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RIGIDITY OF MINIMIZERS IN NONLOCAL PHASE TRANSITIONS

OVIDIU SAVIN

We obtain the classification of certain global bounded solutions for semilinear nonlocal equations of
the type

�suDW 0.u/ in Rn; with s 2
�
1
2
; 1
�
;

where W is a double-well potential.

1. Introduction

We extend to the case of the fractional Laplacian �s with s 2
�
1
2
; 1
�

the results from [Savin 2009; 2017]
concerning a conjecture of De Giorgi about the classification of certain global bounded solutions for
semilinear equations of the type

�uDW 0.u/;

where W is a double-well potential.
We consider the Ginzburg–Landau energy functional with nonlocal interactions

J.u;�/D
1

4

Z
Rn�Rnn.C��C�/

.u.x/�u.y//2

jx�yjnC2s
dx dyC

Z
�

W.u/ dx;

with juj � 1. Here W is a double-well potential with minima at 1 and �1 satisfying

W 2 C 2.Œ�1; 1�/; W.�1/DW.1/D 0; W > 0 on .�1; 1/;

W 0.�1/DW 0.1/D 0; W 00.�1/ > 0; W 00.1/ > 0:

The classical double-well potential W to have in mind is

W.s/D 1
4
.1� s2/2:

Physically u � �1 and u � 1 represent the stable “phases”. A critical function for the energy J
corresponds to a phase transition with nonlocal interaction between these states, and it satisfies the
Euler–Lagrange equation

�suDW 0.u/;

where �su is defined as

�su.x/D PV
Z

Rn

u.y/�u.x/

jy � xjnC2s
dy:
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Our main result provides the classification of minimizers with asymptotically flat level sets.

Theorem 1.1. Let u be a global minimizer of J in Rn with s 2
�
1
2
; 1
�
. If the 0 level set fu D 0g is

asymptotically flat at1, then u is one-dimensional.

The hypothesis that fuD 0g is asymptotically flat means that there exist sequences of positive numbers
�k , lk and unit vectors �k with lk!1, �kl�1k ! 0, such that

fuD 0g\Blk � fjx � �kj< �kg:

By saying that u is one-dimensional we understand that u depends only on one direction �; i.e.,
uD g.x � �/.

A more quantitative version of Theorem 1.1 is given in Theorem 6.1.
In a subsequent work [Savin 2018] we will treat also the case sD 1

2
, which requires some modifications

of the methods presented in this paper. We remark that Theorem 1.1 when s 2
�
0; 1
2

�
was obtained recently

by Dipierro, Serra and Valdinoci [2016].
It is known that blowdowns of the level set fuD 0g have different behavior depending on the value

of s. If s � 1
2

, there are sequences "kfuD 0g with "k! 0 that converge uniformly on compact sets to
a minimal surface and, if s < 1

2
they converge to an s-nonlocal minimal surface. This follows from a

�-convergence result together with a uniform density estimate of level sets of minimizers which were
obtained by the author and Valdinoci in [Savin and Valdinoci 2012; 2014]; see for example Corollary 1.7
in the latter paper.

From the classification of global minimal surfaces in low dimensions we find that the level sets of
minimizers of J are always asymptotically flat at 1 in dimension n � 7 if s � 1

2
, and we obtain the

following corollary of Theorem 1.1.

Theorem 1.2. A global minimizer of J is one-dimensional in dimension n� 7 if s 2
�
1
2
; 1
�
.

Another consequence of Theorem 1.1 is the following version of De Giorgi’s conjecture to the fractional
Laplace case.

Theorem 1.3. Let u 2 C 2.Rn/ be a solution of

�suDW 0.u/; (1-1)

with s 2
�
1
2
; 1
�
, such that

juj � 1; @nu > 0; lim
xn!˙1

u.x0; xn/D˙1: (1-2)

Then u is one-dimensional if n� 8.

Theorems 1.2 and 1.3 without the limit assumption in (1-2) have been proved in two and three dimensions
using stability inequality methods. In dimension nD 3 and for s � 1

2
they have been established by Cabre

and Cinti [2014], and in dimension nD 2 for all s 2 .0; 1/ by Sire and Valdinoci [2009]; see also [Cabré
and Cinti 2010; Cabré and Sire 2015; Cabré and Solà-Morales 2005]. The case nD 3 and s 2

�
0; 1
2

�
was

also addressed recently by S. Dipierro, A. Farina, and E. Valdinoci [Dipierro et al. 2018].
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It is not difficult to show that the ˙1 limit assumption implies that u is a global minimizer in Rn; see
for example Theorem 1 in [Palatucci et al. 2013]. Since fuD 0g is a graph, it is asymptotically flat in
dimension n� 8 and Theorem 1.1 applies.

Similarly we see that if the 0 level set is a graph in the xn-direction which has a one-sided linear bound
at1 then the conclusion is true in any dimension.

Theorem 1.4. If u satisfies (1-1), (1-2),

fuD 0g � fxn < C.1Cjx
0
j/g;

and s 2
�
1
2
; 1
�

then u is one-dimensional.

Our proof of Theorem 1.1 follows closely the one for the classical Laplacian given in [Savin 2017]. The
main steps consist in (1) finding some appropriate families of radial subsolutions, (2) applying a version
of the weak Harnack inequality and (3) a �-convergence result. Some new technicalities are present
in our setting due to the nonlocal nature of the equation. For example in the improvement-of-flatness
property Theorem 6.1, we need to impose a geometric restriction to the level set fuD 0g possibly outside
the flat cylinder C.l; �/.

