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HOPF POTENTIALS FOR THE SCHRÖDINGER OPERATOR

LUIGI ORSINA AND AUGUSTO C. PONCE

We establish the Hopf boundary point lemma for the Schrödinger operator−1+V involving potentials V
that merely belong to the space L1

loc(�). More precisely, we prove that among all nonnegative supersolu-
tions u of −1+ V which vanish on the boundary ∂� and are such that V u ∈ L1(�), if there exists one
supersolution that satisfies ∂u/∂n < 0 almost everywhere on ∂� with respect to the outward unit vector n,
then such a property holds for every nontrivial supersolution in the same class. We rely on the existence
of nontrivial solutions of the nonhomogeneous Dirichlet problem with boundary datum in L∞(∂�).

1. Introduction and main results

Let �⊂RN be a smooth bounded connected open set. The Hopf boundary point lemma for elliptic PDEs
asserts that if u ∈ C2(�)∩C1(�) satisfies the Dirichlet problem{

−1u = µ in �,
u = 0 on ∂�, (1-1)

and if µ≥ 0 in �, then the normal derivative of u with respect to the outward unit vector n satisfies

∂u
∂n

< 0 on ∂�;

see [Evans 2010, Section 6.4.2; Gilbarg and Trudinger 1998, Lemma 3.4; Dupaigne 2011, Proposi-
tion A.4.1]. The classical weak maximum principle states that u ≥ 0 in �, so the information that
∂u/∂n ≤ 0 merely follows from the minimality of u on ∂�. The main issue involving the Hopf lemma is
that if ∂u(a)/∂n = 0 for some a ∈ ∂�, then u ≡ 0 in �. A drawback of this formulation lies in the C1

regularity of u that is required near the boundary.
The Hopf lemma can be also stated quantitatively, based on the Morel–Oswald maximum principle as

follows:

u(x)≥ c
(∫

�

µ d∂�

)
d∂�(x), (1-2)

where c > 0 and d∂� : � → R denotes the distance to the boundary; see [Brezis and Cabré 1998,
Lemma 3.2; Dupaigne 2011, Proposition A.4.2]. This inequality is equivalent to the pointwise estimate
for the Green’s function [Zhao 1986]:

G(x, y)≥ c′ d∂�(x) d∂�(y).
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By smoothness of the solution ζ of the Dirichlet problem (1-1) with constant density µ ≡ 1, we have
d∂� ≥ aζ for some constant a > 0. Inserting this estimate in (1-2) and integrating by parts, we can thus
rewrite inequality (1-2) as

u(x)≥ c′′
(∫

�

u
)

d∂�(x). (1-3)

Since (1-2) and (1-3) do not explicitly involve the normal derivative, by an approximation argument both
inequalities also apply to the solutions of the Dirichlet problem involving rougher data µ, for instance in
the class of L1 functions or finite measures.

Another effective approach to avoid smoothness of the solution near the boundary consists in associating
a notion of distributional normal derivative when µ is merely a finite measure in �, and the equation is
satisfied in the sense of distributions:

−

∫
�

u1ϕ =
∫
�

ϕ dµ (1-4)

for every test function ϕ ∈ C∞c (�) with compact support in �. The zero boundary datum can be encoded
by assuming that u ∈W 1,1

0 (�). An equivalent strategy to give a meaning to the Dirichlet problem consists
in using the integral formulation (1-4) with the larger class C∞0 (�) of test functions which are smooth in
� and vanish on ∂�; see [Littman et al. 1963; Ponce 2016, Proposition 6.3].

It has been observed by Brezis and the second author in [Brezis and Ponce 2008, Theorem 1.2] that if
u ∈W 1,1

0 (�) satisfies (1-4) for some finite measure µ in�, then there exists a unique function F ∈ L1(∂�)

such that ∫
�

∇u · ∇ψ =
∫
�

ψ dµ+
∫
∂�

ψF dσ (1-5)

for every test function ψ ∈ C∞(�), where σ = HN−1
b∂� denotes the surface measure of ∂�. The

distributional normal derivative of u is then defined as

∂u
∂n
:= F.

When u is smooth on �, the notions of classical and distributional normal derivatives of u coincide.
The definition of a distributional pairing 〈∂u/∂n, ψ〉 under various assumptions on u and ∇u has been
investigated by several authors; see, e.g., [Lions and Magenes 1972; Kohn and Temam 1983; Anzellotti
1983]. The main point here is its realization as a legitimate function in L1(∂�), like in [Anzellotti 1984].
We refer the reader to [Ancona 2009; Brezis and Ponce 2008] for additional properties of the distributional
normal derivative, including the setting of nonhomogeneous Dirichlet problems.

Identity (1-5) implies in particular that the function u, extended by zero to RN, is such that1u is a finite
measure in RN. The distributional normal derivative satisfies a comparison estimate (see Proposition 2.1
below) which combined with (1-3) provides one with the uniform bound

∂u
∂n
(x)≤−c′′

∫
�

u. (1-6)
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One of the motivations of our work comes from the seminal paper [Kato 1972] on the Schrödinger
operator −1+ V involving potentials V which are merely L1

loc(�). The Hopf lemma above has an
affirmative counterpart for potentials V ∈ L∞(�), but we are interested in situations where V need not
be summable near the boundary.

Many classical properties that hold for the Laplacian need no longer be true for −1+ V due to some
possible singular behavior of V. In this regard, two instructive examples are provided by the smooth
functions ui : B1→ R defined by

u1(x)= (1− |x |2)2 and u2(x)= (1− |x |2)|x − a|,

where B1 := B1(0) denotes the unit ball in RN centered at the origin and a ∈ ∂B1 is any given point on
the boundary. In the first case, we have ∂u1/∂n ≡ 0 on ∂B1 and the Schrödinger equation

−1u1+ V u1 = 0 in B1

is satisfied in terms of a potential V that behaves like 1/d2
∂B1

near the boundary; in particular, V 6∈
L1(B1; d∂B1 dx). In the second case, we have ∂u2/∂n < 0 except at a and the Schrödinger equation is
now satisfied for another potential V such that V ∈ L1(B1; d∂B1 dx) in dimension N ≥ 2.

We thus have the appearance of an exceptional set where the Hopf lemma fails, and it is our goal in this
paper to understand how big such an exceptional set can be. A more refined example which we develop
in Section 7 below shows that every compact subset K ⊂ ∂� with zero surface measure is an exceptional
set for some suitable potential V ∈ L1(�; d∂� dx). It follows from our Theorem 1 below that there can
be essentially no other exceptional sets in this case.

The class of functions we consider consists of supersolutions u ∈W 1,1
0 (�) of the Schrödinger operator

−1+ V in the sense of distributions. More precisely, we assume that V u ∈ L1
loc(�) and∫

�

u (−1ϕ+ Vϕ)≥ 0

for every nonnegative function ϕ ∈ C∞c (�). By a classical property in the theory of distributions, we
have in this case that −1u+ V u is a locally finite measure in �. However, the measure 1u need not be
finite in � and so the distributional normal derivative may not be well-defined in L1(∂�) in the sense of
[Brezis and Ponce 2008]. For this reason, we define in this paper the normal derivative for functions u
that are merely in W 1,1

0 (�): by ∂u/∂n we mean the essential infimum of the set{
∂w

∂n
∈ L1(∂�) : w ∈ Gu

}
,

where Gu denotes the class of functions w ∈W 1,1
0 (�) such that 1w is a finite measure in � and w ≤ u

almost everywhere in �; see Section 2 below. In particular, if u is nonnegative, then the normal derivative
∂u/∂n is a Borel function with values in [−∞, 0], and if we happen to know that 1u is a finite measure
in �, then u ∈ Gu and ∂u/∂n coincides with the distributional normal derivative.

To understand the mechanism that is hidden behind the examples above concerning the failure of the
Hopf lemma, we introduce the concept of Hopf potential as follows:
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Definition 1.1. We say that V ∈ L1
loc(�) is a Hopf potential whenever there exists a nonnegative function

ζ0 ∈W 1,1
0 (�) such that

(H1) V ζ0 ∈ L1(�),

(H2) ∂ζ0/∂n < 0 almost everywhere on ∂�.

As a trivial consequence of this definition, for every Hopf potential V and every α ∈ R, the function
αV is also a Hopf potential. We show in Section 2 that the class of Hopf potentials is actually a vector
subspace of L1

loc(�). Since the solution ζ of the Dirichlet problem (1-1) with constant density µ ≡ 1
behaves as d∂� near the boundary by the classical Hopf lemma, we have V ζ ∈ L1(�) if and only if
V ∈ L1(�; d∂� dx). Therefore, every V ∈ L1(�; d∂� dx) is a Hopf potential.

We establish the following qualitative counterpart of estimate (1-6) for −1+ V when V is a Hopf
potential:

Theorem 1. Let V ∈ L1
loc(�) be a Hopf potential and let u ∈W 1,1

0 (�) be a nonnegative supersolution of
the Schrödinger operator −1+ V. If V u ∈ L1(�) and

∫
�

u > 0, then

∂u
∂n

< 0 almost everywhere on ∂�.

Theorem 1 above contains as a particular case a Hopf lemma by Bertsch, Smarrazzo and Tesei [Bertsch
et al. 2015, Proposition 3.4] which implies the main result in their paper (Theorem 2.1) concerning a
characterization of the strong maximum principle in dimension N = 1; see also [Bertsch and Rostamian
1985, Lemma 3.6]. To tackle the Hopf lemma in any dimension N ≥ 1, we rely on a different strategy
based on a careful combination of fine properties from measure theory and elliptic PDEs.

One may also consider a localized counterpart of the concept of Hopf potentials, where property (H2)
need not be satisfied by ζ0 on the entire boundary, but only on a subset of it. In fact, we deduce Theorem 1
from a more general result which is valid for potentials V that merely belong to L1

loc(�):

Theorem 2. Let V ∈ L1
loc(�) and let ui ∈W 1,1

0 (�), with i ∈ {1, 2}, be two nonnegative supersolutions of
the Schrödinger operator −1+ V. If V ui ∈ L1(�) and

∫
�

ui > 0, then for almost every x ∈ ∂� we have

∂u1

∂n
(x) < 0 if and only if

∂u2

∂n
(x) < 0.

This theorem yields the remarkable property that once there exists one supersolution for −1+ V
satisfying the conclusion of the classical Hopf lemma on a subset A ⊂ ∂�, then every supersolution also
satisfies the Hopf lemma on A except for a negligible subset of ∂�. Such a conclusion bears some striking
analogy with the (straightforward) generalized weak maximum principle for linear elliptic operators
of second order [Protter and Weinberger 1984, Chapter 2, Theorem 10]: for the Schrödinger operator
−1+V with a possibly signed potential V, the existence of one positive supersolution implies that every
nonzero supersolution which vanishes on the boundary must be positive.

