Vol. 11, No. 7, 2018

Download this article
Download this article For screen
For printing
Recent Issues

Volume 15
Issue 8, 1861–2108
Issue 7, 1617–1859
Issue 6, 1375–1616
Issue 5, 1131–1373
Issue 4, 891–1130
Issue 3, 567–890
Issue 2, 273–566
Issue 1, 1–272

Volume 14, 8 issues

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Subscriptions
 
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
 
ISSN: 1948-206X (e-only)
ISSN: 2157-5045 (print)
Author Index
To Appear
 
Other MSP Journals
This article is available for purchase or by subscription. See below.
Complex rotation numbers: bubbles and their intersections

Nataliya Goncharuk

Vol. 11 (2018), No. 7, 1787–1801
Abstract

The construction of complex rotation numbers, due to V. Arnold, gives rise to a fractal-like set “bubbles” related to a circle diffeomorphism. “Bubbles” is a complex analogue to Arnold tongues.

This article contains a survey of the known properties of bubbles, as well as a variety of open questions. In particular, we show that bubbles can intersect and self-intersect, and provide approximate pictures of bubbles for perturbations of Möbius circle diffeomorphisms.

PDF Access Denied

We have not been able to recognize your IP address 3.236.207.90 as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 40.00:

Keywords
complex tori, rotation numbers, diffeomorphisms of the circle
Mathematical Subject Classification 2010
Primary: 37E10, 37E45
Milestones
Received: 3 August 2017
Revised: 8 December 2017
Accepted: 9 April 2018
Published: 20 May 2018
Authors
Nataliya Goncharuk
Department of Mathematics
Cornell University
Ithaca, NY
United States