It turns out that when s 2
�
1
2
; 1
�
, the level sets of u satisfy a local curvature estimate. For example, at a

point of fuD 0g which has a large ball of radius R tangent from one side, we can estimate its curvatures
in terms of R�1 (see Lemma 4.3). In the borderline case sD 1

2
the curvature bound requires a logarithmic

correction and the same methods no longer apply.
We prove Theorem 1.1 by making use of the extension property of the fractional Laplacian of [Caffarelli

and Silvestre 2007]. Precisely we consider the extension U.x; y/ of u.x/ in RnC1
C

such that

div.yarU/D 0 in RnC1
C

, U.x; 0/D u.x/; a WD 1� 2s 2 .�1; 1/;

and then

�su.x/D cn;s lim
y!0C

yaUy.x; y/;

with cn;s a constant that depends only on n and s. Then global minimizers of J.u/ in Rn with juj � 1
correspond to global minimizers of the “extension energy” J .U / with jU j � 1, where

J .U / WD
cn;s

2

Z
jrU j2ya dx dyC

Z
W.u/ dx:

After dividing by a constant and relabeling W , we may fix cn;s to be 1. We obtain an improvement-of-
flatness property for the level sets of minimizers of J which are defined in large balls BCR ; see Theorem 6.1.
We remark that the principal use of the extension is to make the various subsolution computations easier
to handle and it is not essential to the method of proof.

The paper is organized as follows. In Sections 2 and 3 we introduce some notation and then construct
a family of axial subsolutions. In Section 4 we provide certain “viscosity solution” properties of the level
set fuD 0g. In Section 5 we obtain a Harnack inequality of the 0 level set and in Section 6 we prove
Theorem 6.1.
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2. Notation and preliminaries

We introduce the following notation:
We denote points in Rn as x D .x0; xn/ with x0 2 Rn�1. The ball of center z and radius r is denoted

by Br.z/,
Br.z/ WD fx 2 Rn W jx� zj< rg; Br WD Br.0/:

The cylinder with base l and height � is denoted by C.l; �/� Rn,

C.l; �/ WD fx W jx0j � l; jxnj � �g:

Points in the extension variables RnC1
C

are denoted by .x; y/ with y > 0, and the ball of radius r as BCr ,

BCr WD f.x; y/ 2 RnC1
C
W j.x; y/j< rg � RnC1:

Given a function U.x; y/, we define u to be its trace on fy D 0g,

u.x/D U.x; 0/:

Also let
a WD 1� 2s 2 .�1; 0/;

and

�aU WD�U C a
Uy

y
D y�a div.yarU/;

@1�ay U.x/ WD lim
y!0C

yaUy.x; y/D
1

1� a
lim
y!0C

ya�1.U.x; y/�U.x; 0//:

We define the energy J as

J .U;BCR / WD
1

2

Z
BCR
jrU j2ya dx dyC

Z
Br

W.u/ dx;

and a critical function U for J satisfies the Euler–Lagrange equation

�aU D 0; @1�ay U DW 0.u/: (2-1)

In [Palatucci et al. 2013, Theorem 2], see also [Cabré and Sire 2014], they proved the existence and
uniqueness up to translations of a global minimizer of J in two dimensions which is increasing in the
first variable and which has limits ˙1 at infinity. Precisely there exists a unique G W R2

C
! .�1; 1/ that

solves (2-1) such that G.t; y/ is increasing in the t -variable and its trace g.t/ WDG.t; 0/ satisfies

g.0/D 0; lim
t!˙1

g.t/D˙1:

Moreover, g and g0 have the asymptotic behavior

1� jgj �minf1; jt j�2sg; g0 �minf1; jt j�1�2sg;

and since a 2 .�1; 0/ we have J .G;R2
C
/ <1.
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Since �aGt D 0 and Gt � 0, we easily conclude that

jrGj � C minf1; r�1g; Gt � c r
�1�2s; (2-2)

where r denotes the distance to the origin in the .t; y/-plane.
In Theorem 6.1 we show that the only global minimizer of J that has asymptotically flat level sets on

y D 0 is G.xn; y/ up to translations and rotations.
For simplicity of notation we assume that W is uniformly convex outside the interval Œg.�1/; g.1/�.
Constants that depend on n, s, W , G are called universal constants, and we denote them by C , c. In

the course of the proofs, the values of C , c may change from line to line when there is no possibility of
confusion. If the constants depend on other parameters, say � , �, then we denote them by C.�; �/ etc.

3. Two-dimensional barriers

We construct two families of comparison functions GR and ‰R which are perturbations of the solution G.

Lemma 3.1 (radial supersolutions). For all large R, there exist continuous functions GR W R2! .�1; 1�

and universal constants ı > 0 small, C large such that

(1) GR D 1 outside BC
R1�ı

[ ..�1; 0�� Œ0; R1�ı �/,

(2) GR.t; y/ is nondecreasing in t , and @tGR D 0 outside BC
R1�ı

,

(3) jGR �Gj �
C

R
in BC4 ;

(4) �aGRC
2.n� 1/

R
jrGRj � 0;

and on y D 0,

@1�ay GR <W
0.GR/ if t … Œ�1; 1�.

The inequalities in (4) are understood in the viscosity sense.
Notice that by (2-2), property (3) implies

GR.t; y/�G

�
t C

C 0

R
; y

�
in BC4 :

We remark that property (3) and the inequality above hold in any ball BCK , for a fixed large constant K,
provided that we replace C=R, C 0=R by C.K/=R, C 0.K/=R.

Proof. We begin with the following claim whose proof we provide at the end.

Claim. For each ˛ 2 .1; 1� a/ there exists H a homogeneous function of degree ˛ such that

H � r˛; �aH � �r
˛�2; jrH j � Cr˛�1; @1�ay H � C jt j˛�.1�a/:

Here r denotes the distance to the origin and C D C.˛/ depends on the universal constants and ˛.
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Fix such an ˛ and define

HR WDmin
�
GC

C0

R
.H CC1/; 1

�
; (3-1)

with C0, C1 large constants to be specified later.
We define GR as the infimum over all left translations of HR; i.e.,

GR.t; y/D inf
l�0

HR.t C l; y/:

Since jGj < 1 we have HR > �1, and HR D 1 outside BC
R1�ı

provided that ı is chosen sufficiently
small such that .1� ı/˛ > 1. Properties (1) and (2) are clearly satisfied.