The existence of a positive supersolution is also equivalent to the positivity of the energy functional

ϕ ∈ C∞c (�) 7−→
∫
�

(|∇ϕ|2+ Vϕ2),
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which is at the heart of the Agmon–Allegretto–Piepenbrink positivity principle; see, e.g., [Dupaigne
2011, Theorem A.6.1] and also [Pinchover 2007; Devyver et al. 2014] for more detailed information and
further perspectives. Although one typically assumes that V ∈ L p

loc(�) with p > N/2, the validity of the
strong maximum principle when V ∈ L p

loc(�) with p ≥ 1, see [Ancona 1979; Orsina and Ponce 2016],
supports an extension of the Agmon–Allegretto–Piepenbrink principle for potentials V that merely belong
to L1

loc(�) based on the tools we develop to prove Theorems 1 and 2 above; see [Pinchover and Tintarev
2005; Bandle et al. 2008] for Hardy potentials and [Pinchover and Psaradakis 2016] for potentials in
Morrey spaces.

A key ingredient of our analysis relies on Proposition 5.1 below, which establishes the equivalence
between the validity of the Hopf lemma for the Schrödinger operator −1+ V and the existence of
nontrivial solutions of the nonhomogeneous Dirichlet problem{

−1w+ Vw = 0 in �,
w = g on ∂�, (1-7)

with nonnegative potentials V ∈ L1
loc(�), for any datum g ∈ L∞(∂�). The meaning of a solution of (1-7)

is a delicate issue due to the possible singular behavior of V near the boundary. Our approach is based
on the use of nonsmooth test functions that satisfy a Dirichlet problem involving interior measure data
in the spirit of Stampacchia’s definition of weak solutions [1965] via duality. That problem (1-7) has a
solution in this sense for every g ∈ L∞(∂�) can be handled using an approximation procedure starting
from variational solutions; see Section 3.

Our strategy to tackle (1-7) differs from the recent work of Véron and Yarur [2012] that investigates
problem (1-7) with finite boundary measure data and nonnegative potentials V ∈ L∞loc(�). They rely on
the definition of a solution using test functions like C∞0 (�), which do not take into account the singular
behavior of the potential V, and on the Poisson representation of the solution in terms of the Poisson
kernel associated to −1+ V.

Due to the singular behavior of V, it may happen in our case that w≡ 0 is the (unique) solution of (1-7)
even if g 6= 0. An example of such a counterintuitive phenomenon is given by any potential V ∼ 1/d2

∂�,
for which the Hopf lemma fails completely. In this case, the equation

−1w+ Vw = 0 in �

can have nontrivial solutions but they satisfy some normalized boundary trace that has been investigated
by Marcus and Nguyen [2017].

Another strategy that has been pursued by Ancona [1987] is based on the existence of the Martin
kernel K V

a for a ∈ ∂� under the assumption that V is a potential in L∞loc(�) that satisfies

0≤ V .
1

d2
∂�

. (1-8)

For instance, in the setting of positive solutions of the semilinear equation

−1u+ uq
= 0 in �
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with exponent q > 1, the potential V = uq−1 satisfies (1-8) by the Keller–Osserman estimate; see [Marcus
and Véron 2014, Chapter 4]. In general, the study of fine regular points of the Schrödinger operator
−1+ V through Martin kernels gives another approach to the existence of solutions of (1-7). In this
regard, Ancona [2012], see also [Véron and Yarur 2012], proved that a ∈ ∂� is a fine regular point for
−1+ V if and only if ∫

�

d2
∂�(x)
|x − a|N

V (x) dx <+∞. (1-9)

When, in addition to (1-8), V belongs to L1(�; d∂� dx), integration of the left-hand side of (1-9) over
∂� with respect to a and Fubini’s theorem imply that almost every a ∈ ∂� satisfies (1-9). This agrees
with our conclusion concerning the existence of nontrivial solutions for (1-7) since we know in this case
that V is a Hopf potential. It is unclear however how one can avoid assumption (1-8) in this setting:
Ancona’s argument strongly relies on the Harnack principle, which is not true when one merely has
V ∈ L1

loc(�).
Observe that from the physical point of view the infinite-potential well 1/d2

∂� is so strong that it
confines particles inside �, which mathematically means that supersolutions must have a vanishing
normal derivative on ∂�; see [Díaz 2015; 2017; Díaz et al. 2018] and also Example 8.2 below. Although
such a conclusion can be successfully deduced from Theorem 2 by looking explicitly for one supersolution
such that ∂u/∂n ≡ 0 on ∂�, we give a direct proof of this fact by a simple measure-theoretic argument
that does not rely on the PDE; see Proposition 2.7.

The paper is organized as follows. In Section 2 we extend the concept of normal derivative to any
function in W 1,1

0 (�), even if 1u is not a finite measure in �. In Section 3, we prove the existence of
solutions of the nonhomogeneous Dirichlet problem with L∞ data; the meaning of solution is given
by means of duality with solutions of the Dirichlet problem with measure data. In Section 4, we prove
the existence of nonnegative solutions of the nonhomogeneous problem when the boundary datum is
nonnegative but the inner datum is nonpositive. We then explain how this property implies Theorem 1
in the case of smooth supersolutions. In Section 5 we explain the connection between the Hopf lemma
and the existence of nontrivial solutions of (1-7). Theorems 1 and 2 are then proved in Section 6. We
then show in Section 7 that every negligible compact subset of ∂� is the zero-set {∂u/∂n = 0} for some
smooth positive solution of the Schrödinger equation −1u+ V u = 0 such that V ∈ L1(�; d∂� dx). In
Section 8 we explain why Theorems 1 and 2 cannot be true for potentials V : �→ [0,+∞] that are
merely Borel functions.

2. Normal derivative as a Borel function

The notion of distributional normal derivative from [Brezis and Ponce 2008] applies to any function
u ∈W 1,1

0 (�) such that1u is a finite measure in�. In this case, the normal derivative ∂u/∂n is an element
in L1(∂�) such that∫

�

∇u · ∇ψ =−
∫
�

ψ 1u+
∫
∂�

ψ
∂u
∂n

dσ for every ψ ∈ C∞(�).
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In this work, we deal with functions u ∈ W 1,1
0 (�) such that the distribution 1u need not be a finite

measure. The strategy we adopt to define a Borel normal derivative is motivated by the following
comparison principle, which can be deduced from Kato’s inequality; see [Ponce 2016, Lemma 12.15]:

Proposition 2.1. Let v ∈W 1,1
0 (�) be such that 1v is a finite measure in �. If v ≥ 0 almost everywhere

in �, then ∂v/∂n ≤ 0 almost everywhere on ∂� with respect to the surface measure.

Now, to our definition of normal derivative as a Borel function, we begin with any u ∈W 1,1
0 (�). By

the essential infimum of the set

Nu :=

{
∂w

∂n
∈ L1(∂�) : w ∈ Gu

}
,

where
Gu := {w ∈W 1,1

0 (�) :1w is a finite measure and w ≤ u a.e. in �},

we mean a Borel function F : ∂�→ [−∞,∞] such that

(i) F ≤ ∂w/∂n almost everywhere on ∂�, for every w ∈ Gu ,

(ii) if F̃ :∂�→[−∞,∞] is another Borel function that satisfies (i), then F̃≤ F almost everywhere on ∂�.

We then define the normal derivative of u as

∂u
∂n
:= F.

Proposition 2.2. Such a normal derivative ∂u/∂n exists for every u ∈W 1,1
0 (�).

Proof. By the separability of L1(∂�), we can extract a countable subset A of Gu such that {∂v/∂n : v ∈ A}
is dense in Nu . We claim that the Borel measurable function F : ∂�→ [−∞,∞] defined by

F(x) := inf
v∈A

∂v

∂n
(x)

satisfies properties (i) and (ii) above. Indeed, given w ∈ Gu , take a sequence (vk)k∈N in A such that
(∂vk/∂n)k∈N converges to ∂w/∂n in L1(∂�). Passing to a subsequence if necessary, we may assume that
the convergence holds almost everywhere on ∂�. Since ∂vk/∂n ≥ F on ∂�, we deduce that ∂w/∂n ≥ F
almost everywhere on ∂�. Hence, F satisfies property (i). We now let F̃ be another function that
satisfies property (i), and for each v ∈ A denote by Ev ⊂ ∂� a set of surface measure zero such that
F̃(x) ≤ ∂v(x)/∂n for every x ∈ ∂� \ Ev. Since A is countable, the set E =

⋃
v∈A Ev also has surface

measure zero and

F̃(x)≤
∂v

∂n
(x) for every x ∈ ∂� \ E ,

for every v ∈ A. Taking the infimum of the right-hand side over v we deduce that F̃ ≤ F on ∂� \ E ,
which gives property (ii). �

In the pointwise approximation of a Borel normal derivative, one can restrict the attention to the study
of monotone sequences in Gu and Nu :
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Proposition 2.3. For every u ∈W 1,1
0 (�), there exists a nondecreasing sequence (wk)k∈N in Gu such that

(∂wk/∂n)k∈N is a nonincreasing sequence in Nu that converges almost everywhere to ∂u/∂n on ∂�.

In order to prove Proposition 2.3 we rely on Kato’s inequality up to the boundary, which implies that if
ζ ∈W 1,1

0 (�) and 1ζ is a finite measure in �, then 1[(ζ − a)+] is also a finite measure in � for every
a ∈ R and

‖1[(ζ − a)+]‖M(�) ≤ 2‖1ζ‖M(�); (2-1)

see [Brezis and Ponce 2008, Theorem 1.1; Ponce 2016, Proposition 7.7]. Here, M(�) denotes the vector
space of finite Borel measures ν in � equipped with the norm

‖ν‖M(�) = |ν|(�),

which makes M(�) a Banach space. The normal derivative ∂(ζ − a)+/∂n is then well-defined in the
distributional sense as an element in L1(∂�). Ancona [2009, Remark 6.2] subsequently proved using
tools from potential theory that

∂(ζ − a)+

∂n
=


∂ζ/∂n if a < 0,
min {∂ζ/∂n, 0} if a = 0,
0 if a > 0.

(2-2)

These properties can be illustrated by the following lemma:

Lemma 2.4. If ζi ∈W 1,1
0 (�), with i ∈ {1, 2}, are such that1ζi are finite measures in�, then the function

ζ =max {ζ1, ζ2} belongs to W 1,1
0 (�), is such that 1ζ is a finite measure in �, and

∂ζ

∂n
=min

{
∂ζ1

∂n
,
∂ζ2

∂n

}
almost everywhere on ∂�.

