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ESTIMATES FOR EIGENVALUES OF AHARONOV–BOHM OPERATORS
WITH VARYING POLES AND NON-HALF-INTEGER CIRCULATION

LAURA ABATANGELO, VERONICA FELLI, BENEDETTA NORIS AND MANON NYS

We study the behavior of eigenvalues of a magnetic Aharonov–Bohm operator with non-half-integer
circulation and Dirichlet boundary conditions in a planar domain. As the pole is moving in the interior of
the domain, we estimate the rate of the eigenvalue variation in terms of the vanishing order of the limit
eigenfunction at the limit pole. We also provide an accurate blow-up analysis for scaled eigenfunctions
and prove a sharp estimate for their rate of convergence.

1. Introduction and statement of the main results

An infinitely long, thin solenoid perpendicular to the plane .x1;x2/ at the point a D .a1; a2/ 2 R2

produces a point-like magnetic field as the radius of the solenoid goes to zero and the magnetic flux
remains constantly equal to ˛ 2 R n Z. This magnetic field is a 2�˛-multiple of the Dirac delta at a

orthogonal to the plane .x1;x2/ and is generated by the Aharonov–Bohm vector potential

Aa.x/D ˛

�
�

x2� a2

.x1� a1/2C .x2� a2/2
;

x1� a1

.x1� a1/2C .x2� a2/2

�
; x D .x1;x2/ 2 R2

n fagI

see, e.g., [Adami and Teta 1998; Aharonov and Bohm 1959; Melgaard et al. 2004]. We are interested in
the spectral properties of Schrödinger operators with Aharonov–Bohm vector potentials, i.e., of operators

.ir CAa/
2
WD ��C 2iAa � r C jAaj

2:

Since curl Aa � 0 in R2 n fag, the magnetic field is concentrated at the pole a. If the circulation ˛ is an
integer number, then the potential Aa can be gauged away by a phase transformation so that the operator
.ir CAa/

2 becomes spectrally equivalent to the standard Laplacian. On the other hand, if ˛ 62 Z, the
vector potential Aa cannot be eliminated by gauge transformations and the spectrum of the operator
is modified by the presence of the magnetic field: this produces the so-called Aharonov–Bohm effect;
i.e., the magnetic potential affects charged quantum particles moving in the region � n fag, even if the
magnetic field Ba D curl Aa is zero there.

The dependence on the pole a of the spectrum of the Schrödinger operator .ir CAa/
2 in a bounded

domain � was investigated in [Abatangelo and Felli 2015; 2016; Abatangelo et al. 2017; Bonnaillie-Noël
et al. 2014; Noris et al. 2015; Noris and Terracini 2010] under homogeneous Dirichlet boundary conditions.
In particular, in [Abatangelo and Felli 2015; 2016] sharp asymptotic estimates for eigenvalues were
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given in the case of half-integer circulation ˛ 2 ZC 1
2

as the pole a moves towards a fixed point Na 2�;
analogous sharp estimates were derived in [Abatangelo et al. 2017] in the case Na 2 @�. We mention that
the continuous dependence of the eigenvalue function on the position of the pole and improved regularity
results under simplicity assumptions were established in [Bonnaillie-Noël et al. 2014; Léna 2015] for
any value of ˛ (in particular also for non-half-integer circulation); on the other hand, to the best of our
knowledge, sharp estimates of the gap of eigenvalues have been investigated only in the case ˛ 2ZC 1

2
; see

[Abatangelo and Felli 2015; 2016; Abatangelo et al. 2017; Bonnaillie-Noël et al. 2014; Noris et al. 2015].
The case ˛ 2ZC 1

2
studied in the aforementioned papers presents several peculiarities which allow one

to approach the problem with a perspective and a technique that are not completely adaptable to a general
circulation ˛ 2 R nZ. Indeed, if ˛ 2 ZC 1

2
, the problem can be reduced by a gauge transformation to

the case ˛ D 1
2

and, in this case, the eigenfunctions of .ir CAa/
2 can be identified, up to a complex

phase, with the antisymmetric eigenfunctions of the Laplace–Beltrami operator on the twofold covering
manifold of �; see [Helffer et al. 1999; Noris and Terracini 2010]. As a consequence, if ˛ D 1

2
, the

magnetic eigenfunctions have an odd number of nodal lines ending at the pole a. It has been proved
in [Helffer and Hoffmann-Ostenhof 2013] that the corresponding nodal domains are related to optimal
partition problems. We refer to [Bonnaillie-Noël et al. 2009] for related numerical simulations.

The special features characterizing Aharonov–Bohm operators with circulation 1
2

played a crucial role
in [Abatangelo and Felli 2015; 2016; Abatangelo et al. 2017; Bonnaillie-Noël et al. 2014; Noris et al. 2015;
Noris and Terracini 2010]. In particular, in [Noris et al. 2015] local energy estimates for eigenfunctions
near the limit pole are performed by studying an Almgren-type quotient, see [Almgren 1983], which is
estimated using a representation formula by Green’s functions for solutions to the corresponding Laplace
problem on the twofold covering. Moreover, in [Abatangelo and Felli 2015; 2016; Abatangelo et al. 2017]
a limit profile vanishing on the special directions determined by the nodal lines of limit eigenfunctions is
constructed: this allows one to establish a sharp relation between the asymptotics of the eigenvalue function
and the number of nodal lines, which is strongly related to the order of vanishing of the limit eigenfunction.

In this paper we will focus on the case of noninteger and non-half-integer circulation; i.e., we will
assume ˛ 2 R n .Z=2/. A reduction to the Laplacian on the twofold covering manifold is no longer
available in this case; moreover, magnetic eigenfunctions vanish at the pole a but they do not have nodal
lines ending at a (see Proposition 2.1). The lack of the special features of Aharonov–Bohm operators with
half-integer circulation described above requires alternative methods and produces a less precise estimate.
In particular, in order to estimate the Almgren frequency function, we will give a detailed description of
the behavior of eigenfunctions at the pole and we will study the dependence of the coefficients of their
asymptotic expansion with respect to the moving pole a, see Lemma 2.2.

By gauge invariance, if ˛ 2 R n .Z=2/ it is not restrictive to assume that

˛ 2 .0; 1/ n
˚

1
2

	
: (1-1)

Let � � R2 be a bounded, open and simply connected domain. For every a 2 �, we introduce the
functional space H 1;a.�;C/ as the completion of

fu 2H 1.�;C/\C1.�;C/ W u vanishes in a neighborhood of ag
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with respect to the norm

kukH 1;a.�;C/ D

�
kruk2

L2.�;C2/
Ckuk2

L2.�;C/
C





 u

jx� aj





2

L2.�;C/

�1=2

: (1-2)

The norm (1-2) is equivalent, under condition (1-1), to the norm�
k.ir CAa/uk

2
L2.�;C2/

Ckuk2
L2.�;C/

�1=2
;

in view of the Hardy-type inequality proved in [Laptev and Weidl 1999], see also [Alziary et al. 2003]
and [Felli et al. 2011, Lemma 3.1 and Remark 3.2],Z

Dr .a/

j.ir CAa/uj
2 dx �

�
min
j2Z
jj �˛j

�2 Z
Dr .a/

ju.x/j2

jx� aj2
dx; (1-3)

which holds for all r > 0, a2R2 and u2H 1;a.Dr .a/;C/. Here we denote by Dr .a/ the disk of center a

and radius r ; we will denote by Dr WDDr .0/ the disk with radius r centered at the origin.
It is also worth mentioning the following formulation of the magnetic Hardy inequality proved in

[Alziary et al. 2003, Lemma 4.1]: for all r1 > r2 > 0, a 2 R2, and u 2H 1;a.Dr1
.a/ nDr2

.a/;C/,Z
Dr1

.a/nDr2
.a/

j.ir CAa/uj
2 dx �

�
min
j2Z
jj �˛j

�2 Z
Dr1

.a/nDr2
.a/

ju.x/j2

jx� aj2
dx: (1-4)

We also consider the space H
1;a
0
.�;C/ as the completion of C1c .�nfag;C/ with respect to the norm

k � kH 1
a .�;C/

, so that

H
1;a
0
.�;C/D

�
u 2H 1

0 .�;C/ W
u

jx� aj
2L2.�;C/

�
:

From classical spectral theory, for every a 2�, the eigenvalue problem�
.ir CAa/

2uD �u in �;
uD 0 on @�

(Ea)

admits a diverging sequence of real eigenvalues f�a
k
gk�1 with finite multiplicity; in the enumeration

�a
1 � �

a
2 � � � � � �

a
j � � � � ;

we repeat each eigenvalue as many times as its multiplicity. We are interested in the behavior of the
function a 7! �a

j in a neighborhood of a fixed point Na 2�. Up to a translation and a dilation, it is not
restrictive to assume that NaD 0 2� and D2 ��.

Let us assume that there exists n0 � 1 such that

�0
n0

is simple; (1-5)

and define
�0 D �

0
n0

and �a D �
a
n0
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for any a 2�. In [Léna 2015, Theorem 1.3] it is proved that

if �0
j is simple, the function a 7! �a

j is analytic in a neighborhood of 0: (1-6)

In particular the function a 7! �a is continuous and, if a! 0, then �a! �0; see also [Bonnaillie-Noël
et al. 2014]. Let '0 2 H

1;0
0
.�;C/ n f0g be an L2.�;C/-normalized eigenfunction of problem .E0/

associated to the eigenvalue �0 D �
0
n0

, i.e., satisfying8<:
.ir CA0/

2'0 D �0'0 in �;
'0 D 0 on @�;R
� j'0.x/j

2 dx D 1:

(1-7)

From [Felli et al. 2011, Theorem 1.3] (see also Proposition 2.1) it is known that

'0 vanishes at 0 with a vanishing order equal to j˛� kj for some k 2 Z; (1-8)

in the sense that there exist k 2 Z and ˇ 2 C n f0g such that

r�j˛�kj'0.r.cos t; sin t//! ˇ
eikt

p
2�

in C 1;� .Œ0; 2��;C/ (1-9)

as r ! 0C for any � 2 .0; 1/.
Our first result provides an estimate of the rate of convergence of �0 � �a in terms of the order of

vanishing of '0 at 0; in particular we have that higher vanishing orders imply faster convergence of
eigenvalues.

Theorem 1.1. Let ˛ 2 .0; 1/ n
˚

1
2

	
and �� R2 be a bounded, open and simply connected domain such

that 0 2 �. Let n0 2 N be such that the n0-th eigenvalue �0
n0
D �0 of problem .E0/ is simple and let

'0 2H
1;0
0
.�;C/ be an associated eigenfunction satisfying (1-7). Let k 2 Z be such that j˛� kj is the

order of vanishing of '0 at 0 as in (1-9). For a 2�, let �a
n0
D �a be the n0-th eigenvalue of problem (Ea).

Then

j�a��0j DO.jaj1Cb2j˛�kjc/ as jaj ! 0;

where b � c denotes the floor function btc WDmaxfk 2 Z W k � tg.

To prove Theorem 1.1, we will study the quotient

�0��a

jaj2j˛�kj
(1-10)

as a approaches the origin along a straight line ftp W t > 0g for any direction

p 2 S1
WD fx 2 R2

W jxjD1g:

We will prove that, for every p 2 S1, the quotient (1-10) is bounded as aD jajp! 0. Then (1-6) and the
fact that 2j˛� kj is noninteger imply that the Taylor polynomials of the function �0��a with center 0

and degree less than or equal to b2j˛� kjc vanish, thus yielding the conclusion of Theorem 1.1.
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In the case of half-integer circulation ˛ D 1
2

the special nodal structure of the limit problem allows us
to prove instead that the limit

lim
aDjajp!0

�0��a

jaj2j˛�kj
D lim

aDjajp!0

�0��a

jajj1�2kj

is different from 0 along some special directions p corresponding to tangents to the nodal lines of the limit
eigenfunction. As a consequence, the leading term of the Taylor expansion of the eigenvalue variation
�0��a has order exactly j1� 2kj. That is,

�0��a D P .a/C o.jajj1�2kj/ as jaj ! 0C

for some homogeneous polynomial P 6�0 of degree j1�2kj; see [Abatangelo and Felli 2015, Theorem 1.2].
In [Abatangelo and Felli 2016, Theorem 2] the exact values of all coefficients of the polynomial P are
determined, proving that P .jaj.cos t; sin t//D C0jaj

j1�2kj cos.j1� 2kj.t � t0// for some t0 and C0 > 0.
In particular the leading polynomial P is harmonic.

In this paper we will also describe the behavior of the eigenfunctions as a! 0, proving a blow-up
result for scaled eigenfunctions and giving a sharp rate of the convergence to the limit eigenfunction '0.
In order to state these results more precisely, we need to introduce some notation.

For every b D .b1; b2/ D jbj.cos#; sin#/ 2 R2 n f0g with # 2 Œ0; 2�/, we define the polar angle
centered at b, �b W R

2 n fbg ! Œ#; # C 2�/ as

�b.bC r.cos t; sin t//D t for all r > 0 and t 2 Œ#; # C 2�/; (1-11)

and the function �b
0
W R2 n f0g ! Œ#; # C 2�/ as

�b
0 .r.cos t; sin t//D t for all r > 0 and t 2 Œ#; # C 2�/: (1-12)

We remark that �b is discontinuous on the half-line starting at b with slope # D Arg.b/, whereas �b
0

is
discontinuous on the half-line starting from 0 with the same slope; in particular, the range of �b

0
depends

on # D Arg.b/. Hence, the difference function �b
0
� �b is regular except for the segment

�b WD ftb W t 2 Œ0; 1�g: (1-13)

For all a2�, let 'a2H
1;a
0
.�;C/nf0g be an eigenfunction of problem (Ea) associated to the eigenvalue �a,

i.e., solving �
.ir CAa/

2'a D �a'a in �;
'a D 0 on @�;

(1-14)

such that the following normalization conditions hold:Z
�

j'a.x/j
2 dx D 1 and

Z
�

ei˛.�a
0
��a/.x/'a.x/'0.x/ dx is a positive real number: (1-15)

Using (1-5), (1-7), (1-14), (1-15), and standard elliptic estimates, see, e.g., [Gilbarg and Trudinger 1983,
Theorem 8.10], it is easy to prove that

'a! '0 in H 1.�;C/ and in C 2
loc.� n f0g;C/; (1-16)
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and
.ir CAa/'a! .ir CA0/'0 in L2.�;C/: (1-17)

To give a precise description of the behavior of the eigenfunction 'a for a close to 0, we consider a
homogeneous scaling of order jajj˛�kj of 'a along a fixed direction p 2 S1. Theorem 1.2 below gives
the convergence of scaled eigenfunctions to a nontrivial limit profile ‰p 2H

1;p
loc .R

2;C/, which can be
characterized as the unique solution to the problem

.ir CAp/
2‰p D 0 in R2 in a weak H 1;p-sense; (1-18)

satisfying Z
R2nD1

j.ir CAp/.‰p � ei˛.�p��
p

0
/ k/j

2 dx <C1; (1-19)

where  k W R
2! C is defined as

 k.r.cos t; sin t//D r j˛�kj eikt

p
2�
: (1-20)

The existence and uniqueness of a limit profile satisfying (1-18) and (1-19) will be proved in Lemma 5.3.
We notice that the function  k in (1-20) is the unique (up to a multiplicative constant) H

1;0
loc .R

2;C/-
solution to .ir CA0/

2 k D 0 in R2 which is homogeneous of degree j˛� kj.

Theorem 1.2. Under the same assumptions as in Theorem 1.1, for p 2 S1 and a D jajp 2 �, let
'a 2 H

1;a
0
.�;C/ be an eigenfunction of problem (Ea) associated to the eigenvalue �a and satisfying

(1-15). Let moreover,

O'a.x/D
'a.jajx/

jajj˛�kj
:

Then
O'a! ˇ‰p as jaj ! 0

in H 1;p.DR;C/ for every R > 1, almost everywhere in R2 and in C 2
loc.R

2 n fpg;C/, with ˇ ¤ 0 and
k 2 Z being as in (1-9) and ‰p being as in (1-18)–(1-19).