Notice that H is increasing in a band ŒC;1/� Œ0; 4� and we obtain that HR is increasing in Œ�4;1/�
Œ0; 4�. This gives GR DHR in BC4 and property (3) is satisfied.

The properties of H and (2-2) imply that in the set fHR < 1g we have

jrHRj � C minf1; r�1gCCC0R�1r˛�1;

and
�aHR � �C0R

�1r˛�2:

Then the first inequality in (4) holds for HR provided that C0 is chosen sufficiently large, and therefore
holds also for GR as the infimum over translations of HR.

On y D 0 in the set fHR < 1g we have

@1�ay HR D @
1�a
y GCC0R

�1@1�ay H �W 0.G/CCR�1jt j˛�.1�a/:

From the behavior of g and g0 for large t , we see that the minimum of HR.t; 0/ occurs at some
t D qR ��R

1=.2sC˛/��1 and

k.HR �G/.t; 0/kL1.ŒqR;1//! 0 as R!1:

Since W 00 � c outside Œg.�1/; g.1/� we find that when t 2 ŒqR;1/ n Œ�1; 1� and fHR < 1g we have

W 0.HR/�W
0.G/� 1

2
c.HR �G/� c

0R�1.jt j˛CC1/I

thus, if C1 is sufficiently large,

@1�ay HR <W
0.HR/ in ŒqR;1/ n Œ�1; 1�:

Now the second inequality of (4) is satisfied by GR as the infimum of left translations of HR. �

Proof of Claim. We find H as a perturbation of the function Cy˛ near y D 0. Notice that y1�a is
�a-harmonic; thus y˛ is �a-superharmonic for ˛ < 1� a. However, Cy˛ does not satisfy the first and
last properties given in the claim.

We write H in polar coordinates as H D r˛h.�/, with h an even function with respect to �
2

, and then

r2�˛�aH D h
00
C˛.˛C a/hC a cot � h0; (3-2)

@1�ay H D r˛�.1�a/ @1�a� h: (3-3)
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For all small � , the function

h� D � C �
1�a
� �2

gives a negative right-hand side in (3-2) when � belongs to a small fixed interval Œ0; c�. We choose first
M large and then � small such that the graphs of Mh� and .sin �/˛ become tangent by above at some
point in the interval Œ0; c�. We “glue” parts of the two graphs in a single graph of a C 1;1 function Qh. Now
it is easy to check that all properties hold by taking h to be a large multiple of Qh. �

From the construction of HR, GR we see that both of them decrease with R as we increase R.
Next we construct a similar family ‰R with a slightly slower decay in R than GR. This allows us

to have more flexibility in the choice of the two-dimensional profiles of explicit supersolutions. In the
next lemma we compare two such profiles ‰R and GR when R and R� R have different orders of
magnitude. This is an important tool in the proof of the key Propositions 4.6 and 4.7 from next section,
where two explicit supersolutions need to be compared in a certain region.

Lemma 3.2. There exist functions GR and ‰R that satisfy the properties (1)–(4) of Lemma 3.1 for some
ı, C universal such that

GR.t CR
��; y/�‰R1�� .t; y/;

with � 2
�
0; ı
3

�
small universal.

Proof. Denote by GR;˛ the function constructed in Lemma 3.1.
We choose GR WDGR;˛, ‰R WDGR;ˇ for some fixed ˛, ˇ such that 1 < ˇ < ˛ < 1� a. We take

ı Dminfı.˛/; ı.ˇ/g and C DmaxfC.˛/; C.ˇ/g

and then Lemma 3.1 holds for both GR and ‰R with the same constants ı and C .
We show that

HR;˛.t CR
��; y/�HR1��;ˇ .t; y/;

with HR;˛ defined as in (3-1), and the lemma follows by taking the infimum over the left translations.
In the inequality above it suffices to restrict to the set where fHR;˛ < 1g. We have

HR �GCR
�1.c1r

˛
C c2/

for some constants c1, c2 depending on ˛. After a translation of R�� we obtain, see (2-2),

HR.t CR
��; y/�G.t; y/C cR�� minf1; r�1�2sgC 1

2
R�1.c1r

˛
C c2/:

When r � 1 we use the inequality aC b � a�b1�� for � > 0 small, and we find

HR.t CR
��; y/�G.t; y/C c.˛/R��.r C 1/; (3-4)

with

 D ˛.1��/��.1C 2s/; �D 1��C ��
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(and � > � ). We choose � small and then � such that  > ˇ and � < 1� � . Then the right-hand side of
(3-4) is greater than

GCR��1.C1.ˇ/r
ˇ
CC2.ˇ//�HR1��; ˇ

for all large R, and the lemma is proved. �
Remark 3.3. Using the monotonicity of ‰r with respect to r , we have

GR.sCR
��; y/�‰r.s; y/ for all r �R1��:

4. Estimates for fu D 0g

We now derive properties of the level sets of solutions to

�aU D 0; @1�ay U DW 0.U /; (4-1)

which are defined in large domains.
In the next lemma we find axial approximations to the two-dimensional solution G.

Lemma 4.1 (axial approximations). Let GR W R2C! .�1; 1� be the function constructed in Lemma 3.2.
Then its axial rotation in RnC1

ˆR.x; y/ WDGR.jxj �R; y/

satisfies

(1) ˆR D 1 outside BC
RCR1�ı

,

(2) �aˆR � 0 in RnC1
C

;

and
@1�ay ˆR <W

0.ˆR/ when jxj �R … Œ�1; 1�:

Let �R.x/DˆR.x; 0/ denote the trace of ˆR on fy D 0g. Notice that �R is radially increasing, and
f�R D 0g is a sphere which is in a C=R-neighborhood of the sphere of radius R.

