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THE SHAPE OF LOW ENERGY CONFIGURATIONS OF
A THIN ELASTIC SHEET WITH A SINGLE DISCLINATION

HEINER OLBERMANN

We consider a geometrically fully nonlinear variational model for thin elastic sheets that contain a
single disclination. The free elastic energy contains the thickness h as a small parameter. We give an
improvement of a recently proved energy scaling law, removing the next-to-leading-order terms in the
lower bound. Then we prove the convergence of (almost-)minimizers of the free elastic energy towards
the shape of a radially symmetric cone, up to Euclidean motions, weakly in the spaces W 2,2(B1 \ Bρ;R3)

for every 0< ρ < 1, as the thickness h is sent to 0.

1. Introduction

1.1. Setup and previous work. The present article continues a program [Müller and Olbermann 2014a;
Olbermann 2016; 2017] to explore thin elastic sheets with a single disclination from the variational point
of view. The free energy that we consider consists of two parts: (1) the nonconvex membrane energy,
which penalizes the difference between the metric that is induced by the deformation and the reference
metric, which is the metric of the (singular) cone; (2) the bending energy, which penalizes curvature. The
bending energy contains a factor h2, where the small parameter h is to be thought of as the thickness of
the sheet (see (1) below for the definition). Choosing the cone as configuration, one gets infinite energy:
While the membrane term vanishes, the bending energy is infinite for this choice. Energetically, there is a
competition of the membrane and the bending terms; neither will vanish for configurations of low energy.

Intuitively, it seems quite clear how configurations of low energy should look: they should be identical
to the cone far away from the disclination, and near the disclination, there should be some smoothing of
the cone, at a scale h (the only length scale in the problem). For such configurations, one gets an energy
of C∗h2 log(1/h) plus terms of order h2, where C∗ is an explicitly known constant; see Lemma 4 below.
It is natural to conjecture that such a scaling behavior should indeed hold true for minimizers. However, a
proof of an ansatz-free lower bound with the same scaling is much more difficult than the straightforward
construction for the upper bound. In the literature, lower bounds for this setting have been ansatz based
[Lidmar et al. 2003; Seung and Nelson 1988; Yavari and Goriely 2013], or have assumed radial symmetry
[Müller and Olbermann 2014a].

The idea underlying the recent proofs of ansatz-free lower bounds [Olbermann 2016; 2017] is to control
the Gauss curvature (or a linearization thereof) by interpolation between the membrane and the bending
term energy. The control over the Gauss curvature allows for a certain control over the Gauss map (or
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the deformation gradient). This information in turn yields lower bounds for the bending energy, using
an inequality of Sobolev/isoperimetric type. For the corresponding result from [Olbermann 2017], see
(2) below. This lower bound does not quite achieve the conjectured scaling behavior, in that there exist
next-to-leading-order terms O(h2 log log(1/h)) which are not present in the upper bound.

Here, we are going to improve the results from [Olbermann 2017] in two ways: First, we give an
improved lower bound for the elastic energy, which proves the conjecture that the minimum of the
energy is given by C∗h2 log(1/h)+ O(h2). The observation that allows for this improvement is that
it is unnecessary to use interpolation to control the Gauss curvature and the Gauss map (or rather, the
linearized Gauss curvature and the deformation gradient). It is enough to use the membrane energy alone
to obtain the necessary control, and make more efficient use of the Sobolev/isoperimetric inequality.

Second, we use this improved lower bound to show a statement about the shape of configurations that
satisfy the energy bounds. We prove that (almost-)minimizers converge to the conical deformation, up to
Euclidean motions. It is remarkable that that much information about deformations of small energy can
be obtained, considering that we are dealing with a highly nonconvex variational problem. Hitherto, such
results had only been achieved for situations in which the energy scales were O(h2) or less [Friesecke
et al. 2002; Pakzad 2004; Hornung 2011a]. The results of these papers will also play an important role in
our proof.

1.2. Statement of results. Let B1 := {x ∈ R2
: |x |< 1} be the sheet in the reference configuration. The

singular cone may be described by the mapping y1 : B1→ R3,

y1(x)=
√

1−12x +1|x |e3.

Here, 0<1< 1 is the height of the singular cone, and is determined by the deficit of the disclination at
the origin. The reference metric on B1 is given by

g1(x)= Dy1(x)T Dy1(x)

= (1−12)Id2×2+1
2 x̂ ⊗ x̂

= Id2×2−1
2 x̂⊥⊗ x̂⊥,

where x̂ = x/|x | and x̂⊥ = (−x2, x1)/|x |. The induced metric of a deformation y ∈W 2,2(B1;R
3) is

gy = DyT Dy.

