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Firstly, bilinear Fourier restriction estimates — which are well known for free waves — are extended
to adapted spaces of functions of bounded quadratic variation, under quantitative assumptions on the
phase functions. This has applications to nonlinear dispersive equations, in particular in the presence
of resonances. Secondly, critical global well-posedness and scattering results for massive Dirac–Klein–
Gordon systems in dimension three are obtained, in resonant as well as in nonresonant regimes. The results
apply to small initial data in scale-invariant Sobolev spaces exhibiting a small amount of angular regularity.
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1. Introduction

The Fourier restriction conjecture was shaped in the 1970s by work of Stein, among others, and has
generated significant advances in the field of harmonic analysis and dispersive partial differential equations
since then; see, e.g., [Stein 1993; Tao 2004] for a survey and references.

As an example, let n>2 and C be a compact subset of the cone, say C D
˚
.j�j; �/ W 1

2
6 j�j62

	
�RnC1,

and g be a Schwartz function on RnC1. Equivalently to the Fourier restriction operator R W g 7! OgjC,
consider its adjoint, the Fourier extension operator

Ef .t; x/D
Z

Rn
e�i.t;x/�.j�j;�/f .�/ d�

for smooth f with supp.f / contained in the unit annulus. The function Ef can be viewed as the inverse
Fourier transform of a surface-measure supported on the cone C, and defines a function on RnC1 which
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solves the wave equation. The Fourier restriction conjecture for the cone is equivalent to establishing the
corresponding Fourier extension estimate

kEf kLpt;x.RnC1/ . kf kLq.Rn/

within the optimal range of p; q. In the special case q D 2 this holds if and only if p � .2nC 2/=.n� 1/,
and in the literature on dispersive equations this is stated as

ke�it jrjf kLpt;x.RnC1/
. kf kL2x

and called a Strichartz estimate [1977] for the wave equation; see also [Keel and Tao 1998].
In the course of proving Fourier extension estimates for the cone, it became apparent that a key role

was played by bilinear estimates. Indeed, a major breakthrough was achieved by Wolff [2001], when he
proved that for every p > .nC 3/=.nC 1/, n> 2, we have

e�it jrjfe�it jrjg



L
p
t;x.R

nC1/
. kf kL2xkgkL2x ;

provided the supports of Of and Og are angularly separated and contained in the unit annulus. As a result
Wolff was able to prove the linear restriction conjecture for C in dimension nD 3. It is important to note
that, in the presence of angular separation, a larger set of p can be covered in the bilinear estimate than
would follow from a simple application of Hölder’s inequality together with the linear estimates.

In parallel to these developments, bilinear estimates proved useful in the context of nonlinear dispersive
equations; see, e.g., [Klainerman and Machedon 1993; Bourgain 1998; Foschi and Klainerman 2000].
The perturbative approach to dispersive equations is based on constructing adapted function spaces in
which nonlinear terms can be effectively estimated. Bilinear estimates for solutions to the homogeneous
equation, which go beyond simple almost orthogonality considerations, give precise control over dynamic
interactions of products of linear solutions. However, to apply these homogeneous estimates to the
nonlinear problem necessitates the transfer of such genuinely bilinear estimates to adapted function spaces.

Such a transference principle was implemented first inXs;b spaces; see [Ginibre et al. 1997, Lemma 2.3]
and [Klainerman and Selberg 2002, Proposition 3.7]. Let us briefly illustrate it by looking at the following
example. Suppose that u; v 2 L1t L

2
x are superpositions of modulated solutions of the homogeneous

equation, i.e.,

u.t/D

Z
R

eit�eit jrjF� d�; v.t/D

Z
R

eit�
0

eit jrjG�0 d�
0;

which is true for u; v 2X0;b if b > 1
2

. Suppose in addition, that the spatial Fourier supports of u; v are
angularly separated. Then, for any p > .nC 3/=.nC 1/, Wolff’s estimate transfers to

kuvkLpt;x.RnC1/
�

Z
R

Z
R

keit jrjF�e
it jrjG�0kLpt;x.RnC1/

d�d�0 .
�Z

R

kF�kL2x d�

��Z
R

kG�0kL2x d�
0

�
;

which is equivalent to the bilinear estimate holding for functions in X0;b. Another strategy involves
certain atomic function spaces introduced in [Koch and Tataru 2005]. Suppose that

u.t/D
X
J2I

1J .t/e
it jrjfJ ; v.t/D

X
J 02I0

1J 0.t/e
it jrjgJ 0
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for finite partitions I; I 0 of R and fJ ; gJ 0 2 L2x . Then, under the above angular separation assumption,
Wolff’s bound implies

kuvkLpt;x.RnC1/
�

�X
J2I

X
J 02I0

keit jrjfJ e
it jrjgJ 0k

p

L
p
t;x.R

nC1/

�1
p

.
�X
J2I

kfJ k
p

L2x

�1
p
�X
J 02I0

kgJ 0k
p

L2x

�1
p

:

As a consequence, we deduce that Wolff’s bilinear estimate holds for angularly separated functions in
the atomic space U p; see Definition 3.4 below. This is one instance of the transference principle in U p,
which has been formalised in [Hadac et al. 2009, Proposition 2.19].

For many applications, the above superposition requirements are too strong, partly due to the duality
theory for the spaces X0;b for b > 1

2
and U p for p � 2. Nevertheless, variations of the above strategies

have been successfully employed in numerous applications to nonlinear global-in-time problems in the
case p � 2. In the case p < 2, the only result we are aware of is [Sterbenz and Tataru 2010, Lemma 5.7
and its proof], where this approach is used in conjunction with an interpolation argument to give a partial
result only; see Remark 6.2 for further details.

It turned out that one of the most powerful function spaces in the context of adapted function spaces
is the space of functions of bounded quadratic variation V 2, which is slightly bigger than U 2. Our first
main result of this paper is the corresponding transference principle in V 2 for a quite general class of
surfaces in Theorem 1.1 below.

We start with some definitions. Define Z D f.tj /j2Z W tj 2 R and tj < tjC1g to be the set of increasing
sequences of real numbers and 1� p <1. Given a function � W R! L2x , we define the p-variation of �
to be

j�jV p D sup
.tj /2Z

�X
j2Z

k�.tj /� �.tj�1/k
p

L2x

�1
p

:

The Banach space V p is then defined to be all right continuous functions � W R! L2x such that

k�kV p D k�kL1t L
2
x
Cj�jV p <1:

Given a phase ˆ W Rn! R we let V pˆ denote the space of all functions u such that e�itˆ.�ir/u 2 V p

equipped with the obvious norm kukV pˆ D ke
�itˆ.�ir/ukV p . In other words, the space V pˆ contains all

functions u 2 L1t L
2
x such that the pull-back along the linear flow has bounded p-variation; in particular

we have
keitˆ.�ir/f kV pˆ

D kf kL2x :

Before stating Theorem 1.1, we need to introduce the assumptions that we impose on our phases, which
are motivated by [Lee and Vargas 2010; Bejenaru 2017]. Examples will be discussed in Section 2. Let

ĵ WR
n!R and ƒj be a convex subset of

˚
1
16
6 j�j6 16

	
. Given hD .a; h/2R1Cn and fj; kgD f1; 2g

we define the hypersurfaces

†j .h/D f� 2ƒj \ .ƒkC h/ W ĵ .�/Dˆk.� � h/C ag:

With this notation, we are ready to state the main assumption; cf. [Bejenaru 2017; Lee and Vargas 2010].
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Assumption 1 (transversality/curvature/regularity). There exist D1;D2 > 0 and N 2 N such that for
ˆ1; ˆ2 W R

n! R the following hold true:

(i) For every fj; kg D f1; 2g, h 2 R1Cn, �; � 0 2†j .h/, and � 2ƒk we have the estimateˇ̌
.r ĵ .�/�r ĵ .�

0//^ .r ĵ .�/�rˆk.�//
ˇ̌
>D1j� � �

0
j:

(ii) We have ĵ 2 C
N .ƒj / with the derivative bound

sup
16j�j6N

k@� ĵ kL1.ƒj / 6D2:

The condition (i) in Assumption 1 is somewhat difficult to interpret, but one immediate consequence is
the bound

jr ĵ .�/�r ĵ .�
0/j>

D1j� � �
0j

krˆ1kL1 Ckrˆ2kL1
; (1-1)

which holds for every �; � 0 2†j .h/. To some extent, this is a curvature condition, as it shows that the
normal direction varies on †j .h/. Another consequence of (i) is that for every � 2ƒ1, � 2ƒ2 we have
the transversality bound

jrˆ1.�/�rˆ2.�/j>
D1

minfkr2ˆ1kL1 ; kr2ˆ2kL1g
: (1-2)

This follows by simply observing that for every � 2ƒ1 there is h 2 R1Cn such that � 2†1.h/. Our first
main result can now be stated as follows.

Theorem 1.1. Let n > 2, p > .nC 3/=.nC 1/, and D1;D2;R0 > 0. For j D 1; 2, let ƒj ; ƒ�j �˚
1
16
6 j�j6 16

	
with ƒj convex and ƒ�j C 1=R0 �ƒj . There exists N 2 N and a constant C > 0 such

that, for any phases ˆ1 and ˆ2 satisfying Assumption 1, and any u 2 V 2ˆ1 , v 2 V 2ˆ2 with supp Ou.t/�ƒ�1 ,
supp Ov.t/�ƒ�2 , we have

kuvkLpt;x.R1Cn/
6 CkukV 2ˆ1

kvkV 2ˆ2
:

Note that the constants N and C depend on the parameters p > .n C 3/=.n C 1/, n > 2, and
D1;D2;R0 > 0, but are otherwise independent of the phase ĵ , the sets ƒj , ƒ�j , and the functions u
and v. Moreover, as the conditions in Assumption 1 are invariant under translations, the condition that
ƒj �

˚
1
16
6 j�j6 16

	
can be replaced with the condition that the sets ƒj are simply contained in balls of

radius 16. In other words, the location of the sets ƒj plays no role. We refer the reader to Corollary 6.1
for a generalisation of Theorem 1.1 to mixed norms. Further, we refer to Corollary 6.4 for a generalisation
to more general frequency scales in the case of hyperboloids, which is also shown to be sharp.

Let us summarise the developments for solutions to the homogeneous equation, i.e.,

uD eitˆ1.�ir/f; v D eitˆ2.�ir/g:

First estimates of this type for nontrivial p < 2 are due to Bourgain [1991; 1995] in the case of the
cone, i.e., ˆ1.�/Dˆ2.�/D j�j. Subsequently, these have been improved by Tao, Vargas and Vega [Tao
et al. 1998], Moyua, Vargas and Vega [Moyua et al. 1999], Tao and Vargas [2000a], before finally Tao
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[2001] proved the endpoint case pD .nC3/=.nC1/; see also Remark 5.1. Actually, we observe that the
vector-valued inequality in [Tao 2001] is strong enough to deduce the estimate in U 2 in the case of the
wave equation; see Remark 5.2. Related estimates for null-forms have been proved by Tao and Vargas
[2000b], Klainerman, Rodnianski and Tao [Klainerman et al. 2002], Lee and Vargas [2008], and Lee,
Rogers and Vargas [Lee et al. 2008]. In the case of the paraboloid, i.e., ˆ1.�/Dˆ2.�/D j�j2, the result
for homogeneous solutions is due to Tao [2003], with generalisations by Lee [2006a; 2006b], Lee and
Vargas [2010], and Bejenaru [2017] under more general curvature and transversality conditions, as well
as by Buschenhenke, Müller and Vargas [2017] for surfaces of finite type. For our approach, the most
important references are [Tao 2003] concerning notation and general line of proof and [Lee and Vargas
2010; Bejenaru 2017], concerning the assumptions on the phases and its consequences. Throughout the
paper, we shall point out similarities and differences in more detail.

We would like to highlight the fact that we explicitly track the dependence of the constants on the
phases in Theorem 1.1 based on the global, quantitative Assumption 1; in particular we avoid abstract
localisation arguments. This is helpful for applications to dispersive equations, as we will see below. The
main novelty of this result, however, lies in the fact that it holds for V 2

ĵ
-functions in the range p � 2.

Now, we turn to the application of Theorem 1.1 to nonlinear dispersive equations with a quadratic
nonlinearity which exhibit resonances. Roughly speaking, by a resonance we mean the scenario that
a product of two solutions to the homogeneous equation creates another solution of the homogeneous
equation; see Section 8 for details. This leads to the lack of oscillations in the Duhamel integral and hence
to strong nonlinear effects. In many instances, one finds that the Fourier supports intersect transversally
in the resonant sets. As an example, we mention the local well-posedness theory for the Zakharov
system [Bejenaru et al. 2009; Bejenaru and Herr 2011], where this is exploited in terms of a nonlinear
Loomis–Whitney inequality [Bennett et al. 2005; Bejenaru et al. 2010; Bennett and Bez 2010; Koch
and Steinerberger 2015]. This is a special case of the multilinear restriction theory [Bennett et al. 2006;
Bennett and Bez 2010]. Here, we will exploit transversality in resonant sets via Theorem 1.1 and prove
global-in-time estimates which go beyond the range of linear Strichartz estimates.

With this approach, we address the Dirac–Klein–Gordon system

�i
�@� CM D� ;

��Cm2� D �
0 :
(1-3)

Here,  W R1C3! C4 is a spinor field,  � D N t , � W R1C3! R is a scalar field, � WD @2t ��x is the
d’Alembertian operator, and M;m> 0. We use the summation convention with respect to �D 0; : : : ; 4,
and the Dirac matrices 
� 2 C4�4 are given by


0 D diag.1; 1;�1;�1/; 
j D

�
0 �j

��j 0

�
;

with the Pauli matrices

�1 D

�
0 1

1 0

�
; �2 D

�
0 �i

i 0

�
; �3 D

�
1 0

0 �1

�
:
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We are interested in the system (1-3) with the initial condition

 .0/D  0 W R
3
! C4 and .�.0/; @t�.0//D .�0; �1/ W R

3
! R�R: (1-4)

In the massless case, (1-3) can be rescaled and the scale-invariant Sobolev space for . 0; �0; �1/ is

L2.R3IC4/� PH
1
2 .R3IR/� PH�

1
2 .R3IR/:

Let h�i� D .1��S2/
�
2 denote � angular derivatives; see Section 7B for precise definitions. Our second

main result is the following.

Theorem 1.2. Suppose that either 2M >m> 0 and � > 0, or that m> 2M > 0 and � > 7
30

. Then, for
initial data satisfying

kh�i� 0kL2.R3/Ckh�i
��0kH1=2.R3/Ckh�i

��1kH�1=2.R3/� 1;

the system (1-3)–(1-4) is globally well-posed and solutions . ; �/ scatter to free solutions as t !˙1.

As the proof relies on contraction arguments in adapted function spaces, the notion of global well-
posedness in Theorem 1.2 includes persistence of regularity and the local Lipschitz continuity of the flow
map and it provides a certain uniqueness class. Note that the angular regularity does not affect the scaling
of the spaces. In summary, Theorem 1.2 establishes global well-posedness and scattering in the critical
Sobolev space for small initial data with a bit of angular regularity.

In the case 2M >m> 0, which we call nonresonant regime due to Lemma 8.7, this theorem improves
Wang’s result [2015] by both relaxing the angular regularity hypothesis and replacing Besov spaces
by Sobolev spaces. We also mention the previous subcritical result [Bejenaru and Herr 2017] without
additional angular regularity, where the possibility of a Besov endpoint result with an � > 0 of angular
regularity was discussed in Remark 4.2. In the case m> 2M > 0, which we call the resonant regime due
to Lemma 8.7, this appears to be the first global well-posedness and scattering result in critical spaces for
(1-3). A similar comment applies to the case 2M Dm>0, which we call the weakly resonant regime. It is
the resonant regime where we employ Theorem 1.1; see also Remark 7.6. Concerning further comments
on the number of angular derivatives required in the resonant case, we refer to Remark 8.4.

We shall only mention a few selected results on this well-studied system (1-3). We refer the reader
to [D’Ancona et al. 2007] for previous local results and to [Chadam and Glassey 1974; Bachelot 1988;
Bejenaru and Herr 2017; Wang 2015] for previous global results on this system. Concerning its relevance
in physics we refer the reader to [Bjorken and Drell 1964].

The organisation of the paper is as follows: In Section 2, we discuss a sufficient condition on the phases,
verify Assumption 1 in the case of the Schrödinger, the wave, and the Klein–Gordon equations, and derive
important consequences, in particular the dispersive inequality, and a bilinear estimate for homogeneous
solutions in L2t;x . In Section 3, we study wave packets, atomic spaces and tubes. In Section 4, we state
and prove a crucial localised version of Theorem 1.1. The proof proceeds by performing an induction-on-
scales argument, and reducing the problem to obtaining a crucial L2-bound which in turn follows from a
combinatorial estimate. Section 5 is devoted to the globalisation lemma, which removes the localisation
assumption used in Section 4, and hence concludes the proof of Theorem 1.1. In Section 6, we generalise
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Theorem 1.1 to mixed norms and, in the case of hyperboloids, give an extension to general scales and
discuss counterexamples. In Section 7 we prepare the analysis of the Dirac–Klein–Gordon system and
prove Theorem 1.2 under the hypothesis that certain bilinear estimates hold true. In Section 8 we discuss
some auxiliary estimates and finally provide proofs of the bilinear estimates used in Section 7.

2. On Assumption 1: examples and consequences

We now discuss examples, and consider in detail a number of key consequences of Assumption 1. All of
this is known to experts, at least in the specific cases we are interested in. The main objective is to verify
that Assumption 1 allows for a unified treatment which allows us to track the dependence of constants on
the phases.

2A. A sufficient condition. Let diam.ƒj /D sup�;�02ƒj j� � �
0j. The condition (i) in Assumption 1 is

somewhat difficult to check (essentially since we insist on a global condition rather than just a local condi-
tion using the Hessian of ĵ ). In practise it is easier to check the following marginally stronger conditions.

Lemma 2.1. Assume that the following three conditions hold:

(i) For all � 2ƒ1 and � 2ƒ2
jrˆ1.�/�rˆ2.�/j>A1: (2-1)

(ii) For j D 1; 2, and every h 2 R1Cn and �; � 0 2†j .h/ˇ̌̌̌
.r ĵ .�/�r ĵ .�

0// �
� � � 0

j� � � 0j

ˇ̌̌̌
>A2j� � �

0
j: (2-2)

(iii) The sets ƒ1 and ƒ2 satisfy

diam.ƒ1/C diam.ƒ2/6
A1A2

2.kr2ˆ1kL1.ƒ1/Ckr
2ˆ2kL1.ƒ2//

2
: (2-3)

Then, condition (i) in Assumption 1 holds with D1 D
1
2
A1A2.

Proof. The first step is to observe that for vectors x; y 2 Rn, and ! 2 Sn�1 we have

jx ^yj> jyjjx �!j � jxjjy �!j: (2-4)

Indeed, this follows from

jx ^yj2 D jxj2 jyj2� .x �y/2 D jyj2
ˇ̌̌̌
x�

x �y

jyj2
y

ˇ̌̌̌2
;

which implies

jx ^yj D jyj

ˇ̌̌̌
x�

x �y

jyj2
y

ˇ̌̌̌
> jyj

ˇ̌̌̌
x �! �

x �y

jyj2
y �!

ˇ̌̌̌
> jyj

�
jx �!j �

jxj

jyj
jy �!j

�
:

In particular, if we let x Dr ĵ .�/�r ĵ .�
0/, y Dr ĵ .�/�rˆk.�/, and ! D .� � � 0/=j� � � 0j, then

since jxj 6 kr2 ĵ kL1.ƒj /j� � �
0j (using the convexity of ƒj ), the lower bound (i) in Assumption 1
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would follow from (2-2), (2-4), and the transversality condition (2-1), provided thatˇ̌̌̌
.r ĵ .�/�rˆk.�// �

� � � 0

j� � � 0j

ˇ̌̌̌
6

A1A2

2kr2 ĵ kL1.ƒj /
: (2-5)

The proof of (2-5) requires the condition �; � 0 2†j .h/ together with the assumption (2-3) on the size of
the sets ƒj . Let

�j .x; z/D ĵ .x/� ĵ .z/�r ĵ .z/ � .x� z/:

A computation gives

r ĵ .z/ �.x�y/D
�
ĵ .x/��j .x; z/� ĵ .z/�r ĵ .z/ �z

�
�
�
ĵ .y/��j .y; z/� ĵ .z/�r ĵ .z/ �z

�
D ĵ .x/� ĵ .y/C�j .y; z/��j .x; z/;

and hence, using the assumption �; � 0 2†j .h/, we see that

.r ĵ .�/�rˆk.�// � .� � �
0/

D ĵ .�/� ĵ .�
0/C �j .�

0; �/�
�
ĵ .� � h/�ˆk.�

0
� h/C �k.�

0
� h; �/� �k.� � h; �/

�
D �j .�

0; �/C �k.� � h; �/� �k.�
0
� h; �/:

If we now observe that

�j .x; z/��j .y; z/D

Z 1

0

Œr ĵ .yC t .x�y//�r ĵ .z/� �.x�y/ dt 6 kr2 ĵ kL1.ƒj / diam.ƒj /jx�yj

we then deduce the boundˇ̌̌̌
.r ĵ .�/�rˆk.�// �

� � � 0

j� � � 0j

ˇ̌̌̌
6 diam.ƒ1/kr2ˆ1kL1.ƒ1/C diam.ƒ2/kr2ˆ2kL1.ƒ2/:

Consequently (2-5) follows from (2-3). �

2B. The Schrödinger, the wave and the Klein–Gordon equations. We now consider some examples of
phases satisfying Assumption 1. It is enough to check the conditions in Lemma 2.1. In particular, by
making the sets ƒj slightly smaller if necessary, it suffices to ensure that the transversality condition
(2-1) and curvature condition (2-2) hold.

Firstly, consider the Schrödinger case

ĵ .�/D
1
2
j�j2:

Then the condition (2-1) in Lemma 2.1 becomes

jrˆ1.�/�rˆ2.�/j D j� � �jI

thus we simply require that the sets ƒj have some separation. Assuming that the diameters of the sets ƒj
are sufficiently small, we just need to ensure that (2-2) holds. However (2-2) is justˇ̌̌̌

.r ĵ .�/�r ĵ .�
0// �

� � � 0

j� � � 0j

ˇ̌̌̌
D j� � � 0j

and so (2-2) clearly holds (with constant A2 D 1).
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Secondly, consider the case

ĵ .�/D h�imj D .m
2
j Cj�j

2/
1
2 ;

where the mass satisfies mj > 0. To simplify notation, we assume that for � 2 ƒj there is a constant
A > 0 such that

1

A
6 h�imj 6 A:

To check the transversality condition (2-1) we note thatˇ̌
rˆ1.�/�rˆ2.�/

ˇ̌2
D

ˇ̌̌̌
�

h�im1
�

�

h�im2

ˇ̌̌̌2
D

�
j�j

h�im1
�
j�j

h�im2

�2
C

2j�jj�j

h�im1h�im2

�
1�

� � �

j�jj�j

�

D

�
.m2j�jCm1j�j/.m2j�j �m1j�j/

h�im1h�im2.j�jh�im2 Cj�jh�im1/

�2
C

2j�jj�j

h�im1h�im2

�
1�

� � �

j�jj�j

�
(2-6)

(in particular, we always have transversality if j�j � j�j � 1 and m1�m2).
On the other hand, to check the condition (2-2), we use the following elementary bound.

