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The ill-posedness of Calderón’s inverse conductivity problem, responsible for the poor spatial resolution
of electrical impedance tomography (EIT), has been an impetus for the development of hybrid imaging
techniques, which compensate for this lack of resolution by coupling with a second type of physical wave,
typically modeled by a hyperbolic PDE. We show in two dimensions how, using EIT data alone, to use
propagation of singularities for complex principal-type PDEs to efficiently detect interior jumps and other
singularities of the conductivity. Analysis of variants of the CGO solutions of Astala and Päivärinta (Ann.
Math. (2) 163:1 (2006), 265–299) allows us to exploit a complex principal-type geometry underlying
the problem and show that the leading term in a Born series is an invertible nonlinear generalized Radon
transform of the conductivity. The wave front set of all higher-order terms can be characterized, and,
under a prior, some refined descriptions are possible. We present numerics to show that this approach is
effective for detecting inclusions within inclusions.
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1. Introduction

Electrical impedance tomography (EIT) aims to reconstruct the electric conductivity, σ, inside a body from
active current and voltage measurements at the boundary. In many important applications of EIT, such
as medical imaging [Assenheimer et al. 2001; Cheney et al. 1999; Isaacson et al. 2006] and geophysical
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prospecting, the primary interest is in detecting the location of interfaces between regions of inhomoge-
neous but relatively smooth conductivity. For example, the conductivity of bone is much lower than that of
either skin or brain tissue, so there are jumps in conductivity of opposite signs as one transverses the skull.

In this paper we present a new approach in two dimensions to determining the singularities of a
conductivity from EIT data. Analyzing the complex geometrical optics (CGO) solutions, originally
introduced by Sylvester and Uhlmann [1987] and in the form required here by Astala and Päivärinta
[2006a] and Huhtanen and Perämäki [2012], we transform the boundary values of the CGO solutions,
which are determined by the Dirichlet-to-Neumann map [Astala and Päivärinta 2006b], in such a way as
to extract the leading singularities of the conductivity, σ.

We show that the leading term of a Born series derived from the boundary data is a nonlinear Radon
transform of σ and allows for good reconstruction of the singularities of σ, with the higher-order terms
representing multiple scattering. Although one cannot escape the exponential ill-posedness inherent in EIT,
the well-posedness of Radon inversion results in a robust method for detecting the leading singularities
of σ. In particular, one is able to detect inclusions within inclusions (i.e., nested inclusions) within an
unknown inhomogeneous background conductivity; this has been a challenge for other EIT methods.
This property is crucial for one of the main applications motivating this study, namely using EIT for
classifying strokes as ischemic (caused by an embolism preventing blood flow to part of the brain) or
hemorrhagic (caused by bleeding in the brain); see [Holder 1992a; 1992b; Malone et al. 2014].

Our algorithm consists of two steps, the first of which is the reconstruction of the boundary values
of the CGO solutions, and this is known to be exponentially ill-posed, i.e., satisfy only logarithmic
stability estimates [Knudsen et al. 2009]. The second step begins with a separation of variables and
partial Fourier transform in the radial component of the spectral variable. Thus, one instability of our
algorithm arises from the exponential instability of the reconstruction of the CGO solutions from the
Dirichlet-to-Neumann map. Another instability arises from low-pass filtering in Fourier inversion (similar
to those of regularization methods used for CT and other linear inverse problems), and (presumably) the
multiple scattering terms in the Born series we work with, which we only control rigorously for low orders
and under some prior. Nevertheless, based on both the microlocal analysis and numerical simulations we
present, the method appears to allow for robust detection of singularities of σ, in particular the location and
signs of jumps. See Section 1A for further discussion of the ill-posedness issues raised by this method.

EIT can be modeled mathematically using the inverse conductivity problem of [Calderón 1980].
Consider a bounded, simply connected domain �⊂ Rn with smooth boundary and a scalar conductivity
coefficient σ ∈ L∞(�) satisfying σ(x)≥ c > 0 almost everywhere. Applying a voltage distribution f at
the boundary leads to the elliptic boundary-value problem

∇ · σ∇u = 0 in �, u|∂� = f. (1-1)

Infinite-precision boundary measurements are then modeled by the Dirichlet-to-Neumann map

3σ : f 7→ σ
∂u
∂ En

∣∣∣∣
∂�

, (1-2)

where En is the outward normal vector of ∂�.
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Astala and Päivärinta [2006b] transformed the construction of the CGO solutions in two dimensions
by reducing the conductivity equation to a Beltrami equation. Identify R2 with C by setting z = x1+ i x2

and define the Beltrami coefficient
µ(z)=

1− σ(z)
1+ σ(z)

.

Since c1 ≤ σ(z)≤ c2, we have |µ(z)| ≤ 1− ε for some ε > 0. Further, if we assume σ ≡ 1 outside some
�0 b�, then supp(µ)⊂�0. Now consider the unique solution of

∂̄z f±(z, k)=±µ(z)∂z f±(z, k), e−ikz f±(z, k)= 1+ω±(z, k), (1-3)

where ikz = ik(x1+ i x2) and ω±(z, k)=O(1/|z|) as |z|→∞. Here z is considered as a spatial variable
and k ∈ C as a spectral parameter. We note that u = Re f+ satisfies (1-1), and denote ω± by ω±µ when
emphasizing dependence on the Beltrami coefficient µ. Recently, this technique has been generalized
also for conductivities that are not in L∞(�) but only exponentially integrable [Astala et al. 2016].

The two crucial ideas of the current work are:

(i) To analyze the scattering series, we use the modified construction of Beltrami-CGO solutions of
[Huhtanen and Perämäki 2012], which only involves exponentials of modulus 1 and where the solutions
are constructed as a limit of an iteration of linear operations. This differs from the original construction
of [Astala and Päivärinta 2006b], where the construction of the exponentially growing solutions is based
on the Fredholm theorem.

(ii) To transform the CGO solutions, we introduce polar coordinates in the spectral parameter k, followed
by a partial Fourier transform in the radial direction.

These ideas are used as follows: Formally one can view the Beltrami equation (1-3) as a scattering
equation, where µ is considered as a compactly supported scatterer and the “incident field” is the constant
function 1. Using (i), we write the CGO solutions ω± as a “scattering series”,

ω±(z, k)∼
∞∑

n=1

ω±n (z, k), (1-4)

considered as a formal power series (see Theorem 1.1)
Using (ii), we decompose k = τeiϕ and then, for each n, form the partial Fourier transform of the

n-th order scattering term from (1-4) in τ , denoting these by

ω̂±n (z, t, eiϕ) := Fτ→t(ω
±

n (z, τeiϕ)). (1-5)

As is shown in Section 5B, singularities in σ can be detected from averaged versions of ω̂±1 , denoted
by ω̂a,±

1 , formed by taking a complex contour integral of ω̂±1 (z, t, eiϕ) over z ∈ ∂�; see Figure 1.
Recall that the traces of CGO solutions ω± can be recovered perfectly from infinite-precision data 3σ

[Astala and Päivärinta 2006a; 2006b]. When σ is close to 1, the single-scattering term ω±1 is close
to ω±. Figure 1 suggests that what we can recover resembles parallel-beam X-ray projection data of the
singularities of µ. Indeed, we derive approximate reconstruction formulae for µ (thus mildly nonlinear
in σ ), analogous to the classical filtered back-projection method of X-ray tomography.
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no jump jump down jump up

Figure 1. The method provides information about inclusions within inclusions in an
unknown inhomogeneous background. Jump singularities in the conductivity show up in
the function values much like in parallel-beam X-ray tomography: recording integrals
along parallel lines over the coefficient function. This is illustrated using stroke-like
computational phantoms. Left: Intact brain. Dark blue ring, with low conductivity,
models the skull. Middle: Ischemic stroke, or blood clot preventing blood flow to the
dark blue area. The conductivity in the affected area is less than that of the background.
Right: Hemorrhagic stroke, or bleeding in the brain. The conductivity in the affected area
is greater than the background. The function shown is T a,+µ(t/2, eiϕ)−T a,−µ(t/2, eiϕ),
and ϕ indicates a direction perpendicular to the virtual “X-rays”.

The wave front sets of all of the terms ω̂±n are analyzed in Theorem 7.2. More detailed descriptions
of the initial three terms, ω̂±1 , ω̂±2 and ω̂±3 , identifying the latter two as sums of paired Lagrangian
distributions under a prior on the conductivity, are given in Section 5A, 6 and 9, respectively.

Let X = {µ ∈ L∞(�) : ess supp(µ)⊂�0, ‖µ‖L∞(�) ≤ 1− ε}, recalling that �0 b�. The expansion
in (1-4) comes from the following:

Theorem 1.1. For k ∈ C, define nonlinear operators W±( · ; k) : X→ L2(�) by

W±(µ; k)(z) := ω±µ (z, k).

Then, at any µ0 ∈ X , we know W±( · ; k) has Fréchet derivatives in µ of all orders n ∈ N, denoted by
DnWk |µ0 , and the multiple scattering terms in (1-4) are given by

ω±n = [D
nW±k (µ,µ, . . . , µ)]|µ=0. (1-6)

The n-th order scattering operators,

T±n : µ 7→ ω̂±n := Fτ→t(ω
±

n (z, τeiϕ)), z ∈ ∂�, t ∈ R, eiϕ
∈ S1, (1-7)

which are homogeneous forms of degree n in µ, have associated multilinear operators whose Schwartz
kernels Kn have wave front relations which can be explicitly computed. See formulas (5-6) and (5-7) for
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the case n = 1 and (4-14) for n ≥ 2. K1 is a Fourier integral distribution; K2 is a generalized Fourier
integral (or paired Lagrangian) distribution; and for n ≥ 3, Kn has wave front set contained in a union of
a family of 2n−1 pairwise cleanly intersecting Lagrangians.

Singularity propagation for the first-order scattering ω̂±1 is described by a Radon-type transform and a
filtered back-projection formula; see [Kuchment 2014].

Theorem 1.2. Define averaged operators T a,±
n for n ∈ N and T a,± by the complex contour integrals1

T a,±
n µ(t, eiϕ)=

1
2π i

∫
∂�

ω̂±n (z, t, eiϕ) d z, (1-8)

T a,±µ(t, eiϕ)=
1

2π i

∫
∂�

ω̂±(z, t, eiϕ) d z, (1-9)

with ω±n defined via formulas (1-6)–(1-7) and ω± defined via (1-3). Then we have

(−1)−1/2(T a,±
1 )∗T a,±

1 µ= µ. (1-10)

Theorem 1.2 suggests an approximate reconstruction algorithm:

• Given 3σ , follow [Astala et al. 2011, Section 4.1] to compute both ω+(z, k) and ω−(z, k) for z ∈ ∂�
by solving the boundary integral equation derived in [Astala and Päivärinta 2006a].

• Introduce polar coordinates in the spectral variable k and compute the partial Fourier transform,
ω̂±(z, t, eiϕ).

• Using the operator T a,± defined in (1-9), we compute µ̃+ := 1−1/2(T a,+
1 )∗T a,+µ and µ̃− :=

1−1/2(T a,−
1 )∗T a,−µ. Note the difference with (1-10).

• Approximately reconstruct by σ = (µ− 1)/(µ+ 1)≈ (µ̃− 1)/(µ̃+ 1), where µ̃= (µ̃+− µ̃−)/2.
The approximation comes from using T a,±µ instead of T a,±

1 µ in the previous step.

See the middle column of Figure 2 for an example.
One can also use the identity (T a,±

1 )∗T a,±
1 = (−1)1/2 to enhance the singularities in the reconstruction.

This is analogous to 3-tomography in the context of linear X-ray tomography [Faridani et al. 1992; 1997].
See the right-most column in Figure 2 for reconstructions using the operator (T a,±

1 )∗T a,±.

Our general theorem on singularity propagation is quite technical, and so we illustrate it here using a
simple example, postponing the precise statement and proof to Section 7 below.

Assume that the conductivity is of the form σ(z)= σ(|z|) and smooth except for a jump across the
circle |z| =ρ. One can describe the singular supports of the ω̂±n (z, t, eiϕ). For m ∈N, define hypersurfaces

5m = {(z, t, eiϕ) ∈ C×R×S1
: t = 2ρm}.

Using the analysis later in the paper, one can see that(
sing supp(ω̂±n )∩ {(z, t, eiϕ); |z| ≥ 1}

)
⊂

⋃
{5m : −n ≤ m ≤ n, m ≡ n mod 2}.

1Throughout, d z will denote the element of complex contour integration along a curve, while d1x is arc length measure. We
denote by d2z two-dimensional Lebesgue measure in C.
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conductivity filtered back-projection 3-tomography

Figure 2. Reconstructions, of computational phantoms modeling ischemic strokes (top
row) and hemorrhagic strokes (bottom row), from very high precision simulated EIT data.
The results are promising for portable, cost-effective classification of strokes without use
of ionizing radiation.

However, it turns out that, by a parity symmetry property described in Section 8 , subtracting ω̂− from ω̂+

eliminates the even terms, ω̂±2n , so that their singularities, including a strong one for ω̂±2 at t = 0, do not
create artifacts in the imaging. See Figure 3 for a diagram of singularity propagation in the case ρ = 0.2.

