](w,ak),

[e—itq>2(—iV)v# ([)](.X): eiit(v)’”Z‘U L ﬁ x_/ X
A aZi al?’ al

Thus, as in the proof of (i), after rescaling and an application of Theorem 1.1, it is enough to check that
the phases ®; satisfy Assumption 1 on the sets A ;. To this end, note that we can write

mi/ (@A) (@A*€1)* = c}) = (c1/A) g
faAty. af’)

019 =
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for some smooth function f with f ~ 1 on Ay. Since 3?’11 [(@A2£1)? — c?] < aA® forall M = 0 and
&1 € A, we see that @ satisfies (ii) in Assumption 1 with constant depending only on n and N. A similar

argument, using the fact that
A C1 (6]

allc)m  (2)ms

shows that ®, also satisfies (ii) in Assumption 1. On the other hand, to check (i) in Assumption 1, we

~ 1,

use Lemma 2.1. Concerning the transversality condition (2-1), we observe that for £ € A, n € Aj, we
have |&1] &~ |n1| ~ 1/(xA) and

miy+my

_omi+mp
, A=,
ol

&1 -1l 1P S 472 < —

2.2 2 2
|Eyms —nym1| ~

Therefore

(A%£1.8) - (A%n1.1)

Voi(§) —Vda(n)| =
| | (A"2m2 + 22282 +a2('12)T  (A~2m2 4 a2X212 + 2|7/ [2)3

2 P22 + o220 + o) (372} + @226 + )|
~my+my 21,

so that (2-1) holds with A1 & 1. We now check the curvature condition (2-2) for j = 1. Let &, ne X (a, h).
Repeating the computation (6-7) we deduce that

2
Za 2 (Ix Ay A+ e =) Ay =h9)?),

(VO (8) = V1 () - (E—1)| Mo 2| = — 2
[l

where x = (A7 'my, eAér a€), y = A my ednan), h* = (A \ma — A7 my, adhy, k'), and we
used the fact that x, y, x —h*, y —h™ all have length 1. It thus remains to show that

X AY[+I =R Ay =1 2l —¢|

since then (2-2) holds with A, ~ 1. If [§; — n1| < |€/ — 1’| we simply observe as previously that
Ix Ayl = aleréin’ —edmE'| = a(|E —n'|ad |§1] = |§' | ad [E1 —m) ~ alg’ 0| ~ al§ —n]
On the other hand, if |§; —n1| = |€&' — /|, then as € —h, n—h € A,, we have
X AY[+ 1 =B A (y =) = ami|&r —mi| +amz|(§1—h1) — (n —h2)| 2 «|€ —7.

An identical argument shows that ®» also satisfies the curvature condition. Thus the phases ®; satisfy
Assumption 1 with Dy &~ D, ~ 1 and therefore part (ii) follows. O

The o and A dependence in Corollary 6.4 is sharp. At least for (ii), this can be seen with the following
example. Let
Q; = {|&1 —cj| K ar?, |E| € ad},

with [c; —c2| SaA?, ¢ ~cp ~ A, and @ < A1, Define f(g) =1q,(8), g(6§) =1q,(§) and

w=etV) gy =ity
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Then
1
= = Q]2
ellyz, =171, =12l
.. 1
and similarly ||v]| Vg = |€22]2. On the other hand we have

(MU)(I,X) — / / ﬁ(l, g)ﬁ(l‘, r])eiX'(E'i‘ﬂ) dg_- dn — / / eit(($)+(n))eix-(§+n) ds dn
R7? JR? QIR

The idea is to try and find a set A C R'*” such that the phase is essentially constant for (¢, x) € A. We
start by noting that for £ € 2, we have

I+c¢ _ -
(6= B AR + D) (1 ag?] =46 e+ 1+ DI P w2,
and hence
_ C
‘<s>—<c1> - f| Se?A,
{c1)
Similarly, since
——— & — ~ A —ca| ~ —,
TS le1{c2) —ca(er)] le1—c2f > 5
we deduce that for n € 2,
e —1_(C_z_c_l)c _ e $' PR T I (K5 S [N Py
‘(77) (c2) o) )T e (n) —{c2) ™ e @ [n1 —cal

In particular, for |¢| < (&?A)7L, |x1 4 (c1/{c1)t] <€ (@A?)7], and |x/| < (2A)~L, the phase is essentially
constant and hence

|(uv)(t’x)|:‘/ / Gt —len ™ =y Jir(in)—te2) ™ =5~y )=y m)
Q1 Q> Xei(xl+t%)(fl+7ll_61_02)+x/'(s/+77/) dédﬂ‘

2 [€21]]€22],
which then implies
_1
luvligp 2 @"F2A"F2) 78 x |Q1]]Q2].
Therefore, if the estimate
<
vy, < Cl@.Mlullyz ol
holds, then we must have
_n+2 1 1
(ad)” 7 [Q1]|Q2] S CIR21]2[Q2]2.

n+2 .
7, which matches

. . . _n+2 _
Since |Q1| ~ |Q5] &~ a" A" 1, after rearranging, this becomes C > "~ 7 A"!

the bound obtained in Corollary 6.4.
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7. The Dirac-Klein—-Gordon system

We now set up notation and reduce the DKG system to the first-order system (7-3). We then give the
proof of Theorem 1.2, up to the crucial nonlinear estimates, which are postponed to Section 8. In the
remainder of this article, as we now only consider the DKG system, the dimension is fixed to n = 3.

7A. Notation and setup. Fix a smooth function p € C5°(R) such that supp p C {% <t< 2} and

t
>o(3)=1
re2?
and let p1 = ), <; p(t/A) with py(0) = 1. Similarly, we let O, be a finitely overlapping collection of
cubes of diameter /1000 covering R3, and fix (pg)ge0,, to be a corresponding subordinate partition of
unity. We now define the standard dyadic Fourier cutoffs, for L € 2N, A > 1, g€ 0, d €2*

—i0; £(—iV)m
7 .

|—iV| _ |
PA:IO( A, 5 P1:P1(|—ZV|), Pq:Pq(|—lV|), Cd:t,m:p

We also let Cidm =D a'<d ij’m, and any related multipliers such as C:dm are defined analogously.
To simplify notation somewhat, we make the convention that

Ca=Cl', cr=n.ciM

where M will denote the mass of the spinor in (1-3) and IT4 is as defined below. Given o < 1, we let
(p)cec, be a smooth partition of unity subordinate to the conic sectors {§ # 0, £/|€| € k}, and define
the angular Fourier localisation multipliers as

R = pe(—iV).

We use the well-known fact that for any 1 < p, g < oo the modulation cutoff multipliers are uniformly
disposable in L?L; for certain scales; namely we have the bounds

It, :t’

I1C,; mPARku”L?LQ + ”Csde/lRK““L?L; < ||P/1RK“”Lth§C’ (7-1)
provided that k € C and d = o?A and o = A7 1; see, e.g., [Bejenaru and Herr 2015, Lemma 4.1]. Similarly,
by writing

. —id .
C;:,m _ e:Flt(V)mp( ; l‘)e:I:zt(V)m’
and using the fact that convolution with L} (R) functions is bounded on V2, we deduce that for every
de?2?
+.,m
I ullyz S lullys . (72)

To deal with solutions to the Dirac equation, we follow the, by now, standard approach used in
[D’Ancona et al. 2007; Bejenaru and Herr 2017] and define the projections

1
(E)m

My (¢) = %(1 + &y°y/ +MV0))
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and the associated Fourier multiplier (H/i\f)(é )=T+(§) f (¢). A computation shows that [T T1_ =
I[M_IT4 =0and Hi = I11. Moreover, given any spinor ¥ we have

Y=T4y + Ty, (—iyHd + M)y = yO(—id, + (—iVim)y.

As in [Bejenaru and Herr 2017], we can now reduce the original system (1-3) to a first-order system as
follows. Suppose we have a solution (Y, ¢+) to

(—ide £ (V)a)Ye = ML (9+)y°Y)
(=i0: + (V)m)d+ = (V)i (W Tv0W)
¥+(0) = fx,
$+(0) = g+,
where ¥ = T14 ¥4+ + I1_y_ and the data ( fi, g+) satisfies [T fo = fi. If we let ¢ = R(¢+), then
since ¥ Ty%y is real-valued, we deduce that
2p+i(V)y 0:h) = b1 +i (V) 04 + (b4 —i (V)1 0:04)
=24 — (V0,2 Ty O0) + (V)2 0 Ty0y) = 2.

Consequently, if we take g4+ = ¢(0) +i(V),,'9:¢(0), a simple computation shows that (¥, ¢) is a
solution to the original DKG system (1-3). Note that, after rescaling, it suffices to consider the case

(7-3)

m = 1. Therefore, to prove Theorem 1.2, it is enough to construct global solutions to the reduced system
(7-3) withm = 1.