Lemma 2.2. Let `> 2 and .a; h/ 2 R1C`. If x; y 2 fz 2 R` W jzj D jz� hjC ag we have the inequalityˇ̌̌̌
x

jxj
�
y

jyj

ˇ̌̌̌2
> jx�yj2

ˇ̌̌̌
x

jxj
�
x� h

jx� hj

ˇ̌̌̌4
jx� hj2

16jxjjyjjx� hj2C 4.jx� hjC jxj/2 jyj2
:

Proof. The condition x 2 fz 2 R` W jzj D jz� hjC ag implies jx� hj2 D .jxj � a/2 and hence

x

jxj
� hD

jhj2� a2

2jxj
C a:

Therefore ˇ̌̌̌
x

jxj
�
y

jyj

ˇ̌̌̌
>
jhj2� a2

2jhj

ˇ̌̌̌
1

jxj
�
1

jyj

ˇ̌̌̌
D
jx� hj

2jhjjyj

ˇ̌̌̌
x

jxj
�
x� h

jx� hj

ˇ̌̌̌2ˇ̌
jxj � jyj

ˇ̌
;

where we used the identities hD x�.x�h/ and aD jxj�jx�hj. The lemma now follows by noting that

jx�yj2 D jxjjyj

ˇ̌̌̌
x

jxj
�
y

jyj

ˇ̌̌̌2
C
ˇ̌
jxj � jyj

ˇ̌2
: �

We now show that (2-2) holds. A computation givesˇ̌
.r ĵ .�/�r ĵ .�

0// � .� � � 0/
ˇ̌
D

ˇ̌̌̌
j�j2

h�imj
C
j� 0j2

h� 0imj
�
� � � 0

h�imj
�
� � � 0

h�imj

ˇ̌̌̌

D

ˇ̌̌̌
h�imj Ch�

0
imj �

� � � 0Cm2j

h�imj
�
� � � 0Cm2j

h� 0imj

ˇ̌̌̌
D
h�imj Ch�

0imj

2

ˇ̌̌̌
x

jxj
�
y

jyj

ˇ̌̌̌2
;
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where we let x D .mj ; �/ and y D .mj ; � 0/. If we now note that the surface ĵ .�/Dˆk.� � h/C a can
be written as jxj D jy � h0jC a with h0 D .mk �mj ; h/, then an application of Lemma 2.2 givesˇ̌

.r ĵ .�/�r ĵ .�
0// � .� � � 0/

ˇ̌
>

A4
1

32A6
j� � � 0j2:

Therefore, by Lemma 2.1, we see that (i) in Assumption 1 holds with D1 DA5
1=.64A

6/. Note that the
above argument also applies in the case of the wave equation m1 Dm2 D 0.

2C. The dispersive inequality. To simplify the statements to follow, we fix constants R0>1, D1;D2>0

and N > nC 1, and assume that we have phases ˆ1, ˆ2 satisfying Assumption 1 and sets ƒj , ƒ�j with
ƒj convex and ƒ�j C 1=R0 �ƒj �

˚
1
16
6 j�j6 16

	
.

As a consequence of the curvature-type bound (1-1) relative to the (n�1)-dimensional surface †j .h/,
we expect that we should have the dispersive inequality

keit ĵ .�ir/f kL1x . t
�n�1

2 kf kL1x (2-7)

for f 2 L1 with supp Of �ƒj . To prove this decay in practise, the standard approach would involve a
stationary phase argument. However, as we only have curvature information on the surfaces †j .h/, and
these surfaces are somewhat involved to work with, the standard approach via stationary phase arguments,
keeping track of the constants, seems difficult to implement. Consequently, we instead present a different
argument, using an approach via wave packets. Roughly speaking, fixing some large time t �R, the idea
is to cover ƒj with balls of size R�

1
2 and decompose eit ĵ .�ir/f as

eit ĵ .�ir/f D
X

�02R�1=2Zn\supp Of

K�0 �f

for some smooth kernels K�0.t; x/ with kK�0.t/kL1x 6 R
�n
2 . Then since †j .h/ is a hypersurface, by

restricting to points close to †j .h/ we should have

keit ĵ .�ir/f kL1x 6 kf kL1x





 X
�02R�1=2Zn\supp Of

K�0.t; x/






L1x

. kf kL1x R
1
2 sup

h





 X
�02R�1=2Zn\.†j .h/CR�1=2/

K�0.t; x/






L1x

:

The condition (i) in Assumption 1 then shows that, for times t �R, the spatial supports of the kernels
K�0.t; x/ are essentially disjoint, and hence



 X

�02R�1=2Zn\.†j .h/CR�1=2/

K�0.t; x/






L1x

� sup
�02R�1=2Zn\.†j .h/CR�1=2/

kK�0.t/kL1x .R
�n
2 � t�

n
2 ;

which would then give the desired dispersive estimate (2-7).
In the remainder of this subsection, we fill in the details of the argument sketched above. We first

require a technical lemma involving the surfaces †j .h/.
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Lemma 2.3. Let fj; kgDf1; 2g, hD.a;h/2R1Cn, and r>2.D2=D1/R0. Assume �02.ƒ�jC1=.2R0//\

.ƒ�
k
ChC1=.2R0// and ˇ̌

ĵ .�0/�ˆk.�0� h/� a
ˇ̌
6 1
r
:

Then j�0�†j .h/j6D2=.D1r/.

Proof. Define F.�/Dˆ1.�/�ˆ2.��h/�a; by replacing F with �F if necessary, we may assume that
F.�0/> 0. We need to show there exists j� � �0j6D2=.D1r/ such that F.�/D 0. To this end, let �.s/
be the solution to

@s�.s/D�
rF.�.s//

jrF.�.s//j
; �.0/D �0:

Note that, for times s 2 Œ0;D2=.rD1/�, we have j�.s/� �0j6 s. On the other hand, since jF.�0/j6 1=r
by assumption, the transversality property (1-2) implies

F.�.s//D F.�0/�

Z s

0

jrF.�.s0//j ds0 6
1

r
� s

D1

D2
:

Consequently F.�.s// must be zero for some s 2 Œ0;D2=.rD1/� and hence the result follows. �

We now come to the proof of the dispersive inequality.

Lemma 2.4 (dispersion). Let j D 1; 2. For any f 2 L1x with supp Of � ƒ�j C 1=.2R0/ and any t > 1
we have

keit ĵ .�ir/f kL1x . t
�n�1

2 kf kL1x ;

where the implied constant depends only R0;D1;D2, and n� 2.

Proof. It is enough to consider the case j D 1 and R 6 t 6 2R with R > .10R0/
2. Since ƒ�2C 1=.2R0/

contains a ball of size .2R0/
�1, we can find a finite set H � Rn such that #H . Rn

0 and ƒ1 DS
h2H ƒ1\ .ƒ

�
2C 1=.2R0/h/. In particular, by decomposing supp Of into O.Rn

0 / sets, it is enough to
consider the case supp Of � .ƒ�1C 1=.2R0//\ .ƒ

�
2C 1=.2R0/C h/. Let � 2 C10 .j�j6 1/ such thatX

k2Zn

�.� � k/D 1:

The support assumption on Of , together with the fact that R > .10R0/
2, implies

.eitˆ1.�ir/f /.x/D
X

�02R�1=2Zn\. supp OfC 1
10R0

/

K�0.t/�f .x/;

where K�0.t; x/D
R

Rn
�.R

1
2 .� � �0//e

itˆ1.�/eix�� d�. Since R 6 t 6 2R, our goal is to show that



 X
�02R�1=2Zn\. supp OfC 1

10R0
/

jK�0.t; x/j






L1x

.R�
n�1
2 :
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We would like to write this sum in a way which involves the hypersurfaces †1.h/. Fix 0 < ı �

D1=.D1 CD2/ and let ı� D .D1=D2/ı. Given �0 2 R�
1
2Z \ .supp Of C 1=.10R0//, we can find

a 2 ı�R�
1
2Z with jaj6 2D2 such that

jˆ1.�0/�ˆ2.�0� h/� aj6 ı�R�
1
2 :

Therefore, an application of Lemma 2.3 with r DR
1
2 =ı� implies �0 2†1.a; h/C ıR�

1
2 ; hence we haveX

�02R�1=2Zn\. supp OfC 1
10R0

/

jK�0.t; x/j6
X

a2ı�R�1=2Z
jaj62D2

X
�02R�1=2Zn\.†1.a;h/CıR�1=2/

jK�0.t; x/j

.R
1
2 sup

h

X
�02R�1=2Zn\.†1.h/CıR�1=2/

jK�0.t; x/j:

We now exploit the localisation of the kernel, together with the partial curvature condition (1-1). Write

K�0.t; x/DR
�n
2

Z
Rn
�.�/eitŒˆ1.R

�1=2�C�0/�R
�1=2rˆ1.�0/��� eiR

�1=2.xCtrˆ1.�0//�� d�:

Integrating by parts nC 1 times gives

jK�0.t; x/j.R
�n
2

�
1CR�

1
2

ˇ̌
xC trˆ1.�0/

ˇ̌��n�1
: (2-8)

Let � 00 2R
� 1
2Zn\ .†1.a; h/CR

� 1
2 / denote the minimum of jxC trˆ1.�0/j. We claim that for every

�0 2R
� 1
2Zn\ .†1.a; h/CR

� 1
2 / we have

jxC trˆ1.�0/j> 1
4
D1Rj�0� �

0
0j: (2-9)

Assuming this holds for the moment, we would then obtainX
�02R�1=2Zn\. supp OfC 1

10R0
/

jK�0.t; x/j.R
1
2 sup

h

X
�02R�1=2Zn\.†1.h/CR�1=2/

jK�0.t; x/j

.R�
n�1
2

X
�02R�1=2Zn

.1CR
1
2 j�0� �

0
0j/
�n�1 .R�

n�1
2

as required. Thus it only remains to verify (2-9). This is immediate if RD1j�0� �
0
0j6 2jxC trˆ1.�

0
0/j.

Thus we may assume that RD1j�0� �
0
0j> 2jxC trˆ1.�

0
0/j. Note that this implies j� � �0j>R�

1
2 . By

construction, there exists �; � 0 2†1.h/ such that j� � �0j6 ıR�
1
2 , j� 0� � 00j6 ıR

� 1
2 . Therefore, applying

the lower bound (1-1), we deduce that

jxCtrˆ1.�0/j> t jrˆ.�/�rˆ.� 0/j�jxCtrˆ1.� 00/j�t jrˆ1.�0/�rˆ1.�/j�t jrˆ1.�
0
0/�rˆ1.�

0/j

>RD1j���
0
j�jxCtrˆ1.�

0
0/j�4D2ıR

1
2

> 1
2
RD1j�0��

0
0j�4.D1CD2/ıR

1
2 > 1

4
RD1j�0��

0
0j;

provided that we choose ı�D1=.D1CD2/. Hence we obtain (2-9) and thus result follows. �
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Remark 2.5. By the standard T T �-argument, this implies the linear Strichartz-type estimates for wave
admissible pairs. We omit the details and refer to [Keel and Tao 1998].

2D. Classical bilinear estimate in L2
t;x . The main use of the transversality property (1-2) contained

in Assumption 1 is to deduce the following well-known bilinear estimate, which dates back at least to
[Bourgain 1998, Lemma 111] in the case of the Schrödinger equation and nD 2.

Lemma 2.6. Let 0 < r < 1 and f; g 2 L2x . Assume that the supports of Of and Og are contained in balls of
radius r intersected with ƒ1 and ƒ2 respectively, and for all � 2ƒ1 and � 2ƒ2

jrˆ1.�/�rˆ2.�/j> C0: (2-10)

Then,

keitˆ1.�ir/feitˆ2.�ir/gkL2t;x.R1Cn/
.
�
rn�1

C0

�1
2

kf kL2xkgkL2x :

Proof. For mD 1; : : : ; n let

�m D

�
.�; �/ 2ƒ1 �ƒ2 W j@mˆ1.�/� @mˆ2.�/j>

C0

2n

�
:

Condition (2-10) and the support assumptions on Of and Og imply that we have the decomposition�3
eitˆ1.�ir/feitˆ2.�ir/g

�
.�/D

nX
mD1

Z
Rn

Of .� � �/ Og.�/1�m.� � �; �/ e
it.ˆ1.���/Cˆ2.�// d�:

Consider the mD 1 term and write �D .�1; �0/ 2 R�Rn�1. The change of variables .�1; �0/ 7! .�; �0/,
where � Dˆ1.� � �/Cˆ2.�/, givesZ

Rn

Of .� � �/ Og.�/1�1.� � �; �/ e
it.ˆ1.���/Cˆ2.�// d�

D

Z
R

Z
Rn�1

Of .� � ��/ Og.��/

@1ˆ1.� � ��/� @1ˆ2.��/
1�1.� � �

�; ��/ d�0 eit� d�;

where �� D .�1Œ�; �; �0�; �0/. Thus an application of Plancherel, followed by Hölder in �0, shows that



Z
Rn

Of .� � �/ Og.�/1�m.� � �; �/ e
it.ˆ1.���/Cˆ2.�// d�






L2
t;�

D





Z
Rn�1

Of .� � ��/ Og.��/

@1ˆ1.� � ��/� @1ˆ2.��/
1�1.� � �

�; ��/ d�0





L2
�;�

6 .2r/
n�1
2
2n

C
1
2

0





 Of .� � ��/ Og.��/

j@1ˆ1.� � ��/� @1ˆ2.��/j
1
2






L2
�;�;�0

D 2n

�
.2r/n�1

C0

�1
2

kf kL2xkgkL2x ;

where the last equality follows by undoing the change of variables. Since the terms with 1 < m6 n are
identical, the lemma follows. �
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2E. Geometric consequences. The last step in the proof of Theorem 1.1 requires a combinatorial Kakeya-
type bound. This bound relies on the fact that certain tubes intersect transversally, and is the main reason
for introducing the condition (i) in Assumption 1. The following is motivated by [Lee and Vargas 2010;
Bejenaru 2017]; see also Section 9 of [Tao 2003].

Let h 2 R1Cn and define the conic hypersurface

Cj .h/D f.r;�rr ĵ .�// W r 2 R; � 2†j .h/g:

A computation shows that the tangent plane to Cj .h/ is spanned by the vectors

.1;�r ĵ .�// and H ĵ .�/v for v 2 T�†j .h/;

where H ĵ .�/ denotes the Hessian of ĵ at � . On the other hand, as we will see in the proof Lemma 2.7
below, the condition (i) in Assumption 1 impliesˇ̌

.1;�r ĵ .�//^ .1;�rˆk.�//^ .0;r ĵ .�/�r ĵ .�
0//
ˇ̌
& j� � � 0j

for every �; � 0 2†j .h/. Hence, letting � 0! � in †j .h/, we can interpret (i) in Assumption 1 as saying
that, for every v 2 T�†j .h/, we haveˇ̌

.1;�r ĵ .�//^ .1;�rˆk.�//^ .0;H ĵ .�/v/
ˇ̌
& jvj:

In particular, the vector .1;�rˆk.�// must be transversal to the surface Cj .h/ for every � 2 ƒk . A
more quantitative version of this statement — and the one we make use of in practice — is given by the
following.

Lemma 2.7. Let h 2 R1Cn and fj; kg D f1; 2g. For every � 2ƒj and p; q 2 Ck.h/ we haveˇ̌
.p� q/^ .1;�r ĵ .�//

ˇ̌
>

D1jp� qj

.1CkrˆkkL1.ƒk//kr
2ˆkkL1.ƒk/

:

Proof. Let w;w0; w00 2 Rn. The identity

jx ^y ^ zj D inf
v2spanfx;yg

jv^ zj

jvj
jx ^yj

implies ˇ̌
.1; w00/^ .1; w/^ .0; w�w0/

ˇ̌
D
ˇ̌
.1; w00/^ .0; w�w00/^ .0; w�w0/

ˇ̌
D inf
v2W

jv^ .1; w00/j

jvj

ˇ̌
.0; w�w00/^ .0; w�w0/

ˇ̌
> j.w�w00/^ .w�w0/j;

where W D spanf.0; w �w00/; .0; w �w0/g. Consequently, applying the wedge product identity once
more, we deduce that for every v 2 spanf.1; w/; .0; w�w0/g

jv^ .1; w00/j>
j.w�w00/^ .w�w0/j

.1Cjwj/jw�w0j
jvj: (2-11)
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Fix � 2 ƒj and p; q 2 Ck.h/. By definition, this implies that we have �; � 0 2 †j .h/ and r; r 0 > 0

such that p D .r;�rrˆk.�// and q D .r 0;�r 0rˆk.� 0//. Clearly, due to the convexity of ƒk we have
jrˆk.�/�rˆk.�

0/j 6 kr2ˆkkL1.ƒk/j� � �
0j. If we now let w D �rˆk.�/, w0 D �rˆk.� 0/, and

w00 D�r ĵ .�/ in (2-11), then we deduce from (i) in Assumption 1 that

jv^ .1;�r ĵ .�//j>
D1jvj

.1CkrˆkkL1.ƒk//kr
2ˆkkL1.ƒk/

for every v 2 spanf.1;�rˆk.�//; .0;rˆk.�/�rˆk.� 0//g. Taking v D p � q and observing that we
can write

.p� q/D .r � r 0/.1;�rˆk.�//C r
0.0;rˆk.�/�rˆk.�

0//;

the required bound now follows. �

3. Wave packets, atomic spaces, and tubes

We now discuss the wave packet decomposition. To some extent, we follow the arguments in [Tao
2003], but use a slightly different notation by using projections labelled by phase-space points as in [Lee
and Vargas 2010]. Again, this helps us to carefully track constants. In addition, we consider certain
atomic decompositions. Concerning the phases ĵ , it turns out that the only property we require in the
construction of wave packets below, is (ii) in Assumption 1. Consequently, throughout this section, we
fix constants R0 > 1, D2 > 0 and N > nC1, and assume that for j D 1; 2 we have sets ƒj , ƒ�j with ƒj
convex and ƒ�j C 1=R0 �ƒj �

˚
1
16
6 j�j6 16

	
, and phases ĵ Wƒj ! R such that

sup
16j�j6N

k@� ĵ kL1.ƒj / 6D2:

3A. Wave packets. Let R > 1 and define the cylinder

QR D
˚
.t; x/ 2 R1Cn W 1

2
R < t < R; jxj<R

	
;

and X DR
1
2Zn �R�

1
2Zn. Define

Xj D f.x0; �0/ 2 X W �0 2ƒ�j C 3R
� 1
2 g

to be the set of phase points which are within 3R�
1
2 of ƒ�j . Note that provided R > .3R0/2, if 
 D

.x0; �0/ 2 Xj , then �0 2 ƒj . Given a point 
 D .x0; �0/ 2 X in phase-space, we let x.
/ D x0 and
�.
/D �0 denote the projections onto the first and second components respectively. Fix �; � 2 S.Rn/
such that supp O�� fj�j6 1g, supp � � fj�j6 1g, and for all x; � 2 RnX

k2Zn

�.x� k/D
X
k2Zn

�.� � k/D 1:

Given 
 2 X and f 2 L2x.R
n/, define the phase-space localisation operator

.L
f /.x/D �

�
x� x.
/

R
1
2

��
�

�
�ir � �.
/

R�
1
2

�
f

�
.x/:
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Note that by definition we have

f D
X

2X

L
f; supp bL
f � f� 2 Rn W j� � �.
/j6 2R�
1
2 g:

Moreover, letting

w
 .x/D

�
1C
jx� x.
/j

R
1
2

�N�1CnC1
2

;

for any � � X we have the orthogonality bounds



X

2�

L
f






L2x

.
�X

2�

kw
 .x/L
f .x/k
2
L2x

�1
2

. kf kL2x : (3-1)

To simplify notation, we define the slightly larger phase-space localisation operators L]
 D !
 .x/L
 . It
is worth noting that L]
f no longer has compact Fourier support; this does not pose any problems in the
arguments to follow, as the only properties that we require are the trivial bound kL
f kL2x 6 kL

]

f kL2x

and the orthogonality bound in (3-1).
To define wave packets, we conjugate the phase-space localisation operatorL
 with the flow eit ĵ .�ir/.

Definition 3.1 (wave packets). Let j D 1; 2, R> .3R0/2, and u 2L1t L
2
x.R

1Cn/. Given a point 
j 2Xj ,
we define

.P
ju/.t/D e
it ĵ .�ir/L
j .e

�it ĵ .�ir/u.t//:

Similarly, we define
.P]
ju/.t/D e

it ĵ .�ir/L]
j .e
�it ĵ .�ir/u.t//:

We also require the associated tubes T
 .

Definition 3.2 (tubes). Let j D 1; 2 and 
j 2 Xj . Then we define the tube T
j � R1Cn as

T
j D
˚
.t; x/ 2 R1Cn W 1

2
R 6 t 6R;

ˇ̌
x� x.
/C tr ĵ .�.
//

ˇ̌
6R

1
2

	
:

The most important properties of the wave packets P
ju are summarised in the following.

Proposition 3.3 (properties of wave packets). Let j D 1; 2. For any R > .3R0/
2, f 2 L2x with

supp Of � ƒ�j , and u D eit ĵ .�ir/f , we have u D
P

j2Xj P
ju, supp1P
ju � fj� � �.
/j 6 2R�

1
2 g,

and given any �j � Xj we have the orthogonality bound



 X

j2�j

P
ju





L1t L

2
x

.
� X

j2�j

kL]
j f k
2
L2x

�1
2

. kf kL2x : (3-2)

Moreover, the wave packets P
ju are concentrated on the tubes T
j in the sense that for every r >R 1
2 ,

and any ball B � R1Cn, we have the bound



 X

j2�j

dist.T
j ;B/>r

P
ju





L1t;x.B\QR/

.
�
r

R
1
2

�nC3
2
�N� X


j2�j

kL]
j f k
2
L2x

�1
2

: (3-3)

Here, the implied constants depend only on R0;D2; N and n> 2.
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Proof. This result is somewhat standard; see for instance [Tao 2003, Lemma 4.1] and [Lee 2006a,
Lemma 2.2] for related estimates. We only prove the localisation property (3-3), as the remaining
properties follow directly from the definition of P
 , together with the analogous properties of the phase-
space localisation operator L
 . Let 
j D .x0; �0/ and write

P
ju.t; x/D
Z

Rn

2.L
j f /.�/eit ĵ .�/eix�� d�

D

Z
Rn
K�0.t; x�y/.L
j f /.y/ dy;

where, as in the proof of Lemma 2.4, the kernel is given byK�0.t; x/D
R

Rn
�.R

1
2 .���0//e

it ĵ .�/eix�� d� .
Note that, as in (2-8), integrating by parts N �1 times, and using the fact that jt j6R, R� 1, we deduce
that

K�0.t; x/.R
�n
2

�
1C
jxC tr ĵ .�0/j

R
1
2

�1�N
:

Plugging this bound into the identity for P
ju.t; x/, we deduce that

jP
ju.t; x/j.R
�n
2

�
1C
jx� x0C tr ĵ .�0/j

R
1
2

�1�N Z
Rn

�
1C
jy � x0j

R
1
2

�N�1
jL
j f .y/j dy

.R�
n
4

�
1C
jx� x0C tr ĵ .�0/j

R
1
2

�1�N
kL]
j f kL2x :

Since there are O.R
n
2 / choices of �0, andˇ̌

x� x0C tr ĵ .�0/
ˇ̌
D
ˇ̌
.t; x/� .t; x0� tr ĵ .�0//

ˇ̌
> dist..t; x/; T
j /;

an application of Hölder’s inequality gives for any .t; x/ 2 BX

j2�j

dist.T
j ;B/>r

jP
ju.t; x/j

.R�
n
4

� X

j2Xj

dist.T
j ;B/>r

�
1C
jx� x0C tr ĵ .�0/j

R
1
2

�2�2N�1
2
� X

j2�j

kL]
j f k
2
L2x

�1
2

.
�
r

R
1
2

�nC3
2
�N

sup
�0

� X
x02R1=2Zn

�
1C
jx� x0C tr ĵ .�0/j

R
1
2

��n�1�1
2
� X

j2�j

kL]
j f k
2
L2x

�1
2

.
�
r

R
1
2

�nC3
2
�N� X


j2�j

kL]
j f k
2
L2x

�1
2

as required. �
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3B. Atomic spaces and wave packets. Closely related to the V p spaces, are the slightly smaller U p

spaces; see [Koch and Tataru 2005; Hadac et al. 2009; Koch et al. 2014].