The free elastic energy Ih,1 :W 2,2(B1;R
3)→ R is defined by

Ih,1(y)=
∫

B1

(
|gy − g1|2+ h2

|D2 y|2
)

dL2, (1)

where dL2 denotes two-dimensional Lebesgue measure. In [Olbermann 2017], we proved the existence
of a constant C = C(1) > 0 such that

2π12h2
(

log 1
h
− 2 log log 1

h
−C

)
≤ min

y∈W 2,2(B1;R3)
Ih,1(y)≤ 2π12h2

(
log 1

h
+C

)
. (2)
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Our first aim in the present article is to improve the lower bound for the free elastic energy. The
improvement consists in getting rid of the log log(1/h) terms on the left-hand side:

Theorem 1. There exist positive constants C1,C2,C3 that only depend on1 with the following properties.
First,

2π12h2
(

log 1
h
−C1

)
≤ min

y∈W 2,2(B1;R3)
Ih,1(y)≤ 2π12h2

(
log 1

h
+C2

)
(3)

for all h ∈
(
0, 1

3

)
. Furthermore, if y satisfies

Ih,1(y)≤ 2π12h2
(

log 1
h
+C2

)
, (4)

then ∫
B1\BR

|D2 y|2 dL2
≤ 2π12 log 1

R
+C3 for all R ∈ (3h, 1), (5)∫

B1

|gy − g1|2 dL2
≤ C3h2. (6)

As a consequence of Theorem 1, we will be able to prove convergence of (almost)-minimizers of the
functional (1) towards the singular cone as h→ 0:

Theorem 2. Let yh
∈W 2,2(B1;R

3) be a sequence with

Ih,1(yh)≤ 2π12h2
(

log 1
h
+C2

)
.

Then there exists a subsequence yh(k) and a Euclidean motion T such that for every 0< ρ < 1,

yh(k)⇀ T y1 in W 2,2(B1 \ Bρ;R3). (7)

1.3. Scientific context. In the proof of Theorem 1 we show a certain focusing of the elastic energy near
the disclination. Phenomena with such elastic energy focusing are also observed in many other settings.
In particular, crumpled elastic sheets display networks of vertices and ridges. The investigation of these
“sharp” structures in the physics community started in the mid-1990s. For a historical account and an
exhaustive list of references, see the very recommendable overview article [Witten 2007]. There has
been quite some activity in the analysis of ridge-like structures in particular; see [Lobkovsky 1996;
DiDonna and Witten 2001; Lobkovsky and Witten 1997; Kramer and Witten 1997; Lobkovsky et al.
1995; Venkataramani 2004]. Energy focusing in conical shapes has been investigated in [Ben Amar and
Pomeau 1997; Cerda et al. 1999; Cerda and Mahadevan 1998; 2005]. Disclinations in thin elastic sheets
are particularly interesting as a modeling device for icosahedral elastic structures. This is a popular model
for virus capsids [Seung and Nelson 1988; Lidmar et al. 2003] or carbon nanocones [Romanov 2003],
the structure one obtains when inserting a single five-valent vertex into a graphene sheet (of otherwise
six-valent vertices). The disclinations are located at the vertices of the elastic icosahedra.

In the mathematical literature on thin elastic sheets, there have been two strands of investigation: On
the one hand, there are the rigorous derivations of elastic plate models from three-dimensional finite
elasticity by means of 0-convergence; see [Friesecke et al. 2002; 2006; Lewicka et al. 2010]. On the
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other hand, there has been quite some effort to investigate the qualitative properties of low-energy states
in the variational formulation of elasticity, obtained through an analysis of the scaling of the free elastic
energy with respect to the relevant parameters in the model; see, e.g., [Bella and Kohn 2014a; 2014b;
Ben Belgacem et al. 2002; Kohn and Nguyen 2013]. The present paper belongs of course to the latter
group. In more detail, rigorous scaling laws similar to the ones we prove here have been derived for a
single fold [Conti and Maggi 2008] and for the so-called d-cone [Müller and Olbermann 2014b; Brandman
et al. 2013]. The variational problems considered in these references however are of a very special kind:
the constraints on the shape of the elastic sheet are quite restrictive, and the lower bounds use these
constraints in an essential way; see [Olbermann 2017] for a detailed discussion. This is not the case for
our setting, whence our method of proof, which we developed in [Olbermann 2016; 2017] and which we
refine here, is completely different.

1.4. Connection to convex integration and rigidity results. The Nash–Kuiper theorem [Nash 1954;
Kuiper 1955a; 1955b] states that given a two-dimensional Riemannian manifold (M, g), a short1 immer-
sion y0 :M→R3, and ε>0, there exists an isometric immersion y1∈C1(M;R3) such that ‖y1−y0‖C0 <ε.
This is relevant in our context, since the leading-order term in the energy (1) measures the distance of the
deformation y from an isometric immersion with respect to the target metric g1. By the Nash–Kuiper
theorem, there exists a vast amount of deformations y that have arbitrarily small membrane energy. A
priori, these are all good candidates for energy minimization. One needs a principle that shows that all of
these deformations are associated with large bending energy. The energy scaling law from Theorem 1
shows that none of these maps can beat the upper bound construction energetically. Theorem 2 shows
the “stronger” statement that maps with low energy cannot look anything like the approximations of
C1 isometric immersions that appear in the proof of the Nash–Kuiper theorem.

