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COMPLEX ROTATION NUMBERS: BUBBLES AND THEIR INTERSECTIONS

NATALIYA GONCHARUK

The construction of complex rotation numbers, due to V. Arnold, gives rise to a fractal-like set “bubbles”
related to a circle diffeomorphism. “Bubbles” is a complex analogue to Arnold tongues.

This article contains a survey of the known properties of bubbles, as well as a variety of open questions.
In particular, we show that bubbles can intersect and self-intersect, and provide approximate pictures of
bubbles for perturbations of Möbius circle diffeomorphisms.

1. Introduction

1.1. Complex rotation numbers: Arnold’s construction. In what follows, f :R/Z→R/Z is an analytic
orientation-preserving circle diffeomorphism. Its analytic extension to a small neighborhood of R/Z in
C/Z is still denoted by f . H⊂ C is the open upper half-plane.

The following construction was suggested by V. Arnold [1983, Section 27] in 1978. Given ω ∈H/Z

and a small positive ε ∈ R, one can construct a complex torus E( f + ω) as the quotient space of a
cylinder 5 by the action of f +ω:

5 := {z ∈ C/Z | −ε < Im z < Imω+ ε},

E( f +ω) :=5/(z ∼ f (z)+ω).
(1)

For a small positive ε, the quotient space E( f +ω) is a torus, inherits a complex structure from C/Z and
does not depend on ε.

Due to the uniformization theorem, for a unique τ ∈ H/Z there exists a biholomorphism

Hω : E( f +ω)→ C/(Z+ τZ) (2)

such that Hω takes R/Z ⊂ E( f + ω) to a curve homotopic to R/Z ⊂ C/(Z + τZ). The number
τ( f +ω) := τ ∈ H/Z, i.e., the modulus of the complex torus E( f +ω), is called the complex rotation
number of f +ω.

In the original Arnold’s construction, ω was supposed to be purely imaginary. The above version of this
construction was suggested by R. Fedorov. The term “complex rotation number” is due to E. Risler [1999].

The complex rotation number τ( f + ω) depends holomorphically on ω ∈ H/Z; see [Risler 1999,
Section 2.1, Proposition 2].
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1.2. Rotation number and its properties. This section lists well-known results on rotation numbers; see
[Katok and Hasselblatt 1995, Sections 3.11, 3.12] for more details.

Let f be an orientation-preserving circle homeomorphism, and let F : R→ R be its lift to the real line.
The limit

rot f = lim
n→∞

F◦n(x)
n

mod 1

exists and does not depend on x ∈ R. It is called the rotation number of the circle homeomorphism f .
Rotation number is invariant under continuous conjugations of f . It is rational, rot f = p/q, if and

only if f has a periodic orbit of period q . If rot f is irrational and f ∈ C2(R/Z), then f is continuously
conjugate to z 7→ z+ rot f (Denjoy theorem, see [Katok and Hasselblatt 1995, Section 3.12.1]). We will
need the following, much more complicated result.

Definition. A real number ρ is called Diophantine if there exist C, β > 0 such that for all rationals p/q ,∣∣∣∣ρ− p
q

∣∣∣∣≥ C
q2+β .

Theorem 1 (M. R. Herman [1979], J.-C. Yoccoz [1984]). If an analytic circle diffeomorphism has a
Diophantine rotation number rot f , then it is analytically conjugate to z 7→ z+ rot f .

This motivates the term “complex rotation number” for τ( f +ω) above: while a circle diffeomorphism
f is conjugate to the rotation x 7→ x + rot f on R/Z, a complex-valued map f +ω is biholomorphically
conjugate to the complex shift z 7→ z+ τ( f +ω) in the cylinder 5⊂ C/Z.

1.3. Steps on the graph of ω 7→ rot( f + ω). Rotation number depends continuously on f in the C0-
topology. In particular, rot( f+ω) depends continuously onω∈R/Z; clearly, it (nonstrictly) increases onω.

Recall that a periodic orbit of a circle diffeomorphism is called parabolic if its multiplier is 1, and
hyperbolic otherwise. If a circle diffeomorphism has periodic orbits, and they are all hyperbolic, then the
diffeomorphism is called hyperbolic.

Let Ip/q := {ω ∈ R/Z | rot( f +ω) = p/q}; from now on, we always assume that p, q are coprime.
If for some value of ω the diffeomorphism f +ω has the rotation number p/q and a hyperbolic orbit
of period q, then this orbit persists under a small perturbation of ω. In this case, Ip/q is a segment of
nonzero length. Endpoints of Ip/q correspond to diffeomorphisms f +ω having only parabolic orbits.

In a generic case, the graph of the function ω 7→ rot( f + ω) contains infinitely many steps, i.e.,
nontrivial segments Ip/q ×{p/q}, on rational heights.

1.4. Rotation numbers as boundary values of a holomorphic function.

Question 2. Can we find a holomorphic self-map τ on H/Z such that its boundary values on R/Z coincide
with ω 7→ ρ( f +ω)?

