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DOLGOPYAT’S METHOD AND THE FRACTAL UNCERTAINTY PRINCIPLE

SEMYON DYATLOV AND LONG JIN

We show a fractal uncertainty principle with exponent 1
2
�ıC", " > 0, for Ahlfors–David regular subsets

of R of dimension ı 2 .0; 1/. This is an improvement over the volume bound 1
2
� ı, and " is estimated

explicitly in terms of the regularity constant of the set. The proof uses a version of techniques originating
in the works of Dolgopyat, Naud, and Stoyanov on spectral radii of transfer operators. Here the group
invariance of the set is replaced by its fractal structure. As an application, we quantify the result of
Naud on spectral gaps for convex cocompact hyperbolic surfaces and obtain a new spectral gap for open
quantum baker maps.

1. Introduction

A fractal uncertainty principle (FUP) states that no function can be localized close to a fractal set in both
position and frequency. Its most basic form is

k1ƒ.h/Fh1ƒ.h/kL2.R/!L2.R/ DO.hˇ / as h! 0; (1-1)

where ƒ.h/ is the h-neighborhood of a bounded set ƒ� R, ˇ is called the exponent of the uncertainty
principle, and Fh is the semiclassical Fourier transform:

Fhu.�/D .2�h/�
1
2

Z
R

e�
ix�
h u.x/ dx: (1-2)

We additionally assume that ƒ is an Ahlfors–David regular set (see Definition 1.1) of dimension ı 2 .0; 1/
with some regularity constant CR > 1. Using the bounds kFhkL2!L2 D 1, kFhkL1!L1 � h�

1
2 , the

Lebesgue volume bound �L.ƒ.h// � Ch1�ı, and Hölder’s inequality, it is easy to obtain (1-1) with
ˇ Dmax

�
0; 1
2
� ı
�
.

Fractal uncertainty principles were applied by Dyatlov and Zahl [2016], Dyatlov and Jin [2017], and
Bourgain and Dyatlov [2016] to the problem of essential spectral gap in quantum chaos: which open
quantum chaotic systems have exponential decay of local energy at high frequency? A fractal uncertainty
principle can be used to show local energy decay O.e�ˇt /, as was done for convex cocompact hyperbolic
quotients in [Dyatlov and Zahl 2016] and for open quantum baker’s maps in [Dyatlov and Jin 2017]. Here
ƒ is related to the set of all trapped classical trajectories of the system and (1-1) needs to be replaced by a
more general statement, in particular allowing for a different phase in (1-2). The volume bound ˇD 1

2
�ı

corresponds to the Patterson–Sullivan gap or more generally, the pressure gap. See Sections 4–5 below
for a more detailed discussion.
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A natural question is: can one obtain (1-1) with ˇ >max
�
0; 1
2
� ı
�
, and if so, how does the size of the

improvement depend on ı and CR? Partial answers to this question have been obtained in the papers
mentioned above:

� Dyatlov and Zahl [2016] obtained FUP with ˇ > 0 when
ˇ̌
ı � 1

2

ˇ̌
is small depending on CR, and

gave the bound ˇ > exp.�K .1C log14 CR//, where K is a global constant.

� Bourgain and Dyatlov [2016] proved FUP with ˇ > 0 in the entire range ı 2 .0; 1/, with no explicit
bounds on the dependence of ˇ on ı; CR.

� Dyatlov and Jin [2017] showed that discrete Cantor sets satisfy FUP with ˇ >max
�
0; 1
2
� ı
�

in the
entire range ı 2 .0; 1/ and obtained quantitative lower bounds on the size of the improvement —
see Section 5 below.

Our main result, Theorem 1, shows that FUP holds with ˇ > 1
2
� ı in the case ı 2 .0; 1/, and gives

bounds on ˇ� 1
2
C ı which are polynomial in CR and thus stronger than the ones in [Dyatlov and Zahl

2016]. Applications include

� an essential spectral gap for convex cocompact hyperbolic surfaces of size ˇ > 1
2
� ı, recovering

and making quantitative the result of [Naud 2005], see Section 4;

� an essential spectral gap of size ˇ >max
�
0; 1
2
� ı
�

for open quantum baker’s maps, extending the
result of [Dyatlov and Jin 2017] to matrices whose sizes are not powers of the base, see Section 5.
(For the case ı > 1

2
we use the results of [Bourgain and Dyatlov 2016] rather than Theorem 1.)

1A. Statement of the result. We recall the following definition of Ahlfors–David regularity, which
requires that a set (or a measure) has the same dimension ı at all points and on a range of scales:

Definition 1.1. Let X � R be compact, �X be a finite measure supported on X, and ı 2 Œ0; 1�. We say
that .X; �X / is ı-regular up to scale h 2 Œ0; 1/ with regularity constant CR � 1 if

� for each interval I of size jI j � h, we have �X .I /� CRjI jı ;

� if additionally jI j � 1 and the center of I lies in X, then �X .I /� C�1R jI j
ı.

Our fractal uncertainty principle has a general form which allows for two different setsX; Y of different
dimensions in (1-1), replaces the Lebesgue measure by the fractal measures �X ; �Y , and allows a general
nondegenerate phase and amplitude in (1-2):

Theorem 1. Assume that .X; �X / is ı-regular, and .Y; �Y / is ı0-regular, up to scale h 2 .0; 1/ with
constant CR, where 0 < ı; ı0 < 1, and X � I0, Y � J0 for some intervals I0; J0. Consider an operator
Bh W L1.Y; �Y /! L1.X; �X / of the form

Bhf .x/D
Z
Y

exp
�
iˆ.x; y/

h

�
G.x; y/f .y/ d�Y .y/; (1-3)

where ˆ.x; y/ 2 C 2.I0 �J0IR/ satisfies @2xyˆ¤ 0 and G.x; y/ 2 C 1.I0 �J0IC/.
Then there exist constants C; "0 > 0 such that

kBhkL2.Y;�Y /!L2.X;�X / � Ch
"0: (1-4)
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Here "0 depends only on ı, ı0, CR,

"0 D .5CR/
�80. 1

ı.1�ı/
C 1
ı0.1�ı0/

/
; (1-5)

and C additionally depends on I0; J0; ˆ;G.

Remarks. (1) Theorem 1 implies the Lebesgue-measure version of FUP, (1-1), with exponent ˇ D
1
2
� ıC "0. Indeed, assume that .ƒ;�ƒ/ is ı-regular up to scale h with constant CR. Put X WD ƒ.h/

and let �X be hı�1 times the restriction of the Lebesgue measure to X. Then .X; �X / is ı-regular up to
scale h with constant 30C 2R; see Lemma 2.2. We apply Theorem 1 with .Y; �Y / WD .X; �X /, G � 1, and
ˆ.x; y/D�xy; then

k1ƒ.h/Fh1ƒ.h/kL2.R/!L2.R/ D
h
1
2
�ı

p
2�
kBhkL2.X;�X /!L2.X;�X / � Ch

1
2
�ıC"0:

(2) Definition 1.1 is slightly stronger than [Bourgain and Dyatlov 2016, Definition 1.1] (where “up to
scale h” should be interpreted as “on scales h to 1”) because it imposes an upper bound on �L.I / when
jI j > 1. However, this difference is insignificant as long as X is compact. Indeed, if X � Œ�R;R� for
some integer R > 0, then using upper bounds on �L on intervals of size 1 we get �L.I / � �L.X/ �
2RCR � 2RCRjI j

ı for each interval I of size jI j> 1.

(3) The restriction ı; ı0 > 0 is essential. Indeed, if ı0 D 0, Y D f0g, �Y is the delta measure, and f � 1,
G � 1, then

kBhf kL2.X;�X / D
p
�X .X/:

The restriction ı; ı0 < 1 is technical; however, in the application to Lebesgue-measure FUP this restriction
is not important since ˇ D 1

2
� ıC "0 < 0 when ı is close to 1.

(4) The constants in (1-5) are far from sharp. However, the dependence of "0 on CR cannot be removed
entirely. Indeed, [Dyatlov and Jin 2017] gives examples of Cantor sets for which the best exponent "0
in (1-4) decays polynomially as CR!1; see Proposition 3.17 of that paper. See also Sections 5B–5C.

1B. Ideas of the proof. The proof of Theorem 1 is inspired by the method originally developed by
Dolgopyat [1998] and its application to essential spectral gaps for convex cocompact hyperbolic surfaces
by Naud [2005]. In fact, Theorem 1 implies a quantitative version of Naud’s result; see Section 4. More
recently, Dolgopyat’s method has been applied to the spectral-gap problem by Petkov and Stoyanov
[2010], Stoyanov [2011; 2012], Oh and Winter [2016], and Magee, Oh and Winter [Magee et al. 2017].