Proof. We have

�aˆR.x; y/D�aGR.s; y/C
n� 1

RC s
@s GR.s; y/; s D jxj �R;

@1�ay ˆR.x; 0/D @
1�a
y GR.s; 0/:

The conclusion follows from Lemma 3.2 since @sGR D 0 when jsj � R1�ı and RC s > 1
2
R when

jsj<R1�ı. �
Definition 4.2. We denote by ˆR;z the translation of ˆR by z; i.e.,

ˆR;z.x; y/ WDˆR.x� z; y/DGR.jx� zj �R; y/:

Similarly we define ‰R;z to be the axial rotation of the other two-dimensional solution ‰R given in
Lemma 3.2,

‰R;z.x; y/ WD‰R.jx� zj �R; y/:

Clearly ‰R;0 satisfies properties (1), (2) of Lemma 4.1.
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We recall that we use �,  to denote the traces of ˆ and ‰.

Sliding the graph of ˆR. Assume that u is less than �R;x0 in B2R.x0/. By the maximum principle we
obtain U <ˆR;z with zD x0 in B2R.x0; 0/ (and therefore globally). We translate the function ˆR above
by moving continuously the center z, and let’s assume that it touches U by above, say for simplicity when
z D 0; i.e., the strict inequality becomes equality for some contact point .x�; y�/. From Lemma 4.1 we
know that ˆR is a strict supersolution away from fy D 0g, and moreover the contact point must satisfy
y� D 0, jx�j �R 2 Œ�1; 1�; that is, it belongs to the annular region BRC1 nBR�1 in the n-dimensional
subspace fy D 0g.

Lemma 4.3 (estimates near a contact point). Assume that the graph of ˆR touches by above the graph
of U at a point .x�; 0; u.x�// with x� 2 BRC1 n BR�1. Let �.x�/ be the projection of x� onto the
sphere @BR. Then in B1.�.x�/; 0/:

(1) fu D 0g is a smooth hypersurface in Rn with curvatures bounded by C=R which stays in a C=R
neighborhood of @BR.

(2) jU �G.x � � �R; y/j �
C

R
; � WD

�.x�/

R
:

Proof. Assume for simplicity that x� is on the positive xn-axis and therefore �.x�/DRen, jx��Renj�1.
By Lemma 4.1 we have

U �ˆR �G

�
jxj �RC

C

R
; y

�
�G

�
xn�RC

C 0

R
; y

�
DW V in B3.Ren/:

Both U and V solve (4-1), and

.V �U/.x�; 0/�
C 00

R
:

Since V �U � 0 satisfies

�a.V �U/D 0; @1�ay .V �U/D b.x/.V �U/;

b.x/ WD

Z 1

0

W 00.tu.x/C .1� t /v.x// dt;

we obtain

jV �U j �
C

R
in B5=2.Ren/

from the Harnack inequality with Neumann condition for �a. Moreover since b has bounded Lipschitz
norm and s > 1

2
we obtain U �V 2 C 2;˛x for some ˛ > 0, and

kU �V k
C
2;˛
x .B2.Ren//

�
C

R

by local Schauder estimates. This easily implies the lemma. �

Remark 4.4. If instead of B1..�.x�/; 0// we write the conclusion in BK..�.x�/; 0// for some large,
fixed constant K, then we need to replace C=R by C.K/=R. Here C.K/ represents a constant which
depends also on K.
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Next we obtain estimates near a point on fu D 0g which admits a one-sided tangent ball of large
radius R.

Lemma 4.5. Assume that U is defined in BC2R, satisfies (4-1), and that

(a) BR.�Ren/� fu < 0g is tangent to fuD 0g at 0,

(b) there is x0 2 BR=2.�Ren/ such that u.x0/� �1C c for some c > 0 small.

Then:

(1) fuD 0g is smooth in B1 and has curvatures bounded by C=R.

(2) jU �G.xn; y/j � C=R in B1.

Proof. Assume first that u < �R=8;z for z D�Ren.
We translate the graph of ˆR=8;z by moving z continuously upward on the xn axis. We stop when the

translating graph becomes tangent by above to the graph of U for the first time. Denote by .x�; 0; u.x�//
the contact point and by z� the final center z and by �.x�/ the projection of x� onto @BR=8.z�/.

By Lemma 4.3, fuD 0g must be in a C1=R neighborhood of @BR=8.z�/\B1.�.x�// for some C1
universal. This implies

z� D ten with t 2
�
�
R

8
�
C1

R
;�
R

8
C
C1

R

�
:

Moreover, �.x�/ 2 BC2 for some C2 large universal, since otherwise �.x�/ is at a distance greater than

1

R

C 22
8
>
C1

R

in the interior of the ball BR.�Ren/; hence fuD 0g must intersect this ball and we reach a contradiction.
Now we apply Lemma 4.3 and Remark 4.4 at �.x�/ and obtain the conclusion of the lemma.
It remains to show that u < �R=8;�Ren . By hypothesis (b) and the Harnack inequality we see that

u is still sufficiently close to �1 in a whole ball BR0.x0/ for some large universal R0, and therefore
u < �R0=2;x0 provided that c is sufficiently small. Now we deform ˆR0=2;x0 by a continuous family of
functions ˆr;z and first we move z continuously from x0 to �Ren and then we increase the radius r from
R0 to 1

8
R. By Lemma 4.3, the graphs of these functions cannot touch the graph of U by above and we

obtain the desired inequality. With this the lemma is proved. �

In the next proposition we prove a localized version of Lemma 4.5.