The answer is No (except for the trivial case f (x)= x + c), because the function ω 7→ ρ( f +ω) is
locally constant on nonempty intervals Ip/q , and this is not possible for boundary values of holomorphic
functions. In more detail, note that H/Z is biholomorphically equivalent to the punctured unit disc D \{0},
so the map 1/(2π i) ln z : D\{0}→H/Z conjugates τ to a holomorphic bounded self-map of the punctured
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unit disc. Clearly, 0 is a removable singularity for this self-map. The following Luzin–Privalov theorem
[1925, Section 14, p. 159] shows that such an extension τ does not exist:

Theorem 3 (N. Luzin, J. Privalov). If a holomorphic function in the unit disc D has finite nontangential
limits at all points of E ⊂ ∂D, where E has a nonzero Lebesgue measure, then this function is uniquely
defined by these limits.

This motivates the next question:

Question 4. Can we find a holomorphic self-map on H/Z such that its boundary values on (R/Z)\
⋃

Ip/q

coincide with ω 7→ ρ( f +ω)?

Remark. The set (R/Z)\
⋃

Ip/q has nonzero measure due to a result of M. R. Herman [1977, Section 6,
p. 287]; so by Theorem 3, such a holomorphic extension must be unique.

The answer to this question is Yes, and this holomorphic function is the complex rotation number
τ( f + ω). The following theorem is proved in [Buff and Goncharuk 2015]; the proof is based on
previous results by E. Risler [1999], V. Moldavskij [2001], Y. Ilyashenko and V. Moldavskij [2003], and
N. Goncharuk [2012].

Theorem 5 (X. Buff and N. Goncharuk [2015]). Let f : R/Z→ R/Z be an orientation-preserving
analytic circle diffeomorphism. Then the holomorphic function τ( f + · ) :H/Z→H/Z has a continuous
extension τ̄ ( f + · ) : H/Z→ H/Z. Assume ω ∈ R/Z:

• If rot( f +ω) is irrational, then τ̄ ( f +ω)= rot( f +ω).

• If rot( f +ω) is rational and f +ω has a parabolic periodic orbit, then τ̄ ( f +ω)= rot( f +ω).

• If rot( f +ω) is rational and f +ω is hyperbolic on an open interval ω ∈ I ⊂ R/Z, then τ̄ ( f +ω)
depends analytically on ω ∈ I and τ̄ ( f +ω) ∈ H/Z for ω ∈ I .

The extension τ̄ ( f +ω) is also called the complex rotation number of f +ω. Due to Theorem 5, it is
continuous on ω, and coincides with the ordinary rotation number on R/Z \

⋃
Ip/q .

Definition. The image of the segment Ip/q ={ω∈R/Z | rot( f +ω)= p/q} under the map ω 7→ τ̄ ( f +ω)
is called the p/q-bubble of f .

Due to Theorem 5, the p/q-bubble is a union of several analytic curves in the upper half-plane with
endpoints at p/q. Each analytic curve corresponds to the interval of hyperbolicity of f + ω, and its
endpoints correspond to f +ω with parabolic orbits.

So, each circle diffeomorphism f gives rise to a “fractal-like” set τ̄ ( f +ω) (bubbles) in the upper
half-plane, containing countably many analytic curves. The picture of bubbles growing from rational
points of the real axis was first described by R. Fedorov (oral communication, about 2001), and remained
conjecturable until [Goncharuk 2012; Buff and Goncharuk 2015].

The possible shapes of bubbles are not known. The following question is also open.

Question 6. Is the set τ̄ ( f +ω) self-similar (i.e., is it a fractal set)?

The precise meaning of “self-similarity” in this question is not clear; conjecturably, for certain sequences
of rational numbers {pn/qn}, the pn/qn-bubbles (when rescaled properly) tend to some limit shape.
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1.5. Properties of bubbles and the Main Theorem.

Question 7. Is τ̄ invariant under analytic conjugacies?

The answer is Yes:

Lemma 8. The complex rotation number τ̄ is invariant under analytic conjugacies: for two analytically
conjugate circle diffeomorphisms f1, f2, we have τ̄ ( f1)= τ̄ ( f2).

For nonhyperbolic f1, f2, their complex rotation numbers coincide with rotation numbers, so this lemma
trivially repeats the invariance of rotation numbers under conjugacies. For hyperbolic diffeomorphisms,
the proof of this lemma is implicitly contained in [Buff and Goncharuk 2015]; see also Section 5 below.

Note that in general, for conjugate f1, f2 and ω ∈ H/Z, the numbers τ̄ ( f1+ω) and τ̄ ( f2+ω) do not
coincide.

Question 9. Is there an explicit formula for τ̄ ( f +ω)?

The only case when the author can obtain an explicit formula for τ̄ ( f +ω) is described in the following
proposition.

Let π : C/Z→ C∗ be given by π(z) := exp(2π i z).

