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We obtain a description for the spectral distribution of the free Jacobi process for any initial pair of
projections. This result relies on a study of the unitary operator RUt SU ∗t , where R, S are two symmetries
and (Ut )t≥0 is a free unitary Brownian motion, freely independent from {R, S}. In particular, for nonnull
traces of R and S, we prove that the spectral measure of RUt SU ∗t possesses two atoms at ±1 and an
L∞-density on the unit circle T for every t > 0. Next, via a Szegő-type transformation of this law, we
obtain a full description of the spectral distribution of PUt QU ∗t beyond the case where τ(P)= τ(Q)= 1

2 .
Finally, we give some specializations for which these measures are explicitly computed.

1. Introduction

Let P, Q be two projections in a W ∗-probability space (A , τ ) which are free with {Ut ,U∗t , t ≥ 0}. The
present paper is a companion to the series of papers [Collins and Kemp 2014; Demni 2008; Demni
2016; Demni and Hamdi 2018; Demni et al. 2012; Demni and Hmidi 2014] devoted to the study of the
spectral distribution, hereafter µt , of the self-adjoint-valued process (X t := PUt QU∗t P)t≥0. Viewed
in the compressed algebra (PA P, τ/τ(P)), X t coincides with the so-called free Jacobi process with
parameter (τ (P)/τ(Q), τ (Q)), introduced by Demni [2008] via free stochastic calculus, as a solution
to a free SDE there. Properties of its measure play important roles in free entropy and free information
theory; see, e.g., [Hamdi 2017; 2018; Hiai and Ueda 2009; Izumi and Ueda 2015; Voiculescu 1999].
Furthermore, µt completely determines the structure of the von Neumann algebra generated by P and
Ut QU∗t for any t ≥ 0, see, e.g., [Hiai and Ueda 2009; Raeburn and Sinclair 1989], yielding a continuous
interpolation from the law of P Q P (when t = 0) to the free multiplicative convolution of the spectral
measures of P and Q separately (when t tends to infinity). Indeed, the pair (P,Ut QU∗t ) tends towards
(P,U QU∗) as t→∞, where U is a Haar unitary free from {P, Q}. The two projections P and U QU∗

are therefore free, see [Nica and Speicher 2006], and hence µPU QU∗P = µP �µU QU∗ = µP �µQ . The
Lebesgue decomposition of the last term may be found in [Voiculescu et al. 1992, Example 3.6.7]. More
generally, the operators P and Ut QU∗t are not free for finite t and the process t 7→ (P,Ut QU∗t ) is known
as the free liberation of the pair (P, Q); see [Voiculescu 1999]. When both projections coincide, the
series of papers [Demni 2016; Demni and Hamdi 2018; Demni et al. 2012; Demni and Hmidi 2014]
aims to determine µt for any t > 0. In particular, when P = Q and τ(P) = 1

2 , Demni, Hmidi and the
author proved in [Demni et al. 2012, Corollary 3.3] that the measure µt possesses a continuous density on
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(0, 1) for t > 0 which fits that of the random variable (I +U2t + (I +U2t)
∗)/4. Collins and Kemp [2014]

extended this result to the case of two projections P, Q with traces 1
2 . Afterwards this result was partially

extended in [Izumi and Ueda 2015] to arbitrary traces. In Proposition 3.1 of that paper, they proved

µt = (1−min{τ(P), τ (Q)})δ0+max{τ(P)+ τ(Q)− 1, 0}δ1+ γt ,

where γt is a positive measure with no atom on (0, 1) for every t > 0. In Proposition 3.3 of the same paper,
they showed that when τ(P)= τ(Q)= 1

2 , this measure coincides with the Szegő transformation of the
distribution of UUt , where U is a unitary random variable determined by the law of P Q P. Collins and
Kemp [2014, Lemmas 3.2 and 3.6] studied the support of the measure γt , for arbitrary traces, and the way
in which the edges of this support are propagated, but they were still not able to prove the continuity of γt .