Definition 3.4. Let 1�p<1. A function � WR!L2x is called a U p atom if there exists a decomposition
�D

P
J2I 1J .t/fJ subordinate to a finite partition

I D f.�1; t1/; Œt2; t3/; : : : ; ŒtN ;1/g

of R such that

kfJ k`pJL
2
x
WD

�X
J2I

kfJ k
p

L2x

�1
p

6 1:

The atomic Banach space U p is then defined as

U p D

�X
j

cj�j W .cj / 2 `
1.N/; �j a U p atom

�
with the induced norm

k�kUp D inf
�D

P
k ck�k

�ka Up atom

X
k

jckj:

The space U pˆ is the set of all u W R! L2x such that e�itˆ.�ir/u 2 U p with the obvious norm.

Let uD
P
J 1J .t/eit ĵ .�ir/fJ be aU 2

ĵ
atom. Since 1J .t/ commutes with spatial Fourier multipliers,

we have
P
juD

X
J

1J .t/e
it ĵ .�ir/L
j fJ ;

P]
juD
X
J

1J .t/e
it ĵ .�ir/L]
j fJ :

Proposition 3.3 gives the following.

Corollary 3.5 (wave packets for U 2
ĵ

atoms). Let j D 1; 2. For any R > .3R0/
2 and U 2

ĵ
atom u DP

J 1J .t/eit ĵ .�ir/fJ with supp Ou�ƒ�j , we have uD
P

j2Xj P
ju, supp1P
ju�fj���.
/j62R�

1
2 g,

and given any �j � Xj we have the orthogonality bound



 X

j2�j

P
ju





L1t L

2
x

.
� X

j2�j

kL]
j fJ k
2
`2JL

2
x

�1
2

. kfJ k`2JL2x : (3-4)

Moreover, the wave packets P
ju are concentrated on the tubes T
j in the sense that for every r >R 1
2 ,

and any ball B � R1Cn, we have the bound



 X

j2�j

dist.T
j ;B/>r

P
ju





L1t;x.B\QR/

.
�
r

R
1
2

�nC3
2
�N� X


j2�j

kL]
j fJ k
2
`2JL

2
x

�1
2

: (3-5)

Here, the implied constants depend only on R0;D2; N and n> 2.
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3C. Sets and relations of tubes. We repeat the definitions and notation used by Tao [2003], but as above
we adopt the point of view that the basic objects are the phase-space elements 
 2 Xj , rather than the
associated tubes T
j .

For ı > 0, let B be a collection of (space-time) balls of radius R1�ı which form a finitely overlapping
cover of QR. Similarly let q denote a collection of finitely overlapping cubes q of radius R

1
2 which cover

the cylinder QR. Let Rıq denote a cube of radius RıC
1
2 with the same centre as q. Given a collection

�j � Xj , and a cube q 2 q, we define

�j .q/D f
j 2 �j W T
j \R
ıq ¤¿g;

so �j .q/ is the subcollection of our phase-space decomposition such that the associated tube T
j intersects
a slight enlargement of the cube q 2 q. In the remainder of this subsection, the implied constants may
depend on n> 2 only. Given 16 �1; �2 .R100n, define

q.�1; �2/D fq 2 q W �j 6 #�j .q/ < 2�j ; j D 1; 2g:

Thus, roughly, q.�1; �2/ restricts to those elements of q which are intersected by �j tubes T
j , 
j 2 �j .
Given 
j 2 �j , we let

�.
j ; �1; �2/D #fq 2 q.�1; �2/ W T
j \R
ıq 6D¿g

and for every 16 �j .R100n we define

�j Œ�j ; �1; �2�D f
j 2 �j W �j 6 �.
j ; �1; �2/ < 2�j g:

So �j Œ�j ; �1; �2� essentially restricts to 
j 2 �j such that the associated tubes T
j intersect �j cubes in
q.�1; �2/. Clearly [

16�j; �1; �2.R100n

�j .�j ; �1; �2/D �j :

The following relation � between balls in B and 
j 2 �j plays a key role in the arguments to follow.

Definition 3.6. Given 
j 2 �j Œ�j ; �1; �2�, we let B.
j ; �j ; �1; �2/ 2 B denote a ball which maximises

#
˚
q 2 q.�1; �2/ W T
j \R

ıq 6D¿; q\B.
j ; �j ; �1; �2/ 6D¿
	
:

If B 2 B, and 
j 2 �j Œ�j ; �1; �2�, we then define 
j ��j; �1; �2 B if B � 10B.
j ; �j ; �1; �2/. To
extend this definition to general points 
j 2 �j , we simply say that 
j � B if there exists some
16 �j ; �1; �2 .R100n such that 
j ��j; �1; �2 B .

Remark 3.7. This definition has the following important consequences:

(i) Let 
j 2 �j and consider the set fB 2 B W 
j � Bg. Since there are at most O.R�/ dyadic
16 �j ; �1; �2 6R100n such that 
j 2 �j Œ�j ; �1; �2�, and only O.1/ balls B such that 
j ��j; �1; �2 B,
we have

#fB 2 B W 
j � Bg6
X

16�j; �1; �26R100n


j2�j Œ�j ;�1;�2�

#fB 2 B W 
j ��j; �1; �2 Bg.
X

16�j; �1; �26R100n

1.R�:
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(ii) Fix 16 �1; �1; �2 .R100n and let 
j 2 �j Œ�j ; �1; �2�. By definition, we have

�j 6 #fq 2 q.�1; �2/ W T
j \R
ıq 6D¿g

6
X
B2B

#
˚
q 2 q.�1; �2/ W T
j \R

ıq 6D¿; q\B 6D¿
	

6 #B #
˚
q 2 q.�1; �2/ W T
j \R

ıq 6D¿; q\B.
j ; �1; �1; �2/ 6D¿
	
;

where we used the maximal property of the ball B.
j ; �j ; �1; �2/. Therefore, as #B . R.nC1/ı, we
deduce the lower bound

#
˚
q 2 q.�1; �2/ W T
j \R

ıq 6D¿; q\B.
j ; �j ; �1; �2/ 6D¿
	
&R�.nC1/ı�j :

4. A local bilinear restriction estimate

The main step in the proof of Theorem 1.1 is proving the following spatially localised version in U 2ˆ.

Theorem 4.1. Let n>2 and ˛>0. Let R0>1 and D1;D2>0. For j D1; 2, letƒj ; ƒ�j �
˚
1
16
6 j�j616

	
with ƒj convex and ƒ�j C 1=R0 � ƒj . There exists N 2 N and a constant C > 0 such that, for any
phases ˆ1 and ˆ2 satisfying Assumption 1, any u 2U 2ˆ1 , v 2U 2ˆ2 with supp Ou.t/�ƒ�1 , supp Ov.t/�ƒ�2 ,
and any R > 1, we have

kuvk
L
.nC3/=.nC1/
t;x .QR/

6 CR2˛kukU 2ˆ1
kvkU 2ˆ2

:

In the remainder of this section we give the proof of Theorem 4.1. The proof is broken up into three
key steps. The first step is to use an induction-on-scales argument to reduce to proving an L2t;x bound.
We then use the localisation properties of the wave packet decomposition to show that the L2t;x bound
follows from a combinatorial Kakeya-type bound. The final step is prove the combinatorial estimate
using a “bush” argument.

4A. Induction on scales. Let ˛ > 0 and fix R0 > 1, D1;D2 > 0. Fix N D ..˛C 1/=˛/.100n/2. For
j D 1; 2, let ƒj ; ƒ�j �

˚
1
16
6 j�j 6 16

	
with ƒj convex and ƒ�j C 1=R0 � ƒj . It is enough to show

that there exists a constant C > 0 such that, for any phases ˆ1 and ˆ2 satisfying Assumption 1, any
R > .3R0/

2, and any U 2
ĵ

atoms u D
P
J 1J .t/eitˆ1.�ir/fJ , v D

P
J 0 1J 0.t/e

itˆ2.�ir/gJ 0 , with
supp Of �ƒ�1 , supp OgJ 0 �ƒ�2 , we have

kuvk
L
.nC3/=.nC1/
t;x .QR/

6 CR2˛: (4-1)

To simplify the notation to follow, we now work under the assumption that any implicit constants may
now depend on ˛, n> 2, and the constants R0;D1;D2, but will be independent of R and the particular
choice of phases ĵ satisfying Assumption 1.

The proof of (4-1) proceeds along the same lines as Tao’s argument for the paraboloid [2003]. Namely,
we use an induction-on-scales argument to deduce the estimate at scale R by applying a weaker estimate
at a smaller scale R1�ı. We start by observing that it suffices to show that, for every �j � Xj such that
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#�j 6R10n, and any ˇ > ˛, we have



 X

j2�j

P
1uP
2v





L
.nC3/=.nC1/
t;x .QR/

.Rˇ .#�1#�2/
1
2 sup

j2�j

kL]
1fJ k`2JL
2
x
kL]
2gJ 0k`2

J 0
L2x
: (4-2)

To deduce (4-1) from (4-2), we let

X1.�1/D
˚

1 2 X1 W �1 6 kL]
1fJ k`2JL2x 6 2�1; T
1 \ 2QR 6D¿

	
and X2.�2/ similarly, where �j 2 2Z. An application of Corollary 3.5 gives the decomposition u DP

j2Xj P
ju, as well as the bounds



 X


12X1
T
1\2QRD¿

P
1u





L1t;x.QR/

.R�99n

and � X

j2Xj

kP
1uk
2

L1t L
2
x

�1
2

.
� X

j2Xj

kL]
1fJ k
2
`2JL

2
x

�1
2

. 1:

The analogous bounds hold for v. Moreover #f
j 2 Xj W T
j \ 2QR 6D ¿g . RnC1. Collecting these
properties together, we deduce that X1.�1/D¿ for �1� 1 and



u� X

R�100n6�1.1

X

12X1.�1/

P
1u





L1t;x.QR/

.R�90n:

A similar argument shows that



v� X
R�100n6�2.1

X

22X2.�2/

P
2v





L1t;x.QR/

.R�90n:

Therefore, applying the bound (4-2) with �j D Xj .�j / and ˇ D ˛, we obtain

kuvk
L
.nC3/=.nC1/
t;x .QR/

6




uv� X

R�100n6�j.1

X

j2Xj .�j /

P
1uP
2v





L
.nC3/=.nC1/
t;x .QR/

C

X
R�100n6�j.1





 X

j2Xj .�j /

P
1uP
2v





L
.nC3/=.nC1/
t;x .QR/

. 1Clog.R/R˛ sup
�j

�
.#X1.�1/#X2.�2//

1
2 sup

j2Xj .�j /

kL]
1fJ k`2JL
2
x
kL]
2gJ 0k`2

J 0
L2x

�
.R2˛;

where the last line follows from the orthogonality properties of the phase-space localisation operators
(3-1). Hence (4-1) follows.

The proof of (4-2) proceeds via an induction-on-scales argument. The first step is to note that we
already have (4-2) provided we take ˇ > 0 sufficiently large. Indeed, a crude argument by Hölder and
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Bernstein inequalities implies the bound with ˇ D .nC 1/=.nC 3/ (which could be improved by using
linear Strichartz estimates as indicated in Remark 2.5). Suppose we could show that, if (4-2) holds for
some ˇ > ˛, then for every � > 0 we have



 X

j2�j

P
1uP
2v





L
.nC3/=.nC1/
t;x .QR/

.R2�.R.1�ı/ˇ CRDı/.#�1#�2/
1
2 sup

j2�j

kL]
1fJ k`2JL
2
x
kL]
2gJ 0k`2

J 0
L2x
; (4-3)

where ı D ˛=.DC˛/ and D > 0 is some constant which depends only on the dimension n. Then, since
Dı < ˛, by taking � > 0 sufficiently small, we deduce that we must have (4-2) for some ˇ0 < ˇ. Iterating
this argument then gives (4-2) for ˇ D ˛. Consequently, our aim is to prove (4-3), under the assumption
that we already have (4-2) for some ˇ > ˛.

We now fix �j � Xj such that #�j 6 R10n, and ˇ > ˛. Let B denote a collection of balls B
of radius R1�ı which form a finitely overlapping cover of QR. Let � denote the relation between
points 
j 2 �j and balls B 2 B given by Definition 3.6. It is important to note that the relation � depends
only on the fixed sets �j , and not on u and v. We have the decomposition



 X

j2�j

P
1uP
2v





L
.nC3/=.nC1/
t;x .QR/

6
X
B2B





 X

j2�j

j�B

P
1uP
2v





L
.nC3/=.nC1/
t;x .B/

C

X
B2B





 X

j2�j


1 6�B or 
2 6�B

P
1uP
2v





L
.nC3/=.nC1/
t;x .B/

:

For the first term, which contains the tubes which are concentrated onB , we apply the induction assumption
at scale R1�ı to deduce thatX
B2B





 X

j2�j

j�B

P
1uP
2v





L
.nC3/=.nC1/
t;x .B/

.R.1�ı/ˇ
X
B2B

�
#f
1 2 �1 W 
1 � Bg#f
2 2 �2 W 
2 � Bg

� 1
2 sup

j2�j

kL]
1fJ k`2JL
2
x
kL]
2gJ 0k`2

J 0
L2x

.R�R.1�ı/ˇ .#�1#�2/
1
2 sup

j2�j

kL]
1fJ k`2JL
2
x
kL]
2gJ 0k`2

J 0
L2x
;

where the last line follows from (i) in Remark 3.7. For the second term, as we can now safely lose
factors of Rı ; we may ignore the sum over the balls B (as there are only O.Rı.nC1// balls). Thus, after
replacing D with D�n� 1, we need to prove the bound



 X


j2�j

1 6�B or 
2 6�B

P
1uP
2v





L
.nC3/=.nC1/
t;x .B/

.R�CDı.#�1#�2/
1
2 sup

j2�j

kL]
1fJ k`2JL
2
x
kL]
2gJ 0k`2

J 0
L2x
: (4-4)
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To this end, an application of Hölder together with the orthogonality property of the tube decomposition
gives 



 X


j2�j

1 6�B or 
2 6�B

P
1uP
2v





L1t;x.B/

.R
� X

12�1

kL]
1fJ k
2
`2JL

2
x

� 1
2
� X

22�2

kL]
2gJ 0k
2
`2
J 0
L2x

�1
2

.R.#�1#�2/
1
2 sup

j2�j

kL]
1fJ k`2JL
2
x
kL]
2gJ 0k`2

J 0
L2x
:

In particular, the convexity of the Lp norms implies (4-4) follows from the L2t;x bound



 X

j2�j


1 6�B or 
2 6�B

P
1uP
2v





L2t;x.B/

.R�CDı�
n�1
4 .#�1#�2/

1
2 sup

j2�j

kL]
1fJ k`2JL
2
x
kL]
2gJ 0k`2

J 0
L2x
: (4-5)

Thus we have reduced the problem of obtaining the L
nC3
nC1

t;x estimate (4-3) to proving the L2t;x bound (4-5).

Remark 4.2. The fact that the above reduction can be done in U 2ˆ, is the key reason why we can extend
the homogeneous bilinear Fourier restriction estimates to U 2ˆ.

Our goal in the following two subsections is to prove the bound (4-5), and thus complete the proof of
Theorem 4.1. As in the previous subsections, we essentially follow the argument of Tao [2003], but apply
the results of Section 2 in place of analogous results for the paraboloid. The general strategy is to first
use the transversality via Lemma 2.6 to reduce to counting intersections of tubes. The number of tubes
is then controlled by using (i) in Assumption 1 via Lemma 2.7 together with a “bush” argument. The
notation for various cubes and tubes introduced in Section 3C is used heavily in what follows.

4B. The L2 bound: initial reductions and transversality. Recall that the ball B 2B is now fixed. WriteX

j2�j


1 6�B or 
2 6�B

P
1uP
2v D
X

j2�j

1 6�B

P
1uP
2vC
X

j2�j


1�B and 
2 6�B

P
1uP
2v:

We only prove the bound for the first term, as an identical argument can handle the second term (just
replace �1 with f
1 2 �1 W 
1 � Bg and reverse the roles of u and v). The first step is to make a number
of reductions exploiting the spatial localisation properties of the wave packets, together with a dyadic
pigeon-hole argument to fix various quantities. To this end, decompose into cubes q 2 q:



 X


j2�j

1 6�B

P
1uP
2v





L2t;x.B/

6
� X
q2q
q�2B





 X

j2�j

1 6�B

P
1uP
2v




2
L2t;x.q/

�1
2

:

Note that the concentration property of the wave packet decomposition implies



 X

12�1

T
1\R
ıqD¿

P
1u





L1t;x.q/

.R�ı.N�
nC3
2
/.#�1/

1
2 sup

12�1

kL]
1fJ k`2JL
2
x
:
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A similar bound holds for v. By our choice of N, we have ı
�
N � .nC 3/=2

�
> 100n. Therefore, as

#�j .R10n and #q .R2n, it suffices to prove� X
q2q
q�2B





 X

j2�j .q/

1 6�B

P
1uP
2v




2
L2t;x.q/

�1
2

.R�CDı�
n�1
4 .#�1/

1
2 .#�2/

1
2 sup

j2�j

kL]
1fJ k`2JL
2
x
kL]
2gJ 0k`2

J 0
L2x
: (4-6)

Let � 6�B1 .q/D f
1 2 �1.q/ W 
1 6� Bg and decompose into� X
q2q
q�2B





 X

j2�j .q/

1 6�B

P
1uP
2v




2
L2t;x.q/

�1
2

6
X
16�1

�1; �2.R100n

� X
q2q.�1;�2/
q�2B





 X

12�

6�B
1 .q/\�1Œ�1;�1;�2�


22�2.q/

P
1uP
2v




2
L2t;x.q/

� 1
2

:

Clearly, as we can freely lose R�, (4-6) follows from proving the estimate for fixed �1; �1; �2,� X
q2q.�1;�2/
q�2B





 X

12�

6�B
1 .q/\�1Œ�1;�1;�2�


22�2.q/

P
1uP
2v




2
L2t;x.q/

�1
2

.R�CDı�
n�1
4 .#�1/

1
2 .#�2/

1
2 sup

j2�j

kL]
1fJ k`2JL
2
x
kL]
2gJ 0k`2

J 0
L2x
: (4-7)

To make the notation slightly less cumbersome, we introduce the shorthand

��1 .q/D �
6�B
1 .q/\�1Œ�1; �1; �2�:

Given q 2 q and h 2 R1Cn, we define the set

���1 .q; h/D ���1 Œ�1; �1; �2�.q; h/D f
1 2 �
�
1 .q/ W �.
1/ 2†1.h/CO.R�

1
2 /g:

Thus ���1 .q; h/ consists of all 
1 2 ��1 .q/ such that �.
1/ lies within CR�
1
2 of the surface †1.h/. If we

expand the square of the L2t;x in (4-7) we get



 X

12�

�
1 .q/


22�2.q/

P
1uP
2v




2
L2t;x.q/

6
X


12�
�
1 .q/


 022�2.q/

X

 012�

�
1 .q/

X

22�2.q/

ˇ̌
hP
1uP
2v;P
 01uP
 02viL2t;x

ˇ̌
:

We now exploit the Fourier localisation properties of the wave packets to deduce that the inner product
vanishes unless

�.
1/C �.
2/D �.

0
1/C �.


0
2/CO.R�

1
2 /;

ˆ1.�.
1//Cˆ2.�.
2//Dˆ1.�.

0
1//Cˆ2.�.


0
2//CO.R�

1
2 /:

(4-8)
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In particular, if we take h
1;
 02D
�
ˆ1.�.
1//�ˆ2.�.


0
2//; �.
1/��.


0
2/
�
, then an application of Lemma 2.3

implies



 X

12�

�
1 .q/


22�2.q/

P
1uP
2v




2
L2t;x.q/

6
X


12�
�
1 .q/


 022�2.q/

X

 012�

��
1 .q;h


1;

0
2
/

X

22�2.q/

�.
2/D�.

0
1/C�.


0
2/��.
1/CO.R�1=2/

ˇ̌
hP
1uP
2v;P
 01uP
 02viL2t;x

ˇ̌
:

On the other hand, an application of Lemma 2.6 easily gives the U 2ˆ bound

kP
1uP
2vkL2t;x .R
�n�1

4 kL]
1fJ k`2JL
2
x
kL]
2gJ 0k`2

J 0
L2x
:

If we now note that, for fixed 
1, 
 02, and 
 01 and any q 2 q, we have

#
˚

2 2 �2 W T
2 \R

ıq 6D 0; �.
2/D �.

0
1/C �.


0
2/� �.
1/CO.R�

1
2 /
	
.Rnı

then an application of Cauchy–Schwarz gives



 X

12�

�
1 .q/


22�2.q/

P
1uP
2v




2
L2t;x.q/

.RDı�
n�1
2 #��1 .q/#�2.q/ sup

h
#���1 .q; h/ sup


j2�j

kL]
1fJ k
2

`2JL
2
x
kL]
2gJ 0k

2

`2
J 0
L2x
:

Consequently the bound (4-7) follows from the combinatorial estimateX
q2q.�1;�2/
q�2B

#��1 .q/#�2.q/ sup
h2R1Cn

#���1 .q; h/.RDı#�1#�2: (4-9)

We now simplify this bound slightly by exploiting the dyadic localisations we performed earlier. More
precisely, by definition, for every q 2 q.�1; �2/, we have #�2.q/ 6 2�2. On the other hand, by
exchanging the order of summation, recalling the shorthand ��1 .q/ D �

6�B
1 .q/\ �1Œ�1; �1; �2�, and

using the definition of the set �1Œ�1; �1; �2�, we deduce thatX
q2q.�1;�2/
q�2B

#��1 .q/6
X

q2q.�1;�2/

#
�
�1.q/\�Œ�1; �1; �2�

�
D

X

12�Œ�1;�1;�2�

#fq 2 q.�1; �2/ W T
1 \R
ıq 6D 0g6 2�1#�1

Therefore, we have reduced the bound (4-9) to proving the combinatorial Kakeya-type estimate

sup
h2R1Cn

q2q.�1;�2/;q�2B

���1 Œ�1; �1; �2�.q; h/.RDı
#�2
�1�2

: (4-10)

The proof of this bound is the focus of the next subsection.
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4C. The L2 bound: the combinatorial estimate. We have reduced the proof of Theorem 4.1 to obtaining
the combinatorial bound (4-10), which is essentially well known to experts as it does not see the difference
between homogeneous solutions and V 2

ĵ
-functions. For completeness, we include the proof here. We

follow the “bush” argument used in [Tao 2003], making some minor adjustments only to relate it to
Assumption 1. Recall that we have fixed a ball B 2 B. Fix any h 2 R1Cn and q0 2 q.�1; �2/ with
q0 � 2B . Our goal is to prove

#���1 .q0; h/.RDı
#�2
�1�2

:

The first step is to exploit the fact that 
1 is not concentrated on B. Recall from Section 3C that for

1 2 �1 we have defined the ball B.
1; �1; �1; �2/ 2 B to be (a) maximiser for the quantity

#
˚
q 2 q.�1; �2/ W T
j \R

ıq 6D¿; q\B.
j ; �j ; �1; �2/ 6D¿
	
:

Let 
1 2 ���1 .q0; h/. By construction this implies 
1 2 �
6�B
1 .q0/, and hence by the definition of the

relation �, we have B 6� 10B.
1; �1; �1; �2/. Since q0 � 2B and the balls in B have radius R1�ı, we
must have dist.q0; B.
1; �1; �1; �2// & R1�ı. In particular, by (ii) in Remark 3.7, we have for every

1 2 �

��
1 .q0; h/

#
˚
q 2 q.�1; �2/ W T
1 \R

ıq 6D¿; dist.q; q0/&R1�ı
	

& #
˚
q 2 q.�1; �2/ W T
1 \R

ıq 6D¿; q\B.
1; �1; �1; �2/ 6D¿
	
&R�Dı�1:

On the other hand, since for q 2 q.�1; �2/ we have #�2.q/> �2, we deduce that

#
˚
.q; 
2/ 2 q.�1; �2/��2 W T
1 \R

ıq 6D¿; T
2 \R
ıq 6D¿; dist.q; q0/&R1�ı

	
&R�Dı�1�2:

Summing up over 
1 2 ���1 .q0; h/ and then changing the order of summation gives

�1�2#���1 .q0;h/

.RDı
X


12�
��
1 .q0;h/

#
˚
.q;
2/2 q.�1;�2/��2 WT
1\R

ıq 6D¿; T
2\R
ıq 6D¿; dist.q;q0/&R1�ı

	
DRDı

X

22�2

#
˚
.q;
1/2 q.�1;�2/��

��
1 .q0;h/ WT
1\R

ıq 6D¿; T
2\R
ıq 6D¿; dist.q;q0/&R1�ı

	
:

Therefore the required bound (4-10) follows from the lemma below; see [Tao 2003, Lemma 8.1].

