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ON THE GLOBAL STABILITY OF A BETA-PLANE EQUATION

FABIO PUSATERI AND KLAUS WIDMAYER

We study the motion of an incompressible, inviscid two-dimensional fluid in a rotating frame of reference.
There the fluid experiences a Coriolis force, which we assume to be linearly dependent on one of the
coordinates. This is a common approximation in geophysical fluid dynamics and is referred to as the
ˇ-plane approximation. In vorticity formulation, the model we consider is then given by the Euler equation
with the addition of a linear anisotropic, nondegenerate, dispersive term. This allows us to treat the
problem as a quasilinear dispersive equation whose linear solutions exhibit decay in time at a critical rate.

Our main result is the global stability and decay to equilibrium of sufficiently small and localized
solutions. Key aspects of the proof are the exploitation of a “double null form” that annihilates interactions
between spatially coherent waves and a lemma for Fourier integral operators which allows us to control
a strong weighted norm.
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1. Introduction

A basic model for a fluid in a rotating frame of reference is given by the Euler–Coriolis equation�
@tvC v � rvCf �^ vCrp D 0;

div v D 0;
(1-1)

where v D .v1; v2; v3/ W .t;x/ 2 R�R3! R3 and p W .t;x/ 2 R�R3! R are the velocity and pressure
of the fluid, respectively. Here, f �^ v is the Coriolis force experienced in the rotating frame, with
� 2 R3 being the axis of rotation and f W R3! R the strength of the effect, which depends on the spatial
location (but not on time). To describe waves on the surface of the Earth, a common approximation in
geophysical fluid dynamics, see [McWilliams 2006; Pedlosky 1987], consists in choosing �D .0; 0; 1/|
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and assuming trivial dynamics in the vertical direction, i.e., @3v D 0. One can then reduce matters to a
two-dimensional system �

@tuCu � ruC .�f u2; f u1/
|
Crp D 0;

div uD 0;
(1-2)

where now u W .t;x/ 2R�R2!R2, p W .t;x/ 2R�R2!R and f WR2!R. A solution to the original
system (1-1) is then recovered by setting .v1; v2/D .u1;u2/ and solving a transport equation for v3.

Passing to a scalar equation using the vorticity ! WD curl uD @1u2� @2u1 yields

@t!Cu � r! D�u � rf; uDr?.��/�1!: (1-3)

On a rotating sphere, such as the Earth, the force f varies with the sine of the latitude. In a first rough
approximation, the so-called f -plane approximation, this variation is ignored, and a fixed value f0 is
used throughout the domain. A more accurate and very common1 model in geophysical fluid dynamics
is a linear approximation to this variability, which is usually referred to as the ˇ-plane approximation;
see, e.g., [McWilliams 2006, Chapter 2; Pedlosky 1987, Chapter 3]. Assuming that the strength of the
Coriolis force depends linearly on the latitude,

f .x;y/D f0Cˇ.y �y0/;

we arrive at the so-called ˇ-plane equation

@t!Cu � r! D ˇL1!; L1 WD
@x

�
D

R1

jrj
; uDr?.��/�1!; (1-4)

for ! W R�R2! R. Here ˇ is the parameter of linearity of the Coriolis force, which by rescaling can be
assumed to be equal to 1, and R1 stands for the Riesz transform in the first coordinate:

bR1g.�/D
�i�1

j�j
Og.�/; Og.�/ WD

1

2�

Z
R2

e�ix��g.x/ dx:

On one hand, one can view (1-4) as a perturbation of the Euler equation by a constant-coefficient
differential operator and show, by arguments akin to those for the two-dimensional Euler equation, the
existence of global solutions (even for large data) with at most double exponential growth in H s, s> 1; see
[Elgindi and Widmayer 2017, Appendix B]. On the other hand (1-4) can also be viewed as a quasilinear
dispersive equation, in the sense that it is a nonlinear version of the equation @t! DL1!, solutions of
which exhibit dispersive decay as will be shown further below.

1A. Main result. The content of this article is a treatment of the nonlinear problem (1-4), with the result
that for sufficiently small and localized initial data, solutions to the Cauchy problem decay like solutions
of the linear problem, and the zero solution of (1-4) is globally nonlinearly stable in a strong sense. We
can state our main result as follows:

1Such a modeling assumption is made in various contexts: examples include rotating shallow-water equations, Rossby waves
and quasigeostrophic scenarios; see [McWilliams 2006, Chapter 4; Majda 2003, Chapter 4; Pedlosky 1987, Chapter 3] among
others. We also remark that in [Sukhatme and Smith 2009], equation (1-4) was viewed as part of a larger family of equations to
model two-dimensional dispersive turbulence.
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Theorem 1.1. Consider the initial value problem for the ˇ-plane equation�
@t!Cu � r! DL1!; uDr?.��/�1!;

!.0/D !0:
(1-5)

There exist N � 1, "0 > 0, and a weighted L2-based function space X � PW 1;1 on R2 such that for any
initial data with k!0kX ; k!0kH N � "0, there exists a unique global solution of (1-5) which decays at the
linear rate, namely k!.t/kL1 . "0.1Cjt j/

�1, and scatters.

A more precise statement of the theorem is presented as Theorem 2.2 in Section 2, where we also
illustrate its proof through a bootstrap argument in Section 2A. The key difficulty here lies in establishing
a global control over a suitably chosen weighted X -norm of the profile of !— see (2-8) on page 1592
for the precise definition — which has to be strong enough to guarantee the L1 decay.

1B. Background. To give some context we now present some of the key difficulties in treating the ˇ-plane
equation as a quasilinear dispersive equation. The present model features a quadratic nonlinearity and a
critical decay rate of jt j�1 at the linear level. This situation is common to many other dispersive and hyper-
bolic equations and a variety of different behaviors can occur even for small and Schwartz initial data. For
example, one could have global solutions with linear behavior as in the case of (quasilinear) wave equations
[Klainerman 1986] with a null condition, blow-up at time T � e

1
"0 as in the compressible Euler equations

[Sideris 1985], nonlinear asymptotics in the sense of modified scattering as for nonlinear Schrödinger
equations [Hayashi and Naumkin 1998; Kato and Pusateri 2011], or growth at infinity as in [Alinhac 2003].

In the present case solutions are already known to be global, so no blow-up occurs. Moreover, one
can notice that there is a null structure in (1-5). More precisely, since uDr?.��/�1!, the transport
term u � r! is depleted when two parallel frequencies interact. On the negative side, one should also
notice that, when seen as a bilinear term in !, the nonlinearity is singular because of the .��/�1 factor.
Moreover, the linear operator L1 is anisotropic, and the impossibility of commuting the equation with
rotations introduces several difficulties.

Inviscid Euler and the role of dispersion. Generally, inviscid Euler-type nonlinearities can lead to double
exponential growth, as was shown by the example of [Kiselev and Šverák 2014] on a bounded domain;
see also [Denisov 2015; Zlatoš 2015]. In the whole space, the question of global stability and asymptotic
behavior for the Euler equation is widely open. A byproduct of Theorem 2.2 is that for sufficiently small
data, instability in (1-5) is prevented by dispersion: waves with different frequencies travel with distinct
velocities and their interactions lose strength over time. However, this is a much weaker effect than
damping or friction. Indeed for (1-5) the same L2-based estimates as for the inviscid Euler equation
@t! C u � r! D 0 hold, because of the skew symmetry (for the inner product in L2) of the constant-
coefficient right-hand-side operator L1. Also, all Sobolev norms are preserved by the linear flow, and the
same blow-up criterion as for the two-dimensional Euler equation holds.

As is shown in this article, the dispersion produced by L1 acts as a regularizing mechanism that
globally stabilizes the fluid. A first way of seeing improvements at the hands of dispersion is through
a basic energy estimate yielding the following: assuming a linear decay rate of jt j�1 for Du in L1
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one obtains the slow growth of all Sobolev norms for the nonlinear problem (whereas in the absence of
dispersion, or without control on the rate of dispersion, the best known bounds are double exponential —
see [Elgindi and Widmayer 2017, Appendix B]). A finer understanding of the interactions in the Euler-type
nonlinearity is then needed to show that decay occurs for nonlinear solutions.

In earlier work of T. Elgindi and the second author [Elgindi and Widmayer 2017], stability for the
ˇ-plane equation (1-5) for arbitrarily large times was established: it was shown that for any M 2N there
exists a threshold "M >0, below which initial data of size "�"M lead to solutions that decay on time scales
at least "�M — for more details see [Elgindi and Widmayer 2017, Theorem 2.1]. Apart from this work, the
literature on the ˇ-plane equation is oriented towards questions of relevance in the realm of geophysical
fluid dynamics. An exhaustive list is beyond the scope of this article, and beyond the expertise of its authors,
so we refer the reader to the books [Drazin 2002; Majda 2003; McWilliams 2006] for some overview.

Resonance structure and (double) null form. At the basis of our approach is the formulation of the
problem in a way that makes it amenable to techniques from harmonic analysis. This is done by working
with the profile of the vorticity f .t/ WD e�tL1!.t/, and writing the Duhamel formula for solutions of
(1-5) in terms of this profile f in Fourier space, in order to obtain an integral expression which can be
viewed as an oscillatory integral — see the beginning of Section 2 and the formulas (2-1)–(2-2).

From this point of view the resonances of the equation, that is, roughly speaking, those sets of frequen-
cies that do not produce oscillations, play a key role in the analysis of the nonlinear interactions. This
starting point is inspired by the method of space-time resonances, as introduced in [Germain et al. 2012b].
Without entering into too much detail, for now we point out that the space-time resonant set for this equation
is one-dimensional, which is the generic situation for quadratic nonlinearities in two dimensions; thus it
does not provide any additional smallness, in contrast to other problems such as in [Germain et al. 2012a;
2012b]. However, as already pointed out above, a null form is available in the nonlinearity: the symbol of
the quadratic interaction vanishes on parallel frequencies; see (2-1)–(2-2) in connection with (2-21). See
also the models in [Pusateri and Shatah 2013; Oh and Pusateri 2015; Hani et al. 2013] for similar behaviors.

In fact, as we shall explain in detail below, even more is true for (1-5): one has a “double” null form,
a quadratic (instead of linear) degree of vanishing of the symbol, as can be seen by symmetrizing the
expression (2-1). This is a key insight which greatly improves the control one has over interactions close
to the (space) resonant set, and for example yields much better decay estimates for the L2 norm of @tf

than one would normally expect.
In our proof we will also exploit the special, anisotropic, geometric structure of interactions near the

(time) resonances through a T T � argument, which was previously used in [Deng et al. 2016; 2017].
However, here we employ such an argument in a different context, not for the purpose of establishing energy
estimates, but as another means of extracting more oscillations in the bilinear interactions. This allows
us to prove a strong weighted bound for our solutions which in turn implies the desired decay over time.

1C. Plan of the article. In Section 2 we begin by setting up the problem and giving our detailed functional
framework. We then state a precise formulation of Theorem 1.1 (see Theorem 2.2) and discuss its proof
using a bootstrap argument. We see there that a fractional weighted estimate, see (2-16), is at the core of
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our efforts. By symmetrizing the formulation of the ˇ-plane equation we obtain a “double null form”.
As a first application, this yields improved bounds for the first iterate (see Lemma 2.4). The rest of the
article is then devoted to establishing the weighted estimate.

In Section 3 we go through preliminary reductions and a finite speed of propagation argument that
limits the range of parameters we need to consider for the weighted estimate. Further reductions are then
presented in Section 4. Using various localizations we balance smallness of relevant sets and repeated
integration by parts to essentially reduce to a problem where only frequencies of roughly order 1 are
involved. These arguments crucially rely on the improved bounds due to the double null form achieved
through symmetrization.

Finally, in Section 5 we exploit a nondegeneracy property of the phase functionˆ, defined in (2-1)–(2-2),
via a T T � argument, in combination with an appropriate anisotropic localization, thereby concluding the
proof of the weighted estimate.

In Section 6 we collect some useful lemmata.

2. Setup

The Duhamel formulation associated to the ˇ-plane equation (1-5) is

!.t/D etL1!0C

Z t

0

e.t�s/L1u � r!.s/ ds:

Written in terms of the profile
f .t/ WD e�tL1!.t/

this reads

Of .t; �/D Of0.�/C
1

.2�/2

Z t

0

Z
R2

eisˆ.�;�/ � � �
?

j�j2
Of .s; � � �/ Of .s; �/ d� ds (2-1)

with

ˆ.�; �/ WD
�1

j�j2
�
�1� �1

j� � �j2
�
�1

j�j2
: (2-2)

From now on we will omit the time dependence of the profiles in this expression, since it is clear from
the context.