We give a sketch of the proof, assuming for simplicity that G � 1. For f 2 L2.Y; �Y /, we have

kBhf kL2.X;�X / �
p
�X .X/�Y .Y / � kf kL2.Y;�Y /; (1-6)

applying Hölder’s inequality and the bound kBhkL1.X;�X /!L1.Y;�Y / � 1. However, under a mild
assumption on the differences between the phases ˆ.x; y/ for different x; y, the resulting estimate is not
sharp, as illustrated by the following example where X D Y D f1; 2g, �X .j /D �Y .j /D 1

2
for j D 1; 2,

and !j` WDˆ.j; `/=h:
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Lemma 1.2. Assume that !j` 2 R, j; `D 1; 2, satisfy

� WD !11C!22�!12�!21 … 2�Z: (1-7)
For f1; f2 2 C, put �

u1
u2

�
WD

1

2

�
exp.i!11/ exp.i!12/
exp.i!21/ exp.i!22/

��
f1
f2

�
:

Assume that .f1; f2/¤ 0. Then

ju1j
2
Cju2j

2 < jf1j
2
Cjf2j

2: (1-8)

Remark. Note that (1-8) cannot be replaced by either of the statements

ju1jC ju2j< jf1jC jf2j; max.ju1j; ju2j/ <max.jf1j; jf2j/:

Indeed, the first statement fails when f1D 0, f2D 1. The second one fails if !11D!12 and f1D f2D 1.
This explains why we use L2 norms in the iteration step, Lemma 3.2.

Proof. We have
1
2
.ju1j

2
Cju2j

2/�max.ju1j2; ju2j2/�
�
1
2
.jf1jC jf2j/

�2
�
1
2
.jf1j

2
Cjf2j

2/: (1-9)

Assume that (1-8) does not hold. Then the inequalities in (1-9) have to be equalities, which implies that
ju1j D ju2j, jf1j D jf2j> 0, and for aD 1; 2,

exp.i.!a1�!a2//f1 Nf2 � 0:

The latter statement contradicts (1-7). �

To get the improvement h"0 in (1-4), we use the nonsharpness of (1-6) on many scales:

� We fix a large integer L> 1 depending on ı; CR and discretize X and Y on scales 1;L�1; : : : ; L�K,
where h� L�K. This results in two trees of intervals VX ; VY , with vertices of height k corresponding to
intervals of length � L�k.

� For each interval J in the tree VY , we consider the function

FJ .x/D
1

�Y .J /
exp

�
�
iˆ.x; yJ /

h

�
Bh.1Jf /.x/;

where yJ is the center of J. The function FJ oscillates on scale h=jJ j. Thus both FJ and the rescaled
derivative hjJ j�1F 0J are controlled in uniform norm by kf kL1.Y;�Y /. We express this fact using the
spaces C� introduced in Section 2B.

� If J1; : : : ; JB 2VY are the children of J, thenFJ can be written as a convex combination ofFJ1 ; : : : ; FJB
multiplied by some phase factors ei‰b ; see (3-12). We then employ an iterative procedure which estimates
a carefully chosen norm of FJ via the norms of FJ1 ; : : : ; FJB . Each step in this procedure gives a gain
1� "1 < 1 in the norm, and after K steps we obtain a gain polynomial in h.

� To obtain a gain at each step, we consider two intervals I 2 VX, J 2 VY such that jI j � jJ j � Lh, take
their children I1; : : : ; IA and J1; : : : ; JB , and argue similarly to Lemma 1.2 to show that the triangle
inequality for ei‰1J1; : : : ; ei‰BJB cannot be sharp on all the intervals I1; : : : ; IA.
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� To do the latter, we take two pairs of children Ia; I
0
a (with generic points in Ia; I

0
a denoted by xa; xa0)

and J
b
; J 0
b
. Due to the control on the derivatives of FJb , the differences jFJb .xa/ � FJb .xa0/j and

jFJb0 .xa/ � FJb0 .xa0/j are bounded by .Lh/�1jJ j � jxa � xa0 j. On the other hand, the phase shift �
from (1-7) equals

� D‰b.xa/C‰b0.xa0/�‰b0.xa/�‰b.xa0/� h
�1.xa � xa0/.yb �yb0/:

Choosing a; a0; b; b0 such that jxa�xa0 j �L�
2
3 jI j, jyb�yb0 j �L�

2
3 jJ j, and recalling that jI j � jJ j �Lh,

we see that � � L�
1
3 does not lie in 2�Z and it is larger than .Lh/�1jJ j � jxa � xa0 j � L�

2
3 . This gives

the necessary improvement on each step. Keeping track of the parameters in the argument, we obtain the
bound (1-5) on "0.

This argument has many similarities with the method of Dolgopyat mentioned above. In particular, an
inductive argument using L2 norms appears for instance in [Naud 2005, Lemma 5.4], which also features
the spaces C� . The choice of children Ia; Ia0 ; Jb; Jb0 in the last step above is similar to the nonlocal
integrability condition (NLIC); see for instance [Naud 2005, Sections 2 and 5.3]. However, our inductive
Lemma 3.2 avoids the use of Dolgopyat operators and dense subsets, see for instance [Naud 2005, p.138],
instead relying on strict convexity of balls in Hilbert spaces, see Lemma 2.7.

Moreover, the strategy of obtaining an essential spectral gap for hyperbolic surfaces in the present paper
is significantly different from that of [Naud 2005]. The latter uses zeta-function techniques to reduce
the spectral-gap question to a spectral radius bound of a Ruelle transfer operator of the Bowen–Series
map associated to the surface. The present paper instead relies on microlocal analysis of the scattering
resolvent in [Dyatlov and Zahl 2016] to reduce the gap problem to a fractal uncertainty principle, thus
decoupling the dynamical aspects of the problem from the combinatorial ones. The role of the group
invariance of the limit set, used in [Naud 2005], is played here by its ı-regularity, proved by Sullivan
[1979], and words in the group are replaced by vertices in the discretizing tree.

1C. Structure of the paper.

� In Section 2, we establish basic properties of Ahlfors–David regular sets (Section 2A), introduce the
functional spaces used (Section 2B), and show several basic identities and inequalities (Section 2C).

� In Section 3, we prove Theorem 1.

� In Section 4, we apply Theorem 1 and the results of [Dyatlov and Zahl 2016] to establish an essential
spectral gap for convex cocompact hyperbolic surfaces.

� In Section 5, we apply Theorem 1 and the results of [Dyatlov and Jin 2017; Bourgain and Dyatlov
2016] to establish an essential spectral gap for open quantum baker’s maps.

2. Preliminaries

2A. Regular sets and discretization. An interval in R is a subset of the form I D Œc; d �, where c < d .
Define the center of I by 1

2
.cC d/ and the size of I by jI j D d � c.
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Let � be a finite measure on R with compact support. Fix an integer L� 2. Following [Dyatlov and
Zahl 2016, Section 6.4], we describe the discretization of � with base L. For each k 2 Z, let Vk be the
set of all intervals I D Œc; d � which satisfy the following conditions:

� c; d 2 L�kZ.

� For each q 2 L�kZ with c � q < d , we have �.Œq; qCL�k�/ > 0.

� �X .Œc �L
�k; c�/D �.Œd; d CL�k�/D 0.

In other words, Vk is obtained by partitioning R into intervals of size L�k, throwing out intervals of
zero measure �, and merging consecutive intervals.

We define the set of vertices of the discretization as

V WD
G
k2Z

Vk;

and define the height function by putting H.I/ WD k if I 2 Vk . (It is possible that Vk intersect for
different k, so formally speaking, a vertex is a pair .k; I /, where I 2 Vk .) We say that I 2 Vk is a parent
of I 0 2 VkC1, and I 0 is a child of I, if I 0 � I. It is easy to check that the resulting structure has the
following properties:

� Any two distinct intervals I; I 0 2 Vk are at least L�k apart.

� �.R n
F
I2Vk

I /D 0 for all k.

� Each I 2 Vk has exactly one parent.

� If I 2 Vk and I1; : : : ; In 2 VkC1 are the children of I, then

0 < �.I /D

nX
jD1

�.Ij /: (2-1)

For regular sets, the discretization has the following additional properties:

Lemma 2.1. Let L � 2, K > 0 be integers and assume .X; �X / is ı-regular up to scale L�K with
regularity constant CR, where 0 < ı < 1. Then the discretization of �X with base L has the following
properties:

(1) Each I 2 V with 0�H.I/�K satisfies, for C 0R WD .3C
2
R/

1
1�ı ,

L�H.I/ � jI j � C 0RL
�H.I/; (2-2)

C�1R L�ıH.I/ � �X .I /� CR.C
0
R/
ıL�ıH.I/: (2-3)

(2) If I 0 is a child of I 2 V and 0�H.I/ < K, then

�X .I
0/

�X .I /
�
L�ı

C 0R
: (2-4)

(3) Assume that
L� .4CR/

6
ı.1�ı/ : (2-5)
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Figure 1. An illustration of the proof of the upper bound in (2-2). The ticks mark points
in L�kZ, the solid interval is I, the dots mark the points xq , and the shaded intervals are
Iq . The intervals of length L�k adjacent to I have zero measure �X.