Finally, we describe the sharp rate of convergence (1-17), which also turns out to depend strongly on
the order of vanishing of '0 at 0, as stated in the following theorem.

Theorem 1.3. Under the same assumptions as in Theorems 1.1 and 1.2, for every p 2 S1 there exists
Lp > 0 such that

jaj�2j˛�kj


.ir CAa/'a� ei˛.�a��

a
0
/.ir CA0/'0



2

L2.�;C/
! jˇj2 Lp as aD jajp! 0:

We observe that Theorem 1.3 extends to the case of non-half-integer circulation an analogous result
obtained in [Abatangelo and Felli 2017] for half-integer circulation.

The main tools in the proof of the above-described results are energy estimates on eigenfunctions
obtained by an Almgren-type monotonicity argument and blow-up analysis for scaled eigenfunctions;
such a strategy was first developed in [Abatangelo and Felli 2015; Noris et al. 2015] in the half-integer
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case and is essentially based on the description of the behavior of limit eigenfunctions at the pole through
the limit of the Almgren quotient, which is possible in both the cases of half-integer and non-half-integer
circulation. On the other hand, in the implementation of this procedure for the non-half-integer case,
two main points present deep differences from that of the half-integer case. First of all a reduction to
the Laplacian on the twofold covering manifold is no longer available and hence a new strategy has to
be developed to prove monotonicity-type formulas: this is the main goal of Section 2, where we derive
precise estimates for eigenfunctions on small circles which are needed to prove Lemma 3.1 (whose
analogue in the half-integer case can be directly proved using the reduction to the Laplacian on the
twofold covering manifold). The second crucial difference arises in the blow-up analysis, more precisely
in the construction of the limit profile, which cannot be as explicit as in the half-integer case. This exploits
vanishing on the special directions of nodal lines of limit eigenfunctions. In the non-half-integer case, a
nontrivial limit profile still exists (see Lemma 5.3) but its description is quite implicit: this is also the
reason why the estimate we obtain here in the non-half-integer case is less precise than the estimates of
[Abatangelo and Felli 2015; 2016] for half-integer ˛.

The paper is organized as follows. In Section 2 we perform a detailed description of the behavior of the
eigenfunction 'a near the pole a, which is crucial in Section 3 to prove an Almgren-type monotonicity
formula and to derive local energy estimates for eigenfunctions uniformly with respect to the moving
pole. In Section 4 we obtain some upper and lower bounds for the difference �0��a by exploiting the
Courant–Fischer minimax characterization of eigenvalues and testing the Rayleigh quotient with suitable
competitor functions. Section 5 contains a blow-up analysis for scaled eigenfunctions, which allows us to
prove Theorems 1.1 and 1.2. Finally, in Section 6 we prove Theorem 1.3.

Notation. We list below some notation used throughout the paper:

� For all r > 0 and a 2 R2, we denote by Dr .a/ D fx 2 R2 W jx � aj < rg the disk of center a and
radius r .

� For all r > 0, we let Dr DDr .0/ and S1 D @D1.

� ds denotes the arc length on @Dr .a/.

� For every complex number z 2 C, we denote by Nz its complex conjugate.

� For z 2 C, we denote its real part by Re z and its imaginary part by Im z.

2. Local asymptotics of eigenfunctions

The aim of this section is to describe the local asymptotics of eigenfunctions, showing how the coefficients
of expansions depend on the pole. This goal is achieved by expanding the angular part of eigenfunctions
in Fourier series with respect to the orthonormal basis of L2..0; 2�/;C/ given by feijt=

p
2�gj2Z, see

(2-11), and then by estimating the Fourier coefficients (2-13) by means of Gronwall-type lemmas. These
estimates will be crucial to developing the monotonicity argument of Section 3, in particular to proving
Lemma 3.1 (whose analogue in the half-integer case is obtained in [Noris et al. 2015, Lemma 5.8] with
techniques which are not adaptable to the non-half-integer case).
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We recall from [Felli et al. 2011] the description of the asymptotics at the singularity of solutions
to elliptic equations with Aharonov–Bohm potentials. In the case of Aharonov–Bohm potentials with
circulation ˛ 2 .0; 1/ n f1

2
g, such asymptotics is described in terms of eigenvalues and eigenfunctions of

the following operator H acting on 2�-periodic functions

H D� 00C 2i˛ 0C˛2 :

It is easy to verify that the eigenvalues of H are f.˛ � j /2 W j 2 Zg; each eigenvalue .˛ � j /2 has
multiplicity 1 and the eigenspace associated is generated by the function eijt=

p
2� . Let us enumerate

the eigenvalues .˛� j /2 as f.˛� j /2 W j 2 Zg D f�j W j D 1; 2; : : : g with �1 < �2 < �3 < � � � , so that

�1 Dminf˛2; .1�˛/2g (2-1)

and �2 Dmaxf˛2; .1�˛/2g.

Proposition 2.1 [Felli et al. 2011, Theorem 1.3]. Let �� R2 be a bounded open set containing b, � 2 R,
and u 2H

1;b
0
.�;C/ be a nontrivial weak solution to the problem

.ir CAb/
2uD �u in �I

i.e., Z
�

.ir CAb/u � .ir CAb/v dx D �

Z
�

u Nv dx for all v 2H
1;b
0
.�;C/:

Then there exists j 2 Z such that

lim
r!0C

r
R

Dr .b/

�
j.ir CAb/u.x/j

2��ju.x/j2
�

dxR
@Dr .b/

juj2 ds
D j˛� j j: (2-2)

Furthermore, there exists ˇ.b;u; �/¤ 0 such that

r�j˛�j ju.bC r.cos t; sin t//! ˇ.b;u; �/
eijt

p
2�

in C 1;� .Œ0; 2��;C/ (2-3)

as r ! 0C for any � 2 .0; 1/.

Let us fix n 2N, n� 1. For all a 2�, let 'a
n 2H

1;a
0
.�;C/n f0g be an eigenfunction of problem (Ea)

associated to the eigenvalue �a
n, i.e., solving�

.ir CAa/
2'a

n D �
a
n'

a
n in �;

'a
n D 0 on @�;

(2-4)

such that Z
�

j'a
n.x/j

2 dx D 1: (2-5)

Since a 2 � 7! �a
n admits a continuous extension on � as proved in [Bonnaillie-Noël et al. 2014,

Theorem 1.1], we have
ƒn D sup

a2�

�a
n 2 .0;C1/: (2-6)
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Moreover, from (2-4), (2-5), and (1-3) it follows that

f'a
nga2� is bounded in H 1.�;C/; (2-7)

which, by (2-4) and classical elliptic regularity theory, implies that, for each ! b� n f0g, there exists
�! > 0 such that

f'a
ngjaj��! is bounded in C 2;� .!;C/ for every � 2 .0; 1/: (2-8)

The following lemma provides a detailed description of the behavior of the Fourier coefficients of the
function t 7! 'a

n.aC r.cos t; sin t// as a is close to 0.

Lemma 2.2. For n� 1 fixed and a varying in �, let 'a
n 2H

1;a
0
.�;C/ n f0g satisfy (2-4) and (2-5). For

all j 2 Z and a 2�, let

va
j .r/D

1
p

2�

Z 2�

0

'a
n.aC r.cos t; sin t//e�ijt dt: (2-9)

Then there exists �0 > 0 such that, for all a with jaj � �0, the following properties hold:

(i) For all j 2 Z, we have va
j .r/DO.r j˛�j j/ as r ! 0C. In particular, for all j 2 Z and for all R> 0

such that fx 2 R2 W jx� aj �Rg ��, the value

ˇa
j D

va
j .R/

Rj˛�j j
C

�a
n

2j˛� j j

Z R

0

�
s1�j˛�j j

�
s1Cj˛�j j

R2j˛�j j

�
va
j .s/ ds (2-10)

is well-defined and independent of R.

(ii) For all j 2 Z, we have jˇa
j j � B for some B > 0 independent of j and a.

(iii) For all j 2 Z,

va
j .r/D r j˛�j jˇa

j .1CRj ;a.r// and .va
j /
0.r/D j˛� j jˇa

j r j˛�j j�1.1C zRj ;a.r//;

where jRj ;a.r/jC j zRj ;a.r/j � const r2 for some const> 0 independent of j and a.

(iv) 'a
n can be expanded as

'a
n.aC r.cos t; sin t//D

1
p

2�

X
j2Z

r j˛�j jˇa
j .1CRj ;a.r//e

ijt

with Rj ;a.r/ as in (iii), where the convergence of the above series is uniform on disks DR.a/ for
each R 2 .0; 1/.

(v) If we let �.t/D .cos t; sin t/ and �.t/D .� sin t; cos t/, then .ir CAa/'
a
n can be expanded as

.ir CAa/'
a
n.aC r.cos t; sin t//

D
1
p

2�

X
j2Z

ˇa
j r j˛�j j�1

�
i j˛� j j.1C zRj ;a.r//�.t/C .˛� j /.1CRj ;a.r//�.t/

�
eijt

with Rj ;a.r/; zRj ;a.r/ as in (iii), where the above series converges absolutely in L2.DR.a/;C/ and
pointwise in DR.a/ for each R 2 .0; 1/.
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Proof. The functions feijt=
p

2�gj2Z form an orthonormal basis of L2..0; 2�/;C/. Hence, recalling that
we are assuming D2 ��, if jaj is sufficiently small, 'a

n can be expanded as

'a
n.aC r.cos t; sin t//D

X
j2Z

va
j .r/

eijt

p
2�

in L2..0; 2�/;C/ for all r 2 .0; 1�; (2-11)

where va
j is defined in (2-9). Equation (1-14) implies that, for every j 2 Z,

�.va
j /
00.r/�

1

r
.va

j /
0.r/C

.˛� j /2

r2
va
j .r/D �

a
nv

a
j .r/ for all r 2 .0; 1�; (2-12)

or equivalently

�r j˛�j j�1
�
r1�2j˛�j j.r j˛�j jva

j /
0
�0
D �a

nv
a
j .r/ for all r 2 .0; 1�:

Integrating twice between r and 1, we obtain, for some ca
1;j
; ca

2;j
2 C,

va
j .r/D r j˛�j j

�
ca

1;jC�
a
n

Z 1

r

s�j˛�j jC1

2j˛� j j
va
j .s/ ds

�
Cr�j˛�j j

�
ca

2;j ��
a
n

Z 1

r

sj˛�j jC1

2j˛� j j
va
j .s/ ds

�
(2-13)

for all r 2 .0; 1�.
The convergence (2-3) in Proposition 2.1 implies that, for all a,

j'a
n.aC r.cos t; sin t//j DO.r

p
�1/

as r ! 0C, with �1 as in (2-1) (not necessarily uniformly with respect to a). Hence, for every a in a
sufficiently small neighborhood of 0, there exists a constant C.a/ > 0 such that, for all j 2 Z,

jva
j .r/j � C.a/r

p
�1 for all r 2 Œ0; 1�: (2-14)

We deduce that each function va
j is bounded near 0; hence (2-13) necessarily yields

ca
2;j D �

a
n

Z 1

0

sj˛�j jC1

2j˛� j j
va
j .s/ ds: (2-15)

We can therefore rewrite

va
j .r/D r j˛�j j

�
ca

1;j C
�a

n

2j˛� j j

Z 1

r

s�j˛�j jC1va
j .s/ ds

�
C

�a
n

2j˛� j j
r�j˛�j j

Z r

0

sj˛�j jC1va
j .s/ ds:

(2-16)
If
p
�1C 2 � j˛ � j j, using (2-14) to estimate the right-hand side of (2-16) we obtain the improved

estimate jva
j .r/j � C.j ; a/r j˛�j j. Otherwise, if

p
�1C 2 < j˛� j j, we can use (2-14) to estimate the

right-hand side of (2-16) to obtain the improved estimate jva
j .r/j � C.j ; a/r

p
�1C2 for some constant

C.j ; a/ > 0 depending on a and j . By iterating the process mC 1 times, with m the largest natural
number such that

p
�1 C 2m < j˛ � j j, we obtain jva

j .r/j � C.j ; a/r j˛�j j, possibly for a different
constant C.j ; a/. We deduce that the quantity ˇa

j introduced in (2-10) is well-defined. The fact that ˇa
j is

independent of R is a direct consequence of (2-12) and (2-16). This proves statement (i).
Using the independence of ˇa

j with respect to R, we choose RD 1 in (2-10) and r D 1 in (2-16) and
obtain

ˇa
j D ca

1;j C
�a

n

2j˛� j j

Z 1

0

s�j˛�j jC1va
j .s/ ds; (2-17)
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so that (2-16) can be rewritten as

va
j .r/D r j˛�j j

�̌
a
j ��

a
n

Z r

0

s�j˛�j jC1

2j˛� j j
va
j .s/ ds

�
C�a

nr�j˛�j j

Z r

0

sj˛�j jC1

2j˛� j j
va
j .s/ ds: (2-18)

From (2-18) it follows that, for all r 2 .0; 1�,

r�j˛�j j
jva

j .r/j � jˇ
a
j jC

�a
n

2j˛�j j

Z r

0

s�j˛�j j
jva

j .s/j dsC
�a

n

2j˛�j j
r�2j˛�j j

Z r

0

s2j˛�j js�j˛�j j
jva

j .s/j ds

� jˇa
j jC

�a
n

j˛�j j

Z r

0

s�j˛�j j
jva

j .s/j ds:

Hence the Gronwall lemma applied to the function r 7! r�j˛�j jjva
j .r/j yields that

r�j˛�j j
jva

j .r/j � jˇ
a
j je

�a
nr=j˛�j j

� C jˇa
j j for all r 2 .0; 1� and j 2 Z; (2-19)

where C D eƒn=
p
�1 is independent of j , a, and r , with �1 andƒn defined in (2-1) and (2-6) respectively.

From (2-13), (2-9), and (2-8) it follows that

jca
1;j C ca

2;j j D jv
a
j .1/j D

1
p

2�

ˇ̌̌̌Z 2�

0

'a
n.aC .cos t; sin t//e�ijt dt

ˇ̌̌̌
� const

for some const> 0 independent of j and a; moreover, from (2-15) and (2-5) we deduce that

jca
2;j j �

�a
n

2j˛� j j

Z 1

0

sjva
j .s/j ds �

�a
n

2j˛� j j
p

2�

Z
D1.a/

j'a
n j dx � const

for some const> 0 independent of j and a. Hence

jca
1;j j �

zC (2-20)
for some zC > 0 independent of j and a.

Let K > 0 be such that
ƒnC

2K
<

1

2

with C being as in (2-19) and ƒn being as in (2-6). Hence, from (2-6), (2-17), (2-19) and (2-20) it follows
that, if j˛� j j>K, then

1
2
jˇa

j j �

�
1�

ƒnC

2K

�
jˇa

j j � jc
a
1;j j �

zC : (2-21)

Let us choose R0 2 .0; 1/ such that
ƒnCR2

0

2
p
�1

<
1

2
:

From (2-10) and (2-19) it follows that, if j˛� j j �K,

R�K
0 jva

j .R0/j �R
�j˛�j j
0

jva
j .R0/j D

ˇ̌̌̌
ˇa

j �
�a

n

2j˛� j j

Z R0

0

�
s1�j˛�j j

�
s1Cj˛�j j

R
2j˛�j j
0

�
va
j .s/ ds

ˇ̌̌̌

� jˇa
j j �

ƒnC jˇa
j j

2
p
�1

Z R0

0

2s ds

D jˇa
j j �

ƒnCR2
0

2
p
�1

jˇa
j j �

1
2
jˇa

j j:
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Since, in view of (2-8), va
j .R0/ is bounded uniformly with respect to a and j , we conclude that, for all j

such that j˛� j j �K, jˇa
j j is bounded uniformly with respect to a and j . This, together with (2-21),

yields (ii).
From (2-18) and (2-19) it follows that

va
j .r/D r j˛�j jˇa

j .1CRj ;a.r//; (2-22)

where jRj ;a.r/j � const r2 for some const> 0 independent of j and a, thus proving the first estimate in
(iii). Differentiating (2-18) and using the above estimate (2-22), we easily obtain

.va
j /
0.r/D j˛� j jˇa

j r j˛�j j�1.1C zRj ;a.r//;

where j zRj ;a.r/j � const r2 for some const > 0 independent of j and a. Hence the proof of (iii) is
complete.

