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WELL-POSEDNESS AND SMOOTHING EFFECT FOR
GENERALIZED NONLINEAR SCHRODINGER EQUATIONS

PIERRE-Y VES BIENAIME AND ABDESSLAM BOULKHEMAIR

We improve the result obtained by one of the authors, Bienaimé (2014), and establish the well-posedness
of the Cauchy problem for some nonlinear equations of Schrodinger type in the usual Sobolev space
H*(R") for s > 7 + 2 instead of s > 5 4 3. We also improve the smoothing effect of the solution and
obtain the optimal exponent.

1. Introduction

Consider the nonlinear Cauchy problem

diu=iLu+ F(u,Vyu,u,Vyu), teR, x e R",
u(x,0) =ug(x) € H5(R"),

where the function F is sufficiently regular in C x C" x C x C", the operator £ has the form

"?:Zafﬁ_zaif"

J=<Jo J>Jo

)

with a fixed jo €{1,2,...,n},and H5(R"), s € R, is the usual Sobolev space on R”". Thus, .# generalizes
the Laplace operator but is not elliptic unless jo, = n. Hence, such equations are generalizations of the
nonlinear Schrodinger (NLS) equations.

In this paper, we continue the work undertaken in [Bienaimé 2014] and study the local existence and the
smoothing effect of the solutions of the Cauchy problem (1) with essentially the following goal: to obtain
the optimal index s of regularity for which (1) is well-posed. In fact, since the partial differential equation
is of second order and is semilinear, the optimal condition on s should be s > 7 + 1. Unfortunately, up to
now and due to issues that occur when estimating the remainder obtained after the linearization of the
nonlinear equation, we have not been able to prove the desired result under such a condition. In any case,
we shall return to this question in a future work. In this paper, we establish the following:

Theorem 1.1. Assume that F vanishes to the third order at 0; that is, F and its partial derivatives up to
the second order vanish at 0. Then, for every s > 5 + 2 and every initial data ug € H*(R"), there exists
a real number T > 0 such that the Cauchy problem (1) has a unique solution u which is defined on the
interval [0, T'] and satisfies

u € C([0, T]; H*(R"))
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where J = (1 — A)2, A = le;'{ aik and oy > % is fixed. Moreover, given a bounded subset B of
HS (R"), there exists a real number T > 0 such that, for every ug € B, the associated solution u of (1)
exists on the interval [0, T'| and the map which associates u to uq is Lipschitz continuous from B into the
space

{we C(0, T]; H*®M) : [|7°+ 2wl < oc}.

In [Bienaimé 2014], this theorem is proved under the assumption s > 5 + 3. We also improve the
result with respect to the smoothing effect of the solution since oy = 2 there. Note that the assumption
oo > % in the above theorem seems to be sharp; we refer for example to the survey article [Robbiano
2013] on the subject of Kato’s smoothing effect. Recall that at the origin of [Bienaimé 2014] was the
significant work of C. E. Kenig, G. Ponce and L. Vega [Kenig et al. 1998], who first studied (1) with such
a nonelliptic . and established the local existence and the smoothing effect of the solutions assuming
that F' is a polynomial and s > sg, the index s being sufficiently large. Note that these authors did not
give an idea about the value of s, but by going back to the details of their proof, one can see that s is of
the order of 5 + 10n + 1. These authors also studied the case where F (is a polynomial and) vanishes to
the second order at 0. However, it seems that in that case we need to work in weighted Sobolev spaces.

The Cauchy problem (1) was extensively studied in the 90s mainly when . = A, that is, in the case of
the Schrodinger equation. See the introduction of [Kenig et al. 1998]. The case . # A is less well-known.
Nevertheless, it is motivated by several equations coming from the applications such as Ishimori-type
equations or Davey—Stewartson-type systems. For more details, we refer the reader to the instructive
introduction of [Kenig et al. 1998]. Let us now quote some papers which are more or less related to this
subject. In [Kenig et al. 2004], the authors extended their results of 1998 to the quasilinear case assuming
essentially that the corresponding dispersive operator .# is elliptic and nontrapping. The nonelliptic case
is treated in [Kenig et al. 2006; 2005]. In [Bejenaru and Tataru 2008], the authors solved the Cauchy
problem (1) for s > 5 4 1 in modified Sobolev spaces and assuming F(u, Vxu, ii, Vyii) bilinear. More
recently, in [Marzuola et al. 2012; 2014], the authors considered the quasilinear Schrddinger equation

ideu+ Zgj’k(u, Vxu)djoru = F(u, Vyu)
j.k
and obtained the local well-posedness of the associated Cauchy problem for s > Z 4 3 in the quadratic
case (with modified Sobolev spaces) and for s > 5 + % in the nonquadratic case. However, they assume
the smallness of the data and they do not seem to obtain the smoothing effect of the solutions.

The proof of Theorem 1.1 follows the same ideas as that of [Kenig et al. 1998; Bienaimé 2014]. Of
course, the general plan is unoriginal: linearization of the nonlinear equation, then, establishing energy
estimates for solutions of the linear equation, and finally, solving the nonlinear equation by means of an
appropriate fixed-point theorem. Like [Bienaimé 2014], we start by applying a paralinearization, that is, a



WELL-POSEDNESS AND SMOOTHING EFFECT FOR GENERALIZED NONLINEAR SCHRODINGER 1243

linearization in the sense of [Bony 1981] instead of the classical linearization. This leads us to the use
of the paradifferential calculus whose main interest lies in the fact that it eliminates the usual losses of
regularity due to commutators. One obtains a paralinear equation and most of the proof of the theorem is
concerned with the study of such an equation, that is, the well-posedness in the Sobolev spaces of the
associated Cauchy problem by means of energy and smoothing effect estimates. As did Kenig, Ponce and
Vega, we establish the smoothing effect estimate by using Doi’s argument [1994] via Garding’s inequality,
and we prove the energy estimates by following an idea of [Takeuchi 1992], that is, by constructing a
nonclassical invertible pseudodifferential operator C which allows estimates for Cu if u is a solution of
the paralinear equation. Finally, we solve the nonlinear Cauchy problem (1) by applying these estimates
to an integrodifferential equation which is equivalent to (1) and obtain the solution as the fixed point of
an appropriate contraction in an appropriate complete metric space.

Now, in order to give a more precise idea about our proof, let us indicate the differences with that
given in [Bienaimé 2014]. In fact, there are three main differences:

e We simplify certain arguments of that paper; for example, we no longer need to use the general Hor-

mander symbol spaces .S /’J"’ ; we only use S{"’O and S(’)”’O. Also, we only use the original paradifferential

operators (see Section 2) and not the variant introduced in [Bienaimé 2014].

¢ The linear theorem, that is, Theorem 3.1 (see Section 3), is proved for general paradifferential operators
Ty, and T}, of order 0 instead of paramultiplication operators. Note also that we allow the operators
C1 and C; to be abstract bounded operators.

e The third difference lies in the nonlinear part (see Section 4) and is crucial for our improvement of
the result of [Bienaimé 2014]: we use anisotropic Sobolev spaces and an interpolation inequality (see
Proposition A.5) to estimate the remainder of the paralinearized equation.

2. Notations and preliminary results

Some notation used in the paper:

o J¥=(1—A)2 = (D) is the operator whose symbol is (£)* = (1 4 £2)2.
o Dy, =—idy,, Dx =—i0x.

o |o| = Z;:;’ oj if o € N,

e Av=(Avy,...,Avy) and Vv = (Vuy,...,Vu,) if v = (v1,...,vy).

e .#(R") denotes the Schwartz space of rapidly decreasing functions in R”.
* 7(R") denotes the space of smooth functions with compact support in R”.
* 9'(R") denotes the space of distributions in R”.

o /(R™) denotes the space of tempered distributions in R”.

e i1 or .Z(u) denotes the Fourier transform of u.

o HS(R") = {u € . (R"): (£)*it € L?(R™)} is the usual Sobolev space of regularity s.



1244 PIERRE-YVES BIENAIME AND ABDESSLAM BOULKHEMAIR

1
o |ulls = (f[Rn (E)25|0(8)|? dé)2 denotes the norm of u in HS(R").
e ||u|| g denotes the norm of u in the space E.
e Hormander’s classes of symbols: if m € R and y, § € [0, 1],
s ={ae COR"xR"): |a§ga§a(x,g)| < Ag p(E)m Y IBIFl for all o, B € N}

 If o > 0 is an integer, C?(R") denotes the set of functions in R” which are bounded, of class C" and
their derivatives up to m are bounded. If o > 0 is not an integer, C?(R") denotes the Holder class, that
is, the set of « in ClJ(R™) such that

AC eR, Y(x,p) eR" xR", 0% (x) — d%u(y)| < C|x — y|o7lel.
e Op S denotes the set of pseudodifferential operators whose symbols belong to S.

The following statement summarizes the pseudodifferential calculus associated to Hérmander’s classes
m .
of symbols Sy’ 5

Theorem 2.1. If a € S;”g, be S)’/"(;, m,m €R,and0 <5<y <1or0<§ =<y <1,then:
(i) a(x, D)b(x, D) = c(x, D) withc € S;”;m/ Moreover,

dy dn
Q2m)"

c(x.5) = [ I Ma(x, £+ )b(x + 3. )

= Z laga(x,é)D;b(x,SH Z 1 1(1—9)N_1rv’9(x,§)d9,
p! vl Jo

v|<N lv|=N
where dvd
— yan
o6, = [P0k, + 6mDLbGr + 3, S,
and the S ;n ; MmNV Seminorms of 1,9 are bounded by products of seminorms of a and b uniformly
in6 |0, 1].

(ii) a(x, D)* = a*(x, D) witha* € S;’fa. Moreover,

w6 = [ty G

1 ) 1 (! _
= ¥ i+ Y o [ -6V e o
<N =~ 70
h
wnere dydn
Q)

and the S;:’(S_N(y_s) seminorms of 1.} 5 are bounded by seminorms of a uniformly in 0 € [0, 1].

rialn§) = [ M0 DLatx + v+ o)

See [Taylor 1991], for instance, for the proof. We shall also often need the following version of the
Calderén—Vaillancourt theorem:
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Theorem 2.2. Let a : R" x R* — C be a bounded function. Assume that, for all «, B € N"* such that
loe| + |B| < n+ 1, there exists a constant Co g > 0 such that |8‘j‘68§a(x,§)| <Cyp € R2". Then, the
pseudodifferential operator a(x, D) is bounded in L*(R") and its operator norm is estimated by

sup 9% 0%all oo
lee|+|Bl<n+1
See [Coifman and Meyer 1978] for the proof.
The following technical lemma, which is a consequence of Theorem 2.1, will be very useful in many

of our proofs:

Lemma 2.3. Leta € S{',

m,o € Rand u € R". Then:

(i) We have (x —p)%a(x, D){(x —u)~% = a,(x, D), where ay, € S(To and the seminorms of a,, are
bounded by seminorms of a uniformly in L.

(i) If o = 0 and if, in addition, a(x, &) is rapidly decreasing with respect to x — |, then we have
(x =wm)%a(x, D)(x —un)° = byu(x, D), where by, € S{*,, by, is also rapidly decreasing in x — w and
the seminorms of by, are estimated uniformly in . by expressions of the form

sup [l — 12) 2 () 0% Df | .
| +IBI=N
Here, the fact that the symbol a(x, £) is rapidly decreasing with respect to x — ; means that, for every
integer N and all multi-indices o, B, the function (x — u)™V (€)% D? a is bounded in R” x R”, and we
shall often meet such symbols in this paper.

Proof. (i) When o > 0, we can use Theorem 2.1(i) and integrations by parts to obtain

ap(x.8) = (x =)’ Q)" [ e P Ma(x, £+ n)(x +y—p) " dydy

=(x— M)"(2ﬂ)_”/ eIV "N a(x, & +m ()N IV [(x + y — )1 dy dn,
where N is a large and even integer. Hence, by taking derivatives and bounding, and next by applying
Peetre’s inequality,

lau(x,£)| < C[(&) ™allen (x — u)"/(n)_N(E +0)"(») N {x+y—p) % dydny

o+|m|

<272 C|{g)™allen (E)™ / MmN ()N dy dn = C' ()™ |() ™all e,

where C and C’ are constants which are independent of w, and N is taken for example such that
N > |m|+ o0 +n+ 1. Of course, the derivatives of a,, are treated in the same manner.
The case o < 0 follows from the preceding case by considering the adjoint

au(x, D)* = (x —p)"a(x, D)*(x — p)°
and by applying Theorem 2.1(ii).