Proposition 10. Let F be a Möbius map that preserves the circle {|w| = 1 |w ∈ C}. Let f : R/Z→ R/Z

be given by f := π−1
◦ F ◦π . Then f has only a 0-bubble, and this bubble is a vertical segment.

Proof. First, let us compute τ( f +ω) for ω ∈ H/Z.
Put Fω := e2π iωF. For ω ∈ H/Z and small ε > 0, let E∗(Fω) be the quotient space of the annulus

5∗ := {1> |w|> |e2π iω
|} via the map Fω. Note that the map π induces a biholomorphism of E( f +ω)

to E∗(Fω). Indeed, it takes 5 to the neighborhood of 5∗ and conjugates f +ω to Fω = π ◦ ( f +ω)◦π−1.
So τ( f +ω) is equal to the modulus of E∗(Fω).

The map Fω is a Möbius map that takes the unit circle to the interior of the unit disc. Let Aω be
its attractor with multiplier µ(ω) and Rω be its repellor. The map (w − Aω)/(w − Rω) conjugates
Fω to the linear map w 7→ µ(ω)w, and thus induces a biholomorphism of E∗(Fω) to the complex
torus C∗/(w ∼ µ(ω)w). The modulus of this torus is equal to 1/(2π i) lnµ(ω). Finally, τ( f + ω) =
1/(2π i) lnµ(ω).

Now let us study the boundary values of τ( f +ω), i.e., τ̄ ( f +ω0)= limω→ω0 τ( f +ω) for ω0 ∈ R/Z.
The map Fω0 is a Möbius self-map of the unit circle. If it has two hyperbolic fixed points on the unit

circle (i.e., ω0 is an interior point of I0), then the multiplier of its attractor, µ(ω0), is real because Fω0

preserves the unit circle. Then

τ̄ ( f +ω0)= lim
ω→ω0

1
2π i

lnµ(ω)= 1
2π i

lnµ(ω0) ∈ iR.

If Fω0 has one parabolic fixed point on the unit circle, then limω→ω0 µ(ω)= 1, and τ̄ ( f +ω0)= 0. If Fω0

has no fixed points on the unit circle (i.e., ω0 ∈ (R/Z)\ I0), then it has a unique fixed point Aω0 inside the
unit disc and a unique fixed point Rω0 outside it; the Schwarz lemma implies that the multiplier of Aω0
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Figure 1. Infinitesimal 0-bubbles for a perturbation of the Möbius map f =
(z + 0.5)/(1+ 0.5z) by the map g = sin 2πnx , n = 1, 2, 3, 4, 5, 10. The pictures
are rescaled horizontally. The vertical segment on each picture is the 0-bubble for f .

satisfies |µ(ω0)| = 1, so

τ̄ ( f +ω0)= lim
ω→ω0

1
2π i

lnµ(ω)= 1
2π i

lnµ(ω0) ∈ R/Z.

Finally, the image of I0 under τ̄ ( f + · ) belongs to iR, and the image of (R/Z) \ I0 belongs to R/Z.
We conclude that the only bubble of f is a 0-bubble, and it is a vertical segment. �

Question 11. Is there a way to compute τ̄ ( f +ω) approximately?

In the general case, one can try to implement the construction described in Section 5 as a computer
program. The author haven’t done this yet. For perturbations of Möbius maps, a simpler approach is
described below.

Take a map f + εg where f is as in Proposition 10, and g is a trigonometric polynomial. Figure 1
shows infinitesimal 0-bubbles of f + εg.
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Definition. An infinitesimal 0-bubble for a perturbation f + εg of an analytic circle diffeomorphism f is
the image of the segment I0 for f under the map

ω 7→ τ̄ ( f +ω)+ ε · d
dε

∣∣∣
ε=0
τ̄ ( f + εg+ω),

i.e., under the linear approximation to the complex rotation number.

The choice of ε is shown on each picture in Figure 1, but it does not essentially affect the shape of
the infinitesimal bubble. In the lower part of bubbles, (d/dε)|ε=0τ̄ ( f + εg+ω) tends to infinity. So the
linear approximation is not accurate, and this part of infinitesimal bubbles is not shown on the picture.

The following proposition enables us to draw infinitesimal bubbles. Its proof follows the same scheme
as the computation in [Risler 1999, Section 2.2.3]; it is postponed until the Appendix.

Proposition 12. Let f, g be as above. Let γ be a curve in C/Z which is close to R/Z and passes below
the attractor and above the repellor of f +ω, ω ∈ I0. Then

d
dε

∣∣∣
ε=0
τ̄ ( f + εg+ω)=

∫
γ

g(z)
f ′(z)

(H ′ω(z))
2 dz, (3)

where Hω uniformizes E( f +ω). As in Proposition 10, one can compute Hω explicitly. The derivatives in
the right-hand side are with respect to z.