We define the quadratic nonlinearity B.f; f / through its Fourier transform

FB.f; f /.t; �/ WD

Z t

0

Z
R2

eisˆ.�;�/ � � �
?

j�j2
Of .s; � � �/ Of .s; �/ d� ds; (2-3)

so that the Duhamel formula (2-1) can be written as

Of .t; �/D Of0.�/C
1

.2�/2
FB.f; f /.t; �/: (2-4)

Conserved quantities. For future reference we note that an explicit calculation using (1-2) and (1-3)
shows that the L2-norms of both u and ! are conserved along the flow of the equation:

k!.t/kL2 D k!.0/kL2 and ku.t/kL2 D ku.0/kL2 ; t 2 R:
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As an immediate consequence we obtain that the PH�1 norms of ! and f are controlled as well:

jrj�1f




L2 D


jrj�1!




L2 . kukL2 : (2-5)

Notation. In this article we will work with localizations in frequency, space and time. To define them, as
is standard in Littlewood–Paley theory we let ' W R! Œ0; 1� be an even, smooth function supported in�
�

8
5
; 8

5

�
and equal to 1 on

�
�

5
4
; 5

4

�
. With a slight abuse of notation we also let ' be the corresponding

radial function on R2. For k 2Z we define 'k.x/ WD'.2
�k jxj/�'.2�kC1jxj/, so that the family .'k/k2Z

forms a partition of unity, X
k2Z

'k.�/D 1; � ¤ 0:

We also let

'I .x/ WD
X

k2I\Z

'k for any I � R; '�a.x/ WD '.�1;a�.x/; '>a.x/D '.a;1�.x/;

with similar definitions for '<a, '�a. To these cut-offs we associate frequency projections Pk through

Pkg WD F�1.'k.�/ Og.�//

and define similarly PI g WD F�1.'I .�/ Og.�//, P�kg WD F�1.'�k.�/ Og.�//, k 2 Z etc. We will also
sometimes write Q'k D 'Œk�2;kC2�.

To simultaneously localize in space, for .k; j / 2 J WD f.k; j / 2 Z�Z W kC j � 0; j � 0g we let

'
.k/
j .x/ WD

8<:
'j .x/; j � �kC 1 or j � 1;

'�0.x/; j D 0 .k � 0/;

'��k.x/; j D�k .k � 0/:

(2-6)

Notice that for any k 2 Z we have
P

j��minf0;kg '
.k/
j .x/D 1. We then define

Qjkg WD PŒk�2;kC2�'
.k/
j Pkg

to be the operator that localizes both in frequency and space. This will often be used to decompose our
profiles into atoms

g D
X

.k;j/2J

Qjkg: (2-7)

For notational convenience we also introduce the shorthand hti WD
p

1C t2 for t 2 R.

The main norm. Apart from the usual Sobolev and Lebesgue spaces we will be using a weighted function
space built on L2 in an atomic way: with the notation kC WDmaxfk; 0g we let

kg.t/kX WD sup
.k;j/2J

2.kCj/.1Cı/24kC
kQjkg.t/kL2 ; ı D 0:5 � 10�4: (2-8)

This choice of norm is motivated by our quest to control the L1 decay of ! through the dispersive
estimate (2-9) below. The use of weighted L2 norms in quasilinear dispersive problems is fairly standard.
Here we have decided to use a fractional weight following the functional framework introduced in [Ionescu
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and Pausader 2014]. The particular choice of putting the same number of derivatives (the power of 2k)
as the number of weights (the power of 2j ) is dictated by the characteristics of this specific problem,
including the singularity of the bilinear form in (2-3) and the “speed of propagation” of linear frequencies.

Dispersive estimate. For the linear semigroup etL1 we have the following decay estimate:

Lemma 2.1. For g 2 S.R2/ and k 2 Z we have

ketL1PkgkL1 . jt j�123k
kPkgkL1 : (2-9)

Since the Hessian of the exponent �1j�j�2 on the Fourier side is 4j�j�6, and so in particular is
nondegenerate, the proof is a standard application of the stationary phase lemma — see [Elgindi and
Widmayer 2017, Proposition 4.1]. We remark that the right-hand side of (2-9) is controlled by the X -norm
of g in (2-8) above.

Main theorem. In more detail, our Main Theorem, Theorem 1.1, is:

Theorem 2.2. Let2 0 < ı � 0:5 � 10�4 and N � 2:1 � ı�1. Then there exists an "0 > 0 such that for all
"� "0 and initial data !0 with

k!0kH N Ck!0kX � "; (2-10)

(1-5) admits a unique global solution ! 2 C.R;H N .R2//. Moreover, for all t 2 R the solution satisfies
the bounds

k!.t/kH N . "0.1Cjt j/
C"0 ; ke�tL1!.t/kX . "0; (2-11)

and, in particular, also the decay estimate

k!.t/kL1 . "0.1Cjt j/
�1: (2-12)

Finally, the solutions scatters: for any initial data !0 as in (2-10) there exist unique f˙1 2X such that

ke�tL1!.t/�f˙1kX ! 0 as t !˙1: (2-13)

2A. Proof of the main theorem. We will prove Theorem 2.2 through a bootstrap argument. The main
ingredient is the bilinear estimate (3-1), which establishes Proposition 2.3 below. Since the equation is
time reversible it suffices to consider t > 0. We will work with the following a priori assumptions.

A priori assumptions. We assume that for some T > 0 and "1 D A"0 with a suitably chosen constant
A> 1 to be determined below, we have

kPkf .t/kL2 � "1hti
D"02�N kC; (2-14)

sup
.k;j/2J

.2kCj /1Cı24kC
kQjkf .t/kL2 � "1 (2-15)

2We did not optimize on the value of ı, and the related size of N , to make the proof more readable. Especially in the last part
of the argument, in Sections 4 and 5, improvements on these values would be possible by tracking more carefully the various
parameters involved, but due to the technicality of the proof, we have decided not to do so. It is very likely that a number N

between 10 and 100 would work.
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for all t 2 Œ0;T � and a suitably large D > 0. For small enough T > 0 the estimates (2-14)–(2-15) hold by
virtue of (2-10) and a standard local well-posedness argument (that we omit), yielding a unique local
solution such that e�tL1! 2 C.Œ0; 1�;H N \X /.

Weighted estimate. As a key point in this paper we will prove:

Proposition 2.3. Assuming the a priori bounds (2-14)–(2-15), and with the notation (2-3) and (2-8), for
all t 2 Œ0;T � we have

kB.f; f /.t/kX . "2
1: (2-16)

This estimate is at the heart of our article and its proof will be carried out over the course of Sections 3–5.
In fact, we will prove the stronger version (3-1) of the bilinear bound (2-16), which also implies the
scattering statement (2-13) of Theorem 2.2.

Assuming Proposition 2.3 we now establish the Main Theorem.

Proof of Theorem 2.2. Our aim here is to show that the interval on which the a priori estimates (2-14)–(2-15)
hold can be extended to infinity. Using a continuity argument it will suffice to prove that for t 2 Œ1;T �

kPkf .t/kL2 �
1
2
"1hti

D"02�N kC;

sup
.k;j/2J

.2kCj /1Cı24kC
kQjkf .t/kL2 �

1
2
"1:

(2-17)

Invoking the Duhamel formula (2-4) and applying Proposition 2.3 yields

24kC2.kCj/.1Cı/
kQjkf .t/kL2 � 24kC2.kCj/.1Cı/

�
kQjk!0kL2 CkQjkB.f; f /.t/kL2

�
� "0CC "2

1 �
1
2
"1

for "0 small enough. Combining this with the decay estimate (2-9) we also have

ketL1Pkf .t/kL1 . hti�123k
X

j��minf0;kg

2j
kQjkf .t/kL2 . hti�1."0CC "2

1/2
�4kC2.2�ı/k :

In particular, if Du is the matrix of first derivatives of u, we have

k!.t/kL1 CkDu.t/kL1 . hti�1."0CC "2
1/ (2-18)

for all t 2 Œ0;T �. A standard energy estimate for the ˇ-plane equation, see [Elgindi and Widmayer 2017,
Lemma 3.1], gives the bound

k!.t/kH N � k!.0/kH N exp
�

C

Z t

0

kDu.s/kL1 Ck!.s/kL1 ds

�
:

Inserting the decay estimate (2-18) and choosing appropriately the constant D, it follows that

kPkf .t/kL2 � "0hti
D"02�N kC:

This gives us (2-17) and proves the bounds (2-11) and (2-12) in our Theorem 2.2.
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To conclude we remark that in proving Proposition 2.3 we will actually prove the stronger version
(3-1) of the bilinear bound (2-16). The estimate (3-1) then implies that f .t/ is a Cauchy sequence in
the X space, so that (2-13) follows. �

2B. Symmetrization and double null form. By virtue of the symmetry ˆ.�; �/ D ˆ.�; � � �/ we can
write the bilinear term (2-3) as

FB.f; f /.�/D

Z t

0

Z
R2

eisˆ.�;�/ � � �
?

j�j2
Of .� � �/ Of .�/ d� ds

D
1

2

Z t

0

Z
R2

eisˆ.�;�/

�
� � �?

j�j2
C
� � .� � �/?

j� � �j2

�
Of .� � �/ Of .�/ d� ds

D
1

2

Z t

0

Z
R2

eisˆ.�;�/

�
.� � �?/ � � .� � 2�/

j�j2 j� � �j2

�
Of .� � �/ Of .�/ d� ds:

Here we let

m.�; �/ WD
1

2

.� � �?/ � � .� � 2�/

j�j2 j� � �j2
(2-19)

and explicitly write the important equality

FB.f; f /D

Z t

0

Z
R2

eisˆ.�;�/ � � �
?

j�j2
Of .� � �/ Of .�/ d� ds

D

Z t

0

Z
R2

eisˆ.�;�/m.�; �/ Of .� � �/ Of .�/ d� ds: (2-20)

To illustrate the relevance of this symmetrization we remind the reader that we will treat the above
expressions as oscillatory integrals. From this point of view, the set S D f.�; �/ W r�ˆD 0g where no
oscillations in � occur in the phase eisˆ (also called the space-resonant set) is one of the main obstructions
to obtaining strong bounds through cancellations. In the present problem we have

jr�ˆj D
j�jj� � 2�j

j� � �j2 j�j2
; (2-21)

so the original multiplier � � �?j�j�2 vanishes on S. This is referred to as a “null structure” and allows
one to (partially) compensate for the lack of oscillations; see for example [Klainerman 1986; Pusateri and
Shatah 2013]. However, we highlight that in our case even more is true: the symbol m in (2-20) vanishes
to second order on S, which is what we call a “double null form”. As we will see, this offers a crucial
advantage over the previous formulation with a regular null form.

Symbol bounds. Using the notation (6-4)–(6-5) we have the following basic bounds for our symbol (2-19):

kmk;k1;k2kS1 . 2k�minfk1;k2g (2-22)

and
kmk;k1;k2.�; �/'r .�� 2�/kS1 . 2r�minfk1;k2g;

kmk;k1;k2.�; �/'`.� � 2�/kS1 . 2`�minfk1;k2g;
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as well as the more precise bound

kmk;k1;k2.�; �/'`.� � 2�/kS1 . 22`C2k�2k1�2k2 : (2-23)

2C. Estimate for @tf . As a first major consequence of the symmetrization in Section 2B we will
establish a useful estimate for the time derivative of the profile. We will work under our main a priori
assumptions (2-14)–(2-15); in order to readily have their more precise consequences (3-4)–(3-6) at our
disposal we refer to them as they appear in (3-2)–(3-3).

Lemma 2.4. Let f be given by (2-1). For all m 2 f0; 1; : : : g and t 2 Œ2m� 1; 2mC1�\ Œ0;T �, and under
the a priori assumptions (3-2)–(3-3), we have

kPk@tf .t/kL2 . "2
1 2k 2�4kC2�2mC10ım: (2-24)

Notice that @tf .t/ is a quadratic expression in !.t/ and is therefore expected to decay, in L2 at least
as fast as k!.t/kL1 . The above lemma states that we actually have much more decay, almost t�2. This
is due to the favorable “double null structure” of the equations. Needless to say this estimate will be
very helpful when integrating by parts in time in Duhamel’s formula, which gives rise to bilinear terms
involving @tf .