(i) By using the formula in Theorem 2.1(ii) once more, it is easy to see that, if a is rapidly decreasing
with respect to x — u, then the symbol a* is also rapidly decreasing with respect to x — u and that, for all
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N eN a, B € N" there exist M € N and a nonnegative constant Cy 4 g which does not depend on 1
such that

I — )N (E)™02 D a* Lo < g s lr— ) ()02 D all .
lo/[+|B' =M

Now, by following the same argument as that used in the first part, one can check that the same claim
holds exactly when we replace a* by ay in the above assertion; in particular, we have the estimate

I = )N (€02 D aullioe < Crnap sup  [l(x— )N (6) 0% DE al .
le/|+|B' =M

and since we can write obviously by, (x, &) = (x —)2%a, (x, £), this achieves the proof of the lemma. [J

When studying the nonlinear equation, the following result is important in order to explain the
assumption made on the nonlinearity F.

Lemma 2.4. For all s > 0 and all 0 > %, there exists a constant C > 0 such that, for all v € H*(R"),
the sequence 1 +— || (x — ) ~%v||s is in £2(Z") and

D =) )2 < C 2.
y7

In particular, if s > %, u,v € HS(R") and x is a smooth and rapidly decreasing function, then, |1 >
I x(x — wyuv|s is in £ (Z") and

> lxx = wuvlls < Cllullsllv]ls.
)7

)~29 is a bounded function.

Proof. The case s = 0 is obvious and follows from the fact that ) M(x —u
The case where s is a positive integer reduces to the case s = 0 by taking derivatives via Leibniz formula.
The general case is obtained by interpolation. Indeed, since the map v — {x — ) v is linear and
bounded from H* into ¢%(Z", H®) for integral indices s = s1, 55, it will be also bounded from H' s" into

02(z", H) for any real s’ between s1 and s,. This follows from the fact that
[C>(Z", H*"), L*(Z", H*?))g = €* (2", [H*', H**]y)

for 0 < 8 < 1. See for example [Bergh and Lofstrom 1976, Theorem 5.1.2, page 107].
The second part is a consequence of the first one and the fact that /7*(R") is an algebra if s > 5. [

Let us now recall some results on paradifferential operators.

Definition 2.5. We define the class 7' where m € R and ¢ = 0 to be the class of symbols a(x, §) defined
on R” x R" which are C* in & and C¥? in X, in the sense that

forall e € N",  [9%a(x. £)|(§) "1l e COR" x R"),
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C? being replaced by L when o = 0. If a € ¥, then m is the order of a and g is its regularity.
Following J.-M. Bony, we associate to a symbol a in Zgl the paradifferential operator 7, , defined by
the expression

Taxt(®) = @™ | (€ =071 @E = 1. do.

where x is what one calls a paratruncature, that is, a C function in R” x R" satisfying the following
properties:
(i) There exists ¢ > 0 such that e < 1 and x(&,n) = 0if |&] > ¢|n|, &, n e R™
(ii) There exist &’ > 0, ¢’ > 0 such that &’ < ¢ and x(&,n) = 1if || <&'|n| and |n| > &".
(iii) For all & € N2, there exists Aq > 0 such that for all & € R2", we have (¢)!%!|8% x()| < Aq.

The first important result on paradifferential operators is that, even if one can show that T, , = a(x, D)

with some a € S™

11> they are bounded in the Sobolev spaces in the usual manner. In fact, we have:

Theorem 2.6. Assume that x satisfies only the first and third properties among the above ones. Then,
for every real s, the operator T, y is bounded from H*(R") into H*~™(R") and its operator norm is
estimated by a seminorm of a in X7'. In particular, if a = a(x) € L*°(R"), then, for every real s, the
operator Ty y is bounded in H* (R") with an operator norm bounded by a constant times |a||oo.

Proof. See [Bony 1981; Meyer 1981; Taylor 1991]. |
Concerning the dependence with respect to the paratruncature y, one can say the following:

Theorem 2.7. If 0 > 0 and x1, x2 are paratruncatures, then the operator Ty y, — Ty, y, is bounded from
H* (R") into HS™™TC(R") and its operator norm is estimated by a seminorm of a in DI

Proof. See [Bony 1981; Meyer 1981; Taylor 1991]. O

This result shows that the dependence of T, , on y is less important than that on a. It also explains
why the remainders in the paradifferential theory are only p-regularizing. From now on, we shall write
T, instead of Ty, y unless it is needed.

Note also that a possible choice of the paratruncature that we shall often use in the sequel is given by

xE m) = x1¢E/InDA —=v1(m)),

where ¥, x1 € C*®(R"), ¥ = 1 in a neighbourhood of 0, ¥; = 0 out of B(0,¢”), and x; = 1 on
B(0,¢’), supp(x) C B(0,¢), with ¢ and ¢’ satisfying 0 < &’ < & < 1. In this case, T,y = d(x, D) with
the following expression of a:

a(x,§) = (1- 1/f1($))|$|"fRn FH (€N = y)a(y, ) dy. 2)

The following lemma gives some properties of ¢ which will be needed in the sequel and often used
implicitly.
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Lemma 2.8. Let 0> 0anda € Eg’. Then, a is smooth and

|920%a(x. £)| < Aq,p(E)™ if lel <o. 3)
[0 0%a(x, §)] < Ag,p(&)" BT if o] > o, 4)

where Ag g are nonnegative constants; more precisely, the Ay g can be estimated by seminorms of a
in X', In particular, a € S;’”l.

Moreover, if 0 is a smooth function with support in some compact subset of R" and 0,,(x) = 6(x — ),
W € 2", then, forall N € N, we have

(v = )N 10802 Gua(x, £)] < Aqpy ()" if lo| < o. 5)
(x — )N 050% Gua(x. £)] < Ag gy (€)™ ITIIZEif j| > o, (6)

where the Ay g N do not depend on . and are estimated by seminorms of a in EZ’.

Proof. For the first part we refer to [Meyer 1981; Taylor 1991]. The second part follows from the first
one by using, for example, for even N the decomposition

(x—m)N =3 %WW—“)N

together with the expression (2). O
When dealing with nonlinear terms, we shall frequently use the following classical result:

Proposition 2.9. If F is a C® (or sufficiently regular) function in C", F(0) = 0 and uy, ..., un are
functions in H*(R"), s > %, then, F(uy,...,um) € H*(R") and we have precisely

||F(u1""’um)||s = C(”(U],...,Z/lm)”Loo)”(Z/ll,...,um)”s,

where £ — C (&) is a nonnegative and nondecreasing function.

An important property of the paradifferential operators consists in the fact that they are necessary to
write down Bony’s linearization formula, a formula that we recall here.

Theorem 2.10 (Bony’s linearization formula). For all real functions uy,...,uy, € H 5+e (R™), 0 >0,
and every function F of m real variables which is C° (or sufficiently regular) and vanishes in 0, we have

I1=m
F(uy,...,um)= Z Ty, pui+r withr € HZT2eR").

i=1
Proof. See [Bony 1981; Meyer 1981; Meyer 1982]. O

The remainder r in the above formula depends of course on (u1,...,us). The following result
essentially shows that  is a locally Lipschitz function of (u1, ..., #my). More precisely:
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Theorem 2.11. If u=(uy,... ,um) € H*(R",R™), s =540, 0> 0, let us denote by r (u) the remainder
in Bony’s formula. For all u,v € HS(R",R™), we have then

I () = r @) lls+o = OUlulls, Vi) llu—vlls,
where O(||uls, ||v||s) is bounded if u and v vary in a bounded subset of H*(R", R™).
Proof. See [Bienaimé 2014]. O

Remark. In the case of our equation, that is (1), even if u has complex values, we shall be able to apply
Bony’s formula to the nonlinear expression F(u, Vu, i, Vii) where u € H %+1+Q(R”). Indeed, we can
write

F(u,Vu,u,Vi) = G(Re(u), VRe(u),Im(u), V Im(u))

where G(x1, X2, y1. y2) = F(x1 +iy1, Xy +iyy, X1 —iy1, Xy —iy,) which is a function from R2"+2

into C. We apply then Bony’s formula to G and obtain that
Fu,Vu,u,Vu) = Tale Re(u) + Tangv Re(u) + TaylG Im(u) + T3y2GV Im(u) + r(u).

At last, by using the fact that Re(u) = #, Im(u) = ”2;1.’7, 0; = %(8x —idy) and 0; = %(ax +1idy), and

then the linearity of Tp with respect to b, we obtain the formula used in this paper:
F(u,u,Vu,Vu) =Ty, pu+ Ty, pu + Ty, rVu + Ty, Vi +1(u)
with r(u) € H2T2(R") if u € HZT1To(RY).
We shall also often need the following result similar to Lemma 2.3:

Lemma 2.12. Let a € Eg([R{”), 0 € 2(R"), Ou(x) =0(x — ), n € R" and s € R, and consider the
paradifferential operator Ty, o = Ty, 4,y (Where the paratruncature x does not necessarily satisfy the
second property of Definition 2.5). Then, for all 0 = 0, the operator (x —j1)° Ty, q{x — 1)° is bounded
in H3(R™) and there exist N € N and a nonnegative constant C such that, for every u € R",

1x = 1) Toa(x = 10)° | carsy < € sup (€)' *0Fal oo
l¢|<N

Proof. First, one can assume that o is an integer and even an even integer. Let us denote by a, the
symbol 6,a and consider first the operator Ty, (x — ). Recall that T, = a,(x, D) with

ap(x.8) = (1—-y, (é))lél”/w FH €N = y)an(v.§) dy. )

where ¥, x1 € C*®(R"), ¥ = 1 in a neighbourhood of 0, ¥; = 0 out of B(0,¢”), and x; = 1 on
B(0,¢"), supp(x) C B(0, ¢), with ¢ and & satisfying 0 < ¢’ < & < 1. Hence, we can write for arbitrary
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u € 7 (R"),
T (= )7 u() = ) [ €756, (x,6)7 (= ) d
= )" [ a6 (e + 0 a(E) de
= )" [ 1D = )1 e, 1aCE) d
= )™ 3 gy b 07) [ ¢ e £yace) s

where we have applied integrations by parts and the Leibniz formula. So, we have proved that

To b= ) = Y 2 DI — w105 (x. D),

o
where the sum is of course finite. Now, let us consider the operator (agau)(x, D) and let us remark that,
for example,

g dp(x.8) = (1 -y (E))IEI”/ T €N = ) Vg apu (v, §) dy

R"
n — E
— (1 =v1(©)E] /Rgr 1()(z)(IéEI(X—y))au(y,éf)ﬁa’y

— 0k (E)I%‘I”/ FH ) (EI(x = yDap(y.§) dy,

Rn
where x,(n) = 27=1 n;j0j x1(n). This shows that

3
(aék&llz)(xv D) = Z Teual’xl )
=1

where the ! are symbols in 20_1 and the Xl are paratruncatures which satisfy the first and third properties
of Definition 2.5. By induction, (agau)(x, D) is then a finite sum of operators of the same form as
Ty, = Ty, x (of order < —|a|), and note also that the seminorms of the associated symbols are bounded
uniformly in p by a seminorm of a. Hence, Ty, (x — ()7 is a finite sum of operators of the form
P(x — )Ty, , where P is a polynomial (of degree < o), and consequently the problem is reduced to the
study of the operator (x — 1)° T, only. Now, the symbol of the latter can be written as

(x—)%au(x. )= é(l — Y1) Rn(x—y)“ﬁ_l(xl)(lsl(x—y))8§‘[(y—u)”]au(y,é) dy

la|<o

= 30 =@l [ F eI~ )8 = e (0.6 dy,
le|<L
where x§ and 6 are similar to x; and 6 respectively, and a® € Eg'od with seminorms bounded by
those of a. Hence, (x — )Ty, is a finite sum of operators of the same form as 7, whose symbols
have seminorms bounded uniformly in @ by a seminorm of a. Eventually, the lemma follows from
Theorem 2.6. O



WELL-POSEDNESS AND SMOOTHING EFFECT FOR GENERALIZED NONLINEAR SCHRODINGER 1251

Let us also recall the Garding inequality which will be used crucially to prove the smoothing effect
estimate.

Theorem 2.13 (sharp Garding inequality for systems). Let a(x, ) be a k x k matrix whose elements are

inS ;’”0 and which satisfies
{(a(x, &) +a*(x,£)8,¢) =0

for all £ € CK and all (x, &) such that |&| > Ag, where a* denotes the adjoint matrix of a and (- ,-) is the
usual hermitian scalar product of Ck. Then, there exist a nonnegative constant A and an integer N such
that, for allu € .7 (R", Ck), we have

Re(a(x, Dyuu) = —A  sup [[(E)P0%0al| oo lull?, .
la|+]BI=N 2

where A depends only on n, k and Ay.