For any trigonometric polynomial g (say, g(x) = sin 2πnx), the change of variable w = π(z) turns
the integral (3) into an integral of a rational function along the closed loop π(γ ). We then compute it
explicitly via the residue theorem; for n ≥ 3, the formulas become cumbersome and we use a computer
algebra system GiNaC [Bauer et al.; Vollinga 2006] to obtain them. The infinitesimal bubbles thus
obtained are shown in Figure 1.

In certain cases, intersections of infinitesimal 0-bubbles for f +εg mean that for small ε, the 0-bubbles
of f + εg intersect as well; see Remark 17 below.

Question 13. Is it true that the map ω 7→ τ( f +ω) is injective (so that the bubbles belong to the boundary
of the set {τ( f +ω) | ω ∈ H/Z})?

No, see [Buff and Goncharuk 2015, Corollary 16].

Question 14. How large are the bubbles?

In [Buff and Goncharuk 2015, Main Theorem] the authors prove that the p/q-bubble (with coprime
p, q) is within a disc of radius D f /(4πq2) tangent to R/Z at p/q , where D f is the distortion of f ,

D f :=

∫
R/Z

∣∣∣∣ f ′′(x)
f ′(x)

∣∣∣∣ dx .

Question 15. Can the bubbles intersect or self-intersect?

Here are several results in this direction.

Proposition 16. If an analytic circle diffeomorphism f is sufficiently close to a rotation in C2 metrics, its
different bubbles do not intersect.
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Proof. We will use the answer to Question 14 above. Suppose that the distortion of f satisfies D f < 2π ,
which holds true if f is C2-close to a rotation. For each p/q , take the disc of radius D f /(4πq2)< 1/(2q2)

tangent to R/Z at p/q . It is easy to verify that these discs do not intersect for different p/q . As mentioned
in the answer to Question 14, the bubbles are within such discs, so they do not intersect as well. �

This proposition does not imply that the bubbles of f are not self-intersecting. This article contains an
affirmative answer to Question 15:

Main Theorem. (1) There exists a circle diffeomorphism f such that its 0-bubble is self-intersecting.

(2) For each rational p/q, there exists a circle diffeomorphism f such that its 0-bubble intersects its
p/q-bubble.

We do not assert that these bubbles intersect transversely; it is possible that they are tangent at a
common point.

Remark 17. Let

f =
z+ 0.5

1+ 0.5z

be the Möbius map that we chose to draw infinitesimal 0-bubbles. Let g = sin 2πnx , n = 3, 4, 5, or 10.
Using the self-intersections of infinitesimal 0-bubbles for f + εg, see Figure 1, one may show that for
sufficiently small ε, the 0-bubble of f + εg is self-intersecting. This provides an alternative proof of the
first part of the Main Theorem. Here we sketch this proof.

Let l1(ε) and l2(ε) be two small intersecting arcs of the infinitesimal 0-bubble for f + εg. Let aε, bε
and cε, dε be the endpoints of l1(ε), l2(ε) respectively. It is easy to verify that the lengths of the sides and
the diagonals of the quadrilateral aεcεbεdε are of order ε, and l1(ε), l2(ε) are close to these diagonals.
The 0-bubble of f + εg is o(ε)-close to the infinitesimal 0-bubble for f + εg, and thus it contains a pair
of curves that are o(ε)-close to l1(ε), l2(ε). This implies that the 0-bubble of f + εg is self-intersecting
for small ε.

2. Main lemmas

Part 1 of the Main Theorem is based on Lemma 8 and the following lemma.

Lemma 18. For any hyperbolic analytic circle diffeomorphism f1 with rot f1 = 0 and any analytic circle
diffeomorphism f2 6= id, there exists an analytic diffeomorphism f and ω ∈ R/Z \ {0} such that f and
f +ω are analytically conjugate to f1, f2 respectively.

This lemma provides a nonrestrictive sufficient condition for two analytic diffeomorphisms to appear
(up to analytic conjugacies) in one and the same family of the form f +ω.

Part (2) of the Main Theorem also requires the following lemma, which is interesting in its own right.

Lemma 19. For any complex number w ∈ H/Z and any natural number m, there exists a hyperbolic
circle diffeomorphism f having 2m fixed points and the complex rotation number τ̄ ( f )= w.
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Lemma 8 shows that complex rotation numbers can be used as invariants of analytic classification of
families of circle diffeomorphisms; Lemma 19 is a weak version of the realization of these invariants.
The following realization question is open:

Question 20. Which holomorphic self-maps of the upper half-plane are realized as ω 7→ τ( f +ω) for
some circle diffeomorphism f ?

3. Proof of the Main Theorem modulo Lemmas 18 and 19

3.1. Part (1): self-intersecting 0-bubble. This part of the Main Theorem does not require Lemma 19.
Fix a hyperbolic circle diffeomorphism f1 with rot f1 = 0. Apply Lemma 18 to f1 and f2 = f1.
We get a circle diffeomorphism f such that f, f +ω with ω 6= 0 mod 1 are both analytically conjugate

to f1. Due to Lemma 8, τ̄ ( f ) = τ̄ ( f1) = τ̄ ( f +ω). Note that τ̄ ( f ), τ̄ ( f +ω) belong to the 0-bubble
for f because f, f +ω have zero rotation number and are hyperbolic.