From (2-11) and (iii) we have that the series

1
p

2�

X
j2Z

r j˛�j jˇa
j .1CRj ;a.r//e

ijt

converges in L2..0; 2�/;C/ to 'a
n.aC r.cos t; sin t// for all r 2 .0; 1�. In view of the estimates obtained

in (ii)–(iii), the Weierstrass M-test ensures that the series is uniformly convergent in DR.a/ for every
R 2 .0; 1/, thus proving (iv).

Let f a
j .aC r.cos t; sin t//D va

j .r/e
ijt=
p

2� . Since

.ir CAa/f
a

j .aC r.cos t; sin t//D

�
i.va

j /
0.r/�.t/C .˛� j /

va
j .r/

r
�.t/

�
eijt

p
2�
;

the above estimates also imply that, for every R 2 .0; 1/, the series of functions
P

j .ir CAa/f
a

j is
convergent absolutely in L2.DR.a/;C/ and pointwise in DR.a/ to .ir CAa/'

a
n for every R 2 .0; 1/.

Hence (v) follows from (iii). �

Corollary 2.3. Under the same assumptions and with the same notation as in Lemma 2.2, let R 2 .0; 1/.
Then, for all r 2 .0;R/ and t 2 Œ0; 2��,

'a
n.aC r.cos t; sin t//D

1
p

2�
.r˛ˇa

0C r1�˛ˇa
1eit /CRa.r; t/; (2-23)

.irCAa/'
a
n.aC r.cos t; sin t//D

1
p

2�
r˛�1ˇa

0˛.i�.t/C�.t//

C
1
p

2�
r�˛ˇa

1.1�˛/.i�.t/��.t//e
it
C zRa.r; t/; (2-24)

where jRa.r; t/j � const r1C
p
�1 and j zRa.r; t/j � const r

p
�1 for some const> 0 independent of a; r; t .

Proof. From part (iv) of Lemma 2.2 we have

'a
n.aC r.cos t; sin t//D

1
p

2�
.ˇa

0r˛Cˇa
1r1�˛eit /CRa.r; t/; r 2 .0; 1/; t 2 Œ0; 2��;
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where

Ra.r; t/D
1
p

2�

�
ˇa

0r˛R0;a.r/Cˇ
a
1r1�˛R1;a.r/e

it
�
C

1
p

2�

X
j2Z
j˛�j j>1

ˇa
j r j˛�j j.1CRj ;a.r//e

ijt :

Let us fix R 2 .0; 1/. Estimates (ii)–(iii) of Lemma 2.2 imply that, for some const > 0 independent of
a; r; t (possibly varying from line to line),

jRa.r; t/j � const
�

r˛C2
C r3�˛

C

X
j2Z

j˛�j j�1C
p
�1

r j˛�j j

�
� const r1C

p
�1

for all r 2 .0;R/, thus proving (2-23).
From part (v) of Lemma 2.2 we have

.irCAa/'
a
n.aCr.cos t; sin t//D

˛
p

2�
ˇa

0r˛�1.i�.t/C�.t//C
1�˛
p

2�
ˇa

1r�˛.i�.t/��.t//eit
CzRa.r; t/;

where

zRa.r; t/D
˛
p

2�
ˇa

0r˛�1
�
i zR0;a.r/�.t/CR0;a.r/�.t/

�
C

1�˛
p

2�
ˇa

1r�˛
�
i zR1;a.r/�.t/�R1;a.r/�.t/

�
eit

C
1
p

2�

X
j2Z
j˛�j j>1

ˇa
j r j˛�j j�1

�
i j˛� j j.1C zRj ;a.r//�.t/C .˛� j /.1CRj ;a.r//�.t/

�
eijt :

From Lemma 2.2(ii)–(iii) we have that, for all r 2 .0;R/,

j zRa.r; t/j � const
�

r˛C1
C r2�˛

C

X
j2Z

j˛�j j�1C
p
�1

j˛� j jr j˛�j j�1

�
� const r

p
�1

for some const> 0 independent of a; r; t (possibly varying from line to line), thus proving (2-24). �
We now describe some consequences of Lemma 2.2 and Corollary 2.3, which will be needed in

Section 3 to prove a monotonicity-type formula.

Lemma 2.4. Under the same assumptions and with the same notation as in Lemma 2.2, we have

lim
"!0C

�ˇ̌̌̌
1

2

Z
@D".a/

j.ir CAa/'
a
n j

2x � � ds

ˇ̌̌̌
C

ˇ̌̌̌Z
@D".a/

.ir CAa/'
a
n � � .ir CAa/'a

n �x ds

ˇ̌̌̌�
� 2˛.1�˛/jajjˇa

0 jjˇ
a
1 j:

Proof. Let R 2 .0; 1/ be fixed. From (2-24) we have that, for all r 2 .0;R/,ˇ̌
.ir CAa/'

a
n.aC r.cos t; r sin t//

ˇ̌2
D r2.˛�1/

jˇa
0 j

2˛
2

�
C r�2˛

jˇa
1 j

2 .1�˛/
2

�
C yRa.r; t/;

where j yRa.r; t/j � const r2
p
�1�1 for some const> 0 independent of a; r; t . It follows that

lim
"!0C

Z
@D".a/

j.ir CAa/'
a
n j

2x � � ds D 0:
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Moreover, from (2-24) we have

.ir CAa/'
a
n.aC ".cos t; sin t// � �.t/.ir CAa/'a

n.aC ".cos t; sin t// � .aC "�.t//

D "2.˛�1/
jˇa

0 j
2 ˛

2

2�
.�.t/C i�.t// � aC "�2˛

jˇa
1 j

2 .1�˛/
2

2�
.�.t/� i�.t// � a

C 2"�1Re

�̌
a
0
Ňa
1e�it ˛.1�˛/

2�
.�.t/� i�.t// � a

�
CO."2

p
�1�1/

as "! 0C, and hence, taking into account that
R 2�

0 a � �.t/ dt D
R 2�

0 a ��.t/ dt D 0, we obtain

lim
"!0C

Z
@D".a/

.ir CAa/'a � �.ir CAa/'a �x ds D 2˛.1�˛/Re.ˇa
0
Ňa
1.a1� ia2//;

from which the conclusion follows. �

Lemma 2.5. For n� 1 fixed and a varying in �, let 'a
n 2H

1;a
0
.�;C/ n f0g satisfy (2-4) and (2-5). Let

us assume that 'a
n ! '0

n in L2.�;C/ as a! 0 (or respectively along a sequence a`! 0). Let k 2 Z be
such that j˛� kj is the order of vanishing of '0

n at 0. For all j 2 Z and a 2�, let va
j be as in (2-9) and

ˇa
j be as in (2-10). Then there exists �0 > 0 such that, for all a with jaj � �0 (respectively for aD a`

with ` sufficiently large), the following properties hold:

(i) For all j 2 Z, we have ˇa
j ! ˇ0

j as a! 0 (respectively along the sequence a`! 0).

(ii) It holds thatZ 2�

0

j'a
n.aCr.cos t; sin t//j2 dt D

� X
j2Z

j˛�j j<j˛�kj

r2j˛�j j
jˇa

j j
2
j1CRj ;a.r/j

2

�
Cr2j˛�kj

jˇa
k j

2.1C yRa.r//;

where j yRa.r/j � h.r/ for some function h.r/ independent of a such that h.r/! 0 as r ! 0C, and

'a
n.aCr.cos t; sin t//D

1
p

2�

� X
j2Z

j˛�j j<j˛�kj

r j˛�j jˇa
j .1CRj ;a.r//e

ijt

�
C

1
p

2�
r j˛�kjˇa

k.e
ikt
CRa.r; t//;

where jRj ;a.r/j � const r2 for some const > 0 independent of j and a, and jRa.r; t/j � f .r/ for
some function f .r/ independent of a and t such that f .r/! 0 as r ! 0C.

(iii) Let �.t/D .cos t; sin t/ and �.t/D .� sin t; cos t/. It holds thatZ 2�

0

ˇ̌
.ir CAa/'

a
n.aC r.cos t; sin t//

ˇ̌2
dt

D

� X
j2Z

j˛�j j<j˛�kj

r2j˛�j j�2
jˇa

j j
2
j˛� j j2

�
j1CRj ;a.r/j

2
Cj1C zRj ;a.r/j

2
��

C r2j˛�kj�2
jˇa

k j
2
j˛� kj2.1C zRa.r//;
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where j zRa.r/j � p.r/ for some function p.r/ independent of a such that p.r/! 0 as r ! 0C, and

.irCAa/'
a
n.aCr.cos t; sin t//D

1
p

2�

X
j2Z

j˛�j j<j˛�kj

r j˛�j j�1ˇa
j

�
i j˛�j j�.t/C.˛�j /�.t/CRj ;a.r/

�
eijt

C
1
p

2�
r j˛�kj�1ˇa

k

��
i j˛� kj�.t/C .˛� k/�.t/

�
eikt
C zRa.r; t/

�
;

where jRj ;a.r; t/j � const r2 for some positive constant const > 0 independent of j and a and
j zRa.r; t/j � g.r/ for some function g.r/ independent of a and t such that g.r/! 0 as r ! 0C.

Proof. In order to prove statement (i), we notice that (2-10) evaluated at RD 1 provides

ˇa
j D v

a
j .1/C

�a
n

2j˛� j j

Z 1

0

.s1�j˛�j j
� s1Cj˛�j j/va

j .s/ ds: (2-25)

From Lemma 2.2(ii)–(iii) it follows that, for jaj � �0 with �0 > 0 sufficiently small,

jva
j .r/j � C 0r j˛�j j for all r 2 .0; 1� and j 2 Z (2-26)

for some constant C 0 > 0 independent of j , a, and r . Moreover, (2-4), (2-5), the convergence 'a
n! '0

n in
L2.�;C/, and standard elliptic estimates, see, e.g., [Gilbarg and Trudinger 1983, Theorem 8.10], imply

'a
n ! '0

n in H 1.�;C/ and C 2
loc.� n f0g;C/ as a! 0 (or along the sequence a`! 0): (2-27)

From (2-25)–(2-27), and the dominated convergence theorem we obtain that, for all j 2 Z,

lim
a!0

ˇa
j D v

0
j .1/C

�0
n

2j˛� j j

Z 1

0

.s1�j˛�j j
� s1Cj˛�j j/v0

j .s/ ds D ˇ0
j ;

thus proving (i).
If k 2 Z is such that j˛� kj is the order of vanishing of '0

n at 0, from Lemma 2.2(iii) it follows that
ˇ0

k
¤ 0 and ˇ0

j D 0 for all j 2 Z such that j˛ � j j < j˛ � kj; in particular, in view of (i), we have
lima!0 ˇ

a
k
¤ 0 and hence infjaj��0

jˇa
k
j> 0 for �0 sufficiently small. Then, from Lemma 2.2(iv) and the

Parseval identity we deduce thatZ 2�

0

j'a
n.aCr.cos t; sin t//j2 dt D

X
j2Z

r2j˛�j j
jˇa

j j
2
j1CRj ;a.r/j

2

D

� X
j2Z

j˛�j j<j˛�kj

r2j˛�j j
jˇa

j j
2
j1CRj ;a.r/j

2

�
Cr2j˛�kj

jˇa
k j

2.1C yRa.r//;

with

yRa.r/D jRk;a.r/j
2
C 2Re.Rk;a.r//C

X
j2Z

j˛�j j>j˛�kj

jˇa
j j

2

jˇa
k
j2

r2j˛�j j�2j˛�kj
j1CRj ;a.r/j

2
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so that the first estimate in (ii) follows from Lemma 2.2(ii)–(iii). From Lemma 2.2(iii) we also deduce
that

1
p

2�

X
j2Z

j˛�j j�j˛�kj

r j˛�j jˇa
j .1CRj ;a.r//e

ijt
D

1
p

2�
r j˛�kjˇa

k.e
ikt
CRa.r; t//;

where jRa.r; t/j � f .r/ for some function f .r/ independent of a and t such that f .r/! 0 as r ! 0.
Then the second estimate in (ii) follows from Lemma 2.2(iv).

From Lemma 2.2 (v) and the Parseval identity we deduce thatZ 2�

0

ˇ̌
.irCAa/'

a
n.aCr.cos t; sin t//

ˇ̌2
dtD

X
j2Z

r2j˛�j j�2
jˇa

j j
2
j˛�j j2

�
j1CRj ;a.r/j

2
Cj1C zRj ;a.r/j

2
�

so that the first estimate in (iii) follows from Lemma 2.2(ii)–(iii) arguing as above. In a similar way, the
second estimate in (iii) follows from statements (iii) and (v) of Lemma 2.2. �

Remark 2.6. In the particular case nD n0 with n0 such that (1-5) holds, the above lemma applies to the
family of eigenfunctions 'a D '

a
n0

satisfying (1-14) and (1-15). Indeed, in this case (1-16) holds; i.e., the
eigenfunctions 'a converge as a! 0C so that the assumptions of Lemma 2.5 are fulfilled. In particular
we deduce that, if '0 satisfies (1-7)–(1-9) and if 'a is as in (1-14)–(1-15), then, for a sufficiently close
to 0, the vanishing order of 'a is less than or equal to the vanishing order of '0.

Lemma 2.7. For n� 1 fixed and a varying in � n f0g, let 'a
n 2H

1;a
0
.�;C/ n f0g satisfy (2-4) and (2-5).