Then for each I 2 V with 0�H.I/ < K, there exist two children I 0, I 00 of I such that

1
2
C
� 2
ı

R L�H.I/�
2
3 � jx0� x00j � 2L�H.I/�

2
3 for all x0 2 I 0; x00 2 I 00:

Remark. Parts (1) and (2) of the lemma state that the tree of intervals discretizing �X is approximately
regular. Part (3), which is used at the end of Section 3B, states that once the base of discretization L is
large enough, each interval I in the tree has two children which are � L�H.I/�

2
3 apart from each other.

A similar statement would hold if 2
3

were replaced by any number in .0; 1/.

Proof. (1) Put k WDH.I/. The lower bound on jI j follows from the construction of the discretization. To
show the upper bound, assume that I D Œc; d � and d � c DML�k. For each q 2 L�kZ with c � q < d ,
we have �X .Œq; qCL�k�/ > 0; thus there exists xq 2 Œq; qCL�k�\X. Let Iq be the interval of size L�k

centered at xq; see Figure 1. Then

�X

�[
q

Iq

�
� �X .Œc �L

�k; d CL�k�/D �X .I /� CR.ML
�k/ı:

On the other hand, each point is covered by at most three intervals Iq; therefore

MC�1R L�kı �
X
q

�X .Iq/� 3�X

�[
q

Iq

�
:

Together these two inequalities imply M � C 0R, giving (2-2).
The upper bound on �X .I / follows from (2-2). To show the lower bound, take x 2 I \X and let I 0

be the interval of size L�k centered at x. Then �X .I 0 n I /D 0; therefore �X .I /� �X .I 0/� C�1R L�ık.

(2) This follows directly from (2-3) and the fact that C 2R.C
0
R/
ı � C 0R.

(3) Put k WDH.I/. Take x 2 I \X and let J be the interval of size L�k�
2
3 centered at x. Let I1; : : : ; In

be all the intervals in VkC1 which intersect J ; they all have to be children of I. Let x1; : : : ; xn be the
centers of I1; : : : ; In. Define

T WD LkC
2
3 max
j;`
jxj � x`j:

By (2-2), we have jIj j �C 0RL
�k�1 and thus T � 1CC 0RL

� 1
3 . On the other hand, the union of I1; : : : ; In

is contained in an interval of size TL�k�
2
3 CC 0RL

�k�1. Therefore

C�1R L�ı.kC
2
3
/
� �X .J /�

nX
jD1

�X .Ij /� CR.TL
�k� 2

3 CC 0RL
�k�1/ı:

This implies T � C
� 2
ı

R �C 0RL
� 1
3 .
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Now, put I 0 WD Ij , I 00 D I`, where j; ` are chosen so that T D LkC
2
3 jxj � x`j. Then for each x0 2 I 0,

x00 2 I 00, we have by (2-5)

1
2
C
� 2
ı

R � C
� 2
ı

R � 2C 0RL
� 1
3 � LkC

2
3 jx0� x00j � 1C 2C 0RL

� 1
3 � 2: �

We finally have the following estimates on the Lebesgue measure of neighborhoods of a ı-regular set,
which are used in Sections 4–5:

Lemma 2.2. Assume that .ƒ;�ƒ/ is ı-regular up to scale h 2 .0; 1/ with constant CR. Let X WDƒ.h/D
ƒC Œ�h; h� be the h-neighborhood of ƒ and define the measure �X by

�X .A/ WD h
ı�1�L.X \A/; A� R; (2-6)

where �L denotes the Lebesgue measure. Then .X; �X / is ı-regular up to scale h with constant C 0R WD
30C 2R.

Proof. We follow [Dyatlov and Zahl 2016, Lemma 7.4]. Let I � R be an interval with jI j � h. Let
x1; : : : ; xN 2 ƒ\ I.h/ be a maximal set of 2h-separated points. Denote by I 0n the interval of size h
centered at xn. Since I 0n are disjoint and their union is contained in I.2h/, which is an interval of size
jI jC 4h� 5jI j, we have

N �C�1R hı �

NX
nD1

�ƒ.I
0
n/� �ƒ.I.2h//� 5CRjI j

ı: (2-7)

Next, let In be the interval of size 6h centered at xn. Then X \I is contained in the union of In and thus

�L.X \ I /�

NX
nD1

�L.In/D 6hN: (2-8)

Together (2-7) and (2-8) give the required upper bound

�X .I /D h
ı�1�L.X \ I /� 30C

2
RjI j

ı:

Now, assume additionally that jI j � 1 and I is centered at a point in X. Let y1; : : : ; yM 2ƒ\ I be a
maximal set of h-separated points. Denote by Im the interval of size 2h centered at ym. Then ƒ\ I is
contained in the union of Im; therefore

C�1R jI j
ı
� �ƒ.I /D �ƒ.ƒ\ I /�

MX
mD1

�ƒ.Im/�M � 2CRh
ı: (2-9)

Next, let I 0m be the interval of size h centered at ym. Then I 0m �X are nonoverlapping and each I 0m\ I
has size at least 1

2
h; therefore

�L.X \ I /�

MX
mD1

�L.I
0
m\ I /�

1
2
Mh: (2-10)

Combining (2-9) and (2-10) gives the required lower bound

�X .I /D h
ı�1�L.X \ I /�

1

4C 2R
jI jı: �
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2B. Functional spaces. For a constant � > 0 and an interval I, let C� .I / be the space C 1.I / with the
norm

kf kC� .I / WDmax
�
sup
I

jf j; � jI j � sup
I

jf 0j
�
:

The following lemma shows that multiplications by functions of the form exp.i / have norm 1 when
mapping C� .I / into the corresponding space for a sufficiently small subinterval of I :

Lemma 2.3. Consider intervals
I 0 � I; jI 0j � 1

4
jI j: (2-11)

Assume that  2 C1.I IR/ and � > 0 are such that

4� jI 0j � sup
I 0
j 0j � 1: (2-12)

Then for each f 2 C� .I /, we have k exp.i /f kC� .I 0/ � kf kC� .I / and

� jI 0j � sup
I 0
j.exp.i /f /0j � 1

2
kf kC� .I /: (2-13)

Proof. The left-hand side of (2-13) is bounded from above by

� jI 0j �
�
sup
I 0
j 0f jC sup

I 0
jf 0j

�
:

From (2-12), (2-11) we get

� jI 0j � sup
I 0
j 0f j � 1

4
kf kC� .I /; � jI 0j � sup

I 0
jf 0j � 1

4
kf kC� .I /;

which finishes the proof of (2-13). The bound (2-13) implies k exp.i /f kC� .I 0/ � kf kC� .I /. �

The following is a direct consequence of the mean value theorem:

Lemma 2.4. Let f 2 C� .I /. Then for all x; x0 2 I, we have

jf .x/�f .x0/j �
jx� x0j

� jI j
� kf kC� .I /: (2-14)

2C. A few technical lemmas. The following is a two-dimensional analog of the mean value theorem:

Lemma 2.5. Let I D Œc1; d1� and J D Œc2; d2� be two intervals and ˆ 2 C 2.I �J IR/. Then there exists
.x0; y0/ 2 I �J such that

ˆ.c1; c2/Cˆ.d1; d2/�ˆ.c1; d2/�ˆ.d1; c2/D jI j � jJ j � @
2
xyˆ.x0; y0/:

Proof. Replacingˆ.x; y/ byˆ.x; y/�ˆ.c1; y/�ˆ.x; c2/Cˆ.c1; c2/, we may assume thatˆ.c1; y/D0
and ˆ.x; c2/D 0 for all x 2 I, y 2 J. By the mean value theorem, we have ˆ.d1; d2/D jI j �@xˆ.x0; d2/
for some x0 2 I. Applying the mean value theorem again, we have @xˆ.x0; d2/D jJ j �@2xyˆ.x0; y0/ for
some y0 2 J, finishing the proof. �

Lemma 2.6. Assume that � 2 R and j� j � � . Then jei� � 1j � 2
�
j� j.
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Proof. We have
jei� � 1j D 2 sin

�
1
2
j� j
�
:

It remains to use that sin x � 2
�
x when 0 � x � �

2
, which follows from the concavity of sin x on that

interval. �

The next lemma, used several times in Section 3B, is a quantitative version of the fact that balls in
Hilbert spaces are strictly convex:

Lemma 2.7. Assume that H is a Hilbert space, f1; : : : ; fn 2H, p1; : : : ; pn � 0, and p1C � � �Cpn D 1.
Then  nX

jD1

pjfj

2
H
D

nX
jD1

pj kfj k
2
H�

X
1�j<`�n

pjp`kfj �f`k
2
H: (2-15)

If moreover for some "; R � 0
nX

jD1

pj kfj k
2
H DR;

 nX
jD1

pjfj

2
H
� .1� "/R; pmin WDmin

j
pj � 2

p
" (2-16)

then for all j
1
2

p
R � kfj kH � 2

p
R: (2-17)

Proof. The identity (2-15) follows by a direct computation. To show (2-17), note that by (2-15) and (2-16)
for each j; `

kfj �f`k
2
H �

"R

p2min
�
1
4
R:

Put
fmax WDmax

j
kfj kH; fmin WDmin

j
kfj kH:

Then
fmax�fmin �

1
2

p
R; fmin �

p
R � fmax;

which implies (2-17). �

Lemma 2.8. Assume that j̨ ; pj � 0, j D 1; : : : ; n, p1C � � �Cpn D 1, and for some "; R � 0
nX

jD1

pj j̨ � .1� "/R; max
j

j̨ �R; pmin WDmin
j
pj � 2":

Then for all j ,

j̨ �
1
2
R:

Proof. We have
nX

jD1

pj .R� j̨ /� "R:

All the terms in the sum are nonnegative; therefore for all j

R� j̨ �
"R

pmin
�
1
2
R: �
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3. Proof of Theorem 1

3A. The iterative argument. In this section, we prove the following statement which can be viewed
as a special case of Theorem 1. Its proof relies on an inductive bound, Lemma 3.2, which is proved
in Section 3B. In Section 3C, we deduce Theorem 1 from Proposition 3.1, in particular removing the
condition (3-1).