The main result proved in this paper is a complete analysis of the spectral distribution of the unitary
operator RUt SU∗t (hereafter νt ) for any symmetries R, S ∈A which are free with {Ut ,U∗t }. In particular,
we prove that the measure

νt −
1
2 |τ(R)− τ(S)|δπ −

1
2 |τ(R)+ τ(S)|δ0

possesses a continuous density κt on T = (−π, π]. Using the relationship between µt and νt , when
{P, Q} and {R, S} are associated, see [Hamdi 2017, Theorem 4.3], we deduce the regularity of µt for any
initial projections. In particular, we prove that the measure γt possesses a continuous density on [0, 1]:

Theorem 1.1. Let P, Q be orthogonal projections and Ut a free unitary Brownian motion, freely indepen-
dent from P, Q. For every t > 0, the spectral distribution µt of the self adjoint operator PUt QU∗t P is
given by

µt = (1−min{τ(P), τ (Q)})δ0+max{τ(P)+ τ(Q)− 1, 0}δ1+
κt(2 arccos(

√
x))

2π
√

x(1− x)
1[0,1](x) dx .

The paper ends with a striking observation on the spectral distribution of RUt SU∗t at finite time t
when the initial symmetries building it are centered and independent with respected to classical, free,
monotone and boolean convolutions. In this respect, we notice that in the case of free independence, νt is
stationary for all traces of the symmetries, and in the rest of cases, its given by a dilation of the law of Ut

for centered symmetries. The result is as follows.

Theorem 1.2. Let λt be the probability distribution of the free unitary Brownian motion Ut and µ =
1
2(δ1 + δ−1) (considered as a law on T). We denote respectively by �, ∗, ×∪ and F the free, classical,
boolean and monotone multiplicative convolutions. Then, for all t ≥ 0:

(1) The measure (µ�µ)� λt coincides with µ�µ.

(2) The push-forward of (µ ∗µ)� λt by the map z 7→ z2 coincides with the law of U2t .

(3) The push-forward of (µ ×∪µ)� λt by the map z 7→ z3 coincides with the law of U3t .

(4) The push-forward of (µ Fµ)� λt by the map z 7→ z4 coincides with the law of U4t .

The paper is organized as follows. For sake of completeness, we recall in the next section some
preliminaries which gather useful information about the Herglotz transform of probability measures on
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the unit circle, and the spectral distribution of the free unitary Brownian motion. In Section 3, we fix
the basic ideas and notation for the rest of the work presented. In Section 4, we describe the spectral
measure νt and prove our main result. In the last section, we present explicit computations of the spectral
measure νt at finite time t when the initial operators are assumed to be centered and classically boolean
or monotone independent.

2. Preliminaries

The Herglotz transform. Let MT denotes the set of probability measures on the unit circle T. The
normalized Lebesgue measure on T will be denoted by m. The Herglotz transform Hµ of a measureµ∈MT

is the analytic function in the unit disc D defined by the formula

Hµ(z)=
∫

T

ζ + z
ζ − z

dµ(ζ ).

This function is related to the moment-generating function of the measure µ

ψµ(z)=
∫

T

z
ζ − z

dµ(ζ ), z ∈ D,

by the simple formula Hµ(z)= 1+2ψµ(z). Since any distribution on the unit circle is uniquely determined
by its moments, we deduce that Hµ uniquely determines µ. One of the important applications of H is
given in the following result; see, e.g., [Cima et al. 2006, Theorem 1.8.9]:

Theorem 2.1 (Herglotz). The Herglotz transform sets up a bijection between analytic functions H on D

with <H ≥ 0 and H(0) > 0 and the nonzero measures µ ∈MT.

For 0< p <∞, let H p(D) be the space of analytic functions f on D such that

sup
0<r<1

∫
T

| f (rζ )|p dζ <∞.