Proof of Lemma 2.4. Observe that
ζ = ζ2+ (ζ1− ζ2)

+.

Thus, ζ ∈ W 1,1
0 (�). By Kato’s inequality up to the boundary (2-1) applied to the function ζ1− ζ2 and

a = 0, we deduce that the measure 1[(ζ1− ζ2)
+
] is finite in �, whence so is the measure 1ζ . By (2-2)

we have
∂

∂n
(ζ1− ζ2)

+
=min

{
∂

∂n
(ζ1− ζ2), 0

}
=−

∂ζ2

∂n
+min

{
∂ζ1

∂n
,
∂ζ2

∂n

}
,

and the conclusion follows. �

Proof of Proposition 2.3. Let (vk)k∈N be a sequence in Gu such that (∂vk/∂n)k∈N is dense in Nu . As in
the proof of Proposition 2.2, we have

∂u
∂n
= inf

j∈N

∂vj

∂n
almost everywhere on ∂�.

Define by induction the nondecreasing sequence (wk)k∈N as w0 := v0 and, for k ∈ N∗,

wk :=max {wk−1, vk}.
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By Lemma 2.4 we have wk ∈ Gu for every k ∈ N. In particular, ∂u/∂n ≤ ∂wk/∂n almost everywhere
on ∂�. By comparison of normal derivatives, the sequence (∂wk/∂n)k∈N is monotone and nonincreasing;
hence

∂u
∂n
≤ lim

k→∞

∂wk

∂n
and also

lim
k→∞

∂wk

∂n
≤
∂wj

∂n
≤
∂vj

∂n

almost everywhere on ∂� for every j ∈ N. Taking the infimum of the right-hand side over j , we deduce
that

lim
k→∞

∂wk

∂n
=
∂u
∂n

almost everywhere on ∂�. �

As a consequence of Proposition 2.3, we observe that for the sake of investigating the set where the
normal derivative of a function u is negative, one does not need to rely on the entire family Gu nor even
on a countable subset of it, but on a single suitably chosen element:

Proposition 2.5. For every nonnegative function u ∈W 1,1
0 (�), there exists a nonnegative function v ∈ Gu

such that
∂v

∂n
< 0 almost everywhere on

{
∂u
∂n

< 0
}

.

Proof. Let (wk)k∈N be a nondecreasing sequence in Gu satisfying the conclusion of Proposition 2.3.
Replacing each wk by its positive part if necessary, we may assume by Lemma 2.4 that each function wk

is nonnegative in � and in particular ∂w0/∂n is nonpositive on ∂�. Hence, in the sum

∂w0

∂n
+

∞∑
j=1

(
∂wj

∂n
−
∂wj−1

∂n

)
=
∂u
∂n
,

we have
∂w0

∂n
≤ 0 and

∂wj

∂n
−
∂wj−1

∂n
≤ 0

almost everywhere on ∂� for every j ∈ N∗. In addition, for almost every x ∈ {∂u/∂n < 0}, one of these
terms, possibly depending on x , must be negative. The conclusion is thus satisfied with

v := w0+

∞∑
j=1

εj (wj −wj−1),

where (εj )j∈N is a sequence in (0, 1] such that
∞∑

j=1

εj
(
‖∇(wj −wj−1)‖L1(�)+‖1(wj −wj−1)‖M(�)

)
<+∞.

Indeed, we have v ≤ u in � and such a choice of sequence (εj )j∈N ensures that v belongs to W 1,1
0 (�)

and 1v is a finite measure in � by completeness of W 1,1
0 (�) and M(�). �

Corollary 2.6. The class of Hopf potentials is a vector subspace of L1
loc(�).
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Proof. Let Vi ∈ L1
loc(�), with i ∈ {1, 2}, be two Hopf potentials, and denote by ζi ∈W 1,1

0 (�) a nonnegative
function that satisfies properties (H1) and (H2) with respect to Vi . We now verify that α1V1+α2V2 is a
Hopf potential for every α1, α2 ∈ R by using the function ζ :=min {ζ1, ζ2}. Observe that∣∣(α1V1+α2V2)ζ

∣∣≤ |α1V1|ζ1+ |α2V2|ζ2 ∈ L1(�).

By Proposition 2.5 there exists a nonnegative function vi ∈ Gζi such that ∂vi/∂n < 0 almost everywhere
on ∂�. Since ζ ≥min {v1, v2}, the counterpart of Lemma 2.4 for the minimum of two functions gives in
this case min {v1, v2} ∈ Gζ and

∂ζ

∂n
≤
∂

∂n
min {v1, v2} =max

{
∂v1

∂n
,
∂v2

∂n

}
.

Therefore, ∂ζ/∂n < 0 almost everywhere on ∂�. �

The growth of the potential V like 1/d2
∂� near the boundary is critical for the validity of the Hopf

lemma:

Proposition 2.7. If u ∈W 1,1
0 (�) is a nonnegative function such that∫

�

u
d2
∂�

<∞, (2-3)

then ∂u/∂n = 0 almost everywhere on ∂�.

Proof. By the comparison principle for normal derivatives (Proposition 2.1), it suffices to verify that for
every nonnegative function v ∈ Gu we have ∂v/∂n = 0 almost everywhere on ∂�. To this end, denote by
µ the measure in RN such that µ=1v in � and µ≡ 0 on the Borel subsets of RN

\�; we also extend v
by zero to RN

\�. For every ψ ∈ C∞(RN ), we then have∫
∂�

ψ
∂v

∂n
dσ =

∫
�

ψ 1v+

∫
�

∇v · ∇ψ =

∫
RN
ψ dµ−

∫
RN
v 1ψ.

Given x ∈ ∂� and r > 0, we apply this identity with ψ(y)= ϕ((y− x)/r), where ϕ ∈ C∞c (R
N ) is such

that ϕ ≡ 1 in B1, ϕ ≡ 0 in RN
\ B2, and 0≤ ϕ ≤ 1 in RN. By the nonpositivity of ∂v/∂n we then get∫

∂�∩Br (x)

∣∣∣∣∂v∂n

∣∣∣∣ dσ ≤−
∫
∂�

ψ
∂v

∂n
dσ ≤ |µ|(B2r (x))+C

∫
B2r (x)

v

d2
∂�

. (2-4)

The set

E1 :=

{
x ∈ RN

: lim sup
r→0

1
r N−1

∫
Br (x)

v

d2
∂�

> 0
}

satisfies HN−1(E1) = 0, where HN−1 is the Hausdorff measure of E1 of dimension N − 1; see, e.g.,
[Evans and Gariepy 2015, Theorem 2.10]. Since µ≡ 0 on ∂�, by outer regularity of µ the set

E2 :=

{
x ∈ RN

: lim sup
r→0

|µ|(Br (x))
r N−1 > 0

}
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also satisfies HN−1(E2) = 0, with the same proof as for E1. Dividing both sides of (2-4) by r N−1, it
follows that for every x ∈ ∂� \ (E1 ∪ E2) we have

lim
r→0

1
r N−1

∫
∂�∩Br (x)

∣∣∣∣∂v∂n

∣∣∣∣ dσ = 0,

and then ∂v/∂n = 0 almost everywhere on ∂� as claimed. �

The choice of the Sobolev space W 1,1
0 (�) to define the normal derivative is sufficient for our purposes,

but one might be interested in a condition that does not require the weak (distributional) derivative to be
in L1(�;RN ). In fact, the presentation above easily adapts to functions u ∈ L1(�) which vanish on the
boundary in the sense that

lim
r→0

1
r

∫
{x∈�:d∂�(x)<r}

|u| = 0. (2-5)

The reason is that any function v ∈ L1(�) such that (2-5) holds and1v is a finite measure in� necessarily
belongs to W 1,1

0 (�); see [Ponce 2016, Propositions 6.3 and 20.2]. Therefore, a family G̃u defined in terms
of (2-5) coincides with our class Gu . An interesting aspect of (2-5) is that such a condition automatically
holds for any function u ∈ L1(�) that satisfies (2-3).

3. The Dirichlet problem with nonhomogeneous data

Given f ∈ L∞(�) and g ∈ L∞(∂�), the concept of solution of the nonhomogeneous Dirichlet problem
for the Schrödinger operator −1+ V with V ∈ L1

loc(�),{
−1v+ V v = f in �,

v = g on ∂�, (3-1)

can be straightforwardly defined by L1-L∞ duality using as test function the solution of the Dirichlet
problem {

−1ζ + V ζ = µ in �,
ζ = 0 on ∂� (3-2)

involving µ ∈ L1(�), in the spirit of Stampacchia’s definition of weak solutions [1965]. In this case, a
solution v ∈ L∞(�) of (3-1) is meant to satisfy the identity∫

�

vµ=

∫
�

f ζ −
∫
∂�

g
∂ζ

∂n
dσ for every µ ∈ L1(�). (3-3)

While this notion is enough to investigate the Hopf lemma involving smooth supersolutions of −1+ V,
to deal with nonsmooth ones we rely on a larger class of test functions. Namely, we allow any solution of
(3-2) involving finite measures µ in � which are diffuse with respect to the W 1,2 capacity. The main
result of this section ensures the existence of solutions of (3-1) in this stronger sense:

Proposition 3.1. Let V ∈ L1
loc(�) be a nonnegative function. Given f ∈ L∞(�) and g ∈ L∞(∂�), there

exists v ∈W 1,2
loc (�)∩ L∞(�) such that∫

�

v̂ dµ=
∫
�

f ζ −
∫
∂�

g
∂ζ

∂n
dσ (3-4)
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for every finite measure µ in � which is diffuse with respect to the W 1,2 capacity, where v̂ is the precise
representative of v and ζ ∈W 1,1

0 (�) satisfies

−1ζ + V ζ = µ in the sense of distributions in �. (3-5)

In particular, there exists a constant C > 0 such that

‖v‖L∞(�) ≤ C(‖ f ‖L∞(�)+‖g‖L∞(∂�)). (3-6)

We recall that the W 1,2 capacity of a compact subset K ⊂ RN is defined as

capW 1,2 (K )= inf
{
‖ϕ‖2W 1,2(RN )

: ϕ ∈ C∞c (R
N ) is nonnegative and ϕ > 1 on K

}
.

A Borel measure µ in � is diffuse with respect to the W 1,2 capacity whenever |µ|(K ) = 0 for every
compact subset K such that capW 1,2 (K )= 0. This is the analogue of the notion of absolute continuity
between two measures from measure theory.