The Nash–Kuiper result is an instance of convex integration, a concept that has been developed
systematically by Gromov [1986]. In particular, the theorem states that solutions to isometric immersion
problems are highly nonunique if one requires only C1-regularity. In stark contrast, there is the uniqueness
in the Weyl problem: given a sufficiently smooth metric g on S2 with positive Gauss curvature, there
exists a unique isometric immersion y : S2

→ R3 of C2-regularity. Such uniqueness is often called
rigidity. The dichotomy of convex integration versus rigidity also appears in other contexts, such as the
Monge–Ampère equation [Lewicka and Pakzad 2017] and the incompressible Euler equation [Constantin
et al. 1994; Isett 2016].

Concerning the uniqueness of solutions in the Weyl problem, the proof is due to Pogorelov [1973]. In
fact, he proved that solutions are unique up to Euclidean motions in the class of immersions of bounded
extrinsic curvature. The latter is the class of immersions for which the pull-back of the volume form
on S2 under the Gauss map is a well-defined signed Radon measure. For smooth maps, this is just the
measure K dA, where K is the Gauss curvature and dA is the volume element. We see that control over
the Gauss curvature excludes constructions in the style of Nash–Kuiper. This is also the basic concept

1An immersion y : M→ R3 is short with respect to the metric g on M if for every curve γ : [0, 1] → M , the length of y ◦ γ
is shorter (measured with the Euclidean metric on R3) than γ (measured with g).
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underlying our proof (with the modification that we consider a linearized version of Gauss curvature).
We believe that this hints at a link between questions about rigidity of surfaces and variational problems
in the theory of thin elastic sheets.

Notation. For a closed line segment {a+ t (b− a) : t ∈ [0, 1]} ⊂ R2, we write [a, b]. For a semiclosed
line segment {a+ t (b− a) : t ∈ (0, 1]} ⊂ R2, we write (a, b]. Throughout the text, we will assume the
deficit of the disclination 0<1< 1 to be fixed. A statement such as “ f ≤ Cg” is shorthand for “there
exists a constant C > 0 that only depends on 1 such that f ≤ Cg”. The value of C may change within
the same line.

For r > 0, we let Br = {x ∈ R2
: |x |< r}. The two-sphere {x ∈ R3

: |x | = 1} is denoted by S2.
The one-dimensional Hausdorff measure is denoted by H1.
The pairing between a Radon measure µ and a continuous function f will be denoted by 〈µ, f 〉.

2. Proof of Theorem 1

As in [Olbermann 2017], the proof of the energy scaling law rests on two observations. First, by the weak
formulation of the Hessian determinant,

3∑
i=1

det D2 yi = (y,1 · y,2),12−
1
2(|y,1|

2),22−
1
2(|y,2|

2),11 for y ∈ C2(B1;R
3), (8)

we get that the quantity
∑3

i=1 det D2 yi is close to
∑3

i=1 det D2 y1i = π1
2δ0 (the latter equation holding

in the sense of distributions), where δ0 denotes the Radon measure defined by 〈δ0, f 〉 = f (0). The
expression

∑3
i=1 det D2 yi is best thought of as the “linearized Gauss curvature”: for a metric of the form

gy = Id2×2+ εG, the Gauss curvature is

K = ε
3∑

i=1

det D2 yi + O(ε2).

Second, the following Sobolev/isoperimetric inequality translates estimates for integrals of the Hessian
determinant into lower bounds for boundary integrals of the tangential part of the second derivative.

Lemma 3. For v ∈ C2(B1) and 0≤ r ≤ 1,∫
∂Br

|D2v| dH1
≥

(
4π
∣∣∣∣∫

Br

det D2v dx
∣∣∣∣)1/2

. (9)

This inequality has been used in the literature in a number of places; see, e.g., [Müller 1990]. The
proof of the statement above (including the sharp constant) can be found in [Olbermann 2017].

The main observation that allows for an improvement of the lower bound from [Olbermann 2017] is
that we may get a lower bound for the quantity on the left-hand side in (9) from the smallness of the
membrane energy directly by integrating a suitable test function against the membrane term gy − g1. In
our previous paper we obtained such an estimate by interpolation instead, which also uses the control
over the bending energy. This is unnecessary, and gives slightly worse estimates.
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The following calculation indicates how to use the smallness of the membrane term to obtain estimates
on integrals of the linearized curvature. Let 8 ∈ L1(B1) be such that D28 is a vector-valued Radon
measure with support in B1. In this case, we have 8 ∈ C0(B1), see [Demengel 1984, Theorem 3.3], and
for all y ∈ C2(B1;R

3) we have∫
B1

( 3∑
i=1

det D2 yi (x)
)
8(x) dL2

−π12
〈δ0,8〉

=

∫
B1

(
(y,1 · y,2− y1,1 · y

1
,2)8,12−

1
2(|y,1|

2
− |y1,1 |

2)8,22−
1
2(|y,2|

2
− |y1,2 |

2)8,11
)

dL2

=−
1
2

∫
B1

(gy − g1) : cof D28 dL2. (10)

Here,

cof D28=

(
8,22 −8,12

−8,21 8,11

)
denotes the cofactor matrix of D28. Note that cof is linear on 2× 2 matrices, and hence cof D28 is a
well-defined Radon measure under our assumptions. After these preliminary remarks, we construct the
upper bound in the statement of Theorem 1. It is obtained by a simple mollification of y1 on a ball of
size h centered at the origin.