1A. Ill-posedness, noise and deconvolution. The exponential ill-posedness of the Calderón inverse
problem (i.e., it satisfies a stability estimate of only logarithmic type) has important consequences for
EIT with realistic data. Calderón inverse problems for elliptic equations were shown to be exponentially
ill-posed in [Mandache 2001]. Corresponding to this, in [Knudsen et al. 2009, Lemma 2.4] it was
shown that when the Dirichlet-to-Neumann map is given with error ε, the boundary values of the
CGO solutions, or equivalently, ω(z, k)|z∈∂�, can be found with accuracy ε only for the frequencies
|k| ≤ Rε = c log(ε−1).

This exponential instability holds even under the prior that conductivities consist of inclusions [Alessan-
drini and Di Cristo 2005]. Furthermore, inclusions need to have a minimum size to be detectable
[Alessandrini 1988; Isaacson 1986; Cheney and Isaacson 1992], and in order to appear in reconstructions,
the deeper inclusions are inside an object, the larger they must be [Nagayasu et al. 2009; Alessandrini
and Scapin 2017; Garde and Knudsen 2017]. Finally, the resolution of reconstructions is limited by
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Figure 3. (a) Three-dimensional plot of the conductivity having a jump along the circle
with radius ρ = 0.2 and center at the origin. (b) Unit disc and singular support of the
conductivity in the z-plane, where z = x1 + i x2. (c) The term T a,+

1 µ(t, ei0) has peaks,
indicated by blue arrows, at t=±2ρ corresponding to the locations of the main singularities
in µ, as expected by Theorem 1.2. The higher-order term T a,+

3 µ(t, ei0), smaller than
T a,+

1 µ(t, ei0) in amplitude, exhibits singularities caused by reflections at both t =±2ρ
and t =±6ρ. (d) The singularities of the term T a,+

3 µ(t, ei0) at t =±6ρ are very small.
Shown is a zoom-in near t = 6ρ, with amplitude increased by a factor of 70.

noisy data. It is natural to ask how these limitations are reflected in the approach described in this
paper.

Our results show that the part of the conductivity’s wave front set in the direction specified by ϕ is
seen as specific singularities in the function ω̂±(z, · , eiϕ), defined in (1-5). However, due to algebraic
decay of the principal symbol of a Fourier integral operator, the amplitude of the measured singularity is
bounded by C dist(∂�, z)−1, making it harder to recover details deep inside the imaging domain.

Furthermore, with realistic and noisy data, we can compute ω±(z, k) only in a disc |k| ≤ kmax with
a measurement apparatus and noise-dependent radius kmax > 0; see [Knudsen et al. 2009; Astala et al.
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2011; 2014]. With smaller noise we can take a larger kmax, whereas large noise forces kmax to be small.
This makes it more difficult to locate singularities precisely.

To better understand the difficulty, consider the truncated Fourier transform:∫ kmax

−kmax

e−i tτω±(z, τeiϕ) dτ =
∫
∞

−∞

e−i tτω±(z, τeiϕ)χkmax(τ ) dτ, (1-11)

where χkmax(τ ) is the characteristic function of the interval [−kmax, kmax]. Note that

χ̂kmax(t)= C
sin(kmax t)

t
(1-12)

with a constant C ∈ R. Noise forces us to replace the Fourier transform in (1-5) by a truncated integral
such as (1-11). Therefore, we need to apply one-dimensional deconvolution in t to recover ω̂±(z, · , eiϕ)

approximately from ω̂±(z, · , eiϕ)∗ χ̂kmax . Higher noise level means a smaller kmax, which by (1-12) leads
to a wider blurring kernel χ̂kmax ; due to the Nyquist–Shannon sampling theorem, this results in a more
ill-posed deconvolution problem and thus limits the imaging resolution.

In practice it is better to use a smooth windowing function instead of the characteristic function
for reducing unwanted oscillations (Gibbs phenomenon), and there are many suitable deconvolution
algorithms in the literature [Chen et al. 2001; Candès and Fernandez-Granda 2013; 2014].

It is also natural to ask how the method introduced here compares to previous work in terms of detecting
inclusions and jumps.

Many methods have been proposed for regularized edge detection from EIT data. Examples include
the enclosure method [Ikehata 2000; Ikehata and Siltanen 2000; 2004; Brühl and Hanke 2000; Ide
et al. 2007; Uhlmann and Wang 2008], the factorization method [Kirsch 1998; Brühl and Hanke 2000;
Lechleiter 2006; Lechleiter et al. 2008], the monotonicity method [Harrach and Ullrich 2013; 2015].
These methods can only detect the outer boundary of an inclusion in conductivity, whereas the method
described here, which exploits the propagation of singularities for complex principal-type operators,
can see nested jump curves. Also, the proposed method can deal with inclusions within inclusions, and
with conductivities having both positive and negative jumps, even in unknown inhomogeneous smooth
background.

One can also attempt edge detection based on EIT algorithms originally designed for reconstructing
the full conductivity distribution. There are two main approaches: sharpening blurred EIT images in
data-driven postprocessing [Hamilton et al. 2014; 2016], and applying sparsity-promoting inversion
methods such as total variation regularization [Dobson and Santosa 1994; Kaipio et al. 2000; Rondi and
Santosa 2001; Chan and Tai 2004; Chung et al. 2005; Tanushev and Vese 2007; van den Doel and Ascher
2006; Jin and Maass 2012; Garde and Knudsen 2016; Zhou et al. 2015]. As of now, the former approach
does not have rigorous analysis available. Some of the latter kinds of approaches are theoretically capable
of detecting nested inclusions; however, in variational regularization there is typically an instability
issue, where a large low-contrast inclusion may be represented by a smaller high-contrast feature in the
reconstruction. Numerical evidence suggests that method introduced here can accurately and robustly
reconstruct jumps, both in terms of location and sign.
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2. Complex principal-type structure of CGO solutions

We start by describing the microlocal geometry underlying the exponentially growing, or so-called complex
geometrical optics (CGO), solutions to the conductivity equation on Rd, d ≥ 2,

∇ · σ∇u(x)= 0, x ∈ Rn, (2-1)

originating in [Sylvester and Uhlmann 1987]. For complex frequencies ζ = ζR + iζI ∈ Cn with ζ · ζ = 0,
one can decompose ζ as ζ = τη, with τ ∈R and η= ηR+ iηI , |ηR| = |ηI | = 1, ηR ·ηI = 0. Now consider
solutions to (2-1) of the form

u(x) := eiζ ·xw(x, τ )= eiτη·xw(x, τ ).

Physically speaking, τ can be considered as a spatial frequency, with the voltage on the boundary ∂�
oscillating at length scale τ−1.

The conductivity equation (2-1) becomes

0= 1
σ
∇ · σ∇u(x)= 1

σ
∇ · σ∇(eiτη·xw(x, τ ))

=

(
1+

(
1
σ
∇σ

)
· ∇

)
(eiτη·xw(x, τ ))

=

(
1w(x, τ )+ 2iτη · ∇w(x, τ )+

(
1
σ
∇σ

)
· (∇ + iτη)w(x, τ )

)
eiτη·x .

Hence, we have

1w(x, τ )+ 2iτη · ∇w(x, τ )+
(

1
σ
∇σ

)
· (∇ + iτη)w(x, τ )= 0.

Taking the partial Fourier transform ŵ in the τ -variable and denoting the resulting dual variable by t ,
which can be thought of as a “pseudo-time”, one obtains

1ŵ(x, t)− 2η ∂
∂t
· ∇ŵ(x, t)+

(
1
σ
∇σ

)
·

(
∇ − η

∂

∂t

)
ŵ(x, t)= 0.

The principal part of this equation is given by the operator

�̃= PR + iPI =1− 2η ∂
∂t
· ∇,

where
PR =1− 2ηR

∂

∂t
· ∇ and PI =−2ηI

∂

∂t
· ∇.

With ξ the variable dual to x , the full symbols of PR and PI are

pR(x, t, ξ, τ )=−ξ 2
+ 2τηR · ξ, pI (x, t, ξ, τ )= 2τηI · ξ,

and these commute in the sense of Poisson brackets: {pR, pI } = 0. Furthermore, on the characteristic
variety

6 := {(x, t, ξ, τ ) ∈ Rd+1
× (Rd+1

\ {0}) : pR(x, t, ξ, τ )= 0, pI (x, t, ξ, τ )= 0}

= {(x, t, ξ, τ ) ∈ Rd+1
× (Rd+1

\ {0}) : |ξ |2− 2τηR · ξ = 0, 2τηI · ξ = 0}

= {(x, t, ξ, τ ) ∈ R2
×R×R2

× (R \ {0}) : ξ = 2τηR or ξ = 0},
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the gradients dpR = (−2ξ + 2τηR, 2ηR · ξ) and dpI = (2τηI , 2ηI · ξ) are linearly independent. Finally,
no bicharacteristic leaf (see below) is trapped over a compact set. Thus, �̃ = PR + iPI is a complex
principal-type operator in the sense of [Duistermaat and Hörmander 1972].

Recall that for a real principal-type operator, such as ∂/∂x1 in Rm, m ≥ 2, or the d’Alembertian
wave operator, the singularities propagate along curves (the characteristics); for instance, for the wave
equation, singularities propagate along light rays. Complex principal-type operators, such as ∂x1 + i∂x2

in Rm, m ≥ 3, or the operator �̃ above, also propagate singularities, but now along two-dimensional
surfaces, called leaves, which are the spatial projections of the bicharacteristic surfaces formed by the
joint flowout of HpR , HpI . For the operator �̃ above, this roughly means that if �̃ŵ(x, t)= f̂ (x, t) and
(x0, t0, ξ0, τ0) ∈6 is in the wave front set of f̂ (x, t), then the wave front set of ŵ(x, t) contains a plane
through this point. See [Duistermaat and Hörmander 1972, Section 7.2] for detailed statements.

In the situation relevant for this paper, the x-projection of any bicharacteristic leaf is all of R2 and thus
reaches all points of �. Thus, complete information about σ in the interior is accessible to boundary
measurements made at any point on ∂�. We will see below that although this is the case, using suitable
weighted integrals over the boundary produces far superior imaging; however, this is due to the amplitudes,
not the underlying geometry.

For the remainder of the paper, we limit ourselves to the Calderón problem in R2; we begin by recalling
the complex Beltrami equation formalism and CGO solutions of [Astala and Päivärinta 2006b], as well as
their modification in [Huhtanen and Perämäki 2012]. The complex analysis in these approaches reflects
the complex principal-type structure discussed above, disguised by the fact that we are working in two
dimensions.

3. Conductivity equations and CGO solutions

On a domain �⊂R2
=C, let σ ∈ L∞(�) be a strictly positive conductivity, σ ≡ 1 near ∂�, and extended

to be≡ 1 outside of�. The complex frequencies ζ ∈C2 with ζ ·ζ = 0 may be parametrized by ζ = (k, ik),
k ∈ C; thus, with z = x1+ i x2, one has ζ · x = kz. Following [Astala and Päivärinta 2006b], consider
simultaneously the conductivity equations for the two scalar conductivities σ and σ−1,

∇ · σ∇u1 = 0, u1 ∼ eikz, (3-1)

∇ · σ−1
∇u2 = 0, u2 ∼ eikz. (3-2)

The complex geometrical optics (CGO) solutions of [Astala and Päivärinta 2006b], see also [Astala et al.
2010; 2014; Brown and Uhlmann 1997; Caro and Rogers 2016; Greenleaf and Uhlmann 2001; Haberman
2015; Haberman and Tataru 2013; Hamilton et al. 2012; Knudsen 2003; Knudsen et al. 2007; Nachman
1996], are specified by their asymptotics u j ∼ eikz , meaning that for all k ∈ C,

u j (z, k)= eikz
(

1+O
(

1
z

))
as |z| →∞. (3-3)

The CGO solutions are constructed via the Beltrami equation

∂̄z fµ = µ∂z fµ, (3-4)
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where the Beltrami coefficient µ is defined in terms of σ by

µ :=
1− σ
1+ σ

. (3-5)

The Beltrami coefficient µ is a compactly supported, (−1, 1)-valued function and, due to the assumption
that 0< c1 ≤ σ ≤ c2 <∞, one has |µ| ≤ 1− ε for some ε > 0. It was shown in [Astala and Päivärinta
2006b] that (3-4) has solutions for coefficients µ and −µ of the form

fµ(z, k)= eikz(1+ω+(z, k)) and f−µ(z, k)= eikz(1+ω−(z, k)), (3-6)
with

ω±(z, k)=O
(

1
|z|

)
as |z| →∞.

The various CGO solutions are then related by the equation

2u1(z, k)= fµ(z, k)+ f−µ(z, k)+ fµ(z, k)− f−µ(z, k), (3-7)

which follows from the fact that the real part of fµ(z, k) solves (3-1), while the imaginary part solves (3-2).