Then there exist � > 0 and C > 0 such that, for all R> 1 and a 2� such that 0< jaj< �=R,

1

jaj

Z
D.RC1/jaj.a/nDRjaj.a/

j'a
n j

2 dx � C

Z
@DRjaj.a/

j'a
n j

2 ds;Z
D.RC1/jaj.a/nDRjaj.a/

j.ir CAa/'
a
n j

2 dx �
C

R2jaj

Z
@DRjaj.a/

j'a
n j

2 ds:

Proof. Let us prove the first estimate arguing by contradiction: assume that there exist sequences R` > 1

and a` 2� such that R`ja`j< 1=` and

1

ja`j

Z
D.R`C1/ja` j

.a`/nDR` ja` j
.a`/

j'a`
n j

2 dx > `

Z
@DR` ja` j

.a`/

j'a`
n j

2 ds: (2-28)

It is easy to verify that, up to extracting a subsequence, 'a`
n ! '0

n in L2.�;C/ as `!1 for some
'0

n 2H
1;0
0
.�;C/ n f0g satisfying 8̂<̂

:
.ir CA0/

2'0
n D �

0
n'

0
n in �;

'0
n D 0 on @�;R
� j'

0
n.x/j

2 dx D 1:

(2-29)
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Let k 2 Z be such that j˛� kj is the order of vanishing of '0
n at 0. Then, from Lemma 2.5 (first estimate

in (ii)) it follows that, for ` sufficiently large,

1

ja`j

Z
D.R`C1/ja` j

.a`/nDR` ja` j
.a`/

j'a`
n j

2 dx D
1

ja`j

Z .R`C1/ja`j

R`ja`j

r

�Z 2�

0

j'a`
n .a`Cr.cos t;sin t//j2 dt

�
dr

�
2

ja`j

Z .R`C1/ja`j

R`ja`j

r

� X
j2Z

j˛�j j�j˛�kj

r2j˛�j j
jˇ

a`
j j

2

�
dr

� const
X
j2Z

j˛�j j�j˛�kj

.R`ja`j/
1C2j˛�j j

jˇ
a`
j j

2

for some positive constant const> 0 independent of `, whileZ
@DR` ja` j

.a`/

j'a`
n j

2 ds DR`ja`j

Z 2�

0

ˇ̌
'a`

n .a`CR`ja`j.cos t; sin t//
ˇ̌2

dt

�
R`ja`j

2

X
j2Z

j˛�j j�j˛�kj

.R`ja`j/
2j˛�j j

jˇ
a`
j j

2; (2-30)

thus contradicting (2-28) as `!1.
To prove the second estimate, let us assume by contradiction that there exist sequences R` > 1 and

a` 2� such that R`ja`j< 1=` andZ
D.R`C1/ja` j

.a`/nDR` ja` j
.a`/

j.ir CAa`/'
a`
n j

2 dx >
`

R2
`
ja`j

Z
@DR` ja` j

.a`/

j'a`
n j

2 ds: (2-31)

As above we have that, up to extracting a subsequence, 'a`
n ! '0

n in L2.�;C/ as `!1 for some
'0

n 2H
1;0
0
.�;C/n f0g satisfying (2-29). Then, from Lemma 2.5 (first estimate in (iii)) it follows that, for

` sufficiently large and for some positive constant const> 0 independent of `,Z
D.R`C1/ja` j

.a`/nDR` ja` j
.a`/

j.ir CAa`/'
a`
n j

2 dx

D

Z .R`C1/ja`j

R`ja`j

r

�Z 2�

0

j.ir CAa`/'
a`
n .a`C r.cos t; sin t//j2 dt

�
dr

D

Z .R`C1/ja`j

R`ja`j

r

� X
j2Z

j˛�j j�j˛�kj

r2j˛�j j�2
jˇ

a`
j j

2
j˛� j j2.2C o.1//

�
dr

� 3j˛� kj2
Z .R`C1/ja`j

R`ja`j

r

� X
j2Z

j˛�j j�j˛�kj

r2j˛�j j�2
jˇ

a`
j j

2

�
dr �

const
R`

X
j2Z

j˛�j j�j˛�kj

.R`ja`j/
2j˛�j j

jˇ
a`
j j

2;

which, in view of (2-30), contradicts (2-31) as `!1. �
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Remark 2.8. Arguing as in Lemma 2.7, we can also prove the following similar estimate (possibly taking
a smaller � and a larger C if necessary): for all R> 1 and a 2� such that 0< jaj< �=R

1

jaj

Z
D.RC1/jaj.a/nDRjaj.a/

j'a
n j

2 dx � C

Z
@D.RC1/jaj.a/

j'a
n j

2 ds;Z
D.RC1/jaj.a/nDRjaj.a/

j.ir CAa/'
a
n j

2 dx �
C

R2jaj

Z
@D.RC1/jaj.a/

j'a
n j

2 ds:

Lemma 2.9. For n� 1 fixed, let 'a
n be a solution to (2-4)–(2-5). Let � > 0 and C > 0 be as in Lemma 2.7

and Remark 2.8. Then, for all R> 2 and a 2� such that 0< jaj< �=R,ˇ̌̌̌Z
@DRjaj.0/

j'a
n j

2 ds�

Z
@DRjaj.a/

j'a
n j

2 ds

ˇ̌̌̌
�

1C 6C

R� 2

Z
@DRjaj.a/

j'a
n j

2 ds:

Proof. We note thatZ
@DRjaj.0/

j'a
n j

2 ds�

Z
@DRjaj.a/

j'a
n j

2 ds D

Z
@La

1;R

j'a
n j

2
Q� � O� ds�

Z
@La

2;R

j'a
n j

2
Q� � .�O�/ ds; (2-32)

where

La
1;R DDRjaj.0/ nDRjaj.a/; La

2;R DDRjaj.a/ nDRjaj.0/;

and

O�.x/D

�
x=jxj on @DRjaj.0/;

�.x� a/=jx� aj on @DRjaj.a/;
Q�.x/D

�
x=jxj on @DRjaj.0/;

.x� a/=jx� aj on @DRjaj.a/:

We note that O� is the outer unit normal vector on @La
1;R

and �O� is the outer unit normal vector on @La
2;R

.
By setting �1.x/D x=jxj, we can rewrite the right-hand side of (2-32) asZ
@La

1;R

j'a
n j

2. Q���1/ � O� dsC

Z
@La

1;R

j'a
n j

2�1 � O� dsC

Z
@La

2;R

j'a
n j

2. Q���1/ � O� ds�

Z
@La

2;R

j'a
n j

2�1 �.�O�/ ds

D

Z
@La

1;R

j'a
n j

2�1 � O� ds�

Z
@La

2;R

j'a
n j

2�1 � .�O�/ ds

C

Z
@DRjaj.0/

j'a
n j

2. Q� � �1/ � O� dsC

Z
@DRjaj.a/

j'a
n j

2. Q� � �1/ � O� ds: (2-33)

We observe that

. Q�.x/� �1.x// � O�.x/D

�
0 on @DRjaj.0/;

�1Cx � .x� a/=.jxjjx� aj/ on @DRjaj.a/:

Moreover, since �1 is smooth in La
1;R
[La

2;R
, we can apply the divergence theorem to the first two terms

in the right-hand side of (2-33), thus rewriting the right-hand side of (2-32) as

�

Z
@DRjaj.a/

j'a
n j

2

�
1�

x � .x� a/

jxjjx� aj

�
dsC

Z
La

1;R

div.j'a
n j

2�1/ dx�

Z
La

2;R

div.j'a
n j

2�1/ dx: (2-34)



ESTIMATES FOR EIGENVALUES OF AHARONOV–BOHM OPERATORS WITH VARYING POLES 1759

Estimate of the first term in (2-34). Parametrizing @DRjaj.a/ as x D aCRjaj.cos t; sin t/ and writing
aD jaj.cos �a; sin �a/ for some angle �a 2 Œ0; 2�/, we getˇ̌̌̌

1�
x � .x� a/

jxjjx� aj

ˇ̌̌̌
D

ˇ̌̌̌
1�

RC cos.t � �a/

.R2C 2R cos.t � �a/C 1/1=2

ˇ̌̌̌
�

1

R� 1

on @DRjaj.a/. Therefore,ˇ̌̌̌
�

Z
@DRjaj.a/

j'a
n j

2

�
1�

x � .x� a/

jxjjx� aj

�
ds

ˇ̌̌̌
�

1

R� 1

Z
@DRjaj.a/

j'a
n j

2 ds: (2-35)

Estimate of the second term in (2-34). The second term in (2-34) splits into two parts:Z
La

1;R

div.j'a
n j

2�1/ dx D

Z
La

1;R

j'a
n j

2

jxj
dxC

Z
La

1;R

2Re.i'a
n.ir CAa/'a

n � �1/ dx:

Since DRjaj.0/ �D.RC1/jaj.a/, we have La
1;R
�D.RC1/jaj.a/ nDRjaj.a/. Let � > 0 and C > 0 be as

in Lemma 2.7 and Remark 2.8. Hence by Lemma 2.7 we have that, for all R> 1 and a 2� such that
0< jaj< �=R,ˇ̌̌̌Z

La
1;R

j'a
n j

2

jxj
dx

ˇ̌̌̌
�

Z
D.RC1/jaj.a/nDRjaj.a/

j'a
n j

2

jxj
dx

�
1

.R� 1/jaj

Z
D.RC1/jaj.a/nDRjaj.a/

j'a
n j

2 dx �
C

R� 1

Z
@DRjaj.a/

j'a
n j

2 ds

andˇ̌̌̌Z
La

1;R

2Re.i'a
n.ir CAa/'a

n � �1/ dx

ˇ̌̌̌

� 2

�Z
D.RC1/jaj.a/nDRjaj.a/

j'a
n j

2 dx

�1=2�Z
D.RC1/jaj.a/nDRjaj.a/

j.ir CAa/'
a
n j

2 dx

�1=2

�
2C

R

Z
@DRjaj.a/

j'a
n j

2 ds:

Therefore, ˇ̌̌̌Z
La

1;R

div.j'a
n j

2�1/ dx

ˇ̌̌̌
�

3C

R� 1

Z
@DRjaj.a/

j'a
n j

2 ds (2-36)

for all R> 1 and a 2� such that 0< jaj< �=R.

Estimate of the third term in (2-34). The estimate of the third term can be derived in a similar way,
observing that, since DRjaj.0/ � D.R�1/jaj.a/, we have La

2;R
� DRjaj.a/ nD.R�1/jaj.a/, and using

Remark 2.8 to obtain ˇ̌̌̌Z
La

2;R

div.j'a
n j

2�1/ dx

ˇ̌̌̌
�

3C

R� 2

Z
@DRjaj.a/

j'a
n j

2 ds (2-37)

for all R> 2 and a 2� such that 0< jaj< �=R (by possibly changing C and � ).
Therefore combining (2-35)–(2-37) we complete the proof. �
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3. Monotonicity formula

The aim of this section is to introduce an Almgren-type frequency function and to use it to obtain local
estimates of the eigenfunctions in a neighborhood of order jaj of the singularity. In particular, we shall
prove that a suitable family of blow-up of the eigenfunctions 'a is bounded in the magnetic Sobolev
space (see Remark 3.8 ahead).

3A. Almgren-type frequency function. Arguing as in [Abatangelo and Felli 2015, Lemma 3.1], one can
easily prove the Poincaré-type inequality

1

r2

Z
Dr

juj2 dx �
1

r

Z
@Dr

juj2 dsC

Z
Dr

j.ir CAa/uj
2 dx; (3-1)

which holds for every r > 0, a 2Dr , and u 2H 1;a.Dr ;C/. Furthermore, defining, for every b 2D1,

mb WD inf
v2H 1;b.D1;C/

v 6�0

R
D1
j.ir CAb/vj

2 dxR
@D1
jvj2 ds

;

we have that the infimum mb is attained and mb > 0. Arguing as in [Abatangelo and Felli 2015], we can
prove that b 7!mb is continuous in D1 and that m0 D

p
�1, with �1 as in (2-1). Therefore a standard

dilation argument yields that, for any ı 2 .0;
p
�1 /, there exists some sufficiently large ‡ı > 1 such that,

for every r > 0 and a 2Dr such that jaj=r < 1=‡ı,
p
�1� ı

r

Z
@Dr

juj2 ds �

Z
Dr

j.ir CAa/uj
2 dx for all u 2H 1;a.Dr ;C/: (3-2)

For � 2 R, b 2 R2, u 2H 1;b.Dr ;C/ and r > jbj, we define the Almgren-type frequency function as

N .u; r; �;Ab/D
E.u; r; �;Ab/

H.u; r/
;

where

E.u; r; �;Ab/D

Z
Dr

�
j.ir CAb/uj

2
��juj2

�
dx and H.u; r/D

1

r

Z
@Dr

juj2 ds:

For all 1� n� n0 and a 2�, let 'a
n 2H

1;a
0
.�;C/ n f0g be an eigenfunction of problem (Ea) associated

to the eigenvalue �a
n, i.e., solving (2-4), such thatZ
�

j'a
n.x/j

2 dx D 1 and
Z
�

'a
n.x/'

a
`
.x/ dx D 0 if n¤ `: (3-3)

For nD n0, we choose
'a

n0
D 'a;

with 'a as in (1-14)–(1-15). Let
ƒD sup

a2�
1�n�n0

�a
n 2 .0;C1/:

We recall that ƒ is finite in view of the continuity result of the eigenvalue function a 7! �a
n in � proved

in [Bonnaillie-Noël et al. 2014, Theorem 1.1].
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Arguing as in [Abatangelo and Felli 2015, Lemma 5.2], we can prove that there exists

0<R0 < .ƒ.1C 2=
p
�1 //

�1=2

such that DR0
�� and, if jaj<R0,

H.'a
n ; r/ > 0 for all r 2 .jaj;R0/ and 1� n� n0: (3-4)

Furthermore, for every r 2 .0;R0� there exist Cr > 0 and ˛r 2 .0; r/ such that

H.'a
n ; r/� Cr for all a with jaj< ˛r and 1� n� n0: (3-5)

Thanks to (3-4), the function r 7!N.'a
n ; r; �

a
n;Aa/ is well-defined in .jaj;R0/. By direct calculations,

see [Noris et al. 2015] for details, we can prove that

d

dr
H.'a

n ; r/D
2

r
E.'a

n ; r; �
a
n;Aa/; (3-6)

d

dr
E.'a

n ; r; �
a
n;Aa/D 2

Z
@Dr

j.ir CAa/'
a
n � �j

2 ds�
2

r

�
M a

n C�
a
n

Z
Dr

j'a
n j

2 dx

�
(3-7)

where

M a
n D lim

"!0C

Z
@D".a/

�
Re
�
.ir CAa/'

a
n � �.ir CAa/'a

n �x
�
�

1
2
j.ir CAa/'

a
n j

2x � �
�

ds: (3-8)

Lemma 2.9, together with Lemmas 2.2 and 2.4, allow us to give an estimate of the quantity M a
n defined

in (3-8). We notice that the techniques used in [Abatangelo and Felli 2015; Noris et al. 2015] to estimate
the term M a

n for ˛ D 1
2

were based on the possibility of rewriting the problem as a Laplace equation on
the twofold covering; hence it is not possible here to extend such proofs to the case ˛ 62 Z=2 and a new
strategy of proof is needed.