For p =∞, let H∞(D) denote the Hardy space consisting of all bounded analytic functions on D with
the sup-norm. Let L p(T) denote the Lebesgue spaces on the circle T with respect to the normalized
Lebesgue measure. The following result proves the existence of a boundary function for all f ∈ H p(D).

Theorem 2.2 [Cima et al. 2006, Theorem 1.9.4]. Let 0< p ≤∞ and f ∈ H p(D). Then the boundary
function f̃ (ζ ) exists for m-almost all ζ in T and belongs to L p(T). Furthermore, the norms of f in
H p(D) and of f̃ (ζ ) in L p(T) coincide.

We know, see, e.g., [Cima et al. 2006, Lemma 2.1.11 ], that Hµ ∈ H p(D) for all 0< p< 1; thus H̃µ(ζ )
exists for m-almost all ζ in T. The density of µ can be recovered then from the boundary values of <Hµ
by Fatou’s theorem [Cima et al. 2006, Theorem 1.8.6] since <H̃µ = dµ/dm m-a.e. Note that the atoms
of µ ∈MT can also be recovered from Hµ by Lebesgue’s dominated convergence theorem via

lim
r→1−

(1− r)Hµ(rζ )= 2µ{ζ } for all ζ ∈ T.
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Spectral distribution of the free unitary Brownian motion. For µ ∈ MT, let ψµ denote its moment-
generating function and χµ the function ψµ/(1+ψµ). If µ has nonzero mean, we denote by χ−1

µ the
inverse function of χµ in some neighborhood of zero. In this case the 6-transform of µ is defined by
6µ(z)= (1/z)χ−1

µ (z). The spectral distribution λt of the free unitary Brownian motion was introduced
by Biane [1997a] as the unique probability measure on T such that its 6-transform is given by

6λt (z)= exp
(

t
2

1+ z
1− z

)
.

It is the multiplicative analog of the semicircular distribution. Its moments are the large-size limits of
observables of the free Brownian motion (of dimension d) (U (d)

t )t≥0 on the unitary group U (d):

lim
d→∞

1
d

E(tr[U (d)
t/d ]

k)=

∫
T

ζ k dλt(ζ ), k ≥ 0.

This result was proved independently by Biane [1997a] and Rains [1997], who explicitly calculated these
moments:

τ(U k
t )= e−kt/2

k−1∑
j=0

(−t) j

j !

( k
j+1

)
k j−1, k ≥ 0. (2-1)

The equality (2-1) can be transformed into the PDE

∂t H + zH ∂z H = 0, (2-2)

with the initial condition H(0, z) = (1+ z)/(1− z) for the Herglotz transform Hλ2t (z); see, e.g., the
proof of [Izumi and Ueda 2015, Proposition 3.3]. The measure λt is described in [Biane 1997b] from the
boundary behavior of the inverse function of Hλt (z) as follows.

Theorem 2.3 [Biane 1997b]. For every t > 0, the measure λt has a continuous density ρt with respect to
the normalized Lebesgue measure on T. Its support is the connected arc {eiθ

: |θ | ≤ g(t)} with

g(t) := 1
2

√
t (4− t)+ arccos

(
1− 1

2 t
)

for t ∈ [0, 4], and the whole circle for t > 4. The density ρt is determined by <ht(eiθ ), where z = ht(eiθ )

is the unique solution (with positive real part) to

z− 1
z+ 1

ezt/2
= eiθ .

3. Notation

We use here the same symbols as in [Hamdi 2017; 2018]. To a given pair of projections P, Q in A that
are independent of (Ut)t≥0 we associate the symmetries R = 2P − I and S = 2Q− I. Set α = τ(R) and
β = τ(S). We sometimes use the notation a = |α − β|/2 and b = |α + β|/2 for simplicity. Keep the
symbols µt and νt above. The unit circle is identified with (−π, π] by eiθ. According to [Hamdi 2017,
Section 3], the measure νt is connected to µt by the formula

νt = 2µ̂t −
1
2(2−α−β)δπ −

1
2(α+β)δ0, (3-1)
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where
µ̂t :=