Proof. See [Taylor 1991; Tataru 2002] for example. |

3. The paralinear equation

In this section, we solve the Cauchy problem for the paralinear equation, that is, the linear equation
obtained from (1) by applying Bony’s linearization formula (Theorem 2.10).

Recall that Q, is the cube u +[0, 1%, p € Z" and that Qy, is a larger cube with side length 2, for
example, u + [—%, %]n

Theorem 3.1. Given s € R, consider the following linear Cauchy problem:

{a,u =i Lu~+ Ty, .Vxu+ Tp, Vxit + Cru + Crit + f(x,1), ®

u(x,0) =ug € H5(R").

We assume that Cy and C are bounded operators in H*(R") and in H2(R"), that by, b, € 7, 0 > 0,

and more precisely that

b(x.6) = Y W uProp(x. 6, D lagul < Ag, k=12,

nest g ©)
supp(x > @ (v, E) S 05 sup [1(E)FILgy pllce <1,
|1Bl=No

and | Crll ccasys |Crll cas+2y < Ak> k = 1,2, No being a large and fixed integer. We further assume
that by (x, £) is even in £ and that f € L1 (R, HS(R™)). Then, problem (8) has a unique solution u which

loc

is in C(R, H*(R")) and satisfies, for all T > 0,

sup  [u@)F < A(luoll + I (JSf. T u)), (10)

—T'=t<T

1
I *2ullz < A(luoll§ + I (J°f, T w)), (11)
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where the constant A depends only onn, s, 0, T, A1, and A,, and the expression It (v, w) is a finite sum
of terms of the form
T
sup / (Guv, w)|dt
uez" J-T
with G, € Op S(()) o and the seminorms of its symbol (up to Ny) are uniformly bounded by a constant that
depends only on s, n, 0, A1 and A,.

Recall that [|u[[|7. = sup,, f_TT Jian (x — )20 u(x, 1) |? dt dx, where 6 > 1 is fixed.

Proof. Let us start by noting that the uniqueness is an obvious matter. Indeed, if «; and u, are solutions
of (8), then, 1 — u5 is a solution of (8) with uy = 0 and f = 0, and the conclusion follows from (10).

As for the existence, as is customary with linear differential equations, it will follow from the a priori
estimates (10) and (11) by using more or less standard arguments of functional analysis, and the proof of
Theorem 3.1 will consist essentially in establishing them.

Another useful remark is that it will be sufficient to prove the theorem in C(R4, H*(R")) instead of
C(R, H*(R")) and the estimates (10) and (11) on [0, 7] instead of [T, T']. In fact, if the theorem is
proved on R, one can apply it to v(¢) = u(—t), which satisfies a Cauchy problem of the same type
as (8). The result is then that v(—¢) will extend u to R_ and satisfy (8) on R_, in addition to the fact that
the estimates (10) and (11) are also extended to [T, 0].

So, let us assume that u € C([0, T']; H*(R")) is a solution of the Cauchy problem (8).

In what follows, it will be quite convenient to use the notation

w@ = sip  sup [(E)P%0L)l] .
1<j<N l|a|+|BI=N
and note that such a quantity is not a norm in general but it is well-defined for ¢ € S ?’ o- Note also that, if
M > 1, vn (@)™ < vy (@), a remark that will be often used implicitly.
In fact, the inequalities (10) and (11) will be deduced from the following ones:

Proposition 3.2. Assume that the functions ¢y ,, defining the by are C*°; that is, ¢y, € S? 0 k=12

Then, there exist a positive real number A and an integer N such that, for all R > 1, there exists a
pseudodifferential operator C € Op Sg o Such that, for all T > 0, any solution u € C([0, T']; H*(R")) of
the Cauchy problem (8) satisfies

sup [|Cu(t)|?
0<t<T

T
1 1
< I Cuol2 +2 fo (CTf.Cwldi+ Aswpon (e (RT sup [u(® + 217 Sl ).
73 0=<t=<

Moreover, regarding the operator C, we have the following precise bounds for v e H*(R") :

[Cvlls = Asupvn (@1, u)llvlls,
“w

A
[0l < 4 sup v (@1, Colls + T sup v (01,0 0]
7 u



WELL-POSEDNESS AND SMOOTHING EFFECT FOR GENERALIZED NONLINEAR SCHRODINGER 1253

Proposition 3.3. Under the same assumptions as above and with the same elements A, R, C and N,
there exist also pseudodifferential operators y;j(x, D) € Op S? 0’ j =1,2,3,4, such that, forall T >0,
any solution u € C([0, T]; H5(R")) of the Cauchy problem (8) satisfies

4 T
1
|||Js+zu|||2T 5A(1+T—|—Tsuva(<pk,M)) [sup] ||u||§+A E su /(; (W (x —w, D)J°f, JEu)| dt,
0,T "

Myk J=1[L€Z
1 4 T
175+ 2Cull|f < A(1+T +T sup vy (pk,p)) sup [|CullZ+A4Y sup| [(¢j(x—p. DYC J*f.C J*u)|di
w.k [0,T] =1 0

1 1
+ Asupvy (pr,) (RT sup_u(@)]2 + 17 Sull).
k,u 0=<t=<T

Admitting these propositions (see Sections 5 and 6 for their proofs), let us go on and finish the proof of
Theorem 3.1. In order to apply the above inequalities we have to regularize the by, k = 1, 2, by setting

O (3. £) = 1" [R KM= o )y and B = kg
“w

where y is a nonnegative C*° function with support in the unit ball and whose integral is equal to 1. Note
that ¢g ., m, has its support (with respect to x) in a compact set which is slightly larger that Q;‘; but this
has no effect on the proofs. Since we can write

oru =iLu—+ Ty, ,,-Vxu + Tp, . .Vxut + Cru + Cou + Jm»
where

fm=f+ Tbl_bl.m'vu + sz_bz’m.VL_l,

we can apply Proposition 3.2 to obtain

T
sup || Crmu|} < IICmuo|I§+2/0 Cm T fm, Cm I *u)| dt

[0,T7] 1 1
+ A sup vy (@ pm) (RT sup lull2 + 1175 *2ull),
k,[L [OaT]

where the operator C is denoted here by C,, to indicate its dependence on m. Now, clearly, we have

2 i 2
N @hpm) < AmN" sup sup (61080 1] o < Am™,
1<j=<N |BI=N

Hence,

T T
sup [|Cpu? < ||Cmu0||§+2f |(CmJSf,Cszu)|dt+2/ (CmI* T, —p, ,, Vi, Cy T u)| dt
[0,T] 0 0

T
1
+2 / {Cn* Thyby Vit Cn*w)| dt + Am™* (RT sup ull2 + 17+ ull3.),
0 [0,7]

and the problem now is to estimate the third and fourth terms in the right-hand side of this inequality.
This is done in the following lemma.
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Lemma 3.4. Let i stand for u or i, and o = inf{o, 1}. Then, there exists a constant A such that, for all

ke{l,2}, m>1, R>1and m' > m,
T

/ (CmI* Ty, —p, ,Vii, CuJ*u)| dt
o :

<

Am2N?  gm/3N? . 5 4 .
JS+§ 2 A 13N T 2 JS+EC 2 )
( o T TR )||| ullz + Am [21’1})] leelly + - I mu |7

See the Appendix for the proof of this lemma. Applying this lemma yields

T
A 1
sup [t = [ Cottol} +2 [ (Cond*f. Con )l dt + 175+ Gl
0,7] 0

Am2N2 Am/3N2 | )
+( v TR )IIIJS+2uIII2T+Am’3N RT sup [lulf,
m [0,7]

an inequality that we can improve, thanks to Proposition 3.3, as follows:

T
sup |Gl = | Consoll? +2 1(Cond*f, Con o0
[0,T1] 0
4 T N
A A(l+Tm
F S supf 10— DYC TS o) de + BT G
m= = wJo m [0,7]

Am>N? Ap3N? 1 2
+ + IS 2|3 + Am3N RT sup |u|?
(2 + 22 o up

T
< |Contoll2 +2[ 1(Cnd*f. Con w0 i
0
4 T N
A A(l+Tm
+ S s 10— e DYC I o) de 4+ PTG 6
m= = wJo m [0,T]

A 2N?2 A 13N2 4 T
+( " " )Zsup (W Cx— e, DVI*S, Tou) de

m'e + R

Am2N?  gm/3N?
+ + (14 Tm") sup ||u||2—|—Am/3N2RT sup ||u]|?.
10 R N N
m 0,77 [0.7]

Next, by taking m such that, for example, m° > 44 and T such that Tm®™ <1, we get

T

T 4
<2||Cpuo?+4 |(Cszf,Cszu)|dl+E sup| [(Vj(x—p, D)Cp J° f,CppJ u)| dt
0 . mJo
j=1

sup || Cue 2
[0,T]
4

2Am*N? 24m'3N? T
+( - ; )ZS“P (W) (x—p. D) IS f. TP u)| dt
; uJo

Jj=1

m'e + R

(Am2N2 Am/3N2

2
e An Y RT ) sup

[0,T]
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and by using the second part of Proposition 3.2, we obtain

sup [lul§
[0.7]

T 4 T
SAmZNz(m2N2||u0||s2+/ |(CmJSf,Cszu)|dt+§:sup/ |(1pj(x—,u,D)Cszf,Cszu)ldt)
0 ‘ w Jo
Jj=1

Am4N2 Am/5N2 4 T 5
(F+ 2 ) s [ 100y Cxmia. D)0 do o R. T sup
where R 5 s
Am4N AmlSN 5 Am4N
/ _ ISN
Cim,m,R, T)= e + R + Am RT + R

Finally, since m is fixed (and depends only on A), we take m’ such that Am*N 2/ m'? < %, then we take
R such that Am/5N2/R < % and Am“Nz/R2 < %, and last we take 7' such that Am’>N°RT < %. With
these choices, we have of course C(m,m’, R, T) < % which allows to bound supyg 77 ||u]|? and to get
(10) (and also (11), thanks to Proposition 3.3) with

T 4 T
IT(v,w):/ |(C*Cv,w)|dt—|—Zsup/ {C*yj(x —p, D)Cv,w)|dt
0 ., nJO T
j=1
+sup [ 100 (e = Dyv.w) .
w

In fact, we have proved (10) and (11) only for T = Ty and T, is sufficiently small. Let us show, if Ty < T,
that they hold true in the whole interval [0, T'] where the solution u is defined. Indeed, note first that the
Ty as determined above depends only on the constant 4 (so, only on n, s, 0, A1 and 4,) but not on the
given function (or distribution) f. Next, take a T; < T such that Ty = T /n, with some integer n; > 2.
Then, if we consider the function v(x,¢) = u(x, ¢ + T1), we note that v is a solution (defined at least in
[0, T —T4]) of (8) with v(0) = u(T}) and g(x,t) = f(x,t + T;) instead of f(x,¢). It follows from the
above arguments that v satisfies (10) and (11) for 7= T and hence for 7" = 7. Since
sup [lully = sup vl < A(lu(T)I5 + I, (J° g, J*v)) < A(llu (T + L1, (J°f, J*w))
[Ty,2T1] [0,T4] 5 s R s R
< A(Alluoll§ + ALz, (J°f. T u) + Ly, (J°f. T u))
< (A% + A(lluollf + Lz, (J°f. T*w)).
we obtain that u satisfies (10) and (11) for 7 = 27 and with the constant A2 + A instead of A. Repeating
this argument, we obtain that u satisfies (10) and (11) on [0,7,7T;] = [0, T] and with the constant
Z;“:l A7 ~ AT/T1 ingstead of A.
As for the existence, let us consider the approximating Cauchy problem
dru=iZLu+ Ty, Vh(eD)u+ Tp,Vh(eD)u + Ciu + Crit + f(x,1), (12)
u(x,0) =ug € H5(R"),

where £ is a nonnegative C* function on R” which is equal to 1 near 0 and has a compact support. It is
easy to see, if fOT || flls dt < +o0, that the above problem has a unique solution, denoted by u,, which is
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in C([0, T]; H%(R™)). Indeed, the Cauchy problem (12) is clearly equivalent to the integral equation
t
u=e"%uy+ / 'L (Ty Vh(eD)u + T, Vh(eD)ii + Cru + Caii + f(x,1")) dt’
0

and one can easily show that the map defined by the right-hand side of this equation is a contraction
in C([0, T¢]; H®(R™)) with some T, > 0 sufficiently small, which allows one to apply the fixed-point
theorem and to get a solution u,. Now, since T, does not depend on the data uy and f, one can extend
ug to a solution of (12) on the whole interval [0, T'].

