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ON THE GLOBAL STABILITY OF A BETA-PLANE EQUATION

FABIO PUSATERI AND KLAUS WIDMAYER

We study the motion of an incompressible, inviscid two-dimensional fluid in a rotating frame of reference.
There the fluid experiences a Coriolis force, which we assume to be linearly dependent on one of the
coordinates. This is a common approximation in geophysical fluid dynamics and is referred to as the
ˇ-plane approximation. In vorticity formulation, the model we consider is then given by the Euler equation
with the addition of a linear anisotropic, nondegenerate, dispersive term. This allows us to treat the
problem as a quasilinear dispersive equation whose linear solutions exhibit decay in time at a critical rate.

Our main result is the global stability and decay to equilibrium of sufficiently small and localized
solutions. Key aspects of the proof are the exploitation of a “double null form” that annihilates interactions
between spatially coherent waves and a lemma for Fourier integral operators which allows us to control
a strong weighted norm.
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1. Introduction

A basic model for a fluid in a rotating frame of reference is given by the Euler–Coriolis equation�
@tvC v � rvCf �^ vCrp D 0;

div v D 0;
(1-1)

where v D .v1; v2; v3/ W .t;x/ 2 R�R3! R3 and p W .t;x/ 2 R�R3! R are the velocity and pressure
of the fluid, respectively. Here, f �^ v is the Coriolis force experienced in the rotating frame, with
� 2 R3 being the axis of rotation and f W R3! R the strength of the effect, which depends on the spatial
location (but not on time). To describe waves on the surface of the Earth, a common approximation in
geophysical fluid dynamics, see [McWilliams 2006; Pedlosky 1987], consists in choosing �D .0; 0; 1/|
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and assuming trivial dynamics in the vertical direction, i.e., @3v D 0. One can then reduce matters to a
two-dimensional system �

@tuCu � ruC .�f u2; f u1/
|
Crp D 0;

div uD 0;
(1-2)

where now u W .t;x/ 2R�R2!R2, p W .t;x/ 2R�R2!R and f WR2!R. A solution to the original
system (1-1) is then recovered by setting .v1; v2/D .u1;u2/ and solving a transport equation for v3.

Passing to a scalar equation using the vorticity ! WD curl uD @1u2� @2u1 yields

@t!Cu � r! D�u � rf; uDr?.��/�1!: (1-3)

On a rotating sphere, such as the Earth, the force f varies with the sine of the latitude. In a first rough
approximation, the so-called f -plane approximation, this variation is ignored, and a fixed value f0 is
used throughout the domain. A more accurate and very common1 model in geophysical fluid dynamics
is a linear approximation to this variability, which is usually referred to as the ˇ-plane approximation;
see, e.g., [McWilliams 2006, Chapter 2; Pedlosky 1987, Chapter 3]. Assuming that the strength of the
Coriolis force depends linearly on the latitude,

f .x;y/D f0Cˇ.y �y0/;

we arrive at the so-called ˇ-plane equation

@t!Cu � r! D ˇL1!; L1 WD
@x

�
D

R1

jrj
; uDr?.��/�1!; (1-4)

for ! W R�R2! R. Here ˇ is the parameter of linearity of the Coriolis force, which by rescaling can be
assumed to be equal to 1, and R1 stands for the Riesz transform in the first coordinate:

bR1g.�/D
�i�1

j�j
Og.�/; Og.�/ WD

1

2�

Z
R2

e�ix��g.x/ dx:

On one hand, one can view (1-4) as a perturbation of the Euler equation by a constant-coefficient
differential operator and show, by arguments akin to those for the two-dimensional Euler equation, the
existence of global solutions (even for large data) with at most double exponential growth in H s, s> 1; see
[Elgindi and Widmayer 2017, Appendix B]. On the other hand (1-4) can also be viewed as a quasilinear
dispersive equation, in the sense that it is a nonlinear version of the equation @t! DL1!, solutions of
which exhibit dispersive decay as will be shown further below.

1A. Main result. The content of this article is a treatment of the nonlinear problem (1-4), with the result
that for sufficiently small and localized initial data, solutions to the Cauchy problem decay like solutions
of the linear problem, and the zero solution of (1-4) is globally nonlinearly stable in a strong sense. We
can state our main result as follows:

1Such a modeling assumption is made in various contexts: examples include rotating shallow-water equations, Rossby waves
and quasigeostrophic scenarios; see [McWilliams 2006, Chapter 4; Majda 2003, Chapter 4; Pedlosky 1987, Chapter 3] among
others. We also remark that in [Sukhatme and Smith 2009], equation (1-4) was viewed as part of a larger family of equations to
model two-dimensional dispersive turbulence.
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Theorem 1.1. Consider the initial value problem for the ˇ-plane equation�
@t!Cu � r! DL1!; uDr?.��/�1!;

!.0/D !0:
(1-5)

There exist N � 1, "0 > 0, and a weighted L2-based function space X � PW 1;1 on R2 such that for any
initial data with k!0kX ; k!0kH N � "0, there exists a unique global solution of (1-5) which decays at the
linear rate, namely k!.t/kL1 . "0.1Cjt j/

�1, and scatters.

A more precise statement of the theorem is presented as Theorem 2.2 in Section 2, where we also
illustrate its proof through a bootstrap argument in Section 2A. The key difficulty here lies in establishing
a global control over a suitably chosen weighted X -norm of the profile of !— see (2-8) on page 1592
for the precise definition — which has to be strong enough to guarantee the L1 decay.

1B. Background. To give some context we now present some of the key difficulties in treating the ˇ-plane
equation as a quasilinear dispersive equation. The present model features a quadratic nonlinearity and a
critical decay rate of jt j�1 at the linear level. This situation is common to many other dispersive and hyper-
bolic equations and a variety of different behaviors can occur even for small and Schwartz initial data. For
example, one could have global solutions with linear behavior as in the case of (quasilinear) wave equations
[Klainerman 1986] with a null condition, blow-up at time T � e

1
"0 as in the compressible Euler equations

[Sideris 1985], nonlinear asymptotics in the sense of modified scattering as for nonlinear Schrödinger
equations [Hayashi and Naumkin 1998; Kato and Pusateri 2011], or growth at infinity as in [Alinhac 2003].

In the present case solutions are already known to be global, so no blow-up occurs. Moreover, one
can notice that there is a null structure in (1-5). More precisely, since uDr?.��/�1!, the transport
term u � r! is depleted when two parallel frequencies interact. On the negative side, one should also
notice that, when seen as a bilinear term in !, the nonlinearity is singular because of the .��/�1 factor.
Moreover, the linear operator L1 is anisotropic, and the impossibility of commuting the equation with
rotations introduces several difficulties.

Inviscid Euler and the role of dispersion. Generally, inviscid Euler-type nonlinearities can lead to double
exponential growth, as was shown by the example of [Kiselev and Šverák 2014] on a bounded domain;
see also [Denisov 2015; Zlatoš 2015]. In the whole space, the question of global stability and asymptotic
behavior for the Euler equation is widely open. A byproduct of Theorem 2.2 is that for sufficiently small
data, instability in (1-5) is prevented by dispersion: waves with different frequencies travel with distinct
velocities and their interactions lose strength over time. However, this is a much weaker effect than
damping or friction. Indeed for (1-5) the same L2-based estimates as for the inviscid Euler equation
@t! C u � r! D 0 hold, because of the skew symmetry (for the inner product in L2) of the constant-
coefficient right-hand-side operator L1. Also, all Sobolev norms are preserved by the linear flow, and the
same blow-up criterion as for the two-dimensional Euler equation holds.

As is shown in this article, the dispersion produced by L1 acts as a regularizing mechanism that
globally stabilizes the fluid. A first way of seeing improvements at the hands of dispersion is through
a basic energy estimate yielding the following: assuming a linear decay rate of jt j�1 for Du in L1



1590 FABIO PUSATERI AND KLAUS WIDMAYER

one obtains the slow growth of all Sobolev norms for the nonlinear problem (whereas in the absence of
dispersion, or without control on the rate of dispersion, the best known bounds are double exponential —
see [Elgindi and Widmayer 2017, Appendix B]). A finer understanding of the interactions in the Euler-type
nonlinearity is then needed to show that decay occurs for nonlinear solutions.

In earlier work of T. Elgindi and the second author [Elgindi and Widmayer 2017], stability for the
ˇ-plane equation (1-5) for arbitrarily large times was established: it was shown that for any M 2N there
exists a threshold "M >0, below which initial data of size "�"M lead to solutions that decay on time scales
at least "�M — for more details see [Elgindi and Widmayer 2017, Theorem 2.1]. Apart from this work, the
literature on the ˇ-plane equation is oriented towards questions of relevance in the realm of geophysical
fluid dynamics. An exhaustive list is beyond the scope of this article, and beyond the expertise of its authors,
so we refer the reader to the books [Drazin 2002; Majda 2003; McWilliams 2006] for some overview.

Resonance structure and (double) null form. At the basis of our approach is the formulation of the
problem in a way that makes it amenable to techniques from harmonic analysis. This is done by working
with the profile of the vorticity f .t/ WD e�tL1!.t/, and writing the Duhamel formula for solutions of
(1-5) in terms of this profile f in Fourier space, in order to obtain an integral expression which can be
viewed as an oscillatory integral — see the beginning of Section 2 and the formulas (2-1)–(2-2).

From this point of view the resonances of the equation, that is, roughly speaking, those sets of frequen-
cies that do not produce oscillations, play a key role in the analysis of the nonlinear interactions. This
starting point is inspired by the method of space-time resonances, as introduced in [Germain et al. 2012b].
Without entering into too much detail, for now we point out that the space-time resonant set for this equation
is one-dimensional, which is the generic situation for quadratic nonlinearities in two dimensions; thus it
does not provide any additional smallness, in contrast to other problems such as in [Germain et al. 2012a;
2012b]. However, as already pointed out above, a null form is available in the nonlinearity: the symbol of
the quadratic interaction vanishes on parallel frequencies; see (2-1)–(2-2) in connection with (2-21). See
also the models in [Pusateri and Shatah 2013; Oh and Pusateri 2015; Hani et al. 2013] for similar behaviors.

In fact, as we shall explain in detail below, even more is true for (1-5): one has a “double” null form,
a quadratic (instead of linear) degree of vanishing of the symbol, as can be seen by symmetrizing the
expression (2-1). This is a key insight which greatly improves the control one has over interactions close
to the (space) resonant set, and for example yields much better decay estimates for the L2 norm of @tf

than one would normally expect.
In our proof we will also exploit the special, anisotropic, geometric structure of interactions near the

(time) resonances through a T T � argument, which was previously used in [Deng et al. 2016; 2017].
However, here we employ such an argument in a different context, not for the purpose of establishing energy
estimates, but as another means of extracting more oscillations in the bilinear interactions. This allows
us to prove a strong weighted bound for our solutions which in turn implies the desired decay over time.

1C. Plan of the article. In Section 2 we begin by setting up the problem and giving our detailed functional
framework. We then state a precise formulation of Theorem 1.1 (see Theorem 2.2) and discuss its proof
using a bootstrap argument. We see there that a fractional weighted estimate, see (2-16), is at the core of
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our efforts. By symmetrizing the formulation of the ˇ-plane equation we obtain a “double null form”.
As a first application, this yields improved bounds for the first iterate (see Lemma 2.4). The rest of the
article is then devoted to establishing the weighted estimate.

In Section 3 we go through preliminary reductions and a finite speed of propagation argument that
limits the range of parameters we need to consider for the weighted estimate. Further reductions are then
presented in Section 4. Using various localizations we balance smallness of relevant sets and repeated
integration by parts to essentially reduce to a problem where only frequencies of roughly order 1 are
involved. These arguments crucially rely on the improved bounds due to the double null form achieved
through symmetrization.

Finally, in Section 5 we exploit a nondegeneracy property of the phase functionˆ, defined in (2-1)–(2-2),
via a T T � argument, in combination with an appropriate anisotropic localization, thereby concluding the
proof of the weighted estimate.

In Section 6 we collect some useful lemmata.

2. Setup

The Duhamel formulation associated to the ˇ-plane equation (1-5) is

!.t/D etL1!0C

Z t

0

e.t�s/L1u � r!.s/ ds:

Written in terms of the profile
f .t/ WD e�tL1!.t/

this reads

Of .t; �/D Of0.�/C
1

.2�/2

Z t

0

Z
R2

eisˆ.�;�/ � � �
?

j�j2
Of .s; � � �/ Of .s; �/ d� ds (2-1)

with

ˆ.�; �/ WD
�1

j�j2
�
�1� �1

j� � �j2
�
�1

j�j2
: (2-2)

From now on we will omit the time dependence of the profiles in this expression, since it is clear from
the context.

We define the quadratic nonlinearity B.f; f / through its Fourier transform

FB.f; f /.t; �/ WD

Z t

0

Z
R2

eisˆ.�;�/ � � �
?

j�j2
Of .s; � � �/ Of .s; �/ d� ds; (2-3)

so that the Duhamel formula (2-1) can be written as

Of .t; �/D Of0.�/C
1

.2�/2
FB.f; f /.t; �/: (2-4)

Conserved quantities. For future reference we note that an explicit calculation using (1-2) and (1-3)
shows that the L2-norms of both u and ! are conserved along the flow of the equation:

k!.t/kL2 D k!.0/kL2 and ku.t/kL2 D ku.0/kL2 ; t 2 R:
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As an immediate consequence we obtain that the PH�1 norms of ! and f are controlled as well:jrj�1f


L2 D
jrj�1!


L2 . kukL2 : (2-5)

Notation. In this article we will work with localizations in frequency, space and time. To define them, as
is standard in Littlewood–Paley theory we let ' W R! Œ0; 1� be an even, smooth function supported in�
�

8
5
; 8

5

�
and equal to 1 on

�
�

5
4
; 5

4

�
. With a slight abuse of notation we also let ' be the corresponding

radial function on R2. For k 2Z we define 'k.x/ WD'.2
�k jxj/�'.2�kC1jxj/, so that the family .'k/k2Z

forms a partition of unity, X
k2Z

'k.�/D 1; � ¤ 0:

We also let

'I .x/ WD
X

k2I\Z

'k for any I � R; '�a.x/ WD '.�1;a�.x/; '>a.x/D '.a;1�.x/;

with similar definitions for '<a, '�a. To these cut-offs we associate frequency projections Pk through

Pkg WD F�1.'k.�/ Og.�//

and define similarly PI g WD F�1.'I .�/ Og.�//, P�kg WD F�1.'�k.�/ Og.�//, k 2 Z etc. We will also
sometimes write Q'k D 'Œk�2;kC2�.

To simultaneously localize in space, for .k; j / 2 J WD f.k; j / 2 Z�Z W kC j � 0; j � 0g we let

'
.k/
j .x/ WD

8<:
'j .x/; j � �kC 1 or j � 1;

'�0.x/; j D 0 .k � 0/;

'��k.x/; j D�k .k � 0/:

(2-6)

Notice that for any k 2 Z we have
P

j��minf0;kg '
.k/
j .x/D 1. We then define

Qjkg WD PŒk�2;kC2�'
.k/
j Pkg

to be the operator that localizes both in frequency and space. This will often be used to decompose our
profiles into atoms

g D
X

.k;j/2J

Qjkg: (2-7)

For notational convenience we also introduce the shorthand hti WD
p

1C t2 for t 2 R.

The main norm. Apart from the usual Sobolev and Lebesgue spaces we will be using a weighted function
space built on L2 in an atomic way: with the notation kC WDmaxfk; 0g we let

kg.t/kX WD sup
.k;j/2J

2.kCj/.1Cı/24kC
kQjkg.t/kL2 ; ı D 0:5 � 10�4: (2-8)

This choice of norm is motivated by our quest to control the L1 decay of ! through the dispersive
estimate (2-9) below. The use of weighted L2 norms in quasilinear dispersive problems is fairly standard.
Here we have decided to use a fractional weight following the functional framework introduced in [Ionescu
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and Pausader 2014]. The particular choice of putting the same number of derivatives (the power of 2k)
as the number of weights (the power of 2j ) is dictated by the characteristics of this specific problem,
including the singularity of the bilinear form in (2-3) and the “speed of propagation” of linear frequencies.

Dispersive estimate. For the linear semigroup etL1 we have the following decay estimate:

Lemma 2.1. For g 2 S.R2/ and k 2 Z we have

ketL1PkgkL1 . jt j�123k
kPkgkL1 : (2-9)

Since the Hessian of the exponent �1j�j�2 on the Fourier side is 4j�j�6, and so in particular is
nondegenerate, the proof is a standard application of the stationary phase lemma — see [Elgindi and
Widmayer 2017, Proposition 4.1]. We remark that the right-hand side of (2-9) is controlled by the X -norm
of g in (2-8) above.

Main theorem. In more detail, our Main Theorem, Theorem 1.1, is:

Theorem 2.2. Let2 0 < ı � 0:5 � 10�4 and N � 2:1 � ı�1. Then there exists an "0 > 0 such that for all
"� "0 and initial data !0 with

k!0kH N Ck!0kX � "; (2-10)

(1-5) admits a unique global solution ! 2 C.R;H N .R2//. Moreover, for all t 2 R the solution satisfies
the bounds

k!.t/kH N . "0.1Cjt j/
C"0 ; ke�tL1!.t/kX . "0; (2-11)

and, in particular, also the decay estimate

k!.t/kL1 . "0.1Cjt j/
�1: (2-12)

Finally, the solutions scatters: for any initial data !0 as in (2-10) there exist unique f˙1 2X such that

ke�tL1!.t/�f˙1kX ! 0 as t !˙1: (2-13)

2A. Proof of the main theorem. We will prove Theorem 2.2 through a bootstrap argument. The main
ingredient is the bilinear estimate (3-1), which establishes Proposition 2.3 below. Since the equation is
time reversible it suffices to consider t > 0. We will work with the following a priori assumptions.

A priori assumptions. We assume that for some T > 0 and "1 D A"0 with a suitably chosen constant
A> 1 to be determined below, we have

kPkf .t/kL2 � "1hti
D"02�N kC; (2-14)

sup
.k;j/2J

.2kCj /1Cı24kC
kQjkf .t/kL2 � "1 (2-15)

2We did not optimize on the value of ı, and the related size of N , to make the proof more readable. Especially in the last part
of the argument, in Sections 4 and 5, improvements on these values would be possible by tracking more carefully the various
parameters involved, but due to the technicality of the proof, we have decided not to do so. It is very likely that a number N

between 10 and 100 would work.
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for all t 2 Œ0;T � and a suitably large D > 0. For small enough T > 0 the estimates (2-14)–(2-15) hold by
virtue of (2-10) and a standard local well-posedness argument (that we omit), yielding a unique local
solution such that e�tL1! 2 C.Œ0; 1�;H N \X /.

Weighted estimate. As a key point in this paper we will prove:

Proposition 2.3. Assuming the a priori bounds (2-14)–(2-15), and with the notation (2-3) and (2-8), for
all t 2 Œ0;T � we have

kB.f; f /.t/kX . "2
1: (2-16)

This estimate is at the heart of our article and its proof will be carried out over the course of Sections 3–5.
In fact, we will prove the stronger version (3-1) of the bilinear bound (2-16), which also implies the
scattering statement (2-13) of Theorem 2.2.

Assuming Proposition 2.3 we now establish the Main Theorem.

Proof of Theorem 2.2. Our aim here is to show that the interval on which the a priori estimates (2-14)–(2-15)
hold can be extended to infinity. Using a continuity argument it will suffice to prove that for t 2 Œ1;T �

kPkf .t/kL2 �
1
2
"1hti

D"02�N kC;

sup
.k;j/2J

.2kCj /1Cı24kC
kQjkf .t/kL2 �

1
2
"1:

(2-17)

Invoking the Duhamel formula (2-4) and applying Proposition 2.3 yields

24kC2.kCj/.1Cı/
kQjkf .t/kL2 � 24kC2.kCj/.1Cı/

�
kQjk!0kL2 CkQjkB.f; f /.t/kL2

�
� "0CC "2

1 �
1
2
"1

for "0 small enough. Combining this with the decay estimate (2-9) we also have

ketL1Pkf .t/kL1 . hti�123k
X

j��minf0;kg

2j
kQjkf .t/kL2 . hti�1."0CC "2

1/2
�4kC2.2�ı/k :

In particular, if Du is the matrix of first derivatives of u, we have

k!.t/kL1 CkDu.t/kL1 . hti�1."0CC "2
1/ (2-18)

for all t 2 Œ0;T �. A standard energy estimate for the ˇ-plane equation, see [Elgindi and Widmayer 2017,
Lemma 3.1], gives the bound

k!.t/kH N � k!.0/kH N exp
�

C

Z t

0

kDu.s/kL1 Ck!.s/kL1 ds

�
:

Inserting the decay estimate (2-18) and choosing appropriately the constant D, it follows that

kPkf .t/kL2 � "0hti
D"02�N kC:

This gives us (2-17) and proves the bounds (2-11) and (2-12) in our Theorem 2.2.
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To conclude we remark that in proving Proposition 2.3 we will actually prove the stronger version
(3-1) of the bilinear bound (2-16). The estimate (3-1) then implies that f .t/ is a Cauchy sequence in
the X space, so that (2-13) follows. �

2B. Symmetrization and double null form. By virtue of the symmetry ˆ.�; �/ D ˆ.�; � � �/ we can
write the bilinear term (2-3) as

FB.f; f /.�/D

Z t

0

Z
R2

eisˆ.�;�/ � � �
?

j�j2
Of .� � �/ Of .�/ d� ds

D
1

2

Z t

0

Z
R2

eisˆ.�;�/

�
� � �?

j�j2
C
� � .� � �/?

j� � �j2

�
Of .� � �/ Of .�/ d� ds

D
1

2

Z t

0

Z
R2

eisˆ.�;�/

�
.� � �?/ � � .� � 2�/

j�j2 j� � �j2

�
Of .� � �/ Of .�/ d� ds:

Here we let

m.�; �/ WD
1

2

.� � �?/ � � .� � 2�/

j�j2 j� � �j2
(2-19)

and explicitly write the important equality

FB.f; f /D

Z t

0

Z
R2

eisˆ.�;�/ � � �
?

j�j2
Of .� � �/ Of .�/ d� ds

D

Z t

0

Z
R2

eisˆ.�;�/m.�; �/ Of .� � �/ Of .�/ d� ds: (2-20)

To illustrate the relevance of this symmetrization we remind the reader that we will treat the above
expressions as oscillatory integrals. From this point of view, the set S D f.�; �/ W r�ˆD 0g where no
oscillations in � occur in the phase eisˆ (also called the space-resonant set) is one of the main obstructions
to obtaining strong bounds through cancellations. In the present problem we have

jr�ˆj D
j�jj� � 2�j

j� � �j2 j�j2
; (2-21)

so the original multiplier � � �?j�j�2 vanishes on S. This is referred to as a “null structure” and allows
one to (partially) compensate for the lack of oscillations; see for example [Klainerman 1986; Pusateri and
Shatah 2013]. However, we highlight that in our case even more is true: the symbol m in (2-20) vanishes
to second order on S, which is what we call a “double null form”. As we will see, this offers a crucial
advantage over the previous formulation with a regular null form.

Symbol bounds. Using the notation (6-4)–(6-5) we have the following basic bounds for our symbol (2-19):

kmk;k1;k2kS1 . 2k�minfk1;k2g (2-22)

and
kmk;k1;k2.�; �/'r .�� 2�/kS1 . 2r�minfk1;k2g;

kmk;k1;k2.�; �/'`.� � 2�/kS1 . 2`�minfk1;k2g;



1596 FABIO PUSATERI AND KLAUS WIDMAYER

as well as the more precise bound

kmk;k1;k2.�; �/'`.� � 2�/kS1 . 22`C2k�2k1�2k2 : (2-23)

2C. Estimate for @tf . As a first major consequence of the symmetrization in Section 2B we will
establish a useful estimate for the time derivative of the profile. We will work under our main a priori
assumptions (2-14)–(2-15); in order to readily have their more precise consequences (3-4)–(3-6) at our
disposal we refer to them as they appear in (3-2)–(3-3).

Lemma 2.4. Let f be given by (2-1). For all m 2 f0; 1; : : : g and t 2 Œ2m� 1; 2mC1�\ Œ0;T �, and under
the a priori assumptions (3-2)–(3-3), we have

kPk@tf .t/kL2 . "2
1 2k 2�4kC2�2mC10ım: (2-24)

Notice that @tf .t/ is a quadratic expression in !.t/ and is therefore expected to decay, in L2 at least
as fast as k!.t/kL1 . The above lemma states that we actually have much more decay, almost t�2. This
is due to the favorable “double null structure” of the equations. Needless to say this estimate will be
very helpful when integrating by parts in time in Duhamel’s formula, which gives rise to bilinear terms
involving @tf .

Proof of Lemma 2.4. From (2-1) and (2-20) we have

@t
Of .t/D FQ.f; f /.t; �/ WD

1

.2�/2

Z
R2

eitˆ.�;�/m.�; �/ Of .t; � � �/ Of .t; �/ d�:

We start by observing that for any f;g 2L2 we have

kPkQ.Pk1
f;Pk2

g/kL2

. kmk;k1;k2kS1 � sup
t�2m

min
˚
kPk1

f kL2keitL1Pk2
gkL1 ; ke

itL1Pk1
f kL1kPk2

gkL2 ;

kPk1
f kL2kPk2

gkL22minfk1;k2g
	
; (2-25)

having used Lemma 6.3. Moreover, notice that by symmetry in �$ ���, when looking at Q.Pk1
f;Pk2

f /

we may assume that k2 � k1 without loss of generality.
Using (2-25) and (3-6) we see that

kPkQ.Pk1
f;Pk2

f /k
L2 . 2k�k2kPk1

f k
L2kPk2

f k
L22k2 . 2k

� "12�N k
C

1 2k1 � "12k2 ;

so that the desired conclusion follows when k2 ��2m or k1 � ım (we will choose ı.N �6/� 2 in (3-7)
below).

We also have

kPkQ.Pk1
f;Pk2

f /k
L2 . 2k

kFPkQ.Pk1
f;Pk2

f /k
L1
. 22k�k2 � kPk1

f k
L2 � kPk2

f k
L2 ;

which, in view of (3-6), and after summing over k1; k2 with k2 ��2m, gives the desired bound (2-24) if
k � �2m.
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In what follows we can then assume

minfk; k1; k2g � �2m; maxfk1; k2g � ım: (2-26)

This leaves us with a summation over .k; k1; k2/ made by at most O.m3/ terms, and we see that to obtain
(2-24) it will suffice to show

kPkQ.Pk1
f;Pk2

f /k
L2 . "2

1 2k 2�4kC2�2mC9ım (2-27)

for every fixed triple .k; k1; k2/ satisfying (2-26). We subdivide the proof of (2-27) into two main cases:
high-low and high-high interactions.

Case 1: jk1� k2j � 10. In this case we have k1 � k2C 10 and jk � k1j � 5. We further decompose our
inputs according to their spatial localization as in (3-17):

f1 DQj1k1
f; f2 DQj2k2

f; j� C k� � 0; � D 1; 2: (2-28)

The Hölder estimate (2-25) and the a priori bounds (3-3)–(3-4) give us

kPkQ.f1; f2/kL2 . 2k�k2 � "12�m
� "12�k22�maxfj1;j2g � 2�2k

C

1 :

Therefore, we can obtain the desired bound whenever maxfj1; j2g� .1�ı/m�2k2. In the complementary
case when maxfj1; j2g� .1�ı

2/m�2k2 we can instead integrate by parts repeatedly in �. More precisely,
using

jr�ˆj � 2�2k2 ; jD˛
�ˆj. 2�.1Cj˛j/k2

we can apply the bound (6-6) in Lemma 6.5 with

K D s2�2k2 ; F D 22k2ˆ; � D 2k2 ; g Dm.�; �/ Of1.� � �/ Of2.�/;

and obtain

kPkQ.f1; f2/kL2 . 2k
k'k.�/ yQ.f1; f2/.�/kL1

�

. 2k
� .2m2�k2/�M .1C 2k22maxfj1;j2g/M � 2k�k2kf1kL2kf2kL2

. "2
12�5m

kf1kL2kf2kL2 ;

where the last inequality follows by choosing M large enough. Using also (2-26) we see that this is more
than sufficient to obtain (2-24).

Case 2: jk1� k2j< 10. This case is more delicate and requires a further frequency space decomposition
in the size of j� � 2�j. More precisely, we let

FQ`.f;g/.t; �/ WD

Z
R2

eitˆ.�;�/m.�; �/'`.� � 2�/ Of .t; � � �/ Og.t; �/ d�:

Notice that this vanishes unless `� k1C 20. To obtain (2-27) it then suffices to showX
`�k1C20

kPkQ`.Pk1
f;Pk2

f /k
L2 . "2

1 2k 2�4kC2�2mC9ım: (2-29)
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Subcase 2.1: minfk; `g � .�1C 5ı/mC k1. In this case we first use the L2 �L1 Hölder bound in
Lemma 6.3 together with the symbol bound (2-23), and the usual a priori estimates (3-3)–(3-4), to deduce

24kC
kPkQ`.Pk1

f;Pk2
f /k

L2 . 22 minfk;`g�k1�k2 � "12.2�ı/k12�m
� "12k2 ; (2-30)

having also used (3-6). This suffices to obtain the desired bound when the sum in (2-29) is over
`� �mC k1C 5ım or when k � �mC k1C 5ım.

We are now left with O.m/ terms in the sum in (2-29), so that it suffices to show

24kC
kPkQ`.Pk1

f;Pk2
f /k. "2

1 2k 2�2mC8ım; (2-31)

under the restrictions (2-26), jk1 � k2j � 10 and .�1C 5ı/mC k1 � k; ` � k1C 20. We now further
decompose our profiles in space, letting

PkQ`.Pk1
f;Pk2

f /D
X

j1;j2

PkQ`.f1; f2/;

with the notation (2-28).

Subcase 2.2: maxfj1; j2g � .1� 4ı/m� k1 Cminf`; kg. In this case we use the Hölder estimate in
Lemma 6.3 with the symbol bound (2-23) to get

kPkQ`.f1; f2/kL2 . 22 minfk;`g�2k1 � sup
t�2m

min
˚
kf1kL2keitL1f2kL1 ; ke

itL1f1kL1kf2kL2

	
:

The a priori bounds (3-3)–(3-4) then give us

24kC
kPkQ`.f1; f2/kL2 . 22 minfk;`g�2k1 � "12�m2.2�ı/k1 � "12�k12�maxfj1;j2g

. "2
12k
� 2�ık1 � 2�m�k1Cminfk;`g�maxfj1;j2g;

which, upon summation over j1; j2, suffices to obtain (2-31) under the current assumptions.

Subcase 2.3: maxfj1; j2g � .1� 4ı/m�k1Cminf`; kg and minfk; `g � .�1C 5ı/mCk1. In this last
remaining case we want to resort again to repeated integration by parts through Lemma 6.5.

Before doing that, let us first look at the case `� kC5. Notice that if `��1
2
mC 3

2
k1C ım, then the

Hölder estimate (2-30) already gives us the desired conclusion. We can then assume `��1
2
mC 3

2
k1Cım

in what follows. On the support of PkQ`.f1; f2/ we have, see (3-13),

jr�ˆj � 2`2�3k1 ; jD˛
�ˆj. 2�.1Cj˛j/k1 ; j˛j � 2:

We then let

K D s2`2�3k1 ; F.�/Dˆ.�; �/.2`2�3k1/�1;

and calculate

jD˛F j. .2`2�3k1/�12�.1Cj˛j/k1 . 2.1�j˛j/`; j˛j � 2:

Choosing � D 2` and

g Dm.�; �/'`.� � 2�/ Of1.� � �/ Of2.�/;
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the bound (6-6) in Lemma 6.5 gives us

kPkQ`.f1; f2/kL2 . .2m2`2�3k1/�M .2�`C 2maxfj1;j2g/Mkf1kL2kf2kL2

. 2�10m
kf1kL2kf2kL2 ;

which is more than enough.
Finally we look at the case k � `�5. Recall that we may assume k ��mCk1C5ım. In the present

configuration we have

jr�ˆj � 2k2�3k1 ; jD˛
�ˆj. 2�.2Cj˛j/k12k ; j˛j � 2:

We can then apply Lemma 6.5 with K D s2k2�3k1, F.�/Dˆ.�; �/.2k2�3k1/�1, � D 2k1 , and the same
choice of g as above, to obtain kPkQ`.f1; f2/kL2 . 2�5mkf1kL2kf2kL2 . This concludes the proof of
the lemma. �

3. Preliminary bounds and finite speed of propagation

Recall that our aim is to prove Proposition 2.3. We begin by localizing our time parameter on scales� 2m,
m 2 N, as follows. Given t 2 Œ0;T �, we choose a suitable decomposition of the indicator function 1Œ0;t �
by fixing functions �0; : : : ; �LC1 W R! Œ0; 1�, jL� log2.2C t/j � 2, with the properties

supp �0 � Œ0; 2�; supp �LC1 � Œt � 2; t �; supp �m � Œ2
m�1; 2mC1� for m 2 f1; : : : ;Lg;

LC1X
mD0

�m.s/D 1Œ0;t �.s/; �m 2 C 1.R/; and
Z t

0

j� 0m.s/j ds . 1 for m 2 f1; : : : ;Lg:

We can then decompose

B.f; f /D
X
m

Bm.f; f /; FBm.f; f / WD

Z t

0

�m.s/

Z
R2

eisˆ.�;�/m.�; �/ Of .� � �/ Of .�/ d� ds:

To obtain Proposition 2.3 it will then suffice to show that for any mD 0; 1; : : : ,

24kC2.kCj/.1Cı/
kQjkBm.f; f /kL2 . "2

12�ı
3m: (3-1)

For convenience we recall here the a priori bounds (2-14)–(2-15),

kPkf .t/kL2 � "1hti
p02�N0kC; (3-2)

sup
.k;j/2J

.2kCj /1Cı24kC
kQjkf .t/kL2 � "1; (3-3)

where we can choose p0 D C "0 � ı for a suitable absolute constant C > 0. Then we also have the
following consequences of (3-2)–(3-3):

keitL1Qjkf .t/kL1 . "1hti
�12�4kC2.2�ı/k2�ıj ; (3-4)

k1Qjkf kL1 � kQjkf kL1 . "12�.1Cı/k2�4kC2�ıj : (3-5)
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Also recall that by virtue of (2-5) we have

2�k
kPkf kL2 .

jrj�1f


L2 D
jrj�1!


L2 . kukL2 � "0: (3-6)

In the remainder of this section we begin our proof of the weighted estimate (3-1) by treating first
some ranges of parameters for which the estimates are easily seen to hold. Subsequently we present a
“finite speed of propagation” argument, which invokes the idea that each frequency is expected to travel at
its respective group velocity, in order to allow for a further reduction in the parameters to be considered.

3A. Basic cases. We first establish a simple lemma dealing with frequencies that are very large or very
small with respect to the relevant parameters. To this end we let

N 0 WDN � 6; N 0 �
2

ı
: (3-7)

Lemma 3.1 (basic cases). With the above notation and under the a priori assumptions (3-2)–(3-4) we
have X

maxfk1;k2g�
kCjCım

N 0

24kC2.1Cı/.kCj/
kQjkBm.Pk1

f;Pk2
f /k

L2 . 2�ı
3m"2

1: (3-8)

Moreover, X
minfk1;k2g��1:01.kCjCım/

24kC2.1Cı/.kCj/
kQjkBm.Pk1

f;Pk2
f /k

L2 . 2�ı
3m"2

1: (3-9)

Proof. We begin by using an L2 �L1 estimate, see Lemma 6.3, together with the symbol bound (2-22),
to deduce that

kQjkBm.Pk1
f;Pk2

f /kL2

. 2m
�2k�minfk1;k2g� sup

t�2m

min
˚
kPk1

f k
L2ke

itL1Pk2
f k

L1
; keitL1Pk1

f k
L1
kPk2

f k
L2 ;

kPk1
f k

L2kPk2
f k

L22minfk1;k2g
	
: (3-10)

Proof of (3-8). Without loss of generality, let us assume k2 � k1, so that the sum is over k1 �

.kC j C ım/=N 0. Using the bound in the high Sobolev norm (3-2), the a priori decay assumption (3-4),
and the estimate (3-10) above, we see that

kQjkBm.Pk1
f;Pk2

f /k
L2 . 2m

� 2k�k2 � "12�m2.2�ı/k22�4k
C

2 � "12p0m2�N k1 :

It follows thatX
k1�

kCjCım

N 0
;k2

24kC2.1Cı/.kCj/
kQjkBm.Pk1

f;Pk2
f /k

L2 . 2.1Cı/.kCj/
� "2

12p0m2�
.N�5/.kCjCım/

N 0 :

Since .N � 5/=N 0 � 1C ı and p0 � ı this is sufficient.

Proof of (3-9). Again, without loss of generality we assume k2 � k1, so that the sum is over k2 �

�1:01.kC j C ım/. Using the estimate (3-10) above and the a priori bounds (3-3), (3-4) and (3-6), we
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see that
kQjkBm.Pk1

f;Pk2
f /k

L2 . 2m
� 2k�k2 � "12�m2.2�ı/k2 � "12k12�4k

C

1 :

It follows thatX
k2��1:01.kCjCım/;k1

24kC2.1Cı/.kCj/
kQjkBm.Pk1

f;Pk2
f /k

L2.2.1Cı/.kCj/
�"2

12�.1�ı/1:01.kCjCım/

which is sufficient for ı � 1
1000

. �

As a consequence of the above lemma we can assume from now on that

maxfk1; k2g �
1
2
ı.kC j C ım/; minfk1; k2g � �1:01.kC j C ım/ (3-11)

and, in particular,
maxfk; k1; k2g � ı.j C ım/CD; (3-12)

where D is a suitably large constant. From now on we will use D to denote an absolute constant that
needs to be chosen large enough in the course of our proof in order to verify several inequalities. In
view of (3-11)–(3-12), when decomposing our inputs into frequencies, summations are given by at most
O..j Cm/2/ terms.

3B. Finite speed of propagation. From (2-2) one computes

jr�ˆj D
j�jj�� 2�j

j� � �j2 j�j2
; jr�ˆj D

j�jj� � 2�j

j� � �j2 j�j2
: (3-13)

Notice that applying a weight x to the bilinear term B.f; f / corresponds to differentiating in � its Fourier
transform, i.e., the expression in (2-3). The main contribution from this can be expected to be the term
where the �-derivative hits the oscillating phase, producing a factor of sr�ˆ. We then want to make this
statement precise by proving that if the bilinear term B.f; f / is restricted to locations jxj � 2j, then
we must have “jxj . sjr�ˆj”, that is, we should expect to have 2j . 2m2�2 minfk;k2;k2g. Later on in
Section 4 we will also use refinements of this statement in various scenarios.

Lemma 3.2 (finite speed of propagation). Assume that (3-12) holds and

j �m� 2 minfk; k1; k2gCD2: (3-14)

Then we have the bound

24kC2.kCj/.1Cı/
kQjkBm.Pk1

f;Pk2
f /kL2 . 2�ı

2.mCj/"2
1: (3-15)

Proof. We subdivide the proof into several cases and subcases.

Case 1: k1 � k2C 10. In this case we must have jk1� kj � 10 and the assumption (3-14) implies

j �m� 2k2CD2: (3-16)

Notice that in view of (3-12) we must have j � 1
2
m.
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Subcase 1.1: k � �.1� ı2/j. In this case we can use an L2 �L1 estimate, see Lemma 6.3 and the
symbol bound (2-22), with the a priori bounds (3-3)–(3-4), to obtain

2.1Cı/.kCj/
kQjkBm.Pk1

f;Pk2
f /kL2 . 2ıjkQjkBm.Pk1

f;Pk2
f /kL2

. 2ıj � 2m
� 2k�k2 � sup

t�2m

kPk1
f k

L2ke
itL1Pk2

f k
L1

. 2ıj � 2m
� 2k
� "1 � "12�m;

which suffices to obtain (3-15).
We further decompose the profiles according to their spatial localization by defining, see (2-6)–(2-7),

f1 DQj1k1
f; f2 DQj2k2

f; j� C k� � 0; � D 1; 2: (3-17)

Subcase 1.2: minfj1; j2g � .1� ı
2/j. Here we use again an L2 �L1 estimate and the a priori bounds

(3-3)–(3-4):

24kC2.1Cı/.kCj/
kQjkBm.f1; f2/kL2

. 24kC2.1Cı/.kCj/
� 2m
� 2k�k2 � sup

t�2m

kf1kL2keitL1f2kL1

. 25kC2.1Cı/.kCj/
� 2m
� "12�4k

C

1 2�.1Cı/.k1Cj1/ � "12�m2�4k
C

2 2.1�ı/k22�ıj2 :

Using the assumption minfj1; j2g � .1� ı
2/j this can be bounded by

"2
12kC2.1Cı/j � 2�.1Cı/j1 � 2�ıj2 . "2

12kC2�
4
5
ıj 2�ı

2j12�ı
2j2 :

Upon summing over j1 and j2 we obtain the bound (3-15) also in view of k � 2
3
ıjCı2mCD; see (3-11).

Subcase 1.3: �k;minfj1; j2g � .1� ı
2/j. In this case we want to integrate by parts in � using the main

assumption (3-14). More precisely, let us decompose according to (3-17) and inspect the formula

'
.k/
j .x/PkBm.f1; f2/.x/

D '
.k/
j .x/

Z t

0

�m.s/

Z
R2�R2

eiŒx��Csˆ.�;�/�m.�; �/'k.�/ Of1.� � �/ Of2.�/ d� d� ds: (3-18)

Let us assume first that j1 � .1� ı
2/j. Notice that (3-13) and the hypothesis (3-16) implyˇ̌

r� Œx � �C sˆ.�; �/�
ˇ̌
D jxC sr�ˆj& 2j : (3-19)

We then want to apply Lemma 6.5 toZ
R2

eiŒx��Csˆ.�;�/�m.�; �/'k.�/ Of1.� � �/ d�:

Let us explain this in detail since similar arguments will be used repeatedly below. We let

F.�/D 2�j Œx � �C sˆ.�; �/�; K � 2j ; (3-20)

and have, for j˛j � 2,

jD˛F j. 2�j s jD˛
� ˆ.�; �/j. 2�jCm2�.j˛jC1/minfk;k1g . 2.1�j˛j/minfk;k1g:
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We can then choose � D 2minfk;k1g, make the natural choice of the integrand

g.�/Dm.�; �/'k.�/ Of1.� � �/;

and use the bound (6-6) to obtain

kQjkBm.f1; f2/kL2 . 2mCj
� k Of2kL1 �

1

.2jCminfk;k1g/M

X
j˛j�M

2minfk;k1gj˛j kD˛gkL1

. 2mCj"1 � 2
�jM Œ2�minfk;k1gM C 2�kM

C 2j1M � � "1 . 2�10j"2
1:

For the last inequality we have used (2-22) and the fact that maxf�k;�k1; j1g � .1� ı
2/j, and chosen

M DO.ı�2/ sufficiently large. This gives (3-15) when j1 � .1� ı
2/j.

When j2 � .1� ı
2/j we can use a similar argument. More precisely we look at the formula (3-18)

and change variables to write

QjkBm.f1; f2/.x/D'
.k/
j .x/

Z t

0

�m.s/

Z
R2�R2

�
eiŒx��Csˆ.�;�/�'k.�/m.�; ���/ Of2.���/ d�

�
Of1.�/ d� ds:

Notice that (3-19) still holds. Therefore we can apply Lemma 6.5 with the same phase as in (3-20) above,
� D 2�k2 , and the natural choice of the integrand g, obtaining

kQjkBm.f1; f2/kL2 . 2mCj
� 2�.jCk2/M "2

1Œ1C 2.k2Cj2/M �. 2�10j"2
1;

since �k2 � j2 � .1� ı
2/j.

Case 2: k2 � k1 C 10. This case is completely analogous to Case 1 since our main assumption is
symmetric upon exchanging k1 and k2.

Case 3: jk1� k2j � 10. In this case we have

k �minfk1; k2gC 20;

and the main assumption (3-14) implies

j �m� 2kCD:

Recall that in view of (3-12) we must have j � 1
2
m. Also, using the same estimate of Subcase 1.1 above,

we may assume k � �.1� ı2/j.

Subcase 3.1: minfj1; j2g � .1 � ı
2/j. This case can be treated like we have done in the analogous

subcases above via an L1 �L2 estimate:

24kC2.1Cı/.kCj/
kQjkBm.f1; f2/kL2 . 24kC2.1Cı/.kCj/

� 2m
� sup

t�2m

keitL1Pk1
f k

L1
kPk2

f k
L2

. "2
12.1Cı/j � 2�ıj1 � 2�.1Cı/j2 . "2

12�
1
2
ıj 2�ı

2j12�ı
2j2 :

Summing over j1; j2 we get the desired bound (3-15).

Subcase 3.2: minfj1; j2g � .1� ı
2/j. In this case we can integrate by parts in � as previously done after

(3-18), using Lemma 6.5, the lower bound (3-19) and �k � .1� ı2/j. �
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4. The weighted estimate: part I

In this section we begin the proof of the main weighted bound

sup
.k;j/2J

24kC2.kCj/.1Cı/
kQjkBm.f; f /kL2 . 2�ı

3m"2
1; (4-1)

showing how this can be reduced to a similar one where the size of various important quantities can be
restricted to specific ranges depending on the time variable. More precisely we will show how to restrict
the size of the input and output frequencies to a range close to 1 (a range of the form Œ2�c1ım; 2c2ım� for
some constants c1; c2 > 0), the size of the phase ˆDˆ.�; �/ close to 2�m, and the size of its gradients
in � and � close to 1. In Section 5 we will then conclude our proof by treating the remaining cases.

4A. Main reduction of interaction frequencies. Here we show how to treat the contributions from input
and output frequencies that are much smaller than 1, more precisely smaller than 2�cım for some c > 0.

Proposition 4.1. Under the a priori assumptions (3-3)–(3-4) we have, for all .k; j / 2 J ,X
jk1�k2j�10

minfk1;k2g��5ımCD

24kC2.kCj/.1Cı/
kQjkBm.Pk1

f;Pk2
f /kL2 . 2�2ı3m"2

1: (4-2)

Furthermore, for all .k; j / 2 J we haveX
jk1�k2j�10

24kC2.kCj/.1Cı/
kQjkBm.Pk1

f;Pk2
f /k

L2 . 2�2ı3m"2
1 if k � �5ımCD: (4-3)

Proof of Proposition 4.1. We split the proof into several scenarios, the most difficult ones being the
high-high interactions.

Proof of (4-2) Because of the symmetry in k1; k2 we may assume k2C 10� k1, jk � k1j � 10.

Case 1: k � �.1� ı2/j. In this case we can use an L2 �L1 estimate, see Lemma 6.3 and the symbol
bound (2-22), with the a priori bounds (3-3)–(3-4) to obtain

2.1Cı/.kCj/
kQjkBm.Pk1

f;Pk2
f /kL2 . 2ıj � 2m

� 2k�k2 � sup
t�2m

kPk1
f kL2keitL1Pk2

f kL1

. 2ıj � 2m
� 2k
� "1 � "12�m2.1�ı/k2 ;

which suffices to obtain (4-2). From now on we may assume �k � .1� ı2/j.
Let us now decompose the profiles according to their spatial localization, adopting the same notation

as in (3-17):
f1 DQj1k1

f; f2 DQj2k2
f; j� C k� � 0; � D 1; 2: (4-4)

Case 2: j1 � .1� ı
2/j. Here we use again an L2 �L1 estimate and the a priori bounds (3-3)–(3-4):

24kC2.1Cı/.kCj/
kQjkBm.f1; f2/kL2

. 24kC2.1Cı/.kCj/
� 2m
� 2k�k2 � sup

t�2m

kf1kL2keitL1f2kL1

. 25kC2.1Cı/.kCj/
� 2m
� "12�4k

C

1 2�.1Cı/.k1Cj1/ � "12�m2.1�ı/k22�ıj2 :
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Using the assumption j1� .1�ı
2/j, the finite speed of propagation Lemma 3.2 to bound j �m�2k2CD,

and that k � 4
5
ıj C ı2mCD by (3-11), we can estimate

24kC2.1Cı/.kCj/
kQjkBm.f1; f2/kL2 . "2

12kC23ı2j
� 2�ı

2j1 � 2.1�ı/k22�ıj2

. "2
122ım

� 2.1�3ı/k22�ı
2j12�ıj2 :

Summing over j1 and j2 we obtain (4-2). From now on we may assume j1 � .1� ı
2/j.

Case 3: j � k2 � 3k1 CmCD. In this case we proceed in a similar way as we did in the proof of
Lemma 3.2, resorting to integration by parts in �. We look again at the formula (3-18) and notice that
jr�ˆj � 2k2�3k1 ; see (3-13). Then we have the same lower bound as in (3-19), that is,ˇ̌

r� Œx � �C sˆ.�; �/�
ˇ̌
& 2j;

and we can apply Lemma 6.5 toZ
R2

eiŒx��Csˆ.�;�/�m.�; �/'k.�/ Of1.� � �/ d�:

More precisely we do this by choosing again F.�/D 2�j Œx � �C sˆ.�; �/�, K D 2j , and using that for
j˛j � 2,

jD˛F j. 2�j s jD˛
� ˆ.�; �/j. 2�jCm

� 2�.j˛jC2/minfk;k1g2k2 . 2.1�j˛j/k1 ;

so that we can let � D 2k1. Using the bound (6-6), and the a priori bounds (3-3) and (3-6), we can deduce

kQjkBm.f1; f2/kL2 . 2m2�10j
� 2k1�k2 � k Of1kL1k Of2kL1 . 2�5j 2�2k

C

1 "2
1;

which can be multiplied by the factor 2.jCk/.1Cı/ and summed over all indices to give the desired estimate.
From now on we may assume j � k2� 3k1CmCD.

Case 4: maxfj1; j2g �m�2k2�ı
2m. We use a Hölder estimate together with the usual a priori bounds,

placing the term with larger localization in L2 and the other one in L1, and obtain

24kC2.k2�2k1Cm/.1Cı/
kPkBm.f1; f2/kL2

. 2.k2�2k1Cm/.1Cı/
� 2m2k1�k2 � 2�m2.2�ı/k1"1 � 2

�maxfj1;j2g2�.1Cı/k2"1 � 2
�ı.j1Cj2/

. "2
1 22ım 2.1�3ı/k12k2 2�ı.j1Cj2/:

Also in view of j � �2k1CmCD and (3-12) we have k1 � 2ımCD; thus summing the bound above
over j1; j2 we obtain (4-2) whenever k2 � �5ım.

Case 5: maxfj1; j2g �m� 2k2� ı
2m. Notice that since k2 � k1� 10 we have, see (3-13),

jr�ˆ.�; �/j � 2�2k2 ; jD˛
�ˆ.�; �/j. 2�k2.j˛j�1/; j˛j � 2:

We then resort to multiple integrations by parts in �; that is, we apply Lemma 6.5 with F D 22k2ˆ,
K D s2�2k2 , � D 2k2 and g Dm.�; �/ Of1.� � �/ Of2.�/. Using the bound (6-6) we have

kQjkBm.f1; f2/kL2 . 2k
kF.QjkBm.f1; f2//kL1 . 2k2�10m2k1�k2kf1kL2kf2kL2 ;

which is more than sufficient to obtain (4-2) using also j C k � k2� 2k1CmCD and (3-3)–(3-6).
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Proof of (4-3). In this scenario we will make crucial use of the symmetrization argument, which gives
better bounds on the null structure. In view of Lemma 3.2 (and the assumption that k � �5ımCD), in
the current frequency configuration it is enough to showX

jk1�k2j�10

2.�kCm/.1Cı/
kPkBm.Pk1

f;Pk2
f /k

L2 . "2
12�2ı3m: (4-5)

Localization in the size of j� � 2�j. We now introduce a further localization in the size of j� � 2�j by
writing

FBm;`.f;g/D

Z t

0

�m.s/

Z
R2

W`.f;g/ d� ds;

W`.f;g/ WD eisˆm.�; �/'`.� � 2�/ Of .� � �/ Og.�/:

(4-6)

Notice that Bm;`.Pk1
f;Pk2

f / vanishes if `� k1C 20. Also, notice that the symbol obeys the refined
bound

kmk;k1;k2'`.� � 2�/kS1 . 22`C2k�2k1�2k2 : (4-7)

Using this bound and standard Hölder estimates, we can reduce (4-5) to proving the following:

2.m�k/.1Cı/
kBm;`.Pk1

f;Pk2
f /kL2 . "2

12�ı
2m;

with jk1� k2j � 10; �2m� `; k1; k2 � 4ım; �2m� k � �5ımCD:
(4-8)

The rest of this proof is dedicated to showing (4-8) and split into two cases, depending on which of the
parameters ` or k is smaller.

Case 1: `� kC 5. In this case we must have k �minfk1; k2g� 15, so that k; k1; k2 are all comparable
to each other and smaller than �5ımCD. In particular (4-7) gives

kmk;k1;k2'`.� � 2�/kS1 . 22`�2k1 : (4-9)

We proceed in three steps.

Step 1: `�k1��
4
9
m. In this case we use integration by parts in time. We introduce a further localization

in the size of the phase ˆ in the bilinear operators Bm;` defined in (4-6). More precisely, we write

Bm;`.f;g/D Bm;`;�p0
.f;g/C

X
p>p0

Bm;`;p.f;g/; p0 WD �3m;

Bm;`;�.f;g/ WD

Z t

0

�m.s/

Z
R2

'�.ˆ.�; �//W`.f;g/.�; �/ d� ds;

(4-10)

where W` is given in (4-6).
Notice that in analyzing the terms in (4-10) we will be dealing with a kernel of the form

Kp;`.�; �/ WD 'p.ˆ.�; �//'`.� � 2�/ Q'k.�/ Q'k1
.� � �/ Q'k2

.�/: (4-11)

Since k; k1; k2 are all comparable and much larger than ` we see, using (6-3) in Lemma 6.2, that

kKp;`kSch . 2pC 5
2

k1C
`
2 : (4-12)
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We can directly use this estimate to obtain the desired bound (4-8) for the term Bm;`;�p0
. Since we must

also have jˆj. 2�2k1 . 25m, there are only O.m/ terms in the sum in (4-10), and it will thus suffice to
prove

2.m�k/.1Cı/
kBm;`;p.Pk1

f;Pk2
f /k

L2 . "2
12�3ı2m (4-13)

for fixed p 2 Œ�3m; 5m�.
Integrating by parts in s we can write

Bm;`;p.Pk1
f;Pk2

f /D Im;`;p.Pk1
f;Pk2

f /� IIm;`;p.@tPk1
f;Pk2

f /� IIm;`;p.Pk1
f; @tPk2

f /;

Im;`;p.f;g/ WD

Z t

0

2�m� 0m.s/

Z
R2

'p.ˆ.�; �//

iˆ.�; �/
W`.f;g/.�; �/ d� ds;

IIm;`;p.f;g/ WD

Z t

0

�m.s/

Z
R2

'p.ˆ.�; �//

iˆ.�; �/
W`.f;g/.�; �/ d� ds:

(4-14)

For the first above term, using the a priori bounds (3-3)–(3-6), the bound on the symbol (4-9) and the
bound on the kernel (4-11), we have the estimate

2.m�k/.1Cı/
kIm;`;p.Pk1

f;Pk2
f /kL2

. 2.m�k/.1Cı/
� 22`�2k1 � 2�p

� kKp;`.�; �/1Pk1
f .� � �/kSchkPk2

f kL2

. 2.m�k/.1Cı/
� 2

1
2

k1C
5
2
`2�k1.1Cı/"1 � 2

k2"1

. 2�.
1
2
C2ı/k12.1Cı/m2

5
2
`"2

1 . "
2
12�

1
40

m;

having used the assumption `� �4
9
mC k1 for the last step.

For the remaining terms in (4-14) we can use a similar bound together with (2-24) to obtain

2.m�k/.1Cı/
kIIm;`;p.@tPk1

f;Pk2
f /kL2 . 2.m�k/.1Cı/

�2m
�2

1
2

k1C
5
2
`
�k1Pk1

f k
L1

sup
s�2m

k@sPk2
f kL2

. 2�.1Cı/k2.2Cı/m�2
1
2

k1C
5
2
`
�"12�.1Cı/k1 �"2

12k22�2mC10ım

. 211ım2�.
1
2
C2ı/k12

5
2
`"3

1. "
3
12�

1
40

m:

The same bound can be similarly obtained for IIm;p.Pk1
f; @tPk2

f / and this concludes the proof of
(4-13) when `� k1 � �

4
9
m.

To deal with the remaining cases we introduce the usual spatial localizations as defined in (4-4), and
aim to show

2.m�k/.1Cı/
X

j1;j2

kBm;`.f1; f2/kL2 . "2
12�2ı2m;

under the assumptions in (4-8) and with `� k1 � �
4
9
m.

Step 2: `�k1 ��
4
9
m and maxfj1; j2g �mC `�3k1� ım. In this case we can repeatedly integrate by

parts. Indeed, in our current frequency configuration we have jr�ˆj � 2`2�3k1 ; see (3-13). Then we can
use Lemma 6.5 by letting K D s.2`2�3k1/�1, F.�/Dˆ2`2�3k1 and � D 2`. From (6-6), choosing M

large enough, we then obtain kBm;`.f1; f2/kL2 . 2�10mkf1kL2kf2kL2 , which is more than sufficient
to obtain (4-8).
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Step 3: maxfj1; j2g �mC `� 3k1� ım. In this case a standard Hölder estimate, placing the input with
largest position in L2, suffices:

2.m�k/.1Cı/
kBm;`.f1; f2/kL2

. 2.m�k/.1Cı/
� 2m
� 22`�2k1 � 2�m2.2�ı/k12�4k

C

1 "1 � 2
�maxfj1;j2g2�.1Cı/k2"1 � 2

�ı.j1Cj2/

. 22ım2`2.1�3ı/k12�4k
C

1 2�ı.j1Cj2/"2
1;

having used the a priori bounds (3-3)–(3-4), and the symbol bound (4-9). Summing over j1; j2 we see
that this implies the desired bound (4-8) since minfk; k1; k2g � �5ımCD holds.

Remark 4.2. Notice that the bounds proved above suffice to obtain an estimate as in (4-3) for
P
` Bm;`

instead of Bm, provided that `� �5ım, and placing no additional smallness restriction on k.

Case 2: k � `� 5. Here we have k � �5ımCD and j`� k1j � 20, and similar arguments to those of
Case 1 can be used essentially by reversing the roles of k and `. Note that in this case stronger bounds are
available for the kernel that we need to consider; see (4-15) below. We decompose the profiles according
to their spatial localization as done above and proceed as follows.

Step 1: maxfj1; j2g � mC k � 3k1 � ım. Note that this case will be empty if k < �mC 3k1C ım

and only Step 2 below needs to be performed. In the current scenario we have jr�ˆj � 2k�3k1

and jD˛
�ˆj . 2k2�.j˛jC2/k1 , j˛j � 1. We can then use Lemma 6.5 by letting K D s.2k2�3k1/�1,

F.�/Dˆ2k2�3k1 and � D 2k1 , obtaining

kBm;`.f1; f2/kL2 . 2�10m
kf1kL2kf2kL2 :

Step 2: maxfj1; j2g �mC k � 3k1� ım. In this case we want to use integration by parts in s similarly
to Step 1 of Case 1 above. From the formula for the symmetrized symbol we see that the bound (4-9)
used before can be substituted by

kmk;k1;k2'`.� � 2�/kS1 . 22k�2k1 :

Moreover, notice that we have a bound stronger than (4-12) for the relevant kernel; that is,'p.ˆ.�; �//'`.� � 2�/ Q'k.�/ Q'k1
.� � �/ Q'k2

.�/


Sch . 2pCkC2k1 ; (4-15)

as per (6-3) in Lemma 6.2. Then the same arguments as in Step 1 of Case 1 above go through and give the
main conclusion (4-2) when k �minfk1;�5ımgCD. This concludes the proof of the proposition. �

As a consequence of Proposition 4.1 we have the following:

Corollary 4.3. In order to prove the main bound (4-1) it will be enough to prove the following claim: for
all .k; j / 2 J we have

24kC2m�2 minfk;k1;k2gCk
kPkBm;`.Pk1

f;Pk2
f /kL2 . 2�2ım"2

1;

whenever � 5ım� k; k1; k2; `� 4ımCD2;
(4-16)
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where Bm;` is defined as

FBm;`.f;g/D

Z t

0

�m.s/

Z
R2

W`.f;g/ d� ds;

W`.f;g/.�; �/ WD eisˆ.�;�/m.�; �/'`.� � 2�/ Of .� � �/ Og.�/:

(4-17)

Proof. In view the estimates (4-2)–(4-3) in Proposition 4.1, we know that to obtain the main bound (4-1)
it will suffice to show

sup
kCj�0

k��5ım

24kC2.kCj/.1Cı/
X

k1;k2��5ım

kQjkBm.Pk1
f;Pk2

f /kL2 . 2�ı
3m"2

1: (4-18)

Recall that from (3-12) we have the upper bound maxfk; k1; k2g � ı.j Cm/CD. Then the finite speed
of propagation Lemma 3.2 suffices to bound the sum in (4-18) whenever j �m� 2 minfk; k1; k2gCD.
We may therefore restrict ourselves to j �m� 2 minfk; k1; k2gCD � .1C 10ı/mCD, and thus also
to maxfk; k1; k2g � 4ımCD. We then have a sum over at most O.m2/ terms so that it suffices to prove
the bound

24kC2.kCj/.1Cı/
kQjkBm.Pk1

f;Pk2
f /kL2 . 2�

3
2
ı3m"2

1

for each fixed triple k; k1; k2 with �5ım� k; k1; k2 � 4ımCD, and .k; j / 2 J . Moreover, in view of
Remark 4.2 we may also replace Bm above with Bm;` and assume that ` � �5ım. The claim follows
since ı.m� 2 minfk; k1; k2gC k/� 3

2
ım. �

4B. Further reductions. We now turn to further reductions on the size of the phase ˆ and the spatial
localization of the profiles in the bilinear term Bm;`.Pk1

f;Pk2
f / in (4-17). For this purpose let us write

Bm;`.Pk1
f;Pk2

f /D
X
p2Z

Bm;`;p.Pk1
f;Pk2

f /D
X

r;p2Z

Bm;`;r;p.Pk1
f;Pk2

f /; (4-19)

Bm;`;p.f;g/ WD F
Z t

0

�m.s/

Z
R2

'p.ˆ.�; �//W`.f;g/ d� ds; (4-20)

Bm;`;r;p.f;g/ WD F
Z t

0

�m.s/

Z
R2

'p.ˆ.�; �//'r .�� 2�/W`.f;g/ d� ds; (4-21)

where W` is as in (4-17). Notice that Bm;`;p.Pk1
f;Pk2

f / is trivial unless p��2 minfk; k1; k2gCD �

10ımCD and r �maxfk1; k2gCD� 4ımC2D2. Also note that a Schur-type estimate using Lemma 6.2
will give the desired bound for the sum of the terms Bm;`;p when p��3m. Similarly, it is not hard to see
that one can obtain the bound (4-16) for the terms Bm;`;p;r when r ��3m. Therefore the summations in
(4-19) are all over at most O.m2/ terms, and it suffices to prove the bound for each element in the sum.

Proposition 4.4. With the usual notation f� D PŒk��2;k�C2�'
.k�/
j�

.x/Pk�f , j� C k� � 0, � D 1; 2, and
under the frequency restriction in (4-16), namely

�5ım� k; k1; k2; `� 4ımCD2;
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we have

kPkBm;`.f1; f2/kL2 . 2�2m"2
1 if maxfj1; j2g �mCminfk; `g� 3k1� ım: (4-22)

If instead maxfj1; j2g �mCminfk; `g� 3k1� ım, then we have the following bounds:

24kC2m�2 minfk;k1;k2gCk
kPkBm;`;p.f1; f2/kL2 . 2�3ım"2

1 if p � �mC 40ım; (4-23)

24kC2m�2 minfk;k1;k2gCk
kPkBm;`;p;r .f1; f2/kL2 . 2�4ım"2

1 if r � �35ım; (4-24)

24kC2m�2 minfk;k1;k2gCk
kPkBm;`;p;r .f1; f2/kL2 . 2�4ım"2

1 if minfj1; j2g �
1
2
mC 60ım: (4-25)

For convenience we introduce the notation

k WDminfk1; k2g; k WDmaxfk1; k2g; j WDminfj1; j2g; j WDmaxfj1; j2g: (4-26)

Proof. Each one of the bounds in the statement can be proven via similar techniques to those used in the
proof of Proposition 4.1 above.

Proof of (4-22). This follows by integrating by parts in � sufficiently many times, i.e., by applying
Lemma 6.5 using the fact that jr�ˆj � 2kC`�4k1 and jD˛

�ˆj. 2�.j˛jC1/minfk1;k2g on the support of the
integral.

Proof of (4-23). Now we treat the term Bm;`;p as defined in (4-20) analogously to what was done
in (4-10) and integrate by parts in s. Similarly to (4-14) we obtain Bm;`;p.f1; f2/ D Im;p.f1; f2/�

IIm;p.@tf1; f2/� IIm;p.f1; @tf2/, where

Im;`;p.f;g/ WD

Z t

0

2�m� 0m.s/

Z
R2

'p.ˆ.�; �//

iˆ.�; �/
W`.f;g/.�; �/ d� ds;

IIm;`;p.f;g/ WD

Z t

0

�m.s/

Z
R2

'p.ˆ.�; �//

iˆ.�; �/
W`.f;g/.�; �/ d� ds:

(4-27)

For the first term in (4-27) we use Lemma 6.4 and the a priori bounds, estimating the profile with the
largest spatial localization in L2 and obtain

kPkIm;`;p.f1; f2/kL2 . 2�p
� kmk;k1;k2'`.� � 2�/kS1 � 2

�m2�2kC"1 � 2
�j 2�k"1

. 2�m�39ım
� kmk;k1;k2kS1 � 2

�k�2kC2�minfk;`gC3k1"2
1:

Using the bound kmk;k1;k2kS1 . 2�kCk, we see that

2mCk�2 minfk;k1;k2gkPkIm;`;p.f1; f2/kL2 . "2
12�39ım

� 2�4 minf0;k;k1;k2;`g22 maxf0;k;k1;k2;`g;

which suffices to obtain (4-23) in view of the restrictions in (4-16).
For the terms IIm;p we use Lemma 6.4, estimating in L2 the term involving the time derivative of the

profile via (2-24), together with the bound for the symbol used above:

kPkIIm;`;p.@tf1; f2/kL2 . 2m
� 2�p

� kmk;k1;k2'`.� � 2�/kS1 � 2
�m22k"1 � 2

k2�2mC10ım"12�4kC

. 2�m�30ım
� 23k�4kC"2

1:

This suffices to prove (4-23).
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Proof of (4-24). We now look at the bilinear term Bm;`;p;r defined in (4-21) with r � �35ım �

minfk; k1; k2g �D, so that k; k1; k2 and ` are all comparable. In view of the previous step we may
assume p � �mC 35ım. Using the estimate (6-2) in Lemma 6.2(2) we see that'p.ˆ.�; �// Q'k.�/ Q'k1

.� � �/ Q'k2
.�/ Q'`.� � 2�/ Q'r .�� 2�/


Sch . 2pC 1

2
rC 5

2
k :

Using this bound with Schur’s test, jmk;k1;k2 j. 2r�k, j � .1� ı/m� 2k, and the usual a priori bounds,
we see that

24kC2m�2 minfk;k1;k2gCk
kPkBm;`;p;r .f1; f2/kL2 . 2m�k

� 2m
� 2pC 1

2
rC 5

2
k
� 2r�k

� 2�k"1 � 2
�j 2�k"1

. 2mCım2pC 3
2

rC 1
2

k"2
1;

which is sufficient to obtain (4-24).

Proof of (4-25). In view of the previous step we may assume p ��mC 40ım and r ��35ım. Just for
the purpose of this proof let us define

K.�; �/ WD 'p.ˆ.�; �//'`.� � 2�/'r .� � 2�/ Q'k.�/ Q'k1
.� � �/ Q'k2

.�/:

In view of Lemma 6.2(2) we have, recall the notation (4-26),

kK.�; �/kSchCkK.�; � � �/kSch . 2pC 1
2

kC 3
2

k :

Also notice that for any kernel with jKj. 1 one has

kK.�; �/g.� � �/kSch . kK.�; �/k
1
2

SchkgkL2 :

Then, using Schur’s test by estimating in L2 the profile corresponding to the larger localization 2j we
can bound

kPkBm;`;p;r .f1; f2/kL2 . 2m
� .2pC 1

2
kC 3

2
k/

1
2 � kmk;k1;k2kS1 � kfjkL2

� kfjkL2

. 2m
� 2

1
2

pC 3
4

kC 1
4

k
� 2k�k

� 2�j�j
� 2�k�k�4kC"2

1:

Using the assumptions p ��mC 40ım, j � .1� ı/m� 3k1Cminfk; `g and j � 1
2
mC 60ım, we see

that

24kC2m�2minfk;k1;k2gCk
kPkBm;`;p;r .f1;f2/kL2 . "2

1 2�39ım
�2k�2minfk;k1;k2g�2

3
4

k� 7
4

k
�23k1�minfk;`g

. "2
1 2�39ım

�2�
15
4

minf0;k;k1;k2;`gC
15
4

maxf0;k1;k2g;

which is sufficient for (4-25), again in view of (4-16). �

5. The weighted estimate: part II

Recall that the main weighted bound (4-1) is implied by (4-16). Combining this fact with the estimates in
Proposition 4.4 we can reduce the proof of the main desired bound to showing that

24kC2m�2 minfk;k1;k2gCk
kPkBm;`;�p0;r .f1; f2/kL2 . 2�4ım; (5-1)
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where

Bm;`;�p0;r .f;g/

WD F�1

Z t

0

�m.s/

Z
R2

eisˆ.�;�/'�p0
.ˆ.�; �//m.�; �/ '`.� � 2�/ 'r .2� � �/ Of .� � �/ Og.�/ d�;

and whenever

�5ım� k; k1; k2; `� 4ımCD2; r � �35ım;

p0 WD �mC 40ım;

j WDmaxfj1; j2g �mCminfk; `g� 3k1� ım�m� 20ım;

j WDminfj1; j2g �
1
2
mC 60ım:

(5-2)

Remark 5.1. Intuitively speaking the reductions to the configuration (5-2) have placed us in a framework
where neither integration by parts in time nor space produces any gain: jˆj is of the order of s�1 and
jr�ˆj is of order about 1, with j of the order about s. Notice that this is not a localization to, but rather
away from, the resonant set.

Anisotropic decomposition. We now decompose the bilinear term into two pieces, according to the size
of j�1� �1j:

Bm;`;�p0;r .f1; f2/D B�q0
.f1; f2/C

X
q>q0

Bq.f1; f2/; q0 WD �
1

20
m;

B�.f;g/ WD F�1

Z t

0

�m.s/

Z
R2

eisˆ.�;�/'�p0
.ˆ.�; �//'�.�1� �1/m`;r .�; �/ Of .� � �/ Og.�/ d�;

m`;r .�; �/ WDmk;k1;k2.�; �/'`.� � 2�/'r .2� � �/I

(5-3)

see also the notation (6-5), and recall the formula (2-19) for the symbol m. Note that in order to simplify
notation we suppress the dependence on m; `;p0; r in B�.

5A. Estimate of B�q0
. Here we show how we can exploit the smallness in the localization in j�1� �1j

to close our bounds. The main tool here is given by improved Schur kernel bounds.
Let us introduce the notation

Kq0
.�; �/ WD '�p0

.ˆ.�; �//'�q0
.�1� �1/m`;r .�; �/;

where m`;r is as in (5-3), and so that

B�q0
.f;g/D F�1

Z t

0

�m.s/

Z
R2

eisˆ.�;�/Kq0
.�; �/ Of .� � �/ Og.�/ d�:

Proposition 5.2. Under the assumptions (5-2) the following holds true:

24kC2m�2 minfk;k1;k2gCk
kPkB�q0

.f1; f2/kL2 . 2�4ım: (5-4)

Proof. Observe that

2p0 & jˆ.�; �/j D
ˇ̌̌̌
.�1� �1/

�
1

j�j2
�

1

j� � �j2

�
� �1

�
1

j�j2
�

1

j�j2

�ˇ̌̌̌
:
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Since on the support of the integral (5-3) we have j�1� �1j � 2q0 , we see that

j�1j

ˇ̌̌̌
1

j�j2
�

1

j�j2

ˇ̌̌̌
. 2p0 C 2q0

ˇ̌̌̌
1

j�j2
�

1

j� � �j2

ˇ̌̌̌
. 2q0C10ım: (5-5)

We then distinguish two main cases depending on the size of j�1j relative to 2
1
3

q0C10ım. More precisely
we write

B�q0
.f;g/D B��q0

.f;g/CBC�q0
.f;g/;

B˙�q0
.f;g/ WD F�1

Z t

0

�m.s/

Z
R2

eisˆ.�;�/Kq0
.�; �/�˙.�1/ Of .� � �/ Og.�/ d�;

��.�1/ WD '� 1
3

q0C10ım.�1/; �C.�1/ WD 1���.�1/:

Estimate of B��q0
. In this case j�1j. 2

1
3

q0C10ım and we see that

j� � �?j. j.�1� �1/�2jC j.�2� �2/�1j. 2
1
3

q0C15ım:

This gives us an improved estimate on the symbol m, see (2-19), and hence on the kernel: using
Lemma 6.2(2) and the restrictions (5-2) we see that

kKq0
.�; �/��.�1/kSchCkKq0

.�; � � �/��.�1� �1/kSch . 2
1
3

q0 � 2p0 � 240ım:

We then apply Schur’s test incorporating the profile with localization j in the kernel and estimating the
one with largest j in L2: using the a priori bounds (3-3) and (3-5) together with the restrictions (5-2) we
have

kB��q0
.f1; f2/kL2 . 2m

� 2
1
3

q0Cp0C40ım
� "125ım

� "12�mC25ım

. 2�m
� 2�

1
60

m
� 2110ım

� "2
1:

This is sufficient to obtain (5-4), given that the restrictions (5-2) imply 2m�2 minfk;k1;k2gCk � 2m215ım

and ı � 2 � 10�4.

Estimate of BC�q0
. In this case j�1j&2

1
3

q0C10ım and in view of (5-5) we must have
ˇ̌
j�j�2�j�j�2

ˇ̌
�2

2
3

q0 .
Since j�j�2� j�j�2 D j�j�2j�j�2.�2

2
� �2

2
C �2

1
� �2

1
/ we see that

j�2
2 � �

2
2j. j�j

2
j�j22

2
3

q0 Cj�2
1 � �

2
1j. 2

1
2

q0C16ım:

Therefore we know that on the support of the integral

j�1� �1j. 2q0 ; j�2
2 � �

2
2j. 2

2
3

q0C16ım; jr�ˆ.�; �/j; jr�ˆ.�; �/j � 2�50ım
I

see (3-13) and the restrictions (5-2). Using these we claim that we can estimate

kKq0
.�; �/�C.�1/kSchCkKq0

.�; � � �/�C.�1� �1/kSch . 2
1
6

q0 � 2p0 � 270ım: (5-6)

To see why this holds true, first observe that for the support of the kernel we have

supp.Kq0
.�; �//�

˚
.�; �/ 2 R2

�R2
W � 2 SC.�/[S�.�/

	
;
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where

S˙.�/ WD
˚
� 2 R2

W jˆ.�; �/j. 2p0 ; jr�ˆ.�; �/j; jr�ˆ.�; �/j& 2�50ım;

j�1� �1j. 2q0 ; j�2˙ �2j. 2
1
3

q0C8ım
	
:

From this observation, and arguments similar to the ones in Lemma 6.2(1), it follows that

sup
�2R2

Z
R2

jKq0
.�; �/�C.�1/j d�. 2p0C60ım

� 2
1
3

q0C8ım;

having also used jmj. 210ım. The same bound can be also deduced for Kq0
.�; � � �/�C.�1 � �1/.

Combing these bounds with the similar but cruder estimate

sup
�2R2

�Z
R2

jKq0
.�; �/j d�C

Z
R2

jKq0
.�; � � �/j d�

�
. 2p0C65ım;

we see that (5-6) follows.
We finally use (5-6) and Schur’s test to obtain

kBC�q0
.f1; f2/kL2 . 2m

� 2
1
6

q0Cp0C70ım
� "125ım

� "12�mC25ım

. 2�m2�
1

120
m
� 2140ım"2

1:

We can then conclude as before, since ı is small enough. This suffices to prove the desired bound (5-4)
and concludes the proof of the proposition. �

5B. Estimates of the terms Bq . In view of the decomposition (5-3) and Proposition 5.2, the main bound
(5-1) can be reduced to showing

24kC2m�2 minfk;k1;k2gCk
kPkBq.f1; f2/kL2 . 2�5ım; q � q0; (5-7)

under the restrictions (5-2). This bound can in turn be reduced to the proof of the following proposition
about Fourier integral operators.

Proposition 5.3. Let

p D�mC 40ım; � 1
20

m� q � 4ımCD2; (5-8)

with ı � 10�4. For any g 2L2 and s 2 Œ2m�1; 2mC1� define the operator

Tp;q.g/.�/ WD

Z
R2

eisˆ.�;�/'�p.ˆ.�; �//'q.�1� �1/�.�; �/g.�/ d�;

ˆ.�; �/D �L.�/CL.� � �/CL.�/; L.x/D
x1

jxj2
;

(5-9)

and assume that the symbol � has the properties

supp.�/�
˚
.�; �/ 2 R2

�R2
W 2�Aım . j�j; j�j. 2Aım;

j� � �j; j� � 2�j& 2�Aım; j2� � �j& 2�7Aım
	

(5-10)
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for some absolute positive constant A� 5, and

jD˛
.�;�/�.�; �/j. 2j˛j.

1
2

mC60ım/220ım; j˛j � 0: (5-11)

Then Tp;q satisfies the operator bound

kTp;qkL2!L2 . 2�m�100ım: (5-12)

Before proceeding with the proof of this proposition, let us explain how Proposition 5.3 implies the
desired bound (5-7):

Proof of (5-7) from Proposition 5.3. Without loss of generality we can assume j1 � j2. Then, according
to our notation (5-3) and under the assumptions above, we can write

PkBq.f1; f2/D F�1

Z
R

�m.s/ � "1Tp;q.f2/ ds;

where we let
�.�; �/Dmk;k1;k2.�; �/ '`.� � 2�/'r .2� � �/ "

�1
1
Of1.� � �/:

Using the a priori bound k Of1k . 2�k1"1 and the restriction on j in (5-2), it is easy to see that the
above �.�; �/ satisfies the hypotheses (5-11). Applying the conclusion (5-12) we can then estimate

kPkBq.f1; f2/kL2 . "12m
kTp;qkL2!L2kf2kL2 . "12m

� 2�m�100ım
� "12�mC25ım;

which is sufficient to obtain (5-7) in view of the restriction (5-2). �

The proof of Proposition 5.3 will be performed in the remainder of the paper and will conclude the
proof of the Main Theorem, Theorem 2.2.

5C. Proof of Proposition 5.3. To prove (5-12) we will use a T T � argument which is based on a suitable
nondegeneracy property of the mixed Hessian of the phase ˆ. In particular, it turns out to be crucial that
we can integrate by parts along the direction parallel to the level sets of ˆ. We subdivide the proof into a
few steps: First, in Step 1 we describe a curvature quantity that gives a measure of the aforementioned
nondegeneracy. Step 2 then sets up the T T � kernel and guides the subsequent splitting; we either use
smallness of sets to get the claimed kernel bounds (Step 3) or exploit the nondegeneracy via an iterated
integration by parts (Step 4).

Step 1: The curvature quantity y‡. In preparation for Step 2 let us define

y‡.�; �/ WD r2
�;�ˆ

�
r?
�
ˆ

jr�ˆj
;
r?� ˆ

jr�ˆj

�
.�; �/: (5-13)

We begin with the following algebraic lemma involving y‡ :

Lemma 5.4. Define � and ‚ as follows:

y‡.�; �/DW
�.�; �/

j� � �j8 jr�ˆ.�; �/jjr�ˆ.�; �/j
; ˆ.�; �/DW

‚.�; �/

j� � �j2
:
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Then we have the identity
1
2
�.�; �/� 2‚.�; �/D 3.�1� �1/: (5-14)

As a consequence, on the support of the operator Tp;q the following bounds on y‡ hold:

2q�6Aım . j y‡.�; �/j. 2qC10Aım: (5-15)

Proof. The identity (5-14) is obtained by a direct computation.
To verify (5-15) notice that

j y‡.�; �/j D
j�.�; �/jj�jj�j

j� � �j4 j� � 2�jj�� 2�j
;

and therefore, because of the restrictions (5-10),

2�6Aım
j�.�; �/j. j y‡.�; �/j. 210Aım

j�.�; �/j:

Now note that j‚.�; �/j. 2p22Aım� 2q � j�1��1j by (5-8)–(5-9). Hence we can use (5-14) to deduce
that j�j � 2q , and the conclusion follows. �

Step 2: The T T � kernel. Notice that the support of .Tp;qg/.�/ is contained in the ball j�j . 24ım.
We decompose this ball into O.2�2qC2.C0C4/ım/ balls of radius R WD 2q�C0ım�D3

for some absolute
constant C0 2 Œ50; 150� to be determined below, depending on A. If we denote by �0 the center of any
such small ball and let

Tp;q;�0
.g/.�/ WD '�R.� � �0/Tp;q.g/.�/;

we see that the main bound (5-12) will follow provided we can show that for every �0 2 R,

kTp;q;�0
T �p;q;�0

kL2!L2 . Œ2�m�100ım
� 22q�2.C0C4/ım�2: (5-16)

Such a localization to a small ball in � will allow us to better control several remainder terms in various
Taylor expansions below.

Let us write

Tp;q;�0
T �p;q;�0

g.�/D

Z
R2

Sp;q;�0
.�; � 0/g.� 0/ d� 0;

where the kernel is given by

Sp;q;�0
.�; � 0/D '�R.� � �0/'�R.�

0
� �0/

Z
R2

eisŒˆ.�;�/�ˆ.�0;�/��.�; �/�.� 0; �/ 'q.�1� �1/

�'q.�
0
1� �1/ '�p.ˆ.�; �// '�p.ˆ.�

0; �// d�: (5-17)

Notice that on the support of this kernel we must have j��� 0j � 4RD 4 �2q�C0ım�D3

. Also recall that the
symbol � satisfies the properties (5-10)–(5-11). We will sometimes use the short-hand notation S.�; � 0/

for Sp;q;�0
.�; � 0/, dropping the indices where this creates no confusion.

To bound the relevant operator we will resort to an integration by parts in � in the kernel (5-17) — see
Step 4. Where this integration fails we will show how to gain from the smallness of the measure of the
support of the kernel (Step 3).