1
2(µ̃t + (µ̃t |(0,π)) ◦ j−1) (3-2)

is the symmetrization on (−π, π), with the mapping j : θ ∈ (0, π) 7→ −θ ∈ (−π, 0), of the positive
measure µ̃t(dθ) on [0, π] obtained from µt(dx) via the variable change x = cos2(θ/2). Equivalently, we
obtain the following relationship between the Herglotz transforms Hµt and Hνt :

Hνt (z)=
z− 1
z+ 1

Hµt

(
4z

(1+ z)2

)
− 2(α+β)

z
z2− 1

; (3-3)

see [Hamdi 2017, Corollary 4.2]. The function Hνt (z), which we shall denote by H(t, z), is analytic in
both variables z ∈ D and t > 0, see [Collins and Kemp 2014, Theorem 1.4], and solves the PDE

∂t H + zH ∂z H =
2z(αz2

+ 2βz+α)(βz2
+ 2αz+β)

(1− z2)3
, (3-4)

see [Hamdi 2017, Proposition 2.3]. Let

K (t, z) :=

√
H(t, z)2−

(
a

1− z
1+ z

+ b
1+ z
1− z

)2

. (3-5)

The PDE (3-4) is then transformed into

∂t K + zH(t, z) ∂z K = 0.

Note that steady state solution K (∞, z) is the constant
√

1− (a+ b)2; see [Hamdi 2017, Remark 3.3].
The ordinary differential equations (ODEs for short) of the characteristic curves associated with this PDE
are {

∂tφt(z)= φt(z)H(t, φt(z)), φ0(z)= z,
∂t [K (t, φt(z))] = 0.

(3-6)

The second ODE of (3-6) implies that K (t, φt(z)) = K (0, z), while the first one is nothing but the
radial Loewner ODE, see [Lawler 2005, Theorem 4.14], which defines a unique family of conformal
transformations φt from some region �t ⊂ D onto D with φt(0)= 0 and ∂zφt(0)= et. Moreover, from
[Lawler 2005, Remark 4.15], φt is invertible from �t onto D and it has a continuous extension to T∩�t

by [Hamdi 2018, Proposition 2.1]. Integrating the first ODE in (3-6), we get

φt(z)= z exp
(∫ t

0
H(s, φs(z)) ds

)
.

Let us define

ht(r, θ)= 1−
∫ t

0

1− |φs(reiθ )|2

− ln r

∫
T

1
|ξ −φs(reiθ )|2

dνs(ξ) ds,

so that

ln |φt(reiθ )| = ln r +<
∫ t

0
H(s, φs(reiθ )) ds = (ln r)ht(r, θ). (3-7)

Define Rt : [−π, π] → [0, 1] as

Rt(θ)= sup{r ∈ (0, 1) : ht(r, θ) > 0},
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and let

It = {θ ∈ [−π, π] : ht(θ) < 0},

where ht(θ)= limr→1− ht(r, θ) ∈ R∪ {−∞}; see the fact given under Lemma 3.2 in [Hamdi 2018]. The
next result gives a description of �t and its boundary.

Proposition 3.1 [Hamdi 2018, Proposition 3.3]. For any t > 0, we have:

(1) �t = {reiθ
: ht(r, eiθ ) > 0}.

(2) ∂�t ∩D= {reiθ
: ht(r, eiθ )= 0 and θ ∈ It }.

(3) ∂�t ∩T = {eiθ
: ht(r, eiθ )= 0 and θ ∈ [−π, π] \ It }.

In closing, we recall the following result which will be of use later on; see the proof of Theorem 1.1 in
[Hamdi 2018].

Lemma 3.2 [Hamdi 2018]. For every t > 0, the function K (t, · ) has a continuous extension to the unit
circle T.