7B. Analysis on the sphere. We require some basic facts on analysis on the sphere S2, which can be
found in, for instance, [Stein and Weiss 1971; Strichartz 1972; Sterbenz 2005]. Let Y, denote the set of
homogeneous harmonic polynomials of degree £, and let yy ,,n =0,...,2{, be an orthonormal basis for
Y, with respect to the inner product

(yf,nvyﬁ’,n’>L2(§2) = /Sz[yi,n(w)]TyZ’,n’(w)dg(w)-

Given f € L?(R?), we have the orthogonal (in L?(R?)) decomposition

0 =35 (el ymw))Lg)(SZ)yen(l |)'

¢ n=0

For N > 1, we define the spherical Littlewood—Paley projections

0= 3 s ( )f(lxl )yennquuzn('ﬁ—'),

LeNn=0

(Hy f)(x) = Zqu(z) FUX1 ), vem) 122 ye,,(i').

LeNn=0
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Fractional powers of the angular derivatives (€2) are then defined as

(Q)°f= > N°Hyf (7-4)
Ne2N

If we let Q;; = x;0; — x;0; denote the standard infinitesimal generators of the rotations on R3, then a
computation gives

1920 HNn [l 2 @3y = NIHN fll 12 @3)-

In addition, if Ag2 denotes the Laplacian on the sphere of radius |x[, then Agz =) i<k lej These facts
are not explicitly required in the following, and we shall only make use of the spectral definition (7-4).

More important for our purposes, are the basic properties of the multipliers Hp .

Lemma 7.1. Let N = 1. Then Hy is uniformly (in N) bounded on L? (R3), and Hy commutes with all
radial Fourier multipliers. Moreover, if N’ = 1, then either N ~ N’ or

HyTlLHy = 0.

Proof. The first claim follows from [Strichartz 1972]. To prove the second claim, let T be a radial Fourier
multiplier with 7/“]\’(5) = o(|§|)f(§). It is enough to show that, if f(x) = a(|x]|)ye(x/|x]|) for some
ve¢ € Yy, then Tf = b(|x|)ye(x/|x|) for some b(|x|) depending on a and o. But this follows directly
from [Stein and Weiss 1971, page 158]. To prove the final claim, suppose that N > N’ or N < N’. Our
goal is to show that Hy 1+ Hpys = 0. Since Hy commutes with radial Fourier multipliers, it is enough to
show that Hy (d; f) = 0 in the case f(x) = a(|x|)ygy (x/|x]) with y; € Yy and %N’ <{ <2N’. Since
d; = (xj/|x[)or + Zk(xk/|x|2)9jk, where 0, = (x/|x|)-V, and 9, (y¢ (x/|x]|)) = 0, we can reduce
further to just showing that Hy (xx €2k y¢) = 0, which corresponds to checking that

(Ve Xk Qjyer)12(s2) =0 (7-5)
for every %N < € < 2N. Since xxQ; ye is a polynomial of order £ + 1, by the orthogonality of the
polynomials yg, (7-5) clearly holds if £ > £’ + 1. On the other hand, after an application of integration by
parts, we obtain

(e, xkQrjye) 12(s2) = (ke (XK Y0), Yor)2(s2)
since Q2 ; (xx y¢) is a polynomial of order £ + 1; we see that again (7-5) holds if £’ > £ 4 1. |

An application of Lemma 7.1 shows that Hy commutes with the P) and C; multipliers since we may
write C;E’m = eTitlVim p(—i 9, /d)e*!*{(VIm On the other hand, it is important to note that Hy does not
commute with the cube and cap localisation operators R, and Py.

7C. Norms and the energy inequality. Fix 0 <o < 1,

1 1 1 o
2227 1000’

and b = 3/a — 1, and define

1_p byLtm
U||lotm =Aa 7 sup d°||C;" Py Hyu 2
lully £ sup dPIC" Py Hu g
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and
[l 0 = 12 Hwullyz |+l

We also let .

2
_ 28 a720 2
||u||F;;—(§:§:A N ”“”Fm)

A=Z1N=1

and define the Banach space
i, ={ue CR, Q) H*): |ullpso < oo}

For the remainder of this section, let o3y = o if M = % and oy = % +oif0< M < % Thus
opm corresponds to amount of angular regularity in the statement of Theorem 1.2. We will construct a
solution (Y4, ¢+) € Fi’%f‘f X Fi’f M to the reduced system (7-3). Thus we work in a frequency-localised
V2 space, with the additional component Yfl’\;n needed to control the solution in the high modulation
region; for the latter see [Bejenaru and Herr 2015, Section 4].

There are three basic properties of Vi’m which we exploit in the following. The first is a simple bound
in the high-modulation region; see [Hadac et al. 2009, Corollary 2.18] for a proof.

Lemma 7.2. Letm > 0 and 2 < q < oo. For any d € 2% we have
=+, -1
1€l g2 ST ullyz .
The second key property is a standard energy inequality, which reduces the problem of estimating a
. . +.M . e .
Duhamel integral in F; ;" to controlling a trilinear integral.

Lemma 7.3. Let F € L L2, and suppose that

sup < 00.

IPAHnOl,2 =1
+.m

/R(PAHNU(I), F(t))p2 dt

If u € C(R, L2) satisfies —i d;u &+ (V)u = F, then Py Hyu € Vi,m and we have the bound

[Patinulyy | S IPAHVUO I+ sip [ (PaHyo@) F@) g de. (-0
+.m X
IPAHnvl,2 <1J/R
+.m

Proof. See [Koch and Steinerberger 2015] or [Hadac et al. 2009, Proposition 2.10] for details on the
duality. It is also possible to prove this directly as follows. Clearly it is enough to consider the case
u(0) =0, thus u(t) = fot eTit=)Vim F(s) ds. Let K >0 and (f;) € Z. A computation gives the identity

1

. . 2 2

( > [e= wVim Py Hyu () — e/ =1{V0m PAHNu(tk_l)HL%) = /(PAHNv(s), F(s))p2 ds
lk|<K R
with
v(s) = A1 Z 1[tk_1,tk)(S)(e:Fi(s_tk)W)m“(tk) _e:':i(s_tkfl)(v)mu(zk_l))
lk|<K
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and

(Sl

A = ( Z ||e:|:itk(V)m Py Hyu(ty) — eTitk—1{Vim PAHNu(tk—l)“i)%) )
lk|<K

It is easy to check that
IPAHNvlly2 ST
+.m

Thus, by taking the sup over the above inequality, and then letting K — oo we deduce the bound (7-6).
Since u is also continuous, we obtain u € Vi m as required. O

Note that the norm on v can in fact be taken to be the stronger U i » orm, but we do not require this
improvement here.
The final result we require on the Vi m Spaces, concerns the question of scattering.

Lemma 7.4. Letu € Vi’m. Then there exists f € L2 such that ||\u(t) — e:Fit(V)f”L% —0ast — oo.

Clearly, this result can be extended to elements of the space Fi’;’” . In other words, if we construct a

solution in Fi":nM , then we immediately deduce the solution must scatter to a linear solution as ¢ — £00.

7D. Proof of Theorem 1.2. We now come to the proolf of Theorem 1.2. In light of Lemma 7.4, it is
enough to construct a solution (Y4, ¢+) € Fi’(jf&” x F EIO M to the reduced system (7-3). Note that we
may always assume that ¥4 = I14 v+, provided that this is satisfied at # = 0. Define the Duhamel
integral

t .
IE[F] = f eT1E=9Vm F(5) ds.
0

Note that Z:Z[F] solves the equation
(—ide £ (V)m)IE[F] = F
with vanishing data at t = 0. Moreover, we can check that for every 1 < p < oo we have

It, - :l:y
ICT " Tl Fllprr2 S AT ICT ™ Fllpppa- (7-7)
If we had the bounds
+
11, Z3g' (97 Tl | poons < 191 17200 N0l ooy
1 . 1o
(7-8)

[ T (e )0 Ty 1] 172000 S 101 s 9] o
+.1 M.:|:1 M.:t2

1
then a standard fixed-point argument in Fi";‘f X Fjlg M would give the required solution to (7-3),
provided of course that the data ( f4, g+) satisfied

I{2)7 fiellp2 + ()™ g+ 12 < 1.
Let
¢M,N = P/LHN¢7 W/ll,Nl = PllHN]v Prr,Nr» = P)LzHNz(p'

We have the following frequency-localised estimates.
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Theorem 7.5. Fix M > 0. Then there exists € > 0 such that

H H:I:IIA:SI [(bu,,N Vonzl:z(p/lz,Nz] H Fil M

A1.Nq
1 . min{/J,,)Ll, 12} €
< 112 N, N)M | ——————=— :
S M (mln{ 2}) (max{u, kl,xz} ||¢||F‘j'1{/ ”(p”Fiz,M (7_9)

Na

and
|2 (M, ¥, v) Ty 0T, 02, 0, Frl

< /L% (min{N1, N2})7™ (—min{u, A1, 22)