The idea now is to let € tend to 0. This is possible because u, satisfies the estimates (10) and (11) and
even uniformly with respect to ¢. Indeed, it is sufficient to remark that the Cauchy problem (12) is of the
same type as (8) because we can write

Ty, Vh(eD) = T, .V,

where by o(x,&) = br(x,§)h(e) and by . satisfies the assumptions of Theorem 3.1 uniformly in e.
Hence, we have in particular

sup [luelly < Alluoll + AIT(J*f, I ue),
[0,T]
and it follows from the Calderon—Vaillancourt theorem that

T T 2
AL (IS, Toug) < AA" sup [uels / Ifllsdi < & sup ||us||§+%<AA/)2(/ ||f||sdr),
[0,T] 0 [0,T] 0

so that,
T
sup [luells < Alolls + A [ 1 £l dt. (13)
[0,T] 0

Next, to check the convergence of u,, let us consider v = u, — u,. It is clear that v is the solution of (12)
with ug = 0 and

f =Ty, V(h(eD) — h(e' D))ug + Ty, V(h(eD) — h(e' D))ii.

Therefore, it follows from (13) that

T
sup [|v]ls < 4 / | s, V(h(eD) — h(¢' D))ugr + Tp,V(h(eD) — h(e' D))ity |, dt. (14)
[0,T] 0
and from the boundedness of the 7}, in the Sobolev spaces that
T
sup ol = Ale | [ lsllazds = Ale =& sup g oz, (1)
[0,T7] 0 [0.77]
that is, thanks to (13),
T
sup [lue —uglls < A|8—8’|(||uo||s+z +/ I/ lls+2 dt), (16)
[0,T] 0
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which proves that (1) is a Cauchy sequence in C([0, T']; H*(R")) if one assumes that uy € H*T2(R")
and f e L1([0, T]; HST2(R™)). In this case, uy — u in C([0, T']; H*(R™)) when & — 0, and by passing
to the limit in (12), we obtain that u is a solution of (8). Moreover, by passing to the limit in (13), we get

T
wpmmsz0wau+[;wﬂhm). a7

[0,T]

Now, if we have only uy € H*(R") and f € L([0, T]; H*(R")), by density of the smooth functions,
we can take sequences (uo) in HS12(R") and (f7) in L1([0, T]; H12(R")) such that ||u0 — u0||s —0
and fo | 4 — flls dt = 0, and we can consider the solutlon ul of (8) associated to the data ”0 and f/.
Then, u/ — u¥ is the solution of (8) associated to the data u’ 0~ ”0 and f/ — f k_Hence, thanks to (17),

T
wpmﬂ—unssAowo—mms A|U7—fﬂnm)

[0,7]

which shows that (/) is a Cauchy sequence in C([0, T]; H*(R")) which is then convergent to some
u € C([0, T]; HS(R™)). Of course, u is a solution of (8) and satisfies the estimates (10), (11) and also
(17). This achieves the proof of Theorem 3.1. O

4. The nonlinear equation
Consider the nonlinear Cauchy problem

{a,u =iZLu+ F(u,Vyu,iu,Viit), t€R, x € R", (18)

u(x,0) = uo(x) € H*(R"),

where the function F(u, v, u, v) is sufficiently regular in C x C" x C x C" and vanishes to the third order

'Z:Zaij_zaij’

j<k j>k

at 0, the operator . has the form

with a fixed k € {1,2,...,n}, H*(R") is the usual Sobolev space on R"”, and s = 5 +2+ 0, 0 > 0.
Using Bony’s linearization formula, (18) is equivalent to

{Btu =i Lu+ Ty, Vyu+ Tp,Vyii + Ty u + Tyyu + R(u, Vu, i, Viit), (19)

u(x,0) =uo(x) € H(R"),
where R(u, Vxu,u, Vxu) is Bony’s remainder and
by =0y F(u,Vxu,u,Vyu), by=03F(u,Vyu,iu, Vyii),
a1 =0, F(u,Vyu,u,Vyit), ar=0;F(u,Vyu,iu, Vyir).

Recall that R(u, Vxu,it, Vxit) € Hz(s_l)_%([R”) if u e H(R"), s > 5 + 1. Note also that it follows
from Proposition 2.9 that the bj and a;, j = 1 or 2, are in H*~!(R") if u € H*(R"), s > % + 1, and that

16jlls—1 = CllullLoe. Vulloo)llulls.  Najlls—1 = ClullLee, [VulLoo) ulls,  j=1.2.
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Moreover, by introducing the notation
b(l) = 8UF(u(), qu(), ﬁ(), VxL_lo), bg = 8,—,F(u0, qu(), ﬁo, Vxﬁ()),
Cl(l) = auF(Ll(), qu(), L_l(), Vxl/_l()), Clg = 3ﬁF(u0, qu(), 120, Vxlz_lo),
the above Cauchy problem is in fact equivalent to
{8,u =i%u+ Tb(l)qu + Tbngﬁ + Ta(l)u + Tagﬁ 4+ R(u, Vyu,u,Vyit), (20)
u(x,0) =uo(x) € H*(R"),

where

R(u, Vxu, @, Vyit) = Ty _yoVxtt+ Ty, _po Vil + T, ot +T,,_0i + R(u, Vyu,ii, Vxil). (1)

ay—a
Clearly, the last Cauchy problem is of the same type as (8), which is studied in Theorem 3.1, and in

fact we are going to apply that theorem to
{atu =i1%u+ Tb?qu + Tbngﬁ + Ta(l)u + Tagl_l + £,

(22)
u(x,0) =ug(x) € HS(R").

This is possible because b? and bg satisfy the assumptions of Theorem 3.1. Indeed, it follows from the
Taylor formula and the assumptions on F that one can write for example

b) = 0y F(z) = uoG1(20) + VxutoG2(z0) +il9G3(20) + VxitoGa(zo). (23)

where zg = (ug, VxuUo, o, Vxilg) and G1, Gy, G3 and G4 are sufficiently regular and vanish at 0. Since
5, we know that the G;(zo) are in H* ~1(R") and it follows from (23) and Lemma 2.4 that b?
satisfies the assumption (9) of Theorem 3.1; that is, one can write

= Zal,ll«wl,l‘«’
w

where a1, = lgub) | gs—1, @10 = qub?/e1 4, and >, qu = 1 is a smooth partition of unity with
gu(x) = q(x — ) and supp(q) C Q. Note that we have precisely the bound

s—1>12

D Mgublllps—1 = C(luoll grs-111G1 o) | gra—1 + | Vxttoll rs—1 G2 (Z0) [ o

u _ _
+ ol frs—1 1G5 (zo) | grs—1 + [ Vxitoll grs—1 1 Ga(zo) | rs—1).

with some positive constant C. Of course, the same is true for bO Moreover, since ao and a(z) are bounded
(they are in H*~!(R")), the paramultiplication operators T, 0 and T, g are bounded in H*(R").

Now, by application of Theorem 3.1 to (22), let us con51der the umque solution of (22) with f =0
and denote it by U(t)uy.

Next, for T > 0, let us define the norms A (w), A, (w), A3(w) and A(w) by

1
AMw) = sup wls, Ar(w)=|I17"T2wl7, Asz(w)=sup [[d;wlls—2. A(w)= max A;(w),
(0,77 [0,T] 1<i<3
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the space Z by
Z={weC(0,T]; H*(R") : w(x,0) = up(x) and A(w) < K},

where the positive constant K is to be determined later, and, for w € C([0, T]; H*(R")), the operator Y

by
t
Yw(t) = U(t)ug +/ Ut —tYRw(), Vew ('), w(t), Vew(t))) dt’.
0
Let us first remark that Y w satisfies
{BtTw =i 2Yw+ TpoVa Yw + Ty Va Yw + T Yw + Tpo Yw + R(w, Vw, ., Vah), o
Tw(0) = uy,

and that a fixed point of Y will be a solution of (20), hence, a solution of (18). So, in what follows, we
are going to study A(Yw) in order to prove that Y has a fixed point in the complete metric space (Z, A).
Let us also note that since the life time 7" will be small, we can assume from now on that 7" < 1.

We start by applying Theorem 3.1 to (24). It follows from (10) and (11) that

max{A; (Yw)?, A2 (Yw)?} < A(luol; + IT(J° R, J*Tw)), (25)

where, for simplicity, R= E(w, Vxw, w, Vxw) and I7(u, v) is a finite sum of terms of the form

T
sup/ (Gpu,v)|dt,
nez" Jo

where G, € Op S(()),o and the seminorms of its symbol are uniformly bounded with respect to . Recall
that the constant 4 depends only on 7, s and u( and we remark right now a fact that will be useful later:
if we let u( vary in a bounded subset of H*(R"), it follows from the linear theory that we can take the
constant A in the above inequality that depends only on that bounded set. The same remark holds for
sup,, [|Gpllz(r2) or the seminorms of the operators G, uniformly in .

Thus, we have to estimate uniformly in p the sum

T T
T T
+/0 |(GMJsTa1_a(l)w,JsTw)|dt+/0 (G T, _yg. J* Tw)| dt
T
+/ G J* R(w, Vyw, 0, Vb)), JS Yw)| dt. (26)
0

First, let us consider the third term. It follows from the preceding remark, the Cauchy—Schwarz inequality,
the Calderén—Vaillancourt theorem and Theorem 2.6 that

T T
/0 (Gl Ty, _qow, J*Yw)| dt < Alla —ad)| o /0 lwlls I wl; dr,
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and from Proposition 2.9 that
lay —afllree < C(lwls)lwlls + Clluolls)luolls < CK)K + Clluolls)lluolls < 2C(K) K.

Hence,
T
/ |<GquTa1—a?w’ JYw)|dt < ATC(K)A(w)A(Yw) < ATC(K)A(w)A(Tw), 27
0

with a modified constant C(K).

The fourth term of (26) is treated in the same manner.

Now, let us estimate the first term of (26). Using a smooth partition of unity 1 =) .,u xv, With
Xv(x) = x(x —v) and x having a compact support, we can write

(G”’JSTb]—b(])wa’ JsTw>

— Z(J_%GMJSTXU(bI_b?)wa, TS Tw)

Vv
= Z(Gum<x — V)UOTXv(bl_b(l)) (x =) Hy(x —v)~9 TSI, (x —v) "0 1Ty,
Vv

where
Guy=(x —v)UOJ_%GMJs(x—v)_UO, H, = (x—v)_UOJ_S_%V(x—v)JO.

Next, it 1follows from thelpseudodifferential composition formula and from Lemma 2.3 that G, is in
Op S;_OE, H, isinOp S 17 (: °, and that their seminorms are uniformly bounded with respect to p and v.
Going back to the first term of (26), these considerations in addition to Lemma 2.12 allow us to estimate

it as follows:

T
0

T s+3 s+3
JSTz2w J T2 w
0 [of
<y [0 1Giuaw =V T oy (¥ =0 Bl | e | | ez |
v
T s+3 s+3
JSt2w J 2w
<A Y [ x0T e =0y dt
; o xv(b1—b7) LHT2) || {(x =)0 |4l (x = V)90 |,
T s+3 s+3
JST2w JST2Yw
<A by —bY)| o
< XV:/O I (br =07l H(x_v>ao =y |,

1 1
<4y sup lxv(by =Bl I1°* 2wl 172 Y wllr.
o [0,T

Now, it follows from the Taylor formula that we can write
by —bY = 3, F(z) — 3y F(zo)
= (w—u0)G1(20.2) + Vx(w —uo)G2(z0, 2) + (W — it0) G3(20, 2) + Vx (W — i19) G4 (20, 2),
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where, for simplicity, zg = (g, VxuUg, Ug, Vxilg) and z = (w, Vyw, w, V,w), and the G, are functions
of the form

1
/ Fy (2o + 7(c — z0)) d.
0

where Fj is a second-order partial derivative of F. Next, it follows from the assumption on F that
G (0,0) = 0 for all k£, from which one deduces easily that

lxw (b1 —b)llzee < C(ll(z0. 2) I zo0) l1xv(Z0. D)l Lo 70 (0. 2) [l Lo
where ¥, is similar to x,, and, by using the Sobolev injection, that is, Proposition A.5(i), that
Il xv (b1 —b(l))”LOO = C(|[(z0,2)|I L) ||Xv(ZO»Z)”Ha([o,T];Hs/) ||)~(v(20’Z)“Ha([o,T];Hs’)
= C(K) [l xv(uo, w)“HU([O,T];HS’-H) | Xv (o, w)||HU([0,T];H-Y/+1)’

where ¢ > 5 and s’ > 2. Thus, to obtain the summability in v of | x,(b; — b?)|| Lo, it is sufficient to
prove that ||y, (¢g, w) || Ho ([0,T]; > +1) 1s square summable in v. To this end and to get an explicit bound
for the sum, let us apply the interpolation inequality of Proposition A.5. This yields, by taking % <o<l1,