Lemma 4.3. Let q0 2 q, h 2 R1Cn, and 
2 2 �2. Then

#
˚
.q; 
1/ 2 q.�1; �2/��

��
1 .q0; h/ W T
1 \R

ıq 6D¿; T
2 \R
ıq 6D¿; dist.q; q0/&R1�ı

	
.RDı:

Proof. Define the bush (or “fan”) at q0 by

Bush.q0/D
[


12�
��
1 .q0;h/

T
1 :



TRANSFERENCE OF BILINEAR RESTRICTION ESTIMATES AND THE DKG-SYSTEM 1197

Thus Bush.q0/�R1Cn is the union of all tubes T
1 (associated to phase-space elements 
1 2���1 .q0; h/)
passing through a neighbourhood of the cube q0. Our goal is then to bound the sumX

q2q.�1;�2/

q�Bush.q0/\T
2CO.R1=2Cı/
dist.q;q0/&R1�ı

#
˚

1 2 �

��
1 .q0; h/ W T
1 \R

ıq 6D¿
	
: (4-11)

We first count the number of possible cubes in the outer summation. The idea is to first show that

Bush.q0/� .t0; x0/C C1.h/CO.R
1
2
CDı/; (4-12)

where .t0; x0/ denotes the centre of the cube q0, and the conic hypersurface C1.h/ is given by

C1.h/D f.r;�rrˆ1.�// W r 2 R; � 2†1.h/g:

If we had (4-12), an application of Lemma 2.7 would then show that Bush.q0/\T
2 is contained in a
ball of radius R

1
2
CDı, and hence the outer summation in (4-11) only contains O.RDı/ terms. To show

the inclusion (4-12), suppose that .t; x/ 2 Bush.q0/. Then .t; x/ 2 T
1 for some 
1 2 ���1 .q0; h/. By
construction, we have �.
/D ��CO.R�

1
2 / for some ��2†1.h/. On the other hand, since T
1\R

ıq0 6D0,
we have

x�x0C .t � t0/rˆ1.�.
1//D Œx�x.
/C trˆ1.�.
1//�� Œx0�x.
/C t0rˆ1.�.
1//�DO.R
1
2
Cı/:

Therefore, since jt � t0j.R, we can write

.t; x/�.t0; x0/

D
�
t�t0;�.t�t0/rˆ1.�

�/
�
C
�
0; x�x0C.t�t0/rˆ1.�.
1//

�
C
�
0; .t�t0/Œrˆ1.�

�/�rˆ1.
.�//�
�

D
�
t�t0;�.t�t0/rˆ1.�

�/
�
CO.R

1
2
Cı/

and hence we have (4-12). Consequently, the outer sum in (4-11) is only over O.RCı/ cubes.
Fix q 2 q.�1; �2/ with dist.q; q0/&R1�ı. As the outer sum in (4-11) only adds O.RDı/, the required

bound now follows from

#
˚

1 2 �1 W �.
1/ 2†1.h/CO.R�

1
2 /; T
1 \R

ıq 6D¿; T
1 \R
ıq0 6D¿

	
.Rı: (4-13)

The point is that since the cubes q and q0 are at a distance R1�ı apart, the condition that T
1 must
intersect both cubes, essentially fixes the tube T
1 . Since �.
1/ 2 †1.h/CO.R�

1
2 /, the bound (1-1)

implies that fixing the tube T
1 also more or less fixes the phase-space element 
1 (note that without the
bound (1-1), the set in (4-13) could potentially contain far more than O.Rı/ points). In more detail, let


1; 

0
1 2

˚

1 2 �1 W �.
1/ 2†1.h/CO.R�

1
2 /; T
1 \R

ıq 6D¿; T
1 \R
ıq0 6D¿

	
:

In light of (1-1), the estimate (4-13) would follow from the bounds

jx.
1/� x.

0
1/j.R

1
2
Cı ; jv.
1/� v.


0
1/j.R

� 1
2
Cı; (4-14)
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where for ease of notation we define the velocity as v.
1/Dˆ1.�.
1//. We now exploit the condition
that the tubes T
1 and T
 01 intersect the cubes q and q0. Let .tq; xq/ denote the centre of the cube q and
.t0; x0/ the centre of q0. Since jv.
1/j6D2 and

x0� xqC .t0� tq/v.
1/D .x0� x.
1/C t0v.
1//� .xq � x.
1/C tqv.
1//DO.R
1
2
CDı/;

the separation of the cubes q and q0 implies R1�Cı . jt0� tqj.R. A computation shows that

.t0� tq/.v.
1/� v.

0
1//DO.R

1
2
CDı/; x.
1/� x.


0
1/D t0.v.


0
1/� v.
1//CO.R

1
2
CDı/;

and hence the bound on jt0� tqj gives (4-14). �

5. The globalisation lemma

We now complete the proof of Theorem 1.1 by showing that it follows from the localised bound in
Theorem 4.1. The proof of Theorem 1.1 proceeds by using a strategy sketched in Section 8 of [Klainerman
et al. 2002], together with an interpolation argument to replace U 2

ĵ
with V 2

ĵ
.

Proof of Theorem 1.1. The first step is to show that by exploiting the (approximate) finite speed of
propagation of frequency-localised waves, the bilinear estimate on QR implies the same estimate holds
on IR �Rn with IR D Œ0; R�. The second step is to remove the remaining temporal localisation and
R˛-factor by using duality, together with the dispersive decay in Lemma 2.4. Finally we use a simple
interpolation argument to replace U 2

ĵ
with the larger V 2

ĵ
space.

Step 1: fromQR to IR�Rn. LetR> .10R0/
2, u2U 2

ĵ
and v2U 2

ĵ
, with supp Ou�ƒ�1 and supp Ov�ƒ�2 .

Assuming Theorem 4.1, our goal is to prove that for every ˛ > 0 we have

kuvk
L
.nC3/=.nC1/
t;x .IR�Rn/

.R˛kukU 2
ĵ

kvkU 2
ĵ

: (5-1)

It is enough to consider the case where u and v are atoms; thus we have the decomposition

uD
X
J

1J .t/e
itˆ1.�ir/fJ ; v D

X
J 0

1J 0.t/e
itˆ2.�ir/gJ 0 ;

with X
J

kfJ k
2
L2
C

X
J 0

kgJ 0k
2
L2
6 1;

and we may assume that supp OfJ �ƒ�1 and supp OgJ 0 �ƒ�2 (using sharp Fourier cutoffs). By translation
invariance, the bound (5-1) then follows from
kuvk

L
.nC3/=.nC1/
t;x .QR/

.R˛
�X
J



.1CR�1jxj/�.nC1/fJ

2L2x
�1
2
�X
J 0



.1CR�1jxj/�.nC1/gJ 0

2L2x
�1
2

(5-2)

since we can then sum up over the centres of balls (or cubes) of radius R which cover Rn. The inequality
(5-2) is a reflection of the fact that, as u and v are localised to frequencies of size � 1, we expect that the
waves eit ĵ .�ir/fJ should travel with velocity 1. In particular, u and v on QR should only depend on
the data in fjxj.Rg. It turns out that this is true, modulo a rapidly decreasing tail.
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Let � 2 S with supp O��fj�j6 1g and �& 1 on jxj6 1. To prove (5-2), we start by noting that since the
left-hand integral is only over QR, we may replace uv with �.R�1x/u.t; x/�.R�1x/v.y/. We can write

�
�
x

R

�
.eit ĵ .�ir/f /.x/D

Z
Rn

Z
Rn
Rn O�.R.� � �// eit ĵ .�/ Of .�/ d� ei��x d�

D

Z
Rn

Z
Rn
Rn O�.R.� � �// Of .�/F.t; R.� � �/; �/ d� ei��xei ĵ .�/ d�; (5-3)

where F.t; �; �/D �.�; �/eit. ĵ .
�
R
C�/� ĵ .�// and � 2 C10

�
fj�j 6 2g � .ƒ�j C 1=R0/

�
with �D 1 on

fj�j6 2g �ƒ�j . The oscillating component of F is essentially constant for jt j6R. To exploit this, we
expand F using a Fourier series to get

F.t; �; �/D
X
k2Z2n

ck.t/e
ik�.�;�/; ck.t/D

Z
R2n

F.t; �; �/eik�.�;�/ d� d�;

and by (ii) in Assumption 1, the coefficients satisfy jck.t/j.R0;D2
.1Cjk1j/

�2.nC1/.1Cjk2j/
�2.nC1/

with k D .k1; k2/. Applying this expansion to �.R�1x/u and �.R�1x/v we obtain the decompositions

�.R�1x/uD
X
J

X
k

ck.t/1J .t/e
itˆ1.�ir/fk;J ;

�.R�1x/v D
X
J 0

X
k

c0k.t/1J 0.t/e
itˆ2.�ir/gk;J 0 ;

(5-4)

where the coefficients ck , c0
k

are independent of J and J 0, and the functions fk;J and gk;J 0 are given by

fk;J .x/D �
�
x

R
C k1

�
fJ .xC k2/; gk;J 0.x/D �

�
x

R
C k1

�
gJ 0.xC k2/;

with k D .k1; k2/. Note that supp Ofk;J � ƒ�1 C 1=.2R0/ since R > .10R0/
2, thus the fk;J satisfy the

support conditions in Theorem 4.1 (with ƒ�j replaced with ƒ�j C 1=R0, and R0 replaced with 2R0). A
similar comment applies to the gk0;J . Therefore, plugging the decomposition (5-4) into the left-hand side
of (5-2), we deduce via an application of Theorem 4.1 that

kuvk
L
.nC3/=.nC1/
t;x .QR/

.
X

k;k02Zn�Zn

.1Cjkj/�2.nC1/.1Cjk0j/�2.nC1/

�





X
J;J 0

1J .t/e
itˆ1.�ir/fk;J 1J 0.t/e

itˆ2.�ir/gk0;J 0






L
.nC3/=.nC1/
t;x .QR/

.R˛
X
k;k0

.1Cjkj/�2.nC1/.1Cjk0j/�2.nC1/

�

�X
J



.1CR�1jx�k1CRk2j/�.nC1/fJ

2L2x
�1
2
�X
J 0



.1CR�1jx�k01CRk02j/�.nC1/gJ 0

2L2x
�1
2

.R˛
�X
J



.1CR�1jxj/�.nC1/fJ

2L2x
�1
2
�X
J 0



.1CR�1jxj/�.nC1/gJ 0

2L2x
�1
2

:

Thus we obtain (5-2) and hence (5-1).
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Step 2: from IR�Rn to R1Cn. Let u 2U 2ˆ1 and v 2U 2ˆ2 , with supp Ou�ƒ�1 and supp Ov �ƒ�2 . Our goal
is to show that for every p > .nC 3/=.nC 1/

kuvkLpt;x
. kukU 2ˆ1

kvkU 2ˆ2
: (5-5)

In fact the argument below gives the marginally stronger (though essentially equivalent) bound

kuvkLpt L.nC3/=.nC1/x
. kukU 2ˆ1

kvkU 2ˆ2
: (5-6)

To deduce (5-5) from (5-6), note that the dispersive estimate in Lemma 2.4, together with the abstract
Strichartz estimates of [Keel and Tao 1998, Theorem 1.2], implies there exists 1 < a < b <1 such that
kuvkLat L

b
x
. 1. On the other hand, the Fourier support assumptions imply that we have the trivial bound

kuvkL1t L
p
x .R1Cn/

. 1 for every p > 1. Thus interpolation gives (5-5) from (5-6).
We now turn to the proof of (5-6). As in Step 1, we may assume that u and v are atoms with the

decomposition

uD
X
J

1J .t/e
itˆ1.�ir/fJ ; v D

X
J 0

1J 0.t/e
itˆ2.�ir/gJ 0 ;

with supp OfJ �ƒ�1 , supp OgJ 0 �ƒ�2 , andX
J

kfJ k
2
L2
C

X
J 0

kgJ 0k
2
L2
6 1:

By real interpolation it is enough to show that for every q > .nC 3/=.nC 1/ we have

kuvk
L
q;1
t L

.nC3/=.nC1/
x

. 1;

where Lq;1t is the Lorentz norm. Applying duality, this follows from the estimateZ
�

kuvk
L
.nC3/=.nC1/
x

dt . j�j
1
q0 (5-7)

for every measurable �� R. Define the Fourier localised solution operator

Uj .t/Œh�D eit ĵ .�ir/Pƒ�
j
h;

where we let
1Pƒ�

j
h.�/D �ƒ�

j
.�/ Oh.�/

with � 2 C10 .ƒ
�
j C 1=.10R0// and �D 1 on ƒ�j . If we interpolate Lemma 2.4 with the trivial L1t L

2
x

bound and apply duality, we deduce that for every 16 a 6 2Z
.t;t 0/2���
jt�t 0j&R

˝
U�j .t/ŒG.t/�; U

�
j .t
0/ŒG.t 0/�

˛
L2x
dt dt 0 . j�j2R�

n�1
2
. 2
a
�1/
kGk2L1t L

a
x
; (5-8)

where U�j denotes the L2x adjoint of Uj . The dispersive bound (5-8) together with the bilinear estimate
(5-1) are the key inequalities required in the proof of (5-7).

We now begin the proof of (5-7). If j�j. 1, then (5-7) follows by putting uv 2 L1t L
nC3
nC1
x and using

the Sobolev embedding. Thus we may assume that j�j � 1. Let us set J 0� WD�\ J
0. An application
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of duality givesZ
�

kuvk
L
.nC3/=.nC1/
x

dt 6 sup
kF k

L1t L
.nC3/=2
x

61

ˇ̌̌̌Z
�

hF; uviL2x dt

ˇ̌̌̌

D sup
kF k

L1t L
.nC3/=2
x

61

ˇ̌̌̌X
J 0

Z
J 0�

hF; uU2.t/ŒgJ 0 �iL2x dt
ˇ̌̌̌

. sup
kF k

L1t L
.nC3/=2
x

61

�X
J 0





Z
J 0�

U�2 .t/ŒF Nu� dt




2
L2x

�1
2

:

If we expand the square of the L2x norm, we have via (5-8)X
J 0





Z
J 0�

U�2 .t/ŒF Nu� dt




2
L2x

D

X
J 0

Z
t;t 02J 0�

˝
U�2 .t/ŒF Nu�; U

�
2 .t
0/ŒF Nu�

˛
L2x
dt dt 0

D

X
J 0

Z
t;t 02J 0�
jt�t 0j&R

˝
U�2 .t/ŒF Nu�; U

�
2 .t
0/ŒF Nu�

˛
L2x
dt dt 0

C

X
J 0

X
jI�I 0j6R

Z
J 0�\I

Z
J 0�\I

0

˝
U�2 .t/ŒF Nu�; U

�
2 .t
0/ŒF Nu�

˛
L2x
dt dt 0

. j�j2R�
n�1
2
. 2
a
�1/
kF Nuk2L1t L

a
x
C

X
J 0;I





 Z
J 0�\I

U�2 .t/ŒF Nu� dt




2
L2x

. j�j2R�
2.n�1/
nC3 kF k2

L1t L
.nC3/=2
x

kuk2
L1t L

2
x
C

X
J 0;I





Z
J 0�\I

U�2 .t/ŒF Nu� dt




2
L2x

;

where
1

a
D

2

nC3
C
1

2
:

Here we always take I (and I 0) to be a decomposition of R into intervals of size R. We now essentially
repeat the previous argument, but expand u instead of v to obtainX

J 0;I





Z
J 0�\I

U�2 .t/ŒF Nu� dt




2
L2x

6 supP
J 0;I kgJ 0;I k

2

L2x

61

ˇ̌̌̌X
J 0;I

Z
J 0�\I

hF; NuU2.t/gJ 0;I iL2x dt
ˇ̌̌̌2

. supP
J 0;I kgJ 0;I k

2

L2x

61

ˇ̌̌̌X
J;I

Z
J�\I

hU�1 .t/ŒF NvI �; fJ iL2x dt
ˇ̌̌̌2

. supP
J 0;I kgJ 0;I k

2

L2x

61

X
J





X
I

Z
J�\I

U�1 .t/ŒF NvI � dt




2
L2x

;

where we take

vI D
X
J 0

1J 0.t/U2.t/gJ 0;I :
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Again expanding out the L2x norm, and applying (5-8), we haveX
J





X
I

Z
J�\I

U�1 .t/ŒF NvI � dt




2
L2x

D

X
J

X
jI�I 0j�R

Z
J�\I

Z
J�\I 0

˝
U�1 .t/ŒF NvI �; U1.t

0/ŒF NvI 0 �
˛
L2x
dt dt 0

C

X
J

X
jI�I 0j.R

Z
J�\I

Z
J�\I 0

˝
U�1 .t/ŒF NvI �; U

�
1 .t
0/ŒF NvI 0 �

˛
L2x
dt dt 0

. j�j2R�
2.n�1/
nC3 kF k2

L1t L
.nC3/=2
x

sup
I

kvIk
2
L1t L

2
x
C

X
J;I





Z
J�\I

U1.t/ŒF vI � dt




2
L2x

:

Collecting the above chain of estimates together, and using the fact that

kvIk
2

L1t L
2
x
6
X
I;J 0

kgJ 0;Ik
2

L2x
6 1

together with another application of duality, we see thatZ
�

kuvk
L
.nC3/=.nC1/
x

dt . j�jR�
n�1
nC3 C sup

kF k
L1t L

.nC3/=2
x

61P
I;J 0 kgI;J 0k

2

L2x

61

�X
J;I





Z
J�\I

U1.t/ŒF NvI � dt




2
L2x

�1
2

6 j�jR�
n�1
nC3 C supP

I;J 0 kgI;J 0k
2

L2xP
I;J kfI;J k

2

L2x

61

X
I

Z
�\I

kuIvIkL.nC3/=.nC2/x
dt;

where we define uI D
P
I;J 1J .t/U1.t/ŒfI;J �. Observe thatX

I

kuIk
2

U 2ˆ1

6
X
I;J

kfI;J k
2

L2x
6 1;

and that uI satisfies the support properties in Theorem 4.1 (withƒ�j replaced byƒ�jC1=.10R0/, and R0 re-
placed by 2R0). A similar comment applies to vI . Consequently, an application of (5-1) gives for any ˛>0X

I

Z
�\I

kuIvIkL.nC3/=.nC1/x
dt 6 j�j

2
nC3

X
I

kuIvIkL.nC3/=.nC1/t;x .I�Rn/

. j�j
2
nC3R˛

�X
I;J

kfI;J k
2
L2x

�1
2
�X
I;J 0

kgI;J 0k
2
L2x

�1
2

6 j�j
2
nC3R˛

and therefore Z
�

kuvk
L
.nC3/=.nC1/
x

dt . j�jR�
n�1
nC3 Cj�j

2
nC3R˛:

To complete the proof, we choose R D j�jC with C > 0 sufficiently large so that j�jR�
n�1
nC3 6 j�j

1
q0 .

On the other hand, since q > .nC 3/=.nC 1/, we can take

˛ D
1

2C

�
nC 1

nC 3
�
1

q

�
;
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which implies
j�j

2
nC3R˛ D j�j

2
nC3
C˛C 6 j�j

1
q0 :

Therefore we obtain (5-7) as required.

Step 3: fromU 2ˆ to V 2ˆ. Let p>.nC3/=.nC1/, u2V 2ˆ1 and v2V 2ˆ2 , with supp Ou�ƒ�1 and supp Ov�ƒ�2 .
An application of [Koch and Tataru 2005, Lemma 6.4]; see also [Hadac et al. 2009, Propositions 2.5
and 2.20], gives a decomposition uD

P
k2N uk and v D

P
k2N vk such that uk , vk retain the correct

Fourier support properties (we can just use sharp Fourier cutoffs here) and for any r >2we have the bounds

kukkU rˆ1
. 2k.

2
r
�1/
kukV 2ˆ1

; kvkkU rˆ2
. 2k.

2
r
�1/
kvkV 2ˆ2

:

Let .nC3/=.nC1/ < q < p, and take � D q=p < 1. Then an application of (5-5) (with pD q), together
with the convexity of Lp norms, gives

kuvkLpt;x
6
X
k;k0

kukvk0kLpt;x
6
X
k;k0

kukvk0k
�
L
q
t;x

kukvk0k
1��
L1t;x

6
X
k0;k

�
kukkU 2ˆ1

kvk0kU 2ˆ2

���
kukkU1ˆ1

kvk0kU1ˆ2

�1��
. kukV 2ˆ1

kvkV 2ˆ2

X
k;k0

2�k.1��/2�k
0.1��/ . kukV 2ˆ1

kvkV 2ˆ2
;

where we used the Sobolev embedding and the fact that the Fourier support of u; v is contain in the unit
ball to control the L1t;x norm. Thus Theorem 1.1 follows. �

Remark 5.1. The argument in Step 3 above, using (5-6), also implies the slightly stronger estimate

kuvk
L
p
t L

.nC3/=.nC1/
x .R1Cn/

6 CkukV 2ˆ1
kvkV 2ˆ2

:

This is well known in the case of homogeneous solutions; see, e.g., [Tao 2003]. However, the estimate in
the endpoint p D q D .nC 3/=.nC 1/ remains open. For homogeneous solutions it is known only in the
case of the cone [Tao 2001].

Remark 5.2. In fact, since Tao’s endpoint result [2001, Theorem 1.1] holds for Hilbert-space-valued
waves, we observe that one can deduce the U 2-estimate for the cone directly. This follows by noting that,
given U 2-atoms uD

P
I2I 1IuI and v D

P
J2J 1J vJ , we have

juvj �

�X
I2I

juI j
2

�1
2
�X
J2J

jvJ j
2

�1
2

D jU jjV j:

with `2-valued waves U and V .

6. Mixed norms and generalisations to small scales

We now give some consequences of the bilinear estimate in Theorem 1.1. Namely, we state an extension
to mixed LqtL

r
x spaces, and, in the case of the hyperboloid, we give a small-scale version of Theorem 1.1.

The small-scale estimate will play a key role in our application to the Dirac–Klein–Gordon system.
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6A. Mixed norms. Let ˆ1 and ˆ2 be phases satisfying Assumption 1. A standard T T � argument, see
for instance [Keel and Tao 1998], together with Lemma 2.4 implies that, provided

1

q
C
n�1

2r
6 n�1

4

and q > 2, we have the Strichartz-type bound

keit ĵ .�ir/f kLqt L
r
x.R1Cn/

. kf kL2x : (6-1)

As in Step 3 of the proof of the globalisation lemma, by decomposing V 2 into U a atoms, see [Koch and
Tataru 2005, Lemma 6.4] or [Hadac et al. 2009, Propositions 2.5 and 2.20], we see that

kuvkLat L
b
x
. kukV 2ˆ1

kvkV 2ˆ2
for any

1

a
C
n�1

2b
6 n�1

2
:

Interpolating with Theorem 1.1 then gives the following mixed norm version.