Proposition 4.6. Assume that U satisfies the equation in BR1�� with � small, universal as in Lemma 3.2,
and

(a) BR.�Ren/\BR1=2�� � fu < 0g is tangent to fuD 0g at 0,

(b) all balls of radius 1
4
R1�� which are tangent by below to @BR.�Ren/ at some point in BR1=2�� are

included in fu < 0g,

(c) there is x0 2 BR1��=4
�
�
1
2
R1��en

�
such that u.x0/� �1C c.

Then in B1 we have that fuD 0g is smooth and has curvatures bounded by C=R.
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Proof. As in Lemma 4.5, we slide the graph of ˆR=8;z in the en-direction until it touches the graph of U,
except that now we restrict only to the region

CR WD
˚
jx0j � 1

2
R1=2��; jxnj �

1
2
R1��; jyj � 1

2
R1��

	
: (4-2)

In order to repeat the argument above we need to show that the first contact point is an interior point and
it occurs in CR=2. For this it suffices to prove that

U <ˆR=8;z0 in CR n CR=2; z0 WD

�
�
R

8
C
C1

R

�
en: (4-3)

We estimate U by using the functions ‰R;z given in Definition 4.2. Notice that Lemma 4.3 holds if
we replace ˆR by ‰R.

Now we slide the graphs ‰r;z , with r WD 1
4
R1�� and jz0j � R1=2��, zn D �2r , upward in the

en-direction. We use hypotheses (b), (c) and as in the proof of Lemma 4.5 we find ‰r;z > U as long as
Br.z/ is at distance greater than Cr�1 from @BR.�Ren/. We obtain

U.x/ < ‰r.d1.x/CCr
�1; y/; (4-4)

where d1.x/ is the signed distance to @BR.�Ren/. From Remark 3.3 we have

‰r.s; y/�GR=8
�
sC

�
1
8
R
��3�

; y
�
:

We obtain
U.x; y/ < GR=8.d1.x/C 2R

�3�; y/: (4-5)

Let d2.x/ represent the distance to @BR=8.z0/. Then in the region CR n CR=2 we have either

(i) jx0j � 1
2

�
1
2
R
�1=2�� and then

d2.x/� d1.x/� �
C1

R
C
1

R
jx0j2 � 2R�3�; (4-6)

or

(ii) minfjxnj; yg � 1
8
R1�� and then both .d2.x/; y/ and .d1.x/C 2R��; y/ are outside BC

1�ı
� R2;

thus GR=8 has the same value at these two points.

From (4-5) we find
U.x; y/ < GR=8.d2.x/; y/ in CR n CR=2; (4-7)

and (4-3) is proved. �

Next we consider the case in which the 0 level set of u is tangent by above at the origin to the graph of
a quadratic polynomial.

Proposition 4.7. Let U satisfy the equation in BR1�� and hypothesis (c) of Proposition 4.6. Assume the
surface

� WD

�
xn D

n�1X
1

ai

2
x2i C b

0
� x0
�
\BR1=2�� with jb0j � "; jai j � "�2R�1;
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is tangent to fuD 0g at 0 for some small " that satisfies "�R��=2, and assume further that all balls of
radius 1

2
R1�� which are tangent to � by below are included in fu < 0g. Then

n�1X
1

ai � CR
�1:

Proposition 4.7 states that the blowdown of fuD 0g satisfies the minimal surface equation in some
viscosity sense. Indeed, if we take "D R��=2, then the set R��1fuD 0g cannot be touched at 0 in an
R�1=2 neighborhood of the origin by a surface with curvatures bounded by 1

2
and mean curvature greater

than CR��.

Proof. We argue as in the proof of Proposition 4.6 except that now we replace @BR.�Ren/ by � and
@BR=8.z0/ by

�2 WD

�
xn D

n�1X
1

ai

2
x2i C b

0
� x0C

C1

R
�
1

R
jx0j2

�
:

We claim that
U.x; y/ < GR=8.d2.x/; y/ in CR n CR=2; (4-8)

where d2 represents the signed distance to the �2 surface and CR is defined in (4-2). Using the surfaces
‰r;z as comparison functions we obtain as in (4-4), (4-5) above that

U.x; y/ < GR=8.d1.x/CC
0r�1; y/ in CR;

with d1.x/ representing the signed distance to �. Notice that (4-6) is valid in our setting. Now we argue
as in (4-7) and obtain the desired claim (4-8).

Next we show thatGR=8.d2.x/; y/ is a supersolution away from the set fjd2j � 1; yD 0g provided that
n�1X
1

ai �MR
�1

for some M large, universal to be made precise later. The boundary inequality on fy D 0g is clearly
satisfied and on fy > 0g we have

�aGR=8.d2.x/; y/D�aGR=8.s; y/CH.x/ @sGR=8.s; y/; s WD d2.x/; (4-9)

where H.x/ represents the mean curvature at x of the parallel surface to �2, and �a on the right-hand
side is with respect to the variables .s; y/. If jsj>R1�ı then @sGR=8 D 0, and if jsj � R1�ı we show
below that H < 0, and in both cases we obtain �aGR=8 � 0.

Let �i , i D 1; : : : ; n� 1, be the principal curvatures of �2 at the projection of x onto �2. Notice that
at this point the slope of the tangent plane to �2 is less than 4"; hence we have

j�i j � 2"
�2R�1 � 2R��1;

X
�i � �

X
ai CC"

2 max jai j � �12MR
�1:

When jd2j �R1�ı , we obtain d2�i D o.1/, d2�2i D o.R
�1/ since � < ı

3
; hence

H.x/D
X �i

1� d2�i
D

X�
�i C

d2�
2
i

1� d2�i

�
� �

1
4
MR�1: (4-10)
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Now we translate the graph of GR=8.d2; y/ along the en-direction until it touches the graph of U by
above. Precisely, we consider the graphs of GR.d2.x� ten/; y/ with t � 0 and start with t negative so
that the function is identically 1 in CR. Then we increase t continuously until this graph becomes tangent
by above to the graph of U in CR. Since u.0/D 0, a contact point must occur for some t � 0 and, by
(4-8), this point is interior to CR=2 and lies on y D 0. Let .x�; 0; u.x�// be the first contact point where a
translate GR=8.d2.x � t�en/; y/ touches U by above. We show that we reach a contradiction if M is
chosen sufficiently large.