We say that x ∈� is a Lebesgue point of v and v̂(x) ∈ R is the value of the precise representative of v
at x whenever

lim
r→0

/

∫
Br (x)
|v− v̂(x)| = 0,

where /

∫
Br (x)

denotes the average integral over Br (x). For an L1
loc function, the exceptional set (i.e., the

complement of the Lebesgue set in �) has Lebesgue measure zero. Since in our case v is a W 1,2
loc function,

the exceptional set of v is typically smaller and has W 1,2 capacity zero; see [Evans and Gariepy 2015,
Theorem 4.19; Ponce 2016, Proposition 8.6]. Thus, the exceptional set of v is irrelevant for diffuse
measures.

The existence of solutions of the Dirichlet problem (3-2) for finite diffuse measures µ is proved in
[Orsina and Ponce 2008] for potentials V ∈ L1

loc(�) and depends upon a contraction estimate, following
an idea of Brezis and Strauss [1973]:

Proposition 3.2. Let V ∈ L1
loc(�) be a nonnegative function. For every finite measure µ in � which is

diffuse with respect to the W 1,2 capacity, there exists a unique function ζ ∈W 1,1
0 (�) that satisfies (3-5).

In addition, V ζ ∈ L1(�) and

‖V ζ‖L1(�) ≤ ‖µ‖M(�). (3-7)

The contraction estimate (3-7) holds for any solution of the Dirichlet problem (3-5) provided that
V is nonnegative, independently of the fact that µ is diffuse or not; see, e.g., [Brezis et al. 2007,
Proposition 4.B.3]. This is a formal consequence of using sgn ζ as a test function.

The classical weak maximum principle implies by duality the estimate ‖ζ‖L1(�) ≤C ′‖1ζ‖M(�). Thus,
as a consequence of (3-7) and the identity (3-5) satisfied by 1ζ ,

1
C ′
‖ζ‖L1(�) ≤ ‖1ζ‖M(�) ≤ ‖µ‖M(�)+‖V ζ‖L1(�) ≤ 2‖µ‖M(�). (3-8)



HOPF POTENTIALS FOR THE SCHRÖDINGER OPERATOR 2027

Additionally, the existence of the distributional normal derivative ∂ζ/∂n in L1(∂�) relies on the estimate
‖∂ζ/∂n‖L1(∂�) ≤ ‖1ζ‖M(�). Proceeding as in (3-8) we get∥∥∥∥∂ζ∂n

∥∥∥∥
L1(∂�)

≤ ‖1ζ‖M(�) ≤ 2‖µ‖M(�). (3-9)

To understand the role played by diffuse measures and the W 1,2 capacity in this problem, one should
keep in mind a classical result in potential theory which says that for every such a measure µ one can find
a sequence (µk)k∈N of finite measures that converges strongly to µ in the space of finite Borel measures
M(�) and such that the solution of the Dirichlet problem{

−1wk = µk in �,
wk = 0 on ∂� (3-10)

is a bounded function for every k ∈ N. Those measures can be obtained for example as an application of
the Hahn–Banach theorem in the spirit of [Feyel and de la Pradelle 1977; Dal Maso 1983]; see [Ponce and
Wilmet 2017, Proposition 2.1] for details. Another strategy relies on the Frostman–Maria boundedness
principle by taking µk := µbEk , where Ek is a sublevel set of the solution of the Dirichlet problem (3-10)
with datum µ; see Lemma 13.2 in [Ponce 2016] and the remark following that statement. The property
that wk ∈ L∞(�) and 1wk ∈M(�) implies by interpolation that wk ∈ W 1,2

0 (�); hence µk acts as an
element in the dual space (W 1,2

0 (�))′.
The existence of a variational solution of the Dirichlet problem (3-2) with better datum µ ∈ (W 1,2

0 (�))′

relies on a standard variational approach based on the minimization of the functional

E(z)= 1
2

∫
�

(|∇z|2+ V z2)−µ[z] (3-11)

in the class W 1,2
0 (�)∩ L2(�; V dx). The unique minimizer ζ satisfies the Euler–Lagrange equation∫

�

(∇ζ · ∇z+ V ζ z)= µ[z] (3-12)

for every z ∈W 1,2
0 (�)∩L2(�; V dx). Since V ∈ L1

loc(�), the set C∞c (�) is contained in the minimization
class W 1,2

0 (�)∩ L2(�; V dx). The Euler–Lagrange equation implies in this case that

−1ζ + V ζ = µ in the sense of distributions in �. (3-13)

When µ is in addition a finite measure in �, one deduces that V ζ ∈ L1(�) using the test function
z = Tε(ζ )/ε, where Tε : R→ R is the truncation function at ±ε defined for t ∈ R by

Tε(t)=


−ε if t <−ε,

t if −ε ≤ t ≤ ε,
ε if t > ε.

Indeed, z satisfies ∇ζ ·∇z ≥ 0 and |z| ≤ 1. Applying the Euler–Lagrange equation (3-12) with z as above,
and letting ε tend to zero, the contraction estimate (3-7) follows from Fatou’s lemma. Equation (3-13)
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thus implies that 1ζ is also a finite measure in �. One may prove that 1ζ is a finite measure even for
nonnegative Borel functions V, although (3-13) need not be satisfied in this case; see Section 8 below.

We illustrate these tools with a sketch of the proof of Proposition 3.2:

Proof of Proposition 3.2. By linearity, it suffices to consider the case where µ is nonnegative. Take
a sequence of measures (µk)k∈N converging strongly to µ in M(�) such that the solution wk of the
Dirichlet problem (3-10) with density µk is bounded. Hence, µk belongs to (W 1,2

0 (�))′ and then the
Dirichlet problem (3-2) with datum µk has a unique solution ζk ∈W 1,2

0 (�). By the linearity of (3-13),
we have the contraction estimate

‖V ζk − V ζl‖L1(�) ≤ ‖µk −µl‖M(�)

for every k, l ∈ N. Hence, the sequence (V ζk)k∈N is Cauchy in L1(�). Therefore, (1ζk)k∈N converges
strongly in M(�), and thus by the elliptic estimates of Littman, Stampacchia and Weinberger [Littman
et al. 1963], see also [Ponce 2016, Proposition 5.1], the sequence (ζk)k∈N converges strongly in W 1,p

0 (�)

for every 1≤ p < N/(N − 1). In particular, its limit ζ belongs to W 1,1
0 (�) and satisfies (3-13). �

Before proving Proposition 3.1, we first address a question of existence of solutions that includes the
easier L1-L∞ duality setting and we also develop an approximation scheme of solutions that will be used
in the next section:

Lemma 3.3. Let (gk)k∈N be a uniformly bounded sequence in C∞(∂�) that converges almost everywhere
to g∈ L∞(∂�). Then, for every f ∈ L∞(�) and k∈N, there exist fk ∈ L1

loc(�) and vk ∈W 1,2(�)∩L∞(�)
such that, for every minimizer ζ ∈ W 1,2

0 (�)∩ L2(�; V dx) of the energy functional (3-11) with datum
µ ∈ (W 1,2

0 (�))′ ∩M(�), we have

(i) fk ∈ L1(�; |ζ | dx), vk = gk in the sense of traces on ∂� and∫
�

(∇vk · ∇z+ V vkz)=
∫
�

fk z for every z ∈W 1,2
0 (�)∩ L1(�; V dx),

(ii) ( fk)k∈N converges to f in L1(�; |ζ | dx),

(iii) (vk)k∈N is uniformly bounded and converges in L1(�) to the L1-L∞ duality solution of (3-1).

Proof of Lemma 3.3. We construct the function vk of the form vk = uk +ψk , where ψk ∈ C∞(�) is the
harmonic extension of gk to � and uk ∈W 1,2

0 (�) satisfies

−1uk + V uk = f − Tk(V )ψk in the sense of distributions in �.

Our motivation is that vk formally satisfies{
−1vk + V vk = f + (V − Tk(V ))ψk in �,

vk = gk on ∂�,

with a warning concerning the fact that Vψk need not belong to L1(�).
Let

fk := f + (V − Tk(V ))ψk ∈ L1
loc(�). (3-14)
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The assumption µ ∈M(�) implies V ζ ∈ L1(�); see (3-8). Since both f and ψk are bounded, we
then have fk ∈ L1(�; |ζ | dx) and the sequence ( fk)k∈N converges to f in this space by the dominated
convergence theorem. We now show that∫

�

(∇vk · ∇z+ V vkz)=
∫
�

fk z for every z ∈W 1,2
0 (�)∩ L1(�; V dx), (3-15)

and in particular with z = ζ .
On one hand, we observe that uk can be obtained by minimization of the energy functional (3-11) with

datum f − Tk(V )ψk . The Euler–Lagrange equation satisfied by uk with test function z gives in this case∫
�

(∇uk · ∇z+ V uk z)=
∫
�

( f − Tk(V )ψk)z. (3-16)

On the other hand, since z ∈W 1,2
0 (�) and ψk is the harmonic extension of gk ,∫

�

∇ψk · ∇z =−
∫
�

1ψk z = 0. (3-17)

For z ∈ L1(�; V dx), the integral
∫
�

Vψk z is finite since ψk is bounded. Thus adding this integral on
both sides of (3-16) and using (3-17) we get (3-15).

We now prove that (vk)k∈N is uniformly bounded. To this end, it suffices to establish that (uk)k∈N has
such a property, and this follows from the pointwise estimate

|uk | ≤ ‖ψk‖L∞(�)+‖ f ‖L∞(�)ζ almost everywhere in �, (3-18)

where ζ ∈ C∞0 (�) is the solution of the Dirichlet problem (1-1) with constant density µ ≡ 1. Indeed,
the function Zk := uk −‖ψk‖L∞(�)−‖ f ‖L∞(�)ζ satisfies

1Zk = V uk + Tk(V )ψk − f +‖ f ‖L∞(�) in the sense of distributions in �.

Thus, by the classical Kato’s inequality [1972], see also [Ponce 2016, Proposition 6.6], and the nonneg-
ativity of V,

1Z+k ≥ χ{Zk≥0}(V uk + Tk(V )ψk − f +‖ f ‖L∞(�))≥ 0

in the sense of distributions in�. Since Z+k ∈W 1,2
0 (�), the weak maximum principle implies Z+k ≤0 almost

everywhere in�; see, e.g., [Ponce 2016, Propositions 6.1 and 6.5]. Therefore, Z+k vanishes in� and we get

uk ≤ ‖ψk‖L∞(�)+‖ f ‖L∞(�)ζ almost everywhere in �.