€
. (7-10
e ) 191 Wl O-10

1 A2.N2

Remark 7.6. The proof of Theorem 7.5 in the resonant regime 0 < M < % relies on the small-scale
V2 estimates in Corollary 6.4. However, it is possible to prove a weaker version of Theorem 7.5, with o4
replaced with some larger o, provided only that a robust version of the homogeneous bilinear restriction
estimate (6-3) holds. More precisely, by following the proof of Corollary 6.4, and then interpolating with
the Klein—Gordon Strichartz estimates as in Remarks 6.2 and 6.3, it is possible to show that (6-3) implies
the V2 bound

<3l+i-1
vl gy S A ullyz ol

in the range
1,2 1, 6 7

4 + 5 <2, P + 55 < 5

where u and v have Fourier support in 1-separated angular wedges of size 1 x 1 x A at distance A from the
origin. The case a =2—and b = %—i— can be used together with the L2 L4~ angular Strichartz bound
from [Cho and Lee 2013, Theorem 1.1] instead of the argument used in the high-high case in the proof of
Theorem 8.8 below. However, the estimate obtained is weaker than the one in Theorem 7.5. Moreover,
it still requires a robust version of the homogeneous bilinear estimate (6-3) for which we can track the
dependence of the constant on the phases ®; due to the lack of homogeneity of the Klein—-Gordon phase.
Irrespective of fact the Theorem 1.1 applies to V' 2-functions, a key advantage of our formulation of
Theorem 1.1, in comparison to [Bejenaru 2017; Lee and Vargas 2010], is that it allows us to read off the

above-mentioned dependence.

The standard Littlewood—Paley trichotomy implies that the left-hand sides of (7-9) and (7-10) are zero
unless
max{u, A1, Ax} ~ med{u, A1, A2} = min{u, A1, A2} (7-11)
and
max{N, N1, N»} ~ med{N, N1, N2} Z min{N, N1, N2}

It is now easy to check that the bilinear estimates (7-8), follow from Theorem 7.5. Consequently, we have
reduced the proof of Theorem 1.2 to proving the frequency-localised bilinear estimates in Theorem 7.5.
As the proof of Theorem 7.5 requires a number of preliminary results, we postpone the proof until
Section 8D.
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8. Linear and multilinear estimates

In this section our goal is give the proof of Theorem 7.5. To this end, we first provide some linear estimates
and adapt them to our functional setup, prove an auxiliary trilinear estimate in V2, and eventually give
the proof of the crucial Theorem 7.5 in Section 8D.

8A. Auxiliary estimates. As is well known, see for example [D’Ancona et al. 2007], the system (7-3)
exhibits null structure. To exploit the null structure of the product WT)/OW, we start by noting that for any
x,y € R3, we have the identity

My, f17y°M4, g
=[(Mx, — M, () 1Ty Ma, g + (M, () F1Ty° (M, — T, () g + fTTa, (1), (0)g.

This is then exploited by using the null-form-type bound

|£1]x| £2 |y]|

T, (x)y° I, (0)] S 0(E1x, £2y) +
(x)(»)

(8-1)

which follows from (2-6) by observing that
My, (x)y°Tla, (v) = My, (o) (M, (x)y° — YOI £,(») T, (1)

_ Hon; 16 + M izM))
H*‘(’“)(((nm <s>M)V +(<5>M+<n>M [ ().

together with the following lemma; see [Bejenaru 2017, Lemma 3.3] for a similar statement to part (i).

Lemma 8.1. Let 1l <r < o0:

Q) IFA=1, a2 A7 k €Cy, then

|(M, — M, A (K))) R P f |

1 Sall RePrull s
() IfFA=1,0<a A7, Kk €Cy, q € Q)24 with centre &, then

”(Hil —Hil(éo))R:chPAﬂ

1r Sl RePy Prulps.

Proof. Concerning part (i), see [Bejenaru 2017, Proof of Lemma 3.3]. Concerning part (ii), we may
assume |£g| ~ A and, due to boundedness, we may replace the symbol of R, P, P; by a smooth cutoff y g
to the parallelepiped E with centre £ of side lengths au? X aj x e with long side pointing in the
direction &y. After rotating & to & = |&o|(1, 0, 0), the operator has the symbol

&) = (28 (g e ) 5 (g~ )22 ©

for certain B!, B%, B3 € C**4 It suffices to prove the kernel bound

(Fy im0l S @A (1 +ad? (x| +aAlx )% x = (LX), (8-2)
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as it implies || F Um| ®3) < @. In the support of y g we obtain, from (2-6) and a simple computation,

m(E)| < 272 1E] = 6ol | + 6(8, €0) + 2 72[1€] — €0l | S .

From the localisation of y g, where |8§1 /M) < A~¢=1 and the Leibniz rule, we conclude for £ > 0

9, m@)| Sa@) ™+ Y AT @) fa@r)
o<1t

Integration by parts now implies (8-2) if «A?|x1| > aA|x’|. For k = 2, 3, we have |3§k &i/(E)m)| < At
within the support of y g; hence we conclude for £ > 0

g m@®| se@)™+ Y @)t e
o<t 1<t

Integration by parts now implies (8-2) in the region where aA?|x1| < ad|xx|. O

The proof of Theorem 7.5 requires a number of standard linear estimates for homogeneous solutions to
the Klein—Gordon equation. We start by recalling the Strichartz estimates for the wave and Klein—Gordon
equations.

Lemma 8.2 (wave Strichartz). Letm =2 0and2 <g<oo. If O<u <A, N=1l,and1/r=1/2—-1/q
then for every q € Q,, we have
i 1_1,1_1
e Vm Py Py fllpary S w27 TATTT [Py Py S | 2
Moreover, by spending additional angular regularity we have
3

. 3_1
leF ¥ P Hy fllpgp4 SASTONIPLHN fll 5.

Proof. The proof of the first estimate can be found in [Bejenaru and Herr 2017, Lemma 3.1]. The second
follows by simple modification of the argument in the appendix to [Sterbenz 2005]. More precisely, after
interpolating with the L% L2 estimate, we need to show that

1

) 1_1)_1
“e:th(V)mHNPAf”L%L; < N23G-H-3 IHNAS |2

After rescaling, and following the argument on [Sterbenz 2005, pp. 226-227], it is enough to prove that
for every € > 0 we have the space-time Morawetz-type bound

11+ IXI)_%_EVulngx < [1@:u(0). Vu(0))l 2 (8-3)

for functions u# with Ou 4+ mu = 0, and the constant in (8-3) is independent of m. However the proof of
(8-3) follows the same argument as the wave case in [Sterbenz 2005]; the only change is to replace the
wave-energy-momentum tensor with the Klein—Gordon version

Qap = 3 (duppd + 0pddud — gup (37 $0yd +m?|p%).

We omit the details. O
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The amount of angular regularity required for the L?*’L;‘C Strichartz estimate to hold, is much less than
that stated in Lemma 8.2. In fact, in [Sterbenz 2005], it is shown that the same estimate holds with N %Jr.
However, as the sharp number of angular derivatives is not required in the arguments we use in the present
paper, we have elected to simply state the result with a whole angular derivative. On the other hand, the
number of angular derivatives required in the following Klein—Gordon regime, plays a crucial role.

Lemma 8.3 (Klein—Gordon Strichartz). Let m > 0 and 13—0 <l/r< %. Then for every € > 0 we have
1T Vm Py Hy fllpy <227 PNTGo10) e P Hy £ 5.

Proof. This is a special case of [Cho and Lee 2013, Theorem 1.1]. O

Remark 8.4. Without angular regularity, the optimal L, Strichartz estimate for the Klein—-Gordon
equation is r = %; see for instance [Machihara et al. 2003]. However, in the resonant region, we are
forced to take r slightly below 3; thus the additional angular regularity is essential to obtain the additional
integrability in time. In other words, the angular regularity is used not just to obtain the scale-invariant
endpoint, but also plays a crucial role in controlling the resonant interaction. Note that the number of
angular derivatives required in Lemma 8.3 is not expected to be optimal, and any improvement in this

direction has an impact on Theorem 1.2.

We have seen that the addition of angular regularity improves the range of available Strichartz estimates.
An alternative way to exploit additional angular regularity is given by the following angular-concentration-
type bound.

Lemma 8.5 [Sterbenz 2005, Lemma 5.2]. Let2 < p <00, and 0<s <2/p. If A, N > 1, a = 17, and
K € Cq we have

IR PyHN [l 2 @3y S @’ NP1 PyHN [ 12 @3-

Finally, we need to estimate various square sums of norms. As we work in V2, this causes a slight loss
in certain estimates. However, as we have some angular derivatives to work with, this loss can always be
absorbed elsewhere.