4. Analysis of spectral distributions of RUt SU∗
t

In this section, we shall prove Theorem 1.1. To this end, we start by giving a description of the spectral
measure νt of RUt SU∗t for any t > 0, and deriving a formula for its density. We notice that from the
asymptotic freeness of R and Ut SU∗t , the measure νt converges weakly as t →∞, see [Hamdi 2017,
Proposition 2.6], to

ν∞ = aδπ + bδ0+

√
−(cos θ − r+)(cos θ − r−)

2π | sin θ |
1(θ−,θ+)∪(−θ+,−θ−) dθ, (4-1)

with r±=−αβ±
√
(1−α2)(1−β2) and θ±= arccos r±. The following theorem asserts that an analogous

result holds for finite t .

Theorem 4.1. For every t > 0, the measure νt − aδπ − bδ0 is absolutely continuous with respect to the
normalized Lebesgue measure on T = (−π, π]. Moreover, its density κt at the point eiθ is equal to the
real part of √

[K (t, eiθ )]2+ (a+ b)2− 1−
(cos θ − r+)(cos θ − r−)

sin2 θ
.

Proof. Define the function

L(t, z)=
∫

T

eiθ
+ z

eiθ − z
(νt − aδπ − bδ0)(dθ)= H(t, z)− a

1− z
1+ z

− b
1+ z
1− z

.
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The real part of this function is nothing but the Poisson integral of the measure νt − aδπ − bδ0. Using
(3-5) and multiplying by the conjugate, we get

L(t, z)=
K (t, z)2√

K (t, z)2+
(
a 1−z

1+z + b 1+z
1−z

)2
+ a 1−z

1+z + b 1+z
1−z

=
(1− z2)K (t, z)2√

[(1− z2)K (t, z)]2+ [a(1− z)2+ b(1+ z)2]2+ a(1− z)2+ b(1+ z)2
.

Note that K (t, z) extends continuously to T by Lemma 3.2. The denominator of the above expression
does not vanish on the closed unit disc and

z 7→ (1− z2)2K (t, z)2+ [a(1− z)2+ b(1+ z)2]2 = (1− z2)H(t, z)2

does not take negative values. These together imply that L(t, z) has a continuous extension on the
boundary T. Hence, by uniqueness of the Herglotz representation (see Theorem 2.1), the measure
νt − aδπ − bδ0 is absolutely continuous with respect to the Haar measure in T and its density is given by

<

[
H(t, eiθ )− a

1− eiθ

1+ eiθ − b
1+ eiθ

1− eiθ

]
=<

√
[K (t, eiθ )]2+

[
a

1− eiθ

1+ eiθ − b
1+ eiθ

1− eiθ

]2

=<

√
[K (t, eiθ )]2− [a tan(θ/2)− b cot(θ/2)]2.

To complete the proof, we need only show that

[a tan(θ/2)− b cot(θ/2)]2 = 1− (a+ b)2+
(cos θ − r+)(cos θ − r−)

sin2 θ

or equivalently that

(1− a2
− b2) sin2 θ − a2 sin2 θ tan2(θ/2)− b2 sin2 θ cot2(θ/2)=−(cos θ − r+)(cos θ − r−).

Working from the left-hand side and using the identities

sin2 θ = 1− cos2 θ, sin2 θ tan2(θ/2)= (1− cos θ)2, sin2 θ cot2(θ/2)= (1+ cos θ)2,

we get

(1− a2
− b2)(1− cos2 θ)− a2(1− cos θ)2− b2(1+ cos θ)2.

Rearranging these terms, we obtain

− cos2 θ + 2(a2
− b2) cos θ − 2(a2

+ b2)+ 1.

So, by substituting the equalities αβ = b2
−a2 and α2

+β2
= 2(a2

+b2), we obtain the required formula:

− cos2 θ − 2αβ cos θ + 1−α2
−β2

=−(cos θ − r+)(cos θ − r−). �
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Remark 4.2. We can prove directly that κt is an L∞-density. In fact, by (3-5), we have

K (t, z)2 = H(t, z)2−
(

a
1− z
1+ z

+ b
1+ z
1− z

)2

= L(t, z)
(

L(t, z)+ 2a
1− z
1+ z

+ 2b
1+ z
1− z

)
.