Define V as

V.x; y/ WDG

�
d2.x� t

�en/C
C

R
; y

�
�GR=8.d2.x� t

�en/; y/� U.x; y/:

Notice that
@1�ay V DW 0.V /; .V �U/.x�; 0/�

C

R
:

In B1.x�/ we use the computation (4-9) above for V together with (4-10) and obtain

�aV � �cMR
�1 in B1.x�/:

The function Q WD .V �U/=.cMR�1/� 0 satisfies in B1.x�/

�aQ � �1; j@
1�a
y Qj � CQ; Q.x�; 0/� C 0M�1:

By the maximum principle

Q.x; y/� �2C�y1�a �
1

2.nC 1/
.jx� x�j2Cy2/

for some � small universal, and we reach a contradiction at .x�; 0/ if M is sufficiently large. �

5. Harnack inequality

We use Proposition 4.6 to prove a Harnack-inequality property for flat level sets; see Theorem 5.1 below.
The key step in the proof is to control the xn-coordinate of the level set fuD 0g in a set of large measure
in the x0-variables.

Notation. We denote by C.l; �/ the cylinder

C.l; �/ WD fjx0j � l; jxnj � �g:

Theorem 5.1 (Harnack inequality for minimizers). Let U be a minimizer of J in Bq and assume that

0 2 fuD 0g\ C.l; l/� C.l; �/;

and that all balls of radius q WD .l2��1/1��=2 which are tangent to C.l; �/ by below and above are
included in fu < 0g and fu > 0g respectively.

Given �0 > 0 there exist ! > 0 small depending on n, W , and "0.�0/ > 0 depending on n, W and �0
such that if

�l�1 � "0.�0/; �0 � �;
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then
fuD 0g\ C. Nl ; Nl/� C. Nl ; N�/; Nl WD l

4
; N� WD .1�!/�;

and all balls of radius Nq WD . Nl2 N��1/1��=2 which are tangent to C. Nl ; N�/ by below or above do not intersect
fuD 0g.

The fact that u is a minimizer of J is only used in a final step of the proof. This hypothesis can be
replaced by xn-monotonicity for u, or more generally by the monotonicity of u in a given direction which
is not perpendicular to en.

Definition 5.2. For a small a > 0, we denote by Da the set of points on

fuD 0g\ C
�
3
4
l; �

�
which have a paraboloid of opening �a and vertex y D .y0; yn/

Pa;y WD
˚
xn D�

a
2
jx0�y0j2Cyn

	
tangent by below in C.l; �/, and with Pa;y below the lateral boundary of C.l; �/. In other words we allow
only those polynomials Pa;y which exit C.l; �/ through the “bottom”.

We denote by Da � Rn�1 the projection of Da into Rn�1 along the en-direction.

By Proposition 4.6 we see that as long as

l�1 � a � l�2�� and l � C.�0/ (5-1)

for some � small universal (depending on � ), fuD 0g has the following property (P):

(P) In a neighborhood of any point of Da, the set fuD 0g is a graph in the en-direction of a C 2 function
with second derivatives bounded by ƒa with ƒ a universal constant.

Indeed, since a � l�1, at a point z 2 Da the corresponding paraboloid at z has a tangent ball of radius

R WD ca�1 � l2C�

by below. Since jz0j � 3
4
l we see that fuD 0g \Bl=4.z/ has a tangent ball BR.x0/ by below at z and

hypothesis (a) of Proposition 4.6 holds since

l
4
�R1=2�� :

The assumption that all balls of radius q� c.�0/l2�� �R1�� tangent by below to C.l; �/ are included
in fu < 0g gives that all balls tangent to @BR.x0/\Bl=4.z/ by below are also included in fu < 0g; hence
hypothesis (b) of Proposition 4.6 holds.

Since u is a minimizer, in any sufficiently large ball in fu < 0g we have points that satisfy u < �1C c
and hypothesis (c) holds as well. In conclusion Proposition 4.6 applies and property (P) holds.

Since fu D 0g satisfies property (P), it satisfies a general version of the weak Harnack inequality
which we proved in [Savin 2017]. In particular we are in the setting of Propositions 6.2 and 6.4 (see also
Remark 6.7) in that paper.
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This means that for any � > 0 small, there exists M.�/ depending on � and universal constants such
that if

fuD 0g\ .B 0l=2 � Œ��; .! � 1/��/¤∅; ! WD .32M/�1; (5-2)

then, by Proposition 6.2 in [Savin 2017], we obtain

Hn�1.Da \B 0l=2/� .1��/H
n�1.B 0l=2/; with a WDM ! �l�2; (5-3)

and
Da \

˚
jx0j � l

2

	
� fxn � .8M! � 1/�g D

˚
xn � �

3
4
�
	
: (5-4)

We can apply that proposition since the interval I of allowed openings of the paraboloids satisfies,
see (5-1),

I D Œ! �l�2;M! �l�2�� Œl�2��; l�1�;

provided that l � C.�; �0/ and "0 � c.
Next we let D�a denote the set of points on

D�a WD fuD 0g\
�˚
jx0j � l

2

	
�
�
�
�
2
; �
��

(5-5)

which admit a tangent paraboloid of opening a by above which exit C.l; �/ through the “top”. Also we
denote by D�a � Rn�1 the projection of D�a along en. Then according to Proposition 6.4 in [Savin 2017],
(applied “upside down”) we have

Hn�1.D�
Qa \B

0
l=2/� �0H

n�1.B 0l=2/; with QaD 8�l�2; (5-6)

for some �0 universal.
We choose � in (5-2)–(5-4) universal as

� WD 1
2
�0:

According to (5-3), (5-6) this gives

Hn�1.Da \D�Qa /�
1
2
�0Hn�1.B 0l=2/: (5-7)

Notice that by (5-4), (5-5) the sets Da and D�
Qa

are disjoint.
At this point we would reach a contradiction to (5-2) if fuD 0g were assumed to be a graph in the

en-direction. Instead we use (5-7) and show that U cannot be a minimizer.

