ANALYSIS \& PDE

Volume 11 No. 8 2018

SPECTRAL DISTRIBUTION OF THE FREE JACOBI PROCESS,

 REVISITED
SPECTRAL DISTRIBUTION OF THE FREE JACOBI PROCESS, REVISITED

Tarek Hamdi

Abstract

We obtain a description for the spectral distribution of the free Jacobi process for any initial pair of projections. This result relies on a study of the unitary operator $R U_{t} S U_{t}^{*}$, where R, S are two symmetries and $\left(U_{t}\right)_{t \geq 0}$ is a free unitary Brownian motion, freely independent from $\{R, S\}$. In particular, for nonnull traces of R and S, we prove that the spectral measure of $R U_{t} S U_{t}^{*}$ possesses two atoms at ± 1 and an L^{∞}-density on the unit circle \mathbb{T} for every $t>0$. Next, via a Szegő-type transformation of this law, we obtain a full description of the spectral distribution of $P U_{t} Q U_{t}^{*}$ beyond the case where $\tau(P)=\tau(Q)=\frac{1}{2}$. Finally, we give some specializations for which these measures are explicitly computed.

1. Introduction

Let P, Q be two projections in a W^{*}-probability space (\mathscr{A}, τ) which are free with $\left\{U_{t}, U_{t}^{*}, t \geq 0\right\}$. The present paper is a companion to the series of papers [Collins and Kemp 2014; Demni 2008; Demni 2016; Demni and Hamdi 2018; Demni et al. 2012; Demni and Hmidi 2014] devoted to the study of the spectral distribution, hereafter μ_{t}, of the self-adjoint-valued process $\left(X_{t}:=P U_{t} Q U_{t}^{*} P\right)_{t \geq 0}$. Viewed in the compressed algebra $(P \mathscr{A} P, \tau / \tau(P)), X_{t}$ coincides with the so-called free Jacobi process with parameter $(\tau(P) / \tau(Q), \tau(Q))$, introduced by Demni [2008] via free stochastic calculus, as a solution to a free SDE there. Properties of its measure play important roles in free entropy and free information theory; see, e.g., [Hamdi 2017; 2018; Hiai and Ueda 2009; Izumi and Ueda 2015; Voiculescu 1999]. Furthermore, μ_{t} completely determines the structure of the von Neumann algebra generated by P and $U_{t} Q U_{t}^{*}$ for any $t \geq 0$, see, e.g., [Hiai and Ueda 2009; Raeburn and Sinclair 1989], yielding a continuous interpolation from the law of $P Q P$ (when $t=0$) to the free multiplicative convolution of the spectral measures of P and Q separately (when t tends to infinity). Indeed, the pair ($P, U_{t} Q U_{t}^{*}$) tends towards $\left(P, U Q U^{*}\right)$ as $t \rightarrow \infty$, where U is a Haar unitary free from $\{P, Q\}$. The two projections P and $U Q U^{*}$ are therefore free, see [Nica and Speicher 2006], and hence $\mu_{P U Q U^{*} P}=\mu_{P} \boxtimes \mu_{U Q U^{*}}=\mu_{P} \boxtimes \mu_{Q}$. The Lebesgue decomposition of the last term may be found in [Voiculescu et al. 1992, Example 3.6.7]. More generally, the operators P and $U_{t} Q U_{t}^{*}$ are not free for finite t and the process $t \mapsto\left(P, U_{t} Q U_{t}^{*}\right)$ is known as the free liberation of the pair (P, Q); see [Voiculescu 1999]. When both projections coincide, the series of papers [Demni 2016; Demni and Hamdi 2018; Demni et al. 2012; Demni and Hmidi 2014] aims to determine μ_{t} for any $t>0$. In particular, when $P=Q$ and $\tau(P)=\frac{1}{2}$, Demni, Hmidi and the author proved in [Demni et al. 2012, Corollary 3.3] that the measure μ_{t} possesses a continuous density on

[^0]$(0,1)$ for $t>0$ which fits that of the random variable $\left(I+U_{2 t}+\left(I+U_{2 t}\right)^{*}\right) / 4$. Collins and Kemp [2014] extended this result to the case of two projections P, Q with traces $\frac{1}{2}$. Afterwards this result was partially extended in [Izumi and Ueda 2015] to arbitrary traces. In Proposition 3.1 of that paper, they proved
$$
\mu_{t}=(1-\min \{\tau(P), \tau(Q)\}) \delta_{0}+\max \{\tau(P)+\tau(Q)-1,0\} \delta_{1}+\gamma_{t}
$$
where γ_{t} is a positive measure with no atom on $(0,1)$ for every $t>0$. In Proposition 3.3 of the same paper, they showed that when $\tau(P)=\tau(Q)=\frac{1}{2}$, this measure coincides with the Szegó transformation of the distribution of $U U_{t}$, where U is a unitary random variable determined by the law of $P Q P$. Collins and Kemp [2014, Lemmas 3.2 and 3.6] studied the support of the measure γ_{t}, for arbitrary traces, and the way in which the edges of this support are propagated, but they were still not able to prove the continuity of γ_{t}.