Lemma 3.1. For n 2 f1; : : : ; n0g and a 2 �, let 'a
n be a solution of (2-4) satisfying (3-3). There exist

�0 > 0 and c0 > 2 such that, for every 1 � n � n0, R > c0 and a 2 � such that jaj < �0=R, the
quantity M a

n defined in (3-8) satisfies

jM a
n j

H.'a
n ;Rjaj/

�
2˛.1�˛/

R� c0

:

Proof. Let us fix n 2 f1; 2; : : : ; n0g and define, for jaj small and r 2 .0; 1�,

zH .'a
n ; r/D

1

r

Z
@Dr .a/

j'a
n j

2 ds:

From the Parseval identity and Lemma 2.2(iv) it follows that there exists �n > 0 such that, for every
R> 2 and a 2� such that jaj< �n=R,

zH .'a
n ;Rjaj/D

Z 2�

0

ˇ̌
'a

n.aCRjaj.cos t; sin t//
ˇ̌2

dt D
X
j2Z

.Rjaj/2j˛�j j
jˇa

j j
2
ˇ̌
1CRj ;a.Rjaj/

ˇ̌2
� .Rjaj/2˛jˇa

0 j
2
ˇ̌
1CR0;a.Rjaj/

ˇ̌2
C .Rjaj/2.1�˛/jˇa

1 j
2
ˇ̌
1CR1;a.Rjaj/

ˇ̌2
�

1
2

�
jˇa

0 j
2.Rjaj/2˛Cjˇa

1 j
2.Rjaj/2.1�˛/

�
; (3-9)
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where the ˇa
j ’s are the coefficients defined in (2-10) for the eigenfunction 'a

n (with n fixed). From the
elementary inequality ab � 1

2
.a2C b2/, it follows that

jˇa
0 jjˇ

a
1 jjaj D

1

R
jˇa

0 j.Rjaj/
˛
jˇa

1 j.Rjaj/
1�˛
�

1

2R

�
jˇa

0 j
2.Rjaj/2˛Cjˇa

1 j
2.Rjaj/2.1�˛/

�
: (3-10)

Combining (3-9) and (3-10) we obtain

jˇa
0
jjˇa

1
jjaj

zH .'a
n ;Rjaj/

�
1

R
: (3-11)

Moreover, Lemma 2.4 implies

jM a
n j � 2˛.1�˛/jˇa

0 jjˇ
a
1 jjaj: (3-12)

Lemma 2.9 provides some constant cn (independent of a and R) such that, for a possibly smaller �n and
for all R> 2 and a 2� such that 0< jaj< �n=R,ˇ̌

H.'a
n ;Rjaj/�

zH .'a
n ;Rjaj/

ˇ̌
�

cn

R� 2
zH .'a

n ;Rjaj/: (3-13)

Therefore, by combining (3-11)–(3-13), we obtain

jM a
n j

H.'a
n ;Rjaj/

�
2˛.1�˛/

R

�
1C

H.'a
n ;Rjaj/�

zH .'a
n ;Rjaj/

zH .'a
n ;Rjaj/

��1

�
2˛.1�˛/

R

1

1� cn

R�2

�
2˛.1�˛/

R� .2C cn/

for all R> cnC 2 and a 2� such that 0< jaj< �n=R.
The conclusion then follows by repeating the argument for all n 2 f1; 2; : : : ; n0g and choosing

�0 Dminf�n W 1� n� n0g and c0 Dmaxf2C cn W 1� n� n0g: �

Lemma 3.2. For ı 2 .0;
p
�1=2/, let ‡ı be such that (3-2) holds. Let R0 be as above, r0 � R0 and

n 2 f1; : : : ; n0g. If ‡ıjaj � r1 < r2 � r0 and 'a
n is a solution to (2-4) satisfying (3-3), then

H.'a
n ; r2/

H.'a
n ; r1/

� e�ƒ.2C
p
�1/r

2
0

�
r2

r1

�2.
p
�1�ı/

:

Proof. Combining (3-1) with (3-2) we obtain that, for every ‡ıjaj< r < r0,

1

r2

Z
Dr

j'a
n j

2 dx �

�
1C

1
p
�1� ı

�Z
Dr

j.ir CAa/'
a
n j

2 dx

�

�
1C

2
p
�1

�Z
Dr

j.ir CAa/'
a
n j

2 dx:

From above, (3-6) and (3-2), we have that, for every ‡ıjaj< r < r0,

d

dr
H.'a

n ; r/�
2

r

�
1�ƒr2

�
1C

2
p
�1

��Z
Dr

j.ir CAa/'
a
n j

2 dx

�
2

r

�
1�ƒr2

�
1C

2
p
�1

��
.
p
�1� ı/H.'

a
n ; r/;
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so that, in view of (3-4),

d

dr
log H.'a

n ; r/�
2

r
.
p
�1� ı/� 2ƒr.2C

p
�1 /:

Integrating between r1 and r2 we obtain the desired inequality. �

Lemma 3.3. For n 2 f1; : : : ; n0g and a 2 �, let 'a
n be a solution of (2-4) satisfying (3-3). Let R0 be

as above, �0 and c0 > 0 be as in Lemma 3.1 and let r0 �minfR0; �0g. For ı 2 .0;
p
�1=2/, let ‡ı > 1

be such that (3-2) holds. Then, there exists cr0;ı > 0 such that for all R > maxf‡ı; c0g, jaj < r0=R,
Rjaj � r < r0 and n 2 f1; : : : ; n0g,

eƒr2=.1�ƒr2
0
/.N .'a

n ; r; �
a
n;Aa/C 1/� eƒr2

0
=.1�ƒr2

0
/.N .'a

n ; r0; �
a
n;Aa/C 1/C

cr0;ı

R� c0

:

Proof. By direct calculations, using the expressions for the derivatives of the functions H.'a
n ; r/ and

E.'a
n ; r; �

a
n;Aa/ written in (3-6) and (3-7) and the Cauchy–Schwarz inequality, we obtain

d

dr
N .'a

n ; r; �
a
n;Aa/� �

2jM a
n j

rH.'a
n ; r/

�
2�a

n

rH.'a
n ; r/

Z
Dr

j'a
n j

2 dx: (3-14)

By Lemmas 3.2 and 3.1 the first term can be estimated as

�
2jM a

n j

rH.'a
n ; r/

D�
2jM a

n j

rH.'a
n ;Rjaj/

H.'a
n ;Rjaj/

H.'a
n ; r/

� �
4˛.1�˛/

R� c0

eƒ.2C
p
�1/r

2
0 .Rjaj/2.

p
�1�ı/r�2.

p
�1�ı/�1 (3-15)

for all R>maxf‡ı; c0g, jaj< r0=R, Rjaj � r < r0 and n 2 f1; : : : ; n0g.
For the second term, the Poincaré inequality (3-1) leads to

1�ƒr2
0

r2

Z
Dr

j'a
n j

2 dx �E.'a
n ; r; �

a
n;Aa/CH.'a

n ; r/

for r < r0, which implies

�
2r�a

n

r2H.'a
n ; r/

Z
Dr

j'a
n j

2 dx � �
2ƒr

1�ƒr2
0

.N .'a
n ; r; �

a
n;Aa/C 1/ (3-16)

for r < r0. Using (3-15) and (3-16) we can estimate the right-hand side of (3-14) thus obtaining

d

dr
.eƒr2=.1�ƒr2

0
/.N .'a

n ; r; �
a
n;Aa/C 1//

� �
4˛.1�˛/

R� c0

eƒr2
0
=.1�ƒr2

0
/eƒ.2C

p
�1/r

2
0 .Rjaj/2.

p
�1�ı/r�2.

p
�1�ı/�1

for all Rjaj � r < r0 with R > maxf‡ı; c0g. Integrating between r and r0 and using the fact that
Rjaj � r < r0, we obtain the statement with

cr0;ı D
2˛.1�˛/
p
�1� ı

eƒ.2C
p
�1/r

2
0
Cƒr2

0
=.1�ƒr2

0
/: �
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Lemma 3.4. Let 'a be a solution of (1-14)–(1-15) and let k be as in (1-8). For every ı 2 .0;
p
�1=2/,

there exist rı 2 .0;R0/ and Kı >‡ı such that if R>Kı, jaj< rı=R and Rjaj � r < rı, then

N .'a; r; �a;Aa/� j˛� kjC ı:

Proof. From (1-16)–(1-17) it follows that, for every r <R0,

lim
a!0

N .'a; r; �a;Aa/DN .'0; r; �0;A0/:

Moreover, from [Felli et al. 2011, Theorem 1.3] we know that, under assumption (1-9),

lim
r!0C

N .'0; r; �0;A0/D j˛� kj:

Then, the proof is a direct consequence of Lemma 3.3; see [Noris et al. 2015, Lemma 7.2; Abatangelo
and Felli 2015, Lemma 5.7; Abatangelo et al. 2017, Lemma 5.7] for details. �

3B. Local energy estimates.

Corollary 3.5. For ı 2 .0;
p
�1=2/ let rı;Kı be as in Lemma 3.4 and ˛rı be as in (3-5). Then there

exists Cı > 0 such that

H.'a;Rjaj/�H.'a;Kıjaj/

�
R

Kı

�2.j˛�kjCı/

for all R>Kı and jaj<
rı

R
; (3-17)

H.'a;Kıjaj/� Cıjaj
2.j˛�kjCı/ for all jaj<min

�
rı

Kı

; ˛rı

�
; (3-18)

H.'a;Kıjaj/DO.jaj2.
p
�1�ı// as a! 0: (3-19)

Proof. From (3-6), the definition of N, and Lemma 3.4 we have

1

H.'a; r/

d

dr
H.'a; r/D

2

r
N .'a; r; �a;Aa/

�
2

r
.j˛� kjC ı/ for all Kıjaj � r < rı with jaj<

rı

Kı

so that estimate (3-17) follows by integration over ŒKıjaj;Rjaj� and estimate (3-18) from integration over
ŒKıjaj; rı � and (3-5). Finally (3-19) is a direct consequence of Lemma 3.2. �

Lemma 3.6. For n 2 f1; : : : ; n0g and a 2�, let 'a
n be a solution to (2-4) satisfying (3-3). Let R0 > 0 be

as in (3-4). For every ı 2 .0;
p
�1=2/, there exist zKı > 1 and zCı > 0 such that, for all R> zKı, a 2�

with Rjaj<R0, and n 2 f1; : : : ; n0g,Z
DRjaj

j.ir CAa/'
a
n j

2 dx � zCı.Rjaj/
2.
p
�1�ı/; (3-20)Z

@DRjaj

j'a
n j

2 ds � zCı.Rjaj/
2.
p
�1�ı/C1; (3-21)Z

DRjaj

j'a
n j

2 dx � zCı.Rjaj/
2.
p
�1�ı/C2: (3-22)
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Proof. By Lemma 3.2 (choosing r1 DRjaj and r2 DR0) and the definition of H it follows thatZ
@DRjaj

j'a
n j

2 ds DRjajH.'a
n ;Rjaj/�RjajH.'a

n ;R0/e
ƒ.2C

p
�1/R

2
0

�
Rjaj

R0

�2.
p
�1�ı/

: (3-23)

Moreover, from (2-7) and continuous trace embeddings we have H.'a
n ;R0/D .1=R0/

R
@DR0

j'a
n j

2 ds is
bounded uniformly with respect to a. Hence estimate (3-23) implies (3-21).

From Lemma 3.3 it follows that the frequency N is bounded in r DRjaj provided R is sufficiently
large; hence E.'a

n ;Rjaj; �
a
n;Aa/ is uniformly estimated by H.'a

n ;Rjaj/, so that (3-21) and (3-1)–(3-2)
yield (3-20). Estimate (3-22) can be proved combining (3-20)–(3-21) with the Poincaré inequality (3-1).
We refer to [Abatangelo and Felli 2015, Lemma 5.8] for more details in a related problem. �

Lemma 3.7. For a2� let 'a2H
1;a
0
.�;C/ be a solution of (1-14)–(1-15). For some fixed ı2.0;

p
�1=2/,

let Kı >‡ı be as in Lemma 3.4. Then, for every R>Kı,Z
DRjaj

j.ir CAa/'aj
2 dx DO.H.'a;Kıjaj// as jaj ! 0C; (3-24)Z

@DRjaj

j'aj
2 ds DO.jajH.'a;Kıjaj// as jaj ! 0C; (3-25)Z

DRjaj

j'aj
2 dx DO.jaj2H.'a;Kıjaj// as jaj ! 0C: (3-26)

Proof. The proof follows from the boundedness of the frequency N .'a;Rjaj; �a;Aa/ established in
Lemma 3.4 and by its scaling properties. For ı2 .0;

p
�1=2/ fixed, let Kı>‡ı and rı be as in Lemma 3.4;

hence

N.'a;Rjaj; �a;Aa/D

R
DRjaj
j.ir CAa/'aj

2 dx��a

R
DRjaj
j'aj

2 dx

H.'a;Rjaj/

� j˛� kjC ı for all R>Kı and jaj<
rı

R
:

Then, by (3-1) and (3-2) it follows that�
1�ƒr2

ı

�
1C

2
p
�1

��Z
DRjaj

j.ir CAa/'aj
2 dx �

Z
DRjaj

j.ir CAa/'aj
2 dx��a

Z
DRjaj

j'aj
2 dx

�H.'a;Rjaj/.j˛� kjC ı/:

Then (3-24) follows from (3-17). Estimates (3-25) and (3-26) follow from (3-24) and the Poincaré-type
inequalities (3-1) and (3-2). �

Remark 3.8. Let us consider the blow-up family

Q'a.x/ WD
'a.jajx/p

H.'a;Kıjaj/
; (3-27)

with Kı >‡ı as in Lemma 3.4 for some fixed ı 2 .0;
p
�1=2/. By Lemma 3.7 it follows that, for every

p 2 S1 fixed, rı > 0 as in Lemma 3.4, and R >Kı, the blow-up family f Q'a W aD jajp; Rjaj < rıg is
bounded in H 1;p.DR;C/.
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4. Estimate on �0 ��a

The aim of this section is to obtain a bound (both from above and from below) of the eigenvalue variation
�a��0. These bounds are obtained by considering suitable competitor functions and by plugging them
into the Courant–Fischer characterization of �a and �0:

�aDmin

(
max

u2Fnf0g

R
� j.irCAa/uj

2 dxR
� juj

2 dx
WF is a linear subspace of H

1;a
0
.�;C/; dimF D n0

)
; (4-1)

�0Dmin

(
max

u2Fnf0g

R
� j.irCA0/uj

2 dxR
� juj

2 dx
WF is a linear subspace of H

1;0
0
.�;C/; dimF D n0

)
: (4-2)

In Section 4A we construct the competitor function for �a. This function is obtained by modifying '0
n

in a small neighborhood of a. Since the asymptotics of '0
n is exactly known, this allows us to obtain,

in Section 4B, a sharp bound from below of �0��a. The competitor function for �0 is constructed in
Section 4C, by modifying locally 'a

n . The energy estimates obtained in Section 3 allow us to obtain a
preliminary estimate from above of �0��a in terms of the quantity H.'a;Kıjaj/.

Before proceeding, we find it useful to recall the following technical result, which is proved in
[Abatangelo and Felli 2015, Lemma 6.1] and concerns the maximum of quadratic forms depending on
the pole a! 0.

Lemma 4.1. For every a 2�, let us consider a quadratic form

Qa W C
n0 ! R; Qa.z1; z2; : : : ; zn0

/D

n0X
j ;nD1

Mj ;n.a/zj Nzn;

with Mj ;n.a/2C such that Mj ;n.a/DMn;j .a/. Let us assume that there exist 
 2 .0;C1/, a 7!�.a/2R

with �.a/� 0 and �.a/DO.jaj2
 / as jaj! 0C, and a 7!�.a/ 2R with �.a/DO.1/ as jaj! 0C, such
that the coefficients Mj ;n.a/ satisfy the following conditions:

(i) Mn0;n0
.a/D �.a/�.a/.

(ii) For all j < n0, we have Mj ;j .a/!Mj as jaj ! 0C for some Mj 2 R, Mj < 0.

(iii) For all j < n0, we have Mj ;n0
.a/DMn0;j .a/DO.jaj


p
�.a// as jaj ! 0C.

(iv) For all j ; n< n0 with j ¤ n, we have Mj ;n.a/DO.jaj2
 / as jaj ! 0C.

(v) There exists M 2 N such that jaj.2CM /
 D o.�.a// as jaj ! 0C.