Lemma 8.6. Let (P)jey and (Mj);e s be a collection of spatial Fourier multipliers. Suppose that the
symbols of P; have finite overlap, and

1M Py fll2 S SIP 2
for some § > 0.
(1) Let g > 2, r = 2. Suppose that there exists A > 0 such that for every j we have the bound
leF 0 Py fllpare < AIP £l 2
Then for every € > 0 we have

1
2
2
(S 1mipidy ) o0 alolyz

AN
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(ii) Fix po > 1. Suppose that there exists A > 0 such that | P; f'|p2 < A||f||L§ Moreover, suppose
that for every p > po there exists By > 0, and for any j € J there exists K; C J with #KC; < 1 such
that for every k € K

PiuPjv < B,||Piu Prv
|| J k ||fo~ p” J ”inm” k ”Uiz,

ﬂ’lz
Then for every q > po and po/q < 6 < 1 we have

Y IPuMPevlle SN TOATOBY lullyz vl
fx q +q.m +5.mp
JET keEK;

Proof. We start with the proof of (i). Let 2 < p < ¢ and suppose that ¢ = ) ;. 1s ()eTitVm f1 is
a UP atom; thus ) ; || /71| I’jz < 1. The assumed linear estimate, together with the finite overlap of the
Fourier multipliers P; impliés

(Z M p,¢||§m)

JET

1

. 2
< (Z Z ||e:|:ll‘(v)m_/\/lj ijI ||€?L§c)

IeTjeg
<aA(S X imr i) <sa( (X ieaz;)
1€ Njeg

jeJ €T

N =

[SIS]

N =
N =

) soa

Consequently the atomic definition of U ﬁ ., then implies that for any 2 < p <g¢

1

D
(2; My Pty ) 5 A8l (5.4
je

Letv e Vi’m. There exists a decomposition v = ),y V¢ such that for every p > 2 we have
20(2-1) )
v <2"\»p v ;
loellgy lolys

see, e.g., [Koch and Tataru 2005, Lemma 6.4] or [Hadac et al. 2009, Propositions 2.5 and 2.20]. An
application of Holder’s inequality, together with (8-4) gives forany 2 < p < g

1
2 1_1
(Z M P,-vnthu;) < @) Z(Z 1M ProcZy )

JET LeN Yjeg

N =

1_1
<8A#D TP Y vellyp
LeN '

<SA(HT)2 P lolly2 Y 2tGn

£eN
1_1
S8ARD)T 7 ullys .

Thus (i) follows by taking p sufficiently close to 2.
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We now turn to the proof of (ii). As in the proof of (i), we have the decompositions u = Y ,x Ug
and v =) cn V¢ With ||ug||Ur < 2¢(2=1) and ||Ug||Ur < 2(Z=1) for every r = 2. Letg > po
and po/q < 6 < 1. Then the con\r/ne)uty of the L4 norms togzetrillzer with Holder’s inequality, our assumed
bilinear estimate, and the U2 summation argument used in (i) implies

> | PjuMy Prvlle

JET kEK; 0 o
s@n't N ( > ||PjuMkka||L%C) (sup || PjugMy PeoelLes,)
LUeN NjeT kek; jked
S8 AT B, 3 (luellyz | veloz ) (uellvgs ,, Ivellvgs , )"
£,l’'eN
§5(#»7)1_0A1_939q||u||vi . ”U”Vz Z 2—5(1 9)2—5 (1-0)
e 22 e
< 8@ A 0B lully; oz
1-m .m
Therefore (ii) follows. O

Clearly the previous lemma allows us to extend Corollary 6.4, and the linear estimates discussed above,
to frequency-localised functions in V;ﬁ - Forinstance, forany 1 S u S A, a 2 AL ande>0, g >2,
we have by Lemma 8.2

) e
e 1
(2 T ireramanty ) <o (%) Hhoaniiz, 5-5)
q€Q,, KECy ' ’
1

2 3_1
2 < —€121 "4 _
(1Rl ) sa2i=iNunlz, (56)

KECy

where we use the shorthand u y = P, Pyu. Similarly, an application of Corollary 6.4, Lemma 8.1, and
(i1) in Lemma 8.6 gives for every g > % and € >0

( > > I RK//qufm,N[(H+—H+(uw(fc)))RKqu,Nl]*||i;,x(R1+3))
K,K”GCM71 q.9"€Q, .
lg—q" |~ or |[k—k" |~ p ™!

< € -
<uldunllvz Wumllyz - 6

where (k) denotes the centre of the cap k € C,,—1. This bilinear bound plays a key role in controlling
the solution to the DKG system in the resonant region.

8B. General resonance identity. After an application of Lemma 7.3, proving the bilinear estimates in
Theorem 7.5 for the V2 component of the norm, reduces to estimating trilinear expressions of the form

/ dv Tyl dx dt. (8-8)
R1+3
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Suppose ¢, v, and ¢ have small modulation; thus supp ¢ C {|z + (£)| < d}, supp ¥ C {|t £1 (E)pr]| < d},
and supp & C {|t £2 (§)ar| < d} for some d € 2%. If £ € supp g@ and 7 € supp @, then it is easy to check
that the integral (8-8) vanishes unless

[(€—n) F1 (E)m +2 (M| S d.

To exploit this, we define the modulation function

Mt 4, n) = |(E—n) F1 ()M 22 (Mum]-

Clearly we have the symmetry properties My 1+ (§,17) = M_ _(n,§) and M4 x(§. 1) = Me (1, §).
The proof of our global existence results requires a careful analysis of the zero sets of 94, +,; the key
tool is the following.

Lemma 8.7. Let M > O:

(1) (Nonresonant interactions). We have

M (E.1) 2 {E) + (). Mes(Em) 2 — (('5'_'”')2+|s||n|92<s,n>+1),
+EMR =EN2 e\ T e
E—nllEl E—nllnl .,
__(E,nz=>——20 —n, —§&), Nz =70 —-n,n).
Do) 2 (D2 =6 Mo 2 o 26— )
(i) (Resonant interactions). We have
R T | 4M2—1‘
Sm+"(E”7)”<s>+<n>‘M En e + &l a2 T Bl St ==,
(e - M& — )2 2M—1'
My (E.7) > — Cl—E-(E— .
-6 n)>(n)‘(E)M(S—ﬂHIEIIé—nIJrM+|EHE =Gt

Proof. We begin by noting that, if we let m 1, m5, m3 = 0, then for any x, y € R” we have the identity
[(x = )y = () my £ (V) m2)?|

= [F20)m (Vhmy = 2x -y + (3 —m —m))|

= [2((x)m, (¥)my — (x| y| + mim2)) + 2(|x| |y| £ x - y) £ ((m1 £ m2)* —m3)|

_ 2 1+ mo)2 — m2
_5 (m1|y| —m2|x|) +|x||y|ix-yj:( 1E£my) 3|
(Xmy (Vyma + [x[[y[ +mim2 2

(8-9)

We now turn to (i). The bound for 91_ 1 is clear. On the other hand, by taking x = &, y = 7,
my1=mp =M, mz=11in (8-9), we have
1 R B )
E—m (€ =) = (&)m — (n)m)?|
1 ((IEI —InD?
{E=m\ (&)n)

My 25,0 = [(—n) = [(E)m — (ul] ~

~

62 E ) + 1).
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Similarly, taking x =& —n and y = &, gives
[ — (& =) + (§)m)?|

M. n) = (mMm +E—n)+(E)m
1€ —nll&l

57 g26 g,

SRR

Using the symmetry M_ _ (&, n) = M4 4+ (n, §) gives the remaining bound in (i). To prove (ii), we note
that another application of (8-9) gives

My (E1) ~ () — (Ehaa + (mhaa)?]

(&) + )
(1] = InD? AM>—1

1
~ M? +IEm +&n+——)|.

)+l Emnm + 18l + M>

from which the first inequality in (ii) follows. The second inequality in (ii) follows from a similar

application of (8-9). O

8C. The trilinear estimates. Suppose we would like to bound an expression of the form Py H NI,fl: [F]
in Vj:2 - An application of the energy inequality, Lemma 7.3, implies we have

| Py HN I [F] ”Vi < sup
o ||PAHNV||Vi <1
m

/ (P Hyu) Fdxdt|.
R1+3

Thus to bound the V2 component of | ZX[F]|| p.m» itis enough to control Jri+3(PyHyu) F dx dt. Con-

. 5 AN . . .
sequently, to estimate the V' component of the norms in Theorem 7.5, the key step is to prove the following
trilinear estimate. To simplify notation somewhat, we define B = (min{u, A1, A2}/max{u, A1, A})¢ if
M = 3, andif 0 < M < % we let

(min{p, A1, Az}/max{pu, A1, A2})¢, p << max{Ai, Az} or > min{A1, A2},

BG = _L_j’_o- . Z
14+ =679 (min{N, N1, N2})30, wxA & A,

Theorem 8.8. Let M > 0. For every a/100 < § < 1 we have

‘/%34.1 ¢'U"N(H:|:1WAlle)TVOHﬂ:zwlz’Nz dx dt

Lo - 8 -
< p2 (min{ N, Na}) Bmin{%’ﬁ_%}”(lpupixl”W/M,Nl IIViI‘MllwllFiz,M (8-10)