Proposition 3.1. Let ı; ı0 2 .0; 1/, CR > 1, I0; J0 � R be some intervals, G 2 C 1.I0 �J0IC/, and the
phase function ˆ 2 C 2.I0 �J0IR/ satisfy

1
2
< j@2xyˆ.x; y/j< 2 for all .x; y/ 2 I0 �J0: (3-1)

Choose constants C 0R > 0 and L 2 N such that

C 0R D .2CR/
2

1�max.ı;ı0/ ; L� .2C 0R.6CR/
1
ı
C 1
ı0 /6: (3-2)

Fix K0 2 N0 and put h WD L�K for some K 2 N0, K � 2K0. Assume that .X; �X / is ı-regular, and
.Y; �Y / is ı0-regular, up to scale LK0�K with regularity constant CR, and X � I0, Y � J0. Put

"1 WD 10
�5.C

1
ı
C 1
ı0

R C 0R/
�4L�5; "0 WD �

log.1� "1/
2 logL

: (3-3)

Then for some C depending only on K0; G; �X .X/; �Y .Y /, and Bh defined in (1-3),

kBhf kL2.X;�X / � Ch
"0kf kL2.Y;�Y / for all f 2 L2.Y; �Y /: (3-4)

Remark. Proposition 3.1 has complicated hypotheses in order to make it useful for the proof of Theorem 1.
However, the argument is essentially the same in the following special case which could simplify the
reading of the proof below: ı D ı0, G � 1, ˆ.x; y/D xy, K0 D 0. Note that in this case Bh is related
to the semiclassical Fourier transform (1-2).

To start the proof of Proposition 3.1, we extend ˆ to a function in C 2.R2IR/ such that (3-1) still holds,
and extend G to a function in C 1.R2IC/ such that G; @xG are uniformly bounded. Following Section 2A,
consider the discretizations of �X ; �Y with base L, denoting by VX ; VY the sets of vertices and by H
the height functions.

Fix f 2 L2.Y; �Y /. For each J 2 VY , let yJ denote the center of J and define the function of x 2 R

FJ .x/D
1

�Y .J /

Z
J

exp
�
i.ˆ.x; y/�ˆ.x; yJ //

h

�
G.x; y/f .y/ d�Y .y/: (3-5)

In terms of the operator Bh from (1-3), we may write

FJ .x/D
1

�Y .J /
exp

�
�
iˆ.x; yJ /

h

�
Bh.1Jf /.x/: (3-6)

Put

� WD
1

8.C 0R/
2

(3-7)
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Figure 2. An illustration of (3-8) in the caseKD1. The vertical lines mark the endpoints
of intervals in VX and the horizontal lines mark the endpoints of intervals in VY . The
thick lines correspond to intervals of height 0 and the thin lines to intervals of height 1.
The shaded rectangles have the form I �J, I 2 VX, J 2 VY , where EJ is constant on I,
and the shaded rectangles on the left/right correspond to the left-/right-hand sides of (3-9)
for H.J /D 0.

and for J 2 VY define the piecewise constant function EJ 2 L1.X; �X / using the space C� .I / defined
in Section 2B:

EJ .x/D kFJ kC� .I /; where x 2 I 2 VX ; H.I /CH.J /DK: (3-8)

See Figure 2. Note that jFJ .x/j �EJ .x/ for �X -almost every x.
The L2 norms of the functions EJ satisfy the following key bound, proved in Section 3B, which

gives an improvement from one scale to the next. The use of the L2 norm of EJ as the monotone
quantity is convenient for several reasons. On one hand, the averaging provided by the L2 norm means it
is only necessary to show an improvement on FJ in sufficiently many places; more precisely we will
show in (3-11) that such improvement happens on at least one child of each interval I 2 V.X/ with
H.I/CH.J / D K � 1. On the other hand, such improvement is obtained by a pointwise argument
which also uses that the FJb are slowly varying on each interval I with H.I/CH.J / D K � 1 (see
Lemma 3.7); this motivates the use of C� .I / norms in the definition of EJb .

Lemma 3.2. Let J 2 VY with K0 �H.J / < K �K0 and J1; : : : ; JB 2 VY be the children of J. Then,
with "1 defined in (3-3),

kEJ k
2
L2.X;�X /

� .1� "1/

BX
bD1

�Y .Jb/

�Y .J /
kEJbk

2
L2.X;�X /

: (3-9)

Iterating Lemma 3.2, we obtain:

Proof of Proposition 3.1. First of all, we show that for all J 2 VY with H.J / D K �K0, and some
constant C0 depending on G;�X .X/ and defined below, we have

kEJ k
2
L2.X;�X /

� C0
kf k2

L2.J;�Y /

�Y .J /
: (3-10)
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Indeed, take I 2 VX such that H.I/DK0. By (2-2) and (3-1), for all y 2 J

1

h
sup
x2I

j@xˆ.x; y/� @xˆ.x; yJ /j �
2

h
jJ j � 2C 0RL

K0

and thus by (2-2) and (3-7)

4� jI j

h
sup
x2I

j@xˆ.x; y/� @xˆ.x; yJ /j � 1:

Arguing similarly to Lemma 2.3, we obtain for all y 2 Jexp
�
i.ˆ.x; y/�ˆ.x; yJ //

h

�
G.x; y/


C� .I /

� CG WDmax.sup jGj; sup j@xGj/:

Using Hölder’s inequality in (3-5), we obtain

EJ jI D kFJ kC� .I / �
CG

�Y .J /

Z
J

jf .y/j d�Y .y/�
CGkf kL2.J;�Y /p

�Y .J /

and (3-10) follows by integration in x, where we put C0 WD C 2G�X .X/.
Now, arguing by induction on H.J / with (3-10) as the base case and (3-9) as the inductive step, we

obtain for all J 2 VY with K0 �H.J /�K �K0,

kEJ k
2
L2.X;�X /

� C0.1� "1/
K�K0�H.J/

kf k2
L2.J;�Y /

�Y .J /
:

In particular, for all J 2 VY with H.J /DK0, we have by (3-6)Bh.1Jf /�Y .J /

2
L2.X;�X /

D kFJ k
2
L2.X;�X /

� kEJ k
2
L2.X;�X /

� C1h
2"0
kf k2

L2.J;�Y /

�Y .J /
;

where C1 WD C0.1� "1/�2K0. Using the identity

Bhf D �Y .Y /
X
J2VY

H.J/DK0

�Y .J /

�Y .Y /
�
Bh.1Jf /
�Y .J /

and (2-15), we estimate

kBhf k2L2.X;�X / � C1�Y .Y /h
2"0kf k2

L2.Y;�Y /

and (3-4) follows with C WD CG.1� "1/�K0
p
�X .X/�Y .Y /. �

3B. The inductive step. In this section we prove Lemma 3.2. Let J 2 VY satisfy K0 �H.J / <K�K0
and J1; : : : ; JB be the children of J. It suffices to show that for all I 2 VX with H.I/CH.J /DK � 1
we have

kEJ k
2
L2.I;�X /

� .1� "1/

BX
bD1

�Y .Jb/

�Y .J /
kEJbk

2
L2.I;�X /

: (3-11)

Indeed, summing (3-11) over I, we obtain (3-9).
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Fix I 2 VX with H.I/CH.J /DK � 1 and let I1; : : : ; IA be the children of I. Define

pa WD
�X .Ia/

�X .I /
; qb WD

�Y .Jb/

�Y .J /
:

Note that pa; qb � 0 and p1C � � �CpA D q1C � � �C qB D 1.
The functions FJ and FJb are related by the following formula:

FJ D

BX
bD1

qb exp.i‰b/FJb ; ‰b.x/ WD
ˆ.x; yJb /�ˆ.x; yJ /

h
: (3-12)