Proof of Lemma 2.4. From (2-1) and (2-20) we have

@t
Of .t/D FQ.f; f /.t; �/ WD

1

.2�/2

Z
R2

eitˆ.�;�/m.�; �/ Of .t; � � �/ Of .t; �/ d�:

We start by observing that for any f;g 2L2 we have

kPkQ.Pk1
f;Pk2

g/kL2

. kmk;k1;k2kS1 � sup
t�2m

min
˚
kPk1

f kL2keitL1Pk2
gkL1 ; ke

itL1Pk1
f kL1kPk2

gkL2 ;

kPk1
f kL2kPk2

gkL22minfk1;k2g
	
; (2-25)

having used Lemma 6.3. Moreover, notice that by symmetry in �$ ���, when looking at Q.Pk1
f;Pk2

f /

we may assume that k2 � k1 without loss of generality.
Using (2-25) and (3-6) we see that

kPkQ.Pk1
f;Pk2

f /k
L2 . 2k�k2kPk1

f k
L2kPk2

f k
L22k2 . 2k

� "12�N k
C

1 2k1 � "12k2 ;

so that the desired conclusion follows when k2 ��2m or k1 � ım (we will choose ı.N �6/� 2 in (3-7)
below).

We also have

kPkQ.Pk1
f;Pk2

f /k
L2 . 2k

kFPkQ.Pk1
f;Pk2

f /k
L1
. 22k�k2 � kPk1

f k
L2 � kPk2

f k
L2 ;

which, in view of (3-6), and after summing over k1; k2 with k2 ��2m, gives the desired bound (2-24) if
k � �2m.
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In what follows we can then assume

minfk; k1; k2g � �2m; maxfk1; k2g � ım: (2-26)

This leaves us with a summation over .k; k1; k2/ made by at most O.m3/ terms, and we see that to obtain
(2-24) it will suffice to show

kPkQ.Pk1
f;Pk2

f /k
L2 . "2

1 2k 2�4kC2�2mC9ım (2-27)

for every fixed triple .k; k1; k2/ satisfying (2-26). We subdivide the proof of (2-27) into two main cases:
high-low and high-high interactions.

Case 1: jk1� k2j � 10. In this case we have k1 � k2C 10 and jk � k1j � 5. We further decompose our
inputs according to their spatial localization as in (3-17):

f1 DQj1k1
f; f2 DQj2k2

f; j� C k� � 0; � D 1; 2: (2-28)

The Hölder estimate (2-25) and the a priori bounds (3-3)–(3-4) give us

kPkQ.f1; f2/kL2 . 2k�k2 � "12�m
� "12�k22�maxfj1;j2g � 2�2k

C

1 :

Therefore, we can obtain the desired bound whenever maxfj1; j2g� .1�ı/m�2k2. In the complementary
case when maxfj1; j2g� .1�ı

2/m�2k2 we can instead integrate by parts repeatedly in �. More precisely,
using

jr�ˆj � 2�2k2 ; jD˛
�ˆj. 2�.1Cj˛j/k2

we can apply the bound (6-6) in Lemma 6.5 with

K D s2�2k2 ; F D 22k2ˆ; � D 2k2 ; g Dm.�; �/ Of1.� � �/ Of2.�/;

and obtain

kPkQ.f1; f2/kL2 . 2k
k'k.�/ yQ.f1; f2/.�/kL1

�

. 2k
� .2m2�k2/�M .1C 2k22maxfj1;j2g/M � 2k�k2kf1kL2kf2kL2

. "2
12�5m

kf1kL2kf2kL2 ;

where the last inequality follows by choosing M large enough. Using also (2-26) we see that this is more
than sufficient to obtain (2-24).

Case 2: jk1� k2j< 10. This case is more delicate and requires a further frequency space decomposition
in the size of j� � 2�j. More precisely, we let

FQ`.f;g/.t; �/ WD

Z
R2

eitˆ.�;�/m.�; �/'`.� � 2�/ Of .t; � � �/ Og.t; �/ d�:

Notice that this vanishes unless `� k1C 20. To obtain (2-27) it then suffices to showX
`�k1C20

kPkQ`.Pk1
f;Pk2

f /k
L2 . "2

1 2k 2�4kC2�2mC9ım: (2-29)
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Subcase 2.1: minfk; `g � .�1C 5ı/mC k1. In this case we first use the L2 �L1 Hölder bound in
Lemma 6.3 together with the symbol bound (2-23), and the usual a priori estimates (3-3)–(3-4), to deduce

24kC
kPkQ`.Pk1

f;Pk2
f /k

L2 . 22 minfk;`g�k1�k2 � "12.2�ı/k12�m
� "12k2 ; (2-30)

having also used (3-6). This suffices to obtain the desired bound when the sum in (2-29) is over
`� �mC k1C 5ım or when k � �mC k1C 5ım.

We are now left with O.m/ terms in the sum in (2-29), so that it suffices to show

24kC
kPkQ`.Pk1

f;Pk2
f /k. "2

1 2k 2�2mC8ım; (2-31)

under the restrictions (2-26), jk1 � k2j � 10 and .�1C 5ı/mC k1 � k; ` � k1C 20. We now further
decompose our profiles in space, letting

PkQ`.Pk1
f;Pk2

f /D
X

j1;j2

PkQ`.f1; f2/;

with the notation (2-28).

Subcase 2.2: maxfj1; j2g � .1� 4ı/m� k1 Cminf`; kg. In this case we use the Hölder estimate in
Lemma 6.3 with the symbol bound (2-23) to get

kPkQ`.f1; f2/kL2 . 22 minfk;`g�2k1 � sup
t�2m

min
˚
kf1kL2keitL1f2kL1 ; ke

itL1f1kL1kf2kL2

	
:

The a priori bounds (3-3)–(3-4) then give us

24kC
kPkQ`.f1; f2/kL2 . 22 minfk;`g�2k1 � "12�m2.2�ı/k1 � "12�k12�maxfj1;j2g

. "2
12k
� 2�ık1 � 2�m�k1Cminfk;`g�maxfj1;j2g;

which, upon summation over j1; j2, suffices to obtain (2-31) under the current assumptions.

Subcase 2.3: maxfj1; j2g � .1� 4ı/m�k1Cminf`; kg and minfk; `g � .�1C 5ı/mCk1. In this last
remaining case we want to resort again to repeated integration by parts through Lemma 6.5.

Before doing that, let us first look at the case `� kC5. Notice that if `��1
2
mC 3

2
k1C ım, then the

Hölder estimate (2-30) already gives us the desired conclusion. We can then assume `��1
2
mC 3

2
k1Cım

in what follows. On the support of PkQ`.f1; f2/ we have, see (3-13),

jr�ˆj � 2`2�3k1 ; jD˛
�ˆj. 2�.1Cj˛j/k1 ; j˛j � 2:

We then let

K D s2`2�3k1 ; F.�/Dˆ.�; �/.2`2�3k1/�1;

and calculate

jD˛F j. .2`2�3k1/�12�.1Cj˛j/k1 . 2.1�j˛j/`; j˛j � 2:

Choosing � D 2` and

g Dm.�; �/'`.� � 2�/ Of1.� � �/ Of2.�/;
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the bound (6-6) in Lemma 6.5 gives us

kPkQ`.f1; f2/kL2 . .2m2`2�3k1/�M .2�`C 2maxfj1;j2g/Mkf1kL2kf2kL2

. 2�10m
kf1kL2kf2kL2 ;

which is more than enough.
Finally we look at the case k � `�5. Recall that we may assume k ��mCk1C5ım. In the present

configuration we have

jr�ˆj � 2k2�3k1 ; jD˛
�ˆj. 2�.2Cj˛j/k12k ; j˛j � 2:

We can then apply Lemma 6.5 with K D s2k2�3k1, F.�/Dˆ.�; �/.2k2�3k1/�1, � D 2k1 , and the same
choice of g as above, to obtain kPkQ`.f1; f2/kL2 . 2�5mkf1kL2kf2kL2 . This concludes the proof of
the lemma. �

3. Preliminary bounds and finite speed of propagation

Recall that our aim is to prove Proposition 2.3. We begin by localizing our time parameter on scales� 2m,
m 2 N, as follows. Given t 2 Œ0;T �, we choose a suitable decomposition of the indicator function 1Œ0;t �
by fixing functions �0; : : : ; �LC1 W R! Œ0; 1�, jL� log2.2C t/j � 2, with the properties

supp �0 � Œ0; 2�; supp �LC1 � Œt � 2; t �; supp �m � Œ2
m�1; 2mC1� for m 2 f1; : : : ;Lg;

LC1X
mD0

�m.s/D 1Œ0;t �.s/; �m 2 C 1.R/; and
Z t

0

j� 0m.s/j ds . 1 for m 2 f1; : : : ;Lg:

We can then decompose

B.f; f /D
X
m

Bm.f; f /; FBm.f; f / WD

Z t

0

�m.s/

Z
R2

eisˆ.�;�/m.�; �/ Of .� � �/ Of .�/ d� ds:

To obtain Proposition 2.3 it will then suffice to show that for any mD 0; 1; : : : ,

24kC2.kCj/.1Cı/
kQjkBm.f; f /kL2 . "2

12�ı
3m: (3-1)

For convenience we recall here the a priori bounds (2-14)–(2-15),

kPkf .t/kL2 � "1hti
p02�N0kC; (3-2)

sup
.k;j/2J

.2kCj /1Cı24kC
kQjkf .t/kL2 � "1; (3-3)

where we can choose p0 D C "0 � ı for a suitable absolute constant C > 0. Then we also have the
following consequences of (3-2)–(3-3):

keitL1Qjkf .t/kL1 . "1hti
�12�4kC2.2�ı/k2�ıj ; (3-4)

k1Qjkf kL1 � kQjkf kL1 . "12�.1Cı/k2�4kC2�ıj : (3-5)
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Also recall that by virtue of (2-5) we have

2�k
kPkf kL2 .



jrj�1f




L2 D


jrj�1!




L2 . kukL2 � "0: (3-6)

In the remainder of this section we begin our proof of the weighted estimate (3-1) by treating first
some ranges of parameters for which the estimates are easily seen to hold. Subsequently we present a
“finite speed of propagation” argument, which invokes the idea that each frequency is expected to travel at
its respective group velocity, in order to allow for a further reduction in the parameters to be considered.

3A. Basic cases. We first establish a simple lemma dealing with frequencies that are very large or very
small with respect to the relevant parameters. To this end we let

N 0 WDN � 6; N 0 �
2

ı
: (3-7)

Lemma 3.1 (basic cases). With the above notation and under the a priori assumptions (3-2)–(3-4) we
have X

maxfk1;k2g�
kCjCım

N 0

24kC2.1Cı/.kCj/
kQjkBm.Pk1

f;Pk2
f /k

L2 . 2�ı
3m"2

1: (3-8)

Moreover, X
minfk1;k2g��1:01.kCjCım/

24kC2.1Cı/.kCj/
kQjkBm.Pk1

f;Pk2
f /k

L2 . 2�ı
3m"2

1: (3-9)

Proof. We begin by using an L2 �L1 estimate, see Lemma 6.3, together with the symbol bound (2-22),
to deduce that

kQjkBm.Pk1
f;Pk2

f /kL2

. 2m
�2k�minfk1;k2g� sup

t�2m

min
˚
kPk1

f k
L2ke

itL1Pk2
f k

L1
; keitL1Pk1

f k
L1
kPk2

f k
L2 ;

kPk1
f k

L2kPk2
f k

L22minfk1;k2g
	
: (3-10)

Proof of (3-8). Without loss of generality, let us assume k2 � k1, so that the sum is over k1 �

.kC j C ım/=N 0. Using the bound in the high Sobolev norm (3-2), the a priori decay assumption (3-4),
and the estimate (3-10) above, we see that

kQjkBm.Pk1
f;Pk2

f /k
L2 . 2m

� 2k�k2 � "12�m2.2�ı/k22�4k
C

2 � "12p0m2�N k1 :

It follows thatX
k1�

kCjCım

N 0
;k2

24kC2.1Cı/.kCj/
kQjkBm.Pk1

f;Pk2
f /k

L2 . 2.1Cı/.kCj/
� "2

12p0m2�
.N�5/.kCjCım/

N 0 :

Since .N � 5/=N 0 � 1C ı and p0 � ı this is sufficient.