A similar estimate holds for −uk and one deduces (3-18). As ‖ψk‖L∞(�) = ‖gk‖L∞(∂�) and the sequence
(gk)k∈N is uniformly bounded, we deduce that (vk)k∈N is uniformly bounded. This type of property where
the potential of the Schrödinger operator forces the equation to have bounded solutions from data that
are merely L1 has been further investigated by Arcoya and Boccardo [2015], based on suitable choices
of test functions.
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We are left with the convergence of the sequence (vk)k∈N. We have just proved that (vk)k∈N is uniformly
bounded. Since V ∈ L1

loc(�) and

−1vk + V vk = fk in the sense of distributions in �,

the sequence (1vk)k∈N is bounded in L1(ω) for every ωb�. It then follows by interpolation that (vk)k∈N

is bounded in W 1,2(ω) for every ωb�. Thus, there exists a subsequence (vkj )j∈N that converges to some
function v ∈W 1,2

loc (�) weakly in W 1,2(ω) for every ω b� and strongly in L1(�); the latter holds in the
entire domain � by uniform boundedness of (vk)k∈N.

To identify the limit v, we return to (3-16) and (3-17) to prove that under the additional assumption
that µ ∈ L∞(�), one has ∫

�

vkµ=

∫
�

fk ζ −

∫
∂�

gk
∂ζ

∂n
dσ . (3-19)

For such a µ, the quantity µ[uk] can be computed through integration of ukµ. From the Euler–Lagrange
equation satisfied by ζ with test function uk and (3-16), we get∫

�

ukµ= µ[uk] =

∫
�

( f − Tk(V )ψk)ζ .

Since vk = g on ∂� and ζ has a distributional normal derivative, (3-17) with z = ζ implies

−

∫
�

ψk 1ζ +

∫
∂�

gk
∂ζ

∂n
dσ = 0.

Thus adding
∫
�

Vψk ζ on both sides and using the fact that µ = −1ζ + V ζ in the sense of measures
in �, we get ∫

�

ψkµ=

∫
�

Vψk ζ −

∫
∂�

gk
∂ζ

∂n
dσ .

A combination of the first and third identities implies (3-19). As k= kj tends to infinity, we have v satisfies∫
�

vµ=

∫
�

f ζ −
∫
∂�

g
∂ζ

∂n
dσ for every µ ∈ L∞(�).

This already gives the uniqueness of the limit and in particular the entire sequence (vk)k∈N converges to
v in L1(�). That this identity holds for every µ ∈ L1(�) follows from approximation of µ by bounded
functions (µk)k∈N. Indeed, the solutions (ζk)k∈N associated to that sequence converge to ζ in L1(�) and
(∂ζk/∂n)k∈N converges to ∂ζ/∂n in L1(∂�) by estimates (3-8) and (3-9). It thus suffices to use µk as
test function and let k tend to infinity. �

A finite measure ν in � that belongs to the dual space (W 1,2
0 (�))′ satisfies∣∣∣∣∫

�

ϕ dν
∣∣∣∣≤ C‖ϕ‖W 1,2(�) for every ϕ ∈ C∞c (�). (3-20)

By the density of C∞c (�) in W 1,2
0 (�), the linear functional

ϕ ∈ C∞c (�) 7−→
∫
�

ϕ dν
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has a unique continuous extension to W 1,2
0 (�). Denoting such an extension by ν[u] for every u ∈W 1,2

0 (�),
one can represent ν[u] as integration of u with respect to ν. Indeed, estimate (3-20) implies that ν, as a
measure, is diffuse with respect to the W 1,2 capacity, the precise representative û has an exceptional set
with W 1,2 capacity zero, and û∈ L1(�; ν); see, e.g., [Grun-Rehomme 1977; Ponce 2016, Proposition 16.5].
Moreover,

ν[u] =
∫
�

û dν for every u ∈W 1,2
0 (�). (3-21)

Proof of Proposition 3.1. Estimate (3-6) is a straightforward consequence of the L1-L∞ duality. Indeed,
for any µ ∈ L1(�), by estimates (3-8) and (3-9) we have∣∣∣∣∫

�

vµ

∣∣∣∣= |µ[v]| ≤ ‖ f ‖L∞(�)‖ζ‖L1(�)+‖g‖L∞(∂�)

∥∥∥∥∂ζ∂n

∥∥∥∥
L1(∂�)

≤ 2(C ′‖ f ‖L∞(�)+‖g‖L∞(∂�))‖µ‖L1(�).

By L1-L∞ duality, we deduce that v ∈ L∞(�) and

‖v‖L∞(�) ≤ 2(C ′‖ f ‖L∞(�)+‖g‖L∞(∂�)).

We thus have the conclusion with C := 2 max {C ′, 1}.
The proof of Lemma 3.3 may be seen as a first step in establishing Proposition 3.1. We follow the

notation there: We recall that (gk)k∈N is a uniformly bounded sequence in C∞(∂�) that converges
almost everywhere to g and ( fk)k∈N is defined by (3-14) and converges to f in L1(�; |ζ | dx), where ζ is
the solution of (3-5) with µ ∈ (W 1,2

0 (�))′ ∩M(�). The sequence (vk)k∈N defined by vk = uk +ψk is
uniformly bounded and also bounded in W 1,2(ω) for every open subset ω b�.

We now prove that if µ ∈ (W 1,2
0 (�))′ ∩M(�) has compact support in �, then

µ[vkϕ] =

∫
�

fk ζ −

∫
∂�

gk
∂ζ

∂n
dσ , (3-22)

where ϕ ∈ C∞c (�) is any function such that ϕ = 1 on suppµ. Proceeding as in the case where µ was
assumed to belong to L∞(�), we have

µ[uk] =

∫
�

( f − Tk(V )ψk)ζ (3-23)

and ∫
�

ψk dµ=
∫
�

Vψk ζ −

∫
∂�

gk
∂ζ

∂n
dσ . (3-24)

For ϕ ∈ C∞c (�) such that ϕ = 1 on suppµ, we also have

µ[uk] = µ[ukϕ] and
∫
�

ψk dµ=
∫
�

ψk ϕ dµ= µ[ψk ϕ]. (3-25)

A combination of (3-23), (3-24) and (3-25) then implies (3-22).
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Take a subsequence (vkj )j∈N that converges to v weakly in W 1,2(ω) for every ω b � and in L1(�).
By (3-21), we have

lim
j→∞

µ[vkjϕ] = µ[vϕ] =

∫
�

v̂ϕ dµ=
∫
�

v̂ dµ.

In view of the convergences of ( fk)k∈N and (gk)k∈N, as k = kj tends to infinity in (3-22) we conclude that∫
�

v̂ dµ=
∫
�

f ζ −
∫
∂�

g
∂ζ

∂n
dσ , (3-26)

when µ ∈M(�)∩ (W 1,2
0 (�))′ has compact support in �.

We finally prove that v satisfies identity (3-4) for every test function ζ as in the statement. To
this end, we may assume that µ is nonnegative. As in the proof of Proposition 3.2, take a sequence
(µk)k∈N of finite measures that converges strongly to µ in M(�) and such that, for each measure µk , the
solution wk of the Dirichlet problem (3-10) with density µk is bounded. We may also assume that each
µk has compact support in �. By interpolation, wk ∈W 1,2

0 (�) and then µk ∈ (W
1,2
0 (�))′. Denoting by

ζk ∈W 1,2
0 (�)∩ L2(�; V dx) the solution of (3-5) with µk , it follows from (3-26) that∫

�

v̂ dµk =

∫
�

f ζk −

∫
∂�

g
∂ζk

∂n
dσ .

On one hand, since the function v̂ is bounded, by strong convergence of the sequence (µk)k∈N we have

lim
k→∞

∫
�

v̂ dµk =

∫
�

v̂ dµ.

On the other hand, by estimates (3-8) and (3-9) the sequence (ζk)k∈N converges to ζ in L1(�) and
(∂ζk/∂n)k∈N converges to ∂ζ/∂n in L1(∂�). By the boundedness of f and g we get∫

�

v̂ dµ= lim
k→∞

(∫
�

f ζk −

∫
∂�

g
∂ζk

∂n
dσ
)
=

∫
�

f ζ −
∫
∂�

g
∂ζ

∂n
dσ . �

4. Construction of positive test functions

Given any nontrivial nonnegative boundary datum g ∈ L∞(∂�), the main result of this section gives a
recipe to construct f ∈ L∞(�) such that f < 0 almost everywhere in � while the Dirichlet problem (3-1)
with mixed sign datum ( f, g) has a nonnegative solution.

Proposition 4.1. There exists a bounded continuous function H :R+→R+, with H(t)> 0 for t > 0, such
that, for any nonnegative functions V ∈ L1

loc(�) and g ∈ L∞(∂�), if w satisfies the Dirichlet problem{
−1w+ Vw = 0 in �,

w = g on ∂�,

and if v satisfies {
−1v+ V v = H(w) in �,

v = 0 on ∂�,

then we have w ≥ v almost everywhere in �.
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We illustrate this proposition with a proof of Theorem 1 for smooth supersolutions involving potentials
in L1(�; d∂� dx). An important ingredient is the following strong maximum principle for L1 potentials
that was proved independently by Ancona [1979] and Trudinger [1978]; see also [Brezis and Ponce 2003]:

Proposition 4.2. Let V ∈ L1
loc(�). If u ∈ L1(�) is a nonnegative supersolution of the Schrödinger

operator −1+ V and if
∫
�

u > 0, then u > 0 almost everywhere in �.

Proof of Theorem 1 when V ∈ L1(�; d∂� dx) and u ∈ C∞0 (�). Since u is nonnegative, we may assume
from the beginning that V is also nonnegative. Assume by contradiction that the set A :={∂u/∂n=0} is not
negligible with respect to the surface measure on ∂�. We solve the Dirichlet problems of Proposition 4.1
starting with the boundary condition g = χA.

Using the notation in that statement, the function w − v is nonnegative. Since w − v satisfies the
Dirichlet problem with datum (−H(w), χA), using u as test function, i.e., taking u = ζ in (3-3), we have∫

�

(w− v)(−1u+ V u)=
∫
�

(−H(w))u−
∫
∂�

χA
∂u
∂n

dσ.