An.Np
and

‘/Ryrl ¢'U“’N(H:|:1WAI,NI)T)/OH:E2(;0),2’N2 dx dt‘

1 .
S uEintN N2 D B 1 3190 vz 1V a0l (810)

4 Ny }lz,Nz
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In the region Ay > A1 we have the slightly stronger bound

‘/%34,1 ¢M’N(Hi1wal,Nl)T‘yOH:tz(pAZ’Nz d.x dt‘

3
1 . 8 Ar)\®
Sudmint¥N2? (31) Wtz Wamlvz | Wossmaliz, - G-12

Similarly, when i < A1, we have

‘/Rw Gun (T, Ui, a) YO, 01, 0, dx dz‘

s
1, s M 8
< b it N0 (1) 1 vz, Il Woaaalyz o 519

Proof. We begin by decomposing the modulation (or distance to the relevant characteristic surface) as

d)M,N(Hﬂ:lwll,Nl)Tyonﬂ:zwllz,Nz
+ + + +
=Y CabunCyYa, n)YOCT3 00,8, + C<adun (€5 Vi, n) TYOCT3 00,0,

de2? =+ +
+ C<d¢M,N (C<CIIW/11 ,N] )T)/Ocd 2(/)12,1\/2

= > Ao+ A1+ 4s.
de2?
Keeping in mind (7-11), we now divide the proof into cases depending on the relative sizes of the
frequency and the modulation. Namely, we consider separately the low-modulation cases

AM~Ary>»puandd S, wp>min{d;, Az} andd Smin{i;, A2}, Ai~x Az~ pandd < pu,
and the high-modulation cases
AMaxAyZzpandd > pu, > min{di, Az} and d > min{iq, Ao},

Clearly, this covers all possible frequency combinations. The first case in the low-modulation regime,
where the two spinors are high-frequency, is the easiest, as this case interacts very favourably with the
null structure. The second case, when p >> min{A1, A,}, is more difficult, and is the main obstruction to
the scale-invariant Sobolev result. The final case, when p &~ A1 & A,, is the only resonant interaction, and
this is where the bilinear estimates in Corollary 6.4 play a crucial role. In the remaining high-modulation
cases d > min{u, A1, A, }, the null structure of the system no longer plays any role, and we need to
exploit the Y Ai]\'," norms to gain the off-diagonal decay term.

High-low, I: © < A1 & A3 and d < . Our goal is to show that

Zf Ao dx dt [ Ay dx dt / Ar dx dt
R1+3 R1+3 R1+3

d<Ay L
1.5 M
A (£5) Wz Wamlvz, | Ionalyz . G149

+ +

where we let Ny, = min{N, N1, N,}. Clearly this gives the bounds (8-10), (8-11), and (8-13).
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We now prove the bound (8-14). An application of Lemma 8.7 implies that we must have +; = £,
and moreover, that the sum over the modulation is restricted to the region ;! <d < (in particular this
case is nonresonant). To estimate the first term, Ao, we note that after another application of Lemma 8.7,
we have the almost orthogonal decomposition

+ +
Ao = Z Z Cd('b“':N(CscllR"P‘IWM,Nl)TVOCSf]RK’Pq"pkngz’

k,k'€Co  q,9'€Qp
lk—K'|Se |g—q'|Su

where o = (d u)%)&l_l. Then, using the null-structure by writing
CZyRePy, = CopM (e, — T, A1) Re Py, + C2p M s, (1w R Py,

(here w, denotes the centre of the cap ) and applying Lemma 8.1, together with the uniform disposability
of C:L}’M from (7-1), we obtain for every € > 0

] / Aodxdt‘i Y Y alCabunliz IR Pava s IR Proagnslis
kk'€Cq q,9'€0u

lk—k'|Se |g—q'|Sp
1o N
Sua " ||<15M,1vllng1 1¥a,,5 ||V:|2:1.M ||‘P)LZ,N2||Vj2:2’Ma (8-15)

where we used Lemma 7.2 to control the L% . norm of the high-modulation term, and the bound (8-5).
On the other hand, we have the decomposition

+ +
Ao = Z CdRK”(pﬂsN(CS‘}Rlcvf/ll,Nl)TyocijK/¢A2’N2,

K.k €Cg

lie—k"],lk” £26" | <B

where 8 =d 2 u_%, again by almost orthogonality and Lemma 8.7. As above, we obtain for every € > 0

[aodxat|s ¥ BICRoL IR g IR,
K.k’ k" €Cp
lc—k’|, 1" 2k’ | S B
1—e ;—41 1
< BB gl Wz ol o 16

where we used the angular concentration Lemma 8.5 on the lowest angular-frequency term. Combining
(8-15) and (8-16), by taking € > 0 sufficiently small, we obtain for every 0 < § < 1

Z /Aodxdt

8 1
d\* s (IL\* 1
s ) (—) Nmin(x wIPHN Gy Wamllvz | lonmlve
nlsdsp

uwl<dsp H

1
<N () iR bun e Wi lve  Ioamms |
~ Nmin| 3 M w,N V-|2-,1 A1,N1 Vil M Prr,N> VizM’
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which gives (8-14) for the Ay term. Next, we deal with the A; term. The argument is similar to the
above, but the initial decomposition is slightly different as we no longer require the cube decomposition.
Instead, we need to decompose the ¢ term into caps to ensure that the C_,; multiplier is disposable. In
more detail, the resonance bound in Lemma 8.7 gives

+ +
A= ) Y CaaRerdu N (€ RV, v)TYOCSI R0, N,
K,k €Cqy k"eC
lk—K'|Se k" +2k'|<B
where o = (du/ A%)% and 8 = (d/ u)%. By exploiting the null structure as previously, we then obtain
for every € > 0

‘/Aldxdt

+
=< Z Z O‘HRK”(ISM,N ”L?,x ”Cd IRK‘/fM,Nl ”Lix ||RK’§0A2,N2||L;"x
K,k €Cy k"eC
lk—K'|Se k" +2k'|<B

l—e 1,11
S a5 gl W m v | Ionlve o (8-17)

where we used Lemma 7.2 to control the L% . horm of the high-modulation term, and again used (8-5). To
gain a power of d, we again exploit the angular concentration estimate by exploiting a similar argument
to (8-16) to deduce that

‘/Aldxdt

+
< Z Bl R $p,n ||L?:x ||Cd IRKW)Ll,Nl ||L%.x ||RK"P/12,N2 ||L;1,x

Kkk'k"€Cp

lie—k’], " £k’ | S B

_ 1.1 1 1
<Bld 2A2p2 (BNmin) * ¢, vz V2w ||Vj2El Mllﬁl)xz,zvzllyjzt2 PN Ca L)

Combining (8-17) and (8-18) as in the Ag case, and summing up over ;L_l < d < u with € sufficiently
small, we obtain (8-14). The remaining term A, can be handled in an identical manner to the A;. Thus
the bound (8-14) follows.

High-low, IT: 1+ > min{A1, A2} and d <min{A;, A2}, Let {j, k} ={1,2} and A; = Ax. Our goal is to
prove that

Z/ Aodxdt+/ Aj dx dt
R1+3 R1+3

dsxk A 1
1.5 k 8
< 2 . = -
<K Nmm( M) ||¢M,N||Vi1||wl,m ||V:2t1,M ||§012,N2||Vj2:2.M- (8-19)

On the other hand, for the A} term, we have the weaker bounds

> / Ap dx di
R1+3

)
1 A \S .
st (2 ) intW N D Iz Wz, Il (320
d<ix 124 s 1.M 2.M
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and
1 1
A, \2a 4 ||W|| +.M ||§0A2,N2”V2 ’ k = L,
Z / Ap dx dt 5Vv% (_k) N]?”‘pu«,N”V_%l { Fyi v o.M
d<Ak RITS * ’ ||WA1,N1 ”V2 ||§0||F:|:2,M, k =2,
R (8-21)
where
1 1 1 o
2 42" 1000
is as in the definition of the Y f:]’(," norm. Clearly (8-19), (8-20), and (8-21) give the estimates claimed

in Theorem 8.8. Note that we have a weaker bound when the low-frequency term has modulation away
from the hyperboloid, and for this interaction, we are forced to exploit the Y AiA',” norms.