Proof of (3-9). Again, without loss of generality we assume k2 � k1, so that the sum is over k2 �

�1:01.kC j C ım/. Using the estimate (3-10) above and the a priori bounds (3-3), (3-4) and (3-6), we
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see that
kQjkBm.Pk1

f;Pk2
f /k

L2 . 2m
� 2k�k2 � "12�m2.2�ı/k2 � "12k12�4k

C

1 :

It follows thatX
k2��1:01.kCjCım/;k1

24kC2.1Cı/.kCj/
kQjkBm.Pk1

f;Pk2
f /k

L2.2.1Cı/.kCj/
�"2

12�.1�ı/1:01.kCjCım/

which is sufficient for ı � 1
1000

. �

As a consequence of the above lemma we can assume from now on that

maxfk1; k2g �
1
2
ı.kC j C ım/; minfk1; k2g � �1:01.kC j C ım/ (3-11)

and, in particular,
maxfk; k1; k2g � ı.j C ım/CD; (3-12)

where D is a suitably large constant. From now on we will use D to denote an absolute constant that
needs to be chosen large enough in the course of our proof in order to verify several inequalities. In
view of (3-11)–(3-12), when decomposing our inputs into frequencies, summations are given by at most
O..j Cm/2/ terms.

3B. Finite speed of propagation. From (2-2) one computes

jr�ˆj D
j�jj�� 2�j

j� � �j2 j�j2
; jr�ˆj D

j�jj� � 2�j

j� � �j2 j�j2
: (3-13)

Notice that applying a weight x to the bilinear term B.f; f / corresponds to differentiating in � its Fourier
transform, i.e., the expression in (2-3). The main contribution from this can be expected to be the term
where the �-derivative hits the oscillating phase, producing a factor of sr�ˆ. We then want to make this
statement precise by proving that if the bilinear term B.f; f / is restricted to locations jxj � 2j, then
we must have “jxj . sjr�ˆj”, that is, we should expect to have 2j . 2m2�2 minfk;k2;k2g. Later on in
Section 4 we will also use refinements of this statement in various scenarios.

Lemma 3.2 (finite speed of propagation). Assume that (3-12) holds and

j �m� 2 minfk; k1; k2gCD2: (3-14)

Then we have the bound

24kC2.kCj/.1Cı/
kQjkBm.Pk1

f;Pk2
f /kL2 . 2�ı

2.mCj/"2
1: (3-15)

Proof. We subdivide the proof into several cases and subcases.

Case 1: k1 � k2C 10. In this case we must have jk1� kj � 10 and the assumption (3-14) implies

j �m� 2k2CD2: (3-16)

Notice that in view of (3-12) we must have j � 1
2
m.
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Subcase 1.1: k � �.1� ı2/j. In this case we can use an L2 �L1 estimate, see Lemma 6.3 and the
symbol bound (2-22), with the a priori bounds (3-3)–(3-4), to obtain

2.1Cı/.kCj/
kQjkBm.Pk1

f;Pk2
f /kL2 . 2ıjkQjkBm.Pk1

f;Pk2
f /kL2

. 2ıj � 2m
� 2k�k2 � sup

t�2m

kPk1
f k

L2ke
itL1Pk2

f k
L1

. 2ıj � 2m
� 2k
� "1 � "12�m;

which suffices to obtain (3-15).
We further decompose the profiles according to their spatial localization by defining, see (2-6)–(2-7),

f1 DQj1k1
f; f2 DQj2k2

f; j� C k� � 0; � D 1; 2: (3-17)

Subcase 1.2: minfj1; j2g � .1� ı
2/j. Here we use again an L2 �L1 estimate and the a priori bounds

(3-3)–(3-4):

24kC2.1Cı/.kCj/
kQjkBm.f1; f2/kL2

. 24kC2.1Cı/.kCj/
� 2m
� 2k�k2 � sup

t�2m

kf1kL2keitL1f2kL1

. 25kC2.1Cı/.kCj/
� 2m
� "12�4k

C

1 2�.1Cı/.k1Cj1/ � "12�m2�4k
C

2 2.1�ı/k22�ıj2 :

Using the assumption minfj1; j2g � .1� ı
2/j this can be bounded by

"2
12kC2.1Cı/j � 2�.1Cı/j1 � 2�ıj2 . "2

12kC2�
4
5
ıj 2�ı

2j12�ı
2j2 :

Upon summing over j1 and j2 we obtain the bound (3-15) also in view of k � 2
3
ıjCı2mCD; see (3-11).

Subcase 1.3: �k;minfj1; j2g � .1� ı
2/j. In this case we want to integrate by parts in � using the main

assumption (3-14). More precisely, let us decompose according to (3-17) and inspect the formula

'
.k/
j .x/PkBm.f1; f2/.x/

D '
.k/
j .x/

Z t

0

�m.s/

Z
R2�R2

eiŒx��Csˆ.�;�/�m.�; �/'k.�/ Of1.� � �/ Of2.�/ d� d� ds: (3-18)

Let us assume first that j1 � .1� ı
2/j. Notice that (3-13) and the hypothesis (3-16) implyˇ̌

r� Œx � �C sˆ.�; �/�
ˇ̌
D jxC sr�ˆj& 2j : (3-19)

We then want to apply Lemma 6.5 toZ
R2

eiŒx��Csˆ.�;�/�m.�; �/'k.�/ Of1.� � �/ d�:

Let us explain this in detail since similar arguments will be used repeatedly below. We let

F.�/D 2�j Œx � �C sˆ.�; �/�; K � 2j ; (3-20)

and have, for j˛j � 2,

jD˛F j. 2�j s jD˛
� ˆ.�; �/j. 2�jCm2�.j˛jC1/minfk;k1g . 2.1�j˛j/minfk;k1g:
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We can then choose � D 2minfk;k1g, make the natural choice of the integrand

g.�/Dm.�; �/'k.�/ Of1.� � �/;

and use the bound (6-6) to obtain

kQjkBm.f1; f2/kL2 . 2mCj
� k Of2kL1 �

1

.2jCminfk;k1g/M

X
j˛j�M

2minfk;k1gj˛j kD˛gkL1

. 2mCj"1 � 2
�jM Œ2�minfk;k1gM C 2�kM

C 2j1M � � "1 . 2�10j"2
1:

For the last inequality we have used (2-22) and the fact that maxf�k;�k1; j1g � .1� ı
2/j, and chosen

M DO.ı�2/ sufficiently large. This gives (3-15) when j1 � .1� ı
2/j.

When j2 � .1� ı
2/j we can use a similar argument. More precisely we look at the formula (3-18)

and change variables to write

QjkBm.f1; f2/.x/D'
.k/
j .x/

Z t

0

�m.s/

Z
R2�R2

�
eiŒx��Csˆ.�;�/�'k.�/m.�; ���/ Of2.���/ d�

�
Of1.�/ d� ds:

Notice that (3-19) still holds. Therefore we can apply Lemma 6.5 with the same phase as in (3-20) above,
� D 2�k2 , and the natural choice of the integrand g, obtaining

kQjkBm.f1; f2/kL2 . 2mCj
� 2�.jCk2/M "2

1Œ1C 2.k2Cj2/M �. 2�10j"2
1;

since �k2 � j2 � .1� ı
2/j.

Case 2: k2 � k1 C 10. This case is completely analogous to Case 1 since our main assumption is
symmetric upon exchanging k1 and k2.

Case 3: jk1� k2j � 10. In this case we have

k �minfk1; k2gC 20;

and the main assumption (3-14) implies

j �m� 2kCD:

Recall that in view of (3-12) we must have j � 1
2
m. Also, using the same estimate of Subcase 1.1 above,

we may assume k � �.1� ı2/j.

Subcase 3.1: minfj1; j2g � .1 � ı
2/j. This case can be treated like we have done in the analogous

subcases above via an L1 �L2 estimate:

24kC2.1Cı/.kCj/
kQjkBm.f1; f2/kL2 . 24kC2.1Cı/.kCj/

� 2m
� sup

t�2m

keitL1Pk1
f k

L1
kPk2

f k
L2

. "2
12.1Cı/j � 2�ıj1 � 2�.1Cı/j2 . "2

12�
1
2
ıj 2�ı

2j12�ı
2j2 :

Summing over j1; j2 we get the desired bound (3-15).

Subcase 3.2: minfj1; j2g � .1� ı
2/j. In this case we can integrate by parts in � as previously done after

(3-18), using Lemma 6.5, the lower bound (3-19) and �k � .1� ı2/j. �
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4. The weighted estimate: part I

In this section we begin the proof of the main weighted bound

sup
.k;j/2J

24kC2.kCj/.1Cı/
kQjkBm.f; f /kL2 . 2�ı

3m"2
1; (4-1)

showing how this can be reduced to a similar one where the size of various important quantities can be
restricted to specific ranges depending on the time variable. More precisely we will show how to restrict
the size of the input and output frequencies to a range close to 1 (a range of the form Œ2�c1ım; 2c2ım� for
some constants c1; c2 > 0), the size of the phase ˆDˆ.�; �/ close to 2�m, and the size of its gradients
in � and � close to 1. In Section 5 we will then conclude our proof by treating the remaining cases.

4A. Main reduction of interaction frequencies. Here we show how to treat the contributions from input
and output frequencies that are much smaller than 1, more precisely smaller than 2�cım for some c > 0.

Proposition 4.1. Under the a priori assumptions (3-3)–(3-4) we have, for all .k; j / 2 J ,X
jk1�k2j�10

minfk1;k2g��5ımCD

24kC2.kCj/.1Cı/
kQjkBm.Pk1

f;Pk2
f /kL2 . 2�2ı3m"2

1: (4-2)

Furthermore, for all .k; j / 2 J we haveX
jk1�k2j�10

24kC2.kCj/.1Cı/
kQjkBm.Pk1

f;Pk2
f /k

L2 . 2�2ı3m"2
1 if k � �5ımCD: (4-3)

Proof of Proposition 4.1. We split the proof into several scenarios, the most difficult ones being the
high-high interactions.

Proof of (4-2) Because of the symmetry in k1; k2 we may assume k2C 10� k1, jk � k1j � 10.

Case 1: k � �.1� ı2/j. In this case we can use an L2 �L1 estimate, see Lemma 6.3 and the symbol
bound (2-22), with the a priori bounds (3-3)–(3-4) to obtain

2.1Cı/.kCj/
kQjkBm.Pk1

f;Pk2
f /kL2 . 2ıj � 2m

� 2k�k2 � sup
t�2m

kPk1
f kL2keitL1Pk2

f kL1

. 2ıj � 2m
� 2k
� "1 � "12�m2.1�ı/k2 ;

which suffices to obtain (4-2). From now on we may assume �k � .1� ı2/j.
Let us now decompose the profiles according to their spatial localization, adopting the same notation

as in (3-17):
f1 DQj1k1

f; f2 DQj2k2
f; j� C k� � 0; � D 1; 2: (4-4)

Case 2: j1 � .1� ı
2/j. Here we use again an L2 �L1 estimate and the a priori bounds (3-3)–(3-4):

24kC2.1Cı/.kCj/
kQjkBm.f1; f2/kL2

. 24kC2.1Cı/.kCj/
� 2m
� 2k�k2 � sup

t�2m

kf1kL2keitL1f2kL1

. 25kC2.1Cı/.kCj/
� 2m
� "12�4k

C

1 2�.1Cı/.k1Cj1/ � "12�m2.1�ı/k22�ıj2 :
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Using the assumption j1� .1�ı
2/j, the finite speed of propagation Lemma 3.2 to bound j �m�2k2CD,

and that k � 4
5
ıj C ı2mCD by (3-11), we can estimate

24kC2.1Cı/.kCj/
kQjkBm.f1; f2/kL2 . "2

12kC23ı2j
� 2�ı

2j1 � 2.1�ı/k22�ıj2

. "2
122ım

� 2.1�3ı/k22�ı
2j12�ıj2 :

Summing over j1 and j2 we obtain (4-2). From now on we may assume j1 � .1� ı
2/j.

Case 3: j � k2 � 3k1 CmCD. In this case we proceed in a similar way as we did in the proof of
Lemma 3.2, resorting to integration by parts in �. We look again at the formula (3-18) and notice that
jr�ˆj � 2k2�3k1 ; see (3-13). Then we have the same lower bound as in (3-19), that is,ˇ̌

r� Œx � �C sˆ.�; �/�
ˇ̌
& 2j;

and we can apply Lemma 6.5 toZ
R2

eiŒx��Csˆ.�;�/�m.�; �/'k.�/ Of1.� � �/ d�:

More precisely we do this by choosing again F.�/D 2�j Œx � �C sˆ.�; �/�, K D 2j , and using that for
j˛j � 2,

jD˛F j. 2�j s jD˛
� ˆ.�; �/j. 2�jCm

� 2�.j˛jC2/minfk;k1g2k2 . 2.1�j˛j/k1 ;

so that we can let � D 2k1. Using the bound (6-6), and the a priori bounds (3-3) and (3-6), we can deduce

kQjkBm.f1; f2/kL2 . 2m2�10j
� 2k1�k2 � k Of1kL1k Of2kL1 . 2�5j 2�2k

C

1 "2
1;

which can be multiplied by the factor 2.jCk/.1Cı/ and summed over all indices to give the desired estimate.
From now on we may assume j � k2� 3k1CmCD.