ON THE GLOBAL STABILITY OF A BETA-PLANE EQUATION 1617

The integration by parts will be performed through the trivial identity

eisŒˆ.�;�/�ˆ.�0;�/�
D

1

isD
r?� ˆ.�; �/

jr�ˆ.�; �/j
� r�e

isŒˆ.�;�/�ˆ.�0;�/�; (5-18)

with

D WD
r?� ˆ.�; �/

jr�ˆ.�; �/j
� r�Œˆ.�; �/�ˆ.�

0; �/�: (5-19)

The choice of direction of integration by parts is motivated by the roughness of the symbol in the integrand
in (5-17). See also the identities (5-25)–(5-26).

To see the relevance of y‡ defined in (5-13) we calculate

DD
r?� ˆ.�; �/

jr�ˆ.�; �/j
� r�Œˆ.�; �/�ˆ.�

0; �/�

D
r?� ˆ.�; �/

jr�ˆ.�; �/j
� Œr2

�;�ˆ.�; �/.� � �
0/�CO.r3

�;�;�ˆ.�; �/j� � �
0
j
2/:

The fact that r�ˆ does not vanish allows us write

� � � 0 D ae1C be2; e1 WD

r?
�
ˆ.�; �/

jr�ˆ.�; �/j
; e2 WD

r�ˆ.�; �/

jr�ˆ.�; �/j
:

We can thus decompose D as

DD a y‡.�; �/C b
r?� ˆ.�; �/

jr�ˆ.�; �/j
r

2
�;�ˆ.�; �/

r�ˆ.�; �/

jr�ˆ.�; �/j
CO.r3

�;�;�ˆ.�; �/j� � �
0
j
2/;

with y‡ defined in (5-13) and satisfying the bounds (5-15). In particular

jDj � jajj y‡.�; �/j � jbjjr2
�;�ˆ.�; �/j � 2D

jr
3
�;�;�ˆ.�; �/jj� � �

0
j
2: (5-20)

Observe that on the support of S.�; � 0/ we have

2p & jˆ.�; �/�ˆ.� 0; �/j& jr�ˆ.�; �/ � .� � � 0/j �O.jr2
�ˆ.�; �/jj� � �

0
j
2/

D jbjjr�ˆ.�; �/j �O.jr2
�ˆ.�; �/jj� � �

0
j
2/:

(5-21)

Step 3: The case jbj � 2C1ımCD j� � � 0j2, with C1 WD 13A. Using (5-21), jr�ˆ.�; �/j & 2�10Aım and
jr2
��
ˆ.�; �/j. 23Aım, we deduce that jbj. 2pC10Aım and in particular that we must have

j� � � 0j2 . 2p:

We now use Schur’s test to show how this suffices to obtain (5-16).
More generally, let us assume that the support of S.�; � 0/ is contained in the set j� � � 0j �L. Using

Lemma 6.2(1), the lower bounds jr�ˆ.�; �/j & 2�10Aım and jr�ˆ.�; �/j & 2�4Aım that hold on the
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support of �.�; �/, see (5-10) and (3-13), we can then estimateZ
R2

jS.�;� 0/j�fj���0j�Lgd� .
“

R2�R2

'�p.ˆ.�;�//j�.�;�/j'�p.ˆ.�
0;�//j�.� 0;�/j�fj���0j.Lgd�d�

.
Z

R2

'�p.ˆ.�
0;�//j�.� 0;�/j

�Z
R2

'�p.ˆ.�;�//j�.�;�/j�fj���0j.Lgd�

�
d�

.
Z

R2

'�p.ˆ.�
0;�//j�.� 0;�/j Œ2p

�2.10AC20/ım
�L�d�

. 22p
�2.14AC40/ım

�L: (5-22)

By symmetry a similar bound also holds when exchanging the roles of � and � 0. Using this estimate with
LD 2

1
2

p, we see that (5-16) follows from Schur’s test since, under our assumptions, 5
2
pC .14AC40/ım

is less than �2m� 200ımC 4q� 4.C0C 4/ım, as required.

Step 4: The case jbj � 2C1ımCD j� � � 0j2. In this case we have jbj � 2�D j� � � 0j, provided we choose
C0 � C1C 4. Therefore jaj � 1

2
j� � � 0j. Then we must also have

2q
jaj � 2C0ımCD2

j� � � 0j2;

since j� � � 0j � 4 � 2q�C0ım�D3

on the support of the kernel. From (5-15) we know that j y‡ jjaj �
2q�6Aım�D jaj, and since we also have

jbjjr2
�;�ˆ.�; �/jC 2D

jr
3
�;�;�ˆ.�; �/jj� � �

0
j
2
� 2.C1C3A/ımC2D

j� � � 0j2;

we can choose C0 � C1C 9AD 22A, and invoke (5-20) to deduce

jDj& 2q�6Aım
jaj:

Notice that we can also assume that jaj& 2�
3

10
m, for otherwise jaj � j� � � 0j. 2�

3
10

m and the bound
(5-22) would give usZ

�

jS.�; � 0/j�fj���0j�2�.3=10/mg d� . 22p
� 2.14AC40/ım

� 2�
3

10
m;

so that (5-16) would follow via Schur’s test as above.
We now claim that an iterated integration by parts yields

jS.�; � 0/j. 240ım
�
2�m
jDj�1 max

˚
2

1
2

mC60ım; 2�q; jDj�12.
2
N
C1/Aım; 2�p

jDj
	�M (5-23)

for any positive integer M. Since jDj & 2�
2
5

m, p � �mC 40ım and q � � 1
20

m, this bound clearly
suffices to obtain (5-16).

To prove (5-23), we integrate by parts in � in the integral (5-17) using the identities (5-18)–(5-19): For
notational convenience, we rewrite them here as

eis‰
D

1

is
X eis‰; ‰.�; � 0; �/ WDˆ.�; �/�ˆ.� 0; �/;

X .�; �/ WD 1

DV � r�; XT .�; �/ WD div�
�

1

DV �
�
; V WD

r?� ˆ.�; �/

jr�ˆ.�; �/j
:
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Integrating by parts M times will then give

jS.�; � 0/j

.
Z

R2

2�mM
ˇ̌
.XT /M

�
�.�; �/�.� 0; �/'q.�1��1/ 'q.�

0
1��1/'�p.ˆ.�; �// '�p.ˆ.�

0; �//
�ˇ̌

d�: (5-24)

Let us now analyze the various terms that arise in (5-24):

(a) When div� V hits the symbol �.�; �/�.� 0; �/ this produces a factor growing at most 2
1
2

mC60ım in
view of the assumption (5-11). This is accounted for by the first term in the curly brackets in (5-23).

(b) The terms that arise when div� V hits the cutoff 'q.�1� �1/'q.�
0
1
� �1/ are bounded by 2�q .

(c) To deal with the terms when div� V hits the denominator D, it suffices to observe that on the support
of the kernel,

jD˛
�D.�; �/j. 2.2Cj˛j/Aım:

(d) For the term arising when div� V hits the cutoff '�p.ˆ.�
0; �//'�p.ˆ.�; �//, first notice that by

construction
V � r�'�p.ˆ.�; �//D 0: (5-25)

Moreover, we can calculate

V.�; �/ � r�.'p.ˆ.�
0; �///D V.�; �/ � r�ˆ.� 0; �/2�p.'0/p.ˆ.�

0; �//

D�D.�; �/ 2�p.'0/p.ˆ.�
0; �//: (5-26)

We then see that this is accounted for by the last term in the curly brackets in (5-23).

This concludes the proof of (5-23) and Proposition 5.3. The Main Theorem, Theorem 2.2, follows. �

6. Useful lemmata

A Schur lemma. We demonstrate here some bounds for integral operators defined through kernels with
localizations. These bounds derive from the set-size restrictions brought about by localizations. We first
recall the standard Schur’s test:

Lemma 6.1. For a kernel K W R2 �R2! R, consider the corresponding operator

.TKf /.�/ WD

Z
R2

K.�; �/f .�/ d�;

and assume that
sup
�2R2

Z
R2

jK.�; �/j d��K1; sup
�2R2

Z
R2

jK.�; �/j d� �K2:

Then
kTKf kL2 .

p
K1K2kf kL2 :

We will often apply the above lemma, and for this purpose define

kKkSch WD

�
sup
�

Z
K.�; �/ d�

�1
2
�

sup
�

Z
K.�; �/ d�

�1
2

: (6-1)
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Lemma 6.2. (1) Let F W R2! R be smooth in a ball BR.z/� R2, z 2 R2, R> 0. ThenZ
BR.z/

'��.F.x//'��.rF.x// dx � 2��2�R:

(2) Consider an integral operator given by the kernel

K.�; �/ WD 'p.ˆ.�; �//'`.� � 2�/'r .�� 2�/'k.�/'a.� � �/'b.�/;

where ˆ is the phase in (2-2). Then we have the bound

kKkSch . 2pC 1
2
.kCb�`�r/C2a2

1
2

minf`;r;a;bgC 1
2

minf`;r;k;ag; (6-2)

so that, in particular,

kKkSch . 2pC 1
2
.kCbC2a/:

As a consequence, we also see that if minfk; `g �maxfa; bg� 10, then, for

K`.�; �/ WD �p.ˆ.�; �//�`.� � 2�/�k.�/�a.� � �/�b.�/

we have the bound

kK`
kSch . 2pC 1

2
.kCb�`C3a/2

1
2

minf`;a;bgC 1
2

minf`;k;ag; (6-3)

Proof. Point (2) is a consequence of (1) and the formulas for the gradient of ˆ in (3-13), so we start by
demonstrating (1).

Proof of (1). Notice that fx 2R2 W jrF.x/j�2�g�A1
�[A2

�, where Ai
� WD fx 2R2 W j@xi

F.x/j�2��1g.
Hence on BR.z/\A1

� a well-defined change of variables is given by .y1;y2/D Y .x/ WD .F.x1;x2/;x2/.
This change of variables has Jacobian determinant equal to j@x1

F j& 2�, so we haveZ
BR.z/\A

�

1

'��.F /'��.rF /.x/ dx . 2��
Z

Y .BR.z//

'��.F /'��.rF /.Y �1.y// dy

. 2��
Z
jy2�z2j�R

'��.y1/ dy � 2��2�R:

Exchanging the roles of x1 and x2, in complete analogy we deduce the same bound forZ
BR.z/\A

�

2

'��.F /'��.rF / dx;

thus proving the first claim.

Proof of (2). We estimate the two integrals in (6-1); for each it will suffice to appropriately apply (1). To
this end, notice that with the localizations in K.�; �/ we have, see (3-13),

jr�ˆj D
j�jj� � 2�j

j�j2 j� � �j2
� 2kC`2�2a�2b; jr�ˆj D

j�jj�� 2�j

j�j2 j� � �j2
� 2bCr 2�2k�2a

and ˆ is smooth in the domains of integration.
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Furthermore, for fixed � there exist �0 and R.minf2`; 2r ; 2a; 2bg such that the domain of the integral
in � is contained in the ball BR.�0/. We then invoke (1) to obtainZ

R2

K.�; �/ d��

Z
BR.�0/

'p.ˆ.�; �//'2kC`�2a�2b .2�10
r�ˆ.�; �// d�

. 2p2�k�`C2aC2b2minf`;r;a;bg:

Similarly, for fixed � there exists �0 such that the domain of the integral in � is included in a ball of
center �0 and radius R.minf2`; 2r ; 2k ; 2ag, which promptly yieldsZ

R2

K.�; �/ d� . 2p2�b�rC2kC2a2minf`;r;k;ag:

Combining these gives the claim (6-2). The bound (6-3) follows since for minfk; `g �maxfa; bg� 10

one has jr �maxfa; bgj � 5. �

Hölder-type estimates and integration-by-parts lemmas. For simplicity of notation we define the following
class of multipliers:

S1 WD fm W .R2/2! C Wm continuous and kmkS1 WD kF
�1mkL1 <1g: (6-4)

As we will often localize in frequency space we define, for any symbol m,

mk;k1;k2.�; �/ WD 'Œk�2;kC2�.�/'Œk1�2;k1C2�.� � �/'Œk2�2;k2C2�.�/m.�; �/I (6-5)

see the notation in Section 2. Here is a basic lemma about S1 symbols that we will often use:

Lemma 6.3. (i) We have S1 ,!L1.R2 �R2/. If m;m0 2 S1 then m �m0 2 S1 and

km �m0kS1 . kmkS1km0kS1 :

Moreover, if m2S1, A WR2!R2 is a linear transformation, v 2R2, and mA;v.�; �/ WDm.A.�; �/Cv/,
then

kmA;vkS1 D kmkS1 :

(ii) For m 2 S1, consider the bilinear operator Tm W S.R2/�S.R2/! S 0.R2/ defined by

Tm.f;g/.�/ WD F�1

Z
m.�; �/ Of .� � �/ Og.�/ d�:

Then, for all 1� p; q; r �1 satisfying the Hölder relation 1
r
D

1
p
C

1
q

, we have

kTm.f;g/kLp . kmkS1kf kLpkgkLq :

Proof. The properties in (i) follow directly from the definition (6-4). A direct computation unwinding the
Fourier transforms shows that

Tm.f;g/.x/D

Z
�

eix�

Z
�

m.�; �/ Of .� � �/ Og.�/ d� d�D

Z
y

Z
z

f .x� z/g.x�y � z/ Lm.z;y/ dy dz;

from which the claim follows directly. �
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We state next a useful lemma, which allows us to use Hölder-type bounds when we integrate by parts
in time.

Lemma 6.4. Assume t � 2m for some m 2 N, and p � �mC 2ım. For � 2 S1, with k�kS1 � 1,
consider a bilinear operator of the form

Bp.v; w/.�/ WD '�10m.�/

Z
R2

eitˆ.�;�/�.2�pˆ.�; �//�.�; �/ Ov.� � �/ Ow.�/ d�;

where � is a Schwartz function. Then, for any 1
p
C

1
q
D

1
2

,

kBp.v; w/kL2 .
�

sup
jsj�2�p2ım

kei.tCs/LvkLpkei.tCs/LwkLq CkvkL2kwkL22�10m
�
:

Proof. Let us use

�.2�pˆ.�; �//D c

Z
R

eiz2�pˆ.�;�/
L�.z/ dz

to write

Bp.v; w/D c

Z
R2

�Z
R

ei.2�pzCt/ˆ.�;�/
L�.z/ dz

�
�.�; �/ Ov.� � �/ Ow.�/ d�:

Using the rapid decay j L�j � .1Cjzj/�M, for M large enough, we can estimate the contribution from the
region jzj � 2ım asZ

R2

�Z
jzj�2ım

ei.2�pzCt/ˆ.�;�/
L�.z/ dz

�
'�10m.�/�.�; �/ Ov.� � �/ Ow.�/ d�


L2
�

. 210m2�ıMm
kvkL2kwkL2 . 2�10m

kvkL2kwkL2 :

We are now left with estimatingZ
R2

Z
jzj�2ım

L�.z/ '�10m.�/�.�; �/ ei.2�pzCt/L.���/
Ov.� � �/ei.2�pzCt/L.�/

Ow.�/ d� dz


L2
�

. sup
jzj�2ım

Z
R2

�.�; �/ei.2�pzCt/L.���/
Ov.� � �/ei.2�pzCt/L.�/

Ow.�/ d�


L2
�

;

which by virtue of Lemma 6.3 and k�kS1 � 1 is bounded by

sup
jzj�2ım

kei.tC2�pz/LvkLpkei.2�pzCt/LwkLq :

The desired conclusion follows. �

Here is a basic integration-by-parts lemma:

Lemma 6.5. Assume that � 2 .0; 1/, �K � 1, M � 1 is an integer, and F;g 2 C M .Rn/. Assume also
that F is real-valued and satisfies

jrF j � 1supp.g/; jD
˛F j.M �1�j˛j for all 2� j˛j �M:
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Then ˇ̌̌̌Z
Rn

eiKF g dx

ˇ̌̌̌
. 1

.�K/M

X
j˛j�M

�j˛jkD˛gkL1 (6-6)

The proof is a fairly straightforward integration-by-parts argument; see Lemma 5.4 in [Ionescu and
Pausader 2014].
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AIRY-TYPE EVOLUTION EQUATIONS ON STAR GRAPHS

DELIO MUGNOLO, DIEGO NOJA AND CHRISTIAN SEIFERT

We define and study the Airy operator on star graphs. The Airy operator is a third-order differential opera-
tor arising in different contexts, but our main concern is related to its role as the linear part of the Korteweg–
de Vries equation, usually studied on a line or a half-line. The first problem treated and solved is its correct
definition, with different characterizations, as a skew-adjoint operator on a star graph, a set of lines connect-
ing at a common vertex representing, for example, a network of branching channels. A necessary condition
turns out to be that the graph is balanced, i.e., there is the same number of ingoing and outgoing edges at the
vertex. The simplest example is that of the line with a point interaction at the vertex. In these cases the Airy
dynamics is given by a unitary or isometric (in the real case) group. In particular the analysis provides the
complete classification of boundary conditions giving momentum (i.e., L2-norm of the solution) preserv-
ing evolution on the graph. A second more general problem solved here is the characterization of condi-
tions under which the Airy operator generates a contraction semigroup. In this case unbalanced star graphs
are allowed. In both unitary and contraction dynamics, restrictions on admissible boundary conditions oc-
cur if conservation of mass (i.e., integral of the solution) is further imposed. The above well-posedness re-
sults can be considered preliminary to the analysis of nonlinear wave propagation on branching structures.

1. Introduction

We consider the partial differential equation

@u

@t
D ˛

@3u

@x3
Cˇ

@u

@x
; (1-1)

where ˛ 2 R n f0g and ˇ 2 R, on half-bounded intervals .�1; 0/ or .0;1/, and more generally on
collections of copies thereof, building structures commonly known as metric star graphs.

A metric star graph in the present setting is the structure represented by the set (see Figure 1)

E WD E�[EC;

where EC and E� are finite or countable collections of semi-infinite edges e parametrized by .�1; 0/ or
.0;1/ respectively. The half-lines are connected at a vertex v, where suitable boundary conditions have to
be imposed in order to result in a well-posed boundary initial value problem. From a mathematical point
of view the problem consists in a system of jE�jC jECj partial differential equations of the form (1-1),
with possibly different coefficients ˛ and ˇ, coupled through the boundary condition at the vertex. Our
main concern in this paper is exactly the characterization of boundary conditions yielding a well-posed
dynamics for (1-1) on a metric star graph.
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Figure 1. A balanced star graph with jE�j D jECj D 5 edges.

This is a well known problem when a Schrödinger operator is considered on the graph, in which case
the system is called a quantum graph. In this case, extended literature exists on the topic, both for the
elliptic problem and for some evolution equations, like heat or wave or reaction-diffusion equations; see
[Berkolaiko and Kuchment 2013; Mugnolo 2014]. The analysis has been recently extended also to the
case of the nonlinear Schrödinger equation, in particular as regards the characterization of ground states
and standing waves; see [Noja 2014; Cacciapuoti et al. 2017] for a review. Another dispersive nonlinear
equation, the BBM equation, is treated in [Bona and Cascaval 2008; Mugnolo and Rault 2014]. A partly
numerical analysis and partly theoretical analysis of some special cases of the linear Korteweg–de Vries
equation on a metric graph is given in [Sobirov et al. 2015a; 2015b; 2015c]. Finally we notice that
information about the linear part of the KdV equation on a star graph with special boundary conditions
related to controllability problems is considered in [Ammari and Crépeau 2017]. Apart from these papers,
not much seems to be known for (1-1), the linear part of the KdV equation. In this context, the solution
of (1-1) represents, in the long wave or small amplitude limit, the deviation of the free surface of water
from its mean level in the presence of a flat bottom. We will refer to (1-1) as the Airy equation and to
the operator on its right-hand side as the Airy operator; its connection with the KdV equation is one of
our main motivations for the study of this problem. Equation (1-1) appeared for the first time in [Stokes
1847] as a contribution to the understanding of solitary waves in shallow water channels observed by
Russel [Lannes 2013], but some of its solutions were discussed previously by Airy (ironically, to refuse
the existence of solitary waves).

One of the most fascinating features of this PDE is that it has both a dispersive and smoothing character
and in fact it is well known that (1-1) is governed by a group of bounded linear operators whenever its
space domain is the real line; see [Linares and Ponce 2009].

On the line, after Fourier transform, the solution of (1-1) is given by

u.t;x/D
1

2�

Z
R

Z
R

eikŒ.x�y/�˛k2�ˇ�tu0.y/ dy dk;

where u0 is the initial data of (1-1). The above Fourier formula can be further managed to give in the
standard ˛ < 0 case

u.t;x/DKt �u0.x/; Kt .x/D
1

3
p

3j˛jt
Ai
�

x�ˇt
3
p

3j˛jt

�
; (1-2)
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where

Ai.x/ WD 1

2�

Z
R

eiyxCi 1
3

y3

dy D
1

�

Z
R

cos
�
yxC 1

3
y3
�

dy (1-3)

is the so-called Airy function (intended with a hidden exponential convergence factor).
Translation invariance allows one to get rid of the first-order term, just changing to moving coordinates

in the equation or directly in the solution, and it is not restrictive to put ˇ D 0. In particular one has that
kKtkL1.R/ DO.1= 3

p
t/, from which the typical dispersive behavior of Airy equation solutions on the

line follows. This estimate and other more refined dispersive properties are of utmost importance both at
the linear level and in the analysis of nonlinear perturbation of the equation, such as the KdV equation;
see [Linares and Ponce 2009].

Much harder is the analysis of the properties of the Airy operator when translation invariance is broken,
for example in the case of a half-line or in the presence of an external potential. In the first case much work
has been done in the context of the analysis of well-posedness of the KdV equation. The first problem one
is faced with is the unidirectional character of the propagation, which requires some care in the definition
of the correct boundary value problem. It is well known that for the standard problem (˛ < 0) of the KdV
equation two boundary conditions at 0 are needed on .�1; 0/ and only one suffices on .0;C1/. The
issues in the definition of the correct boundary conditions of KdV equation are shared by the linear part, the
Airy equation. A more complete analysis of the problem on the half-line is given in the following section.

The Airy operator with an external potential, representing the effect of an obstacle in the propagation
or the result of a linearization around known stationary solutions is studied in [Miller 1997], especially as
regards spectral and dispersion properties, while a different model with an inhomogeneous dispersion
obtained through the introduction of a space-dependent coefficient for the third-derivative term is studied
in [Craig and Goodman 1990].

In this paper we are interested in the generalization of the half-line example and from now on we
will discuss only the case of a star graph in which the Airy operator has constant coefficients on every
single edge (but possibly different coefficients from one edge to another) and discard any other source of
inhomogeneity.

Our first goal is to properly define the Airy operator as an unbounded operator on a certain Hilbert
space, in such a way that it turns out to be the generator of a C0-semigroup. We will consider two cases
in increasing order of generality. The first is the one in which the generated dynamics is unitary (in the
complex case) or isometric (in the real case); the second is the case in which the generated dynamics is
given by a contraction C0-semigroup. The easiest way to understand the nature of the problem is to consider
the densely defined closable and skew-symmetric Airy operator u 7!A0u WD ˛.d3u=dx3/Cˇ.du=dx/

with domain C1c .�1; 0/ or C1c .0;C1/ on the Hilbert spaces L2.�1; 0/ or L2.0;C1/ respectively.
Due to the fact that the Airy operator is of odd order, changing the sign of ˛ it is equivalent to exchange
the positive and negative half-line and so we can take ˛ > 0 without loss of generality.

An easy control shows that the deficiency indices of the two operators are .2; 1/ in the first case
and .1; 2/ in the second case, so that iA0 does not have any self-adjoint extension on any of the two
half-lines. However, the direct sum of the operators on the two half-lines results in a symmetric operator on
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C1c ..�1; 0/[ .0;C1// with equal deficiency indices .3; 3/. Hence, thanks to classical von Neumann–
Krein theory it admits a nine-parameter family of self-adjoint extensions generating a unitary dynamics
in L2.R/. Of course, this is not the only possibility to generate a dynamics. For instance, it could be the
case that a suitable extension A of the operator on the half-line generates a nonunitary semigroup, so not
conserving L2-norm, that still consists of L2-contractions. According to the Lumer–Phillips theorem,
this holds true if and only if both A and its adjoint A� are dissipative. Dissipativity in fact occurs if the
right number of correct boundary conditions are added; for example in the standard case with ˛ < 0, the
Dirichlet condition on u.0/ on the half-line .0;C1/ is sufficient, but two conditions, for example the
two Dirichlet and Neumann boundary conditions on u.0/ and u0.0/, are needed on .�1; 0/.

This is the ultimate reason why more or less explicit results about Airy semigroup formulas exist in
the above examples and they can be fruitfully applied to some cases of nonlinear perturbation, such as
the KdV equation on the half-line.

The above basic remark, which seemingly went unnoticed in the previous literature on the subject, is the
starting point of the treatment of the Airy operator on the more general case of a star graph. To efficiently
treat the case of star graphs, we exploit the fact that the Airy operator is antisymmetric, and we want to
give first existence conditions for its skew-adjoint extensions and their classification. This can be done in
principle in several ways and here we rely on a recent analysis making use (in the intermediate steps of
the construction) of Krein spaces with indefinite inner products, recently developed in [Schubert et al.
2015]. As suggested by the example of the half-line, a necessary condition for skew-adjointness is that
E� D EC, i.e., the number of incoming half lines is the same of outgoing half-lines. When this condition
is met the graph is said to be balanced. A similar necessary condition was shown to be true in the case of
the quantum momentum operator �i.d=dx/ on a graph; see [Carlson 1999; Exner 2013]. The complete
characterization of skew-adjoint boundary conditions is more complex, and is given in Theorems 3.7
and 3.8. To explain, we introduce the space of boundary values at the vertex for the domain element of
the adjoint operator A�

0
: These are given by

�
u.0�/;u0.0�/;u00.0�/

�> and
�
u.0C/;u0.0C/;u00.0C/

�>,
spanning respectively spaces G� and GC (notice that u.0�/;u.0C/ etc. are vectors with components
given by the boundary values on the single edges and “minus” and “plus” mean that they are taken on
edges in E� or EC respectively). The boundary form of the operator A0 is given by

.A�0u j v/C.u jA�0v/

D

0@0@�ˇ� 0 �˛�
0 ˛� 0

�˛� 0 0

1A0@ u.0�/

u0.0�/

u00.0�/

1Aˇ̌̌̌ˇ̌
0@ v.0�/v0.0�/

v00.0�/

1A1A
G�

�

0@0@�ˇC 0 �˛C
0 ˛C 0

�˛C 0 0

1A0@ u.0C/

u0.0C/

u00.0C/

1Aˇ̌̌̌ˇ̌
0@ v.0C/v0.0C/

v00.0C/

1A1A
GC

D

0@B�

0@ u.0�/

u0.0�/

u00.0�/

1Aˇ̌̌̌ˇ̌
0@ u.0�/

u0.0�/

u00.0�/

1A1A
G�

�

0@BC

0@ u.0C/

u0.0C/

u00.0C/

1Aˇ̌̌̌ˇ̌
0@ u.0C/

u0.0C/

u00.0C/

1A1A
GC

;

where, with obvious notation, ˛˙ and ˇ˙ are vector-valued coefficients in E˙ of the Airy equation on the
graph. The block matrices B˙ are nondegenerate and symmetric but indefinite and endow the boundary
spaces G˙ with the structure of a Krein space. Correspondingly, the space G�˚GC is endowed with the
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sesquilinear form

!..x;y/; .u; v//D

��
B� 0

0 �BC

��
x

y

� ˇ̌̌̌ �
u

v

��
:

The first important characterization is that skew-adjoint extensions of A0 are parametrized by the subspaces
X of G�˚GC which are !-self-orthogonal (X DX? where orthogonality is with respect to the indefinite
sesquilinear form !; see Definition 3.6 for more details). An equivalent, more explicit parametrization is
through relations between boundary values. Consider a linear operator L W G�! GC (here we describe
the simplest case in which G˙ are finite-dimensional; for the general case see Section 3) and define

D.AL/D
˚
u 2D.A�0/ WL

�
u.0�/;u0.0�/;u00.0�/

�
D
�
u.0C/;u0.0C/;u00.0C/

�	
;

ALuD�A�0u:

Then AL is a skew adjoint extension of A0 if and only if L is .G�;GC/-unitary (hLx jLyiC D hx j yi�

and again see Definition 3.6).
The characterization of extensions A of A0 generating a contraction semigroup can be treated along

similar lines. According to the Lumer–Phillips theorem, one has that A and A� have to be dissipative. For
a linear operator L W G�! GC define AL ��A�

0
as above. Denoting by L] the .GC;G�/-adjoint of the

operator L (see Definition 3.6) one has that AL is the generator of a contraction semigroup if and only if
L is a .G�;GC/-contraction (i.e., hLx jLxiC� hx j xi� for all x 2 G�) and L] is a .GC;G�/-contraction
(i.e., hL]x jL]xi� � hx j xiC for all x 2 GC).

This condition allows for a different number of ingoing and outgoing half-lines, and it is well adapted
to study realistic configurations such as a branching channel.

Notice that in both the skew-adjoint or dissipative case one can consider the possible conservation
of an additional physical quantity, the mass, coinciding with the integral of the domain element of A.
Conservation of mass (see Remark 3.10) is characterized by boundary conditions satisfying the constraintX

e2E�

˛eu
00
e .0�/�

X
e2EC

˛eu
00
e .0C/C

X
e2E�

ˇeue.0�/�
X
e2EC

ˇeue.0C/D 0:

Of course the requirement of mass conservation restricts the allowable boundary conditions, both in the
skew-adjoint and the dissipative case.

In Section 4 we provide a collection of more concrete examples. Already at the level of general
analysis previously done it is clear that a distinguished class of boundary conditions exists, in which
the first-derivative boundary values u0.0˙/ are separated. This means that they do not interact with the
boundary values of u and u00 and satisfy the transmission relation u0.0C/D Uu0.0�/ with U unitary in
the skew-adjoint case and a contraction in the dissipative case, while u.0˙/ and u00.0˙/ are coupled.
This case is described at the beginning of Section 4. Some more special examples deserve interest. The
first is the graph consisting of two half-lines. This case is interesting also because it can be interpreted
as describing the presence of an obstacle or point interaction on the line. In the skew-adjoint case this
perturbation does not destroy the conservation of momentum during the evolution. Moreover, there are
both skew-adjoint and more generically contractive boundary conditions that conserve the mass as well.
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In this sense the two half-lines case corresponds to a forcing or interaction which however can preserve
in time some physical quantity. A related recent analysis is given in [Deconinck et al. 2016], where an
inhomogeneous interface problem for the Airy operator on the line (in the special case ˇ D 0) is studied
by means of the Fokas unified transform method (UTM), see [Fokas 2008], and necessary and sufficient
conditions for its solvability are given in terms of interface conditions (in that paper the authors prefer to
distinguish between interface and boundary conditions; here this usage is not followed). It surely would
be interesting to compare the interface conditions studied in the quoted paper with the ones derived in the
present one both as regards the skew-adjoint case and the contraction case.

A second class of examples are given for the graph with three half-lines, which falls necessarily in
the non-skew-adjoint case. A more accurate analysis of this example is relevant because of the possible
application to the analysis of flow in branching or confluent channels, which has attracted some attention
in recent years; see [Nachbin and Simões 2012; 2015], and the interesting early paper [Jacovkis 1991],
where different models of flows are treated but much of the analysis has general value. It is not at all clear
which boundary conditions should be the correct ones from a physical point of view, and the complete clas-
sification of those giving generation at least for the Airy operator is a first step to fully understand realistic
situations. In general one expects, on theoretical and experimental grounds, that 1-dimensional reductions
retain some memory of the geometry (for example the angles of the fork) which is not contemplated
in the pure graph description, and a further step in the analysis should consist in including these effects
through the introduction of further phenomenological parameters or additional terms in the equation.

The paper is so organized. In Section 2 the simplest case of a single half-line is considered, giving
also some comments on the previous literature on the subject. In Section 3 the complete construction
of the Airy operator on a star graph in the skew-adjoint and dissipative case is given. The exposition is
self-contained as regards the preliminary definitions on graphs and operators on Krein spaces. Besides
construction, some general properties of the Airy operators are further studied. In Section 4 some examples
are treated.

2. The case of the half-line

As a warm-up, in the present section we consider the Airy equation on the half-line. This is an often-
considered subject because of its relevance in connection with the analogous initial boundary value problem
for the KdV equation, which turns out to be a rather challenging problem, especially when studied in
low Sobolev regularity; for pertinent papers on the subject with information on the linear problem see
[Bona et al. 2002; Colliander and Kenig 2002; Hayashi and Kaikina 2004; Holmer 2006; Faminskii 2007;
Fokas et al. 2016]. For the interesting case of the interval see also [Colin and Ghidaglia 2001; Bona et al.
2003]. We recall that Korteweg and de Vries derived, under several hypotheses, the equation

@�

@t
D

3

2

r
g

`

�
�

3

@3�

@x3
C

2˛

3

@�

@x
C

1

2

@�2

@x

�
; (2-1)

where the unknown � is the elevation of the water surface with respect to its average depth ` in a
shallow canal. (See [Korteweg and de Vries 1895] for an explanation of the parameters g; �; ˛; there
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� is implicitly assumed to be negative. See also [Lannes 2013] for a modern and complete analysis).
Renaming coefficients one obtains the KdV equation with parameter ˛ in front of the third derivative and
ˇ in front of the first derivative. The physically relevant case of a semi-infinite channel represented by the
half-line Œ0;C1

�
and a wave maker placed at x D 0 is described, if dissipation is neglected, by the KdV

equation in which the linear part has ˛ < 0 and ˇ < 0; see [Bona et al. 2002]. So one obtains, neglecting
nonlinearity, the Airy equation on the positive half-line as the linear part of the KdV equation with the
above sign of coefficients. The first-derivative term disappears on the whole line changing to a moving
reference system, but on the half-line or on a non translation-invariant domain it should be retained, and
we do this. The sign of the coefficient of the third derivative is important and interacts with the choice
of the half-line, left or right, where propagation occurs. Depending on the sign of ˛, we must impose
a different number of boundary conditions: we have one and two boundary conditions on .0;1/ and
.�1; 0/ respectively if ˛ < 0, and vice versa if ˛ > 0. This reflects the fact that the partial differential
equation (1-1) has unidirectional nature, and is explained in the literature in several different ways. An
explanation making use of the behavior of characteristic curves is recalled for example in [Deconinck
et al. 2016], where the authors however notice that it has only a heuristic value. A more convincing brief
discussion is given, for ˇ D 0, in [Holmer 2006], which we reproduce now with minor modifications
and considering ˛ D˙1 for simplicity, which can always be achieved by rescaling the space variable.
On the left half-line, after multiplying both sides of (1-1) by u and integrating on .�1; 0/ one obtainsZ 0

�1

ut .t;x/u.t;x/ dx D ˙uxx.t; 0�/u.t; 0�/�
1
2
u2

x.t; 0�/Cˇ
1
2
u2.t; 0�/:

Integrating in time on .0;T / one finally obtains the identity

1

2

Z 0

�1

u2.T;x/ dx�
1

2

Z 0

�1

u2.0;x/ dx

D˙

Z T

0

uxx.t; 0�/u.t; 0�/ dt �
1

2

Z T

0

u2
x.t; 0�/ dt Cˇ

1

2

Z T

0

u2.t; 0�/ dt:

If we consider the operator with ˛D�1, which is the standard Airy operator, we conclude that the boundary
condition u.t; 0�/D 0 alone and the initial condition u.0;x/D 0 are compatible with a nonvanishing
solution of the equation: to force a vanishing solution one has to fix the boundary value ux.t; 0�/D 0 also.
So uniqueness is guaranteed by both boundary conditions on u and ux . On the contrary, the above identity
for the operator with ˛D 1 with the boundary condition u.t; 0�/D 0 and the initial condition u.0;x/D 0

imply u.T;x/D 0 for any T. So one has uniqueness in the presence of the only condition on u.t; 0/.
In the case of the positive half-line .0;1/ one obtains from (1-1)

1

2

Z 1
0

u2.T;x/ dx�
1

2

Z 1
0

u2.0C;x/ dx

D�

Z T

0

uxx.t; 0C/u.t; 0C/ dt ˙
1

2

Z T

0

u2
x.t; 0C/ dt �ˇ

1

2

Z T

0

u2.t; 0C/ dt

and for ˛D�1 one has uniqueness in the presence of the boundary condition for u.t; 0C/ alone, while for
˛ DC1 uniqueness needs the specification of both u.t; 0C/ and ux.t; 0C/. Considering the difference
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of two solutions corresponding to identical initial data and boundary conditions, one concludes that the
same properties hold true in the case of general nonvanishing boundary conditions.

One can go in greater depth and the following lemma is the point of departure. It clarifies some of the
properties of the Airy operator on the half-line and will be extended, with many consequences, to a star
graph in the following sections.

Lemma 2.1. Consider the operator

u 7!H0u WD ˛
d3u

dx3
Cˇ

du

dx
with domain

C1c .�1; 0/ or C1c .0;C1/

on the Hilbert space
L2.�1; 0/ or L2.0;C1/

respectively. Then iH0 is densely defined, closable and symmetric. However, its deficiency indices are
.2; 1/ in the first case and .1; 2/ in the second case, so iH0 does not have any self-adjoint extensions in
either case.

Proof. One checks directly that the adjoint of H0 on L2.�1; 0/ and L2.0;1/ is H�
0
D�˛.d3u=dx3/�

ˇ.du=dx/ with domain H 3.�1; 0/ and H 3.0;1/, respectively.
We are going to solve the elliptic problem .iH�

0
� i Id/u D 0 in L2.�1; 0/ and L2.0;1/. Let us

consider the sign C and discuss

˛
d3u

dx3
Cˇ

du

dx
CuD 0

for u 2L2.�1; 0/ or L2.0;1/ without any boundary conditions. A tedious but elementary computation
shows that a general solution is a linear combination of complex exponentials of the form

u.x/D C1e�x .i
p

3A2=3C12 i
p

3˛ˇCA2=3�12ˇ˛/

12˛A1=3 CC2ex .i
p

3A2=3C12 i
p

3˛ˇ�A2=3C12ˇ˛/

12˛A1=3 CC3 ex .A
2=3�12ˇ˛/

6˛A1=3 ;

where

AD

�
12
p

3

r
4ˇ3C 27˛

˛
� 108

�
˛2

for general constants C1;C2;C3. However, carefully checking the real parts of the exponents one deduces
that such functions are square integrable on .�1; 0/ and .0;1/ if and only if C3D 0 and C1DC2D 0, re-
spectively, thus yielding the claim on the deficiency indices. The remaining case can be treated likewise. �

This shows that the Airy operator cannot be extended to a skew adjoint operator generating a unitary
dynamics in L2. Moreover in some sense the Airy operator “with the wrong sign” or too few boundary
conditions has too much spectrum to allow for uniqueness; see [Hille and Phillips 1957, Theorem 23.7.2].
This is not however the whole story, and one can obtain more precise information and some more guiding
ideas giving up a unitary evolution and asking simply for generation of a contractive semigroup. To this
end we consider the Lumer–Phillips condition and its consequences; see for example [Engel and Nagel
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2000, Corollary 3.17]. Again, considering only the case ˛D˙1, which is enough, one has by integration
by partsZ 0

�1

.˙uxxxCˇux/v dx

D

Z 0

�1

u.�vxxx �ˇvx/ dx˙uxx.0/v.0/Cˇu.0/v.0/�ux.0/vx.0/˙u.0/vxx.0/:

The operator H˙;ˇ with domain

D.H˙;ˇ/D
˚
u 2H 3.�1; 0/ W u.0/D 0; ux.0/D 0

	
and action

H˙;ˇuD˙uxxxCˇux

satisfies
hH˙;ˇu j ui D 0

and it is dissipative (in fact conservative).
The operator H

˙

˙;ˇ
with domain

D.H ˙

˙;ˇ
/D

˚
u 2H 3.�1; 0/ W u.0/D 0

	
and action

H
˙

˙;ˇ
uD�uxxx �ˇux

satisfies
hH

˙

˙;ˇ
u j ui D ˙1

2
.ux.0�//

2

and so H
˙

C;ˇ
is accretive and H

˙

�;ˇ
is dissipative for every ˇ 2 R.

H˙;ˇ and H
˙

˙;ˇ
are in fact adjoint one to another:

H
˙

˙;ˇ
DH�

˙;ˇ: (2-2)

In particular this means that HC;ˇ and H�
C;ˇ

are both accretive and so they do not generate a continuous
contraction semigroup in L2.�1; 0/. On the contrary, H�;ˇ and H�

�;ˇ
are both dissipative and generate

a contraction semigroup in L2.�1; 0/. With our convention of writing of the Airy equation, this gives
well-posedness on .�1; 0/ for the standard Airy equation (1-1) with two boundary conditions (generator
H�;ˇ). The specular situation occurs for .0;1/, exchanging the roles and definitions of H and H ˙, and
one has that H

˙

C;ˇ
generates a contraction semigroup on L2.0;1/ and the standard Airy equation (1-1)

with a single boundary condition is well-posed.

3. The case of a metric star graph

Star graphs can be regarded as the building blocks of more complicated graphs; for the purpose of investi-
gating (local) boundary conditions, they are sufficiently generic. Therefore, in this section we are going to
develop the theory of the counterpart of the operator H0 defined on a star graph G, which indeed turns out
to display some unexpected behaviors in comparison with its simpler relative introduced in Lemma 2.1.
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Upon replacing an interval .�1; 0/ by .0;1/ or vice versa, we may assume all coefficients ˛ to
have the same sign on each edge e of the star graph. Throughout this paper we are going to follow the
convention that all coefficients are positive.

Proposition 3.1. Consider a quantum graph consisting of finitely or countably many half-lines E WD

E�[EC and let .˛e/e2E; .ˇe/e2E be two sequences of real numbers with ˛e > 0 for all e 2 E. Consider
the operator A0 defined by

D.A0/ WD
M
e2E�

C1c .�1; 0/˚
M
e2EC

C1c .0;C1/;

A0 W .ue/e2E 7!

�̨
e
d3ue

dx3
Cˇe

due

dx

�
e2E

:

Then iA0 is densely defined and symmetric on the Hilbert space

L2.G/ WD
M
e2E�

L2.�1; 0/˚
M
e2EC

L2.0;C1/

and its defect indices are .2jE�jC jECj; jE�jC 2jECj/. Accordingly, A0 has skew-self-adjoint extensions
on L2.G/ if and only if jECj D jE�j.

In order to avoid some technicalities we will assume that the sequences .˛e/e2E and .ˇe/e2E are
bounded, and furthermore, that .1=˛e/e2E is bounded as well.

Unlike in the case of the Laplace operator, and in spite of the relevance of related physical models, like
the KdV equation, there seems to be no canonical or natural choice of boundary conditions to impose
on (1-1) on a star graph. For this reason, we are going to characterize all boundary conditions within
certain classes. Since (1-1) plays a role in dispersive systems in which conservation of the initial data’s
norm is expected, we are going to focus on those extensions that generate unitary groups, or isometric
semigroups, or at least contractive semigroups.

Extensions of A0 generating unitary groups. By Stone’s theorem, generators of unitary groups are
exactly the skew-self-adjoint operators. In order to determine the skew-self-adjoint extensions of A0, take

u; v 2D.A�0/D
M
e2E�

H 3.�1; 0/˚
M
e2EC

H 3.0;C1/:

Remark 3.2. Let u 2 D.A�
0
/. By Sobolev’s lemma and the boundedness assumption on the .˛e/ and

.ˇe/ we obtain .u.k/e .0�//e2E� 2 `
2.E�/ and .u.k/e .0C//e2EC 2 `

2.EC/ for k 2 f0; 1; 2g.

Following the classical extension theory, see [Schmüdgen 2012, Chapter 3], we write down the boundary
form to obtain

.A�0u j v/C.u jA�0v/

D�

X
e2E�

Z 0

�1

.˛eu
000
e Cˇeu

0
e/ Nvedx�

X
e2EC

Z C1
0

.˛eu
000
e Cˇeu

0
e/ Nve dx

�

X
e2E�

Z 0

�1

.˛ev000e Cˇev
0
e/uedx�

X
e2EC

Z C1
0

.˛ev000e Cˇev
0
e/uedx
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D�

X
e2E�

˛eu
00
e .x/ve.x/

ˇ̌̌0
�1
C

X
e2E�

Z 0

�1

˛eu
00
e Nv
0
e dx

�

X
e2E�

˛eve.x/ue.x/
ˇ̌̌0
�1
C

X
e2E�

Z 0

�1

˛eu
0
e Nv
00
e dx

�

X
e2EC

˛eu
00
e .x/ve.x/

ˇ̌̌C1
0
C

X
e2EC

Z C1
0

˛eu
00
e Nv
0
edx

�

X
e2EC

˛eve.x/ue.x/
ˇ̌̌C1
0
C

X
e2EC

Z C1
0

˛eu
0
e Nv
00
e dx

�

X
e2E�

Z 0

�1

ˇeu
0
e Nve dx�

X
e2E�

Z 0

�1

ˇe Nv
0
euedx�

X
e2EC

Z C1
0

ˇu0e Nve dx�
X
e2EC

Z C1
0

ˇe Nv
0
eue dx

D�

X
e2E�

˛eu
00
e .x/ve.x/

ˇ̌̌0
�1
C

X
e2E�

˛eu
0
e.x/ve.x/

ˇ̌̌0
�1

�

X
e2E�

˛eve.x/ue.x/
ˇ̌̌0
�1
C

X
e2EC

˛eu
0
e.x/ve.x/

ˇ̌̌�1
0

�

X
e2EC

˛eu
00
e .x/ve.x/

ˇ̌̌C1
0

�

X
e2EC

˛eve.x/ue.x/
ˇ̌̌C1
0

�

X
e2E�

ˇeue.x/ve.x/
ˇ̌̌0
�1
�

X
e2EC

ˇeue.x/ve.x/
ˇ̌̌C1
0

D�

X
e2E�

˛eu
00
e .0/ve.0/C

X
e2EC

˛eu
00
e .0/ve.0/�

X
e2E�

˛eve.0/ue.0/C
X
e2EC

˛eve.0/ue.0/

�

X
e2E�

ˇeue.0/ve.0/C
X
e2EC

ˇeue.0/ve.0/C
X
e2E�

˛eu
0
e.0/ve.0/�

X
e2EC

˛eu
0
e.0/ve.0/:

Thus, abbreviating u.0�/ WD .ue.0�//e2E� and similarly for the other terms, and identifying with an
abuse of notation ˛˙ and ˇ˙ with the corresponding multiplication operator, i.e.,

˛˙x WD .˛exe/e2E˙ ; x 2 `2.E˙/;

ˇ˙x WD .ˇexe/e2E˙ ; x 2 `2.E˙/;
(3-1)

we obtain

.A�0u j v/C.u jA�0v/

D�
�
˛�u00.0�/

ˇ̌
v.0�/

�
C
�
˛Cu00.0C/

ˇ̌
v.0C/

�
�
�
˛�u.0�/

ˇ̌
v00.0�/

�
C
�
˛Cu.0C/

ˇ̌
v00.0C/

�
�
�
ˇ�u.0�/

ˇ̌
v.0�/

�
C
�
ˇCu.0C/

ˇ̌
v.0C/

�
C
�
˛�u0.0�/

ˇ̌
v0.0�/

�
�
�
˛Cu0.0C/

ˇ̌
v0.0C/

�
D

0@0@�ˇ� 0 �˛�
0 ˛� 0

�˛� 0 0

1A0@ u.0�/

u0.0�/

u00.0�/

1Aˇ̌̌̌ˇ̌
0@ v.0�/v0.0�/

v00.0�/

1A1A
G�

�

0@0@�ˇC 0 �˛C
0 ˛C 0

�˛C 0 0

1A0@ u.0C/

u0.0C/

u00.0C/

1Aˇ̌̌̌ˇ̌
0@ v.0C/v0.0C/

v00.0C/

1A1A
GC

; (3-2)
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where
G� WD `2.E�/˚ `

2.E�/˚ `
2.E�/

and
GC WD `2.EC/˚ `

2.EC/˚ `
2.EC/:

(We stress the difference from G, which we let denote the quantum graph.) Consider on the graph G.A�
0
/

of the operator A�
0

a linear and surjective operator F WG.A�
0
/! G�˚GC defined by

F..u;A�0u// WD
��

u.0�/;u0.0�/;u00.0�/
�
;
�
u.0C/;u0.0C/;u00.0C/

��
: (3-3)

Following the terminology in [Schubert et al. 2015, Examples 2.7], let � be the standard symmetric
form on G.A�

0
/, i.e.,

�..u;A�0u/; .v;A�0v// WD

��
0 1

1 0

��
u

A�
0
u

� ˇ̌̌̌ �
v

A�
0
v

��
L2.G/

; .u;A�0u/; .v;A�0v/ 2G.A�0/;

and define a sesquilinear form ! W G�˚GC �G�˚GC! C by

!..x;y/; .u; v// WD

��
B� 0

0 �BC

��
x

y

� ˇ̌̌̌ �
u

v

��
G�˚GC

; (3-4)

where B˙ is the linear block operator matrix on G˙ defined by

B˙.x;x
0;x00/ WD

0@�ˇ˙ 0 �˛˙
0 ˛˙ 0

�˛˙ 0 0

1A0@ x

x0

x00

1A ; .x;x0;x00/ 2 G˙:

Observe that neither BC nor B� are definite operators.
Then (3-2) can be rewritten as

�..u;A�0u/; .v;A�0v//D !.F.u;A
�
0u/;F.v;A�0v// for all u; v 2D.A�0/: (3-5)

Remark 3.3. Note that, since ˇ˙, ˛˙ and 1=˛˙ are bounded, we have B˙ 2 L.G˙/, B˙ are injective
and B�1

˙
2 L.G˙/.

Our method is based on the notion of Krein space, i.e., of a vector space endowed with an indefinite
inner product.

Definition 3.4. Define an (indefinite) inner product h � j � i˙ W G˙ �G˙! K by

hx j yi˙ WD .B˙x j y/; x;y 2 G˙:

Then .G˙; h � j � i˙/ are Krein spaces and h � j � i˙ is nondegenerate, i.e., for x 2 G˙ with hx j yi˙D 0

for all y 2 G˙ it follows that x D 0.

Remark 3.5. Let K be a vector space and h � j � i an (indefinite) inner product on K such that .K; h � j � i/
is a Krein space. Then there exists an inner product . � j � / on K such that .K; . � j � // is a Hilbert space.
Notions such as closedness or continuity are then defined by the underlying Hilbert space structure.
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Definition 3.6. Let K�, KC be Krein spaces and ! W K�˚KC �K�˚KC! C be sesquilinear.

(1) A subspace X of K�˚KC is called !-self-orthogonal if

X DX?! WD
˚
.x;y/ 2 K�˚KC W !..x;y/; .u; v//D 0 for all .u; v/ 2X

	
:

(2) Given a densely defined linear operator L from K� to KC, its .K�;KC/-adjoint L] is

D.L]/ WD
˚
y 2 KC W 9z 2 K� with hLx j yiCDhx j zi� for all x 2D.L/

	
;

L]y WD z:

Clearly, L] is then a linear operator from KC to K�.

(3) A linear operator L from K� to KC is called a .K�;KC/-contraction if

hLx jLxiC � hx j xi� for all x 2D.L/:

(4) A linear operator L from K� to KC is called .K�;KC/-unitary if D.L/ is dense, R.L/ is dense, L

is injective, and finally L] DL�1.

If in particular K�;KC are Hilbert spaces, then obviously .K�;KC/-adjoint/contraction/unitary opera-
tors are nothing but the usual objects of Hilbert space operator theory.

Note that if L is a .K�;KC/-unitary, then

hLx jLyiC D hx j yi� for all x;y 2D.L/: (3-6)

We stress that unitary operators between Krein spaces need not be bounded.
By [Schubert et al. 2015, Corollary 2.3 and Example 2.7(b)] we can now characterize skew-self-adjoint

extensions A of A0 — i.e., skew-self-adjoint restrictions of A�
0

— and therefore self-adjoint extensions
of iA0.

Theorem 3.7. An extension A of A0 is skew-self-adjoint if and only if there exists an !-self-orthogonal
subspace X � G�˚GC for which G.A/D F�1.X /, where F is the operator defined in (3-3) and G.A/

is the graph of A.

Hence, !-self-orthogonal subspaces X parametrize the skew-self-adjoint extensions A of A0. A more
explicit description of these objects is given next.

Theorem 3.8. (a) Let X � G�˚GC be a subspace such that D WD fx 2 G� W 9y 2 GC with .x;y/ 2X g

is dense in G� and R WD fy 2 GC W 9x 2 G� with .x;y/ 2 X g is dense in GC, and let X be
!-self-orthogonal. Then there exists a .G�;GC/-unitary operator L such that X DG.L/.

(b) Let L be a .G�;GC/-unitary operator. Then G.L/� G�˚GC is !-self-orthogonal.

Proof. (a) We first show that X is the graph of an operator. Let .0; z/ 2X. For .x;y/ 2X we have

!..x;y/; .0; z//D 0I

i.e.,
0D hy j ziC D .BCy j z/D .y j BCz/:
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Thus, BCz?R, and by the denseness of R we obtain BCzD 0. Since BC is injective, we conclude zD 0.
Thus, X is the graph of a linear operator L from G� to GC. Let .z; 0/ 2 X. For .x;y/ 2 X we obtain
analogously

!..x;y/; .z; 0//D 0I

i.e.,
0D hx j zi� D .x j B�z/:

Hence, B�z?D, and by the denseness of D we have B�z D 0. Since B� is injective, z D 0. Thus, L is
injective.

For x;y 2D.L/, we have .x;Lx/; .y;Ly/ 2X, so

!..x;Lx/; .y;Ly//D 0I

i.e.,
hLx jLyiC D hx j yi�:

Let x 2D.L/?. Then
.x j y/D 0; y 2D.L/:

Thus,

0D .x j y/D .B�B�1
� x j y/D hB�1

� x j yi� D !..B
�1
� x; 0/; .y;Ly//; y 2D.L/:

Hence, .B�1
� x; 0/ 2X?! DX DG.L/, so B�1

� x D 0, and therefore x D 0. Thus, L is densely defined.
Similarly, we obtain that R.L/ is dense.

For x 2D.L/, z 2R.L/ we have

hLx j ziC D hx jL
�1zi�:

Thus, R.L/�D.L]/, and L]z DL�1z for all z 2R.L/; i.e., L�1 �L]. Let .y;x/ 2G.L]/. Then

hLz j yiC D hz j xi�; z 2D.L/I

i.e.,
!..z;Lz/; .x;y//D 0; z 2D.L/:

Hence, .x;y/ 2 X?! D X D G.L/, and therefore .y;x/ 2 G.L�1/. Therefore, L] D L�1, so L is
.G�;GC/-unitary.

(b) Let L be a .G�;GC/-unitary operator from G� to GC and X WDG.L/. Let x 2D.L/. Then

hLx jLyiC D hx j yi�; y 2D.L/I

i.e.,
!..x;Lx/; .y;Ly//D 0; y 2D.L/:

Thus, .x;Lx/ 2X?!, and therefore X �X?!.
Let now .z;y/ 2X?!. Then, for x 2D.L/, we have

!..z;y/; .x;Lx//D 0;
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and thus
hLx j yiC D hx j zi�:

By the definition of L], we obtain y 2D.L]/ and L]yD z. Since L]DL�1, we find .z;y/2G.L/DX.
Hence, X?! �X.

Combining both parts, we see that X is !-self-orthogonal. �

Let L be a densely defined linear operator from G� to GC. Then we define AL ��A�
0

by

G.AL/ WD F�1.G.L//I

that is,

D.AL/D
˚
u 2D.A�0/ W

�
u.0�/;u0.0�/;u00.0�/

�
2D.L/;

L
�
u.0�/;u0.0�/;u00.0�/

�
D
�
u.0C/;u0.0C/;u00.0C/

�	
;

ALuD�A�0u:

Theorem 3.9. Let L be a densely defined linear operator from G� to GC. Then AL is the generator of a
unitary group if and only if L is .G�;GC/-unitary.

Proof. By Theorem 3.7 we obtain that AL is skew-self-adjoint if and only if G.L/ is !-self-orthogonal.
By Theorem 3.8 we conclude that this is equivalent to L being .G�;GC/-unitary. Indeed, Theorem 3.8(b)
yields that if L is .G�;GC/-unitary then G.L/ is !-self-orthogonal. As in proof of Theorem 3.8(a) one
shows that if X WDG.L/ is !-self-orthogonal then the corresponding operator L is .G�;GC/-unitary. �

Remark 3.10. If Theorem 3.7 applies, then Stone’s theorem immediately yields that the Airy equation
(1-1) on the quantum star graph G is governed by a unitary group acting on L2.G/; hence it has a unique
solution u 2 C 1.RIL2.G// \ C.RID.A// that continuously depends on the initial data u0 2 L2.G/.
Because the group is unitary, the momentum kuk2

L2.G/
is conserved as soon as we can apply Theorem 3.7.

By the above computation we also see that

@

@t

Z
G

u.t;x/ dx D
X
e2E�

Z 0

�1

˛eu
000
e .t;x/Cˇeu

0
e.t;x/ dxC

X
e2E�

Z 1
0

˛eu
000
e .t;x/Cˇeu

0
e.t;x/ dx

D

X
e2E�

˛eu
00
e .0�/�

X
e2EC

˛eu
00
e .0C/C

X
e2E�

ˇeue.0�/�
X
e2EC

ˇeue.0C/: (3-7)

In other words, the solution of the system enjoys conservation of mass — just like the solution to the
classical Airy equation on R — if and only if additionallyX

e2E�

˛eu
00
e .0�/�

X
e2EC

˛eu
00
e .0C/C

X
e2E�

ˇeue.0�/�
X
e2EC

ˇeue.0C/D 0: (3-8)

Remark 3.11. Since ˇ˙, ˛˙, 1=˛˙ are bounded, the form ! introduced in (3-4) is continuous. Thus,
!-self-orthogonal subspaces are closed, so the corresponding .G�;GC/-unitary L is closed. We do not
know whether L is in fact continuous (this holds true in Hilbert spaces, but we are not aware of any
argument in Krein spaces).
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Figure 2. A flower graph on seven edges.

Remark 3.12. As already remarked at the beginning of this section, star graphs can be seen as generic
building blocks of quantum graphs. Apart from their interest in scattering theory, star graphs whose edges
are semi-infinite still display all relevant features for the purpose of studying extensions of operators on
compact graphs. Indeed, our analysis is essentially of variational nature and therefore it only depends on
the orientation of the edges and the boundary values of a function on the graph. It is therefore clear that
analogous results could be formulated for graphs that include edges of finite length, too, like the flower
graph depicted in Figure 2. Clearly, an interesting feature of flower graphs is that they are automatically
balanced; i.e., the number of incoming and outgoing edges from the (only) vertex is equal: accordingly,
the operator A0 on a flower graph always admits skew-self-adjoint extensions.

Extensions of A0 generating contraction semigroups. Let A be an extension of A0 such that A��A�
0

.
We focus on generating contraction semigroups. By the Lumer–Phillips theorem and corollaries of it we
have to show that A and A� are dissipative. Since we are dealing with Hilbert spaces, A is dissipative if
and only if Re .Au j u/� 0 for all u 2D.A/, and analogously for A�. Recall, that for a densely defined
linear operator L from G� to GC we defined AL ��A�

0
by G.AL/D F�1.G.L//.

Lemma 3.13. Let L be a densely defined linear operator from G� to GC. Then AL is dissipative if and
only if L is a .G�;GC/-contraction.

Proof. Let u 2D.AL/. Then

�2 Re .ALu j u/D�..u;�ALu/; .u;�ALu//

D
˝�

u.0�/;u0.0�/;u00.0�/
� ˇ̌ �

u.0�/;u0.0�/;u00.0�/
�˛
�

�
˝
L
�
u.0�/;u0.0�/;u00.0�/

� ˇ̌
L
�
u.0�/;u0.0�/;u00.0�/

�˛
C
:

Thus, AL is dissipative if and only if˝
L
�
u.0�/;u0.0�/;u00.0�/

� ˇ̌
L
�
u.0�/;u0.0�/;u00.0�/

�˛
C

�
˝�

u.0�/;u0.0�/;u00.0�/
� ˇ̌ �

u.0�/;u0.0�/;u00.0�/
�˛
�

for all u 2D.AL/:

By the definition of AL we have D.L/ D
˚�

u.0�/;u0.0�/;u00.0�/
�
W u 2 D.AL/

	
, so the assertion

follows. �
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Analogously, we obtain a characterization for dissipativity of the adjoint A�
L

of AL. Here and in the
following, L] denotes the .G�;GC/-adjoint of the operator L; see Definition 3.6.

Lemma 3.14. Let L be a densely defined linear operator from G� to GC. Then

D.A�L/D
˚
u 2D.A�0/ W

�
u.0C/;u0.0C/;u00.0C/

�
2D.L]/;

L]
�
u.0C/;u0.0C/;u00.0C/

�
D
�
u.0�/;u0.0�/;u00.0�/

�	
;

A�LuDA�0u:

Proof. Let u 2D.AL/, v 2D.A�
0
/. Then

.ALu j v/D .u jA�0v/�
˝�

u.0�/;u0.0�/;u00.0�/
� ˇ̌ �

v.0C/; v0.0C/; v00.0C/
�˛
�

C
˝
L
�
u.0�/;u0.0�/;u00.0�/

� ˇ̌ �
v.0C/; v0.0C/; v00.0C/

�˛
C
:

Hence, v 2D.A�
L
/ if and only if

�
v.0C/; v0.0C/; v00.0C/

�
2D.L]/ and

L]
�
v.0C/; v0.0C/; v00.0C/

�
D
�
v.0�/; v0.0�/; v00.0�/

�
;

and then A�
L
v DA�

0
v. �

Lemma 3.15. Let L be a densely defined linear operator from G� to GC. Then A�
L

is dissipative if and
only if L] is a .GC;G�/-contraction.

Proof. Let u 2D.A�
L
/. Then

2 Re .A�Lu j u/D�..u;A�Lu/; .u;A�Lu//

D
˝
L]
�
u.0C/;u0.0C/;u00.0C/

� ˇ̌
L]
�
u.0C/;u0.0C/;u00.0C/

�˛
�

�
˝�

u.0C/;u0.0C/;u00.0C/
� ˇ̌ �

u.0C/;u0.0C/;u00.0C/
�˛
C
:

Thus, A�
L

is dissipative if and only if˝
L]
�
u.0C/;u0.0C/;u00.0C/

� ˇ̌
L]
�
u.0C/;u0.0C/;u00.0C/

�˛
�

�
˝�

u.0C/;u0.0C/;u00.0C/
� ˇ̌ �

u.0C/;u0.0C/;u00.0C/
�˛
C

for all u 2D.AL/:

By the definition of AL we have D.L]/ D
˚�

u.0C/;u0.0C/;u00.0C/
�
W u 2 D.AL/

	
, so the assertion

follows. �

Theorem 3.16. Let L be a densely defined linear operator from G� to GC. Then AL is the generator of a
contraction semigroup if and only if L is a .G�;GC/-contraction and L] is a .GC;G�/-contraction.

Proof. Let AL generate a C0-semigroup .T .t//t�0 of contractions. By the Lumer–Phillips theorem, AL

is dissipative. Since A�
L

generates the semigroup T � defined by T �.t/ WD T .t/� (t � 0), which is also a
C0-semigroup of contractions, the Lumer–Phillips theorem assures that A�

L
is dissipative as well. Then

the Lemmas 3.13 and 3.15 yield that L and L] are contractions.
Now, let L and L] be contractions. Then Lemmas 3.13 and 3.15 yield that AL and A�

L
are dissipative.

Hence, AL generates a contraction semigroup. �
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Corollary 3.17. Let jE�j D jECj <1, ˛C D ˛�, ˇC D ˇ� (via some bijection between E� and EC).
Let L be a densely defined linear operator from G� to GC. Then AL is the generator of a contraction
semigroup if and only if L is .G�;GC/-contractive.

Proof. In this setup, G� D GC, which are finite-dimensional and hence Pontryagin spaces. Therefore,
L is .G�;GC/-contractive if and only if L] is .GC;G�/-contractive by [Dritschel and Rovnyak 1990,
Theorem 1.3.7]. �
Remark 3.18. Like in the case of Remark 3.10, if Theorem 3.16 applies, then the Airy equation (1-1) on
the quantum star graph G has a unique solution u 2 C 1.RCIL

2.G//\C.RCID.A// that continuously
depends on the initial data u0 2 L2.G/. Because the C0-semigroup is contractive but not unitary, the
momentum kuk2

L2.G/
is in general not conserved, but as in Remark 3.10 the system does enjoy conservation

of mass if and only if additionally (3-8) holds.

Separating the first derivatives. The special structure of B˙ suggests to separate the boundary values
of the first derivative from the ones for the function and for the second derivative. In this case, one can
describe the boundary conditions also in another (equivalent but seemingly easier) way.

Note that ˛e > 0 for all e 2 E. We will write `2.E˙; ˛˙/ for the weighted `2-space of sequences
indexed by E˙ with inner product given by

.x j y/`2.E˙;˛˙/
WD

X
e2E˙

xe Nye˛e D .˛˙x j y/

for all x;y 2 `2.E˙; ˛˙/, which turns them into Hilbert spaces.
For u; v 2D.A�

0
/ we then obtain

.A�0u j v/C .u jA�0v/

D
�
˛�u0.0�/

ˇ̌
v0.0�/

�
�
�
˛Cu0.0C/

ˇ̌
v0.0C/

�
C

��
�ˇ� �˛�
�˛� 0

��
u.0�/

u00.0�/

� ˇ̌̌̌ �
v.0�/

v00.0�/

��
�

��
�ˇC �˛C
�˛C 0

��
u.0C/

u00.0C/

� ˇ̌̌̌ �
v.0C/

v00.0C/

��
D
�
˛�u0.0�/

ˇ̌
v0.0�/

�
�
�
˛Cu0.0C/

ˇ̌
v0.0C/

�
�

��
˛� 0

0 �˛C

��
u00.0�/

u00.0C/

�
C

�
1
2
ˇ� 0

0 �
1
2
ˇC

��
u.0�/

u.0C/

� ˇ̌̌̌ �
v.0�/

v.0C/

��
�

��
u.0�/

u.0C/

� ˇ̌̌̌ �
˛� 0

0 �˛C

��
v00.0�/

v00.0C/

�
C

�
1
2
ˇ� 0

0 �
1
2
ˇC

��
v.0�/

v.0C/

��
:

Let Y � `2.E�/˚ `
2.EC/ be a closed subspace, U a densely defined linear operator from `2.E�; ˛�/

to `2.EC; ˛C/, and consider

D.AY;U / WD

�
u 2D.A�0/ W .u.0�/;u.0C// 2 Y;�

�˛� 0

0 ˛C

��
u00.0�/

u00.0C/

�
C

�
�

1
2
ˇ� 0

0 1
2
ˇC

��
u.0�/

u.0C/

�
2 Y ?;

u0.0�/ 2D.U /; u0.0C/D Uu0.0�/

�
;

AY;U u WD �A�0u:
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Proposition 3.19. Let Y � `2.E�/˚ `
2.EC/ be a closed subspace and U a densely defined linear

operator from `2.E�; ˛�/ to `2.EC; ˛C/. Then

D.A�Y;U /D

�
u 2D.A�0/ W .u.0�/;u.0C// 2 Y;�

�˛� 0

0 ˛C

��
u00.0�/

u00.0C/

�
C

�
�

1
2
ˇ� 0

0 1
2
ˇC

��
u.0�/

u.0C/

�
2 Y ?;

u0.0C/ 2D.U �/; u0.0�/D U �u0.0C/

�
;

A�Y;U uDA�0u:

Proof. Let u 2D.AY;U /, v 2D.A�
0
/. Then

.AY;U u j v/D .u jA�0v/C
�
˛CUu0.0�/

ˇ̌
v0.0C/

�
�
�
˛�u0.0�/

ˇ̌
v0.0�/

�
C

��
˛� 0

0 �˛C

��
u00.0�/

u00.0C/

�
C

�
1
2
ˇ� 0

0 �
1
2
ˇC

��
u.0�/

u.0C/

� ˇ̌̌̌ �
v.0�/

v.0C/

��
C

��
u.0�/

u.0C/

� ˇ̌̌̌ �
˛� 0

0 �˛C

��
v00.0�/

v00.0C/

�
C

�
1
2
ˇ� 0

0 �
1
2
ˇC

��
v.0�/

v.0C/

��
:

Let now v 2 D.A�
Y;U

/ such that .AY;U u j v/ D .u j A�
Y;U

v/ D .u j A�
0
v/. Choosing u such that

.u.0�/;u.0C// D .u0.0�/;u0.0C// D 0, we obtain .v.0�/; v.0C// 2 Y . For all .u�;uC/ 2 Y there
exists u 2D.AY;U / such that .u.0�/;u.0C//D .u�;uC/, and .u0.0�/;u0.0C//D 0. Thus,�

˛� 0

0 �˛C

��
v00.0�/

v00.0C/

�
C

�
1
2
ˇ� 0

0 �
1
2
ˇC

��
v.0�/

v.0C/

�
2 Y ?:

Thus, we arrive at�
˛CUu0.0�/

ˇ̌
v0.0C/

�
�
�
˛�u0.0�/

ˇ̌
v0.0�/

�
D 0; u 2D.AY;U /:

Note that for all x 2D.U / there exists u 2D.AY;U / such that u0.0�/D x. Hence, v0.0C/ 2D.U �/

and U �v0.0C/D v0.0�/. �

Corollary 3.20. Let Y � `2.E�/˚`
2.EC/ be a closed subspace and U a densely defined linear operator

from `2.E�; ˛�/ to `2.EC; ˛C/. Then AY;U is skew-self-adjoint if and only if U is unitary.

Proof. This is a direct consequence of Proposition 3.19. �

Corollary 3.21. Let Y � `2.E�/˚`
2.EC/ be a closed subspace and U a densely defined linear operator

from `2.E�; ˛�/ to `2.EC; ˛C/. Then AY;U is dissipative if and only if U is a contraction.

Proof. Let u 2D.AY;U /. Then

.AY;U u j u/D .u jA�0u/C
�
˛CUu0.0�/

ˇ̌
Uu0.0�/

�
�
�
˛�u0.0�/

ˇ̌
u0.0�/

�
:

Since A�
0
uD�AY;U u, we obtain

2 Re .AY;U u j u/D
�
˛CUu0.0�/

ˇ̌
Uu0.0�/

�
�
�
˛�u0.0�/

ˇ̌
u0.0�/

�
:

Hence, AY;U is dissipative if and only if U is a contraction. �
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Corollary 3.22. Let Y � `2.E�/˚`
2.EC/ be a closed subspace and U a densely defined linear operator

from `2.E�; ˛�/ to `2.EC; ˛C/. Then A�
Y;U

is dissipative if and only if U � is a contraction.

Proof. Let u 2A�
Y;U

. Then, similarly as for AY;U , we have

.A�Y;U u j u/D .u j �A�0u/�
�
˛Cu0.0C/

ˇ̌
u0.0C/

�
C
�
˛�U �u0.0C/

ˇ̌
U �u0.0C/

�
:

Since A�
0
uDA�

Y;U
u, we obtain

2 Re .AY;U u j u/D
�
˛�U �u0.0C/ j U �u0.0C/

�
�
�
˛Cu0.0C/

ˇ̌
u0.0C/

�
:

Hence, A�
Y;U

is dissipative if and only if U � is a contraction. �

Theorem 3.23. Let Y � `2.E�/˚ `
2.EC/ be a closed subspace and U a densely defined linear operator

from `2.E�; ˛�/ to `2.EC; ˛C/. Then AY;U generates a contraction C0-semigroup if and only if U is a
contraction and U � is a contraction if and only if U is a contraction.

Proof. Let AY;U generate a contraction semigroup. Then AY;U is dissipative by the Lumer–Phillips
theorem, so Corollary 3.21 yields that U is a contraction.

Let U and U � be contractions. Then, Corollaries 3.21 and 3.22 ensure that AY;U and A�
Y;U

are
dissipative. Hence, AY;U generates a semigroup of contractions. Clearly, U � is a contraction provided U

is a contraction. �

Reality of the semigroup. Let .T .t//t�0 be a C0-semigroup on L2.G/. We say that .T .t//t�0 is real
if T .t/Re u D Re T .t/u for all u 2 L2.G/ and t � 0. Put differently, a semigroup is real if it maps
real-valued functions into real-valued functions.

For simplicity we will only consider the case of contractive semigroups here.

Proposition 3.24. Let L be a densely defined linear operator from G� to GC such that L and L] are
contractions. Let .T .t//t�0 be the C0-semigroup generated by AL. Let L be real; i.e., for x 2D.L/ we
have Re x 2D.L/ and Re Lx DL Re x. Then .T .t//t�0 is real.

Proof. By Theorem 3.16, .T .t//t�0 is a contraction semigroup. Let P be the projection from L2.GIC/ to
L2.GIR/; i.e., Pu WD Re u. By [Arendt et al. 2015, Corollary 9.6] realness of the semigroup .T .t//t�0

is equivalent to the condition

Re .ALu j u�Pu/� 0 for all u 2D.AL/;

i.e.,
Re .ALu j i Im u/� 0 for all u 2D.AL/:

Let u 2D.AL/. Since L is real we obtain Re u; Im u 2D.AL/. Since ALv is real for v 2D.AL/ real
we have

Re .AL.Re uC i Im u/ j i Im u/D Im .AL Re u j Im u/CRe .AL Im u j Im u/

D Re .AL Im u j Im u/� 0;

since AL is dissipative by Lemma 3.13. �
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Remark 3.25. The semigroup generated by AL is not positivity preserving, i.e., nonnegative functions
need not be mapped to nonnegative functions: indeed, also in this case positivity of the semigroup is
again equivalent to

Re .ALu j u�Pu/� 0 for all u 2D.AL/; (3-9)

where P is now the projection of L2.GIC/ onto the positive cone of L2.GIR/, i.e., Pu WD .Re u/C. Let
u be a real-valued function: integrating by parts and neglecting without loss of generality the transmission
conditions (due to locality of the operator), one sees that

Re .ALu j u�Pu/D�

Z
G

u000u� dx D

Z
fu�0g

u000u dx D�1
2
ju0j2

ˇ̌
@fu�0g

:

Of course, wherever an H 3-function changes sign its first derivative need not vanish, so condition (3-9)
cannot be satisfied.

Analogously, the semigroup is also not L1-contractive, i.e., the inequality ketALuk1 � kuk1 fails
for some u 2L2.G/\L1.G/ and some t � 0. In this case, the relevant projection onto the closed convex
subset C WD fu 2L2.G/ W juj � 1g of L2.G/ is defined by Pu WD .juj ^ 1/ sgn u; hence

u�Pu WD .juj � 1/C sgn u:

We also obtain realness of .T .t//t�0 in the case of separated boundary conditions.

Proposition 3.26. Let Y � `2.E�/˚ `
2.EC/ be a closed subspace and U W `2.E�; ˛�/! `2.EC; ˛C/

be linear and contractive. Let .T .t//t�0 be the C0-semigroup generated by AY;U . Assume that
.Re x;Re y/ 2 Y for all .x;y/ 2 Y and U is real, i.e., Re Ux D U Re x for all x 2 `2.E�; ˛�/. Then
.T .t//t�0 is real.

Proof. By Theorem 3.23, .T .t//t�0 is a contraction semigroup. Let P be the projection from L2.GIC/ to
L2.GIR/; i.e., Pu WD Re u. By [Arendt et al. 2015, Corollary 9.6] realness of the semigroup .T .t//t�0

is equivalent to

Re .AY;U u j u�Pu/� 0 for all u 2D.AY;U /;

i.e.,

Re .AY;U u j i Im u/� 0 for all u 2D.AY;U /:

Let u 2D.AY;U /. The assumptions imply Re u 2D.AY;U /, and therefore also Im u 2D.AY;U /. Since
AY;U v is real for v 2D.AY;U / real we have

Re .AY;U .Re uC i Im u/ j i Im u/D Im .AY;U Re u j Im u/CRe .AY;U Im u j Im u/

D Re .AY;U Im u j Im u/� 0;

since AY;U is dissipative by Corollary 3.21. �

Remark 3.27. We end this section with some considerations about the boundary conditions used in the
literature related to the subject.
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In the classical treatise [Stoker 1957] the author, reviewing the much-studied case study of the confluence
between the Ohio and Mississippi rivers, proposed that the boundary conditions suitable for branching
water flows are the ones compatible with continuity and mass conservation. As we know, there are many.
This assumption was essentially undisputed in the not-so-abundant literature on the subject; see also the
interesting paper [Jacovkis 1991] for further information. Recently, in [Nachbin and Simões 2012; 2015]
a more careful analysis has been put forth by the authors attempting a 1-dimensional reduction from a
fluid dynamical model in a 2-dimensional setting; they question the above traditional point of view about
the more convenient boundary conditions, in particular continuity.

We finally notice that in the few recent mathematical papers concerning the Airy or KdV equation on
graphs, [Sobirov et al. 2015a; 2015b; 2015c; Ammari and Crépeau 2017; Cavalcante 2017], only very
special examples of boundary conditions are considered, essentially without explanation. All of them
turn out to be of the separated derivative type studied in this section.

4. Examples

The case of two half-lines. First, let us consider the case of the real line with a singular interaction at
the origin, i.e., jE�j D jECj D 1; see Figure 3.

We will describe the operator explicitly in the case where the first derivative is separated.
Let Y � C2 be a subspace and U W `2.E�; ˛�/! `2.EC; ˛C/ be linear, i.e., U 2 C. Note that U is

contractive if and only if jU j2˛C � ˛�.

Example 4.1. Let Y WD f.0; 0/g. Then

D.AY;U /D
˚
u 2D.A�0/ W u.0�/D u.0C/D 0; u0.0C/D Uu0.0�/

	
;

AY;U uD�A�0u:

By Corollary 3.20, AY;U generates a unitary group provided jU j2 D ˛�=˛C. By Theorem 3.23, AY;U

generates a semigroup of contractions provided jU j2 � ˛�=˛C. Observe that if we take U D 0, we are
effectively reducing the Airy equation on the star graph G to decoupled Airy equations on two half-lines
.0;1/ and .�1; 0/ with Dirichlet conditions (for both equations) and Neumann (on the positive half-line
only) boundary conditions. The Airy equation on either of these half-lines with the above boundary
conditions has been considered often in the literature; see, e.g., [Holmer 2006; Fokas et al. 2016].

Example 4.2. Let Y WD linf.0; 1/g. Then

D.AY;U /D
˚
u 2D.A�0/ W u.0�/D 0; u00.0C/˛C D�

1
2
ˇCu.0C/; u0.0C/D Uu0.0�/

	
;

AY;U uD�A�0u:

0

Figure 3. A graph consisting of two half-lines.
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If U D 0, these transmission conditions can be interpreted as a reduction of the system to two decoupled
half-lines: a Dirichlet condition is imposed on one of them, while a transmission condition that is the
third-order counterpart of a Robin condition is imposed on the other one, along with a classical Neumann
condition.

By Corollary 3.20, AY;U generates a unitary group provided jU j2 D ˛�=˛C. By Theorem 3.23, AY;U

generates a semigroup of contractions provided jU j2 � ˛�=˛C.

Example 4.3. Let Y WD linf.1; 0/g. Then

D.AY;U /D
˚
u 2D.A�0/ W u.0C/D 0; u00.0�/˛� D�

1
2
ˇ�u.0�/; u0.0C/D Uu0.0�/

	
;

AY;U uD�A�0u:

If U D 0, these transmission conditions can be interpreted as a reduction of the system to two decoupled
half-lines: Dirichlet and Neumann conditions are imposed on one of them, while the analog of a Robin
condition is imposed on the other one. By Corollary 3.20, AY;U generates a unitary group provided
jU j2D ˛�=˛C. By Theorem 3.23, AY;U generates a semigroup of contractions provided jU j2 � ˛�=˛C.

Due to lack of conditions on u00.0C/ and/or u00.0�/, (3-8) cannot be generally satisfied in any of the
previous three cases and therefore the corresponding systems do not enjoy conservation of mass.

Example 4.4. Let Y WD linf.1; 1/g. Then

D.AY;U /D
˚
u 2D.A�0/ W u.0�/D u.0C/DW u.0/;

u00.0C/˛C�u00.0�/˛� D
1
2
.ˇ��ˇC/u.0/; u0.0C/D Uu0.0�/

	
;

AY;U uD�A�0u:

By Corollary 3.20, AY;U generates a unitary group provided jU j2 D ˛�=˛C: observe that this is in
particular the case if ˛C D ˛�, ˇC D ˇ� and U D 1, meaning that not only u, but also u0 and u00 are
continuous in the origin: this is the classical case considered in the literature and amounts to the free
Airy equation on R; see, e.g., the summary in [Linares and Ponce 2009, §7.1]. In view of Remark 3.10,
generation of a mass-preserving unitary group still holds under the more general assumption that U D ei�

for some � 2 Œ0; 2�/, while in view of the prescribed transmission conditions, (3-8) cannot be satisfied
unless ˇCD ˇ�. Even upon dropping the assumption that ˇCD ˇ� we obtain the third-order counterpart
of a ı-interaction, under which generation of a unitary group is still given.

On the other hand, by Theorem 3.23, AY;U generates a semigroup of contractions already under the
weaker assumption that jU j2 � ˛�=˛C.

Example 4.5. Let Y WD linf.1;�1/g. Then

D.AY;U /D
˚
u 2D.A�0/ W u.0�/D�u.0C/;

u00.0C/˛CCu00.0�/˛� D
1
2
.ˇC�ˇ�/u.0�/; u0.0C/D Uu0.0�/

	
;

AY;U uD�A�0u:

By Corollary 3.20, AY;U generates a unitary group provided jU j2 D ˛�=˛C: we can regard this case
as a third-order counterpart of ı0-interactions of second-order operators. By (3-8), the system enjoys
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conservation of mass if and only if additionally

2˛Cu00.0C/C 1
2
.ˇC�ˇ�/u.0�/D 0; (4-1)

which is generally not satisfied (remember that we are not considering the degenerate case ˛ D 0).
By Theorem 3.23, AY;U generates a semigroup of contractions provided jU j2 � ˛�=˛C.

Example 4.6. Let Y WD C2. Then

D.AY;U /D
˚
u2D.A�0/ Wu

00.0�/˛�D�
1
2
ˇ�u.0�/; u00.0C/˛CD�

1
2
ˇCu.0C/; u0.0C/DUu0.0�/

	
;

AY;U uD�A�0u:

These transmission conditions amount to considering two decoupled systems, each with Robin-like
conditions along with a Neumann condition on one of them. By Corollary 3.20, AY;U generates a
unitary group provided jU j2 D ˛�=˛C; by (3-8), the system enjoys conservation of mass if and only if
additionally

�
1
2
ˇ�u.0�/C 1

2
ˇCu.0C/Cˇ�u.0�/�ˇCu.0C/D 0; (4-2)

which is generally only satisfied if ˇ� D ˇC D 0. By Theorem 3.23, AY;U generates a semigroup of
contractions provided jU j2 � ˛�=˛C.