[l xv (uo, w)”H(r([O T HY+1)
= A”XV(“O? w)HLz( 0 T].Hs/+2) “XV(MO» w)”(;II([O T]'HS//
= A(”XV(Z’IO’ w)”LZ([O T, HS’+2) + ”Xv(uOv w)||L2([0 T; Hv’+2) ”Xval‘w||22([0,T];Hs”))’

where s” is such that (1 —o)(s' +2) +0s” =" + 1, thatis, s” = 5" +2 — E' One can choose s’ and o
such that s” = s —2, that is, such that s’ =5 —4 + % In fact, if o = % +¢, then s’ = 7 +0—4e/(1+2e),
which is larger than % if ¢ is small enough. With such a choice, we also have s’ +2 < s, so, the expressions
I xv @o. W 20,175’ +2) a0d | Xv9:w || 2 (0, 77, sy are both square summable in v, which shows that
lxv (g, w)|| Ho ([o,T];H+'+1) 1 itself square summable in v and that, by applying Holder’s inequality,

D 2T ][

v

1—0
<AL 00 g o+ A L1000 riny) (W00l g s
v v 4

< A(Thi (W) +(Thi(w)*) 2 (Ths(w)?)7) < ATA(w)?,

[

where, of course, the constant A changes from one inequality to the other. Consequently,

> lxw(br = b)) Lo < AC(K)T A(w)?,
v
which allows us finally to bound the first term of (26) as follows:

T
/ ‘(GMJSTbl—b‘I’VXw’ JsTw)‘ dt < AC(K)TA(w)*Aa(w)h(Tw)
° < AC(K)K*TA(w)A(Yw). (28)
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The second term of (26) is treated in the same manner.

Let us now consider the last term of (26). As above, let z stand for (w, Vxw, w, Vxw). As z €
H~1(R") = H%"'HQ(R”), it follows from Bony’s formula, that is, Theorem 2.10, that R(z) €
H26-D=3(R") = H5Te(R") and that

1RO ls40 < CAlls—1 < CE) w]ls.
Hence,
T T T
/0 (G T R(z). J5Yw)| di < A /0 I RE)s | Twlly df < AC(K) /0 lwlls| Y]l dr
< AC(K) Ty (w)hi(Yw) < AC(K)TA(w)A(Tw). (29)

Thus, we have bounded all the terms of (26), which leads to the estimate

max{A; (Tw), A2 (Tw)} < Afuolls + v ACK)TA(w)A(Tw), (30)

where the constants A and C(K) have changed of course.

It remains to estimate A3 (Y w). Recall that Yw satisfies the Cauchy problem (24). Hence, applying
Theorem 2.6 yields

19: Ywlls—2 = ITwlls + AT [l Loe + 163]|Loo) I Tw]ls—1

+ A(lafll Lo + a3 o) | Ywlls—2 + A(I1by = b7 | oo + b2 = b3 || Loo) [[wls—1
+ A(llar —alllzeo + laz — a3l o) [wlls—2 + | R(2) [l 5—2
< AlTwlls + A(Iby = bVl Loe + [1b2 = b [l Los
+llay —afllzes + llaz — @S|l Lo ) [wlls + | R(2)ls—2- (B1)

Now, as before, it follows from Proposition A.5 that

0 0 onl— 0
16 = bllzee < Allbj = b ooy = AIbs = bONE5%0 7y sy 105 = D oy mr57)-

where j = 1,2, 0 > 1, s/ > 5 and s” is such that (1 —o)(s" + 1) 4+ 0s” = s". In fact, we can take

s” = s —3, which corresponds to s = 5 + % —4=%+4+0+ % —2;s0,s" <s—2and if o is close enough
to %, then, s’ > Z. Therefore, with such a choice, we have
1—0

”b] _bj(')”LoO = A”bj - bj(')”LZ([O,T];Hs—l) + A”bj _bj(')”LZ([O,T];Hs—l)”atbj ”}'42([0,T];HS_3)'

Next, applying Proposition 2.9 yields

T
Iy =50 ey = [ Wy =B di

T
S/O (CUzlzoo)lizls—1 + Clzoll o) 1Z0lls—1)* dt < C(K) Ty (w)?,
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and
T T
100y oo rymemsy = [, 1G0FY @izl ydt = [ 1@uFY IR llnz s dr

T
< A/o 1@u F) ()13, 119:wll}_, di < ATC(K)*A3(w)?,
which imply that
1bj — B[l oo < AC(K)N'Th1(w) + AC(K)NVThi(w)' "7 A3(w)” < AC(K)VTA(w).

1263

Of course, the same inequality holds for ||a; —a;.) lLeo, j =1,2. Note that we have applied the following

classical lemma:
Lemma 4.1. If s > 5 and |r| < s, then H"(R").H*(R") C H" (R") with continuous injection.
Finally, it follows from Theorem 2.10 and Theorem 2.11 that

IR(2)|s—2 = 1R 240 = IR(2) = R(z0) |2 14 + [ R(z0) [ 240

= Cilllzllate. lIzoll nte)llz = Zollnte + Ca(llzollnta)lZ0ll 4o

< Cillwllago - Ntollago , Mllw—sollago y, + Colluolugo )ltollaso,

< C(K) Jw = uolluge 4, + Aluolge .
and, using once again Proposition A.5, we obtain

1—
sup = ol = Alw = ol ooy = Al =0l 3,1y 1y 10 =001 oy
N 7y .y

< Allw— UOHLZ([()’T];HAV’H) + Aljw — uO”lL;((y[O,T];Hs'-i-l) ||8tw||22([0,T];Hs”)
= A”w —Uo ||L2([0,T];HS) +4 ”w —Uo ”i;(a[O,T];HS) ”8tw ”12([0,T];HS_2)
< ANTA (W) + AVT A (w) " h3(w)° < AVTA(w),

wheres’=#+l<s, o>%, s”=#+2—éands”fs—2if0iscloseto % Hence,

s IR = Allollage ., + AC(K)VT A(w).
0,T

Thus, we have bounded all the terms of (31) and the result is that

A3 (TYw) < Ady (Yw) + AC(K)VTA(w)ri(w) + Aljuo| wio, +AC(K) VT h(w)

< Aluolls + VACK)TA(w)A(TYw) + AC(K)VTA(w), (32)

where, of course, we have used (30). Therefore,

AMYw) < Aluglls + VAC(K)TA(w)A(Yw) + AC(K)VTA(w)
< Alluolls + LACK)TA(w) + 1r(Tw) + AC(K)VT A(w),
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which leads to
M(Yw) < 24| uolls + AC(K)TA(w) 4+ 2AC(K)NT A(w),

that is, an estimate which is, by changing the constants and taking 7" < 1, of the form
A(Yw) < Alluolls + AC(K)VT A(w). (33)

This is the main nonlinear estimate. In fact, when ug # 0, by taking K = 2A4||ug||s for example, and

then, 7" > 0 such that
7o Alwols \ (1Y
“\AC(K)K 2AC(K)

it follows from (33) that A(TYw) < K when A(w) < K, that is, Y(Z) C Z. When uy = 0, it suffices to
take K > 0 and T < 1/4>C(K)? to obtain the same result.

Let us now show that Y : Z — Z is a contraction mapping. In fact, the arguments are similar to the
above ones and we shall be brief. If w{, w, € Z, then W = Yw; — Yw, satisfies the Cauchy problem

{atW =i ZW + Tyo Vi W + TygVa W + T oW + ToW + R(z1) — R(z2). .
w(0) =0,
where, as before, z; = (w;, Vxwj, w;, Vxw;j), j =1,2. Applying Theorem 3.1 to (34) gives
max{A; (W) A2(W)?} < AI7 (J*(R(z1) — R(z22)), JW), (35)
and, consequently, we have to estimate uniformly in w the integral
T ~ ~
| NG Ry = Rz, 22w
It follows from (21) that
R(z1)— R(z2) = T )09 V(W1 = w2) + T, ()b, (22) V2

+ Ty (21)=69 V(01 = W2) + Ty (2) b5 (22) V02

T Ty - W1 = w2) + Ty (z1)—a; (z22) W2

+ T z)-ad (W1 = 02) + Tayz)az(22) W2

+ R(z1) — R(z2). (36)

and we have to estimate the integral corresponding to each term of the above sum. Let us first consider
the terms of the third line in (36). By the same argument as that used to obtain (27), we have

T
/(; ‘(GMJS(TQI(ZI)_Q?(wl —w2) + Ty, (z1)=a) (z2)W2): S W) dt < ATC(K)h(wy — wa)M(W),

where we also applied Proposition 2.9 for the second term. Of course, we have the same estimate for the
integral corresponding to the terms of the fourth line in (36).
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As for the terms of the first line in (36), applying an argument similar to that yielding (28), one obtains

T
/0 HGﬂJS(TbI(zl)—b?V(wl —w2) + Ty (z)—by (z) VW2). T W) | dt
< A, C(K)T (Mw1)* A2 (w1 —wz) + AMwy —wa) A (w1) + A(w2)) Az (w2)) Ao (W)
< AC(K)T (M(w1)? + Mwi)A(wz) + A(wa)?)A (w1 — wa)A(W)
< AC(K)K*TA(w; — wp)A(W),

and the same estimate holds for the terms of the second line in (36).
Last, for the terms of the fifth line in (36), applying Theorem 2.11 and estimating as in (29), we obtain

/ (G (R~ R(). W) dr = 4 / er—zall Wl di < AC(K) / sl W
<SAC(K)T Ay (wi—wz)A (W)
< AC(K)T Mwi—w2)A(W).
Summing up and going back to (35), we can conclude that
max{A;(W)2, Ay (W)?} < AC(K)TA(w; — wa)A(W).

It remains to estimate A3 (). Using the fact that W satisfies the Cauchy problem (34) and an argument
similar to that yielding (32), we obtain

A3(W) < AAy (W) +AC(K)NVT (M(wy)h1 (w1 —wy)+A(w1—wa) A (w2))+AC(K)V T h(w; —wy)
< AN (W)+AC(K)NVT (Mw1)+M(w2)A(wi—wy)+ AC(K)VTA(wi—w,)
< VAC(K)TMw1—w2)A(W)+AC(K)VTA(wy—w>).

Summing up, we have obtained

AW) < JAC(K)T M(wy —wo)A(W) + AC(K)NT Mw; — ws).
Hence,
AW) < JACK)TA(wy —w2) + IA(W) + AC(K)VT M(wy — ws);
that is,
AW) = A(Tw; — Yw,) < AC(K)VT h(w; — w>),

with modified constants. This clearly implies, if 7" is taken small enough, that Y : Z — Z is a contraction
mapping and, thus, it has a unique fixed point # in Z which is a solution of (18). In fact, this is the
solution of (18) in C([0, T'], H®(R™)) because the above method gives the local uniqueness and we obtain
eventually the full uniqueness by applying a classical bootstrap argument. This proves the first part of
Theorem 1.1.

The second part of Theorem 1.1 concerns the continuity of the solution operator ug +— u# and we
start its proof by remarking that this operator maps bounded subsets of H*(R”) into bounded subsets
of C([0, T'], H*(R™)). In fact, if B is a bounded subset of H*(R"), as remarked at the beginning of this
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section, the constant A and the bounds of the seminorms of the operators G, can be taken to depend only
on B; that is, if ug € B, the estimates proven above and satisfied by T can be rewritten as

A(Tw) < A(B)|luolls + A(B)C(K)VTA(w), 37)
A(Tw; — Ywy) < A(B)C(K)VTAMwy — ws), (38)

where A(B) depends only on 7, s and B, which implies that the constants K and T can be chosen
depending only on B. Hence, for all uy € B, the associated solutions u are all defined on the same
interval [0, 7] and are all in the ball of radius K. As for the continuity, let B be a bounded subset of
H5(R"Y), uy, ug € B, u,u”* the respective associated solutions and w = u — u™* Then, w satisfies the
Cauchy problem
dw=i%w+ Du— D*u* + R— R* =i %w+ Dw + (D — D*)u* + R — R*,
. (39)
U)(x, 0) = MO(X) - u()(x)ﬁ

where
Dw = Tb(])Vw + TbgVu_) + Ta(l)w + Tagu_), D*w = Tb(l),*Vw + Tb(z),*Vu_) + Ta(l),*w + Tag,* w,
R = R(u,Vu,i,Vi) R* = R(u*,Vu*,a*,Vii*).