Case 4: maxfj1; j2g �m�2k2�ı
2m. We use a Hölder estimate together with the usual a priori bounds,

placing the term with larger localization in L2 and the other one in L1, and obtain

24kC2.k2�2k1Cm/.1Cı/
kPkBm.f1; f2/kL2

. 2.k2�2k1Cm/.1Cı/
� 2m2k1�k2 � 2�m2.2�ı/k1"1 � 2

�maxfj1;j2g2�.1Cı/k2"1 � 2
�ı.j1Cj2/

. "2
1 22ım 2.1�3ı/k12k2 2�ı.j1Cj2/:

Also in view of j � �2k1CmCD and (3-12) we have k1 � 2ımCD; thus summing the bound above
over j1; j2 we obtain (4-2) whenever k2 � �5ım.

Case 5: maxfj1; j2g �m� 2k2� ı
2m. Notice that since k2 � k1� 10 we have, see (3-13),

jr�ˆ.�; �/j � 2�2k2 ; jD˛
�ˆ.�; �/j. 2�k2.j˛j�1/; j˛j � 2:

We then resort to multiple integrations by parts in �; that is, we apply Lemma 6.5 with F D 22k2ˆ,
K D s2�2k2 , � D 2k2 and g Dm.�; �/ Of1.� � �/ Of2.�/. Using the bound (6-6) we have

kQjkBm.f1; f2/kL2 . 2k
kF.QjkBm.f1; f2//kL1 . 2k2�10m2k1�k2kf1kL2kf2kL2 ;

which is more than sufficient to obtain (4-2) using also j C k � k2� 2k1CmCD and (3-3)–(3-6).
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Proof of (4-3). In this scenario we will make crucial use of the symmetrization argument, which gives
better bounds on the null structure. In view of Lemma 3.2 (and the assumption that k � �5ımCD), in
the current frequency configuration it is enough to showX

jk1�k2j�10

2.�kCm/.1Cı/
kPkBm.Pk1

f;Pk2
f /k

L2 . "2
12�2ı3m: (4-5)

Localization in the size of j� � 2�j. We now introduce a further localization in the size of j� � 2�j by
writing

FBm;`.f;g/D

Z t

0

�m.s/

Z
R2

W`.f;g/ d� ds;

W`.f;g/ WD eisˆm.�; �/'`.� � 2�/ Of .� � �/ Og.�/:

(4-6)

Notice that Bm;`.Pk1
f;Pk2

f / vanishes if `� k1C 20. Also, notice that the symbol obeys the refined
bound

kmk;k1;k2'`.� � 2�/kS1 . 22`C2k�2k1�2k2 : (4-7)

Using this bound and standard Hölder estimates, we can reduce (4-5) to proving the following:

2.m�k/.1Cı/
kBm;`.Pk1

f;Pk2
f /kL2 . "2

12�ı
2m;

with jk1� k2j � 10; �2m� `; k1; k2 � 4ım; �2m� k � �5ımCD:
(4-8)

The rest of this proof is dedicated to showing (4-8) and split into two cases, depending on which of the
parameters ` or k is smaller.

Case 1: `� kC 5. In this case we must have k �minfk1; k2g� 15, so that k; k1; k2 are all comparable
to each other and smaller than �5ımCD. In particular (4-7) gives

kmk;k1;k2'`.� � 2�/kS1 . 22`�2k1 : (4-9)

We proceed in three steps.

Step 1: `�k1��
4
9
m. In this case we use integration by parts in time. We introduce a further localization

in the size of the phase ˆ in the bilinear operators Bm;` defined in (4-6). More precisely, we write

Bm;`.f;g/D Bm;`;�p0
.f;g/C

X
p>p0

Bm;`;p.f;g/; p0 WD �3m;

Bm;`;�.f;g/ WD

Z t

0

�m.s/

Z
R2

'�.ˆ.�; �//W`.f;g/.�; �/ d� ds;

(4-10)

where W` is given in (4-6).
Notice that in analyzing the terms in (4-10) we will be dealing with a kernel of the form

Kp;`.�; �/ WD 'p.ˆ.�; �//'`.� � 2�/ Q'k.�/ Q'k1
.� � �/ Q'k2

.�/: (4-11)

Since k; k1; k2 are all comparable and much larger than ` we see, using (6-3) in Lemma 6.2, that

kKp;`kSch . 2pC 5
2

k1C
`
2 : (4-12)
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We can directly use this estimate to obtain the desired bound (4-8) for the term Bm;`;�p0
. Since we must

also have jˆj. 2�2k1 . 25m, there are only O.m/ terms in the sum in (4-10), and it will thus suffice to
prove

2.m�k/.1Cı/
kBm;`;p.Pk1

f;Pk2
f /k

L2 . "2
12�3ı2m (4-13)

for fixed p 2 Œ�3m; 5m�.
Integrating by parts in s we can write

Bm;`;p.Pk1
f;Pk2

f /D Im;`;p.Pk1
f;Pk2

f /� IIm;`;p.@tPk1
f;Pk2

f /� IIm;`;p.Pk1
f; @tPk2

f /;

Im;`;p.f;g/ WD

Z t

0

2�m� 0m.s/

Z
R2

'p.ˆ.�; �//

iˆ.�; �/
W`.f;g/.�; �/ d� ds;

IIm;`;p.f;g/ WD

Z t

0

�m.s/

Z
R2

'p.ˆ.�; �//

iˆ.�; �/
W`.f;g/.�; �/ d� ds:

(4-14)

For the first above term, using the a priori bounds (3-3)–(3-6), the bound on the symbol (4-9) and the
bound on the kernel (4-11), we have the estimate

2.m�k/.1Cı/
kIm;`;p.Pk1

f;Pk2
f /kL2

. 2.m�k/.1Cı/
� 22`�2k1 � 2�p

� kKp;`.�; �/1Pk1
f .� � �/kSchkPk2

f kL2

. 2.m�k/.1Cı/
� 2

1
2

k1C
5
2
`2�k1.1Cı/"1 � 2

k2"1

. 2�.
1
2
C2ı/k12.1Cı/m2

5
2
`"2

1 . "
2
12�

1
40

m;

having used the assumption `� �4
9
mC k1 for the last step.

For the remaining terms in (4-14) we can use a similar bound together with (2-24) to obtain

2.m�k/.1Cı/
kIIm;`;p.@tPk1

f;Pk2
f /kL2 . 2.m�k/.1Cı/

�2m
�2

1
2

k1C
5
2
`
�k1Pk1

f k
L1

sup
s�2m

k@sPk2
f kL2

. 2�.1Cı/k2.2Cı/m�2
1
2

k1C
5
2
`
�"12�.1Cı/k1 �"2

12k22�2mC10ım

. 211ım2�.
1
2
C2ı/k12

5
2
`"3

1. "
3
12�

1
40

m:

The same bound can be similarly obtained for IIm;p.Pk1
f; @tPk2

f / and this concludes the proof of
(4-13) when `� k1 � �

4
9
m.

To deal with the remaining cases we introduce the usual spatial localizations as defined in (4-4), and
aim to show

2.m�k/.1Cı/
X

j1;j2

kBm;`.f1; f2/kL2 . "2
12�2ı2m;

under the assumptions in (4-8) and with `� k1 � �
4
9
m.

Step 2: `�k1 ��
4
9
m and maxfj1; j2g �mC `�3k1� ım. In this case we can repeatedly integrate by

parts. Indeed, in our current frequency configuration we have jr�ˆj � 2`2�3k1 ; see (3-13). Then we can
use Lemma 6.5 by letting K D s.2`2�3k1/�1, F.�/Dˆ2`2�3k1 and � D 2`. From (6-6), choosing M

large enough, we then obtain kBm;`.f1; f2/kL2 . 2�10mkf1kL2kf2kL2 , which is more than sufficient
to obtain (4-8).
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Step 3: maxfj1; j2g �mC `� 3k1� ım. In this case a standard Hölder estimate, placing the input with
largest position in L2, suffices:

2.m�k/.1Cı/
kBm;`.f1; f2/kL2

. 2.m�k/.1Cı/
� 2m
� 22`�2k1 � 2�m2.2�ı/k12�4k

C

1 "1 � 2
�maxfj1;j2g2�.1Cı/k2"1 � 2

�ı.j1Cj2/

. 22ım2`2.1�3ı/k12�4k
C

1 2�ı.j1Cj2/"2
1;

having used the a priori bounds (3-3)–(3-4), and the symbol bound (4-9). Summing over j1; j2 we see
that this implies the desired bound (4-8) since minfk; k1; k2g � �5ımCD holds.

Remark 4.2. Notice that the bounds proved above suffice to obtain an estimate as in (4-3) for
P
` Bm;`

instead of Bm, provided that `� �5ım, and placing no additional smallness restriction on k.

Case 2: k � `� 5. Here we have k � �5ımCD and j`� k1j � 20, and similar arguments to those of
Case 1 can be used essentially by reversing the roles of k and `. Note that in this case stronger bounds are
available for the kernel that we need to consider; see (4-15) below. We decompose the profiles according
to their spatial localization as done above and proceed as follows.

Step 1: maxfj1; j2g � mC k � 3k1 � ım. Note that this case will be empty if k < �mC 3k1C ım

and only Step 2 below needs to be performed. In the current scenario we have jr�ˆj � 2k�3k1

and jD˛
�ˆj . 2k2�.j˛jC2/k1 , j˛j � 1. We can then use Lemma 6.5 by letting K D s.2k2�3k1/�1,

F.�/Dˆ2k2�3k1 and � D 2k1 , obtaining

kBm;`.f1; f2/kL2 . 2�10m
kf1kL2kf2kL2 :

Step 2: maxfj1; j2g �mC k � 3k1� ım. In this case we want to use integration by parts in s similarly
to Step 1 of Case 1 above. From the formula for the symmetrized symbol we see that the bound (4-9)
used before can be substituted by

kmk;k1;k2'`.� � 2�/kS1 . 22k�2k1 :

Moreover, notice that we have a bound stronger than (4-12) for the relevant kernel; that is,

'p.ˆ.�; �//'`.� � 2�/ Q'k.�/ Q'k1
.� � �/ Q'k2

.�/




Sch . 2pCkC2k1 ; (4-15)

as per (6-3) in Lemma 6.2. Then the same arguments as in Step 1 of Case 1 above go through and give the
main conclusion (4-2) when k �minfk1;�5ımgCD. This concludes the proof of the proposition. �

As a consequence of Proposition 4.1 we have the following:

Corollary 4.3. In order to prove the main bound (4-1) it will be enough to prove the following claim: for
all .k; j / 2 J we have

24kC2m�2 minfk;k1;k2gCk
kPkBm;`.Pk1

f;Pk2
f /kL2 . 2�2ım"2

1;

whenever � 5ım� k; k1; k2; `� 4ımCD2;
(4-16)
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where Bm;` is defined as

FBm;`.f;g/D

Z t

0

�m.s/

Z
R2

W`.f;g/ d� ds;

W`.f;g/.�; �/ WD eisˆ.�;�/m.�; �/'`.� � 2�/ Of .� � �/ Og.�/:

(4-17)

Proof. In view the estimates (4-2)–(4-3) in Proposition 4.1, we know that to obtain the main bound (4-1)
it will suffice to show

sup
kCj�0

k��5ım

24kC2.kCj/.1Cı/
X

k1;k2��5ım

kQjkBm.Pk1
f;Pk2

f /kL2 . 2�ı
3m"2

1: (4-18)

Recall that from (3-12) we have the upper bound maxfk; k1; k2g � ı.j Cm/CD. Then the finite speed
of propagation Lemma 3.2 suffices to bound the sum in (4-18) whenever j �m� 2 minfk; k1; k2gCD.
We may therefore restrict ourselves to j �m� 2 minfk; k1; k2gCD � .1C 10ı/mCD, and thus also
to maxfk; k1; k2g � 4ımCD. We then have a sum over at most O.m2/ terms so that it suffices to prove
the bound

24kC2.kCj/.1Cı/
kQjkBm.Pk1

f;Pk2
f /kL2 . 2�

3
2
ı3m"2

1

for each fixed triple k; k1; k2 with �5ım� k; k1; k2 � 4ımCD, and .k; j / 2 J . Moreover, in view of
Remark 4.2 we may also replace Bm above with Bm;` and assume that ` � �5ım. The claim follows
since ı.m� 2 minfk; k1; k2gC k/� 3

2
ım. �

4B. Further reductions. We now turn to further reductions on the size of the phase ˆ and the spatial
localization of the profiles in the bilinear term Bm;`.Pk1

f;Pk2
f / in (4-17). For this purpose let us write

Bm;`.Pk1
f;Pk2

f /D
X
p2Z

Bm;`;p.Pk1
f;Pk2

f /D
X

r;p2Z

Bm;`;r;p.Pk1
f;Pk2

f /; (4-19)

Bm;`;p.f;g/ WD F
Z t

0

�m.s/

Z
R2

'p.ˆ.�; �//W`.f;g/ d� ds; (4-20)

Bm;`;r;p.f;g/ WD F
Z t

0

�m.s/

Z
R2

'p.ˆ.�; �//'r .�� 2�/W`.f;g/ d� ds; (4-21)

where W` is as in (4-17). Notice that Bm;`;p.Pk1
f;Pk2

f / is trivial unless p��2 minfk; k1; k2gCD �

10ımCD and r �maxfk1; k2gCD� 4ımC2D2. Also note that a Schur-type estimate using Lemma 6.2
will give the desired bound for the sum of the terms Bm;`;p when p��3m. Similarly, it is not hard to see
that one can obtain the bound (4-16) for the terms Bm;`;p;r when r ��3m. Therefore the summations in
(4-19) are all over at most O.m2/ terms, and it suffices to prove the bound for each element in the sum.