So the 0-bubble for f passes twice through the point τ̄ ( f1). This completes the proof of the Main
Theorem, part (1).

Remark. Using Lemma 19, one can also prove that the 0-bubble may self-intersect at any prescribed
point w ∈H/Z. To achieve this, it is sufficient to start with f1 provided by Lemma 19 such that τ̄ ( f1)=w.

3.2. Part (2): intersection of 0-bubble and p/q-bubble. Take a hyperbolic circle diffeomorphism f2

with rot f2 = p/q. Put w := τ̄ ( f2). Using Lemma 19, construct a hyperbolic circle diffeomorphism f1

with zero rotation number such that τ̄ ( f1)= w.
Now, the two circle diffeomorphisms f1, f2 satisfy rot f1 = 0, rot f2 = p/q and τ̄ ( f1)= τ̄ ( f2).
Lemma 18 provides us with a circle diffeomorphism f such that f, f + ω are conjugate to f1, f2.

Due to Lemma 8, τ̄ ( f )= τ̄ ( f1)= w and τ̄ ( f +ω)= τ̄ ( f2)= w. The point w belongs to the 0-bubble
of f , because rot f = rot f1 = 0 and f is hyperbolic, and it also belongs to the p/q-bubble, because
rot( f +ω) = rot( f2) = p/q and f +ω is hyperbolic. Finally, the 0-bubble and the p/q-bubble for f
intersect at w. This completes the proof of the Main Theorem, part (2).

Remark. In a similar way one can prove that the 0-bubble and the p/q-bubble may intersect at any
prescribed point w ∈ C/Z. This requires an analogue of Lemma 19 for circle diffeomorphisms with
nonzero rational rotation numbers; the proof of this analogue repeats the proof of Lemma 19, except for
some technical details.

4. Proof of Lemma 18

We say that two circle diffeomorphisms f1, f2 have a Diophantine quotient if rot( f1 f −1
2 ) =: ω is

Diophantine. Lemma 18 follows from two propositions below.

Proposition 21. If two analytic circle diffeomorphisms f1, f2 have a Diophantine quotient and
rot( f1 f −1

2 )=: ω, then there exists an analytic diffeomorphism f such that f and f +ω are analytically
conjugate to f1, f2 respectively.



COMPLEX ROTATION NUMBERS: BUBBLES AND THEIR INTERSECTIONS 1795

ab

cdf −1
2 (a) f −1

2 (b)

f1(c)f1(d)

f̂1 f̂2

h

Figure 2. The choice of h that yields rot( f̂1 f −1
2 )= 1

2 .

Proposition 22. Any hyperbolic analytic circle diffeomorphism f1 with rot f1=0 is analytically conjugate
to a diffeomorphism that has a Diophantine quotient with a given analytic circle diffeomorphism f2,
f2 6= id.

Proof of Proposition 21 . Due to the Herman–Yoccoz theorem (see Theorem 1), in some analytic chart,
f1 f −1

2 is the rotation by ω = rot f1 f −1
2 . Let f̃1, f̃2 be the diffeomorphisms f1, f2 in this analytic chart;

then f̃1 f̃ −1
2 (z)= z+ω. So f̃1(z)= f̃2(z)+ω, and we can take f = f̃2. �

Proof of Proposition 22. Let A be the set of analytic diffeomorphisms of the form f̂1 = h ◦ f1 ◦ h−1

for all possible analytic orientation-preserving diffeomorphisms h. Then A is a linearly connected
subset of the space of all analytic circle diffeomorphisms, because for each h1, h2, we can join h1 to
h2 by a continuous family of analytic circle diffeomorphisms ht. Now if we show that the continuous
function f̂1 7→ rot( f̂1 f −1

2 ) on A takes two distinct values, then it takes all intermediate values, including
Diophantine values.

Let us find two maps of the form f̂1 = h ◦ f1 ◦ h−1 such that rot( f̂1 f −1
2 ) attains values 0 and 1

2 :

• rot( f̂1 f −1
2 )= 0. Choose h such that for some point a ∈ R/Z, we have f̂1(a)= f2(a). This is possible,

because f1 6= id and f2 6= id. Then f̂1 f −1
2 ( f2(a)) = f2(a), so f2(a) is a fixed point for f̂1 f −1

2 , and
rot( f̂1 f −1

2 )= 0.

• rot( f̂1 f −1
2 )= 1

2 . Choose two points a, b ∈R/Z such that these points and their preimages under f2 are
distinct and are ordered in the following way along the circle: a, b, f −1

2 (a), f −1
2 (b). It is sufficient to

take a not fixed and b close to a.
Choose two points c, d ∈ R/Z such that these points and their images under f1 are distinct and are

ordered in the following way along the circle: c, f1(c), f1(d), d. It is sufficient to take c and d near an
attracting fixed point of f1, on the different sides with respect to it.