Then

max
z2Cn0

kzkD1

Qa.z/D �.a/.�.a/C o.1// as jaj ! 0C;

where kzk D k.z1; z2; : : : ; zn0
/k D

�Pn0

jD1
jzj j

2
�1=2.
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4A. Construction of the test functions using '0
n. Recall that '0

n 2 H
1;0
0
.�;C/ n f0g is a solution of

(2-4), also satisfying (2-5), with aD 0. Let R0 be as in (3-4). For every R> 1, a 2� with jaj<R0=R

and 1� n� n0 we define

wn;R;a D

(
wint

n;R;a
in DRjaj;

wext
n;R;a

in � nDRjaj;
(4-3)

where

wext
n;R;a D ei˛.�a��

a
0
/'0

n in � nDRjaj;

and wint
n;R;a

is the unique solution to the minimization problem

min
�Z

DRjaj

j.ir CAa/uj
2 dx W u 2H 1;a.DRjaj;C/; uD ei˛.�a��

a
0
/'0

n on @DRjaj

�
:

We notice that wext
n;R;a

and wint
n;R;a

respectively solve(
.ir CAa/

2wext
n;R;a

D �0
nw

ext
n;R;a

in � nDRjaj;

wext
n;R;a

D ei˛.�a��
a
0
/'0

n on @.� nDRjaj/
and

(
.ir CAa/

2wint
n;R;a

D 0 in DRjaj;

wint
n;R;a

D ei˛.�a��
a
0
/'0

n on @DRjaj:

As a consequence of Proposition 2.1 we have '0
n.x/ D O.jxjj˛�j j/ as x ! 0 for some j 2 Z, which

implies

'0
n.x/DO.jxj

p
�1/ as x! 0; (4-4)

since j˛� j j �
p
�1 for all j 2 Z. Furthermore (2-2) impliesZ

Dr

j.ir CA0/'
0
n j

2 dx D �0

Z
Dr

j'0
n j

2 dxC
j˛� j jC o.1/

r

Z
@Dr

j'0
n j

2 ds

DO.r2
p
�1/ as r ! 0C: (4-5)

From (4-4) and (4-5) we deduce that, for every R> 1, a 2� such that Rjaj<R0, and 1� n� n0,Z
DRjaj

j.ir CA0/'
0
n j

2 dx DO.jaj2
p
�1/;

Z
@DRjaj

j'0
n j

2 ds DO.jaj2
p
�1C1/;

and
Z

DRjaj

j'0
n j

2 dx DO.jaj2
p
�1C2/ as jaj ! 0C:

(4-6)

Using the above estimates (4-6) and the Dirichlet principle (see the proof of [Abatangelo and Felli
2015, Lemma 6.2] for details in the case of half-integer circulation), we obtain that, for every R > 2

and 1� n� n0,Z
DRjaj

j.ir CAa/w
int
n;R;aj

2 dx DO.jaj2
p
�1/;

Z
@DRjaj

jwint
n;R;aj

2 ds DO.jaj2
p
�1C1/;

and
Z

DRjaj

jwint
n;R;aj

2 dx DO.jaj2
p
�1C2/ as jaj ! 0C:

(4-7)
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The above estimates can be made more precise in the case nD n0 in view of (1-9): for every R> 2 and
a 2� with Rjaj<R0,Z

DRjaj

j.ir CA0/'0j
2 dx DO.jaj2j˛�kj/;

Z
@DRjaj

j'0j
2 ds DO.jaj2j˛�kjC1/;

and
Z

DRjaj

j'0j
2 dx DO.jaj2j˛�kjC2/ as jaj ! 0C;

(4-8)

and consequently, in view of the Dirichlet principle,Z
DRjaj

j.ir CAa/w
int
n0;R;a

j
2 dx DO.jaj2j˛�kj/;

Z
@DRjaj

jwint
n0;R;a

j
2 ds DO.jaj2j˛�kjC1/;

and
Z

DRjaj

jwint
n0;R;a

j
2 dx DO.jaj2j˛�kjC2/ as jaj ! 0C;

(4-9)

with k as in (1-8). Furthermore, defining

Wa.x/ WD
'0.jajx/

jajj˛�kj
(4-10)

for all R> 2 and a 2� such that Rjaj<R0, (1-9) implies

Wa! ˇ k in H 1;0.DR;C/; as jaj ! 0; (4-11)

where  k is defined in (1-20).

4B. Estimate of the Rayleigh quotient for �a.

Lemma 4.2. There exists c 2 R such that

�0��a � cjaj2j˛�kj for all a 2�;

where k is as in (1-8).

Proof. The proof follows along the lines of [Abatangelo and Felli 2015, Lemma 6.7; Abatangelo et al.
2017, Lemma 7.2]. Let wn;R;a be defined in (4-3). Let us fix R> 2. By proceeding with a Gram–Schmidt
process we define

Qwn;a D
Own;a

k Own;akL2.�;C/

; 1� n� n0;

where
Own0;a D wn0;R;a;

Own;a D wn;R;a�

n0X
`DnC1

ca
`;n Ow`;a; 1� n� n0� 1;

and

ca
`;n D

R
�wn;R;a

NOw`;a dx

k Ow`;ak
2
L2.�;C/

; 1� n� n0� 1; nC 1� `� n0:
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From (4-6), (4-7) and an induction argument it follows that, for all `; n such that 1 � n � n0 � 1 and
nC 1� `� n0,

k Own;ak
2
L2.�;C/

D 1CO.jaj2
p
�1C2/ and ca

`;n DO.jaj2
p
�1C2/ (4-12)

as jaj ! 0. Moreover, from (4-8) and (4-9) we have

k Own0;ak
2
L2.�;C/

D kwn0;R;ak
2
L2.�;C/

D 1CO.jaj2j˛�kjC2/ as jaj ! 0; (4-13)

and

ca
n0;n
DO.jajj˛�kjC

p
�1C2/ as jaj ! 0; for 1� n� n0� 1: (4-14)

Since dim.spanfw1;R;a; : : : ; wn0;R;ag/D n0, we have that also dim.spanf Qw1;a; : : : ; Qwn0;ag/D n0, and
hence from (4-1) we deduce that

�a � max
.˛1;:::;˛n0

/2Cn0Pn0
nD1
j˛nj

2D1

Z
�

ˇ̌̌̌
.ir CAa/

� n0X
nD1

˛n Qwn;a

�ˇ̌̌̌2
dx;

which leads to

�a��0 � max
.˛1;:::;˛n0

/2Cn0Pn0
nD1
j˛nj

2D1

n0X
n;jD1

˛n N̨j pa
n;j ; (4-15)

where pa
n;j D

R
�.irCAa/ Qwn;a �.ir CAa/ Qwj ;a dx��0ınj , with ınj D 1 if nD j and ınj D 0 otherwise.

Using the estimates above we can now estimate pa
n;j . First, using (4-8), (4-9), and (4-13)

pa
n0;n0

D
�0R

� jwn0;R;aj
2 dx

�
1�

Z
�

jwn0;R;aj
2 dx

�
C

1R
� jwn0;R;aj

2 dx

�Z
DRjaj

j.ir CAa/w
int
n0;R;a

j
2 dx�

Z
DRjaj

j.ir CA0/'0j
2 dx

�
DO.jaj2j˛�kjC2/CO.jaj2j˛�kj/

D jaj2j˛�kjO.1/ as jaj ! 0C:

Next (4-6), (4-7) and (4-12) provide for n< n0

pa
n;n D��0C

1

k Own;ak
2
L2.�;C/

�
�0

nC

Z
DRjaj

j.ir CAa/w
int
n;R;aj

2 dx�

Z
DRjaj

j.ir CA0/'
0
n j

2 dx

�

C
1

k Own;ak
2
L2.�;C/

Z
�

ˇ̌̌̌
.ir CAa/

� n0X
`DnC1

ca
`;n Ow`;a

�ˇ̌̌̌2
dx

�
2

k Own;ak
2
L2.�;C/

Re

n0X
`DnC1

�
Nca
`;n

Z
�

.ir CAa/wn;R;a � .ir CAa/ Ow`;a dx

�
D .�0

n��0/C o.1/;
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as jaj ! 0. Using (4-6), (4-7), (4-8), (4-9), (4-12) and (4-14), we have that, for all n< n0,

pa
n;n0
D Npa

n0;n
DO.jaj

p
�1Cj˛�kj/ as jaj ! 0;

while the same estimates imply that, for all n¤ ` < n0,

pa
n;` D Np

a
`;n DO.jaj2

p
�1/ as jaj ! 0:

Therefore, the quadratic form in (4-15) satisfies the hypothesis of Lemma 4.1 with �.a/ D jaj2j˛�kj,

 D
p
�1, Mj D �

0
j ��0 < 0 for j < n0 and M 2 N such that .2CM /

p
�1 > 2j˛� kj, so that

max
.˛1;:::;˛n0

/2Cn0Pn0
nD1
j˛nj

2D1

n0X
n;jD1

˛n N̨j pa
n;j D jaj

2j˛�kjO.1/ as jaj ! 0: �

We notice that Lemma 4.2 does not give any information about the sign of the constant c.

4C. Construction of the test functions using 'a
n. Let 'a

n 2H
1;a
0
.�;C/nf0g satisfy (2-4) and (2-5). Let

R0 be as in (3-4), R> 1 and jaj<R0=R. For every 1� n� n0 we define

vn;R;a D

(
vint

n;R;a
in DRjaj;

vext
n;R;a

in � nDRjaj;

where
vext

n;R;a D ei˛.�a
0
��a/'a

n in � nDRjaj;

and vint
n;R;a

is the unique solution to the minimization problem

min
�Z

DRjaj

j.ir CA0/uj
2 dx W u 2H 1;0.DRjaj;C/; uD ei˛.�a

0
��a/'a

n on @DRjaj

�
: (4-16)

We notice that vext
n;R;a

and vint
n;R;a

respectively solve(
.ir CA0/

2vext
n;R;a

D �a
nv

ext
n;R;a

in � nDRjaj;

vext
n;R;a

D e�i˛.�a��
a
0
/'a

n on @.� nDRjaj/;

and (
.ir CA0/

2vint
n;R;a

D 0 in DRjaj;

vint
n;R;a

D e�i˛.�a��
a
0
/'a

n on @DRjaj:
(4-17)

The energy estimates in Lemmas 3.6 and 3.7 imply the following estimates for the functions vint
n;R;a

.

Lemma 4.3. For ı 2 .0;
p
�1=2/ fixed, let zKı be as in Lemma 3.6 and R0 be as in (3-4). Let

R>maxf2; zKıg

and 1� n� n0 be fixed. For every a 2� with jaj<R0=R, let vint
n;R;a

be defined as in (4-16). ThenZ
DRjaj

j.ir CA0/v
int
n;R;aj

2 dx DO.jaj2.
p
�1�ı//Z

DRjaj

jvint
n;R;aj

2 dx DO.jaj2.
p
�1�ı/C2/ and

Z
@DRjaj

jvint
n;R;aj

2 ds DO.jaj2.
p
�1�ı/C1/

(4-18)

as jaj ! 0C.



ESTIMATES FOR EIGENVALUES OF AHARONOV–BOHM OPERATORS WITH VARYING POLES 1771

Proof. The proof follows by combining the Dirichlet principle, a suitable cutting-off procedure, and
Lemma 3.6 (see the proof of [Abatangelo and Felli 2015, Lemma 6.2] for details in the case of half-integer
circulation). �

Lemma 4.4. For R > maxf2;Kıg fixed, with Kı as in Lemma 3.4, let vint
n0;R;a

be defined as in (4-16).
Then Z

DRjaj

j.ir CA0/v
int
n0;R;a

j
2 dx DO.H.'a;Kıjaj//; (4-19)Z

DRjaj

jvint
n0;R;a

j
2 dx DO.jaj2H.'a;Kıjaj//;

Z
@DRjaj

jvint
n0;R;a

j
2 ds DO.jajH.'a;Kıjaj//; (4-20)

as jaj ! 0C.

Proof. The proof follows from the estimates of Lemma 3.7, a suitable cutting-off procedure, and the
Dirichlet principle; see (4-16). �

Remark 4.5. For all R> 2 and a 2� with jaj<R0=R we consider the blow-up family

ZR
a .x/ WD

vint
n0;R;a

.jajx/p
H.'a;Kıjaj/

; (4-21)

with Kı as in Lemma 3.4 for some fixed ı 2 .0;
p
�1=2/. From Lemma 4.4 it follows that, for every

p 2 S1 fixed, rı > 0 as in Lemma 3.4, and R>maxfKı; 2g, the family of functions

fZR
a W aD jajp 2�; jaj< rı=Rg

is bounded in H 1;0.DR;C/.

4D. Estimate of the Rayleigh quotient for �0. An estimate from above for the limit eigenvalue �0 in
terms of the approximating eigenvalue �a can be obtained by choosing as test functions in (4-2) an
orthonormal family constructed starting from the functions fvn;R;agnD1;:::;n0

, as done in the following.

Lemma 4.6. For ı 2 .0;
p
�1=2/ fixed, let rı;Kı be as in Lemma 3.4 and ˛rı be as in (3-5). Then there

exists dı > 0 such that
�0��a � dıH.'a;Kıjaj/

for all a 2� such that jaj<minfrı=Kı; ˛rıg.

Proof. In view of (3-18) it is enough to prove that �0��a �O.H.'a;Kıjaj// as jaj ! 0C.
Recall the definition of vn;R;a given at the beginning of Section 4C. Let us fix R>maxf2;Kı; zKıg,

with zKı as in Lemma 3.6. As in the proof of Lemma 4.2, we use a Gram–Schmidt process; that is, we
define

Qvn;a D
Ovn;a

k Ovn;akL2.�;C/

; 1� n� n0;

where
Ovn0;a D vn0;R;a;

Ovn;a D vn;R;a�

n0X
`DnC1

da
`;n Ov`;a; 1� n� n0� 1;
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and

da
`;n D

R
� vn;R;a

NOv`;a dx

k Ov`;ak
2
L2.�;C/

; 1� n� n0� 1; nC 1� `� n0:

From (3-22), (4-18) and an induction argument it follows that, for every 1� n� n0�1 and nC1� `� n0,

k Ovn;ak
2
L2.�;C/

D 1CO.jaj2.
p
�1�ı/C2/ and da

`;n DO.jaj2.
p
�1�ı/C2/ (4-22)

as jaj ! 0. Moreover, from (3-26) and (4-20), we have

k Ovn0;ak
2
L2.�;C/

D 1CO.jaj2H.'a;Kıjaj// as jaj ! 0; (4-23)

and, for 1� n� n0� 1,

da
n0;n
DO.jaj

p
�1�ıC2

p
H.'a;Kıjaj// as jaj ! 0: (4-24)

Since dim.spanfv1;R;a; : : : ; vn0;R;ag/ D n0, we have that also dim.spanf Qv1;a; : : : ; Qvn0;ag/ D n0, and
hence from (4-2) we deduce that

�0 � max
.˛1;:::;˛n0

/2Cn0Pn0
nD1
j˛nj

2D1

Z
�

ˇ̌̌̌
.ir CA0/

� n0X
nD1

˛n Qvn;a

�ˇ̌̌̌2
dx;

which leads to

�0��a � max
.˛1;:::;˛n0

/2Cn0Pn0
nD1
j˛nj

2D1

n0X
n;jD1

˛n N̨j qa
n;j ; (4-25)

where qa
n;j D

R
�.ir C A0/ Qvn;a � .ir CA0/ Qvj ;a dx � �aınj . Using the results above we can now

estimate qa
n;j . First, using (4-19), (3-24), and (4-23)

qa
n0n0
D

�aR
� jvn0;R;aj

2 dx

�
1�

Z
�

jvn0;R;aj
2 dx

�
C

1R
� jvn0;R;aj

2 dx

�Z
DRjaj

j.ir CA0/v
int
n0;R;a

j
2 dx�

Z
DRjaj

j.ir CAa/'aj
2 dx

�
DH.'a;Kıjaj/O.1/;

as jaj ! 0C. Next (4-18), (3-20), (4-22), and the fact that �a
n! �0

n as jaj ! 0, provide, for n< n0,

qa
n;n D��aC

1

k Ovn;ak
2
L2.�;C/

�
�a

nC

Z
DRjaj

j.ir CA0/v
int
n;R;aj

2 dx�

Z
DRjaj

j.ir CAa/'
a
n j

2 dx

�

C
1

k Ovn;ak
2
L2.�;C/

Z
�

ˇ̌̌̌
.ir CA0/

� n0X
`DnC1

da
`;n Ov`;a

�ˇ̌̌̌2
dx

�
2

k Ovn;ak
2
L2.�;C/

Re

n0X
`DnC1

�
Nda
`;n

Z
�

.ir CA0/vn;R;a � .ir CA0/ Ov`;a dx

�
D �0

n��0C o.1/;
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as jaj ! 0. Now, using (3-20), (3-24), (4-18), (4-19), (4-22), (4-23), and (4-24), we prove that, for all
n< n0,

qa
n;n0
D Nqa

n0;n
DO

�
jaj
p
�1�ı

p
H.'a;Kıjaj/

�
as jaj ! 0C;

while the same estimates imply that, for all n¤ ` < n0,

qa
n;` D Nq

a
`;n DO.jaj2.

p
�1�ı//; as jaj ! 0C:

Therefore, the quadratic form in (4-25) satisfies the hypothesis of Lemma 4.1 with 
 D
p
�1 � ı,

�.a/DH.'a;Kıjaj/DO.jaj2
 / (by (3-19)), Mj D �
0
j ��0 < 0 and M any natural number such that

M > 2.j˛�kj�
p
�1C2ı/=.

p
�1�ı/ by Corollary 3.5. Therefore the right-hand side in (4-25) satisfies

max
.˛1;:::;˛n0

/2Cn0Pn0
nD1
j˛nj

2D1

n0X
n;jD1

˛n N̨j qa
n;j DH.'a;Kıjaj/O.1/;

as jaj ! 0C. Then the conclusion follows from (4-25). �

4E. Energy estimates.