We begin the proof of (8-19), (8-20), and (8-21) by observing that since the estimate is essentially
symmetric in ¢ and ¢, it is enough to consider the case u &~ A1 3> A5; in other words, we only consider
the case j = 1 and k = 2. As in the previous case, Lemma 8.7 implies that we only have a nonzero
contribution if +1 = + and /\51 < d < A,. To control the Ay term, we decompose into caps of radius
B=(d/r 2)% and cubes of diameter A,. Lemma 8.7 implies that we have the almost orthogonality identity

+
AO = Z Z Pq/quSM,N(PqRKC;dWA],Nl)TyORK/Cféw/lz,Nz'
kk'€Cs  q.4'€Q 2,
lkF2k'ISB |g—q'|SA2
Thus exploiting the null structure as previously, disposing of the C;t’m multipliers using (7-1), and
applying the L‘t‘, . Strichartz estimate, we obtain for every € > 0

/R Aedxdi|s Y Y PPy Cadunliz I PaReVanm s | Re i s,

k.k'€Cp  q.9'€Q02,
|k T2k’ |SB |g—q'|SA>

As

1
s+ —€
/\/ﬁ /’L M (25 ’N 2.1 wl ’N (FA ,N 2 M

vz,

On the other hand, by decomposing into

+
Ado= Y. ReoCapunRCE i, vV RCE 025,

k'K €Cp

[k F2u’],|” 2k | <B

and using the angular concentration bound Lemma 8.5 on the smallest angular-frequency term, a similar
argument gives

/ Agdx dt
R1+3

< Z ﬂ||CdRK/’¢u,N||L%x||RK‘,”)L],N1 ”L‘t"x”RK"plz,Nan;‘,X

k' k" €Cp

[k Fauk'], " £2k"|<B

1l o4
Suzp4 Nmin”‘lsu,Nnvil 1¥a,,n ”Vi,M P15, N> ”Viz.M' (8-23)
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As in the previous case, combining (8-22) and (8-23) with € sufficiently small gives (8-19) for the A term.
The A; term can be estimated by an identical argument (since the high-modulation term is again at
frequency p). To control the A, component, we start by again applying Lemma 8.7 and decomposing into

+
Ay = Z Z Pq’C<d¢M,N(PqRKC;de,Nl)TVORK/Cd KZEN Y

K,K/ECE qaq/EQ/lz
lkFok’|SB |g—q'|SA2

where as usual S =(d/ )&2)%. Applying the, by now, standard null-form bound, (7-1), and the L;" . Strichartz
estimate, we conclude that for every € > 0

/ Ar dx dt
R1+3

+
< Z Z ,3||Pq/¢u,N||L‘t{x [Py Ric ¥,y ”L?,x ||RI</Cd zﬁﬁkz,Nz”L%x

k.k'€Cp  q.9'€02,
lkF2k'ISB |g—q'|SA2

€
Lo 1
b7 () ez Wam vz, lonnmalvz, (524

Note that we get no high frequency gain here (in fact we have a slight loss due to the sum over cubes). On
the other hand, by decomposing all three terms into caps of size 8, using null structure, the L?Li Strichartz
estimate in Lemma 8.2, and Bernstein’s inequality followed by Lemma 7.2 for ¢, n,, we obtain for any
2<g<2+ %

/ Ar dx dt
R1+3

+
< Y. BlRebuNlLasq-2),12q/ @) I ReVa w4 1R Cq @an, s | o ptarisa-s

K,k k"’ eC

I 1! /<
, 3
[ Far’|, " 26" | < B

D=

- d\a 1€ ), \e 4
sd (1) () Mltenlz, Ionmlvz, ol (525
(schematically, we are putting the product into L‘;"‘L?C+ X L%JFL;‘C X L%JFL?C_). Switching the roles of
¢u,~N and ¥, n,, and combining (8-24) and (8-25) with g close to 2, and € > 0 sufficiently small, we
obtain (8-20).

It remains to prove (8-21); thus we need to consider the case where ¢ also has the smallest angular
frequency. We begin by again using Lemma 8.7 to get the decomposition

+
Ar = > Y R PyrCeadun (RePyCl va, n) YO RCT2 01, n,

1

K,k',k"€Cg a.9"€Q,
[k F2u’|,Ik" 226" |SB |g—q" |SA2

where 8 = (d/12) >, An application of Bernstein’s inequality, Lemma 7.2, and the angular concentration
lemma for ¢, together with the null-form bound, and Lemma 8.2, implies that for any € > 0 sufficiently



TRANSFERENCE OF BILINEAR RESTRICTION ESTIMATES AND THE DKG-SYSTEM 1229

small
/ Ar dx dt
R1+3
s Y% pirer :
~ ,8” K q”¢,u,N||L%a/(a l)Lia
k'K €Cp q,9"€0Q3, N
ke Fak’ |, 1" 22" |1SB |g—gq" |<Aa X || Re Pg¥p, N, ”L%a/(a_l)L}c“ ||RK,Cd z(pkz,NzllL?Lg/(“—”

Sﬂl_( )(mz)l—(ﬂzxz)a‘(ﬂzvz)‘*np Hxdlva, IWamlvz 16 0l

1

L avEh g )
sutng(2)(5) I60vlvz w2, ol

+£7.M s
" X2 Virhn
which gives (8-21) since
1 1 1 o 1 2 o 8
<<+ ——=c—l<——=<_.
2%a~271000 ™ P74 <505
High-high: ¢ ~ A1 ~ A3 and d < . Our goal is to prove that if M 2 , then for any § > 0 we have

the bound

Z / Ao dx dz‘ +
R1+3

da<u

/ Ardxdt| + / Ay dx dt
R1+3 R1+3

5 ILL mm”(puf N ||V2 ||¢AI,N1 ||V2 ”gD)Lz,Nz ”Vi2 v’ (8'26)

while if 0 < M < % for every 5,6 > 0, we have

/1+3 ZA0+A1+A2dxdt
R d=<u

iy
INS (14 u7s SNI;&)”‘PM,N”ViJ||1//AI,N1 ||Vi1'M||§0A2,N2||Vj2E2.M- (8-27)

The key difference from the previous cases, is that if 0 < M < %, we no longer have the nonresonant
bound d > 11~ !, and thus we also have to estimate the resonant interactions d < /L_l This is particularly
challenging in light of the fact that in the strongly resonant regime, 0 < M < 5, there is no gain from
the null structure when d <« u~ . However, we do have transversality in the region d < p~!
consequently, we can apply the key bilinear restriction estimate in Corollary 6.4. On the other hand, in

, and

the weakly resonant regime, M = =, somewhat surprisingly and in stark contrast to the cases M #* %,

2 9
the null structure gives cancellation for a/l modulation scales.
We start by considering the nonresonant region 1 ~! < d < . By decomposing into caps of radius

B=(d/ u)%, an application of Lemma 8.7 gives the identity

+ +
Ao = > RerCatpy N (ReCZy W, ) YO ReCE3 02,0,

Kk.k'k"€Cp

|[£16F2k], |K”ﬂ:2K I<B
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Thus by applying the L‘ttx Strichartz bound, exploiting the null structure as previously (here we need
the assumption d 2 ,u_l), and using the angular concentration bound in Lemma 8.5 on Ny, we obtain
for every € > 0

/ Ao dx dt
R1+3

3 > BIRe Cabuwliz2 IR, vyl 1R @i Ny s

K,k k" eC

|£16F2k| 6" 226" | SB

1—e ;-1 ]
SB T AT pu(BNmin) ¢ llyz 1o nllyz  lloansllyz
+.1 +,.M o.M

Taking § > 0 and € > 0 sufficiently small, and summing up over the modulation =1 < d < ju then gives
(8-26) and (8-27) for Ay in the region /L_l <d < . A similar argument bounds the A; and A, terms
in (8-26) and (8-27), provided the sum over modulation is restricted to /L_l <d =< pu.

We now consider the case d < 1~ 1. Note that if M > %, then using Lemma 8.7, we see that Ag = A1 =
Az = 0 and thus (8-26) is immediate. On the other hand, if we are in the weakly resonant regime M = %
then another application of Lemma 8.7 implies that 1 = 4+ and £, = —, and we have the decomposition

Ao = Z Z R"//qusMyN(RKPqC—s}_dWM,Nl)T)/ORK'P‘I’C;d(sz,Nz’

Kk'w"eCg q,q'€Q g
’ 1 p|<
el k" —ISB |g+q' 112 B

where 8 = (d/ M)%. Therefore, using the null-form-type bound (8-1), together with (ii) in Lemma 8.1

to exploit the null structure, the orthogonality estimate in Lemma 8.6, and an application of Lemma 8.2
gives for every € > 0

[ Aodx dt
R1+3

Y Y BlIReCadunlpz IRPgVimlps |RePyoasnalips

/a4

KKk k"eCg q.q'€Q g
—! " __ <
he—kLl"=KISB |g+q' |12

_1 - -
S Bxd ™2 xpx B ()" X (BNmin) ¢ v vz Vi, willyz  lely2
1 +M =M

where we used the angular concentration bound in Lemma 8.5 on the term with smallest angular frequency.
Choosing € > 0 sufficiently small, and summing up over 0 < d < ! then gives (8-26) for the Aq term.
An identical argument bounds the A; and A, terms.

It remains to prove (8-27) when 0 < d < u~L. Another application of Lemma 8.7, implies that we
must have 1 = 4 and £, = —, as well as the key orthogonality identity

Z Ao+A1+A>
d<p!