Let us now describe one particular example where the first derivative is not separated and the corre-
sponding semigroup is unitary.

Example 4.7. We consider the case ˛�D˛CD 1, ˇ�DˇCD 0. Define the 3�3-matrix L WG�!GC by

LD

0@ 1 0 0
p

2 1 0

1
p

2 1

1A :
An easy calculation yields

L�

0@ 0 0 �1

0 1 0

�1 0 0

1ALD

0@ 0 0 �1

0 1 0

�1 0 0

1A I
i.e., L�BCLD B�. Thus, for x;y 2 G� we have

hLx jLyiC D .BCLx jLy/D .L�BCLx j y/D .B�x j y/D hx j yi�:

Hence, L defines a .G�;GC/-unitary operator. Combining Theorems 3.8 and 3.7 we obtain that AL is
skew-self-adjoint. Note that

D.AL/D
˚
u 2D.A�0/ W u.0C/D u.0�/DW u.0/;

u0.0C/D
p

2u.0/Cu0.0�/; u00.0C/D u.0/C
p

2u0.0�/Cu00.0�/
	
;

so the transmission conditions couple the values of the function and its first and second derivatives at the
boundary point. By (3-8), mass is not conserved.
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0

Figure 4. A graph consisting of three half-lines.

Remark 4.8. As mentioned in the Introduction, in the recent paper [Deconinck et al. 2016] the Airy
equation is treated (with ˇ D 0, which makes difference when translation invariance is broken) on a line
with an interface at a point where linear transmission conditions are imposed. The authors give conditions
for the solvability of the evolution problem in terms of the coefficients appearing in the transmission
conditions. An interesting problem could be to compare the conditions obtained there with the ones given
in the present paper in the case of two half-lines.

The case of three half-lines. Let us now describe the operator (again with separated first derivative) for
the case of three half-lines; see Figure 4.

Let jE�j D 1 and jECj D 2, which describes two confluent channels. By Proposition 3.1 it is impossible
that the Airy equation is governed by a unitary group in this setting; however, we are going to discuss a
few concrete cases where a semigroup of contractions is generated by the Airy operator.

Let Y be a subspace of `2.E�/˚ `C.EC/Š C˚C2 Š C3 and U W `2.E�; ˛�/! `2.EC; ˛C/ be a
linear mapping, i.e., U 2M21.C/' C2: we denote for simplicity

U D .U1;U2/
>:

Then U is -contractive if and only if jU1j
2˛C;1 C jU2j

2˛C;2 � ˛�. Note that U � is given by U �
1
D

U 1.˛C;1=˛�/ and U �
2
D U 2.˛C;2=˛�/.

Example 4.9. Let Y WD f.0; 0; 0/g. Then

D.AY;U /D
˚
u 2D.A�0/ W u.0�/D u1.0C/D u2.0C/D 0; .u01.0C/;u

0
2.0C//

>
D u0.0�/U

	
;

AY;U uD�A�0u:

As in Example 4.1, whenever U D .0; 0/>, the associated system effectively reduces to three decoupled
half-lines with Dirichlet, resp. Dirichlet and Neumann boundary conditions. By Theorem 3.23, AY;U

generates a semigroup of contractions provided

jU1j
2˛C;1CjU2j

2˛C;2 � ˛�:

In view of (3-8), mass is generally not conserved regardless of U.

Example 4.10. Let Y WD linf.1; 1; 1/g. Then

D.AY;U /D
˚
u2D.A�0/ Wu.0�/Du1.0C/Du2.0C/DWu.0/;

�˛�u00.0�/C˛C;1u001.0C/C˛C;2u002.0C/D
1
2
.ˇ��ˇC;1�ˇC;2/u.0/;

.u01.0C/;u
0
2.0C//

>
Du0.0�/U

	
;

AY;U uD�A�0u:
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Observe that the considered transmission conditions impose continuity of the values of u in the center of
the star; in fact, the transmission conditions are the analog of a ı-interaction. By Theorem 3.23, AY;U

generates a semigroup of contractions provided

jU1j
2˛C;1CjU2j

2˛C;2 � ˛�:

Regardless of U, this semigroup is mass-preserving if and only if ˇ��ˇC;1�ˇC;2 D 0.
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ON s-HARMONIC FUNCTIONS ON CONES
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We deal with nonnegative functions satisfying{
(−1)sus = 0 in C,

us = 0 in Rn
\C,

where s ∈ (0, 1) and C is a given cone on Rn with vertex at zero. We consider the case when s approaches 1,
wondering whether solutions of the problem do converge to harmonic functions in the same cone or not.
Surprisingly, the answer will depend on the opening of the cone through an auxiliary eigenvalue problem
on the upper half-sphere. These conic functions are involved in the study of the nodal regions in the case
of optimal partitions and other free boundary problems and play a crucial role in the extension of the
Alt–Caffarelli–Friedman monotonicity formula to the case of fractional diffusions.
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1. Introduction

Let n ≥ 2 and let C be an open cone in Rn with vertex in 0; for a given s ∈ (0, 1), we consider the problem
of the classification of nontrivial functions which are s-harmonic inside the cone and vanish identically
outside, that is, 

(−1)sus = 0 in C,
us ≥ 0 in Rn,

us ≡ 0 in Rn
\C.

(1-1)

Here we define (see Section 2 for the details)

(−1)su(x)= C(n, s) p.v.
∫

Rn

u(x)− u(η)
|x − η|n+2s dη,

Work partially supported by the ERC Advanced Grant 2013 no. 339958 Complex patterns for strongly interacting dynamical
systems - COMPAT and by the INDAM-GNAMPA project Aspetti non-locali in fenomeni di segregazione. The authors wish to
thank Alessandro Zilio for many fruitful conversations.
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where u is a sufficiently smooth function and

C(n, s)=
22ss0(n/2+ s)
πn/20(1− s)

> 0, (1-2)

where

0(x)=
∫
∞

0
t x−1e−t dt .

The principal value is taken at η = x ; hence, though u needs not to decay at infinity, it has to keep an
algebraic growth with a power strictly smaller than 2s in order to make the above expression meaningful.
By Theorem 3.2 in [Bañuelos and Bogdan 2004], it is known that there exists a homogeneous, nonnegative
and nontrivial solution to (1-1) of the form

us(x)= |x |γs us

(
x
|x |

)
,

where γs := γs(C) is a definite homogeneity degree (characteristic exponent), which depends on the
cone. Moreover, such a solution is continuous in Rn and unique, up to multiplicative constants. We can
normalize it in such a way that ‖us‖L∞(Sn−1) = 1. We consider the case when s approaches 1, wondering
whether solutions of the problem do converge to a harmonic function in the same cone and, in that case,
which are the suitable spaces for convergence.

Such conic s-harmonic functions appear as limiting blow-up profiles and play a major role in many
free boundary problems with fractional diffusions and in the study of the geometry of nodal sets, also in
the case of partition problems; see, e.g., [Allen 2012; Barrios et al. 2015; Caffarelli et al. 2017; Dipierro
et al. 2017; Garofalo and Ros-Oton 2017]. Moreover, as we shall see later, they are strongly involved with
the possible extensions of the Alt–Caffarelli–Friedman monotonicity formula to the case of fractional
diffusion. The study of their properties and, ultimately, their classification is therefore a major achievement
in this setting. The problem of homogeneous s-harmonic functions on cones has been deeply studied in
[Bañuelos and Bogdan 2004; Bogdan and Byczkowski 1999; Bogdan et al. 2015; Michalik 2006]. The
present paper mainly focuses on the limiting behavior as s↗ 1.

Our problem (1-1) can be linked to a specific spectral problem of local nature in the upper half-sphere;
indeed let us look at the extension technique popularized by the authors in [Caffarelli and Silvestre 2007],
characterizing the fractional Laplacian in Rn as the Dirichlet-to-Neumann map for a variable v depending
on one more space dimension and satisfying{

Lsv = div(y1−2s
∇v)= 0 in Rn+1

+ ,

v(x, 0)= u(x) on Rn.
(1-3)

Such an extension exists and is unique for a suitable class of functions u, see (2-1), and it is given by the
formula

v(x, y)= γ (n, s)
∫

Rn

y2su(η)
(|x − η|2+ y2)n/2+s dη, where γ (n, s)−1

:=

∫
Rn

1
(|η|2+ 1)n/2+s dη.



ON s-HARMONIC FUNCTIONS ON CONES 1655

Then, the nonlocal original operator translates into a boundary derivative operator of Neumann type:

−
C(n, s)
γ (n, s)

lim
y→0

y1−2s∂yv(x, y)= (−1)su(x).

Now, let us consider an open region ω ⊆ Sn−1
= ∂Sn

+
, with Sn

+
= Sn
∩ {y > 0}, and define the eigenvalue

λs
1(ω)= inf

{∫
Sn
+

y1−2s
|∇Sn u|2 dσ∫

Sn
+

y1−2su2 dσ
: u ∈ H 1(Sn

+
; y1−2s dσ) \ {0} and u ≡ 0 in Sn−1

\ω

}
.

Next, define the characteristic exponent of the cone Cω spanned by ω (see Definition 2.1) as

γs(Cω)= γs(λ
s
1(ω)), (1-4)

where the function γs(t) is defined by

γs(t) :=
√( 1

2(n− 2s)
)2
+ t − 1

2(n− 2s).

Remark 1.1. There is a remarkable link between the nonnegative λs
1(ω)-eigenfunctions and the γs(λ

s
1(ω))-

homogeneous Ls-harmonic functions: Let consider the spherical coordinates (r, θ) with r > 0 and θ ∈ Sn.
Let ϕs be the first nonnegative eigenfunction to λs

1(ω) and let vs be its γs(λ
s
1(ω))-homogeneous extension

to Rn+1
+ , i.e.,

vs(r, θ)= rγs(λ
s
1(ω))ϕs(θ),

which is well-defined as soon as γs(λ
s
1(ω)) < 2s (as we shall see, this fact is always granted). By [Rüland

2015], the operator Ls can be decomposed as

Lsu = sin1−2s(θn)
1
rn ∂r (rn+1+2s∂r u)+

1
r1+2s L Sn

s u,

where y = r sin(θn) and the Laplace–Beltrami-type operator is defined as

L Sn

s u = divSn (sin1−2s(θn)∇Sn u)

with ∇Sn the tangential gradient on Sn. Then, we easily get that vs is Ls-harmonic in the upper half-space.
Moreover, its trace us(x)= vs(x, 0) is s-harmonic in the cone Cω spanned by ω, vanishing identically
outside; in other words us is a solution of our problem (1-1).

In a symmetric way, for the standard Laplacian, we consider the problem of γ -homogeneous functions
which are harmonic inside the cone spanned by ω and vanish outside:

−1u1 = 0 in Cω,
u1 ≥ 0 in Rn,

u1 = 0 in Rn
\Cω.

(1-5)

It is well known that the associated eigenvalue problem on the sphere is that of the Laplace–Beltrami
operator with Dirichlet boundary conditions

λ1(ω)= inf

{∫
Sn−1 |∇Sn−1u|2 dσ∫

Sn−1 u2 dσ
: u ∈ H 1(Sn−1) \ {0} and u = 0 in Sn−1

\ω

}
,
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and the characteristic exponent of the cone Cω is

γ (Cω)=
√( 1

2(n− 2)
)2
+ λ1(ω)−

1
2(n− 2)= γs |s=1(λ1(ω)). (1-6)

In the classical case, the characteristic exponent enjoys a number of nice properties: It is minimal on
spherical caps among sets having a given measure. Moreover, for the spherical caps, the eigenvalues enjoy
a fundamental convexity property with respect to the colatitude θ [Alt et al. 1984; Friedland and Hayman
1976]. The convexity plays a major role in the proof of the Alt–Caffarelli–Friedman monotonicity formula,
a key tool in the free boundary theory [Caffarelli and Salsa 2005].

Since the standard Laplacian can be viewed as the limiting operator of the family (−1)s as s ↗ 1,
some questions naturally arise:

Problem 1.2. Is it true that:

(a) lims→1 γs(C)= γ (C)?

(b) lims→1 us = u1 uniformly on compact sets, or better, in Hölder local norms?

(c) for spherical caps of opening θ there is any convexity of the map θ 7→ λs
1(θ), at least, for s near 1?

We therefore addressed the problem of the asymptotic behavior of the solutions of problem (1-1) for
s ↗ 1, obtaining a rather unexpected result: our analysis shows high sensitivity to the opening solid
angle ω of the cone Cω, as evaluated by the value of γ (C). In the case of wide cones, when γ (C) < 2
(that is, θ ∈ (π/4, π) for spherical caps of colatitude θ), our solutions do converge to the harmonic
homogeneous function of the cone; in the case of narrow cones, when γ (C) ≥ 2 (that is, θ ∈ (0, π/4]
for spherical caps), the limit of the homogeneity degree will always be 2 and the limiting profile will be
something different, though related, of course, through a correction term. Similar transition phenomena
have been detected in other contexts for some types of free boundary problems on cones [Allen and Lara
2015; Shahgholian 2004]. As a consequence of our main result, we will see a lack of convexity of the
eigenvalue as a function of the colatitude. Our main result is the following theorem.

Theorem 1.3. Let C be an open cone with vertex at the origin. There exist the following finite limits:

γ̄ (C) := lim
s→1−

γs(C)=min{γ (C), 2}, (1-7)

µ(C) := lim
s→1−

C(n, s)
2s− γs(C)

=

{
0 if γ (C)≤ 2,
µ0(C) if γ (C)≥ 2,

(1-8)

where C(n, s) is defined in (1-2) and

µ0(C) := inf

{∫
Sn−1 |∇Sn−1u|2− 2nu2 dσ(∫

Sn−1 |u| dσ
)2 : u ∈ H 1(Sn−1) \ {0} and u = 0 in Sn−1

\C

}
.

Let us consider the family (us) of nonnegative solutions to (1-1) such that ‖us‖L∞(Sn−1) = 1. Then, as
s↗ 1, up to a subsequence, we have:

(1) us→ ū in L2
loc(R

n) for some ū ∈ H 1
loc(R

n)∩ L∞(Sn−1).
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Figure 1. Characteristic exponents of spherical caps of aperture 2θ for s < 1 and s = 1.

(2) The convergence is uniform on compact subsets of C and ū is nontrivial with ‖ū‖L∞(Sn−1) = 1 and is
γ̄ (C)-homogeneous.

(3) The limit ū solves {
−1ū = µ(C)

∫
Sn−1 ū dσ in C,

ū = 0 in Rn
\C.

(1-9)

Remark 1.4. Uniqueness of the limit ū and therefore existence of the limit of us as s↗ 1 hold in the
case of connected cones and, in any case, whenever γ (C) > 2. We will see in Remark 4.2 that under
symmetry assumptions on the cone C , the limit function ū is unique and hence it does not depend on the
choice of the subsequence.

A nontrivial improvement of the main theorem concerns uniform bounds in Hölder spaces holding
uniformly for s→ 1.

Theorem 1.5. Assume the cone is C1,1. Let α ∈ (0, 1), s0 ∈
(
max

{ 1
2 , α

}
, 1
)

and A be an annulus centered
at zero. Then the family of solutions us to (1-1) is uniformly bounded in C0,α(A) for any s ∈ [s0, 1).

On the fractional Alt–Caffarelli–Friedman monotonicity formula. In the case of reaction-diffusion
systems with strong competition between a number of densities which spread in space, one can observe a
segregation phenomenon: as the interspecific competition rate grows, the populations tend to separate
their supports in nodal sets, separated by a free boundary. For the case of standard diffusion, both the
asymptotic analysis and the properties of the segregated limiting profiles are fairly well understood, we
refer to [Caffarelli and Lin 2008; Conti et al. 2005; Dancer et al. 2012; Noris et al. 2010; Tavares and
Terracini 2012]. Instead, when the diffusion is nonlocal and modeled by the fractional Laplacian, the
only known results are contained in [Terracini et al. 2014; 2016; Terracini and Vita 2017; Wang and Wei
2016]. As shown in [Terracini et al. 2014; 2016], estimates in Hölder spaces can be obtained by the use
of fractional versions of the Alt–Caffarelli–Friedman (ACF) and Almgren monotonicity formulas. For
the statement, proof and applications of the original ACF monotonicity formula we refer to the book
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[Caffarelli and Salsa 2005] on free boundary problems. Let us state here the fractional version of the
spectral problem beyond the ACF formula used in [Terracini et al. 2014; 2016]: consider the set of
2-partitions of Sn−1 as

P2
:=
{
(ω1, ω2) : ωi ⊆ Sn−1 open, ω1 ∩ω2 =∅, ω̄1 ∪ ω̄2 = Sn−1}

and define the optimal partition value as

νACF
s :=

1
2

inf
(ω1,ω2)∈P2

2∑
i=1

γs(λ
s
1(ωi )). (1-10)

It is easy to see, by a Schwarz symmetrization argument, that νACF
s is achieved by a pair of complementary

spherical caps (ωθ , ωπ−θ ) ∈ P2 with aperture 2θ and θ ∈ (0, π) (for a detailed proof of this kind of
symmetrization we refer to [Terracini and Vita 2017]); that is,

νACF
s = min

θ∈[0,π ]
0s(θ)= min

θ∈[0,π ]

γs(θ)+ γs(π − θ)

2
.

This gives a further motivation to our study of (1-1) for spherical caps. A classical result in [Friedland and
Hayman 1976] yields νACF

= 1 (in the case s = 1), and the minimal value is achieved for two half-spheres;
this equality is the core of the proof of the classical Alt–Caffarelli–Friedman monotonicity formula.

It was proved in [Terracini et al. 2014] that νACF
s is linked to the threshold for uniform bounds in

Hölder norms for competition-diffusion systems, as the interspecific competition rate diverges to infinity,
as well as the exponent of the optimal Hölder regularity for their limiting profiles. It was also conjectured
that νACF

s = s for every s ∈ (0, 1). Unfortunately, the exact value of νACF
s is still unknown, and we only

know that 0 < νACF
s ≤ s; see [Terracini et al. 2014; 2016]. Actually one can easily give a better lower

bound given by νACF
s ≥ max

{ 1
2 s, s − 1

4

}
when n = 2 and νACF

s ≥
1
2 s otherwise, which however is not

satisfactory. As already remarked in [Allen 2012], this lack of information implies also the lack of an exact
Alt–Caffarelli–Friedman monotonicity formula for the case of fractional Laplacians. Our contribution to
this open problem is a byproduct of the main result, Theorem 1.3, and is depicted in Figure 2.

Corollary 1.6. In any space dimension we have

lim
s→1

νACF
s = 1.

The paper is organized as follows. In Section 2 we introduce our setting and we state the relevant known
properties of homogeneous s-harmonic functions on cones. After this, we will obtain local C0,α-estimates
in compact subsets of C and local H s-estimates in compact subsets of Rn for solutions us of (1-1). We
will see that an important quantity which appears in these estimates and plays a fundamental role is

C(n, s)
2s− γs(C)

,

where C(n, s)> 0 is the normalization constant given in (1-2). It will be therefore very important to bound
this quantity uniformly in s. In Section 3 we analyze the asymptotic behavior of γs(C) as s converges
to 1, in order to understand the quantities γ̄ (C) and µ(C). To do this, we will establish a distributional
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Figure 2. Possible values of 0s(θ)= 0s(ωθ , ωπ−θ ) for s < 1 and s = 1 and n = 2.

semigroup property for the fractional Laplacian for functions which grow at infinity. In Section 4 we
prove Theorem 1.3 and Corollary 1.6. Eventually, in Section 5, we prove Theorem 1.5.

2. Homogeneous s-harmonic functions on cones

In this section, we focus our attention on the local properties of homogeneous s-harmonic functions on
regular cones. Since in the next section we will study the behavior of the characteristic exponent as s
approaches 1, in this section we recall some known results related to the boundary behavior of the solution
of (1-1) restricted to the unitary sphere Sn−1 and some estimates of the Hölder and H s seminorms.

Definition 2.1. Let ω⊂ Sn−1 be an open set, which may be disconnected. We define the unbounded cone
with vertex in 0, spanned by ω, to be the open set

Cω = {r x : r > 0, x ∈ ω}.

Moreover we say that C = Cω is narrow if γ (C)≥ 2 and wide if γ (C) < 2. We call Cω a regular cone if
ω is connected and of class C1,1. Let θ ∈ (0, π) and ωθ ⊂ Sn−1 be an open spherical cap of colatitude θ .
Then we denote by Cθ = Cωθ the right circular cone of aperture 2θ .

Hence, let C be a fixed unbounded open cone in Rn with vertex in 0 and consider{
(−1)sus = 0 in C,

us ≡ 0 in Rn
\C

with the condition ‖us‖L∞(Sn−1) = 1. By Theorem 3.2 in [Bañuelos and Bogdan 2004] there exists, up to
a multiplicative constant, a unique nonnegative function us smooth in C and γs(C)-homogeneous, i.e.,

us(x)= |x |γs(C)us

(
x
|x |

)
,
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where γs(C) ∈ (0, 2s). As is well known, see for example [Bogdan and Byczkowski 1999; Silvestre
2005], the fractional Laplacian (−1)s is a nonlocal operator well-defined in the class of integrability
L1

s := L1(dx/(1+ |x |)n+2s), namely the normed space of all Borel functions u satisfying

‖u‖L1
s
:=

∫
Rn

|u(x)|
(1+ |x |)n+2s dx <∞. (2-1)

Hence, for every u ∈ L1
s , ε > 0 and x ∈ Rn we define

(−1)sεu(x)= C(n, s)
∫

Rn\Bε(x)

u(x)− u(y)
|x − y|n+2s dy,

where

C(n, s)=
22ss0(n/2+ s)
πn/20(1− s)

∈ (0, 40(n/2+ 1)].

and we can consider the fractional Laplacian as the limit

(−1)su(x)= lim
ε↓0
(−1)sεu(x)= C(n, s) p.v.

∫
Rn

u(x)− u(y)
|x − y|n+2s dy.

We remark that u ∈ L1
s is such that u ∈ L1

s+δ for any δ > 0, which will be an important tool in this section
of the paper, in order to compute high-order fractional Laplacians. Another definition of the fractional
Laplacian, which can be constructed by a double change of variables as in [Di Nezza et al. 2012], is

(−1)su(x)=
C(n, s)

2

∫
Rn

2u(x)− u(x + y)− u(x − y)
|y|n+2s dy,

which emphasizes that given u ∈C2(D)∩L1
s , we obtain that x 7→ (−1)su(x) is a continuous and bounded

function on D for some bounded D ⊂ Rn.
By [Michalik 2006, Lemma 3.3], if we consider a regular unbounded cone C symmetric with respect

to a fixed axis, there exist two positive constants c1 = c1(n, s,C) and c2 = c2(n, s,C) such that

c1|x |γs−s dist(x, ∂C)s ≤ us(x)≤ c2|x |γs−s dist(x, ∂C)s (2-2)

for every x ∈ C . We remark that this result can be easily generalized to regular unbounded cones Cω
with ω ⊂ Sn−1 a finite union of connected C1,1 domains ωi such that ω̄i ∪ ω̄ j =∅ for i 6= j , since the
reasoning in [Michalik 2006] relies on a boundary Harnack principle and on sharp estimates for the Green
function for bounded C1,1 domains which are not necessarily connected; for more details see [Chen and
Song 1998].

Throughout the paper we will call the coefficient of homogeneity γs the “characteristic exponent”,
since it is strictly related to an eigenvalue partition problem.

As we already mentioned, our solutions are smooth in the interior of the cone and locally C0,s near the
boundary ∂C \ {0}, see for example [Michalik 2006], but we need some quantitative estimates in order to
better understand the dependence of the Hölder seminorm on the parameter s ∈ (0, 1).

Before showing the main result of Hölder regularity, we need the following estimates about the
fractional Laplacian of smooth compactly supported functions; this result can be found in [Bogdan and
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Byczkowski 1999, Lemma 3.5; Dávila et al. 2015, Lemma 5.1], but here we compute the formula with a
deep attention on the dependence of the constant with respect to s ∈ (0, 1).

Proposition 2.2. Let s ∈ (0, 1) and ϕ ∈ C2
c (R

n). Then

|(−1)sϕ(x)| ≤
c

(1+ |x |)n+2s for all x ∈ Rn, (2-3)

where the constant c > 0 depends only on n and the choice of ϕ.

Proof. Let K ⊂ Rn be the compact support of ϕ and k =maxx∈K |ϕ(x)|. There exists R > 1 such that
K ⊂ BR/2(0).

Let |x |> R. Then

|(−1)sϕ(x)| =
∣∣∣∣C(n, s)

∫
Rn

ϕ(x)−ϕ(y)
|x − y|n+2s dy

∣∣∣∣= ∣∣∣∣C(n, s)
∫

K

ϕ(y)
|x − y|n+2s dy

∣∣∣∣
≤

C(n, s)k
|x |n+2s

∫
K

1
(1− |y/x |)n+2s dy ≤

C(n, s)k2n+2s
|K |

|x |n+2s

≤
C(n, s)k22(n+2s)

|K |
(1+ |x |)n+2s ≤

c
(1+ |x |)n+2s ,

where c > 0 depends only on n and the choice of ϕ.
Let now |x | ≤ R. We use the fact that any derivative of ϕ of first or second order is uniformly

continuous in the compact set K and the fact that in BR(0) the function (1+|x |)n+2s has maximum given
by (1+ R)n+2s . Hence there exist 0< δ < 1 and a constant M > 0, both depending only on n and the
choice of ϕ, such that

|ϕ(x + z)+ϕ(x − z)− 2ϕ(x)| ≤ M |z|2 for all z ∈ Bδ(0).

Hence

|(−1)sϕ(x)| =
∣∣∣∣C(n, s)

∫
Rn\Bδ(x)

ϕ(x)−ϕ(y)
|x − y|n+2s dy+C(n, s)

∫
Bδ(x)

ϕ(x)−ϕ(y)
|x − y|n+2s dy

∣∣∣∣
≤ 2kC(n, s)

∫
Rn\Bδ(x)

1
|x − y|n+2s dy+

C(n, s)
2

∫
Bδ(0)

|ϕ(x + z)+ϕ(x − z)− 2ϕ(x)|
|z|n+2s dz

≤ 2kC(n, s)ωn−1

∫
∞

δ

r−1−2s dr +
C(n, s)ωn−1 M

2

∫ δ

0
r1−2s dr

=
kC(n, s)ωn−1

sδ2s +
C(n, s)ωn−1 Mδ2−2s

4(1− s)

≤
c
δ2 + c = c

(1+ |x |)n+2s

(1+ |x |)n+2s ≤
c(1+ R)n+2

(1+ |x |)n+2s =
c

(1+ |x |)n+2s ,

where c > 0 depends only on n and the choice of ϕ. �

By the previous calculations we have also the following result.
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Remark 2.3. Let s ∈ (0, 1) and ϕ ∈ C2
c (R

n). Then there exists a constant c = c(n, ϕ) > 0 and a radius
R = R(ϕ) > 0 such that

|(−1)sϕ(x)| ≤ c
C(n, s)

(1+ |x |)n+2s for all x ∈ Rn
\ BR(0). (2-4)

The following result provides interior estimates for the Hölder norm of our solutions.

Proposition 2.4. Let C be a cone, K ⊂ C be a compact set and s0 ∈ (0, 1). Then there exist a constant
c > 0 and ᾱ ∈ (0, 1), both dependent only on s0, K , n,C , such that

‖us‖C0,α(K ) ≤ c
(

1+
C(n, s)

2s− γs(C)

)
for any α ∈ (0, ᾱ] and any s ∈ [s0, 1).

By a standard covering argument, there exists a finite number of balls such that K ⊂
⋃k

j=1 Br (x j ) for
a given radius r > 0 such that

⋃k
j=1 B2r (x j )⊂ C . Thus, it is enough to prove:

Proposition 2.5. Let B2r (x̄)⊂ C be a closed ball and s0 ∈ (0, 1). Then there exist a constant c > 0 and
ᾱ ∈ (0, 1), both dependent only on s0, r, x̄, n,C , such that

‖us‖C0,α(Br (x̄)) ≤ c
(

1+
C(n, s)

2s− γs(C)

)
for any α ∈ (0, ᾱ] and any s ∈ [s0, 1).

In order to achieve the desired result, we need to estimate locally the value of the fractional Laplacian
of us in a ball compactly contained in the cone C .

Lemma 2.6. Let η ∈ C∞c (B2r (x̄)) be a cut-off function such that 0≤ η ≤ 1 with η ≡ 1 in Br (x̄). Under
the same assumptions as Proposition 2.5,

‖(−1)s(usη)‖L∞(B2r (x̄)) ≤ C0

(
1+

C(n, s)
2s− γs(C)

)
for any s ∈ [s0, 1), where C0 > 0 depends on s0, n, x̄, r,C , and the choice of the function η.

Proof. Let R > 1 be such that B2r (x̄)⊂ BR/2(0). Hence, let us fix a point x ∈ B2r (x̄). We can express
the fractional Laplacian of usη in the following way:

(−1)s(usη)(x)= η(x)(−1)sus(x)+C(n, s)
∫

Rn
us(y)

η(x)− η(y)
|x − y|n+2s dy

= C(n, s)
∫

BR(0)
us(y)

η(x)− η(y)
|x − y|n+2s dy+C(n, s)

∫
Rn\BR(0)

us(y)
η(x)− η(y)
|x − y|n+2s dy.

We recall that us(x)= |x |γs(C)us(x/|x |) and that for any s ∈ (0, 1) the functions us are normalized such
that ‖us‖L∞(Sn−1)= 1. Moreover we remark that η(x)−η(y)= η(x)≥ 0 in B2r (x̄)×(Rn

\BR(0)). Hence,
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using Proposition 2.2 and the fact that γs(C) < 2s, we obtain

|(−1)s(usη)(x)| ≤ C(n, s)
∣∣∣∣∫

BR(0)
us(y)

η(x)− η(y)
|x − y|n+2s dy

∣∣∣∣+C(n, s)
∣∣∣∣∫

Rn\BR(0)
us(y)

η(x)− η(y)
|x − y|n+2s dy

∣∣∣∣
≤ Rγs(C)|(−1)sη(x)| +C(n, s)2n+2s

∫
Rn\BR(0)

1
|y|n+2s−γs(C)

dy

≤
cR2

(1+ |x |)n+2s +C(n, s)2n+2ωn−1

∫
∞

R
r−1−2s+γs(C) dr

≤
cR2

(1+ |x |)n+2s +
cC(n, s)

R2s−γs(C)(2s− γs(C))

≤ C0

(
1+

C(n, s)
2s− γs(C)

)
. �

Proof of Proposition 2.5. Let as before η ∈ C∞c (B2r (x̄)) be a cut-off function such that 0≤ η ≤ 1 with
η ≡ 1 in Br (x̄). First, we remark that there exists a constant c0 > 0 such that for any s ∈ (0, 1)

‖usη‖L∞(Rn) ≤ c0, (2-5)

where c0 depends only on n, x̄, r . In fact, let R> 0 be such that B2r (x̄)⊂ BR(0). Then, for any x ∈Rn, we
have 0≤ usη(x)≤ Rγs(C) ≤ R2. Using the bound (2-5) and the previous lemma, we can apply [Caffarelli
and Silvestre 2009, Theorem 12.1] obtaining the existence of ᾱ ∈ (0, 1) and C > 0, both depending only
on n, s0 and the choice of Br (x̄) such that

‖usη‖C0,α(Br (x̄)) ≤ C(‖usη‖L∞(Rn)+‖(−1)
s(usη)‖L∞(B2r (x̄)))

≤ C
(

c0+C0

(
1+

C(n, s)
2s− γs(C)

))
for any s ∈ [s0, 1) and any α ∈ (0, ᾱ]. Since η ≡ 1 in Br (x̄) we obtain the result. �

Similarly, now we need to construct some estimate related to the H s seminorm of the solution us .
Since the functions do not belong to H s(Rn), we need to truncate the solution with some cut-off function
in order to avoid the problems related to the growth at infinity. In such a way, we can use

[v]2H s(Rn) = ‖(−1)
s/2v‖2L2(Rn)

=

∫
Rn
v(−1)sv dx, (2-6)

which holds for every v ∈ H s(Rn). So, let η ∈ C∞c (B2) be a radial cut-off function such that η ≡ 1 in
B1 and 0 ≤ η ≤ 1 in B2, and consider ηR(x) = η((x − x0)/R), the rescaled cut-off function defined in
B2R(x0) for some R > 0 and x0 ∈ Rn.

Proposition 2.7. Let s0 ∈ (0, 1) and ηR ∈ C∞c (B2R(x0)) be previously defined. Then

[usηR]
2
H s(Rn) ≤ c

(
1+

C(n, s)
2s− γs(C)

)
for any s ∈ [s0, 1), where c > 0 is a constant that depends on x0, R,C, s0 and η.
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Proof. Let η ∈ C∞c (B2) be a radial cut-off function such that η ≡ 1 in B1 and 0 ≤ η ≤ 1 in B2, and
consider the collection of (ηR)R with R > 0 defined by ηR(x)= η((x − x0)/R) with some x0 ∈ Rn. By
(2-6), for every R > 0 we obtain

[usηR]
2
H s(Rn) = ‖(−1)

s/2(usηR)‖
2
L2(Rn)

=

∫
Rn

usηR(−1)
s(usηR) dx .

By the definition of the fractional Laplacian we have∫
Rn

usηR(−1)
s(usηR)dx =C(n,s)

∫
Rn×Rn

us(x)ηR(x)
us(x)ηR(x)−us(y)ηR(y)

|x−y|n+2s dy dx

=

∫
Rn
η2

Rus(−1)
sus dx+C(n,s)

∫
Rn×Rn

ηR(x)−ηR(y)
|x−y|n+2s us(x)us(y)ηR(x)dy dx

=
C(n,s)

2

∫
Rn×Rn

|ηR(x)−ηR(y)|2

|x−y|n+2s us(x)us(y)dy dx,

where the last equation is obtained by the symmetrization of the previous integral with respect to the
variable (x, y) ∈ Rn

×Rn. Before splitting the domain of integration into different subsets, it is easy to
see that

ηR(x)−ηR(y)≡ 0 in BR(x0)× BR(x0)∪(R
n
\ B2R(x0))×(R

n
\ B2R(x0)),

|ηR(x)−ηR(y)| ≡ 1 in BR(x0)×(R
n
\ B2R(x0))∪(R

n
\ B2R(x0))× BR(x0),

where all the previous balls are centered at the point x0. Hence, given the sets

�1 = B3R(x0)× B3R(x0),

�2 = B2R(x0)× (R
n
\ B3R(x0))∪ (R

n
\ B3R(x0))× B2R(x0),

we have∫
Rn×Rn

|ηR(x)− ηR(y)|2

|x − y|n+2s us(x)us(y) dy dx

≤

∫
�1

|ηR(x)− ηR(y)|2

|x − y|n+2s us(x)us(y) dy dx +
∫
�2

|ηR(x)− ηR(y)|2

|x − y|n+2s us(x)us(y) dy dx .

In particular∫
�1

|ηR(x)− ηR(y)|2

|x − y|n+2s us(x)us(y) dy dx ≤ sup
B3R(x0)

u2
s

∫
B3R(x0)×B3R(x0)

‖∇ηR‖
2
L∞(Rn)

|x − y|n+2s−2 dy dx

≤ ‖∇ηR‖
2
L∞ sup

B3R(x0)

u2
s

∫
B3R(0)

dx
∫

B6R(x)

1
|x − y|n+2s−2 dy

≤
‖∇η‖2L∞

R2 sup
B3R(x0)

u2
s |B3R||Sn−1

|
(6R)2−2s

2(1− s)

≤ C‖∇η‖2L∞
Rn−2s

2(1− s)
max{|x0|

2γs , (3R)2γs }‖us‖L∞(Sn−1),
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where in the second inequality we use the changes of variables x − x0 and y − x0 and the fact that
B3R(0)× B3R(0)⊂ B3R(0)× B6R(x) for every x ∈ B3R(0). Similarly we have∫
�2

|ηR(x)−ηR(y)|2

|x−y|n+2s us(x)us(y) dy dx ≤ 2
∫

B2R(x0)

us(x)
(∫

Rn\B3R(x0)

us(y)
|x−y|n+2s dy

)
dx

≤ 2
∫

B2R(0)
us(x+x0)

(∫
Rn\B3R(0)

us(y+x0)

|y|n+2s(1−|x |/|y|)n+2s dy
)

dx

≤ 2·3n+2s
∫

B2R(0)
us(x+x0)

(∫
Rn\B3R(0)

C(|y|+|x0|)
γs

|y|n+2s dy
)

dx

≤ C sup
B2R(x0)

us |B2R||Sn−1
|2γs G(x0, R)

with

G(x0, R)=
{
|x0|

γs/(2s− γs)(3R)−2s if |x0| ≥ 3R,
(3R)γs−2s/(2s− γs) if |x0| ≤ 3R

≤
(3R)−2s

2s− γs
max{|x0|, 3R}γs .

Finally, we obtain the desired bound for the seminorm [usηR]
2
H s(Rn) summing the two terms and recalling

that ‖us‖L∞(Sn−1) = 1. �

3. Characteristic exponent γs(C): properties and asymptotic behavior

In this section we start the analysis of the asymptotic behavior of the homogeneity degree γs(C) as s
converges to 1. We get two main results: first we get a monotonicity result for the map s 7→ γs(C)
for a fixed regular cone C , which ensures the existence of the limit and, using a comparison result, a
bound on the possible value of the limit exponent. Secondly we study the asymptotic behavior of the
quotient C(n, s)/(2s− γs(C)).

In order to prove the first result and compare different orders of s-harmonic functions for different
power of (−1)s , we need to introduce some results which give a natural extension of the classic semigroup
property of the fractional Laplacian for functions defined on cones which grow at infinity.

Distributional semigroup property. It is well known that if we deal with smooth functions with compact
support, or more generally with functions in the Schwartz space S(Rn), a semigroup property holds
for the fractional Laplacian; i.e., (−1)s1 ◦ (−1)s2 = (−1)s1+s2, where s1, s2 ∈ (0, 1) with s1+ s2 < 1.
Since we have to deal with functions in L1

s that grow at infinity, we have to construct a distributional
counterpart of the semigroup property in order to compute high-order fractional Laplacians for solutions
of the problem given in (1-1).

First of all, we remark that a solution us to (1-1) for a fixed cone C belongs to L1
s since 0≤ us(x)≤

|x |γs(C) in Rn with γs(C) ∈ (0, 2s). Moreover, by the homogeneity one can rewrite the norm (2-1) as

‖us‖L1
s
=

∫
Rn

us(x)
(1+|x |)n+2s dx =

∫
Sn−1

us dσ
∫
∞

0

ρn−1+γs(C)

(1+ρ)n+2s dρ=
0(n+γs(C))0(2s−γs(C))

0(n+2s)

∫
Sn−1

us dσ .
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In the recent paper [Dipierro et al. 2016] the authors introduced a new notion of fractional Laplacian
applying to a wider class of functions which grow more than linearly at infinity. This is achieved by
defining an equivalence class of functions modulo polynomials of a fixed order. However, it can hardly
be applied to the solutions of (1-1) as they annihilate on a set of nonempty interior.

As shown in [Bogdan and Byczkowski 1999, Definition 3.6], if we consider a smooth function with
compact support ϕ ∈ C∞c (R

n)(or ϕ ∈ C2
c (R

n)), we can define the distribution k2s by the formula

(−1)sϕ(0)= (k2s, ϕ).

By this definition, it follows that (−1)sϕ(x)= k2s
∗ϕ(x).

Definition 3.1 [Bogdan and Byczkowski 1999, Definition 3.7]. For u ∈ L1
s we define the distributional

fractional Laplacian (−1̃)su by the formula

((−1̃)su, ϕ)= (u, (−1)sϕ) for all ϕ ∈ C∞c (R
n).

In particular, since given an open subset D ⊂ Rn and u ∈ C2(D) ∩ L1
s , the fractional Laplacian

exists as a continuous function of x ∈ D and (−1̃)su = (−1)su as a distribution in D [Bogdan and
Byczkowski 1999, Lemma 3.8], throughout the paper we will always use (−1)s both for the classical
and the distributional fractional Laplacian. The following is a useful tool for computing the distributional
fractional Laplacian.

Lemma 3.2 [Bogdan and Byczkowski 1999, Lemma 3.3]. Assume that∫∫
|y−x |>ε

| f (x)g(y)|
|y− x |n+2s dx dy <∞ and

∫
Rn
| f (x)g(x)| dx <∞. (3-1)

Then ((−1)sε f, g)= ( f, (−1)sεg). Moreover if f ∈L1
s and g ∈Cc(R

n), the assumptions (3-1) are satisfied
for every ε > 0.

Before proving the semigroup property, we prove the following lemma which ensures the existence of
the δ-Laplacian of the s-Laplacian for 0< δ < 1.

Lemma 3.3. Let us be a solution of (1-1) with C a regular cone. Then we have (−1)sus ∈ L1
δ for any

δ > 0, i.e., ∫
Rn

|(−1)sus(x)|
(1+ |x |)n+2δ dx <∞.

Proof. Since the function us is s-harmonic in C , namely (−1)sus(x)= 0 for all x ∈ C , we can restrict
the domain of integration to Rn

\C .
By homogeneity and the results in [Bogdan and Byczkowski 1999], we have that the function (−1)sus

is (γs − 2s)-homogeneous and in particular x 7→ (−1)sus(x) is a continuous negative function, for every
x ∈ D bRn

\C . In order to compute the previous integral, we focus our attention on the restriction of the
fractional Laplacian to the sphere Sn−1; in particular, we prove that there exist ε̄ > 0 and C > 0 such that

|(−1)sus(x)| ≤
C

dist(x, ∂C)s
for all x ∈ Nε̄(∂C)∩ Sn−1, (3-2)

where Nε(∂C)= {x ∈ Rn
\C : dist(x, ∂C)≤ ε} is the tubular neighborhood of ∂C .
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Hence, fixing R> 0 small enough, consider initially ε < R and x ∈ Sn−1
∩Nε(∂C); since us(y)≤ |y|γs

in Rn and by (2-2) there exists a constant C > 0 such that for every y ∈ C we have

us(y)≤ C |y|γs−s dist(y, ∂C)s,

it follows, defining δ(x) := dist(x, ∂C) > 0, that

|(−1)sus(x)| = C(n, s)
∫

C∩BR(x)

us(y)
|x − y|n+2s dy+C(n, s)

∫
C\BR(x)

us(y)
|x − y|n+2s dy

≤ C(n, s)
∫

C∩BR(x)

C |y|γs−s dist(y, ∂C)s

|x − y|n+2s dy+C(n, s)
∫

C\BR(x)

|y|γs

|x − y|n+2s dy.

Since C ∩ BR(x)⊂ BR(x) \ Bδ(x)(x), we have

|(−1)sus(x)| ≤ C
∫

R≥|x−y|≥δ(x)

|y|γs−s

|x − y|n+s dy+
∫
|x−y|≥R

(|x − y| + 1)γs

|x − y|n+2s dy

≤ C
∫

R≥|x−y|≥δ(x)

1
|x − y|n+s dy+ωn−1

∫
∞

R

(t + 1)γs

t1+2s dt

≤ C
∫ R

δ(x)

1
r1+s dr +M

≤ C
1

dist(x, ∂C)s
+M.

Moreover, again since s ∈ (0, 1), considering a smaller neighborhood Nε(∂C), we obtain that there exists
a constant ε̄ > 0 small enough and C > 0 such that

|(−1)sus(x)| ≤
C

dist(x, ∂C)s
for every x ∈ Nε̄(∂C)∩ Sn−1.

Now, fixing δ > 0 and considering ε̄ > 0 of (3-2), we have∫
Rn\C

|(−1)sus(x)|
(1+ |x |)n+2δ dx =

∫
Rn\C

|x |γs−2s
|(−1)sus(x/|x |)|
(1+ |x |)n+2δ dx

=

∫
∞

0

∫
Sn−1∩(Rn\C)

rγs−2s
|(−1)sus(z)|

(1+ r)n+2δ rn−1 dσ(z) dr

=

∫
∞

0

rn−1+γs−2s

(1+ r)n+2δ dr
∫

Sn−1∩(Rn\C)
|(−1)sus(z)| dσ .

Since γs ∈ (0, 2s) and s ∈ (0, 1), it follows that∫
Rn\C

|(−1)sus(x)|
(1+ |x |)n+2δ dx ≤ C

∫
Sn−1∩Nε̄(∂C)

|(−1)sus(z)| dσ +C
∫
((Rn\C)\Nε̄(∂C))∩Sn−1

|(−1)sus(z)| dσ

≤ C
∫

Sn−1∩Nε̄(∂C)

1
dist(z, ∂C)s

dσ +M <∞

where in the second inequality we used that z 7→ (−1)sus(z) is continuous in every Ab Sn−1
∩ (Rn

\C)
and in the last one that dist(x, ∂C)−s

∈ L1(Sn−1
∩ Nε̄(∂C), dσ). �
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Proposition 3.4 (distributional semigroup property). Let us be a solution of (1-1) with C a regular cone
and consider δ ∈ (0, 1− s). Then

(−1)s+δus = (−1)
δ
[(−1)sus] in D′(C)

or equivalently

((−1)s+δus, ϕ)= ((−1)
δ
[(−1)sus], ϕ) for all ϕ ∈ C∞c (C).

Proof. Since |us(x)| ≤ |x |γs , with γs ∈ (0, 2s), it is easy to see that us ∈ L1
s ∩C2(C). Moreover, as we

have already remarked, if us ∈ L1
s then us ∈ L1

s+δ for every δ > 0. In particular, (−1)s+δus does exist
and it is a continuous function of x ∈ C for every δ ∈ (0, 1− s). By the definition of the distributional
fractional Laplacian, we obtain

((−1)s+δus, ϕ)= (us, (−1)
s+δϕ),

and since for ϕ ∈ C∞c (C)⊂ S(Rn) in the Schwarz space, the classic semigroup property holds, we obtain

((−1)s+δus, ϕ)= (us, (−1)
s
[(−1)δϕ]).

On the other hand, since by Lemma 3.3 we have (−1)sus ∈ L1
δ , it follows that

((−1)δε[(−1)
sus], ϕ)= ((−1)

sus, (−1)
δ
εϕ) (3-3)

for every ε > 0. Since (−1)sus ∈ L1
δ and ϕ ∈ C∞c (R

n), the δ-Laplacian of (−1)sus does exists in
a distributional sense and hence the left-hand side in (3-3) does converge to ((−1)δ[(−1)sus], ϕ) as
ε→ 0. Moreover the right-hand side in (3-3) does converge to ((−1)sus, (−1)

δϕ) by the dominated
convergence theorem, using Proposition 2.2 and Lemma 3.3, which give∫

Rn
(−1)sus(x)(−1)δεϕ(x) dx ≤

∫
Rn

|(−1)sus(x)|
(1+ |x |)n+2δ dx <∞.

By the previous remarks,

((−1)δ[(−1)sus], ϕ)= ((−1)
sus, (−1)

δϕ).

In order to conclude the proof of the distributional semigroup property, we need to show that

(us, (−1)
s
[(−1)δϕ])= ((−1)sus, (−1)

δϕ), (3-4)

which is not a trivial equality, since (−1)δϕ ∈ C∞(Rn) is no more compactly supported.
Let η∈C∞c (B2(0)) be a radial cut-off function such that η≡1 in B1(0) and 0≤η≤1 in B2(0), and define

ηR(x)= η(x/R) for R > 0. Obviously, since usηR ∈ Cc(R
n) and (−1)δϕ ∈ L1

s , by Lemma 3.2 we have

(usηR, (−1)
s
ε[(−1)

δϕ])= ((−1)sε(usηR), (−1)
δϕ) (3-5)

for every ε, R > 0. First, for R > 0 fixed, we want to pass to the limit for ε→ 0. For the left-hand side in
(3-5), we get the convergence to (usηR, (−1)

s
[(−1)δϕ]) since we can apply the dominated convergence

theorem. In fact ∫
Rn

usηR(−1)
s
ε[(−1)

δϕ] ≤ c
∫

K
(−1)s+δϕ <∞,
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where K denotes the support of usηR . For the right-hand side in (3-5) we observe that, for any x ∈ Rn,

(−1)sε(usηR)(x)= ηR(x)(−1)sεus(x)+ us(x)(−1)sεηR(x)− Iε(us, ηR)(x),

where

Iε(us, ηR)(x)= C(n, s)
∫

Rn\Bε(x)

(us(x)− us(y))(ηR(x)− ηR(y))
|x − y|n+2s dy.

Obviously the first term ((−1)sεus, ηR(−1)
δϕ) converges to ((−1)sus, ηR(−1)

δϕ) by the defini-
tion of the distributional s-Laplacian, since us ∈ L1

s and ηR(−1)
δϕ ∈ C∞c (R

n). The second term
(us(−1)

s
εηR, (−1)

δϕ) converges to (us(−1)
sηR, (−1)

δϕ) by dominated convergence, since∫
Rn

us(−1)
s
εηR(−1)

δϕ dx ≤ c
∫

Rn

us(x)
(1+ |x |)n+2s dx .

Finally, the last term (Iε(us, ηR), (−1)
δϕ) converges to (I (us, ηR), (−1)

δϕ) by dominated convergence,
since ∫

Rn
Iε(us, ηR)(−1)

δϕ dx ≤ C
∫

Rn
|(−1)δϕ| dx,

which is integrable by Proposition 2.2. Finally, passing to the limit for ε→ 0, from (3-5) we get

(usηR, (−1)
s
[(−1)δϕ])= ((−1)s(usηR), (−1)

δϕ) (3-6)

for every R > 0.
Now we want to prove (3-4), concluding this proof, by passing to the limit in (3-6) for R→∞. Since

we know, by dominated convergence, that the left-hand side of (3-6) converges to (us, (−1)
s(−1)δϕ) for

R→∞, we focus our attention on the other side. At this point, we need to prove that for any ϕ ∈C∞c (C),∫
Rn
(−1)s(usηR)(−1)

δϕ→

∫
Rn
(−1)sus(−1)

δϕ (3-7)

as R→∞. First of all, we remark that (−1)s(usηR)→ (−1)sus in L1
loc(R

n). In fact, let K ⊂ Rn be
a compact set. There exists r̄ > 0 such that K ⊂ Br̄ . Then, considering any radius R > r̄ , we have
ηR(x)= 1 for any x ∈ K. Hence, for any R > r̄ , using the fact that us(x)= |x |γs us(x/|x |), we obtain∫

K
|(−1)s(usηR)(x)− (−1)sus(x)| dx

=

∫
K

dx
∣∣∣∣C(n, s) p.v.

∫
Rn

us(x)ηR(x)− us(y)ηR(y)+ us(y)− us(x)
|x − y|n+2s dy

∣∣∣∣
= C(n, s)

∫
K

dx
(

p.v.
∫

C\BR

us(y)[1− ηR(y)]
|x − y|n+2s dy

)
≤ C(n, s)

∫
K

dx
(

p.v.
∫

C\BR

|y|γs

(|y| − r̄)n+2s dy
)

≤ C(n, s)
∫

K
dx
(

p.v.
∫

C\BR

|y|γs

|y|n+2s(1− r̄/R)n+2s dy
)

= C
(

R
R− r̄

)n+2s

lim
ρ→∞

∫ ρ

R

1
r2s−γs+1 dr = C

(
R

R− r̄

)n+2s 1
R2s−γs

→ 0
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as R→∞. Hence we obtain also pointwise convergence almost everywhere. Moreover, we can give the
following expression:

(−1)s(usηR)(x)= ηR(x)(−1)sus(x)+C(n, s) p.v.
∫

Rn
us(y)

ηR(x)− ηR(y)
|x − y|n+2s dy. (3-8)

We remark that ηR(x)(−1)sus(x)→ (−1)sus(x) and∫
Rn

us(y)
ηR(x)− ηR(y)
|x − y|n+2s dy→ 0

pointwisely. Moreover, we can dominate the first term in the following way:

ηR(x)(−1)sus(x)≤ (−1)sus(x),

and ∫
Rn
(−1)sus(x)(−1)δϕ(x) dx <∞

since (−1)sus ∈ L1
δ and using Proposition 2.2 over ϕ ∈ C∞c (C). In order to prove (3-7), we want to

apply the dominated convergence theorem, and hence we need the following condition for any R > 0:

I :=
∣∣∣∣∫

Rn
(−1)δϕ(x)

(
p.v.

∫
Rn

us(y)
ηR(x)− ηR(y)
|x − y|n+2s dy

)
dx
∣∣∣∣≤ c.

Therefore, we will obtain a stronger condition, that is, the existence of a value k> 0 such that for any R> 1

I ≤
c

Rk .

We split the region of integration Rn
×Rn into five different parts

�1 := (R
n
\ B2R)×Rn, �2 := B2R × B2R, �3 := (B2R \ BR)× (B3R \ B2R),

�4 := (B2R \ BR)× (R
n
\ B3R), �5 := BR × (R

n
\ B2R).

First of all, we remark that
(−1)sηR(x)= R−2s(−1)sη(x/R)

and also that ‖(−1)sη‖L∞(Rn) < ∞. For the first term, using the fact that ηR(x) − ηR(y) = 0 if
(x, y) ∈ (Rn

\ B2R)× (R
n
\ B2R),

I1 :=

∫
Rn\B2R

|(−1)δϕ(x)|
∣∣∣∣∫

Rn
us(y)

ηR(x)− ηR(y)
|x − y|n+2s dy

∣∣∣∣ dx

≤

∫
Rn\B2R

|(−1)δϕ(x)|
∣∣∣∣∫

B2R

us(y)
ηR(x)− ηR(y)
|x − y|n+2s

∣∣∣∣ dx

≤

∫
Rn\B2R

|(−1)δϕ(x)|(sup
B2R

us)|(−1)
sηR(x)| dx

≤
c

R2s−γs

∫
Rn

1
(1+ |x |)n+2δ dx ≤

c
R2s−γs

.
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For the second term, using the fact that ηR(x)−ηR(y)≥ 0 if (x, y)∈ B2R×(R
n
\B2R), we obtain as before

I2 :=

∫
B2R

|(−1)δϕ(x)|
∣∣∣∣∫

B2R

us(y)
ηR(x)− ηR(y)
|x − y|n+2s dy

∣∣∣∣ dx

≤

∫
B2R

|(−1)δϕ(x)|(sup
B2R

us)|(−1)
sηR(x)| dx

≤
c

R2s−γs

∫
Rn

1
(1+ |x |)n+2δ dx ≤

c
R2s−γs

.

For the third part

I3 :=

∫
B2R\BR

|(−1)δϕ(x)|
∣∣∣∣∫

B3R\B2R

us(y)
ηR(x)− ηR(y)
|x − y|n+2s dy

∣∣∣∣ dx,

we consider the change of variables

ξ =
x
R
∈ B2 \ B1, ζ =

y
R
∈ B3 \ B2.

Hence, using the γs-homogeneity of us and the definition of our cut-off functions, we obtain

I3 ≤
R2n

Rn+2s−γs

∫∫
(B2\B1)×(B3\B2)

|(−1)δϕ(Rξ)|us(ζ )
η(ξ)− η(ζ )

|ξ − ζ |n+2s dξ dζ.

We use the fact that us ∈ C0,s(B3 \ B1), (see (2-2) proved in [Michalik 2006]) and the cut-off function
η ∈ Lip(B3 \ B1); that is, there exists a constant c > 0 such that

|us(ξ)− us(ζ )| ≤ c|ξ − ζ |s,

|η(ξ)− η(ζ )| ≤ c|ξ − ζ |
(3-9)

for every ξ, ζ ∈ B3 \ B1. Hence,

I3 ≤
R2n

Rn+2s−γs

∫∫
(B2\B1)×(B3\B2)

|(−1)δϕ(Rξ)|
|us(ζ )− us(ξ)||η(ξ)− η(ζ )|

|ξ − ζ |n+2s dξ dζ

+
R2n

Rn+2s−γs

∫∫
(B2\B1)×(B3\B2)

|(−1)δϕ(Rξ)|us(ξ)
|η(ξ)− η(ζ )|

|ξ − ζ |n+2s dξ dζ

= J1+ J2.

By (3-9), we obtain

J1 ≤ c
R2n

Rn+2s−γs

∫∫
(B2\B1)×(B3\B2)

|(−1)δϕ(Rξ)|
|ξ − ζ |s+1

|ξ − ζ |n+2s dξ dζ

≤ c
R2n

Rn+2s−γs

∫∫
(B2\B1)×(B3\B2)

1
(1+ R|ξ |)n+2δ

1
|ξ − ζ |n+s−1 dξ dζ

≤
c

R2s+2δ−γs

∫∫
(B2\B1)×(B3\B2)

1
|ξ − ζ |n+s−1 dξ dζ ≤

c
R2s+2δ−γs

.
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Moreover, using the additional changes of variable

(ξ, ζ ) 7→ (ξ, ξ + h), (ξ, ζ ) 7→ (ξ, ξ − h),

we obtain

J2 ≤
R2n

Rn+2s−γs

∫∫
(B2\B1)×(B3\B2)

|(−1)δϕ(Rξ)| us(ξ)
η(ξ)− η(ζ )

|ξ − ζ |n+2s dξ dζ

≤
R2n

Rn+2s−γs

∫∫
(B2\B1)×(B3\B2)

1
(1+ R|ξ |)n+2δ us(ξ)

η(ξ)− η(ζ )

|ξ − ζ |n+2s dξ dζ

≤
c

R2s+2δ−γs

∫∫
(B2\B1)×(B3\B2)

η(ξ)− η(ζ )

|ξ − ζ |n+2s dξ dζ

≤
c

R2s+2δ−γs

∫∫
(B2\B1)×B2

2η(ξ)− η(ξ + h)− η(ξ − h)
|h|n+2s dξ dh

≤
c

R2s+2δ−γs

(
c+

∫∫
(B2\B1)×Bε

〈∇
2η(ξ)h, h〉
|h|n+2s dξ dh

)
≤

c
R2s+2δ−γs

(
c+

∫∫
(B2\B1)×Bε

1
|h|n+2s−2 dξ dh

)
≤

c
R2s+2δ−γs

.

For the fourth part

I4 :=

∫
B2R\BR

|(−1)δϕ(x)|
∣∣∣∣∫

Rn\B3R

us(y)
ηR(x)− ηR(y)
|x − y|n+2s dy

∣∣∣∣ dx,

we consider, as before, the change of variables

ξ =
x
R
∈ B2 \ B1, ζ =

y
R
∈ Rn
\ B3.

Hence,

I4 ≤ c
R2n

Rn+2s−γs

∫∫
(B2\B1)×(Rn\B3)

|(−1)δϕ(Rξ)|
|ζ |γs

|ζ − ξ |n+2s dξ dζ

≤ c
R2n

Rn+2s−γs

∫∫
(B2\B1)×(Rn\B3)

1
(1+ R|ξ |)n+2δ

|ζ |γs∣∣ζ − 2ζ/|ζ |
∣∣n+2s dξ dζ

≤
c

R2s+2δ−γs

∫∫
(B2\B1)×(Rn\B3)

|ζ |γs

|ζ |n+2s(1− 2/|ζ |)n+2s dξ dζ

≤
c

R2s+2δ−γs

∫∫
(B2\B1)×(Rn\B3)

1
|ζ |n+2s−γs

dξ dζ ≤
c

R2s+2δ−γs
.

Finally we consider the last term

I5 :=

∫
BR

|(−1)δϕ(x)|
∣∣∣∣∫

Rn\B2R

us(y)
ηR(x)− ηR(y)
|x − y|n+2s dy

∣∣∣∣ dx .
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Hence we obtain

I5 ≤ c
∫

BR

|(−1)δϕ(x)|
(∫

Rn\B2R

|y|γs

|y− x |n+2s dy
)

dx

≤ c
∫

BR

|(−1)δϕ(x)|
(∫

Rn\B2R

|y|γs∣∣y− Ry/|y|
∣∣n+2s dy

)
dx

≤ c
∫

BR

|(−1)δϕ(x)|
(∫

Rn\B2R

|y|γs

|y|n+2s(1− R/|y|)n+2s dy
)

dx

≤ c
∫

BR

|(−1)δϕ(x)|
(∫

Rn\B2R

1
|y|n+2s−γs

dy
)

dx

≤ c
(∫

Rn

1
(1+ |x |)n+2δ dx

)(∫
∞

2R

1
r1+2s−γs

dr
)

= c
(∫

Rn

1
(1+ |x |)n+2δ dx

)(
lim
ρ→∞

∫ ρ

2R

1
r1+2s−γs

dr
)
≤

c
R2s−γs

.

Since I ≤
∑5

i=1 Ii , we obtain the desired result. �

At this point, fixing s ∈ (0, 1), by the distributional semigroup property we can compute easily the
high-order fractional Laplacian (−1)s+δ viewing it as the δ-Laplacian of the s-Laplacian.

Corollary 3.5. Let C be a regular cone. For every δ ∈ (0, 1− s), the solution us of (1-1) is (s + δ)-
superharmonic in C in the sense of distribution; i.e.,

((−1)s+δus, ϕ)≥ 0

for every test function ϕ ∈ C∞c (C) nonnegative in C.
Moreover, us is also superharmonic in C in the sense of distribution; i.e.,

(−1us, ϕ)≥ 0

for every test function ϕ ∈ C∞c (C) nonnegative in C.

Proof. As said before, the facts that us ∈ L1
s+δ and us ∈ C2(A) for every A b C ensure the existence

of the (−1)s+δus and the continuity of the map x 7→ (−1)s+δus(x) for every x ∈ A b C . Hence at
this point, the only part we need to prove is the positivity of the (s + δ)-Laplacian in the sense of the
distribution, which is a direct consequence of the previous result. Indeed, since us is a solution of the
problem (1-1), by Proposition 3.4 we know that for every ϕ ∈ C∞c (C) we have

((−1)s+δus, ϕ)= ((−1)
δ
[(−1)sus], ϕ)

=

∫
C
ϕ(x) p.v.

∫
Rn

(−1)sus(x)− (−1)sus(y)
|x − y|n+2δ dy dx,

where (−1)δ[(−1)sus] is well-defined since (−1)sus ≡ 0∈C2(A) for every AbC and, by Lemma 3.3,
(−1)sus ∈ L1

δ for every δ ∈ (0, 1− s).
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Consider now the nonnegative test function ϕ ≥ 0 in C . Since (−1)sus(x)= 0 for every x ∈ C , we
have for every x ∈ Rn

\C

(−1)sus(x)=−
∫

C

us(y)
|x − y|n+2s dy ≤ 0.

Similarly,

((−1)δ[(−1)sus], ϕ)=

∫
C
ϕ(x)

∫
Rn

−(−1)sus(y)
|x − y|n+2δ dy dx ≥ 0,

since the support of ϕ is compact in the cone C , and so there exists ε > 0 such that |x − y| > ε in the
above integral. We have obtained that for any δ ∈ (0, 1− s) and any nonnegative ϕ ∈ C∞c (C)

((−1)s+δus, ϕ)≥ 0.

Then, passing to the limit for δ→ 1− s, the function us is superharmonic in the distributional sense

0≤ lim
δ→1−s

((−1)s+δus, ϕ)= lim
δ→1−s

(us, (−1)
s+δϕ)= (us,−1ϕ)= (−1us, ϕ). �

Monotonicity of s 7→ γs(C). The following proposition is a consequence of Corollary 3.5 and it follows
essentially the proof of Lemma 2 in [Bogdan et al. 2015].

Proposition 3.6. For any fixed regular cone C with vertex in 0, the map s 7→ γs(C) is monotone nonde-
creasing in (0, 1).

Proof. Fixing the cone C , let us denote by γs and γs+δ respectively the homogeneities of us and us+δ . Let
us suppose by way of contradiction that γs > γs+δ for a δ ∈ (0, 1− s), and let us consider the function

h(x)= us+δ(x)− us(x) in Rn,

where us is the homogeneous solution of (1-1) and us+δ is the unique, up to multiplicative constants,
nonnegative nontrivial homogeneous and continuous-in-Rn solution for{

(−1)s+δu = 0 in C,
u = 0 in Rn

\C
of the form

us+δ(x)= |x |γs+δus+δ

(
x
|x |

)
.

The function h is continuous in Rn and h(x)= 0 in Rn
\C . We want to prove that h(x)≤ 0 in Rn

\(C∩B1).
Since h=0 outside the cone, we can consider only what happens in C\B1. As we already quoted, we have

c1(s)|x |γs−s dist(x, ∂C)s ≤ us(x)≤ c2(s)|x |γs−s dist(x, ∂C)s (3-10)

for any x ∈ C \ {0}, and there exist two constants c1(s+ δ), c2(s+ δ) > 0 such that

c1(s+ δ)|x |γs+δ−(s+δ) dist(x, ∂C)s+δ ≤ us+δ(x)≤ c2(s+ δ)|x |γs+δ−(s+δ) dist(x, ∂C)s+δ.
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We can choose us and us+δ so that c := c1(s)= c2(s+ δ) since they are defined up to a multiplicative
constant. Then, for any x ∈ C \ B1, since |x |γs+δ ≤ |x |γs , we have

h(x)≤ c|x |γs dist(x, ∂C)s
[

dist(x, ∂C)δ

|x |δ
− 1

]
≤ 0. (3-11)

In fact, if we take x such that dist(x, ∂C)≤ 1, then (3-11) follows by

dist(x, ∂C)δ

|x |δ
− 1≤ dist(x, ∂C)δ − 1≤ 0.

Instead, if we consider x so that dist(x, ∂C) > 1, then dist(x, ∂C)δ < |x |δ and hence (3-11) follows.
Now we want to show that there exists a point x0 ∈ C ∩ B1 such that h(x0) > 0. Let us take a point

x̄ ∈ Sn−1
∩C and let α := us+δ(x̄) > 0 and β := us(x̄) > 0. Hence, there exists a small r > 0 so that

αrγs+δ > βrγs , and so, taking x0 with |x0| = r and so that x0/|x0| = x̄ , we obtain h(x0) > 0.
If we consider the restriction of h to C ∩ B1, which is continuous on a compact set, by the previous

arguments and the Weierstrass theorem, there exists a maximum point x1 ∈ C ∩ B1 for the function h
which is global in Rn and is strict at least in a set of positive measure. Hence,

(−1)s+δh(x1)= C(n, s) p.v.
∫

Rn

h(x1)− h(y)
|x1− y|n+2(s+δ) dy > 0,

and since (−1)s+δh is a continuous function in the open cone, there exists an open set U (x1) with
U (x1)⊂ C such that

(−1)s+δh(x) > 0 for all x ∈U (x1).

But thanks to Corollary 3.5 we obtain a contradiction since for any nonnegative ϕ ∈ C∞c (U (x1))

((−1)s+δh, ϕ)= ((−1)s+δus+δ, ϕ)− ((−1)
s+δus, ϕ)=−((−1)

s+δus, ϕ)≤ 0. �

With the same arguments as the previous proof we can show also the following useful upper bound.

Proposition 3.7. For any fixed regular cone C with vertex in 0 and any s ∈ (0, 1), we have γs(C)≤ γ (C).

Proof. Seeking a contradiction, we suppose that there exists s ∈ (0, 1) such that γs > γ . Hence we define
the function

h(x)= u(x)− us(x) in Rn,

where us and u are respectively solutions to (1-1) and{
−1u = 0 in C,

u = 0 in Rn
\C.

(3-12)

We recall that these solutions are unique, up to multiplicative constants, nonnegative, nontrivial, homo-
geneous and continuous in Rn and of the form

u(x)= |x |γ u
(

x
|x |

)
, us(x)= |x |γs us

(
x
|x |

)
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for some γs ∈ (0, 2s) and γ ∈ (0,∞). The function h is continuous in Rn and h(x)= 0 in Rn
\C . We

want to prove that h(x)≤ 0 in Rn
\ (C ∩ B1). Since h = 0 outside the cone, we can consider only what

happens in C \ B1. So, there exist two constants c1(s), c2(s) > 0 such that, for any x ∈ C \ {0}, (3-10)
holds. Moreover there exist two constants c1, c2 > 0 such that

c1|x |γ−1 dist(x, ∂C)≤ u(x)≤ c2|x |γ−1 dist(x, ∂C).

We can choose us and u so that c := c1(s) = c2 since they are defined up to a multiplicative constant.
Then, for any x ∈ C \ B1, since |x |γ ≤ |x |γs , we have

h(x)≤ c|x |γs dist(x, ∂C)s
[

dist(x, ∂C)1−s

|x |1−s − 1
]
≤ 0

by the same arguments as the previous proof.
Now we want to show that there exists a point x0 ∈ C ∩ B1 such that h(x0) > 0. Let us take a point

x̄ ∈ Sn−1
∩C and let α := u(x̄) > 0 and β := us(x̄) > 0. Hence, there exists a small r > 0 such that

αrγ > βrγs , and so, taking x0 with |x0| = r and so that x0/|x0| = x̄ , we obtain h(x0) > 0.
If we consider the restriction of h to C ∩ B1, which is continuous on a compact set, by the previous

arguments and the Weierstrass theorem, there exists at least a maximum point in C ∩ B1 for the function h
which is global in Rn. Moreover, since h cannot be constant on C∩B1 and it is of class C2 inside the cone,
there exists a global maximum y ∈ C ∩ B1 such that, up to a rotation, ∂2

xi xi
h(y)≤ 0 for any i = 1, . . . , n

and ∂2
x j x j

h(y) < 0 for at least a coordinate direction. Hence

1h(y)=
n∑

i=1

∂2
xi xi

h(y) < 0.

By the continuity of 1h in the open cone, there exists an open set U (y) with U (y)⊂ C such that

1h(x) < 0 for all x ∈U (y).

Since, by Corollary 3.5 for any nonnegative ϕ ∈ C∞c (U (y))

(−1us, ϕ)≥ 0,

we have
(1h, ϕ)= (1u, ϕ)− (1us, ϕ)= (−1us, ϕ)≥ 0,

and this is a contradiction. �

Asymptotic behavior of C(n, s)/(2s− γs(C)). Let us define for any regular cone C the limit

µ(C)= lim
s→1−

C(n, s)
2s− γs(C)

∈ [0,∞].

Obviously, thanks to the monotonicity of s 7→ γs(C) in (0, 1), this limit does exist, but we want to show
that µ(C) cannot be infinite. At this point, this situation can happen since 2s− γs(C) can converge to
zero and we do not have enough information about this convergence. The study of this limit depends
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on the cone C itself and so we will consider separately the cases of wide cones and narrow cones, which
are respectively when γ (C) < 2 and when γ (C)≥ 2. In this section, we prove this result just for regular
cones, while in Section 4 we will extend the existence of a finite limit µ(C) to any unbounded cone,
without the monotonicity result of Proposition 3.6.

Wide cones: γ (C) < 2. We remark that, fixing a wide cone C ⊂ Rn , there exist ε > 0 and s0 ∈ (0, 1),
both depending on C , such that for any s ∈ [s0, 1)

2s− γs(C)≥ ε > 0.

In fact we know that s 7→ γs(C) is monotone nondecreasing in (0, 1) and 0< γs(C)≤ γ (C) < 2. Hence,
defining γ̄ (C)= lims→1 γs(C) ∈ (0, 2) we can choose

s0 :=
1
4(γ̄ (C)− 2)+ 1 ∈

( 1
2 , 1

)
and ε := 1

2(2− γ̄ (C)) > 0,

obtaining
2s− γs(C)≥ 2s0− γ̄ (C)= ε > 0.

As a consequence we have µ(C)= 0 for any wide cone.

Narrow cones: γ (C)≥ 2. Before addressing the asymptotic analysis for any regular cone, we focus our
attention on the spherical-caps ones with “small” aperture. Hence, let us fix θ0 ∈ (0, π/4) and for any
θ ∈ (0, θ0], let

λ1(θ) := λ1(ωθ )= min
u∈H1

0 (S
n−1
∩Cθ )

u 6=0

∫
Sn−1 |∇Sn−1u|2 dσ∫

Sn−1 u2 dσ
.

We have that λ1(θ) > 2n, and hence the following problem is well defined:

µ0(θ) := min
u∈H1

0 (S
n−1
∩Cθ )

u 6=0

∫
Sn−1 |∇Sn−1u|2− 2nu2 dσ(∫

Sn−1 |u| dσ
)2 . (3-13)

This number µ0(θ) is strictly positive and achieved by a nonnegative ϕ ∈ H 1
0 (S

n−1
∩Cθ ) \ {0} which is

strictly positive on Sn−1
∩Cθ and is obviously a solution to{
−1Sn−1ϕ = 2nϕ+µ0(θ)

∫
Sn−1 ϕ dσ in Sn−1

∩Cθ ,
ϕ = 0 in Sn−1

\Cθ ,
(3-14)

where −1Sn−1 is the Laplace–Beltrami operator on the unitary sphere Sn−1.
Let now v be the 0-homogeneous extension of ϕ to the whole of Rn and r(x) := |x |. Such a function

will be a solution to {
−1v = 2nv/r2

+µ0(θ)/r2
∫

Sn−1 v dσ in Cθ ,
v = 0 in Rn

\Cθ .
(3-15)

Since the spherical cap Cθ ∩ Sn−1 is an analytic submanifold of Sn−1 and the data (∂Cθ ∩ Sn−1, 0, ∂νϕ)
are not characteristic, by the classic theorem of Cauchy and Kovalevskaya we can extend the solution ϕ
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of (3-14) to a function ϕ̃, which is defined in an enlarged cone and satisfies{
−1Sn−1 ϕ̃ = 2nϕ̃+µ0(θ)

∫
Sn−1 ϕ dσ in Sn−1

∩Cθ+ε,
ϕ̃ = ϕ in Sn−1

∩Cθ

for some ε > 0. As in (3-15), we can define ṽ as the 0-homogeneous extension of ϕ̃. Finally, we introduce
the function

vs(x) := r(x)γ
∗
s (θ)v(x),

where the choice of the homogeneity exponent γ ∗s (θ) ∈ (0, 2s) is suggested by the following important
result.

Theorem 3.8. Let θ ∈ (0, θ0]. Then there exists s0 = s0(θ) ∈ (0, 1) such that

(−1)svs(x)≤ 0 in Cθ

for any s ∈ [s0, 1).

Proof. By the γ ∗s (θ)-homogeneity of vs , it is sufficient to prove that

(−1)svs ≤ 0 on Cθ ∩ Sn−1,

since x 7→ (−1)svs is (γ ∗s (θ)− 2s)-homogeneous. In order to ease the notation, through the following
computations we will simply use γ instead of γ ∗s (θ) and o(1) for the terms which converge to zero as
s goes to 1. Hence, for x ∈ Sn−1

∩Cθ , we have

(−1)svs(x)= |x |γ (−1)sv(x)+ v(x)(−1)srγ (x)−C(n, s)
∫

Rn

(rγ (x)− rγ (y))(v(x)− v(y))
|x − y|n+2s dy.

First for R > 0,

(−1)srγ (x)= C(n, s)
∫

BR(x)

|x |γ − |y|γ

|x − y|n+2s dy+C(n, s)
∫

Rn\BR(x)

|x |γ − |y|γ

|x − y|n+2s dy

=
C(n, s)

2

∫
BR(0)

2|x |γ − |x + z|γ − |x − z|γ

|z|n+2s dz+C(n, s)
∫

Rn\BR(x)

1− |y|γ

|x − y|n+2s dy

=−
C(n, s)

2

∫ R

0

ρ2ρn−1

ρn+2s dρ
∫

Sn−1
〈∇

2
|x |γ z, z〉 dσ + o(1)

+C(n, s)|Sn−1
|

∫
∞

R

1
ρ1+2s dρ−C(n, s)

∫
Rn\BR(x)

|y|γ

|x − y|n+2s dy

=−
C(n, s)

2
R2−2s

2− 2s

∫
Sn−1
〈∇

2
|x |γ z, z〉 dσ

−C(n, s)
∫
∞

R

ρn−1+γ

ρn+2s

∫
Sn−1

∣∣∣∣ xρ −ϑ
∣∣∣∣γ dσ(ϑ) dρ+ o(1).

Since for every symmetric matrix A we have∫
Sn−1
〈Az, z〉 dσ =

tr A
n
ωn−1,
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where ωn−1 is the Lebesgue measure of the (n− 1)-sphere Sn−1, we can simplify the first term since
tr∇2
|x |γ =1(|x |γ ) and checking that∣∣∣∣ xρ −ϑ

∣∣∣∣γ = 1+ γρ−1
〈ϑ, x〉+ o(ρ−1)

as ρ→∞ it follows that

(−1)srγ (x)=−
C(n, s)

2
R2−2s

2− 2s
1(|x |γ )ωn−1

n
−C(n, s)ωn−1

∫
∞

R

ρn−1+γ

ρn+2s dρ+ o(1)

=−
C(n, s)ωn−1

4n(1− s)
γ (n− 2+ γ )|x |γ−2 R2−2s

−
C(n, s)
2s− γ

ωn−1 Rγ−2s
+ o(1)

=−
C(n, s)ωn−1

4n(1− s)
γ (n− 2+ γ )R2−2s

−
C(n, s)
2s− γ

ωn−1 Rγ−2s
+ o(1)

=−
C(n, s)ωn−1

4n(1− s)
γ (n− 2+ γ )−

C(n, s)
2s− γ

ωn−1+ o(1),

where in the last equality we choose γ = γ ∗s (θ) such that γ ∗s (θ)− 2s→ 0 as s goes to 1.
Similarly, if ṽ is the 0-homogeneous extension of v in an enlarged cone, which is such that v ≥ ṽ and

v = ṽ on Cθ ∩ Sn−1, it follows that

(−1)sv(x)=
C(n, s)

2

∫
|z|<1

2v(x)−v(x+z)−v(x−z)
|z|n+2s dz+C(n, s)

∫
|x−y|>1

v(x)−v(y)
|x−y|n+2s dy

≤
C(n, s)

2

∫
|z|<1

2ṽ(x)−ṽ(x+z)−ṽ(x−z)
|z|n+2s dz+C(n, s)

∫
∞

1

ρn−1

ρn+2s

∫
Sn−1

v(x)−v(y) dσ dρ

=−
C(n, s)

2

∫ 1

0

ρn−1ρ2

ρn+2s

∫
Sn−1
〈∇

2ṽ(x)z, z〉 dσ dρ+o(1)

=
C(n, s)ωn−1

4n(1−s)
(−1)ṽ(x)+o(1),

where we can use that ṽ solves
−1ṽ = 2nṽ+µ0

∫
Sn−1

v dσ

in the enlarged cap Sn−1
∩Cθ+ε. Finally,

C(n, s)
∫

Rn

(|x |γ − |y|γ )(v(x)− v(y))
|x − y|n+2s dy

= C(n, s)
[∫
|y|<1

(1− |y|γ )(v(x)− v(y))
|x − y|n+2s dy+

∫
|y|>1

(1− |y|γ )(v(x)− v(y))
|x − y|n+2s dy

]
,

where the first term is o(1) since∫ 1

0
(1−ργ )ρn−1

∫
Sn−1

v(x)−v(y)
|x−ρy|n+2s dσ dρ=

∫ 1

0
(1−ργ )ρn−1

∫
Sn−1

(v(x)−v(y))(1+o(ρ)) dσ dρ

+

∫ R

0
(1−ργ )ρn−1

∫
Sn−1

(v(x)−v(y))(n+2s)ρ〈x, y〉 dσ dρ.
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Hence, we obtain

C(n, s)
∫

Rn

(|x |γ − |y|γ )(v(x)− v(y))
|x − y|n+2s dy

= C(n, s)
∫
|y|>1

(1− |y|γ )(v(x)− v(y))
|x − y|n+2s dy+ o(1)

= o(1)−C(n, s)
∫
|y|>1

|y|γ (v(x)− v(y))
|x − y|n+2s dy+ o(1)

= o(1)−C(n, s)
∫
∞

1
ργρn−1

∫
Sn−1

v(x)− v(y)
|x − ρy|n+2s dσ dρ

= o(1)−C(n, s)
∫
∞

1
ρ−1+γ−2s

∫
Sn−1

(v(x)− v(y))(1+ o(ρ−1)) dσ dρ

−C(n, s)
∫
∞

1
ρ−1+γ−2s

∫
Sn−1

(v(x)− v(y))(n+ 2s)〈y, x〉ρ−1 dσ dρ

= o(1)−
C(n, s)ωn−1

2s− γ
v(x)+

C(n, s)
2s− γ

∫
Sn−1

v(y) dσ .

Hence, recalling that γ = γ ∗s (θ), for x ∈ Sn−1
∩Cθ we have

(−1)svs(x)≤
(
µ0(θ)

C(n, s)ωn−1

4n(1−s)
−

C(n, s)
2s−γ ∗s (θ)

)∫
Sn−1

vs dσ+
C(n, s)ωn−1

4n(1−s)
(n+γ ∗s (θ))(2−γ

∗

s (θ))vs

≤

(
µ0(θ)−

C(n, s)
2s−γ ∗s (θ)

)∫
Sn−1

vs dσ+o(1),

where o(1) is uniform with respect to γ ∗s (θ) as s→ 1. In order to obtain a negative right-hand side, it
is sufficient to choose γ ∗s (θ) < 2s in such a way to make the denominator 2s− γ ∗s (θ) small enough and
the quotient C(n, s)/(2s− γ ∗s (θ)) still bounded. �

The previous result suggests the following choice of the homogeneity exponent:

γ ∗s (θ) := 2s− s
C(n, s)
µ0(θ)

.

We can finally prove the main result of this section.

Corollary 3.9. For any regular cone C , we have µ(C) <∞.

Proof. We will show that µ(θ) <∞ for any θ ∈ (0, θ0]. Then, fixing an unbounded regular cone C , there
exists a spherical cone Cθ such that θ ∈ (0, θ0] and Cθ ⊂ C . Since by inclusion γs(C) < γs(θ), we obtain

µ(C)≤ µ(θ) <∞.

We want to show that fixing θ ∈ (0, θ0], we have γs(θ)≤ γ
∗
s (θ) for any s ∈ [s0(θ), 1), where the choice

of s0(θ) ∈ (0, 1) is given in Theorem 3.8. The proof of this fact is based on considerations done in
Proposition 3.6. By way of contradiction, suppose γs(θ) > γ

∗
s (θ). Let

h(x)= vs(x)− us(x).
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The function h is continuous in Rn and h(x) = 0 in Rn
\ Cθ . We want to prove that h(x) ≤ 0 in

Rn
\ (Cθ ∩ B1). Since h = 0 outside the cone, we can consider only what happens in Cθ \ B1. By (3-10),

there exist two constants c1(s), c2(s) > 0 such that, for any x ∈ Cθ \ {0},

c1(s)|x |γs−s dist(x, ∂Cθ )s ≤ us(x)≤ c2(s)|x |γs−s dist(x, ∂Cθ )s,

and there exist two constants c1, c2 > 0 such that

c1|x |γ
∗
s −1 dist(x, ∂Cθ )≤ vs(x)≤ c2|x |γ

∗
s −1 dist(x, ∂Cθ ).

We can choose vs so that c := c1(s)= c2 since it is defined up to a multiplicative constant. Then, for any
x ∈ Cθ \ B1, since |x |γ

∗
s ≤ |x |γs , we have

h(x)≤ c|x |γs dist(x, ∂Cθ )s
[

dist(x, ∂Cθ )1−s

|x |1−s − 1
]
≤ 0.