That is, FJ is a convex combination of FJ1 ; : : : ; FJB multiplied by the phase factors exp.i‰b/. At the
end of this subsection we exploit cancellation between these phase factors to show (3-11). However there
are several preparatory steps necessary. Before we proceed with the proof, we show the version of (3-11)
with no improvement:

Lemma 3.3. We have

kEJ k
2
L2.I;�X /

�

BX
bD1

qbkEJbk
2
L2.I;�X /

: (3-13)

Proof. By (2-2), (3-1), and (3-7), we have for all a; b

4� jIaj � sup
I

j‰0bj �
8� jIaj � jJ j

h
� 1: (3-14)

Moreover, by (2-2) and (3-2) we have jIaj � 1
4
jI j. Applying Lemma 2.3, we obtain

k exp.i‰b/FJbkC� .Ia/ � kFJbkC� .I /:

By (3-12) and (2-15) we then have

kFJ k
2
C� .Ia/

�

� BX
bD1

qbkFJbkC� .I /

�2
�

BX
bD1

qbkFJbk
2
C� .I /

: (3-15)

By (3-8), we have for all a; b

EJ jIa D kFJ kC� .Ia/; EJb jI D kFJbkC� .I /: (3-16)

Now, summing both sides of (3-15) over a with weights �X .Ia/, we obtain (3-13). �

The rest of this section is dedicated to the proof of (3-11), studying the situations in which the
bound (3-13) is almost sharp and ultimately reaching a contradiction. The argument is similar in spirit to
Lemma 1.2. In fact we can view Lemma 1.2 as the special degenerate case when ADBD 2, paD qbD 1

2
,

the intervals Ia are replaced by points xa, FJb � fb are constants, ua D FJ .xa/, and !ab D ‰b.xa/.
The general case is more technically complicated. In particular we use Lemma 2.7 to deal with general
convex combinations. We also use ı-regularity in many places, for instance to show that the coefficients
pa; qb are bounded away from zero and to get the phase factor cancellations in (3-30) at the end of the
proof. The reading of the argument below may be simplified by making the illegal choice "1 WD 0.
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We henceforth assume that (3-11) does not hold. Put

R WD

BX
bD1

qbkFJbk
2
C� .I /: (3-17)

By (3-16), the failure of (3-11) can be rewritten as
AX
aD1

pakFJ k
2
C� .Ia/ > .1� "1/R: (3-18)

We note for future use that pa; qb are bounded below by (2-4):

pmin WDmin
a
pa �

L�ı

C 0R
; qmin WDmin

b
qb �

L�ı
0

C 0R
: (3-19)

We first deduce from (3-17) and the smallness of "1 an upper bound on each kFJbkC� .I / in terms of
the averaged quantity R:

Lemma 3.4. We have for all b,
kFJbkC� .I / � 2

p
R: (3-20)

Proof. The first inequality in (3-15) together with (3-18) implies� BX
bD1

qbkFJbkC� .I /

�2
�

AX
aD1

pakFJ k
2
C� .Ia/ � .1� "1/R: (3-21)

By (3-3) and (3-19) we have qmin � 2
p
"1. Applying (2-17) to fb WD kFJbkC�.I/ with (3-17) and (3-21),

we obtain (3-20). �

We next obtain a version of (3-18) which gives a lower bound on the size of FJ, rather than on the
norm kFJ kC� .Ia/:

Lemma 3.5. There exist xa 2 Ia, aD 1; : : : ; A, such that
AX
aD1

pajFJ .xa/j
2 > .1� 2"1/R: (3-22)

Proof. By Lemma 2.3 and (3-14), we have

� jIaj � sup
Ia

j.exp.i‰b/FJb /
0
j �

1
2
kFJbkC� .I /:

It follows by (3-12) and the triangle inequality that for all a,

kFJ kC� .Ia/ �max
�

sup
Ia

jFJ j;
1

2

BX
bD1

qbkFJbkC� .I /

�
: (3-23)

By (3-15) we have
sup
Ia

jFJ j
2
� kFJ k

2
C� .Ia/ �R: (3-24)
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Therefore by (3-23) and the second inequality in (3-15)

kFJ k
2
C� .Ia/ �

1
2

�
RC sup

Ia

jFJ j
2
�
:

Summing this inequality over a with weights pa, we see that (3-18) implies
AX
aD1

pa sup
Ia

jFJ j
2 > .1� 2"1/R;

which gives (3-22). �

Now, choose xa as in Lemma 3.5 and put

Fab WD FJb .xa/ 2 C; !ab WD‰b.xa/ 2 R:

Note that by (3-12)

FJ .xa/D

BX
bD1

qb exp.i!ab/Fab:

Using (2-15) for fb D exp.i!ab/Fab and (3-22), we obtainX
a;b

paqbjFabj
2 > .1� 2"1/RC

X
a;b;b0

b<b0

paqbqb0
ˇ̌
exp.i.!ab �!ab0//Fab �Fab0

ˇ̌2
: (3-25)

From the definition (3-17) of R, we have for all a
BX
bD1

qbjFabj
2
�R: (3-26)

Therefore, the left-hand side of (3-25) is bounded above by R. Using (3-19), we then get for all a; b; b0

the following approximate equality featuring the phase terms !ab:

ˇ̌
exp.i.!ab �!ab0//Fab �Fab0

ˇ̌
<

s
2"1R

pminq
2
min

� 2.C 0R/
2LıCı

0
p
"1R: (3-27)

Using the smallness of "1, we obtain from here a lower bound on jFabj:

Lemma 3.6. For all a; b we have

jFabj �
1
2

p
R: (3-28)

Proof. By (3-3) and (3-19), we have pmin � 4"1. Applying Lemma 2.8 to ˛a D
P
b qbjFabj

2 and
using (3-25) and (3-26), we obtain for all a

BX
bD1

qbjFabj
2
�
1
2
R: (3-29)
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We now argue similarly to the proof of (2-17). Fix a and let Fa;min Dminb jFabj, Fa;max Dmaxb jFabj.
By (3-29) we have Fa;max �

p
R=2. On the other hand the difference Fa;max�Fa;min is bounded above

by (3-27). By (3-3) we then have

Fa;min �

q
1
2
R� 2.C 0R/

2LıCı
0
p
"1R �

1
2

p
R: �

We next estimate the discrepancy between the values Fab for fixed b and different a, using the fact
that we control the norm kFJbkC� .I / and thus the derivative of FJb :

Lemma 3.7. For all a; a0; b we have

jFab �Fa0bj �
2
p
R jxa � xa0 j

� jI j
�
2
p
R

�
LH.I/ � jxa � xa0 j:

Proof. This follows immediately by combining Lemma 2.4, Lemma 3.4, and (2-2). �

Armed with the bounds obtained above, we are now ready to reach a contradiction and finish the proof
of Lemma 3.2, using the discrepancy of the phase shifts !ab and the lower bound on j@2xyˆj from (3-1).

Using part (3) of Lemma 2.1 and (3-2), choose a; a0; b; b0 such that

1
2
C
� 2
ı

R L�
2
3 � LH.I/ � jxa � xa0 j � 2L

� 2
3 ;

1
2
C
� 2
ı

0

R L�
2
3 � LH.J/ � jyb �yb0 j � 2L

� 2
3 :

Recall that xa 2 Ia is chosen in Lemma 3.5 and yb WD yJb is the center of Jb . By Lemma 2.5, we have
for some . Qx; Qy/ 2 I �J,

� WD !abC!a0b0 �!a0b �!ab0 D
.xa � xa0/.yb �yb0/

h
@2xyˆ. Qx; Qy/:

By (3-1) and (3-2) and since hD L�K, H.I/CH.J /DK � 1, we have

1
8
C
� 2
ı
� 2
ı0

R L�
1
3 � j� j � 8L�

1
3 � �:

Therefore, by Lemma 2.6 the phase factor ei� is bounded away from 1, which combined with (3-28)
gives a lower bound on the discrepancy:

jFabj � je
i�
� 1j �

j� j
p
R

�
�
C
� 2
ı
� 2
ı0

R

8�
L�

1
3

p
R: (3-30)

On the other hand we can estimate the same discrepancy from above by (3-27), Lemma 3.7, and the
triangle inequality:

jFabj�je
i�
�1j D jei.!ab�!ab0 /Fab�e

i.!a0b�!a0b0 /Fabj

� jei.!ab�!ab0 /Fab�Fab0 jCjFab0�Fa0b0 jCje
i.!a0b�!a0b0 /Fa0b�Fa0b0 jCjFab�Fa0bj

< 4.C 0R/
2LıCı

0
p
"1RC8�

�1L�
2
3

p
R:
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Comparing this with (3-30) and dividing by
p
R, we obtain

C
� 2
ı
� 2
ı0

R

8�
L�

1
3 < 4.C 0R/

2LıCı
0p
"1C 8�

�1L�
2
3 :

This gives a contradiction with the following consequences of (3-2) and (3-3):

8��1L�
2
3 �

C
� 2
ı
� 2
ı0

R

16�
L�

1
3 ; 4.C 0R/

2LıCı
0p
"1 �

C
� 2
ı
� 2
ı0

R

16�
L�

1
3 :

3C. Proof of Theorem 1. We now show how to reduce Theorem 1 to Proposition 3.1. The idea is to split
G into pieces using a partition of unity. On each piece, by appropriate rescaling we keep the regularity
constant CR and reduce to the case (3-1) and hDL�K for some fixed L satisfying (3-2) and some integer
K > 0.