Observe that u is an admissible test function because V ∈ L1(�; d∂� dx), which implies −1u+ V u ∈
L1(�). By the choice of A, the last integral vanishes. Thus,∫

�

H(w)u =−
∫
�

(w− v)(−1u+ V u)≤ 0,

by nonnegativity of the integrand on the right-hand side. This implies H(w)u = 0 almost everywhere
in �. Since A has positive surface measure, w and v are not identically zero; this follows from the fact
that one can use as a test function in both problems the solution of the Dirichlet problem (1-1) with datum
µ≡ 1 (cf. Proposition 5.1 below). By the strong maximum principle above for the Schrödinger operator
−1+ V, we have w > 0 almost everywhere in �; hence H(w) satisfies the same property. Therefore,
u ≡ 0 and the conclusion follows for smooth supersolutions. �

To prove Proposition 4.1, we need a version of Kato’s inequality adapted to the nonhomogeneous
Dirichlet problem involving potentials V ∈ L1

loc(�).

Lemma 4.3. Let V ∈L1
loc(�) be a nonnegative function. Given f ∈L∞(�) and g∈L∞(∂�), if v∈L∞(�)

satisfies the Dirichlet problem (3-1), then∫
�

v+ ≤

∫
{v>0}

f ξ −
∫
∂�

g+
∂ξ

∂n
dσ,

where ξ ∈ W 1,2
0 (�) ∩ L∞(�) is the (nonnegative) solution of the Dirichlet problem (3-2) with datum

µ≡ 1.

Proof of Lemma 4.3. The proof is based on an approximation of v by functions vk ∈W 1,2(�)∩ L∞(�),
following the notation in Lemma 3.3. By the contraction estimate (3-7), 1ξ ∈ L1(�) and ξ has a
distributional normal derivative ∂ξ/∂n ∈ L1(∂�). Thus,∫

�

(∇ξ · ∇ψ + V ξψ)=
∫
�

ψ +

∫
∂�

ψ
∂ξ

∂n
dσ for every ψ ∈ C∞(�).
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Since ξ ∈W 1,2
0 (�) and V ξ ∈ L1(�), this identity holds by approximation of ψ for every ψ ∈W 1,2(�)∩

L∞(�). In particular, we can take ψ = J (vk), where J :R→R is a smooth function to be chosen later on.
Since J (vk)= J (gk) in the sense of traces on ∂�, where gk ∈ C∞(∂�) is an approximation of g, we get∫

�

(
J ′(vk)∇ξ · ∇vk + V ξ J (vk)

)
=

∫
�

J (vk)+

∫
∂�

J (gk)
∂ξ

∂n
dσ. (4-1)

On the other hand, applying the Euler–Lagrange equation in the statement of Lemma 3.3 with test function
z = J ′(vk)ξ (which satisfies |z| ≤ C |ξ | and thus z ∈ L1(�; V dx)), we have∫

�

(
J ′′(vk)|∇vk |

2ξ + J ′(vk)∇ξ · ∇vk + V vk J ′(vk)ξ
)
=

∫
�

fk J ′(vk)ξ.

Assuming that J ′′ ≥ 0, by the nonnegativity of ξ we get∫
�

(
J ′(vk)∇vk · ∇ξ + V vk J ′(vk)ξ

)
≤

∫
�

fk J ′(vk)ξ. (4-2)

Subtracting (4-2) from (4-1), we get∫
�

V ξ [J (vk)− vk J ′(vk)] ≥

∫
�

J (vk)−

∫
�

fk J ′(vk)ξ +

∫
∂�

J (gk)
∂ξ

∂n
dσ.

We now take J convex such that J (t)= 0 for t ≤ 0 and 0≤ J (t)≤ t for t ≥ 0. In particular, for every t ∈R

we have J (t)≤ J ′(t)t . Since V and ξ are nonnegative, the integrand on the left-hand side is nonpositive
and we deduce that ∫

�

J (vk)≤

∫
�

fk J ′(vk)ξ −

∫
∂�

J (gk)
∂ξ

∂n
dσ.

The sequence ( fk)k∈N provided by Lemma 3.3 converges to f in L1(�; ξ dx). As k tends to infinity,
by pointwise convergence and the boundedness of (vk)k∈N and (gk)k∈N and by the dominated convergence
theorem we thus get ∫

�

J (v)≤
∫
�

f J ′(v)ξ −
∫
∂�

J (g)
∂ξ

∂n
dσ.

To conclude, we apply this inequality to a sequence (Ji )i∈N of convex functions as above that converges
pointwise to t 7→ t+ and such that (J ′i )i∈N converges pointwise to χ(0,∞). As i tends to infinity, we have
the conclusion. �

Proof of Proposition 4.1. For every ε > 0, we claim that if zε satisfies the Dirichlet problem{
−1zε + V zε = χ{w>εC} in �,

zε = 0 on ∂�

for C > 0 sufficiently large, then we have w ≥ εzε . Indeed, by Kato’s inequality above applied to
v = εzε −w, we have∫

�

(εzε −w)+ ≤
∫
{εzε>w}

εχ{w>εC}ξ −

∫
∂�

(−g)+
∂ξ

∂n
dσ = ε

∫
{εzε>w>εC}

ξ,
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since g is assumed to be nonnegative. Observe that

zε ≤ ξ ≤ ‖ξ‖L∞(�) for every ε > 0.

Taking C := ‖ξ‖L∞(�), the set {εzε >w > εC} is then negligible and we deduce that∫
�

(εzε −w)+ ≤ 0.

Hence, w ≥ εzε almost everywhere in �. Applying this conclusion with ε = 1/2k for every k ∈N∗, we
get

w =

∞∑
k=1

1
2kw ≥

∞∑
k=1

1
2k ·

1
2k z1/2k =: ṽ,

where ṽ satisfies the Dirichlet problem{
−1ṽ+ V ṽ = f̃ in �,

ṽ = 0 on ∂�,

with

f̃ (x) :=
∞∑

k=1

1
2k ·

1
2k χ{w>C/2k}(x)=

∞∑
k=1

1
2k ·

1
2k χ(C/2k ,∞)(w(x)).

Observe that for every s ≥ 0,
∞∑

k=1

1
2k ·

1
2k χ(C/2k ,∞)(s)≥

∞∑
k=1

∫ 1/2k−1

1/2k

t
2
χ(Ct,∞)(s) dt

=

∫ 1

0

t
2
χ(0,s/C)(t) dt =

∫ min {1,s/C}

0

t
2

dt = 1
4(min {1, s/C})2 =: H(s).

By this computation, we thus have f̃ ≥ H(w) in �. Hence by comparison it follows that the solution v of
the Dirichlet problem with datum H(w) satisfies ṽ ≥ v in �. Therefore, w ≥ v as we wanted to prove. �

5. Nontrivial solutions for the nonhomogeneous problem

The existence of nontrivial solutions of the boundary value problem{
−1w+ Vw = 0 in �,

w = g on ∂� (5-1)

in the sense of Proposition 3.1 is related to the existence of supersolutions of the Schrödinger operator
−1+ V with negative normal derivative through the following:

Proposition 5.1. Let V ∈ L1
loc(�) and g ∈ L∞(∂�) be nonnegative functions. Then, the (nonnegative)

solution w ∈W 1,2
loc (�)∩ L∞(�) of the Dirichlet problem (5-1) with datum g satisfies∫

�

w > 0
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if and only if there exists a (nonnegative) supersolution ζ ∈W 1,1
0 (�) of the Schrödinger operator −1+V

such that the measure −1ζ + V ζ is finite and diffuse in � and∫
∂�

g
∂ζ

∂n
dσ < 0. (5-2)

Proposition 5.1 is used in the proofs of Theorems 1 and 2. We deduce a posteriori from Theorem 2
that once condition (5-2) holds for one supersolution, then it holds for every nontrivial supersolution
ζ ∈W 1,1

0 (�) such that V ζ ∈ L1(�).
The nonnegativity of w and ζ follows from Proposition 3.1 and Lemma 4.3. Indeed, by Lemma 4.3

applied to v := −w we have ∫
�

(−w)+ ≤−

∫
∂�

(−g)+
∂ξ

∂n
dσ = 0.

Thus, −w ≤ 0 almost everywhere in �. The same argument applies to solutions of (3-1) such that f ≥ 0
in � and g ≥ 0 on ∂�. In particular, by Proposition 3.1 and the nonnegativity of the solutions of (3-1) in
this case we have ∫

�

f ζ −
∫
∂�

g
∂ζ

∂n
dσ =

∫
�

v̂ dµ≥ 0,

where µ=−1ζ + V ζ . Since this is true for every nonnegative f and g, we deduce that ζ ≥ 0 in � and
∂ζ/∂n ≤ 0 on ∂�.

Proof of Proposition 5.1. “ =⇒” Since ∂ζ/∂n ≤ 0 almost everywhere on ∂�, by Proposition 3.1 we have∫
�

ŵ dµ=−
∫
∂�

g
∂ζ

∂n
dσ > 0.

In particular, w is a nonzero solution of (5-1). Since g is nonnegative on ∂�, w is nonnegative in � and
the implication follows.

“=⇒” Since w is a nontrivial nonnegative solution, there exists a compact subset K ⊂� with positive
W 1,2 capacity which is contained in the Lebesgue set of w and is such that ŵ ≥ ε on K for some constant
ε > 0. Take a finite nonnegative diffuse measure µ supported on K such that µ(K ) > 0. The existence of
such a measure follows from the Hahn–Banach theorem; see, e.g., [Ponce 2016, Proposition A.17]. We
take as supersolution the function ζ ∈W 1,1

0 (�) such that

−1ζ + V ζ = µ in the sense of distributions in �;

see Proposition 3.2. Applying ζ as a test function in the Dirichlet problem satisfied by w, we have

εµ(K )≤
∫
�

ŵ dµ=−
∫
∂�

g
∂ζ

∂n
dσ. �

The previous proposition raises the question of how to construct supersolutions of the Schrödinger
operator −1+ V with pointwise control on its distributional normal derivative to ensure that (5-2) is
satisfied.
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Proposition 5.2. Let V ∈ L1
loc(�) be a nonnegative function. For every w ∈W 1,1

0 (�) such that 1w is a
finite measure and Vw ∈ L1(�), there exists a nonnegative function w̃ ∈W 1,2

0 (�)∩ L∞(�) such that

(O1) 1w̃ is a finite measure in � and V w̃ ∈ L1(�),

(O2) ∂w̃/∂n ≤ ∂w/∂n almost everywhere on ∂�,

(O3) −1w̃+ V w̃ ≥ 0 in the sense of distributions in �.

For example, when V is a nonnegative Hopf potential, taking w := v as the function given by
Proposition 2.5 with u := ζ0 one finds, as an application of Proposition 5.2, a supersolution of −1+ V
having a distributional normal derivative ∂w̃/∂n < 0 almost everywhere on ∂�.