In this work we will mainly focus on ω+, henceforth denoted simply by ω; however, we will use ω− in
the symmetry discussion in Section 8. Both of these can be extracted from voltage/current measurements
for σ at the boundary, ∂�, as encoded in the Dirichlet-to-Neumann (DN) map of (3-1). For the most part
we will suppress the superscripts ±, with it being understood in the formulas that for ω±, one uses ±µ.

Huhtanen and Perämäki [2012] introduced the following modified derivation of ω, which, by avoiding
issues caused by the exponential growth in the k⊥-directions, is highly efficient from a computational
point of view.

Let ek(z) := exp(i(kz+ k̄ z̄))= exp(i2 Re(kz)); note that |ez(z)| ≡ 1 and ēk = e−k . Define, as in [Astala
and Päivärinta 2006a; 2006b],

ν(z, k) := e−k(z)µ(z) and α(z, k) := −i k̄e−k(z)µ(z). (3-8)

Both α and ν are compactly supported in �; since ∂̄ω = ν∂ω+ αω̄+ α, we see that ∂̄ω is compactly
supported as well. For future use, also note that

ν̄(z, k)= ek(z)µ(z) and ᾱ(z, k)= ikek(z)µ(z). (3-9)

Astala and Päivärinta [2006b, (4.8)] showed that ω(z, k) satisfies the inhomogeneous Beltrami equation

∂̄ω− ν∂ω−αω̄ = α, (3-10)

where the Cauchy–Riemann operator ∂̄ and derivative ∂ are taken with respect to z. Recall the (solid)
Cauchy transform P and Beurling transform S, defined by

P f (z)=− 1
π

∫
C

f (z1)

z1− z
d2z1, (3-11)

Sg(z)=− 1
π

∫
C

g(z1)

(z1− z)2
d2z1, (3-12)

which satisfy ∂̄P = I, S = ∂P and S∂̄ = ∂ on C∞0 (C); see [Astala et al. 2009].
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It is shown in [Huhtanen and Perämäki 2012], using the results of [Astala and Päivärinta 2006b], that
(3-10) has a unique solution ω ∈ W 1,p(C) for 2 < p < pε := 1+ 1/(1− ε), where ε > 0 is such that
|µ| ≤ 1−ε. Now define u on � by ū =−∂̄ω; note that u ∈ L p(�), ω=−Pū and ∂ω=−Sū. Rewriting
(3-10) in terms of u leads to

−ū− ν(−Sū)−α(−Pū)= α.

Using (3-8), this further simplifies to

u+ (−ν̄S− ᾱP)ū =−ᾱ, (3-13)

which then can be expressed as the integral equation

(I + Aρ)u =−ᾱ, (3-14)

where ρ( f ) := f̄ denotes complex conjugation and A := (−ᾱP − ν̄S). As shown in [Astala and
Päivärinta 2006b, Huhtanen and Perämäki 2012, Section 2], I + A is invertible on L p(�). Denote by
U (k, µ)= u( · , k)|� the restriction to � of the unique solution to (3-14), and hence (3-13).

4. Fréchet differentiability and the Neumann series

We now come to the key construction of the paper. For ε > 0 and any �0 b�, let

X = {µ ∈ L∞(�) : ess supp(µ)⊂�0, ‖µ‖L∞(�) ≤ 1− ε}.

Furthermore, define Y to be the closure of C∞(�) with respect to

||u||Y := ‖u‖L2(�)+‖ u|∂� ‖L∞(∂�).

For k ∈ C, let Uk be the R-linear map Uk : X → L2(�), given by Uk(µ)= uµ( · , k), where uµ(z, k) is
the unique solution u = uµ( · , k) ∈ L2(�) of (3-13). Define Wk : X→ Y by

Wkµ= ωµ( · , k)=−P(uµ( · , k)).

4A. Fréchet differentiability. We will show that, for each k ∈C, Wk is a C∞-map X→Y and analyze its
Fréchet derivatives at µ0 = 0. For each k, one can solve (3-14) by a Neumann series which converges for
‖µ‖L∞ sufficiently small. We analyze the individual terms of the series by introducing polar coordinates
in the k-plane, k = τeiϕ, and then taking the partial Fourier transform in τ . The leading term in the
Neumann series will be the basis for the edge-detection imaging technique that is the main point of the
paper, while the higher-order terms are transformed into multilinear operators acting on µ. The remainder
of the paper will then be devoted to understanding the Fourier-transformed terms, using the first derivative
for effective edge detection in EIT and obtaining partial control over the higher derivatives.

Theorem 4.1. The map Uk : X → L2(�), Uk(µ) := uµ( · , k), is infinitely Fréchet-differentiable with
respect to µ, and its Fréchet derivatives are real-analytic functions of k ∈ C. Moreover, for p ≥ 1, its
p-th order Fréchet derivative at µ= 0 in the direction (µ1, µ2, . . . , µp) ∈ (L2(�0))

p satisfies∥∥∥∥D pUk

Dµp

∣∣∣∣
µ=0

(µ1, µ2, . . . , µp)

∥∥∥∥
L2(�)

≤ C p(1+ |k|)p
‖µ1‖L2(�) · ‖µ2‖L2(�) · · · ‖µp‖L2(�) (4-1)
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for some C p > 0. In particular, the first Fréchet derivative has the form

DUk

Dµ

∣∣∣∣
µ=0

(µ1)=−Pρ(ike−kµ1). (4-2)

Moreover, for k ∈ C the map Wk : X→ Y,

Wk(µ) := ωµ( · , k)=−Pρ(uµ( · , k)),

is infinitely Fréchet-differentiable with respect to µ and its Fréchet derivatives are real-analytic functions
of k ∈ C.

Proof. We can rewrite (3-13) for u = uµ( · , k) ∈ L2(�) as

(I − ekµSρ)u+ ikekµPρu = ikekµ. (4-3)

On the left-hand side, ek andµ denote pointwise multiplication operators with the functions ek(z) andµ(z),
respectively; on the right, ek(z)µ(z) is an element of L2(�).

Since ‖ρ‖L2(�)→L2(�)=1, ‖S‖L2(�)→L2(�)=1, and ‖µ‖L∞(�)<1, the inverse operator (I−ekµSρ)−1
:

L2(�)→ L2(�) exists and is a Cω function (i.e., a real analytic function) of k. Thus, (4-3) can be
rewritten as

(I − Bµ,k)u = Kµ,k(ikekµ), (4-4)

where
Kµ,ku = (I − ekµSρ)−1u, Bµ,ku = Kµ,k(ikekµPρu). (4-5)

Since P : L2(�)→ L2(�) is a compact operator, (4-5) defines a compact operator Bµ,k : L2(�)→ L2(�).
To find the kernel of I − Bµ,k , consider u0

∈ L2(�) satisfying (I − Bµ,k)u0
= 0. Then,

(I − ekµSρ)u0
+ ikekµPρu0

= 0. (4-6)

When we consider P, given in (3-11), as an operator P : L2(�)→ L2
loc(C), equation (4-6) yields that

f 0(z)=−eikz(Pū)(z) ∈ L2
loc(C) satisfies

∂̄z f 0(z)= µ(z) ∂z f 0(z), z ∈ C,

e−ikz f 0(z)=O
(

1
|z|

)
as |z| →∞.

(4-7)

By [Astala and Päivärinta 2006b], the solution f 0 of (4-7) has to be zero. Hence,

u0(z)=−∂(e−ikz f 0(z))= 0

and the operator I − Bµ,k : L2(�)→ L2(�) is one-to-one. Thus the Fredholm equation (4-4) is uniquely
solvable and we can write its solutions as u = uµ( · , k),

uµ( · , k)= (I − Bµ,k)−1Kµ,k(ikekµ). (4-8)

By the analytic Fredholm theorem, the maps k 7→ Kµ,k and k 7→ (I − Bµ,k)−1 are real-analytic, C→

L(L2(�), L2(�)), where L(L2(�), L2(�)) is the space of the bounded linear operators L2(�)→ L2(�).
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Define

K (p)
=

D p

Dµp Kµ,k

∣∣∣∣
µ=0

and B(p) =
D p

Dµp Bµ,k

∣∣∣∣
µ=0

.

Since Kµ,k |µ=0 = I, we see that

K (p)(µ1, µ2, . . . , µp)=
∑
σ

(ekµσ(1)Sρ) ◦ (ekµσ(2)Sρ) ◦ · · · ◦ (ekµσ(p)Sρ),

where the sum is taken over permutations σ : {1, 2, . . . , p} → {1, 2, . . . , p}. Furthermore, one has

B(p)(µ1, µ2, . . . , µp)= K (p−1)(µ2, µ3, µ4, . . . , µp) ◦ (ikekµ1 Pρ)

+ K (p−1)(µ1, µ3, µ4, . . . , µp) ◦ (ikekµ2 Pρ)

+ K (p−1)(µ1, µ2, µ4, . . . , µp) ◦ (ikekµ3 Pρ)

+ · · ·+ K (p−1)(µ1, µ2, . . . , µp−1) ◦ (ikekµp Pρ).

We can compute the higher-order derivatives

D p

Dµp (I − Bµ,k)−1
∣∣∣∣
µ=0

,

in the direction (µ1, µ2, . . . , µp), using the polarization identity for symmetric multilinear functions, if
these derivatives are known in the case when µ1 = µ2 = · · · = µp. In the latter case the derivatives can
be computed using Faà di Bruno’s formula, which generalizes the chain rule to higher derivatives,

d p

dt p f (g(t))=
∑ p!

m1!m2! · · · m p!
· f (m1+···+mn)(g(t)) ·

n∏
j=1

(
g( j)(t)

j !

)m j

,

where the sum runs over indices (m1,m2, . . . ,m p) ∈ Np satisfying m1+ 2m2+ · · ·+ pm p = p. Indeed,
this formula can be applied with f (B)= (I − B)−1 and g(t)= Btµ1,k . As g(0)= 0 and the norm of the
p-th derivative of Btµ1,k with respect to t is bounded by cp(1+ |k|)p

‖µ1‖
p, we obtain estimate (4-1).

Moreover, since k 7→ ikekµ is a real analytic map, C→ L2(�), we see that the Fréchet derivatives

k 7→
D puµ
Dµp

∣∣∣∣
µ=0

( · , k) ∈ L2(�)

are real analytic maps of k ∈ C.
Finally, recall that �0 ⊂� is a relatively compact set. For µ ∈ X , we have supp(µ)⊂�0, and thus

the function uµ( · , k) = Uk(µ) is also supported in �0. As P is given in (3-11) we see easily that for
(µ1, µ2, . . . , µp) ∈ (L2(�1))

p the Fréchet derivatives

D pWk

Dµp

∣∣∣∣
µ=0

(µ1, µ2, . . . , µp)=−Pρ
D pUk

Dµp

∣∣∣∣
µ=0

(µ1, µ2, . . . , µp)

are in Y, and these derivatives are real analytic functions of k ∈ C. �
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4B. Neumann series. Now consider a Neumann-series-expansion approach to solving (3-14), looking
for u ∼

∑
∞

n=1 un , with u1 := −ᾱ and un+1 := −Aūn , n ≥ 1; the resulting ωn are defined by

ω =−Pū ∼
∞∑

n=1

−Pūn =:

∞∑
n=1

ωn.

The first three terms of each expansion are given by

u1 =−ᾱ, ω1 = Pα, (4-9)

u2 = Aα =−(ᾱP + ν̄S)(α), ω2 = P(αPα+ νSα), (4-10)

u3 =−(ᾱP + ν̄S)(αPᾱ+ νSᾱ), ω3 = P(αP + νS)(ᾱPα+ ν̄Sα). (4-11)

By Theorem 4.1, Uk : X→ L2(�) is C∞, and hence we have

un( · , k)=
DnUk

Dµn

∣∣∣∣
µ0=0

(µ,µ, . . . , µ), ωn( · , k)=−Pρ(un( · , k)). (4-12)

Due to the polynomial growth in the estimates (4-1), the functions un(z, k) and ωn(z, k) are tempered
distributions in the k-variable. Hence we can introduce polar coordinates, k = τeiϕ, and then take
the partial Fourier transform with respect to τ of the tempered distributions τ 7→ un(z, k)|k=τeiϕ and
τ 7→ ωn(z, k)|k=τeiϕ . Later we prove the following theorem concerning the partial Fourier transforms of
the Fréchet derivatives:

Theorem 4.2. Let µ ∈ X and consider the partial Fourier transforms of the Fréchet derivatives

ω̂z0
n (t, eiϕ)= Fτ→t(ωn(z0, k)|k=τeiϕ ), n = 1, 2, . . . ,

ωn( · , k)=−Pρ
(

Dn+1Uk

Dµn+1

∣∣∣∣
µ0=0

(µ,µ, . . . , µ)

)
,

(4-13)

which we denote at z0 ∈ ∂� by
ω̂n(z0, t, eiϕ)= ω̂z0

n (t, eiϕ).

Then we have
ω̂z0

n (t, eiϕ)= T z0
n (µ⊗ · · ·⊗µ),

where T z0
n are n-linear operators given by

T z0
n (µ1⊗ · · ·⊗µn) :=

∫
Cn

K z0
n (t, eiϕ

; z1, . . . , zn) µ1(z1) · · ·µn(zn) d2z1 · · · d2zn.