To be more precise, let .X; �X /, .Y; �Y /, ı, ı0, I0, J0, ˆ, G satisfy the hypotheses of Theorem 1.
Using a partition of unity, we write G as a finite sum

G D
X
`

G`; G` 2 C
1.I0 �J0IC/; suppG` � I` �J`; (3-31)

where I` � I0, J` � J0 are intervals such that for some mDm.`/ 2 Z,

2m�1 < j@2xyˆj< 2
mC1 on I` �J`:

It then suffices to show (1-4), where G is replaced by one of the functions G`. By changing ˆ outside of
the support of G (which does not change the operator Bh), we then reduce to the case when

2m�1 < j@2xyˆj< 2
mC1 on I0 �J0 (3-32)

for some m 2 Z.
We next rescale Bh to an operator zB Qh satisfying the hypotheses of Proposition 3.1. Fix the smallest

L 2 Z satisfying (3-2). Choose K 2 Z and � 2 Œ1;
p
L/ such that

�2 D 2m
Qh

h
; Qh WD L�K: (3-33)

Put for all intervals I; J

zX WD �X � zI0 WD �I0; � zX .�I / WD �
ı�X .I /;

zY WD �Y � zJ0 WD �J0; � zY .�J / WD �
ı 0�Y .J /:

Then . zX;� zX / is ı-regular, and . zY ;� zY / is ı0-regular, up to scale �h with regularity constant CR. Consider
the unitary operators

UX W L
2.X; �X /! L2. zX;� zX /; UXf . Qx/D �

� ı
2f .��1 Qx/;

UY W L
2.Y; �Y /! L2. zY ;� zY /; UY f . Qy/D �

� ı
0

2 f .��1 Qy/:
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Then the operator zB Qh WD UXBhU�1Y W L
2. zY ;� zY /! L2. zX;� zX / has the form (1-3):

zB Qhf . Qx/D
Z
zY

exp
�
i ẑ . Qx; Qy/

Qh

�
zG. Qx; Qy/f . Qy/ d� zY . Qy/;

where
ẑ . Qx; Qy/D 2�m�2ˆ.��1 Qx; ��1 Qy/; zG. Qx; Qy/D ��

ı
2
� ı
0

2 G.��1 Qx; ��1 Qy/:

By (3-32) the function ẑ satisfies (3-1). Fix smallest K0 2 N0 such that �h� LK0�K, that is,

LK0 �
2m

�
:

Without loss of generality, we may assume that h is small enough depending on L;m so that K � 2K0.
Then Proposition 3.1 applies to zB Qh and gives

kBhkL2.Y;�Y /!L2.X;�X / D kzB QhkL2. zY ;� zY /!L2. zX;� zX / � C
Qh"0 � C.2�mL/"0h"0

for "0 defined in (1-5) and some constant C depending only on ı; ı0; CR; I0; J0; ˆ;G. This finishes the
proof of Theorem 1.

4. Application: spectral gap for hyperbolic surfaces

We now discuss applications of Theorem 1 to spectral gaps. We start with the case of hyperbolic surfaces,
referring the reader to [Borthwick 2016; Dyatlov and Zahl 2016] for the terminology used here.

Let M D �nH2 be a convex cocompact hyperbolic surface, ƒ� � S1 be its limit set, ı 2 Œ0; 1/ be the
dimension of ƒ� , and � be the Patterson–Sullivan measure, which is a probability measure supported
on ƒ� ; see for instance [Borthwick 2016, Section 14.1]. Since ƒ� is closed and is not equal to the
entire S1, we may cut the circle S1 to turn it into an interval and treat ƒ� as a compact subset of R.
Then .ƒ� ; �/ is ı-regular up to scale 0 with some constant CR; see for instance [Borthwick 2016,
Lemma 14.13]. The regularity constant CR depends continuously on the surface, as explained in the case
of three-funnel surfaces in [Dyatlov and Zahl 2016, Proposition 7.7].

The main result of this section is the following essential spectral gap for M. We formulate it here in
terms of the scattering resolvent of the Laplacian. Another formulation is in terms of a zero-free region
for the Selberg zeta function past the first pole; see for instance [Dyatlov and Zahl 2016]. See below for a
discussion of previous work on spectral gaps.

Theorem 2. Consider the meromorphic scattering resolvent

R.�/D
�
��M �

1
4
��2

��1
W

�
L2.M/! L2.M/; Im� > 0;

L2comp.M/! L2loc.M/; Im�� 0:

Assume that 0 < ı < 1. Then M has an essential spectral gap of size

ˇ D 1
2
� ıC .13CR/

� 320
ı.1�ı/ I (4-1)
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that is, R.�/ has only finitely many poles in fIm� > �ˇg and it satisfies the cutoff estimates for each
 2 C10 .M/, " > 0 and some constant C0 depending on "

k R.�/ kL2!L2 � C. ; "/j�j
�1�2min.0;Im�/C"; Im� 2 Œ�ˇ; 1�; jRe�j � C0:

Proof. We use the strategy of [Dyatlov and Zahl 2016]. By Theorem 3 of that paper, it suffices to show
the following fractal uncertainty principle: for each � 2 .0; 1/,

ˇ0 WD
1
2
� ıC .150C 2R/

� 160
ı.1�ı/ ;

and each cutoff function � 2 C1.S1 �S1/ supported away from the diagonal, there exists a constant C
depending on M;�; � such that for all h 2 .0; 1/

k1ƒ�.h�/B�;h1ƒ�.h�/kL2.S1/!L2.S1/ � Ch
ˇ0�2.1��/; (4-2)

where ƒ�.h�/� S1 is the h� neighborhood of ƒ� and the operator B�;h is defined by (here jx�yj is
the Euclidean distance between x; y 2 S1 � R2)

B�;hf .x/D .2�h/
� 1
2

Z
S1
jx�yj

2i
h �.x; y/f .y/ dy:

To show (4-2), we first note that by Lemma 2.2, .Y; �Y / is ı-regular up to scale h with constant 30C 2R,
where Y Dƒ�.h/ and �Y is hı�1 times the restriction of the Lebesgue measure to Y . We lift �.x; y/ to
a compactly supported function on R2 (splitting it into pieces using a partition of unity) and write

B�;h1ƒ�.h/f .x/D .2�/
� 1
2h

1
2
�ıBhf .x/;

where Bh has the form (1-3) with G.x; y/ D �.x; y/ and (with jx � yj still denoting the Euclidean
distance between x; y 2 S1)

ˆ.x; y/D 2 log jx�yj:

The function ˆ is smooth and satisfies the condition @2xyˆ¤ 0 on the open set S1 �S1 n fxDyg which
contains the support ofG; see for instance [Bourgain and Dyatlov 2016, Section 4.3]. Applying Theorem 1
with .X; �X / WD .Y; �Y /, we obtain

k1ƒ�.h/B�;h1ƒ�.h/kL2.S1/!L2.S1/ � Ch
ˇ0:

Similarly we have

k1ƒ�.h/CtB�;h1ƒ�.h/CskL2.S1/!L2.S1/ � Ch
ˇ0; t; s 2 Œ�1; 1�;

where XC t is the result of rotating X �S1 by angle t . Covering ƒ�.h�/ with at most 10h��1 rotations
of the set ƒ�.h/, see for instance the proof of [Bourgain and Dyatlov 2016, Proposition 4.2], and using
triangle inequality, we obtain (4-2), finishing the proof. �

We now briefly discuss previous results on spectral gaps for hyperbolic surfaces:

� The works [Patterson 1976; Sullivan 1979] imply that R.�/ has no poles with Im� > ı � 1
2

. On
the other hand, the fact that R.�/ is the L2 resolvent of the Laplacian in fIm� > 0g shows that it has
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only has finitely many poles in this region. Together these two results give the essential spectral gap
ˇ Dmax

�
0; 1
2
� ı
�
. Thus Theorem 2 gives no new results when ı is much larger than 1

2
.

� Using the method developed by Dolgopyat [1998], Naud [2005] showed an essential spectral gap of
size ˇ > 1

2
� ı when ı > 0. Oh and Winter [2016] showed that the size of the gap is uniformly controlled

for towers of congruence covers in the arithmetic case.

� Dyatlov and Zahl [2016] introduced the fractal-uncertainty-principle approach to spectral gaps and used
it together with tools from additive combinatorics to give an estimate of the size of the gap in terms of
CR in the case when ı is very close to 1

2
.