Now we want to show that there exists a point x0 ∈ Cθ ∩ B1 such that h(x0) > 0. Let us consider
for example the point x̄ ∈ Sn−1

∩ Cθ determined by the angle ϑ = θ/2, and let α := vs(x̄) > 0 and
β := us(x̄) > 0. Hence, there exists a small r > 0 such that αrγ

∗
s > βrγs , and so, taking x0 with angle

ϑ = θ/2 and |x0| = r , we obtain h(x0) > 0.
If we consider the restriction of h to Cθ ∩ B1, which is continuous on a compact set, by the previous

arguments and the Weierstrass theorem, there exists a maximum point x1 ∈ Cθ ∩ B1 for the function h
which is global in Rn and is strict at least in a set of positive measure. Hence,

(−1)sh(x1)= C(n, s) p.v.
∫

Rn

h(x1)− h(y)
|x1− y|n+2s dy > 0,

and since (−1)sh is a continuous function in the open cone, there exists an open set U (x1) with
U (x1)⊂ Cθ such that

(−1)sh(x) > 0 for all x ∈U (x1).

But thanks to Theorem 3.8 we obtain a contradiction since for any nonnegative ϕ ∈ C∞c (U (x1))

((−1)sh, ϕ)= ((−1)svs, ϕ)− ((−1)
sus, ϕ)= ((−1)

svs, ϕ)≤ 0,

where the last inequality holds for any s ∈ [s0(θ), 1). Hence, for any θ ∈ (0, θ0]

µ(θ)= lim
s→1−

C(n, s)
2s− γs(θ)

≤ lim
s→1−

C(n, s)
2s− γ ∗s (θ)

= µ0(θ) <∞. �

4. The limit for s↗ 1

In this section we prove the main result, Theorem 1.3, emphasizing the difference between wide and narrow
cones. Then we improve the asymptotic analysis, proving uniqueness of the limit under assumptions on
the geometry and the regularity of C .
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Let C ⊂ Rn be an open cone and consider the minimization problem

λ1(C)= inf

{∫
Sn−1 |∇Sn−1u|2 dσ∫

Sn−1 u2 dσ
: u ∈ H 1(Sn−1) \ {0} and u = 0 in Sn−1

\C

}
, (4-1)

which is strictly related to the homogeneity of the solution of (3-12) by

λ1(C)= γ (C)(γ (C)+ n− 2).

Moreover, if γ (C) > 2, equivalently if λ1(C) > 2n, the problem

µ0(C) := inf

{∫
Sn−1 |∇Sn−1u|2− 2nu2 dσ(∫

Sn−1 |u| dσ
)2 : u ∈ H 1(Sn−1) \ {0} and u = 0 in Sn−1

\C

}
(4-2)

is well-defined and the number µ0(C) is strictly positive.
By a standard argument due to the variational characterization of the previous quantities, we already

know the existence of a nonnegative eigenfunction ϕ ∈ H 1
0 (S

n−1
∩C)\{0} associated to the minimization

problem (4-1) and a nonnegative function ψ ∈ H 1
0 (S

n−1
∩C)\{0} that achieves the minimum (4-2), since

the numerator in (4-2) is a coercive quadratic form equivalent to the one in (4-1).
Since the cone C may be disconnected, it is well known that ϕ is not necessarily unique. Instead, the

function ψ is unique up to a multiplicative constant, since it solves{
−1Sn−1ψ = 2nψ +µ0(C)

∫
Sn−1 ψ dσ in Sn−1

∩C,
ψ = 0 in Sn−1

\C.
(4-3)

In fact, due to the integral term in the equation, the solution ψ must be strictly positive in every connected
component of C and localizing the equation in a generic component we can easily get uniqueness by
the maximum principle.

The next result highlights the functional space in which the limit of the s-harmonic functions on cones
for s→ 1 will be defined.

Proposition 4.1 [Bourgain et al. 2001, Corollary 7]. Let �⊂ Rn be a bounded domain. For 1< p <∞,
let fs ∈W s,p(�), and assume that

[ fs]W s,p(�) ≤ C0.

Then, up to a subsequence, ( fs) converges in L p(�) as s→ 1(and, in fact, in W t,p(�) for all t < 1) to
some f ∈W 1,p(�).

We use a different notation than that in [Bourgain et al. 2001] since in our paper the normalization
constant C(n, s) is incorporated in the seminorm [ · ]H s in order to obtain a continuity of the norm ‖·‖H s

for s ∈ (0, 1].

Proof. Let C be an open cone and CR be a regular cone with section on Sn−1 of class C1,1 such that
CR ⊂ C and ∂CR ∩ ∂C = {0}.

By monotonicity of the homogeneity degree γs( · ) with respect to the inclusion, we directly obtain
γs(C) < γs(CR) and consequently, up to considering a subsequence, we obtain the existence of the
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finite limits

γ̄ (C)= lim
s→1

γs(C), µ(C)= lim
s→1

C(n, s)
2s− γs(C)

. (4-4)

Since γs(C) < 2s, we know γ̄ (C)≤ 2 and similarly µ(C) ∈ [0,∞).
Let K ⊂ Rn be a compact set and consider x0 ∈ K and R > 0 such that K ⊂ BR(x0). Given

η ∈ C∞c (B2), a radial cut-off function such that η ≡ 1 in B1 and 0≤ η ≤ 1 in B2, consider the rescaled
function ηK (x)= η((x − x0)/R) which satisfies ηK ≡ 1 on K.

By Proposition 2.7, we have

[usηK ]
2
H s(B2R(x0))

≤ [usηK ]
2
H s(Rn) ≤ M(n, K )

[
C(n, s)
2(1− s)

+
C(n, s)
2s− γs

]
,

and similarly

‖usηK‖
2
H s(B2R(x0))

≤ ‖usηK‖
2
L2(Rn)

+ [usηK ]
2
H s(Rn)

≤ M(n, K )
[

C(n, s)
2(1− s)

+
C(n, s)
2s− γs

+ 1
]
≤ M(n, K )

[
2n
ωn−1

+ cµ(C)+ 1
]
.

By applying Proposition 4.1 with � = B2R(x0), we obtain that, up to a subsequence, usηK → ūηK in
L2(B2R(x0)) and

‖ūηK‖
2
H1(B2R(x0))

≤ M(n, K )

up to relabeling the constant M(n, K ).
By construction, since ηK ≡ 1 on K and ηK ∈ [0, 1], we obtain that us→ ū in L2(K ) and similarly

‖ū‖H1(K ) ≤ ‖ūηK‖H1(K ) ≤ ‖ūηK‖H1(B2R(x0)) <∞,

which gives us the local integrability in H 1(Rn).
By Proposition 2.4 and Corollary 3.9 we obtain, up to passing to a subsequence, a bound in C0,α

loc (C)
for (us) that is uniform in s. Then, since we obtain uniform convergence on compact subsets of C , the
limit must be necessary nontrivial with ‖ū‖L∞(Sn−1) = 1, nonnegative and γ̄ (C)-homogeneous.

Let ϕ ∈ C∞c (C) be a positive smooth function compactly supported such that suppϕ ⊂ Bρ for some
ρ > 0. By the definition of the distributional fractional Laplacian

0=
∫

Rn
ϕ(−1)sus dx =

∫
Rn

us(−1)
sϕ dx =

∫
Rn\Bρ

us(−1)
sϕ dx +

∫
Bρ

us(−1)
sϕ dx .

Since
1

|x − y|n+2s =
1

|x |n+2s

(
1− (n+ 2s)

y
|x |

∫ 1

0

x/|x | − t y/|x |∣∣x/|x | − t y/|x |
∣∣n+2s+2 dt

)
,

by the definition of the fractional Laplacian for regular functions, it follows that∫
Rn\Bρ

us(−1)
sϕ dx

= C(n, s)
∫

Rn\Bρ
us(x)

∫
suppϕ

−ϕ(y)
|y− x |n+2s dy dx

= C(n, s)
∫

Rn\Bρ

us(x)
|x |n+2s

∫
suppϕ
−ϕ(y) dy dx +C(n, s)(n+ 2s)

∫
Rn\Bρ

us(x)
|x |n+2s+1ψ(x) dx
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for some ψ ∈ L∞. Moreover, since us is γs(C)-homogeneous with γs(C) < 2s, we have

C(n, s)
∫

Rn\Bρ

us(x)
|x |n+2s dx =

C(n, s)
2s− γs(C)

ργs(C)−2s
∫

Sn−1
us(θ) dσ

and similarly

C(n, s)
∣∣∣∣∫

Rn\Bρ

us(x)
|x |n+2s+1ψ(x) dx

∣∣∣∣≤ C(n, s)‖ψ‖L∞

2s− γs(C)+ 1
ργs(C)−2s−1

∫
Sn−1

us(θ) dσ = o(1).

Hence, for each s ∈ (0, 1)∫
Bρ

us(−1)
sϕ dx =

∫
Rn\Bρ

us(−1)
sϕ dx

= C(n, s)
∫

Rn\Bρ
us(x)

∫
suppϕ

ϕ(y)
|x − y|n+2s dy dx

=
C(n, s)

2s− γs(C)

∫
suppϕ

ϕ(x) dx
∫

Sn−1
us dσ + o(1),

and passing through the limit, up to a subsequence, we obtain∫
Bρ

ū(−1)ϕ dx = µ(C)
∫

Sn−1
ū dσ

∫
suppϕ

ϕ(x) dx =
∫

Bρ

(
µ(C)

∫
Sn−1

ū dσ
)
ϕ(x) dx,

which implies, integrating by parts, that

−1ū = µ(C)
∫

Sn−1
ū dσ in D′(C).

Since the function ū is γ̄ (C)-homogeneous, we get

−1Sn−1 ū = λ̄ū+µ(C)
∫

Sn−1
ū dσ on Sn−1

∩C, (4-5)

where λ̄= γ̄ (C)(γ̄ (C)+ n− 2) is the eigenvalue associated to the critical exponent γ̄ (C)≤ 2.
Consider now a nonnegative ϕ ∈ H 1

0 (S
n−1
∩C) \ {0}, strictly positive on Sn−1

∩C which achieves
(4-1). Then

−1Sn−1ϕ = λ1(C)ϕ in H−1(Sn−1
∩C). (4-6)

By testing this equation with ū and integrating by parts, we obtain

(λ1(C)− λ̄)
∫

Sn−1
ūϕ dσ = µ(C)

∫
Sn−1

ū dσ
∫

Sn−1
ϕ dσ ≥ 0, (4-7)

which implies that in general γ (C)≥ γ̄ (C) and γ (C)= γ̄ (C) if and only if µ(C)= 0.

Wide cones: γ (C)< 2. By the previous remark we have γ̄ (C)< 2 and by the definition of µ(C), it follows
that µ(C)= 0. Since ϕ is the trace on Sn−1 of a homogeneous harmonic function on C , we obtain that
γ̄ (C)= γ (C) and ū is a homogeneous nonnegative harmonic function on C such that ‖ū‖L∞(Sn−1) = 1.
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Narrow cones: γ (C) ≥ 2. If γ̄ (C) < 2 we have µ(C) = 0 and consequently λ1(C) = λ̄, which is a
contradiction since γ (C)≥ 2> γ̄ (C). Hence, if C is a narrow cone we get γ̄ (C)= 2. Since γ (C)= 2
is trivial and it follows directly from the previous computations, consider now µ0(C) as the minimum
defined in (4-2), which is well-defined and strictly positive since we are focusing on the remaining case
γ (C) > 2. We already remarked that it is achieved by a nonnegative ψ ∈ H 1

0 (S
n−1
∩C) \ {0} which is

strictly positive on Sn−1
∩C and a solution of

−1Sn−1ψ = 2nψ +µ0(C)
∫

Sn−1
ψ dσ in H−1(Sn−1

∩C).

As we already did in the previous cases, by testing this equation with ū we obtain µ(C)= µ0(C).
By uniqueness of the limits γ̄ (C) and µ(C), the result in (4-4) holds for s→ 1 and not just up to a

subsequence. �

Remark 4.2. The possible obstruction to the existence of the limit of us as s converges to 1 lies in the pos-
sible lack of uniqueness of nonnegative solutions to (1-9) such that ‖ū‖L∞(Sn−1)= 1. This is the reason why
we need to extract subsequences in the asymptotic analysis of Theorem 1.3. More precisely, uniqueness of
(4-1) implies uniqueness of the limit ū in the case γ (C)≤ 2 and uniqueness of (4-2) in the case γ (C) > 2.
When C is connected (4-1) is attained by a unique normalized nonnegative solution via a standard argument
based upon the maximum principle. On the other hand, as we already remarked, when γ (C) > 2, problem
(4-2) always admits a unique solution. Ultimately, the main obstacle in this analysis is the disconnection
of the cone C when γ (C) ≤ 2: in this case we cannot always ensure the uniqueness of the solution of
the limit problem and even the positivity of the limit function ū on every connected component of C .

The following example shows uniqueness of the limit function ū due to the nonlocal nature of the
fractional Laplacian under a symmetry assumption on the cone C .

Proposition 4.3. Let C = C1 ∪ · · · ∪Cm be a union of disconnected cones such that C1 is connected and
there are orthogonal maps82, . . . , 8m ∈O(n) (e.g., reflections about hyperplanes) such that Ci =8i (C1)

and 8i (C) = (C) for i = 2, . . . ,m. Let (us) be the family of nonnegative solutions to (1-1) such that
‖us‖L∞(Sn−1) = 1. Then there exists the limit of us as s↗ 1 in L2

loc(R
n) and uniformly on compact subsets

of C.

Proof. We remark that, for any element of the orthogonal group 8 : Rn
→ Rn ,

(−1)s(u ◦8)(x)= C(n, s) p.v.
∫

Rn

u(8(x))− u(y)
|8(x)− y|n+2s dy = (−1)su(8(x)).

By the uniqueness result [Bañuelos and Bogdan 2004, Theorem 3.2] of s-harmonic functions on cones,
we infer that us ≡ us ◦8i for every i = 2, . . . ,m. Therefore, we have convergence to ū, which satisfies
‖ū‖L∞(Sn−1) = 1 and is a solution of

−1ū = µ(C)
∫

Sn−1 ū dσ in C,
ū ≥ 0 in C,
ū = 0 in Rn

\C
(4-8)

such that ū ≡ ū ◦8i for every i = 2, . . . ,m. Finally, connectedness of C1 yields uniqueness of such a
solution also for narrow cones. �
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θ

y

0 π/4 π/2 3π/4 π

1s

y = 0(θ)

y = 0s(θ)

y = 0(θ)

Figure 3. Values of the limit 0(θ)= lims→1 0
s(θ) and 0(θ) for n = 2.

Proof of Corollary 1.6. This corollary is an easy application of our main result, Theorem 1.3, since it
is a consequence of Dini’s theorem for a monotone sequence of continuous functions which converges
pointwisely to a continuous function on a compact set. In fact, fixing s ∈ (0, 1), the function θ 7→ γs(θ) is
continuous in [0, π) with γs(0)= 2s and γs(π)= 0. Moreover this function is also monotone decreasing
in [0, π] and since there exists the limit

lim
θ→π−

γs(θ)=

{1
2(2s− 1) if n = 2 and s > 1

2 ,

γs(π)= 0 otherwise,

we can extend θ 7→ γs(θ) to a continuous function in [0, π]; see [Michalik 2006]. Nevertheless, the limit
γ̄ (θ)= lims→1 γs(θ)=min{γ (θ), 2} is continuous on [0, π] with

γ̄ (π)=

{1
2 if n = 2,
0 otherwise.

Eventually, for any fixed θ ∈ [0, π], the function s 7→ γs(θ) is monotone nondecreasing in (0, 1). By
Dini’s theorem the convergence is uniform on [0, π]. This fact obviously implies the uniform convergence

0s(θ)=
γs(θ)+ γs(π − θ)

2
→ 0(θ)=

γ̄ (θ)+ γ̄ (π − θ)

2

in [0, π], and hence (see Figure 3)

νACF
s = min

θ∈[0,π ]
0s(θ)→ min

θ∈[0,π ]
0(θ)= νACF. �

5. Uniform-in-s estimates in C0,α on annuli

We have already remarked in Section 2 that, if you take a cone C = Cω with ω ⊂ Sn−1 a finite union of
connected C1,1 domains ωi such that ω̄i∪ω̄ j =∅ for i 6= j , by [Michalik 2006, Lemma 3.3] we have (2-2).
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Hence solutions us to (1-1) are C0,s(Sn−1) and for any fixed α ∈ (0, 1), any solution us with s ∈ (α, 1)
is C0,α(Sn−1); that is, there exists Ls > 0 such that

sup
x,y∈Sn−1

|us(x)− us(y)|
|x − y|α

= Ls .

Let us consider an annulus A = Ar1,r2 = Br2 \ Br1 with 0< r1 < r2 <∞. We have the following result.

Lemma 5.1. Let α ∈ (0, 1), s0 ∈
(
max

{ 1
2 , α

}
, 1
)

and A be an annulus centered at zero. Then there exists
a constant c > 0 such that any solution us to (1-1) with s ∈ [s0, 1) satisfies

sup
x,y∈A

|us(x)− us(y)|
|x − y|α

≤ cLs .

Proof. First of all we remark that

sup
x,y∈Sn−1

r

|us(x)− us(y)|
|x − y|α

≤ cLs (5-1)

for any r ∈ (r1, r2). In fact, by the γs-homogeneity of our solutions, we have

sup
x,y∈Sn−1

r

|us(x)− us(y)|
|x − y|α

= Lsrγs−α,

and since (2s0− 1)/2 ≤ γs(C) < 2 for any s ∈ [s0, 1) by the inclusion C ⊂ Rn
\ {half-line from 0}, we

obtain (5-1).
Now we can show what happens considering x, y∈ A which are not on the same sphere. We can suppose

without loss of generality that x ∈ Sn−1
R , y ∈ Sn−1

r with r1 < r < R < r2. Hence let us take the point z
obtained by the intersection between Sn−1

r and the half-line connecting 0 and x (z may be y itself). Hence

|us(x)− us(y)| ≤ |us(x)− us(z)| + |us(z)− us(y)|

≤ us

(
x
|x |

)∣∣|x |γs − |z|γs
∣∣+ cLs |z− y|α

≤ cLs |x − y|α.

In fact we remark that ‖us‖L∞(Sn−1)=1. Moreover, since β= x̂ zy ∈ (π/2, π], obviously |z−y|α≤|x−y|α .
Thus by the α-Hölder continuity of t 7→ tγs in (r1, r2) and the bounds (2s0− 1)/2≤ γs(C) < 2, one can
find a universal constant c > 0 such that∣∣|x |γs − |z|γs

∣∣≤ c
∣∣|x | − |z|∣∣α ≤ c|x − z|α ≤ c|x − y|α,

where the last inequality holds since z is the point on Sn−1
r which minimizes the distance dist(x, Sn−1

r ). �

Proof of Theorem 1.5. Seeking a contradiction,

max
x,y∈Sn−1

|usk (x)− usk (y)|
|x − y|α

= Lsk = Lk→∞ as sk→ 1. (5-2)
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We can consider the sequence of points xk, yk ∈ Sn−1 which realizes Lk at any step. It is easy to see that
this pair belongs to C ∩ Sn−1. Moreover we can always think of xk as the one closer to the boundary
∂C ∩ Sn−1. Therefore, to have (5-2), we have rk = |xk − yk | → 0. Hence, without loss of generality, we
can assume that xk, yk belong definitively to the same connected component of C and

|usk (yk)− usk (xk)|

rαk
= Lk,

yk − xk

rk
→ e1.

Let us define
uk(x)=

usk (xk + rk x)− usk (xk)

rαk Lk
, x ∈�k =

C − xk

rk
.

We remark that uk(0)= 0 and uk((yk − xk)/rk)= 1.
Moreover, we can have two different situations.

Case 1: If
rk

dist(xk, ∂C)
→ 0,

then the limit of �k is Rn .

Case 2: If
rk

dist(xk, ∂C)
→ l ∈ (0,∞],

then the limit of �k is a half-space Rn
∩ {x1 > 0}.

In any case let us define �∞ to be this limit set. Let us consider the annulus A∗ := B3/2 \ B1/2. By
Lemma 5.1 and the definition of uk, we obtain, for any k,

sup
x,y∈A∗k

|uk(x)− uk(y)|
|x − y|α

≤ c, (5-3)

where A∗k := (A
∗
− xk)/rk → Rn and the constant c > 0 depends only on α and A∗. Let us consider a

compact subset K of �∞. Since for k large enough K ⊂ A∗k , functions uk are C0,α(K ) uniformly in k.
This is due also to the fact that they are uniformly in L∞(K ), since |uk(x)− uk(0)| ≤ c|x |α on K. Hence
uk
→ ū uniformly on compact subsets of �∞. Moreover ū is globally α-Hölder continuous and it is not

constant, since ū(e1)− ū(0)= 1. To conclude, we will show that ū is harmonic in the limit domain �∞;
that is, for any ϕ ∈ C∞c (�∞) ∫

�∞

ϕ(−1)ū dx = 0,

and this fact will be a contradiction to the global Hölder continuity. In fact we can apply Corollary 2.3
in [Noris et al. 2010], if �∞ = Rn directly on the function ū and if �∞ = Rn

∩ {x1 > 0}; since ū = 0
in ∂�∞, we can use the same result over its odd reflection. Hence we want to prove∫

�∞

ϕ(−1)ū dx =
∫
�∞

ū(−1)ϕ dx = lim
k→∞

∫
BR

uk(−1)skϕ dx = 0,

where BR contains the support of ϕ and the second equality holds by the uniform convergences uk
→ ū

and (−1)skϕ→ (−1)ϕ on compact subsets of �∞, since ϕ is a smooth function compactly supported.
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Moreover, since uk is sk-harmonic on �k , and for k large enough the support of ϕ is contained in this
domain, we have ∫

Rn
uk(−1)skϕ dx =

∫
Rn
ϕ(−1)sk uk dx = 0.

In order to conclude we want
lim

k→∞

∫
Rn\BR

uk(−1)skϕ dx = 0.

Hence, defining η = xk + rk x and using Remark 2.3, we obtain∣∣∣∣∫
Rn\BR

uk(−1)skϕ dx
∣∣∣∣≤ C(n, sk)

Lk
r2sk−α

k

∫
|η−xk |>Rrk

|usk (η)− usk (xk)|

|η− xk |
n+2sk

dη.

For k large enough, we notice that we can choose ε > 0 such that the set {η ∈ Rn
: Rrk < |η− xk |< ε}

is contained in A∗. So, we can split the integral obtaining∫
|η−xk |>Rrk

|usk (η)− usk (xk)|

|η− xk |
n+2sk

dη ≤
∫

Rrk<|η−xk |<ε

|usk (η)− usk (xk)|

|η− xk |
n+2sk

dη+
∫
|η−xk |>ε

|usk (η)− usk (xk)|

|η− xk |
n+2sk

dη,

where we have

C(n, sk)r
2sk−α
k

Lk

∫
Rrk<|η−xk |<ε

|usk (η)− usk (xk)|

|η− xk |
n+2sk

dη ≤ C(n, sk)r
2sk−α
k cωn−1

∫ ε

Rrk

t−1+α−2sk dt

=
C(n, sk)cωn−1

2sk −α

(
Rα−2sk −

r2sk−α
k

ε2sk−α

)
and similarly

C(n, sk)r
2sk−α
k

Lk

∫
|η−xk |>ε

|usk (η)− usk (xk)|

|η− xk |
n+2sk

dη ≤
C(n, sk)r

2sk−α
k cωn−1

Lk

∫
∞

ε

(1+ t)γsk

t1+2sk
dt

=
C(n, sk)r

2sk−α
k cωn−1

Lk

(
1+

εγsk−2sk

2sk − γsk

)
.

Finally, recalling that rk→ 0, C(n, sk)→ 0, Lk→∞ and 2sk −α > 0 taking s0 >
1
2 , we obtain∣∣∣∣∫

Rn\BR

uk(−1)skϕ dx
∣∣∣∣≤ (C(n, sk)+

C(n, sk)

2sk − γsk

r2sk−α
n

Lk

)
M,

which converges to zero as we claimed, since

C(n, sk)

2sk − γsk (C)
→ µ(C) ∈ [0,∞)

in any regular cone C ⊂ Rn. �
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WEIGHTED LITTLE BMO AND TWO-WEIGHT INEQUALITIES
FOR JOURNÉ COMMUTATORS

IRINA HOLMES, STEFANIE PETERMICHL AND BRETT D. WICK

We characterize the boundedness of the commutators [b, T ] with biparameter Journé operators T in the
two-weight, Bloom-type setting, and express the norms of these commutators in terms of a weighted
little bmo norm of the symbol b. Specifically, if µ and λ are biparameter Ap weights, ν := µ1/pλ−1/p is
the Bloom weight, and b is in bmo(ν), then we prove a lower bound and testing condition ‖b‖bmo(ν) .
sup ‖[b, R1

k R2
l ] : L p(µ) → L p(λ)‖, where R1

k and R2
l are Riesz transforms acting in each variable.

Further, we prove that for such symbols b and any biparameter Journé operators T, the commutator
[b, T ] : L p(µ)→ L p(λ) is bounded. Previous results in the Bloom setting do not include the biparameter
case and are restricted to Calderón–Zygmund operators. Even in the unweighted, p = 2 case, the upper
bound fills a gap that remained open in the multiparameter literature for iterated commutators with Journé
operators. As a by-product we also obtain a much simplified proof for a one-weight bound for Journé
operators originally due to R. Fefferman.
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1. Introduction and statement of main results

Bloom [1985] proved a two-weight version of the celebrated commutator theorem of Coifman, Rochberg
and Weiss [Coifman et al. 1976]. Specifically, Bloom characterized the two-weight norm of the commutator
[b, H ] with the Hilbert transform in terms of the norm of b in a certain weighted BMO space:

‖[b, H ] : L p(µ)→ L p(λ)‖ ' ‖b‖BMO(ν),
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where µ, λ are Ap weights, 1 < p < ∞, and ν := µ1/pλ−1/p. Recently, this was extended to the
n-dimensional case of Calderón–Zygmund operators in [Holmes et al. 2017], using the modern dyadic
methods started by [Petermichl 2000] and continued in [Hytönen 2012]. The main idea in these methods
is to represent continuous operators like the Hilbert transform in terms of dyadic shift operators. This
theory was recently extended to biparameter singular integrals in [Martikainen 2012].

In this paper we extend the Bloom theory to commutators with biparameter Calderón–Zygmund
operators, also known as Journé operators, and characterize their norms in terms of a weighted version of
the little bmo space of [Cotlar and Sadosky 1996]. The main results are:

Theorem 1.1 (upper bound). Let T be a biparameter Journé operator on REn = Rn1 ⊗Rn2 , as defined in
Section 7A. Let µ and λ be Ap(R

En) weights, 1< p <∞, and define ν := µ1/pλ−1/p. Then

‖[b, T ] : L p(µ)→ L p(λ)‖. ‖b‖bmo(ν),

where ‖b‖bmo(ν) denotes the norm of b in the weighted little bmo(ν) space on REn.

We make a few remarks about the proof of this result. At its core, the strategy is the same as in [Holmes
et al. 2017], and may be roughly stated as:

(1) Use a representation theorem to reduce the problem from bounding the norm of [b, T ] to bounding
the norm of [b, dyadic shift].

(2) Prove the two-weight bound for [b, dyadic shift] by decomposing into paraproducts.

However, the biparameter case presents some significant new obstacles. In [Holmes et al. 2017], T
was a Calderón–Zygmund operator on Rn, and the representation theorem was that of [Hytönen 2012].
In the present paper, T is a biparameter Journé operator on REn = Rn1 ⊗ Rn2 (see Section 7A) and
we use Martikainen’s representation theorem [2012] to reduce the problem to commutators [b,SD],
where SD is now a biparameter dyadic shift. These can be cancellative, i.e., all Haar functions have
mean zero (defined in Section 7C), or noncancellative (defined in Section 7D). The strategy is summarized
in Figure 1.

The main difficulty arises from the structure of the biparameter dyadic shifts. At first glance, the
cancellative shifts are “almost” compositions of two one-parameter shifts SD1 and SD2 applied in each
variable — if this were so, many of the results would follow trivially by iteration of the one-parameter
results. Unfortunately, there is no reason for the coefficients aP1 Q1 R1 P2 Q2 R2 in the biparameter shifts to
“separate” into a product aP1 Q1 R1 · aP2 Q2 R2 , as would be required in a composition of two one-parameter
shifts. Therefore, many of the inequalities needed for biparameter shifts must be proved from scratch.

Even more difficult is the case of noncancellative shifts. As outlined in Section 7D, these are really
paraproducts, and there are three possible types that arise from the representation theorem:

(1) full standard paraproducts;

(2) full mixed paraproducts;

(3) partial paraproducts.
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‖[b, T ] : L p(µ)→ L p(λ)‖ . ‖b‖bmo(ν)

‖[b,S
Ei, Ej
D ] : L p(µ)→ L p(λ)‖ . ‖b‖bmo(ν)

with at most polynomial bounds in i, j .

Martikainen representation theorem

cancellative shifts:
Theorem 7.2

two-weight bounds
for paraproducts:

Section 6
noncancellative shifts

full standard paraproduct:
Theorem 7.3

full mixed paraproduct:
Theorem 7.4

partial paraproduct:
Theorem 7.5

Figure 1. Strategy for Theorem 1.1.

These methods were considered previously in [Ou et al. 2016; Ou and Petermichl 2018] for the unweighted,
p = 2 case. In [Ou et al. 2016] it was shown that

‖[b, T ] : L2(REn)→ L2(REn)‖. ‖b‖bmo(REn),

where T is a paraproduct-free Journé operator. This restriction essentially means that all the dyadic shifts
in the representation of T are cancellative, so the case of noncancellative shifts remained open. This gap
was partially filled in [Ou and Petermichl 2018], which treats the case of noncancellative shifts of standard
paraproduct type. So the case of general Journé operators, which includes noncancellative shifts of mixed
and partial type in the representation, remained open even in the unweighted, p = 2 case. These types
of paraproducts are notoriously difficult — see also [Martikainen and Orponen 2016] for a wonderful
discussion of this issue. We fill this gap in Section 7D, where we prove two-weight bounds of the type

‖[b,SD] : L p(µ)→ L p(λ)‖. ‖b‖bmo(ν),

where SD is a noncancellative shift. The same is proved for cancellative shifts in Section 7C.
At the backbone of all these proofs will be the biparameter paraproducts, developed in Section 6,

and a variety of biparameter square functions, developed in Section 3. For instance, in the case of the
cancellative shifts, one can decompose the commutator as

[b,S
Ei, Ej
D ] f =

∑
[Pb,S

Ei, Ej
D ] f +

∑
[pb,S

Ei, Ej
D ] f +REi, Ej f.
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Here Pb runs through nine paraproducts associated with product BMO, and pb runs through six paraproducts
associated with little bmo, so we are dealing with fifteen paraproducts in total in the biparameter case.
Some of these are straightforward generalizations of the one-parameter paraproducts, while some are
more complicated “mixed” paraproducts. Two-weight bounds are proved for all these paraproducts in
Section 6, building on two essential blocks: the biparameter square functions in Section 3, and the weighted
H 1- BMO duality in the product setting, developed in Section 4. In fact, Section 4 is a self-contained
presentation of large parts of the weighted biparameter BMO theory.

Once the paraproducts are bounded, all that is left is to bound the so-called “remainder term” REi, Ej f ,
of the form 5S f b−S5 f b, where one can no longer appeal directly to the paraproducts. At this point,
however, things become very technical, so bounding the remainder terms is no easy task. To help guide
the reader, we outline below the general strategy we will employ. This applies to Theorem 7.2, and in
large part to Theorems 7.3, 7.4, and 7.5:

(1) We break up the remainder term into more convenient sums of operators of the type O(b, f ), involving
both b ∈ bmo(ν) and f ∈ L p(µ). We want to show ‖O(b, f ) : L p(µ)→ L p(λ)‖ . ‖b‖bmo(ν). Using
duality this amounts to showing that

|〈O(b, f ), g〉|. ‖b‖BMO(ν)‖ f ‖L p(µ)‖g‖L p′ (λ′).

(2) Some of these operators O(b, f ) involve full Haar coefficients b̂(Q1×Q2) of b, while others involve
a Haar coefficient in one variable and averaging in the other variable, such as 〈b, hQ1 × 1Q2/|Q2|〉.
Since, ultimately, we wish to use some type of H 1- BMO duality, the goal will be to “separate out” b
from the inner product 〈O(b, f ), g〉. If O(b, f ) involves full Haar coefficients of b, we use duality with
product BMO and obtain

|〈O(b, f ), g〉|. ‖b‖BMO(ν)‖SDφ( f, g)‖L1(ν),

where φ( f, g) is the operator we are left with after separating out b, and SD is the full biparameter
dyadic square function. If O(b, f ) involves terms of the form 〈b, hQ1 ×1Q2/|Q2|〉, we use duality with
little bmo, and obtain something of the form

|〈O(b, f ), g〉|. ‖b‖bmo(ν)‖SD1φ( f, g)‖L1(ν),

where SD1 is the dyadic square function in the first variable. Obviously this is replaced with SD2 if the
Haar coefficient on b is in the second variable.

(3) Then the next goal is to show that

SDφ( f, g). (O1 f )(O2g),

where O1,2 will be operators satisfying a one-weight bound of the type L p(w)→ L p(w). These operators
will usually be a combination of the biparameter square functions in Section 3. Once we have this, we
are done.

In Theorem 7.2, dealing with cancellative shifts, the crucial part is really step (1). At first glance,
the remainder term REi, Ej f seems intractable using this method, since it involves average terms 〈b〉Q1×Q2

instead of Haar coefficients of b. So the key here is to decompose these terms in some convenient form.
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In Section 7D, dealing with noncancellative shifts, the proofs follow this strategy in spirit, but deviate
as we advance through the more and more difficult operators. The main issue here is that we are really
dealing with terms of the form |〈O(a, b, f ), g〉|, where now the operator O involves a function b in
the weighted little bmo(ν), and a function a in unweighted product BMO. In the most difficult case of
partial paraproducts, a is even more complicated because it is essentially a sequence of one-parameter
unweighted BMO functions. In all these cases, the creature φ in the last step is really φ(a, f, g). While
in the previous case involving φ( f, g) it was straightforward to see the correct operators O1,2 to achieve
step (3), in this case nothing straightforward seems to work.

There are two key new ideas in these cases: one is to combine the cumbersome remainder term with
a cleverly chosen third term, which will make the decompositions easier to handle. The other is to
temporarily employ martingale transforms — which works for us because this does not increase the BMO
norms. We briefly describe the three situations below. As above, we will be rather nonrigorous about
the notation in this expository section. There is plenty of notation later, and the purpose here is just to
explain the main ideas and guide the reader through the technical proofs in Section 7D:

(1) The full standard paraproduct: Theorem 7.3. This case only requires simple martingale transforms
(aτ and gτ , which have all nonnegative Haar coefficients), and otherwise follows the strategy outlined
above. However, we already start to see the operators O1,2 becoming strange compositions of “standard”
operators and unweighted paraproducts, such as

SDφ ≤ (MS5
∗

aτ gτ )(SD f ).

(2) The full mixed paraproduct: Theorem 7.4. Here we introduce the idea of combining the remainder
term 5S f b−S5 f b with a third term T, and we analyze (5S f b− T ) and (T −S5 f b) separately. This
allows us to express the remainder as∑

[Pa, pb] f + T (1,0)
a,b f − T (0,1)

a,b f,

a sum of commutators of paraproduct operators, and a new remainder term. The new remainder has no
cancellation properties, so we prove separately that the Ta,b operators satisfy

|〈Ta,b f, g〉|. ‖b‖bmo(ν)‖ f ‖L p(µ)‖g‖L p′ (λ′).

Here is where we employ the strategy outlined earlier, combined with a martingale transform aτ applied
to a. Interestingly, this transform depends on the particular argument f of [b,SD] f . This will be absorbed
in the end by the BMO norm of the symbol for SD, so ultimately the choice of f will not matter.

(3) The partial paraproducts: Theorem 7.5. Here we again combine the remainder terms with a third
term T, and this time end up with terms of the form pbF, where F is a term depending on a and f . So we
are done if we can show that ‖F‖L p(µ) ≤ ‖ f ‖L p(µ). Without getting too technical about the notation, we
reiterate that here a is not one function but rather a sequence aP Q R of one-parameter unweighted BMO
functions. So the difficulty here is that the inner products look something like

〈F, g〉 =
∑
〈5∗aP Q R

f̃ , g̃〉,



1698 IRINA HOLMES, STEFANIE PETERMICHL AND BRETT D. WICK

where each summand has its own BMO function! The trick is then to write this as
∑
〈aP Q R, φP Q R( f, g)〉.

The happy ending is that these functions aP Q R have uniformly bounded BMO norms, so at this point we
apply unweighted one-parameter H 1- BMO duality and we are left to work with ‖SDφ( f, g)‖L1(Rn); this
is manageable. In one case, we do have to work with Fτ instead, which is again obtained by applying
martingale transforms chosen in terms of f — only this time to each function aP Q R .

Finally, we see no reason why this result cannot be generalized to k-parameter Journé operators. The
main trouble in such a generalization should be strictly computational, as the number of paraproducts
will blow up.

In Section 8 we recall the definition of the mixed BMOI classes in between Chang and Fefferman’s
product BMO and Cotlar and Sadosky’s little BMO. In the same way as in [Ou et al. 2016] we deduce a
corollary from Theorem 1.1:

Theorem 1.2 (upper bound, iterated, unweighted case). Let us consider R
Ed, Ed = (d1, . . . , dt), with a

partition I = (Is)1≤s≤l of {1, . . . , t}. Let b ∈ BMOI(R
Ed) and let Ts denote a multiparameter Journé

operator acting on functions defined on
⊗

k∈Is
Rdk . Then we have the estimate

‖[T1, . . . , [Tl, b], . . .]‖L p(R Ed )→L p(R Ed )
. ‖b‖BMOI(R

Ed )
.

Coming back to the Bloom setting, we prove the lower estimate below, via a modification of the
unweighted one-parameter argument of Coifman, Rochberg and Weiss.

Theorem 1.3 (lower bound). Let µ, λ be Ap(R
n
×Rn) weights, and set ν = µ1/pλ−1/p. Then

‖b‖bmo(ν) . sup
16k,l6n

‖[b, R1
k R2

l ]‖L p(µ)→L p(λ),

where R1
k and R2

l are the Riesz transforms acting in the first and second variables, respectively.

This lower estimate allows us to see the tensor products of Riesz transforms as a representative testing
class for all Journé operators.

We point out that in our quest to prove Theorem 1.1, we also obtain a much simplified proof of the
following one-weight result for Journé operators, originally due to R. Fefferman:

Theorem 1.4 (weighted inequality for Journé operators). Let T be a biparameter Journé operator on
REn = Rn1 ⊗Rn2 . Then T is bounded L p(w)→ L p(w) for all w ∈ Ap(R

En), 1< p <∞.

A version of Theorem 1.4 was first introduced by R. Fefferman and E. M. Stein [1982], with restric-
tive assumptions on the kernel. Subsequently the kernel assumptions were weakened significantly by
R. Fefferman [1987], at the cost of assuming the weight belongs to the more restrictive class Ap/2. This
was due to the use of his sharp function T # f = MS( f 2)1/2, where MS is strong maximal function. Finally,
he improved his own result in [Fefferman 1988], where he showed that the Ap class sufficed and obtained
the full statement of Theorem 1.4. This was achieved by an involved bootstrapping argument based on
his previous result [Fefferman 1987].

Our proof in Section 7E of Theorem 1.4 is significantly simpler. This may seem like a “rough sell” in
light of the many pages of highly technical calculations that precede it. However, our proof of Section 7E
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is only based on one-weight bounds for the biparameter dyadic shifts of the form

‖S
Ei, Ej
D : L

p(w)→ L p(w)‖. 1. (1-1)

These had to be proved along the way, as part of our proof of the two-weight upper bound for commutators,
Theorem 1.1. These one-weight bounds are useful in themselves, and their proofs are not that long: the
proof for cancellative shifts, given in (7-2), is easy, and the proof for the noncancellative shifts of partial
paraproduct type is given in Proposition 7.6. Once we have (1-1), the proof of Theorem 1.4 follows
immediately from Martikainen’s representation theorem — just as in the one-parameter case, a weighted
bound for Calderón–Zygmund operators follows trivially from Hytönen’s representation theorem, once
one has the one-weight bounds for the one-parameter dyadic shifts.

The paper is organized as follows. In Section 2 we review the necessary background, both one-parameter
and biparameter, and set up the notation. In Section 3 we set up the types of dyadic square functions we
will need throughout the rest of the paper. In Section 4, we discuss the weighted and Bloom BMO spaces
in the biparameter setting, and use some of these results in Section 5 to prove the lower bound result.
Section 6 is dedicated to biparameter paraproducts, which will be crucial in Section 7, which proves the
upper bound by an appeal to Martikainen’s representation theorem [2012]. Finally, we prove Theorem 1.4.

2. Background and notation

We review some of the basic building blocks of one-parameter dyadic harmonic analysis on Rn, followed
by their biparameter versions for REn := Rn1 ⊗Rn2 .

2A. Dyadic grids on Rn. Let D0 := {2−k([0, 1)n +m) : k ∈ Z,m ∈ Zn
} denote the standard dyadic grid

on Rn. For every ω = (ω j ) j∈Z ∈ ({0, 1}n)Z define the shifted dyadic grid Dω:

Dω := {Q+̇ω : Q ∈ D0}, where Q+̇ω := Q+
∑

j :2− j<l(Q)

2− jω j ,

and l(Q) denotes the side length of a cube Q. The indexing parameter ω is rarely relevant in what follows:
it only appears when we are dealing with Eω — expectation with respect to the standard probability
measure on the space of parameters ω. In fact, an important feature of the (by now standard) methods we
employ in this paper is obtaining upper bounds for dyadic operators that are independent of the choice of
dyadic grid. The focus therefore is on the geometrical properties shared by all dyadic grids D on Rn:

• P ∩ Q ∈ {P, Q,∅} for every P, Q ∈ D.

• The cubes Q ∈ D with l(Q)= 2−k, for some fixed integer k, partition Rn.

For every Q ∈ D and every nonnegative integer k we define:

• Q(k) — the k-th generation ancestor of Q in D, i.e., the unique element of D which contains Q and
has side length 2kl(Q).

• (Q)k — the collection of k-th generation descendants of Q in D, i.e., the 2kn disjoint subcubes of Q
with side length 2−kl(Q).
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2B. The Haar system on Rn. Recall that every dyadic interval I in R is associated with two Haar
functions,

h0
I :=

1
√
|I |
(1I−−1I+) and h1

I :=
1
√
|I |

1I ,

the first one being cancellative (it has mean 0). Given a dyadic grid D on Rn, every dyadic cube
Q = I1× · · · × In , where all Ii are dyadic intervals in R with common length l(Q), is associated with
2n
− 1 cancellative Haar functions:

hεQ(x) := h(ε1,...,εn)
I1×···×In

(x1, . . . , xn) :=

n∏
i=1

hεi
Ii
(xi ),

where ε ∈ {0, 1}n \{(1, . . . , 1)} is the signature of hεQ . To simplify notation, we assume that signatures are
never the identically 1 signature, in which case the corresponding Haar function would be noncancellative.
The cancellative Haar functions form an orthonormal basis for L2(Rn). We write

f =
∑
Q∈D

f̂ (Qε)hεQ,

where f̂ (Qε) := 〈 f, hεQ〉, 〈 f, g〉 :=
∫

Rn f g dx , and summation over ε is assumed. We list here some
other useful facts which will come in handy later:

• hεP(x) is constant on any subcube Q ∈ D, Q ( P. We denote this value by hεP(Q).

• The average of f over a cube Q ∈ D may be expressed as

〈 f 〉Q =
∑

P∈D,P)Q

f̂ (Pε)hεP(Q). (2-1)

• Then, if Q ( R ∈ D,
〈 f 〉Q −〈 f 〉R =

∑
P∈D,Q(P⊂R

f̂ (Pε)hεP(Q). (2-2)

• For Q ∈ D,
1Q( f −〈 f 〉Q)=

∑
P∈D,P⊂Q

f̂ (Pε)hεP . (2-3)

• For two distinct signatures ε 6= δ, define the signature ε + δ by letting (ε + δ)i be 1 if εi = δi and 0
otherwise. Note that ε+ δ is distinct from both ε and δ, and is not the identically E1 signature. Then

hεQhδQ =
1
√

Q
hε+δQ if ε 6= δ and hεQhεQ =

1Q

|Q|
.

Again to simplify notation, we assume throughout this paper that we only write hε+δQ for distinct signatures
ε and δ.

Given a dyadic grid D, we define the dyadic square function on Rn by

SD f (x) :=
(∑

Q∈D

| f̂ (Qε)|2
1Q(x)
|Q|

)1/2

.
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Then ‖ f ‖p ' ‖SD f ‖p for all 1< p <∞. We also define the dyadic version of the maximal function:

MD f (x)= sup
Q∈D
〈| f |〉Q1Q(x).

2C. A p(R
n) weights. Letw be a weight on Rn; i.e.,w is an almost everywhere positive, locally integrable

function. For 1< p <∞, let L p(w) := L p(Rn
;w(x) dx). For a cube Q in Rn, we let

w(Q) :=
∫

Q
w(x) dx and 〈w〉Q :=

w(Q)
|Q|

.

We say that w belongs to the Muckenhoupt Ap(R
n) class provided that

[w]Ap := sup
Q
〈w〉Q〈w

1−p′
〉

p−1
Q <∞,

where p′ denotes the Hölder conjugate of p and the supremum above is over all cubes Q in Rn with sides
parallel to the axes. The weight w′ := w1−p′ is sometimes called the weight “conjugate” to w, because
w ∈ Ap if and only if w′ ∈ Ap′ .

We recall the classical inequalities for the maximal and square functions

‖M f ‖L p(w) . ‖ f ‖L p(w) and ‖ f ‖L p(w) ' ‖SD f ‖L p(w)

for all w ∈ Ap(R
n), 1 < p < ∞, where throughout this paper “A . B” denotes A ≤ cB for some

constant c which may depend on the dimensions and the weight w. In dealing with dyadic shifts, we will
also need to consider the following shifted dyadic square function: given nonnegative integers i and j ,
define

Si, j
D f (x) :=

[∑
R∈D

( ∑
P∈(R)i

| f̂ (Pε)|
)2( ∑

Q∈(R) j

1Q(x)
|Q|

)]1/2

.

It was shown in [Holmes et al. 2017] that

‖Si, j
D : L

p(w)→ L p(w)‖. 2(n/2)(i+ j) (2-4)

for all w ∈ Ap(R
n), 1< p <∞.

A martingale transform on Rn is an operator of the form

f 7→ fτ :=
∑
P∈D

τ εP f̂ (Pε)hεP ,

where each τ εP is either +1 or −1. Obviously SD f = SD fτ , so one can work with fτ instead when
convenient, without increasing the L p(w)-norm of f .

2D. The Haar system on REn. In REn := Rn1 ⊗Rn2 , we work with dyadic rectangles

D := D1×D2 = {R = Q1× Q2 : Qi ∈ Di },

where each Di is a dyadic grid on Rni. While we unfortunately lose the nice nestedness and partitioning
properties of one-parameter dyadic grids, we do have the tensor product Haar wavelet orthonormal basis
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for L2(REn), defined by
hEεR(x1, x2) := hε1

Q1
(x1)⊗ hε2

Q2
(x2)

for all R = Q1× Q2 ∈D and Eε = (ε1, ε2). We often write

f =
∑

Q1×Q2

f̂ (Qε1
1 × Qε2

2 )h
ε1
Q1
⊗ hε2

Q2
,

short for summing over Q1 ∈ D1 and Q2 ∈ D2, and of course over all signatures, where

f̂ (Qε1
1 × Qε2

2 ) := 〈 f, hε1
Q1
⊗ hε2

Q2
〉 =

∫
REn

f (x1, x2)h
ε1
Q1
(x1)h

ε2
Q2
(x2) dx1 dx2.

While the averaging formula (2-1) has a straightforward biparameter analogue

〈 f 〉Q1×Q2 =

∑
P1)Q1
P2)Q2

f̂ (Pε1
1 × Pε2

2 )h
ε1
P1
(Q1)h

ε2
P2
(Q2),

the expression in (2-3) takes a slightly messier form in two parameters: for any R = Q1× Q2

1R( f −〈 f 〉R)

=

∑
P1⊂Q1
P2⊂Q2

f̂ (Pε1
1 × Pε2

2 )h
ε1
P1
⊗ hε2

P2
+

∑
P2⊂Q2

〈
f,
1Q1

|Q1|
⊗ hε2

P2

〉
1Q1 ⊗ hε2

P2
+

∑
P1⊂Q1

〈
f, hε1

P1
⊗
1Q2

|Q2|

〉
hε1

P1
⊗1Q2

=

∑
P1⊂Q1
P2⊂Q2

f̂ (Pε1
1 × Pε2

2 )h
ε1
P1
⊗ hε2

P2
+1R[m Q1 f (x2)−〈 f 〉R] +1R[m Q2 f (x1)−〈 f 〉R], (2-5)

where for any cubes Qi ∈ Di ,

m Q1 f (x2) :=
1
|Q1|

∫
Q1

f (x1, x2) dx1 and m Q2 f (x1) :=
1
|Q2|

∫
Q2

f (x1, x2) dx2. (2-6)

As we shall see later, this particular expression will be quite relevant for biparameter BMO spaces.

2E. A p(R
En) weights. A weight w(x1, x2) on REn belongs to the class Ap(R

En) for some 1 < p < ∞,
provided that

[w]Ap := sup
R
〈w〉R〈w

1−p′
〉

p−1
R <∞,

where the supremum is over all rectangles R. These are the weights which characterize L p(w) boundedness
of the strong maximal function

MS f (x1, x2) := sup
R
〈| f |〉R1R(x1, x2),

where the supremum is again over all rectangles. As is well known, the usual weak (1, 1) inequality fails
for the strong maximal function, where it is replaced by an Orlicz norm expression. In the weighted case,
we have [Bagby and Kurtz 1985] for all w ∈ Ap(R

En),

w{x ∈ REn : MS f (x) > λ}.
∫

REn

(
| f (x)|
λ

)p(
1+ log+

| f (x)|
λ

)k−1

dw(x). (2-7)
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Moreover, w belongs to Ap(R
En) if and only if w belongs to the one-parameter classes Ap(R

ni ) in
each variable separately and uniformly:

[w]Ap(REn)
'max

{
ess sup
x1∈Rn1

[w(x1, · )]Ap(R
n2 ), ess sup

x2∈Rn2
[w( · , x2)]Ap(R

n1 )

}
.

It also follows, as in the one-parameter case, that w ∈ Ap(R
En) if and only if w′ := w1−p′

∈ Ap′(R
En) and

L p(w)∗ ' L p′(w′), in the sense that

‖ f ‖L p(w) = sup{|〈 f, g〉| : g ∈ L p′(w′), ‖g‖L p′ (w′) ≤ 1}. (2-8)

We may also define weights m Q1w and m Q2w on Rn2 and Rn1, respectively, as in (2-6). As shown
below, these are then also uniformly in their respective one-parameter Ap classes:

Proposition 2.1. If w ∈ Ap(R
En), 1< p<∞, then m Q1w ∈ Ap(R

n2) and m Q2w ∈ Ap(R
n1) for any cubes

Qi ⊂ Rni, with uniformly bounded Ap constants:

[m Qiw]Ap(R
n j ) ≤ [w]Ap(REn)

for all Qi ⊂ Rni , i ∈ {1, 2}, i 6= j .

Proof. Fix a cube Q1 ⊂ Rn1. Then for every x2 ∈ Rn2 ,

|Q1| =

∫
Q1

1 dx1 ≤

(∫
Q1

w(x1, x2) dx1

)1/p(∫
Q1

w′(x1, x2) dx1

)1/p′

,

and so

(m Q1w)
′(x2) := (m Q1w)

1−p′(x2)≤ m Q1w
′(x2).

Then for all cubes Q2 ⊂ Rn2 ,

〈m Q1w〉Q2〈(m Q1w)
′
〉

p−1
Q2
≤ 〈w〉Q1×Q2〈w

′
〉

p−1
Q1×Q2

≤ [w]Ap(REn),

proving the result for m Q1w. The other case follows symmetrically. �

Finally, we will later use a reverse Hölder property of biparameter Ap weights. This is well known to
experts, but we include a proof here for completeness.

Proposition 2.2. If w ∈ Ap(R
En), then there exist positive constants C, ε, δ > 0 (depending only on En, p,

and [w]Ap(REn)
) such that:

(i) For all rectangles R ⊂ REn ,(
1
|R|

∫
R
w(x)1+ε dx

)1/(1+ε)

≤
C
|R|

∫
R
w(x) dx .

(ii) For all rectangles R ⊂ REn and all measurable subsets E ⊂ R,

w(E)
w(R)

≤ C
(
|E |
|R|

)δ
.
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Proof. Note first that (ii) follows easily from (i) by applying the Hölder inequality with exponents 1+ ε
and (1+ ε)/ε in w(E)=

∫
E w(x) dx . This gives (ii) with δ = ε/(1+ ε).

In order to prove (i) we first recall a more general statement of the one-parameter reverse Hölder
property of Ap weights (see Remark 9.2.3 in [Grafakos 2004]):

For any 1< p <∞ and B > 1, there exist positive constants

D = D(n, p, B) and β = β(n, p, B) (2-9)

such that for all v ∈ Ap(R
n) with [v]Ap(REn)

≤ B, the reverse Hölder condition(
1
|Q|

∫
Q
v(t)1+β dt

)1/(1+β)

≤
D
|Q|

∫
Q
v(t) dt (2-10)

holds for all cubes Q ⊂ Rn.

It is easy to see that if a weight v satisfies the reverse Hölder condition (2-10) with constants D, β, then
it also satisfies it with any constants C, ε with C ≥ D and ε ≤ β.

Now let w ∈ Ap(R
En), set B := [w]Ap(REn)

, and for i ∈ {1, 2} let Di := D(ni , p, B) and βi := β(ni , p, B)
be as in (2-9). Fix a rectangle R = Q1× Q2, a measurable subset E ⊂ R, and set

C2
:=max(D1, D2) and ε :=min(β1, β2).

For almost all x1 ∈ Rn1, we have w(x1, · ) ∈ Ap(R
n2) with [w(x1, · )]Ap(R

n2 ) ≤ B, so w(x1, · ) satisfies
reverse Hölder with constants D2, β2 — and therefore also with constants

√
C, ε. So

1
|R|

∫
R
w(x)1+ε dx =

1
|Q1|

∫
Q1

(
1
|Q2|

w(x1, x2)
1+ε dx2

)
dx1

≤
1
|Q1|

∫
Q1

(√
C
|Q2|

∫
Q2

w(x1, x2) dx2

)1+ε

dx1

=
C (1+ε)/2

|Q1|

∫
Q1

(m Q2w(x1))
1+ε dx1.

By Proposition 2.1, we have m Q2w ∈ Ap(R
n1) with [m Q2w]Ap(R

n1 ) ≤ B, so this weight satisfies reverse
Hölder with constants D1, β1 — and therefore also with constants

√
C, ε. Then the last inequality above

gives (
1
|R|

∫
R
w(x)1+ε dx

)1/(1+ε)

≤
C
|Q1|

∫
Q1

m Q2w(x1) dx1 =
C
|R|

∫
R
w(x) dx . �

3. Biparameter dyadic square functions

Throughout this section, fix dyadic rectangles D :=D1×D2 on REn. The dyadic square function associated
with D is then defined in the obvious way:

SD f (x1, x2) :=

(∑
R∈D
| f̂ (REε)|2

1R(x1, x2)

|R|

)1/2

.
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We also want to look at the dyadic square functions in each variable, namely

SD1 f (x1, x2) :=

( ∑
Q1∈D1

|H ε1
Q1

f (x2)|
21Q1(x1)

|Q1|

)1/2

, SD2 f (x1, x2) :=

( ∑
Q2∈D2

|H ε2
Q2
(x1)|

21Q2(x2)

|Q2|

)2

,

where for every Qi ∈ Di and signatures εi , we define

H ε1
Q1

f (x2) :=

∫
Rn1

f (x1, x2)h
ε1
Q1
(x1) dx1, H ε2

Q2
f (x1) :=

∫
Rn2

f (x1, x2)h
ε2
Q2
(x2) dx2.

Then for any w ∈ Ap(R
En),

‖ f ‖L p(w) ' ‖SD f ‖L p(w) ' ‖SD1 f ‖L p(w) ' ‖SD2 f ‖L p(w).

More generally, define the shifted biparameter square function, for pairs Ei = (i1, i2) and Ej = ( j1, j2) of
nonnegative integers, by

S
Ei, Ej
D f :=

[ ∑
R1∈D1
R2∈D2

( ∑
P1∈(R1)i1
P2∈(R2)i2

| f̂ (Pε1
1 × Pε2

2 )|

)2( ∑
Q1∈(R1) j1
Q2∈(R2) j2

1Q1

|Q1|
⊗
1Q2

|Q2|

)]1/2

. (3-1)

We claim that
‖S
Ei, Ej
D : L

p(w)→ L p(w)‖. 2(n1/2)(i1+ j1)2(n2/2)(i2+ j2) (3-2)

for all w ∈ Ap(R
En), 1< p <∞. This follows by iteration of the one-parameter result in (2-4), through

the following vector-valued version of the extrapolation theorem (see Corollary 9.5.7 in [Grafakos 2004]):

Proposition 3.1. Suppose that an operator T satisfies ‖T : L2(w) → L2(w)‖ ≤ ACn[w]A2 for all
w ∈ A2(R

n), for some constants A and Cn , where the latter only depends on the dimension. Then∥∥∥∥(∑
j

|T f j |
2
)1/2∥∥∥∥

L p(w)

≤ AC ′n[w]
max(1,1/(p−1))
Ap

∥∥∥∥(∑
j

| f j |
2
)1/2∥∥∥∥

L p(w)

for all w ∈ Ap(R
n), 1< p <∞, and all sequences { f j } ⊂ L p(w), where C ′n is a dimensional constant.

Proof of (3-2). Note that (S
Ei, Ej
D f )2 =

∑
R1∈D1

(Si2, j2
D2

FR1)
2, where

FR1(x1, x2) :=
∑

P2∈D2

( ∑
P1∈(R1)i1

| f̂ (Pε1
1 × Pε2

2 )|

)( ∑
Q1∈(R1) j1

1Q1(x1)

|Q1|

)1/2

hε2
P2
(x2).

Then

‖S
Ei, Ej
D f ‖p

L p(w) =

∫
Rn1

∫
Rn2

( ∑
R1∈D1

(Si2, j2
D2

FR1(x1, x2))
2
)p/2

w(x1, x2) dx2 dx1.

For almost all fixed x1 ∈Rn1, we know w(x1, · ) is in Ap(R
n2) uniformly, so we may apply Proposition 3.1

and (2-4) to the inner integral and obtain

‖S
Ei, Ej
D f ‖p

L p(w) . 2(pn2/2)(i2+ j2)
∫

Rn1

∫
Rn2

( ∑
R1∈D1

|FR1(x1, x2)|
2
)p/2

w(x1, x2) dx2 dx1.
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Now, we can express the integral above as∫
Rn2

∫
Rn1
(Si1, j1

D1
fτ (x1, x2))

pw(x1, x2) dx1 dx2 . 2(pn1/2)(i1+ j1)‖ fτ‖p,

where
fτ =

∑
P1×P2

| f̂ (Pε1
1 × Pε2

2 )|h
ε1
P1
⊗ hε2

P2

is just a biparameter martingale transform applied to f , and therefore ‖ f ‖L p(w) ' ‖ fτ‖L p(w) by passing
to the square function. �

3A. Mixed square and maximal functions. We will later encounter mixed operators such as

[SM] f (x1, x2) :=

( ∑
Q1∈D1

(MD2(H
ε1
Q1

f )(x2))
2 1Q1(x1)

|Q1|

)1/2

,

[M S] f (x1, x2) :=

( ∑
Q2∈D2

(MD1(H
ε2
Q2

f )(x1))
2 1Q2(x2)

|Q2|

)1/2

.

Next we show that these operators are bounded L p(w)→ L p(w) for all w ∈ Ap(R
En). The proof only

relies on the fact that the one-parameter maximal function satisfies a weighted bound. So we state the
result in a slightly more general form below, replacing MD2 and MD1 by any one-parameter operator that
satisfies a weighted bound.

Proposition 3.2. Let T denote a (one-parameter) operator acting on functions on Rn that satisfies
‖T : L2(v)→ L2(v)‖ ≤ C for all v ∈ A2(R

n). Define the following operators on REn:

[ST ] f (x1, x2) :=

( ∑
Q1∈D1

(T (H ε1
Q1

f )(x2))
2 1Q1(x1)

|Q1|

)1/2

,

[T S] f (x1, x2) :=

( ∑
Q2∈D2

(T (H ε2
Q2

f )(x1))
2 1Q2(x2)

|Q2|

)1/2

,

where T acts on Rn2 in the first operator, and on Rn1 in the second. Then [ST ] and [T S] are bounded
L p(w)→ L p(w) for all w ∈ Ap(R

En).

Proof. We have

‖[ST ] f ‖p
L p(w) =

∫
Rn1

∫
Rn2

( ∑
Q1∈D1

(
T (H ε1

Q1
)(x2)

1Q1(x1)
√
|Q1|

)2)p/2

w(x1, x2) dx2 dx1

.
∫

Rn1

∫
Rn2

( ∑
Q1∈D1

(H ε1
Q1
)2(x2)

1Q1(x1)

|Q1|

)p/2

w(x1, x2) dx2 dx1

= ‖SD1 f ‖p
L p(w) . ‖ f ‖p

L p(w),

where the first inequality follows as before from Proposition 3.1. The proof for [T S] is symmetrical. �
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More generally, define shifted versions of these mixed operators:

[ST ]i1, j1 f (x1, x2) :=

( ∑
R1∈D1

( ∑
P1∈(R1)i1

T (H ε1
P1

f )(x2)

)2 ∑
Q1∈(R1) j1

1Q1(x1)

|Q1|

)1/2

,

[T S]i2, j2 f (x1, x2) :=

( ∑
R2∈D2

( ∑
P2∈(R2)i2

T (H ε2
P2

f )(x1)

)2 ∑
Q2∈(R2) j2

1Q2(x2)

|Q2|

)1/2

.

Under the same assumptions on T, it is easy to see that

‖[ST ]i1, j1 : L p(w)→ L p(w)‖.2(n1/2)(i1+ j1) and ‖[T S]i2, j2 : L p(w)→ L p(w)‖.2(n2/2)(i2+ j2) (3-3)

for all w ∈ Ap(R
En). Specifically,

‖[ST ]i1, j1 f ‖p
L p(w) =

∫
|Si1, j1

D1
F(x1, x2)|

p dw, where F(x1, x2) :=
∑

P1∈D1

T (H ε1
P1

f )(x2)h
ε1
P1
(x1),

so ‖[ST ]i1, j1 f ‖L p(w) . 2(n1/2)(i1+ j1)‖F‖L p(w). Now,

‖F‖L p(w) ' ‖SD1 F‖L p(w) = ‖[ST ] f ‖L p(w) . ‖ f ‖L p(w).

4. Biparameter weighted BMO spaces

Given a weight w on Rn, a locally integrable function b is said to be in the weighted BMO(w) space if

‖b‖BMO(w) := sup
Q

1
w(Q)

∫
Q
|b(x)−〈b〉Q | dx <∞,

where the supremum is over all cubes Q in Rn. If w= 1, we obtain the unweighted BMO(Rn) space. The
dyadic version BMOD(w) is obtained by only taking the supremum over Q ∈ D for some given dyadic
grid D on Rn. If w ∈ Ap(R

n) for some 1< p <∞, Muckenhoupt and Wheeden [1976] showed that

‖b‖BMO(w) ' ‖b‖BMO(w′;p′) := sup
Q

(
1

w(Q)

∫
Q
|b−〈b〉Q |p

′

dw′
)1/p′

, (4-1)

where w′ is the conjugate weight to w. Moreover, if w ∈ A2(R
n), the argument in [Wu 1992] shows that

BMOD(w)' H 1
D(w)

∗, where the dyadic Hardy space H 1
D(w) is defined by the norm

‖φ‖H1
D(w)
:= ‖SDφ‖L1(w).

Then
|〈b, φ〉|. ‖b‖BMOD(w)‖SDφ‖L1(w) for all w ∈ A2(R

n). (4-2)

Now suppose µ and λ are Ap(R
n) weights for some 1 < p < ∞, and define the Bloom weight

ν := µ1/pλ−1/p. As shown in [Holmes et al. 2017], we have ν ∈ A2(R
n), which means we may use (4-2)

with ν. A two-weight John–Nirenberg theorem for the Bloom BMO space BMO(ν) is also proved in that
paper, namely

‖b‖BMO(ν) ' ‖b‖BMO(µ,λ,p) ' ‖b‖BMO(λ′,µ′,p′),
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where

‖b‖BMO(µ,λ,p) := sup
Q

(
1

µ(Q)

∫
Q
|b−〈b〉Q |p dλ

)1/p

,

‖b‖BMO(λ′,µ′,p′) := sup
Q

(
1

λ′(Q)

∫
Q
|b−〈b〉Q |p

′

dµ′
)1/p′

.

We now look at weighted BMO spaces in the product setting REn = Rn1 ⊗Rn2 . Suppose w(x1, x2) is a
weight on REn. Then we have three BMO spaces:

• Weighted little bmo(w) is the space of all locally integrable functions b on REn such that

‖b‖bmo(w) := sup
R

1
w(R)

∫
R
|b−〈b〉R| dx <∞,

where the supremum is over all rectangles R = Q1 × Q2 in REn. Given a choice of dyadic rectangles
D = D1×D2, we define the dyadic weighted little bmoD(w) by taking supremum over R ∈D.

• Weighted product BMOD(w) is the space of all locally integrable functions b on REn such that

‖b‖BMOD(w) := sup
�

(
1

w(�)

∑
R⊂�,R∈D

|b̂(R)|2
1
〈w〉R

)1/2

<∞,

where the supremum is over all open sets �⊂ REn with w(�) <∞.

• Weighted rectangular BMOD,Rec(w) is defined in a similar fashion to the unweighted case — just like
product BMO, but taking the supremum over rectangles instead of over open sets:

‖b‖BMOD,Rec(w) := sup
R

(
1

w(R)

∑
T⊂R

|b̂(T ε)|2
1
〈w〉T

)1/2

,

where the supremum is over all rectangles R, and the summation is over all subrectangles T ∈D, T ⊂ R.

We have the inclusions

bmoD(w)( BMOD(w)( BMOD,Rec(w).

Let us look more closely at some of these spaces.

4A. Weighted product BMOD(w). As in the one-parameter case, we define the dyadic weighted Hardy
space H1

D(w) to be the space of all φ ∈ L1(w) such that SDφ ∈ L1(w), a Banach space under the norm
‖φ‖H1

D(w)
:= ‖SDφ‖L1(w). The following result exists in the literature in various forms, but we include a

proof here for completeness.

Proposition 4.1. With the notation above, H1
D(w)

∗
≡ BMOD(w). Specifically, every b ∈ BMOD(w)

determines a continuous linear functional on H1
D(w) by φ 7→ 〈b, φ〉,

|〈b, φ〉|. ‖b‖BMOD(w)‖SDφ‖L1(w), (4-3)

and, conversely, every L ∈H1
D(w)

∗ may be realized as Lφ = 〈b, φ〉 for some b ∈ BMOD(w).
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Proof. To prove the first statement, let b ∈ BMOD(w) and φ ∈H1
D(w). For every j ∈ Z, define the set

U j := {x ∈ REn : SDφ(x) > 2 j
}, and the collection of rectangles R j :=

{
R ∈D : w(R ∩U j ) >

1
2w(R)

}
.

Clearly U j+1 ⊂U j and R j+1 ⊂R j . Moreover,∑
j∈Z

2 jw(U j )' ‖SDφ‖L1(w), (4-4)

which comes from the measure-theoretical fact that for any integrable function f on a measure space
(X , µ), we have ‖ f ‖L1(µ) '

∑
j∈Z2 jµ{x ∈ X : | f (x)|> 2 j

}.
As shown in Proposition 2.2, there exist C, δ > 0 such that w(E)/w(R) ≤ C(|E |/|R|)δ for all

rectangles R and measurable subsets E ⊂ R. Define then for every j ∈ Z the (open) set

V j := {x ∈ REn : MS1U j (x) > θ}, where θ :=
(

1
2C

)1/δ

.

First note that if R ∈R j , then

1
2
<
w(R ∩U j )

w(R)
≤ C

(
|R ∩U j |

|R|

)δ
so

θ < 〈1U j 〉R ≤ MS1U j (x) for all x ∈ R.

Therefore ⋃
R∈R j

R ⊂ V j . (4-5)

Using (2-7), we have

w(V j ).
∫

U j

1
θ p

(
1+ log+

1
θ

)k−1

dw ' w(U j ). (4-6)

Now suppose R ∈D but R /∈
⋃

j∈Z R j . Then w(R ∩ {SDφ ≤ 2 j
})≥ 1

2w(R) for all j ∈ Z, and so

w(R ∩ {SDφ = 0})= w
( ∞⋂

j=1

R ∩ {SDφ ≤ 2− j
}

)
≥

1
2w(R).

Then |{SDφ = 0}| ≥ |R ∩ {SDφ = 0}| ≥ θ |R|> 0, and we may write

|φ̂(R)|2 =
∫
{SDφ=0}

|φ̂(R)|2
1R

|R ∩ {SDφ = 0}|
dx ≤

1
θ

∫
{SDφ=0}

(SDφ)2 dx = 0.

So

φ̂(R)= 0 for all R ∈D, R /∈
⋃
j∈Z

R j . (4-7)

Finally, if R ∈
⋂

j∈Z R j , then

0= w(R ∩ {SDφ =∞})= lim
j→∞

w(R ∩ {SDφ > 2 j
})≥ 1

2w(R),
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a contradiction. In light of this and (4-7),∑
R∈D
|b̂(R)||φ̂(R)| =

∑
j∈Z

∑
R∈R j\R j+1

|b̂(R)||φ̂(R)|

≤

∑
j∈Z

( ∑
R∈R j\R j+1

|b̂(R)|2
1
〈w〉R

)1/2( ∑
R∈R j\R j+1

|φ̂(R)|2〈w〉R

)1/2

.

To estimate the first term, we simply note that∑
R∈R j\R j+1

|b̂(R)|2
1
〈w〉R

≤

∑
R∈R j

|b̂(R)|2
1
〈w〉R

≤

∑
R⊂V j ,R∈D

|b̂(R)|2
1
〈w〉R

≤ ‖b‖2BMOD(w)
w(V j ),

where the second inequality follows from (4-5). For the second term, note that any R ∈R j \R j+1 satisfies
R ⊂ V j and w(R \U j+1)≥

1
2w(R). Then∑

R∈R j\R j+1

|φ̂(R)|2〈w〉R ≤ 2
∑

R∈R j\R j+1

|φ̂(R)|2
w(R \U j+1)

|R|

= 2
∫

V j\U j+1

∑
R∈R j\R j+1

|φ̂(R)|2
1R

|R|
dw

≤ 2
∫

V j\U j+1

(SDφ)2 dw . 22 jw(V j ),

since SDφ ≤ 2 j+1 off U j+1. Finally, we have by (4-6),∑
R∈D
|b̂(R)||φ̂(R)|. ‖b‖BMOD(w)

∑
j∈Z

2 jw(V j )' ‖b‖BMOD(w)

∑
j∈Z

2 jw(U j ).

Combining this with (4-4), we obtain (4-3).
To see the converse, let L ∈H1

D(w). Then L is given by Lφ = 〈b, φ〉 for some function b. Fix an open
set � with w(�) <∞. Then( ∑

R⊂�,R∈D
|b̂(R)|2

1
〈w〉R

)1/2

≤ sup
‖φ‖l2(�,w)≤1

∣∣∣∣ ∑
R⊂�,R∈D

b̂(R)φ̂(R)
∣∣∣∣,

where ‖φ‖2l2(�,w)
:=
∑

R⊂�,R∈D |φ̂(R)|
2
〈w〉R . By a simple application of Hölder’s inequality,∣∣∣∣ ∑

R⊂�,R∈D
b̂(R)φ̂(R)

∣∣∣∣. ‖L‖?‖φ‖H1
D(w)
≤ ‖L‖? (w(�))1/2‖φ‖l2(�,w),

so ‖b‖BMOD(w) . ‖L‖?. �

4B. Weighted little bmoD(w). In this case, we also want to look at each variable separately. Specifically,
we look at the space BMO(w1, x2): for each x2 ∈ Rn2 , this is the weighted BMO space over Rn1, with
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respect to the weight w( · , x2):

BMO(w1, x2) := BMO(w( · , x2); Rn1) for each x2 ∈ Rn2 .

The norm in this space is given by

‖b( · , x2)‖BMO(w1,x2) := sup
Q1

1
w(Q1, x2)

∫
Q1

|b(x1, x2)−m Q1b(x2)| dx1,

where

w(Q1, x2) :=

∫
Q1

w(x1, x2) dx1 and m Q1b(x2) :=
1
|Q1|

∫
Q1

b(x1, x2) dx1.

The space BMO(w2, x1) and the quantities w(Q2, x1) and m Q2b(x1) are defined symmetrically.

Proposition 4.2. Let w(x1, x2) be a weight on REn = Rn1 ⊗ Rn2 . Then b ∈ L1
loc(R

En) is in bmo(w) if
and only if b is in the one-parameter weighted BMO spaces BMO(wi , x j ) separately in each variable,
uniformly:

‖b‖bmo(w) 'max
{
ess sup
x1∈Rn1

‖b(x1, · )‖BMO(w2,x1), ess sup
x2∈Rn2

‖b( · , x2)‖BMO(w1,x2)

}
.

Remark 4.3. In the unweighted case bmo(REn), if we fixed x2 ∈ Rn2 , we would look at b( · , x2) in the
space BMO(Rn1)— the same one-parameter BMO space for all x2. In the weighted case however, the
one-parameter space for b( · , x2) changes with x2, because the weight w( · , x2) changes with x2.

Proof. Suppose first that b ∈ bmo(w). Then for all cubes Q1, Q2,

‖b‖bmo(w) ≥
1

w(Q1× Q2)

∫
Q1

∫
Q2

|b(x1, x2)−〈b〉Q1×Q2 | dx2 dx1

≥
1

w(Q1× Q2)

∫
Q1

∣∣∣∣∫
Q2

b(x1, x2)−〈b〉Q1×Q2 dx2

∣∣∣∣ dx1,

so ∫
Q1

|m Q2b(x1)−〈b〉Q1×Q2 | dx1 ≤
w(Q1× Q2)

|Q2|
‖b‖bmo(w). (4-8)

Now fix a cube Q2 in Rn2 and let fQ2(x1) :=
∫

Q2
|b(x1, x2)−m Q2b(x1)| dx2. Then for any Q1,

〈 fQ2〉Q1 ≤
1
|Q1|

∫
Q1

∫
Q2

|b(x1, x2)−〈b〉Q1×Q2 | dx +
1
|Q1|

∫
Q1

∫
Q2

|m Q2b(x1)−〈b〉Q1×Q2 | dx

≤
w(Q1× Q2)

|Q1|
‖b‖bmo(w)+

|Q2|

|Q1|

∫
Q1

|m Q2b(x1)−〈b〉Q1×Q2 | dx1

≤ 2
w(Q1× Q2)

|Q1|
‖b‖bmo(w) = 2〈w(Q2, · )〉Q1‖b‖bmo(w),

where the last inequality follows from (4-8). By the Lebesgue differentiation theorem,

fQ2(x1)= lim
Q1→x1

〈 fQ2〉Q1 ≤ 2‖b‖bmo(w) lim
Q1→x1

〈w(Q2, · )〉Q1 = 2‖b‖bmo(w)w(Q2, x1)
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for almost all x1 ∈ Rn1, where Q1 → x1 denotes a sequence of cubes containing x1 with side length
tending to 0.

We would like to say at this point that ‖b(x1, · )‖BMO(w2,x1)= supQ2
1/(w(Q2, x1)) fQ2(x1) is uniformly

(a.a. x1) bounded. However, we must be a little careful and note that at this point we really have that for
every cube Q2 in Rn2 , there is a null set N (Q2)⊂ Rn1 such that

fQ2(x1)≤ 2‖b‖bmo(w)w(Q2, x1) for all x1 ∈ Rn1 \ N (Q2).

In order to obtain the inequality we want, holding for a.a. x1, let N :=
⋃

N (Q̃2) where Q̃2 are the
cubes in Rn2 with rational side length and centers with rational coordinates. Then N is a null set and
f Q̃2
(x1)≤ 2‖b‖bmo(w)w(Q̃2, x1) for all x1 ∈Rn1 \N. By density, this statement then holds for all cubes Q2

and x1 /∈ N, so
ess sup
x1∈Rn1

‖b(x1, · )‖BMO(w2,x1) ≤ 2‖b‖bmo(w).

The result for the other variable follows symmetrically.
Conversely, suppose

‖b(x1, · )‖BMO(w2,x1) ≤ C1 for a.a. x1, ‖b( · , x2)‖BMO(w1,x2) ≤ C2 for a.a. x2.

Then for any R = Q1× Q2,∫
R
|b−〈b〉R| dx ≤

∫
Q1

∫
Q2

|b(x1, x2)−m Q2(x1)| dx +
∫

Q1

|Q2||m Q2b(x1)−〈b〉Q1×Q2 | dx1

≤

∫
Q1

C2w(Q2, x1) dx1+

∫
Q1

∫
Q2

|b(x1, x2)−m Q1b(x2)| dx2 dx1

≤ C2w(R)+
∫

Q2

C1w(Q1, x2) dx2

= (C1+C2)w(R),
so

‖b‖bmo(w) ≤ 2 max
{
ess sup
x1∈Rn1

‖b(x1, · )‖BMO(w2,x1), ess sup
x2∈Rn2

‖b( · , x2)‖BMO(w1,x2)

}
. �

Corollary 4.4. Let w ∈ A2(R
En) and b ∈ bmoD(w). Then

|〈b, φ〉|. ‖b‖bmoD(w)‖SDiφ‖L1(w)

for all i ∈ {1, 2}.

Proof. This follows immediately from the one-parameter result in (4-2) and the proposition above:

|〈b, φ〉| ≤
∫

Rn1
|〈b(x1, · ), φ(x1, · )〉Rn2 | dx1

.
∫

Rn1
‖b(x1, · )‖BMOD2 (w(x1,· ))‖SD2φ(x1, · )‖L1(w(x1,· )) dx1

. ‖b‖bmo(w)‖SD2φ‖L1(w),

and similarly for SD1 . �
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We now look at the little bmo version of (4-1).

Proposition 4.5. If w ∈ Ap(R
En) for some 1< p <∞, then

‖b‖bmo(w) ' ‖b‖bmo(w;p′) := sup
R

(
1

w(R)

∫
R
|b−〈b〉R|p

′

dw′
)1/p′

.

Proof. By Proposition 4.2 and (4-1),

‖b‖bmo(w) 'max
{
ess sup
x1∈Rn1

‖b(x1, · )‖BMO(w(x1,· );p′), ess sup
x2∈Rn2

‖b( · , x2)‖BMO(w( · ,x2);p′)
}
.

Suppose first that b ∈ bmo(w; p′). Note that for some function g on REn and a cube Q2 in Rn2 , we have∫
Q2

|g(x1, x2)|
p′w′(x1, x2) dx2 ≥

1
w(Q2, x1)p′−1

∣∣∣∣∫
Q2

g(x1, x2) dx2

∣∣∣∣p′

.

Then

‖b‖p′

bmo(w;p′) ≥
1

w(R)

∫
Q1

1
w(Q2, x1)p′−1

∣∣∣∣∫
Q2

b(x1, x2)−〈b〉Q1×Q2 dx2

∣∣∣∣p′

dx1

=
1

w(R)

∫
Q1

|m Q2b(x1)−〈b〉Q1×Q2 |
p′ |Q2|

p′

w(Q2, x1)p′−1 dx1

≥
1

w(R)

∫
Q1

|m Q2b(x1)−〈b〉Q1×Q2 |
p′w′(Q2, x1) dx1,

where the last inequality follows from

|Q2|
p′

w(Q2, x1)p′−1 = |Q2|
1

〈w(x1, · )〉
p′−1
Q2

≥ |Q2|
〈w′(x1, ·)〉Q2

[w(x1, · )]
p′−1
Ap

' w′(Q2, x1).

Now fix Q2 and consider fQ2(x1) :=
∫

Q2
|b(x1, x2)−m Q2b(x1)|

p′w′(x1, x2) dx2. Then

〈 fQ2〉Q1 .
1
|Q1|

∫
Q1

∫
Q2

(
|b(x1, x2)−〈b〉Q1×Q2 |

p′
+ |m Q2b(x1)−〈b〉Q1×Q2 |

p′)w′(x1, x2) dx2 dx1

.
w(Q1× Q2)

|Q1|
‖b‖p′

bmo(w;p′)+
1
|Q1|

∫
Q1

|m Q2b(x1)−〈b〉Q1×Q2 |
p′w′(Q2, x1) dx1

.
w(Q1× Q2)

|Q1|
‖b‖p′

bmo(w;p′).

Then for almost all x1,

fQ2(x1)= lim
Q1→x1

〈 fQ2〉Q1 . lim
Q1→x1

w(Q1× Q2)

|Q1|
‖b‖p′

bmo(w;p′) = w(Q2, x1)‖b‖
p′

bmo(w;p′).

Taking again rational cubes, we obtain

‖b(x1, · )‖BMO(w(x1,· );p′) = sup
Q2

(
1

w(Q2, x1)
fQ2(x1)

)1/p′

. ‖b‖bmo(w;p′)

for almost all x1.
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Conversely, if b ∈ bmo(w), then there exist C1 and C2 such that

‖b(x1, · )‖BMO(w(x1,· );p′) ≤ C1 for a.a. x1, and ‖b( · , x2)‖BMO(w( · ,x2);p′) ≤ C2 for a.a. x2.

Then∫
R
|b−〈b〉R|p

′

dw′ .
∫

Q1

∫
Q2

|b(x1, x2)−m Q2b(x1)|
p′w′(x1, x2) dx2 dx1

+

∫
Q1

∫
Q2

|m Q2b(x1)−〈b〉Q1×Q2 |
p′w′(x1, x2) dx2 dx1.

The first integral is easily seen to be bounded by∫
Q1

‖b(x1, · )‖
p′

BMO(w(x1,· ))
w(Q2, x1) dx1 ≤ C p′

1 w(Q1× Q2).