Corollary 4.7. For ı 2 .0;
p
�1=2/ fixed, let Kı be as in Lemma 3.4. Then

(i) j�0��aj DO.1/maxfH.'a;Kıjaj/; jaj
2j˛�kjg as a! 0;

(ii) j�0��aj DO..H.'a;Kıjaj//
j˛�kj=.j˛�kjCı// as a! 0.

Proof. Estimate (i) is a direct consequence of Lemmas 4.2 and 4.6. Corollary 3.5 implies

jaj2j˛�kj
DO..H.'a;Kıjaj//

j˛�kj=.j˛�kjCı//

as a! 0, so that (ii) follows from (i). �

5. Blow-up analysis

In order to obtain a more precise estimate of the order of vanishing of the eigenvalue variation j�0��aj

than Corollary 4.7, we have now to compare the order of H.'a;Kıjaj/ with jaj2j˛�kj. We observe that
the estimates obtained so far (in particular Corollary 3.5) are not enough to decide what is the dominant
term among H.'a;Kıjaj/ and jaj2j˛�kj. To this aim, our next step is a blow-up analysis for scaled
eigenfunctions (3-27) along a fixed direction p 2 S1. In order to identify the limit profile of the blow-up
family (3-27), the following energy estimate of the difference between approximating and limit scaled
eigenfunctions plays a crucial role.

Let D1;2
0
.R2;C/ be the completion of C1c .R2 n f0g;C/ with respect to the magnetic Dirichlet norm

kukD1;2

0
.R2;C/

WD

�Z
R2

ˇ̌
.ir CA0/u.x/

ˇ̌2
dx

�1=2

:

Theorem 5.1 (energy estimates for eigenfunction variation). Let p 2 S1 be fixed. For some fixed
ı 2 .0;

p
�1=2/, let Kı > ‡ı be as in Lemma 3.4. For every R > maxf2;Kıg and aD jajp 2 � such
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that jaj<R0=R, let vn0;R;a be as in Section 4C. Then

kvn0;R;a�'0kH 1;0

0
.�;C/

� C
�
h.p; a;R/Cg.p; a;R/

�p
H.'a;Kıjaj/;

where C > 0 is independent of a;R;p,

h.p; a;R/D sup
'2D1;2

0
.R2;C/

k'k
D1;2

0
.R2;C/

D1

ˇ̌̌̌Z
@DR

�
ei˛.�

p

0
��p/.ir CAp/ Q'a� .ir CA0/Z

R
a

�
� � N' d�

ˇ̌̌̌
;

and, for p and R fixed,
h.p; a;R/DO.1/ and g.p; a;R/D o.1/

as jaj ! 0C.

Proof. The proof exploits the invertibility of the differential of the function F defined below, in the spirit
of [Abatangelo et al. 2017, Theorem 8.2; Abatangelo and Felli 2015, Theorem 7.2]. Let

F W C�H
1;0
0
.�;C/! R�R� .H

1;0
0;R
.�;C//?;

.�; '/ 7!
�
k'k2

H
1;0

0
.�;C/

��0; Im
�R
� ' N'0 dx

�
; .ir CA0/

2' ��'
�
:

In the above definition, .H 1;0
0;R
.�;C//? is the real dual space of H

1;0
0;R
.�;C/ D H

1;0
0
.�;C/, which is

here meant as a vector space over R endowed with the norm

kuk
H

1;0

0
.�;C/

D

�Z
�

ˇ̌
.ir CA0/u

ˇ̌2
dx

�1=2

;

and .ir CA0/
2' ��' 2 .H

1;0
0;R
.�;C//? acts as

.H
1;0

0;R
.�;C//?

h.irCA0/
2' ��';ui

H
1;0

0;R
.�;C/

DRe

�Z
�

.ir CA0/' � .ir CA0/u dx��

Z
�

' Nu dx

�
for all ' 2H

1;0
0
.�;C/. It is easy to prove that the function F is Fréchet-differentiable at .�0; '0/, with

differential dF.�0; '0/ 2 L.C�H
1;0
0
.�;C/;R�R� .H

1;0
0;R
.�;C//�/ given by

dF.�0;'0/.�;'/D

�
2Re

�Z
�

.irCA0/'0�.irCA0/' dx

�
;Im

�Z
�

' N'0 dx

�
; .irCA0/

2'��0'��'0

�
for every .�; '/ 2 C�H

1;0
0
.�;C/. From the simplicity assumption (1-5) it follows that dF.�0; '0/ is

invertible; see [Abatangelo and Felli 2015, Lemma 7.1] for details.
From the definition of vn0;R;a, (1-17), (3-19), (3-24), (4-8), and (4-19) it follows thatZ
�

ˇ̌
.ir CA0/.vn0;R;a�'0/

ˇ̌2
dx D

Z
�

ˇ̌
ei˛.�a

0
��a/.ir CAa/'a� .ir CA0/'0

ˇ̌2
dx

�

Z
DRjaj

ˇ̌
ei˛.�a

0
��a/.ir CAa/'a� .ir CA0/'0

ˇ̌2
dx

C

Z
DRjaj

ˇ̌
.ir CA0/.v

int
n0;R;a

�'0/
ˇ̌2

dx D o.1/
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as jaj ! 0, so that vn0;R;a! '0 in H 1
0
.�;C/ as jaj ! 0C. Then, from the invertibility of dF.�0; '0/

we have
j�a��0jC kvn0;R;a�'0kH 1;0

0
.�;C/

� k.dF.�0; '0//
�1
kL.R�R�.H

1;0

0;R
.�;C//?;C�H

1;0

0
.�;C//

�kF.�a; vn0;R;a/kR�R�.H
1;0

0;R
.�;C//?

.1C o.1// (5-1)

as jaj ! 0C. We define
F.�a; vn0;R;a/D .˛a; ˇa; wa/;

where
˛a D kvn0;R;ak

2

H
1;0

0
.�;C/

��0 2 R;

ˇa D Im

�Z
�

vn0;R;a N'0 dx

�
2 R;

wa D .ir CA0/
2vn0;R;a��avn0;R;a 2 .H

1;0
0;R
.�;C//?:

In view of (4-19), (3-24), and Corollary 4.7 we have

˛a D

�Z
DRjaj

j.ir CA0/v
int
n0;R;a

j
2 dx�

Z
DRjaj

j.ir CAa/'aj
2 dx

�
C .�a��0/

DO.H.'a;Kıjaj//CO..H.'a;Kıjaj//
j˛�kj=.j˛�kjCı//D o.

p
H.'a;Kıjaj// (5-2)

as jaj ! 0C. The normalization condition for the phase in (1-15), together with (4-20), (4-8), and (3-26),
yields

ˇa D Im

�Z
DRjaj

vint
n0;R;a

N'0 dx�

Z
DRjaj

ei˛.�a
0
��a/'a N'0 dxC

Z
�

ei˛.�a
0
��a/'a N'0 dx

�
D Im

�Z
DRjaj

vint
n0;R;a

N'0 dx�

Z
DRjaj

ei˛.�a
0
��a/'a N'0 dx

�
DO.jaj2Cj˛�kj

p
H.'a;Kıjaj//D o.

p
H.'a;Kıjaj// (5-3)

as jaj ! 0C.
For every a 2�, the map

Ta W D1;2
0
.R2;C/! D1;2

0
.R2;C/; Ta'.x/D '.jajx/;

is an isometry of D1;2
0
.R2;C/.

Since H
1;0
0
.�;C/ is continuously embedded into D1;2

0
.R2;C/ by trivial extension outside � and

kukD1;2

0
.R2;C/

D kuk
H

1;0

0
.�;C/

for every u 2H
1;0
0
.�;C/, we have

kwak.H 1;0

0;R
.�;C//?

D sup
'2H

1;0

0
.�;C/

k'k
H

1;0
0

.�;C/
D1

ˇ̌̌̌
Re

�Z
�

.irCA0/vn0;R;a�.irCA0/' dx��a

Z
�

vn0;R;a N' dx

�ˇ̌̌̌

� sup
'2D1;2

0
.R2;C/

k'k
D1;2

0
.R2;C/

D1

ˇ̌̌̌
Re

�Z
�

.irCA0/vn0;R;a�.irCA0/' dx��a

Z
�

vn0;R;a N' dx

�ˇ̌̌̌
:

(5-4)
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For every ' 2 D1;2
0
.R2;C/ we haveZ

�

.ir CA0/vn0;R;a � .ir CA0/' dx��a

Z
�

vn0;R;a N' dx

D

Z
�nDRjaj

ei˛.�a
0
��a/.ir CAa/'a � .ir CA0/' dx��a

Z
�nDRjaj

ei˛.�a
0
��a/'a N' dx

C

Z
DRjaj

.ir CA0/vn0;R;a � .ir CA0/' dx��a

Z
DRjaj

vn0;R;a N' dx: (5-5)

From scaling and integration by parts we have that, letting Q'a be defined in (3-27),Z
�nDRjaj

ei˛.�a
0
��a/.ir CAa/'a � .ir CA0/' dx��a

Z
�nDRjaj

ei˛.�a
0
��a/'a N' dx

D i
p

H.'a;Kıjaj/

Z
@DR

Ta' ei˛.�
p

0
��p/.ir CAp/ Q'a � � d�; (5-6)

where � D x=jxj is the outer unit normal vector. In a similar way we have that, defining ZR
a as in (4-21)

and using (4-17),Z
DRjaj

.ir CA0/vn0;R;a � .ir CA0/' dx��a

Z
DRjaj

vn0;R;a N' dx

D
p

H.'a;Kıjaj/

�
�i

Z
@DR

.ir CA0/Z
R
a � �Ta' d� ��ajaj

2

Z
DR

ZR
a Ta' dx

�
: (5-7)

Combining (5-4)–(5-7) and recalling that Ta is an isometry of D1;2
0
.R2;C/, we obtain

.H.'a;Kıjaj//
� 1

2 kwak.H 1;0

0;R
.�;C//?

� h.p; a;R/C�ajaj
2 sup
'2D1;2

0
.R2;C/

k'k
D1;2

0
.R2;C/

D1

ˇ̌̌̌Z
DR

ZR
a N' dx

ˇ̌̌̌
; (5-8)

where

h.p; a;R/D sup
'2D1;2

0
.R2;C/

k'k
D1;2

0
.R2;C/

D1

ˇ̌̌̌Z
@DR

�
ei˛.�

p

0
��p/.ir CAp/ Q'a� .ir CA0/Z

R
a

�
� � N' d�

ˇ̌̌̌
:

From Remarks 3.8 and 4.5 it follows that, for R>maxf2;Kıg and p 2 S1 fixed,˚�
ei˛.�

p

0
��p/.ir CAp/ Q'a� .ir CA0/Z

R
a

�
� �
	
jaj<rı=R

is bounded in H�1=2.@DR/

so that, for p and R fixed, h.p; a;R/ D O.1/ as a ! 0. Moreover, Remark 4.5 implies that, for
R>maxf2;Kıg and p 2 S1 fixed,

sup
'2D1;2

0
.R2;C/

k'k
D1;2

0
.R2;C/

D1

ˇ̌̌̌Z
DR

ZR
a N' dx

ˇ̌̌̌
DO.1/ as jaj ! 0:

Hence the conclusion follows from (5-1), (5-2), (5-3), and (5-8). �
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The previous theorem allows us to estimate the energy variation of scaled eigenfunctions and improve
the results of Corollary 3.5 as follows.

Corollary 5.2. Let p 2 S1 be fixed. Then

.i/ jaj2j˛�kj DO.H.'a;Kıjaj// as aD jajp! 0;

.i i/ letting Q'a and Wa be as in (3-27) and (4-10), for every R>maxf2;Kıg it holds thatZ
.�=jaj/nDR

ˇ̌̌̌
.ir CAp/

�
Q'a� ei˛.�p��

p

0
/Wa

jajj˛�kjp
H.'a;Kıjaj/

�ˇ̌̌̌2
dx DO.1/ as aD jajp! 0: (5-9)

Proof. Estimate (5-9) follows from scaling and Theorem 5.1. From (5-9) it follows that

jajj˛�kjp
H.'a;Kıjaj/

�Z
D2RnDR

ˇ̌
.ir CA0/Wa

ˇ̌2
dx

�1=2

D
jajj˛�kjp

H.'a;Kıjaj/

�Z
D2RnDR

ˇ̌
.ir CAp/.e

i˛.�p��
p

0
/Wa/

ˇ̌2
dx

�1=2

�O.1/C

�Z
D2RnDR

ˇ̌̌̌
.ir CAp/ Q'a.x/

ˇ̌̌̌2
dx

�1=2

as aD jajp! 0. From Remark 3.8 and (4-11), the above estimate implies (i). �

In the following lemma we prove the existence and uniqueness of the function ‰p satisfying (1-18)
and (1-19), which will turn out to be the limit of the blow-up family (3-27) as a! 0 along the fixed
direction p 2 S1.

Lemma 5.3. Let p 2 S1. There exists a unique ‰p 2H
1;p
loc .R

2;C/ satisfying (1-18) and (1-19).

Proof. Let � be a smooth cut-off function such that �� 0 in D1 and �� 1 in R2 nDR for some R> 1.
Recalling the definition of  k (1-20), we have

F D .ir CAp/
2.�ei˛.�p��

p

0
/ k/

D���ei˛.�p��
p

0
/ k C 2ir� � .ir CAp/.e

i˛.�p��
p

0
/ k/C �.ir CAp/

2.ei˛.�p��
p

0
/ k/

D���ei˛.�p��
p

0
/ k C 2ir� � .ir CAp/.e

i˛.�p��
p

0
/ k/ 2 .D1;2

p .R2;C//�:

Here D1;2
p .R2;C/ is the completion of C1c .R2 n f0g;C/ with respect to

kukD1;2
p .R2;C/

D

�Z
R2

j.ir CAp/u.x/j
2 dx

�1=2

:

By the Lax–Milgram theorem, there exists a unique g 2 D1;2
p .R2;C/ which solves

.ir CAp/
2g D�F in .D1;2

p .R2;C//�:

Then, ‰p D gC �ei˛.�p��
p

0
/ k satisfies (1-18) and (1-19), and the existence is proved.
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The uniqueness follows from the fact that, if ‰1
p , ‰2

p 2H
1;p
loc .R

2;C/ satisfy (1-18) and (1-19), then

.ir CAp/
2.‰1

p �‰
2
p/D 0 in .D1;2

p .R2;C//�; (5-10)
and Z

R2

j.ir CAp/.‰
1
p �‰

2
p/j

2 dx <C1;

which, in view of the Hardy inequality (1-3), impliesZ
R2

j‰1
p �‰

2
pj

2

jx�pj2
dx <C1;

and hence that ‰1
p �‰

2
p 2 D

1;2
p .R2;C/. Therefore we can test (5-10) with ‰1

p �‰
2
p thus concluding thatZ

R2

j.ir CAp/.‰
1
p �‰

2
p/j

2 dx D 0;

which implies ‰1
p �‰

2
p . �

We are now in a position to prove that the scaled eigenfunctions (3-27) converge to a multiple of ‰p

as aD jajp! 0.