The wave front set of the Schwartz kernel K z0
n is contained in the union of a collection {3J : J ∈ J } of

2n−1 pairwise cleanly intersecting Lagrangian manifolds, indexed by J, the power set of {1, . . . , n− 1}.
For each J ∈ J, we have 3J is the conormal bundle of a smooth submanifold, L J

n ⊂ R×S1
×Cn, i.e.,

3J = N ∗L J
n , with

L J
n :=

{
t + (−1)n+1 2 Re

(
eiϕ

n∑
j=1

(−1) j z j

)
= 0

}
∩

⋂
j∈J

{z j − z j+1 = 0}. (4-14)
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Roughly speaking, Theorem 4.2 implies that the operator T z0
n transforms singularities of µ to singular-

ities of ω̂z0
n so that the singularities of µ propagate along the L J

n . Further discussion, as well as the proof
of the theorem, will be found later in the paper.

The first-order term ω1 will serve as the basis for stable edge and singularity detection, while the
higher-order terms need to be characterized in terms their regularity and the location of their wave front
sets. After the partial Fourier transform ω→ ω̂ described in the next section, the map T1 : µ→ ω̂1 turns
out to be essentially a derivative of the Radon transform. Thus, the leading term of ω̂ is a nonlinear
Radon transform of the conductivity σ, allowing for good reconstruction of the singularities of σ from
the singularities of ω̂1. The higher-order terms ω̂n record scattering effects and explain artifacts observed
in simulations; these should be filtered out or otherwise taken into account for efficient numerics and
accurate reconstruction. We characterize this scattering in detail for ω̂2 in terms of oscillatory integrals,
almost as precisely for ω̂3, and in terms of the wave front set for ω̂n , n ≥ 4.

5. Fourier transform and the virtual variable

We continue the analysis with two elementary transformations of the problem:

(i) First, one introduces polar coordinates in the complex frequency, k, writing k = τeiϕ, with τ ∈ R and
eiϕ
∈ S1.

(ii) Secondly, one takes a partial Fourier transform in τ , introducing a nonphysical artificial (i.e., virtual)
variable, t . We show that the introduction of this variable reveals the complex principal-type structure of
the problem, as discussed in Section 2. This allows for good propagation of singularities from the interior
of � to the boundary, allowing singularities of the conductivity in the interior to be robustly detected by
voltage-current measurements at the boundary.

By (3-8), ω1 = ik P(ekµ), see also (4-2), so that

ω1(z, k)=
ik
π

∫
C

ek(z1)µ(z1)

z− z1
d2z1. (5-1)

Write the complex frequency as k = τeiϕ with τ ∈ R, ϕ ∈ [0, 2π) (which we usually identify with
eiϕ
∈ S1). Taking the partial Fourier transform in τ then yields

ω̂1(z, t, eiϕ) :=

∫
R

e−i tτω1(z, τeiϕ) dτ

=
eiϕ

π

∫
R

∫
C

e−iτ t

z− z1
(iτ) eτeiϕ (z1)µ(z1) d2z1 dτ

=
eiϕ

π

∫
R

∫
C

(iτ)
e−iτ(t−2 Re(eiϕ z1))

z− z1
µ(z1) d2z1 dτ

= − 2eiϕ
∫

C

δ′(t − 2 Re(eiϕz1))

z− z1
µ(z1) d2z1, (5-2)

with the integrals interpreted in the sense of distributions. Note that since t is dual to τ , which is the
(signed) length of a frequency variable, for heuristic purposes t may be thought of as temporal.
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5A. Microlocal analysis of ω̂1. Fix �0 b�2 b� and assume once and for all that supp(µ)⊂�0, i.e.,
σ ≡ 1 on �c

0. Let �1 := (�2)
c
⊃�c

⊃ ∂�. Then the map T1 : E ′(�0)→ D′(�1×R×S1), defined by

µ(z1)→ (T1µ)(z, t, eiϕ) := ω̂1(z, t, eiϕ),

has Schwartz kernel

K1(z, t, eiϕ, z1)=−2eiϕ δ
′(t − 2 Re(eiϕz1))

z− z1
. (5-3)

Note that |z− z1| ≥ c > 0 for z ∈ �1 and z1 ∈ �0. For z ∈ ∂� and z1 ∈ �0, the factor (z− z1)
−1 in

(5-3) is smooth, and T1 acts on µ∈ E ′(�0) as a standard Fourier integral operator (FIO). (See [Hörmander
1971] for the standard facts concerning FIOs which we use.) However, as we will see below, the amplitude
1/(z− z1), although C∞, both

(i) accounts for the fall-off rate in detectability of jumps, namely as the inverse of the distance from the
boundary; and

(ii) causes artifacts, especially when some singularities of µ are close to the boundary, due to its large
magnitude and the large gradient of its phase.

To see this, start by noting that the kernel K1 is singular at the hypersurface,

L := {(z, t, eiϕ, z1) : t − 2 Re(eiϕz1)= 0} ⊂ C×R×S1
×C.

Write z = x + iy, z1 = x ′+ iy′“, and use ζ, ζ ′ to denote their dual variables, (ξ, η), (ξ ′, η′). Using the
defining function t − 2 Re(eiϕz1)= t − 2(cos(ϕ)x ′− sin(ϕ)y′), identifying C with R2 as above and S1

with [0, 2π), we see that the conormal bundle of L is

3 := N ∗L =
{(

z, 2 Re(eiϕz1), eiϕ, x ′, y′; 0, 0, τ, 2τ Im(eiϕz1),−2τe−iϕ)
: z ∈�1, z1 ∈�0, eiϕ

∈ S1, τ ∈ R \ 0
}
, (5-4)

which is a Lagrangian submanifold of T ∗(�1 ×R×S1
×�0) \ 0. The kernel K1 has the oscillatory

representation

K1(z, t, eiϕ, z1)=

∫
R

eiτ(t−2 Re(eiϕ z1))
eiϕ(iτ)
π(z− z1)

dτ, (5-5)

interpreted in the sense of distributions. The amplitude in (5-5) belongs to the standard space of symbols
S1

1,0 on (�1×R×S1
×�0)× (R \ 0) [Hörmander 1971]. Thus, using from that paper his notation and

orders for Fourier integral (Lagrangian) distribution classes, K1 is of order 1+ 1
2 −

0
4 , i.e., K1 ∈ I 0(3).

We conclude that T1 is an FIO of order 0 associated with the canonical relation

C ⊂ (T ∗(�1×R×S1) \ 0)× (T ∗�0 \ 0), (5-6)

written T1 ∈ I 0(C), where

C =3′ := {(z, t, eiϕ, ζ, τ,8; z1, ζ1) : (z, t, eiϕ, z1; ζ, τ,8,−ζ1) ∈3}. (5-7)

The wave front set of K1 satisfies WF(K1)⊂3 (and actually, by the particular form of K1, equality holds).
Hence, by the Hörmander–Sato lemma [Hörmander 1971, Theorem 2.5.14], WF(T1µ)⊂ C0 ◦WF(µ),
with C considered as a set-theoretic relation from T ∗�0 \ 0 to T ∗(�1×R×S1) \ 0.
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We next consider the geometry of C , parametrized as

C =
{(

z, 2 Re(eiϕz1), eiϕ, 0, τ, 2τ Im(eiϕz1); z1, 2τe−iϕ)
: z ∈�1, z1 ∈�0, eiϕ

∈S1, τ ∈R\0
}
. (5-8)

C is of dimension 6, while the natural projections to the left and right, πL :C→ T ∗(�1×R×S1)\0 and
πR : C→ T ∗�0 \ 0, are into spaces of dimensions 8 and 4, respectively. C satisfies the Bolker condition
[Guillemin 1985; Guillemin and Sternberg 1977]: πL is an immersion (which is equivalent to πR being a
submersion) and is globally injective.

However, C in fact satisfies a much stronger condition than the Bolker condition: the geometry of C is
independent of z ∈�1, and it is a canonical graph in the remaining variables. If for any z0 ∈�1 we set
K z0

1 = K1|z=z0 , then one can factor C = 0T ∗�1 ×C0 (with the obvious reordering of the variables), where
0T ∗�1 is the zero-section of T ∗�1 and

C0 :=WF(K z0
1 )
′
=
{(

2Re(eiϕz1),eiϕ,τ,2τ Im(eiϕz1); z1,2τe−iϕ)
: z1 ∈�0, eiϕ

∈S1, τ ∈R\0
}

⊂ (T ∗(R×S1)\0)×(T ∗�0\0). (5-9)

(Note that C0 = N ∗L ′0, where

L0 = {(t, eiϕ, z1) ∈ R×S1
×C : t − 2 Re(eiϕz1)= 0}.)

From (5-8), (5-9) one can see that C satisfies the Bolker condition, but its product structure is in fact
much more stringent.

Hence, it is reasonable to form determined (i.e., two-dimensional) data sets from two-dimensional
slices of the full T1 by fixing z = z0; for these to correspond to boundary measurements, assume that
z0 ∈ ∂� ⊂ �1. Thus, define T z0

1 : E
′(�0) → D′(R × S1) by µ(z1) → (T z0

1 µ)(t, ϕ) := ω̂0(z0, t, ϕ).
T z0

1 has Schwartz kernel K z0
1 given by (5-5), but with z fixed at z = z0, and thus T z0

1 is an FIO of
order 1+ 1

2 −
4
4 =

1
2 with canonical relation C0, i.e., T z0

1 ∈ I
1
2 (C0). Further, one easily checks from (5-9)

that πR : C0→ T ∗�0 \ 0 and πL : C0→ T ∗(R×S1) \ 0 are local diffeomorphisms, injective if we either
restrict τ > 0 or φ ∈ [0, π), in which case C0 becomes a global canonical graph.

Composing T z0
1 with the backprojection operator (T z0

1 )
∗ then yields, by the transverse intersection

calculus for FIOs [Hörmander 1971], a normal operator (T z0
1 )
∗T z0

1 which is a 9DO of order 1 on �0, i.e.,
(T z0

1 )
∗T z0

1 ∈9
1(�0). We will show that the normal operator is elliptic and thus admits a left parametrix,

Q(z, D) ∈9−1(C), so that

Q(T z0
1 )
∗T z0

0 − I is a smoothing operator on E ′(�0). (5-10)

Therefore, T z0
1 µ determines µ mod C∞, making it possible to determine the singularities of the Beltrami

multiplier µ, and hence those of the conductivity σ, from the singularities of T z0
1 µ. All of this follows

from standard arguments once one shows that T z0
1 is an elliptic FIO.

To establish this ellipticity, we may, because z0− z1 6= 0 for z1 ∈�0, calculate the principal symbol
σprin(T

z0
1 ) using (5-3). At a point of C0, as given by the parametrization (5-9), we may calculate the
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induced symplectic form ~C0 on C0,

~C0 := π
∗

R(~T ∗�0)=−2τ dϕ ∧ (s(ϕ)dx ′+ c(ϕ)dy′)+ 2dτ ∧ (c(ϕ)dx ′− s(ϕ)dy′), (5-11)

so that ~C0 ∧ ~C0 = 4τdϕ ∧ dτ ∧ dx ′ ∧ dy′, and the half density satisfies

|~C0 ∧ ~C |
1/2
= 2|τ |1/2 |dϕ ∧ dτ ∧ dx ′ ∧ dy|1/2.

From this it follows that

σprin(T
z0

1 )=
−2eiϕ(iτ)

2|τ |1/2(z0− z1)
=
(−ieiϕ) sgn(τ )|τ |1/2

z0− z1
,

which is elliptic of order 1
2 on C0.