Proof of Proposition 5.2. Since w ∈W 1,1
0 (�) and the measure 1w is finite in �, by interpolation we have

T1(w) ∈ W 1,2
0 (�). Since Vw ∈ L1(�), we also have V T1(w) ∈ L1(�). By Kato’s inequality up to the

boundary (2-1), 1T1(w) is a finite measure in �. By (2-2), we also have

∂T1(w)

∂n
=
∂w

∂n
. (5-3)

Thus, replacing w by T1(w) if necessary, we may henceforth assume that w ∈W 1,2
0 (�)∩ L∞(�). The

measure 1w in this case is diffuse with respect to the W 1,2 capacity; hence the measure

ν := −1w+ Vw

is also finite and diffuse in �, and so is its positive part ν+.
By Proposition 3.2, the Dirichlet problem with nonnegative potential V,{

−1z+ V z = ν+ in �,

z = 0 on ∂�,

has a solution. It is not clear for example why z is bounded, for this reason we now prove that w̃ := T1(z)
satisfies the required properties. The contraction estimate (3-7) implies V z ∈ L1(�), and hence the
measure 1z is finite. Proceeding as in the first part of the proof, we have w̃ ∈W 1,2

0 (�), 1w̃ is a finite
measure in �, and

∂w̃

∂n
=
∂z
∂n
.

By the comparison principle between solutions of the Dirichlet problem we have z ≥ w in �. Then, by
comparison between normal derivatives,

∂w̃

∂n
=
∂z
∂n
≤
∂w

∂n
,

which is (O2). Since z is nonnegative and 1z ≤ V z in the sense of distributions in �, a straightforward
variant of Kato’s inequality yields

1w̃ =1(min {z, 1})≤ χ{z<1}V z (5-4)

in the sense of distributions in �; see [Ponce 2016, Proposition 6.9]. By the nonnegativity of V, the
right-hand side is smaller than V w̃, and we deduce that w̃ satisfies (O3). �
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Ancona’s argument leading to (2-2) is based on tools from potential theory. There is another strategy
which allows one to prove a smooth counterpart of this formula based on a PDE approach, which is
enough to prove Proposition 5.2. More precisely, given a smooth function 8 : R→ R such that 8′′ has
compact support, it has been proved in [Dal Maso et al. 1999] using the notion of renormalized solution
that, for every u ∈ W 1,1

0 (�) such that 1u is a finite measure in �, one has that 18(u) is also a finite
measure in � and the following holds:

18(u)=8′(u)(1u)d+8′′(u)|∇u|2. (5-5)

Here, (1u)d denotes the part of the measure 1u which is diffuse with respect to the W 1,2 capacity that
arises from the Lebesgue decomposition of measures.

The approximation scheme from [Brezis and Ponce 2008] to prove that the distributional normal
derivative belongs to L1(∂�) is based on a strong approximation of the measure 1u by measures
with compact support. In this case, one deduces using the identity (5-5) that the solutions uk of the
approximating Dirichlet problems are such that (18(uk))k∈N converges strongly to 18(u) in �, and
one then deduces that

∂8(u)
∂n

=8′(0)
∂u
∂n
.

In particular, if 8 is an approximation of the truncation function such that 8′(0)= 1, one gets an equality
between the normal derivatives as in (2-2) and (5-3).

6. Proofs of the main results

Proof of Theorem 2. Since u1 and u2 are nonnegative, they are also supersolutions for the Schrödinger
operator −1 + V+ with nonnegative potential. We may thus assume from the beginning that V is
nonnegative. We split the proof into three steps:

Step 1: We prove the theorem under the additional assumption that the measures 1u1 and 1u2 are finite
and diffuse.

By Proposition 2.1, both ∂u1/∂n and ∂u2/∂n are nonpositive on ∂�. Let us prove that

∂u1

∂n
< 0 almost everywhere on

{
∂u2

∂n
< 0

}
(6-1)

with respect to the surface measure on ∂�. Assume by contradiction that there exists a Borel set
A ⊂ {∂u1/∂n = 0} such that ∫

A

∂u2

∂n
dσ < 0.

By Proposition 5.1, the solution w of the Dirichlet problem (5-1) with datum g = χA is nontrivial. Since
� is connected, by the strong maximum principle for L1 potentials (Proposition 4.2), we then have w > 0
almost everywhere in �. Denoting by v the solution of the Dirichlet problem in Proposition 4.1 with
datum (H(w), 0), the function w− v is nonnegative. By Proposition 3.1 applied to the solution w− v
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and test function u1, we get

0≤
∫
�

ŵ− v d(−1u1+ V u1)=

∫
�

(−H(w))u1−

∫
∂�

χA
∂u1

∂n
dσ =−

∫
�

H(w)u1,

where the last equality follows from the fact that ∂u1/∂n = 0 on A. Thus, the integral on the right-hand
side is nonpositive, while the integrand is nonnegative; hence H(w)u1= 0 almost everywhere in �. Since
H(w) > 0 almost everywhere in �, we then have u1 = 0 almost everywhere in �. This contradicts the
nontriviality of u1. Thus, (6-1) holds.

Step 2: We prove the theorem under the additional assumption that the measures1u1 and1u2 are diffuse
but not necessarily finite in �.

Take a nonzero finite measure µ in � such that 0≤ µ≤−1u1+ V u1. In particular, µ is diffuse and
so by Proposition 3.2 the Dirichlet problem (3-2) has a solution ũ1 and 1ũ1 is a finite measure in �.
Since V is nonnegative, by comparison we have ũ1 ≤ u1. By the definition of ∂u1/∂n as an essential
infimum of normal derivatives over Gu1 ,

∂u1

∂n
≤
∂ ũ1

∂n
almost everywhere on ∂�. (6-2)

We next take anyw2∈Gu2 and apply Proposition 5.2 to this function to get a supersolution w̃2∈W 1,2
0 (�)

of the Schrödinger operator −1+ V such that

∂w̃2

∂n
≤
∂w2

∂n
almost everywhere on ∂�. (6-3)

Observe that both ũ1 and w̃2 satisfy the assumptions of the previous step. Thus,

∂ ũ1

∂n
< 0 almost everywhere on

{
∂w̃2

∂n
< 0

}
.

Combining (6-2) and (6-3), we thus get

∂u1

∂n
< 0 almost everywhere on

{
∂w2

∂n
< 0

}
.

Since this property holds for every w2 ∈ Gu2 , we obtain (6-1).

Step 3: Proof of the theorem completed.
In the general case, it suffices to apply the previous argument to T1(ui ). Indeed, by Kato’s inequality,

the 1T1(ui ) are locally finite measures in �. Since T1(ui ) ∈W 1,2
0 (�), the measures 1T1(ui ) are diffuse

with respect to the W 1,2 capacity. A straightforward variant of Kato’s inequality (cf. (5-4) above) implies
that the T1(ui ) are supersolutions of −1+V. By Step 2, assertion (6-1) above thus applies to T1(ui ). By
(2-2), we have

∂T1(ui )

∂n
=
∂ui

∂n
almost everywhere on ∂�,

and (6-1) for ui follows. It now suffices to switch the roles of u1 and u2 to conclude. �
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Proof of Theorem 1. Since the supersolution u is nonnegative, we may replace V by V+, and assume
that V is nonnegative. Let ζ0 be given by Definition 1.1. Since ∂ζ0/∂n < 0 almost everywhere on ∂�, it
suffices to prove that

∂u
∂n

< 0 almost everywhere on
{
∂ζ0

∂n
< 0

}
. (6-4)

To this end, we apply Proposition 5.2 to any function w ∈ Gζ0 to get a nonnegative supersolution
w̃ ∈W 1,2

0 (�) of the Schrödinger operator −1+ V such that V w̃ ∈ L1(�) and

∂w̃

∂n
≤
∂w

∂n
almost everywhere on ∂�.

By Theorem 2, for almost every x ∈ ∂� we have ∂u(x)/∂n< 0 if and only if ∂w̃(x)/∂n< 0. In particular,

∂u
∂n

< 0 almost everywhere on
{
∂w

∂n
< 0

}
.

Since this property holds for every w ∈ Gζ0 , we have (6-4) and the conclusion follows. �

7. Exceptional sets for the Hopf lemma

For any negligible compact subset K ⊂ ∂�, we prove that K is the level set {∂u/∂n = 0} of the normal
derivative of a positive smooth solution of

−1u+ V u = 0 in � (7-1)

for some V ∈ L1(�; d∂� dx). More generally, given any positive function ζ ∈ C∞0 (�), with a normal
derivative ∂ζ/∂n that possibly vanishes on part of ∂�, we find a solution of (7-1), for some V ∈ L1

loc(�),
whose normal derivative vanishes on a larger subset of ∂� that includes K. This is the content of our
next result:

Proposition 7.1. Let ζ ∈ C∞0 (�) be such that ζ > 0 in �. For every compact set K ⊂ ∂� such that
HN−1(K )= 0, there exists u ∈ C∞(� \ K )∩C0(�) with 0< u ≤ ζ in � such that

(i) D2u ∈ L1(�) and D2u/u ∈ L1(�; ζ dx),

(ii) ∂u/∂n is well-defined in the classical sense and is continuous on ∂�,

(iii) ∂u(x)/∂n = 0 if and only if x ∈ K or ∂ζ(x)/∂n = 0.

Thus, the function V :=1u/u belongs to L1(�; ζ dx) by property (i) above; in particular, V u ∈ L1(�)

and
−1u+ V u = 0 in �.

It is unclear from our construction whether the upper bound in (1-8) is satisfied by the nonnegative
potential V+. We need the following variant of a second-order inequality by Bourdaud [1991, Théorème 3]:

Lemma 7.2. Let H : R→ R be a convex smooth function such that H ′ is bounded. If ζ ∈ C1
0(�) is

nonnegative, then for every ϕ ∈ C∞(�) we have

‖D2
[H(ϕ)]‖L1(�;ζ dx) ≤ C(‖D2ϕ‖L1(�;ζ dx)+‖∇ϕ‖L1(�)).
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Proof of Lemma 7.2. In view of the composition formula

D2 H(ϕ)= H ′(ϕ)D2ϕ+∇[H ′(ϕ)]⊗∇ϕ,

we only need to estimate the second term on the right-hand side. For every e ∈ RN such that |e| = 1, by
the convexity of H the quantity

(∇[H ′(ϕ)]⊗∇ϕ)[e, e] = ∂e[H ′(ϕ)]∂eϕ = H ′′(ϕ)(∂eϕ)
2

is nonnegative. Since ζ = 0 on ∂�, by integration by parts we get∫
�

(∇[H ′(ϕ)]⊗∇ϕ)[e, e] ζ =−
∫
�

H ′(ϕ)(∂2
e,eϕ ζ + ∂eϕ ∂eζ )

≤ ‖H ′‖L∞(R)(‖D2ϕ‖L1(�;ζ dx)+‖∇ϕ‖L1(�)‖∇ζ‖L∞(�)).