Proposition 4.4. With the usual notation f� D PŒk��2;k�C2�'
.k�/
j�

.x/Pk�f , j� C k� � 0, � D 1; 2, and
under the frequency restriction in (4-16), namely

�5ım� k; k1; k2; `� 4ımCD2;
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we have

kPkBm;`.f1; f2/kL2 . 2�2m"2
1 if maxfj1; j2g �mCminfk; `g� 3k1� ım: (4-22)

If instead maxfj1; j2g �mCminfk; `g� 3k1� ım, then we have the following bounds:

24kC2m�2 minfk;k1;k2gCk
kPkBm;`;p.f1; f2/kL2 . 2�3ım"2

1 if p � �mC 40ım; (4-23)

24kC2m�2 minfk;k1;k2gCk
kPkBm;`;p;r .f1; f2/kL2 . 2�4ım"2

1 if r � �35ım; (4-24)

24kC2m�2 minfk;k1;k2gCk
kPkBm;`;p;r .f1; f2/kL2 . 2�4ım"2

1 if minfj1; j2g �
1
2
mC 60ım: (4-25)

For convenience we introduce the notation

k WDminfk1; k2g; k WDmaxfk1; k2g; j WDminfj1; j2g; j WDmaxfj1; j2g: (4-26)

Proof. Each one of the bounds in the statement can be proven via similar techniques to those used in the
proof of Proposition 4.1 above.

Proof of (4-22). This follows by integrating by parts in � sufficiently many times, i.e., by applying
Lemma 6.5 using the fact that jr�ˆj � 2kC`�4k1 and jD˛

�ˆj. 2�.j˛jC1/minfk1;k2g on the support of the
integral.

Proof of (4-23). Now we treat the term Bm;`;p as defined in (4-20) analogously to what was done
in (4-10) and integrate by parts in s. Similarly to (4-14) we obtain Bm;`;p.f1; f2/ D Im;p.f1; f2/�

IIm;p.@tf1; f2/� IIm;p.f1; @tf2/, where

Im;`;p.f;g/ WD

Z t

0

2�m� 0m.s/

Z
R2

'p.ˆ.�; �//

iˆ.�; �/
W`.f;g/.�; �/ d� ds;

IIm;`;p.f;g/ WD

Z t

0

�m.s/

Z
R2

'p.ˆ.�; �//

iˆ.�; �/
W`.f;g/.�; �/ d� ds:

(4-27)

For the first term in (4-27) we use Lemma 6.4 and the a priori bounds, estimating the profile with the
largest spatial localization in L2 and obtain

kPkIm;`;p.f1; f2/kL2 . 2�p
� kmk;k1;k2'`.� � 2�/kS1 � 2

�m2�2kC"1 � 2
�j 2�k"1

. 2�m�39ım
� kmk;k1;k2kS1 � 2

�k�2kC2�minfk;`gC3k1"2
1:

Using the bound kmk;k1;k2kS1 . 2�kCk, we see that

2mCk�2 minfk;k1;k2gkPkIm;`;p.f1; f2/kL2 . "2
12�39ım

� 2�4 minf0;k;k1;k2;`g22 maxf0;k;k1;k2;`g;

which suffices to obtain (4-23) in view of the restrictions in (4-16).
For the terms IIm;p we use Lemma 6.4, estimating in L2 the term involving the time derivative of the

profile via (2-24), together with the bound for the symbol used above:

kPkIIm;`;p.@tf1; f2/kL2 . 2m
� 2�p

� kmk;k1;k2'`.� � 2�/kS1 � 2
�m22k"1 � 2

k2�2mC10ım"12�4kC

. 2�m�30ım
� 23k�4kC"2

1:

This suffices to prove (4-23).
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Proof of (4-24). We now look at the bilinear term Bm;`;p;r defined in (4-21) with r � �35ım �

minfk; k1; k2g �D, so that k; k1; k2 and ` are all comparable. In view of the previous step we may
assume p � �mC 35ım. Using the estimate (6-2) in Lemma 6.2(2) we see that

'p.ˆ.�; �// Q'k.�/ Q'k1

.� � �/ Q'k2
.�/ Q'`.� � 2�/ Q'r .�� 2�/




Sch . 2pC 1

2
rC 5

2
k :

Using this bound with Schur’s test, jmk;k1;k2 j. 2r�k, j � .1� ı/m� 2k, and the usual a priori bounds,
we see that

24kC2m�2 minfk;k1;k2gCk
kPkBm;`;p;r .f1; f2/kL2 . 2m�k

� 2m
� 2pC 1

2
rC 5

2
k
� 2r�k

� 2�k"1 � 2
�j 2�k"1

. 2mCım2pC 3
2

rC 1
2

k"2
1;

which is sufficient to obtain (4-24).

Proof of (4-25). In view of the previous step we may assume p ��mC 40ım and r ��35ım. Just for
the purpose of this proof let us define

K.�; �/ WD 'p.ˆ.�; �//'`.� � 2�/'r .� � 2�/ Q'k.�/ Q'k1
.� � �/ Q'k2

.�/:

In view of Lemma 6.2(2) we have, recall the notation (4-26),

kK.�; �/kSchCkK.�; � � �/kSch . 2pC 1
2

kC 3
2

k :

Also notice that for any kernel with jKj. 1 one has

kK.�; �/g.� � �/kSch . kK.�; �/k
1
2

SchkgkL2 :

Then, using Schur’s test by estimating in L2 the profile corresponding to the larger localization 2j we
can bound

kPkBm;`;p;r .f1; f2/kL2 . 2m
� .2pC 1

2
kC 3

2
k/

1
2 � kmk;k1;k2kS1 � kfjkL2

� kfjkL2

. 2m
� 2

1
2

pC 3
4

kC 1
4

k
� 2k�k

� 2�j�j
� 2�k�k�4kC"2

1:

Using the assumptions p ��mC 40ım, j � .1� ı/m� 3k1Cminfk; `g and j � 1
2
mC 60ım, we see

that

24kC2m�2minfk;k1;k2gCk
kPkBm;`;p;r .f1;f2/kL2 . "2

1 2�39ım
�2k�2minfk;k1;k2g�2

3
4

k� 7
4

k
�23k1�minfk;`g

. "2
1 2�39ım

�2�
15
4

minf0;k;k1;k2;`gC
15
4

maxf0;k1;k2g;

which is sufficient for (4-25), again in view of (4-16). �

5. The weighted estimate: part II

Recall that the main weighted bound (4-1) is implied by (4-16). Combining this fact with the estimates in
Proposition 4.4 we can reduce the proof of the main desired bound to showing that

24kC2m�2 minfk;k1;k2gCk
kPkBm;`;�p0;r .f1; f2/kL2 . 2�4ım; (5-1)
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where

Bm;`;�p0;r .f;g/

WD F�1

Z t

0

�m.s/

Z
R2

eisˆ.�;�/'�p0
.ˆ.�; �//m.�; �/ '`.� � 2�/ 'r .2� � �/ Of .� � �/ Og.�/ d�;

and whenever

�5ım� k; k1; k2; `� 4ımCD2; r � �35ım;

p0 WD �mC 40ım;

j WDmaxfj1; j2g �mCminfk; `g� 3k1� ım�m� 20ım;

j WDminfj1; j2g �
1
2
mC 60ım:

(5-2)

Remark 5.1. Intuitively speaking the reductions to the configuration (5-2) have placed us in a framework
where neither integration by parts in time nor space produces any gain: jˆj is of the order of s�1 and
jr�ˆj is of order about 1, with j of the order about s. Notice that this is not a localization to, but rather
away from, the resonant set.

Anisotropic decomposition. We now decompose the bilinear term into two pieces, according to the size
of j�1� �1j:

Bm;`;�p0;r .f1; f2/D B�q0
.f1; f2/C

X
q>q0

Bq.f1; f2/; q0 WD �
1

20
m;

B�.f;g/ WD F�1

Z t

0

�m.s/

Z
R2

eisˆ.�;�/'�p0
.ˆ.�; �//'�.�1� �1/m`;r .�; �/ Of .� � �/ Og.�/ d�;

m`;r .�; �/ WDmk;k1;k2.�; �/'`.� � 2�/'r .2� � �/I

(5-3)

see also the notation (6-5), and recall the formula (2-19) for the symbol m. Note that in order to simplify
notation we suppress the dependence on m; `;p0; r in B�.

5A. Estimate of B�q0
. Here we show how we can exploit the smallness in the localization in j�1� �1j

to close our bounds. The main tool here is given by improved Schur kernel bounds.
Let us introduce the notation

Kq0
.�; �/ WD '�p0

.ˆ.�; �//'�q0
.�1� �1/m`;r .�; �/;

where m`;r is as in (5-3), and so that

B�q0
.f;g/D F�1

Z t

0

�m.s/

Z
R2

eisˆ.�;�/Kq0
.�; �/ Of .� � �/ Og.�/ d�:

Proposition 5.2. Under the assumptions (5-2) the following holds true:

24kC2m�2 minfk;k1;k2gCk
kPkB�q0

.f1; f2/kL2 . 2�4ım: (5-4)

Proof. Observe that

2p0 & jˆ.�; �/j D
ˇ̌̌̌
.�1� �1/

�
1

j�j2
�

1

j� � �j2

�
� �1

�
1

j�j2
�

1

j�j2

�ˇ̌̌̌
:
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Since on the support of the integral (5-3) we have j�1� �1j � 2q0 , we see that

j�1j

ˇ̌̌̌
1

j�j2
�

1

j�j2

ˇ̌̌̌
. 2p0 C 2q0

ˇ̌̌̌
1

j�j2
�

1

j� � �j2

ˇ̌̌̌
. 2q0C10ım: (5-5)

We then distinguish two main cases depending on the size of j�1j relative to 2
1
3

q0C10ım. More precisely
we write

B�q0
.f;g/D B��q0

.f;g/CBC�q0
.f;g/;

B˙�q0
.f;g/ WD F�1

Z t

0

�m.s/

Z
R2

eisˆ.�;�/Kq0
.�; �/�˙.�1/ Of .� � �/ Og.�/ d�;

��.�1/ WD '� 1
3

q0C10ım.�1/; �C.�1/ WD 1���.�1/:

Estimate of B��q0
. In this case j�1j. 2

1
3

q0C10ım and we see that

j� � �?j. j.�1� �1/�2jC j.�2� �2/�1j. 2
1
3

q0C15ım:

This gives us an improved estimate on the symbol m, see (2-19), and hence on the kernel: using
Lemma 6.2(2) and the restrictions (5-2) we see that

kKq0
.�; �/��.�1/kSchCkKq0

.�; � � �/��.�1� �1/kSch . 2
1
3

q0 � 2p0 � 240ım:

We then apply Schur’s test incorporating the profile with localization j in the kernel and estimating the
one with largest j in L2: using the a priori bounds (3-3) and (3-5) together with the restrictions (5-2) we
have

kB��q0
.f1; f2/kL2 . 2m

� 2
1
3

q0Cp0C40ım
� "125ım

� "12�mC25ım

. 2�m
� 2�

1
60

m
� 2110ım

� "2
1:

This is sufficient to obtain (5-4), given that the restrictions (5-2) imply 2m�2 minfk;k1;k2gCk � 2m215ım

and ı � 2 � 10�4.