Corollary 6.1. Let n> 2 and assume that a > 1,

1

a
C
nC1

2b
<
nC1

2
;

and

1

a
C
n�1

4b
<

(
nC1
4
; n> 3;

1
2
C

5
12b

; nD 2:
(6-2)

Let ˆ1, ˆ2, and u; v be as in the statement of Theorem 1.1. Then

kuvkLat L
b
x
. kukV 2ˆ1

kvkV 2ˆ2
:

Remark 6.2. Let p > .nC 3/=.nC 1/. It is possible to deduce a weaker version of Theorem 1.1 and
Corollary 6.1 directly from the homogeneous estimate

keitˆ1.�ir/feitˆ2.�ir/gkLpt;x.R1Cn/
. kf kL2xkgkL2x ; (6-3)

where the phases satisfy the conditions in Assumption 1, and f; g 2 L2 have the required support
conditions. We sketch the argument as follows. By interpolating (6-3) with the trivial L1t L

2
x bound, we

deduce that for every a > 2 we have

keitˆ1.�ir/feitˆ2.�ir/gk
Lat L

.nC1/=n
x

. kf kL2xkgkL2x :

By decomposing V 2 functions into U a atoms [Koch and Tataru 2005; Hadac et al. 2009; Koch et al.
2014] and using the convexity of the Lp spaces, we see that for a > 2

kuvk
Lat L

.nC1/=n
x

. kukV 2ˆ1
kvkV 2ˆ2

:
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Consequently, as in the proof of Corollary 6.1, by interpolating with the standard Strichartz estimates, we
obtain

kuvkLat L
b
x
. kukV 2ˆ1

kvkV 2ˆ2

provided that a > 1,
1

a
C
nC1

2b
<
nC1

2
;

and

1

a
<

8<:
n�1
nC3

�
n
2
�
nC1
2b

�
C
1
2
; n> 3;

1
2
; nD 2:

(6-4)

In particular, the homogeneous bounds contained in [Lee and Vargas 2010; Bejenaru 2017] imply a weaker
version of our main result, with (6-2) in Corollary 6.1 replaced with (6-4). Note that condition (6-4) is
much more restrictive than (6-2). This is most apparent in the low-dimensional cases; for instance if nD 2
then Corollary 6.4 allows a < 2, while (6-4) only allows the somewhat trivial (from a V 2 perspective)
a > 2. To summarise, our main result, Theorem 1.1 not only clarifies the dependence of the constant on
the global properties of the phases ˆ1 and ˆ2, but also presents a significant strengthening of the allowed
exponents for the V 2 estimate.

We observe that the above argument, namely deducing a V 2 bound directly from the homogeneous
estimate, has been used in [Sterbenz and Tataru 2010, Lemma 5.7 and its proof] in the case of the cone.

Remark 6.3. In the special case of the hyperboloid, ĵ D h�imj , or the paraboloid, ĵ D j�j
2, the

Strichartz bound (6-1) holds in the larger region

1

q
C
n

2r
6 n
4
:

This can be used to improve the range of exponents in Corollary 6.1; in particular (6-2) can be replaced
with

1

a
C
n

3b
<
nC1

3
:

However, it is important to note that, in the case of the hyperboloid, some care has to be taken as the
constant will now depend on the masses mj .

6B. Small scale bilinear restriction estimates. In the case of hyperboloids we now generalise Theorem 1.1,
similarly to [Lee and Vargas 2008] in the case of the cone. Given 0 < ˛ . 1, we define C˛ to be a
collection of finitely overlapping caps of radius ˛ on the sphere Sn�1. If � 2 C˛, we define !.�/ to be
the centre of the cap �.

We consider the case ĵ .�/D � j̇ h�i and define the corresponding V 2
˙;m space as V 2

˙;m D V
2
ĵ

;
thus

kukV 2
˙;m

D ke˙ithrimu.t/kV 2 : (6-5)

We define the corresponding U 2
˙;m space similarly. Rescaling Theorem 1.1 then gives the following

optimal result.
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Corollary 6.4. Let p > .nC 3/=.nC 1/, 06m1; m2 6 1:

(i) For any �&m1Cm2, .m1Cm2/=�. ˛ . 1, �; �0 2 C˛ with �.˙1�;˙2�0/� ˛, and

supp Ou�
�
j�j � �;

�

j�j
2 �

�
; supp Ov �

�
j�j � �;

�

j�j
2 �0

�
;

we have the bilinear estimate

kuvkLpt;x
. ˛n�1�

nC1
p �n�

nC1
p kukV 2

˙1;m1

kvkV 2
˙2;m2

:

(ii) For any �&m1Cm2, 0 < ˛� .m1Cm2/=�, �; �0 2 C˛, c1 � c2 � � with

�.˙1�;˙2�
0/. ˛; jm1c1�m2c2j � ˛�2;

and

supp Ou�
�ˇ̌
j� �!.�/j � c1

ˇ̌
� ˛�2;

�

j�j
2 �

�
; supp Ov �

�ˇ̌
j� �!.�0/j � c2

ˇ̌
� ˛�2; �

j�j
2 �0

�
;

we have the bilinear estimate

kuvkLpt;x
. ˛n�

nC2
p �nC1�

nC2
p kukV 2

˙1;m1

kvkV 2
˙2;m2

:

Proof. Fix˙1DC and˙2D˙, the remaining cases follow from a reflection. We start with (i). If ˛� 1,
then the estimate follows from rescaling in x together with an application of Theorem 1.1. Thus we may
assume that 0<˛� 1, and after a rotation, that � is centred at e1 and �0 is centred at˙.1�˛2/

1
2 e1C˛e2.

Similarly to [Lee and Vargas 2008], we define the rescaled functions

u�;˛.t; x/D u

�
t

˛2�
;
x1

�
C

t

˛2�
;
x0

˛�

�
; v�;˛.t; x/D v

�
t

˛2�
;
x1

�
C

t

˛2�
;
x0

˛�

�
(where we write x D .x1; x0/ 2 R�Rn�1) and the phases

ˆ1.�/D
�1

˛2�

�
.m21C�

2�21 C˛
2�2j� 0j2/

1
2 ���1

�
; ˆ2.�/D

�1

˛2�

�
.m22C�

2�21 C˛
2�2j� 0j2/

1
2 ���1

�
;

with associated sets

ƒ1 D f�1 � 1; j�
0
j � 1g; ƒ2 D f�1 �˙1; �2 � 1; j�

00
j � 1g

where we write � D .�1; �2; � 00/ 2 R�R�Rn�2). A computation gives supp Ou�;˛ �ƒ1 and

Œe�itˆ1.�ir/u�;˛.t/�.x/D

�
e
i t

˛2�
hrim1u

�
t

˛2�

���
x1

�
;
x0

˛�

�
:

Similarly we can check that supp Ov�;˛ �ƒ2 and

Œe�itˆ2.�ir/v�;˛.t/�.x/D

�
e
˙i t

˛2�
hrim2v

�
t

˛2�

���
x1

�
;
x0

˛�

�
:
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Therefore, after rescaling together with an application of Theorem 1.1, it is enough to check that the
phases ĵ satisfy Assumption 1 on the sets ƒj . To this end, we start by noting that we can write

rˆ1.�/D
1

.��2m21C �
2
1 C˛

2j� 0j2/
1
2

 
�.m1=.˛�//

2� j� 0j2

.��2m21C �
2
1 C˛

2j� 0j2/
1
2 C �1

; � 0

!
;

which shows that (ii) in Assumption 1 holds with D2 depending only on N and n. A similar argument
shows that ˆ2 satisfies (ii) in Assumption 1. On the other hand, to check condition (i) in Assumption 1,
we invoke Lemma 2.1. First, we observe that for any � 2ƒ1, � 2ƒ2, we haveˇ̌

rˆ1.�/�rˆ2.�/
ˇ̌
>
ˇ̌
@2ˆ1.�/� @2ˆ2.�/

ˇ̌
D

ˇ̌̌̌
ˇ �2

.��2m21C �
2
1 C˛

2j� 0j2/
1
2

�
�2

.��2m22C �
2
1C˛

2j�0j2/
1
2

ˇ̌̌̌
ˇ& 1;

and hence we can take A1 � 1. It remains to check (2-2) in Lemma 2.1. We make use of the following
elementary inequality; if .h�; a�/ 2 RnC1 �R1 and x; y 2 fz 2 RnC1 W jzj D jz� h�jC a�g, thenˇ̌̌̌

x

jxj
�
y

jyj

ˇ̌̌̌2
>

1

4jxjjyj

�
jx ^yj2

jxjjyj
C
j.x� h�/^ .y � h�/j2

jx� h�jjy � h�j

�
: (6-6)

To prove (6-6), we start by observing that since x; y 2 fjzj D jz� h�jC a�g, we haveˇ̌̌̌
x

jxj
�
y

jyj

ˇ̌̌̌2
D

1

jxjjyj

�
jx�yj2�

ˇ̌
jxj � jyj

ˇ̌2�
D

1

jxjjyj

�ˇ̌
.x� h�/� .y � h�/

ˇ̌2
�
ˇ̌
jx� h�j � jy � h�j

ˇ̌2�
D
jx� h�jjy � h�j

jxjjyj

ˇ̌̌̌
x� h�

jx� h�j
�
y � h�

jy � h�j

ˇ̌̌̌2
:

The inequality (6-6) now follows from the identity j! �!�j2 > 1
2
j! ^!�j2 for !;!� 2 SnC1. We now

return to checking (2-2) in Lemma 2.1; we only check the case j D 1 as the remaining case is identical.
Let �; � 2†1.a; h/ for some .a; h/ 2 R1Cn such that � � h; �� h 2ƒ2. A computation givesˇ̌
.r ĵ .�/�r ĵ .�// � .� � �/

ˇ̌
D ˛�2

ˇ̌̌̌�
.�1; ˛

2� 0/

j.��1m1; �1; ˛2� 0/j
�

.�1; ˛
2�0/

j.��1m1; �1; ˛� 0/j

�
� .� � �/

ˇ̌̌̌
D ˛�2

j.��1m1; �1; ˛�
0/jC j.��1m1; �1; ˛�

0/j

2

ˇ̌̌̌
.��1m1; �1; ˛�

0/

j.��1m1; �1; ˛� 0/j
�
.��1m1; �1; ˛

2�0/

j.��1m1; �1; ˛� 0/j

ˇ̌̌̌2
� ˛�2

ˇ̌̌̌
x

jxj
�
y

jyj

ˇ̌̌̌2
; (6-7)

where we take x D .��1m1; �1; ˛� 0/ and y D .��1m1; �1; ˛�0/. Note that the condition � 2 †1.a; h/
becomes jxj D jx� h�jC a� with h� D .��1m2���1m1; h1; ˛h0/ and a� D ˛2a. In particular, since
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jxj � jyj � jx� h�j � jy � h�j � 1, an application of (6-6) givesˇ̌̌̌
x

jxj
�
y

jyj

ˇ̌̌̌2
& jx ^yj2Cj.x� h�/^ .y � h�/j2: (6-8)

The required bound (2-2) with A2 � 1 now follows in the region j�1� �1j. j� 0� �0j by noting that

jx ^yj> ˛j�1�0� �1� 0j> ˛
�
j� 0� �0jj�1j � j�

0
jj�1� �1j

�
� ˛j� 0� �0j � ˛j� � �j

and applying the inequalities (6-7) and (6-8). On the other hand, if j�1 � �1j � j� 0 � �0j, then as
� � h; �� h 2ƒ2, we have

j.x� h�/^ .y � h�/j> ˛j.�1� h1/.�2� h2/� .�1� h1/.�2� h2/j

> ˛
�
j�1� �1jj�2� h2j � j�2� �2jj�1� h1j

�
� ˛j�1� �1j � ˛j� � �j;

which again gives (2-2) with A2 � 1. Thus the phases ĵ satisfy Assumption 1 with D1 �D2 � 1 and
therefore part (i) follows.

We now turn to the proof of part (ii). The argument is similar to (i), but we need a further rescaling to
exploit the radial separation condition. As before, after rotating, we may assume that !.�1/D e1. Define
the rescaled functions

u#
�;˛.t; x/D u

�
t

˛2�
;
x1

˛�2
C

tc1

˛2�hc1im1
;
x0

˛�

�
; v#

�;˛.t; x/D v

�
t

˛2�
;
x1

˛�2
C

tc1

˛2�hc1im1
;
x0

˛�

�
(where, as previously, we write x D .x1; x0/ 2 R�Rn�1) and the phases

ˆ1.�/D
�1

˛2�

�
.m21C .˛�

2�1/
2
C˛2�2j� 0j2/

1
2 �

˛�2c1

hc1im1
�1

�
;

ˆ2.�/D
�1

˛2�

�
.m22C .˛�

2�1/
2
C˛2�2j� 0j2/

1
2 �

˛�2c1

hc1im1
�1

�
with associated sets

ƒ1 D

�ˇ̌̌̌
�1�

1

˛�2
c1

ˇ̌̌̌
� 1; j� 0j � 1

�
; ƒ2 D

�ˇ̌̌̌
�1�

1

˛�2
c2

ˇ̌̌̌
� 1; j� 0j. 1

�
:

As previously, a computation shows that supp Ou#
�;˛
�ƒ1, supp Ov#

�;˛
�ƒ2 and we have the identities

Œe�itˆ1.�ir/u#
�;˛.t/�.x/D

�
eithrim1u

�
t

˛2�

���
x1

˛�2
;
x0

˛�

�
;

Œe�itˆ2.�ir/v#
�;˛.t/�.x/D

�
e˙ithrim2v

�
t

˛2�

���
x1

˛�2
;
x0

˛�

�
:

Thus, as in the proof of (i), after rescaling and an application of Theorem 1.1, it is enough to check that
the phases ĵ satisfy Assumption 1 on the sets ƒj . To this end, note that we can write

@1ˆ1 D
m21=.˛�

3/..˛�2�1/
2� c21/� .c1=�/

2˛�j� 0j2

f .˛��1; ˛� 0/
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for some smooth function f with f � 1 on ƒ1. Since @M
�1
Œ.˛�2�1/

2 � c21 � . ˛�3 for all M > 0 and
�1 2ƒ, we see that ˆ1 satisfies (ii) in Assumption 1 with constant depending only on n and N. A similar
argument, using the fact that

�

˛

ˇ̌̌̌
c1

hc1im1
�

c2

hc2im2

ˇ̌̌̌
� 1;

shows that ˆ2 also satisfies (ii) in Assumption 1. On the other hand, to check (i) in Assumption 1, we
use Lemma 2.1. Concerning the transversality condition (2-1), we observe that for � 2ƒ1, � 2ƒ2, we
have j�1j � j�1j � 1=.˛�/ and

j�21m
2
2� �

2
1m

2
1j �

m1Cm2

˛�
; ˛2

ˇ̌
�21 j�

0
j
2
� �21j�

0
j
2
ˇ̌
. ��2� ��2

m1Cm2

˛�
:

Thereforeˇ̌
rˆ1.�/�rˆ2.�/

ˇ̌
D

ˇ̌̌̌
.�2�1; �

0/

.��2m21C˛
2�2�21 C˛

2j� 0j2/
1
2

�
.�2�1; �

0/

.��2m22C˛
2�2�21C˛

2j�0j2/
1
2

ˇ̌̌̌
& �3˛

ˇ̌
�21 .�

�2m22C˛
2�2�21C˛

2
j�0j2/� �21.�

�2m21C˛
2�2�21 C˛

2
j� 0j2/

ˇ̌
�m1Cm2 & 1;

so that (2-1) holds with A1�1. We now check the curvature condition (2-2) for j D1. Let �; �2†1.a; h/.
Repeating the computation (6-7) we deduce thatˇ̌

.rˆ1.�/�rˆ1.�// � .� � �/
ˇ̌
� ˛�2

ˇ̌̌̌
x

jxj
�
y

jyj

ˇ̌̌̌2
& ˛�2

�
jx ^yj2Cj.x� h�/^ .y � h�/j2

�
;

where x D .��1m1; ˛��1; ˛� 0/, y D .��1m1; ˛��1; ˛�0/, h� D .��1m2���1m1; ˛�h1; ˛h0/, and we
used the fact that x, y, x� h�, y � h� all have length 1. It thus remains to show that

jx ^yjC j.x� h�/^ .y � h�/j& ˛j� � � 0j

since then (2-2) holds with A2 � 1. If j�1� �1j. j� 0� �0j we simply observe as previously that

jx ^yj> ˛j˛��1�0�˛��1� 0j> ˛
�
j� 0� �0j˛� j�1j � j�

0
j˛� j�1� �1j

�
� ˛j� 0� �0j � ˛j� � �j

On the other hand, if j�1� �1j& j� 0� �0j, then as � � h; �� h 2ƒ2, we have

jx ^yjC j.x� h�/^ .y � h�/j> ˛m1j�1� �1jC˛m2j.�1� h1/� .�1� h2/j& ˛j� � �j:

An identical argument shows that ˆ2 also satisfies the curvature condition. Thus the phases ĵ satisfy
Assumption 1 with D1 �D2 � 1 and therefore part (ii) follows. �

The ˛ and � dependence in Corollary 6.4 is sharp. At least for (ii), this can be seen with the following
example. Let

�j D fj�1� cj j � ˛�2; j� 0j � ˛�g;

with jc1� c2j. ˛�2, c1 � c2 � �, and ˛� ��1. Define Of .�/D 1�1.�/, Og.�/D 1�2.�/ and

uD eithrif; v D eithrig:
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Then

kukV 2
hri
D kf kL2x D j�1j

1
2

and similarly kvkV 2
hri
D j�2j

1
2 . On the other hand we have

.uv/.t; x/D

Z
Rn

Z
Rn
Ou.t; �/ Ov.t; �/eix�.�C�/ d� d�D

Z
�1

Z
�2

eit.h�iCh�i/eix�.�C�/ d� d�:

The idea is to try and find a set A� R1Cn such that the phase is essentially constant for .t; x/ 2 A. We
start by noting that for � 2�1 we have

h�i �
1C c1�1

hc1i
� ��3

ˇ̌
.1Cj�j2/.1C c21/� .1C c1�1/

2
ˇ̌
D ��3

ˇ̌
.�1� c1/

2
C .1C c21/j�

0
j
2
ˇ̌
� ˛2�;

and hence ˇ̌̌̌
h�i � hc1i

�1
�
c1

hc1i
�1

ˇ̌̌̌
. ˛2�:

Similarly, since ˇ̌̌̌
c1

hc1i
�
c2

hc2i

ˇ̌̌̌
� ��2jc1hc2i � c2hc1ij � �

�3
jc1� c2j �

˛

�
;

we deduce that for � 2�2ˇ̌̌̌
h�i�hc2i

�1
�

�
c2

hc2i
�
c1

hc1i

�
c2�

c1

hc1i
�1

ˇ̌̌̌
6
ˇ̌̌̌
h�i�hc2i

�1
�
c2

hc2i
�1

ˇ̌̌̌
C

ˇ̌̌̌
c1

hc1i
�
c2

hc2i

ˇ̌̌̌
j�1� c2j. ˛2�:

In particular, for jt j� .˛2�/�1, jx1C.c1=hc1i/t j� .˛�2/�1, and jx0j� .˛�/�1, the phase is essentially
constant and hence

j.uv/.t; x/j D

ˇ̌̌̌Z
�1

Z
�2

e
it.h�i�hc1i�1�

c1
hc1i

�1/e
it.h�i�hc2i�1�.

c2
hc2i
�
c1
hc1i
/c2�

c1
hc1i

�1/

� e
i.x1Ct

c1
hc1i
/.�1C�1�c1�c2/Cx0�.�0C�0/ d� d�

ˇ̌̌̌
& j�1jj�2j;

which then implies

kuvkLpt;x
& .˛nC2�nC2/�

1
p � j�1jj�2j:

Therefore, if the estimate

kuvkLpt;x
6 C.˛; �/kukV 2

hri
kvkV 2

hri

holds, then we must have

.˛�/�
nC2
p j�1jj�2j. C j�1j

1
2 j�2j

1
2 :

Since j�1j � j�2j � ˛n�nC1, after rearranging, this becomes C & ˛n�
nC2
p �nC1�

nC2
p , which matches

the bound obtained in Corollary 6.4.
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7. The Dirac–Klein–Gordon system

We now set up notation and reduce the DKG system to the first-order system (7-3). We then give the
proof of Theorem 1.2, up to the crucial nonlinear estimates, which are postponed to Section 8. In the
remainder of this article, as we now only consider the DKG system, the dimension is fixed to nD 3.

7A. Notation and setup. Fix a smooth function � 2 C10 .R/ such that supp � �
˚
1
2
< t < 2

	
andX

�22Z

�

�
t

�

�
D 1;

and let �1 D
P
�61 �.t=�/ with �1.0/D 1. Similarly, we let Q� be a finitely overlapping collection of

cubes of diameter �=1000 covering R3, and fix .�q/q2Q� to be a corresponding subordinate partition of
unity. We now define the standard dyadic Fourier cutoffs, for � 2 2N, � > 1, q 2Q, d 2 2Z

P� D �

�
j � irj

�

�
; P1 D �1.j � irj/; Pq D �q.j � irj/; C

˙;m
d
D �

�
�i@t ˙h�irim

d

�
:

We also let C˙;m
6d
D
P
d 06d C

˙;m
d 0

, and any related multipliers such as C˙;m
>d

are defined analogously.
To simplify notation somewhat, we make the convention that

Cd D C
C;1
d
; C˙d D…˙C

˙;M
d

;

where M will denote the mass of the spinor in (1-3) and …˙ is as defined below. Given ˛ 6 1, we let
.��/�2C˛ be a smooth partition of unity subordinate to the conic sectors f� 6D 0; �=j�j 2 �g, and define
the angular Fourier localisation multipliers as

R� D ��.�ir/:

We use the well-known fact that for any 1� p; q �1 the modulation cutoff multipliers are uniformly
disposable in LqtL

r
x for certain scales; namely we have the bounds

kC
˙;m
d

P�R�ukLqt L
r
x
CkC

˙;m
6d

P�R�ukLqt L
r
x
. kP�R�ukLqt Lrx ; (7-1)

provided that � 2 C˛ and d &˛2� and ˛&��1; see, e.g., [Bejenaru and Herr 2015, Lemma 4.1]. Similarly,
by writing

C
˙;m
d
D e�ithrim�

�
�i@t

d

�
e˙ithrim ;

and using the fact that convolution with L1t .R/ functions is bounded on V 2, we deduce that for every
d 2 2Z

kC
˙;m
6d

ukV 2
˙;m

. kukV 2
˙;m

: (7-2)

To deal with solutions to the Dirac equation, we follow the, by now, standard approach used in
[D’Ancona et al. 2007; Bejenaru and Herr 2017] and define the projections

…˙.�/D
1

2

�
I ˙

1

h�iM
.�j 


0
j CM
0/

�
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and the associated Fourier multiplier 2.…˙f /.�/D…˙.�/ Of .�/. A computation shows that …C…� D
…�…C D 0 and …2

˙
D…˙. Moreover, given any spinor  we have

 D…C C…� ; .�i
�@�CM/…˙ D 

0.�i@t ˙h�iriM / :

As in [Bejenaru and Herr 2017], we can now reduce the original system (1-3) to a first-order system as
follows. Suppose we have a solution . ˙; �C/ to

.�i@t ˙hriM / ˙ D…˙.<.�C/

0 /

.�i@t Chrim/�C D hri
�1
m . �
0 /

 ˙.0/D f˙;

�C.0/D gC;

(7-3)

where  D…C CC…� � and the data .f˙; gC/ satisfies …˙f˙ D f˙. If we let � D<.�C/, then
since  �
0 is real-valued, we deduce that

2.�C ihri�1m @t�/D �CC ihri
�1
m @t�CC .�C� ihri�1m @t�C/

D 2�C� hri
�2
m . �
0 /Chri�2m . �
0 /D 2�C:

Consequently, if we take gC D �.0/C ihri�1m @t�.0/, a simple computation shows that . ; �/ is a
solution to the original DKG system (1-3). Note that, after rescaling, it suffices to consider the case
mD 1. Therefore, to prove Theorem 1.2, it is enough to construct global solutions to the reduced system
(7-3) with mD 1.