Then

(<L(t, z))2 ≤<L(t, z)<
(

L(t, z)+ 2a
1− z
1+ z

+ 2b
1+ z
1− z

)
≤ |K (t, z)2|.

But, the function K (t, z) is analytic in D and extends continuously to T. It becomes then of Hardy class
H∞(D), and hence the density of νt − aδπ − bδ0 belongs to L∞(T) by [Koosis 1998, Theorem on p. 15].

Proposition 4.3. The support of νt is a subset of {φt(Rt(θ)eiθ ) : θ ∈ It }.

Proof. By (3-7), we have ∫ t

0
<H(s, φs(Rt(θ)eiθ )) ds =− ln Rt(θ),

where we used the fact that ln |φt(Rt(θ)eiθ )| = 0 due to the equality |φt(Rt(θ)eiθ )| = 1. Then, by
continuity of s 7→ <H(s, φs(Rt(θ)eiθ )) on [0, t], we deduce that the assertion <H(t, φt(Rt(θ)eiθ )) > 0
yields Rt(θ) 6= 1. Finally, by the definition of Rt(θ) and It , we have

{θ : Rt(θ) 6=1} = {θ : ∃ r0 ∈ (0, 1), ht(r0, eiθ )=0} = {θ : ht(θ)<0} = It . �

We now proceed to the proof of Theorem 1.1.

Proof of Theorem 1.1. By (3-1), we have

νt − aδπ − bδ0 = 2
[
µ̂t − (1−min{τ(P), τ (Q)})δπ −max{τ(P)+ τ(Q)− 1, 0}δ0

]
.

This measure is absolutely continuous with respect to the normalized Lebesgue measure dθ/(2π) on
T = (−π, π], by Theorem 4.1, and its density is given by the function κt . Hence, (3-2) implies(

µ̃t − (1−min{τ(P), τ (Q)})δπ −max{τ(P)+ τ(Q)− 1, 0}δ0
)
(dθ)= κt(θ)

dθ
2π
, θ ∈ [0, π],

and so the desired assertion holds via the variable change θ = 2 arccos(
√

x). �

Remark 4.4. It is worth noting that the spectral distribution νt is stationary for all traces of the symmetries,
when the initial operators R and S are free. Actually, by Proposition 2.5 in [Hamdi 2017], we have

H(0, z)=

√
1+ 4z

(
b2

(1− z)2
−

a2

(1+ z)2

)
,

so that

K (0, z)=

√
H(0, z)2−

(
a

1− z
1+ z

+ b
1+ z
1− z

)2

=

√
1− (a+ b)2.

Hence, for every z ∈ D and t ≥ 0, we have K (t, z) = K (0, φ−1
t (z)) =

√
1− (a+ b)2, and therefore νt

coincides with the measure ν∞.
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The above fact can be explained directly by use of the sequence of moments

mn(t) := τ [(PUt QU∗t P)n], n ≥ 1.

In fact, we can prove by induction on n that mn(t) becomes stationary when P and Q are free. Recall
from [Demni et al. 2012] that mn(t) satisfy the infinite system of ODEs

∂t m1(t)=−m1(t)+ τ [P]τ [Q], (4-2)

∂t mn(t)=−nmn(t)+ n
n−1∑
k=1

mn−k(t)(mk−1(t)−mk(t)), n ≥ 2, (4-3)

with m0(t)= τ [P] + τ [Q]. When n = 1, (4-2) can be solved explicitly and gives m1(t)= τ [P]τ [Q] +
e−t(m1(0)− τ [P]τ [Q]). Since m1(0) = τ [P Q] = τ [P]τ [Q] by freeness, we get m1(t) = m1(0). For
n ≥ 2, we note that the moments

cn := mn(0)= τ [(P Q)n]

satisfy

cn =

n−1∑
k=1

cn−k(ck−1− ck).