Example. Although (5-10) allows imaging of generalµ∈E ′(�0) from ω1(z0, · , · ), consider the particular
case where µ is a piecewise smooth function with jumps across an embedded smooth curve γ =
{z : g(z) = 0} ⊂ �0 (not necessarily closed or connected), with unit normal n. In fact, consider the
somewhat more general case of a µ which is conormal of order m ∈ R, m ≤−1, with respect to γ , i.e.,
is of the form

µ(z)=
∫

R

eig(z)θ am(x, θ) dθ, (5-12)

where am belongs to the standard symbol class Sm
1,0(�0× (R \ 0)). (In general, we will denote the orders

or biorders of symbols by subscripts.) A µ which is a piecewise smooth function with jumps across
γ is of this form for m = −1; for −2 < m < −1, a µ given by (5-12) is piecewise smooth, as well as
Hölder continuous of order −m− 1 across γ. (Recall that uniqueness in the Calderón problem for Cω

piecewise smooth conductivities was treated in [Kohn and Vogelius 1985] and some cases of conormal
conductivities in [Greenleaf et al. 2003; Kim 2008].) As a Fourier integral distribution, µ ∈ I m(0) for the
Lagrangian manifold

0 := N ∗γ = {(z1, θ n(z1)) : z1 ∈ γ, θ ∈ R \ 0} ⊂ T ∗�0 \ 0. (5-13)

By the transverse intersection calculus, T z0
1 µ ∈ I m+1/2(0̃), where

0̃ :=C◦0=
{(

2 Re(eiϕz1), eiϕ, τ, 2τ Im(eiϕz1)
)
: z1∈γ, eiϕ

=n(z1), τ ∈R\0
}
⊂T ∗(R×S1)\0. (5-14)

Thus, for ϕ fixed, T z0
1 µ has singularities at those values of t of the form t = 2 Re(eiϕz1) with z1 ranging

over the points of γ with n(z1) = e−iϕ. (Under a finite order of tangency condition on γ, for each ϕ
there are only a finite number of such points.) These values of t depend on ϕ but are independent of
z0 ∈ ∂�; this reflects the complex principal-type geometry underlying the problem, which has propagated
the singularities of µ out to all of the boundary points of �. Denoting these values of t by t j (eiϕ), the
distribution T z0

1 µ has Lagrangian singularities conormal of order m + 1
2 on R at {t j }, and thus is of

magnitude ∼ |t − t j |
−m−3/2 for − 3

2 < m ≤−1. In particular, if µ is piecewise smooth with jumps, for
which m =−1, the singularities have magnitude ∼ |t − t j |

−1/2.
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Remark. More generally, since T z0
1 is an elliptic FIO of order 1

2 associated to a canonical graph, if
we denote the L2-based Sobolev space of order s ∈ R by H s , it follows that if µ ∈ H s

\ H s−1, then
T z0

1 µ ∈ H s−1/2
\ H s−3/2, allowing us to image general singularities of µ and hence σ.

5B. “Averages” of ω̂1 and artifact removal. As described above, each T z0
1 is in I 1/2(C0); the symbol

depends on z0, the canonical relation (5-9) does not, and we now take advantage of this. For any C-valued
weight a( · ) on ∂�, define

ω̂a
1(t, eiϕ) :=

∫
∂�

ω̂1(z0, t, eiϕ) a(z0) d z0, (5-15)

and denote by T a
1 the operator taking µ(z1) → ω̂a

1(t, eiϕ). (It will be clear from context when the
superscript is a point z0 ∈ ∂� and when it is a function a( · ) on the boundary.) (We emphasize that (5-15)
is a complex line integral.) Then T a

1 has kernel

K a
1 (t, eiϕ, z1) := − 2eiϕ

[∫
∂�

a(z0) d z0

z0− z1

]
δ′(t − 2 Re(eiϕz1))

= − 4π ieiϕα(z1)δ
′(t − 2 Re(eiϕz1)), (5-16)

where

α(z1)=
1

2π i

∫
∂�

a(z0) d z0

z0− z1
, z1 ∈�,

is the Cauchy (line) integral of a. We thus have

σprin(T a
1 )= 2πeiϕα(z1) sgn(τ )|τ |1/2 on C0,

and therefore (T a
1 )
∗T a

1 ∈9
1(�0), with

σprin((T a
1 )
∗T a

1 )(z, ζ )= 2π2
|α(z)|2 |ζ |,

since, by (5-9), |τ | = 1
2 |ζ
′
| on C0. Thus,

(T a
1 )
∗T a

1 = 2π2
|α|2 · |Dz| mod90(�0).

By choosing a≡ (π
√

2)−1 in (5-15), one has α≡ (π
√

2)−1 on� and σprin((T a
1 )
∗T a

1 )(z, ζ )= |ζ |, yielding

(T a
1 )
∗T a

1 = |Dz| mod90, (5-17)

which faithfully reproduces the locations of the singularities of µ and accentuates their strength by one
derivative. This is, in the context of our reconstruction method, an analogue of local (or 3-) tomography
[Faridani et al. 1992].

Alternatively (now with the choice of a = 1/π ), one may obtain an exact weighted, filtered backpro-
jection inversion formula,

(T a
1 )
∗(|Dt |

−1)T a
1 = I on L2(�0). (5-18)
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ϕ0 π

0
t

−2

2

Figure 4. Artifacts from a single T z0
1 . Top left: Phantom modeling hemorrhage (high

conductivity inclusion) within skull (low conductivity shell). Bottom: T z0
1 µ for z0 = 1.

Top right: backprojection applied to T z0
1 µ.

ϕ0 π

0

t

−2

2

Figure 5. Artifact removal using weighted T a
1 . Left: T a

1 µ for phantom in Figure 4.
Right: reconstruction from T a

1 µ using formula (5-18).

On the level of the principal symbol, this follows from the microlocal analysis above, again since
|τ | = 1

2 |ζ
′
| on C0; for the exact result, note that

T a
1 =−

(
iπ
√

2

)
eiϕ
(
∂

∂s
Rµ
)(

t
2
, eiϕ

)
, (5-19)
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where R is the standard Radon transform on R2,

(R f )(s, ω)=
∫

x·ω=s
f (x) d1x, (s, ω) ∈ R×S1.

Remark. Note that if we take �= D, so that ∂� can be parametrized by z0 = eiθ, then (5-15) becomes

ω̂a
1(t, eiϕ)=

∫ 2π

0
ω̂1(eiθ , t, eiϕ) ieiθ dθ.

Thus, the weight is (slowly) oscillatory when expressed in terms of dθ , but through destructive interference
suppresses the artifacts present in each individual ω̂z0

1 . Figure 5 illustrates, with a skull/hemorrhage
phantom how using this simple weight removes the artifacts caused by the rapid change in the amplitude
and phase of the Cauchy factor (z0− z1)

−1, shown in Figure 4.

6. Analysis of ω̂2

Just as the introduction of polar coordinates and partial Fourier transform, applied to the zeroth-order
term in the Neumann expansion (i.e., the Fréchet derivative of the scattering map at µ= 0), give rise to a
term linear in µ, their application to the first-order term (4-10) gives rise to a term which is bilinear in µ.
Wave front set analysis shows that this nonlinearity gives rise to two distinct types of singularities; we
will see in Section 10 that both of these are visible in the numerics, and need to be taken into account to
give good reconstruction based on ω̂a

1 .

We can rewrite (4-10) as
ω2(z, k)= P(α(Pᾱ))+ P(ν(Sᾱ)),

where the linear operators P , S are defined by P( f )= P( f̄ ) and S( f )= S( f̄ ). The kernels of P , S are
just the complex conjugates of the kernels of P, S in (3-11), (3-12), respectively. We now denote the two
interior variables in �0 by z1 and z2; using (3-9), one sees that

ω2(z, k)=
−k2

π2

∫
C

∫
C

e−2i Re(kz1)µ(z1)

z1− z
e2i Re(kz2)µ(z2)

z̄2− z̄1
d2z1 d2z2

+
ik
π2

∫
C

∫
C

e−2i Re(kz1)µ(z1)

z1− z
e2i Re(kz2)µ(z2)

(z̄2− z̄1)2
d2z1 d2z2. (6-1)

Thus, for z0 ∈ ∂�,

ω̂2(z0, t, eiϕ)=

∫
R

e−i tτω1(z0, τeiϕ) dτ =
∫

C

∫
C

K1(z0, t, eiϕ
; z1, z2) µ(z1) µ(z2) d2z1 d2z2 (6-2)

is given by a bilinear operator acting on µ⊗µ, with kernel

K z0
2 (t, eiϕ

; z1, z2)=
1
π2

(
e2iϕδ′′(t + 2 Re(eiϕ(z1− z2)))

(z1− z0)(z̄2− z̄1)
+

eiϕδ′(t + 2 Re(eiϕ(z1− z2)))

(z1− z0)(z̄2− z̄1)2

)
. (6-3)

K z0
2 has multiple singularities, but, as in the case of K1, the fact that |z1− z0| ≥ c > 0 for z0 ∈ ∂� and

z1 ∈ supp(µ)⊂�0 eliminates the singularities at {z1− z0 = 0}. The remaining singularities put K z0
2 in
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the general class of paired Lagrangian distributions introduced in [Melrose and Uhlmann 1979; Guillemin
and Uhlmann 1981]. In fact, K z0

2 lies in a more restrictive class of nested conormal distributions, see
[Greenleaf and Uhlmann 1990], associated with the pair (independent of z0)

L1 :={t+2 Re(eiϕ(z1−z2))=0}⊃ L3 :={t+2 Re(eiϕ(z1−z2))=0, z1−z2=0}={t=0, z2=z1}. (6-4)

(The subscripts are chosen to indicate the respective codimensions in Rt ×S1
ϕ ×�0, z1 ×�0, z2 .) These

submanifolds have conormal bundles,

31 := N ∗L1, 33 := N ∗L3 ⊂ T ∗(Rt ×S1
ϕ ×�0, z1 ×�0, z2) \ 0,

and WF(K z0
2 )⊆31 ∪33. (As with K z0

1 , one can show from (6-3) that equality holds.)

6A. Bilinear wave front set analysis. Define ω̂z0
2 = ω̂2|z=z0 . Since ω̂z0

2 (t, eiϕ)=〈K z0
2 (t, eiϕ, · , · ), µ⊗µ〉,

we have
WF(ω̂z0

2 )⊂WF(K z0
2 )
′
◦WF(µ⊗µ)⊂ (3′1 ∪3

′

3) ◦WF(µ⊗µ).

Parametrizing 31, 33 in the usual way as conormal bundles, multiplying the variables dual to z1, z2 by
−1 and then separating the variables on the left and right, we obtain canonical relations in T ∗(R×S1)×

T ∗(�0×�0),

C1 :=3
′

1 =
{(
−2 Re(eiϕ(z1− z2)), eiϕ, τ,−2τ Im(eiϕ(z1− z2)); z1, z2,−2τeiϕ, 2τeiϕ)

: eiϕ
∈ S1, z1, z2 ∈�0, τ ∈ R \ 0

}
, (6-5)

C3 :=3
′

3 = {(0, eiϕ, τ, 0; z1, z1, ζ,−ζ ) : eiϕ
∈ S1, z1 ∈�0, (τ, ζ ) ∈ R3

\ 0}. (6-6)

Representing µ⊗µ= µ(z1)µ(z2) as (µ⊗ 1) · (1⊗µ), from a basic result concerning wave front sets
of products [Hörmander 1971, Theorem 2.5.10], one sees that

WF(µ⊗µ)⊆WF(µ⊗ 1)∪WF(1⊗µ)∪ (WF(µ⊗ 1)+WF(1⊗µ))

⊆ (WF(µ)× OT ∗�0)∪ (OT ∗�0 ×WF(µ))∪ (WF(µ)×WF(µ)), (6-7)

where the sets are interpreted as subsets of T ∗C2
\ 0, writing elements as either (z1, z2; ζ1, ζ2) or

(z1, ζ1; z2, ζ2).
Since ζ1 6= 0, ζ2 6= 0 at all points of C1, and ζ1 = 0⇐⇒ ζ2 = 0 on C3, the relation C1 ∪ C3, when

applied to the first two terms on the right-hand side of (6-7), gives the empty set.
On the other hand, C1 ∪ C3, when applied to WF(µ)×WF(µ), contributes nontrivially to WF(ω̂z0

2 ).
First, the application of C3 gives{

(0, eiϕ, τ, 0) : ∃ z1 such that (z1, τe−iϕ) ∈WF(µ)
}
⊂ N ∗{t = 0}. (6-8)

Secondly, C1 yields a contribution to WF(ω̂z0
2 ) contained in what we call the CGO two-scattering of µ,

defined by

Sc(2)(µ) :=
{(
−2 Re(eiϕ(z1− z2)), eiϕ, τ,−2τ Im(eiϕ(z1− z2))

)
: ∃ z1, z2 ∈�0 such that (z1, τe−iϕ), (z2,−τe−iϕ) ∈WF(µ)

}
. (6-9)
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Thus, pairs of points in WF(µ) with spatial coordinates z1, z2 and antipodal covectors ±τe−iϕ give rise
to elements of WF(ω̂z0

2 ) at t =−2 Re(eiϕ(z1− z2)). Note that the expression in (6-8) is not necessarily
contained in Sc(2)(µ), even if we allow z1 = z2 in (6-9), since WF(µ) is not necessarily symmetric under
(z, ζ )→ (z,−ζ ) (although this does hold for µ which are smooth with jumps).

For later use, it is also convenient to define

Sc(0)(µ) := N ∗{(t, eiϕ) : t = 0} and Sc(1)(µ) := C0 ◦WF(µ), (6-10)

where C0 is as in (5-9) above, so that the wave front set analysis so far can be summarized as

WF(ω̂1)⊂ Sc(1)(µ) and WF(ω̂2)⊂ Sc(0)(µ)∪Sc(2)(µ). (6-11)

This is extended to general WF(ω̂n) in (7-6) below.

Remarks. (1) Note that if the ω̂z0
2 are averaged out using a function a(z0) on ∂� as was done for ω̂1,

the wave front analysis above is still valid for the resulting ω̂a
2 , and we will refer to either as simply ω̂2 in

the following discussion.

(2) It follows from (6-8) that for any µ with µ /∈ C∞, and any z0 ∈ ∂�, we always will see singularities
of ω̂2 at t = 0. The only dependence on µ of these artifacts in WF(ω̂2) is determined by the incident
directions ϕ of the complex plane wave for which they occur, as dictated by (6-8).