7B. Analysis on the sphere. We require some basic facts on analysis on the sphere S2, which can be
found in, for instance, [Stein and Weiss 1971; Strichartz 1972; Sterbenz 2005]. Let Y` denote the set of
homogeneous harmonic polynomials of degree `, and let y`;n, nD 0; : : : ; 2`, be an orthonormal basis for
Y` with respect to the inner product

hy`;n; y`0;n0iL2.S2/ D

Z
S2
Œy`;n.!/�

�y`0;n0.!/ dS.!/:

Given f 2 L2.R3/, we have the orthogonal (in L2.R3/) decomposition

f .x/D
X
`

2X̀
nD0

hf .jxj!/; y`;n.!/iL2!.S2/y`;n

�
x

jxj

�
:

For N > 1, we define the spherical Littlewood–Paley projections

.HNf /.x/D
X
`2N

2X̀
nD0

�

�
`

N

�
hf .jxj � /; y`;niL2.S2/y`;n

�
x

jxj

�
;

.H1f /.x/D
X
`2N

2X̀
nD0

�61.`/hf .jxj � /; y`;niL2.S2/ y`;n

�
x

jxj

�
:
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Fractional powers of the angular derivatives h�i are then defined as

h�i�f D
X
N22N

N �HNf: (7-4)

If we let �ij D xi@j � xj @i denote the standard infinitesimal generators of the rotations on R3, then a
computation gives

k�ijHNf kL2x.R3/ �N kHNf kL2x.R3/:

In addition, if �S2 denotes the Laplacian on the sphere of radius jxj, then �S2 D
P
j<k �

2
ij . These facts

are not explicitly required in the following, and we shall only make use of the spectral definition (7-4).
More important for our purposes, are the basic properties of the multipliers HN .

Lemma 7.1. Let N > 1. Then HN is uniformly (in N ) bounded on Lp.R3/, and HN commutes with all
radial Fourier multipliers. Moreover, if N 0 > 1, then either N �N 0 or

HN…˙HN 0 D 0:

Proof. The first claim follows from [Strichartz 1972]. To prove the second claim, let T be a radial Fourier
multiplier with cTf .�/ D �.j�j/ Of .�/. It is enough to show that, if f .x/ D a.jxj/y`.x=jxj/ for some
y` 2 Y`, then Tf D b.jxj/y`.x=jxj/ for some b.jxj/ depending on a and � . But this follows directly
from [Stein and Weiss 1971, page 158]. To prove the final claim, suppose that N �N 0 or N �N 0. Our
goal is to show that HN…˙HN 0 D 0. Since HN commutes with radial Fourier multipliers, it is enough to
show that HN .@jf /D 0 in the case f .x/D a.jxj/y`0.x=jxj/ with y`0 2 Y`0 and 1

2
N 0 6 `0 6 2N 0. Since

@j D .xj =jxj/@r C
P
k.xk=jxj

2/�jk , where @r D .x=jxj/ � r, and @r.y`0.x=jxj//D 0, we can reduce
further to just showing that HN .xk�jky`0/D 0, which corresponds to checking that

hy`; xk�kjy`0iL2.S2/ D 0 (7-5)

for every 1
2
N 6 ` 6 2N. Since xk�kjy`0 is a polynomial of order `0C 1, by the orthogonality of the

polynomials y`, (7-5) clearly holds if ` > `0C 1. On the other hand, after an application of integration by
parts, we obtain

hy`; xk�kjy`0iL2.S2/ D h�kj .xky`/; y`0iL2.S2/

since �kj .xky`/ is a polynomial of order `C 1; we see that again (7-5) holds if `0 > `C 1. �

An application of Lemma 7.1 shows that HN commutes with the P� and Cd multipliers since we may
write C˙;m

d
D e�ithrim�.�i@t=d/e

˙ithrim . On the other hand, it is important to note that HN does not
commute with the cube and cap localisation operators R� and Pq .

7C. Norms and the energy inequality. Fix 0 < � � 1,

1

2
<
1

a
<
1

2
C

�

1000
;

and b D 3=a� 1, and define

kuk
Y
˙;m
�;N

D �
1
a
�b sup

d22Z

dbkC
˙;m
d

P�HNukLat L
2
x
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and
kuk

F
˙;m
�;N

D kP�HNukV 2
˙;m

Ckuk
Y
˙;m
�;N

:

We also let

kukF s;�
˙;m
D

�X
�>1

X
N>1

�2sN 2�
kuk2

F
˙;m
�;N

�1
2

and define the Banach space

F
s;�
˙;m D

˚
u 2 C.R; h�i��H s/ W kukF s;�

˙;m
<1

	
:

For the remainder of this section, let �M D � if M > 1
2

and �M D 7
30
C � if 0 < M < 1

2
. Thus

�M corresponds to amount of angular regularity in the statement of Theorem 1.2. We will construct a
solution . ˙; �C/ 2 F

0;�M
˙;M �F

1
2
;�M
˙;1 to the reduced system (7-3). Thus we work in a frequency-localised

V 2 space, with the additional component Y ˙;m
�;N

needed to control the solution in the high modulation
region; for the latter see [Bejenaru and Herr 2015, Section 4].

There are three basic properties of V 2
˙;m which we exploit in the following. The first is a simple bound

in the high-modulation region; see [Hadac et al. 2009, Corollary 2.18] for a proof.

Lemma 7.2. Let m> 0 and 26 q 61. For any d 2 2Z we have

kC
˙;m
d

ukLqt L
2
x
. d�

1
q kukV 2

˙;m

:

The second key property is a standard energy inequality, which reduces the problem of estimating a
Duhamel integral in F˙;M

�;N
to controlling a trilinear integral.

Lemma 7.3. Let F 2 L1t L
2
x , and suppose that

sup
kP�HN vkV2

˙;m

.1

ˇ̌̌̌Z
R

hP�HN v.t/; F .t/iL2x dt

ˇ̌̌̌
<1:

If u 2 C.R; L2x/ satisfies �i@tu˙hrimuD F, then P�HNu 2 V 2˙;m and we have the bound

kP�HNukV 2
˙;m

. kP�HNu.0/kL2 C sup
kP�HN vkV2

˙;m

.1

Z
R

hP�HN v.t/; F .t/iL2x dt: (7-6)

Proof. See [Koch and Steinerberger 2015] or [Hadac et al. 2009, Proposition 2.10] for details on the
duality. It is also possible to prove this directly as follows. Clearly it is enough to consider the case
u.0/D 0, thus u.t/D

R t
0 e
�i.t�s/hrimF.s/ ds. Let K >0 and .tk/2Z . A computation gives the identity� X

jkj<K



e˙itkhrimP�HNu.tk/� e˙itk�1hrimP�HNu.tk�1/

2L2x
�1
2

D

Z
R

hP�HN v.s/; F.s/iL2x ds

with
v.s/D A�1

X
jkj<K

1Œtk�1;tk/.s/
�
e�i.s�tk/hrimu.tk/� e

�i.s�tk�1/hrimu.tk�1/
�
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and

AD

� X
jkj<K

ke˙itkhrimP�HNu.tk/� e
˙itk�1hrimP�HNu.tk�1/k

2
L2x

�1
2

:

It is easy to check that
kP�HN vkV 2

˙;m

. 1:

Thus, by taking the sup over the above inequality, and then letting K!1 we deduce the bound (7-6).
Since u is also continuous, we obtain u 2 V 2

˙;m as required. �

Note that the norm on v can in fact be taken to be the stronger U 2
˙;m norm, but we do not require this

improvement here.
The final result we require on the V 2

˙;m spaces, concerns the question of scattering.

Lemma 7.4. Let u 2 V 2
˙;m. Then there exists f 2 L2x such that ku.t/� e�ithrif kL2x ! 0 as t !1.

Clearly, this result can be extended to elements of the space F s;�M
˙;m . In other words, if we construct a

solution in F s;�M
˙;m , then we immediately deduce the solution must scatter to a linear solution as t !˙1.

7D. Proof of Theorem 1.2. We now come to the proof of Theorem 1.2. In light of Lemma 7.4, it is
enough to construct a solution . ˙; �C/ 2 F

0;�M
˙;M �F

1
2
;�M
C;1 to the reduced system (7-3). Note that we

may always assume that  ˙ D …˙ ˙, provided that this is satisfied at t D 0. Define the Duhamel
integral

I˙m ŒF �D
Z t

0

e�i.t�s/hrimF.s/ ds:

Note that I˙m ŒF � solves the equation

.�i@t ˙hrim/I˙m ŒF �D F

with vanishing data at t D 0. Moreover, we can check that for every 1 < p <1 we have

kC
˙;m
d

I˙m ŒF �kLpt L2x . d
�1
kC
˙;m
d

F kLpt L
2
x
: (7-7)

If we had the bounds 

…˙1I˙1M Œ�
0…˙2'�



F
0;�M
˙1;M

. k�k
F
1=2;�M
C;1

k'k
F
0;�M
M;˙2

;

hri�1IC1 Œ.…˙1 /�
0…˙2'�

F 1=2;�M
C;1

. k k
F
0;�M
M;˙1

k'k
F
0;�M
M;˙2

;
(7-8)

then a standard fixed-point argument in F 0;�M
˙;M � F

1
2
;�M
C;1 would give the required solution to (7-3),

provided of course that the data .f˙; gC/ satisfied

kh�i�M f˙kL2 Ckh�i
�M gCkH1=2� 1:

Let
��;N D P�HN�;  �1;N1 D P�1HN1 ; '�2;N2 D P�2HN2':

We have the following frequency-localised estimates.
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Theorem 7.5. Fix M > 0. Then there exists � > 0 such that

…˙1I˙1M Œ��;N 

0…˙2'�2;N2 �




F
˙1;M

�1;N1

. �
1
2 .minfN;N2g/�M

�
minf�; �1; �2g
maxf�; �1; �2g

��
k�k

F
C;1
�;N

k'k
F
˙2;M

�2;N2
(7-9)

and

IC1 Œ.…˙1 �1;N1/�
0…˙2'�2;N2 �

FC;1�;N

. �
1
2 .minfN1; N2g/�M

�
minf�; �1; �2g
maxf�; �1; �2g

��
k k

F
˙1;M

�1;N1

k'k
F
˙2;M

�2;N2

: (7-10)

Remark 7.6. The proof of Theorem 7.5 in the resonant regime 0 < M < 1
2

relies on the small-scale
V 2 estimates in Corollary 6.4. However, it is possible to prove a weaker version of Theorem 7.5, with �M
replaced with some larger � , provided only that a robust version of the homogeneous bilinear restriction
estimate (6-3) holds. More precisely, by following the proof of Corollary 6.4, and then interpolating with
the Klein–Gordon Strichartz estimates as in Remarks 6.2 and 6.3, it is possible to show that (6-3) implies
the V 2 bound

kuvkLat L
b
x.R1C3/

. �1C
1
a
� 1
b kukV 2

˙1;m1

kvkV 2
˙2;m2

in the range
1

a
C
2

b
< 2;

1

a
C
6

5b
<
7

5
;

where u and v have Fourier support in 1-separated angular wedges of size 1�1�� at distance � from the
origin. The case aD 2� and b D 4

3
C can be used together with the L2Ct L4�x angular Strichartz bound

from [Cho and Lee 2013, Theorem 1.1] instead of the argument used in the high-high case in the proof of
Theorem 8.8 below. However, the estimate obtained is weaker than the one in Theorem 7.5. Moreover,
it still requires a robust version of the homogeneous bilinear estimate (6-3) for which we can track the
dependence of the constant on the phases ĵ due to the lack of homogeneity of the Klein–Gordon phase.
Irrespective of fact the Theorem 1.1 applies to V 2-functions, a key advantage of our formulation of
Theorem 1.1, in comparison to [Bejenaru 2017; Lee and Vargas 2010], is that it allows us to read off the
above-mentioned dependence.

The standard Littlewood–Paley trichotomy implies that the left-hand sides of (7-9) and (7-10) are zero
unless

maxf�; �1; �2g �medf�; �1; �2g&minf�; �1; �2g (7-11)

and
maxfN;N1; N2g �medfN;N1; N2g&minfN;N1; N2g

It is now easy to check that the bilinear estimates (7-8), follow from Theorem 7.5. Consequently, we have
reduced the proof of Theorem 1.2 to proving the frequency-localised bilinear estimates in Theorem 7.5.
As the proof of Theorem 7.5 requires a number of preliminary results, we postpone the proof until
Section 8D.
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8. Linear and multilinear estimates

In this section our goal is give the proof of Theorem 7.5. To this end, we first provide some linear estimates
and adapt them to our functional setup, prove an auxiliary trilinear estimate in V 2, and eventually give
the proof of the crucial Theorem 7.5 in Section 8D.

8A. Auxiliary estimates. As is well known, see for example [D’Ancona et al. 2007], the system (7-3)
exhibits null structure. To exploit the null structure of the product  �
0 , we start by noting that for any
x; y 2 R3, we have the identity

Œ…˙1f �
�
0…˙2g

D Œ.…˙1 �…˙1.x//f �
�
0…˙2gC Œ…˙1.x/f �

�
0.…˙2 �…˙2.y//gCf
�…˙1.x/


0…˙2.y/g:

This is then exploited by using the null-form-type bound

j…˙1.x/

0…˙2.y/j. �.˙1x;˙2y/C

ˇ̌
˙1jxj˙2 jyj

ˇ̌
hxihyi

; (8-1)

which follows from (2-6) by observing that

…˙1.x/

0…˙2.y/D…˙1.x/

�
…˙1.x/


0
� 
0…�2.y/

�
…˙2.y/

D…˙1.x/

��
˙2�j

h�iM
�
˙1�j

h�iM

�

j C

�
˙1M

h�iM
C
˙2M

h�iM

�
I

�
…˙2.y/;

together with the following lemma; see [Bejenaru 2017, Lemma 3.3] for a similar statement to part (i).

Lemma 8.1. Let 1 < r <1:

(i) If �> 1, ˛ & ��1, � 2 C˛, then

�…˙1 �…˙1.�!.�//�R�P�f 

Lrx . ˛kR�P�ukLrx :
(ii) If �> 1, 0 < ˛ . ��1, � 2 C˛, q 2Q�2˛ with centre �0, then

�…˙1 �…˙1.�0/�R�PqP�f 

Lrx . ˛kR�PqP�ukLrx :

Proof. Concerning part (i), see [Bejenaru 2017, Proof of Lemma 3.3]. Concerning part (ii), we may
assume j�0j � � and, due to boundedness, we may replace the symbol of R�PqP� by a smooth cutoff �E
to the parallelepiped E with centre �0 of side lengths ˛�2 � ˛� � ˛� with long side pointing in the
direction �0. After rotating �0 to �0 D j�0j.1; 0; 0/, the operator has the symbol

m.�/D

�̇
Bj
�

�j

h�iM
�

�0;j

h�0iM

�
˙
1
2

0
�

1

h�iM
�

1

h�0iM

��
�E .�/

for certain B1; B2; B3 2 C4�4. It suffices to prove the kernel bound

j.F�1x m/.x/j. ˛4�4.1C˛�2jx1jC˛�jx0j/�4; x D .x1; x
0/; (8-2)
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as it implies kF�1x mkL1.R3/ . ˛. In the support of �E we obtain, from (2-6) and a simple computation,

jm.�/j. ��3
ˇ̌
j�j � j�0j

ˇ̌
C �.�; �0/C�

�2
ˇ̌
j�j � j�0j

ˇ̌
. ˛:

From the localisation of �E , where j@`
�1
.�j =h�iM /j. ��`�1, and the Leibniz rule, we conclude for ` > 0

j@`�1m.�/j. ˛.˛�
2/�`C

X
0<`16`

��`1�1.˛�2/`1�` . ˛.˛�2/�`:

Integration by parts now implies (8-2) if ˛�2jx1j � ˛�jx0j. For k D 2; 3, we have j@`
�k
.�j =h�iM /j. ��`

within the support of �E ; hence we conclude for ` > 0

j@`�km.�/j. ˛.˛�/
�`
C

X
0<`16`

��`1.˛�/`1�` . ˛.˛�/�`:

Integration by parts now implies (8-2) in the region where ˛�2jx1j6 ˛�jxkj. �

The proof of Theorem 7.5 requires a number of standard linear estimates for homogeneous solutions to
the Klein–Gordon equation. We start by recalling the Strichartz estimates for the wave and Klein–Gordon
equations.

Lemma 8.2 (wave Strichartz). Let m> 0 and 2 < q 61. If 0 < �6 �, N > 1, and 1=r D 1=2� 1=q
then for every q 2Q� we have

ke�ithrimPqP�f kLqt L
r
x
. �

1
2
� 1
r �

1
2
� 1
r kPqP�f kL2x :

Moreover, by spending additional angular regularity we have

ke�ithrimP�HNf kLqt L
4
x
. �

3
4
� 1
qN kP�HNf kL2x :

Proof. The proof of the first estimate can be found in [Bejenaru and Herr 2017, Lemma 3.1]. The second
follows by simple modification of the argument in the appendix to [Sterbenz 2005]. More precisely, after
interpolating with the L1t L

2
x estimate, we need to show that

ke�ithrimHNP�f kL2tL
r
x
.N�3.

1
2
� 1
r
/� 1

2 kHN�f kL2x :

After rescaling, and following the argument on [Sterbenz 2005, pp. 226–227], it is enough to prove that
for every � > 0 we have the space-time Morawetz-type bound

k.1Cjxj/�
1
2
��
rukL2t;x

. k.@tu.0/;ru.0//kL2x (8-3)

for functions u with �uCmuD 0, and the constant in (8-3) is independent of m. However the proof of
(8-3) follows the same argument as the wave case in [Sterbenz 2005]; the only change is to replace the
wave-energy-momentum tensor with the Klein–Gordon version

Q˛ˇ D
1
2

�
@˛�@ˇ�C @ˇ�@˛� �g˛ˇ .@


�@
�Cm
2
j�j2/

�
:

We omit the details. �
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The amount of angular regularity required for the L2Ct L4x Strichartz estimate to hold, is much less than
that stated in Lemma 8.2. In fact, in [Sterbenz 2005], it is shown that the same estimate holds with N

1
2
C.

However, as the sharp number of angular derivatives is not required in the arguments we use in the present
paper, we have elected to simply state the result with a whole angular derivative. On the other hand, the
number of angular derivatives required in the following Klein–Gordon regime, plays a crucial role.

Lemma 8.3 (Klein–Gordon Strichartz). Let m> 0 and 3
10
< 1=r < 5

14
. Then for every � > 0 we have

ke�ithrimP�HNf kLrt;x . �
2� 5

rN 7. 1
r
� 3
10
/C�
kP�HNf kL2x :

Proof. This is a special case of [Cho and Lee 2013, Theorem 1.1]. �

Remark 8.4. Without angular regularity, the optimal Lrt;x Strichartz estimate for the Klein–Gordon
equation is r D 10

3
; see for instance [Machihara et al. 2003]. However, in the resonant region, we are

forced to take r slightly below 3; thus the additional angular regularity is essential to obtain the additional
integrability in time. In other words, the angular regularity is used not just to obtain the scale-invariant
endpoint, but also plays a crucial role in controlling the resonant interaction. Note that the number of
angular derivatives required in Lemma 8.3 is not expected to be optimal, and any improvement in this
direction has an impact on Theorem 1.2.

We have seen that the addition of angular regularity improves the range of available Strichartz estimates.
An alternative way to exploit additional angular regularity is given by the following angular-concentration-
type bound.

Lemma 8.5 [Sterbenz 2005, Lemma 5.2]. Let 26 p <1, and 06 s < 2=p. If �;N > 1, ˛ & ��1, and
� 2 C˛ we have

kR�P�HNf kLpx .R3/ . ˛
sN s
kP�HNf kLpx .R3/:

Finally, we need to estimate various square sums of norms. As we work in V 2, this causes a slight loss
in certain estimates. However, as we have some angular derivatives to work with, this loss can always be
absorbed elsewhere.

Lemma 8.6. Let .Pj /j2J and .Mj /j2J be a collection of spatial Fourier multipliers. Suppose that the
symbols of Pj have finite overlap, and

kMjPjf kL2x . ıkPjf kL2x
for some ı > 0.

(i) Let q > 2, r > 2. Suppose that there exists A > 0 such that for every j we have the bound

ke�ithrimPjf kLqt L
r
x
6 AkPjf kL2x :

Then for every � > 0 we have�X
j2J

kMjPj vk
2
L
q
t L
r
x

�1
2

. ı.#J /�AkvkV 2
˙;m

:
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(ii) Fix p0 > 1. Suppose that there exists A > 0 such that kPjf kL1x . Akf kL2x . Moreover, suppose
that for every p > p0 there exists Bp > 0, and for any j 2 J there exists Kj � J with #Kj . 1 such
that for every k 2 Kj

kPjuPkvkLpt;x
. BpkPjukU 2

˙1;m1

kPkvkU 2
˙2;m2

:

Then for every q > p0 and p0=q < � < 1 we haveX
j2J ;k2Kj

kPjuMkPkvkLqt;x
. ı.#J /1��A1��B��qkukV 2

˙1;m1

kvkV 2
˙2;m2

:

Proof. We start with the proof of (i). Let 2 6 p 6 q and suppose that � D
P
I2I 1I .t/e�ithrimfI is

a U p atom; thus
P
I kfIk

p

L2x
6 1. The assumed linear estimate, together with the finite overlap of the

Fourier multipliers Pj implies�X
j2J

kMjPj�k
p

L
q
t L
r
x

�1
p

6
�X
I2I

X
j2J

ke�ithrimMjPjfIk
p

L
q
t L
r
x

�1
p

6 A
�X
j2J

X
I2I

kMjPjfIk
p

L2x

�1
p

6 ıA
�X
I2I

�X
j2J

kPjfIk
2

L2x

�p
2
�1
p

. ıA:

Consequently the atomic definition of U p
˙;m then implies that for any 26 p 6 q�X

j2J

kMjPjuk
p

L
q
t L
r
x

�1
p

. AıkukUp
˙;m

: (8-4)

Let v 2 V 2
˙;m. There exists a decomposition v D

P
`2N v` such that for every p > 2 we have

kv`kUp
˙;m
. 2`.