The second integral is equal to∫
Q1

|m Q2b(x1)−〈b〉Q1×Q2 |
p′w′(Q2, x1) dx1

≤

∫
Q1

w′(Q2, x1)

|Q2|p
′

(∫
Q2

|b(x1, x2)−m Q1b(x2)| dx2

)p′

dx1

≤

∫
Q1

w′(Q2, x1)w(Q2, x1)
p′−1

|Q2|p
′

∫
Q2

|b(x1, x2)−m Q1b(x2)|
p′w′(x1, x2) dx2 dx1.

We may express the first term as 〈w′(x1, · )〉Q2〈w(x1, · )〉
p′−1
Q2
. [w]p

′
−1

Ap
for almost all x1. Then, the

integral is further bounded by∫
Q2

w(Q1, x2)‖b( · , x2)‖BMO(w( · ,x2);p′) dx2 . C p′

2 w(Q1× Q2).

Finally, this gives

‖b‖bmo(w;p′) . (C
p′

1 +C p′

2 )
1/p′ .max(C1,C2)' ‖b‖bmo(w). �

We also have a two-weight John–Nirenberg for Bloom little bmo, which follows very similarly to the
proof above.

Proposition 4.6. Let µ, λ ∈ Ap(R
En) for 1< p <∞, and ν := µ1/pλ−1/p. Then

‖b‖bmo(ν) ' ‖b‖bmo(µ,λ,p) ' ‖b‖bmo(λ′,µ′,p′),

where

‖b‖bmo(µ,λ,p) := sup
R

(
1

µ(R)

∫
R
|b−〈b〉R|p dλ

)1/p

,

‖b‖bmo(λ′,µ′,p′) := sup
R

(
1

λ′(R)

∫
R
|b−〈b〉R|p

′

dµ′
)1/p′

.

Note that it also easily follows that ν ∈ A2(R
En).
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5. Proof of the lower bound

Proof of Theorem 1.3. To see the lower bound, we adapt the argument of Coifman, Rochberg and Weiss
[Coifman et al. 1976]. Let {Xk(x)} and {Yl(y)} both be orthonormal bases for the space of spherical
harmonics of degree n in Rn . Then

∑
k |Xk(x)|2 = cn|x |2n and thus

1=
1
cn

∑
k

Xk(x − x ′)
|x − x ′|2n Xk(x − x ′)

and similarly for Yl .
Furthermore Xk(x − x ′)=

∑
|α|+|β|=n x(k)αβ xαx ′β and similarly for Yl . Remember that

b(x, y) ∈ bmo(ν) ⇐⇒ ‖b‖bmo(ν) = sup
Q

1
ν(Q)

∫
Q
|b(x, y)−〈b〉Q | dx dy <∞.

Here, Q = I × J and I and J are cubes in Rn. Let us define the function

0Q(x, y)= sign(b(x, y)−〈b〉Q)1Q(x, y).

So

|b(x, y)−〈b〉Q ||Q|1Q(x, y)

= (b(x, y)−〈b〉Q)|Q|0Q(x, y)

=

∫
Q
(b(x, y)− b(x ′, y′))0Q(x, y) dx ′ dy′

∼

∑
k,l

∫
Q
(b(x, y)− b(x ′, y′))

Xk(x − x ′)
|x − x ′|2n Xk(x − x ′)

Yl(y− y′)
|y− y′|2n Yl(y− y′)0Q(x, y) dx ′ dy′

=

∑
k,l

∫
R2n

b(x, y)− b(x ′, y′)
|x − x ′|2n|y− y′|2n Xk(x − x ′)Yl(y− y′)·

·

∑
|α|+|β|=n

x(k)αβ xαx ′β
∑

|γ |+|δ|=n

y(l)γ δ yγ y′δ0Q(x, y)1Q(x ′, y′) dx ′ dy′.

Note that∫
R2n

b(x, y)− b(x ′, y′)
|x − x ′|2n|y− y′|2n Xk(x − x ′)Yl(y− y′) · x ′β y′δ1Q(x ′, y′) dx ′ dy′ = [b, Tk Tl](x ′β y′δ1Q(x ′, y′)).

Here Tk and Tl are the Calderón–Zygmund operators that correspond to the kernels

Xk(x)
|x |2n and

Yl(y)
|y|2n .

Observe that these have the correct homogeneity due to the homogeneity of the Xk and Yl . With this
notation, the above becomes

|b(x, y)−〈b〉Q ||Q|1Q(x, y)

=

∑
k,l

∑
|α|+|β|=n

∑
|γ |+|δ|=n

x(k)αβ xα y(l)γ δ yγ0Q(x, y)[b, Tk Tl](x ′β y′δ1Q(x ′, y′))(x, y).
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Now, we integrate with respect to (x, y) and the measure λ. Let us assume for a moment that both I
and J are centered at 0 and thus Q is centered at 0. In this case, since 0Q and 1Q are supported in Q,
there is only contribution for x, x ′, y, y′ in Q:

|Q|
(∫

Q
|b(x, y)−〈b〉Q |p dλ(x, y)

)1/p

6
∑
k,l

∑
|α|+|β|=n

∑
|γ |+|δ|=n

∥∥x(k)αβ xα y(l)γ δ yγ0Q(x, y)[b, Tk Tl](x ′β y′δ1Q(x ′, y′))(x, y)
∥∥

L p(λ)

.
∑
k,l

∑
|α|+|β|=n

∑
|γ |+|δ|=n

l(I )|α|l(J )|γ |
∥∥[b, Tk Tl](x ′β y′δ1Q(x ′, y′))

∥∥
L p(λ)

.
∑
k,l

∑
|α|+|β|=n

∑
|γ |+|δ|=n

l(I )|α|l(J )|γ |‖[b, Tk Tl]‖L p(µ)→L p(λ)‖x ′β y′δ1Q(x ′, y′)‖L p(µ)

.
∑
k,l

∑
|α|+|β|=n

∑
|γ |+|δ|=n

l(I )|α|l(J )|γ |l(I )|β|l(J )|δ|‖[b, Tk Tl]‖L p(µ)→L p(λ)µ(Q)1/p.

We disregarded the coefficients of X and Y at the cost of a constant.
Notice that the Tk and Tl are homogeneous polynomials in Riesz transforms. Therefore the commutator
[b, Tk Tl] can be written as a linear combination of terms such as M[b, R1

i R2
j ]N, where M and N are

compositions of Riesz transforms: First write [b, Tk Tl] as linear combination of terms of the form
[b, Rk

(n)R
l
(n)], where

Rk
(n) =

∏
s

R1
i (k)s

is a composition of n Riesz transforms acting in the first variable with the choice i (k) = (i (k)s )ns=1 ∈

{1, . . . , n}n for each k and similarly for Rl
(n) acting in the second variable Then, for each term, apply

[AB, b]= A[B, b]+[A, b]B successively as follows. Use A= R1
i1

R2
j1 and B of the form Rk

(n−1)R
l
(n−1) and

repeat. It then follows that for each k, l the commutator [b, Tk Tl] can be written as a linear combination
of terms such as M[b, R1

i R2
j ]N, where M and N are compositions of Riesz transforms. Thus Tk and Tl

are homogeneous polynomials in Riesz transforms of the same degree. We require that all commutators
of the form [b, R1

i R2
j ] are bounded, and we have shown the bmo estimate for b for rectangles Q whose

sides are centered at 0. We now translate b in the two directions separately and obtain what we need, by
Proposition 4.6:

‖b‖bmo(ν) ' ‖b‖bmo(µ,λ,p) := sup
R

(
1

µ(R)

∫
R
|b−〈b〉R|p dλ

)1/p

. sup
16k,l6n

‖[b, R1
k R2

l ]‖L p(µ)→L p(λ). �

6. Biparameter paraproducts

Decomposing two functions b and f on Rn into their Haar series adapted to some dyadic grid D and
analyzing the different inclusion properties of the dyadic cubes, one may express their product as

b f =5b f +5∗b f +0b f +5 f b,
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where

5b f :=
∑
Q∈D

b̂(Qε)〈 f 〉QhεQ, 5∗b f :=
∑
Q∈D

b̂(Qε) f̂ (Qε)
1Q

|Q|
, 0b f :=

∑
Q∈D

b̂(Qε) f̂ (Qδ)
1
√
|Q|

hε+δQ .

In [Holmes et al. 2017], it was shown that, when b ∈BMO(ν), the operators 5b, 5∗b, and 0b are bounded
L p(µ)→ L p(λ).

6A. Product BMO paraproducts. In the biparameter setting D=D1×D2, we have fifteen paraproducts.
We treat them beginning with the nine paraproducts associated with product BMO. First, we have the
three “pure” paraproducts, direct adaptations of the one-parameter paraproducts:

5b f :=
∑

Q1×Q2

b̂(Qε1
1 × Qε2

2 )〈 f 〉Q1×Q2hε1
Q1
⊗ hε2

Q2
,

5∗b f :=
∑

Q1×Q2

b̂(Qε1
1 × Qε2

2 ) f̂ (Qε1
1 × Qε2

2 )
1Q1

|Q1|
⊗
1Q2

|Q2|
,

0b f :=
∑

Q1×Q2

b̂(Qε1
1 × Qε2

2 ) f̂ (Qδ1
1 × Qδ2

2 )
1
√
|Q1|

1
√
|Q2|

hε1+δ1
Q1
⊗ hε2+δ2

Q2
= 0∗b f.

Next, we have the “mixed” paraproducts. We index these based on the types of Haar functions acting
on f , since the action on b is the same for all of them, namely b̂(Q1× Q2)— this is the property which
associates these paraproducts with product BMOD: in a proof using duality, one would separate out the b
function and be left with the biparameter square function SD. They are

5b;(0,1) f :=
∑

Q1×Q2

b̂(Qε1
1 × Qε2

2 )

〈
f, hε1

Q1
⊗
1Q2

|Q2|

〉
1Q1

|Q1|
⊗ hε2

Q2
,

5b;(1,0) f :=
∑

Q1×Q2

b̂(Qε1
1 × Qε2

2 )

〈
f,
1Q1

|Q1|
⊗ hε2

Q2

〉
hε1

Q1
⊗
1Q2

|Q2|
=5∗b;(0,1),

0b;(0,1) f :=
∑

Q1×Q2

b̂(Qε1
1 × Qε2

2 )

〈
f, hδ1

Q1
⊗
1Q2

|Q2|

〉
1
√
|Q1|

hε1+δ1
Q1
⊗ hε2

Q2
,

0∗b;(0,1) f :=
∑

Q1×Q2

b̂(Qε1
1 × Qε2

2 ) f̂ (Qδ1
1 × Qε2

2 )
1
√
|Q1|

hε1+δ1
Q1
⊗
1Q2

|Q2|
,

0b;(1,0) f :=
∑

Q1×Q2

b̂(Qε1
1 × Qε2

2 )

〈
f,
1Q1

|Q1|
⊗ hδ2

Q2

〉
1
√
|Q2|

hε1
Q1
⊗ hε2+δ2

Q2
,

0∗b;(1,0) f :=
∑

Q1×Q2

b̂(Qε1
1 × Qε2

2 ) f̂ (Qε1
1 × Qδ2

2 )
1
√
|Q2|

1Q1

|Q1|
⊗ hε2+δ2

Q2
.

Proposition 6.1. If ν := µ1/pλ−1/p for Ap(R
En) weights µ and λ, and Pb denotes any one of the nine

paraproducts defined above, then

‖Pb : L p(µ)→ L p(λ)‖. ‖b‖BMOD(ν), (6-1)

where ‖b‖BMOD(ν) denotes the norm of b in the dyadic weighted product BMOD(ν) space on REn.
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Proof. We first outline the general strategy we use to prove (6-1). From (2-8), it suffices to take f ∈ L p(µ)

and g ∈ L p′(λ′) and show that

|〈Pb f, g〉|. ‖b‖BMOD(ν)‖ f ‖L p(µ)‖g‖L p′ (λ′).

(1) Write 〈Pb f, g〉=〈b, φ〉, where φ depends on f and g. By (4-3), |〈Pb f, g〉|.‖b‖BMOD(ν)‖SDφ‖L1(ν).

(2) Show that SDφ . (O1 f )(O2g), where O1 and O2 are operators satisfying a one-weight bound
L p(w)→ L p(w) for all w ∈ Ap(R

En)— these operators will usually be a combination of maximal
and square functions.

(3) Then the L1(ν)-norm of SDφ can be separated into the L p(µ) and L p′(λ′) norms of these operators Oi

by a simple application of Hölder’s inequality,

‖SDφ‖L1(ν) . ‖O1 f ‖L p(µ)‖O2g‖L p′ (λ′) . ‖ f ‖L p(µ)‖g‖L p′ (λ′),

and the result follows.

Remark also that we will not have to treat the adjoints P∗b separately: interchanging the roles of f and g
in the proof strategy above will show that Pb is also bounded L p′(λ′)→ L p′(µ′), which means that P∗b is
bounded L p(µ)→ L p(λ).

Let us begin with 5b f . We write

〈5b f, g〉 = 〈b, φ〉, where φ :=
∑

Q1×Q2

〈 f 〉Q1×Q2 ĝ(Qε1
1 × Qε2

2 )h
ε1
Q1
⊗ hε2

Q2
.

Then

(SDφ)2 ≤
∑

Q1×Q2

〈| f |〉2Q1×Q2
|ĝ(Qε1

1 × Qε2
2 )|

2 1Q1

|Q1|
⊗
1Q2

|Q2|
≤ (MS f )2 · (SDg)2,

so

|〈5b f, g〉|. ‖b‖BMOD(ν)‖MS f ‖L p(µ)‖SDg‖L p′ (λ′) . ‖b‖BMOD(ν)‖ f ‖L p(µ)‖g‖L p′ (λ′).

Note that if we take instead f ∈ L p′(λ′) and g ∈ L p(µ), we have

|〈5b f, g〉|. ‖b‖BMOD(ν)‖MS f ‖L p′ (λ′)‖SDg‖L p(µ) . ‖b‖BMOD(ν)‖ f ‖L p′ (λ′)‖g‖L p(µ),

proving that ‖5b : L p′(λ′)→ L p′(µ′)‖ = ‖5∗b : L
p(µ)→ L p(λ)‖. ‖b‖BMOD(ν). For 0b,

〈0b f, g〉 = 〈b, φ〉, where φ :=
∑

Q1×Q2

f̂ (Qε1
1 × Qε2

2 )ĝ(Q
δ1
1 × Qδ2

2 )
1
√
|Q1|

1
√
|Q2|

hε1+δ1
Q1
⊗ hε2+δ2

Q2
,

from which it easily follows that SDφ . SD f · SDg.
Let us now look at 5b;(0,1). In this case,

φ :=
∑

Q1×Q2

〈
f, hε1

Q1
⊗
1Q2

|Q2|

〉〈
g,

1Q1

|Q1|
⊗ hε2

Q2

〉
hε1

Q1
⊗ hε2

Q2
.
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Then

(SDφ)2 =
∑

Q1×Q2

〈
f, hε1

Q1
⊗
1Q2

|Q2|

〉2〈
g,

1Q1

|Q1|
⊗ hε2

Q2

〉2
1Q1

|Q1|
⊗
1Q2

|Q2|

=

∑
Q1×Q2

〈H ε1
Q1

f 〉2Q2
〈H ε2

Q2
g〉2Q1

1Q1

|Q1|
⊗
1Q2

|Q2|

≤

(∑
Q1

(MD2 H ε1
Q1

f )2(x2)
1Q1(x1)

|Q1|

)(∑
Q2

(MD1 H ε2
Q2

g)2(x1)
1Q2(x2)

|Q2|

)
= [SM]2 f · [M S]2g,

where [SM] and [M S] are the mixed square-maximal operators in Section 3A. Boundedness of 5b;(0,1)

then follows from Proposition 3.2. By the usual duality trick, the same holds for 5b;(1,0). Finally,
for 0b;(0,1),

φ =
∑

Q1×Q2

〈H δ1
Q1

f 〉Q2

1
√
|Q1|

ĝ(Qε1+δ1
1 × Qε2

2 )h
ε1
Q1
⊗ hε2

Q2
,

so SDφ . [SM] f · SDg. Note that 0b;(1,0) works the same way, except we bound SDφ by [M S] f · SDg,
and the remaining two paraproducts follow by duality. �

6B. Little bmo paraproducts. Next, we have the six paraproducts associated with little bmo. We denote
these by the small Greek letters corresponding to the previous paraproducts, and index them based on
the Haar functions acting on b — in this case, separating out the b function will yield one of the square
functions SDi in one of the variables:

πb;(0,1) f :=
∑

Q1×Q2

〈
b, hε1

Q1
⊗
1Q2

|Q2|

〉〈
f,
1Q1

|Q1|
⊗ hε2

Q2

〉
hε1

Q1
⊗ hε2

Q2
,

π∗b;(0,1) f :=
∑

Q1×Q2

〈
b, hε1

Q1
⊗
1Q2

|Q2|

〉
f̂ (Qε1

1 × Qε2
2 )

1Q1

|Q1|
⊗ hε2

Q2
,

πb;(1,0) f :=
∑

Q1×Q2

〈
b,
1Q1

|Q1|
⊗ hε2

Q2

〉〈
f, hε1

Q1
⊗
1Q2

|Q2|

〉
hε1

Q1
⊗ hε2

Q2
,

π∗b;(1,0) f :=
∑

Q1×Q2

〈
b,
1Q1

|Q1|
⊗ hε2

Q2

〉
f̂ (Qε1

1 × Qε2
2 )h

ε1
Q1
⊗
1Q2

|Q2|
,

γb;(0,1) f :=
∑

Q1×Q2

〈
b, hδ1

Q1
⊗
1Q2

|Q2|

〉
f̂ (Qε1

1 × Qε2
2 )

1
√
|Q1|

hε1+δ1
Q1
⊗ hε2

Q2
= γ ∗b;(0,1) f,

γb;(1,0) f :=
∑

Q1×Q2

〈
b,
1Q1

|Q1|
⊗ hδ2

Q2

〉
f̂ (Qε1

1 × Qε2
2 )

1
√
|Q2|

hε1
Q1
⊗ hε2+δ2

Q2
= γ ∗b;(1,0) f.

Proposition 6.2. If ν := µ1/pλ−1/p for Ap(R
En) weights µ and λ, and pb denotes any one of the six

paraproducts defined above, then

‖pb : L p(µ)→ L p(λ)‖. ‖b‖bmoD(ν),

where ‖b‖bmoD(ν) denotes the norm of b in the dyadic weighted little bmoD(ν) space on REn.



1720 IRINA HOLMES, STEFANIE PETERMICHL AND BRETT D. WICK

Proof. The proof strategy is the same as that of the product BMO paraproducts, with the modification that
we use one of the SDi square functions and Corollary 4.4. For instance, in the case of πb;(0,1) we write

〈πb;(0,1) f, g〉 = 〈b, φ〉, where φ :=
∑

Q1×Q2

〈H ε2
Q2

f 〉Q1 ĝ(Qε1
1 × Qε2

2 )h
ε1
Q1
⊗
1Q2

|Q2|
.

Then

(SD1φ)
2
≤

∑
Q1

(∑
Q2

〈|H ε2
Q2

f |〉2Q1
1Q1(x1)

1Q2(x2)

|Q2|

)(∑
Q2

|ĝ(Qε1
1 × Qε2

2 )|
21Q2(x2)

|Q2|

)
1Q1(x1)

|Q1|

≤

(∑
Q2

M2
D1
(H ε2

Q2
f )(x1)

1Q2(x2)

|Q2|

)(∑
Q1

∑
Q2

|ĝ(Qε1
1 × Qε2

2 )|
21Q1(x1)

|Q1|
⊗
1Q2(x2)

|Q2|

)
= [M S]2 f · S2

Dg,
and so

|〈πb;(0,1) f, g〉|. ‖b‖bmoD(ν)‖SD1φ‖L1(ν) . ‖b‖bmoD(ν)‖ f ‖L p(µ)‖g‖L p′ (λ′).

The proof for πb;(1,0) is symmetrical — we take SD2φ, which will be bounded by [SM] f · SDg. The
adjoint paraproducts π∗b;(0,1) and π∗b;(1,0) follow again by duality. Finally, for γb;(0,1),

φ :=
∑

Q1×Q2

f̂ (Qε1
1 × Qε2

2 )
1
√
|Q1|

ĝ(Qε1+δ1
1 × Qε2

2 )h
ε1
Q1
⊗
1Q2

|Q2|
,

from which it easily follows that SD1φ ≤ SD f · SDg. The proof for γb;(1,0) is symmetrical. �

7. Commutators with Journé operators

7A. Definition of Journé operators. We begin with the definition of biparameter Calderón–Zygmund
operators, or Journé operators, on REn := Rn1 ⊗Rn2 , as outlined in [Martikainen 2012]. As shown later in
[Grau de la Herrán 2016], these conditions are equivalent to the original definition of [Journé 1985].

I. Structural assumptions: Given f = f1⊗ f2 and g = g1⊗ g2, where fi , gi : R
ni → C satisfy spt( fi )∩

spt(gi )=∅ for i = 1, 2, we assume the kernel representation

〈T f, g〉 =
∫

REn

∫
REn

K (x, y) f (y)g(x) dx dy.

The kernel K : REn ×REn \ {(x, y) ∈ REn ×REn : x1 = y1 or x2 = y2} → C is assumed to satisfy:

(1) Size condition:

|K (x, y)| ≤ C
1

|x1− y1|n1

1
|x2− y2|n2

.

(2) Hölder conditions:

(a) If |y1− y′1| ≤
1
2 |x1− y1| and |y2− y′2| ≤

1
2 |x2− y2|, then∣∣K (x, y)− K (x, (y1, y′2))− K (x, (y′1, y2))+ K (x, y′)

∣∣≤ C
|y1− y′1|

δ

|x1− y1|n1+δ

|y2− y′2|
δ

|x2− y2|n2+δ
.
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(b) If |x1− x ′1| ≤
1
2 |x1− y1| and |x2− x ′2| ≤

1
2 |x2− y2|, then∣∣K (x, y)− K ((x1, x ′2), y)− K ((x ′1, x2), y)+ K (x ′, y)

∣∣≤ C
|x1− x ′1|

δ

|x1− y1|n1+δ

|x2− x ′2|
δ

|x2− y2|n2+δ
.

(c) If |y1− y′1| ≤
1
2 |x1− y1| and |x2− x ′2| ≤

1
2 |x2− y2|, then∣∣K (x, y)− K ((x1, x ′2), y)− K (x, (y′1, y2))+ K ((x1, x ′2), (y

′

1, y2))
∣∣≤ C

|y1− y′1|
δ

|x1− y1|n1+δ

|x2− x ′2|
δ

|x2− y2|n2+δ
.

(d) If |x1− x ′1| ≤
1
2 |x1− y1| and |y2− y′2| ≤

1
2 |x2− y2|, then∣∣K (x, y)− K (x, (y1, y′2))− K ((x ′1, x2), y)+ K ((x ′1, x2), (y1, y′2))

∣∣≤ C
|x1− x ′1|

δ

|x1− y1|n1+δ

|y2− y′2|
δ

|x2− y2|n2+δ
.

(3) Mixed size and Hölder conditions:

(a) If |x1− x ′1| ≤
1
2 |x1− y1|, then

|K (x, y)− K ((x ′1, x2), y)| ≤ C
|x1− x ′1|

δ

|x1− y1|n1+δ

1
|x2− y2|n2

.

(b) If |y1− y′1| ≤
1
2 |x1− y1|, then

|K (x, y)− K (x, (y′1, y2))| ≤ C
|y1− y′1|

δ

|x1− y1|n1+δ

1
|x2− y2|n2

.

(c) If |x2− x ′2| ≤
1
2 |x2− y2|, then

|K (x, y)− K ((x1, x ′2), y)| ≤ C
1

|x1− y1|n1

|x2− x ′2|
δ

|x2− y2|n2+δ
.

(d) If |y2− y′2| ≤
1
2 |x2− y2|, then

|K (x, y)− K (x, (y1, y′2))| ≤ C
1

|x1− y1|n1

|y2− y′2|
δ

|x2− y2|n2+δ
.

(4) Calderón–Zygmund structure in Rn1 and Rn2 separately: If f = f1 ⊗ f2 and g = g1 ⊗ g2 with
spt( f1)∩ spt(g1)=∅, we assume the kernel representation

〈T f, g〉 =
∫

Rn1

∫
Rn1

K f2,g2(x1, y1) f1(y1)g1(x1) dx1 dy1,

where the kernel K f2,g2 : R
n1 ×Rn1 \ {(x1, y1) ∈ Rn1 ×Rn1 : x1 = y1} satisfies the size condition

|K f2,g2(x1, y1)| ≤ C( f2, g2)
1

|x1− y1|n1
,

and Hölder conditions:

(a) If |x1− x ′1| ≤
1
2 |x1− y1|, then

|K f2,g2(x1, y1)− K f2,g2(x
′

1, y1)| ≤ C( f2, g2)
|x1− x ′1|

δ

|x1− y1|n1+δ
.
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(b) If |y1− y′1| ≤
1
2 |x1− y1|, then

|K f2,g2(x1, y1)− K f2,g2(x1, y′1)| ≤ C( f2, g2)
|y1− y′1|

δ

|x1− y1|n1+δ
.

We only assume the above representation and a certain control over C( f2, g2) in the diagonal; that is,

C(1Q2,1Q2)+C(1Q2, uQ2)+C(uQ2,1Q2)≤ C |Q2|

for all cubes Q2 ⊂ Rn2 and all “Q2-adapted zero-mean” functions uQ2 — that is, spt(uQ2) ⊂ Q2,
|uQ2 | ≤ 1, and

∫
uQ2 = 0. We assume the symmetrical representation with kernel K f1,g1 in the case

spt( f2)∩ spt(g2)=∅.

II. Boundedness and cancellation assumptions:

(1) Assume T 1, T ∗1, T1(1) and T ∗1 (1) are in product BMO(REn), where T1 is the partial adjoint of T,
defined by

〈T1( f1⊗ f2), g1⊗ g2〉 = 〈T (g1⊗ f2), f1⊗ g2〉.

(2) Assume
|〈T (1Q1 ⊗1Q2),1Q1 ⊗1Q2〉| ≤ C |Q1||Q2|

for all cubes Qi ⊂ Rni (weak boundedness).

(3) Diagonal BMO conditions: for all cubes Qi ⊂ Rni and all zero-mean functions aQ1 and bQ2 that are
Q1- and Q2-adapted, respectively, assume:

|〈T (aQ1 ⊗1Q2),1Q1 ⊗1Q2〉| ≤ C |Q1||Q2|, |〈T (1Q1 ⊗1Q2), aQ1 ⊗1Q2〉|≤ C |Q1||Q2|,

|〈T (1Q1 ⊗ bQ2),1Q1 ⊗1Q2〉| ≤ C |Q1||Q2|, |〈T (1Q1 ⊗1Q2),1Q1 ⊗ bQ2〉|≤ C |Q1||Q2|.

7B. Biparameter dyadic shifts and Martikainen’s representation theorem. Given dyadic rectangles
D = D1×D2 and pairs of nonnegative integers Ei = (i1, i2) and Ej = ( j1, j2), a (cancellative) biparameter
dyadic shift is an operator of the form

S
Ei, Ej
D f :=

∑
R1∈D1
R2∈D2

∑
P1∈(R1)i1
P2∈(R2)i2

∑
Q1∈(R1) j1
Q2∈(R2) j2

aP1 Q1 R1 P2 Q2 R2 f̂ (Pε1
1 × Pε2

2 ) hδ1
Q1
⊗ hδ2

Q2
, (7-1)

where

|aP1 Q1 R1 P2 Q2 R2 | ≤

√
|P1||Q1|

|R1|

√
|P2||Q2|

|R2|
= 2(−n1/2)(i1+ j1)2(−n2/2)(i2+ j2).

We suppress for now the signatures of the Haar functions, and assume summation over them is understood.
We use the simplified notation

S
Ei, Ej
D f :=

Ei, Ej∑
R,P,Q

aP Q R f̂ (P1× P2) hQ1 ⊗ hQ2

for the summation above.
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First note that

S2
D(S

Ei, Ej
D f )=

∑
R1×R2

∑
Q1∈(R1) j1
Q2∈(R2) j2

( ∑
P1∈(R1)i1
P2∈(R2)i2

aP1 Q1 R1 P2 Q2 R2 f̂ (P1× P2)

)2
1Q1

|Q1|
⊗
1Q2

|Q2|

. 2−n1(i1+ j1)2−n2(i2+ j2)(S
Ei, Ej
D f )2,

where S
Ei, Ej
D is the shifted biparameter square function in (3-1). Then, by (3-2),

‖S
Ei, Ej
D f ‖L p(w) . 2(−n1/2)(i1+ j1)2(−n2/2)(i2+ j2)‖S

Ei, Ej
D f ‖L p(w) . ‖ f ‖L p(w) (7-2)

for all w ∈ Ap(R
En).

Next, we state Martikainen’s representation theorem [2012]:

Theorem 7.1 (Martikainen). For a biparameter singular integral operator T as defined in Section 7A,
for some biparameter shifts S

Ei, Ej
D it holds that

〈T f, g〉 = CT Eω1Eω2

∑
Ei, Ej∈Z2

+

2−max(i1, j1)δ/22−max(i2, j2)δ/2〈S
Ei, Ej
D f, g〉,

where noncancellative shifts may only appear if (i1, j1)= (0, 0) or (i2, j2)= (0, 0).

In light of this theorem, in order to prove Theorem 1.1, it suffices to prove the two-weight bound
for commutators [b,SD] with the dyadic shifts, with the requirements that the bounds be independent
of the choice of D and that they depend on Ei and Ej at most polynomially. We first look at the case of
cancellative shifts, and then treat the noncancellative case in Section 7D.

7C. Cancellative case.

Theorem 7.2. Let D=D1×D2 be dyadic rectangles in REn =Rn1⊗Rn2 and S
Ei, Ej
D be a cancellative dyadic

shift as defined in (7-1). If µ, λ ∈ Ap(R
En), 1< p <∞, and ν = µ1/pλ−1/p, then

‖[b,S
Ei, Ej
D ] : L

p(µ)→ L p(λ)‖.
(
(1+max(i1, j1))(1+max(i2, j2))

)
‖b‖bmoD(ν),

where ‖b‖bmoD(ν) denotes the norm of b in the dyadic weighted little bmo(ν) space on REn .

Proof. We may express the product of two functions b and f on REn as

b f =
∑

Pb f +
∑

pb f +5 f b,

where Pb runs through the nine paraproducts associated with BMOD(ν) in Section 6A, and pb runs
through the six paraproducts associated with bmoD(ν) in Section 6B. Then

[b,S
Ei, Ej
D ] f =

∑
[Pb,S

Ei, Ej
D ] f +

∑
[pb,S

Ei, Ej
D ] f +REi, Ej f,

where

REi, Ej f :=5
S
Ei, Ej
D f

b−S
Ei, Ej
D 5 f b.
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From the two-weight inequalities for the paraproducts in Propositions 6.1 and 6.2, and the one-weight
inequality for the shifts in (7-2),∥∥∥∥∑ [Pb,S

Ei, Ej
D ] +

∑
[pb,S

Ei, Ej
D ] : L

p(µ)→ L p(λ)

∥∥∥∥. ‖b‖bmoD(ν),

so we are left with bounding the remainder term REi, Ej . We claim that

‖REi, Ej : L
p(µ)→ L p(λ)‖.

(
(1+max(i1, j1))(1+max(i2, j2))

)
‖b‖bmoD(ν),

from which the result follows.
A straightforward calculation shows that

REi, Ej f =
Ei, Ej∑

R,P,Q

aP Q R f̂ (P1× P2)(〈b〉Q1×Q2 −〈b〉P1×P2)hQ1 ⊗ hQ2 .

We write this as a sum REi, Ej f =R1
Ei, Ej

f +R2
Ei, Ej

f by splitting the term in parentheses as

〈b〉Q1×Q2 −〈b〉P1×P2 = (〈b〉Q1×Q2 −〈b〉R1×R2)+ (〈b〉R1×R2 −〈b〉P1×P2).

For the first term, we may apply the biparameter version of (2-2), where we keep in mind that R1 = Q( j1)
1

and R2 = Q( j2)
2 :

〈b〉Q1×Q2−〈b〉R1×R2 =

∑
1≤k1≤ j1
1≤k2≤ j2

b̂(Q(k1)
1 ×Q(k2)

2 )h
Q
(k1)
1
(Q1)hQ

(k2)
2
(Q2)

+

∑
1≤k1≤ j1

〈
b, h

Q
(k1)
1
⊗
1R2

|R2|

〉
h

Q
(k1)
1
(Q1)+

∑
1≤k2≤ j2

〈
b,
1R1

|R1|
⊗h

Q
(k2)
2

〉
h

Q
(k2)
2
(Q2).

Then, we may write the operator R1
Ei, Ej

as

R1
Ei, Ej

f =
∑

1≤k1≤ j1
1≤k2≤ j2

Ak1,k2 f +
∑

1≤k1≤ j1

B(0,1)k1
f +

∑
1≤k2≤ j2

B(1,0)k2
f, (7-3)

where

Ak1,k2 f :=
Ei, Ej∑

R,P,Q

aP Q R f̂ (P1× P2)b̂(Q
(k1)
1 × Q(k2)

2 )h
Q
(k1)
1
(Q1)hQ

(k2)
2
(Q2)hQ1 ⊗ hQ2,

B(0,1)k1
f :=

Ei, Ej∑
R,P,Q

aP Q R f̂ (P1× P2)

〈
b, h

Q
(k1)
1
⊗
1R2

|R2|

〉
h

Q
(k1)
1
(Q1)hQ1 ⊗ hQ2,

B(1,0)k2
f :=

Ei, Ej∑
R,P,Q

aP Q R f̂ (P1× P2)

〈
b,
1R1

|R1|
⊗ h

Q
(k2)
2

〉
h

Q
(k2)
2
(Q2)hQ1 ⊗ hQ2 .
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We show that these operators satisfy

‖Ak1,k2 : L
p(µ)→ L p(λ)‖. ‖b‖BMOD(ν) for all k1, k2,

‖B(0,1)k1
: L p(µ)→ L p(λ)‖. ‖b‖bmoD(ν) for all k1,

‖B(1,0)k2
: L p(µ)→ L p(λ)‖. ‖b‖bmoD(ν) for all k2.

Going back to the decomposition in (7-3), these inequalities will give

‖R1
Ei, Ej
: L p(µ)→ L p(λ)‖. ( j1 j2+ j1+ j2)‖b‖bmoD(ν).

A symmetrical proof for the term R2
Ei, Ej

coming from (〈b〉R1×R2 −〈b〉P1×P2) will show that

‖R2
Ei, Ej
: L p(µ)→ L p(λ)‖. (i1i2+ i1+ i2)‖b‖bmoD(ν).

Putting these estimates together, we obtain the desired result

‖REi, Ej : L
p(µ)→ L p(λ)‖

. (i1+ i2+ i1i2+ j1+ j2+ j1 j2)‖b‖bmoD(ν) . (1+max(i1, j1))(1+max(i2, j2))‖b‖bmoD(ν).

Note that we are allowed to have one of the situations (i1, i2)= (0, 0) or ( j1, j2)= (0, 0)— but not both —
and then either the term R2

Ei, Ej
f or R1

Ei, Ej
f , respectively, will vanish.

Let us now look at the estimate for Ak1,k2 . Taking again f ∈ L p(µ) and g∈ L p′(λ′), we write 〈Ak1,k2 f,g〉=
〈b, φ〉, where

φ =

Ei, Ej∑
R,P,Q

aP Q R f̂ (P1× P2)hQ
(k1)
1
(Q1)hQ

(k2)
2
(Q2)ĝ(Q1× Q2)hQ

(k1)
1
⊗ h

Q
(k2)
2

=

∑
R1×R2

∑
P1∈(R1)i1
P2∈(R2)i2

∑
N1∈(R1) j1−k1
N2∈(R2) j2−k2

f̂ (P1× P2)

( ∑
Q1∈(N1)k1
Q2∈(N2)k2

aP Q R ĝ(Q1× Q2)hN1(Q1)hN2(Q2)

)
hN1 ⊗ hN2 .

Then

S2
Dφ .

∑
N1×N2

( ∑
P1∈(N

( j1−k1)
1 )i1

P2∈(N
( j2−k2)
2 )i2

| f̂ (P1× P2)|
∑

Q1∈(N1)k1
Q2∈(N2)k2

|aP Q R||ĝ(Q1× Q2)|
1
√
|N1|

1
√
|N2|

)2
1N1 ⊗1N2

|N1||N2|

. 2−n1(i1+ j1)2−n2(i2+ j2)
∑

N1×N2

( ∑
P1∈(N

( j1−k1)
1 )i1

P2∈(N
( j2−k2)
2 )i2

| f̂ (P1× P2)|2n1k1/22n2k2/2〈|g|〉N1×N2

)2
1N1 ⊗1N2

|N1||N2|

. 2−n1(i1+ j1−k1)2−n2(i2+ j2−k2)(MSg)2
∑

R1×R2

( ∑
P1∈(R1)i1
P2∈(R2)i2

| f̂ (P1× P2)|

)2 ∑
N1∈(R1) j1−k1
N2∈(R2) j2−k2

1N1 ⊗1N2

|N1||N2|

= 2−n1(i1+ j1−k1)2−n2(i2+ j2−k2)(MSg)2(S(i1,i2),( j1−k1, j2−k2)

D f )2,
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where the last operator is the shifted square function in (3-1). Then, from (3-2),

‖Ak1,k2 : L
p(µ)→ L p(λ)‖

. ‖b‖BMOD(ν)‖SDφ‖L1(ν)

. ‖b‖BMOD(ν)2
(−n1/2)(i1+ j1−k1)2(−n2/2)(i2+ j2−k2)‖MSg‖L p′ (λ′)‖S

(i1,i2),( j1−k1, j2−k2)

D f ‖L p(µ)

. ‖b‖BMOD(ν)‖g‖L p′ (λ′)‖ f ‖L p(µ).

Finally, we look at B(0,1)k1
, with the proof for B(1,0)k2

being symmetrical. We write again 〈B(0,1)k1
f, g〉 =

〈b, φ〉, where

φ =

Ei, Ej∑
R,P,Q

aP Q R f̂ (P1× P2)hQ
(k1)
1
(Q1)ĝ(Q1× Q2)hQ

(k1)
1
⊗
1R2

|R2|
.

Then

S2
D1

f .2−n1(i1+ j1)2−n2(i2+ j2)
∑

R1∈D1
N1∈(R1) j1−k1

1N1

|N1|

( ∑
R2∈D2

∑
P1∈(R1)i1
P2∈(R2)i2

| f̂ (P1×P2)|
∑

Q2∈(R2) j2

〈|HQ2 g|〉N12n1k1/2 1R2

|R2|

)2

,

and the summation above is bounded by( ∑
R1∈D1

N1∈(R1) j1−k1

1N1

|N1|

∑
R2∈D2

( ∑
P1∈(R1)i1
P2∈(R2)i2

| f̂ (P1× P2)|

)2
1R2

|R2|

)( ∑
R2∈D2

( ∑
Q2∈(R2) j2

MD1(HQ2 g)
)2
1R2

|R2|

)
,

which is exactly
(S(i1,i2),( j1−k1,0)

D f )2([M S] j2,0g)2.

From (3-2) and (3-3), we obtain exactly ‖SD1φ‖L1(ν) . ‖ f ‖L p(µ)‖g‖L p′ (λ′), and the proof is complete. �

7D. The noncancellative case. Following the proof in [Martikainen 2012], we are left with three types
of terms to consider, all of paraproduct type,

• the full standard paraproduct, 5a and 5∗a ,

• the full mixed paraproducts, 5a;(0,1) and 5a;(1,0),

where, in each case, a is some fixed function in unweighted product BMO(REn), with ‖a‖BMO(REn) ≤ 1, and

• the partial paraproducts, defined for every i1, j1 ≥ 0 as

S
i1, j1
D f :=

∑
R1∈D1
R2∈D2

∑
P1∈(R1)i1
Q1∈(R1) j1

âP1 Q1 R1(R
δ2
2 ) f̂ (Pε1

1 × Rε2
2 )h

δ1
Q1
×
1R2

|R2|
,

where, for every fixed P1, Q1, R1, we have aP1 Q1 R1(x2) is a BMO(Rn2) function with

‖aP1 Q1 R1‖BMO(Rn2 ) ≤

√
|P1|
√
|Q1|

|R1|
= 2(−n1/2)(i1+ j1),
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and
âP1 Q1 R1(R

δ2
2 ) := 〈aP1 Q1 R1, hδ2

R2
〉Rn2 :=

∫
Rn2

aP1 Q1 R1(x2)h
δ2
R2
(x2) dx2.

The symmetrical partial paraproduct Si2, j2
D is defined analogously.

We treat each case separately.

7D1. The full standard paraproduct. In this case, we are looking at the commutator [b,5a], where

5a f :=
∑
R∈D

â(R)〈 f 〉Rh R,

and a ∈ BMOD(R
En) with ‖a‖BMOD(REn) ≤ 1. We prove that:

Theorem 7.3. Let µ, λ ∈ Ap(R
En), 1< p <∞ and ν := µ1/pλ−1/p. Then

‖[b,5a] : L p(µ)→ L p(λ)‖. ‖a‖BMOD(REn)‖b‖bmoD(ν).

Proof. We remark first that

5a(b f )=
∑
R∈D

â(R)〈b f 〉Rh R and 55a f b =
∑
R∈D

â(R)〈b〉R〈 f 〉Rh R,

so
5a(b f )−55a f b =

∑
R∈D

â(R)
(
〈b f 〉R −〈b〉R〈 f 〉R

)
h R

=5a

(∑
Pb f +

∑
pb f +5 f b

)
−55a f b,

where the last equality was obtained by simply expanding b f into paraproducts. Then

55a f b−5a5 f b =
∑

5aPb f +
∑

5apb f −
∑
R∈D

â(R)
(
〈b f 〉R −〈b〉R〈 f 〉R

)
h R.

Noting that

[b,5a] f =
∑

Pb5a f +
∑

pb5a f −
∑

5aPb f −
∑

5apb f +55a f b−5a5 f b,

we obtain
[b,5a] f =

∑
Pb5a f +

∑
pb5a f −

∑
R∈D

â(R)
(
〈b f 〉R −〈b〉R〈 f 〉R

)
h R.

The first terms are easily handled:

‖Pb5a f ‖L p(λ) . ‖b‖BMOD(ν)‖5a f ‖L p(µ) . ‖b‖BMOD(ν)‖a‖BMOD(REn)‖ f ‖L p(µ),

‖pb5a f ‖L p(λ) . ‖b‖bmoD(ν)‖5a f ‖L p(µ) . ‖b‖bmoD(ν)‖a‖BMOD(REn)‖ f ‖L p(µ).

So we are left with the third term.
Now, for any dyadic rectangle R,

〈b f 〉R −〈b〉R〈 f 〉R =
1
|R|

∫
R

f (x)1R(x)(b(x)−〈b〉R) dx .
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Expressing 1R(b−〈b〉R) as in (2-5), we obtain

〈b f 〉R−〈b〉R〈 f 〉R =
1
|R|

∑
P1⊂Q1
P2⊂Q2

b̂(P1×P2) f̂ (P1×P2)

+
1
|R|

∑
P1⊂Q1

〈
b,h P1⊗

1Q2

|Q2|

〉
〈 f,h P1⊗1Q2〉+

1
|R|

∑
P2⊂Q2

〈
b,
1Q1

|Q1|
⊗h P2

〉
〈 f,1Q1⊗h P2〉.

Therefore ∑
R∈D

â(R)
(
〈b f 〉R −〈b〉R〈 f 〉R

)
h R =3a,b f + λ(0,1)a,b f + λ(1,0)a,b f,

where

3a,b f :=
∑

Q1×Q2

â(Q1× Q2)
1

|Q1||Q2|

( ∑
P1⊂Q1
P2⊂Q2

b̂(P1× P2) f̂ (P1× P2)

)
hQ1 ⊗ hQ2,

λ
(0,1)
a,b f :=

∑
Q1×Q2

â(Q1× Q2)
1

|Q1||Q2|

( ∑
P1⊂Q1

〈
b, h P1 ⊗

1Q2

|Q2|

〉
〈 f, h P1 ⊗1Q2〉

)
hQ1 ⊗ hQ2,

λ
(1,0)
a,b f :=

∑
Q1×Q2

â(Q1× Q2)
1

|Q1||Q2|

( ∑
P2⊂Q2

〈
b,
1Q1

|Q1|
⊗ h P2

〉
〈 f,1Q1 ⊗ h P2〉

)
hQ1 ⊗ hQ2 .

To analyze the term 3a,b, we write 〈3a,b f, g〉 = 〈b, φ〉, where

φ =
∑

P1×P2

f̂ (P1× P2)

( ∑
Q1⊃P1
Q2⊃P2

â(Q1× Q2)ĝ(Q1× Q2)
1

|Q1||Q2|

)
h P1 ⊗ h P2

=

∑
R∈D

f̂ (R)
( ∑

T∈D,T⊃R

â(T )ĝ(T )
1
|T |

)
h R.

So |〈3a,b f, g〉|. ‖b‖BMOD(ν)‖SDφ‖L1(ν), and

S2
Dφ =

∑
R∈D
| f̂ (R)|2

( ∑
T∈D,T⊃R

â(T )ĝ(T )
1
|T |

)2
1R

|R|
≤

∑
R∈D
| f̂ (R)|2

( ∑
T∈D,T⊃R

âτ (T )ĝτ (T )
1
|T |

)2
1R

|R|
,

where aτ :=
∑

R∈D |â(R)|h R and gτ :=
∑

R∈D |ĝ(R)|h R are martingale transforms which do not increase
either the BMO norm of a, or the L p′(λ′) norm of g. Now note that

〈5∗aτ gτ 〉R =
∑
T(R

âτ (T )ĝτ (T )
1
|R|
+

∑
T⊃R

âτ (T )ĝτ (T )
1
|T |

,

and since all the Haar coefficients of aτ and gτ are nonnegative, we may write∑
T⊃R

âτ (T )ĝτ (T )
1
|T |
≤ 〈5∗aτ gτ 〉R.
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Then

S2
Dφ ≤

∑
R∈D
| f̂ (R)|2〈5∗aτ gτ 〉2R

1R

|R|
≤ (MS5

∗

aτ gτ )2S2
D f,

and
‖SDφ‖L1(ν) ≤ ‖MS5

∗

aτ gτ‖L p′ (λ′)‖SD f ‖L p(µ)

. ‖5∗aτ gτ‖L p′ (λ′)‖ f ‖L p(µ)

. ‖aτ‖BMOD(REn)‖gτ‖L p′ (λ′)‖ f ‖L p(µ),

which gives us the desired estimate

‖3a,b : L p(µ)→ L p(λ)‖. ‖a‖BMOD(REn)‖b‖BMOD(ν).

Finally, we analyze the term λ
(0,1)
a,b , with the last term being symmetrical. We have 〈λ(0,1)a,b f, g〉 = 〈b, φ〉

with

φ =
∑

P1

(∑
P2

〈 f, h P1 ⊗1P2〉
1
|P2|

∑
Q1⊃P1

â(Q1× P2)ĝ(Q1× P2)
1
|Q1|

1P2

|P2|

)
h P1,

and |〈λ(0,1)a,b f, g〉|. ‖b‖bmoD(ν)‖SD1φ‖L1(ν). Now

S2
D1
φ ≤

∑
P1

(∑
P2

〈|HP1 f |〉P2

( ∑
Q1⊃P1

âτ (Q1× P2)ĝτ (Q2× P2)
1
|Q1|

)
1P2

|P2|

)2
1P1

|P1|
,

where we are using the same martingale transforms as above. Note that〈
5∗aτ gτ ,

1P1

|P1|

〉
Rn1

(x2)=
∑

P2

1P2(x2)

|P2|

∑
Q1

âτ (Q1× P2)ĝτ (Q1× P2)
|Q1 ∩ P1|

|Q1||P1|
,

and again since all terms are nonnegative:

S2
D1
φ ≤

∑
P1

M2
D2
(HP1 f )(x2)

( ∑
Q1⊃P1

∑
P2

âτ (Q1× P2)ĝτ (Q1× P2)
1
|Q1|

1P2(x2)

|P2|

)2
1P1(x1)

|P1|

≤

∑
P1

M2
D2
(HP1 f )(x2)

(〈
5∗aτ gτ ,

1P1

|P1|

〉
Rn1

(x2)

)2
1P1(x1)

|P1|

≤ (MD1(5
∗

aτ gτ )(x1, x2))
2
∑

P1

M2
D2
(HP1 f )(x2)

1P1(x1)

|P1|

= (MD1(5
∗

aτ gτ )(x1, x2))
2([SM] f (x1, x2))

2.

Then

‖SD1φ‖L1(ν) . ‖5
∗

aτ gτ‖L p′ (λ′)‖[SM] f ‖L p(µ) . ‖a‖BMOD(REn)‖g‖L p′ (λ′)‖ f ‖L p(µ),

and so

‖λ
(0,1)
a,b : L

p(µ)→ L p(λ)‖. ‖a‖BMOD(ν)‖b‖bmoD(ν). �
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7D2. The full mixed paraproduct. We are now dealing with [b,5a;(0,1)], where

5a;(0,1) f :=
∑

P1×P2

â(P1× P2)

〈
f, h P1 ⊗

1P2

|P2|

〉
1P1

|P1|
⊗ h P2 .

Theorem 7.4. Let µ, λ ∈ Ap(R
En), 1< p <∞ and ν := µ1/pλ−1/p. Then

‖[b,5a;(0,1)] : L p(µ)→ L p(λ)‖. ‖a‖BMOD(REn)‖b‖bmoD(ν).

Note that the case [b,5a;(1,0)] follows symmetrically.

Proof. By the standard considerations, we only need to bound the remainder term

R(0,1)
a,b f :=55a;(0,1) f b−5a;(0,1)5 f b.

Explicitly, these terms are

55a;(0,1) f b =
∑

P1×P2

â(Pε1
1 × Pε2

2 )

〈
f, hε1

P1
⊗
1P2

|P2|

〉( ∑
Q1)P1

〈b〉Q1×P2hδ1
Q1
(P1)h

δ1
Q1
(x1)

)
hε2

P2
(x2),

5a;(0,1)5 f b =
∑

P1×P2

â(Pε1
1 × Pε2

2 )

( ∑
Q2)P2

f̂ (Pε1
1 × Qδ2

2 )〈b〉P1×Q2hδ2
Q2
(P2)

)
1P1(x1)

|P1|
⊗ hε2

P2
(x2).

Consider now a third term

T :=
∑

P1×P2

â(Pε1
1 × Pε2

2 )〈b〉P1×P2

〈
f, hε1

P1
⊗
1P2

|P2|

〉
1P1

|P1|
⊗ hε2

P2
.

Using the one-parameter formula

1P1(x1)

|P1|
=

∑
Q1)P1

hδ1
Q1
(P1)h

δ1
Q1
(x1),

we write T as

T =
∑

P1×P2

â(Pε1
1 × Pε2

2 )

〈
f, hε1

P1
⊗
1P2

|P2|

〉( ∑
Q1)P1

〈b〉P1×P2hδ1
Q1
(P1)h

δ1
Q1
(x1)

)
hε2

P2
(x2),

allowing us to combine this term with 55a;(0,1) f b:

55a;(0,1) f b−T =
∑

P1×P2

â(Pε1
1 ×Pε2

2 )

〈
f, hε1

P1
⊗
1P2

|P2|

〉( ∑
Q1)P1

(〈b〉Q1×P2−〈b〉P1×P2)h
δ1
Q1
(P1)h

δ1
Q1
(x1)

)
hε2

P2
(x2).

Using (2-2), we have

〈b〉Q1×P2 −〈b〉P1×P2 =−

∑
R1:P1(R1⊂Q1

〈
b, hτ1

R1
⊗
1P2

|P2|

〉
hτ1

R1
(P1),

and then the term in parentheses above becomes

−

∑
Q1)P1

( ∑
R1:P1(R1⊂Q1

〈
b, hτ1

R1
⊗
1P2

|P2|

〉
hτ1

R1
(P1)

)
hδ1

Q1
(P1)h

δ1
Q1
(x1). (7-4)
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Next, we analyze this term depending on the relationship between R1 and Q1:

Case 1: R1 ( Q1. Then we may rewrite the sum as∑
R1)P1

〈
b, hτ1

R1
⊗
1P2

|P2|

〉
hτ1

R1
(P1)

∑
Q1)R1

hδ1
Q1
(P1)︸ ︷︷ ︸

=h
δ1
Q1
(R1)

hδ1
Q1
(x1)=

∑
R1)P1

〈
b, hτ1

R1
⊗
1P2

|P2|

〉
hτ1

R1
(P1)

1R1(x1)

|R1|
.

This then leads to∑
P1×P2

â(Pε1
1 × Pε2

2 )

〈
f, hε1

P1
⊗
1P2

|P2|

〉( ∑
R1)P1

〈
b, hτ1

R1
⊗
1P2

|P2|

〉
hτ1

R1
(P1)

1R1(x1)

|R1|

)
hε2

P2
(x2)

=

∑
R1×P2

〈
b, hτ1

R1
⊗
1P2

|P2|

〉( ∑
P1(R1

â(Pε1
1 × Pε2

2 )

〈
f, hε1

P1
⊗
1P2

|P2|

〉
hτ1

R1
(P1)

)
1R1(x1)

|R1|
⊗ hε2

P2
(x2)

=

∑
R1×P2

〈
b, hτ1

R1
⊗
1P2

|P2|

〉
〈5a;(0,1) f, hτ1

R1
⊗ hε2

P2
〉
1R1(x1)

|R1|
⊗ hε2

P2
(x2)

= π∗b;(0,1)5a;(0,1) f.

Case 2a: R1 = Q1 and τ1 6= δ1. Then (7-4) becomes

−

∑
Q1)P1

〈
b, hτ1

Q1
⊗
1P2

|P2|

〉
1
√
|Q1|

hτ1+δ1
Q1

(P1)h
δ1
Q1
(x1),

which leads to∑
Q1×P2

〈
b, hτ1

Q1
⊗
1P2

|P2|

〉
1
√
|Q1|

hδ1
Q1
(x1)h

ε2
P2
(x2)

∑
P1(Q1

â(Pε1
1 × Pε2

2 )

〈
f, hε1

P1
⊗
1P2

|P2|

〉
hτ1+δ1

Q1
(P1)

=

∑
Q1×P2

〈
b, hτ1

Q1
⊗
1P2

|P2|

〉
〈5a;(0,1) f, hτ1+δ1

Q1
⊗ hε2

P2
〉

1
√
|Q1|

hδ1
Q1
(x1)⊗ hε2

P2
(x2)

= γb;(0,1)5a;(0,1) f.

Case 2b: R1 = Q1 and τ1 = δ1. Then (7-4) becomes∑
Q1)P1

〈
b, hδ1

Q1
⊗
1P2

|P2|

〉
1
|Q1|

hδ1
Q1
,

which gives rise to the term

T (0,1)
a,b f :=

∑
Q1×P2

〈
b, hδ1

Q1
⊗
1P2

|P2|

〉
hδ1

Q1
(x1)h

ε2
P2
(x2)

1
|Q1|

∑
P1(Q1

â(Pε1
1 × Pε2

2 )

〈
f, hε1

P1
⊗
1P2

|P2|

〉
.

We have proved that

55a;(0,1) f b− T =−π∗b;(0,1)5a;(0,1) f − γb;(0,1)5a;(0,1) f − T (0,1)
a,b f.
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Expressing T instead as

T =
∑

P1×P2

â(Pε1
1 × Pε2

2 )

( ∑
Q2)P2

f̂ (Pε1
1 × Qδ2

2 )〈b〉P1×P2hδ2
Q2
(P2)

)
1P1

|P1|
⊗ hε2

P2
,

we are able to pair it with 5a;(0,1)5 f b. Then, a similar analysis yields

T −5a;(0,1)5 f b =5a;(0,1)πb;(1,0) f +5a;(0,1)γb;(1,0) f + T (1,0)
a,b f,

where

T (1,0)
a,b f :=

∑
P1×P2

â(Pε1
1 × Pε2

2 )
1P1(x1)

|P1|
⊗ hε2

P2
(x2)

( ∑
Q2)P2

〈
b,
1P1

|P1|
⊗ hδ2

Q2

〉
f̂ (Pε1

1 × Qδ2
2 )

1
|Q2|

)
.

Then

R(0,1)
a,b f =5a;(0,1)πb;(1,0) f +5a;(0,1)γb;(1,0) f −π∗b;(0,1)5a;(0,1) f −γb;(0,1)5a;(0,1) f +T (1,0)

a,b f −T (0,1)
a,b f.

It is now obvious that the first four terms are bounded as desired, and it remains to bound the terms Ta,b.
We look at T (0,1)

a,b , for which we can write 〈T (0,1)
a,b f, g〉 = 〈b, φ〉, where

φ =
∑

Q1×P2

ĝ(Qδ1
1 × Pε2

2 )
1
|Q1|

( ∑
P1(Q1

â(Pε1
1 × Pε2

2 )

〈
f, hε1

P1
⊗
1P2

|P2|

〉)
hδ1

Q1
⊗
1P2

|P2|
.

Then |〈T (0,1)
a,b f, g〉|. ‖b‖bmoD(ν)‖SD1φ‖L1(ν), and

S2
D1
φ =

∑
Q1

(∑
P2

ĝ(Qδ1
1 × Pε2

2 )

(
1
|Q1|

∑
P1(Q1

â(Pε1
1 × Pε2

2 )

〈
f, hε2

P1
⊗
1P2

|P2|

〉)
1P2(x2)

|P2|

)2
1Q1(x1)

|Q1|
.

Now, 〈
5a;(0,1) f,

1Q1

|Q1|
⊗ hε2

P2

〉
=

∑
P1

â(Pε1
1 × Pε2

2 )

〈
f, hε1

P1
⊗
1P2

|P2|

〉
|P1 ∩ Q1|

|P1||Q1|
.

Define the martingale transform a 7→ aτ =
∑

P1×P2
τ
ε1,ε2
P1,P2

â(Pε1
1 × Pε2

2 ), where

τ
ε1,ε2
P1,P2
=

{
l + 1 if 〈 f, hε1

P1
⊗1P2/|P2|〉 ≥ 0,

−1 otherwise.

Note that, while this transform does depend on f , in the end it will not matter, as this will be absorbed
into the product BMO norm of aτ . Then we have

1
|Q1|

∣∣∣∣ ∑
P1(Q1

â(Pε1
1 × Pε2

2 )

〈
f, hε1

P1
⊗
1P2

|P2|

〉∣∣∣∣≤ 〈5aτ ;(0,1) f,
1Q1

|Q1|
⊗ hε2

P2

〉
.

Returning to the square function estimate, we now have

S2
D1
φ ≤

∑
Q1

(∑
P2

|ĝ(Qδ1
1 × Pε2

2 )|
21P2(x2)

|P2|

)(∑
P2

〈|H ε2
P2
5aτ ;(0,1) f |〉2Q1

1Q1(x1)
1P2(x2)

|P2|

)
1Q1(x1)

|Q1|

≤ S2
Dg
(∑

P2

M2
D1
(H ε2

P2
5aτ ;(0,1) f )(x1)

1P2(x2)

|P2|

)
= S2

Dg([M S]5aτ ;(0,1) f )2.
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Finally,

‖SD1φ‖L1(ν) ≤ ‖SDg‖L p′ (λ′)‖[M S]5aτ ;(0,1) f ‖L p(µ)

. ‖g‖L p′ (λ′) ‖5aτ ;(0,1) f ‖L p(µ)︸ ︷︷ ︸
.‖aτ ‖BMOD (REn )‖ f ‖L p (µ)

. ‖a‖BMOD(REn)‖ f ‖L p(µ)‖g‖L p′ (λ′),

showing that

‖T (0,1)
a,b : L

p(µ)→ L p(λ)‖. ‖a‖BMOD(REn)‖b‖bmoD(ν).

The estimate for T (1,0)
a,b follows similarly. �

7D3. The partial paraproducts. We work with

S
i1, j1
D f :=

∑
R1×R2

∑
P1∈(R1)i1
Q1∈(R1) j1

âP1 Q1 R1(R
ε2
2 ) f̂ (Pε1

1 × Rε2
2 )h

δ1
Q1
⊗
1R2

|R2|
,

where i1, j1 are nonnegative integers, and for every P1, Q1, R1,

aP1 Q1 R1(x2) ∈ BMO(Rn2) with ‖aP1 Q1 R1‖BMO(Rn2 ) ≤ 2(−n1/2)(i1+ j1).

Theorem 7.5. Let µ, λ ∈ Ap(R
En), 1< p <∞ and ν := µ1/pλ−1/p. Then

‖[b,Si1, j1
D ] : L p(µ)→ L p(λ)‖. ‖b‖bmoD(ν).

First we need the one-weight bound for the partial paraproducts:

Proposition 7.6. For any w ∈ Ap(R
En), 1< p <∞,

‖S
i1, j1
D : L p(w)→ L p(w)‖. 1. (7-5)

Proof. Let f ∈ L p(w) and g ∈ L p′(w′), and we will show that |〈Si1, j1
D f, g〉|. ‖ f ‖L p(w)‖g‖L p′ (w′). First,

‖〈S
i1, j1
D f, g〉‖ ≤

∑
R1

∑
P1∈(R1)i1
Q1∈(R1) j2

|〈aP1 Q1 R1, φP1 Q1 R1〉R
n2 |

≤

∑
R1

∑
P1∈(R1)i1
Q1∈(R1) j2

‖aP1 Q1 R1‖BMO(Rn2 )‖SD2φP1 Q1 R1‖L1(Rn2 )

≤ 2(−n1/2)(i1+ j1)
∑
R1

∑
P1∈(R1)i1
Q1∈(R1) j2

‖SD2φP1 Q1 R1‖L1(Rn2 ),

where for every P1, Q1, R1,

φP1 Q1 R1(x2) :=
∑
R2

f̂ (P1× R2)

〈
g, hQ1 ⊗

1R2

|R2|

〉
h R2(x2).
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Now,

S2
D2
φP1 Q1 R1 =

∑
R2

|ĤP1 f (R2)|
2
〈|HQ1 g|〉2R2

1R2(x2)

|R2|
≤ (MD2 HQ1 g)2(x2)(SD2 HP1 f )2(x2),

so∑
R1

∑
P1∈(R1)i1
Q1∈(R1) j2

‖SD2φP1 Q1 R1‖L1(Rn2 )

≤

∑
R1

∑
P1∈(R1)i1
Q1∈(R1) j2

∫
Rn2
(MD2 HQ1 g)(x2)(SD2 HP1 f )(x2) dx2

=

∫
Rn2

∫
Rn1

∑
R1

∑
P1∈(R1)i1
Q1∈(R1) j2

(MD2 HQ1 g)(x2)(SD2 HP1 f )(x2)
1R1(x1)

|R1|
dx1 dx2

≤

∫
REn

(∑
R1

( ∑
P1∈(R1)i1

SD2 HP1 f (x2)

)2
1R1(x1)

|R1|

)1/2(∑
R1

( ∑
Q1∈(R1) j1

MD2 HQ1 g(x2)

)2
1R1(x1)

|R1|

)1/2

dx

=

∫
REn
[SSD2]

i1,0 f · [SMD2]
j1,0gw1/pw−1/p dx .

Then, from the estimates in (3-3),

‖〈S
i1, j1
D f, g〉‖ ≤ 2(−n1/2)(i1+ j1)‖[SSD2]

i1,0 f ‖L p(w)‖[SMD2]
j1,0g‖L p′ (w′)

. 2(−n1/2)(i1+ j1)2(n1i1/2)‖ f ‖L p(w)2(n1 j1/2)‖g‖L p′ (w′),

and the result follows. �

Proof of Theorem 7.5. In light of (7-5), we only need to bound the remainder term

Ri1, j1 f :=5
S

i1, j1
D f

b−Si1, j1
D 5 f b.

The proof is somewhat similar to that of the full mixed paraproducts, in that we combine each of these
terms

5
S

i1, j1
D f

b =
∑

R1×R2

∑
P1∈(R1)i1
Q1∈(R1) j1

âP1 Q1 R1(R
ε2
2 ) f̂ (Pε1

1 × Rε2
2 )

( ∑
Q2)R2

〈b〉Q1×Q2hδ2
Q2
(R2)h

δ2
Q2
(x2)

)
hδ1

Q1
(x1),

S
i1, j1
D 5 f b =

∑
R1×R2

∑
P1∈(R1)i1
Q1∈(R1) j2

âP1 Q1 R1(R
ε2
2 ) f̂ (Pε1

1 × Rε2
2 )〈b〉P1×R2hδ1

Q1
(x1)⊗

1R2(x2)

|R2|
,

with a third term

T :=
∑

R1×R2

∑
P1∈(R1)i1
Q1∈(R1) j2

âP1 Q1 R1(R
ε2
2 ) f̂ (Pε1

1 × Rε2
2 )〈b〉Q1×R2hδ1

Q1
⊗
1R2

|R2|
.
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As before, expanding the indicator function in T into its Haar series, we may combine T with 5
S

i1, j1
D f

b:

5
S

i1, j1
D f

b− T =
∑

R1×R2

∑
P1∈(R1)i1
Q1∈(R1) j2

âP1 Q1 R1(R
ε2
2 ) f̂ (Pε1

1 × Rε2
2 )Tb(x2)h

δ1
Q1
(x1),

where
Tb(x2)=

∑
Q2)R2

(〈b〉Q1×Q2 −〈b〉Q1×P2)h
δ2
Q2
(R2)h

δ2
Q2
(x2)

=

∑
Q2)R2

( ∑
P2:R2(P2⊂Q2

〈
b,
1Q1

|Q1|
⊗ hτ2

P2

〉
hτ2

P2
(R2)

)
hδ2

Q2
(R2)h

δ2
Q2
(x2).

We analyze this term depending on the relationship of P2 with Q2.

Case 1: P2 ( Q2. Then

Tb(x2)=
∑

P2)R2

〈
b,
1Q1

|Q1|
⊗ hτ2

P2

〉
hτ2

P2
(R2)

1P2(x2)

|P2|
,

which gives the operator∑
Q1×P2

〈
b,
1Q1

|Q1|
⊗ hτ2

P2

〉
hτ1

Q1
(x1)

1P2(x2)

|P2|

( ∑
P1∈(Q

( j1)
1 )i1

∑
R2(P2

âP1 Q1 R1(R
ε2
2 )Ĥ

ε1
P1

f (Rε2
2 )h

τ2
P2
(R2)

)

=

∑
Q1×P2

〈
b,
1Q1

|Q1|
⊗ hτ2

P2

〉
hτ1

Q1
(x1)

1P2(x2)

|P2|

( ∑
P1∈(Q

( j1)
1 )i1

〈5∗aP1 Q1 R1
(H ε1

P1
f ), hτ2

P2
〉Rn2

)
= π∗b;(1,0)F,

where

F :=
∑
Q1

( ∑
P1∈(Q

( j1)
1 )i1

5∗aP1 Q1 R1
(H ε1

P1
f )(x2)

)
hδ1

Q1
(x1).

Now
‖π∗b;(1,0)F‖L p(λ) . ‖b‖bmoD(ν)‖F‖L p(µ),

so we are done if we can show that

‖F‖L p(µ) . ‖ f ‖L p(µ). (7-6)

Take g ∈ L p′(µ′). Then

|〈F, g〉| ≤
∑
Q1

∑
P1∈(Q

( j1)
1 )i1

|〈5∗aP1 Q1 R1
(H ε1

P1
f ), H δ1

Q1
g〉Rn2 |.

Notice that we may write

〈5∗aP1 Q1 R1
(H ε1

P1
f ), H δ1

Q1
g〉Rn2 = 〈aP1 Q1 R1, φP1 Q1 R1〉R

n2 ,

where
φP1 Q1 R1(x2)=

∑
R2

Ĥ ε1
P1

f (Rδ2
2 )〈H

δ1
Q1

g〉R2hδ2
R2
(x2).
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Then

|〈F, g〉| ≤
∑
Q1

∑
P1∈(Q

( j1)
1 )i1

‖aP1 Q1 R1‖BMO(Rn2 )‖SD2φP1 Q1 R1‖L1(Rn2 )

≤ 2(−n1/2)(i1+ j1)
∑
R1

∑
P1∈(R1)i1
Q1∈(R1) j2

∫
Rn2

(∑
R2

|Ĥ ε1
P1

f (Rδ2
2 )|

2
〈|H δ1

Q1
g|〉2R2

1R2(x2)

|R2|

)1/2

dx2

≤ 2(−n1/2)(i1+ j1)
∫

REn

∑
R1

∑
P1∈(R1)i1
Q1∈(R1) j2

(MD2 H δ1
Q1

g)(x2)(SD2 H ε1
P1

f )(x2)
1R1(x1)

|R1|
dx .

The integral above is bounded by∫
REn

(∑
R1

( ∑
P1∈(R1)i1

(SD2 H ε1
P1

f )(x2)

)2
1R1(x1)

|R1|

)1/2(∑
R1

( ∑
P1∈(R1)i1

(SD2 H ε1
P1

f )(x2)

)2
1R1(x1)

|R1|

)1/2

dx

=

∫
REn
([SSD2]

i1,0 f )([SMD2]
j1,0g) dx ≤ ‖[SSD2]

i1,0 f ‖L p(µ)‖[SMD2]
j1,0g‖L p′ (µ′)

. 2(n1/2)(i1+ j1)‖ f ‖L p(µ)‖g‖L p′ (µ′) by (3-3).

The desired estimate in (7-6) is now proved.

Case 2a: P2 = Q2 and τ2 6= δ2. Then

Tb(x2)=
∑

Q2)R2

〈
b,
1Q1

|Q1|
⊗ hτ2

Q2

〉
1
√
|Q2|

hτ2+δ2
Q2

(R2)h
δ2
Q2
(x2),

giving rise to the operator∑
Q1×Q2

〈
b,
1Q1

|Q1|
⊗ hτ2

Q2

〉( ∑
P1∈(Q

( j1)
1 )i1

〈5∗aP1 Q1 R1
(H ε1

P1
f ), hτ2+δ2

Q2
〉Rn2

)
1
√
|Q2|

hδ1
Q1
⊗ hδ2

Q2
= γb;(1,0)F,

which is handled as in the previous case.

Case 2b: P2 = Q2 and τ2 = δ2. In this case, Tb(x2) gives rise to the operator

T ′ :=
∑

Q1×Q2

〈
b,
1Q1

|Q1|
⊗ hδ2

Q2

〉
hδ1

Q1
⊗ hδ2

Q2

∑
P1∈(Q

( j1)
1 )i1

1
|Q2|

∑
R2(Q2

âP1 Q1 R1(R
ε2
2 )Ĥ

ε1
P1

f (Rε2
2 ).

Now define

Fτ :=
∑
Q1

( ∑
P1∈(Q

( j1)
1 )i1

5∗aτP1 Q1 R1
(H ε1

P1
f )(x2)

)
hδ1

Q1
(x1),

just as we defined F before, except now to every function aP1 Q1 R1 we apply the martingale transform

aP1 Q1 R1 7→ aτP1 Q1 R1
=

∑
R2

τ
ε2
R2

âP1 Q1 R1(R
ε2
2 )h

ε2
R2
, where τ ε2

R2
:=

{
+1 if Ĥ ε1

P1
f (Rε2

2 )≥ 0,
−1 otherwise.
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Since this does not increase the BMO(Rn2) norms of the aP1 Q1 R1 functions, the estimate (7-6) still holds:
‖Fτ‖L p (µ) . ‖ f ‖L p(µ).

Moreover, note that

〈5∗aτP1 Q1 R1
(H ε1

P1
f )〉Q2 =

∑
R2

âτP1 Q1 R1
(Rε2

2 )Ĥ
ε1
P1

f (Rε2
2 )︸ ︷︷ ︸

≥0

|R2 ∩ Q2|

|R2||Q2|

and that

πb;(1,0)Fτ =
∑

Q1×Q2

〈
b,
1Q1

|Q1|
⊗ hδ2

Q2

〉 ∑
P1∈(Q

( j1)
1 )i1

〈5∗aτP1 Q1 R1
(H ε1

P1
f )〉Q2hδ1

Q1
⊗ hδ2

Q2
.

Then

S2
DT ′ ≤

∑
Q1×Q2

∣∣∣∣〈b, 1Q1

|Q1|
⊗ hδ2

Q2

〉∣∣∣∣2( ∑
P1∈(Q

( j1)
1 )i1

1
|Q2|

∑
R2(Q2

|âP1 Q1 R1(R
ε2
2 )Ĥ

ε1
P1

f (Rε2
2 )|

)2
1Q1

|Q1|
⊗
1Q2

|Q2|

≤

∑
Q1×Q2

∣∣∣∣〈b, 1Q1

|Q1|
⊗ hδ2

Q2

〉∣∣∣∣2( ∑
P1∈(Q

( j1)
1 )i1

〈5∗aτP1 Q1 R1
(H ε1

P1
f )〉Q2

)2
1Q1

|Q1|
⊗
1Q2

|Q2|

= S2
D(πb;(1,0)Fτ ).

Finally, this gives us

‖T ′‖L p(λ) ' ‖SDT ′‖L p(λ) ≤ ‖SDπb;(1,0)Fτ‖L p(λ) ' ‖πb;(1,0)Fτ‖L p(λ) . ‖b‖bmoD(ν)‖Fτ‖L p(µ)

. ‖b‖bmoD(ν)‖ f ‖L p(µ).

This proves that5
S

i1, j1
D f

b−T obeys the desired bound, and the case T−Si1, j1
D 5 f b is handled similarly. �

7E. Proof of Theorem 1.4. Having now proved all the one-weight inequalities for dyadic shifts, we may
conclude that

‖S
Ei, Ej
D : L

p(w)→ L p(w)‖. 1

for all w ∈ Ap(R
En). For the cancellative shifts, this was proved in (7-2). For the noncancellative shifts,

the first two types are simply paraproducts with symbol ‖a‖BMOD(REn) ≤ 1, while the third type, a partial
paraproduct, was proved to be bounded on L p(w) in Proposition 7.6.

Theorem 1.4 now follows trivially from Martikainen’s representation theorem, Theorem 7.1: Take
f ∈ L p(w) and g ∈ L p′(w′). Then

|〈T f, g〉| ≤ CT Eω1Eω2

∑
Ei, Ej∈Z2

+

2−max(i1, j1)δ/22−max(i2, j2)δ/2|〈S
Ei, Ej
D f, g〉|

. ‖ f ‖L p(w)‖g‖L p′ (w′)

∑
Ei, Ej∈Z2

+

2−max(i1, j1)δ/22−max(i2, j2)δ/2

' ‖ f ‖L p(w)‖g‖L p′ (w′). �
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8. The unweighted case of higher-order Journé commutators

Here is the definition of the BMO spaces which are in between little BMO and product BMO.
Let b : R Ed → C with Ed = (d1, . . . , dt). Take a partition I = {Is : 1 ≤ s ≤ l} of {1, 2, . . . , t} so that⋃̇
1≤s≤l Is = {1, 2, . . . , t}. We say that b ∈ BMOI(R

Ed) if for any choice v = (vs), vs ∈ Is , we have b is
uniformly in product BMO in the variables indexed by vs . We call a BMO space of this type a “little
product BMO”. If for any Ex = (x1, . . . , xt) ∈ R

Ed we define Exv̂ by removing those variables indexed by vs ,
the little product BMO norm becomes

‖b‖BMOI =max
v

{
sup
Exv̂

‖b(Exv̂)‖BMO
}
,

where the BMO norm is product BMO in the variables indexed by vs .
In [Ou et al. 2016] it was proved that commutators involving tensor products of Riesz transforms in

L p are a testing class for these BMO spaces:

Theorem 8.1 (Ou, Petermichl and Strouse). Let Ej = ( j1, . . . , jt) with 1 ≤ jk ≤ dk and let for each
1≤ s ≤ l, Ej (s) = ( jk)k∈Is be associated a tensor product of Riesz transforms ERs, Ej (s) =

⊗
k∈Is

Rk, jk ; here
Rk, jk are jk-th Riesz transforms acting on functions defined on the k-th variable. We have the two-sided
estimate

‖b‖BMOI(R
Ed )
. sup
Ej
‖[ ER1, Ej (1), . . . , [

ERt, Ej (t), b], . . .]‖L p(R Ed )→L p(R Ed )
. ‖b‖BMOI(R

Ed )
.

It was also proved that the estimate self-improves to paraproduct-free Journé commutators in L2, in the
sense T is paraproduct free T (1⊗ · )= T ( · ⊗ 1)= T ∗(1⊗ · )= T ∗( · ⊗ 1)= 0.

Theorem 8.2 (Ou, Petermichl and Strouse). Let us consider R
Ed , Ed = (d1, . . . , dt), with a partition

I = (Is)1≤s≤l of {1, . . . , t} as discussed before. Let b ∈ BMOI(R
Ed) and let Ts denote a multiparameter

paraproduct-free Journé operator acting on function defined on
⊗

k∈Is
Rdk . Then we have the estimate

‖[T1, . . . , [Tl, b], . . .]‖L2(R Ed )→L2(R Ed )
. ‖b‖BMOI(R

Ed )
.

This estimate was generalized somewhat in [Ou and Petermichl 2018] in that the paraproduct-free
condition was slightly weakened; the considerations in the present text in combination with arguments
from [Dalenc and Ou 2016; Ou et al. 2016] to pass to the iterated case, readily give us the following full
result, for all Journé operators and all p:

Theorem 8.3. Let us consider R
Ed , Ed = (d1, . . . , dt), with a partition I = (Is)1≤s≤l of {1, . . . , t} as

discussed before. Let b ∈ BMOI(R
Ed) and let Ts denote a multiparameter Journé operator acting on

functions defined on
⊗

k∈Is
Rdk . Then we have the estimate

‖[T1, . . . , [Tl, b], . . .]‖L p(R Ed )→L p(R Ed )
. ‖b‖BMOI(R

Ed )
.
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ESTIMATES FOR EIGENVALUES OF AHARONOV–BOHM OPERATORS
WITH VARYING POLES AND NON-HALF-INTEGER CIRCULATION

LAURA ABATANGELO, VERONICA FELLI, BENEDETTA NORIS AND MANON NYS

We study the behavior of eigenvalues of a magnetic Aharonov–Bohm operator with non-half-integer
circulation and Dirichlet boundary conditions in a planar domain. As the pole is moving in the interior of
the domain, we estimate the rate of the eigenvalue variation in terms of the vanishing order of the limit
eigenfunction at the limit pole. We also provide an accurate blow-up analysis for scaled eigenfunctions
and prove a sharp estimate for their rate of convergence.

1. Introduction and statement of the main results

An infinitely long, thin solenoid perpendicular to the plane .x1;x2/ at the point a D .a1; a2/ 2 R2

produces a point-like magnetic field as the radius of the solenoid goes to zero and the magnetic flux
remains constantly equal to ˛ 2 R n Z. This magnetic field is a 2�˛-multiple of the Dirac delta at a

orthogonal to the plane .x1;x2/ and is generated by the Aharonov–Bohm vector potential

Aa.x/D ˛

�
�

x2� a2

.x1� a1/2C .x2� a2/2
;

x1� a1

.x1� a1/2C .x2� a2/2

�
; x D .x1;x2/ 2 R2

n fagI

see, e.g., [Adami and Teta 1998; Aharonov and Bohm 1959; Melgaard et al. 2004]. We are interested in
the spectral properties of Schrödinger operators with Aharonov–Bohm vector potentials, i.e., of operators

.ir CAa/
2
WD ��C 2iAa � r C jAaj

2:

Since curl Aa � 0 in R2 n fag, the magnetic field is concentrated at the pole a. If the circulation ˛ is an
integer number, then the potential Aa can be gauged away by a phase transformation so that the operator
.ir CAa/

2 becomes spectrally equivalent to the standard Laplacian. On the other hand, if ˛ 62 Z, the
vector potential Aa cannot be eliminated by gauge transformations and the spectrum of the operator
is modified by the presence of the magnetic field: this produces the so-called Aharonov–Bohm effect;
i.e., the magnetic potential affects charged quantum particles moving in the region � n fag, even if the
magnetic field Ba D curl Aa is zero there.

The dependence on the pole a of the spectrum of the Schrödinger operator .ir CAa/
2 in a bounded

domain � was investigated in [Abatangelo and Felli 2015; 2016; Abatangelo et al. 2017; Bonnaillie-Noël
et al. 2014; Noris et al. 2015; Noris and Terracini 2010] under homogeneous Dirichlet boundary conditions.
In particular, in [Abatangelo and Felli 2015; 2016] sharp asymptotic estimates for eigenvalues were

MSC2010: 35B40, 35B44, 35J10, 35J75, 35P15.
Keywords: Aharonov–Bohm operators, Almgren monotonicity formula, spectral theory.
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given in the case of half-integer circulation ˛ 2 ZC 1
2

as the pole a moves towards a fixed point Na 2�;
analogous sharp estimates were derived in [Abatangelo et al. 2017] in the case Na 2 @�. We mention that
the continuous dependence of the eigenvalue function on the position of the pole and improved regularity
results under simplicity assumptions were established in [Bonnaillie-Noël et al. 2014; Léna 2015] for
any value of ˛ (in particular also for non-half-integer circulation); on the other hand, to the best of our
knowledge, sharp estimates of the gap of eigenvalues have been investigated only in the case ˛ 2ZC 1

2
; see

[Abatangelo and Felli 2015; 2016; Abatangelo et al. 2017; Bonnaillie-Noël et al. 2014; Noris et al. 2015].
The case ˛ 2ZC 1

2
studied in the aforementioned papers presents several peculiarities which allow one

to approach the problem with a perspective and a technique that are not completely adaptable to a general
circulation ˛ 2 R nZ. Indeed, if ˛ 2 ZC 1

2
, the problem can be reduced by a gauge transformation to

the case ˛ D 1
2

and, in this case, the eigenfunctions of .ir CAa/
2 can be identified, up to a complex

phase, with the antisymmetric eigenfunctions of the Laplace–Beltrami operator on the twofold covering
manifold of �; see [Helffer et al. 1999; Noris and Terracini 2010]. As a consequence, if ˛ D 1

2
, the

magnetic eigenfunctions have an odd number of nodal lines ending at the pole a. It has been proved
in [Helffer and Hoffmann-Ostenhof 2013] that the corresponding nodal domains are related to optimal
partition problems. We refer to [Bonnaillie-Noël et al. 2009] for related numerical simulations.

The special features characterizing Aharonov–Bohm operators with circulation 1
2

played a crucial role
in [Abatangelo and Felli 2015; 2016; Abatangelo et al. 2017; Bonnaillie-Noël et al. 2014; Noris et al. 2015;
Noris and Terracini 2010]. In particular, in [Noris et al. 2015] local energy estimates for eigenfunctions
near the limit pole are performed by studying an Almgren-type quotient, see [Almgren 1983], which is
estimated using a representation formula by Green’s functions for solutions to the corresponding Laplace
problem on the twofold covering. Moreover, in [Abatangelo and Felli 2015; 2016; Abatangelo et al. 2017]
a limit profile vanishing on the special directions determined by the nodal lines of limit eigenfunctions is
constructed: this allows one to establish a sharp relation between the asymptotics of the eigenvalue function
and the number of nodal lines, which is strongly related to the order of vanishing of the limit eigenfunction.