= Ceu 1N €L, ¥, 8D TVOC 100,

- Z Z Ry Py C =19, N (R chi_qu w}kl,Nl)TVORK’C%u_I(pM,Nz-

1K' K" €C, 1 q.9"€Qu

ki’ | st la—q" 1= or lk—k" |~p ™!
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Note that the summation is restricted to terms for which Ry PgC ) —1¢,, N and Ry Pin;M_1 YA, N,
have either angular orthogonality or radial orthogonality. In either case, we may apply Corollary 6.4,
via the bound (8-7), the null structure bound in Lemma 8.1, and the Klein—Gordon angular Strichartz
estimate in Lemma 8.3, to deduce that for every % <q < % and € > 0 we have

/1+3 Z Ao+ A1+ Axdx dt
R

d<u1
-1 +
§ M Z Z H RK//Pq//C<<M—1¢M,N (RKPqC<<M_1wkl,Nl)THL?’x||§0)12,N2||Lz;
KK"€C, 1 9:9'€Qu
lg—q" |~ or lk—k"|~p~!
5 31 7(5—5)+e
SM(I N2 i ||¢,LL,N”V_’2_J ”Wl[,Nl ||V-§2—,M||¢A2’N2”V—2,M’

where for ease of reading we suppressed the IT4 (w,) matrices used to extract the null-form gain of =L

Choosing ¢ sufficiently close to %, and € > 0 sufficiently small, then gives (8-27) in the case Ny = Npin.
To deal with remaining cases, we just reverse the roles of ¢, ¥, and ¢, again apply Lemma 8.7 to deduce
the required transversality, and always use the angular Strichartz estimate from Lemma 8.3 on the term
with smallest angular frequency. This completes the proof of (8-27).

High modulation, I: 4 <A1 ~ A2 and d > p. In this region, our goal is to prove that

Z/ A1 dx dt / Ardxdt
R1+3 R1+3

a>u
and for every § > 0, the weaker bounds

1

1 L)\8
<2l —
" st () Wtz milz, | lonnalz

(8-28)

D=

3
[ P 8
(££) intoe. N2 Iz Wamlvz, | Ioanmalyz, . 529

Z / Aodxdt| S i 3
d>u R1+3 1
1_1
> aodxdt) < (L) Thgly e lva iz Iy (8-30)
= Rl+3 0 =M )&1 Y;j_N A1,Np V:E],M PAr>,No V:EZ,M’
n

where a is as in the definition of the Yf’:}\;" norm. We start with proving the estimates (8-29) and (8-30),
under the additional restriction of the sums to the range d = ;.

To bound the Ap component, decomposing ¥ and ¢ into cubes of size u, together with an application
of the L‘tt . Strichartz estimate gives for all € > 0

/[Rl+3 Aodxdt| S ) N1Cadunliz2 I1PaViw s IPgrannalls,

q.9'€0Q,
lg—q'|<n

<t (B (%) 8-31
Su AV ||¢M,N||V_~2_’l||W/haN1HV}:LM”(:DAZ,NZHViZ,M. (8-31)
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As in the proof of (8-25), if we instead apply the L?Lfc bound, together with Bernstein’s inequality for
¢, we obtain forany 2 < g <2+ 12—1

/ Ao dx dt
R1+3

SCadun ||L?L;th/(5q—8> 1V N e 4 1922,8, IIL?/<q—2)L)2(q/(4—q>

A 1 Q_%
1 1 q l,L q
s (F) (5) Mibbuntvz Wamlvz, Ionnalyz 632

(schematically, we are putting the product into L2 L4~ x L?T L4 x L9~ .2F). Switching the roles of
VYa,,N, and @y, n,, and combining (8-31) and (8-32) with ¢ sufficiently close to 2 and € > 0 sufficiently
small, followed by summing up over d = A1, we obtain (8-29). On the other hand, to obtain (8-30), we
again use Lemma 8.2 to deduce that

/ Agdx dt
R1+3

S > lCagun I aparavlPq¥a,mll2ar@0 201 Pg @2z, ll 2@ 20

7,9'€Qu
lg—q" |<u

b b+l-1-e
1 A1 n a
<nz2l — .
< ( d) ( A) 8y W mlvz | lemlz -

which then gives (8-30) if we choose € sufficiently small as

1 1 1 1

Q| —

(here a, b are as in the definition of the Yf’m norm).
We now turn to the estimates for A1 and A,. By symmetry, it is enough to consider the A; term. After

decomposing into cubes of size p and applying the L‘t"

/ Ay dt dx
R1+3

 Strichartz estimate, we obtain

+
»S ||¢M,N||L4 ”Cd IPQWKl,I\H ||L2 ||Pq’(P)L2,N2||L4
t.x t.x t.x

q,9'€Qp
lg—q’Isn

1 1
1\ A)?
s (£) (5) Wtz wamlvz | losmsliz,

Summing up over d = A and choosing € sufficiently small then gives (8-28).

Next, we consider the parts of the sums where © < d < A1. Since M4, 1+, <d K A1, we must have
£1 = %5; hence M4, +, < K.

For Ag this implies the decomposition

[ Avdxdr= [ Catn(Civa ) Y s dr ds

* +
* /[RH-* Cd¢”’N(C<<ldl/f/11,Nl)TVOC%LZ,{ﬁDAZ,Nz dxdt. (8-33)
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Concerning the first term, using null-structure,

+ +
Myﬂ Cd¢M,N(C%;j‘ﬂkl,Nl)T)/OcﬁjgoAz’Nz dx dt

M + +
N /\— ||Cd¢pc,N||L%L§O ||chf~v¢11WA1,N1 ”L% ||Pq’c<§§0/12,N2||L00L2
1 7 X = t X
q,9'€Qu
lg—q'Isn
d —1 //L 1—¢ 1
< — — 2
$(5) (5) #H1ountvz, Wamlyz, lonalvz,

which can be summed up with respect to @ < d < A;1. The second term in (8-33) can be treated along
the same lines.
Similarly, for A; we have the decomposition

Al+3 Al d.x dl = /414_3 Cmd‘pM,N(C;tl WA“NI)T)/OC:‘?QDAZ’NZ dx dt

+ /R o2 Cacadu N € U )Y OC i v, dx di. (8:34)

The first term can be estimated the same way as the first contribution to Ag. For the second term, we
use the decomposition

= +
/RIH Cca N (C Vo 8 VOCT2 02, N, dx dt

W + +
< Z ||¢M,N||L§’j ”chd IWM,Nl ”L%,x ||Pq’C%§‘/’AZ,N2||L%X
q.94'€Qu
lg—q'|<p
d —1 H« 1—e 1
<| — —_— 2
$(5) (5) #H1ountvz, Wamlyz, lonalyz,

which, as above, can be summed up with respect to u < d <K A1.
A similar argument treats the A, term.

High modulation, II: x> min{A,A,} and d > min{A;, A,}. Our goal is to prove the bound

Z / Ao dx dt / Ay dxdt f Ay dx dt
R1+3 R1+3 R1+3

d>min{A1,A>} .
1 min{kl,/lz} 4
sid (PR gtz vz, Mennaallvz o 839

As the estimate is essentially symmetric in A1 and A5, we may assume that A1 = A».

+ +

First, we consider the contribution to the sum where d > . The bound for A follows by decomposing
into cubes of size A, and applying the standard L‘tt  Strichartz estimate to obtain

/ Ao dt dx
R3+1

< Y NCaPyrdunllpz N1Pgay i lips Ioa,m s,
g.9"€0x,
lg—q"I<A2

Az

s (2)(5) nntvz Wnmlvz, Ionmalyz,
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which easily gives (8-35) in the range d = u for the Ao term, provided we choose € sufficiently small.
The proof for the A; term is identical (as we do not exploit any null structure here). On the other hand,
to estimate the A, term, we again decompose into cubes of size A, and apply the L‘,‘, + Strichartz estimate
to deduce that

[ Ardt dx
R3+1

+
S Z ||Pq”¢u,N ”L?,x ||PqW11,N1 ||L?,x ||Cd 2‘P)L2,N2||Lﬁx

4.9"€02x,
lg—q"1<A2

1 1
1 A2\27 ¢ )2
s (2) () Wunlvz amloz | lossmaliz,

Therefore (8-35) follows in the range d = u.
Second, we consider the contribution to the sum where A, < d < . Concerning A, as in the first
high modulation case, we have the decomposition (8-33). To bound the first term in (8-33), we have

+ +
‘/RIH Cd%,N(CMIJWI,NI)T)/OCJWZ’NZ dx dt

+ +
SICa¢unlpz ICCaVa NIz IC23000,n, L5

_ 1
(4 Vo2 o
|5 m w2 pu,n ||VJ2F.1 YA, N ”Vil.M l®r,,N5 ”ViZ,M'

To bound the second term in (8-33), we have

+ +
‘/Rl-m Cd¢“’N(C<<ld WM,Nl)TVOC%;(PAZ,Nz dx dt

+ +
S ||Cd¢M,N ”L%,x ||C<<ld wkl,N1 “L?OL% ||C%(21(P/\2,N2 ”L%Lgo

1
< (Y (22 i tbenl o wle Tl
~\ 2, " “ENCu Nz IWWaLNdlve 19Nl

Concerning A1, as in the first high-modulation case, we have the decomposition (8-34), and we can
repeat the argument above for the Ag terms.
Concerning A, we have the decomposition

— + +.0,t
[ Adxdr= [ Coatn CEpa, ) Y pra v di i

* +
+ [|;31+3 C<<d¢“’N(Cav,clz'wll,N1)TVOCd *@a,.N, dx dt.