2
p
�1/
kvkV 2

˙;m

I

see, e.g., [Koch and Tataru 2005, Lemma 6.4] or [Hadac et al. 2009, Propositions 2.5 and 2.20]. An
application of Hölder’s inequality, together with (8-4) gives for any 2 < p 6 q�X

j2J

kMjPj vk
2
L
q
t L
r
x

�1
2

. .#J /
1
2
� 1
p

X
`2N

�X
j2J

kMjPj v`k
p

L
q
t L
r
x

�1
p

. ıA.#J /
1
2
� 1
p

X
`2N

kv`kUp
˙;m

. ıA.#J /
1
2
� 1
p kvkV 2

˙;m

X
`2N

2`.
2
p
�1/

. ıA.#J /
1
2
� 1
p kvkV 2

˙;m

:

Thus (i) follows by taking p sufficiently close to 2.
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We now turn to the proof of (ii). As in the proof of (i), we have the decompositions uD
P
`2N u`

and v D
P
`2N v` with ku`kU r

˙1;m1

. 2`. 2r�1/ and kv`kU r
˙2;m2

. 2`. 2r�1/ for every r > 2. Let q > p0
and p0=q < � < 1. Then the convexity of the Lq norms together with Hölder’s inequality, our assumed
bilinear estimate, and the U 2 summation argument used in (i) impliesX
j2J ;k2Kj

kPjuMkPkvkLqt;x

. .#J /1��
X
`;`02N

� X
j2J ;k2Kj

kPjuMkPkvkL�qt;x

���
sup
j;k2J

kPju`MkPkv`0kL1t;x

�1��
. ı.#J /1��A1��B��q

X
`;`02N

.ku`kU 2
˙1;m1

kv`kU 2
˙2;m2

/� .ku`kU1
˙1;m1

kv`0kU1
˙2;m2

/1��

. ı.#J /1��A1��B��qkukV 2
˙1;m1

kvkV 2
˙2;m2

X
`;`02N

2�`.1��/2�`
0.1��/

. ı.#J /1��A1��B��qkukV 2
˙1;m1

kvkV 2
˙2;m2

:

Therefore (ii) follows. �

Clearly the previous lemma allows us to extend Corollary 6.4, and the linear estimates discussed above,
to frequency-localised functions in V 2

˙;m. For instance, for any 16 �. �, ˛ & ��1, and � > 0, q > 2,
we have by Lemma 8.2� X

q2Q�

X
�2C˛

kR�Pqu�;N k
2

L4t;x

�1
2

. ˛��
�
�

�

�1
4
��

�
1
2 ku�;N kV 2

˙;m

; (8-5)

�X
�2C˛

kR�u�;N k
2
L
q
t L
4
x

�1
2

. ˛���
3
4
� 1
qN ku�;N kV 2

˙;m

; (8-6)

where we use the shorthand u�;N D P�PNu. Similarly, an application of Corollary 6.4, Lemma 8.1, and
(ii) in Lemma 8.6 gives for every q > 3

2
and � > 0� X

�;�002C
��1

X
q;q002Q�

jq�q00j�� or j���00j���1



R�00Pq00��;N �.…C�…C.�!.�///R�Pq �;N1��

2Lqt;x.R1C3/
�1
2

.��k��;N kV 2
C;1
k �;N1kV 2

C;M
; (8-7)

where !.�/ denotes the centre of the cap � 2 C��1 . This bilinear bound plays a key role in controlling
the solution to the DKG system in the resonant region.

8B. General resonance identity. After an application of Lemma 7.3, proving the bilinear estimates in
Theorem 7.5 for the V 2 component of the norm, reduces to estimating trilinear expressions of the formZ

R1C3
� �
0' dx dt: (8-8)
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Suppose �,  , and ' have small modulation; thus supp Q� �fj�Ch�ij6 dg, supp Q �fj�˙1 h�iM j6 dg,
and supp Q' � fj� ˙2 h�iM j6 dg for some d 2 2Z. If � 2 supp O and � 2 supp O', then it is easy to check
that the integral (8-8) vanishes unlessˇ̌

h� � �i�1 h�iM ˙2 h�iM
ˇ̌
. d:

To exploit this, we define the modulation function

M˙1;˙2.�; �/D
ˇ̌
h� � �i�1 h�iM ˙2 h�iM

ˇ̌
:

Clearly we have the symmetry properties MC;C.�; �/ DM�;�.�; �/ and M˙;�.�; �/ DM˙;�.�; �/.
The proof of our global existence results requires a careful analysis of the zero sets of M˙1;˙2 ; the key
tool is the following.

Lemma 8.7. Let M > 0:

(i) (Nonresonant interactions). We have

M�;C.�; �/& h�iC h�i; M˙;˙.�; �/&
1

h� � �i

�
.j�j � j�j/2

h�ih�i
C j�jj�j�2.�; �/C 1

�
;

M�;�.�; �/&
j� � �jj�j

h�iC h�i
�2.� � �;��/; MC;C.�; �/&

j� � �jj�j

h�iC h�i
�2.� � �; �/:

(ii) (Resonant interactions). We have

MC;�.�; �/�
1

h�iC h�i

ˇ̌̌̌
M 2 .j�j � j�j/2

h�iM h�iM Cj�jj�jCM 2
Cj�jj�jC � � �C

4M 2� 1

2

ˇ̌̌̌
;

MC;�.�; �/&
1

h�i

ˇ̌̌̌
.j�j �M j� � �j/2

h�iM h� � �iC j�jj� � �jCM
Cj�jj� � �j � � � .� � �/C

2M � 1

2

ˇ̌̌̌
:

Proof. We begin by noting that, if we let m1; m2; m3 > 0, then for any x; y 2 Rn we have the identityˇ̌
hx�yi2m3 � .hxim1 ˙hyim2/

2
ˇ̌

D
ˇ̌
�2hxim1hyim2 � 2x �yC .m

2
3�m

2
1�m

2
2/
ˇ̌

D
ˇ̌
2
�
hxim1hyim2 � .jxjjyjCm1m2/

�
C 2.jxjjyj˙ x �y/˙ ..m1˙m2/

2
�m23/

ˇ̌
D 2

ˇ̌̌̌
.m1jyj �m2jxj/

2

hxim1hyim2 CjxjjyjCm1m2
Cjxjjyj˙ x �y˙

.m1˙m2/
2�m23

2

ˇ̌̌̌
: (8-9)

We now turn to (i). The bound for M�;C is clear. On the other hand, by taking x D �, y D �,
m1 Dm2 DM, m3 D 1 in (8-9), we have

M˙;˙.�; �/>
ˇ̌
h� � �i � jh�iM � h�iM j

ˇ̌
�

1

h� � �i

ˇ̌
h� � �i2� .h�iM � h�iM /

2
ˇ̌

�
1

h� � �i

�
.j�j � j�j/2

h�ih�i
C j�jj�j�2.�; �/C 1

�
:
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Similarly, taking x D � � � and y D � , gives

M�;�.�; �/D

ˇ̌
h�i2M � .h� � �iC h�iM /

2
ˇ̌

h�iM Ch� � �iC h�iM

&
j� � �jj�j

h�iC h�i
�2.� � �;��/:

Using the symmetry M�;�.�; �/DMC;C.�; �/ gives the remaining bound in (i). To prove (ii), we note
that another application of (8-9) gives

MC;�.�; �/�
1

h�iC h�i

ˇ̌
h� � �i2� .h�iM Ch�iM /

2
ˇ̌

�
1

h�iC h�i

ˇ̌̌̌
M 2 .j�j � j�j/2

h�iM h�iM Cj�jj�jCM 2
Cj�jj�jC � � �C

4M 2� 1

2

ˇ̌̌̌
;

from which the first inequality in (ii) follows. The second inequality in (ii) follows from a similar
application of (8-9). �

8C. The trilinear estimates. Suppose we would like to bound an expression of the form P�HNI˙m ŒF �
in V 2
˙;m. An application of the energy inequality, Lemma 7.3, implies we have

kP�HN I˙m ŒF �kV 2
˙;m

. sup
kP�HNukV2

˙;m

.1

ˇ̌̌̌Z
R1C3

.P�HNu/
�F dx dt

ˇ̌̌̌
:

Thus to bound the V 2 component of kI˙m ŒF �kF˙;m
�;N

, it is enough to control
R

R1C3
.P�HNu/

�F dx dt . Con-
sequently, to estimate the V 2 component of the norms in Theorem 7.5, the key step is to prove the following
trilinear estimate. To simplify notation somewhat, we define B� D .minf�; �1; �2g=maxf�; �1; �2g/� if
M > 1

2
, and if 0 <M < 1

2
we let

B� D

(
.minf�; �1; �2g=maxf�; �1; �2g/�; ��maxf�1; �2g or ��minf�1; �2g;

1C��
1
6
C� .minfN;N1; N2g/

7
30; �� �1 � �2:

Theorem 8.8. Let M > 0. For every �=100 < ı� 1 we haveˇ̌̌̌Z
R3C1

��;N .…˙1 �1;N1/
�
0…˙2'�2;N2 dx dt

ˇ̌̌̌
. �

1
2 .minfN;N2g/ıBmin f ı

8
; 1
2a
� 1
4
gk�kFC;1�;N

k �1;N1kV 2
˙1;M

k'k
F
˙2;M

�2;N2

(8-10)

andˇ̌̌̌Z
R3C1

��;N .…˙1 �1;N1/
�
0…˙2'�2;N2 dx dt

ˇ̌̌̌
. �

1
2 .minfN1; N2g/ıBmin f ı

8
; 1
2a
� 1
4
gk��;N kV 2C;1

k k
F
˙1;M

�1;N1

k'k
F
˙2;M

�2;N2

: (8-11)
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In the region �2� �1 we have the slightly stronger boundˇ̌̌̌Z
R3C1

��;N .…˙1 �1;N1/
�
0…˙2'�2;N2 dx dt

ˇ̌̌̌

. �
1
2 .minfN;N2g/ı

�
�1

�2

�ı
8

k��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

: (8-12)

Similarly, when �� �1, we haveˇ̌̌̌Z
R3C1

��;N .…˙1 �1;N1/
�
0…˙2'�2;N2 dx dt

ˇ̌̌̌

. �
1
2 .minfN1; N2g/ı

�
�

�1

�ı
8

k��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

: (8-13)

Proof. We begin by decomposing the modulation (or distance to the relevant characteristic surface) as

��;N .…˙1 �1;N1/
�
0…˙2'�2;N2

D

X
d22Z

Cd��;N .C
˙1
�d
 �1;N1/

�
0C˙2
�d
'�2;N2 CC<d��;N .C

˙1
d
 �1;N1/

�
0C˙2
�d
'�2;N2

CC<d��;N .C
˙1
<d
 �1;N1/

�
0C˙2
d
'�2;N2

D

X
d22Z

A0CA1CA2:

Keeping in mind (7-11), we now divide the proof into cases depending on the relative sizes of the
frequency and the modulation. Namely, we consider separately the low-modulation cases

�1 � �2� � and d . �; ��minf�1; �2g and d .minf�1; �2g; �1 � �2 � � and d . �;

and the high-modulation cases

�1 � �2 & � and d � �; ��minf�1; �2g and d �minf�1; �2g:

Clearly, this covers all possible frequency combinations. The first case in the low-modulation regime,
where the two spinors are high-frequency, is the easiest, as this case interacts very favourably with the
null structure. The second case, when ��minf�1; �2g, is more difficult, and is the main obstruction to
the scale-invariant Sobolev result. The final case, when �� �1� �2, is the only resonant interaction, and
this is where the bilinear estimates in Corollary 6.4 play a crucial role. In the remaining high-modulation
cases d � minf�; �1; �2g, the null structure of the system no longer plays any role, and we need to
exploit the Y ˙;m

�;N
norms to gain the off-diagonal decay term.

High-low, I: �� �1 � �2 and d . �. Our goal is to show thatX
d��1

ˇ̌̌̌Z
R1C3

A0 dx dt

ˇ̌̌̌
C

ˇ̌̌̌Z
R1C3

A1 dx dt

ˇ̌̌̌
C

ˇ̌̌̌Z
R1C3

A2 dx dt

ˇ̌̌̌

. �
1
2N ı

min

�
�

�1

�1
4

k��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

; (8-14)

where we let Nmin DminfN;N1; N2g. Clearly this gives the bounds (8-10), (8-11), and (8-13).
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We now prove the bound (8-14). An application of Lemma 8.7 implies that we must have ˙1 D˙2
and moreover, that the sum over the modulation is restricted to the region ��1 . d .� (in particular this
case is nonresonant). To estimate the first term, A0, we note that after another application of Lemma 8.7,
we have the almost orthogonal decomposition

A0 D
X

�;�02C˛
j���0j.˛

X
q;q02Q�
jq�q0j.�

Cd��;N .C
˙1
�d
R�Pq �1;N1/

�
0C˙2
�d
R�0Pq0'�2;N2 ;

where ˛ D .d�/
1
2��11 . Then, using the null-structure by writing

C˙1
6d
R�P�1 D C

˙1;M
6d

.…˙1 �…˙1.�1!//R�P�1 CC
˙1;M
6d

…˙1.�1!�/R�P�1

(here !� denotes the centre of the cap �) and applying Lemma 8.1, together with the uniform disposability
of C˙1;M

6d
from (7-1), we obtain for every � > 0ˇ̌̌̌Z

A0 dx dt

ˇ̌̌̌
.

X
�;�02C˛
j���0j.˛

X
q;q02Q�
jq�q0j.�

˛kCd��;N kL2t;x
kR�Pq �1;N1kL4t;x

kR�0Pq0'�2;N2kL4t;x

. �
1
2˛��

�
�

�1

�1
2
��

k��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

; (8-15)

where we used Lemma 7.2 to control the L2t;x norm of the high-modulation term, and the bound (8-5).
On the other hand, we have the decomposition

A0 D
X

�;�0;�002Cˇ
j���0j;j�00˙2�

0j.ˇ

CdR�00��;N .C
˙1
�d
R� �1;N1/

�
0C˙2
�d
R�0'�2;N2 ;

where ˇ D d
1
2��

1
2 , again by almost orthogonality and Lemma 8.7. As above, we obtain for every � > 0ˇ̌̌̌Z

A0 dx dt

ˇ̌̌̌
.

X
�;�0;�002Cˇ

j���0j;j�00˙2�
0j.ˇ

ˇkCdR�00��;N kL2t;x
kR� �1;N1kL4t;x

kR�0'�2;N2kL4t;x

. ˇ1��d�
1
2�.ˇNmin/

1
4 k��;N kV 2

C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

; (8-16)

where we used the angular concentration Lemma 8.5 on the lowest angular-frequency term. Combining
(8-15) and (8-16), by taking � > 0 sufficiently small, we obtain for every 0 < ı� 1

X
��1.d.�

ˇ̌̌̌Z
A0dxdt

ˇ̌̌̌
.

X
��1.d.�

�
d

�

�ı
4

N ı
min

�
�

�

�1
4

�
1
2 kP�HN�kV 2

C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

.N ı
min

�
�

�

�1
4

�
1
2 k��;N kV 2

C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

;
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which gives (8-14) for the A0 term. Next, we deal with the A1 term. The argument is similar to the
above, but the initial decomposition is slightly different as we no longer require the cube decomposition.
Instead, we need to decompose the � term into caps to ensure that the C<d multiplier is disposable. In
more detail, the resonance bound in Lemma 8.7 gives

A1 D
X

�;�02C˛
j���0j.˛

X
�002Cˇ

j�00˙2�
0j.ˇ

C<dR�00��;N .C
˙1
d
R� �1;N1/

�
0C˙2
�d
R�0'�2;N2 ;

where ˛ D .d�=�21/
1
2 and ˇ D .d=�/

1
2 . By exploiting the null structure as previously, we then obtain

for every � > 0ˇ̌̌̌Z
A1 dx dt

ˇ̌̌̌
.

X
�;�02C˛
j���0j.˛

X
�002Cˇ

j�00˙2�
0j.ˇ

˛kR�00��;N kL4t;x
kC˙1
d
R� �1;N1kL2t;x

kR�0'�2;N2kL4t;x

. ˛1���
1
2d�

1
2�

1
2

2 k��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

; (8-17)

where we used Lemma 7.2 to control the L2t;x norm of the high-modulation term, and again used (8-5). To
gain a power of d , we again exploit the angular concentration estimate by exploiting a similar argument
to (8-16) to deduce thatˇ̌̌̌Z

A1 dx dt

ˇ̌̌̌
.

X
�;�0;�002Cˇ

j���0j;j�00˙2�
0j.ˇ

ˇkR�00��;N kL4t;x
kC˙1
d
R� �1;N1kL2t;x

kR�0'�2;N2kL4t;x

. ˇ1��d�
1
2�

1
2�

1
2 .ˇNmin/

1
4 k��;N kV 2

C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

: (8-18)

Combining (8-17) and (8-18) as in the A0 case, and summing up over ��1 . d . � with � sufficiently
small, we obtain (8-14). The remaining term A2 can be handled in an identical manner to the A1. Thus
the bound (8-14) follows.

High-low, II: �� minf�1; �2g and d . minf�1; �2g. Let fj; kg D f1; 2g and �j > �k . Our goal is to
prove that

X
d.�k

ˇ̌̌̌Z
R1C3

A0 dx dt

ˇ̌̌̌
C

ˇ̌̌̌Z
R1C3

Aj dx dt

ˇ̌̌̌
. �

1
2N ı

min

�
�k

�

�1
8

k��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

: (8-19)

On the other hand, for the Ak term, we have the weaker bounds

X
d.�k

ˇ̌̌̌Z
R1C3

Ak dxdt

ˇ̌̌̌
.�

1
2

�
�k

�

�ı
8

.minfN;Nj g/ık��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

(8-20)
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and X
d.�k

ˇ̌̌̌Z
R1C3

Ak dx dt

ˇ̌̌̌
. �

1
2

�
�k

�

� 1
2a
� 1
4

N ı
k k��;N kV 2

C;1

(
k k

F
˙1;M

�1;N1

k'�2;N2kV 2
˙2;M

; k D 1;

k �1;N1kV 2
˙1;1

k'k
F
˙2;M

�2;N2

; k D 2;
(8-21)

where
1

2
<
1

a
<
1

2
C

�

1000

is as in the definition of the Y ˙;m
�;N

norm. Clearly (8-19), (8-20), and (8-21) give the estimates claimed
in Theorem 8.8. Note that we have a weaker bound when the low-frequency term has modulation away
from the hyperboloid, and for this interaction, we are forced to exploit the Y ˙;m

�;N
norms.

We begin the proof of (8-19), (8-20), and (8-21) by observing that since the estimate is essentially
symmetric in  and ', it is enough to consider the case �� �1� �2; in other words, we only consider
the case j D 1 and k D 2. As in the previous case, Lemma 8.7 implies that we only have a nonzero
contribution if ˙1 DC and ��12 . d . �2. To control the A0 term, we decompose into caps of radius
ˇD .d=�2/

1
2 and cubes of diameter �2. Lemma 8.7 implies that we have the almost orthogonality identity

A0 D
X

�;�02Cˇ
j��2�

0j.ˇ

X
q;q02Q�2
jq�q0j.�2

Pq0Cd��;N .PqR�CC�d �1;N1/
�
0R�0C˙2�d'�2;N2 :

Thus exploiting the null structure as previously, disposing of the C˙;m
d

multipliers using (7-1), and
applying the L4t;x Strichartz estimate, we obtain for every � > 0ˇ̌̌̌Z

R1C3
A0 dx dt

ˇ̌̌̌
.

X
�;�02Cˇ
j��2�

0j.ˇ

X
q;q02Q�2
jq�q0j.�2

ˇkPq0Cd��;N kL2t;x
kPqR� �1;N1kL4t;x

kR�0'�2;N2kL4t;x

. ˇ���
1
2

�
�2

�

�1
4
��

k��;N kV 2
C;1
k �1;N1kV 2

C;M
k'�2;N2kV 2

˙2;M

: (8-22)

On the other hand, by decomposing into

A0 D
X

�;�0;�002Cˇ
j��2�

0j;j�00˙2�
0j.ˇ

R�00Cd��;N .R�CC�d �1;N1/
�
0R�0C˙2�d'�2;N2

and using the angular concentration bound Lemma 8.5 on the smallest angular-frequency term, a similar
argument givesˇ̌̌̌Z

R1C3
A0 dx dt

ˇ̌̌̌
.

X
�;�0;�002Cˇ

j��2�
0j;j�00˙2�

0j.ˇ

ˇkCdR�00��;N kL2t;x
kR� �1;N1kL4t;x

kR�0'�2;N2kL4t;x

. �
1
2ˇ

1
4
��N

1
4

mink��;N kV 2
C;1
k �1;N1kV 2

C;M
k'�2;N2kV 2

˙2;M

: (8-23)
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As in the previous case, combining (8-22) and (8-23) with � sufficiently small gives (8-19) for the A0 term.
The A1 term can be estimated by an identical argument (since the high-modulation term is again at
frequency �). To control the A2 component, we start by again applying Lemma 8.7 and decomposing into

A2 D
X

�;�02Cˇ
j��2�

0j.ˇ

X
q;q02Q�2
jq�q0j.�2

Pq0C<d��;N .PqR�CC�d �1;N1/
�
0R�0C˙2d '�2;N2 ;

where as usual ˇD.d=�2/
1
2 . Applying the, by now, standard null-form bound, (7-1), and theL4t;x Strichartz

estimate, we conclude that for every � > 0ˇ̌̌̌Z
R1C3

A2 dx dt

ˇ̌̌̌
.

X
�;�02Cˇ
j��2�

0j.ˇ

X
q;q02Q�2
jq�q0j.�2

ˇkPq0��;N kL4t;x
kPqR� �1;N1kL4t;x

kR�0C˙2d '�2;N2kL2t;x

. �
1
2ˇ��

�
�

�2

��
k��;N kV 2

C;1
k �1;N1kV 2

C;M
k'�2;N2kV 2

˙2;M

: (8-24)

Note that we get no high frequency gain here (in fact we have a slight loss due to the sum over cubes). On
the other hand, by decomposing all three terms into caps of size ˇ, using null structure, theLqtL

4
x Strichartz

estimate in Lemma 8.2, and Bernstein’s inequality followed by Lemma 7.2 for '�2;N2 , we obtain for any
2 < q < 2C 2

3ˇ̌̌̌Z
R1C3

A2 dx dt

ˇ̌̌̌
.

X
�;�0;�002Cˇ

j��2�
0j;j�00˙2�

0j.ˇ

ˇkR�00��;N kLq=.q�2/tL2q=.4�q/xkR� �1;N1kLqt L
4
x
kR�00C˙2d '�2;N2kLqt L

4q=.5q�8/
x

. �
1
2

�
d

�2

�1
q
� 1
4
����2

�

�5
q
� 9
4

N1k��;N kV 2
C;1
k �1;N1kV 2

C;M
k'�2;N2kV 2

˙2;M

(8-25)

(schematically, we are putting the product into L1�t L2Cx �L
2C
t L4x �L

2C
t L4�x ). Switching the roles of

��;N and  �1;N1 , and combining (8-24) and (8-25) with q close to 2, and � > 0 sufficiently small, we
obtain (8-20).

It remains to prove (8-21); thus we need to consider the case where ' also has the smallest angular
frequency. We begin by again using Lemma 8.7 to get the decomposition

A2 D
X

�;�0;�002Cˇ
j��2�

0j;j�00˙2�
0j.ˇ

X
q;q002Q�2
jq�q00j.�2

R�00Pq00C<d��;N .R�PqCC�d �1;N1/
�
0R�0C˙2d '�2;N2 ;

where ˇ D .d=�2/
1
2 . An application of Bernstein’s inequality, Lemma 7.2, and the angular concentration

lemma for ', together with the null-form bound, and Lemma 8.2, implies that for any � > 0 sufficiently
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smallˇ̌̌̌Z
R1C3

A2 dx dt

ˇ̌̌̌
.

X
�;�0;�002Cˇ

j��2�
0j;j�00˙2�

0j.ˇ

X
q;q002Q�2
jq�q00j.�2

ˇkR�00Pq00��;N kL2a=.a�1/t L2ax

�kR�Pq �1;N1kL2a=.a�1/t L2ax
kR�0C˙2d '�2;N2kLat L

a=.a�1/
x

. ˇ1��
�
�

�2

��
.��2/

1� 1
a .ˇ2�32/

1
a
� 1
2 .ˇN2/

ı
kP�HN�kV 2

C;1
k �1;N1kV 2

˙1;M

kC˙2
d
'�2;N2kLat L

2
x

. �
1
2N ı

2

�
�2

�

� 1
2a
� 1
4
�
d

�2

�1
2
. ı
2
�bC 1

a
/
k��;N kV 2

C;1
k �1;N1kV 2

˙1;M

k'k
Y
˙2;M

�2;N2

;

which gives (8-21) since

1

2
<
1

a
<
1

2
C

�

1000
and b�

1

a
D
2

a
� 1 <

�

500
<
ı

5
:

High-high: �� �1 � �2 and d . �. Our goal is to prove that if M > 1
2

, then for any ı > 0 we have
the boundX
d.�

ˇ̌̌̌Z
R1C3

A0 dx dt

ˇ̌̌̌
C

ˇ̌̌̌Z
R1C3

A1 dx dt

ˇ̌̌̌
C

ˇ̌̌̌Z
R1C3

A2 dx dt

ˇ̌̌̌
. �

1
2N ı

mink��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

; (8-26)

while if 0 <M < 1
2

, for every s; ı > 0, we haveˇ̌̌̌Z
R1C3

X
d.�

A0CA1CA2 dx dt

ˇ̌̌̌
. �

1
2N ı

min.1C�
� 1
6
CsN

7
30

min/k��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

: (8-27)

The key difference from the previous cases, is that if 0 < M 6 1
2

, we no longer have the nonresonant
bound d &��1, and thus we also have to estimate the resonant interactions d ���1. This is particularly
challenging in light of the fact that in the strongly resonant regime, 0 <M < 1

2
, there is no gain from

the null structure when d � ��1. However, we do have transversality in the region d � ��1, and
consequently, we can apply the key bilinear restriction estimate in Corollary 6.4. On the other hand, in
the weakly resonant regime, M D 1

2
, somewhat surprisingly and in stark contrast to the cases M 6D 1

2
,

the null structure gives cancellation for all modulation scales.
We start by considering the nonresonant region ��1 . d . �. By decomposing into caps of radius

ˇ D .d=�/
1
2 , an application of Lemma 8.7 gives the identity

A0 D
X

�;�0;�002Cˇ
j˙1��2�

0j;j�00˙2�
0j.ˇ

R�00Cd��;N .R�C
˙1
�d
 �1;N1/

�
0R�0C˙2�d'�2;N2 :
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Thus by applying the L4t;x Strichartz bound, exploiting the null structure as previously (here we need
the assumption d & ��1), and using the angular concentration bound in Lemma 8.5 on Nmin, we obtain
for every � > 0ˇ̌̌̌Z

R1C3
A0 dx dt

ˇ̌̌̌
.