Lemma 4. We have

inf
y∈W 2,2(B1;R3)

Ih,1(y)≤ 2π12h2
(

log 1
h
+C

)
,

where C = C(1) does not depend on h.

Proof. This is the same upper bound construction as in [Olbermann 2017] (see Lemma 2 in that reference),
and we will be brief. We choose η ∈ C∞([0,∞)) with η = 0 on

[
0, 1

2

]
, η = 1 on [1,∞), and |η′| ≤ C ,

|η′′| ≤ C . We set

yh(x)= η
(
|x |
h

)
y1(x).

One easily shows
|gyh − g1| ≤ C and |D2 yh| ≤ Ch−1 on Bh,

gyh − g1 = 0 and |D2 yh(x)| =
1

|x |
on B1 \ Bh .

This implies ∫
B1

|gyh − g1|2 dL2
≤

∫
Bh

C dL2
≤ Ch2,

∫
B1

|D2 yh|
2 dL2

≤

∫
B1\Bh

12

|x |2
dL2
+

∫
Bh

C
h2 dL2

= 2π12
∫ 1

h

dr
r
+C = 2π12 log 1

h
+C.

This implies the claim of the lemma. �
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Proof of Theorem 1. The upper bound is proved by Lemma 4; hence we may choose C2 to be the constant
from that lemma. Now it suffices to show the following: there exist C1,C3 such that if y ∈W 2,2(B1;R

3)

satisfies (4), then also the lower bound in (3) and (5), (6) hold true.
Let y ∈ W 2,2(B1;R

3) satisfy (4). By density of C2 in W 2,2, we may assume y ∈ C2(B1;R
3) for a

proof of the remaining statements. Let 0< r < 1. Using Lemma 3, we have for i = 1, 2, 3

1
2π

∫
∂Br

|D2 yi | dH1
≥

(
1
π

∣∣∣∣∫
Br

det D2 yi dL2
∣∣∣∣)1/2

.

Applying Jensen’s inequality, we get

1
2πr

∫
∂Br

|D2 yi |
2 dH1

≥

(
1

2πr

∫
∂Br

|D2 yi | dH1
)2

.

Combining these two estimates, we obtain∫
∂Br

|D2 yi |
2 dH1

≥
2
r

∣∣∣∣∫
Br

det D2 yi dL2
∣∣∣∣.

By the triangle inequality, ∫
∂Br

|D2 y|2 dH1
≥

2
r

∣∣∣∣∫
Br

∑
i

det D2 yi dL2
∣∣∣∣. (11)

Now choose h0 = h0(y) ∈ [h, 2h] such that∫
∂Bh0

|gy − g1|2 dH1
≤ h−1

∫
B1

|gy − g1|2 dL2. (12)

Choosing R ∈ (h0+ h, 1) and integrating (11) over the range r ∈ [h0, R], we get∫
BR\Bh0

|D2 y|2 dL2
≥ 2

∣∣∣∣∫ R

h0

1
r

(∫
Br

∑
i

det D2 yi dL2
)

dr
∣∣∣∣

= 2
∣∣∣∣∫ R

h0

(∫
B1

χBr (x)
r

∑
i

det D2 yi (x) dL2(x)
)

dr
∣∣∣∣

= 2
∣∣∣∣∫

B1

8

(∑
i

det D2 yi

)
dL2

∣∣∣∣, (13)

where we have used Fubini’s theorem to change the order of integration, and have defined the test function

8(x) :=
∫ R

h0

1
r
χBr (x) dr =


log(R/h0) if |x | ≤ h0,

log(R/|x |) if h0 < |x | ≤ R,
0 else.

We add and subtract the term 2π12
〈δ0,8〉, use the triangle inequality and obtain∫

BR\Bh0

|D2 y|2 dL2
≥ 2π12 log R

h0
− 2

∣∣∣∣π12
〈δ0,8〉−

∫
B1

8

(∑
i

det D2 yi

)
dL2

∣∣∣∣. (14)
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Now we set

A(R) :=
∫

B1

8

(∑
i

det D2 yi

)
dL2
−π12

〈δ0,8〉 = −
1
2

∫
B1

(gy − g1) : cof D28 dL2, (15)

where we have used (10) in the second line. An explicit computation yields

D8(x)=−
x
|x |2

χBR\Bh0
(x),

D28(x)=
(
−Id2×2+ 2x̂ ⊗ x̂

)
|x |−2χBR\Bh0

(x)+ |x |−1 x̂ ⊗ x̂
(
H1 ∂BR −H1 ∂Bh0

)
.

Inserting these computations in (15), we have

|A(R)| ≤
∫

BR\Bh0

|gy − g1|
|x |2

dL2
+

1
2R

∫
∂BR

|gy − g1| dH1
+

1
2h0

∫
∂Bh0

|gy − g1| dH1. (16)

By Cauchy–Schwarz,∫
BR\Bh0

|gy − g1|
|x |2

dL2
≤

(∫
BR\Bh0

|gy − g1|2 dL2
)1/2(∫

BR\Bh0

|x |−4 dL2
)1/2

≤

(∫
BR\Bh0

|gy − g1|2 dL2
)1/2√

2πh−1
0 ,

∫
∂BR

|gy − g1| dH1
≤C
√

R
(∫

∂BR

|gy − g1|2 dH1
)1/2

,

∫
∂Bh0

|gy − g1| dH1
≤C

√
h0

(∫
∂Bh0

|gy − g1|2 dH1
)1/2

.