Estimate of BC�q0
. In this case j�1j&2

1
3

q0C10ım and in view of (5-5) we must have
ˇ̌
j�j�2�j�j�2

ˇ̌
�2

2
3

q0 .
Since j�j�2� j�j�2 D j�j�2j�j�2.�2

2
� �2

2
C �2

1
� �2

1
/ we see that

j�2
2 � �

2
2j. j�j

2
j�j22

2
3

q0 Cj�2
1 � �

2
1j. 2

1
2

q0C16ım:

Therefore we know that on the support of the integral

j�1� �1j. 2q0 ; j�2
2 � �

2
2j. 2

2
3

q0C16ım; jr�ˆ.�; �/j; jr�ˆ.�; �/j � 2�50ım
I

see (3-13) and the restrictions (5-2). Using these we claim that we can estimate

kKq0
.�; �/�C.�1/kSchCkKq0

.�; � � �/�C.�1� �1/kSch . 2
1
6

q0 � 2p0 � 270ım: (5-6)

To see why this holds true, first observe that for the support of the kernel we have

supp.Kq0
.�; �//�

˚
.�; �/ 2 R2

�R2
W � 2 SC.�/[S�.�/

	
;
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where

S˙.�/ WD
˚
� 2 R2

W jˆ.�; �/j. 2p0 ; jr�ˆ.�; �/j; jr�ˆ.�; �/j& 2�50ım;

j�1� �1j. 2q0 ; j�2˙ �2j. 2
1
3

q0C8ım
	
:

From this observation, and arguments similar to the ones in Lemma 6.2(1), it follows that

sup
�2R2

Z
R2

jKq0
.�; �/�C.�1/j d�. 2p0C60ım

� 2
1
3

q0C8ım;

having also used jmj. 210ım. The same bound can be also deduced for Kq0
.�; � � �/�C.�1 � �1/.

Combing these bounds with the similar but cruder estimate

sup
�2R2

�Z
R2

jKq0
.�; �/j d�C

Z
R2

jKq0
.�; � � �/j d�

�
. 2p0C65ım;

we see that (5-6) follows.
We finally use (5-6) and Schur’s test to obtain

kBC�q0
.f1; f2/kL2 . 2m

� 2
1
6

q0Cp0C70ım
� "125ım

� "12�mC25ım

. 2�m2�
1

120
m
� 2140ım"2

1:

We can then conclude as before, since ı is small enough. This suffices to prove the desired bound (5-4)
and concludes the proof of the proposition. �

5B. Estimates of the terms Bq . In view of the decomposition (5-3) and Proposition 5.2, the main bound
(5-1) can be reduced to showing

24kC2m�2 minfk;k1;k2gCk
kPkBq.f1; f2/kL2 . 2�5ım; q � q0; (5-7)

under the restrictions (5-2). This bound can in turn be reduced to the proof of the following proposition
about Fourier integral operators.

Proposition 5.3. Let

p D�mC 40ım; � 1
20

m� q � 4ımCD2; (5-8)

with ı � 10�4. For any g 2L2 and s 2 Œ2m�1; 2mC1� define the operator

Tp;q.g/.�/ WD

Z
R2

eisˆ.�;�/'�p.ˆ.�; �//'q.�1� �1/�.�; �/g.�/ d�;

ˆ.�; �/D �L.�/CL.� � �/CL.�/; L.x/D
x1

jxj2
;

(5-9)

and assume that the symbol � has the properties

supp.�/�
˚
.�; �/ 2 R2

�R2
W 2�Aım . j�j; j�j. 2Aım;

j� � �j; j� � 2�j& 2�Aım; j2� � �j& 2�7Aım
	

(5-10)
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for some absolute positive constant A� 5, and

jD˛
.�;�/�.�; �/j. 2j˛j.

1
2

mC60ım/220ım; j˛j � 0: (5-11)

Then Tp;q satisfies the operator bound

kTp;qkL2!L2 . 2�m�100ım: (5-12)

Before proceeding with the proof of this proposition, let us explain how Proposition 5.3 implies the
desired bound (5-7):

Proof of (5-7) from Proposition 5.3. Without loss of generality we can assume j1 � j2. Then, according
to our notation (5-3) and under the assumptions above, we can write

PkBq.f1; f2/D F�1

Z
R

�m.s/ � "1Tp;q.f2/ ds;

where we let
�.�; �/Dmk;k1;k2.�; �/ '`.� � 2�/'r .2� � �/ "

�1
1
Of1.� � �/:

Using the a priori bound k Of1k . 2�k1"1 and the restriction on j in (5-2), it is easy to see that the
above �.�; �/ satisfies the hypotheses (5-11). Applying the conclusion (5-12) we can then estimate

kPkBq.f1; f2/kL2 . "12m
kTp;qkL2!L2kf2kL2 . "12m

� 2�m�100ım
� "12�mC25ım;

which is sufficient to obtain (5-7) in view of the restriction (5-2). �

The proof of Proposition 5.3 will be performed in the remainder of the paper and will conclude the
proof of the Main Theorem, Theorem 2.2.

5C. Proof of Proposition 5.3. To prove (5-12) we will use a T T � argument which is based on a suitable
nondegeneracy property of the mixed Hessian of the phase ˆ. In particular, it turns out to be crucial that
we can integrate by parts along the direction parallel to the level sets of ˆ. We subdivide the proof into a
few steps: First, in Step 1 we describe a curvature quantity that gives a measure of the aforementioned
nondegeneracy. Step 2 then sets up the T T � kernel and guides the subsequent splitting; we either use
smallness of sets to get the claimed kernel bounds (Step 3) or exploit the nondegeneracy via an iterated
integration by parts (Step 4).

Step 1: The curvature quantity y‡. In preparation for Step 2 let us define

y‡.�; �/ WD r2
�;�ˆ

�
r?
�
ˆ

jr�ˆj
;
r?� ˆ

jr�ˆj

�
.�; �/: (5-13)

We begin with the following algebraic lemma involving y‡ :

Lemma 5.4. Define � and ‚ as follows:

y‡.�; �/DW
�.�; �/

j� � �j8 jr�ˆ.�; �/jjr�ˆ.�; �/j
; ˆ.�; �/DW

‚.�; �/

j� � �j2
:
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Then we have the identity
1
2
�.�; �/� 2‚.�; �/D 3.�1� �1/: (5-14)

As a consequence, on the support of the operator Tp;q the following bounds on y‡ hold:

2q�6Aım . j y‡.�; �/j. 2qC10Aım: (5-15)

Proof. The identity (5-14) is obtained by a direct computation.
To verify (5-15) notice that

j y‡.�; �/j D
j�.�; �/jj�jj�j

j� � �j4 j� � 2�jj�� 2�j
;

and therefore, because of the restrictions (5-10),

2�6Aım
j�.�; �/j. j y‡.�; �/j. 210Aım

j�.�; �/j:

Now note that j‚.�; �/j. 2p22Aım� 2q � j�1��1j by (5-8)–(5-9). Hence we can use (5-14) to deduce
that j�j � 2q , and the conclusion follows. �

Step 2: The T T � kernel. Notice that the support of .Tp;qg/.�/ is contained in the ball j�j . 24ım.
We decompose this ball into O.2�2qC2.C0C4/ım/ balls of radius R WD 2q�C0ım�D3

for some absolute
constant C0 2 Œ50; 150� to be determined below, depending on A. If we denote by �0 the center of any
such small ball and let

Tp;q;�0
.g/.�/ WD '�R.� � �0/Tp;q.g/.�/;

we see that the main bound (5-12) will follow provided we can show that for every �0 2 R,

kTp;q;�0
T �p;q;�0

kL2!L2 . Œ2�m�100ım
� 22q�2.C0C4/ım�2: (5-16)

Such a localization to a small ball in � will allow us to better control several remainder terms in various
Taylor expansions below.

Let us write

Tp;q;�0
T �p;q;�0

g.�/D

Z
R2

Sp;q;�0
.�; � 0/g.� 0/ d� 0;

where the kernel is given by

Sp;q;�0
.�; � 0/D '�R.� � �0/'�R.�

0
� �0/

Z
R2

eisŒˆ.�;�/�ˆ.�0;�/��.�; �/�.� 0; �/ 'q.�1� �1/

�'q.�
0
1� �1/ '�p.ˆ.�; �// '�p.ˆ.�

0; �// d�: (5-17)

Notice that on the support of this kernel we must have j��� 0j � 4RD 4 �2q�C0ım�D3

. Also recall that the
symbol � satisfies the properties (5-10)–(5-11). We will sometimes use the short-hand notation S.�; � 0/

for Sp;q;�0
.�; � 0/, dropping the indices where this creates no confusion.

To bound the relevant operator we will resort to an integration by parts in � in the kernel (5-17) — see
Step 4. Where this integration fails we will show how to gain from the smallness of the measure of the
support of the kernel (Step 3).
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The integration by parts will be performed through the trivial identity

eisŒˆ.�;�/�ˆ.�0;�/�
D

1

isD
r?� ˆ.�; �/

jr�ˆ.�; �/j
� r�e

isŒˆ.�;�/�ˆ.�0;�/�; (5-18)

with

D WD
r?� ˆ.�; �/

jr�ˆ.�; �/j
� r�Œˆ.�; �/�ˆ.�

0; �/�: (5-19)

The choice of direction of integration by parts is motivated by the roughness of the symbol in the integrand
in (5-17). See also the identities (5-25)–(5-26).

To see the relevance of y‡ defined in (5-13) we calculate

DD
r?� ˆ.�; �/

jr�ˆ.�; �/j
� r�Œˆ.�; �/�ˆ.�

0; �/�

D
r?� ˆ.�; �/

jr�ˆ.�; �/j
� Œr2

�;�ˆ.�; �/.� � �
0/�CO.r3

�;�;�ˆ.�; �/j� � �
0
j
2/:

The fact that r�ˆ does not vanish allows us write

� � � 0 D ae1C be2; e1 WD

r?
�
ˆ.�; �/

jr�ˆ.�; �/j
; e2 WD

r�ˆ.�; �/

jr�ˆ.�; �/j
:

We can thus decompose D as

DD a y‡.�; �/C b
r?� ˆ.�; �/

jr�ˆ.�; �/j
r

2
�;�ˆ.�; �/

r�ˆ.�; �/

jr�ˆ.�; �/j
CO.r3

�;�;�ˆ.�; �/j� � �
0
j
2/;

with y‡ defined in (5-13) and satisfying the bounds (5-15). In particular

jDj � jajj y‡.�; �/j � jbjjr2
�;�ˆ.�; �/j � 2D

jr
3
�;�;�ˆ.�; �/jj� � �

0
j
2: (5-20)

Observe that on the support of S.�; � 0/ we have

2p & jˆ.�; �/�ˆ.� 0; �/j& jr�ˆ.�; �/ � .� � � 0/j �O.jr2
�ˆ.�; �/jj� � �

0
j
2/

D jbjjr�ˆ.�; �/j �O.jr2
�ˆ.�; �/jj� � �

0
j
2/:

(5-21)

Step 3: The case jbj � 2C1ımCD j� � � 0j2, with C1 WD 13A. Using (5-21), jr�ˆ.�; �/j & 2�10Aım and
jr2
��
ˆ.�; �/j. 23Aım, we deduce that jbj. 2pC10Aım and in particular that we must have

j� � � 0j2 . 2p:

We now use Schur’s test to show how this suffices to obtain (5-16).
More generally, let us assume that the support of S.�; � 0/ is contained in the set j� � � 0j �L. Using

Lemma 6.2(1), the lower bounds jr�ˆ.�; �/j & 2�10Aım and jr�ˆ.�; �/j & 2�4Aım that hold on the
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support of �.�; �/, see (5-10) and (3-13), we can then estimateZ
R2

jS.�;� 0/j�fj���0j�Lgd� .
“

R2�R2

'�p.ˆ.�;�//j�.�;�/j'�p.ˆ.�
0;�//j�.� 0;�/j�fj���0j.Lgd�d�

.
Z

R2

'�p.ˆ.�
0;�//j�.� 0;�/j

�Z
R2

'�p.ˆ.�;�//j�.�;�/j�fj���0j.Lgd�

�
d�

.
Z

R2

'�p.ˆ.�
0;�//j�.� 0;�/j Œ2p

�2.10AC20/ım
�L�d�

. 22p
�2.14AC40/ım

�L: (5-22)

By symmetry a similar bound also holds when exchanging the roles of � and � 0. Using this estimate with
LD 2

1
2

p, we see that (5-16) follows from Schur’s test since, under our assumptions, 5
2
pC .14AC40/ım

is less than �2m� 200ımC 4q� 4.C0C 4/ım, as required.