� Bourgain and Dyatlov [2016] showed that each convex cocompact hyperbolic surface has an essential
spectral gap of some size ˇDˇ.ı; CR/>0. Their result is new in the case ı> 1

2
and is thus complementary

to the results mentioned above, as well as to Theorem 2.

More generally, spectral gaps have been studied for noncompact manifolds with hyperbolic trapped sets.
(See for instance [Nonnenmacher 2011, Section 2.1] for a definition.) In this setting the Patterson–Sullivan
gap 1

2
� ı generalizes to the pressure gap �P

�
1
2

�
which has been established by Ikawa [1988], Gaspard

and Rice [1989], and Nonnenmacher and Zworski [2009]. An improved gap ˇ >�P
�
1
2

�
has been proved

in several cases; see in particular [Petkov and Stoyanov 2010; Stoyanov 2011; 2012]. We refer the reader
to [Nonnenmacher 2011] for an overview of results on spectral gaps for general hyperbolic trapped sets.

5. Application: spectral gap for open quantum maps

In this section, we discuss applications of the fractal uncertainty principle to the spectral properties of open
quantum maps. Following the notation in [Dyatlov and Jin 2017] we consider an open quantum baker’s
map BN determined by a triple .M;A; �/, where M 2N is called the base, A� ZM D f0; 1; : : : ;M �1g

is called the alphabet, and � 2 C10 ..0; 1/I Œ0; 1�/ is a cutoff function. The map BN is a sequence of
operators BN W `2N ! `2N , `2N D `

2.ZN /, defined for every positive N 2MZ by

BN D F�N

0B@�N=M FN=M �N=M
: : :

�N=M FN=M �N=M

1CA IA;M ; (5-1)

where FN is the unitary Fourier transform given by the N �N matrix .1=
p
N/.e�

2�ij`
N /j`, �N=M is

the multiplication operator on `2
N=M

discretizing �, and IA;M is the diagonal matrix with `-th diagonal
entry equal to 1 if b`=.N=M/c 2A and 0 otherwise.

An important difference from [Dyatlov and Jin 2017] is that in the present paper we allow N to be any
multiple of M, while they required that N be a power of M. To measure the size of N, we let k be the
unique integer such that M k �N <M kC1, i.e., k D blogN=logM c. Denote by ı the dimension of the
Cantor set corresponding to M and A, given by

ı D
log jAj
logM

:
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The main result of this section is the following spectral gap, which was previously established in [Dyatlov
and Jin 2017, Theorem 1] for the case when N is a power of M :

Theorem 3. Assume that 0 < ı < 1; that is, 1 < jAj<M. Then there exists

ˇ D ˇ.M;A/ >max
�
0; 1
2
� ı
�

(5-2)

such that, with Sp.BN /� f� 2 C W j�j � 1g denoting the spectrum of BN ,

lim sup
N!1;N2MZ

maxfj�j W � 2 Sp.BN /g �M�ˇ: (5-3)

The main component of the proof is a fractal uncertainty principle. For the case N DM k, the following
version of it was used in [Dyatlov and Jin 2017]:

k1CkFN1Ckk`2N!`
2
N
� CN�ˇ; (5-4)

where Ck is the discrete Cantor set given by

Ck WD
�k�1X
jD0

ajM
j
W a0; : : : ; ak�1 2A

�
� ZN : (5-5)

For general N 2MZ\ ŒM k;M kC1/, we define a similar discrete Cantor set in ZN by

Ck.N / WD fbj .N / W j 2 Ckg � ZN ; bj .N / WD

�
jN

M k

�
: (5-6)

In fact, in our argument we only need bj .N / to be some integer in ŒjN=M k; .j C 1/N=M k/.
The uncertainty principle then takes the following form:

Theorem 4. Assume that 0 < ı < 1. Then there exists

ˇ D ˇ.M;A/ >max
�
0; 1
2
� ı
�

(5-7)

such that for some constant C and all N,

k1Ck.N/FN1Ck.N/k`2N!`
2
N
� CN�ˇ: (5-8)

In Section 5A below, we show that Theorem 4 implies Theorem 3. We prove Theorem 4 in Sections 5C
and 5D using Ahlfors–David regularity of the Cantor set, which is verified in Section 5B.

5A. Fractal uncertainty principle implies spectral gap. We first show that Theorem 4 implies Theorem 3.
The argument is essentially the same as in [Dyatlov and Jin 2017, Section 2.3], relying on the following
generalization of Proposition 2.5 from that paper:

Proposition 5.1 (localization of eigenstates). Fix � > 0, � 2 .0; 1/, and assume that for some k 2 N,
N 2MZ\ ŒM k;M kC1/, � 2 C, u 2 `2N , we have

BNuD �u; j�j �M
��:
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Define
X� WD

[˚
Ck.N /Cm Wm 2 Z; jmj � .M C 2/N 1��

	
� ZN :

Then

kuk`2N
�M �

j�j��k k1X�uk`2N
CO.N�1/kuk`2N ; (5-9)

ku�F�N1X�FNuk`2N DO.N�1/kuk`2N ; (5-10)

where the constants in O.N�1/ depend only on �; �; �.

Proof. Following [Dyatlov and Jin 2017, (2.7)], let ˆDˆM;A be the expanding map defined by

ˆ W
G
a2A

�
a

M
;
aC 1

M

�
! .0; 1/; ˆ.x/DMx� a; x2

�
a

M
;
aC 1

M

�
: (5-11)

Put
Qk WD d�ke 2 f1; : : : ; kg: (5-12)

With d. � ; � / denoting the distance function on the circle as in [Dyatlov and Jin 2017, Section 2.1], define

X� WD
˚
x 2 Œ0; 1� W d.x;ˆ�

Qk.Œ0; 1�//�N��
	
:

Then (5-9), (5-10) follow from the long time Egorov theorem [Dyatlov and Jin 2017, Proposition 2.4]
(whose proof never used that N is a power of M ) similarly to Proposition 2.5 of the same paper, as long
as we show the following analog of [Dyatlov and Jin 2017, (2.30)]:

` 2 f0; : : : ; N � 1g;
`

N
2 X� D) ` 2X�: (5-13)

To see (5-13), note that (with the intervals considered in R=Z)

ˆ�
Qk.Œ0; 1�/�

[
j2Ck

�
j �M k� Qk

M k
;
j CM k� Qk

M k

�
:

Assume that ` 2 f0; : : : ; N � 1g and `=N 2 X�. Then there exists j 2 Ck such that

d

�
`

N
;
j

M k

�
�N��CM�

Qk
� .M C 1/N��:

It follows that

d

�
`

N
;
bj .N /

N

�
� .M C 2/N��

and thus ` 2X� as required. �

Now, we assume that Theorem 4 holds and prove Theorem 3. Using the triangle inequality as in the
proof of [Dyatlov and Jin 2017, Proposition 2.6], we obtain

k1X�F
�
N1X�k`2N!`2N

� .2M C 5/2N 2.1��/
k1Ck.N/FN1Ck.N/k`2N!`

2
N

� CN 2.1��/�ˇ: (5-14)

Here C denotes a constant independent of N.
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Assume that � 2 C is an eigenvalue of BN such that j�j � M�ˇ and u 2 `2N is a normalized
eigenfunction of BN with eigenvalue �. By (5-9), (5-10), and (5-14)

1D kuk`2N
�M ˇ

j�j��kk1X�uk`2N
CO.N�1/

�M ˇ
j�j��kk1X�F

�
N1X�FNuk`2N CO.N�1/

� C j�j��kN 2.1��/�ˇ
CO.N�1/: (5-15)

It follows that j�j�k � CN�ˇC2.1��/ or equivalently

j�j � C
1
�
kM

2.1��/�ˇ
� :

This implies

lim sup
N!1

maxfj�j W � 2 Sp.BN /g �maxfM�ˇ;M
2.1��/�ˇ

� g:

Letting �! 1, we conclude the proof of Theorem 3.

5B. Regularity of discrete Cantor sets. Theorem 4 will be deduced from Theorem 1 and the results of
[Bourgain and Dyatlov 2016]. To apply these, we establish Ahlfors–David regularity of the Cantor set
Ck.N /� ZN D f0; : : : ; N � 1g in the following discrete sense.

Definition 5.2. We say that X � ZN is ı-regular with constant CR if

� for each interval J of size jJ j � 1, we have #.J \X/� CRjJ jı, and

� for each interval J with 1� jJ j �N which is centered at a point in X, we have #.J \X/�C�1R jJ j
ı.

Definition 5.2 is related to Definition 1.1 as follows:

Lemma 5.3. Let X � ZN . Define zX WDN�1X � Œ0; 1� which supports the measure

� zX .A/ WDN
�ı
� #. zX \A/; A� R: (5-16)

Then X is ı-regular with constant CR in the sense of Definition 5.2 if and only if . zX;� zX / is ı-regular up
to scale N�1 with constant CR in the sense of Definition 1.1.

Proof. This follows directly from the two definitions. �

We first establish the regularity of the discrete Cantor set Ck defined in (5-5):

Lemma 5.4. The set Ck � ZMk is ı-regular with constant CR D 2M 2ı.