Assume that mk(t)= ck holds up to level n− 1. Then, the ODE (4-3) can be written in the form

∂t mn(t)=−nmn(t)+ ncn,

with solution the constant cn . Thus, µt (and therefore νt ) is stationary.

5. Special cases

We present here some specializations for which the measure νt (and hence µt ) is explicitly determined.

Centered initial operators. That is, τ(R)= τ(S)= 0 or a = b = 0. In this case, the PDE (3-4) can be
rewritten as

∂t H + zH ∂z H = 0,

and the measure νt becomes identical to the probability distribution of UU2t , where U is a free unitary
whose distribution is ν0; see [Izumi and Ueda 2015, Proposition 3.3] or [Hamdi 2017, Remark 4.7].
Hence, the measure νt is given by the multiplicative free convolution ν0 � λ2t , studied in [Zhong 2015].
The density of this measure and its support are explicitly computed in Theorem 3.8 and Corollary 3.9 of
that paper. In particular, when ν0 is a Dirac mass at 1 (on the unit circle), the Herglotz transforms H(t, z)
of νt satisfy the PDE

∂t H + zH ∂z H = 0, H(0, z)=
1+ z
1− z

.

Then it follows from the uniqueness of the solution of (2-2) that H(t, z)= Hλ2t (z), and by uniqueness
of the Herglotz representation, νt coincides with the law λ2t of U2t . Hence, by Theorem 2.3 the density
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of νt is given by the formula κt(ω)= ρ2t(ω) and the support is the full unit circle for t > 2 and the set
{eiθ
: |θ |< g(2t)} for t ∈ [0, 2].

In the rest of the paper, we illustrate how the family of measures (νt)t≥0 provides a continuous
interpolation between freeness and different type of independence.

Classically independent initial operators. In this case, the measure νt is considered as a t-free convolution
which interpolates between classical independence and free independence; see [Benaych-Georges and
Lévy 2011]. Let R, S be two independent symmetries. From the facts given above Lemma 5.4 in [Hamdi
2017], we have

H(0, z)= 1+ 2
∑
n≥1

τ(Rn)τ (Sn)zn
=

1+ z2
+ 2zτ(R)τ (S)
1− z2 .

In particular, when τ(R)= τ(S)= 0, the function H(t, z) satisfies the PDE

∂t H + zH ∂z H = 0, H(0, z)=
1+ z2

1− z2 ,

and hence, by (2-2), it coincides with Hλ4t (z
2). We retrieve then the result obtained in [Benaych-Georges

and Lévy 2011, Theorem 3.6]: for any t ≥ 0, the push-forward of νt by the map z 7→ z2 coincides with
the law of U4t . In particular, the density of νt is given by κt(ω)= ρ4t(ω

2) for any ω in the unit circle and
the support is the full unit circle for t > 1 and the set {eiθ

: |θ |< g(4t)/2} for t ∈ [0, 1].

Boolean independent initial operators. To a given probability measure µ on the unit circle, we keep the
same notation ψµ, Hµ and χµ as in Section 2. Let µ1, µ2 ∈MT and set Fµ(z)= (1/z)χµ(z). Then the
multiplicative boolean convolution µ= µ1 ×∪µ2 is uniquely determined by

Fµ(z)= Fµ1(z)Fµ2(z);

see [Hamdi 2015; Franz 2008] for more details. Then, for boolean independent symmetries R, S with
law µ= 1

2(δ1+ δ−1), we have

ψµ(z)=
z2

1− z2 , χµ(z)= z2, Fµ(z)= z

and therefore Fµ×∪µ(z)= Fµ(z)2 = z2. It follows that

ψµ×∪µ(z)=
z3

1− z3 and Hµ×∪µ(z)=
1+ z3

1− z3 .