The first term can be treated in the same manner as the second contribution to Ag. For the second term
we have

+ +
‘/Rl-m Cxadu.n €y WM,NJTJ/OCd >Q5,.N, dx dt

+ +
< ”‘Ibu,N ||L([>OL)2C ||C%éw)k],N1 ||L%,x ||Cd 2‘/’/12,N2 ”L%L;’C"

_ 1
- d 1 A2\2 1
S F //L2||¢M:N”V_iz_.1 ”W/M,Nl ||V:i1,M||(pA2,N2”Vi2,M.
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8D. Proof of Theorem 7.5. We begin with the proof of (7-9). An application of the energy inequality in
Lemma 7.3 gives

| Pay Hyy Tt Ty [, 8 Y Tt 020 4| V2o,
1

S s
l¥a, ~qll,2 =1
Ml

/RIH bun (M, ¥, v) YO, 00, v, dxdt .

Therefore an application of (8-10) in Theorem 8.8 implies
+
H Py Hy I+, I), [¢M,Nyoni2‘mz,1\’2]” v: o,
1.

1 . o
Spu2(min{N, o))+ B, o 1 _1loll p+1 llell
w.N

mln{ﬁ,z_z

F :tz.M ) (8_36)

A2.Np
which gives the required bound (7-9) for the F fj 1N1‘14 component of the norm. To complete the proof of
(7-9), it remains show that there exists € > 0 such that

| T2, Zog [0 YO T, 0, 0, | yEiM
1-/V1

1 . fed
S u2(min{N, N2§) 2 Be[[ @ p+1 1]l ap.00 - (8-37)
N Ao,

No

To this end, we consider separately the cases A1 < A, and A1 = A,. In the former region, note that an
application of (8-12) in Theorem 8.8 together with the energy inequality Lemma 7.3, and the L% , bound
in Lemma 7.2, gives

| Pay HyiC ' Ty [ v Y Tty 01, HL%{X
Sd72| Py Hy Tt T 19,8 T 00 | V2 m
1

11 o (A1)
sa tubmint 0abF (31) 1nlvz Tonnalyz - 639

On the other hand, since we are localised away from the hyperboloid we have by (7-7) together with
Lemma 8.2

+1 £ _
| Pr, Hy, C5 ' T3 [¢M,NV0H:|:2§0112,N2]”L?/2L§ <d 1||le(¢M,NVOH12</&2,N2)IILg/ngC

—1
Sd b liLs Newswolipi2rs 4
—1,1,3%
Sd 2 Nollgun vz lleas,n, ”Viz,M' (8-39)
12
Repeating this argument but instead putting ¢ € L, L% and ¢ € L?’ . we deduce that, since A1 K A2 ~ u,

1
-3 +, -+
dk] 3 ” PA] HN1Cd IIM1 [¢M,NVOHZE2§0A2,N2] HL?/ZL%

1
1 A2\3
< b mingN N3 (2] 1 vz, Iomalvz - (540

Note that this bound is far too weak to be useful on its own, as we have A1 < A5. On the other hand, if
we combine (8-38) and (8-40), and use the convexity of the Lf’ spaces, we deduce that if we let 0 <6 < 1
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be given by
1-6
2 b

1 26

a- 37

then, as this forces b = %(1 + 0), we deduce that
a—b 41,4

Af a’ H Py HN, Cy Ty [¢M,NVOHi2<PAZ,N2]”L?L§

1
< (273 Py Huy € T 1Y T 0, o) 1 2722)”

x(d%”PMHNIC T [NV s ool 2 )

! prgaoe (A ) =007
< inf ¥, o)+ 500 (22 Iunllve, o nalvz,
Since L1
23" To00°

it is easy enough to check that o(l —0)— 10 > 0, and hence (8-37) holds when A1 < A;. We now

consider the case A; = A,. The proof is s1m11ar to the previous case; the main difference is that we need
a more refined version of the bound (8-40). To this end, by decomposing ¢ into cubes of size min{u, A>},
we deduce that by Lemma 8.2 and Lemma 8.6, for every €’ > 0

+1 %
H P)Ll HNI Cd IIM1 [¢M3Nyoni2(pkz,1\’2] ”L?/ZL%

1
<d7 (I y T, Pagin,oll72)? [ L2
1

2
-1 2
sa Ml X 1Pl )

€ Qmintu.An}
<a NGt a0 vz ol
SIHCC (min{pu, )Lz})4 RS ,u6 Ay ot (for ¢’ sufficiently small) and A, < A1, by using the bound (8-39),
H Py, HNlcd [¢M Ny T, 00, ] HL3/2L2
< 2 min{N, Natlldunllve Nersmllyz - 841

Note that, unlike the bound (8-41), we have no high-frequency loss here. As in the case A < A,, we now
combine the bound (8-36) with (8-41), and deduce by the convexity of the L‘f norm and Lemma 7.2 that

A%_bd”HP;L]HNICj‘IX;‘ [¢M,NVOHi2<PA2,N2]“L:;L§
< (d)ul_% | Pay Hv, € Tog (v YO T, 05, 4 HL3/2L2)0
(dZHPMHNICd 2 [Duny Hizmz,NzluLz )
< w2 (min{N, Np})0T50- G)Bmm{a IR V5N [ e

2.N2

Since 0 < § < o, we obtain (8-37). Therefore, the bound (7-9) follows.

1-6
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We now turn to the proof of the second inequality (7-10). The argument is similar to the proof of
(7-9) so we will be brief. An application of the energy inequality in Lemma 7.3 together with (8-11) in
Theorem 8.8 implies

H P,U«HNIIF[(H:I:l w&l,Nl)TVOHiz(plz,Nz] H &

1 . o
S p2(mingNy, Noj) ¢ B eo oY, i1M||</)|| FzM- (8-42)

Ny )~2

Therefore it only remains to prove that there exists € > 0 such that

|1ZH (T ¥, ) Ty T, 0, 4, ] Iy < 2 (min{N. No}) % Be ||y iangon . (8-43)

)LzN

Similar to the proof of (8-37), we consider separately the cases u << A1 and u = L. In the former case,
as in (8-41), since we are localised away from the hyperboloid we have by (7-7) together withLemma 8.2

+
H PMHNCd II;’_[(Hﬂnwkl,Nl)TVOHizwlz,Nz] HL?/ZL%C
< d_l H P,u((nzl:l ‘/f)u,Nl)T)/OHizgmz,N2)HL?/zL%

. 1 1
< d N (min{A1, 22})3 (max{Ay, A2})2 min{ Ny, No}|¥a, w, ”Vil M||</>,12,N2||Vi2 o 84D

1 1
Since A1 &~ A3, we can replace the max and min in (8-44) with A 3%2 If we now combine (8-44) with

the energy inequality in Lemma 7.3, the bound (8-13) in Theorem 8.8, and Lemma 7.2, we deduce that
by the convexity of the L¥ spaces that

1_
Ha bdb” PMHNC;IT[(Hil WM,Nl)TVOHiz(plz,Nz]HL?L%

S (d,l,L_% H P[LC;_IIF[(H:i:lwkl,Nl)TVOH:tz(p/lz,Nz]HL?/2L)2C)0

X (2] PuC T 1Mt ¥, )Ty T2, o1 12 )

. 642 (1-0) Al 3%(1—0)— 6
< 1 (min(Ny . Ny )+ (;) Wamlvz | lenslvz

where as previously, we have

1 20  1-60
a3 2
which implies b = %(1 + 6). Since
1 1 1 o
24 =27 1000

a
it is easy enough to check that 0(1 —0)— %9 > 0, and hence (8-43) holds when u < A1. We now

consider the case (t = A1. Slnce we now have

W=
(Sl

(min{A1, A2})3 (max{A;, A2})2 S pu3t2,
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an application of (8-44), together with (8-42), Lemma 7.2 gives
1

5 (d/’l’_% “ PMC;_IIF[(H:‘Hwxl,Nl)TVOHiz(p/lz,Nz]HL?/zL%)O

1 1-6
x (d2 | PuCy T (M Yy ) Ty 00,01 12 )
Lo . 0+%(1-0) p1-0
§M2(mln{N1, NZ}) 4 Bmin{%,ﬁ—%}”vfll’]vl ”Vil.M ”(p/\z,Nz”Viz’M
Since 0 < 8 < 0 and 1/a > 1/2, we obtain (8-43). Therefore, the bound (7-9) follows. This completes
the proof of Theorem 7.5.
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