0

Of course, the bj(.), a;.) correspond to uo whereas the bj(.)’*, a j’* correspond to u5. Applying Theorem 3.1

gives us the inequality
max{A; (w)?, ko (w)?} < A(B)|uo —ul||? + AB)Ir (J5(D — D*)u* + R— R*), J5w).  (40)
As it can be seen easily by going back to (21), we can write
R—R* =Ty, (5)_p0 VW + Ty -ty ey Vu* + Tyou_yoVur*
+ sz(u)_bgVu') + Ty (uw)—byus) V™ + Tbg.*_bgVﬁ*

+17, ?w+Tal(H)—al(u*)”*+Ta?’* ou”

1(#)—a —a')
— %
ol
a

+ Taz(u)—a
+ R(u,Vu,iu,Vi)— Rw™, Vu*,ua*, V™), 41)

0 + Tayy-aru)l” + Ty

and we also have

(D — D*)u* = b(l)_b(l)* Vu* =+ Tb(z)_bg* VZ/_I* =+ Ta(l)_a(l),*u* + Tag 0,*1/_l*.

—a,

Using the same arguments as before to estimate the integrals corresponding to each of the above terms
yields

max{A (w)*, Ay (w)*} < A(B)|lug — ug ||} + Ay (B)Cy (K)T (h(w)|uo — uglls + A(w)?).,  (42)
which becomes, after a change of the constants and assuming 7" < 1,

max{A; (w), ka(w)} < A(B)|lug —ug s + A(B)C(K)VT(w). (43)
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Next, using (39) and similar arguments, one can easily get
A3(w) = A(B)C(K)([lug — uglls + A1 (w)),

which becomes, after use of (43) and a possible change of the constants,

Ay(w) < A(BYC(K) (luo w3 s + VT w)).
Hence,

Mw) < A(B)C(K) uo — uglls + AB)C(K)VT A(w). (44)

which, by taking 7' < (1/2A4(B)C(K))? (for example), leads to the Lipschitz estimate

AMw) = Au—u*) = 24(B)C(K)|uo — uglls, (45)

and this achieves the proof of Theorem 1.1.

5. Proof of Proposition 3.2

We shall only give the main steps for the convenience of the reader and refer to [Bienaimé 2014] for the
full details.

Let us start by remarking that it is sufficient to treat the case s = 0. Indeed, if v = J%u and vy = J5uy,
it is easy to see that u is a solution of (8) if and only if v satisfies

{a,v =i LV + Tp, .Vxv + Tp, Vi + Cro+ Cado + f(x,1),

v(x,0) = vy € L2(R"), (46)

where f =J5f and Cp = J5CJ 5 +[J%, Ty, .Vx]J 7%, k =1 or 2, and, thanks to the paradifferential
calculus, the Cj, are bounded operators in L2 (R").
The idea of proof is that of [Kenig et al. 1998], inspired by [Takeuchi 1992], and consists in constructing
a pseudodifferential operator C which is bounded and invertible in L2 (R") and estimating suppo,77 IICullo
instead of estimating directly suppo 77 [|#[lo- Since %(Cu, Cu)=(Cosu,Cu)+ (Cu,Cosu) and u is
a solution of (8), we obtain that
d
EHCuH% = (iC Zu,Cu) +(C Ty, Vu,Cu) + (CTp,Vii, Cu)
+(CCiu,Cu)+ (CCyu,Cu)+ (C f,Cu)
+(Cu,iCZu)+(Cu,CTp, Vu) 4+ (Cu,CTy,Vit)
+{(Cu,CCru) +(Cu,CCou) + (Cu,C f), (47)
and since
(i£Cu,Cu)+ (Cu,i¥Cu) =0,

we have finally

d
ICull} = 2Re((IC. £)+ C Ty, Yy, Cu) + 2Re(C Ty, Vi, Cu)
+2Re(Cu,C f) +2Re((CCiu, Cu) + (C Cyu, Cu)).
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The idea of [Kenig et al. 1998] is precisely to choose C so that the operator i[C, £]+ C T, V will be
small in some sense. Here, we will make a refinement by writing by = b} + ib with real b, b7, and by
considering the operator i[C, Z]+iC Tb/l/V instead. This has been already used_by [Bienaimé 2014]
and essentially allows one to construct a real operator C, that is, with the property Cu = C 1, which will
be convenient in certain arguments. Now, clearly,

[2Re((C Crut, Cu) +{C Cait, Cu))| < 2(Ay + AD)[C I, .

and integrating on [0, T'], T' < T, yields

T T
||Cu(T/)||§s||Cuo||§+2Re/ ((i[C,.Z]+iCTb§/V)u,Cu)d1‘—|—2Re/ (C Ty Vu,Cu) dt
0 0

T/ T/
—|—2Re/ (C Ty, Vi, Cu)dt +2Re/ (Cu,C f)dt
0 0

T/
21+ ADICI g T 49)

and our task will be to estimate appropriately each of the terms in the right-hand side of this inequality.
The most difficult one is

T
/((i[C,.i”]—l—iCTb/l/V)u,Cu)dt
0

and C will be constructed so that this term will be small with respect to some parameters to be defined
later. To this end, let us denote by ¢ the symbol of C and define

px,&) = =284 Ve (x, £) —e(x, £)b] (x,£) £, (49)

where £f = (£,...,&;,, —Ejo+1s---»—En) and l;’l’ is such that Ty = 15’1’(x, D); see (2). The problem
lies essentially in the fact that p(x,&) is not the true principal symbol of the pseudodifferential (or
paradifferential) operator i[C, £]+iC Ty V since C will be merely in the class OpSg’O. Nevertheless,
the constructed C will allow us to obtain good estimates.

Set ¢(x,&) =exp(y(x,§&)) and y(x,§) = Zuezn a1, ¥u(x, &), where the oy, are the coefficients of
by in its decomposition with respect to the ¢; ,, see (9), and the y, (x, £) are defined a little later. Note
here that one can assume the «; ; real (and even nonnegative) without loss of generality. We can then
write

px.8) =c(x.8) ) oy (26 Vayu(x. ) — G1,u(x.£).8),
uw
and this suggests considering the function
1 o0
me,0 =5 [ Im@r0 0o+ 58 6. s

One can show that such a function is smooth and satisfies, for all multi-indices «, 8,

195950, (x, £)] < Aa p s, 16) 810207 01 oo (x — )P ) 1A, (50)
'<
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and, moreover,
264 Vi (x, &) —Im(@y ) (x, £).6 = 0. (51)

See [Kenig et al. 1998; Bienaimé 2014] for the proof. To get an even function, we replace 7, by

Cu(x,§) = %(T?u(X, ) + nu(x, =§)),

which satisfies the same properties as 7, and then set
&1 R{x —p)
Yu(x,§) = 9(— V| —m— )Su(x.6).
g R & )"

where 6 and ¢ are smooth (real) functions on R such that 8(¢z) = 1ift > 2, 0(¢) =0ift <1, ¥ (x) =1
if || <1, ¥ = 0 outside some compact set and R is a large parameter that will be fixed later. One can
easily check that y, € S(()),o and that its seminorms are uniformly bounded with respect to  and R. The
following lemma gives the main properties of the operator C and its symbol

e, =exp(y (. £) = exp( L. 8)).
"

Lemma 5.1. (i) The symbol ¢(x, &) is real and even in &.

(ii) The symbol ¢(x, &) is in the class S(()),O. More precisely, forall o, B € N",

4

A 4 / i A
ogofece o)< 2o s s sup  EPOS0 1l e = T SuD a4 161

RIPU <j<ial4ipl 1w o<a:p=p
(iii) There exist N € N and A > 0 such that, for all R > 1 and all v € L*>(R"),

ICvllo = Asupvy(e1,u)lvlo.
uw

A
[vllo = Asup vy (@1,)IIClls + R SUp v (@1, Iv]ls-
w w

@iv) The symbol
PpOx,§) = =285 Viee(x, &) — e (x, £)b] (x, £).&
isin S(()) o and its seminorms (of order < M) are estimated by AR sup,, vas+1 (©1,0)-

Even if here the function ¢ , is more general, the proof follows the same lines as that of [Bienaimé
2014, Lemmas 3.5 and 3.6] and we refer to it. These properties are sufficient to allow us to get the
following estimates:

Lemma 5.2. Let b(x, §) be a symbol satisfying
0
b(x.§)= ) eupu(x.§). ¢u €SPy ) loul < Ao. 52)

uezn u
X = @y (x, &) is rapidly decreasing in x — [u,
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and let i stand for u or ui. Then, there exist N € N and A > 0 such that, forall T >0, T'€[0,T], R>1

and every H = h(x, D) in Op S? ., the following estimates hold true:

0,0’

) r ~ - A 1
@) /0 [((CTpV — (cb)(x, D)V)i, Hu)| dt < EllhllcN sup v (@1,) sup lollen Il J 2 ulllF-
w w

.. / . . 1 1
(i) [ [GIC.21+iC Ty Wy, Hu| di = Alhlen supv (o1, (RT sup ull + g 117 3ul}).
0 H [0,T]

/ S TS~ 2 2ull7
(iii) }([C,J TpJ V]u,Hu)!dthHhHCN sup vy (@1,) sup |oullen | T sup ||u||0+T .
0 u “ [0,T]

Remark. The case s # 0 in (iii) is needed in the Appendix.

Proof. Using the pseudodifferential calculus, we can write the symbol e(x, &) of the operator £ =
CTpV —(chb)(x,D)V ase = Zu ayey, where ey is given by

1 & (! .
w5 = | [ et et g us + y 0 £ dyanar 63
j=1

and we first remark thate, € Op S é o and that using the fast decrease of ¢y, (x, ) in x —u and integrations
by parts yields the fact that e, (x, ) is itself rapidly decreasing in x — p. Next, setting £, = e, (x, D),
we can write

(Eu, Hu) Zau wit, Hu) ZaM(H*EMﬁ,u)
“w

_Za“ X — )0 H (x — ) 7O (x — 1) Ey (x — )iy, uy),

where H = J_%H*Ji ~u = J_EE J~2 and uy = (x — M)_"OJ%u Now, it follows from the
pseudod1fferent1al calculus (Theorem 2.1) that A and E u are in OpS 0 0.0 and that we can estimate the
seminorms of H and E n by those of H and E, respectively. Moreover, it is easy to see that the symbol
of E w inherits the fast decrease in x — p which implies, by virtue of Lemma 2.3, that the operator
(x — /L)GOE {x — )90 is also in Op.S, 00 and that its seminorms are estimated by those of £, uniformly
in . The same property holds for the operator (x — ,u)”OH {x — )79, as it follows also from Lemma 2.3.
This allows us to apply the Calderén—Vaillancourt theorem to obtain

[0 (£, Hu) |dz<Z|au| f (=) T (x—12) ™0 12y e 10)% B =) [l 2yl 3

< A|| k|l o, sup Z ||(x—u)2”°3°‘8ﬂeullmo|||J2u|||T
Rl +181=M

A
= < laliem sup VA, (91, M)SUP lpullen: I 2ull3 (54)

%

which proves (i).
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To prove (ii), note first that the symbol of i[C, #] is given by

28 Vye(x, £) + (Lee)(x, €)

and that of i C T, bi/V can be written as

ic(x,é)l;i/(x,é&)-ié +

| 3 .
Qm)n Z/o /e PM0g; e (x. & +1m)0x; by (x + ».6).i§ dy dn dt.
j=1

Thus, the symbol of the operator i[C, Z]+iC Tb’{v is given by

(gxc)(xf)+p(X,§)+ie(X,€),
where p(x,£) is given by (49), e = ZM ayey and ey (x,§) is given by (53) with ay, = a;,, and

¢u = Im(¢q,,). Hence, applying Lemma 5.1 and the Calderén—Vaillancourt theorem yields the estimate

T/
/0 (((Zxe)(x, D) + p(x, D))u, Hu)| dt < ART ||| o~y sup vy, (¢1,M)2[Su]p] lulI3
I 0,

and applying part (i) gives the estimate

T/
. A 1
/0 ({GeCx, Dyu, Hu)|dt < S llhlcw, sup v, (91,02 I 2 ull 7,
uw

which proves (ii).
To prove (iii), we first treat the case s = 0 and note that the symbol of [C, T,V] = C TV —T, VC can
be written simply as e(x, £) —eg(x, £), where e(x, £) is the symbol of the operator E studied in (i) and

1
@m)"

n 1 . ~
eo(x,§&) = Z/o /e—’y"agj (b(x,&+1n).(§ +110)0x;c(x+ y,&) dy dndt.
j=1

Since g, (15(x, £).£) is of order 0, the symbol ey (x, &) is in fact in Sg o and the seminorms of eq are
estimated by a product of seminorms of b and ¢. Hence, by using the decomposition of b as above, we get

T/
/ |{eo(x. D)ii, Hu)| dt < AT ||kl oy sup lgwllon, sup v, (91,) sup Jullg,
0 w Iz [0,T7]

which, together with (54), yields (iii) in the case s = 0. If s # 0, it follows from the pseudodifferential
and paradifferential calculi that J*TpJ ™5 = T+, where b* = w9u ¥y and ¥y, is given by

Vu(x,§) =

e Sou(x + v, “Sdydn,
o | I s+ 16 dydy
which implies that ¥, is also rapidly decreasing in x — u and that it is in S ? o With seminorms estimated
by those of ¢,. This shows that the case s # 0 follows from the case s = 0 and achieves the proof of
Lemma 5.2. 0
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Lemma 5.3. Let b be as in the preceding lemma. Then, there exist N € N and A > 0 such that, for all
T >0, T'e€[0,T]and R > 1, the following estimates hold true:

1) If b(x,&) isevenin &, then

’ ) 1 i
| e TV, Culdr = aswuntonspliales (T sup ull+ 117 Hullr).
n w

0=<t=<T

@ii) If b is real, then

T/
1 1
Re [o (CT,Vu, Cu)di| < Asupon (g1 sup lgullon (T sup Jul}+ %I 2ullr).
u 7

0=<t=<T

Proof. Since C is real, we can write
(CTyVit,Cu) = (TpVCii, Cu) + ([C, TpV]ii, Cu) = (T, VCu, Cu) + ([C, Tp Vi, Cu).