(3) In addition, by (6-9), any spatially separated singularities of µ with antipodal covectors ±ζ =±(ξ, η)
give rise to singularities of ω̂2 at t =−2 Re(eiϕ(z1− z2)), ϕ =− arg(ζ ). Under translations, neither the
covectors nor the differences z1− z2 associated to such scatterings change, although the factor (z1− z)−1

in the kernel (6-3), which is evaluated at z = z0, does. Hence, the locations and orders of these artifacts
(but not their magnitude or phase) are essentially independent of translations within �0 of inclusions
present in µ.

Given the invertibility of T a
1 mod C∞ (at least for constant weight a( · )), from the point of view of our

reconstruction method, the singularities of ω̂a
2 at t = 0 and at Sc(2)(µ), although part of ω̂, produce artifacts

which interfere with reconstruction of the singularities of µ and should either be better characterized or
filtered out. In the next subsection, we do the former for a class of µ which includes those which are
piecewise smooth with jumps.

6B. Bilinear operator theory. Not only is WF(K z0
2 )⊂31 ∪ 33, but in fact K z0

1 belongs to the class of
nested conormal distributions associated with the pair L1 ⊃ L3, see [Greenleaf and Uhlmann 1990], and
thus to the Lagrangian distributions associated with the cleanly intersecting pair 31, 33,

K z0
2 ∈ I 1,0(31,33)+ I 1,−1(31,33).

Any K a
2 is a linear superposition of these and thus belongs to the same class. The linear operators T z0

2 , T a
2 :

E ′(�0×�0)→ D′(R×S1) with Schwartz kernels K z0
2 , K a

2 respectively, which we will refer to simply
as T2, thus belong to a sum of spaces of singular Fourier integral operators, I 1, 0(C1,C3)+ I 1,−1(C1,C3),
and have some similarity to singular Radon transforms [Phong and Stein 1986], see also [Greenleaf and
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Uhlmann 1990], but (i) this underlying geometry has to our knowledge not been studied before; and (ii)
we are interested in bilinear operators with these kernels. Rather than pursuing optimal bounds for T2 on
function spaces, we shall focus on the goal of characterizing the singularities of ω̂2 when µ is piecewise
smooth with jumps. We will show that, away from t = 0, ω̂2 is half a derivative smoother than ω̂1. On
the other hand, at t = 0 it is possible for ω̂2 to be as singular as the strongest singularities of ω̂1; this
is present in the full ω̂ (computed from the DN data) and produces strong artifacts, which can be seen
in numerics when attempting to reconstruct µ. For this reason, data should be either preprocessed by
filtering out a neighborhood of t = 0 before applying backprojection, or alternatively one should resort to
the subtraction techniques discussed in Section 8.

It will be helpful to work (as with the example (5-12) above) in the slightly greater generality of
distributions (still denoted by µ) that are conormal for a curve γ ⊂ �0, having an oscillatory integral
representation such as (5-12) with an amplitude of some order m ∈ R. For such a µ (even for one
not coming from a conductivity), we may still define both ω̂z0

1 and ω̂a
1 (denoted generically by ω̂1),

and they belong to I m+1/2(0̃), where 0̃ = C0 ◦ N ∗γ ⊂ T ∗(R×S1) \ 0 is as in (5-14). We also define
ω̂2 := T z0

2 (µ⊗µ) or T a
2 (µ⊗µ).

To make the microlocal analysis of ω̂2 tractable, we now impose a curvature condition on γ : since
∇g(z)⊥ Tzγ at a point z ∈ γ , we have i∇g(z) ∈ Tzg; thus, γ has nonzero Gaussian curvature at z if and
only if

(i∇g(z))t∇2g(z)(i∇g(z)) 6= 0, (6-12)

which we henceforth assume holds at all points of γ (or at least at all z ∈ sing suppµ⊂ γ , which is all
that matters).

Note that (6-12) implies the finite-order tangency condition referred to in the Example of Section 5A,
so that for each eiϕ

∈ S1, we have ω̂0( · , eiϕ) is singular at a finite number of values t = t j (eiϕ).

Theorem 6.1. Under the curvature assumption (6-12),

(i) Sc(2)(µ), defined as in (6-9), is a smooth Lagrangian manifold in T ∗(R×S1) \ 0; and

(ii) if µ is as in (5-12) for some m ∈ R, then

ω̂2 = T z0
2 (µ⊗µ) ∈ I 2m+3/2,−1/2(Sc(2)(µ),Sc(0)(µ)). (6-13)

Microlocally away from 30 ∩31, a distribution u ∈ I p,l(30,31) belongs to I p(31 \30) and to
I p+l(30 \31) [Melrose and Uhlmann 1979; Guillemin and Uhlmann 1981]. Thus, ω̂2 ∈ I 2m+1(Sc(2)(µ))
on Res(2)(µ) \ N ∗{t = 0} and hence is smoother than ω̂1 ∈ I m+1/2(0̃) if m < − 1

2 . In contrast, on
N ∗{t = 0} \Sc(2)(µ), one has ω̂2 ∈ I 2m+3/2(N ∗{t = 0}), which is guaranteed to be smoother than ω̂1 only
if m <−1.

In particular, for m =−1, corresponding to σ (and hence µ) being piecewise smooth with jumps, one
has ω̂2 ∈ I−1(Sc(2)(µ)), while ω̂1 ∈ I−1/2(0̃), so that these artifacts are half a derivative smoother than
the faithful image of µ encoded by ω̂1. On the other hand, the singularity of ω̂2 at N ∗{t = 0}) can be just
as strong as the singularity of ω̂1 at 0̃.
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To summarize: for conductivities with jumps, applying standard Radon transform backprojection
methods to the full data ω̂, or even its approximation ω̂1+ ω̂2, rather than just ω̂1 (which is not measurable
directly) can result in artifacts which are smoother than the leading singularities only if one filters out a
neighborhood of t = 0.

To see (i) and (ii), start by noting from (6-3) that T2(µ⊗µ)(t, eiϕ) is a sum of two terms of the form∫
ei8 ap,l(∗; τ ; σ) bm(z1; θ1) bm(z2; θ2) dθ1 dθ2 dz1 dz2 dσ dτ, (6-14)

where (recalling that g is a defining function for γ ),

8=8(t, eiϕ, z1, z2, τ, σ, θ1, θ2)

:= τ(t + 2 Re(eiϕ(z1− z2)))+ σ · (z1− z2)+ θ1g(z1)+ θ2g(z2), (6-15)

bm ∈ Sm
1,0(�0× (R \ 0)), and the ap,l are product-type symbols satisfying

|∂
γ
t,ϕ,z1,z2

∂βσ ∂
α
τ ap,l(∗; τ ; σ)|. 〈τ 〉

p−α
〈σ 〉l−|β|

on (R×S1
×�0×�0)×Rτ ×R2

σ , (the ∗ denoting all of the spatial variables) of biorders (p, l)= (2,−1)
and (1, 0), respectively. As can be seen from (6-5), (6-6),

C1, C3 ⊂ {ζ2 =−ζ1, |ζ1| = 2|τ |} ⊂ {|ζ1| = |ζ2| = 2|τ |},

so one can microlocalize the amplitudes in (6-14) to {|θ1| ∼ |θ2| ∼ |τ |} and thus replace the ap,l · bm · bm

by amplitudes

ap+2m,l(∗; (τ, θ1, θ2); σ) ∈ S p+2m,l(R×S1
×�0×�0× (R

3
τ,θ1,θ2

\ 0)×R2
σ )

with biorders (2m+ 2,−1) and (2m+ 1, 0), respectively.

Now homogenize the variables z1, z2, by defining phase variables η j := τ z j j = 1, 2. In terms of
the estimates for derivatives, the new phase variables are grouped with the elliptic variables (τ, θ1, θ2);
furthermore, the change of variables involves a Jacobian factor of τ−4, so that, mod C∞, (6-14) becomes∫

ei8̃ a p̃,l̃(∗; (τ, θ1, θ2, η1, η2); σ) dτ dθ1 dθ2 dη1 dη2 dσ, (6-16)

with
8̃= 8̃(t, eiϕ

; τ, θ1, θ2, η1, η2; σ)

:= τ t + 2 Re(eiϕ(η1− η2))+ θ1g
(
η1

τ

)
+ θ2g

(
η2

τ

)
+ σ ·

(
η1− η2

τ

)
(6-17)

on (R×S1)× (R7
τ,θ1,θ2,η1,η2

\0)×R2
σ and with amplitude biorders ( p̃, l̃ )= (2m−2,−1) and (2m−3, 0),

respectively. We interpret 8̃ as (a slight variation of) a multiphase function in the sense of [Mendoza
1982]: one can check that 8̃0 := 8̃|σ=0 is a nondegenerate phase function (i.e., clean with excess e0 = 0)
which parametrizes Sc(2)(µ) (which is thus a smooth Lagrangian). One does this by verifying, using
(6-12), that d2

(t,φ,τ,θ1,θ2,η1,η2),(τ,θ1,θ2,η1,η2)
8̃0 has maximal rank at {d(τ,θ1,θ2,η1,η2)8̃0 = 0}, namely = 7. On

the other hand, the full phase function 8̃ parametrizes N ∗{t = 0}, but rather than being nondegenerate,
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it is clean with excess e1 = 1, i.e., d2
(t,φ,τ,θ1,θ2,η1,η2,σ ),(τ,θ1,θ2,η1,η2,σ )

8̃ has constant rank 9 − 1 = 8 at
{d(τ,θ1,θ2,η1,η2,σ )8̃ = 0}. (See [Hörmander 1985] for a discussion of clean phase functions.) A slight
modification of the results in [Mendoza 1982] yields the following.

Proposition 6.2. Suppose two smooth conic Lagrangians 30, 31 ⊂ T ∗Rn
\ 0 intersect cleanly in codi-

mension k. Let φ(x, θ, σ ) be a phase function on Rn
× (RN+M

\ 0) such that parametrizes 31 cleanly
with excess e1 ≥ 0 and φ0(x, θ) := φ|σ=0 parametrizes 30 cleanly with excess e0 ≥ 0. Suppose further
that a ∈ S p̃,l̃(Rn

× (RN
\ 0)×RM). Then,

u(x) :=
∫

RN+M
eiφ1(x,θ,σ )a(x, θ, σ ) dθ dσ ∈ I p′,l ′(30,31),

with

p′ = p̃+ l̃ +
N +M + e0+ e1

2
−

n
4
, l ′ =−l̃ −

M + e1

2
.

Applying the proposition to each of the two biorders ( p̃, l̃ ) = (2m − 2,−1) and (2m − 3, 0) from
above, we see that T z0

2 (µ⊗µ), as given by the expression (6-16), is a sum of two terms,

ω̂
z0
2 = T z0

2 (µ⊗µ) ∈ (I
2m+3/2,−1/2

+ I 2m+3/2,−3/2)(Sc(2)(µ), N ∗{t = 0}).

Recalling that N ∗{t = 0} =: Sc(0)(µ) and also that I p′,l ′′
⊂ I p′,l ′ for l ′′ ≤ l ′, this yields (6-13), finishing

the proof of Theorem 6.1. �

7. Higher-order terms

7A. Multilinear wave front set analysis. For n≥3, and for any conductivity σ, one can analyze WF(ω̂z0
n )

and WF(ω̂a
n) by n-linear versions of the case n= 2 treated in Section 6A, starting with the kernels. For ω̂z0

n ,
we denote these by Kn(t, eiϕ, z1, . . . , zn); i.e., ω̂z0

n is given by

ω̂z0
n (t, eiϕ)= T z0

n (µ⊗ · · ·⊗µ)

:=

∫
Cn

K z0
n (t, eiϕ

; z1, . . . , zn) µ(z1) · · ·µ(zn+1) d2z1 · · · d2zn. (7-1)

The kernel for ω̂a
n has the same geometry and orders, but amplitudes a( · )-averaged in z0, which does not

affect the following analysis.

K z0
n is a sum of 2n−1 terms of the form, for Eε ∈ {0, 1}n−1,

cEε ·
δ(n+1−|Eε|)

(
t + (−1)n+12 Re

(
eiϕ∑n

j=1(−1) j z j
))

(z0− z1)(z̄1− z̄2)1+ε1(z̄2− z̄3)1+ε2 · · · (z̄n−1− z̄n)1+εn−1
, (7-2)

each with total homogeneity−(2n+1) in (t, z0, . . . , zn). These have singularities all in the same locations,
namely on a lattice of submanifolds of R×S1

×Cn. For each J ∈ J = {J : J ⊂ {1, . . . , n− 1}}, as in
(4-14), let

L J
n :=

{
t + (−1)n+12 Re

(
eiϕ

n∑
j=1

(−1) j z j

)
= 0 : z j − z j+1 = 0 for all j ∈ J

}
. (7-3)
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One has codim(L J
n )= 1+ 2|J | and L J

n ⊃ L J ′
n if and only if J ⊂ J ′. Rather than using set notation, we

sometimes simply list the elements of J. The unique maximal element of the lattice is the hypersurface

L∅
n :=

{
t + (−1)n+1 2 Re

(
eiϕ

n∑
j=1

(−1) j z j

)
= 0

}
,

while the unique minimal one is

L12···(n−1)
n = {t = 0, z1 = z2 = · · · = zn}.