Lemma 5.4. Let p 2 S1 and ı 2 .0;
p
�1=2/ be fixed and let Kı > ‡ı be as in Lemma 3.4. For

aD jajp 2� let Q'a be as in (3-27). Then

Q'a!
ˇ

jˇj

�
KıR

@DKı

j‰pj
2 ds

�1=2

‰p as aD jajp! 0

in H 1;p.DR;C/ for every R> 1 and in C 2
loc.R

2 nfpg;C/, where ‰p is the function defined in Lemma 5.3.
Moreover,

lim
aDjajp!0

jajj˛�kj

p
H.'a;Kıjaj/

D
1

jˇj

�
KıR

@DKı

j‰pj
2 ds

�1=2

: (5-11)

Proof. From Remark 3.8 and Corollary 5.2 it follows that, for every sequence an D janjp with janj ! 0,
there exist a subsequence an` , c 2 Œ0;C1/ and ẑ 2H

1;p
loc .R

2;C/ such that

Q'an`
* ẑ weakly in H 1;p.DR;C/ as `!C1 and lim

`!C1

jan` j
j˛�kj

p
H.'an`

;Kıjan` j/
D c

for every R> 1. Passing to the limit in the equation satisfied by Q'a, i.e., .ir CAp/
2 Q'a D �ajaj

2 Q'a in
.1=jaj/�, we obtain that ẑ satisfies

.ir CAp/
2 ẑ D 0 in R2: (5-12)

Moreover, by compact trace embeddings,
1

Kı

Z
@DKı

j ẑ j
2 ds D 1; (5-13)

so that ẑ is not identically zero. Testing the equation for Q'a with Q'a itself, integrating by parts and
exploiting the C 2

loc-convergence of Q'a in R2nfpg (which follows from classic elliptic estimates) we obtain
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DR
j.ir CAp/ Q'an`

j2 dx!
R

DR
j.ir CAp/ ẑ j

2 dx as `!1 for every R > 1. Hence we conclude
that, for all R> 1, Q'an`

! ẑ strongly in H 1;p.DR;C/ as `!C1.
By the strong H

1;p
loc .R

2;C/-convergence and recalling (4-11), we can pass to the limit along an` in
(5-9) to obtain Z

R2nDR

ˇ̌
.ir CAp/. ẑ � cˇei˛.�p��

p

0
/ k/

ˇ̌2
dx <C1:

This implies c¤ 0 (and hence c > 0), otherwise we would have
R

R2nDR
j.irCAp/ ẑ j

2 dx <C1, which,
together with (5-12), implies ẑ � 0, thus contradicting (5-13).

Then Lemma 5.3 and (5-13) provide

ẑ D cˇ‰p and c D
1

jˇj

�
KıR

@DKı

j‰pj
2

�1=2

:

Since these limits depend neither on the sequence, nor on the subsequence, the proof is complete. �

Proof of Theorem 1.1. Let p 2 S1. From Corollary 4.7(i) and (5-11) we conclude that

�0��a DO.jaj2j˛�kj/

as aD jajp! 0. Since the function a 7! �a is analytic in a neighborhood of 0, due to the simplicity of �0,
see [Léna 2015, Theorem 1.3], and since 2j˛� kj is noninteger, we have that the Taylor polynomials of
the function �0��a with center 0 and degree less than or equal to b2j˛� kjc vanish, thus yielding the
conclusion. �

Proof of Theorem 1.2. It is a direct consequence of Lemma 5.4. �

6. Rate of convergence for eigenfunctions

Taking inspiration from [Abatangelo and Felli 2017], we now estimate the rate of convergence of the
eigenfunctions. We then take into account the quantity

.ir CAa/'a� ei˛.�a��

a
0
/.ir CA0/'0




L2.�;C/

;

where 'aD '
a
n0

satisfies (1-14), (1-15) and '0D '
0
n0

satisfies (1-7). We split the argument in two different
steps, the first considering the energy variation inside small disks of radius Rjaj, the second considering
the energy variation outside these disks.

Lemma 6.1. Under the same assumptions as in Theorems 1.1 and 1.2, we have that, for every p 2 S1

and R> 1,

lim
aDjajp!0

1

jaj2j˛�kj

Z
DRjaj

ˇ̌
.ir CAa/'a� ei˛.�a��

a
0
/.ir CA0/'0

ˇ̌2
dx D jˇj2 Fp.R/; (6-1)

where

Fp.R/D

Z
DR

ˇ̌
.ir CAp/‰p � ei˛.�p��

p

0
/.ir CA0/ k

ˇ̌2
dx;

‰p is defined in Lemma 5.3 and  k is as in (1-20). Moreover,

Lp WD lim
R!C1

Fp.R/ 2 .0;C1/:
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Proof. We notice that, in view of (1-19), Lp <C1. The proof of (6-1) relies on a change of variables
and on the convergences stated in (4-11) and in Theorem 1.2. We have

lim
R!C1

Fp.R/D

Z
R2

ˇ̌
.ir CAp/‰p � ei˛.�p��

p

0
/.ir CA0/ k

ˇ̌2
dx

D

Z
R2n�p

ˇ̌
.ir CAp/.‰p � ei˛.�p��

p

0
/ k/

ˇ̌2
dx > 0;

where �p is defined in (1-13). Indeed, suppose by contradiction that the above limit is zero. Since, for
every r1 > r2 > 1 we have ‰p � ei˛.�p��

p

0
/ k 2H 1;p.Dr1

.p/ nDr2
.p/;C/, the Hardy inequality (1-4)

implies ‰p�ei˛.�p��
p

0
/ k � 0 in R2 nD1.p/. Moreover, since .irCAp/

2.‰p�ei˛.�p��
p

0
/ k/D 0 in

R2 n�p , a classical unique continuation principle, see, e.g., [Wolff 1992], implies ‰p�ei˛.�p��
p

0
/ k � 0

in R2 n�p necessarily. But this is impossible since, by (1-18) and classical elliptic estimates away from p,
‰p is smooth in R2 n fpg, whereas ei˛.�p��

p

0
/ k is discontinuous on �p n f0g since it is the product of

the continuous nonzero function  k and of the discontinuous function ei˛.�p��
p

0
/; see the definitions

(1-11), (1-12) and (1-13). �

Before addressing the energy variation outside the disk, it is worthwhile introducing a preliminary
result. For all R> 2 and p 2 S1, let zp;R be the unique solution to�

.ir CA0/
2zp;R D 0 in DR;

zp;R D ei˛.�
p

0
��p/‰p on @DR:

(6-2)

From Lemma 5.4 it follows that the family of functions ZR
a introduced in (4-21) converges in H 1;0.DR;C/

to some multiple of zp;R.

Lemma 6.2. Let p 2 S1 and R> 2. For aD jajp 2�, let ZR
a be as in (4-21). Then

ZR
a !

ˇ

jˇj

�
KıR

@DKı

j‰pj
2 ds

�1=2

zp;R

in H 1;0.DR;C/ as jaj ! 0C.

Proof. Define


p;ı D
ˇ

jˇj

�
KıR

@DKı

j‰pj
2 ds

�1=2

:

By (4-17) and (6-2) we have that ZR
a � 
p;ızp;R solves(

.ir CA0/
2.ZR

a � 
p;ızp;R/D 0 in DR;

ZR
a � 
p;ızp;R D ei˛.�

p

0
��p/. Q'a� 
p;ı‰p/ on @DR:

For R> 2, let �R W R
2! R be a smooth cut-off function such that

�R � 0 in DR=2; �R � 1 in R2
nDR; 0� �R � 1: (6-3)
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Then, by the Dirichlet principle and Lemma 5.4,Z
DR

j.ir CA0/.Z
R
a � 
p;ızp;R/j

2 dx

�

Z
DR

j.ir CA0/.�Rei˛.�
p

0
��p/. Q'a� 
p;ı‰p//j

2 dx

� 2

Z
DR

jr�Rj
2
j Q'a� 
p;ı‰pj

2 dxC 2

Z
DRnDR=2

�2
Rj.ir CAp/. Q'a� 
p;ı‰p/j

2 dx D o.1/

as aD jajp! 0. Finally, the Hardy-type inequality (1-3) allows us to conclude. �

Lemma 6.3. Let '0 2H
1;0
0
.�;C/ be a solution to (1-7) satisfying (1-5). Let p 2 S1. For aD jajp 2�,

let 'a 2H
1;a
0
.�;C/ satisfy (1-14)–(1-15). Then, for all R>maxf2;Kıg,

ei˛.�a

0
��a/.ir CAa/'a� .ir CA0/'0



2

L2.�nDRjaj;C/
� jaj2j˛�kjG.p; a;R/;

where limaDjajp!0 G.p; a;R/DG.p;R/ for some G.p;R/ such that

lim
R!C1

G.p;R/D 0: (6-4)

Proof. Let R>maxf2;Kıg. From Theorem 5.1 and (5-11) we have

kei˛.�a
0
��a/.ir CAa/'a� .ir CA0/'0kL2.�nDRjaj;C/

� kvn0;R;a�'0kH 1;0

0
.�;C/

� C
�
h.p; a;R/Cg.p; a;R/

�
jajj˛�kj;

where g.p; a;R/D o.1/ as jaj ! 0C and

h.p;a;R/D sup
'2D1;2

0
.R2;C/

k'k
D1;2

0
.R2;C/

D1

ˇ̌̌̌Z
@DR

.irCA0/.e
i˛.�

p

0
��p/ Q'a�ZR

a /�� N' d�

ˇ̌̌̌

� const


.irCA0/.e

i˛.�
p

0
��p/ Q'a�ZR

a /���
p;ı.irCA0/.e
i˛.�

p

0
��p/‰p�zp;R/��




H�1=2.@DR/

C
p;ı sup
'2D1;2

0
.R2;C/

k'k
D1;2

0
.R2;C/

D1

ˇ̌̌̌Z
@DR

.irCA0/.e
i˛.�

p

0
��p/‰p�zp;R/�� N' d�

ˇ̌̌̌
;

where


p;ı D
ˇ

jˇj

�
KıR

@DKı

j‰pj
2 ds

�1=2

and the constant const> 0 is independent of a. From Lemmas 5.4 and 6.2 we have

.ir CA0/.e
i˛.�

p

0
��p/ Q'a�ZR

a / � �! 
p;ı.ir CA0/.e
i˛.�

p

0
��p/‰p � zp;R/ � �

in H�1=2.@DR/ as aD jajp! 0. Therefore h.p; a;R/� f .p; a;R/ with

lim
aDjajp!0

f .p; a;R/D 
p;ı sup
'2D1;2

0
.R2;C/

k'k
D1;2

0
.R2;C/

D1

ˇ̌̌̌Z
@DR

.ir CA0/.e
i˛.�

p

0
��p/‰p � zp;R/ � � N' d�

ˇ̌̌̌
:
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To complete the proof is then enough to show that

lim
R!C1

sup
'2D1;2

0
.R2;C/

k'k
D1;2

0
.R2;C/

D1

ˇ̌̌̌Z
@DR

.ir CA0/.e
i˛.�

p

0
��p/‰p � zp;R/ � � N' d�

ˇ̌̌̌
D 0: (6-5)

Using an integration by parts we can rewriteˇ̌̌̌Z
@DR

.ir CA0/.e
i˛.�

p

0
��p/‰p � zp;R/ � � N' d�

ˇ̌̌̌
D

ˇ̌̌̌Z
@DR

ei˛.�
p

0
��p/.ir CAp/.‰p � ei˛.�p��

p

0
/ k/ � � N' d� C

Z
@DR

.ir CA0/. k � zp;R/ � � N' d�

ˇ̌̌̌
D

ˇ̌̌̌
�i

Z
R2nDR

.ir CAp/.‰p � ei˛.�p��
p

0
/ k/ � .ir CA0/'ei˛.�

p

0
��p/ dx

C i

Z
DR

.ir CA0/. k � zp;R/ � .ir CA0/' dx

ˇ̌̌̌
;

which implies

sup
'2D1;2

0
.R2;C/

k'k
D1;2

0
.R2;C/

D1

ˇ̌̌̌Z
@DR

.ir CA0/.e
i˛.�

p

0
��p/‰p � zp;R/ � � N' d�

ˇ̌̌̌

�

�Z
R2nDR

ˇ̌
.irCAp/.‰p�ei˛.�p��

p

0
/ k/

ˇ̌2
dx

�1=2

C

�Z
DR

ˇ̌
.irCA0/. k�zp;R/

ˇ̌2
dx

�1=2

: (6-6)

The first term in the right-hand side of (6-6) goes to zero as R!C1 because of (1-19). To estimate the
second term, we consider a test function �R satisfying (6-3) and the additional property jr�Rj � 4=R in
DR nDR=2. Recalling that  k�zp;R satisfies .irCA0/

2. k�zp;R/D 0 in DR with the boundary condi-
tion k�zp;RD k�ei˛.�

p

0
��p/‰p on @DR , the Dirichlet principle and the Hardy inequality (1-4) provideZ

DR

j.ir CA0/. k � zp;R/j
2 dx

�

Z
DR

j.ir CA0/.�R. k � ei˛.�
p

0
��p/‰p//j

2 dx

� 2

Z
DR

jr�Rj
2
j k � ei˛.�

p

0
��p/‰pj

2 dxC 2

Z
R2nDR=2

j.ir CA0/. k � ei˛.�
p

0
��p/‰p/j

2 dx

�
32

R2

Z
DRnDR=2

j‰p � ei˛.�p��
p

0
/ k j

2 dxC 2

Z
R2nDR=2

j.ir CAp/.‰p � ei˛.�p��
p

0
/ k/j

2 dx

�
32.RC 1/2

R2

Z
DRC1.p/nD.R�2/=2.p/

j‰p � ei˛.�p��
p

0
/ k j

2

jx�pj2
dx

C 2

Z
R2nDR=2

j.ir CAp/.‰p � ei˛.�p��
p

0
/ k/j

2 dx
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�
32.RC 1/2

R2�1

Z
DRC1.p/nD.R�2/=2.p/

j.ir CAp/.‰p � ei˛.�p��
p

0
/ k/j

2 dx

C 2

Z
R2nDR=2

j.ir CAp/.‰p � ei˛.�p��
p

0
/ k/j

2 dx;

which goes to zero again thanks to (1-19). Therefore we have obtained (6-5) and the proof is complete. �

Proof of Theorem 1.3. Let p2S1 and ">0. From Lemma 6.1 and (6-4) there exists some R0>maxf2;Kıg

sufficiently large such that

jFp.R0/�Lpj< " and jG.p;R0/j< ":

Moreover, again from Lemmas 6.3 and 6.1 there exists � > 0 (depending on p, ", and R0) such that, if
aD jajp and jaj< �, then

jG.p; a;R0/�G.p;R0/j< "

and ˇ̌̌̌
1

jaj2j˛�kj

Z
DR0jaj

ˇ̌
.ir CAa/'a.x/� ei˛.�a��

a
0
/.x/.ir CA0/'0.x/

ˇ̌2
dx� jˇj2Fp.R0/

ˇ̌̌̌
< ":

Therefore, taking into account Lemma 6.3, we have that, for all aD jajp with jaj< �,ˇ̌̌̌
jaj�2j˛�kj

Z
�

ˇ̌
.ir CAa/'a� ei˛.�a��

a
0
/.ir CA0/'0

ˇ̌2
dx� jˇj2Lp

ˇ̌̌̌
�

ˇ̌̌̌
jaj�2j˛�kj

Z
DR0jaj

ˇ̌
.ir CAa/'a� ei˛.�a��

a
0
/.ir CA0/'0

ˇ̌2
dx� jˇj2Fp.R0/

ˇ̌̌̌
Cjaj�2j˛�kj

Z
�nDR0jaj

ˇ̌
.ir CAa/'a� ei˛.�a��

a
0
/.ir CA0/'0

ˇ̌2
dxCjˇj2 jLp �Fp.R0/j

< "CG.p; a;R0/Cjˇj
2"

� "CjG.p; a;R0/�G.p;R0/jC jG.p;R0/jC jˇj
2"D .3Cjˇj2/": �
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