Now, the integral corresponding to {[C, T V]u, C u) is treated by Lemma 5.2(iii). As for the other term, we
note that it is of the form (73 Vv, v), so it suffices to study such a term. Since b(x, £) is even in &, we have

(TpV,v) = {v. T, V) = (0, T; Vo) = (T3 V)"0, v),
and it follows from the pseudodifferential (or paradifferential) calculus that
(T;V)* =TV + E;. (55)
where £ is of type S ?,0 and its seminorms (up to some finite order) are estimated by those of 5. Hence,
(TpVo,v) = —(TpVv,v) + (E 0, 0),

and (Tp Vv, v) = %(Elﬁ, v), that is, (Tp VCu, Cu) = %(ElC_u, Cu), and (i) follows just by applying
the Calderén—Vaillancourt theorem and Lemma 5.1.
To prove (ii), we write as before

(CTpVu,Cu) = (TpVCu,Cu) + ([C, TpV]u, Cu),

and then apply Lemma 5.2(iii) to reduce the problem to the study of Re(7, VCu, Cu). Now, it follows
from (55) and the fact that b is real that we have

2Re(Tp,VCu,Cu) = (TpVCu,Cu) + (Cu, T,VCu) = ((TpV + (T, V)*)Cu,Cu) = (E;Cu,Cu)
and the proof ends like that of (i). The lemma is thus proved. O

It is clear now that applying Lemmas 5.1, 5.2 and 5.3 to the inequality (48) yields Proposition 3.2.

6. Proof of Proposition 3.3

By the same argument as that used in the beginning of the proof of Proposition 3.2, it is sufficient to
establish the first estimate in the case s = 0.
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The proof follows the same ideas as that of [Kenig et al. 1998; Bienaimé 2014]. The difference is that
here the Ty, , k =1, 2, are general paradifferential operators of order 0 instead of merely multiplication
or paramultiplication operators.

Since

dru =i Lu~+Tp, NVNu+Tp, Vu+ Ciu+ Cou+ f,
it = —i L+ Ty N+ Ty Vu+Crii+ Cou+ 7,

where the operators C, are defined by Cju = Cyit, one starts by remarking that the vector unknown

u

w = () satisfies the system

dyw=iHw+ Bw+ Cw + F, (56)

_(Z 0 _ TpV Tp,V (G G _ f
H_(O _"g)’ B_(TEZV TEIV ’ €= 61 62 ' F= f ’

and the idea then is to estimate the expression (Vw, w) by means of Garding’s inequality for systems via

(Y 0
v= (T 4,):

and W, is an appropriate pseudodifferential operator in OpS ? o to be chosen a little later. By using (56),

where

Doi’s argument. Here,

one gets easily
0 (Yw, w) = (Yo, w, w) + (Yw, d;w)
= ((i[[¥, H]+ B*V + VB + C*V + WC)w, w) + (VF, w) + (Yw, F), (57)
and, as one can check also easily, the principal symbol of the first-order operator

iV, Hl+ B*U + VB + C*¥ 4+ WC

is given by

—2iE.by(x,E)Yo(x,E) 264 Vo (x,£)—26. Im(b1 ) (x, £) Yo (. £)

where ¥y denotes the symbol of Wy. Now, for ¥, we shall make the following choice which follows the
idea of [Doi 1994]. Define

Mx.E) = (2$ﬁ,VxW0(x,S)j2§.lm(51)(x,§)w0(x,§) 268 by(x. £) o (x.£) )

" t
px.&) =" ey withh(z):/ (5)=29 ds.

j=1 0

Pu(x.8) = plx—w. &) + Ao Y (er |+l w)plx =, 6),
M/GZH

Yo(x,§) = Yu(x,§) = exp(—pu(x, §)).

Here, the «y - and «;  are the coefficients of by and b, in their decompositions with respect to the
@1, and @, s respectively, see (9), Ao is a large constant that will be determined later and p € Z"
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is fixed for the moment. However, from now on, we shall write W, and ¥, instead of W, and v to
emphasize the dependance on p. First, note that p, and ¥, are in S ? o and that their seminorms are
uniformly bounded with respect to u. Next, with these notations, the symbol M (x, &) can be rewritten as

—E4 Vi pu(x, ) —£.Im(by) (x. £) i£.by(x,§) )
M(x,&E) =2 , = - .
(8 =2 (4:5) ( it by(x.£) £V pp(x,6) — £ Im(By) (x, £)
Consider now the matrix Z(x, &) = —M(x,§&) — V(x, &), where
_ 20u(x.§)IEP (1 0)
Y=o o 1)

Z(x, &) is a matrix of symbols in S 1.0 and, in order to apply Garding’s inequality, we are going to show
that, for large £, it is a nonnegative matrix, that is, (Z(x, £)v, v) > 0 for all v € C2 In fact, Z(x, £) is of

the form
e (5 1),
where
o= Vyepu(x.&)— ﬁ +EIm(by)(x.6) and B =—if.by(x.§),

and it is sufficient to show that the two eigenvalues o + |B| of (% 5) are nonnegative, or, equivalently,
that o > | 8], that is,

2
€09 (. 6) = T+ £ () (1. 6) 2 |~ 6 ). 8)

Now, the main reason for the choice of the symbol p,, is that it allows to get the following inequality:

E Ve pu(x. §) =EF Vap(x — . 6) + Ao Y (el + oz w DE Vi p(x — ' 6)

wezn
%-2
= Z ey o Y (ol + o |>Z—2(,0
wezn =1 'uj)
|s|2 i
s 59
T B Ezn(lal“'”““')w — )20 >
that is,

fv X —L o o —|E|2 . 60
EVeputen O =g = A0 2 (el ey Vg )

u'ezn

Besides, we have

be(x &)= Y O wrw(x.£). k=12,
;L’EZ"
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and it follows from Lemma 2.8 that

(x = W) Gg pur (6, E)| < A),

with a constant A(n) which depends only on the dimension. Hence,

L <24 , L k=1.2
oo = VAW 2 e e K=

if |€| > 1, which, together with (60), implies (58) by taking Ag > +/2A(n). Thus, the matrix symbol
Z(x, &) is nonnegative, and since it is also hermitian, Z(x, §) + Z(x, &)™ is also nonnegative and we can

|i&.b(x. &) < Amn) Y el

uezn

apply Garding’s inequality for systems:

Re(Z(x, Dyw,w) = —A(1+ sup sup [(£)#10%08 s v lloo) lw]]3, (61)
lel+IBI=N k,u/

where the constant A depends only on A1, 4, and the dimension » and the integer N depends only on
the dimension n. Now, going back to (57), we can rewrite it as

3 (Yw, w) =((=Z(x, D)= V(x, D) + E)w,w) + (VF,w) + (Vw, F),
where E is a bounded operator in L2(R"), and integrating it on [0, T'] yields
T
/ (V(x, D)yw,w)dt = (Yw(0), w(0)) — (Yw(T), w(T))
0 T T T T
—/ (Z(x, D)w, w) dt +/ (Ew,w) dt —I—/ (WF, w)dt +/ (Yw, F)dt.
0 0 0 0
Taking the real part, using (61) and estimating, we obtain
T
Re/ (V(x, D)yw,w) dt
0

< A sup ||w||0+AT(1+suva(<pku) sup ||w||0 ‘/ (WF, w)dt|+
[0,T] k.

/ (Ww, F) dt|,

and since ¥, (x, §) > exp(—A4) and, for |§] > 1,
4 & (10
vzt (o),

a second application of Garding’s inequality gives us

T
Re/ (J%(x —M)_zaoj%w, w)dt
0

T
< A sup ||w||(2,(1 +T + T sup vy (k) + ‘/ (WF, w) dt‘ +
[OaT] k,,U// 0

T
/(\Ilw,F)dl,
0

with a modified constant 4. Since we can write

(WF,w) = (Y f,u) — ("le/«f’ u)
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and a similar expression for (Vw, F), by going back to u, we get eventually

f o)™ "012u||0dr<Asup 314747 sup v i)

/| ,qu|dl—i—/| ,quldt—l—[|\llfu|dt+/| wfou)ldt,

which yields the first part of Proposition 3.3 by taking the supremum over all u € Z".
As for the second estimate of Proposition 3.3, we first remark that, since C is real, C u satisfies

9 Cu=i2Cu+ Ty .VCu+ Ty, VCu+ CiCu+CyCu+ .
where k = 1,2, by = b} +ib] with real b7, b{, and
J = ([C. 21+ C Ty V)u +[C. Ty .Vl +[C. Ty, V)i +[C. CiJu +[C. Cali + C f.

Hence, we can apply the first estimate of Proposition 3.3 to C u obtaining

|||JS+2Cu|||T <A(1+T + T supvn(¢k,.)) sup ||Cu||2+Zsup/ (W u IS, TS Cu)|dt, (62)
k., j=

where W; ,, = ¥ (x — u, D). Thus, we are led to estimate essentially the terms
T
/0 (J°GIC. 2]+ C TipV)u, v, J Cu)| dt
T T
+ /0 (J°[C, Ty, VDu, W}, I Cu)| dt + [0 (J°[C. Tp, Vi, ¥, J*Cu)| dt.

Indeed, since the operators W; , J°[C, C;]J ™ and ¥; , J°[C, C,]J ™ are bounded in L? (and so is
J*C J7%), the corresponding terms are easily estimated by

AT supvn(g1,) sup [u(d)|?.
n 0=<t<T

We need now for the other terms the following simple lemma:

Lemma 6.1. If a € So o» then, for any real s,
J%a(x,D)J* =a(x, D)+ e(x, D),
where e € Sg”o_ U and the seminorms of e are bounded by those of a.

Proof. It suffices to apply the pseudodifferential calculus and to remark that

e(x,§) =

n 1 ] B
(2,,),,; /0 / Mg, ((§ +10)*)dx; a(x + y, ) (E) ™" dy dn dt. O
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We apply the lemma successively with
a(x, D) =i[C, Z]+ CTib/{V,
a(x, D) =][C, Ty, V],
a(x, D) =[C,Tp,.V].
Since here m = 1, we obtain that at each time the operator e(x, D) is bounded in L? and that its operator
norm is estimated by the seminorms of a. Next, it follows from the pseudodifferential calculus that
\IJJ* u € OpS ? o and their seminorms are uniformly bounded with respect to 1, and, consequently, also

that \IJJ* MJ SCJ5 e OpSg o and their seminorms are uniformly estimated by those of C'. Hence, the
integrals corresponding to the operators e(x, D) are easily estimated by

ART sup v (¢x,u) sup [lu()]3.

k,u 0<t<T

Thus, it remains to estimate the sum

T
/|((i[C,.$]+CT,«b/l/V)Jsu,lI/]’-“,MJSCuHdt
0

T T
+/|([C, Tb/l.V]Jsu,\If;MJsCu)\dt—i—/}([C, Ty, .V1J%a, W}, J°Cul)|dt,
0 0

to which we apply Lemma 5.2 with S = \IJJ* U $C J~5. We obtain eventually

T ~
Zsup/ (W S f, TS Cu)ldt

=1 M
T
1 1
<3 sup/ (W),0d*C £, T Cudl di + Asup v @i,)(RT sup [lull2 + L I17° ull),
o mJo ko [0,T]
which, together with (62), implies the second estimate of Proposition 3.3.