In this paper we will focus on the case of noninteger and non-half-integer circulation; i.e., we will
assume ˛ 2 R n .Z=2/. A reduction to the Laplacian on the twofold covering manifold is no longer
available in this case; moreover, magnetic eigenfunctions vanish at the pole a but they do not have nodal
lines ending at a (see Proposition 2.1). The lack of the special features of Aharonov–Bohm operators with
half-integer circulation described above requires alternative methods and produces a less precise estimate.
In particular, in order to estimate the Almgren frequency function, we will give a detailed description of
the behavior of eigenfunctions at the pole and we will study the dependence of the coefficients of their
asymptotic expansion with respect to the moving pole a, see Lemma 2.2.

By gauge invariance, if ˛ 2 R n .Z=2/ it is not restrictive to assume that

˛ 2 .0; 1/ n
˚

1
2

	
: (1-1)

Let � � R2 be a bounded, open and simply connected domain. For every a 2 �, we introduce the
functional space H 1;a.�;C/ as the completion of

fu 2H 1.�;C/\C1.�;C/ W u vanishes in a neighborhood of ag
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with respect to the norm

kukH 1;a.�;C/ D

�
kruk2

L2.�;C2/
Ckuk2

L2.�;C/
C

 u

jx� aj

2

L2.�;C/

�1=2

: (1-2)

The norm (1-2) is equivalent, under condition (1-1), to the norm�
k.ir CAa/uk

2
L2.�;C2/

Ckuk2
L2.�;C/

�1=2
;

in view of the Hardy-type inequality proved in [Laptev and Weidl 1999], see also [Alziary et al. 2003]
and [Felli et al. 2011, Lemma 3.1 and Remark 3.2],Z

Dr .a/

j.ir CAa/uj
2 dx �

�
min
j2Z
jj �˛j

�2 Z
Dr .a/

ju.x/j2

jx� aj2
dx; (1-3)

which holds for all r > 0, a2R2 and u2H 1;a.Dr .a/;C/. Here we denote by Dr .a/ the disk of center a

and radius r ; we will denote by Dr WDDr .0/ the disk with radius r centered at the origin.
It is also worth mentioning the following formulation of the magnetic Hardy inequality proved in

[Alziary et al. 2003, Lemma 4.1]: for all r1 > r2 > 0, a 2 R2, and u 2H 1;a.Dr1
.a/ nDr2

.a/;C/,Z
Dr1

.a/nDr2
.a/

j.ir CAa/uj
2 dx �

�
min
j2Z
jj �˛j

�2 Z
Dr1

.a/nDr2
.a/

ju.x/j2

jx� aj2
dx: (1-4)

We also consider the space H
1;a
0
.�;C/ as the completion of C1c .�nfag;C/ with respect to the norm

k � kH 1
a .�;C/

, so that

H
1;a
0
.�;C/D

�
u 2H 1

0 .�;C/ W
u

jx� aj
2L2.�;C/

�
:

From classical spectral theory, for every a 2�, the eigenvalue problem�
.ir CAa/

2uD �u in �;
uD 0 on @�

(Ea)

admits a diverging sequence of real eigenvalues f�a
k
gk�1 with finite multiplicity; in the enumeration

�a
1 � �

a
2 � � � � � �

a
j � � � � ;

we repeat each eigenvalue as many times as its multiplicity. We are interested in the behavior of the
function a 7! �a

j in a neighborhood of a fixed point Na 2�. Up to a translation and a dilation, it is not
restrictive to assume that NaD 0 2� and D2 ��.

Let us assume that there exists n0 � 1 such that

�0
n0

is simple; (1-5)

and define
�0 D �

0
n0

and �a D �
a
n0
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for any a 2�. In [Léna 2015, Theorem 1.3] it is proved that

if �0
j is simple, the function a 7! �a

j is analytic in a neighborhood of 0: (1-6)

In particular the function a 7! �a is continuous and, if a! 0, then �a! �0; see also [Bonnaillie-Noël
et al. 2014]. Let '0 2 H

1;0
0
.�;C/ n f0g be an L2.�;C/-normalized eigenfunction of problem .E0/

associated to the eigenvalue �0 D �
0
n0

, i.e., satisfying8<:
.ir CA0/

2'0 D �0'0 in �;
'0 D 0 on @�;R
� j'0.x/j

2 dx D 1:

(1-7)

From [Felli et al. 2011, Theorem 1.3] (see also Proposition 2.1) it is known that

'0 vanishes at 0 with a vanishing order equal to j˛� kj for some k 2 Z; (1-8)

in the sense that there exist k 2 Z and ˇ 2 C n f0g such that

r�j˛�kj'0.r.cos t; sin t//! ˇ
eikt

p
2�

in C 1;� .Œ0; 2��;C/ (1-9)

as r ! 0C for any � 2 .0; 1/.
Our first result provides an estimate of the rate of convergence of �0 � �a in terms of the order of

vanishing of '0 at 0; in particular we have that higher vanishing orders imply faster convergence of
eigenvalues.

Theorem 1.1. Let ˛ 2 .0; 1/ n
˚

1
2

	
and �� R2 be a bounded, open and simply connected domain such

that 0 2 �. Let n0 2 N be such that the n0-th eigenvalue �0
n0
D �0 of problem .E0/ is simple and let

'0 2H
1;0
0
.�;C/ be an associated eigenfunction satisfying (1-7). Let k 2 Z be such that j˛� kj is the

order of vanishing of '0 at 0 as in (1-9). For a 2�, let �a
n0
D �a be the n0-th eigenvalue of problem (Ea).

Then

j�a��0j DO.jaj1Cb2j˛�kjc/ as jaj ! 0;

where b � c denotes the floor function btc WDmaxfk 2 Z W k � tg.

To prove Theorem 1.1, we will study the quotient

�0��a

jaj2j˛�kj
(1-10)

as a approaches the origin along a straight line ftp W t > 0g for any direction

p 2 S1
WD fx 2 R2

W jxjD1g:

We will prove that, for every p 2 S1, the quotient (1-10) is bounded as aD jajp! 0. Then (1-6) and the
fact that 2j˛� kj is noninteger imply that the Taylor polynomials of the function �0��a with center 0

and degree less than or equal to b2j˛� kjc vanish, thus yielding the conclusion of Theorem 1.1.
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In the case of half-integer circulation ˛ D 1
2

the special nodal structure of the limit problem allows us
to prove instead that the limit

lim
aDjajp!0

�0��a

jaj2j˛�kj
D lim

aDjajp!0

�0��a

jajj1�2kj

is different from 0 along some special directions p corresponding to tangents to the nodal lines of the limit
eigenfunction. As a consequence, the leading term of the Taylor expansion of the eigenvalue variation
�0��a has order exactly j1� 2kj. That is,

�0��a D P .a/C o.jajj1�2kj/ as jaj ! 0C

for some homogeneous polynomial P 6�0 of degree j1�2kj; see [Abatangelo and Felli 2015, Theorem 1.2].
In [Abatangelo and Felli 2016, Theorem 2] the exact values of all coefficients of the polynomial P are
determined, proving that P .jaj.cos t; sin t//D C0jaj

j1�2kj cos.j1� 2kj.t � t0// for some t0 and C0 > 0.
In particular the leading polynomial P is harmonic.

In this paper we will also describe the behavior of the eigenfunctions as a! 0, proving a blow-up
result for scaled eigenfunctions and giving a sharp rate of the convergence to the limit eigenfunction '0.
In order to state these results more precisely, we need to introduce some notation.

For every b D .b1; b2/ D jbj.cos#; sin#/ 2 R2 n f0g with # 2 Œ0; 2�/, we define the polar angle
centered at b, �b W R

2 n fbg ! Œ#; # C 2�/ as

�b.bC r.cos t; sin t//D t for all r > 0 and t 2 Œ#; # C 2�/; (1-11)

and the function �b
0
W R2 n f0g ! Œ#; # C 2�/ as

�b
0 .r.cos t; sin t//D t for all r > 0 and t 2 Œ#; # C 2�/: (1-12)

We remark that �b is discontinuous on the half-line starting at b with slope # D Arg.b/, whereas �b
0

is
discontinuous on the half-line starting from 0 with the same slope; in particular, the range of �b

0
depends

on # D Arg.b/. Hence, the difference function �b
0
� �b is regular except for the segment

�b WD ftb W t 2 Œ0; 1�g: (1-13)

For all a2�, let 'a2H
1;a
0
.�;C/nf0g be an eigenfunction of problem (Ea) associated to the eigenvalue �a,

i.e., solving �
.ir CAa/

2'a D �a'a in �;
'a D 0 on @�;

(1-14)

such that the following normalization conditions hold:Z
�

j'a.x/j
2 dx D 1 and

Z
�

ei˛.�a
0
��a/.x/'a.x/'0.x/ dx is a positive real number: (1-15)

Using (1-5), (1-7), (1-14), (1-15), and standard elliptic estimates, see, e.g., [Gilbarg and Trudinger 1983,
Theorem 8.10], it is easy to prove that

'a! '0 in H 1.�;C/ and in C 2
loc.� n f0g;C/; (1-16)



1746 LAURA ABATANGELO, VERONICA FELLI, BENEDETTA NORIS AND MANON NYS

and
.ir CAa/'a! .ir CA0/'0 in L2.�;C/: (1-17)

To give a precise description of the behavior of the eigenfunction 'a for a close to 0, we consider a
homogeneous scaling of order jajj˛�kj of 'a along a fixed direction p 2 S1. Theorem 1.2 below gives
the convergence of scaled eigenfunctions to a nontrivial limit profile ‰p 2H

1;p
loc .R

2;C/, which can be
characterized as the unique solution to the problem

.ir CAp/
2‰p D 0 in R2 in a weak H 1;p-sense; (1-18)

satisfying Z
R2nD1

j.ir CAp/.‰p � ei˛.�p��
p

0
/ k/j

2 dx <C1; (1-19)

where  k W R
2! C is defined as

 k.r.cos t; sin t//D r j˛�kj eikt

p
2�
: (1-20)

The existence and uniqueness of a limit profile satisfying (1-18) and (1-19) will be proved in Lemma 5.3.
We notice that the function  k in (1-20) is the unique (up to a multiplicative constant) H

1;0
loc .R

2;C/-
solution to .ir CA0/

2 k D 0 in R2 which is homogeneous of degree j˛� kj.

Theorem 1.2. Under the same assumptions as in Theorem 1.1, for p 2 S1 and a D jajp 2 �, let
'a 2 H

1;a
0
.�;C/ be an eigenfunction of problem (Ea) associated to the eigenvalue �a and satisfying

(1-15). Let moreover,

O'a.x/D
'a.jajx/

jajj˛�kj
:

Then
O'a! ˇ‰p as jaj ! 0

in H 1;p.DR;C/ for every R > 1, almost everywhere in R2 and in C 2
loc.R

2 n fpg;C/, with ˇ ¤ 0 and
k 2 Z being as in (1-9) and ‰p being as in (1-18)–(1-19).

Finally, we describe the sharp rate of convergence (1-17), which also turns out to depend strongly on
the order of vanishing of '0 at 0, as stated in the following theorem.

Theorem 1.3. Under the same assumptions as in Theorems 1.1 and 1.2, for every p 2 S1 there exists
Lp > 0 such that

jaj�2j˛�kj
.ir CAa/'a� ei˛.�a��

a
0
/.ir CA0/'0

2

L2.�;C/
! jˇj2 Lp as aD jajp! 0:

We observe that Theorem 1.3 extends to the case of non-half-integer circulation an analogous result
obtained in [Abatangelo and Felli 2017] for half-integer circulation.

The main tools in the proof of the above-described results are energy estimates on eigenfunctions
obtained by an Almgren-type monotonicity argument and blow-up analysis for scaled eigenfunctions;
such a strategy was first developed in [Abatangelo and Felli 2015; Noris et al. 2015] in the half-integer
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case and is essentially based on the description of the behavior of limit eigenfunctions at the pole through
the limit of the Almgren quotient, which is possible in both the cases of half-integer and non-half-integer
circulation. On the other hand, in the implementation of this procedure for the non-half-integer case,
two main points present deep differences from that of the half-integer case. First of all a reduction to
the Laplacian on the twofold covering manifold is no longer available and hence a new strategy has to
be developed to prove monotonicity-type formulas: this is the main goal of Section 2, where we derive
precise estimates for eigenfunctions on small circles which are needed to prove Lemma 3.1 (whose
analogue in the half-integer case can be directly proved using the reduction to the Laplacian on the
twofold covering manifold). The second crucial difference arises in the blow-up analysis, more precisely
in the construction of the limit profile, which cannot be as explicit as in the half-integer case. This exploits
vanishing on the special directions of nodal lines of limit eigenfunctions. In the non-half-integer case, a
nontrivial limit profile still exists (see Lemma 5.3) but its description is quite implicit: this is also the
reason why the estimate we obtain here in the non-half-integer case is less precise than the estimates of
[Abatangelo and Felli 2015; 2016] for half-integer ˛.

The paper is organized as follows. In Section 2 we perform a detailed description of the behavior of the
eigenfunction 'a near the pole a, which is crucial in Section 3 to prove an Almgren-type monotonicity
formula and to derive local energy estimates for eigenfunctions uniformly with respect to the moving
pole. In Section 4 we obtain some upper and lower bounds for the difference �0��a by exploiting the
Courant–Fischer minimax characterization of eigenvalues and testing the Rayleigh quotient with suitable
competitor functions. Section 5 contains a blow-up analysis for scaled eigenfunctions, which allows us to
prove Theorems 1.1 and 1.2. Finally, in Section 6 we prove Theorem 1.3.

Notation. We list below some notation used throughout the paper:

� For all r > 0 and a 2 R2, we denote by Dr .a/ D fx 2 R2 W jx � aj < rg the disk of center a and
radius r .

� For all r > 0, we let Dr DDr .0/ and S1 D @D1.

� ds denotes the arc length on @Dr .a/.

� For every complex number z 2 C, we denote by Nz its complex conjugate.

� For z 2 C, we denote its real part by Re z and its imaginary part by Im z.

2. Local asymptotics of eigenfunctions

The aim of this section is to describe the local asymptotics of eigenfunctions, showing how the coefficients
of expansions depend on the pole. This goal is achieved by expanding the angular part of eigenfunctions
in Fourier series with respect to the orthonormal basis of L2..0; 2�/;C/ given by feijt=

p
2�gj2Z, see

(2-11), and then by estimating the Fourier coefficients (2-13) by means of Gronwall-type lemmas. These
estimates will be crucial to developing the monotonicity argument of Section 3, in particular to proving
Lemma 3.1 (whose analogue in the half-integer case is obtained in [Noris et al. 2015, Lemma 5.8] with
techniques which are not adaptable to the non-half-integer case).
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We recall from [Felli et al. 2011] the description of the asymptotics at the singularity of solutions
to elliptic equations with Aharonov–Bohm potentials. In the case of Aharonov–Bohm potentials with
circulation ˛ 2 .0; 1/ n f1

2
g, such asymptotics is described in terms of eigenvalues and eigenfunctions of

the following operator H acting on 2�-periodic functions

H D� 00C 2i˛ 0C˛2 :

It is easy to verify that the eigenvalues of H are f.˛ � j /2 W j 2 Zg; each eigenvalue .˛ � j /2 has
multiplicity 1 and the eigenspace associated is generated by the function eijt=

p
2� . Let us enumerate

the eigenvalues .˛� j /2 as f.˛� j /2 W j 2 Zg D f�j W j D 1; 2; : : : g with �1 < �2 < �3 < � � � , so that

�1 Dminf˛2; .1�˛/2g (2-1)

and �2 Dmaxf˛2; .1�˛/2g.

Proposition 2.1 [Felli et al. 2011, Theorem 1.3]. Let �� R2 be a bounded open set containing b, � 2 R,
and u 2H

1;b
0
.�;C/ be a nontrivial weak solution to the problem

.ir CAb/
2uD �u in �I

i.e., Z
�

.ir CAb/u � .ir CAb/v dx D �

Z
�

u Nv dx for all v 2H
1;b
0
.�;C/:

Then there exists j 2 Z such that

lim
r!0C

r
R

Dr .b/

�
j.ir CAb/u.x/j

2��ju.x/j2
�

dxR
@Dr .b/

juj2 ds
D j˛� j j: (2-2)

Furthermore, there exists ˇ.b;u; �/¤ 0 such that

r�j˛�j ju.bC r.cos t; sin t//! ˇ.b;u; �/
eijt

p
2�

in C 1;� .Œ0; 2��;C/ (2-3)

as r ! 0C for any � 2 .0; 1/.

Let us fix n 2N, n� 1. For all a 2�, let 'a
n 2H

1;a
0
.�;C/n f0g be an eigenfunction of problem (Ea)

associated to the eigenvalue �a
n, i.e., solving�

.ir CAa/
2'a

n D �
a
n'

a
n in �;

'a
n D 0 on @�;

(2-4)

such that Z
�

j'a
n.x/j

2 dx D 1: (2-5)

Since a 2 � 7! �a
n admits a continuous extension on � as proved in [Bonnaillie-Noël et al. 2014,

Theorem 1.1], we have
ƒn D sup

a2�

�a
n 2 .0;C1/: (2-6)
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Moreover, from (2-4), (2-5), and (1-3) it follows that

f'a
nga2� is bounded in H 1.�;C/; (2-7)

which, by (2-4) and classical elliptic regularity theory, implies that, for each ! b� n f0g, there exists
�! > 0 such that

f'a
ngjaj��! is bounded in C 2;� .!;C/ for every � 2 .0; 1/: (2-8)

The following lemma provides a detailed description of the behavior of the Fourier coefficients of the
function t 7! 'a

n.aC r.cos t; sin t// as a is close to 0.

Lemma 2.2. For n� 1 fixed and a varying in �, let 'a
n 2H

1;a
0
.�;C/ n f0g satisfy (2-4) and (2-5). For

all j 2 Z and a 2�, let

va
j .r/D

1
p

2�

Z 2�

0

'a
n.aC r.cos t; sin t//e�ijt dt: (2-9)

Then there exists �0 > 0 such that, for all a with jaj � �0, the following properties hold:

(i) For all j 2 Z, we have va
j .r/DO.r j˛�j j/ as r ! 0C. In particular, for all j 2 Z and for all R> 0

such that fx 2 R2 W jx� aj �Rg ��, the value

ˇa
j D

va
j .R/

Rj˛�j j
C

�a
n

2j˛� j j

Z R

0

�
s1�j˛�j j

�
s1Cj˛�j j

R2j˛�j j

�
va
j .s/ ds (2-10)

is well-defined and independent of R.

(ii) For all j 2 Z, we have jˇa
j j � B for some B > 0 independent of j and a.

(iii) For all j 2 Z,

va
j .r/D r j˛�j jˇa

j .1CRj ;a.r// and .va
j /
0.r/D j˛� j jˇa

j r j˛�j j�1.1C zRj ;a.r//;

where jRj ;a.r/jC j zRj ;a.r/j � const r2 for some const> 0 independent of j and a.

(iv) 'a
n can be expanded as

'a
n.aC r.cos t; sin t//D

1
p

2�

X
j2Z

r j˛�j jˇa
j .1CRj ;a.r//e

ijt

with Rj ;a.r/ as in (iii), where the convergence of the above series is uniform on disks DR.a/ for
each R 2 .0; 1/.

(v) If we let �.t/D .cos t; sin t/ and �.t/D .� sin t; cos t/, then .ir CAa/'
a
n can be expanded as

.ir CAa/'
a
n.aC r.cos t; sin t//

D
1
p

2�

X
j2Z

ˇa
j r j˛�j j�1

�
i j˛� j j.1C zRj ;a.r//�.t/C .˛� j /.1CRj ;a.r//�.t/

�
eijt

with Rj ;a.r/; zRj ;a.r/ as in (iii), where the above series converges absolutely in L2.DR.a/;C/ and
pointwise in DR.a/ for each R 2 .0; 1/.
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Proof. The functions feijt=
p

2�gj2Z form an orthonormal basis of L2..0; 2�/;C/. Hence, recalling that
we are assuming D2 ��, if jaj is sufficiently small, 'a

n can be expanded as

'a
n.aC r.cos t; sin t//D

X
j2Z

va
j .r/

eijt

p
2�

in L2..0; 2�/;C/ for all r 2 .0; 1�; (2-11)

where va
j is defined in (2-9). Equation (1-14) implies that, for every j 2 Z,

�.va
j /
00.r/�

1

r
.va

j /
0.r/C

.˛� j /2

r2
va
j .r/D �

a
nv

a
j .r/ for all r 2 .0; 1�; (2-12)

or equivalently

�r j˛�j j�1
�
r1�2j˛�j j.r j˛�j jva

j /
0
�0
D �a

nv
a
j .r/ for all r 2 .0; 1�:

Integrating twice between r and 1, we obtain, for some ca
1;j
; ca

2;j
2 C,

va
j .r/D r j˛�j j

�
ca

1;jC�
a
n

Z 1

r

s�j˛�j jC1

2j˛� j j
va
j .s/ ds

�
Cr�j˛�j j

�
ca

2;j ��
a
n

Z 1

r

sj˛�j jC1

2j˛� j j
va
j .s/ ds

�
(2-13)

for all r 2 .0; 1�.
The convergence (2-3) in Proposition 2.1 implies that, for all a,

j'a
n.aC r.cos t; sin t//j DO.r

p
�1/

as r ! 0C, with �1 as in (2-1) (not necessarily uniformly with respect to a). Hence, for every a in a
sufficiently small neighborhood of 0, there exists a constant C.a/ > 0 such that, for all j 2 Z,

jva
j .r/j � C.a/r

p
�1 for all r 2 Œ0; 1�: (2-14)

We deduce that each function va
j is bounded near 0; hence (2-13) necessarily yields

ca
2;j D �

a
n

Z 1

0

sj˛�j jC1

2j˛� j j
va
j .s/ ds: (2-15)

We can therefore rewrite

va
j .r/D r j˛�j j

�
ca

1;j C
�a

n

2j˛� j j

Z 1

r

s�j˛�j jC1va
j .s/ ds

�
C

�a
n

2j˛� j j
r�j˛�j j

Z r

0

sj˛�j jC1va
j .s/ ds:

(2-16)
If
p
�1C 2 � j˛ � j j, using (2-14) to estimate the right-hand side of (2-16) we obtain the improved

estimate jva
j .r/j � C.j ; a/r j˛�j j. Otherwise, if

p
�1C 2 < j˛� j j, we can use (2-14) to estimate the

right-hand side of (2-16) to obtain the improved estimate jva
j .r/j � C.j ; a/r

p
�1C2 for some constant

C.j ; a/ > 0 depending on a and j . By iterating the process mC 1 times, with m the largest natural
number such that

p
�1 C 2m < j˛ � j j, we obtain jva

j .r/j � C.j ; a/r j˛�j j, possibly for a different
constant C.j ; a/. We deduce that the quantity ˇa

j introduced in (2-10) is well-defined. The fact that ˇa
j is

independent of R is a direct consequence of (2-12) and (2-16). This proves statement (i).
Using the independence of ˇa

j with respect to R, we choose RD 1 in (2-10) and r D 1 in (2-16) and
obtain

ˇa
j D ca

1;j C
�a

n

2j˛� j j

Z 1

0

s�j˛�j jC1va
j .s/ ds; (2-17)
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so that (2-16) can be rewritten as

va
j .r/D r j˛�j j

�̌
a
j ��

a
n

Z r

0

s�j˛�j jC1

2j˛� j j
va
j .s/ ds

�
C�a

nr�j˛�j j

Z r

0

sj˛�j jC1

2j˛� j j
va
j .s/ ds: (2-18)

From (2-18) it follows that, for all r 2 .0; 1�,

r�j˛�j j
jva

j .r/j � jˇ
a
j jC

�a
n

2j˛�j j

Z r

0

s�j˛�j j
jva

j .s/j dsC
�a

n

2j˛�j j
r�2j˛�j j

Z r

0

s2j˛�j js�j˛�j j
jva

j .s/j ds

� jˇa
j jC

�a
n

j˛�j j

Z r

0

s�j˛�j j
jva

j .s/j ds:

Hence the Gronwall lemma applied to the function r 7! r�j˛�j jjva
j .r/j yields that

r�j˛�j j
jva

j .r/j � jˇ
a
j je

�a
nr=j˛�j j

� C jˇa
j j for all r 2 .0; 1� and j 2 Z; (2-19)

where C D eƒn=
p
�1 is independent of j , a, and r , with �1 andƒn defined in (2-1) and (2-6) respectively.

From (2-13), (2-9), and (2-8) it follows that

jca
1;j C ca

2;j j D jv
a
j .1/j D

1
p

2�

ˇ̌̌̌Z 2�

0

'a
n.aC .cos t; sin t//e�ijt dt

ˇ̌̌̌
� const

for some const> 0 independent of j and a; moreover, from (2-15) and (2-5) we deduce that

jca
2;j j �

�a
n

2j˛� j j

Z 1

0

sjva
j .s/j ds �

�a
n

2j˛� j j
p

2�

Z
D1.a/

j'a
n j dx � const

for some const> 0 independent of j and a. Hence

jca
1;j j �

zC (2-20)
for some zC > 0 independent of j and a.

Let K > 0 be such that
ƒnC

2K
<

1

2

with C being as in (2-19) and ƒn being as in (2-6). Hence, from (2-6), (2-17), (2-19) and (2-20) it follows
that, if j˛� j j>K, then

1
2
jˇa

j j �

�
1�

ƒnC

2K

�
jˇa

j j � jc
a
1;j j �

zC : (2-21)

Let us choose R0 2 .0; 1/ such that
ƒnCR2

0

2
p
�1

<
1

2
:

From (2-10) and (2-19) it follows that, if j˛� j j �K,

R�K
0 jva

j .R0/j �R
�j˛�j j
0

jva
j .R0/j D

ˇ̌̌̌
ˇa

j �
�a

n

2j˛� j j

Z R0

0

�
s1�j˛�j j

�
s1Cj˛�j j

R
2j˛�j j
0

�
va
j .s/ ds

ˇ̌̌̌

� jˇa
j j �

ƒnC jˇa
j j

2
p
�1

Z R0

0

2s ds

D jˇa
j j �

ƒnCR2
0

2
p
�1

jˇa
j j �

1
2
jˇa

j j:
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Since, in view of (2-8), va
j .R0/ is bounded uniformly with respect to a and j , we conclude that, for all j

such that j˛� j j �K, jˇa
j j is bounded uniformly with respect to a and j . This, together with (2-21),

yields (ii).
From (2-18) and (2-19) it follows that

va
j .r/D r j˛�j jˇa

j .1CRj ;a.r//; (2-22)

where jRj ;a.r/j � const r2 for some const> 0 independent of j and a, thus proving the first estimate in
(iii). Differentiating (2-18) and using the above estimate (2-22), we easily obtain

.va
j /
0.r/D j˛� j jˇa

j r j˛�j j�1.1C zRj ;a.r//;

where j zRj ;a.r/j � const r2 for some const > 0 independent of j and a. Hence the proof of (iii) is
complete.

From (2-11) and (iii) we have that the series

1
p

2�

X
j2Z

r j˛�j jˇa
j .1CRj ;a.r//e

ijt

converges in L2..0; 2�/;C/ to 'a
n.aC r.cos t; sin t// for all r 2 .0; 1�. In view of the estimates obtained

in (ii)–(iii), the Weierstrass M-test ensures that the series is uniformly convergent in DR.a/ for every
R 2 .0; 1/, thus proving (iv).

Let f a
j .aC r.cos t; sin t//D va

j .r/e
ijt=
p

2� . Since

.ir CAa/f
a

j .aC r.cos t; sin t//D

�
i.va

j /
0.r/�.t/C .˛� j /

va
j .r/

r
�.t/

�
eijt

p
2�
;

the above estimates also imply that, for every R 2 .0; 1/, the series of functions
P

j .ir CAa/f
a

j is
convergent absolutely in L2.DR.a/;C/ and pointwise in DR.a/ to .ir CAa/'

a
n for every R 2 .0; 1/.

Hence (v) follows from (iii). �

Corollary 2.3. Under the same assumptions and with the same notation as in Lemma 2.2, let R 2 .0; 1/.
Then, for all r 2 .0;R/ and t 2 Œ0; 2��,

'a
n.aC r.cos t; sin t//D

1
p

2�
.r˛ˇa

0C r1�˛ˇa
1eit /CRa.r; t/; (2-23)

.irCAa/'
a
n.aC r.cos t; sin t//D

1
p

2�
r˛�1ˇa

0˛.i�.t/C�.t//

C
1
p

2�
r�˛ˇa

1.1�˛/.i�.t/��.t//e
it
C zRa.r; t/; (2-24)

where jRa.r; t/j � const r1C
p
�1 and j zRa.r; t/j � const r

p
�1 for some const> 0 independent of a; r; t .

Proof. From part (iv) of Lemma 2.2 we have

'a
n.aC r.cos t; sin t//D

1
p

2�
.ˇa

0r˛Cˇa
1r1�˛eit /CRa.r; t/; r 2 .0; 1/; t 2 Œ0; 2��;



ESTIMATES FOR EIGENVALUES OF AHARONOV–BOHM OPERATORS WITH VARYING POLES 1753

where

Ra.r; t/D
1
p

2�

�
ˇa

0r˛R0;a.r/Cˇ
a
1r1�˛R1;a.r/e

it
�
C

1
p

2�

X
j2Z
j˛�j j>1

ˇa
j r j˛�j j.1CRj ;a.r//e

ijt :

Let us fix R 2 .0; 1/. Estimates (ii)–(iii) of Lemma 2.2 imply that, for some const > 0 independent of
a; r; t (possibly varying from line to line),

jRa.r; t/j � const
�

r˛C2
C r3�˛

C

X
j2Z

j˛�j j�1C
p
�1

r j˛�j j

�
� const r1C

p
�1

for all r 2 .0;R/, thus proving (2-23).
From part (v) of Lemma 2.2 we have

.irCAa/'
a
n.aCr.cos t; sin t//D

˛
p

2�
ˇa

0r˛�1.i�.t/C�.t//C
1�˛
p

2�
ˇa

1r�˛.i�.t/��.t//eit
CzRa.r; t/;

where

zRa.r; t/D
˛
p

2�
ˇa

0r˛�1
�
i zR0;a.r/�.t/CR0;a.r/�.t/

�
C

1�˛
p

2�
ˇa

1r�˛
�
i zR1;a.r/�.t/�R1;a.r/�.t/

�
eit

C
1
p

2�

X
j2Z
j˛�j j>1

ˇa
j r j˛�j j�1

�
i j˛� j j.1C zRj ;a.r//�.t/C .˛� j /.1CRj ;a.r//�.t/

�
eijt :

From Lemma 2.2(ii)–(iii) we have that, for all r 2 .0;R/,

j zRa.r; t/j � const
�

r˛C1
C r2�˛

C

X
j2Z

j˛�j j�1C
p
�1

j˛� j jr j˛�j j�1

�
� const r

p
�1

for some const> 0 independent of a; r; t (possibly varying from line to line), thus proving (2-24). �
We now describe some consequences of Lemma 2.2 and Corollary 2.3, which will be needed in

Section 3 to prove a monotonicity-type formula.

Lemma 2.4. Under the same assumptions and with the same notation as in Lemma 2.2, we have

lim
"!0C

�ˇ̌̌̌
1

2

Z
@D".a/

j.ir CAa/'
a
n j

2x � � ds

ˇ̌̌̌
C

ˇ̌̌̌Z
@D".a/

.ir CAa/'
a
n � � .ir CAa/'a

n �x ds

ˇ̌̌̌�
� 2˛.1�˛/jajjˇa

0 jjˇ
a
1 j:

Proof. Let R 2 .0; 1/ be fixed. From (2-24) we have that, for all r 2 .0;R/,ˇ̌
.ir CAa/'

a
n.aC r.cos t; r sin t//

ˇ̌2
D r2.˛�1/

jˇa
0 j

2˛
2

�
C r�2˛

jˇa
1 j

2 .1�˛/
2

�
C yRa.r; t/;

where j yRa.r; t/j � const r2
p
�1�1 for some const> 0 independent of a; r; t . It follows that

lim
"!0C

Z
@D".a/

j.ir CAa/'
a
n j

2x � � ds D 0:
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Moreover, from (2-24) we have

.ir CAa/'
a
n.aC ".cos t; sin t// � �.t/.ir CAa/'a

n.aC ".cos t; sin t// � .aC "�.t//

D "2.˛�1/
jˇa

0 j
2 ˛

2

2�
.�.t/C i�.t// � aC "�2˛

jˇa
1 j

2 .1�˛/
2

2�
.�.t/� i�.t// � a

C 2"�1Re

�̌
a
0
Ňa
1e�it ˛.1�˛/

2�
.�.t/� i�.t// � a

�
CO."2

p
�1�1/

as "! 0C, and hence, taking into account that
R 2�

0 a � �.t/ dt D
R 2�

0 a ��.t/ dt D 0, we obtain

lim
"!0C

Z
@D".a/

.ir CAa/'a � �.ir CAa/'a �x ds D 2˛.1�˛/Re.ˇa
0
Ňa
1.a1� ia2//;

from which the conclusion follows. �

Lemma 2.5. For n� 1 fixed and a varying in �, let 'a
n 2H

1;a
0
.�;C/ n f0g satisfy (2-4) and (2-5). Let

us assume that 'a
n ! '0

n in L2.�;C/ as a! 0 (or respectively along a sequence a`! 0). Let k 2 Z be
such that j˛� kj is the order of vanishing of '0

n at 0. For all j 2 Z and a 2�, let va
j be as in (2-9) and

ˇa
j be as in (2-10). Then there exists �0 > 0 such that, for all a with jaj � �0 (respectively for aD a`

with ` sufficiently large), the following properties hold:

(i) For all j 2 Z, we have ˇa
j ! ˇ0

j as a! 0 (respectively along the sequence a`! 0).

(ii) It holds thatZ 2�

0

j'a
n.aCr.cos t; sin t//j2 dt D

� X
j2Z

j˛�j j<j˛�kj

r2j˛�j j
jˇa

j j
2
j1CRj ;a.r/j

2

�
Cr2j˛�kj

jˇa
k j

2.1C yRa.r//;

where j yRa.r/j � h.r/ for some function h.r/ independent of a such that h.r/! 0 as r ! 0C, and

'a
n.aCr.cos t; sin t//D

1
p

2�

� X
j2Z

j˛�j j<j˛�kj

r j˛�j jˇa
j .1CRj ;a.r//e

ijt

�
C

1
p

2�
r j˛�kjˇa

k.e
ikt
CRa.r; t//;

where jRj ;a.r/j � const r2 for some const > 0 independent of j and a, and jRa.r; t/j � f .r/ for
some function f .r/ independent of a and t such that f .r/! 0 as r ! 0C.

(iii) Let �.t/D .cos t; sin t/ and �.t/D .� sin t; cos t/. It holds thatZ 2�

0

ˇ̌
.ir CAa/'

a
n.aC r.cos t; sin t//

ˇ̌2
dt

D

� X
j2Z

j˛�j j<j˛�kj

r2j˛�j j�2
jˇa

j j
2
j˛� j j2

�
j1CRj ;a.r/j

2
Cj1C zRj ;a.r/j

2
��

C r2j˛�kj�2
jˇa

k j
2
j˛� kj2.1C zRa.r//;
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where j zRa.r/j � p.r/ for some function p.r/ independent of a such that p.r/! 0 as r ! 0C, and

.irCAa/'
a
n.aCr.cos t; sin t//D

1
p

2�

X
j2Z

j˛�j j<j˛�kj

r j˛�j j�1ˇa
j

�
i j˛�j j�.t/C.˛�j /�.t/CRj ;a.r/

�
eijt

C
1
p

2�
r j˛�kj�1ˇa

k

��
i j˛� kj�.t/C .˛� k/�.t/

�
eikt
C zRa.r; t/

�
;

where jRj ;a.r; t/j � const r2 for some positive constant const > 0 independent of j and a and
j zRa.r; t/j � g.r/ for some function g.r/ independent of a and t such that g.r/! 0 as r ! 0C.

Proof. In order to prove statement (i), we notice that (2-10) evaluated at RD 1 provides

ˇa
j D v

a
j .1/C

�a
n

2j˛� j j

Z 1

0

.s1�j˛�j j
� s1Cj˛�j j/va

j .s/ ds: (2-25)

From Lemma 2.2(ii)–(iii) it follows that, for jaj � �0 with �0 > 0 sufficiently small,

jva
j .r/j � C 0r j˛�j j for all r 2 .0; 1� and j 2 Z (2-26)

for some constant C 0 > 0 independent of j , a, and r . Moreover, (2-4), (2-5), the convergence 'a
n! '0

n in
L2.�;C/, and standard elliptic estimates, see, e.g., [Gilbarg and Trudinger 1983, Theorem 8.10], imply

'a
n ! '0

n in H 1.�;C/ and C 2
loc.� n f0g;C/ as a! 0 (or along the sequence a`! 0): (2-27)

From (2-25)–(2-27), and the dominated convergence theorem we obtain that, for all j 2 Z,

lim
a!0

ˇa
j D v

0
j .1/C

�0
n

2j˛� j j

Z 1

0

.s1�j˛�j j
� s1Cj˛�j j/v0

j .s/ ds D ˇ0
j ;

thus proving (i).
If k 2 Z is such that j˛� kj is the order of vanishing of '0

n at 0, from Lemma 2.2(iii) it follows that
ˇ0

k
¤ 0 and ˇ0

j D 0 for all j 2 Z such that j˛ � j j < j˛ � kj; in particular, in view of (i), we have
lima!0 ˇ

a
k
¤ 0 and hence infjaj��0

jˇa
k
j> 0 for �0 sufficiently small. Then, from Lemma 2.2(iv) and the

Parseval identity we deduce thatZ 2�

0

j'a
n.aCr.cos t; sin t//j2 dt D

X
j2Z

r2j˛�j j
jˇa

j j
2
j1CRj ;a.r/j

2

D

� X
j2Z

j˛�j j<j˛�kj

r2j˛�j j
jˇa

j j
2
j1CRj ;a.r/j

2

�
Cr2j˛�kj

jˇa
k j

2.1C yRa.r//;

with

yRa.r/D jRk;a.r/j
2
C 2Re.Rk;a.r//C

X
j2Z

j˛�j j>j˛�kj

jˇa
j j

2

jˇa
k
j2

r2j˛�j j�2j˛�kj
j1CRj ;a.r/j

2
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so that the first estimate in (ii) follows from Lemma 2.2(ii)–(iii). From Lemma 2.2(iii) we also deduce
that

1
p

2�

X
j2Z

j˛�j j�j˛�kj

r j˛�j jˇa
j .1CRj ;a.r//e

ijt
D

1
p

2�
r j˛�kjˇa

k.e
ikt
CRa.r; t//;

where jRa.r; t/j � f .r/ for some function f .r/ independent of a and t such that f .r/! 0 as r ! 0.
Then the second estimate in (ii) follows from Lemma 2.2(iv).

From Lemma 2.2 (v) and the Parseval identity we deduce thatZ 2�

0

ˇ̌
.irCAa/'

a
n.aCr.cos t; sin t//

ˇ̌2
dtD

X
j2Z

r2j˛�j j�2
jˇa

j j
2
j˛�j j2

�
j1CRj ;a.r/j

2
Cj1C zRj ;a.r/j

2
�

so that the first estimate in (iii) follows from Lemma 2.2(ii)–(iii) arguing as above. In a similar way, the
second estimate in (iii) follows from statements (iii) and (v) of Lemma 2.2. �

Remark 2.6. In the particular case nD n0 with n0 such that (1-5) holds, the above lemma applies to the
family of eigenfunctions 'a D '

a
n0

satisfying (1-14) and (1-15). Indeed, in this case (1-16) holds; i.e., the
eigenfunctions 'a converge as a! 0C so that the assumptions of Lemma 2.5 are fulfilled. In particular
we deduce that, if '0 satisfies (1-7)–(1-9) and if 'a is as in (1-14)–(1-15), then, for a sufficiently close
to 0, the vanishing order of 'a is less than or equal to the vanishing order of '0.

Lemma 2.7. For n� 1 fixed and a varying in � n f0g, let 'a
n 2H

1;a
0
.�;C/ n f0g satisfy (2-4) and (2-5).

Then there exist � > 0 and C > 0 such that, for all R> 1 and a 2� such that 0< jaj< �=R,

1

jaj

Z
D.RC1/jaj.a/nDRjaj.a/

j'a
n j

2 dx � C

Z
@DRjaj.a/

j'a
n j

2 ds;Z
D.RC1/jaj.a/nDRjaj.a/

j.ir CAa/'
a
n j

2 dx �
C

R2jaj

Z
@DRjaj.a/

j'a
n j

2 ds:

Proof. Let us prove the first estimate arguing by contradiction: assume that there exist sequences R` > 1

and a` 2� such that R`ja`j< 1=` and

1

ja`j

Z
D.R`C1/ja` j

.a`/nDR` ja` j
.a`/

j'a`
n j

2 dx > `

Z
@DR` ja` j

.a`/

j'a`
n j

2 ds: (2-28)

It is easy to verify that, up to extracting a subsequence, 'a`
n ! '0

n in L2.�;C/ as `!1 for some
'0

n 2H
1;0
0
.�;C/ n f0g satisfying 8̂<̂

:
.ir CA0/

2'0
n D �

0
n'

0
n in �;

'0
n D 0 on @�;R
� j'

0
n.x/j

2 dx D 1:

(2-29)
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Let k 2 Z be such that j˛� kj is the order of vanishing of '0
n at 0. Then, from Lemma 2.5 (first estimate

in (ii)) it follows that, for ` sufficiently large,

1

ja`j

Z
D.R`C1/ja` j

.a`/nDR` ja` j
.a`/

j'a`
n j

2 dx D
1

ja`j

Z .R`C1/ja`j

R`ja`j

r

�Z 2�

0

j'a`
n .a`Cr.cos t;sin t//j2 dt

�
dr

�
2

ja`j

Z .R`C1/ja`j

R`ja`j

r

� X
j2Z

j˛�j j�j˛�kj

r2j˛�j j
jˇ

a`
j j

2

�
dr

� const
X
j2Z

j˛�j j�j˛�kj

.R`ja`j/
1C2j˛�j j

jˇ
a`
j j

2

for some positive constant const> 0 independent of `, whileZ
@DR` ja` j

.a`/

j'a`
n j

2 ds DR`ja`j

Z 2�

0

ˇ̌
'a`

n .a`CR`ja`j.cos t; sin t//
ˇ̌2

dt

�
R`ja`j

2

X
j2Z

j˛�j j�j˛�kj

.R`ja`j/
2j˛�j j

jˇ
a`
j j

2; (2-30)

thus contradicting (2-28) as `!1.
To prove the second estimate, let us assume by contradiction that there exist sequences R` > 1 and

a` 2� such that R`ja`j< 1=` andZ
D.R`C1/ja` j

.a`/nDR` ja` j
.a`/

j.ir CAa`/'
a`
n j

2 dx >
`

R2
`
ja`j

Z
@DR` ja` j

.a`/

j'a`
n j

2 ds: (2-31)

As above we have that, up to extracting a subsequence, 'a`
n ! '0

n in L2.�;C/ as `!1 for some
'0

n 2H
1;0
0
.�;C/n f0g satisfying (2-29). Then, from Lemma 2.5 (first estimate in (iii)) it follows that, for

` sufficiently large and for some positive constant const> 0 independent of `,Z
D.R`C1/ja` j

.a`/nDR` ja` j
.a`/

j.ir CAa`/'
a`
n j

2 dx

D

Z .R`C1/ja`j

R`ja`j

r

�Z 2�

0

j.ir CAa`/'
a`
n .a`C r.cos t; sin t//j2 dt

�
dr

D

Z .R`C1/ja`j

R`ja`j

r

� X
j2Z

j˛�j j�j˛�kj

r2j˛�j j�2
jˇ

a`
j j

2
j˛� j j2.2C o.1//

�
dr

� 3j˛� kj2
Z .R`C1/ja`j

R`ja`j

r

� X
j2Z

j˛�j j�j˛�kj

r2j˛�j j�2
jˇ

a`
j j

2

�
dr �

const
R`

X
j2Z

j˛�j j�j˛�kj

.R`ja`j/
2j˛�j j

jˇ
a`
j j

2;

which, in view of (2-30), contradicts (2-31) as `!1. �
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Remark 2.8. Arguing as in Lemma 2.7, we can also prove the following similar estimate (possibly taking
a smaller � and a larger C if necessary): for all R> 1 and a 2� such that 0< jaj< �=R

1

jaj

Z
D.RC1/jaj.a/nDRjaj.a/

j'a
n j

2 dx � C

Z
@D.RC1/jaj.a/

j'a
n j

2 ds;Z
D.RC1/jaj.a/nDRjaj.a/

j.ir CAa/'
a
n j

2 dx �
C

R2jaj

Z
@D.RC1/jaj.a/

j'a
n j

2 ds:

Lemma 2.9. For n� 1 fixed, let 'a
n be a solution to (2-4)–(2-5). Let � > 0 and C > 0 be as in Lemma 2.7

and Remark 2.8. Then, for all R> 2 and a 2� such that 0< jaj< �=R,ˇ̌̌̌Z
@DRjaj.0/

j'a
n j

2 ds�

Z
@DRjaj.a/

j'a
n j

2 ds

ˇ̌̌̌
�

1C 6C

R� 2

Z
@DRjaj.a/

j'a
n j

2 ds:

Proof. We note thatZ
@DRjaj.0/

j'a
n j

2 ds�

Z
@DRjaj.a/

j'a
n j

2 ds D

Z
@La

1;R

j'a
n j

2
Q� � O� ds�

Z
@La

2;R

j'a
n j

2
Q� � .�O�/ ds; (2-32)

where

La
1;R DDRjaj.0/ nDRjaj.a/; La

2;R DDRjaj.a/ nDRjaj.0/;

and

O�.x/D

�
x=jxj on @DRjaj.0/;

�.x� a/=jx� aj on @DRjaj.a/;
Q�.x/D

�
x=jxj on @DRjaj.0/;

.x� a/=jx� aj on @DRjaj.a/:

We note that O� is the outer unit normal vector on @La
1;R

and �O� is the outer unit normal vector on @La
2;R

.
By setting �1.x/D x=jxj, we can rewrite the right-hand side of (2-32) asZ
@La

1;R

j'a
n j

2. Q���1/ � O� dsC

Z
@La

1;R

j'a
n j

2�1 � O� dsC

Z
@La

2;R

j'a
n j

2. Q���1/ � O� ds�

Z
@La

2;R

j'a
n j

2�1 �.�O�/ ds

D

Z
@La

1;R

j'a
n j

2�1 � O� ds�

Z
@La

2;R

j'a
n j

2�1 � .�O�/ ds

C

Z
@DRjaj.0/

j'a
n j

2. Q� � �1/ � O� dsC

Z
@DRjaj.a/

j'a
n j

2. Q� � �1/ � O� ds: (2-33)

We observe that

. Q�.x/� �1.x// � O�.x/D

�
0 on @DRjaj.0/;

�1Cx � .x� a/=.jxjjx� aj/ on @DRjaj.a/:

Moreover, since �1 is smooth in La
1;R
[La

2;R
, we can apply the divergence theorem to the first two terms

in the right-hand side of (2-33), thus rewriting the right-hand side of (2-32) as

�

Z
@DRjaj.a/

j'a
n j

2

�
1�

x � .x� a/

jxjjx� aj

�
dsC

Z
La

1;R

div.j'a
n j

2�1/ dx�

Z
La

2;R

div.j'a
n j

2�1/ dx: (2-34)
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Estimate of the first term in (2-34). Parametrizing @DRjaj.a/ as x D aCRjaj.cos t; sin t/ and writing
aD jaj.cos �a; sin �a/ for some angle �a 2 Œ0; 2�/, we getˇ̌̌̌

1�
x � .x� a/

jxjjx� aj

ˇ̌̌̌
D

ˇ̌̌̌
1�

RC cos.t � �a/

.R2C 2R cos.t � �a/C 1/1=2

ˇ̌̌̌
�

1

R� 1

on @DRjaj.a/. Therefore,ˇ̌̌̌
�

Z
@DRjaj.a/

j'a
n j

2

�
1�

x � .x� a/

jxjjx� aj

�
ds

ˇ̌̌̌
�

1

R� 1

Z
@DRjaj.a/

j'a
n j

2 ds: (2-35)

Estimate of the second term in (2-34). The second term in (2-34) splits into two parts:Z
La

1;R

div.j'a
n j

2�1/ dx D

Z
La

1;R

j'a
n j

2

jxj
dxC

Z
La

1;R

2Re.i'a
n.ir CAa/'a

n � �1/ dx:

Since DRjaj.0/ �D.RC1/jaj.a/, we have La
1;R
�D.RC1/jaj.a/ nDRjaj.a/. Let � > 0 and C > 0 be as

in Lemma 2.7 and Remark 2.8. Hence by Lemma 2.7 we have that, for all R> 1 and a 2� such that
0< jaj< �=R,ˇ̌̌̌Z

La
1;R

j'a
n j

2

jxj
dx

ˇ̌̌̌
�

Z
D.RC1/jaj.a/nDRjaj.a/

j'a
n j

2

jxj
dx

�
1

.R� 1/jaj

Z
D.RC1/jaj.a/nDRjaj.a/

j'a
n j

2 dx �
C

R� 1

Z
@DRjaj.a/

j'a
n j

2 ds

andˇ̌̌̌Z
La

1;R

2Re.i'a
n.ir CAa/'a

n � �1/ dx

ˇ̌̌̌

� 2

�Z
D.RC1/jaj.a/nDRjaj.a/

j'a
n j

2 dx

�1=2�Z
D.RC1/jaj.a/nDRjaj.a/

j.ir CAa/'
a
n j

2 dx

�1=2

�
2C

R

Z
@DRjaj.a/

j'a
n j

2 ds:

Therefore, ˇ̌̌̌Z
La

1;R

div.j'a
n j

2�1/ dx

ˇ̌̌̌
�

3C

R� 1

Z
@DRjaj.a/

j'a
n j

2 ds (2-36)

for all R> 1 and a 2� such that 0< jaj< �=R.

Estimate of the third term in (2-34). The estimate of the third term can be derived in a similar way,
observing that, since DRjaj.0/ � D.R�1/jaj.a/, we have La

2;R
� DRjaj.a/ nD.R�1/jaj.a/, and using

Remark 2.8 to obtain ˇ̌̌̌Z
La

2;R

div.j'a
n j

2�1/ dx

ˇ̌̌̌
�

3C

R� 2

Z
@DRjaj.a/

j'a
n j

2 ds (2-37)

for all R> 2 and a 2� such that 0< jaj< �=R (by possibly changing C and � ).
Therefore combining (2-35)–(2-37) we complete the proof. �
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3. Monotonicity formula

The aim of this section is to introduce an Almgren-type frequency function and to use it to obtain local
estimates of the eigenfunctions in a neighborhood of order jaj of the singularity. In particular, we shall
prove that a suitable family of blow-up of the eigenfunctions 'a is bounded in the magnetic Sobolev
space (see Remark 3.8 ahead).

3A. Almgren-type frequency function. Arguing as in [Abatangelo and Felli 2015, Lemma 3.1], one can
easily prove the Poincaré-type inequality

1

r2

Z
Dr

juj2 dx �
1

r

Z
@Dr

juj2 dsC

Z
Dr

j.ir CAa/uj
2 dx; (3-1)

which holds for every r > 0, a 2Dr , and u 2H 1;a.Dr ;C/. Furthermore, defining, for every b 2D1,

mb WD inf
v2H 1;b.D1;C/

v 6�0

R
D1
j.ir CAb/vj

2 dxR
@D1
jvj2 ds

;

we have that the infimum mb is attained and mb > 0. Arguing as in [Abatangelo and Felli 2015], we can
prove that b 7!mb is continuous in D1 and that m0 D

p
�1, with �1 as in (2-1). Therefore a standard

dilation argument yields that, for any ı 2 .0;
p
�1 /, there exists some sufficiently large ‡ı > 1 such that,

for every r > 0 and a 2Dr such that jaj=r < 1=‡ı,
p
�1� ı

r

Z
@Dr

juj2 ds �

Z
Dr

j.ir CAa/uj
2 dx for all u 2H 1;a.Dr ;C/: (3-2)

For � 2 R, b 2 R2, u 2H 1;b.Dr ;C/ and r > jbj, we define the Almgren-type frequency function as

N .u; r; �;Ab/D
E.u; r; �;Ab/

H.u; r/
;

where

E.u; r; �;Ab/D

Z
Dr

�
j.ir CAb/uj

2
��juj2

�
dx and H.u; r/D

1

r

Z
@Dr

juj2 ds:

For all 1� n� n0 and a 2�, let 'a
n 2H

1;a
0
.�;C/ n f0g be an eigenfunction of problem (Ea) associated

to the eigenvalue �a
n, i.e., solving (2-4), such thatZ
�

j'a
n.x/j

2 dx D 1 and
Z
�

'a
n.x/'

a
`
.x/ dx D 0 if n¤ `: (3-3)

For nD n0, we choose
'a

n0
D 'a;

with 'a as in (1-14)–(1-15). Let
ƒD sup

a2�
1�n�n0

�a
n 2 .0;C1/:

We recall that ƒ is finite in view of the continuity result of the eigenvalue function a 7! �a
n in � proved

in [Bonnaillie-Noël et al. 2014, Theorem 1.1].
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Arguing as in [Abatangelo and Felli 2015, Lemma 5.2], we can prove that there exists

0<R0 < .ƒ.1C 2=
p
�1 //

�1=2

such that DR0
�� and, if jaj<R0,

H.'a
n ; r/ > 0 for all r 2 .jaj;R0/ and 1� n� n0: (3-4)

Furthermore, for every r 2 .0;R0� there exist Cr > 0 and ˛r 2 .0; r/ such that

H.'a
n ; r/� Cr for all a with jaj< ˛r and 1� n� n0: (3-5)

Thanks to (3-4), the function r 7!N.'a
n ; r; �

a
n;Aa/ is well-defined in .jaj;R0/. By direct calculations,

see [Noris et al. 2015] for details, we can prove that

d

dr
H.'a

n ; r/D
2

r
E.'a

n ; r; �
a
n;Aa/; (3-6)

d

dr
E.'a

n ; r; �
a
n;Aa/D 2

Z
@Dr

j.ir CAa/'
a
n � �j

2 ds�
2

r

�
M a

n C�
a
n

Z
Dr

j'a
n j

2 dx

�
(3-7)

where

M a
n D lim

"!0C

Z
@D".a/

�
Re
�
.ir CAa/'

a
n � �.ir CAa/'a

n �x
�
�

1
2
j.ir CAa/'

a
n j

2x � �
�

ds: (3-8)

Lemma 2.9, together with Lemmas 2.2 and 2.4, allow us to give an estimate of the quantity M a
n defined

in (3-8). We notice that the techniques used in [Abatangelo and Felli 2015; Noris et al. 2015] to estimate
the term M a

n for ˛ D 1
2

were based on the possibility of rewriting the problem as a Laplace equation on
the twofold covering; hence it is not possible here to extend such proofs to the case ˛ 62 Z=2 and a new
strategy of proof is needed.

Lemma 3.1. For n 2 f1; : : : ; n0g and a 2 �, let 'a
n be a solution of (2-4) satisfying (3-3). There exist

�0 > 0 and c0 > 2 such that, for every 1 � n � n0, R > c0 and a 2 � such that jaj < �0=R, the
quantity M a

n defined in (3-8) satisfies

jM a
n j

H.'a
n ;Rjaj/

�
2˛.1�˛/

R� c0

:

Proof. Let us fix n 2 f1; 2; : : : ; n0g and define, for jaj small and r 2 .0; 1�,

zH .'a
n ; r/D

1

r

Z
@Dr .a/

j'a
n j

2 ds:

From the Parseval identity and Lemma 2.2(iv) it follows that there exists �n > 0 such that, for every
R> 2 and a 2� such that jaj< �n=R,

zH .'a
n ;Rjaj/D

Z 2�

0

ˇ̌
'a

n.aCRjaj.cos t; sin t//
ˇ̌2

dt D
X
j2Z

.Rjaj/2j˛�j j
jˇa

j j
2
ˇ̌
1CRj ;a.Rjaj/

ˇ̌2
� .Rjaj/2˛jˇa

0 j
2
ˇ̌
1CR0;a.Rjaj/

ˇ̌2
C .Rjaj/2.1�˛/jˇa

1 j
2
ˇ̌
1CR1;a.Rjaj/

ˇ̌2
�

1
2

�
jˇa

0 j
2.Rjaj/2˛Cjˇa

1 j
2.Rjaj/2.1�˛/

�
; (3-9)
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where the ˇa
j ’s are the coefficients defined in (2-10) for the eigenfunction 'a

n (with n fixed). From the
elementary inequality ab � 1

2
.a2C b2/, it follows that

jˇa
0 jjˇ

a
1 jjaj D

1

R
jˇa

0 j.Rjaj/
˛
jˇa

1 j.Rjaj/
1�˛
�

1

2R

�
jˇa

0 j
2.Rjaj/2˛Cjˇa

1 j
2.Rjaj/2.1�˛/

�
: (3-10)

Combining (3-9) and (3-10) we obtain

jˇa
0
jjˇa

1
jjaj

zH .'a
n ;Rjaj/

�
1

R
: (3-11)

Moreover, Lemma 2.4 implies

jM a
n j � 2˛.1�˛/jˇa

0 jjˇ
a
1 jjaj: (3-12)

Lemma 2.9 provides some constant cn (independent of a and R) such that, for a possibly smaller �n and
for all R> 2 and a 2� such that 0< jaj< �n=R,ˇ̌

H.'a
n ;Rjaj/�

zH .'a
n ;Rjaj/

ˇ̌
�

cn

R� 2
zH .'a

n ;Rjaj/: (3-13)

Therefore, by combining (3-11)–(3-13), we obtain

jM a
n j

H.'a
n ;Rjaj/

�
2˛.1�˛/

R

�
1C

H.'a
n ;Rjaj/�

zH .'a
n ;Rjaj/

zH .'a
n ;Rjaj/

��1

�
2˛.1�˛/

R

1

1� cn

R�2

�
2˛.1�˛/

R� .2C cn/

for all R> cnC 2 and a 2� such that 0< jaj< �n=R.
The conclusion then follows by repeating the argument for all n 2 f1; 2; : : : ; n0g and choosing

�0 Dminf�n W 1� n� n0g and c0 Dmaxf2C cn W 1� n� n0g: �

Lemma 3.2. For ı 2 .0;
p
�1=2/, let ‡ı be such that (3-2) holds. Let R0 be as above, r0 � R0 and

n 2 f1; : : : ; n0g. If ‡ıjaj � r1 < r2 � r0 and 'a
n is a solution to (2-4) satisfying (3-3), then

H.'a
n ; r2/

H.'a
n ; r1/

� e�ƒ.2C
p
�1/r

2
0

�
r2

r1

�2.
p
�1�ı/

:

Proof. Combining (3-1) with (3-2) we obtain that, for every ‡ıjaj< r < r0,

1

r2

Z
Dr

j'a
n j

2 dx �

�
1C

1
p
�1� ı

�Z
Dr

j.ir CAa/'
a
n j

2 dx

�

�
1C

2
p
�1

�Z
Dr

j.ir CAa/'
a
n j

2 dx:

From above, (3-6) and (3-2), we have that, for every ‡ıjaj< r < r0,

d

dr
H.'a

n ; r/�
2

r

�
1�ƒr2

�
1C

2
p
�1

��Z
Dr

j.ir CAa/'
a
n j

2 dx

�
2

r

�
1�ƒr2

�
1C

2
p
�1

��
.
p
�1� ı/H.'

a
n ; r/;
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so that, in view of (3-4),

d

dr
log H.'a

n ; r/�
2

r
.
p
�1� ı/� 2ƒr.2C

p
�1 /:

Integrating between r1 and r2 we obtain the desired inequality. �

Lemma 3.3. For n 2 f1; : : : ; n0g and a 2 �, let 'a
n be a solution of (2-4) satisfying (3-3). Let R0 be

as above, �0 and c0 > 0 be as in Lemma 3.1 and let r0 �minfR0; �0g. For ı 2 .0;
p
�1=2/, let ‡ı > 1

be such that (3-2) holds. Then, there exists cr0;ı > 0 such that for all R > maxf‡ı; c0g, jaj < r0=R,
Rjaj � r < r0 and n 2 f1; : : : ; n0g,

eƒr2=.1�ƒr2
0
/.N .'a

n ; r; �
a
n;Aa/C 1/� eƒr2

0
=.1�ƒr2

0
/.N .'a

n ; r0; �
a
n;Aa/C 1/C

cr0;ı

R� c0

:

Proof. By direct calculations, using the expressions for the derivatives of the functions H.'a
n ; r/ and

E.'a
n ; r; �

a
n;Aa/ written in (3-6) and (3-7) and the Cauchy–Schwarz inequality, we obtain

d

dr
N .'a

n ; r; �
a
n;Aa/� �

2jM a
n j

rH.'a
n ; r/

�
2�a

n

rH.'a
n ; r/

Z
Dr

j'a
n j

2 dx: (3-14)

By Lemmas 3.2 and 3.1 the first term can be estimated as

�
2jM a

n j

rH.'a
n ; r/

D�
2jM a

n j

rH.'a
n ;Rjaj/

H.'a
n ;Rjaj/

H.'a
n ; r/

� �
4˛.1�˛/

R� c0

eƒ.2C
p
�1/r

2
0 .Rjaj/2.

p
�1�ı/r�2.

p
�1�ı/�1 (3-15)

for all R>maxf‡ı; c0g, jaj< r0=R, Rjaj � r < r0 and n 2 f1; : : : ; n0g.
For the second term, the Poincaré inequality (3-1) leads to

1�ƒr2
0

r2

Z
Dr

j'a
n j

2 dx �E.'a
n ; r; �

a
n;Aa/CH.'a

n ; r/

for r < r0, which implies

�
2r�a

n

r2H.'a
n ; r/

Z
Dr

j'a
n j

2 dx � �
2ƒr

1�ƒr2
0

.N .'a
n ; r; �

a
n;Aa/C 1/ (3-16)

for r < r0. Using (3-15) and (3-16) we can estimate the right-hand side of (3-14) thus obtaining

d

dr
.eƒr2=.1�ƒr2

0
/.N .'a

n ; r; �
a
n;Aa/C 1//

� �
4˛.1�˛/

R� c0

eƒr2
0
=.1�ƒr2

0
/eƒ.2C

p
�1/r

2
0 .Rjaj/2.

p
�1�ı/r�2.

p
�1�ı/�1

for all Rjaj � r < r0 with R > maxf‡ı; c0g. Integrating between r and r0 and using the fact that
Rjaj � r < r0, we obtain the statement with

cr0;ı D
2˛.1�˛/
p
�1� ı

eƒ.2C
p
�1/r

2
0
Cƒr2

0
=.1�ƒr2

0
/: �
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Lemma 3.4. Let 'a be a solution of (1-14)–(1-15) and let k be as in (1-8). For every ı 2 .0;
p
�1=2/,

there exist rı 2 .0;R0/ and Kı >‡ı such that if R>Kı, jaj< rı=R and Rjaj � r < rı, then

N .'a; r; �a;Aa/� j˛� kjC ı:

Proof. From (1-16)–(1-17) it follows that, for every r <R0,

lim
a!0

N .'a; r; �a;Aa/DN .'0; r; �0;A0/:

Moreover, from [Felli et al. 2011, Theorem 1.3] we know that, under assumption (1-9),

lim
r!0C

N .'0; r; �0;A0/D j˛� kj:

Then, the proof is a direct consequence of Lemma 3.3; see [Noris et al. 2015, Lemma 7.2; Abatangelo
and Felli 2015, Lemma 5.7; Abatangelo et al. 2017, Lemma 5.7] for details. �

3B. Local energy estimates.

Corollary 3.5. For ı 2 .0;
p
�1=2/ let rı;Kı be as in Lemma 3.4 and ˛rı be as in (3-5). Then there

exists Cı > 0 such that

H.'a;Rjaj/�H.'a;Kıjaj/

�
R

Kı

�2.j˛�kjCı/

for all R>Kı and jaj<
rı

R
; (3-17)

H.'a;Kıjaj/� Cıjaj
2.j˛�kjCı/ for all jaj<min

�
rı

Kı

; ˛rı

�
; (3-18)

H.'a;Kıjaj/DO.jaj2.
p
�1�ı// as a! 0: (3-19)

Proof. From (3-6), the definition of N, and Lemma 3.4 we have

1

H.'a; r/

d

dr
H.'a; r/D

2

r
N .'a; r; �a;Aa/

�
2

r
.j˛� kjC ı/ for all Kıjaj � r < rı with jaj<

rı

Kı

so that estimate (3-17) follows by integration over ŒKıjaj;Rjaj� and estimate (3-18) from integration over
ŒKıjaj; rı � and (3-5). Finally (3-19) is a direct consequence of Lemma 3.2. �

Lemma 3.6. For n 2 f1; : : : ; n0g and a 2�, let 'a
n be a solution to (2-4) satisfying (3-3). Let R0 > 0 be

as in (3-4). For every ı 2 .0;
p
�1=2/, there exist zKı > 1 and zCı > 0 such that, for all R> zKı, a 2�

with Rjaj<R0, and n 2 f1; : : : ; n0g,Z
DRjaj

j.ir CAa/'
a
n j

2 dx � zCı.Rjaj/
2.
p
�1�ı/; (3-20)Z

@DRjaj

j'a
n j

2 ds � zCı.Rjaj/
2.
p
�1�ı/C1; (3-21)Z

DRjaj

j'a
n j

2 dx � zCı.Rjaj/
2.
p
�1�ı/C2: (3-22)
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Proof. By Lemma 3.2 (choosing r1 DRjaj and r2 DR0) and the definition of H it follows thatZ
@DRjaj

j'a
n j

2 ds DRjajH.'a
n ;Rjaj/�RjajH.'a

n ;R0/e
ƒ.2C

p
�1/R

2
0

�
Rjaj

R0

�2.
p
�1�ı/

: (3-23)

Moreover, from (2-7) and continuous trace embeddings we have H.'a
n ;R0/D .1=R0/

R
@DR0

j'a
n j

2 ds is
bounded uniformly with respect to a. Hence estimate (3-23) implies (3-21).

From Lemma 3.3 it follows that the frequency N is bounded in r DRjaj provided R is sufficiently
large; hence E.'a

n ;Rjaj; �
a
n;Aa/ is uniformly estimated by H.'a

n ;Rjaj/, so that (3-21) and (3-1)–(3-2)
yield (3-20). Estimate (3-22) can be proved combining (3-20)–(3-21) with the Poincaré inequality (3-1).
We refer to [Abatangelo and Felli 2015, Lemma 5.8] for more details in a related problem. �

Lemma 3.7. For a2� let 'a2H
1;a
0
.�;C/ be a solution of (1-14)–(1-15). For some fixed ı2.0;

p
�1=2/,

let Kı >‡ı be as in Lemma 3.4. Then, for every R>Kı,Z
DRjaj

j.ir CAa/'aj
2 dx DO.H.'a;Kıjaj// as jaj ! 0C; (3-24)Z

@DRjaj

j'aj
2 ds DO.jajH.'a;Kıjaj// as jaj ! 0C; (3-25)Z

DRjaj

j'aj
2 dx DO.jaj2H.'a;Kıjaj// as jaj ! 0C: (3-26)

Proof. The proof follows from the boundedness of the frequency N .'a;Rjaj; �a;Aa/ established in
Lemma 3.4 and by its scaling properties. For ı2 .0;

p
�1=2/ fixed, let Kı>‡ı and rı be as in Lemma 3.4;

hence

N.'a;Rjaj; �a;Aa/D

R
DRjaj
j.ir CAa/'aj

2 dx��a

R
DRjaj
j'aj

2 dx

H.'a;Rjaj/

� j˛� kjC ı for all R>Kı and jaj<
rı

R
:

Then, by (3-1) and (3-2) it follows that�
1�ƒr2

ı

�
1C

2
p
�1

��Z
DRjaj

j.ir CAa/'aj
2 dx �

Z
DRjaj

j.ir CAa/'aj
2 dx��a

Z
DRjaj

j'aj
2 dx

�H.'a;Rjaj/.j˛� kjC ı/:

Then (3-24) follows from (3-17). Estimates (3-25) and (3-26) follow from (3-24) and the Poincaré-type
inequalities (3-1) and (3-2). �

Remark 3.8. Let us consider the blow-up family

Q'a.x/ WD
'a.jajx/p

H.'a;Kıjaj/
; (3-27)

with Kı >‡ı as in Lemma 3.4 for some fixed ı 2 .0;
p
�1=2/. By Lemma 3.7 it follows that, for every

p 2 S1 fixed, rı > 0 as in Lemma 3.4, and R >Kı, the blow-up family f Q'a W aD jajp; Rjaj < rıg is
bounded in H 1;p.DR;C/.
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4. Estimate on �0 ��a

The aim of this section is to obtain a bound (both from above and from below) of the eigenvalue variation
�a��0. These bounds are obtained by considering suitable competitor functions and by plugging them
into the Courant–Fischer characterization of �a and �0:

�aDmin

(
max

u2Fnf0g

R
� j.irCAa/uj

2 dxR
� juj

2 dx
WF is a linear subspace of H

1;a
0
.�;C/; dimF D n0

)
; (4-1)

�0Dmin

(
max

u2Fnf0g

R
� j.irCA0/uj

2 dxR
� juj

2 dx
WF is a linear subspace of H

1;0
0
.�;C/; dimF D n0

)
: (4-2)

In Section 4A we construct the competitor function for �a. This function is obtained by modifying '0
n

in a small neighborhood of a. Since the asymptotics of '0
n is exactly known, this allows us to obtain,

in Section 4B, a sharp bound from below of �0��a. The competitor function for �0 is constructed in
Section 4C, by modifying locally 'a

n . The energy estimates obtained in Section 3 allow us to obtain a
preliminary estimate from above of �0��a in terms of the quantity H.'a;Kıjaj/.

Before proceeding, we find it useful to recall the following technical result, which is proved in
[Abatangelo and Felli 2015, Lemma 6.1] and concerns the maximum of quadratic forms depending on
the pole a! 0.

Lemma 4.1. For every a 2�, let us consider a quadratic form

Qa W C
n0 ! R; Qa.z1; z2; : : : ; zn0

/D

n0X
j ;nD1

Mj ;n.a/zj Nzn;

with Mj ;n.a/2C such that Mj ;n.a/DMn;j .a/. Let us assume that there exist  2 .0;C1/, a 7!�.a/2R

with �.a/� 0 and �.a/DO.jaj2 / as jaj! 0C, and a 7!�.a/ 2R with �.a/DO.1/ as jaj! 0C, such
that the coefficients Mj ;n.a/ satisfy the following conditions:

(i) Mn0;n0
.a/D �.a/�.a/.

(ii) For all j < n0, we have Mj ;j .a/!Mj as jaj ! 0C for some Mj 2 R, Mj < 0.

(iii) For all j < n0, we have Mj ;n0
.a/DMn0;j .a/DO.jaj

p
�.a// as jaj ! 0C.

(iv) For all j ; n< n0 with j ¤ n, we have Mj ;n.a/DO.jaj2 / as jaj ! 0C.

(v) There exists M 2 N such that jaj.2CM / D o.�.a// as jaj ! 0C.

Then

max
z2Cn0

kzkD1

Qa.z/D �.a/.�.a/C o.1// as jaj ! 0C;

where kzk D k.z1; z2; : : : ; zn0
/k D

�Pn0

jD1
jzj j

2
�1=2.
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4A. Construction of the test functions using '0
n. Recall that '0

n 2 H
1;0
0
.�;C/ n f0g is a solution of

(2-4), also satisfying (2-5), with aD 0. Let R0 be as in (3-4). For every R> 1, a 2� with jaj<R0=R

and 1� n� n0 we define

wn;R;a D

(
wint

n;R;a
in DRjaj;

wext
n;R;a

in � nDRjaj;
(4-3)

where

wext
n;R;a D ei˛.�a��

a
0
/'0

n in � nDRjaj;

and wint
n;R;a

is the unique solution to the minimization problem

min
�Z

DRjaj

j.ir CAa/uj
2 dx W u 2H 1;a.DRjaj;C/; uD ei˛.�a��

a
0
/'0

n on @DRjaj

�
:

We notice that wext
n;R;a

and wint
n;R;a

respectively solve(
.ir CAa/

2wext
n;R;a

D �0
nw

ext
n;R;a

in � nDRjaj;

wext
n;R;a

D ei˛.�a��
a
0
/'0

n on @.� nDRjaj/
and

(
.ir CAa/

2wint
n;R;a

D 0 in DRjaj;

wint
n;R;a

D ei˛.�a��
a
0
/'0

n on @DRjaj:

As a consequence of Proposition 2.1 we have '0
n.x/ D O.jxjj˛�j j/ as x ! 0 for some j 2 Z, which

implies

'0
n.x/DO.jxj

p
�1/ as x! 0; (4-4)

since j˛� j j �
p
�1 for all j 2 Z. Furthermore (2-2) impliesZ

Dr

j.ir CA0/'
0
n j

2 dx D �0

Z
Dr

j'0
n j

2 dxC
j˛� j jC o.1/

r

Z
@Dr

j'0
n j

2 ds

DO.r2
p
�1/ as r ! 0C: (4-5)

From (4-4) and (4-5) we deduce that, for every R> 1, a 2� such that Rjaj<R0, and 1� n� n0,Z
DRjaj

j.ir CA0/'
0
n j

2 dx DO.jaj2
p
�1/;

Z
@DRjaj

j'0
n j

2 ds DO.jaj2
p
�1C1/;

and
Z

DRjaj

j'0
n j

2 dx DO.jaj2
p
�1C2/ as jaj ! 0C:

(4-6)

Using the above estimates (4-6) and the Dirichlet principle (see the proof of [Abatangelo and Felli
2015, Lemma 6.2] for details in the case of half-integer circulation), we obtain that, for every R > 2

and 1� n� n0,Z
DRjaj

j.ir CAa/w
int
n;R;aj

2 dx DO.jaj2
p
�1/;

Z
@DRjaj

jwint
n;R;aj

2 ds DO.jaj2
p
�1C1/;

and
Z

DRjaj

jwint
n;R;aj

2 dx DO.jaj2
p
�1C2/ as jaj ! 0C:

(4-7)
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The above estimates can be made more precise in the case nD n0 in view of (1-9): for every R> 2 and
a 2� with Rjaj<R0,Z

DRjaj

j.ir CA0/'0j
2 dx DO.jaj2j˛�kj/;

Z
@DRjaj

j'0j
2 ds DO.jaj2j˛�kjC1/;

and
Z

DRjaj

j'0j
2 dx DO.jaj2j˛�kjC2/ as jaj ! 0C;

(4-8)

and consequently, in view of the Dirichlet principle,Z
DRjaj

j.ir CAa/w
int
n0;R;a

j
2 dx DO.jaj2j˛�kj/;

Z
@DRjaj

jwint
n0;R;a

j
2 ds DO.jaj2j˛�kjC1/;

and
Z

DRjaj

jwint
n0;R;a

j
2 dx DO.jaj2j˛�kjC2/ as jaj ! 0C;

(4-9)

with k as in (1-8). Furthermore, defining

Wa.x/ WD
'0.jajx/

jajj˛�kj
(4-10)

for all R> 2 and a 2� such that Rjaj<R0, (1-9) implies

Wa! ˇ k in H 1;0.DR;C/; as jaj ! 0; (4-11)

where  k is defined in (1-20).

4B. Estimate of the Rayleigh quotient for �a.

Lemma 4.2. There exists c 2 R such that

�0��a � cjaj2j˛�kj for all a 2�;

where k is as in (1-8).

Proof. The proof follows along the lines of [Abatangelo and Felli 2015, Lemma 6.7; Abatangelo et al.
2017, Lemma 7.2]. Let wn;R;a be defined in (4-3). Let us fix R> 2. By proceeding with a Gram–Schmidt
process we define

Qwn;a D
Own;a

k Own;akL2.�;C/

; 1� n� n0;

where
Own0;a D wn0;R;a;

Own;a D wn;R;a�

n0X
`DnC1

ca
`;n Ow`;a; 1� n� n0� 1;

and

ca
`;n D

R
�wn;R;a

NOw`;a dx

k Ow`;ak
2
L2.�;C/

; 1� n� n0� 1; nC 1� `� n0:
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From (4-6), (4-7) and an induction argument it follows that, for all `; n such that 1 � n � n0 � 1 and
nC 1� `� n0,

k Own;ak
2
L2.�;C/

D 1CO.jaj2
p
�1C2/ and ca

`;n DO.jaj2
p
�1C2/ (4-12)

as jaj ! 0. Moreover, from (4-8) and (4-9) we have

k Own0;ak
2
L2.�;C/

D kwn0;R;ak
2
L2.�;C/

D 1CO.jaj2j˛�kjC2/ as jaj ! 0; (4-13)

and

ca
n0;n
DO.jajj˛�kjC

p
�1C2/ as jaj ! 0; for 1� n� n0� 1: (4-14)

Since dim.spanfw1;R;a; : : : ; wn0;R;ag/D n0, we have that also dim.spanf Qw1;a; : : : ; Qwn0;ag/D n0, and
hence from (4-1) we deduce that

�a � max
.˛1;:::;˛n0

/2Cn0Pn0
nD1
j˛nj

2D1

Z
�

ˇ̌̌̌
.ir CAa/

� n0X
nD1

˛n Qwn;a

�ˇ̌̌̌2
dx;

which leads to

�a��0 � max
.˛1;:::;˛n0

/2Cn0Pn0
nD1
j˛nj

2D1

n0X
n;jD1

˛n N̨j pa
n;j ; (4-15)

where pa
n;j D

R
�.irCAa/ Qwn;a �.ir CAa/ Qwj ;a dx��0ınj , with ınj D 1 if nD j and ınj D 0 otherwise.

Using the estimates above we can now estimate pa
n;j . First, using (4-8), (4-9), and (4-13)

pa
n0;n0

D
�0R

� jwn0;R;aj
2 dx

�
1�

Z
�

jwn0;R;aj
2 dx

�
C

1R
� jwn0;R;aj

2 dx

�Z
DRjaj

j.ir CAa/w
int
n0;R;a

j
2 dx�

Z
DRjaj

j.ir CA0/'0j
2 dx

�
DO.jaj2j˛�kjC2/CO.jaj2j˛�kj/

D jaj2j˛�kjO.1/ as jaj ! 0C:

Next (4-6), (4-7) and (4-12) provide for n< n0

pa
n;n D��0C

1

k Own;ak
2
L2.�;C/

�
�0

nC

Z
DRjaj

j.ir CAa/w
int
n;R;aj

2 dx�

Z
DRjaj

j.ir CA0/'
0
n j

2 dx

�

C
1

k Own;ak
2
L2.�;C/

Z
�

ˇ̌̌̌
.ir CAa/

� n0X
`DnC1

ca
`;n Ow`;a

�ˇ̌̌̌2
dx

�
2

k Own;ak
2
L2.�;C/

Re

n0X
`DnC1

�
Nca
`;n

Z
�

.ir CAa/wn;R;a � .ir CAa/ Ow`;a dx

�
D .�0

n��0/C o.1/;
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as jaj ! 0. Using (4-6), (4-7), (4-8), (4-9), (4-12) and (4-14), we have that, for all n< n0,

pa
n;n0
D Npa

n0;n
DO.jaj

p
�1Cj˛�kj/ as jaj ! 0;

while the same estimates imply that, for all n¤ ` < n0,

pa
n;` D Np

a
`;n DO.jaj2

p
�1/ as jaj ! 0:

Therefore, the quadratic form in (4-15) satisfies the hypothesis of Lemma 4.1 with �.a/ D jaj2j˛�kj,
 D
p
�1, Mj D �

0
j ��0 < 0 for j < n0 and M 2 N such that .2CM /

p
�1 > 2j˛� kj, so that

max
.˛1;:::;˛n0

/2Cn0Pn0
nD1
j˛nj

2D1

n0X
n;jD1

˛n N̨j pa
n;j D jaj

2j˛�kjO.1/ as jaj ! 0: �

We notice that Lemma 4.2 does not give any information about the sign of the constant c.

4C. Construction of the test functions using 'a
n. Let 'a

n 2H
1;a
0
.�;C/nf0g satisfy (2-4) and (2-5). Let

R0 be as in (3-4), R> 1 and jaj<R0=R. For every 1� n� n0 we define

vn;R;a D

(
vint

n;R;a
in DRjaj;

vext
n;R;a

in � nDRjaj;

where
vext

n;R;a D ei˛.�a
0
��a/'a

n in � nDRjaj;

and vint
n;R;a

is the unique solution to the minimization problem

min
�Z

DRjaj

j.ir CA0/uj
2 dx W u 2H 1;0.DRjaj;C/; uD ei˛.�a

0
��a/'a

n on @DRjaj

�
: (4-16)

We notice that vext
n;R;a

and vint
n;R;a

respectively solve(
.ir CA0/

2vext
n;R;a

D �a
nv

ext
n;R;a

in � nDRjaj;

vext
n;R;a

D e�i˛.�a��
a
0
/'a

n on @.� nDRjaj/;

and (
.ir CA0/

2vint
n;R;a

D 0 in DRjaj;

vint
n;R;a

D e�i˛.�a��
a
0
/'a

n on @DRjaj:
(4-17)

The energy estimates in Lemmas 3.6 and 3.7 imply the following estimates for the functions vint
n;R;a

.

Lemma 4.3. For ı 2 .0;
p
�1=2/ fixed, let zKı be as in Lemma 3.6 and R0 be as in (3-4). Let

R>maxf2; zKıg

and 1� n� n0 be fixed. For every a 2� with jaj<R0=R, let vint
n;R;a

be defined as in (4-16). ThenZ
DRjaj

j.ir CA0/v
int
n;R;aj

2 dx DO.jaj2.
p
�1�ı//Z

DRjaj

jvint
n;R;aj

2 dx DO.jaj2.
p
�1�ı/C2/ and

Z
@DRjaj

jvint
n;R;aj

2 ds DO.jaj2.
p
�1�ı/C1/

(4-18)

as jaj ! 0C.
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Proof. The proof follows by combining the Dirichlet principle, a suitable cutting-off procedure, and
Lemma 3.6 (see the proof of [Abatangelo and Felli 2015, Lemma 6.2] for details in the case of half-integer
circulation). �

Lemma 4.4. For R > maxf2;Kıg fixed, with Kı as in Lemma 3.4, let vint
n0;R;a

be defined as in (4-16).
Then Z

DRjaj

j.ir CA0/v
int
n0;R;a

j
2 dx DO.H.'a;Kıjaj//; (4-19)Z

DRjaj

jvint
n0;R;a

j
2 dx DO.jaj2H.'a;Kıjaj//;

Z
@DRjaj

jvint
n0;R;a

j
2 ds DO.jajH.'a;Kıjaj//; (4-20)

as jaj ! 0C.