Proof of Theorem 5.1. It suffices to show that

fuD 0g\ C
�
l
2
; l
2

�
� C

�
l
2
; .1�!/�

�
:

Then the existence of the balls of size q� l2��1 (included in fu < 0g and fu > 0g respectively) tangent
to C

�
l
4
; .1�!/�

�
follows easily as we restrict from the cylinder of size l

2
to the one of size l

4
, and the

conclusion is satisfied since Qq � q.
Assume by contradiction that (5-2) holds, and therefore (5-3), (5-7) hold as well. For each x 2 Da

the set fuD 0g has a tangent ball of radius ca�1 � cl by below. Moreover, the normal to this ball at the
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contact points in the en-direction makes a small angle which is bounded by c�l�1 � c"0. According to
Lemma 4.5 part (2) and Remark 4.4, we conclude that for any fixed constant K we have

max
.t;y/2BCK

jU.x0; xnC t; y/�G.t; y/j � �; (5-8)

with �D �.K; "0/! 0 as "0! 0.
We denote the two-dimensional half disk of radius r in the .xn; y/-variables centered at z 2 Rn as

BCr;z WD f.z
0; znC t; y/ W j.t; y/j � r; y � 0g:

From above we find for all x 2 Da, or similarly if x 2 D�a , we have

J.U;BCK;x/� J .G;BCK /� N�; (5-9)

with N�D N�.K; "0/! 0 as "0! 0.
If x0 2Da\D�Qa then by (5-4), (5-5) the two points x1D .x0; x1n/ 2Da and x2D .x0; x2n/ 2D�Qa satisfy

x2n � x
1
n �

1
4
� � 1

4
�0. By (5-8) this means that the two disks BK;xi are disjoint provided that � is small;

thus
J .U;BC

l=2;.x0;0/
/� 2.J .G;BCK /� N�/ if x0 2Da \D�Qa :

We integrate in x0 and use also (5-3), (5-7), (5-9) to obtain

J .U;Al=2/�
�
1C 1

2
�0
�
.J .G;BCK /� N�/H

n�1.B 0l=2/;

with
Al=2 WD C

�
l
2
; l
2

�
�
�
0; l
2

�
:

We choose first K large and then "0 small such that N� is sufficiently small so that

J .U;Al=2/�
�
1C 1

4
�0
�
J .G;R2C/H

n�1.B 0l=2/:

This contradicts Lemma 5.3 below provided that "0 is taken sufficiently small. �

The next lemma is a �-convergence result and it is a consequence of the minimality of U in Al=2.

Lemma 5.3.
J .U;Al=2/� J .G;R2C/H

n�1.B 0l=2/C ."0/ l
n�1; (5-10)

with ."0/! 0 as "0! 0.

Proof. We interpolate between U and V.x; y/ WDG.xn; y/ as

H D .1�'/U C'V:

Here ' is a cutoff Lipschitz function such that ' D 0 outside Al=2, ' D 1 in R and jr'j � 8=.1Cy/ in
Al=2 nR, where R is the cone

R WD
˚
.x; y/ Wmaxfjx0j; jxnjg � l

2
� 1� 2y

	
:
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By the minimality of U we have

J .U;Al=2/� J .H;Al=2/D J .V;R/CJ .H;Al=2 nR/:

Since
J .V;R/� J .V; Al=2/� J .G;R2C/H

n�1.B 0l=2/;

we need to show that
J .H;Al=2 nR/�  ln�1; (5-11)

with  arbitrarily small. We have

J .H;Al=2 nR/

� 4

Z
Al=2nR

�
jr'j2.V �U/2Cjr.V �U/j2

�
ya dx dyC

Z
D

W.u/CW.v/CC.v�u/2 dx; (5-12)

with D WD C
�
l
2
; l
2

�
n C
�
l
2
� 1; l

2
� 1

�
.

We use that jU j; jV j � 1, jrU j; jrV j � C=.1Cy/ and we see that in (5-12) the first integral in the
region where y � C1=a is bounded byZ l=2

C1=a
C1.1Cy/

�2.1Cy/ ya dy �


4
:

Next we notice that u and v are sufficiently close to each other in C
�
l
2
; l
2

�
away from a thin strip around

xn D 0. Indeed, we can use barrier functions as in Proposition 4.6, see (4-4), and bound u by above and
below in terms of the function  l=2 and distance to the hyperplanes xn D˙� . This implies

W.u/;W.v/; jv�uj �  in C
�
l
2
; l
2

�
if jxnj � C./C �;

with C./ large, depending on the universal constants and  . For the extensions U and V , this gives

jV �U j; jr.V �U/j � C2 in Al=2 if jxnj � C 0./C � and y � C1=a,

with C2 universal. Now (5-11) easily follows from (5-12). �

6. Improvement of flatness

We state the improvement-of-flatness property of minimizers.

Theorem 6.1 (improvement of flatness). Let U be a minimizer of J in Bq and assume that

0 2 fuD 0g\ C.l; l/� C.l; �/;

and that all balls of radius q WD .l2��1/1��=2 which are tangent to C.l; �/ by below and above are
included in fu < 0g and fu > 0g respectively.