Choose h that takes four points c, f1(c), f1(d), d to four points f −1
2 (b), a, b, f −1

2 (a) (see Figure 2).
Then f̂1 = h ◦ f1 ◦ h−1 satisfies f̂1( f −1

2 (b))= a, f̂1( f −1
2 (a))= b; hence the point a has period 2 under

f̂1 f −1
2 . So rot( f̂1 f −1

2 )= 1
2 .

Finally, for some h, the maps f̂1 = h ◦ f1 ◦ h−1 and f2 have a Diophantine quotient. �

These two propositions imply Lemma 18.
The rest of the article is devoted to the proof of Lemma 19.
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Figure 3. Construction of E( f ).

5. Explicit construction of bubbles

Theorem 5 defines τ̄ ( f +ω), ω ∈R/Z, as a limit value of the map ω→ τ( f +ω) on the real axis. In this
section, we describe τ̄ ( f +ω), ω ∈ I0, as a modulus of an explicitly constructed complex torus E( f +ω).

This construction was proposed by X. Buff; see [Goncharuk 2012; Buff and Goncharuk 2015] for
more details. The key idea of this construction is contained in [Risler 1999], but there it was used in
different circumstances.

5.1. The complex torus E( f ). Let f be a hyperbolic diffeomorphism. Assume that rot f = 0.
Let aj , 1≤ j≤2m, be its fixed points with multipliers λj . We suppose that 0<λ2 j−1<1<λ2 j , i.e., even

indices correspond to repellors, and odd indices correspond to attractors. Letψj : (C, 0)→ (C/Z, aj ) be the
corresponding linearization charts, i.e., ψ−1

j ◦ f ◦ψj (z)=λj z, ψj (0)= aj , ψj (R)⊂R/Z, and ψj preserve
orientation on R. We extend these charts by iterates of f so that the image of ψj contains (aj−1, aj+1).

Construct a simple loop γ ⊂ C/Z (le courbe ascendante, in terms of [Risler 1999]) such that f (γ ) is
above γ in C/Z. Namely, let γ =

⋃
γj ; let γj have its endpoints on (aj−1, aj ) and (aj , aj+1); let γj be

the image of an arc of a circle under ψj ; let γj be above R/Z if j is even, and below R/Z if j is odd.
Since ψj conjugates f to z 7→ λj z, the curve f (γ ) is above γ in C/Z.

Let 5̃⊂C/Z be a curvilinear cylinder between γ and f (γ ) (see Figure 3). Consider the complex torus
E( f ) which is the quotient space of a neighborhood of 5̃ by the action of f . Due to the uniformization
theorem, there exists τ ∈ H/Z and a biholomorphism H̃ω : E( f )→ C/(Z+ τZ) that takes γ to a curve
homotopic to R/Z. Let τ(E( f )) := τ be the modulus of E( f ).

For rot f = p/q, the construction of γ should be slightly modified: φj are linearizing charts of f q

at its fixed points, γj are arcs of circles in charts φj , we let γ =
⋃
γj , γ winds above repelling periodic

points of f and below attracting periodic points of f , and we choose γj so that f (γ ) is above γ in C/Z.
The rest of the construction is analogous to the case of rot f = 0.

Theorem 23 [Goncharuk 2012; Buff and Goncharuk 2015, Section 6]. Let f be a hyperbolic circle
diffeomorphism with rational rotation number; define E( f ) as above. Then the modulus τ(E( f )) of the
torus E( f ) equals τ̄ ( f ).

Due to the construction, E( f ) does not depend on the analytic chart on R/Z. This implies Lemma 8.
So in order to prove Lemma 19, it is sufficient to find a circle diffeomorphism f with 2m fixed points

such that τ(E( f ))= w.



COMPLEX ROTATION NUMBERS: BUBBLES AND THEIR INTERSECTIONS 1797

5.2. Cutting E( f ) by the real line. Let Aj ⊂ 5̃ be the domain bounded by γj , f (γj ), and two segments
of R/Z. Note that the complex manifold Ãj := Aj/ f is an annulus, and Ãj ⊂ 5̃/ f = E( f ).

Let H+ = H and H− be the upper and the lower half-planes of C respectively. From now on, we use
the notation A±(λ) for the following standard annulus: A±(λ) := H±/(z ∼ λz). It is easy to see that its
modulus is π/| log λ|.

Remark 24. The linearizing chart ψj induces the map from Ãj to the standard annulus A+(λj ) for even j ,
and to A−(λj ) for odd j . This follows from the fact that ψj conjugates f to x 7→ λj z.

This gives a full description of E( f ) in terms of multipliers and transition maps of f : E( f ) is
biholomorphically equivalent to the quotient space of the annuli A±(λj ), mod A±(λj )= π/| log λj |, by
the transition maps ψ−1

j+1 ◦ψj between linearizing charts of f .