Step 4: The case jbj � 2C1ımCD j� � � 0j2. In this case we have jbj � 2�D j� � � 0j, provided we choose
C0 � C1C 4. Therefore jaj � 1

2
j� � � 0j. Then we must also have

2q
jaj � 2C0ımCD2

j� � � 0j2;

since j� � � 0j � 4 � 2q�C0ım�D3

on the support of the kernel. From (5-15) we know that j y‡ jjaj �
2q�6Aım�D jaj, and since we also have

jbjjr2
�;�ˆ.�; �/jC 2D

jr
3
�;�;�ˆ.�; �/jj� � �

0
j
2
� 2.C1C3A/ımC2D

j� � � 0j2;

we can choose C0 � C1C 9AD 22A, and invoke (5-20) to deduce

jDj& 2q�6Aım
jaj:

Notice that we can also assume that jaj& 2�
3

10
m, for otherwise jaj � j� � � 0j. 2�

3
10

m and the bound
(5-22) would give usZ

�

jS.�; � 0/j�fj���0j�2�.3=10/mg d� . 22p
� 2.14AC40/ım

� 2�
3

10
m;

so that (5-16) would follow via Schur’s test as above.
We now claim that an iterated integration by parts yields

jS.�; � 0/j. 240ım
�
2�m
jDj�1 max

˚
2

1
2

mC60ım; 2�q; jDj�12.
2
N
C1/Aım; 2�p

jDj
	�M (5-23)

for any positive integer M. Since jDj & 2�
2
5

m, p � �mC 40ım and q � � 1
20

m, this bound clearly
suffices to obtain (5-16).

To prove (5-23), we integrate by parts in � in the integral (5-17) using the identities (5-18)–(5-19): For
notational convenience, we rewrite them here as

eis‰
D

1

is
X eis‰; ‰.�; � 0; �/ WDˆ.�; �/�ˆ.� 0; �/;

X .�; �/ WD 1

DV � r�; XT .�; �/ WD div�
�

1

DV �
�
; V WD

r?� ˆ.�; �/

jr�ˆ.�; �/j
:
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Integrating by parts M times will then give

jS.�; � 0/j

.
Z

R2

2�mM
ˇ̌
.XT /M

�
�.�; �/�.� 0; �/'q.�1��1/ 'q.�

0
1��1/'�p.ˆ.�; �// '�p.ˆ.�

0; �//
�ˇ̌

d�: (5-24)

Let us now analyze the various terms that arise in (5-24):

(a) When div� V hits the symbol �.�; �/�.� 0; �/ this produces a factor growing at most 2
1
2

mC60ım in
view of the assumption (5-11). This is accounted for by the first term in the curly brackets in (5-23).

(b) The terms that arise when div� V hits the cutoff 'q.�1� �1/'q.�
0
1
� �1/ are bounded by 2�q .

(c) To deal with the terms when div� V hits the denominator D, it suffices to observe that on the support
of the kernel,

jD˛
�D.�; �/j. 2.2Cj˛j/Aım:

(d) For the term arising when div� V hits the cutoff '�p.ˆ.�
0; �//'�p.ˆ.�; �//, first notice that by

construction
V � r�'�p.ˆ.�; �//D 0: (5-25)

Moreover, we can calculate

V.�; �/ � r�.'p.ˆ.�
0; �///D V.�; �/ � r�ˆ.� 0; �/2�p.'0/p.ˆ.�

0; �//

D�D.�; �/ 2�p.'0/p.ˆ.�
0; �//: (5-26)

We then see that this is accounted for by the last term in the curly brackets in (5-23).

This concludes the proof of (5-23) and Proposition 5.3. The Main Theorem, Theorem 2.2, follows. �

6. Useful lemmata

A Schur lemma. We demonstrate here some bounds for integral operators defined through kernels with
localizations. These bounds derive from the set-size restrictions brought about by localizations. We first
recall the standard Schur’s test:

Lemma 6.1. For a kernel K W R2 �R2! R, consider the corresponding operator

.TKf /.�/ WD

Z
R2

K.�; �/f .�/ d�;

and assume that
sup
�2R2

Z
R2

jK.�; �/j d��K1; sup
�2R2

Z
R2

jK.�; �/j d� �K2:

Then
kTKf kL2 .

p
K1K2kf kL2 :

We will often apply the above lemma, and for this purpose define

kKkSch WD

�
sup
�

Z
K.�; �/ d�

�1
2
�

sup
�

Z
K.�; �/ d�

�1
2

: (6-1)
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Lemma 6.2. (1) Let F W R2! R be smooth in a ball BR.z/� R2, z 2 R2, R> 0. ThenZ
BR.z/

'��.F.x//'��.rF.x// dx � 2��2�R:

(2) Consider an integral operator given by the kernel

K.�; �/ WD 'p.ˆ.�; �//'`.� � 2�/'r .�� 2�/'k.�/'a.� � �/'b.�/;

where ˆ is the phase in (2-2). Then we have the bound

kKkSch . 2pC 1
2
.kCb�`�r/C2a2

1
2

minf`;r;a;bgC 1
2

minf`;r;k;ag; (6-2)

so that, in particular,

kKkSch . 2pC 1
2
.kCbC2a/:

As a consequence, we also see that if minfk; `g �maxfa; bg� 10, then, for

K`.�; �/ WD �p.ˆ.�; �//�`.� � 2�/�k.�/�a.� � �/�b.�/

we have the bound

kK`
kSch . 2pC 1

2
.kCb�`C3a/2

1
2

minf`;a;bgC 1
2

minf`;k;ag; (6-3)

Proof. Point (2) is a consequence of (1) and the formulas for the gradient of ˆ in (3-13), so we start by
demonstrating (1).

Proof of (1). Notice that fx 2R2 W jrF.x/j�2�g�A1
�[A2

�, where Ai
� WD fx 2R2 W j@xi

F.x/j�2��1g.
Hence on BR.z/\A1

� a well-defined change of variables is given by .y1;y2/D Y .x/ WD .F.x1;x2/;x2/.
This change of variables has Jacobian determinant equal to j@x1

F j& 2�, so we haveZ
BR.z/\A

�

1

'��.F /'��.rF /.x/ dx . 2��
Z

Y .BR.z//

'��.F /'��.rF /.Y �1.y// dy

. 2��
Z
jy2�z2j�R

'��.y1/ dy � 2��2�R:

Exchanging the roles of x1 and x2, in complete analogy we deduce the same bound forZ
BR.z/\A

�

2

'��.F /'��.rF / dx;

thus proving the first claim.

Proof of (2). We estimate the two integrals in (6-1); for each it will suffice to appropriately apply (1). To
this end, notice that with the localizations in K.�; �/ we have, see (3-13),

jr�ˆj D
j�jj� � 2�j

j�j2 j� � �j2
� 2kC`2�2a�2b; jr�ˆj D

j�jj�� 2�j

j�j2 j� � �j2
� 2bCr 2�2k�2a

and ˆ is smooth in the domains of integration.
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Furthermore, for fixed � there exist �0 and R.minf2`; 2r ; 2a; 2bg such that the domain of the integral
in � is contained in the ball BR.�0/. We then invoke (1) to obtainZ

R2

K.�; �/ d��

Z
BR.�0/

'p.ˆ.�; �//'2kC`�2a�2b .2�10
r�ˆ.�; �// d�

. 2p2�k�`C2aC2b2minf`;r;a;bg:

Similarly, for fixed � there exists �0 such that the domain of the integral in � is included in a ball of
center �0 and radius R.minf2`; 2r ; 2k ; 2ag, which promptly yieldsZ

R2

K.�; �/ d� . 2p2�b�rC2kC2a2minf`;r;k;ag:

Combining these gives the claim (6-2). The bound (6-3) follows since for minfk; `g �maxfa; bg� 10

one has jr �maxfa; bgj � 5. �

Hölder-type estimates and integration-by-parts lemmas. For simplicity of notation we define the following
class of multipliers:

S1 WD fm W .R2/2! C Wm continuous and kmkS1 WD kF
�1mkL1 <1g: (6-4)

As we will often localize in frequency space we define, for any symbol m,

mk;k1;k2.�; �/ WD 'Œk�2;kC2�.�/'Œk1�2;k1C2�.� � �/'Œk2�2;k2C2�.�/m.�; �/I (6-5)

see the notation in Section 2. Here is a basic lemma about S1 symbols that we will often use:

Lemma 6.3. (i) We have S1 ,!L1.R2 �R2/. If m;m0 2 S1 then m �m0 2 S1 and

km �m0kS1 . kmkS1km0kS1 :

Moreover, if m2S1, A WR2!R2 is a linear transformation, v 2R2, and mA;v.�; �/ WDm.A.�; �/Cv/,
then

kmA;vkS1 D kmkS1 :

(ii) For m 2 S1, consider the bilinear operator Tm W S.R2/�S.R2/! S 0.R2/ defined by

Tm.f;g/.�/ WD F�1

Z
m.�; �/ Of .� � �/ Og.�/ d�:

Then, for all 1� p; q; r �1 satisfying the Hölder relation 1
r
D

1
p
C

1
q

, we have

kTm.f;g/kLp . kmkS1kf kLpkgkLq :

Proof. The properties in (i) follow directly from the definition (6-4). A direct computation unwinding the
Fourier transforms shows that

Tm.f;g/.x/D

Z
�

eix�

Z
�

m.�; �/ Of .� � �/ Og.�/ d� d�D

Z
y

Z
z

f .x� z/g.x�y � z/ Lm.z;y/ dy dz;

from which the claim follows directly. �
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We state next a useful lemma, which allows us to use Hölder-type bounds when we integrate by parts
in time.

Lemma 6.4. Assume t � 2m for some m 2 N, and p � �mC 2ım. For � 2 S1, with k�kS1 � 1,
consider a bilinear operator of the form

Bp.v; w/.�/ WD '�10m.�/

Z
R2

eitˆ.�;�/�.2�pˆ.�; �//�.�; �/ Ov.� � �/ Ow.�/ d�;

where � is a Schwartz function. Then, for any 1
p
C

1
q
D

1
2

,

kBp.v; w/kL2 .
�

sup
jsj�2�p2ım

kei.tCs/LvkLpkei.tCs/LwkLq CkvkL2kwkL22�10m
�
:

Proof. Let us use

�.2�pˆ.�; �//D c

Z
R

eiz2�pˆ.�;�/
L�.z/ dz

to write

Bp.v; w/D c

Z
R2

�Z
R

ei.2�pzCt/ˆ.�;�/
L�.z/ dz

�
�.�; �/ Ov.� � �/ Ow.�/ d�:

Using the rapid decay j L�j � .1Cjzj/�M, for M large enough, we can estimate the contribution from the
region jzj � 2ım as



Z

R2

�Z
jzj�2ım

ei.2�pzCt/ˆ.�;�/
L�.z/ dz

�
'�10m.�/�.�; �/ Ov.� � �/ Ow.�/ d�






L2
�

. 210m2�ıMm
kvkL2kwkL2 . 2�10m

kvkL2kwkL2 :

We are now left with estimating



Z
R2

Z
jzj�2ım

L�.z/ '�10m.�/�.�; �/ ei.2�pzCt/L.���/
Ov.� � �/ei.2�pzCt/L.�/

Ow.�/ d� dz






L2
�

. sup
jzj�2ım





Z
R2

�.�; �/ei.2�pzCt/L.���/
Ov.� � �/ei.2�pzCt/L.�/

Ow.�/ d�






L2
�

;

which by virtue of Lemma 6.3 and k�kS1 � 1 is bounded by

sup
jzj�2ım

kei.tC2�pz/LvkLpkei.2�pzCt/LwkLq :

The desired conclusion follows. �

Here is a basic integration-by-parts lemma:

Lemma 6.5. Assume that � 2 .0; 1/, �K � 1, M � 1 is an integer, and F;g 2 C M .Rn/. Assume also
that F is real-valued and satisfies

jrF j � 1supp.g/; jD
˛F j.M �1�j˛j for all 2� j˛j �M:
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Then ˇ̌̌̌Z
Rn

eiKF g dx

ˇ̌̌̌
. 1

.�K/M

X
j˛j�M

�j˛jkD˛gkL1 (6-6)

The proof is a fairly straightforward integration-by-parts argument; see Lemma 5.4 in [Ionescu and
Pausader 2014].
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