(17)

Now choose R0 ∈ [R− h, R] such that∫
∂BR0

|gy − g1|2 dH1
≤ h−1

∫
B1

|gy − g1|2 dL2.

Together with (12) and (17), inequality (16) becomes

|A(R0)| ≤ C
Em(y)1/2

h0
,

where Em(y) is the membrane energy,

Em(y) :=
∫

B1

|gy − g1|2 dL2.

The lower bound for the bending energy (13) becomes∫
BR0\Bh0

|D2 y|2 dL2
≥ 2π12 log

R0

h0
−C

Em(y)1/2

h0
. (18)



THE SHAPE OF LOW ENERGY CONFIGURATIONS OF A THIN ELASTIC SHEET 1293

We use (18) with R ↑ 1 to estimate the membrane energy by

Em(y)≤ 2π12h2
(

log 1
h
+C2

)
− 2π12h2 log 1

h0
+Ch2 Em(y)1/2

h0
≤ C(h2

+ hEm(y)1/2). (19)

Using Young’s inequality ab ≤ 1
2((εa)

2
+ (b/ε)2), with ε = C−1, we have

ChEm(y)1/2 ≤ 1
2 Em(y)+Ch2,

and inserting this in (19), we get
Em(y)≤ Ch2,

which proves (6). Furthermore, inserting this in (18), we have∫
BR0\Bh0

|D2 y|2 dL2
≥ 2π12 log

R0

h
−C.

Sending R→ 1, this proves the lower bound in (3). Furthermore,∫
B1\BR

|D2 y|2 dL2
≤ h−2(Ih,1(y)− Em(y))−

∫ R0

h0

|D2 y|2 dL2

≤ 2π12
(

log 1
h
+C2

)
− 2π12 log

R0

h

≤ 2π12 log 1
R
+C,

which proves (5). This completes the proof of the theorem. �

3. Proof of Theorem 2

3.1. Isometric immersions of a singular cone. The plan of the proof is as follows: The crucial inequality
(5) shows that on a fixed annulus B1 \ BR , the W 2,2 norm of a sequence of deformations yh satisfying
Ih,1(yh)≤ 2π12h2(log 1/h+C) is bounded as h→ 0. One gets weak convergence of a subsequence
in W 2,2 to a limit deformation that is an isometric immersion with respect to g1 (since the membrane
energy of the limit function vanishes by Em(yh)≤Ch2

→ 0). We may apply the results on W 2,2 isometric
immersions from [Hornung 2011a; Pakzad 2004] to the limit, which means that the limit deformation is
developable. Using our energy estimates, we can show that in fact, it must be identical to the singular
cone y1 up to a Euclidean motion.

The fact that flat surfaces are locally developable is a classical result from the differential geometry of
surfaces. For functions in W 2,2, this statement has been proved in [Pakzad 2004; Hornung 2011a; 2011b]:

Theorem 5 [Hornung 2011a, Theorem 2]. Let � ⊂ R2 with Lipschitz boundary. Let y ∈ W 2,2(�;R3)

with DyT Dy = Id2×2 almost everywhere. Then y ∈ C1(�) and there exists a set L y of mutually disjoint
closed line segments in � with endpoints on ∂� with the following property. For every x ∈�, exactly one
of the following alternatives hold: either D2 y = 0 in a neighborhood of x , or there exists L ∈ L y with
x ∈ L and Dy is constant on L.
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B1,1 ι1
B1 \R−

Figure 1. The domain B1,1 and the map ι1 : B1,1→ B1 \R−.

Lemma 6. Let y be as in Theorem 5, and �̃ ⊆ �. Let ỹ be the restriction of y to �̃. Then for every
L̃ ∈ L ỹ there exists exactly one L ∈ L y such that L̃ ⊆ L. In particular, L y is unique.

Proof. From the properties of L y , it is clear that there can be at most one L with the stated property.
Suppose there is L̃ ∈ L ỹ such that there does not exist L ∈ L y with L̃ ⊆ L . Choose x0 ∈ L̃ \ ∂�̃, and
choose r > 0 such that B(x0, 2r)⊂ �̃. For every x ∈ L̃ ∩ B(x0, r) the following holds true:

There does not exist a neighborhood of x on which D2 y vanishes. Hence there exists a line segment
L x ∈ L y that intersects L̃ only in x such that Dy is constant on L x . Hence Dy(z) = Dy(x) = Dy(x0)

for all z ∈ L x .
Since the line segments {L x : x ∈ L̃ ∩ B(x0, r)} are mutually disjoint and their endpoints are outside

B(x0, r), we have that there exists a neighborhood U of x0 that is covered by the union of these line
segments,

U ⊂
⋃

x∈L̃∩B(x0,r)

L x .