This implies the conclusion. �

We also need the following property of the Hausdorff measure HN−1:

Lemma 7.3. Let K ⊂ RN be a compact set. For every ε > 0 and every open set ω ⊃ K , there exists a
nonnegative function ϕ ∈ C∞c (ω) such that ϕ > 1 on K and

‖D2ϕ‖L1(RN ;dK dx)+‖∇ϕ‖L1(RN ) ≤ CHN−1(K )+ ε,

where dK : R
N
→ R denotes the distance to K .

Proof of Lemma 7.3. Let 0< δ ≤ d(K , ∂ω)/4, and take finitely many balls (Bri (xi ))i∈{1,...,`} that intersect
K such that K ⊂

⋃`
i=1 Bri (xi ), ∑̀

i=1

r N−1
i ≤ C ′HN−1(K )+ ε,

and ri ≤ δ for every i ∈ {1, . . . , `}. Given a nonnegative function θ ∈ C∞c (B2) such that θ > 1 on B1, we
have the conclusion with

ϕ(x)=
∑̀
i=1

θ

(
x − xi

ri

)
.

Note that for x ∈ B2ri (xi ) we have dK (x)≤ 3ri . Thus, for every x ∈ RN,

|D2ϕ(x)|dK (x)≤
∑̀
i=1

3
ri

∣∣∣∣D2θ

(
x − xi

ri

)∣∣∣∣.
A similar pointwise estimate is satisfied by |∇ϕ(x)| and we conclude by integration over RN and a change
of variables in the integral. �

Proof of Proposition 7.1. Let (εk)k∈N be a summable sequence of positive numbers. We construct by
induction a decreasing sequence of open sets (ωk)k∈N that contain K and a sequence of nonnegative
functions (ϕk)k∈N in C∞c (ωk) such that ϕk > 1 on ωk+1 as follows. Take a bounded open subset ω0 ⊂RN
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that contains K and such that |ω0| ≤ ε0. Given ωk , let ϕk ∈ C∞c (ωk) be the function given by Lemma 7.3
with open set ωk and parameter εk . We then take an open subset ωk+1 such that

K ⊂ ωk+1 ⊂ {ϕk > 1} and |ωk+1| ≤ εk+1.

We now take a convex smooth function H : R→ R such that H(0)= 1, H(t)= 0 for t ≥ 1 and H ′ is
bounded. For each k ∈ N, let

ψk = H(ϕk)ζ.

We have in particular ψk = 0 on ωk+1 and ψk = ζ on � \ωk . By the triangle inequality and Lemma 7.2,
we have

‖D2ψk − D2ζ‖L1(�) ≤ ‖D
2
[H(ϕk)]‖L1(�;ζ dx)+C1‖∇[H(ϕk)]‖L1(�)+C2‖H(ϕk)− 1‖L1(�)

≤ C3(‖D2ϕk‖L1(�;ζ dx)+‖∇ϕk‖L1(�)+ |ωk |).

Since ζ ∈ C∞0 (�) and K ⊂ ∂�, we have ζ ≤ C4dK in �. By the choice of ωk and ϕk and the assumption
HN−1(K )= 0, we deduce that

‖D2ψk − D2ζ‖L1(�) ≤ C5εk . (7-2)

In particular, the sequence (D2ψk)k∈N is bounded in L1(�).
Take

u =
∞∑

j=0

1
2 j+1ψj .

By construction, we have u ∈ C0(�), u is smooth in � \ K , and 0 < u ≤ ζ in �. Moreover, u has a
normal derivative given pointwise by

∂u
∂n
=

( ∞∑
j=0

1
2 j+1 H(ϕj )

)
∂ζ

∂n
.

In particular, ∂u/∂n is continuous on ∂� and{
∂u
∂n
= 0

}
= K ∪

{
∂ζ

∂n
= 0

}
.

By the L1 estimate of D2ψk , we also have D2u ∈ L1(�).
We conclude with the proof that D2u/u ∈ L1(�; ζ dx). This is based on the pointwise estimate

|D2u|
u

ζ ≤

∞∑
j=k

1
2 j−k |D

2ψj | on ωk \ωk+1, (7-3)

which is a consequence of the following facts:

(a) ψj = 0 in ωk for every j < k.

(b) u ≥ ζ/2k+1 on � \ωk+1, since ψj = ζ on this set for every j ≥ k+ 1.
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By (7-3) and the triangle inequality,

|D2u|
u

ζ ≤

∞∑
j=k

1
2 j−k |D

2ψj − D2ζ | + 2|D2ζ | on ωk \ωk+1.

By this estimate and the fact that u = ζ in � \ω0, we have∫
�

|D2u|
u

ζ =

∞∑
k=0

∫
ωk\ωk+1

|D2u|
u

ζ +

∫
�\ω0

|D2u|
u

ζ

≤

∞∑
k=0

∞∑
j=k

1
2 j−k

∫
ωk\ωk+1

|D2ψj − D2ζ | + 2
∫
�

|D2ζ |.

Interchanging the order of summation and using (7-2), we get

∞∑
k=0

∞∑
j=k

1
2 j−k

∫
ωk\ωk+1

|D2ψj − D2ζ | =

∞∑
j=0

j∑
k=0

1
2 j−k

∫
ωk\ωk+1

|D2ψj − D2ζ |

≤

∞∑
j=0

∫
ω0\ωj+1

|D2ψj − D2ζ | ≤

∞∑
j=0

C5εj <∞. �

8. Potentials that are merely Borel functions

Instead of dealing with potentials V in L1
loc(�), one could wish to work with general Borel functions

V :�→ [0,+∞], but as we explain in this section, the counterparts of Theorems 1 and 2 need not be
true. The minimization approach that yields a variational solution of the Dirichlet problem{

−1ζ + V ζ = µ in �,
ζ = 0 on ∂�

with datum µ ∈ (W 1,2
0 (�))′ can be implemented as in Section 3 above; see [Dal Maso and Mosco 1986;

1987]. However, since test functions in C∞c (�) need not belong to the minimization class W 1,2
0 (�)∩

L2(�; V dx), the equation may not be satisfied in the sense of distributions. In this case, the following
holds:

Proposition 8.1. Let V :�→ [0,+∞] be a Borel function and µ ∈ (W 1,2
0 (�))′. If µ is a finite measure

in �, then the variational solution ζ ∈W 1,2
0 (�)∩ L2(�; V dx) is such that V ζ ∈ L1(�), 1ζ is a finite

measure in � and

‖V ζ‖L1(�)+‖1ζ‖M(�) ≤ 3‖µ‖L1(�).

If in addition we have µ≥ 0 in �, then

−1ζ + V ζ ≤ µ in the sense of distributions in �.
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Proof. For every k ∈ N, denote by ζk the minimizer of the functional Ek associated to the bounded
potential Vk := Tk(V ). In this case, the equation

−1ζk + Vkζk = µ

is satisfied in the sense of distributions and

‖Vkζk‖L1(�) ≤ ‖µ‖L1(�). (8-1)

Thus, 1ζk is a finite measure in � and

‖1ζk‖M(�) ≤ ‖µ‖M(�)+‖Vkζk‖L1(�) ≤ 2‖µ‖M(�). (8-2)

Since ζk is a minimizer of Ek and since Tk(V )≤ V, for every k ∈ N we also have

Ek(ζk)≤ Ek(ζ )≤ E(ζ ).

We deduce that the sequence (ζk)k∈N is bounded in W 1,2
0 (�), whence by this inequality it must converge

to the minimizer ζ . By Fatou’s lemma, as k tends to infinity in the contraction estimate (8-1) we deduce
that V ζ ∈ L1(�). By lower semicontinuity of the norm and estimate (8-2), we also have that 1ζ is a
finite measure in �.

Observe that if µ≥ 0, then ζk ≥ 0. By the equation satisfied by ζk , as k tends to infinity we deduce
from Fatou’s lemma that ∫

�

ζ (−1ϕ+ Vϕ)≤ µ[ϕ] =
∫
�

ϕ dµ

for every nonnegative function ϕ ∈ C∞c (�). �

Applying Proposition 8.1 to the positive and negative parts of µ, it follows that there exists a finite
measure λ in � such that

−1ζ + V ζ = µ+ λ in the sense of distributions in �. (8-3)

This measure λ possibly depends on µ and arises due to the singular character of V, but it can vanish
even for very singular potentials.

Example 8.2. Take the potential Vα : B1→ [0,+∞] defined by

Vα(x)=
1
|x1|α

with α ≥ 1, so that Vα 6∈ L1
loc(B1). We have proved in [Orsina and Ponce 2008, Proposition 9.2] that for

every exponent α ≥ 1 the Dirichlet problem uncouples in the sense that the variational solution satisfies
two independent (homogeneous) Dirichlet problems in B+1 and B−1 , where

B+1 = {x ∈ B1 : x1 > 0} and B−1 = {x ∈ B1 : x1 < 0}.
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Solving separately the Dirichlet problems on B+1 and B−1 with µ ∈ L2(B1) and denoting by ζ+ and ζ−
these solutions, the function

ζ :=

{
ζ+ in B+1 ,
ζ− in B−1

belongs to W 1,2
0 (B1)∩ L2(B1; Vα dx) and satisfies∫

B1

ζ (−1ϕ+ Vαϕ)=
∫

B1

ϕµ

for every ϕ ∈ C∞c (B1 \ (∂B+1 ∩ ∂B−1 )). When α ≥ 2, by Proposition 2.7 this identity actually holds for
every ϕ ∈ C∞c (B1). Hence,

−1ζ + Vαζ = µ in the sense of distributions in �,

and thus the measure λ that satisfies (8-3) is identically zero.

The singularity of Vα in the previous example is so strong that Theorems 1 and 2 are simply false. The
reason is that the operator −1+ Vα with α ≥ 2 behaves as if the domain B1 were disconnected, with
two connected components B+1 and B−1 . Indeed, the function ζ defined above with constant datum µ≡ 1
satisfies ∂ζ/∂n < 0 on ∂B1 \ {x1 = 0} by a local application of the classical Hopf lemma. However, the
function

ζ̃ =

{
ζ+ in B+1 ,
0 in B−1

is also a supersolution for −1+ Vα, but the normal derivative ∂ζ̃ /∂n is negative only on half of the
boundary ∂B1.
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