6. Circle diffeomorphisms with prescribed complex rotation numbers

In this section, we prove Lemma 19.

6.1. Scheme of the proof. Remark 24 above shows that E( f ) can have any modulus, which nearly
implies Lemma 19. Indeed, we can obtain a complex torus of an arbitrary modulus by gluing some
2m annuli by some maps. We only need to show that there are no restrictions on possible multipliers and
transition maps for an analytic circle diffeomorphism. This follows from Theorem 25 below.

The above arguments together with Theorem 25 show that E( f ) can be biholomorphic to a standard
torus of any modulus; however, we must also check that this biholomorphism matches the generators,
as required by the definition of τ(E( f )); see Section 5 above. The formal proof of Lemma 19, with the
explicit construction of f and the examination of generators, is contained in Section 6.3.

6.2. Moduli of analytic classification of hyperbolic circle diffeomorphisms. The following theorem is
an analytic version of a smooth classification of hyperbolic diffeomorphisms due to G. R. Belitskii [1986,
Proposition 2]. The proof is completely analogous, but we provide it for the sake of completeness.

Theorem 25. Suppose that we are given a tuple of 2m real numbers λj with 0< λ2 j−1 < 1< λ2 j , and
a tuple of analytic orientation-preserving diffeomorphisms ψj; j+1 : R

+
→ R− such that ψj; j+1(λj z)=

λj+1ψj; j+1(z).
Then there exists an analytic circle diffeomorphism f such that it has 2m fixed points with multipliers λj ,

and ψj; j+1 are transition maps between their linearization charts ψj : ψj; j+1 = ψ
−1
j+1 ◦ψj .

Remark. It is also true that such an f is unique up to analytic conjugacy, so the data above is the modulus
of an analytic classification of hyperbolic circle diffeomorphisms. Given f , transition maps ψj; j+1 are
uniquely defined up to the equivalence

( . . . ψj−1; j . . . )∼ ( . . . , ajψj−1; j (z/aj−1), . . . )

for some numbers aj > 0; see [Belitskii 1986, Proposition 3].

Proof. Take 2m copies of the real axis and glue the j -th to the ( j+1)-th copy by the mapψj; j+1 :R
+
→R−.

We get a one-dimensional Cω-manifold homeomorphic to the circle R/Z. It is well known that such
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manifolds are Cω-equivalent to R/Z. Thus there exists a tuple of Cω charts ψj : R→ R/Z such that
ψj; j+1 = ψ

−1
j+1 ◦ψj . Due to the equality ψj; j+1(λj z)= λj+1ψj; j+1(z), the maps ψj (λjψ

−1
j (z)) glue into

the well-defined Cω circle diffeomorphism f .
Let aj =ψj (0). Note that f (aj )=ψj (λjψ

−1
j (aj ))=ψj (λj · 0)=ψj (0)= aj , so these points are fixed

points of f .
On a segment (aj−1, aj+1), the map ψj conjugates f = ψj ◦ λjψ

−1
j to z 7→ λj z, so ψj is a linearizing

chart of a fixed point aj , and λj is the multiplier of f at aj . �

6.3. Proof of Lemma 19, see Figure 4. Recall that our aim is to construct a circle diffeomorphism f
with 2m hyperbolic fixed points and the complex rotation number w.

Consider the standard elliptic curve Ew = C/(Z+wZ); let R/Z and wR/wZ be its first and second
generators respectively. Take 2m arbitrary disjoint simple real-analytic loops νj ⊂ Ew along the second
generator. Let Aj ⊂ Ew be the annulus between νj and νj+1. Let1j =Aj∩R/Z; then1j joins boundaries
of Aj .

We are going to construct a circle diffeomorphism f with 2m fixed points, and a biholomorphism
H : E( f )→ Ew such that H( Ãj )=Aj ⊂ Ew, where Ãj are the annuli in E( f ) bounded by intervals of
R/Z as in Section 5.2. This biholomorphism H will take the class of γ in E( f ) to the class of R/Z=

⋃
1j

in Ew. This will prove that the modulus of E( f ) equals w.

Uniformize Aj . For each annulus Aj where j is even, take λj > 1 such that there exists a biholomorphism
9̃j : A+(λj )→Aj . For each annulus Aj where j is odd, take λj <1 such that there exists a biholomorphism
9̃j : A−(λj )→ Aj . Each map 9̃j extends analytically to a neighborhood of A±(λj ) in C∗/(z ∼ λj z),
because the boundaries of Aj are real-analytic curves νj . Assume that 9̃−1

j (νj ) is the left boundary
of A±(λj ); that is, 9̃−1

j (νj )= R−/(z ∼ λj z). Then 9̃−1
j (νj+1)= R+/(z ∼ λj z).

Let 9j : H
±
\ {0} → Aj be the lift of 9̃j to the universal cover of A±(λj ); then 9j (λj z) = 9j (z).

