Vol. 11, No. 6, 2018

Download this article
Download this article For screen
For printing
Recent Issues

Volume 11
Issue 8, 1841–2148
Issue 7, 1587–1839
Issue 6, 1343–1586
Issue 5, 1083–1342
Issue 4, 813–1081
Issue 3, 555–812
Issue 2, 263–553
Issue 1, 1–261

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editors’ Interests
Scientific Advantages
Submission Guidelines
Submission Form
Editorial Login
Contacts
Author Index
To Appear
 
ISSN: 1948-206X (e-only)
ISSN: 2157-5045 (print)
Dolgopyat's method and the fractal uncertainty principle

Semyon Dyatlov and Long Jin

Vol. 11 (2018), No. 6, 1457–1485
Abstract

We show a fractal uncertainty principle with exponent 1 2 δ + ε, ε > 0, for Ahlfors–David regular subsets of of dimension δ (0,1). This is an improvement over the volume bound 1 2 δ, and ε is estimated explicitly in terms of the regularity constant of the set. The proof uses a version of techniques originating in the works of Dolgopyat, Naud, and Stoyanov on spectral radii of transfer operators. Here the group invariance of the set is replaced by its fractal structure. As an application, we quantify the result of Naud on spectral gaps for convex cocompact hyperbolic surfaces and obtain a new spectral gap for open quantum baker maps.

Keywords
resonances, fractal uncertainty principle
Mathematical Subject Classification 2010
Primary: 28A80, 35B34, 81Q50
Milestones
Received: 23 February 2017
Revised: 26 October 2017
Accepted: 12 January 2018
Published: 3 May 2018
Authors
Semyon Dyatlov
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA
United States
Long Jin
Department of Mathematics
Purdue University
West Lafayette, IN
United States