This implies that Dy is constant on U, a contradiction. �

We will need a variant of Theorem 5 for functions whose domain is a singular cone.
To be able to use Theorem 5, we are going to consider the cone in a flat reference configuration. Let

arccos : [−1, 1] → [0, π] denote the inverse of cos : [0, π] → [−1, 1]. Define

B1,1 :=

{
x=(x1, x2) ∈ B1 \ {0} : 0≤ arccos

x1

|x |
<
√

1−12π

}
.

Let R− := {(x1, 0) : x1 ≤ 0}, and let ϕ : R2
\ R− → R be the angular coordinate satisfying x =

|x |(cosϕ(x), sinϕ(x)) with values in (−π, π). We define the map ι≡ ι1 : R2
\R−→ B1 by

ι(x)=
(
|x | cos

ϕ(x)
√

1−12
, |x | sin

ϕ(x)
√

1−12

)
.

For a sketch of B1,1 and ι1, see Figure 1.
On ι(B1,1)= B1 \R−, the map ι has a well-defined inverse, which we denote by

j : B1 \R−→ B1,1.
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∂+1

∂−1

L

Lad

Figure 2. The subsets ∂+1 , ∂
−

1 of the boundary and adjoint line segments L , Lad.

Furthermore, let φ1 := (1−
√

1−12)2π and let the rotation S1 ∈ SO(2) be defined by

S1 =
(

cosφ1 − sinφ1
sinφ1 cosφ1

)
.

Finally, let
∂1 := ∂B1,1 \ (∂B1 ∪ {0}).

Note that ∂1 has two connected components, one contained in the upper half-plane and one in the lower
half-plane. We will denote them by ∂+1 and ∂−1 respectively; see Figure 2. The rotation matrix S1 has
been chosen such that S1∂+1 = ∂

−

1 .
We define

W 2,2
iso (B1,1) :=

{
Y ∈W 2,2

loc (B1,1 \ {0};R3)

: gY = Id2×2, Y (S1x)= Y (x) and DY (S1x)= DY (x)S1 for every x ∈ ∂+1
}

(20)

This definition is chosen such that if y ∈W 2,2
loc (B1 \ {0};R3) with DyT Dy = g1, then y ◦ ι ∈W 2,2

iso (B1,1).
To Y ∈W 2,2

iso (B1,1), we may apply Theorem 5 with �= B1,1 \ Bρ to obtain a set L(ρ)Y of line segments
with the properties stated there. For ρ < ρ ′ we have by the uniqueness of the line segments stated in
Lemma 6 that every line segment in L(ρ

′)
Y is contained in exactly one line segment of L(ρ)Y .

Hence, by sending ρ → 0, we get a set of (relatively) closed mutually disjoint line segments in
B1,1 \ {0}, denoted by LY .

If a line segment in LY has only one endpoint in B1,1 \{0}, then we say by slight abuse of terminology
that one of its endpoints is the origin.

Remark 7. We note in passing that with obvious modifications of the previous construction, one may
extend Theorem 5 to maps with conical singularities, i.e., to maps y ∈W 2,2

loc (� \ {x0};R
3) with x0 ∈�

and DyT Dy = Id2×2 almost everywhere.

Next, we are going to define an “adjoint” line segment Lad to any L ∈ LY with an endpoint x ∈ ∂1.
Note that for such L , there exists v ∈ ∂B1 and q > 0 such that

L = {x + tv : t ∈ [0, q]}.

First let us assume x ∈ ∂+1 . By the definition of W 2,2
iso (B1,1) in (20), we have that x ′ := S1x ∈ ∂−1 , and

DY (x ′)= DY (x)S1. Moreover, there has to exist Lad
∈ L y with x ′ ∈ Lad, and

Lad
= {x ′+ t S1v : t ∈ R} ∩ B1,1.
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L

FL

L

Figure 3. In the left panel, we have the segments that belong to LY , and L ∈ LY is a bad
line segment. We can flatten the deformation Y on the side of L whose closure does not
contain the origin, and obtain a deformation FL(Y ), such that LFL (Y ) consists of those
line segments in LY that are on the same side of L as the origin; see the right panel.

This defines Lad for x ∈ ∂+1 ; for x ∈ ∂−1 , we define it analogously, replacing S1 by S−1
1 . For a sketch of

the construction, see Figure 2.
From now on, the line segments in LY for which one of the endpoints is 0 will be called “good”, and

line segments in the complement of the set of good line segments will be called “bad”. The sets of good
and bad line segments will be denoted by L(g)Y , L(b)Y respectively. For any bad line segment, we can lower
the elastic energy by “flattening” the deformation Y on one side of the line segment. This is the idea
behind the following lemma. For a sketch of this operation, see Figure 3.

Lemma 8. For every Y ∈W 2,2
iso (B1,1), there exists Y∞ ∈W 2,2

iso (B1,1) with the following properties:

(i) L(b)Y∞ =∅ and L(g)Y∞ = L(g)Y .

(ii) For 0< ρ < 1, we have∫
B1,1\Bρ

∣∣D2Y∞ : ((Dι)−1
⊗ (Dι)−1)

∣∣2 dL2
≤

∫
B1,1\Bρ

∣∣D2Y : ((Dι)−1
⊗ (Dι)−1)

∣∣2 dL2, (21)

with equality for all 0< ρ < 1 if and only if Y = Y∞.