Given �0 > 0 there exist � > 0 small depending on n, and "1.�0/ > 0 depending on n, W and �0 such
that if

�l�1 � "1.�0/; �0 � �;
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then

fuD 0g\ C�. Nl ; Nl/� C�. Nl ; N�/; Nl WD �l; N� WD �3=2�;

and all balls of radius Nq WD . Nl2 N��1/1��=2 which are tangent to C�. Nl ; N�/ by below and above are included
in fu < 0g and fu > 0g respectively.

Here � 2 Rn is a unit vector and C�. Nl ; N�/ represents the cylinder with axis � , base Nl and height N� .

As a consequence of this flatness theorem we obtain our main theorem.

Theorem 6.2. Let U be a global minimizer of J . Suppose that the 0 level set fuD 0g is asymptotically
flat at1. Then the 0 level set is a hyperplane and u is one-dimensional.

Proof. Without loss of generality assume u.0/D 0. Fix �0 > 0, and "� "1.�0/. We choose k sufficiently
large such that, after increasing �k if necessary we have �kl�1k D ". We can apply Theorem 6.1 since
qD .lk"

�1/1��=2� lk , and we obtain that fuD 0g is trapped in a flatter cylinder. We apply Theorem 6.1
repeatedly until the height of the cylinder becomes less than �0. We conclude that fuD 0g is trapped in a
cylinder with flatness less than " and height �0. We let first "! 0 and then �0! 0 and obtain the desired
conclusion. �

Proof of Theorem 6.1. The proof is by compactness and it follows from Theorem 5.1 and Proposition 4.7.
Assume by contradiction that there exist Uk , �k , lk , �k such that uk is a minimizer of J, uk.0/D 0, and
the level set fuk D 0g stays in the flat cylinder C.lk; �k/ with �k � �0, �kl�1k ! 0 as k!1 for which
the conclusion of Theorem 6.1 doesn’t hold.

Let Ak be the rescaling of the 0 level sets given by

.x0; xn/ 2 fuk D 0g 7! .z0; zn/ 2 Ak;

z0 D x0l�1k ; zn D xn�
�1
k :

Claim 1. Ak has a subsequence that converges uniformly on jz0j� 1
2

to a setA1D
˚
.z0; w.z0//; jz0j� 1

2

	
,

where w is a Holder continuous function. In other words, given ", all but a finite number of the Ak’s
from the subsequence are in an " neighborhood of A1.

Proof of Claim 1. Fix z00, jz00j �
1
2

and suppose .z00; zk/ 2Ak . We apply Theorem 5.1 for the function uk
in the cylinder ˚

jx0� lkz
0
0j<

1
2
lk
	
� fjxn� �kzkj< 2�kg

in which the set fuk D 0g is trapped. Thus, there exists an increasing function "0.�/ > 0, "0.�/! 0 as
� ! 0, such that fuk D 0g is trapped in the cylinder˚

jx0� lkz
0
0j<

1
8
lk
	
� fjxn� �kzkj< 2.1�!/�kg

provided that 4�kl�1k � "0.2�k/. Rescaling back we find that

Ak \
˚
jz0� z00j �

1
8

	
� fjzn� zkj � 2.1�!/g:
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We apply the Harnack inequality repeatedly and we find that

Ak \fjz
0
� z00j � 2

�2m�1
g � fjzn� zkj � 2.1�!/

m
g (6-1)

provided that
�kl
�1
k � 4

�m�1"0.2.1�!/
m�k/:

Since these inequalities are satisfied for all k large we conclude that (6-1) holds for all but a finite number
of k’s. Now the claim follows from Arzelà–Ascoli theorem. �

Claim 2. The function w is harmonic (in the viscosity sense).

Proof of Claim 2. The proof is by contradiction. Fix a quadratic polynomial

zn D P.z
0/D 1

2
z0
T
Mz0C � � z0; kMk< ı�1; j�j< ı�1;

such that trM > ı and P.z0/C ıjz0j2 touches the graph of w, say, at 0 for simplicity, and stays below w

in jz0j< 8ı for some small ı. Notice that at all points in the cylinder jz0j< 2ı, the quadratic polynomial
above admits a tangent paraboloid by below of opening �ı�2 which is below zn D�2 when jz0j � 6ı.

Thus, for all k large we find points .zk 0; zkn/ close to 0 such that P.z0/C const touches Ak by below
at .zk 0; zkn/ and stays below it in jz0� zk 0j< ı.

This implies that, after eventually a translation, there exists a surface

� WD

�
xn D

�k

l2
k

1

2
x0
T
Mx0C

�k

lk
�k � x

0

�
; j�kj< 2ı

�1;

that touches fukD 0g at the origin and stays below it in C.ılk; 2�k/. Moreover in the cylinder C
�
1
2
lk; 2�k

�
the surface � admits at all points with jx0j � ıl a tangent ball by below of radius ı2l2

k
��1
k
� q. In view

of our hypothesis we conclude that � \Bılk admits at all its points a tangent ball of radius q by below
which is included in fu < 0g.

We contradict Proposition 4.7 by choosing R as

R�1 WD C�1 ı �kl
�2
k ;

with C the constant from Proposition 4.7 and with "D ı2. Then for all large k we have

�kl
�1
k j�kj � "; �kl

�2
k kMk � "

�2R�1; ılk �R
1=2��; q �R1��;

and Proposition 4.7 applies. We obtain trM � ı and we have reached a contradiction. �

Since w is harmonic, there exists 0 < � small depending only on n such that

jw� � � z0j< 1
2
�3=2 for jz0j< 2� ;

and the parabolas of opening �C tangent by below (and above) to

zn D � � z
0
˙
1
2
�3=2

in the cylinder jz0j< 2� lie below (or above) to the graph of w.
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Rescaling back and using the fact that the Ak’s converge uniformly to the graph of w and that Nq < q we
easily conclude that uk satisfies the conclusion of Theorem 6.1 for k large enough, and we have reached
a contradiction. �
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