Proof. The proof follows from the estimates of Lemma 3.7, a suitable cutting-off procedure, and the
Dirichlet principle; see (4-16). �

Remark 4.5. For all R> 2 and a 2� with jaj<R0=R we consider the blow-up family

ZR
a .x/ WD

vint
n0;R;a

.jajx/p
H.'a;Kıjaj/

; (4-21)

with Kı as in Lemma 3.4 for some fixed ı 2 .0;
p
�1=2/. From Lemma 4.4 it follows that, for every

p 2 S1 fixed, rı > 0 as in Lemma 3.4, and R>maxfKı; 2g, the family of functions

fZR
a W aD jajp 2�; jaj< rı=Rg

is bounded in H 1;0.DR;C/.

4D. Estimate of the Rayleigh quotient for �0. An estimate from above for the limit eigenvalue �0 in
terms of the approximating eigenvalue �a can be obtained by choosing as test functions in (4-2) an
orthonormal family constructed starting from the functions fvn;R;agnD1;:::;n0

, as done in the following.

Lemma 4.6. For ı 2 .0;
p
�1=2/ fixed, let rı;Kı be as in Lemma 3.4 and ˛rı be as in (3-5). Then there

exists dı > 0 such that
�0��a � dıH.'a;Kıjaj/

for all a 2� such that jaj<minfrı=Kı; ˛rıg.

Proof. In view of (3-18) it is enough to prove that �0��a �O.H.'a;Kıjaj// as jaj ! 0C.
Recall the definition of vn;R;a given at the beginning of Section 4C. Let us fix R>maxf2;Kı; zKıg,

with zKı as in Lemma 3.6. As in the proof of Lemma 4.2, we use a Gram–Schmidt process; that is, we
define

Qvn;a D
Ovn;a

k Ovn;akL2.�;C/

; 1� n� n0;

where
Ovn0;a D vn0;R;a;

Ovn;a D vn;R;a�

n0X
`DnC1

da
`;n Ov`;a; 1� n� n0� 1;
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and

da
`;n D

R
� vn;R;a

NOv`;a dx

k Ov`;ak
2
L2.�;C/

; 1� n� n0� 1; nC 1� `� n0:

From (3-22), (4-18) and an induction argument it follows that, for every 1� n� n0�1 and nC1� `� n0,

k Ovn;ak
2
L2.�;C/

D 1CO.jaj2.
p
�1�ı/C2/ and da

`;n DO.jaj2.
p
�1�ı/C2/ (4-22)

as jaj ! 0. Moreover, from (3-26) and (4-20), we have

k Ovn0;ak
2
L2.�;C/

D 1CO.jaj2H.'a;Kıjaj// as jaj ! 0; (4-23)

and, for 1� n� n0� 1,

da
n0;n
DO.jaj

p
�1�ıC2

p
H.'a;Kıjaj// as jaj ! 0: (4-24)

Since dim.spanfv1;R;a; : : : ; vn0;R;ag/ D n0, we have that also dim.spanf Qv1;a; : : : ; Qvn0;ag/ D n0, and
hence from (4-2) we deduce that

�0 � max
.˛1;:::;˛n0

/2Cn0Pn0
nD1
j˛nj

2D1

Z
�

ˇ̌̌̌
.ir CA0/

� n0X
nD1

˛n Qvn;a

�ˇ̌̌̌2
dx;

which leads to

�0��a � max
.˛1;:::;˛n0

/2Cn0Pn0
nD1
j˛nj

2D1

n0X
n;jD1

˛n N̨j qa
n;j ; (4-25)

where qa
n;j D

R
�.ir C A0/ Qvn;a � .ir CA0/ Qvj ;a dx � �aınj . Using the results above we can now

estimate qa
n;j . First, using (4-19), (3-24), and (4-23)

qa
n0n0
D

�aR
� jvn0;R;aj

2 dx

�
1�

Z
�

jvn0;R;aj
2 dx

�
C

1R
� jvn0;R;aj

2 dx

�Z
DRjaj

j.ir CA0/v
int
n0;R;a

j
2 dx�

Z
DRjaj

j.ir CAa/'aj
2 dx

�
DH.'a;Kıjaj/O.1/;

as jaj ! 0C. Next (4-18), (3-20), (4-22), and the fact that �a
n! �0

n as jaj ! 0, provide, for n< n0,

qa
n;n D��aC

1

k Ovn;ak
2
L2.�;C/

�
�a

nC

Z
DRjaj

j.ir CA0/v
int
n;R;aj

2 dx�

Z
DRjaj

j.ir CAa/'
a
n j

2 dx

�

C
1

k Ovn;ak
2
L2.�;C/

Z
�

ˇ̌̌̌
.ir CA0/

� n0X
`DnC1

da
`;n Ov`;a

�ˇ̌̌̌2
dx

�
2

k Ovn;ak
2
L2.�;C/

Re

n0X
`DnC1

�
Nda
`;n

Z
�

.ir CA0/vn;R;a � .ir CA0/ Ov`;a dx

�
D �0

n��0C o.1/;
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as jaj ! 0. Now, using (3-20), (3-24), (4-18), (4-19), (4-22), (4-23), and (4-24), we prove that, for all
n< n0,

qa
n;n0
D Nqa

n0;n
DO

�
jaj
p
�1�ı

p
H.'a;Kıjaj/

�
as jaj ! 0C;

while the same estimates imply that, for all n¤ ` < n0,

qa
n;` D Nq

a
`;n DO.jaj2.

p
�1�ı//; as jaj ! 0C:

Therefore, the quadratic form in (4-25) satisfies the hypothesis of Lemma 4.1 with  D
p
�1 � ı,

�.a/DH.'a;Kıjaj/DO.jaj2 / (by (3-19)), Mj D �
0
j ��0 < 0 and M any natural number such that

M > 2.j˛�kj�
p
�1C2ı/=.

p
�1�ı/ by Corollary 3.5. Therefore the right-hand side in (4-25) satisfies

max
.˛1;:::;˛n0

/2Cn0Pn0
nD1
j˛nj

2D1

n0X
n;jD1

˛n N̨j qa
n;j DH.'a;Kıjaj/O.1/;

as jaj ! 0C. Then the conclusion follows from (4-25). �

4E. Energy estimates.

Corollary 4.7. For ı 2 .0;
p
�1=2/ fixed, let Kı be as in Lemma 3.4. Then

(i) j�0��aj DO.1/maxfH.'a;Kıjaj/; jaj
2j˛�kjg as a! 0;

(ii) j�0��aj DO..H.'a;Kıjaj//
j˛�kj=.j˛�kjCı// as a! 0.

Proof. Estimate (i) is a direct consequence of Lemmas 4.2 and 4.6. Corollary 3.5 implies

jaj2j˛�kj
DO..H.'a;Kıjaj//

j˛�kj=.j˛�kjCı//

as a! 0, so that (ii) follows from (i). �

5. Blow-up analysis

In order to obtain a more precise estimate of the order of vanishing of the eigenvalue variation j�0��aj

than Corollary 4.7, we have now to compare the order of H.'a;Kıjaj/ with jaj2j˛�kj. We observe that
the estimates obtained so far (in particular Corollary 3.5) are not enough to decide what is the dominant
term among H.'a;Kıjaj/ and jaj2j˛�kj. To this aim, our next step is a blow-up analysis for scaled
eigenfunctions (3-27) along a fixed direction p 2 S1. In order to identify the limit profile of the blow-up
family (3-27), the following energy estimate of the difference between approximating and limit scaled
eigenfunctions plays a crucial role.

Let D1;2
0
.R2;C/ be the completion of C1c .R2 n f0g;C/ with respect to the magnetic Dirichlet norm

kukD1;2

0
.R2;C/

WD

�Z
R2

ˇ̌
.ir CA0/u.x/

ˇ̌2
dx

�1=2

:

Theorem 5.1 (energy estimates for eigenfunction variation). Let p 2 S1 be fixed. For some fixed
ı 2 .0;

p
�1=2/, let Kı > ‡ı be as in Lemma 3.4. For every R > maxf2;Kıg and aD jajp 2 � such
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that jaj<R0=R, let vn0;R;a be as in Section 4C. Then

kvn0;R;a�'0kH 1;0

0
.�;C/

� C
�
h.p; a;R/Cg.p; a;R/

�p
H.'a;Kıjaj/;

where C > 0 is independent of a;R;p,

h.p; a;R/D sup
'2D1;2

0
.R2;C/

k'k
D1;2

0
.R2;C/

D1

ˇ̌̌̌Z
@DR

�
ei˛.�

p

0
��p/.ir CAp/ Q'a� .ir CA0/Z

R
a

�
� � N' d�

ˇ̌̌̌
;

and, for p and R fixed,
h.p; a;R/DO.1/ and g.p; a;R/D o.1/

as jaj ! 0C.

Proof. The proof exploits the invertibility of the differential of the function F defined below, in the spirit
of [Abatangelo et al. 2017, Theorem 8.2; Abatangelo and Felli 2015, Theorem 7.2]. Let

F W C�H
1;0
0
.�;C/! R�R� .H

1;0
0;R
.�;C//?;

.�; '/ 7!
�
k'k2

H
1;0

0
.�;C/

��0; Im
�R
� ' N'0 dx

�
; .ir CA0/

2' ��'
�
:

In the above definition, .H 1;0
0;R
.�;C//? is the real dual space of H

1;0
0;R
.�;C/ D H

1;0
0
.�;C/, which is

here meant as a vector space over R endowed with the norm

kuk
H

1;0

0
.�;C/

D

�Z
�

ˇ̌
.ir CA0/u

ˇ̌2
dx

�1=2

;

and .ir CA0/
2' ��' 2 .H

1;0
0;R
.�;C//? acts as

.H
1;0

0;R
.�;C//?

h.irCA0/
2' ��';ui

H
1;0

0;R
.�;C/

DRe

�Z
�

.ir CA0/' � .ir CA0/u dx��

Z
�

' Nu dx

�
for all ' 2H

1;0
0
.�;C/. It is easy to prove that the function F is Fréchet-differentiable at .�0; '0/, with

differential dF.�0; '0/ 2 L.C�H
1;0
0
.�;C/;R�R� .H

1;0
0;R
.�;C//�/ given by

dF.�0;'0/.�;'/D

�
2Re

�Z
�

.irCA0/'0�.irCA0/' dx

�
;Im

�Z
�

' N'0 dx

�
; .irCA0/

2'��0'��'0

�
for every .�; '/ 2 C�H

1;0
0
.�;C/. From the simplicity assumption (1-5) it follows that dF.�0; '0/ is

invertible; see [Abatangelo and Felli 2015, Lemma 7.1] for details.
From the definition of vn0;R;a, (1-17), (3-19), (3-24), (4-8), and (4-19) it follows thatZ
�

ˇ̌
.ir CA0/.vn0;R;a�'0/

ˇ̌2
dx D

Z
�

ˇ̌
ei˛.�a

0
��a/.ir CAa/'a� .ir CA0/'0

ˇ̌2
dx

�

Z
DRjaj

ˇ̌
ei˛.�a

0
��a/.ir CAa/'a� .ir CA0/'0

ˇ̌2
dx

C

Z
DRjaj

ˇ̌
.ir CA0/.v

int
n0;R;a

�'0/
ˇ̌2

dx D o.1/
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as jaj ! 0, so that vn0;R;a! '0 in H 1
0
.�;C/ as jaj ! 0C. Then, from the invertibility of dF.�0; '0/

we have
j�a��0jC kvn0;R;a�'0kH 1;0

0
.�;C/

� k.dF.�0; '0//
�1
kL.R�R�.H

1;0

0;R
.�;C//?;C�H

1;0

0
.�;C//

�kF.�a; vn0;R;a/kR�R�.H
1;0

0;R
.�;C//?

.1C o.1// (5-1)

as jaj ! 0C. We define
F.�a; vn0;R;a/D .˛a; ˇa; wa/;

where
˛a D kvn0;R;ak

2

H
1;0

0
.�;C/

��0 2 R;

ˇa D Im

�Z
�

vn0;R;a N'0 dx

�
2 R;

wa D .ir CA0/
2vn0;R;a��avn0;R;a 2 .H

1;0
0;R
.�;C//?:

In view of (4-19), (3-24), and Corollary 4.7 we have

˛a D

�Z
DRjaj

j.ir CA0/v
int
n0;R;a

j
2 dx�

Z
DRjaj

j.ir CAa/'aj
2 dx

�
C .�a��0/

DO.H.'a;Kıjaj//CO..H.'a;Kıjaj//
j˛�kj=.j˛�kjCı//D o.

p
H.'a;Kıjaj// (5-2)

as jaj ! 0C. The normalization condition for the phase in (1-15), together with (4-20), (4-8), and (3-26),
yields

ˇa D Im

�Z
DRjaj

vint
n0;R;a

N'0 dx�

Z
DRjaj

ei˛.�a
0
��a/'a N'0 dxC

Z
�

ei˛.�a
0
��a/'a N'0 dx

�
D Im

�Z
DRjaj

vint
n0;R;a

N'0 dx�

Z
DRjaj

ei˛.�a
0
��a/'a N'0 dx

�
DO.jaj2Cj˛�kj

p
H.'a;Kıjaj//D o.

p
H.'a;Kıjaj// (5-3)

as jaj ! 0C.
For every a 2�, the map

Ta W D1;2
0
.R2;C/! D1;2

0
.R2;C/; Ta'.x/D '.jajx/;

is an isometry of D1;2
0
.R2;C/.

Since H
1;0
0
.�;C/ is continuously embedded into D1;2

0
.R2;C/ by trivial extension outside � and

kukD1;2

0
.R2;C/

D kuk
H

1;0

0
.�;C/

for every u 2H
1;0
0
.�;C/, we have

kwak.H 1;0

0;R
.�;C//?

D sup
'2H

1;0

0
.�;C/

k'k
H

1;0
0

.�;C/
D1

ˇ̌̌̌
Re

�Z
�

.irCA0/vn0;R;a�.irCA0/' dx��a

Z
�

vn0;R;a N' dx

�ˇ̌̌̌

� sup
'2D1;2

0
.R2;C/

k'k
D1;2

0
.R2;C/

D1

ˇ̌̌̌
Re

�Z
�

.irCA0/vn0;R;a�.irCA0/' dx��a

Z
�

vn0;R;a N' dx

�ˇ̌̌̌
:

(5-4)
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For every ' 2 D1;2
0
.R2;C/ we haveZ

�

.ir CA0/vn0;R;a � .ir CA0/' dx��a

Z
�

vn0;R;a N' dx

D

Z
�nDRjaj

ei˛.�a
0
��a/.ir CAa/'a � .ir CA0/' dx��a

Z
�nDRjaj

ei˛.�a
0
��a/'a N' dx

C

Z
DRjaj

.ir CA0/vn0;R;a � .ir CA0/' dx��a

Z
DRjaj

vn0;R;a N' dx: (5-5)

From scaling and integration by parts we have that, letting Q'a be defined in (3-27),Z
�nDRjaj

ei˛.�a
0
��a/.ir CAa/'a � .ir CA0/' dx��a

Z
�nDRjaj

ei˛.�a
0
��a/'a N' dx

D i
p

H.'a;Kıjaj/

Z
@DR

Ta' ei˛.�
p

0
��p/.ir CAp/ Q'a � � d�; (5-6)

where � D x=jxj is the outer unit normal vector. In a similar way we have that, defining ZR
a as in (4-21)

and using (4-17),Z
DRjaj

.ir CA0/vn0;R;a � .ir CA0/' dx��a

Z
DRjaj

vn0;R;a N' dx

D
p

H.'a;Kıjaj/

�
�i

Z
@DR

.ir CA0/Z
R
a � �Ta' d� ��ajaj

2

Z
DR

ZR
a Ta' dx

�
: (5-7)

Combining (5-4)–(5-7) and recalling that Ta is an isometry of D1;2
0
.R2;C/, we obtain

.H.'a;Kıjaj//
� 1

2 kwak.H 1;0

0;R
.�;C//?

� h.p; a;R/C�ajaj
2 sup
'2D1;2

0
.R2;C/

k'k
D1;2

0
.R2;C/

D1

ˇ̌̌̌Z
DR

ZR
a N' dx

ˇ̌̌̌
; (5-8)

where

h.p; a;R/D sup
'2D1;2

0
.R2;C/

k'k
D1;2

0
.R2;C/

D1

ˇ̌̌̌Z
@DR

�
ei˛.�

p

0
��p/.ir CAp/ Q'a� .ir CA0/Z

R
a

�
� � N' d�

ˇ̌̌̌
:

From Remarks 3.8 and 4.5 it follows that, for R>maxf2;Kıg and p 2 S1 fixed,˚�
ei˛.�

p

0
��p/.ir CAp/ Q'a� .ir CA0/Z

R
a

�
� �
	
jaj<rı=R

is bounded in H�1=2.@DR/

so that, for p and R fixed, h.p; a;R/ D O.1/ as a ! 0. Moreover, Remark 4.5 implies that, for
R>maxf2;Kıg and p 2 S1 fixed,

sup
'2D1;2

0
.R2;C/

k'k
D1;2

0
.R2;C/

D1

ˇ̌̌̌Z
DR

ZR
a N' dx

ˇ̌̌̌
DO.1/ as jaj ! 0:

Hence the conclusion follows from (5-1), (5-2), (5-3), and (5-8). �
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The previous theorem allows us to estimate the energy variation of scaled eigenfunctions and improve
the results of Corollary 3.5 as follows.

Corollary 5.2. Let p 2 S1 be fixed. Then

.i/ jaj2j˛�kj DO.H.'a;Kıjaj// as aD jajp! 0;

.i i/ letting Q'a and Wa be as in (3-27) and (4-10), for every R>maxf2;Kıg it holds thatZ
.�=jaj/nDR

ˇ̌̌̌
.ir CAp/

�
Q'a� ei˛.�p��

p

0
/Wa

jajj˛�kjp
H.'a;Kıjaj/

�ˇ̌̌̌2
dx DO.1/ as aD jajp! 0: (5-9)

Proof. Estimate (5-9) follows from scaling and Theorem 5.1. From (5-9) it follows that

jajj˛�kjp
H.'a;Kıjaj/

�Z
D2RnDR

ˇ̌
.ir CA0/Wa

ˇ̌2
dx

�1=2

D
jajj˛�kjp

H.'a;Kıjaj/

�Z
D2RnDR

ˇ̌
.ir CAp/.e

i˛.�p��
p

0
/Wa/

ˇ̌2
dx

�1=2

�O.1/C

�Z
D2RnDR

ˇ̌̌̌
.ir CAp/ Q'a.x/

ˇ̌̌̌2
dx

�1=2

as aD jajp! 0. From Remark 3.8 and (4-11), the above estimate implies (i). �

In the following lemma we prove the existence and uniqueness of the function ‰p satisfying (1-18)
and (1-19), which will turn out to be the limit of the blow-up family (3-27) as a! 0 along the fixed
direction p 2 S1.

Lemma 5.3. Let p 2 S1. There exists a unique ‰p 2H
1;p
loc .R

2;C/ satisfying (1-18) and (1-19).

Proof. Let � be a smooth cut-off function such that �� 0 in D1 and �� 1 in R2 nDR for some R> 1.
Recalling the definition of  k (1-20), we have

F D .ir CAp/
2.�ei˛.�p��

p

0
/ k/

D���ei˛.�p��
p

0
/ k C 2ir� � .ir CAp/.e

i˛.�p��
p

0
/ k/C �.ir CAp/

2.ei˛.�p��
p

0
/ k/

D���ei˛.�p��
p

0
/ k C 2ir� � .ir CAp/.e

i˛.�p��
p

0
/ k/ 2 .D1;2

p .R2;C//�:

Here D1;2
p .R2;C/ is the completion of C1c .R2 n f0g;C/ with respect to

kukD1;2
p .R2;C/

D

�Z
R2

j.ir CAp/u.x/j
2 dx

�1=2

:

By the Lax–Milgram theorem, there exists a unique g 2 D1;2
p .R2;C/ which solves

.ir CAp/
2g D�F in .D1;2

p .R2;C//�:

Then, ‰p D gC �ei˛.�p��
p

0
/ k satisfies (1-18) and (1-19), and the existence is proved.
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The uniqueness follows from the fact that, if ‰1
p , ‰2

p 2H
1;p
loc .R

2;C/ satisfy (1-18) and (1-19), then

.ir CAp/
2.‰1

p �‰
2
p/D 0 in .D1;2

p .R2;C//�; (5-10)
and Z

R2

j.ir CAp/.‰
1
p �‰

2
p/j

2 dx <C1;

which, in view of the Hardy inequality (1-3), impliesZ
R2

j‰1
p �‰

2
pj

2

jx�pj2
dx <C1;

and hence that ‰1
p �‰

2
p 2 D

1;2
p .R2;C/. Therefore we can test (5-10) with ‰1

p �‰
2
p thus concluding thatZ

R2

j.ir CAp/.‰
1
p �‰

2
p/j

2 dx D 0;

which implies ‰1
p �‰

2
p . �

We are now in a position to prove that the scaled eigenfunctions (3-27) converge to a multiple of ‰p

as aD jajp! 0.

Lemma 5.4. Let p 2 S1 and ı 2 .0;
p
�1=2/ be fixed and let Kı > ‡ı be as in Lemma 3.4. For

aD jajp 2� let Q'a be as in (3-27). Then

Q'a!
ˇ

jˇj

�
KıR

@DKı

j‰pj
2 ds

�1=2

‰p as aD jajp! 0

in H 1;p.DR;C/ for every R> 1 and in C 2
loc.R

2 nfpg;C/, where ‰p is the function defined in Lemma 5.3.
Moreover,

lim
aDjajp!0

jajj˛�kj

p
H.'a;Kıjaj/

D
1

jˇj

�
KıR

@DKı

j‰pj
2 ds

�1=2

: (5-11)

Proof. From Remark 3.8 and Corollary 5.2 it follows that, for every sequence an D janjp with janj ! 0,
there exist a subsequence an` , c 2 Œ0;C1/ and ẑ 2H

1;p
loc .R

2;C/ such that

Q'an`
* ẑ weakly in H 1;p.DR;C/ as `!C1 and lim

`!C1

jan` j
j˛�kj

p
H.'an`

;Kıjan` j/
D c

for every R> 1. Passing to the limit in the equation satisfied by Q'a, i.e., .ir CAp/
2 Q'a D �ajaj

2 Q'a in
.1=jaj/�, we obtain that ẑ satisfies

.ir CAp/
2 ẑ D 0 in R2: (5-12)

Moreover, by compact trace embeddings,
1

Kı

Z
@DKı

j ẑ j
2 ds D 1; (5-13)

so that ẑ is not identically zero. Testing the equation for Q'a with Q'a itself, integrating by parts and
exploiting the C 2

loc-convergence of Q'a in R2nfpg (which follows from classic elliptic estimates) we obtain
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DR
j.ir CAp/ Q'an`

j2 dx!
R

DR
j.ir CAp/ ẑ j

2 dx as `!1 for every R > 1. Hence we conclude
that, for all R> 1, Q'an`

! ẑ strongly in H 1;p.DR;C/ as `!C1.
By the strong H

1;p
loc .R

2;C/-convergence and recalling (4-11), we can pass to the limit along an` in
(5-9) to obtain Z

R2nDR

ˇ̌
.ir CAp/. ẑ � cˇei˛.�p��

p

0
/ k/

ˇ̌2
dx <C1:

This implies c¤ 0 (and hence c > 0), otherwise we would have
R

R2nDR
j.irCAp/ ẑ j

2 dx <C1, which,
together with (5-12), implies ẑ � 0, thus contradicting (5-13).

Then Lemma 5.3 and (5-13) provide

ẑ D cˇ‰p and c D
1

jˇj

�
KıR

@DKı

j‰pj
2

�1=2

:

Since these limits depend neither on the sequence, nor on the subsequence, the proof is complete. �

Proof of Theorem 1.1. Let p 2 S1. From Corollary 4.7(i) and (5-11) we conclude that

�0��a DO.jaj2j˛�kj/

as aD jajp! 0. Since the function a 7! �a is analytic in a neighborhood of 0, due to the simplicity of �0,
see [Léna 2015, Theorem 1.3], and since 2j˛� kj is noninteger, we have that the Taylor polynomials of
the function �0��a with center 0 and degree less than or equal to b2j˛� kjc vanish, thus yielding the
conclusion. �

Proof of Theorem 1.2. It is a direct consequence of Lemma 5.4. �

6. Rate of convergence for eigenfunctions

Taking inspiration from [Abatangelo and Felli 2017], we now estimate the rate of convergence of the
eigenfunctions. We then take into account the quantity.ir CAa/'a� ei˛.�a��

a
0
/.ir CA0/'0


L2.�;C/

;

where 'aD '
a
n0

satisfies (1-14), (1-15) and '0D '
0
n0

satisfies (1-7). We split the argument in two different
steps, the first considering the energy variation inside small disks of radius Rjaj, the second considering
the energy variation outside these disks.

Lemma 6.1. Under the same assumptions as in Theorems 1.1 and 1.2, we have that, for every p 2 S1

and R> 1,

lim
aDjajp!0

1

jaj2j˛�kj

Z
DRjaj

ˇ̌
.ir CAa/'a� ei˛.�a��

a
0
/.ir CA0/'0

ˇ̌2
dx D jˇj2 Fp.R/; (6-1)

where

Fp.R/D

Z
DR

ˇ̌
.ir CAp/‰p � ei˛.�p��

p

0
/.ir CA0/ k

ˇ̌2
dx;

‰p is defined in Lemma 5.3 and  k is as in (1-20). Moreover,

Lp WD lim
R!C1

Fp.R/ 2 .0;C1/:
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Proof. We notice that, in view of (1-19), Lp <C1. The proof of (6-1) relies on a change of variables
and on the convergences stated in (4-11) and in Theorem 1.2. We have

lim
R!C1

Fp.R/D

Z
R2

ˇ̌
.ir CAp/‰p � ei˛.�p��

p

0
/.ir CA0/ k

ˇ̌2
dx

D

Z
R2n�p

ˇ̌
.ir CAp/.‰p � ei˛.�p��

p

0
/ k/

ˇ̌2
dx > 0;

where �p is defined in (1-13). Indeed, suppose by contradiction that the above limit is zero. Since, for
every r1 > r2 > 1 we have ‰p � ei˛.�p��

p

0
/ k 2H 1;p.Dr1

.p/ nDr2
.p/;C/, the Hardy inequality (1-4)

implies ‰p�ei˛.�p��
p

0
/ k � 0 in R2 nD1.p/. Moreover, since .irCAp/

2.‰p�ei˛.�p��
p

0
/ k/D 0 in

R2 n�p , a classical unique continuation principle, see, e.g., [Wolff 1992], implies ‰p�ei˛.�p��
p

0
/ k � 0

in R2 n�p necessarily. But this is impossible since, by (1-18) and classical elliptic estimates away from p,
‰p is smooth in R2 n fpg, whereas ei˛.�p��

p

0
/ k is discontinuous on �p n f0g since it is the product of

the continuous nonzero function  k and of the discontinuous function ei˛.�p��
p

0
/; see the definitions

(1-11), (1-12) and (1-13). �

Before addressing the energy variation outside the disk, it is worthwhile introducing a preliminary
result. For all R> 2 and p 2 S1, let zp;R be the unique solution to�

.ir CA0/
2zp;R D 0 in DR;

zp;R D ei˛.�
p

0
��p/‰p on @DR:

(6-2)

From Lemma 5.4 it follows that the family of functions ZR
a introduced in (4-21) converges in H 1;0.DR;C/

to some multiple of zp;R.

Lemma 6.2. Let p 2 S1 and R> 2. For aD jajp 2�, let ZR
a be as in (4-21). Then

ZR
a !

ˇ

jˇj

�
KıR

@DKı

j‰pj
2 ds

�1=2

zp;R

in H 1;0.DR;C/ as jaj ! 0C.

Proof. Define

p;ı D
ˇ

jˇj

�
KıR

@DKı

j‰pj
2 ds

�1=2

:

By (4-17) and (6-2) we have that ZR
a � p;ızp;R solves(

.ir CA0/
2.ZR

a � p;ızp;R/D 0 in DR;

ZR
a � p;ızp;R D ei˛.�

p

0
��p/. Q'a� p;ı‰p/ on @DR:

For R> 2, let �R W R
2! R be a smooth cut-off function such that

�R � 0 in DR=2; �R � 1 in R2
nDR; 0� �R � 1: (6-3)
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Then, by the Dirichlet principle and Lemma 5.4,Z
DR

j.ir CA0/.Z
R
a � p;ızp;R/j

2 dx

�

Z
DR

j.ir CA0/.�Rei˛.�
p

0
��p/. Q'a� p;ı‰p//j

2 dx

� 2

Z
DR

jr�Rj
2
j Q'a� p;ı‰pj

2 dxC 2

Z
DRnDR=2

�2
Rj.ir CAp/. Q'a� p;ı‰p/j

2 dx D o.1/

as aD jajp! 0. Finally, the Hardy-type inequality (1-3) allows us to conclude. �

Lemma 6.3. Let '0 2H
1;0
0
.�;C/ be a solution to (1-7) satisfying (1-5). Let p 2 S1. For aD jajp 2�,

let 'a 2H
1;a
0
.�;C/ satisfy (1-14)–(1-15). Then, for all R>maxf2;Kıg,ei˛.�a

0
��a/.ir CAa/'a� .ir CA0/'0

2

L2.�nDRjaj;C/
� jaj2j˛�kjG.p; a;R/;

where limaDjajp!0 G.p; a;R/DG.p;R/ for some G.p;R/ such that

lim
R!C1

G.p;R/D 0: (6-4)

Proof. Let R>maxf2;Kıg. From Theorem 5.1 and (5-11) we have

kei˛.�a
0
��a/.ir CAa/'a� .ir CA0/'0kL2.�nDRjaj;C/

� kvn0;R;a�'0kH 1;0

0
.�;C/

� C
�
h.p; a;R/Cg.p; a;R/

�
jajj˛�kj;

where g.p; a;R/D o.1/ as jaj ! 0C and

h.p;a;R/D sup
'2D1;2

0
.R2;C/

k'k
D1;2

0
.R2;C/

D1

ˇ̌̌̌Z
@DR

.irCA0/.e
i˛.�

p

0
��p/ Q'a�ZR

a /�� N' d�

ˇ̌̌̌

� const
.irCA0/.e

i˛.�
p

0
��p/ Q'a�ZR

a /���p;ı.irCA0/.e
i˛.�

p

0
��p/‰p�zp;R/��


H�1=2.@DR/

Cp;ı sup
'2D1;2

0
.R2;C/

k'k
D1;2

0
.R2;C/

D1

ˇ̌̌̌Z
@DR

.irCA0/.e
i˛.�

p

0
��p/‰p�zp;R/�� N' d�

ˇ̌̌̌
;

where

p;ı D
ˇ

jˇj

�
KıR

@DKı

j‰pj
2 ds

�1=2

and the constant const> 0 is independent of a. From Lemmas 5.4 and 6.2 we have

.ir CA0/.e
i˛.�

p

0
��p/ Q'a�ZR

a / � �! p;ı.ir CA0/.e
i˛.�

p

0
��p/‰p � zp;R/ � �

in H�1=2.@DR/ as aD jajp! 0. Therefore h.p; a;R/� f .p; a;R/ with

lim
aDjajp!0

f .p; a;R/D p;ı sup
'2D1;2

0
.R2;C/

k'k
D1;2

0
.R2;C/

D1

ˇ̌̌̌Z
@DR

.ir CA0/.e
i˛.�

p

0
��p/‰p � zp;R/ � � N' d�

ˇ̌̌̌
:
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To complete the proof is then enough to show that

lim
R!C1

sup
'2D1;2

0
.R2;C/

k'k
D1;2

0
.R2;C/

D1

ˇ̌̌̌Z
@DR

.ir CA0/.e
i˛.�

p

0
��p/‰p � zp;R/ � � N' d�

ˇ̌̌̌
D 0: (6-5)

Using an integration by parts we can rewriteˇ̌̌̌Z
@DR

.ir CA0/.e
i˛.�

p

0
��p/‰p � zp;R/ � � N' d�

ˇ̌̌̌
D

ˇ̌̌̌Z
@DR

ei˛.�
p

0
��p/.ir CAp/.‰p � ei˛.�p��

p

0
/ k/ � � N' d� C

Z
@DR

.ir CA0/. k � zp;R/ � � N' d�

ˇ̌̌̌
D

ˇ̌̌̌
�i

Z
R2nDR

.ir CAp/.‰p � ei˛.�p��
p

0
/ k/ � .ir CA0/'ei˛.�

p

0
��p/ dx

C i

Z
DR

.ir CA0/. k � zp;R/ � .ir CA0/' dx

ˇ̌̌̌
;

which implies

sup
'2D1;2

0
.R2;C/

k'k
D1;2

0
.R2;C/

D1

ˇ̌̌̌Z
@DR

.ir CA0/.e
i˛.�

p

0
��p/‰p � zp;R/ � � N' d�

ˇ̌̌̌

�

�Z
R2nDR

ˇ̌
.irCAp/.‰p�ei˛.�p��

p

0
/ k/

ˇ̌2
dx

�1=2

C

�Z
DR

ˇ̌
.irCA0/. k�zp;R/

ˇ̌2
dx

�1=2

: (6-6)

The first term in the right-hand side of (6-6) goes to zero as R!C1 because of (1-19). To estimate the
second term, we consider a test function �R satisfying (6-3) and the additional property jr�Rj � 4=R in
DR nDR=2. Recalling that  k�zp;R satisfies .irCA0/

2. k�zp;R/D 0 in DR with the boundary condi-
tion k�zp;RD k�ei˛.�

p

0
��p/‰p on @DR , the Dirichlet principle and the Hardy inequality (1-4) provideZ

DR

j.ir CA0/. k � zp;R/j
2 dx

�

Z
DR

j.ir CA0/.�R. k � ei˛.�
p

0
��p/‰p//j

2 dx

� 2

Z
DR

jr�Rj
2
j k � ei˛.�

p

0
��p/‰pj
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which goes to zero again thanks to (1-19). Therefore we have obtained (6-5) and the proof is complete. �

Proof of Theorem 1.3. Let p2S1 and ">0. From Lemma 6.1 and (6-4) there exists some R0>maxf2;Kıg
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COMPLEX ROTATION NUMBERS: BUBBLES AND THEIR INTERSECTIONS

NATALIYA GONCHARUK

The construction of complex rotation numbers, due to V. Arnold, gives rise to a fractal-like set “bubbles”
related to a circle diffeomorphism. “Bubbles” is a complex analogue to Arnold tongues.

This article contains a survey of the known properties of bubbles, as well as a variety of open questions.
In particular, we show that bubbles can intersect and self-intersect, and provide approximate pictures of
bubbles for perturbations of Möbius circle diffeomorphisms.

1. Introduction

1.1. Complex rotation numbers: Arnold’s construction. In what follows, f :R/Z→R/Z is an analytic
orientation-preserving circle diffeomorphism. Its analytic extension to a small neighborhood of R/Z in
C/Z is still denoted by f . H⊂ C is the open upper half-plane.

The following construction was suggested by V. Arnold [1983, Section 27] in 1978. Given ω ∈H/Z

and a small positive ε ∈ R, one can construct a complex torus E( f + ω) as the quotient space of a
cylinder 5 by the action of f +ω:

5 := {z ∈ C/Z | −ε < Im z < Imω+ ε},

E( f +ω) :=5/(z ∼ f (z)+ω).
(1)

For a small positive ε, the quotient space E( f +ω) is a torus, inherits a complex structure from C/Z and
does not depend on ε.

Due to the uniformization theorem, for a unique τ ∈ H/Z there exists a biholomorphism

Hω : E( f +ω)→ C/(Z+ τZ) (2)

such that Hω takes R/Z ⊂ E( f + ω) to a curve homotopic to R/Z ⊂ C/(Z + τZ). The number
τ( f +ω) := τ ∈ H/Z, i.e., the modulus of the complex torus E( f +ω), is called the complex rotation
number of f +ω.

In the original Arnold’s construction, ω was supposed to be purely imaginary. The above version of this
construction was suggested by R. Fedorov. The term “complex rotation number” is due to E. Risler [1999].

The complex rotation number τ( f + ω) depends holomorphically on ω ∈ H/Z; see [Risler 1999,
Section 2.1, Proposition 2].
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1.2. Rotation number and its properties. This section lists well-known results on rotation numbers; see
[Katok and Hasselblatt 1995, Sections 3.11, 3.12] for more details.

Let f be an orientation-preserving circle homeomorphism, and let F : R→ R be its lift to the real line.
The limit

rot f = lim
n→∞

F◦n(x)
n

mod 1

exists and does not depend on x ∈ R. It is called the rotation number of the circle homeomorphism f .
Rotation number is invariant under continuous conjugations of f . It is rational, rot f = p/q, if and

only if f has a periodic orbit of period q . If rot f is irrational and f ∈ C2(R/Z), then f is continuously
conjugate to z 7→ z+ rot f (Denjoy theorem, see [Katok and Hasselblatt 1995, Section 3.12.1]). We will
need the following, much more complicated result.

Definition. A real number ρ is called Diophantine if there exist C, β > 0 such that for all rationals p/q ,∣∣∣∣ρ− p
q

∣∣∣∣≥ C
q2+β .

Theorem 1 (M. R. Herman [1979], J.-C. Yoccoz [1984]). If an analytic circle diffeomorphism has a
Diophantine rotation number rot f , then it is analytically conjugate to z 7→ z+ rot f .

This motivates the term “complex rotation number” for τ( f +ω) above: while a circle diffeomorphism
f is conjugate to the rotation x 7→ x + rot f on R/Z, a complex-valued map f +ω is biholomorphically
conjugate to the complex shift z 7→ z+ τ( f +ω) in the cylinder 5⊂ C/Z.

1.3. Steps on the graph of ω 7→ rot( f + ω). Rotation number depends continuously on f in the C0-
topology. In particular, rot( f+ω) depends continuously onω∈R/Z; clearly, it (nonstrictly) increases onω.

Recall that a periodic orbit of a circle diffeomorphism is called parabolic if its multiplier is 1, and
hyperbolic otherwise. If a circle diffeomorphism has periodic orbits, and they are all hyperbolic, then the
diffeomorphism is called hyperbolic.

Let Ip/q := {ω ∈ R/Z | rot( f +ω) = p/q}; from now on, we always assume that p, q are coprime.
If for some value of ω the diffeomorphism f +ω has the rotation number p/q and a hyperbolic orbit
of period q, then this orbit persists under a small perturbation of ω. In this case, Ip/q is a segment of
nonzero length. Endpoints of Ip/q correspond to diffeomorphisms f +ω having only parabolic orbits.

In a generic case, the graph of the function ω 7→ rot( f + ω) contains infinitely many steps, i.e.,
nontrivial segments Ip/q ×{p/q}, on rational heights.

1.4. Rotation numbers as boundary values of a holomorphic function.

Question 2. Can we find a holomorphic self-map τ on H/Z such that its boundary values on R/Z coincide
with ω 7→ ρ( f +ω)?

The answer is No (except for the trivial case f (x)= x + c), because the function ω 7→ ρ( f +ω) is
locally constant on nonempty intervals Ip/q , and this is not possible for boundary values of holomorphic
functions. In more detail, note that H/Z is biholomorphically equivalent to the punctured unit disc D \{0},
so the map 1/(2π i) ln z : D\{0}→H/Z conjugates τ to a holomorphic bounded self-map of the punctured
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unit disc. Clearly, 0 is a removable singularity for this self-map. The following Luzin–Privalov theorem
[1925, Section 14, p. 159] shows that such an extension τ does not exist:

Theorem 3 (N. Luzin, J. Privalov). If a holomorphic function in the unit disc D has finite nontangential
limits at all points of E ⊂ ∂D, where E has a nonzero Lebesgue measure, then this function is uniquely
defined by these limits.

This motivates the next question:

Question 4. Can we find a holomorphic self-map on H/Z such that its boundary values on (R/Z)\
⋃

Ip/q

coincide with ω 7→ ρ( f +ω)?

Remark. The set (R/Z)\
⋃

Ip/q has nonzero measure due to a result of M. R. Herman [1977, Section 6,
p. 287]; so by Theorem 3, such a holomorphic extension must be unique.

The answer to this question is Yes, and this holomorphic function is the complex rotation number
τ( f + ω). The following theorem is proved in [Buff and Goncharuk 2015]; the proof is based on
previous results by E. Risler [1999], V. Moldavskij [2001], Y. Ilyashenko and V. Moldavskij [2003], and
N. Goncharuk [2012].

Theorem 5 (X. Buff and N. Goncharuk [2015]). Let f : R/Z→ R/Z be an orientation-preserving
analytic circle diffeomorphism. Then the holomorphic function τ( f + · ) :H/Z→H/Z has a continuous
extension τ̄ ( f + · ) : H/Z→ H/Z. Assume ω ∈ R/Z:

• If rot( f +ω) is irrational, then τ̄ ( f +ω)= rot( f +ω).

• If rot( f +ω) is rational and f +ω has a parabolic periodic orbit, then τ̄ ( f +ω)= rot( f +ω).

• If rot( f +ω) is rational and f +ω is hyperbolic on an open interval ω ∈ I ⊂ R/Z, then τ̄ ( f +ω)
depends analytically on ω ∈ I and τ̄ ( f +ω) ∈ H/Z for ω ∈ I .

The extension τ̄ ( f +ω) is also called the complex rotation number of f +ω. Due to Theorem 5, it is
continuous on ω, and coincides with the ordinary rotation number on R/Z \

⋃
Ip/q .

Definition. The image of the segment Ip/q ={ω∈R/Z | rot( f +ω)= p/q} under the map ω 7→ τ̄ ( f +ω)
is called the p/q-bubble of f .

Due to Theorem 5, the p/q-bubble is a union of several analytic curves in the upper half-plane with
endpoints at p/q. Each analytic curve corresponds to the interval of hyperbolicity of f + ω, and its
endpoints correspond to f +ω with parabolic orbits.

So, each circle diffeomorphism f gives rise to a “fractal-like” set τ̄ ( f +ω) (bubbles) in the upper
half-plane, containing countably many analytic curves. The picture of bubbles growing from rational
points of the real axis was first described by R. Fedorov (oral communication, about 2001), and remained
conjecturable until [Goncharuk 2012; Buff and Goncharuk 2015].

The possible shapes of bubbles are not known. The following question is also open.

Question 6. Is the set τ̄ ( f +ω) self-similar (i.e., is it a fractal set)?

The precise meaning of “self-similarity” in this question is not clear; conjecturably, for certain sequences
of rational numbers {pn/qn}, the pn/qn-bubbles (when rescaled properly) tend to some limit shape.
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1.5. Properties of bubbles and the Main Theorem.

Question 7. Is τ̄ invariant under analytic conjugacies?

The answer is Yes:

Lemma 8. The complex rotation number τ̄ is invariant under analytic conjugacies: for two analytically
conjugate circle diffeomorphisms f1, f2, we have τ̄ ( f1)= τ̄ ( f2).

For nonhyperbolic f1, f2, their complex rotation numbers coincide with rotation numbers, so this lemma
trivially repeats the invariance of rotation numbers under conjugacies. For hyperbolic diffeomorphisms,
the proof of this lemma is implicitly contained in [Buff and Goncharuk 2015]; see also Section 5 below.

Note that in general, for conjugate f1, f2 and ω ∈ H/Z, the numbers τ̄ ( f1+ω) and τ̄ ( f2+ω) do not
coincide.

Question 9. Is there an explicit formula for τ̄ ( f +ω)?

The only case when the author can obtain an explicit formula for τ̄ ( f +ω) is described in the following
proposition.

Let π : C/Z→ C∗ be given by π(z) := exp(2π i z).

Proposition 10. Let F be a Möbius map that preserves the circle {|w| = 1 |w ∈ C}. Let f : R/Z→ R/Z

be given by f := π−1
◦ F ◦π . Then f has only a 0-bubble, and this bubble is a vertical segment.

Proof. First, let us compute τ( f +ω) for ω ∈ H/Z.
Put Fω := e2π iωF. For ω ∈ H/Z and small ε > 0, let E∗(Fω) be the quotient space of the annulus

5∗ := {1> |w|> |e2π iω
|} via the map Fω. Note that the map π induces a biholomorphism of E( f +ω)

to E∗(Fω). Indeed, it takes 5 to the neighborhood of 5∗ and conjugates f +ω to Fω = π ◦ ( f +ω)◦π−1.
So τ( f +ω) is equal to the modulus of E∗(Fω).

The map Fω is a Möbius map that takes the unit circle to the interior of the unit disc. Let Aω be
its attractor with multiplier µ(ω) and Rω be its repellor. The map (w − Aω)/(w − Rω) conjugates
Fω to the linear map w 7→ µ(ω)w, and thus induces a biholomorphism of E∗(Fω) to the complex
torus C∗/(w ∼ µ(ω)w). The modulus of this torus is equal to 1/(2π i) lnµ(ω). Finally, τ( f + ω) =
1/(2π i) lnµ(ω).

Now let us study the boundary values of τ( f +ω), i.e., τ̄ ( f +ω0)= limω→ω0 τ( f +ω) for ω0 ∈ R/Z.
The map Fω0 is a Möbius self-map of the unit circle. If it has two hyperbolic fixed points on the unit

circle (i.e., ω0 is an interior point of I0), then the multiplier of its attractor, µ(ω0), is real because Fω0

preserves the unit circle. Then

τ̄ ( f +ω0)= lim
ω→ω0

1
2π i

lnµ(ω)= 1
2π i

lnµ(ω0) ∈ iR.

If Fω0 has one parabolic fixed point on the unit circle, then limω→ω0 µ(ω)= 1, and τ̄ ( f +ω0)= 0. If Fω0

has no fixed points on the unit circle (i.e., ω0 ∈ (R/Z)\ I0), then it has a unique fixed point Aω0 inside the
unit disc and a unique fixed point Rω0 outside it; the Schwarz lemma implies that the multiplier of Aω0
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Figure 1. Infinitesimal 0-bubbles for a perturbation of the Möbius map f =
(z + 0.5)/(1+ 0.5z) by the map g = sin 2πnx , n = 1, 2, 3, 4, 5, 10. The pictures
are rescaled horizontally. The vertical segment on each picture is the 0-bubble for f .

satisfies |µ(ω0)| = 1, so

τ̄ ( f +ω0)= lim
ω→ω0

1
2π i

lnµ(ω)= 1
2π i

lnµ(ω0) ∈ R/Z.

Finally, the image of I0 under τ̄ ( f + · ) belongs to iR, and the image of (R/Z) \ I0 belongs to R/Z.
We conclude that the only bubble of f is a 0-bubble, and it is a vertical segment. �

Question 11. Is there a way to compute τ̄ ( f +ω) approximately?

In the general case, one can try to implement the construction described in Section 5 as a computer
program. The author haven’t done this yet. For perturbations of Möbius maps, a simpler approach is
described below.

Take a map f + εg where f is as in Proposition 10, and g is a trigonometric polynomial. Figure 1
shows infinitesimal 0-bubbles of f + εg.
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Definition. An infinitesimal 0-bubble for a perturbation f + εg of an analytic circle diffeomorphism f is
the image of the segment I0 for f under the map

ω 7→ τ̄ ( f +ω)+ ε · d
dε

∣∣∣
ε=0
τ̄ ( f + εg+ω),

i.e., under the linear approximation to the complex rotation number.

The choice of ε is shown on each picture in Figure 1, but it does not essentially affect the shape of
the infinitesimal bubble. In the lower part of bubbles, (d/dε)|ε=0τ̄ ( f + εg+ω) tends to infinity. So the
linear approximation is not accurate, and this part of infinitesimal bubbles is not shown on the picture.

The following proposition enables us to draw infinitesimal bubbles. Its proof follows the same scheme
as the computation in [Risler 1999, Section 2.2.3]; it is postponed until the Appendix.

Proposition 12. Let f, g be as above. Let γ be a curve in C/Z which is close to R/Z and passes below
the attractor and above the repellor of f +ω, ω ∈ I0. Then

d
dε

∣∣∣
ε=0
τ̄ ( f + εg+ω)=

∫
γ

g(z)
f ′(z)

(H ′ω(z))
2 dz, (3)

where Hω uniformizes E( f +ω). As in Proposition 10, one can compute Hω explicitly. The derivatives in
the right-hand side are with respect to z.

For any trigonometric polynomial g (say, g(x) = sin 2πnx), the change of variable w = π(z) turns
the integral (3) into an integral of a rational function along the closed loop π(γ ). We then compute it
explicitly via the residue theorem; for n ≥ 3, the formulas become cumbersome and we use a computer
algebra system GiNaC [Bauer et al.; Vollinga 2006] to obtain them. The infinitesimal bubbles thus
obtained are shown in Figure 1.

In certain cases, intersections of infinitesimal 0-bubbles for f +εg mean that for small ε, the 0-bubbles
of f + εg intersect as well; see Remark 17 below.

Question 13. Is it true that the map ω 7→ τ( f +ω) is injective (so that the bubbles belong to the boundary
of the set {τ( f +ω) | ω ∈ H/Z})?

No, see [Buff and Goncharuk 2015, Corollary 16].

Question 14. How large are the bubbles?

In [Buff and Goncharuk 2015, Main Theorem] the authors prove that the p/q-bubble (with coprime
p, q) is within a disc of radius D f /(4πq2) tangent to R/Z at p/q , where D f is the distortion of f ,

D f :=

∫
R/Z

∣∣∣∣ f ′′(x)
f ′(x)

∣∣∣∣ dx .

Question 15. Can the bubbles intersect or self-intersect?

Here are several results in this direction.

Proposition 16. If an analytic circle diffeomorphism f is sufficiently close to a rotation in C2 metrics, its
different bubbles do not intersect.
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Proof. We will use the answer to Question 14 above. Suppose that the distortion of f satisfies D f < 2π ,
which holds true if f is C2-close to a rotation. For each p/q , take the disc of radius D f /(4πq2)< 1/(2q2)

tangent to R/Z at p/q . It is easy to verify that these discs do not intersect for different p/q . As mentioned
in the answer to Question 14, the bubbles are within such discs, so they do not intersect as well. �

This proposition does not imply that the bubbles of f are not self-intersecting. This article contains an
affirmative answer to Question 15:

Main Theorem. (1) There exists a circle diffeomorphism f such that its 0-bubble is self-intersecting.

(2) For each rational p/q, there exists a circle diffeomorphism f such that its 0-bubble intersects its
p/q-bubble.

We do not assert that these bubbles intersect transversely; it is possible that they are tangent at a
common point.

Remark 17. Let

f =
z+ 0.5

1+ 0.5z

be the Möbius map that we chose to draw infinitesimal 0-bubbles. Let g = sin 2πnx , n = 3, 4, 5, or 10.
Using the self-intersections of infinitesimal 0-bubbles for f + εg, see Figure 1, one may show that for
sufficiently small ε, the 0-bubble of f + εg is self-intersecting. This provides an alternative proof of the
first part of the Main Theorem. Here we sketch this proof.

Let l1(ε) and l2(ε) be two small intersecting arcs of the infinitesimal 0-bubble for f + εg. Let aε, bε
and cε, dε be the endpoints of l1(ε), l2(ε) respectively. It is easy to verify that the lengths of the sides and
the diagonals of the quadrilateral aεcεbεdε are of order ε, and l1(ε), l2(ε) are close to these diagonals.
The 0-bubble of f + εg is o(ε)-close to the infinitesimal 0-bubble for f + εg, and thus it contains a pair
of curves that are o(ε)-close to l1(ε), l2(ε). This implies that the 0-bubble of f + εg is self-intersecting
for small ε.

2. Main lemmas

Part 1 of the Main Theorem is based on Lemma 8 and the following lemma.

Lemma 18. For any hyperbolic analytic circle diffeomorphism f1 with rot f1 = 0 and any analytic circle
diffeomorphism f2 6= id, there exists an analytic diffeomorphism f and ω ∈ R/Z \ {0} such that f and
f +ω are analytically conjugate to f1, f2 respectively.

This lemma provides a nonrestrictive sufficient condition for two analytic diffeomorphisms to appear
(up to analytic conjugacies) in one and the same family of the form f +ω.

Part (2) of the Main Theorem also requires the following lemma, which is interesting in its own right.

Lemma 19. For any complex number w ∈ H/Z and any natural number m, there exists a hyperbolic
circle diffeomorphism f having 2m fixed points and the complex rotation number τ̄ ( f )= w.
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Lemma 8 shows that complex rotation numbers can be used as invariants of analytic classification of
families of circle diffeomorphisms; Lemma 19 is a weak version of the realization of these invariants.
The following realization question is open:

Question 20. Which holomorphic self-maps of the upper half-plane are realized as ω 7→ τ( f +ω) for
some circle diffeomorphism f ?

3. Proof of the Main Theorem modulo Lemmas 18 and 19

3.1. Part (1): self-intersecting 0-bubble. This part of the Main Theorem does not require Lemma 19.
Fix a hyperbolic circle diffeomorphism f1 with rot f1 = 0. Apply Lemma 18 to f1 and f2 = f1.
We get a circle diffeomorphism f such that f, f +ω with ω 6= 0 mod 1 are both analytically conjugate

to f1. Due to Lemma 8, τ̄ ( f ) = τ̄ ( f1) = τ̄ ( f +ω). Note that τ̄ ( f ), τ̄ ( f +ω) belong to the 0-bubble
for f because f, f +ω have zero rotation number and are hyperbolic.

So the 0-bubble for f passes twice through the point τ̄ ( f1). This completes the proof of the Main
Theorem, part (1).

Remark. Using Lemma 19, one can also prove that the 0-bubble may self-intersect at any prescribed
point w ∈H/Z. To achieve this, it is sufficient to start with f1 provided by Lemma 19 such that τ̄ ( f1)=w.

3.2. Part (2): intersection of 0-bubble and p/q-bubble. Take a hyperbolic circle diffeomorphism f2

with rot f2 = p/q. Put w := τ̄ ( f2). Using Lemma 19, construct a hyperbolic circle diffeomorphism f1

with zero rotation number such that τ̄ ( f1)= w.
Now, the two circle diffeomorphisms f1, f2 satisfy rot f1 = 0, rot f2 = p/q and τ̄ ( f1)= τ̄ ( f2).
Lemma 18 provides us with a circle diffeomorphism f such that f, f + ω are conjugate to f1, f2.

Due to Lemma 8, τ̄ ( f )= τ̄ ( f1)= w and τ̄ ( f +ω)= τ̄ ( f2)= w. The point w belongs to the 0-bubble
of f , because rot f = rot f1 = 0 and f is hyperbolic, and it also belongs to the p/q-bubble, because
rot( f +ω) = rot( f2) = p/q and f +ω is hyperbolic. Finally, the 0-bubble and the p/q-bubble for f
intersect at w. This completes the proof of the Main Theorem, part (2).

Remark. In a similar way one can prove that the 0-bubble and the p/q-bubble may intersect at any
prescribed point w ∈ C/Z. This requires an analogue of Lemma 19 for circle diffeomorphisms with
nonzero rational rotation numbers; the proof of this analogue repeats the proof of Lemma 19, except for
some technical details.

4. Proof of Lemma 18

We say that two circle diffeomorphisms f1, f2 have a Diophantine quotient if rot( f1 f −1
2 ) =: ω is

Diophantine. Lemma 18 follows from two propositions below.

Proposition 21. If two analytic circle diffeomorphisms f1, f2 have a Diophantine quotient and
rot( f1 f −1

2 )=: ω, then there exists an analytic diffeomorphism f such that f and f +ω are analytically
conjugate to f1, f2 respectively.
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Figure 2. The choice of h that yields rot( f̂1 f −1
2 )= 1

2 .

Proposition 22. Any hyperbolic analytic circle diffeomorphism f1 with rot f1=0 is analytically conjugate
to a diffeomorphism that has a Diophantine quotient with a given analytic circle diffeomorphism f2,
f2 6= id.

Proof of Proposition 21 . Due to the Herman–Yoccoz theorem (see Theorem 1), in some analytic chart,
f1 f −1

2 is the rotation by ω = rot f1 f −1
2 . Let f̃1, f̃2 be the diffeomorphisms f1, f2 in this analytic chart;

then f̃1 f̃ −1
2 (z)= z+ω. So f̃1(z)= f̃2(z)+ω, and we can take f = f̃2. �

Proof of Proposition 22. Let A be the set of analytic diffeomorphisms of the form f̂1 = h ◦ f1 ◦ h−1

for all possible analytic orientation-preserving diffeomorphisms h. Then A is a linearly connected
subset of the space of all analytic circle diffeomorphisms, because for each h1, h2, we can join h1 to
h2 by a continuous family of analytic circle diffeomorphisms ht. Now if we show that the continuous
function f̂1 7→ rot( f̂1 f −1

2 ) on A takes two distinct values, then it takes all intermediate values, including
Diophantine values.

Let us find two maps of the form f̂1 = h ◦ f1 ◦ h−1 such that rot( f̂1 f −1
2 ) attains values 0 and 1

2 :

• rot( f̂1 f −1
2 )= 0. Choose h such that for some point a ∈ R/Z, we have f̂1(a)= f2(a). This is possible,

because f1 6= id and f2 6= id. Then f̂1 f −1
2 ( f2(a)) = f2(a), so f2(a) is a fixed point for f̂1 f −1

2 , and
rot( f̂1 f −1

2 )= 0.

• rot( f̂1 f −1
2 )= 1

2 . Choose two points a, b ∈R/Z such that these points and their preimages under f2 are
distinct and are ordered in the following way along the circle: a, b, f −1

2 (a), f −1
2 (b). It is sufficient to

take a not fixed and b close to a.
Choose two points c, d ∈ R/Z such that these points and their images under f1 are distinct and are

ordered in the following way along the circle: c, f1(c), f1(d), d. It is sufficient to take c and d near an
attracting fixed point of f1, on the different sides with respect to it.

Choose h that takes four points c, f1(c), f1(d), d to four points f −1
2 (b), a, b, f −1

2 (a) (see Figure 2).
Then f̂1 = h ◦ f1 ◦ h−1 satisfies f̂1( f −1

2 (b))= a, f̂1( f −1
2 (a))= b; hence the point a has period 2 under

f̂1 f −1
2 . So rot( f̂1 f −1

2 )= 1
2 .

Finally, for some h, the maps f̂1 = h ◦ f1 ◦ h−1 and f2 have a Diophantine quotient. �

These two propositions imply Lemma 18.
The rest of the article is devoted to the proof of Lemma 19.
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Figure 3. Construction of E( f ).

5. Explicit construction of bubbles

Theorem 5 defines τ̄ ( f +ω), ω ∈R/Z, as a limit value of the map ω→ τ( f +ω) on the real axis. In this
section, we describe τ̄ ( f +ω), ω ∈ I0, as a modulus of an explicitly constructed complex torus E( f +ω).

This construction was proposed by X. Buff; see [Goncharuk 2012; Buff and Goncharuk 2015] for
more details. The key idea of this construction is contained in [Risler 1999], but there it was used in
different circumstances.

5.1. The complex torus E( f ). Let f be a hyperbolic diffeomorphism. Assume that rot f = 0.
Let aj , 1≤ j≤2m, be its fixed points with multipliers λj . We suppose that 0<λ2 j−1<1<λ2 j , i.e., even

indices correspond to repellors, and odd indices correspond to attractors. Letψj : (C, 0)→ (C/Z, aj ) be the
corresponding linearization charts, i.e., ψ−1

j ◦ f ◦ψj (z)=λj z, ψj (0)= aj , ψj (R)⊂R/Z, and ψj preserve
orientation on R. We extend these charts by iterates of f so that the image of ψj contains (aj−1, aj+1).

Construct a simple loop γ ⊂ C/Z (le courbe ascendante, in terms of [Risler 1999]) such that f (γ ) is
above γ in C/Z. Namely, let γ =

⋃
γj ; let γj have its endpoints on (aj−1, aj ) and (aj , aj+1); let γj be

the image of an arc of a circle under ψj ; let γj be above R/Z if j is even, and below R/Z if j is odd.
Since ψj conjugates f to z 7→ λj z, the curve f (γ ) is above γ in C/Z.

Let 5̃⊂C/Z be a curvilinear cylinder between γ and f (γ ) (see Figure 3). Consider the complex torus
E( f ) which is the quotient space of a neighborhood of 5̃ by the action of f . Due to the uniformization
theorem, there exists τ ∈ H/Z and a biholomorphism H̃ω : E( f )→ C/(Z+ τZ) that takes γ to a curve
homotopic to R/Z. Let τ(E( f )) := τ be the modulus of E( f ).

For rot f = p/q, the construction of γ should be slightly modified: φj are linearizing charts of f q

at its fixed points, γj are arcs of circles in charts φj , we let γ =
⋃
γj , γ winds above repelling periodic

points of f and below attracting periodic points of f , and we choose γj so that f (γ ) is above γ in C/Z.
The rest of the construction is analogous to the case of rot f = 0.

Theorem 23 [Goncharuk 2012; Buff and Goncharuk 2015, Section 6]. Let f be a hyperbolic circle
diffeomorphism with rational rotation number; define E( f ) as above. Then the modulus τ(E( f )) of the
torus E( f ) equals τ̄ ( f ).

Due to the construction, E( f ) does not depend on the analytic chart on R/Z. This implies Lemma 8.
So in order to prove Lemma 19, it is sufficient to find a circle diffeomorphism f with 2m fixed points

such that τ(E( f ))= w.
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5.2. Cutting E( f ) by the real line. Let Aj ⊂ 5̃ be the domain bounded by γj , f (γj ), and two segments
of R/Z. Note that the complex manifold Ãj := Aj/ f is an annulus, and Ãj ⊂ 5̃/ f = E( f ).

Let H+ = H and H− be the upper and the lower half-planes of C respectively. From now on, we use
the notation A±(λ) for the following standard annulus: A±(λ) := H±/(z ∼ λz). It is easy to see that its
modulus is π/| log λ|.

Remark 24. The linearizing chart ψj induces the map from Ãj to the standard annulus A+(λj ) for even j ,
and to A−(λj ) for odd j . This follows from the fact that ψj conjugates f to x 7→ λj z.

This gives a full description of E( f ) in terms of multipliers and transition maps of f : E( f ) is
biholomorphically equivalent to the quotient space of the annuli A±(λj ), mod A±(λj )= π/| log λj |, by
the transition maps ψ−1

j+1 ◦ψj between linearizing charts of f .

6. Circle diffeomorphisms with prescribed complex rotation numbers

In this section, we prove Lemma 19.

6.1. Scheme of the proof. Remark 24 above shows that E( f ) can have any modulus, which nearly
implies Lemma 19. Indeed, we can obtain a complex torus of an arbitrary modulus by gluing some
2m annuli by some maps. We only need to show that there are no restrictions on possible multipliers and
transition maps for an analytic circle diffeomorphism. This follows from Theorem 25 below.

The above arguments together with Theorem 25 show that E( f ) can be biholomorphic to a standard
torus of any modulus; however, we must also check that this biholomorphism matches the generators,
as required by the definition of τ(E( f )); see Section 5 above. The formal proof of Lemma 19, with the
explicit construction of f and the examination of generators, is contained in Section 6.3.

6.2. Moduli of analytic classification of hyperbolic circle diffeomorphisms. The following theorem is
an analytic version of a smooth classification of hyperbolic diffeomorphisms due to G. R. Belitskii [1986,
Proposition 2]. The proof is completely analogous, but we provide it for the sake of completeness.

Theorem 25. Suppose that we are given a tuple of 2m real numbers λj with 0< λ2 j−1 < 1< λ2 j , and
a tuple of analytic orientation-preserving diffeomorphisms ψj; j+1 : R

+
→ R− such that ψj; j+1(λj z)=

λj+1ψj; j+1(z).
Then there exists an analytic circle diffeomorphism f such that it has 2m fixed points with multipliers λj ,

and ψj; j+1 are transition maps between their linearization charts ψj : ψj; j+1 = ψ
−1
j+1 ◦ψj .

Remark. It is also true that such an f is unique up to analytic conjugacy, so the data above is the modulus
of an analytic classification of hyperbolic circle diffeomorphisms. Given f , transition maps ψj; j+1 are
uniquely defined up to the equivalence

( . . . ψj−1; j . . . )∼ ( . . . , ajψj−1; j (z/aj−1), . . . )

for some numbers aj > 0; see [Belitskii 1986, Proposition 3].

Proof. Take 2m copies of the real axis and glue the j -th to the ( j+1)-th copy by the mapψj; j+1 :R
+
→R−.

We get a one-dimensional Cω-manifold homeomorphic to the circle R/Z. It is well known that such
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manifolds are Cω-equivalent to R/Z. Thus there exists a tuple of Cω charts ψj : R→ R/Z such that
ψj; j+1 = ψ

−1
j+1 ◦ψj . Due to the equality ψj; j+1(λj z)= λj+1ψj; j+1(z), the maps ψj (λjψ

−1
j (z)) glue into

the well-defined Cω circle diffeomorphism f .
Let aj =ψj (0). Note that f (aj )=ψj (λjψ

−1
j (aj ))=ψj (λj · 0)=ψj (0)= aj , so these points are fixed

points of f .
On a segment (aj−1, aj+1), the map ψj conjugates f = ψj ◦ λjψ

−1
j to z 7→ λj z, so ψj is a linearizing

chart of a fixed point aj , and λj is the multiplier of f at aj . �

6.3. Proof of Lemma 19, see Figure 4. Recall that our aim is to construct a circle diffeomorphism f
with 2m hyperbolic fixed points and the complex rotation number w.

Consider the standard elliptic curve Ew = C/(Z+wZ); let R/Z and wR/wZ be its first and second
generators respectively. Take 2m arbitrary disjoint simple real-analytic loops νj ⊂ Ew along the second
generator. Let Aj ⊂ Ew be the annulus between νj and νj+1. Let1j =Aj∩R/Z; then1j joins boundaries
of Aj .

We are going to construct a circle diffeomorphism f with 2m fixed points, and a biholomorphism
H : E( f )→ Ew such that H( Ãj )=Aj ⊂ Ew, where Ãj are the annuli in E( f ) bounded by intervals of
R/Z as in Section 5.2. This biholomorphism H will take the class of γ in E( f ) to the class of R/Z=

⋃
1j

in Ew. This will prove that the modulus of E( f ) equals w.

Uniformize Aj . For each annulus Aj where j is even, take λj > 1 such that there exists a biholomorphism
9̃j : A+(λj )→Aj . For each annulus Aj where j is odd, take λj <1 such that there exists a biholomorphism
9̃j : A−(λj )→ Aj . Each map 9̃j extends analytically to a neighborhood of A±(λj ) in C∗/(z ∼ λj z),
because the boundaries of Aj are real-analytic curves νj . Assume that 9̃−1

j (νj ) is the left boundary
of A±(λj ); that is, 9̃−1

j (νj )= R−/(z ∼ λj z). Then 9̃−1
j (νj+1)= R+/(z ∼ λj z).

Let 9j : H
±
\ {0} → Aj be the lift of 9̃j to the universal cover of A±(λj ); then 9j (λj z) = 9j (z).

For each j , choose one of the preimages δj = 9
−1
j (1j ). Let lj ∈ R−, rj ∈ R+ be the left and the right

endpoints of δj respectively. Consider the maps ψj; j+1 : R
+
→ R−,

ψj; j+1 =9
−1
j+1 ◦9j ,

where we choose the branch of 9−1
j+1 so that ψj; j+1(rj )= lj+1. Note that ψj; j+1(λj z)= λj+1ψj; j+1(z)

because 9j (λj z)=9j (z).
Now, the complex torus Ew is biholomorphically equivalent to the quotient space of annuli A±(λj ) by

the maps ψj; j+1. This, together with Remark 24, motivates the construction of f below.

Construct f and a biholomorphism H : E( f )→ Ew. Use Theorem 25 to construct f with multipliers λj

and transition maps ψj; j+1.
Let ψj be linearization charts of its fixed points; then ψj; j+1 = ψ

−1
j+1 ◦ψj . Let γ, E( f ), Aj , Ãj be

defined as in Section 5 for this circle diffeomorphism f .
Consider the tuple of maps 9j ◦ψ

−1
j on Aj ⊂ C/Z. These maps agree on the boundaries of Aj due to

the equality

(9j+1 ◦ψ
−1
j+1)

−1
◦9j ◦ψ

−1
j = ψj+1 ◦9

−1
j+1 ◦9j ◦ψ

−1
j = ψj+1 ◦ψj; j+1 ◦ψ

−1
j = id,
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Figure 4. Proof of Lemma 19.

so they define one map on 5̃. They descend to the map H : E( f )→ Ew because ψj conjugates f to
z 7→ λj z and 9j (λj z)=9j (z). Clearly, H( Ãj )=Aj .

H takes the class of γ in E( f ) to the first generator of Ew. Note that the curves ψj (δj ) have common
endpoints ψj (rj )= ψj+1(lj+1) since ψj; j+1(rj )= lj+1. So γ ′ :=

⋃
ψj (δj ) is a loop in C/Z that passes

above the attractors ψ2 j−1(0) and below the repellors ψ2 j (0) of f . So γ ′ is homotopic to γ in an annular
neighborhood of R/Z covered by linearizing charts of fixed points; the homotopy does not pass through
fixed points. Hence γ ′ is homotopic to γ in E( f ), i.e., corresponds to the first generator of E( f ).

Finally, H(γ ′)=
⋃
9j (δj )=

⋃
1j = R/Z⊂ Ew. This completes the proof of Lemma 19.

Appendix: Derivatives of complex rotation number

In this section we compute (∂/∂ω)τ̄ ( fω) for a family of circle diffeomorphisms fω. In particular, this
yields Proposition 12. The computation is analogous to that of [Risler 1999, Section 2.2.3].

Let fω be an analytic family of analytic circle diffeomorphisms. Let Gω := H̃−1
ω , where H̃ω rectifies

the complex torus E( fω); see Section 5. Let τ(ω)= τ̄ ( fω). Then

fω(Gω(z))= Gω(z+ τ(ω)) for z ∈ G−1
ω (γ ). (4)
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The Ahlfors–Bers theorem implies that the map Gω, if suitably normalized, depends analytically on ω;
see [Risler 1999, Section 2.1, Proposition 2].

Fix ω = ω0 ∈ R/Z; in what follows, all derivatives with respect to ω are evaluated at ω = ω0, and
we will omit the lower indices in fω,Gω etc. Here and below G ′, f ′ are derivatives with respect to z;
G ′ω, f ′ω, τ ′ω are derivatives with respect to ω.

The following proposition clearly implies Proposition 12.

Proposition 26. Let fω, Gω be as above. Then

τ ′ω =

∫
γ

f ′ω(w)
f ′(w)

((G−1)′(w))2 dw,

where all derivatives are evaluated at ω = ω0.

Proof. We may and will assume that the curve γ in the construction of E( fω) does not depend on ω in a
small neighborhood of ω0.

Differentiate (4) with respect to ω:

f ′ω|G(z)+ f ′|G(z)G ′ω(z)= G ′ω(z+ τ)+G ′(z+ τ)τ ′ω.

Express τ ′ω using this equation and the identity G ′(z+ τ) = f ′|G(z)G ′(z) (this is the derivative of (4)).
We get

τ ′ω =
f ′ω|G(z)

G ′(z+ τ)
+

G ′ω(z)
G ′(z)

−
G ′ω(z+ τ)
G ′(z+ τ)

.

Integrate this expression along G−1(γ ). The second and the third summands cancel out because the
function G ′ω(z)/G ′(z) is holomorphic. We obtain

τ ′ω =

∫
G−1(γ )

f ′ω|G(z)
G ′(z+ τ)

dz.

Using again G ′(z+ τ)= G ′(z) f ′|G(z) and making the change of variable w = G(z), we get the desired
formula. �
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QUANTITATIVE STABILITY OF THE FREE BOUNDARY
IN THE OBSTACLE PROBLEM

SYLVIA SERFATY AND JOAQUIM SERRA

We prove some detailed quantitative stability results for the contact set and the solution of the classical
obstacle problem in Rn (n ≥ 2) under perturbations of the obstacle function, which is also equivalent to
studying the variation of the equilibrium measure in classical potential theory under a perturbation of the
external field.

To do so, working in the setting of the whole space, we examine the evolution of the free boundary 0t

corresponding to the boundary of the contact set for a family of obstacle functions ht. Assuming that
h = ht (x)= h(t, x) is Ck+1,α in [−1, 1] ×Rn and that the initial free boundary 00 is regular, we prove
that 0t is twice differentiable in t in a small neighborhood of t = 0. Moreover, we show that the “normal
velocity” and the “normal acceleration” of 0t are respectively Ck−1,α and Ck−2,α scalar fields on 0t. This
is accomplished by deriving equations for this velocity and acceleration and studying the regularity of
their solutions via single- and double-layer estimates from potential theory.

1. Introduction

Motivation of the problem. Consider the classical obstacle problem; see for instance [Kinderlehrer and
Nirenberg 1977; Caffarelli 1998]. If the obstacle h is perturbed into h+ tξ with t small and ξ regular
enough, how much does the contact set (or coincidence set) move? The best known answer to this question
is in [Blank 2001], where it is proved that the new contact set is O(t)-close to the old one in Hausdorff
distance, in the setting of a bounded domain with Dirichlet boundary condition. Some results are also
proved in [Schaeffer 1975] in an analytic setting, by Nash–Moser inversion.

Our paper is concerned with getting stronger and more quantitative stability estimates, in particular
obtaining closeness of the contact sets in Ck,α norms with explicitly described first and second derivatives
with respect to t , which come together with an explicit asymptotic expansion of the solution itself. We
believe that such results are of natural and independent interest for the obstacle problem. They are also
for us motivated by an application on the analysis of Coulomb systems in statistical mechanics from
[Leblé and Serfaty 2018], which relies on the present paper.

Let us get into more detail on this aspect. In potential theory, the so-called (Frostman) “equilibrium
measure” for Coulomb interactions with an external “field” Q is the unique probability measure µ on Rn

which minimizes ∫
Rn×Rn

P(x − y) dµ(x) dµ(y)+
∫

Rn
Q(x) dµ(x), (1-1)

MSC2010: 35R35, 31B35, 49K99.
Keywords: obstacle problem, contact set, coincidence set, stability, equilibrium measure, potential theory.
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where P is the Newtonian potential in dimension n. If Q grows fast enough at infinity, then setting

u(x)=
∫

Rn
P(x − y) dµ(y), (1-2)

the equilibrium measure µ is compactly supported and uniquely characterized by the fact that there exists
a constant c such that

u ≥ c− 1
2 Q and u = c− 1

2 Q µ− a.e.;

see for instance [Saff and Totik 1997]. We thus find that µ=−1u, where u solves the classical obstacle
problem in the whole space

min{−1u, u− h} = 0

with obstacle h = c− 1
2 Q — the two problems (identifying the equilibrium measure and solving the

obstacle problem) are in fact convex dual minimization problems, as seen in [Ekeland and Temam 1976];
see for instance [Serfaty 2015, Chapter 2] for a description of this correspondence. Thus, the support of
the equilibrium measure is equal to the contact set wherever the obstacle is “active”.

The understanding of the dependence of the equilibrium measure on the external field — which is
thus equivalent to the understanding of the dependence of the solution and its contact set on the obstacle
function — is crucial for the analysis of systems of particles with logarithmic or Coulomb interactions;
in particular it allows one to show that the linear statistics of fluctuations of such systems converge to
Gaussians. Following the method first introduced by [Johansson 1998], this relies on the computation of
the Laplace transform of the fluctuations, which directly leads to considering the same system but with
perturbed external field. Previously, the analysis of the perturbation of the equilibrium measure, as done
in [Ameur et al. 2011], relied on Sakai’s theory [1991], a complex-analytic approach which is thus only
valid in two dimensions and imposed analyticity assumptions on the external field and the boundary of
the coincidence set.

In that context, the evolution of the contact sets sometimes goes by the name “Laplacian growth” or
“Hele-Shaw flow” or the “Hele-Shaw equation”, see [Hedenmalm and Makarov 2004; 2013], and seems
related to the quantum Hele-Shaw flow introduced by the physicists Wiegmann [2002] and Zabrodin. It
has only been examined in dimension 2.

Setting of the study. Both for simplicity and for the applications we have in mind mentioned above, we
consider global solutions to the obstacle problem in Rn, n ≥ 2. We note that the setting in R2 is slightly
different than the setting in Rn for n ≥ 3 due to the fact that the logarithmic Newtonian potential does not
decay to zero at infinity, and this will lead us to often making parallel statements about the two. We also
note that the potential u associated to the equilibrium measure in (1-2) behaves like P at infinity, since µ
is a compactly supported probability measure, i.e., tends to 0 if n ≥ 3 and behaves like − 1

2π log |x | if
n = 2. Specifying the total mass of −1u is equivalent to specifying the ratio of u/−log |x | at infinity in
dimension 2, or to adding an appropriate1 constant to u in dimension n ≥ 3.

1Let ut be defined as (1-3). For n ≥ 3 there is a nonlinear (but monotone and continuous) relation between the mass
∫

Rn 1ut

and value of the constant ct. For ct large enough, the mass is 0, and when ct decreases, the mass increases continuously. This
allows us to solve the equation with prescribed mass by varying the constant ct.
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With the above motivation, in order to consider the perturbations of the obstacle, we thus consider for
each t ∈ [−1, 1], given ct a function of t , the function ut solving the obstacle problem

min{−1ut , ut
− ht
} = 0 in Rn,

{
lim|x |→∞ ut(x)= ct (n ≥ 3),

lim|x |→∞ ut (x)
−log |x | = ct (n = 2).

(1-3)

We assume 1h0 < 0 on {u0
= h0
}, i.e., the obstacle must be “active” in the contact set, and{
lim|x |→∞ ht(x) < ct (n ≥ 3),

lim|x |→∞ ht (x)
−log |x | < ct (n = 2),

(1-4)

h = ht(x)= h(t, x) ∈ Ck−1,α([−1, 1]× BR), (1-5)
while

c = ct
= c(t) ∈ C2([−1, 1]). (1-6)

For n = 2 we assume c > 0.
In addition, we assume

1(ht
− h0) is compactly supported in BR (1-7)

and

ht
− h0
→ 0 as |x | →∞ (n ≥ 3), (1-8a)

ht
− h0

−log |x |
→ 0 as |x | →∞ (n = 2). (1-8b)

In particular, letting ˙ denote the derivative with respect to t , this implies

ḣt
→ 0 as |x | →∞ (n ≥ 3), (1-9a)

ḣt

−log |x |
→ 0 as |x | →∞ (n = 2). (1-9b)

Let us denote by
�t
:= {ut

− ht > 0} and 0t
:= ∂�t

the complement of the contact set and the free boundary, respectively.
We will assume that all points of the “initial” free boundary 00 are regular points in the sense of

Caffarelli [1977; 1998]. In particular we assume that �0 is an open set with smooth boundary.
For the analysis of the paper it is convenient to identify precisely the quantities on which the (constants

in the) estimates depend. To this aim, let us fix ρ > 0 and make the following quantitative assumptions.
First, we assume that, for some U ⊂ BR, we have

1h0
≤−ρ in U and

{
u0
− h0
≥ ρ in Rn

\U (n ≥ 3),
u0
−h0

−log |x | ≥ ρ in Rn
\U (n = 2),

(1-10)

where U ⊂ BR is some open set containing {u0
= 0}.
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Second, we assume

all points of 00 can be touched from both sides by balls of radius ρ. (1-11)

This is a quantitative version of the assumption that all points of 00 are regular points.
Throughout the paper, if C is a set of parameters of the problem, we denote by C(C) a constant

depending only on C. We define

C := {n, k, α, R,U, ρ, ‖h‖Ck+1,α([−1,1]×U ), ‖c‖C2([−1,1])}, (1-12)

C0
:= {n, k, α, R,U, ρ, ‖h0

‖Ck+1,α(U ), c0
}. (1-13)

For n = 2 we also add to C the constant inf[−1,1] c > 0.

Main result. Let t◦ > 0 and let 9 = 9 t(x) = 9(t, x) be a 1-parameter family of diffeomorphisms
9 : (−t◦, t◦)×Rn

→ Rn. We say that 9 fixes the complement of U if 9(x)= x for all x ∈ Rn
\U.

We say 9 is continuously differentiable if for all t ∈ (−t◦, t◦) there exists 9̇ t
∈ C0(Rn

;Rn) such that

‖9 t+s(x)−9 t(x)− s9̇ t(x)‖C0(Rn;Rn) = o(s),

‖9̇ t+s(x)− 9̇ t(x)‖C0(Rn;Rn) = o(1)

as s→ 0.
We say 9 is twice continuously differentiable if, in addition, for all t ∈ (−t◦, t◦) there exists

9̈ t
∈ C0(Rn

;Rn) such that∥∥9 t+s(x)−9 t(x)− s 9̇ t(x)− 1
2 s2 9̈ t(x)

∥∥
C0(Rn;Rn)

= o(s2),

‖9̈ t+s(x)− 9̈ t(x)‖C0(Rn;Rn) = o(1)

as s→ 0.
Throughout the paper, given a function f : (−t◦, t◦)×Y→R we use the notation f = f t(x)= f (t, x),

δt f s
:=

f s+t
− f s

t
and ḟ s

:= lim
t↓0
δt f s
= ∂t f (s, y).

The main result of the paper is the following. In its statement, and throughout the paper, we denote by

νt
: 0t
→ Sn−1

the unit normal vector to 0t pointing towards �t.

Theorem 1.1. Let n ≥ 2, k ≥ 1, α ∈ (0, 1), and ut satisfy (1-3), with h and c satisfying (1-4)–(1-8).
Assume (1-10) and (1-11) hold.

Then, there exists t◦> 0 and a 1-parameter differentiable family of diffeomorphisms 9 t
∈Ck,α(Rn

;Rn)

that fixes the complement of U and which satisfies, for every t ∈ (−t◦, t◦),

9 t(�0)=�t , 9 t(00)= 0t ,

‖9̇ t
‖Ck−1,α(Rn) ≤ C and (9̇ t

◦ (9 t)−1) · νt
=
∂νt V t

1ht on 0t , (1-14)
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where V t
:= u̇t

− ḣt is the solution2 to
1V t
=−1ḣt in �t ,

V t
= 0 on 0t ,

limx→∞ V t(x)= ċt (n ≥ 3),


1V t
=−1ḣt in �t ,

V t
= 0 on 0t ,

limx→∞
V t (x)
−log |x | = ċt (n = 2).

(1-15)

In addition, we have
u̇t
= ḣt
+ V tχ�t in all Rn.

If moreover k ≥ 2 then 9 is twice differentiable and we have

‖9̈ t
‖Ck−2,α(Rn) ≤ C◦ (1-16)

and
‖üt
‖L∞(Rn)+‖∇üt

‖Ck−2,α((�0∪�t )c ∪�0∩�t )
≤ C◦. (1-17)

The constants t◦ and C◦ depend only on3 C.