Proof. For any L ∈ L(b)Y , we may define a modified map FL(Y ) ∈ W 2,2
iso (B1,1) as follows. On L , we

have Y = AL x + bL for some AL ∈ R3×2 and bL ∈ R3. We note that B1,1 \ L has exactly two connected
components. Let EL denote the connected component whose closure does not contain the origin. First let
us assume that none of the endpoints of L is in ∂1. Then we define FL(Y ) ∈W 2,2

iso (B1,1) by

FL(Y )(x)=
{

AL x + bL if x ∈ EL ,

Y (x) else.
(22)

If one of the endpoints of L is in ∂1, then we set

FL(Y )(x)=


AL x + bL if x ∈ EL ,

ALad x + bLad if x ∈ ELad,

Y (x) else.
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Note that this definition indeed satisfies FL(Y ) ∈ W 2,2
iso (B1,1). Obviously, we have D2(FL(Y )) = 0 on

EL (and on ELad) and hence, for all 0< ρ < 1, we have∫
B1,1\Bρ

|D2 FL(Y )(Dι)−1
|
2 dL2

≤

∫
B1,1\Bρ

|D2Y (Dι)−1
|
2 dL2. (23)

We must distinguish two cases in (23): If LFL (Y ) ( LY , then FL(Y ) 6= Y and we must have |D2Y |> 0 on
a subset of positive measure of EL . Hence, inequality must hold in (23) for some ρ, since we have√

1−12 Id2×2 ≤ (Dι)−1
≤ Id2×2 (24)

in the sense of positive definite matrices. Equality in (23) only holds in the case FL(Y )= Y.
On L(b)Y , we may define an order relation by L < L ′ if EL ( EL ′ . Since bad line segments are

mutually disjoint, we have that either L < L ′, L > L ′ or EL ∩ EL ′ =∅. Hence, there exists an at most
countable sequence L1, L2, . . . of maximal bad line segments. If for two maximal line segments L , L ′

we have L ′ = Lad then we exclude exactly one of them from that sequence. Now we define a sequence
Yk ∈W 2,2

iso (B1,1) by
Yk = FLk ◦ · · · ◦ FL1(Y ). (25)

By (23) and (24), D2Yk is bounded in L2. Thus the sequence converges weakly in W 2,2(B1,1 \ Bρ;R3)

for every 0< ρ < 1 to a limit Y∞ ∈W 2,2
iso (B1,1) such that LY∞ does not contain any bad line segments,

and L(g)Y∞ = L(g)Y . The claim (21) follows from (23) and the comment after that equation. �

Remark 9. Letting Y, Y∞ as in Lemma 8, we have that DY∞ is constant on every line segment (0, x)
for x ∈ ∂B1,1 ∩ ∂B1, and

Y∞ ◦ j ∈W 2,2
loc (B1 \ {0};R3), gY∞◦ j = g1.

Furthermore, ∫
B1\Bρ
|D2(Y∞ ◦ j)|2 dL2

≤

∫
B1\Bρ
|D2(Y ◦ j)|2 dL2 for every 0< ρ < 1.

Proof. The first statement in the remark follows from the fact that for every x ′ ∈ B1,1, we have that either
there exists x ∈ ∂B1,1 ∩ ∂B1 such that x ′ ∈ (0, x] ∈ L(g)Y∞ or there exists a sector containing x ′ that has
empty intersection with every L ∈ LY∞ , and hence DY∞ vanishes in the whole sector.

The second and third statements follow immediately from Y∞ ∈W 2,2
iso (B1,1). It remains to prove the

inequality. Let ν = Y,1 ∧ Y,2/|Y,1 ∧ Y,2| be the unit normal. By DY T DY = Id2×2, we have D2Y⊥DY.
Hence

|D2(Y ◦ j)|2 =|D2Y : (Dj ⊗ Dj)+ DY D2 j |2

=|D2Y : (Dj ⊗ Dj)|2+ |DY D2 j |2

=|D2Y : (Dj ⊗ Dj)|2+ |D2 j |2, (26)

where we used DY ∈ O(2, 3) in the last equality. Now the inequality follows from (21) and a change of
variables in the integrals. �



1298 HEINER OLBERMANN

3.2. Proof of Theorem 2. Given 0< R < 1, we may assume that h� R. Choose R0(h) ∈ [R− h, R]
such that ∫

∂BR0(h)

|gyh − g1|2 dH1
≤ h−1

∫
B1

|gyh − g1|2 dL2.

By Theorem 1, we have∫
B1\BR

|D2 yh| dL2
≤

∫
B1\BR0

|D2 yh| dL2
≤ 2π12 log 1

R
+C, (27)

where C depends neither on h nor on R. This proves the boundedness of yh in W 2,2(B1 \ BR;R
3) and

implies that there exists ŷR ∈W 2,2(B1 \ BR;R
3) such that (for a subsequence)

yh ⇀ ŷR in W 2,2(B1 \ BR;R
3).