Appendix

Proof of Lemma 3.4. We need the following general estimate:

Lemma A.1. Let b satisfy

b(x, &) = D aupu(x.8), D laul =< Ao,
wer " (63)

supp(x > ¢ (x,£)) € QF, sup sup [|(§)/P10f g, Lo < o0,
K |BI=No

where Ny is a sufficiently large integer, and let ui stand for u or u. Then, there exist N e Nand A > 0
such that, for all T > 0 and every S1 = s1(x, D), S = s2(x, D) in Op So o> We have

T
[0 (1T TyJ ~*Vii. Syu)|dt < Allsillen Isallen sup sup [1(€)P10 gyl oo 17 2013

Ko |BI=N
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Proof. One can write
(S1J5TpJ ~SVil, Syu)
= 0 (81T T, J Vit Syu) = Y (S5 S1J° Ty, J Vi, u)

w

=3 ap{(x — )OI TESES I Ty, JTIVI T (x — )0 (x — )00 2, {x — ) 0T 2
w

= Zau(Su<x — )Ty, (x — ) J iy, “u)
w

where

S, = (x—,u)""J_%S;‘Sl JHx—p)7%,  J,= (x—;L)_"OJ_SVJ_% (x=p)%,  u, = (x—u)_"OJ%u.
Now, it follows frlom the pseudodlfferentlal calculus (Theorem 2.1) and from Lemma 2.3 that S, and
Jy, are in Op S 0, o2 and Op S 0.0 respectlvely, and that we can estimate their seminorms umformly in Q.
Next, it follows from Lemma 2. 12 that the operator norm of (x — )70 Ty, (x —u)°° acting in H*~ 2 (R™)

is estimated by sup|g<x [I{§) 18135 £Pu || oo uniformly in . Hence, the application of the Cauchy—Schwarz
inequality and the Calderén—Vaillancourt theorem allows us to obtain

/ (S1J5T,J ~SVii, Syu)| dt

< D 1wl 1Sull wars—172, 121 (x = 1) Ty, (x = 1) | s rrs—12) 1l o2, mr-172) / 1§ dt

n
< Alisillenlisallen sup sup [18)'108 gyl oo 17 2ull3-
m|BI=N
which proves the lemma. O

Now, let us write Ty, —p,. . = Tp,—b, . + Tb, .y by, @0d apply Lemma A.1 first to b = by — by p
with §; = S, = C;,. We obtain

T
/ |(CszTbk—bk o Vil CpJu)| dt
0 ,

T
_ / (Cond* Thy ., J 5V, C) | d

<AsupuN(go1,Lm) sup sup 16) P12 (e — O Loe 1T 20]|3-
<N
m2N? BB Lis 12 2N? Lis 1o
= A= sup sup [[(E)Poger pllce 7= ull7 = A= ||/ 2 ull7,

K |BI=N
where v = Ju and o = inf{p, 1}. As for the study of the other term, we write
(CszTbk,m/—bk_mVﬁ, CnJ u)

= (CmJSTbk’m,_bk_mJ_sz), Cnv)

= (J*Thy b d " VCn 0, Con0) + ([Cons I T,y 1y V1T, Cnv),  (64)

_bk.m
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and then apply Lemma 5.2(iii) to the second term in (64) to obtain

T
f (o T,y T~ V]G, Co)| di
0
1 1
< Asup ‘)N(‘Pl,pd,m)2 sup ”‘/’k,u,m’ _(Pk,u,m”CN (T sup ”v||(2) + §|||J2v|”%")
<A™ N £ m™)(T sup [l + 1175 Hul3)
[0.T] R

2 1 L
< Am NN (T sup Ju)2 + 215 3wl ).
[0,T]

Finally, recalling that C,,u = C,,u and applying Lemma A.1 to the first term in (64) with S; = S, =1d,
we get

T
/ |(JSTbk m/_bk }nJ_SVCmﬁ,CmUHdt
0 . s

1
< Asup sup [(E)P10 (@ om0k )| ov 172 Crv I3
u |BI=N

1
< A(sup sup (&AL (r o mr—k ) oo Fsup sup 16)P0f (@1 =t ) 1o ) 1172 Corv I
K |BI=N K |BI=N

A A
s( U)sup sup 1(6)410 01 ullco 17 Crvll3
m'e  m u |BI=N

A A 1 5 A 1 5
< (m ma)lllhcmvulTanchmvuu.
It remams to compare |||‘]2Cmv|||2 = |||J2C Jsu|||2 with |||Js+2 mu|||2 Of course, one can erte

J2C JSu = Js+2J_sCszu and it follows from Lemma 6.1 that J ~ sCsz Cy=FE,isin OpS
and the seminorms of E,, are bounded by those of Cy,. Hence, since J* +3 EnJ 5 isin Op SO 0>

1754 Elfy = sup | / v — 1) =00 153 By dix i

//le+2E u|? dx dt

< Asuva(<p1,M m)? / /|Jsu|2 dx dt < ATm*N’ sup |lul|?
[0,T]

and
1 1 2
12 Cpv|l3 < 20|52 Cppul||3 +24Tm*N sup lullZ,
0,7

which implies that

T
s A |
[ (T Ty = > VCr®, Cyv)| dt < ﬁ|||JS+2Cmu|||2T + ATm*N? sup ||ul%,
0

E
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where, of course, the constant 4 has changed. Summing up, we have proven that

T
/ |(CmJSTbk_bk,n1Vﬁ’ CszLl)ldl

Am2N2

1 A 1
”|JS+2u|||T + Am/ZN +N(T [Sup] ”u“S |||Js+2u|||%") + ﬁ””s—i_z mu|“%"’ (65)
0,T

that is, we have proven Lemma 3.4.

Anisotropic Sobolev spaces. There are several notions of anisotropic Sobolev space in the literature.
However, we have not been able to find a reference with the results we need in this paper. Therefore, we
are going to define our spaces and next prove the results we need.

We denote by (x, y) the variable in R” x R" and by (&, n) its Fourier dual variable.

Definition A.2. If 5,5’ € R, we denote by H** (R" x R"") the space of tempered distributions u in
R” x R"" such that the integral

/Rn i (€)Y (> aE, n)|? dg dn )
is finite.

We call this space an anisotropic Sobolev space. Note that this is different, for example, from the
classical space H"> of [Lions and Magenes 1968]. Clearly, H*S'(R" x R"') is a Hilbert space when it is
provided with the obvious scalar product. We also denote by ||u||s,s the norm of u in this space and, of
course, it is equal to the square root of (66).

Additionally, note that the space H** (R" x R"") in the above definition coincides with the space
HS(R", HS' (R"")) and, by symmetry, with H* (R", H* (R")).

In this paper, we need the following two results on anisotropic Sobolev spaces. The first one is the
Sobolev injection:

Proposition A.3. If s > 5 and s’ > 5 " then H>' (R" x R"") C L®(R" x R"") with continuous injection.
Proof. If u € H*, then
ag.m) =€) () () aE. m);

hence, it € L?.L? C L' and ||u||p < C||@t||;1 < C’|lu|ls,s'» where C and C’ are constants which are
independent of u. O

The other result is an interpolation inequality:

Proposition Ad. If s = (1 —0)s; + 053 and 5" = (1 —0)s| + 05), where 6 € [0, 1], 51,52.5].55 € R,
then, for any u € H151(R" x R") N HS2:52(R" x R"), we have

1-6 6
el < el 20 el
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Proof. Indeed, we have

”u”éZ"S/ — /R . /(§>2(1—9)S1+2952(n>2(1—9)s1+20s2|a($’ n)|2 d:‘;: d’?
1 Rn

= /R,,X[Rn/(@)Sl (n)s/l 4 (€, n)|)2(1—9)(<§)sz(n)s’zm(s’ 77)|)29 dt dy

1-6 0
< ([, ermiacardsa) ([ @micnrdsa)
R xR R x[R"

4

2(1-9
= Jull3 5 Null2Y .
where we have applied Holder’s inequality. O

Actually, we need the above results for anisotropic Sobolev spaces on domains Q2 in R” x R", and
since the theory of such spaces is less simple, we shall restrict ourselves to the case that arises in this
paper, that is, the case 2 = I x R” where [ is a bounded interval in R, and only to the case s > 0. First,
let us set, by definition,

HS'(Q) = H'(I, H* (R")),

in the sense that u(x, y) is in H** () if and only if

025 ue LX(Q) for a| <s

and

8“Jsux B“Jsux/, 2
/ | ()= )l dxdx'dy <oo if0<o=s—[s]<]l.
I < IxR"

|x —x/[1+20

Of course, the norm in this space is defined by

lullyyo= Y 10575 ull}q) ifseN.

la|<s
and
|80‘JS u(x,y)—0o%Jy u(x/,y)|2
2 )
||M||s e E ||3°‘Js ””LZ(Q) + /Ix1an i~ —x’|1+2°’ dx dx'dy otherwise.

lee|=[s]
Now, we can prove for H* ’s/(Q) the results analogous to the above ones.

Proposition A.5. (i) If s > 5 and s' > %, then H* ' (Q) € L% () with continuous injection.

) If s=(1—0)s1 +6s, and s'=(1- 9)s1 + 055, where 6 € [0,1], 51 >0, 55 >0, 57,5, €R, then
there exists a constant C such that, for any u € H"! 51 QNH 528 (), we have

0
luls.e = Cllulll8 Qlul?, ,, o

Proof. Since we cannot use directly the Fourier transformation, the idea is to construct a bounded linear
extension operator
Po i H™'(Q) - H* (RxR"), (67)



1282 PIERRE-YVES BIENAIME AND ABDESSLAM BOULKHEMAIR

that is, it satisfies Pqu|g = u, forallu € H S’S/(SZ). Indeed, assume that such a Pq exists. Then, for
u € H(Q) with s > % and s’ > Z,

lull Loo() = | PoullLo(@) < [ PoullLoe®xrn) < C || Poulls,s < C'|lullsy .

where we have applied Proposition A.3 and the boundedness of Pg, and this proves (i).
Furthermore, under the assumptions of (ii), we have

”“”s,s’,ﬂ = ”PQ“”s,s’,Q < || Pouls,s,rxrn,

and it is a classical fact that there exists a constant C such that, for all v € H*(R%),

¢ — 9@ N2
> 100 aguy + [, S deav < e

d+2o
RIxRd |X — X’
|oe] <[s] | |

now, applying this inequality to v(x) = J ys/ Pqu(x, y), with d = 1, and integrating with respect to y
gives

2 2
IPoull§ ¢ pxpn = Cll Poulls s

Finally, applying Proposition A.4 and the boundedness of Pg yields

el el 1-6 0 1-9 9
lulls.sio = VCl Paullss = vV Cll Poully ol Paullg, o, < Cllu] [[ul

52,85 51,857,217 sa,55,Q°

which establishes (ii).
It remains to construct Pgq as in (67). In fact, the classical theory of Sobolev spaces already provides a
bounded linear extension operator

Pr:H(I)— H*(R) (68)
such that Pyu|; =u forallu € HS(I). Ifu € H55'(Q), let us set
Pou(x,y) = (Pr)xu(x, ).

Clearly, this defines a linear operator such that Pou|g = u. Let us show the boundedness of Pg :
H“/(Q) — HS’S/(IR x R™). It follows from the definition that x J)f/u(x, y) is in the Sobolev space
HS(I) for almost all y € R". Hence, x (PI)nys/u(x, y) is in HS(R) for almost all y € R” and there
exists a constant C which depends neither on # nor on y such that

ICPD)x Ty ux, YEs@ < CIJy ulx, p)gsy forae yeR™
Since (Pr)x JJf/u =J ;/PQ u, this inequality can be written more explicitly as

AlJ;J;/PQU(X,y)|2dX§C2 Z /I|8§Jys/u(x,y)|2dx

lee|=<[s]

o 025 u(x, y) — 0% J5 u(x", )|
+ IxI |x_x/|1+2cr

dx dx’ forae.yecR"
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Integrating over R” with respect to y gives

2 241,112
[ Pullsy = Collulli .

which proves the boundedness of Pg and achieves the proof of the proposition. O
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