For each j , choose one of the preimages δj = 9
−1
j (1j ). Let lj ∈ R−, rj ∈ R+ be the left and the right

endpoints of δj respectively. Consider the maps ψj; j+1 : R
+
→ R−,

ψj; j+1 =9
−1
j+1 ◦9j ,

where we choose the branch of 9−1
j+1 so that ψj; j+1(rj )= lj+1. Note that ψj; j+1(λj z)= λj+1ψj; j+1(z)

because 9j (λj z)=9j (z).
Now, the complex torus Ew is biholomorphically equivalent to the quotient space of annuli A±(λj ) by

the maps ψj; j+1. This, together with Remark 24, motivates the construction of f below.

Construct f and a biholomorphism H : E( f )→ Ew. Use Theorem 25 to construct f with multipliers λj

and transition maps ψj; j+1.
Let ψj be linearization charts of its fixed points; then ψj; j+1 = ψ

−1
j+1 ◦ψj . Let γ, E( f ), Aj , Ãj be

defined as in Section 5 for this circle diffeomorphism f .
Consider the tuple of maps 9j ◦ψ

−1
j on Aj ⊂ C/Z. These maps agree on the boundaries of Aj due to

the equality

(9j+1 ◦ψ
−1
j+1)

−1
◦9j ◦ψ

−1
j = ψj+1 ◦9

−1
j+1 ◦9j ◦ψ

−1
j = ψj+1 ◦ψj; j+1 ◦ψ

−1
j = id,
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Figure 4. Proof of Lemma 19.

so they define one map on 5̃. They descend to the map H : E( f )→ Ew because ψj conjugates f to
z 7→ λj z and 9j (λj z)=9j (z). Clearly, H( Ãj )=Aj .

H takes the class of γ in E( f ) to the first generator of Ew. Note that the curves ψj (δj ) have common
endpoints ψj (rj )= ψj+1(lj+1) since ψj; j+1(rj )= lj+1. So γ ′ :=

⋃
ψj (δj ) is a loop in C/Z that passes

above the attractors ψ2 j−1(0) and below the repellors ψ2 j (0) of f . So γ ′ is homotopic to γ in an annular
neighborhood of R/Z covered by linearizing charts of fixed points; the homotopy does not pass through
fixed points. Hence γ ′ is homotopic to γ in E( f ), i.e., corresponds to the first generator of E( f ).

Finally, H(γ ′)=
⋃
9j (δj )=

⋃
1j = R/Z⊂ Ew. This completes the proof of Lemma 19.

Appendix: Derivatives of complex rotation number

In this section we compute (∂/∂ω)τ̄ ( fω) for a family of circle diffeomorphisms fω. In particular, this
yields Proposition 12. The computation is analogous to that of [Risler 1999, Section 2.2.3].

Let fω be an analytic family of analytic circle diffeomorphisms. Let Gω := H̃−1
ω , where H̃ω rectifies

the complex torus E( fω); see Section 5. Let τ(ω)= τ̄ ( fω). Then

fω(Gω(z))= Gω(z+ τ(ω)) for z ∈ G−1
ω (γ ). (4)
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The Ahlfors–Bers theorem implies that the map Gω, if suitably normalized, depends analytically on ω;
see [Risler 1999, Section 2.1, Proposition 2].

Fix ω = ω0 ∈ R/Z; in what follows, all derivatives with respect to ω are evaluated at ω = ω0, and
we will omit the lower indices in fω,Gω etc. Here and below G ′, f ′ are derivatives with respect to z;
G ′ω, f ′ω, τ ′ω are derivatives with respect to ω.

The following proposition clearly implies Proposition 12.

Proposition 26. Let fω, Gω be as above. Then

τ ′ω =

∫
γ

f ′ω(w)
f ′(w)

((G−1)′(w))2 dw,

where all derivatives are evaluated at ω = ω0.

Proof. We may and will assume that the curve γ in the construction of E( fω) does not depend on ω in a
small neighborhood of ω0.

Differentiate (4) with respect to ω:

f ′ω|G(z)+ f ′|G(z)G ′ω(z)= G ′ω(z+ τ)+G ′(z+ τ)τ ′ω.

Express τ ′ω using this equation and the identity G ′(z+ τ) = f ′|G(z)G ′(z) (this is the derivative of (4)).
We get

τ ′ω =
f ′ω|G(z)

G ′(z+ τ)
+

G ′ω(z)
G ′(z)

−
G ′ω(z+ τ)
G ′(z+ τ)

.

Integrate this expression along G−1(γ ). The second and the third summands cancel out because the
function G ′ω(z)/G ′(z) is holomorphic. We obtain

τ ′ω =

∫
G−1(γ )

f ′ω|G(z)
G ′(z+ τ)

dz.

Using again G ′(z+ τ)= G ′(z) f ′|G(z) and making the change of variable w = G(z), we get the desired
formula. �
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