After taking a suitable diagonal sequence for R = 1/j , j = 2, 3, . . . , we may assume that ŷR ∈

W 2,2
loc (B1 \ {0};R3) is independent of R. We denote this function by y∗. By Theorem 1, we have∫

B1

|gy∗ − g1| dL2
= 0;

i.e., y∗ is an isometry with respect to g1.
By (27), we have ∫

B1\BR

|D2 y∗|2 dL2
≤ 2π12h2 log 1

R
+C. (28)

Let Y : B1,1→ R3 be defined by
Y := y∗ ◦ ι.

Recalling the definitions from Section 3.1, we have Y ∈W 2,2
iso (B1,1). By an application of Lemma 8 and

Remark 9, we obtain Y∞ ∈ W 2,2
iso (B1,1) such that DY∞ is constant on every line segment (0, x) with

x ∈ ∂B1,1 ∩ ∂B1. Now we set y∞ := Y∞ ◦ j , and obtain that Dy∞ is constant on every line segment
(0, x] with x ∈ ∂B1. Hence there exists a curve γ : ∂B1→ S2 satisfying |γ ′| =

√
1−12 such that

y∞(x)= xγ
(

x
|x |

)
. (29)

Using this expression, explicit computation yields∫
∂Bρ
|D2 y∞|2 dH1

=
1
ρ

∫
∂B1

|D2 y∞|2 dH1. (30)

By Remark 9 and (28), we have that for every 0< ρ < 1,∫
B1\Bρ
|D2 y∞|2 dL2

≤ 2π12 log 1
ρ
+C. (31)

Combining (30) and (31), we see that for every 0< ρ < 1, we have∫
∂Bρ
|D2 y∞|2 dH1

≤
2π12

ρ
,

and the constant C in (31) is in fact 0.
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By gy∞ = g1, we have
3∑

i=1

det D2 y∞i = π1
2δ0

distributionally. We may now estimate using Lemma 3, for any 0< ρ < 1,

π12
=

∫
Bρ

3∑
i=1

det D2 y∞i dL2
≤

∑
i

∣∣∣∣∫
Bρ

det D2 y∞i dL2
∣∣∣∣

≤
1

4π

∑
i

(∫
∂Bρ
|D2 y∞i (x) · x̂

⊥
| dH1(x)

)2

≤
1

4π

∑
i

2πρ
(∫

∂Bρ
|D2 y∞i (x) · x̂

⊥
|
2 dH1(x)

)
≤
ρ

2

∫
∂Bρ
|D2 y∞(x) · x̂⊥|2 dH1(x)≤ π12. (32)

Here, to obtain the third from the second line, we used Jensen’s inequality. By this chain of estimates, all
the inequalities must have been equalities, and we have∑

i

(∫
∂Bρ
|D2 y∞i (x) · x̂

⊥
| dH1(x)

)2

=

∑
i

2πρ
(∫

∂Bρ
|D2 y∞i (x) · x̂

⊥
|
2 dH1(x)

)
and thus

|D2 y∞i (x) · x̂
⊥
|
2
= constant for x ∈ ∂Bρ, i ∈ {1, 2, 3}. (33)

Additionally, (32) implies

|D2 y∞(x) · x̂⊥|2 =
12

ρ2 for x ∈ ∂Bρ . (34)

By (29), we have D2 y∞(x)= |x |−1(γ + γ ′′)⊗ x̂⊥⊗ x̂⊥. Combining this with (33), we get

(γ + γ ′′) · ei = constant on ∂B1

for i = 1, 2, 3. We write ci = (γ + γ
′′) · ei , and have D2 y∞i (x)= (ci/|x |)x̂⊥⊗ x̂⊥, which implies

y∞i (x)= ci |x | + ai · x + bi for i = 1, 2, 3,

for some ai ∈ R2, bi ∈ R. By (33) we obtain

|D2 y∞(x)|2 =
∑

i c2
i

|x |2
=
12

|x |2
,

and thus
∑

i c2
i =1

2. By gy∞ = g1, we have

Id2×2−1
2 x̂⊥⊗ x̂⊥ = (c⊗ x̂ + a)T (c⊗ x + a)= |c|2 x̂ ⊗ x̂ + (c · a)⊗ x̂ + x̂ ⊗ (c · a)+ aT a.

This yields
(1−12)Id2×2 = (c · a)⊗ x̂ + x̂ ⊗ (c · a)+ aT a,



1300 HEINER OLBERMANN

which can only hold true for all x̂ ∈ ∂B1 if c · a = 0 and aT a = (1−12)Id2×2. This implies

R :=
(

a
√

1−12
,

c
1

)
∈ O(3)

is an orthogonal matrix, and we have

y∞(x)= R
(√

1−12x +1e3|x |
)
+ b.

It remains to show that y∞ = y∗. To see this, note that y∞ ◦ ι= Y∞ satisfies{
(0, x] : x ∈ ∂B1,1 ∩ ∂B1

}
= L(g)Y∞ = L(g)Y ,

where the second equality holds by Lemma 8. This implies that for every x ∈ B1,1 there exists an L ∈ L(g)Y
with x ∈ L . This in turn implies that L(b)Y =∅ (since the line segments in LY are pairwise disjoint). By
Lemma 8, the latter yields Y = Y∞. Composing with j on both sides of this last equation, we obtain
y∗ = y∞. This completes the proof of the theorem. �
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