X
�;�0;�002Cˇ

j˙1��2�
0j;j�00˙2�

0j.ˇ

ˇkR�00Cd��;N kL2t;x
kR� �1;N1kL4t;x

kR�0'�2;N2kL4t;x

. ˇ1��d�
1
2�.ˇNmin/

ı
k��;N kV 2

C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

:

Taking ı > 0 and � > 0 sufficiently small, and summing up over the modulation ��1 . d . � then gives
(8-26) and (8-27) for A0 in the region ��1 . d . �. A similar argument bounds the A1 and A2 terms
in (8-26) and (8-27), provided the sum over modulation is restricted to ��1 . d . �.

We now consider the case d���1. Note that ifM > 1
2

, then using Lemma 8.7, we see that A0DA1D
A2D 0 and thus (8-26) is immediate. On the other hand, if we are in the weakly resonant regime M D 1

2
,

then another application of Lemma 8.7 implies that˙1DC and˙2D�, and we have the decomposition

A0 D
X

�;�0;�002Cˇ
j�C�0j;j�00��j.ˇ

X
q;q02Q

�2ˇ

jqCq0j.�2ˇ

R�00Cd��;N .R�PqCC�d �1;N1/
�
0R�0Pq0C��d'�2;N2 ;

where ˇ D .d=�/
1
2 . Therefore, using the null-form-type bound (8-1), together with (ii) in Lemma 8.1

to exploit the null structure, the orthogonality estimate in Lemma 8.6, and an application of Lemma 8.2
gives for every � > 0ˇ̌̌̌Z

R1C3
A0dxdt

ˇ̌̌̌
.

X
�;�0;�002Cˇ

j���0j;j�00��j.ˇ

X
q;q02Q

�2ˇ

jqCq0j.�2ˇ

ˇkR�00Cd��;NkL2t;x
kR�Pq �1;N1kL4t;x

kR�0Pq0'�2;N2kL4t;x

.ˇ�d�
1
2���ˇ��.�ˇ/���.ˇNmin/

ı
k��;N kV 2

C;1
k �1;N1kV 2

C;M
k'kV 2

�;M
;

where we used the angular concentration bound in Lemma 8.5 on the term with smallest angular frequency.
Choosing � > 0 sufficiently small, and summing up over 0 < d � ��1 then gives (8-26) for the A0 term.
An identical argument bounds the A1 and A2 terms.

It remains to prove (8-27) when 0 < d � ��1. Another application of Lemma 8.7, implies that we
must have ˙1 DC and ˙2 D�, as well as the key orthogonality identityX
d���1

A0CA1CA2

DC���1��;N .C
C

���1
 �1;N1/

�
0C�
���1

'�2;N2

D

X
�;�0;�002C

��1

j�C�0j.��1

X
q;q002Q�

jq�q00j�� or j���00j���1

R�00Pq00C���1��;N .R�PqC
C

���1
 �1;N1/

�
0R�0C����1'�2;N2 :
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Note that the summation is restricted to terms for which R�00Pq00C���1��;N and R�PqCC���1 �1;N1
have either angular orthogonality or radial orthogonality. In either case, we may apply Corollary 6.4,
via the bound (8-7), the null structure bound in Lemma 8.1, and the Klein–Gordon angular Strichartz
estimate in Lemma 8.3, to deduce that for every 3

2
< q < 14

9
and � > 0 we haveˇ̌̌̌Z

R1C3

X
d���1

A0CA1CA2 dx dt

ˇ̌̌̌
. ��1

X
�;�002C

��1

X
q;q02Q�

jq�q00j�� or j���00j���1



R�00Pq00C���1��;N .R�PqCC���1 �1;N1/�

Lqt;xk'�2;N2kLq0t;x
. �

5
q
�3C�N

7. 7
10
� 1
q
/C�

2 k��;N kV 2
C;1
k �1;N1kV 2

C;M
k'�2;N2kV 2

�;M
;

where for ease of reading we suppressed the …˙.!�/ matrices used to extract the null-form gain of ��1.
Choosing q sufficiently close to 3

2
, and � > 0 sufficiently small, then gives (8-27) in the case N2 DNmin.

To deal with remaining cases, we just reverse the roles of �,  , and ', again apply Lemma 8.7 to deduce
the required transversality, and always use the angular Strichartz estimate from Lemma 8.3 on the term
with smallest angular frequency. This completes the proof of (8-27).

High modulation, I: �. �1 � �2 and d � �. In this region, our goal is to prove that

X
d��

ˇ̌̌̌Z
R1C3

A1dxdt

ˇ̌̌̌
C

ˇ̌̌̌Z
R1C3

A2dxdt

ˇ̌̌̌
.�

1
2

�
�

�1

�1
8

k��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

(8-28)
and for every ı > 0, the weaker bounds

X
d��

ˇ̌̌̌Z
R1C3

A0dxdt

ˇ̌̌̌
.�

1
2

�
�

�1

�ı
8

.minfN1;N2g/ık��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

; (8-29)

X
d��

ˇ̌̌̌Z
R1C3

A0dxdt

ˇ̌̌̌
.�

1
2

�
�

�1

�1
a
� 1
2

k�k
Y
C;1
�;N

k �1;N1kV 2
˙1;M

k'�2;N2kV 2
˙2;M

; (8-30)

where a is as in the definition of the Y ˙;m
�;N

norm. We start with proving the estimates (8-29) and (8-30),
under the additional restriction of the sums to the range d & �1.

To bound the A0 component, decomposing  and ' into cubes of size �, together with an application
of the L4t;x Strichartz estimate gives for all � > 0ˇ̌̌̌Z

R1C3
A0 dx dt

ˇ̌̌̌
.

X
q;q02Q�
jq�q0j.�

kCd��;N kL2t;x
kPq �1;N1kL4t;x

kPq0'�2;N2kL4t;x

. �
1
2

�
�1

�

����1
d

�1
2

k��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

: (8-31)
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As in the proof of (8-25), if we instead apply the LqtL
4
x bound, together with Bernstein’s inequality for

�, we obtain for any 2 < q < 2C 2
11ˇ̌̌̌Z

R1C3
A0 dx dt

ˇ̌̌̌
. kCd��;N kLqt L4q=.5q�8/x

k �1;N1kLqt L
4
x
k'�2;N2kLq=.q�2/t L

2q=.4�q/
x

. �
1
2

�
�1

d

�1
q
�
�

�1

�6
q
� 11
4

N1k��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

(8-32)

(schematically, we are putting the product into L2Ct L4�x �L
2C
t L4x �L

1�
t L2Cx ). Switching the roles of

 �1;N1 and '�2;N2 , and combining (8-31) and (8-32) with q sufficiently close to 2 and � > 0 sufficiently
small, followed by summing up over d & �1, we obtain (8-29). On the other hand, to obtain (8-30), we
again use Lemma 8.2 to deduce thatˇ̌̌̌Z

R1C3
A0 dx dt

ˇ̌̌̌
.

X
q;q02Q�
jq�q00j.�

kCd��;N kLat L
a=.a�1/
x

kPq �1;N1kL2a=.a�1/t L2ax
kPq0'�2;N2kL2a=.a�1/t L2ax

. �
1
2

�
�1

d

�b��
�

�bC 1
a
�1��

k�k
Y
C;1
�;N

k �1;N1kV 2
˙1;M

k'�2;N2kV 2
˙2;M

;

which then gives (8-30) if we choose � sufficiently small as

1

a
>
1

2
and bC

1

a
� 1D 4

�
1

a
�
1

2

�
(here a; b are as in the definition of the Y ˙;m

�
norm).

We now turn to the estimates for A1 and A2. By symmetry, it is enough to consider the A1 term. After
decomposing into cubes of size � and applying the L4t;x Strichartz estimate, we obtainˇ̌̌̌Z

R1C3
A1 dt dx

ˇ̌̌̌
.

X
q;q02Q�
jq�q0j.�

k��;N kL4t;x
kC˙1
d
Pq �1;N1kL2t;x

kPq0'�2;N2kL4t;x

. �
1
2

�
�

�1

�1
4
����1

d

�1
2

k��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

:

Summing up over d & �1 and choosing � sufficiently small then gives (8-28).
Next, we consider the parts of the sums where �� d � �1. Since M˙1;˙2 . d � �1, we must have

˙1 D˙2; hence M˙1;˙2 . �.
For A0 this implies the decompositionZ

R1C3
A0 dx dt D

Z
R1C3

Cd��;N .C
˙1
�d
 �1;N1/

�
0C˙2
�d
'�2;N2 dx dt

C

Z
R1C3

Cd��;N .C
˙1
�d

 �1;N1/
�
0C˙2

�d
'�2;N2 dx dt: (8-33)



TRANSFERENCE OF BILINEAR RESTRICTION ESTIMATES AND THE DKG-SYSTEM 1233

Concerning the first term, using null-structure,ˇ̌̌̌Z
R1C3

Cd��;N .C
˙1
�d
 �1;N1/

�
0C˙2
�d
'�2;N2 dx dt

ˇ̌̌̌
.
�

�1

X
q;q02Q�
jq�q0j.�

kCd��;N kL2tL
1
x
kPqC˙1�d �1;N1kL2t;xkPq0C

˙2
�d
'�2;N2kL1t L

2
x

.
�
d

�

��1� �
�1

�1��
�
1
2 k��;N kV 2

C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

;

which can be summed up with respect to �� d � �1. The second term in (8-33) can be treated along
the same lines.

Similarly, for A1 we have the decompositionZ
R1C3

A1 dx dt D

Z
R1C3

C�d��;N .C
˙1
d
 �1;N1/

�
0C˙2
�d
'�2;N2 dx dt

C

Z
R1C3

C�d��;N .C
˙1
d
 �1;N1/

�
0C˙2
�d
'�2;N2 dx dt: (8-34)

The first term can be estimated the same way as the first contribution to A0. For the second term, we
use the decompositionˇ̌̌̌Z

R1C3
C�d��;N .C

˙1
d
 �1;N1/

�
0C˙2
�d
'�2;N2 dx dt

ˇ̌̌̌
.
�

�1

X
q;q02Q�
jq�q0j.�

k��;N kL1t;xkPqC
˙1
d
 �1;N1kL2t;x

kPq0C˙2�d'�2;N2kL2t;x

.
�
d

�

��1� �
�1

�1��
�
1
2 k��;N kV 2

C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

;

which, as above, can be summed up with respect to �� d � �1.
A similar argument treats the A2 term.

High modulation, II: ��minf�1; �2g and d �minf�1; �2g. Our goal is to prove the boundX
d�minf�1;�2g

ˇ̌̌̌Z
R1C3

A0 dx dt

ˇ̌̌̌
C

ˇ̌̌̌Z
R1C3

A1 dx dt

ˇ̌̌̌
C

ˇ̌̌̌Z
R1C3

A2 dx dt

ˇ̌̌̌

. �
1
2

�
minf�1; �2g

�

�1
4

k��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

: (8-35)

As the estimate is essentially symmetric in �1 and �2, we may assume that �1 > �2.
First, we consider the contribution to the sum where d &�. The bound for A0 follows by decomposing

into cubes of size �2 and applying the standard L4t;x Strichartz estimate to obtainˇ̌̌̌Z
R3C1

A0 dt dx

ˇ̌̌̌
.

X
q;q002Q�2
jq�q00j.�2

kCdPq00��;N kL2t;x
kPq �1;N1kL4t;x

k'�2;N2kL4t;x

. �
1
2

�
�2

�

�3
4
����

d

�1
2

k��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

;
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which easily gives (8-35) in the range d & � for the A0 term, provided we choose � sufficiently small.
The proof for the A1 term is identical (as we do not exploit any null structure here). On the other hand,
to estimate the A2 term, we again decompose into cubes of size �2 and apply the L4t;x Strichartz estimate
to deduce thatˇ̌̌̌Z

R3C1
A2 dt dx

ˇ̌̌̌
.

X
q;q002Q�2
jq�q00j.�2

kPq00��;N kL4t;x
kPq �1;N1kL4t;x

kC˙2
d
'�2;N2kL2t;x

. �
1
2

�
�2

�

�1
2
����

d

�1
2

k��;N kV 2
C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

:

Therefore (8-35) follows in the range d & �.
Second, we consider the contribution to the sum where �2� d � �. Concerning A0, as in the first

high modulation case, we have the decomposition (8-33). To bound the first term in (8-33), we haveˇ̌̌̌Z
R1C3

Cd��;N .C
˙1
�d
 �1;N1/

�
0C˙2
�d
'�2;N2 dx dt

ˇ̌̌̌
. kCd��;N kL2t;xkC

˙1
�d
 �1;N1kL2t;x

kC˙2
�d
'�2;N2kL1t;x

.
�
d

�2

��1��2
�

�1
2

�
1
2 k��;N kV 2

C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

:

To bound the second term in (8-33), we haveˇ̌̌̌Z
R1C3

Cd��;N .C
˙1
�d

 �1;N1/
�
0C˙2

�d
'�2;N2 dx dt

ˇ̌̌̌
. kCd��;N kL2t;xkC

˙1
�d

 �1;N1kL1t L
2
x
kC˙2
�d
'�2;N2kL2tL

1
x

.
�
d

�2

��1��2
�

�1
2

�
1
2 k��;N kV 2

C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

:

Concerning A1, as in the first high-modulation case, we have the decomposition (8-34), and we can
repeat the argument above for the A0 terms.

Concerning A2, we have the decompositionZ
R1C3

A2 dx dt D

Z
R1C3

C�d��;N .C
˙1
6d
 �1;N1/

�
0C˙2
d
'�2;N2 dx dt

C

Z
R1C3

C�d��;N .C
˙1
�d
 �1;N1/

�
0C˙2
d
'�2;N2 dx dt:

The first term can be treated in the same manner as the second contribution to A0. For the second term
we haveˇ̌̌̌Z

R1C3
C�d��;N .C

˙1
�d
 �1;N1/

�
0C˙2
d
'�2;N2 dx dt

ˇ̌̌̌
. k��;N kL1t L2xkC

˙1
�d
 �1;N1kL2t;x

kC˙2
d
'�2;N2kL2tL

1
x

.
�
d

�2

��1��2
�

�1
2

�
1
2 k��;N kV 2

C;1
k �1;N1kV 2

˙1;M

k'�2;N2kV 2
˙2;M

: �
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8D. Proof of Theorem 7.5. We begin with the proof of (7-9). An application of the energy inequality in
Lemma 7.3 gives

P�1HN1…˙1I˙1M Œ��;N 


0…˙2'�2;N2 �



V 2
˙1;M

. sup
k �1;N1kV2

˙1;M

.1

ˇ̌̌̌ Z
R1C3

��;N .…˙1 �1;N1/
�
0…˙2'�2;N2 dxdt

ˇ̌̌̌
:

Therefore an application of (8-10) in Theorem 8.8 implies

P�1HN1…˙1I˙1M Œ��;N 

0…˙2'�2;N2 �




V 2
˙1;M

. �
1
2 .minfN;N2g/

�
4 Bmin f �

32
; 1
2a
� 1
4
gk�kFC;1�;N

k'k
F
˙2;M

�2;N2

; (8-36)

which gives the required bound (7-9) for the F˙1;M
�1;N1

component of the norm. To complete the proof of
(7-9), it remains show that there exists � > 0 such that

…˙1I˙1M Œ��;N 


0…˙2'�2;N2 �



Y
˙1;M

�1;N1

. �
1
2 .minfN;N2g/

�
2 B�k�kFC;1�;N

k'k
F
˙2;M

�2;N2

: (8-37)

To this end, we consider separately the cases �1� �2 and �1 & �2. In the former region, note that an
application of (8-12) in Theorem 8.8 together with the energy inequality Lemma 7.3, and the L2t;x bound
in Lemma 7.2, gives

P�1HN1C˙1d I˙1M Œ��;N 


0…˙2'�2;N2 �



L2t;x

. d�
1
2



P�1HN1…˙1I˙1M Œ��;N 

0…˙2'�2;N2 �




V 2
˙1;M

. d�
1
2�

1
2 .minfN;N2g/

�
4

�
�1

�2

��
32

k��;N kV 2
C;1
k'�2;N2kV 2

˙2;M

: (8-38)

On the other hand, since we are localised away from the hyperboloid we have by (7-7) together with
Lemma 8.2

P�1HN1C˙1d I˙1M Œ��;N 


0…˙2'�2;N2 �



L
3=2
t L2x

. d�1kP�1.��;N 

0…˙2'�2;N2/kL3=2t L2x

. d�1k��;N kL4t;xk'�2;N2kL12=5t L4x

. d�1�
1
2�

1
3

2N2k��;N kV 2
C;1
k'�2;N2kV 2

˙2;M

: (8-39)

Repeating this argument but instead putting � 2L
12
5

t L
4
x and ' 2L4t;x we deduce that, since �1� �2��,

d�
� 1
3

1



P�1HN1C˙1d I˙1M Œ��;N 

0…˙2'�2;N2 �




L
3=2
t L2x

. �
1
2 minfN;N2g

�
�2

�1

�1
3

k��;N kV 2
C;1
k'�2;N2kV 2

˙2;M

: (8-40)

Note that this bound is far too weak to be useful on its own, as we have �1� �2. On the other hand, if
we combine (8-38) and (8-40), and use the convexity of the Lpt spaces, we deduce that if we let 0 < � < 1
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be given by
1

a
D
2�

3
C
1��

2
;

then, as this forces b D 1
2
.1C �/, we deduce that

�
1
a
�b

1 db


P�1HN1C˙1d I˙1M Œ��;N 


0…˙2'�2;N2 �



Lat L

2
x

.
�
d�
� 1
3

1



P�1HN1C˙1d I˙1M Œ��;N 

0…˙2'�2;N2 �




L
3=2
t L2x

��
�
�
d
1
2



P�1HN1C˙1d I˙1M Œ��;N 

0…˙2'�2;N2 �




L2t;x

�1��
. �

1
2 .minfN;N2g/�C

�
4
.1��/

�
�1

�2

��
32
.1��/� 1

3
�

k��;N kV 2
C;1
k'�2;N2kV 2

˙2;M

:

Since
1

2
<
1

a
<
1

2
C

�

1000
;

it is easy enough to check that 1
32
�.1� �/� 1

3
� > 0, and hence (8-37) holds when �1� �2. We now

consider the case �1 & �2. The proof is similar to the previous case; the main difference is that we need
a more refined version of the bound (8-40). To this end, by decomposing ' into cubes of size minf�; �2g,
we deduce that by Lemma 8.2 and Lemma 8.6, for every �0 > 0

P�1HN1C˙1d I˙1M Œ��;N 


0…˙2'�2;N2 �



L
3=2
t L2x

. d�1


�k��;N 
0…˙2Pq'�2;N2k2L2x� 12

L3=2t

. d�1k��;N kL12=5t L4x

� X
q2Qminf�;�2g

kPq'�2;N2k
2
L4t;x

�1
2

. d�1�
1
3N.minf�; �2g/

1
4
��0�

1
4
C�0

2 k��;N kV 2
C;1
k'�2;N2kV 2

˙2;M

:

Since .minf�; �2g/
1
4
��0 6 � 16�

1
4
� 1
6
C�0

2 (for �0 sufficiently small) and �2. �1, by using the bound (8-39),

d�
� 1
3

1



P�1HN1C˙1d I˙1M Œ��;N 

0…˙2'�2;N2 �




L
3=2
t L2x

. �
1
2 minfN;N2gk��;N kV 2

C;1
k'�2;N2kV 2

˙2;M

: (8-41)

Note that, unlike the bound (8-41), we have no high-frequency loss here. As in the case �1� �2, we now
combine the bound (8-36) with (8-41), and deduce by the convexity of the Lpt norm and Lemma 7.2 that

�
1
a
�b

1 db


P�1HN1C˙1d I˙1M Œ��;N 


0…˙2'�2;N2 �



Lat L

2
x

.
�
d�
� 1
3

1



P�1HN1C˙1d I˙1M Œ��;N 

0…˙2'�2;N2 �




L
3=2
t L2x

��
�
�
d
1
2



P�1HN1C˙1d I˙1M Œ��;N 

0…˙2'�2;N2 �




L2t;x

�1��
. �

1
2 .minfN;N2g/�C

�
4
.1��/B1��

min f �
32
; 1
2a
� 1
4
g
k�k

F
C;1
�;N

k'k
F
˙2;M

�2;N2

:

Since 0 < � � � , we obtain (8-37). Therefore, the bound (7-9) follows.
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We now turn to the proof of the second inequality (7-10). The argument is similar to the proof of
(7-9) so we will be brief. An application of the energy inequality in Lemma 7.3 together with (8-11) in
Theorem 8.8 implies

P�HNIC1 Œ.…˙1 �1;N1/

�
0…˙2'�2;N2 �



V 2
C;1

. �
1
2 .minfN1; N2g/

�
4 Bmin f �

32
; 1
2a
� 1
4
gk kF˙1;M

�1;N1

k'k
F
˙2;M

�2;N2

: (8-42)

Therefore it only remains to prove that there exists � > 0 such that

IC1 Œ.…˙1 �1;N1/�
0…˙2'�2;N2 �

YC;1�;N

. �
1
2 .minfN;N2g/

�
2 B�k k

F
˙1;M

�1;N1

k'k
F
˙2;M

�2;N2

: (8-43)

Similar to the proof of (8-37), we consider separately the cases �� �1 and �& �1. In the former case,
as in (8-41), since we are localised away from the hyperboloid we have by (7-7) together withLemma 8.2

P�HN C˙1

d
IC1 Œ.…˙1 �1;N1/

�
0…˙2'�2;N2 �



L
3=2
t L2x

. d�1


P�..…˙1 �1;N1/�
0…˙2'�2;N2/
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Since �1 � �2, we can replace the max and min in (8-44) with �
1
3
C 1
2

1 . If we now combine (8-44) with
the energy inequality in Lemma 7.3, the bound (8-13) in Theorem 8.8, and Lemma 7.2, we deduce that
by the convexity of the Lpt spaces that
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where as previously, we have
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a
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which implies b D 1
2
.1C �/. Since

1

2
<
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<
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it is easy enough to check that 1
32
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6
� > 0, and hence (8-43) holds when �� �1. We now

consider the case �& �1. Since we now have
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an application of (8-44), together with (8-42), Lemma 7.2 gives
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:

Since 0 < � � � and 1=a > 1=2, we obtain (8-43). Therefore, the bound (7-9) follows. This completes
the proof of Theorem 7.5.
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