(This notation replaces that used earlier for n = 1, 2: what was previously denoted by L0 is now Lφ1 , and
L1 = Lφ2 , L3 = L1

2.)

As stated above,
sing supp(K z0

n )=
⋃
J∈J

L J
n

and, in fact,
WF(K z0

n )=
⋃
J∈J

N ∗L J
n , (7-4)

with the fact that equality holds (rather than just the ⊂ containment) following from the nonvanishing
in all directions at infinity of the Fourier transforms of δ(m), z̄−1 and z̄−2. (However, we only need the
containment, not equality, in what follows.)

Define canonical relations

C J
n := N ∗(L J

n )
′
⊂ (T ∗(R×S1)× T ∗Cn) \ 0,

sometimes also denoting C∅
n simply by Cn . The linear operators T z0

n : E ′(Cn) → D′(R × S1) with
kernels K z0

n are (as n varies) interesting prototypes of generalized Fourier integral operators associated
with the lattices {C J

n : J ∈ J } of canonical relations intersecting cleanly pairwise. There is to our
knowledge no general theory of such operators, but in any case, we can describe the wave front relation
as follows. Let 6̃m denote the alternating sum

6̃m
:= z1− z2+ · · ·+ (−1)m+1zm .

Definition 7.1. In T ∗(R×S1) \ 0, define

Sc(0)(µ)=
{
(0, eiϕ, τ, 0) : ∃z ∈� such that (z, τe−iϕ) ∈WF(µ)

}
⊂ N ∗{t = 0},

and, for m ≥ 1, let

Sc(m)(µ)=
{(
(−1)m+12 Re(eiϕ6̃m), eiϕ, τ, (−1)m2τ Im(eiϕ6̃m)

)
: ∃ z1, . . . , zm such that (z j , (−1) j+1τe−iϕ) ∈WF(µ), 1≤ j ≤ m

}
. (7-5)

Definition 7.1 extends the definitions (6-10) for m = 0, 1 and (6-9) for m = 2. The next theorem
extends the WF containments (6-11) for ω̂1, ω̂2, to higher n, locating microlocally the singularities of ω̂n .
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Theorem 7.2. For any conductivity σ ∈ L∞(�) and all n ≥ 1,

WF(ω̂n)⊂
⋃
{Sc(m)(µ) : 0≤ m ≤ n, m ≡ n mod 2}. (7-6)

Proof. This will follow from (7-1) and the Hörmander–Sato lemma [Hörmander 1971, Theorem 2.5.14].
First, to formulate the n-fold version of (6-7), we introduce the following notation. For sets A, B⊂T ∗C and

I ∈ I := {I : I ⊂ {1, . . . , n}},

let ∏
i∈I

Ai ×
∏
i ′∈I c

Bi ′ := {(z, ζ ) ∈ T ∗Cn+1
: (zi , ζi ) ∈ A for all i ∈ I, (zi ′, ζi ′) ∈ B, for all i ′ ∈ I c

}.

For I ∈ I, if we set
WFI (µ) :=

∏
i∈I

WF(µ)i ×
∏
i ′∈I c

0T ∗C,i ′, (7-7)

then the analogue of (6-7), which follows from it by induction, is

WF
( n⊗

µ

)
⊂

⋃
I∈I, I 6=φ

WFI (µ). (7-8)

Next, for J ∈ J , define

J := {i ∈ {1, . . . , n} : i ∈ J or i − 1 ∈ J } ∈ I.

Then, |J | is even, and thus
|J c
| = |{1, . . . , n} \ J | ≡ n mod 2.

We can partition J = J+ ∪ J− ∪ J±, where

J+ := {i ∈ J : i ∈ J, i − 1 /∈ J },

J− := {i ∈ J : i − 1 ∈ J, i /∈ J },

J± := {i ∈ J : i − 1 ∈ J, i ∈ J }.

(7-9)

The submanifold L J
n ⊂ R×S1

×Cn is given by defining functions f0, { f j } j∈J , where

f0(t, ϕ, z)= t + (−1)n+1 2 Re
(

eiϕ
n∑

i=1

(−1)i zi

)
,

f j (t, ϕ, z)= z j − z j+1, j ∈ J.

The twisted conormal bundles are parametrized by

C J
n =

{(
t, ϕ, τdt,ϕ f0; z,−

(
τdz f0+

∑
j∈J

σ j · dz f j

))
: (t, eiϕ, z) ∈ L J

n , (τ, σ ) ∈ (R×C|J |) \ 0
}
.

The twisted gradients d f ′ := (dt,ϕ f,−dz f ) of the defining functions are

d f ′0 =
(

1, (−1)n+12 Im
(

eiϕ
n∑

i=1

(−1)i zi

)
, (−1)n2E(ϕ)

)
,
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with E(ϕ) = (e−iϕ,−e−iϕ, e−iϕ, . . . , (−1)ne−iϕ), where we identify ±e−iϕ
∈ C with a real covector

(ξi , ηi ) ∈ T ∗C, and
d f ′j =−σ j · dz j + σ j · dz j+1, j ∈ J,

similarly identifying σ j ∈ C with (Re σ j , Im σ j ) ∈ T ∗C. Thus,

C J
n =

{(
(−1)n2 Re

(
eiϕ

n∑
i=1

(−1)i zi

)
, eiϕ, τ, (−1)n+12τ Im

(
eiϕ

n∑
i=1

(−1)i zi

)
;

z, (−1)n2τ E(ϕ)+
∑
i∈J+

σi · dzi −
∑
i∈J−

σi · dzi +
∑
i∈J±

(−σi−1+ σi ) · dzi

)
: eiϕ
∈ S1, z j − z j+1 = 0, j ∈ J, (τ, σ ) ∈ (R×C|J |) \ 0

}
. (7-10)

Since WF(K z0
n )
′
=
⋃

J∈J C J
n , to prove (7-6), it suffices to show that each of the 2n−1(2n

− 1) com-
positions C J

n ◦WFI, J ∈ J , I ∈ I \ {∅}, is contained in one of the Sc(m)(µ) for some 0≤ m ≤ n with
m≡ n mod 2. In fact, from (7-7) and the representation of C J

n above, one sees that each C J
n ◦WFI is either

empty (e.g., if J c
∩ I c
6= φ), or a (potentially) nonempty subset of Sc(m)(µ), when m = |J c

| ≡ n mod 2,
yielding (7-6) and finishing the proof of Theorem 7.2. �

8. Parity symmetry

We now come to an important symmetry property which significantly improves the imaging obtained
via our reconstruction method. Recall that what we have been denoting by ω̂ is in fact ω̂+, the partial
Fourier transform of the correction term ω+ in the CGO solution (3-6) of the Beltrami equation (3-4) with
multiplier µ. Similarly, the solution ω− in (3-6) corresponding to −µ has partial Fourier transform ω̂−.
Astala and Päivärinta [2006a] showed that both ω+ and ω− can be reconstructed from the Dirichlet-to-
Neumann map 3σ . We show that by taking their difference we can suppress the ω̂n for even n, and
thus suppress some of the singularities described in the preceding sections, most importantly the strong
singularity at Sc(0)(µ)⊂ N ∗{t = 0} coming from ω̂2.

Start by writing the two Neumann series

ω̂+ ∼

+∞∑
n=1

ω̂+n = ω̂
+

odd+ ω̂
+

even, ω̂− ∼

+∞∑
n=1

ω̂−n = ω̂
−

odd+ ω̂
−

even,

where ω̂±odd (resp. ω̂±even) consists of the n odd (resp. even) terms in the expansion corresponding to ω̂±.
Recall that, as a function of µ, ω̂±n is a multilinear form of degree n.

Proposition 8.1. Each of ω̂+odd and ω̂+even has the same parity in t as the multilinear degrees of its terms;
i.e.,

ω̂+odd =−ω̂
−

odd and ω̂+even = ω̂
−

even. (8-1)

Equivalently,

ω̂+odd =
ω̂+− ω̂−

2
and ω̂+even =

ω̂++ ω̂−

2
. (8-2)
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Proof. Let ū± =−∂̄ω±. As in Section 3, u± is the solution of the integral equation (3-14),

(I + A±ρ)u± =∓ᾱ, (8-3)

where A±=∓(ᾱP+ ν̄S), and α and ν were defined in (3-8). Since A+=−A− we have u+1 =−ᾱ=−u−1 ,
u+2 =−A+ū+1 =−(−A−(−ū−1 ))= u−2 and by induction, for n ≥ 1,

u+n+2 = A+A+ū+n = (−1)n A−A−ū−n = (−1)nu−n+2.

(Another way of seeing this is that µ→ ω̂n is a form of degree n, with the same multilinear kernel
applied to both ±µ.) �

Proposition 8.1 provides a method to isolate the even and the odd terms in the expansion of ω̂. In
particular, by imaging using ω̂+odd, we can eliminate the strong singularities of ω̂2 at Sc(0)(µ)= N ∗{t = 0},
described in (6-13), and in fact the singularities there of all the even terms since, by (7-6), these only
arise from ω̂n for even n.

9. Multilinear operator theory

Following the analysis of ω̂2, one can also describe the singularities of ω̂3, but now having to restrict away
from t = 0. The singularities of ω̂3 are of interest, since, after the symmetrization considerations from the
previous section are applied, ω̂3 is the first higher-order term encountered after ω̂1. Recall from above that,
if µ is a piecewise smooth function with jumps (m =−1), ω̂2 has a singularity at Sc(0)(µ)= N ∗{t = 0}
as strong as that of ω̂1 at Sc(1)(µ), and that its presence is due to the singularity of K z0

2 at the submanifold
L1

2 = {t = 0} ⊂ L∅
2 ⊂ R×S1

×C2. Similarly, in order to analyze ω̂3, we will need to localize K z0
3 away

from L12
3 = {t = 0} ⊂ R×S1

×C3, which results in a kernel that can then be decomposed into a sum
of two kernels, each having singularities on one of two nested pairs, L1

3 ⊂ L∅
3 or L2

3 ⊂ L∅
3 , but not at

L1
3∩ L2

3 = L12
3 = {t = 0}. We will show that applying these to µ⊗µ⊗µ, as in (7-1), does not just result

in terms with WF contained in Sc(3)(µ)∪ Sc(1)(µ), as was shown in Theorem 7.2, but a more precise
statement can be made:

Theorem 9.1. If µ ∈ I m(γ ) with γ satisfying the curvature condition (6-12), then Sc(3)(µ), defined as in
(6-9), is a smooth Lagrangian manifold in T ∗(R×S1) \ 0, and

ω̂3|t 6=0 ∈ I 3m+2,−1/2(Sc(3)(µ),Sc(1)(µ)). (9-1)

Remark. For m =−1, this is in I−1(Sc(1)(µ) \Sc(3)(µ)), and thus is half a derivative smoother than ω̂1

on Sc(1)(µ). On the other hand, it is also in I−3/2(Sc(3)(µ)\Sc(1)(µ)), which is a full derivative smoother
than ω̂1.

To put this in perspective we first discuss what should be the leading terms contributing to ω̂n for
general n ≥ 3. The analysis for ω̂3|t 6=0 given below applies more generally to ω̂n if we localize K z0

n even
more strongly: not just away from t = 0, but away from all of the submanifolds L J

n ⊂ R×S1
×Cn with

|J | ≥ 2. Now, for j 6= j ′, we have L j
n ∩ L j ′

n = L j j ′
n ; by localizing away from all of the L J

n with |J | = 2, by
a partition of unity the kernel K z0

n can be decomposed into a sum of n− 1 terms, each a nested conormal
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distribution associated with the pair Lφn ⊃ L j
n , j = 1, . . . , n− 1 respectively. When these pieces of K z0

n

are applied to
⊗n

µ, as in (7-1), the results have WF in Sc(n)(µ)∪Sc(n−2)(µ), and again can be shown to
belong to I p,l(Sc(n)(µ),Sc(n−2)(µ)). However, as this requires localizing away from

⋃
|J |≥2 L J

n , which
is strictly larger than L12···(n−1)

n if n ≥ 4, the analysis here is inconclusive concerning the singularities of
ω̂n|t 6=0, and thus we only present the details for ω̂3.

We now start the proof of Theorem 9.1 by noting that, for n = 3, the lattice of submanifolds (7-3) to
which the trilinear operator T z0

3 is associated is a simple diamond, L∅
3 ⊃ L1

3, L2
3⊃ L12

3 . In the region {t 6=0},
the two submanifolds L1

3 and L2
3 are disjoint. Hence, by a partition of unity in the spatial variables, we

can write

ω̂3|t 6=0 = 〈K 1
3 + K 2

3 , µ⊗µ⊗µ〉, (9-2)

where each K j
3 is associated with the nested pair L∅

3 ⊃ L j
3 , j = 1, 2. Since these two terms are so similar,

we just treat the K 2
3 term.