An informal rephrasing of Theorem 1.1 is as follows. If the moving obstacle h(t, x) is Ck+1,α and c(t)
is C2, then 0t is “twice differentiable” for t in a small neighborhood of 0. Moreover, the “normal velocity”
of 0t and the “normal acceleration” of 0t are respectively Ck−1,α and Ck−2,α scalar fields on 0t, with the
normal velocity precisely identified via a Dirichlet-to-Neumann transformation: to compute it, one finds
the solution V t to the Dirichlet problem in a exterior domain (1-15) and the normal velocity at a point of
0t is given by the normal derivative of V t divided by the Laplacian of the obstacle at that point.

Open questions. It is of course natural to ask whether similar results hold for more general obstacle
problems, such as those associated to fully nonlinear operators or to fractional Laplacians.

In view of our results,4 a natural open question, which we believe to be delicate, is whether one can
improve Theorem 1.1 to

9(t, x) ∈ Ck,α (jointly in t and x).

Structure of the proof and organization of the paper. For the proof, we first reduce to a situation where
the contact set is growing, i.e., �t

⊂�0. We then define a coordinate system near the free boundary 00,
and express the “height” ηt of 0t in these coordinates.

In Section 3, assuming that an expansion of the type ηt
= η0

+ η̇0t + 1
2 η̈

0t2
+ · · · holds as t → 0,

we derive equations for η̇0 and η̈0, which allow us to obtain explicit formulae and Hölder regularity for
these quantities via single- and double-layer potential-theoretic estimates. These regularity estimates are
delicate to obtain because the relations characterizing η̇0 and η̈0 are at first implicit and one needs to show
they can be “closed” for regularity.

2Since we assumed ḣt tends to 0 (resp. is� | log |x || if n = 2) at∞, we have V t is the unique solution such that V t
+ ḣt is

bounded, coincides with ht in the complement of �t and is harmonic in �t. In fact, V t
+ ḣt is the unique bounded harmonic

extension of ḣt outside of (�t )c.
3The set of constants of the problem C was defined in (1-12).
4We establish that if h ∈ Ck+1,α then 9t

∈ Ck,α, 9̇t
∈ Ck,α and 9̈t

∈ Ck−2,α .
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In Section 4, we show that the existence of an expansion in t for ηt, which was previously assumed,
does hold. This is done by using a second set of adapted coordinates near 00 (a sort of hodograph
transform) and again single- and double-layer potential estimates.

Finally, in Section 5 we prove the main result by showing how to treat the general case where the
contact set is not necessarily growing. In the Appendix, we collect the potential-theoretic estimates we
need and some additional proofs.

2. Preliminaries

Known results. Throughout the paper it is useful to quantify the smoothness of the (boundaries of the)
domains �t. Let us introduce some more notation with that aim. Let U be some open set and r > 0. We
write ∂U ∈ Ck,α

r if for all xo ∈ ∂U there are some orthonormal coordinates yi , 1 ≤ i ≤ n, with origin
at xo (these coordinates may vary from point to point), and a function Fxo ∈ Ck,α(B ′r ) such that

U ∩ {|y′|< r, |yn|< r} = {yn < Fxo(y
′)} ∩ {|y′|< r, |yn|< r},

where y′ = (y1, y2, . . . , yn−1).
In this framework we define

‖∂U‖Ck,α
r
:= sup

xo∈∂U
‖Fxo‖Ck,α(B ′r )

<∞, (2-1)

where B ′r = {|y
′
|< r} ⊂ Rn−1.

With the previous assumptions we have in our notation:

Proposition 2.1 [Caffarelli 1977; 1998; Kinderlehrer and Nirenberg 1977; Blank 2001]. There exist
universal constants t◦ > 0 and Co depending only on C such that the following hold:

(i) We have
‖0t
‖Ck,α

ρ/4
≤ Co for all t ∈ (−t◦, t◦).

(ii) For every pair t, s ∈ (−t◦, t◦), the Hausdorff distance between 0t and 0s satisfies

dHausdorff(0
t , 0s)≤ Co |t − s|.

Proposition 2.1 is contained in the results of [Blank 2001]. However, for the sake of completeness,
we briefly sketch the proof in the Appendix. This is done by combining the classical results for the
obstacle problem in [Caffarelli 1977; 1998; Kinderlehrer and Nirenberg 1977] and the key sharp estimate
|�t
4�s
| ≤C |t− s| for the symmetric difference of the positivity sets (or of the contact sets) from [Blank

2001].

Scalar parametrization of deformations (definition of ηt). By Proposition 2.1 the free boundaries 0t

are “uniformly” Ck,α for |t | small and the difference between 0t and 0s is bounded by C |t ′− t | in the
L∞ norm. A goal of the paper is to prove that the difference is bounded C |t ′− t | also in a Ck−1,α norm.
To prove this type of result it is convenient to have a scalar function representing the “difference” between
0t and 0s. This has a clear meaning locally — since both 0t and 0s are graphs, and one can simply
subtract the two functions that define these graphs. We next give a global analogue of this.
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In an open neighborhood U◦ of 00 we define coordinates

(z, s) :U◦→ Z × (−s◦, s◦),

where s◦ > 0 and Z is some smooth approximation of 00.
We assume the vector field

N := ∂s

is a smooth approximation of ν0 on 00. More precisely, we assume

N ∈ C∞(U◦;Rn), |N | = 1 and N · νt
≥ (1− εo) for t ∈ (−t◦, t◦), (2-2)

where εo is a constant that in the sequel will be chosen to be small enough — depending only on C.
In this framework, Proposition 2.1 implies that for all t ∈ (−t◦, t◦) with t◦ small enough there exists

ηt
∈ Ck,α(Z) such that

0t
= {s = ηt(z)} ⊂U◦. (2-3)

Remark 2.2. From the data of 00 we may always construct Z and (z, s) satisfying the previous prop-
erties — for εo arbitrarily small — by taking Z to be a smooth approximation of 00 and N a smooth
approximation of ν0. Once Z and N are chosen, the coordinates (z, s) are then defined respectively as
the projection on Z and the signed distance to Z along integral curves of N.

3. A priori estimates

Roughly speaking, the goal of this section is to show that if an expansion of the type

ηt
= η0
+ η̇0t + 1

2 η̈
0t2
+ · · ·

holds, where
ηt
− η0

t
→ η̇0 and

ηt
− η0
− η̇0t

t2 →
η̈0

2
as t→ 0, in C0(Z),

then η̇0 and η̈0 must satisfy certain equations that have uniqueness of solution and a priori estimates.
From these equations we obtain conditional (or a priori) estimates for ‖η̇0

‖Ck−1,α(Z) and ‖η̈0
‖Ck−2,α(Z).

In the next sections, let us provisionally assume

1(ht
− h0)≥ 0 and ct

− c0
≤ 0 (3-1)

for all t ≥ 0, which is not essential but simplifies the analysis: Assumption (3-1) guarantees that �t
⊂�0

for all t ≥ 0. Indeed, this is an immediate consequence of the characterization of

ũt
:= ut

− ht

as the infimum of all nonnegative supersolutions with the same right-hand side and appropriate condition
at infinity. More precisely, we have the following lemma, whose proof is standard in dimension n ≥ 3
and which we sketch in dimension n = 2 in the Appendix.
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Lemma 3.1. The function ũt can be defined as the infimum of all f satisfying f ≥ 0, 1 f ≤−1ht,

lim
x→∞

( f + ht)≥ ct (n ≥ 3), (3-2a)

lim
x→∞

f + ht

−log |x |
≥ ct (n = 2). (3-2b)

Note that in particular f = ũ0 is included since 1ũ0
=−1h0

≤−1ht, and

lim
x→∞

(ũ0
+ ht)= lim

x→∞
(ũ0
+ h0)+ lim

x→∞
(ht
− h0)≥ c0

≥ ct (n ≥ 3),

lim
x→∞

(ũ0
+ ht)

−log |x |
≥ c(t) (n = 2).

Therefore, applying Lemma 3.1 we obtain ũ0
≥ ũt and

�t
= {ũt > 0} ⊂ {ũ0 > 0} =�0

for all t > 0. Equivalently (3-1) implies ηt
≥ 0 on Z for t > 0.

Later, when we prove Theorem 1.1, we will reduce to this case by decomposing ht as a sum of two
functions, one with nonnegative Laplacian and one with nonpositive Laplacian.

Let us define
vt
:= δt ũ0

=
1
t
(ũt
− ũ0). (3-3)

The function vt is a solution of
1vt
=−1δt h0 in �t ,

vt
=−

1
t ũ0 on 0t ,

limx→∞ v
t
= δt c0 (n ≥ 3),


1vt
=−1δt h0 in �t ,

vt
=−

1
t ũ0 on 0t ,

limx→∞
vt (x)
−log |x | = δt c0 (n = 2).

(3-4)

Since ũ0
= |∇ũ0

| = 0 on 00, using the classical estimate5

‖u0
‖C1,1(Rn) ≤ (n− 1)‖h0

‖C1,1(Rn),

we obtain
|ũ0
| ≤ C‖h‖C1,1(Rn) d2

Hausdorff(0
t , 00)≤ Ct2 on 0t .

Then, using that �t grows to �0 as t ↓ 0 and uniform estimates for vt we find that vt
→ v as t ↓ 0, where

v is the solution of 
1v =−1ḣ0 in �0,

v = 0 on 00,

v(∞)= ċ0 (n ≥ 3),


1v =−1ḣ0 in �0,

v = 0 on 00,

limx→∞
v(x)
−log |x | = ċ0 (n = 2).

(3-5)

Here 1ḣ0
= limt↓01δt h0

= (1∂t h)(0, x).

5Since u0 is a solution of the obstacle problem in the whole Rn with a semiconcave obstacle h0, we know u0 is semiconcave
with D2u0

≥−‖h‖C1,1(Rn)Id and the estimate follows using 1u0
= 0, where u0 > h0.
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Equation and estimate for η̇0. We first prove the following

Proposition 3.2. Let k ≥ 1. Assume that for some tm ↓ 0 there exists η̇0
∈ C0(Z) such that

δtmη
0
→ η̇0 in C0(Z) as m→∞.

Then, the limit η̇0 is given by

η̇0(z)=
(

∂Nv

(N · ν0)21h0

)
(z, η0(z)), (3-6)

with v as in (3-5). As a consequence, η̇0 is independent of the sequence tm and we have η̇ ∈ Ck−1,α(Z)
with the estimate

‖η̇0
‖Ck−1,α(Z) ≤ C(C0)(‖ḣ0

‖Ck,α(BR)+ |ċ
0
|). (3-7)

Proof. We split the proof into two steps.

Step 1. We prove (3-6). Recall that since ũt is a solution of a zero obstacle problem we have

ũt
= |∇ũt

| = 0 on 0t .

Thus,

∂sv
t
=

1
t
(∂s ũt

− ∂s ũ0)=−
∂s ũ0

t
on 0t . (3-8)

From (3-8) we deduce that

∂sv
tm (z, ηtm )=−

1
tm
∂s ũ0(z, ηtm )=−

1
tm

(
∂s ũ0(z, η0)+ ∂ss ũ0(z, η0)(ηtm − η0)+ o(tm)

)
, (3-9)

where η0 and ηtm are evaluated at z (although we omit this in the notation) and where ∂ss ũ0(z, η0) is
understood as the limit from the �0-side. To justify the validity of the previous Taylor expansion we use
that ũ0

∈ C2,α(�0); see Lemma 3.6.
Since ũ0

= |∇̃u0
| = 0 on 00 we obtain

∂eeũ0
= (e · ν)2∂νν ũ0

= (e · ν)21ũ0
=−(e · ν)21h0 on 00

for every vector e, where ν = ν0 is the normal vector to 00 (pointing towards �0). Again, the previous
second derivatives on 00 mean the limits from the �0-side. Hence, we have

∂s ũ0(z, η0(z))= 0 and ∂ss ũ0(z, η0(z))=−((N · ν0)21h0)(z, η0(z)), (3-10)

where ∂ss ũ0(z, η0(z)) is from the �0-side. Dividing (3-10) by tm and taking the limit as tm ↓ 0 in (3-9)
using the assumption, we obtain

∂sv(z, η0(z))=−∂ss ũ0(z, η0(z)) η̇0(z)= ((N · ν0)21h0)(z, η0(z)) η̇0(z), (3-11)

where ∂sv(z, η0(z)) and ∂ss ũ0(z, η0(z)) are from the�0-side. When computing the limit that yields (3-11)
we must check that

∂sv
tm (z, ηtm (z))→ ∂sv(z, η0(z)), (3-12)
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where ∂sv(z, η0) is from the �0-side. To prove this, note that the equation (3-4) for vt , since we have
uniform C1,α estimates for the boundary 0t, implies that ‖∇vt

‖C0,α(�t ) is uniformly bounded (for t > 0
small). This implies that ∇vt converges uniformly to ∇v in every compact set of �0. Then using the
uniform continuity of the derivatives of v on �0 we show that

lim∇vtp(x p)→∇v(x) as p→∞ whenever tp ↓ 0, x p→ x and x p ∈�
tp .

This establishes (3-12) and (3-11). Then, (3-6) follows immediately from (3-11), after recalling that
N = ∂s .

Step 2. We prove (3-7). Indeed, from (3-5), and using that 00
= ∂�0

∈ Ck,α
ρ/4 with norm universally

bounded, we obtain

‖v‖Ck,α(�0) ≤ C(C0)(‖1ḣ0
‖Ck−2,α(�0)+ |ċ

0
|)≤ C(C0)(‖ḣ0

‖Ck,α(�0)+ |ċ
0
|). (3-13)

Now recalling that N is smooth, that ‖ν0
‖Ck−1,α(00) ≤ C‖00

‖Ck,α
ρ/4
≤ C , that −1h0

≥ ρ, and that
‖η0
‖Ck,α(Z) ≤ C , (3-6) and (3-13) imply (3-7). �

Equation and estimate for η̈0. In this section we estimate the second derivative in t of η at t = 0. It is
convenient to introduce here the following notation, which we shall use throughout the paper. Given a
function f : (−t◦, t◦)× Y → R, recall the notation f = f t(y)= f (t, x). Let us also define

δ2
t f s
:= 2

δt f s
− ḟ s

t
and f̈ s

:= lim
t↓0
δ2

t f s
= ∂t t f (y, 0).

From now on let us consider v to be defined in all of Rn by extending the solution of (3-5) by 0 in
Rn
\�0. Note that this is consistent with v = limt↓0 v

t and vt
= δt ũ0

= 0 in Rn
\�0 (since both ũt and

ũ0 vanish there).
We now introduce the function, defined in all of Rn,

wt
:= δtv

0
=

1
t
(vt
− v)= 1

2δ
2
t ũ0.

Using (3-5) and the identity

1vt
=

1
t
1(ũt

− ũ0)=−
1
t
1ũ0
=

1
t
1h0 in �0

\�t ,

we find, in the distributional sense,{
1wt
=

1
t

(
(∂Nv/(N · ν0))Hn−1 �00 +

(1
t 1h0

−1ḣ0
)
χ�0\�t

)
−

1
21δ

2
t h0χ�t in Rn,

wt(∞)= 1
2δ

2
t c0 (n ≥ 3),

(3-14a)

{
1wt
=

1
t

(
(∂Nv/(N · ν0))Hn−1 �00 +

( 1
t 1h0

−1ḣ0
)
χ�0\�t

)
−

1
21δ

2
t h0χ�t in Rn,

limx→∞
wt

−log |x | =
1
2δ

2
t c0 (n = 2),

(3-14b)

where H denotes the Hausdorff measure. Indeed, note also that for ν = ν0 we have

∂Nv = (N · ν0)∂νv on 00
out, while ∂νv = 0 on 00

in.
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Here, “00
out” refers to the limit from the �0-side, while “00

in” refers to the limit from the (Rn
\�0)-side.

Therefore, 1wt has some mass concentrated on 00 which is given by the jump in the normal derivative
of v, namely,

1
t
∂Nv

N · ν0 Hn−1 �00 .

In the following lemma, and throughout the paper, P denotes the Newtonian potential in dimension n,
namely,

P(x)=
1

n(n− 2)|B1|
|x |2−n (n ≥ 3)

or
P(x)=− 1

2π
log |x | (n = 2).

Recall that −1P = δx=0 in the sense of distributions.
We also need to introduce the Jacobian

J (z, s) := |det D (z, s)−1
|

of the coordinates (z, s) defined by∫
A

f (x) dx =
∫
(z,s)(A)

f (z, s) J (z, s) dz ds.

We use the following abuse of notation:

• When f = f (x) we denote by f (z, s) the composition f ◦ (z, s)−1.

• Conversely, when g = g(z, s) we will denote by g(x) the composition g ◦ (z, s).

Finally, let us denote by
π1 :U◦→ Z

the projection map along N, which is defined in the coordinates (z, s) by

(z, s) 7→ (z, 0).

We will need the following:

Lemma 3.3. Given f : 00
→ R continuous we have∫

00
(N · ν0)(x) f (x) dHn−1(x)=

∫
Z

f (z, η0(z)) J (z, η0(z)) dz.

Proof. Let us assume without loss of generality that f is defined and continuous in the neighborhood U◦
of 00. Given ε > 0 let

Aε := {x ∈U◦ : η0(z(x))≤ s(x)≤ η0(z(x))+ ε}.

Recalling that N = ∂s and that |N | = 1, we have∫
00
(N · ν0)(x) f (x) dHn−1(x)= lim

ε↓0

1
ε

∫
Aε

f (x) dHn(x).
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On the other hand, for (z, s)(Aε) := {(z, s) ∈ Z × (−s◦, s◦) : η0(z)≤ s ≤ η0(z)+ ε} we have, by the
definition of J,

1
ε

∫
Aε

f (x) dHn(x)= 1
ε

∫
(z,s)(Aε)

f (z, s) J (z, s) dz ds

=

∫
Z

dz 1
ε

∫ ε

0
ds̄ f (z, η0(z)+ s̄) J (z, η0(z)+ s̄)

=

∫
Z

f (z, η0(z)) J (z, η0(z)) dz+ o(1)

as ε ↓ 0 and the lemma follows. �

Lemma 3.4. Let k ≥ 2. Assume that for some tm ↓ 0 there exist η̇, η̈ ∈ C0(Z) such that

δ2
tmη

0
= 2

ηtm − η0
− η̇0tm

t2
m

→ η̈0 in C0(Z)

as tm ↓ 0. Then,
wtm weakly
−−−→w in Rn,

where w can be decomposed as

w = wsolid+wsingle+wdouble+wimplicit+ constant (3-15)

for

wsolid(x) :=
∫

Rn
dHn(y)(1ḧ0χ�0)(y)P(x−y), (3-16)

wsingle(x) :=
∫
00

dHn−1(y)
(
(N ·ν0)(η̇0

◦π1)1ḣ0
−

1
2(η̇

0
◦π1)

2 N ·ν0

J
∂N (Jh0)

)
(y) P(x−y), (3-17)

wdouble(x) :=
∫
00

dHn−1(y)
(

1
2(η̇

0
◦π1)

2 N ·ν0

J
(J1h0)

)
(y)∂N P(x−y), (3-18)

wimplicit(x) :=
∫
00

dHn−1(y)
2

(N ·ν)
(y) P(x−y), (3-19)

where 2 : 00
→ R,

2 := 1
2(N · ν

0)21h0 (η̈0
◦π1). (3-20)

Proof. Define

Dt
:=1wt

=
1
t
∂N v

N ·ν0 Hn−1 �00 −

(
1
t21h0

+
1
t
1ḣ0

)
χ�0\�t −

1
21δ

2
t h0χ�t .

Let us show that Dtm → D in the sense of distributions, for some distribution D that we compute.
Let us first write

Dt
= Dt

1+Dt
2,

where
Dt

1 := −
1
t
1ḣ0 χ�0\�t −

1
21δ

2
t h0χ�t (3-21)
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and

Dt
2 :=

1
t

(
∂Nv

N · ν0 Hn−1 �00 −
1
t
1h0 χ�0\�t

)
. (3-22)

First we clearly have, for φ ∈ C∞c (R
n),∫

φ(x)
(1

t
1ḣ0 χ�0\�t

)
(x) dx = 1

t

∫
Z

∫ ηt

η0
J (z, s)(1ḣ0 φ)(z, s) dz ds

→

∫
Z
η̇0(z)J (z, η0)(1ḣ0 φ)(z, η0) dz=

∫
00
(N ·ν0)(η̇0

◦π1)1ḣ0 φ dHn−1

as t = tm ↓ 0, where we have used Lemma 3.3, and hence

Dtm
1

weakly
−−−→−(N · ν0)(η̇0

◦π1)1ḣ0 Hn−1 �00 −
1
21ḧ0χ�0 . (3-23)

Next, using (3-6), we compute, for φ ∈ C∞c (R
n),∫

φDt
2 =

1
t

(∫
Z

dz
J (z, η0)

(N · ν0)2(z, η0)
∂Nv(z)φ(z, η0)−

∫
Z

dz 1
t

∫ ηt

η0
ds(J1h0 φ)(z, s)

)
=

1
t

∫
Z

dz
(
(J1h0 φ)(z, η0)η̇0

−
1
t

∫ ηt

η0
ds(J1h0 φ)(z, s)

)
= I1+ I2, (3-24)

where

I1 :=
1
t

∫
Z

dz
(
(J1h0 φ)(z, η0)η̇0

−
1
t

∫ η0
+η̇0t

η0
ds(J1h0 φ)(z, s)

)
and

I2 := −
1
t2

∫
Z

dz
∫ ηt

η0+η̇0t
ds(J1h0 φ)(z, s).

On one hand, letting s = η0
+ η̇0t s̄,

I1 =

∫
Z

dz
∫ 1

0
η̇0(z)t ds̄ s̄

t

(
(J1h0 φ)(z, η0)− (J1h0 φ)(z, η0

+ η̇0t s̄)
s̄t

)
=

∫
Z

dz
∫ 1

0
(η̇0)2(z) s̄ ds̄ ∂s(J1h0 φ)(z, η0)+ o(1)

=

∫ 1

0
s̄ ds̄

∫
Z

dz (η̇0)2(z) ∂s(J1h0 φ)(z, η0)+ o(1)

=
1
2

∫
00
(N · ν0) dHn−1 1

J
(η̇0
◦π1)

2 ∂N (J1h0 φ)+ o(1). (3-25)

as t = tm ↓ 0, where for the last relation we used Lemma 3.3 with

f (x)=
( 1

J
(η̇0
◦π1)

2∂N (J1h0 φ)
)
(x),



1816 SYLVIA SERFATY AND JOAQUIM SERRA

noting also that ∂s = ∂N and (η̇0
◦π1)

2(z, η0(z))= (η̇0)2(z). On the other hand,

I2 =−
1
t2

∫
Z
dz
∫ η0

+η̇0t+ 1
2 η̈

0t2

η0+η̇0t
ds(J1h0 φ)(z, s)+ o(1)

=−
1
2

∫
Z

dz η̈0 (J1h0 φ)(z, η0)+ o(1)

=−
1
2

∫
00

dHn−1(N · ν0) (η̈0
◦π1)1h0φ + o(1) (3-26)

as t = tm ↓ 0. Therefore, Dtm
2 → D2, where∫

φD2 =
1
2

∫
00

dHn−1(η̇0
◦π1)

2 N · ν0

J
∂N (J1h0 φ)−

1
2

∫
00

dHn−1(N · ν0) (η̈0
◦π1)1h0φ. (3-27)

In dimension n ≥ 3 we have

wtm (∞)= 1
2 lim

x→∞
δ2

tm ũ0(∞)= 1
2δ

2
tm c0
→

1
2 c̈0,

and thus
w(∞)= 1

2 c̈0
= constant.

In dimension n = 2 we have instead

lim
x→∞

w(x)
−log |x |

=
1
2 c̈0

and this implies 2π 1
2 c̈0
=
∫

R2 1w and that w can be obtained (up to an additive constant) by convolving
the Newtonian potential P with 1w.

Therefore, combining (3-23) and (3-27), we obtain that (3-15)–(3-19) hold. �

We may now state the final result of this section.

Proposition 3.5. Let k ≥ 2. Assume that for some tm ↓ 0 there exist η̇, η̈ ∈ C0(Z) such that

δ2
tmη

0
= 2

ηtm − η0
− η̇0tm

t2
m

→ η̈0 in C0(Z)

as tm ↓ 0. Assume w ∈ C1(�0) and

lim∇wtm (xm)→∇w(x) as m→∞ for all xm→ x such that xm ∈�
tm . (3-28)

Then, 2 : 00
→ R defined by (3-20) satisfies

2− 1
2∂sssu0(η̇0

◦π1)
2
= ∂ssv η̇

0
+ ∂sw on 00

out. (3-29)

Moreover, η̈0 does not depend on (tm) and

‖η̈0
‖Ck−2,α(Z) ≤ C(C0)Q, (3-30)

where
Q := ‖ḧ0

‖Ck−1,α(Rn)+ |c̈
0
| + (‖ḣ0

‖Ck,α(Rn)+ |ċ
0
|)(‖ḣ0

‖L∞(Rn)+ |ċ0
|).
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As for η̇, the independence of tm and regularity of η̈ will be consequences of the fact that 2 solves
(3-29), for which regularity estimates and uniqueness hold. However, note that (3-29) is an implicit
equation for 2 since wimplicit depends on 2, which makes the analysis more involved.

To prove Proposition 3.5, we will need two auxiliary lemmas with standard proofs.

Lemma 3.6. We have

‖ũ0
‖Ck+1,α(BR∩�t ) ≤ C(C0).

More generally, for t ∈ [0, t◦), where t◦ = t◦(C), we have ũt
∈ Ck+1,α(�t) with

‖ũt
‖Ck+1,α(BR∩�t ) ≤ C(C).

Proof. Note that ∂i ũt solves

1(∂i ũt)=−1(∂i ht) in �t , with ∂i ũt
= 0 on 0t

= ∂�t .

Since −1(∂i ht) ∈ Ck−2,α(Rn) and 0t belongs to Ck,α
ρ , using standard Schauder estimates up to the

boundary we obtain

∂i ũt
∈ Ck,α(BR ∩�t),

and hence

ũt
∈ Ck+1,α(BR ∩�t). �

Lemma 3.7. Let U ⊂ B R ⊂ Rn be bounded with ∂U belonging to Cm+2,α
r for some r > 0 and f ∈

Cm,α
c (B2R), where m ≥ 0. Let W be the solution of{

1W = f χRn\U in Rn,

W (∞)= 0 (n ≥ 3),

{
1W = f χRn\U in Rn,

limx→∞
W (x)
−log |x | = 2π

∫
R2 f χRn\U (n = 2),

which is given in dimension 2 by convolution with the logarithmic Newtonian potential.
Then,

‖W‖Cm+2,α(B2R\U ) +‖W‖Cm+2,α(U ) ≤ C‖ f ‖Cm,α(B2R)
,

where C = C(n,m, α, R, r, ‖∂U‖Cm+2,α
r

).

Proof. Let W̃ be the solution of
1W̃ = f in Rn

\U,
W̃ = 0 on ∂U,
W̃ (∞)= 0 (n ≥ 3),


1W̃ = f in Rn

\U,
W̃ = 0 on ∂U,

limx→∞
W̃ (x)
−log |x | = 0 (n = 2).

We consider W̃ defined in all of Rn by extending it by 0 in U.
Note that by standard Schauder estimates up to the boundary we have

‖W̃‖Cm+2,α(B2R\U ) ≤ C‖ f ‖Cm,α(B2R)
. (3-31)
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On the other hand, the difference (W̃ −W ) solves, in all of Rn,{
1(W̃ −W )= ∂ν, outW̃ H n−1 �∂U in Rn,

(W̃ −W )(∞)= 0 (n ≥ 3),{
1(W̃ −W )= ∂ν, outW̃ H n−1 �∂U in Rn,

limx→∞
(W̃−W )(x)
−log |x | =−2π

∫
R2 f χRn\U = 2π

∫
∂U ∂ν, outW̃ at∞ (n = 2).

Therefore, W̃ −W is a single-layer potential and using Theorem A.1 we obtain

‖(W̃ −W )‖Cm+2,α(B2R\U )+‖(W̃ −W )‖Cm+2,α(U ) ≤ C‖∂ν, outW̃‖Cm+1,α(∂U )

≤ C‖W̃‖Cm+2,α(B2R\U ) ≤ C‖ f ‖Cm,α(B4)
.

Using (3-31) and recalling that by definition W̃ ≡ 0 in U we obtain

‖W‖Cm+2,α(B2R\U ) +‖W‖Cm+2,α(U ) ≤ C‖ f ‖Cm,α(B2R)
. �

Proof of Proposition 3.5. Step 1. We first prove (3-29).
Expanding (3-8) as in (3-9) but up to the next order, we find

∂sv
t(z, ηt)=−∂ss ũ0(z, η0)

(
η̇0
+

1
2 η̈

0t + o(t)
)
−

1
2∂sss ũ0(z, η0)(η̇0)2t + o(t) (3-32)

as t = tm ↓ 0.
Here η, η̇ and η̈ are evaluated at z (although we omit this in the notation) and ∂ss ũ0(z, η0) and

∂sss ũ0(z, η0) mean the limits from �0. To obtain the Taylor expansion up to the third order of ũ0 we are
using that, by Lemma 3.6, u0

∈ Ck+1,α(BR ∩�0) where k ≥ 2. Recall here that {u0
= 0} = Rn

\�0
⊂

U ⊂ BR.
Subtracting from both sides of (3-32) the quantity

∂sv(z, η0)=−∂ss ũ0(z, η0)η̇0 (3-33)

and dividing by t , we obtain

∂sv
t(z, ηt)− ∂sv(z, η0)

t
=−

1
2∂ss ũ0(z, η0)η̈0

−
1
2∂sssu0(z, η0)(η̇0)2+ o(1). (3-34)

Recall that by Lemma 3.4 we have wt
→w in the sense of distributions with w given by (3-15)–(3-19).

Then, the assumption (3-28) allows us to compute the limit of the left-hand side in (3-34), namely,

lim
t=tm↓0

∂sv
t(z, ηt)− ∂sv(z, η0)

t
= lim

t=tm↓0

∂sv(z, ηt)− ∂sv(z, η0)

t
+
∂sv

t(z, ηt)− ∂sv(z, ηt)

t

= ∂ssv(z, η0) η̇+ lim
t=tm↓0

(N (z, ηt) · ∇wt(z, ηt)

= ∂ssv(z, η0) η̇+ ∂sw
t(z, η0), (3-35)

where we have used the assumption (3-28).
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Taking t = tm ↓ 0 in (3-34) and using (3-35) we obtain

−
1
2∂ss ũ0(z, η0)η̈0

−
1
2∂sssu0(z, η0)(η̇0)2 = ∂ssv(z, η0) η̇+ ∂sw

t(z, η0).

Recalling the definition of 2 in (3-20) and the fact that ∂ss ũ0
= −1h0 on 00 — and in particular at

(z, η0)— we obtain (3-29).

Step 2. We use (3-29) to prove uniqueness and regularity of η̈. Recall that

∂sw = ∂Nw = ∂Nwsolid+ ∂Nwsingle+ ∂Nwdouble+ ∂Nwimplicit,

and while ∂Nwsolid, ∂Nwsingle, ∂Nwdouble depend only on “known” functions — see (3-16), (3-17), (3-18) —
the term ∂Nwimplicit introduces a “implicit” dependence on 2— see (3-19). We therefore need to “solve
for 2” in (3-29) in order to prove the uniqueness and regularity of its solutions 2.

For this, we write

∂Nwimplicit = (N · ν)∂νwimplicit+ (N − (N · ν)ν) · ∇wimplicit on 00
out,

where ν = ν0. Recall that by a standard result on single layer potentials — see Theorem A.1 — we have

(N · ν)∂νwimplicit(x)= 1
22(x)+ 2̃(x) on 00

out, (3-36)

where

2̃(x) :=
∫
00

dHn−1(y)
(
−

2

(N · ν)

)
(y) ν(x) · ∇P(x − y). (3-37)

Note that the first term in the right-hand side of (3-36) is exactly the half of the first (and main) term in
the left-hand side of (3-29). Using this and defining

ω(x) := (N − (N · ν)ν)(x) for x on 00

we obtain

1
22=

1
2∂sssu0(η̇0

◦π1)
2
+η̇0 ∂s N ·∇v+∂s(wsolid+wsingle+wdouble)+ω·∇wimplicit+2̃ on 00

out. (3-38)

Step 3. From (3-38), we may deduce optimal regularity estimates for 2, and hence for η̈0. To do so we
will bound each of the five terms in the right-hand side of (3-38) separately.

From here on, the constant C means C = C(n, k, α, ρ, ‖h0
‖Ck+1,α(Rn)).

For the first term, we use that h0
∈ Ck+1,α, and we obtain that 00

∈ Ck,α
ρ/4, that ν0

∈ Ck−1,α(00), and
that η0

∈Ck,α(Z) with estimates — here we are using the regularity estimates on 00 from Proposition 2.1.
In particular,

‖π1‖Ck,α(00)+‖ν
0
‖Ck−1,α(00) ≤ C. (3-39)

Observe also that the vector field N is smooth and hence ∂sssu0 — the third derivative of u0 along an
integral curve of N — is regular as D3u0.
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Therefore,∥∥1
2∂sssu0(η̇0

◦π1)
2∥∥

Ck−2,α(00)

≤ C
(
‖u0
‖Ck+1,α(BR∩�0)

‖(η̇0
◦π1)

2
‖L∞(00)+‖u

0
‖L∞(BR∩�0)‖(η̇

0
◦π1)

2
‖Ck−2,α(00)

)
≤ C‖(η̇0)2‖Ck−2,α(Z)

≤ CQ. (3-40)

For the second term, we use again that N is smooth and recalling the estimate (3-13) for v and the
estimate η̇ in (3-7), we obtain

‖(η̇0
◦π1) ∂ssv‖Ck−2,α(�0) ≤ C

(
‖η̇0
‖Ck−2,α(Z)‖v‖L∞(BR∩�0)+‖η̇

0
‖L∞(Z)‖v‖Ck,α(BR∩�0)

)
≤ CQ, (3-41)

where we used (3-7) and (3-13).
For the third term, we proceed as follows. From Lemma 3.7 we obtain that

‖∇wsolid‖Ck−2,α(BR∩�0) ≤ C‖1ḧ0
‖Ck−2,α ≤ CQ.

Next, since N and J are smooth, 1h0
∈Ck−1,α , 00

∈Ck,α , and ν0
∈Ck−1,α we obtain by Theorem A.1(i)

that
‖wsingle‖Ck−1,α(�0) ≤ C

(
‖(η̇0
◦π1)1ḣ0

‖Ck−2,α(00)+‖(η̇
0
◦π1)

2
‖Ck−2,α(00)

)
≤ CQ

and by Theorem A.1(iii)

‖wdouble‖Ck−1,α(�0) ≤ C‖(η̇0
◦π1)

2
‖Ck−1,α(00) ≤ CQ.

Hence,
‖∂s(wsolid+wsingle+wdouble)‖Ck−2,α(00) ≤ CQ. (3-42)

For the term ω · ∇wimplicit we use that Theorem A.1(i) yields

‖wimplicit‖Ck−1,α(BR∩�0) ≤ C‖2‖Ck−2,α(00),

and thus
‖ω · ∇wimplicit‖Ck−2,α(00) ≤ C‖ω‖Ck−2,α(00)‖2‖Ck−2,α(00). (3-43)

Also, recalling the definition of 2̃ in (3-37) and using Theorem A.1(iii) we obtain

‖2̃‖Ck−2,α(00) ≤ C‖2‖Ck−3,α(00). (3-44)

Inserting (3-40)–(3-44) into (3-38), we obtain

‖2‖Ck−2,α(00) ≤ C
(
Q+‖ω‖Ck−2,α(00)‖2‖Ck−2,α(00)+‖2‖Ck−3,α(00)

)
.

Note that we may take ‖ω‖Ck−2,α(00) arbitrarily small by taking εo in (2-2) small enough. Then, by a
standard interpolation argument we obtain

‖2‖Ck−2,α(00) ≤ CQ. (3-45)
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Finally we recall the definition of 2 in (3-20), use that ν0
∈ Ck−1,α, −1h0

≥ ρ and 1h0
∈ Ck−1,α,

and observe that π−1
0 : Z→ 00 satisfies ‖π−1

0 ‖Ck,α(Z) ≤ C with C universal, to obtain

‖η̈0
‖Ck−2,α(Z) ≤ CQ. �

4. Removing the a priori assumptions

In Section 3 we assumed the existence of the limits

ηtm − η0

tm
→ η̇0 and 2

ηtm − η0
− η̇0tm

t2
m

→ η̈0 in C0(Z) (4-1)

and we have shown that η̇0 and η̈0 must then satisfy certain equations for which uniqueness and regularity
estimates were proven.

The purpose of the next section is to prove that under our assumptions, (4-1) indeed holds for every
sequence tm ↓ 0.

The setup. We start by introducing a new system of coordinates in U◦ ∩�0 that are adapted to u0.
Let us define

σ = σ(x) := ∂N ũ0(x). (4-2)

Note that σ is defined in U◦ ∩�0 and takes positive values in that neighborhood of 00 if U◦ is chosen
small enough. An application of the implicit function theorem gives that (z, σ ) are Ck,α coordinates in
U◦ ∩�0 (up to taking a smaller neighborhood U◦). Indeed, for ν = ν0

∂σ

∂s
= ∂ss ũ0

= (N · ν)2∂νν ũ0
= (N · ν)21ũ0

=−(N · ν)21h0 (4-3)

on 00
out and where by assumption −1h0

≥ ρ > 0 in a neighborhood of 00. Note in addition that the new
coordinates (z, σ ) are indeed Ck,α since ũ0

∈ Ck+1,α(�0).
Let us also introduce

π̄1 :U◦ ∩�0
→ Z

to be the projection defined in the coordinates (z, σ ) by

(z, σ ) 7→ (z, 0).

These coordinates are clearly related to the hodograph transform of the obstacle problem introduced
in [Kinderlehrer and Nirenberg 1977]. Note also that for the case of the model solution to the obstacle
problem 1

2(xn)
2
+

, and with N = en the coordinate σ would simply be xn .
In view of Proposition 2.1 there exists λt

∈ Ck,α(Z) such that

0t
= {σ = λt(z)} for t ∈ (0, t◦). (4-4)

In the coordinates (z, σ ) we have
λ0
≡ 0 (4-5)
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since σ = ∂N u0
≡ 0 on 00. In addition, from (3-8) and the definition of the coordinate σ we have

∂Nv
t
=−

∂N ũ0

t
=−

σ

t
=−

λt

t
◦ π̄1 on 0t

;

hence
λt

t
(z)=−∂Nv

t(z, λt(z)). (4-6)

Indeed to prove (4-6) we use (3-8) and the definition of the coordinate σ to obtain

∂Nv
t
=−

∂N ũ0

t
=−

σ

t
=−

λt

t
◦ π̄1 on 0t .

The relation (4-6) will allow us to prove uniform Ck−1,α estimates for λt/t , leading to the existence of the
limit as t ↓ 0 of λt/t , which will be denoted by λ̇0. Later on, we will prove uniform Ck−2,α estimates for

1
2
λt
− λ̇0t
t2 =

1
2
λt/t − λ̇0

t
,

which will lead to the existence of its limit as t→ 0, denoted by λ̈0. These estimates will be deduced
from the equation

λt/t − λ̇0

t
=−

∂Nv(z, λt(z))− ∂Nv(z, 0)
t

− ∂Nw
t(z, λt(z)), (4-7)

obtained from (4-6) by subtracting λ̇0(z)=−∂Nv(z, 0) from both sides, dividing by t on both sides, and
recalling that by definition wt

= (vt
− v)/t .

Estimate on λt/ t. The goal of this subsection is to prove a regularity result (without a priori assumptions)
on λt/t . We state it next.

Proposition 4.1. For t ∈ (0, t◦) we have ∥∥∥∥λt

t

∥∥∥∥
Ck−1,α(Z)

≤ C(C).

Before proving Proposition 4.1, let us state its main corollary

Corollary 4.2. There exist η̇0 and λ̇0 such that

ηt
− η0

t
→ η̇0 and

λt

t
→ λ̇0 in C0(Z)

as t ↓ 0.

Proof. Let tp ↓ 0. Note that both coordinate systems (z, s) and (z, σ ) are Ck,α. Hence, the estimate in
Proposition 4.1 implies ∥∥∥∥ηt

− η0

t

∥∥∥∥
Ck−1,α(Z)

≤ C

and by Arzelà–Ascoli there is a subsequence tm such that

ηtm − η0

tm
→ `1 and

λtm

tm
→ `2 in C0(Z)
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for certain limit functions `1 and `2 in Ck−1,α(Z). Applying Proposition 3.2, we must have `1 = η̇
0,

where η̇0 is the function given by (3-6). Then, either using the change of variables between s and σ or
passing to the limit in (4-6) we obtain

`2(z)= λ̇0(z) := ∂Nv(z, σ = 0).

Therefore, we have proven that each sequence has a subsequence converging to a limit that is indepen-
dent of the sequence. In other words the limits as t ↓ 0 exist and are given by η̇0 and λ̇0. �

In view of (4-6), Proposition 4.1 is an immediate consequence of the following:

Lemma 4.3. For t ∈ (0, t◦) we have∥∥∥∂Nv
t( · , λt( · ))−

1
2
λt

t

∥∥∥
Ck−1,α(Z)

≤ C(C)+ 1
100

∥∥∥λt

t

∥∥∥
Ck−1,α(Z)

.

Next we state a sequence of lemmas aimed at proving Lemma 4.3. To study the regularity of ∂Nv
t, let

us write down (for the first time) the equation for vt
=

1
t (ũ

t
− ũ0) in all of Rn. We have{

1vt
=−

1h0

t χ�0\�t+1δt h0χ�t in Rn,

vt(∞)= δt c0 (n≥ 3),

{
1vt
=−

1h0

t χ�0\�t+1δt h0χ�t in Rn,

limx→∞
vt (x)
−log |x | = δt c0 (n= 2).

(4-8)

Hence, we may decompose vt as

vt
= vt

1+ v
t
2+ constant,

where

vt
1(x) := −

∫
Rn

dy
(
1h0

t
χ�0\�t

)
(y)P(x − y), (4-9)

vt
2(x) := −

∫
Rn

dy1δt h0χ�t (y)P(x − y). (4-10)

To prove Lemma 4.3 we will deal separately with the two contributions ∂Nv1 and ∂Nv2 to ∂Nv.
Note that ∂Nv1 is an “approximate single-layer potential”. To study its regularity we need the next

lemma. Before giving its statement, we need to introduce some notation.
We denote by

J (z, σ ) := |det D (z, σ )−1
|

the Jacobian of the coordinates (z, σ ) defined by∫
A

f (x) dx =
∫
(z,σ )(A)

f (z, σ )J (z, σ ) dz dσ. (4-11)

Also, for θ ∈ (0, 1) we define

�t
θ := {x ∈U ∩�0

: σ(x) > θλt(z(x))} ∪ (�0
\U ),

0t
θ := ∂�

t
θ = {σ = θλ

t(z)},
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and denote by νt
θ the unit normal to 0t

θ towards �t
θ . Although the following lemma will be used in this

subsection for F ≡−1h0, we write it for general F for later use.

Lemma 4.4. Let V be the single-layer potential

V (x)=
∫

Rn
dy
(1

t
F χ�t\�0

)
(y)P(x − y). (4-12)

We may write

V =
∫ 1

0
V θ dθ, (4-13)

where

V θ
=

∫
0t
θ

Hn−1(y)
(

F λt

t
◦ π̄1

(N · νt
θ )

∂ssu0

)
(y)P(x − y)

and for all θ ∈ (0, 1) we have

‖∇V θ
‖Ck−1,α(�t ) ≤ C(C)

∥∥∥F λ
t

t
◦ π̄1

∥∥∥
Ck−1,α(0t

θ )
. (4-14)

Before giving the proof of the previous lemma let us give the analogue to Lemma 3.3 in the present
context.

Lemma 4.5. Given f : 0t
θ → R continuous we have∫

0t
θ

(N · νt
θ )

∂σ/∂s
(x) f (x) dHn−1(x)=

∫
Z

f (z, θλt(z)) J (z, θλt(z)) dz.

Proof. Let us assume without loss of generality that f is continuously extended in a neighborhood of 0t
0

contained in U◦ ∩�0. Given ε > 0 let

Aε := {x ∈U◦ : θλt(z(x))≤ σ(x)≤ θλt(z(x))+ ε}.

Recalling that (∂σ/∂s)∂σ = N = ∂s and that |N | = 1, we have∫
00

(N · νt
θ )

∂σ/∂s
(x) f (x) dHn−1(x)= lim

ε↓0

1
ε

∫
Aε

f (x) dHn(x).

On the other hand, for

(z, σ )(Aε) := {(z, σ ) ∈ Z × (−σ◦, σ◦) : θλt(z)≤ σ ≤ θλt(z)+ ε}

we have, by the definition of J,

1
ε

∫
Aε

f (x) dHn(x)= 1
ε

∫
(z,s)(Aε)

f (z, s) J (z, s) dz ds

=

∫
Z

dz 1
ε

∫ ε

0
ds̄ f (z, θλt(z)+ s̄) J (z, θλt(z)+ s̄)

=

∫
Z

f (z, θλt(z)) J (z, θλt(z)) dz+ o(1)

as ε ↓ 0 and the lemma follows. �
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Proof of Lemma 4.4. The key idea in the proof is to think of an approximate single-layer potential as an
average (or integral) of exact single-layer potentials. More precisely, using (4-11) we may write∫

φ1V := 1
t

∫
Z

dz
∫ λt (z)

0
dσ (Fφ J )(z, σ )

=

∫
Z

dz 1
t

∫ 1

0
dθ λt(z) (Fφ J )(z, θλt(z))

=

∫ 1

0
dθ
∫
{σ=θλt (z)}

λt

t
(Fφ)(y)

(N · νt
θ )(y)

∂σ/∂s(y)
dHn−1(y),

where we used Lemma 4.5.
Recalling that σ = ∂su0, this proves (4-13).
To prove (4-14) we use that V θ is a single-layer potential on the surface 0t

θ , with charge density(
λt

t
◦ π̄1

)
F
(N · νt

θ )

u0
ss

.

Note that Proposition 2.1 yields ‖λt
‖Ck,α(Z) ≤C and hence {σ = θλt(x)} is Ck,α and its normal vector νt

θ

is Ck−1,α. Recall also that u0
∈ Ck+1,α(�0) and that u0

ss ≈−(N · ν
0)21h0 > 0 in a neighborhood of 00.

Then, if

F λt

t
◦ π̄1 ∈ Ck−1,α,

it follows from Theorem A.1 that V θ is Ck,α(�t
θ ) and in particular V θ is Ck,α(�t) with the estimate

(4-14). �

Recalling (4-9), and using Lemma 4.4 with F =−1h0, we may now write

vt
1(x)=

∫ 1

0
V θ (x) dθ, (4-15)

where

V θ (x) :=
∫
0t
θ

(
−1h0 λ

t

t
◦ π̄1

(N · νt
θ )

∂ssu0

)
(y)P(x − y) dy. (4-16)

The following lemma is a straightforward consequence of Theorem A.1 in the Appendix.

Lemma 4.6. Let V θ be as in (4-16). We have

−∂νt
θ ,outV

θ
=

1
2(N · ν

t
θ )
−1h0

∂ssu0

λt

t
◦ π̄1+ ∂νt

θ ,0
V θ on 0t

θ , (4-17)

where

‖∂νt
θ ,0

V θ
‖Ck−1,α(0t

θ )
≤ C(C)

∥∥∥λt

t

∥∥∥
Ck−2,α(Z)

.

Proof. We recall that (N ·νt
θ ), −1h0, ∂ssu0>ρ/2> 0, and π̄−1

1 :Z→0t
θ ,−1h0 are all Ck−1,α functions.

Then, the lemma follows from Theorem A.1(ii)–(iii). �
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The next lemma will be used to control the “difference”

−∂N V θ (z, ηt(z))− 1
2
λt

t
(z).

Lemma 4.7. Let V θ be as in (4-16). We have∥∥∥−∂N V θ ( · , ηt( · ))−
1
2
λt

t

∥∥∥
Ck−1,α(Z)

≤ C(C)+ 1
100

∥∥∥λt

t

∥∥∥
Ck−1,α(Z)

.

Proof. Step 1. We estimate the Ck−1,α(Z) norm of

I1(z) := ∂N V θ (z, λt(z))− ∂N ,outV θ (z, θλt(z)).

To do it we write this difference as

I1 = t
∫ 1

θ

d θ̄ ∂σ ∂N V s(x ′, θ̄λt(x ′)) λ
t

t
(x ′).

Then, using Lemma 4.4 we obtain

‖I1‖Ck−1,α(Z) ≤ Ct
(
‖V θ
‖Ck+1,α(�t

θ )

∥∥∥λt

t

∥∥∥
L∞(Z)

+‖V θ
‖L∞(�t

θ )

∥∥∥λt

t

∥∥∥
Ck−1,α(Z)

)
≤ Ct

∥∥∥λt

t

∥∥∥
Ck,α(Z)

∥∥∥λt

t

∥∥∥
L∞(Z)

≤ C‖λt
‖Ck,α(Z)

∥∥∥λt

t

∥∥∥
L∞(Z)

≤ C, (4-18)

where C = C(C). Here we have used the fact that ‖λt/t‖L∞(Z) ≤ C and information that follows from
Proposition 2.1.

Step 2. We next estimate the Ck−1,α(Z) norm of

I2(z) := ∂N ,outV θ (z, θλt(z))− 1
2
λt

t
(z).

Using (4-17) we have

I2(z)= (N − νt
θ ) · ∇outV θ (z, θλt(z))+ 1

2

(
(N · νt

θ )
−1h0

∂ssu0 − 1
)
λt

t
◦ π̄1+ ∂νt

θ ,0
V θ .

Using the estimates from Lemma 4.6 and 4.4 we have

‖∇V θ
‖Ck−1,α(0t

θ )
≤ ‖V θ

‖Ck,α(�t
θ )
≤ C

∥∥∥λt

t

∥∥∥
Ck−1,α(Z)

.

In addition,

|N − νt
θ | ≈ 0, (N · νt

θ )≈ 1, and
−1h0

∂ssu0 ≈ 1 on 0t
θ

for t ∈ (0, t◦), where X ≈ Y means that “X is arbitrarily close to Y ” provided that t◦ and εo are chosen
small enough depending only of C.

Therefore, using the estimate in Lemma 4.6 and an interpolation inequality, we obtain

‖I2‖Ck−1,α(Z) ≤
ε

2

∥∥∥λt

t

∥∥∥
Ck−1,α(Z)

+C
∥∥∥λt

t

∥∥∥
Ck−2,α(Z)

≤ ε

∥∥∥λt

t

∥∥∥
Ck−1,α(Z)

+C
∥∥∥λt

t

∥∥∥
L∞(Z)

≤ ε

∥∥∥λt

t

∥∥∥
Ck−1,α(Z)

+C, (4-19)

where ε > 0 can be taken arbitrarily small by decreasing, if necessary, t◦ and εo.
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Step 3. We conclude by the triangle inequality that∥∥∥∂N V θ ( · , ηt( · ))−
1
2
λt

t

∥∥∥
Ck−1,α(Z)

≤ ‖I1‖Ck−1,α(Z)+‖I2‖Ck−1,α(Z)

and the lemma follows from (4-18) and (4-19), setting ε = 1
100 . �

Lemmas 4.4, 4.6, and 4.7 will be used to treat the term ∂Nv1. As a counterpart, the next lemma will be
used to treat the term ∂Nv2.

Lemma 4.8. We have

‖vt
2‖Ck,α(�t ) ≤ C(C).

Proof. Recalling that1vt
2=1δt h0χ�t and that 0t

= ∂�t are (uniformly) Ck,α, it follows from Lemma 3.7
that

‖vt
2‖Ck,α(�t ) ≤ C(C)‖1δt h0

‖Ck−2,α(Rn).

Using the trivial estimate

‖1δt h0
‖Ck−2,α(Rn) ≤ ‖h‖Ck+1,α([−1,1]×Rn)

the lemma follows. �

Proof of Lemma 4.3. We have

∂Nv
t(z, λt(z))= (∂Nv

t
1+ ∂Nv

t
2)(z, λ

t(z)),

and by (4-15)–(4-16) we have

∂Nv
t
1(z, λ

t(z))=
∫ 1

0
∂N V θ (z, λt(z)) dθ.

Hence, by the triangle inequality, and using Lemmas 4.7 and 4.8,∥∥∥∂Nv
t( · , λt)−

1
2
λt

t
(z)
∥∥∥

Ck−1,α(Z)
≤

∫ 1

0
dθ
∥∥∥∂N V θ ( · , λt)−

1
2
λt

t

∥∥∥
Ck−1,α(Z)

+‖∂Nv
t
2( · , λ

t)‖Ck−1,α(Z)

≤ C + 1
100

∥∥∥λt

t

∥∥∥
Ck−1,α(Z)

+C‖∂Nv
t
2‖Ck−1,α(0t )

≤ C + 1
100

∥∥∥λt

t

∥∥∥
Ck−1,α(Z)

,

where C = C(C). �

Proof of Proposition 4.1. Recall (4-6), that is, (λt/t)(z)=−∂Nv
t(z, λt(z)). Subtracting 1

2(λ
t/t)(z) from

both sides and using Lemma 4.3 we obtain

1
2

∥∥∥λt

t

∥∥∥
Ck−1,α(Z)

≤

∥∥∥−∂Nv
t( · , λt( · ))−

1
2
λt

t

∥∥∥
Ck−1,α(Z)

≤ C(C)+ 1
100

∥∥∥λt

t

∥∥∥
Ck−1,α(Z)

as desired. �
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Estimate on 1
t (λ

t/ t− λ̇0). The goal of this subsection is to prove the following regularity result (without
a priori assumptions).

Proposition 4.9. We have ∥∥∥1
t

(
λt

t
− λ̇0

)∥∥∥
Ck−2,α(Z)

≤ C(C).

Before proving Proposition 4.9, let us give its main corollary.

Corollary 4.10. There exist η̈0 and λ̈0 such that

2
ηt
− η0
− t η̇0

t2 → η̈0 and 2
λt
− t λ̇0

t2 → λ̈0 in C0(Z)
as t ↓ 0.

Proof. Let tp ↓ 0. Note that since both coordinate systems (z, s) and (z, σ ) are Ck,α, the estimate of
Proposition 4.9 yields ∥∥∥∥ηt

− η0
− t η̇0

t2

∥∥∥∥
Ck−2,α(Z)

≤ C(C).

Hence, by Arzelà–Ascoli there is a subsequence tm such that

2
ηtm − η0

− tm η̇0

tm2 → `1 and 2
λtm − tm λ̇0

tm2 → `2 in C0(Z)

for certain limit functions `1 and `2 in Ck−2,α(Z).
Applying Proposition 3.5 the limit `1 must be η̈0, the unique solution to (3-20)–(3-29). Using the

change of variables between s and σ we obtain that there is also a unique possible limit `2(z)= λ̇0(z)
which is independent of the subsequence.

In other words, the limits as t ↓ 0 exist and they are denoted by η̈0 and λ̈0. �

In view of (4-7) and the regularity of ∂Nv, Proposition 4.9 is a consequence of the following:

Lemma 4.11. We have∥∥∥∥∂Nw
t( · , λt( · ))−

1
2
λt/t − λ̇0

t

∥∥∥∥
Ck−2,α(Z)

≤ C(C)+ 1
100

∥∥∥∥λt/t − λ̇0

t

∥∥∥∥
Ck−2,α(Z)

.

Let us state a sequence of lemmas which will prove Lemma 4.11. To study the regularity of ∂Nw
t we

will use the equation for wt in all of Rn that was obtained in (3-14).
As in Step 2 of the proof of Proposition 3.5 we take the decomposition

wt
= wt

1+w
t
2+ constant,

where, for n ≥ 3,

wt
1(x)=

∫ (1
t
1ḣ0χ�0\�t −

1
21δ

2
t h0χ�t

)
(dy)P(x − y), wt

1 = 0,

and

wt
2(x)=−

∫
1
t

(
∂Nv

N · ν0 Hn−1 �00 −
1
t
1h0 χ�0\�t

)
(dy)P(x − y).

Respectively, for n = 2 we define wt
1 and wt

2 as the potentials of the previous Laplacians.
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The analysis of the regularity in �t of wt
1 is done using Lemmas 4.4 and 3.7, which straightforwardly

imply:

Lemma 4.12. We have
‖∇wt

1‖Ck−2,α(�t ) ≤ C(C).

To study wt
2 let us further split it as

wt
2 = w

t
21+w

t
22+ constant,

where

wt
21(x)=

∫
1

t (N · ν0)

(
∂Nv+ (N · ν0)2

1h0

∂σ/∂s
λt

t

)
Hn−1 �00 (dy) P(x − y),

wt
22(x)=−

∫
1
t

(
(N · ν0)

1h0

∂σ/∂s
λt

t
Hn−1 �00 −

1
t
1h0 χ�0\�t

)
(dy)P(x − y).

The study of ∂Nw
t
21 is done by observing that wt

21 is a single-layer potential and using Theorem A.1.
Indeed we have:

Lemma 4.13. We have∥∥∥∥∂Nw
t
21( · , σ = 0)− 1

2
λt/t − λ̇0

t

∥∥∥∥
Ck−2,α(Z)

≤ C(C)+ 1
100

∥∥∥∥λt/t − λ̇0

t

∥∥∥∥
Ck−2,α(Z)

.

Proof. Let

f (x) :=
1

t (N · ν0)

(
∂Nv+ (N · ν0)2

1h0

∂σ/∂s
λt

t

)
(x)=

1
t (N · ν0)

(
λ̇0
−
λt

t

)
(x)

for x ∈ 00. Here we have used that ∂Nv =−λ̇ ◦ π̄1 and (4-3).
On one hand, by Theorem A.1(iii) we have

∂ν0,outw
t
21 =

1
2 f + ∂ν0,0w

t
21 on 00,

with
‖∂ν0,0w

t
21‖Ck−2,α(00) ≤ C‖ f ‖Ck−3,α(00)

and
‖wt

21‖Ck−1,α(�0) ≤ C‖ f ‖Ck−2,α(00) (n ≥ 3),

‖∇wt
21‖Ck−2,α(�0) ≤ C‖ f ‖Ck−2,α(00) (n = 2),

where C = C(C). Therefore, using that |N − ν0
| ≤ ε we have∥∥∂Nw

t
21−

1
2 f
∥∥

Ck−2,α(00)
≤ Cε‖wt

21‖Ck−1,α(�0)+‖∂ν0,0w
t
21‖Ck−2,α(00)

≤ Cε‖ f ‖Ck−2,α(00)+C‖ f ‖Ck−3,α(00),

and the lemma follows using interpolation and choosing ε small enough. �

It thus remains to study the regularity of wt
22, which we treat as an approximate double layer.
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Lemma 4.14. We have

‖∇wt
22‖Ck−2,α(�t ) ≤ C(C).

Proof. We will first write our approximate double layer as an average of double layers and we will then
use the regularity results for the single layers to deduce the regularity of double layers.

Let us compute

−

∫
φ1wt

22 =

∫
φ(x)

1
t

(
(N · ν0)

1h0

∂σ/∂s
λt

t
Hn−1 �00 −

1
t
1h0 χ�0\�t

)
(x) dx

=
1
t

∫
Z

dz
λt

t
(z)(J1h0 φ)(z, 0)−

1
t2

∫
Z

dz
∫ λt (z)

0
dσ(J1h0 φ)(z, σ )

=

∫ 1

0
dθ
∫
Z

dz
λt

t
(z)

1
t

(
(J1h0φ)(z, 0)− (J1h0 φ)(z, θλt)

)
=−

∫ 1

0
dθ
∫ θ

0
dθ ′

∫
Z

(
λt

t

)2

(z) dz ∂σ (J1h0 φ)(z, θ ′λt)

=−

∫ 1

0
dθ
∫ θ

0
dθ ′

∫
0t
θ ′

(
λt

t

)2

◦ π̄1∂σ (J1h0 φ)
(N · νt

θ ′)

∂σ/∂s
,

where we have used Lemma 4.5. Changing the order of integration we find

−

∫
φ1wt

22 =−

∫ 1

0
(1− θ) dθ

∫
0t
θ

(
λt

t

)2

◦ π̄1∂σ (J1h0 φ)
(N · νt

θ )

∂σ/∂s

=−

∫ 1

0
(1− θ) dθ

∫
0t
θ

(
λt

t

)2

◦ π̄1∂s(J1h0 φ)
(N · νt

θ )

(∂σ/∂s)2
.

Therefore, we have

wt
22(x)=−

∫ 1

0
(1− θ) dθ Iθ (x) (4-20)

for

Iθ (x) := −
∫
0t
θ

dHn−1(y)
(
λt

t

)2

◦ π̄1(y) ∂N
(
(J1h0)(y) P(x − y)

) (N · νt
θ )

(∂σ/∂s)2
(y).

Note that

Iθ (x)= I θ1 (x)+ I θ2 (x)=:
∫
0t
θ

dHn−1(y)
((
λt

t

)2

◦ π̄1 ∂N (J1h0)
(N · νt

θ )

(∂σ/∂s)2

)
(y) P(x − y)

+ divx

(∫
0t
θ

dHn−1(y)
((
λt

t

)2

◦ π̄1(y) (J1h0)
(N · νt

θ )

(∂σ/∂s)2
N
)
(y)P(x − y)

)
.

Therefore, recalling that

0t
θ ∈ Ck,α,

λt

t
∈ Ck−1,α(Z), π̄1 ∈ Ck,α(0t

θ ), νt
θ ∈ Ck−1,α(0t

θ ), J1h0
∈ Ck−1,α,
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and ∂σ/∂s = u0
ss positive and Ck−1,α and using Theorem A.1 we obtain

‖∇ I1‖Ck−2,α(�t
θ )
+‖∇ I2‖Ck−2,α(�t

θ )
≤ C(C).

The estimate of the lemma then follows from (4-20) observing that �t
⊂�t

θ for all θ ∈ (0, 1). �

Lemma 4.11 is now an immediate consequence of Lemmas 4.12, 4.13, and 4.14, and Proposition 4.9
follows.

5. Proof of the main result

In this section we conclude the proof of Theorem 1.1. If one assumes hτ+t
−hτ satisfies1(hτ+t

−hτ )≥ 0
and cτ+t

− cτ ≤ 0 for τ, t ∈ (0, t◦) then Theorem 1.1 is a straightforward consequence of the results
developed in Sections 2–5. Hence, the main issue that needs to be addressed is how to remove these
technical sign assumptions. This is done by using a decomposition of the form

ht
− h0
= ξ t
+
+ ξ t
−
, (5-1)

where1(ξ τ+t
+ −ξ

τ
+
)≥ 0 and limx→∞(ξ

τ+t
+ −ξ

τ
+
)≥ 0 and the same with ξ+ replaced by ξ− and ≥ replaced

by ≤. This decomposition is defined as follows. We let

φ+(z) := 1+
1+ zez

ez + e−z and φ−(z)=−1+
−1+ ze−z

ez + e−z

and note that
φ++φ− = z (5-2)

and that φ+ is similar to x+ (the positive part), while φ− is similar to −x− (minus the negative part) at
large scales.

Let ζ be a radial smooth cutoff function with ζ ≡ 1 in BR and ζ ≡ 0 outside of B2R. For t ∈ (−t◦, t◦)
and x ∈ Rn let us define

ξ t
+
(x) := −

∫
Rn

P(x − y) tφ+
(1

t
1(ht

− h0)
)
ζ (y),

ξ t
−
(x) := −

∫
Rn

P(x − y) tφ−
(1

t
1(ht

− h0)
)
ζ (y)

Note that by definition we have, for τ and t small,

1(ξ τ+t
+
− ξ τ
+
)=

(
(τ + t)φ+

( 1
τ+t

1(hτ+t
− h0)

)
− τφ+

(1
τ
1(hτ − h0)

))
ζ

=

( d
dt ′

∣∣∣
t ′=τ
{t ′φ+(1δt ′h0)} t + O(t1+α)

)
ζ

=

(
φ+(1δτh0)t + τ φ̇+(1δτh0)

d
dt ′

∣∣∣
t ′=τ

(1δt ′h0)t + O(t1+α)
)
ζ

=

(
φ+(1δτh0)t + τ φ̇+(1δτh0)

1
τ

O(τα)+ O(t1+α)
)
ζ

≥ t (1−Cτα −Ctα)ζ ≥ 0, (5-3)
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where in the passage from the third to the fourth line we have used that, since h ∈ C3,α,

d
dt ′

∣∣∣
t ′=τ

(1δt ′h0)=1
d

dt ′

∣∣∣
t ′=τ

(
ht ′
− h0

t ′

)
=1

(
−

hτ − h0

τ 2 +
ḣτ

τ

)
=

(
−
1ḣτ + O(τ 1+α)

τ 2 +
1ḣτ

τ

)
=

1
τ

O(τα).

A similar inequality (with opposite sign) holds when + is replaced by −. Moreover, by (5-2),

1(ξ t
+
+ ξ t
−
)= tφ+

(1
t
1(ht

− h0)
)
ζ + tφ−

(1
t
1(ht

− h0)
)
ζ =1(ht

− h0)

since 1(hs+t
− hs)= 0 outside of BR and ζ = 1 in BR. Therefore (5-1) follows.

Next, for t, t̄ ∈ (−t◦, t◦) we consider the two-parameter family of solutions to obstacle problems ut,t̄

defined as

min{−1ut,t̄ , ut,t̄
− ht,t̄

} = 0 in Rn,

{
lim|x |→∞ ut,t̄(x)= ct,t̄ (n ≥ 3),

lim|x |→∞ ut,t̄ (x)
−log |x | = ct,t̄ (n = 2),

(5-4)

where

ht,t̄
:= h0

+ ξ t
+
+ ξ t̄
−

and

ct,t̄
:= tφ−

(1
t
(ct
− c0)

)
+ t̄φ+

(1
t̄
(ct̄
− c0)

)
.

Note that

ut
= ut,t and ηt

= ηt t .

Let us define

�t,t̄
:= {ut,t̄

− ht,t̄ > 0} and 0t,t̄
:= ∂�t,t̄

and let ηt,t̄
∈ Ck,α(Z) be defined by

0t,t̄
= {s = ηt,t̄(z)} ⊂U◦. (5-5)

In the proof of Theorem 1.1 the following observation will be useful.

Remark 5.1. For e = (e1, e2) ∈ S1 making a small enough angle with (1, 0) a computation similar to
(5-3) shows that

1(ht+e1 t̃, t̄+e2 t̃
− ht,t̄)≥ 0 and ct+e1 t̃, t̄+e2 t̃

− ct,t̄
≤ 0 (5-6)

for (t, t̃ ) in a small neighborhood of (0, 0). Thanks to this observation, the results developed in
Sections 2–5 can be applied to obtain, in a neighborhood of (0,0), estimates for the derivatives of
ut,t̄ and ηt,t̄ in a cone of directions (t, t̄). As a consequence, we obtain estimates for all the first and
second derivatives ∂t , ∂t̄ , ∂t t , ∂t̄ t̄ , ∂t t̄ of ut,t̄ and ηt,t̄ in a neighborhood of (0, 0). In particular we obtain
estimates in the direction (1, 1) which are equivalent to estimates for ut

= ut,t and ηt
= ηt,t .
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Proof of Theorem 1.1. Step 1. Assuming that k ≥ 1 we prove that ηt,t̄ is once differentiable (jointly) in
the two variables (t, t̄) in a neighborhood of (0, 0) with the estimate

‖∂eη
t,t̄
‖Ck−1,α(Z) ≤ |e|C(C) (5-7)

and the formula

∂eη
t,t̄
=

(
∂N (∂eut,t̄)

(N · νt,t̄)21ht,t̄

)
(z, ηt,t̄(x)), (5-8)

which holds true for every vector e in the (t, t̄)-plane.
Indeed, let e1 = (1, 0) and let e2 be some different unit vector making a small enough angle with e1 as

in Remark 5.1.
By Remark 5.1, for fixed (t, t̄) in a small enough neighborhood of (0, 0) and for i = 1, 2, the one

parameter family (ut+e1
i t̃, t̄+e2

i t̃)t̃ satisfies the assumptions of Sections 2–4. Applying Corollary 4.2 to it,
we find that

∂eiη
t,t̄
:=

d
dt̃

∣∣∣∣
t̃=0
ηt+e1

i t̃, t̄+e2
i t̃

exists in the sense that the limit defining this derivative exists in C0(Z).
Then, Proposition 3.2 yields the estimate

‖∂eiη
t,t̄
‖Ck−1,α(Z) ≤ C(C)

and the formula

∂eiη
t,t̄
=

(
∂N∂ei (u

t,t̄
− ht,t̄)

(N · νt,t̄)21ht,t̄

)
(z, ηt,t̄(x)).

Since ∂t = ∂e1 and ∂t̄ is a linear combination of ∂ei we obtain that ηt,t̄ is continuously differentiable
(jointly) in the two variables (t, t̄) in a neighborhood of (0, 0) with the estimate (5-7) and formula (5-8).

Step 2. Applying (5-7) and formula (5-8) for (t, t̄) restricted to the “diagonal” t = t̄ (still in a neighborhood
of (0, 0)) — i.e., with e= (1, 1)— we obtain that ηt is differentiable with respect to t , with the estimate

‖η̇t
‖Ck−1,α(Z) ≤ C(C) (5-9)

and the formula

η̇t
=

(
∂N (u̇t

− ḣt)

(N · νt)21ht

)
(z, ηt(x)). (5-10)

Note that (5-9) and (5-10) are identical to those of Proposition 3.2 but now they are valid under more
general assumptions (we do not need to assume the sign condition that implies that the contact sets are
ordered).

Step 3. Similarly we obtain
‖∂eeη

t,t̄
‖Ck−1,α(Z) ≤ |e|2C(C). (5-11)

Indeed, let e1 and e2 be as in Step 1 and let e3 be a third vector such that the ei are pairwise linearly
independent and the angle of e3 with (1, 0) is small enough.
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Using again Remark 5.1, for fixed (t, t̄) in a small enough neighborhood of (0, 0) and for i = 1, 2, 3, the
one parameter family (ut+e1

i t̃, t̄+e2
i t̃)t̃ satisfies the assumptions of Sections 2–4. Applying Corollary 4.10

we find that

∂ei eiη
t,t̄
:=

d2

dt̃ 2

∣∣∣∣
t̃=0
ηt+e1

i t̃, t̄+e2
i t̃

exists in the sense that the limit defining this derivative exists in C0(Z).
Then, Proposition 3.2 yields the estimate

‖∂ei eiη
t,t̄
‖Ck−1,α(Z) ≤ C(C).

Since for all e in the (t, t̄)-plane ∂ee is a linear combination of {∂ei ei }i=1,2,3, we obtain that ηt,t̄ is twice
differentiable (jointly) in the two variables (t, t̄) in a neighborhood of (0, 0) with the estimate (5-11).

Step 4. Applying (5-11) or (t, t̄) restricted to the “diagonal” t = t̄ (still in a neighborhood of (0, 0)) —
i.e., with e= (1, 1)— we obtain that ηt is twice differentiable with respect to t , with the estimate

‖η̈ t
‖Ck−1,α(Z) ≤ C(C). (5-12)

Again note that (5-11) is identical to that of Proposition 3.5 but now it is valid under more general
assumptions.

Step 5. Finally, we complete the proof of Theorem 1.1 by defining the diffeomorphisms 9 t from the
coordinates (z, s) and the function ηt. Let φ ∈C∞c (U◦) be some function such that φ≡1 in a neighborhood
of 00. Let us define

9 t(x)=
{
(z, s)−1

(
z(x), s(x)+ η0(z(x))+φ(x){ηt(z(x))− η0(z(x))}

)
, x ∈U◦,

x, x ∈ Rn
\U◦.

Since we may take U◦ ⊂ U we have that 9 t fixes the complement of U. By the definition of ηt we easily
show that 9 t(ω0)=�t — and thus 9 t(00)= 0t.

It not difficult to check that (5-9), (5-10), and (5-12) yield (1-14), (1-15) and (1-16) when rewritten in
terms of 9. On the other hand, estimate (1-17) follows from the estimates for w obtained in Step 3 of the
proof of Proposition 3.5. �

Appendix: Single-layer potentials and auxiliary proofs

We recall here classical regularity properties and the formula for the jump in the normal derivative for a
single-layer potential.

Theorem A.1. Let U ⊂ BR ⊂Rn be a domain such that ∂U ∈Cm,α
r for some r > 0, m ∈N and α ∈ (0, 1).

Given f ∈ Cm−1,α(∂U ) let us define

w(x) :=
∫
∂U

dHn−1(y) f (y)P(x − y),

where P is the Newtonian potential.
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We then have:

(i) w ∈ C0(Rn), w ∈ Cm,α(U ) and w ∈ Cm,α(Rn \U ) with the estimate

‖w‖Cm,α(U )+‖w‖Cm,α(Rn\U ) ≤ C‖ f ‖Cm−1,α(∂U ),

where C depends only on n, m, α, r , and ‖∂U‖Cm,α
r

.

(ii) Denoting by ∂ν, outw and ∂ν, inw the (outward) normal derivatives of w from outside and inside U
respectively we have, for all x ∈ ∂U,

∂ν, outw(x)= ∂ν,0w(x)− 1
2 f (x),

∂ν, inw(x)= ∂ν,0w(x)+ 1
2 f (x),

where

∂ν,0w(x) :=
∫
∂U

dHn−1(y) f (y) ν(x) · ∇P(x − y).

(iii) The linear operator T : f 7→ ∂ν,0w maps continuously Cm−2,α(∂U ) to Cm−1,α(∂U ). More precisely,

‖∂ν,0w‖Cm−1,α(∂U ) ≤ C‖ f ‖Cm−2,α(∂U ),

where C depends only on n, m, α, R, r , and ‖∂U‖Cm,α
r

. In particular T is compact in Hölder spaces.

We provide the following for completeness.

Bibliographic references and sketch of the proof of Theorem A.1. Properties of single-layer potentials in
the spirit of (i)–(iii) — and related ones for double-layer potentials — are very classical results in potential
theory. They are key tools in proving the existence of solutions for the Dirichlet and Neumann problems
in C1,α domains by the method of boundary potentials (by solving in Hölder spaces Fredholm integral
equations on the boundary of the domain). For more information on the topic, see for instance the classical
books [Sobolev and Dawson 1964; Dautray and Lions 1990].

The proofs of (i), (ii) are given in [Dautray and Lions 1990, Section II.3]. The proof of (i) is given in
full detail only for m = 1 but the proof for general m is similar. The result for all m is stated in [Dautray
and Lions 1990, p. 303].

The compactness property of T in (iii) is in the core of the theory for solving the Dirichlet and Neumann
problems by the method of boundary potentials. Indeed, by (ii), the Neumann problem 1w = 0 in U,
∂ν = g on ∂U is equivalent to T f + 1

2 f = g, where f is the charge on the boundary. Since T is compact,
this equation can be solved by Fredholm’s alternative;6see [Sobolev and Dawson 1964, Lectures 15–19].

Roughly speaking, the reason why T f increases the order of differentiability of f by 1 is that the
integral kernel (x ∈ ∂U ) satisfies

k(x, y) := ν(x) · ∇P(x − y)= cnν(x)
x − y
|x − y|n

= O(|x − y|n−2)

6In this case the orthogonality condition of Fredholm’s alternative requires
∫
∂U g = 0.
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as y → x , y ∈ ∂U, while ∂U is an (n−1)-dimensional surface. The extra factor |x − y| comes from
ν(x) · (x − y)= O(|x − y|2) since ∂U is smooth enough. Thus, T f behaves similarly to

f 7→
∫

Rd
f (y)

e · y
|y|d

dy,

which maps Ck−1,α
c (Rd) to Ck,α(Rd).

Since it is not easy to find complete references for (iii), although these types of estimates are very
classical, for the sake of completeness we provide next a detailed proof of a nearly optimal estimate like
(iii) in the case m = 2 (the proof for other m is more involved but similar). For the purposes of this paper
the optimal estimate is not necessary — we just state the optimal result for the convenience of the reader.
In our proofs, we do not need to gain a full derivative but just obtain a control in a finer Hölder norm to
control the corresponding term by interpolation. Let us prove that if ∂U ∈ C2,α

r then, for all β ∈ (0, 1),

‖T f ‖C0,β (∂U ) ≤ C‖ f ‖C0,α(∂U ) (A-1)

(note that the optimal estimate would be with C1,α instead of C0,β).
As a matter of fact we will prove the stronger (and almost sharp) estimate

‖T f ‖C0,β (∂U ) ≤ C‖ f ‖L∞(∂U ), (A-2)

which clearly yields (A-1).
Indeed, we start by showing that

k(x, y) := ν(x)
x − y
|x − y|n

(A-3)

satisfies
|k(x, y)− k(x̄, y)| ≤ C |x − x̄ ||ξ − y|−n+1, (A-4)

where ξ is a point of a curve on ∂U joining x and x̄ .
Indeed, if γ ⊂ ∂U is a smooth curve joining x and x̄ and of length comparable to |x − x̄ | we have, at

ξ = γ (t),
d
dt

k(γ (t), y)= ν ′(ξ)
ξ − y
|ξ − y|n

+ νi (ξ) γ
′

j (t)
|z|2δi j − nzi z j

|z|n+2 for z = ξ − y.

Choosing an appropriate frame, we may assume νi (ξ)= δ1i and γ ′j (t)= Cδ2 j — since the former vector
is normal to ∂U and the latter is tangent. Therefore∣∣∣∣νi (ξ)γ

′

j (t)
|z|2δi j − nzi z j

|z|n+2

∣∣∣∣= C
|z1z2|

|z|n+2 ≤ C
|z|2|z|
|z|n+2 ≤ C |z|1−n

= C |ξ − y|1−n,

where we have used that the first axis is normal to ∂U and hence we have |z1| ≤ |z|2 — by C2 regularity
of ∂U and recalling that z = ξ − y with both ξ and y on ∂U. Therefore, an application of the mean value
theorem gives

|k(x, y)− k(x̄, y)| ≤ C |x − x̄ |
∣∣∣ d
dt

k(γ (t), y)
∣∣∣≤ C |x − x̄ ||ξ − y|1−n

and proves (A-4).
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Finally, recalling that

|k(x, y)| ≤ C |x − y|2−n and |k(x̄, y)| ≤ C |x̄ − y|2−n

and combining this with (A-4), we obtain

|k(x, y)− k(x̄, y)| ≤ C |x − x̄ |β |ξ − y|(1−n)β(
|x − y|(2−n)(1−β)

+ |x̄ − y|(2−n)(1−β)).
Therefore

|T f (x)− T f (x̄)| =
∣∣∣∣∫
∂U

f (y)(k(x, y)− k(x̄, y)) dHn−1(z)
∣∣∣∣

≤

∫
∂U
| f (y)||k(x, y)− k(x̄, y)| dHn−1(z)

≤ C‖ f ‖L∞(∂U )

∫
∂U
|x − x̄ |β |ξ − y|(1−n)β(

|x − y|(2−n)(1−β)
+ |x̄ − y|(2−n)(1−β))

≤ C‖ f ‖L∞(∂U )|x − x̄ |β,

which proves (A-2). �

Sketch of the proof of Proposition 2.1. For the sake of clarity we give a proof assuming that, for t > 0,
we have 1(ht

− h0)≥ 0 and ht
− h0
≥ 0 and thus �t

⊂ ω0. We give the proof in dimension n = 2. The
proof for n ≥ 3 is similar; see [Blank 2001].

Step 1. We show that for some t◦ > 0 and C◦ depending only on C we have

|�0
\�t
| ≤ C(C)t. (A-5)

Indeed, from (4-8) we know that (recall that vt
:= δt ũ0){

1vt
=−(1h0/t)χ�0\�t +1δt h0χ�t in R2,

limx→∞
vt (x)
−log |x | = δt c0.

Note that by (1-10) we have 0t
⊂ BR for t ∈ [0, t◦), where t◦ > 0 is a small enough constant depending

only on C. Recalling that by assumption 1δt h0 is supported in BR, we have

δt c0
=

∫
R2
1vt
=

∫
R2
−
1h0

t
χ�0\�t +1δt h0χ�t .

Therefore, since −1h0
≥ ρ, we find

ρ

t
|�0
\�t
| ≤ |δt c0

| +

∫
BR

|1δt h0
| ≤ C(C).

Step 2. We first show (i); that is, we prove that for t◦ small enough we have

‖0t
‖Ck,α

ρ/4
≤ Co for all t ∈ [0, t◦). (A-6)
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Indeed, by Step 1, |�0
\�t
| ↓ 0 as t→ 0 and hence, for t small enough, all points of 0t are regular points.

More precisely, for all p ∈ 0t,
Bρ(p)∩ {ũt

= 0} ≥ c◦(C) > 0.

Then, we apply:

(1) C1,α free boundary estimates near regular points [Caffarelli 1977; 1998].

(2) C1,α
⇒ Ck,α estimates for obstacle h ∈ Ck+1,α [Kinderlehrer and Nirenberg 1977].

We thus obtain (A-6).

Step 3. From (A-5) and (A-6) deduce that for t ∈ (0, t◦), the Hausdorff distance between 0t and 0s

satisfies
dHausdorff(0

t , 00)≤ Co t. �

Sketch of the proof of Lemma 3.1. The lemma for n ≥ 3 is very standard. Let us prove it in the case n = 2.
Assume n = 2. We want to prove that ut

= f∗, where

f∗(x) := inf
{

f (x) : f ∈ C(R2), f ≥ ht , 1 f ≤ 0, lim
x→∞

f
−log |x |

= ct
}
. (A-7)

The admissible class in (A-7) is nonempty since the function

f1(x) := ct min{0,−log |x |} +C1

is a member, provided we take C1 > 0 large enough that log |x |+C > ht(x) for all x ∈R2 — here we are
using (1-4). Hence, f∗(x) ∈ [ht(x),+∞) is finite for all x .

We now check that ut
= f∗ is a solution of (1-3) (n = 2). First, as an infimum of superharmonic

functions, it is superharmonic. To check that it is a subsolution of the obstacle problem, we argue by
contradiction. Suppose on the contrary that there exist r, ε, δ > 0 (as small as we like) and x◦ ∈ R2 such
that f∗ > ε+ ht in Br (x◦) and f∗(x◦) > δ+

∫
∂Br (x◦)

f∗. By changing (slightly) x◦ and making r and δ
smaller, if necessary, we may assume δ < ε and

oscBr (x◦)h
t
≤ ε =⇒ f∗ > sup

Br (x◦)
ht .

Let f̃ ∈ C(Br (x◦)) be the unique harmonic function in Br (x◦) with Dirichlet boundary condition f̃ =
1
2δ+ f∗ on ∂Br (x◦). Note that f̃ > ht in Br (x◦), and set

f (x) :=
{

f∗(x), x /∈ Br (x◦),
min{ f̃ , f∗(x)}, x ∈ Br (x◦).

Then f is admissible in (A-7) and hence f∗ ≤ f . But then by the mean value formula for f̃ we have

f∗(x◦)≤ f (x◦)≤ f̃ (x◦)= 1
2δ+

∫
Br (x◦)

f∗ ≤ 1
2δ+ f∗(x◦)− ε < f∗(x◦) ,

a contradiction. �
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