Hence, by (2-2) the Herglotz transform H(t, z) of νt and Hλ6t (z
3) solve the same PDE with the initial

condition H(0, z)= (1+ z3)/(1− z3). By uniqueness, it follows that the push-forward of νt by the map
z 7→ z3 coincides with the law of U6t for any t ≥ 0. In particular, we have κt(ω) = ρ6t(ω

3) for any ω
in the unit circle and νt is supported in the full unit circle for t > 2

3 and the set {eiθ
: |θ |< g(6t)/3} for

t ∈
[
0, 2

3

]
.
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Monotone independent initial operators. For µ1, µ2 ∈MT, the multiplicative monotone convolution
µ= µ1 Fµ2 is uniquely determined by

χµ(z)= χµ1(χµ2(z));

see [Hamdi 2015; Franz 2006] for more details. Here, we shall compute the measure νt for monotone
independent symmetries R, S with law µ= 1

2(δ1+ δ−1). As usual, we have

ψµ(z)=
z2

1− z2 , χµ(z)= z2,

and then χµFµ(z)= χµ(χµ(z))= z4. Hence,

ψµFµ(z)=
z4

1− z4 and HµFµ(z)=
1+ z4

1− z4 .

It follows that H(t, z) = Hλ8t (z
4) by uniqueness. Thus, the push-forward of νt by the map z 7→ z4

coincides with the law of U8t for any t ≥ 0. In particular, we have κt(ω)= ρ8t(ω
4) for any ω in the unit

circle and νt is supported in the full unit circle for t > 1
2 and the set {eiθ

: |θ |< g(8t)/4} for t ∈
[
0, 1

2

]
.

Finally, we recall (see the first subsection above) that νt = ν0 � λ2t for centered initial operators R, S
(i.e., τ(R)= τ(S)= 0). Hence, the discussions so far can be summarized in Theorem 1.2.

References

[Benaych-Georges and Lévy 2011] F. Benaych-Georges and T. Lévy, “A continuous semigroup of notions of independence
between the classical and the free one”, Ann. Probab. 39:3 (2011), 904–938. MR Zbl

[Biane 1997a] P. Biane, “Free Brownian motion, free stochastic calculus and random matrices”, pp. 1–19 in Free probability
theory (Waterloo, ON, 1995), edited by D.-V. Voiculescu, Fields Inst. Commun. 12, Amer. Math. Soc., Providence, RI, 1997.
MR Zbl

[Biane 1997b] P. Biane, “Segal–Bargmann transform, functional calculus on matrix spaces and the theory of semi-circular and
circular systems”, J. Funct. Anal. 144:1 (1997), 232–286. MR Zbl

[Cima et al. 2006] J. A. Cima, A. L. Matheson, and W. T. Ross, The Cauchy transform, Mathematical Surveys and Monographs
125, Amer. Math. Soc., Providence, RI, 2006. MR Zbl

[Collins and Kemp 2014] B. Collins and T. Kemp, “Liberation of projections”, J. Funct. Anal. 266:4 (2014), 1988–2052. MR
Zbl

[Demni 2008] N. Demni, “Free Jacobi process”, J. Theoret. Probab. 21:1 (2008), 118–143. MR Zbl

[Demni 2016] N. Demni, “Free Jacobi process associated with one projection: local inverse of the flow”, Complex Anal. Oper.
Theory 10:3 (2016), 527–543. MR Zbl

[Demni and Hamdi 2018] N. Demni and T. Hamdi, “Inverse of the flow and moments of the free Jacobi process associated with
one projection”, Random Matrices Theory Appl. 7:2 (2018), art. id. 1850001. MR

[Demni and Hmidi 2014] N. Demni and T. Hmidi, “Spectral distribution of the free Jacobi process associated with one
projection”, Colloq. Math. 137:2 (2014), 271–296. MR Zbl

[Demni et al. 2012] N. Demni, T. Hamdi, and T. Hmidi, “Spectral distribution of the free Jacobi process”, Indiana Univ. Math. J.
61:3 (2012), 1351–1368. MR Zbl

[Franz 2006] U. Franz, “Multiplicative monotone convolutions”, pp. 153–166 in Quantum probability, edited by M. Bożejko
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