Proof. We notice that for all integers k0 2 Œ0; k� and j 0 2 Z

#
�
Ck \ Œj 0M k0; .j 0C 1/M k0/

�
D

�
jAjk0 DM ık0; j 0 2 Ck�k0 ;
0; j 0 62 Ck�k0 :

(5-17)

Let J be an interval in R, with 1 � jJ j � N D M k. Choose an integer k0 2 Œ0; k � 1� such that
M k0 � jJ j �M k0C1. Then there exists some j 0 2 Z such that

J � Œj 0M k0C1; .j 0C 2/M k0C1/:
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Therefore by (5-17)
#.Ck \J /� 2M ı.k0C1/

� 2M ı
jJ jı � CRjJ j

ı:

On the other hand, if jJ j>N then

#.Ck \J /� #.Ck/DN ı
� jJ jı:

This gives the required upper bound on #.Ck \J /.
Now, assume that 1� jJ j �N and J is centered at some j 2 Ck . Choose k0 as before. If k0 D 0 then

#.Ck \J /� 1�M�ı jJ jı � C�1R jJ j
ı:

We henceforth assume that 1� k0 � k�1. Let j 0 2 Ck�k0C1 be the unique element such that j 0M k0�1 �

j < .j 0C 1/M k0�1. Since M � 2, we have jJ j �M k0 � 2M k0�1 and thus

Œj 0M k0�1; .j 0C 1/M k0�1�� Œj �M k0�1; j CM k0�1�� J:

Therefore by (5-17)
#.Ck \J /�M ı.k0�1/

�M�2ı jJ jı � C�1R jJ j
ı:

This gives the required lower bound on #.Ck \J /, finishing the proof. �

We now establish regularity of the dilated Cantor set Ck.N /:

Proposition 5.5. Assume that M k �N <M kC1 and let Ck.N /� ZN be given by (5-6). Then Ck.N / is
ı-regular with constant CR D 8M 3ı.

Proof. For any interval J, we have

#.Ck.N /\J /D #fj 2 Ck W bj .N / 2 J g D #
n
j 2 Ck W

M k

N
bj .N / 2

M k

N
J
o
:

By our choice of bj .N /, we have .M k=N/bj .N / 2 Œj; j C 1/. Therefore

#
�
Ck \

M k

N
J
�
� 1� #.Ck.N /\J /� #

�
Ck \

M k

N
J
�
C 1:

We apply Lemma 5.4 to see that for any interval J with jJ j � 1

#.Ck.N /\J /� 2M 2ı
jJ jı C 1� 3M 2ı

jJ jı � CRjJ j
ı:

Now, assume that J is an interval with 8
1
ıM 3 � jJ j � N centered at bj .N / for some j 2 Ck . Then

.M k=N/J contains the interval of size 1
2M
jJ j centered at j . Therefore, by Lemma 5.4

#.Ck.N /\J /�
1

2M 2ı

�
jJ j

2M

�ı
� 1�

jJ jı

8M 3ı
� C�1R jJ j

ı:

Finally, if J is an interval with 1� jJ j � 8
1
ıM 3 centered at a point in Ck.N /, then

#.Ck.N /\J /� 1� C�1R jJ j
ı: �
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5C. Fractal uncertainty principle for ı �
1
2

. The proof of Theorem 4 in the case ı � 1
2

relies on the
following corollary of Theorem 1:

Proposition 5.6. Let X; Y � ZN be ı-regular with constant CR and 0 < ı < 1. Then

k1XFN1Y k`2N!`2N
� CN�.

1
2
�ıC"0/; (5-18)

where C only depends on ı; CR and

"0 D .5CR/
� 160
ı.1�ı/ : (5-19)

Proof. Put h WDN�1, zX WD hX, zY WD hY , and define the measures � zX ; � zY by (5-16). By Lemma 5.3,
. zX;� zX / and . zY ;� zY / are ı-regular up to scale h with constant CR. Consider the operator

Bh W L1. zY ;� zY /! L1. zX;� zX /

defined by

Bhf .x/D
Z
zY

exp
�
�
2�ixy

h

�
f .y/ d� zY .y/

and note that it has the form (1-3) with ˆ.x; y/D�2�xy, G � 1. By Theorem 1

kBhkL2. zY ;� zY /!L2. zX;� zX / � Ch
"0:

Comparing the formula

Bhf
�
j

N

�
DN�ı

X
`2Y

exp
�
�
2�ij`

N

�
f

�
`

N

�
; j 2X;

with the definition of the discrete Fourier transform FN , we see that

k1XFN1Y k`2N!`2N
DN ı� 1

2 kBhkL2. zY ;� zY /!L2. zX;� zX /;

which finishes the proof. �

Combining Propositions 5.5 and 5.6, we get (5-8) for

ˇ D 1
2
� ıC .40M 3ı/�

160
ı.1�ı/ (5-20)

which finishes the proof of Theorem 4 for ı � 1
2

.

5D. Fractal uncertainty principle for ı > 1
2

. For ı > 1
2

, Theorem 1 does not in general give an improve-
ment over the trivial gap ˇ D 0. Instead, we shall use the following reformulation of [Bourgain and
Dyatlov 2016, Theorem 4]:

Proposition 5.7. Let 0 � ı < 1, CR � 1, N � 1 and assume that zX; zY � Œ�1; 1� and . zX;� zX / and
. zY ;� zY / are ı-regular up to scale N�1 with constant CR in the sense of Definition 1.1, for some finite
measures � zX ; � zY supported on zX; zY .

Then there exist ˇ0 > 0, C0 depending only on ı, CR such that for all f 2 L2.R/,

supp htf �N � zY D) kf k
L2. zX/

� C0N
�ˇ0kf kL2.R/: (5-21)
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Here Of denotes the Fourier transform of f :

htf .�/D Ff .�/D
Z

R

e�2�ix�f .x/ dx: (5-22)

Proposition 5.7 implies the following discrete fractal uncertainty principle:

Proposition 5.8. Let X; Y � ZN be ı-regular with constant CR and 0� ı < 1. Then

k1XFN1Y k`2N!`2N
� CN�ˇ ; (5-23)

where C; ˇ > 0 only depend on ı; CR.

Proof. Put h WDN�1,
zX WD hX C Œ�h; h�; zY WD hY C Œ�h; h�;

and define the measures � zX ; � zY on zX; zY by (2-6). By Lemmas 5.3 and 2.2, . zX;� zX / and . zY ;� zY / are
ı-regular up to scale h with constant 30C 2R. Applying Proposition 5.7, we obtain for some constants
ˇ0 > 0, C0 depending only on ı; CR and all f 2 L2.R/

supp htf �N � zY D) kf k
L2. zX/

� C0N
�ˇ0kf kL2.R/: (5-24)

To pass from (5-24) to (5-23), fix a cutoff function � such that for some constant c > 0

� 2 C10
��
�
1
2
; 1
2

��
; k�kL2 D 1; inf

Œ0;1�
jF�1�j � c:

This is possible since for any � 2 C10 .R/ which is not identically 0, F�1� extends to an entire function
and thus has no zeros on fIm z D sg for all but countably many choices of s 2R. Choosing such s we see
that F�1.e�s��.�// has no real zeros.

Now, take arbitrary u 2 `2N . Consider the function f 2 L2.R/ defined by

Of .�/D
X
`2Y

u.`/�.� � `/:

Then supp Of �N � zY and kf kL2.R/ � kuk`2N , so by (5-24)

kf k
L2. zX/

� C0N
�ˇ0kuk`2N

: (5-25)

On the other hand, for all j 2 ZN , we have for all j 2X

1
p
N
f

�
j

N

�
D F�N1Y u.j / � .F�1�/

�
j

N

�
: (5-26)

Consider the nonoverlapping collection of intervals

Ij WD

�
j

N
�

1

2N
;
j

N
C

1

2N

�
� zX; j 2X:
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Using that .jf j2/0 D 2Re. Nf f 0/, we have

jF�N1Y u.j /j
2
�

1

c2N

ˇ̌̌̌
f

�
j

N

�ˇ̌̌̌2
� C

Z
Ij

jf .x/j2 dxC
C

N

Z
Ij

jf .x/j � jf 0.x/j dx;

where C denotes some constant depending only on ı; CR; �. Summing over j 2 X and using the
Cauchy–Schwarz inequality, we obtain

k1XF�N1Y uk
2
`2N
� Ckf k2

L2. zX/
C
C

N
kf k

L2. zX/
� kf 0kL2.R/:

Since supp Of � Œ�N;N �, we have kf 0kL2.R/ � 10N kf kL2.R/ � 10N kuk`2N and thus by (5-25)

k1XF�N1Y uk
2

`2N
� CN�ˇ0kuk2

`2N
;

which gives (5-23) with ˇ D 1
2
ˇ0. �

Combining Propositions 5.5 and 5.8, we obtain (5-8) for 1
2
� ı < 1, finishing the proof of Theorem 4.
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