The submanifolds L2
2 ⊂ Lφ3 ⊂ R×S1

×C3 are given by

L∅
3 = {t − 2 Re(eiϕ(z1− z2+ z3))= 0},

L2
3 = {t − 2 Re(eiϕ(z1− z2+ z3))= 0, z2− z3 = 0}.

(9-3)

For K 2
3 we are localizing away from L1

3, so that z1− z2 6= 0 on the support of the kernels below. Thus,
the factors (z̄1− z̄2)

−1+ε1 in (7-2) are smooth, and their dependence on ε1 is irrelevant for this analysis.
Thus, K 2

3 is a sum of two terms, each of which we will still denote K 2
3 , given by

K 2
3 =

∫
R3

ei[τ(t−2 Re(eiϕ(z1−z2+z3)))+(z2−z3)·σ ]ap,l(∗; τ ; σ) dτ dσ, (9-4)

where ∗ denotes the spatial variables and ap,l is a symbol-valued symbol of biorder (3,−1) and (2, 0),
respectively.

If, for any c > 0, we introduce a smooth cutoff into the amplitude which is a function of |σ |/|τ | and
supported in the region {|σ | ≥ c|τ |}, the amplitude becomes a standard symbol of order p+ l = 2 in the
phase variables (τ, σ ) ∈ R3

\ 0. The phase function is nondegenerate and parametrizes the canonical
relation, with C0 as in (5-9),

C0×N := C0× N ∗{z2 = z3}

=
{(

2 Re(eiϕz1), eiϕ, τ, 2τ Im(eiϕz1); z1, z2, z2, 2τe−iϕ, ζ2,−ζ2
)

: eiϕ
∈ S1, (z1, z2) ∈ C2, (τ, ζ2) ∈ R3

\ 0
}
.

This is a nondegenerate canonical relation: the projection πR : C0×N → T ∗C3
\ 0 is an immersion and

the projection πL : C0×N → T ∗(R× S1) \ 0 is a submersion. Thus, this contribution to K 2
3 belongs

to I 2+3/2−8/4(C0×N ) = I 3/2(C0×N ). Due to the support of the amplitude of this term, πR(C0×N ) ⊂

{|ζ1| ∼ |ζ2| = |ζ3|}, and by reasoning similar to that used in the analysis of ω̂1, one concludes that
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µ⊗µ⊗µ ∈ I 3m(N ∗(γ × γ × γ )) microlocally on this region. Hence, the composition

C0×N ◦ N ∗(γ × γ × γ )⊂ C0 ◦ N ∗γ =: Sc(1)(µ)

is covered by the transverse intersection calculus, and this contribution to ω̂3 belongs to

I 3m+3/2(Sc(1)(µ)). (9-5)

Now consider the contribution to (9-4) from the region
{
|σ | ≤ 1

2 |τ |
}
. Writing out the representations of

each of the three µ factors in (9-2) as conormal distributions, we first note that, using the parametrization
in (7-10) for C2

3 and the constraint |σ | ≤ 1
2 |τ |, we can read off that, on πR of the wave front relation,

|ζ1| = 2|τ | and |ζ j | = |± (σ − 2τe−iϕ)| ≥ 3
2 |τ |, j = 2, 3.

Hence, again we are acting on a part of µ⊗µ⊗µ which is microlocalized where |ζ1| ∼ |ζ2| ∼ |ζ3|. As
a result, in (9-6) below, the θ j are grouped with τ as “elliptic” variables for the symbol-valued symbol
estimates. Mimicking the analysis in and following (6-16), homogenize z1, z2, z3 by setting η j = τ z j ,
j = 1, 2, 3. This leads to the expression∫

ei9̃ a p̃,l̃(∗; (τ, θ1, θ2, θ3, η1, η2, η3); σ) dτ dθ1 dθ2 dθ3 dη1 dη2 dη3 dσ, (9-6)

with phase

9̃ = 9̃(t, eiϕ
; τ, θ1, θ2, θ3, η1, η2, η3; σ)

:= τ t − 2 Re(eiϕ(η1− η2+ η3))+ θ1g
(
η1

τ

)
+ θ2g

(
η2

τ

)
+ θ3g

(
η3

τ

)
+ σ ·

(
η2− η3

τ

)
on (R×S1)×(R10

τ,θ1,θ2,θ3,η1,η2,η3
\0)×R2

σ and symbol-valued symbols with biorders ( p̃, l̃ )= (3m−3,−1)
and (3m − 4, 0), respectively. As with the phase 8̃ that arose in the analysis of ω̂1, 9̃ is a multi-
phase function: 9̃0 = 9̃|σ=0 is nondegenerate (excess e0 = 0) and parametrizes Sc(3)(µ), while the
full 9̃ is clean (excess e1 = 1) and parametrizes Sc(1)(µ). Applying Proposition 6.2, with N = 10,
M = 2, the terms in (9-6) with amplitudes of biorders (3m − 3,−1) and (3m − 4, 0), respectively,
yield elements of I 3m+2,−1/2(Sc(3)(µ),Sc(1)(µ)) and I 3m+2,−3/2(Sc(3)(µ),Sc(1)(µ)), respectively; since
the former space contains the latter, and furthermore contains the space in (9-5), we conclude that
ω̂3|t 6=0 ∈ I 3m+2,−1/2(Sc(3)(µ),Sc(1)(µ)). This finishes the proof of Theorem 9.1. �

10. Computational studies

In the idealized infinite-bandwidth model discussed above, knowledge of ω1(z0, k) for all complex
frequencies k, and thus T z0

1 µ= ω̂(z0, t, eiϕ) for all (t, eiϕ), determines µ mod C∞. A more physically
realistic model, band-limiting to |k| ≤ kmax, requires a windowed Fourier transform; see [Isaacson et al.
2004; 2006; Knudsen 2003; Knudsen et al. 2004; 2007; Vainikko 2000]. This corresponds to convolving
in the t-variable with a smooth cutoff at length-scale ∼ k−1

max, rendering the reconstruction less accurate.
This section examines numerical simulations and how they are affected by this bandwidth issue.
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We first introduce a new reconstruction algorithm from the Dirichlet-to-Neumann map 3σ , as well as
the algorithm used in the simulations. Then we will present our numerical results. In this section we take
� to be the unit disk, �= D(0, 1).

10A. Reconstruction algorithm. The results presented in the preceding sections give rise to a linear
reconstruction scheme to approximately recover a conductivity σ from its Dirichlet-to-Neumann map 3σ .
This can be summarized in the following steps:

(i) Find f±µ(z, k), and so ω±(z, k), for z ∈ ∂� and k ∈ C, by solving the boundary integral equation

f±µ(z, k)+ eikz
= (P±µ+Pk

0 ) f±µ(z, k), z ∈ ∂�, (10-1)

where P±µ and Pk
0 are projection operators constructed from 3σ . See [Astala and Päivärinta 2006a]

and [Mueller and Siltanen 2012, Section 16.3.3] for full details.

(ii) Write k = τeiϕ. Apply the one-dimensional Fourier transform Fτ 7→t and the complex average (5-15)
in order to obtain ω̂a,±(t, eiϕ), with a ≡ 1/

√
2.

(iii) Taking into account the parity result Proposition 8.1, define ω̂a
diff :=

1
2(ω̂

a,+
− ω̂a,−). Apply either

the exact inversion formula (5-18) or the 3-tomography analogue (5-17) with ω̂a
diff instead of ω̂a

1 , in
order to obtain an approximation µappr to µ.

(iv) The approximate conductivity is found with the identity σappr = (1−µappr)/(1+µappr).

10B. High-precision data assumption. In the numerical reconstructions presented below, the spectral
parameter k ranges in the disk {|k|< R} with cutoff frequency R = 60. Such a large radius R is needed
for demonstrating the crucial properties of the new method; with a smaller radius the windowing of the
Fourier transform would smooth out important features in the CGO solutions.

Using such a large R in practice would require very high precision EIT measurements, which cannot
be achieved by current technology. However, it is possible to evaluate the needed CGO solutions
computationally when σ is known. (Remark: it is possible to compute useful reconstructions from real
EIT measurements using the new method combined with sparsity-promoting inversion algorithms, but we
do not discuss such approaches further in this paper.) This is done as in [Astala et al. 2014] by solving
the Beltrami equation

∂̄z fµ(z, k)= µ(z) ∂z fµ(z, k), (10-2)

which yields very accurate solutions even for large |k|. From the point of view of the classical ∂̄ recon-
struction method [Knudsen et al. 2009; Mueller and Siltanen 2003; 2012; Siltanen et al. 2000] for C2

conductivities, this is the analogue of solving the Lippmann–Schwinger equation to construct the CGO
solutions.

In this section the CGO remainders ω±(z, k), with z ∈ ∂� and |k|< 60, are constructed by solving the
Beltrami equation following the approach of Huhtanen and Perämäki [2012] (see also [Astala et al. 2014]
and Section 3 for more details). We then follow steps (ii)–(iv) of the algorithm in Section 10A to obtain
two-dimensional reconstructions.
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−ω̂−(1, t/2, 1)

ω̂a,+(t/2, 1)
−ω̂a,−(t/2, 1)

Figure 6. Top: profiles of three radial conductivities along the real axis. The middle
conductivity has a jump along the circle |z| = 0.6; the one on the right has jumps on
both |z| = 0.4 and |z| = 0.6. Rows 2 and 3: the functions ω̂+(1, t/2, 1) and ω̂a,+(t/2, 1),
respectively; note the artifacts at t = 0. Rows 3 and 4: as described in Section 8, the
artifacts are eliminated by subtracting ω̂−, ω̂a,−, respectively.
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Figure 7. Diagram showing the propagation of singularities for the HME phantom with
zero background. The virtual direction is k = i .

10C. Rotationally symmetric cases. We study three rotationally symmetric conductivities defined in the
unit disc. The first conductivity σ1 is smooth. The second conductivity is defined as

σ2 = σ1− 0.3χD(0,0.6)

and therefore has a jump of magnitude 0.3 along the circle centered at the origin and radius 0.6. The
third rotationally symmetric conductivity is defined as

σ3 = σ2+ 0.3χD(0,0.4)

and has jumps of magnitude 0.3 along the circles centered at the origin and radii 0.4 and 0.6.
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Figure 8. Diagram showing the propagation of singularities for the HME phantom with
zero background. The virtual direction is k = 1.

In Figure 6 we show the profiles of ω̂(1, t, 1) for three rotationally symmetric conductivity phantoms.
The first phantom is smooth, while the second and the third have jumps. The position and the sign of each
jump is clearly visible from the CGO-Fourier data. Note that the artifact singularity appearing around 0
in the second and third rows vanishes when considering the difference of the two CGO functions, in the
fourth and fifth rows. This confirms the parity symmetry analyzed in Section 8.

10D. Half-moon and ellipse (HME). This conductivity phantom has a large elliptical inclusion and
another smaller inclusion inside the ellipse. The smaller inclusion has a jump along an almost complete
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Figure 9. Reconstructions from the averaged full series ω̂a
diff. Left: exact inversion

formula. Right: 3-tomography like reconstruction.
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t

2

−2

0 ϕ π

0

t

2

−2

Figure 10. Sinograms of the averaged full series ω̂a
diff. Left: exact reconstruction sino-

gram. Right: 3-tomography like sinogram.

half-circle. This example was chosen because it has two nontrivial features in the wave front set for the
horizontal direction and three for the vertical. Figures 8 and 7 show, in particular, ladder diagrams of the
propagation of singularities in the directions k = i and k = 1, respectively: the zeroth- and second-order
terms of the Neumann series for ω̂a are displayed, as well as the full series of the difference of the CGOs:
ω̂diff = (ω̂

+
− ω̂−)/2.

Figure 9 shows two-dimensional reconstructions obtained using the new algorithm, with the two
different inversion formulas. In Figure 10 we show the values of ω̂a

diff(t, eiϕ) for t ∈ [−3, 3] and ϕ ∈ [0, π].
We borrow the term sinogram to describe these plots, because of the clear similarity with the sinograms
of X-ray tomography.

11. Conclusion

We introduce a novel and robust method for recovering singularities of conductivities from electric
boundary measurements. It is unique in its capability of recovering inclusions within inclusions in an
unknown inhomogeneous background conductivity. This method provides a new connection between
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diffuse tomography (EIT) and classical parallel-beam X-ray tomography and filtered back-projection
algorithms.

Full analysis of the higher-order terms ω̂n remains an open problem. We point out that there is a strong
formal similarity between the multilinear forms µ→ ω̂n and multilinear operators considered by Brown
[2001], Nie and Brown [2011] and Perry and Christ [Perry 2016]. Indeed, any Born-type expansion
naturally leads to expressions of this general form, with the places of the Cauchy and Beurling kernels for
ωn or ω̂n here being taken by the appropriate Green’s functions. However, an important feature here is
that the singular coefficient in a Beltrami equation occurs in the top-order term, rather than as a potential
as in the works cited above. For the application needed in this setting, useful function space estimates
do not seem to follow from existing results, which would require higher regularity of µ, and this is an
interesting topic for future investigation.
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