The main result proved in this paper is a complete analysis of the spectral distribution of the unitary operator $R U_{t} S U_{t}^{*}$ (hereafter v_{t}) for any symmetries $R, S \in \mathscr{A}$ which are free with $\left\{U_{t}, U_{t}^{*}\right\}$. In particular, we prove that the measure

$$
v_{t}-\frac{1}{2}|\tau(R)-\tau(S)| \delta_{\pi}-\frac{1}{2}|\tau(R)+\tau(S)| \delta_{0}
$$

possesses a continuous density κ_{t} on $\mathbb{T}=(-\pi, \pi]$. Using the relationship between μ_{t} and v_{t}, when $\{P, Q\}$ and $\{R, S\}$ are associated, see [Hamdi 2017, Theorem 4.3], we deduce the regularity of μ_{t} for any initial projections. In particular, we prove that the measure γ_{t} possesses a continuous density on $[0,1]$:
Theorem 1.1. Let P, Q be orthogonal projections and U_{t} a free unitary Brownian motion, freely independent from P, Q. For every $t>0$, the spectral distribution μ_{t} of the self adjoint operator $P U_{t} Q U_{t}^{*} P$ is given by

$$
\mu_{t}=(1-\min \{\tau(P), \tau(Q)\}) \delta_{0}+\max \{\tau(P)+\tau(Q)-1,0\} \delta_{1}+\frac{\kappa_{t}(2 \arccos (\sqrt{x}))}{2 \pi \sqrt{x(1-x)}} \mathbf{1}_{[0,1]}(x) d x
$$

The paper ends with a striking observation on the spectral distribution of $R U_{t} S U_{t}^{*}$ at finite time t when the initial symmetries building it are centered and independent with respected to classical, free, monotone and boolean convolutions. In this respect, we notice that in the case of free independence, v_{t} is stationary for all traces of the symmetries, and in the rest of cases, its given by a dilation of the law of U_{t} for centered symmetries. The result is as follows.

Theorem 1.2. Let λ_{t} be the probability distribution of the free unitary Brownian motion U_{t} and $\mu=$ $\frac{1}{2}\left(\delta_{1}+\delta_{-1}\right)$ (considered as a law on $\mathbb{\mathbb { T }}$). We denote respectively by $\boxtimes, *, \boxtimes$ and \triangleright the free, classical, boolean and monotone multiplicative convolutions. Then, for all $t \geq 0$:
(1) The measure $(\mu \boxtimes \mu) \boxtimes \lambda_{t}$ coincides with $\mu \boxtimes \mu$.
(2) The push-forward of $(\mu * \mu) \boxtimes \lambda_{t}$ by the map $z \mapsto z^{2}$ coincides with the law of $U_{2 t}$.
(3) The push-forward of $(\mu \boxtimes \mu) \boxtimes \lambda_{t}$ by the map $z \mapsto z^{3}$ coincides with the law of $U_{3 t}$.
(4) The push-forward of $(\mu \triangleright \mu) \boxtimes \lambda_{t}$ by the map $z \mapsto z^{4}$ coincides with the law of $U_{4 t}$.

The paper is organized as follows. For sake of completeness, we recall in the next section some preliminaries which gather useful information about the Herglotz transform of probability measures on
the unit circle, and the spectral distribution of the free unitary Brownian motion. In Section 3, we fix the basic ideas and notation for the rest of the work presented. In Section 4, we describe the spectral measure v_{t} and prove our main result. In the last section, we present explicit computations of the spectral measure v_{t} at finite time t when the initial operators are assumed to be centered and classically boolean or monotone independent.

2. Preliminaries

The Herglotz transform. Let $\mathscr{M}_{\mathbb{T}}$ denotes the set of probability measures on the unit circle \mathbb{T}. The normalized Lebesgue measure on \mathbb{T} will be denoted by m. The Herglotz transform H_{μ} of a measure $\mu \in \mathscr{M}_{\mathbb{T}}$ is the analytic function in the unit disc \mathbb{D} defined by the formula

$$
H_{\mu}(z)=\int_{\mathbb{T}} \frac{\zeta+z}{\zeta-z} d \mu(\zeta)
$$

This function is related to the moment-generating function of the measure μ

$$
\psi_{\mu}(z)=\int_{\mathbb{T}} \frac{z}{\zeta-z} d \mu(\zeta), \quad z \in \mathbb{D},
$$

by the simple formula $H_{\mu}(z)=1+2 \psi_{\mu}(z)$. Since any distribution on the unit circle is uniquely determined by its moments, we deduce that H_{μ} uniquely determines μ. One of the important applications of H is given in the following result; see, e.g., [Cima et al. 2006, Theorem 1.8.9]:

Theorem 2.1 (Herglotz). The Herglotz transform sets up a bijection between analytic functions H on \mathbb{D} with $\Re H \geq 0$ and $H(0)>0$ and the nonzero measures $\mu \in \mathscr{M}_{\mathbb{T}}$.

For $0<p<\infty$, let $H^{p}(\mathbb{D})$ be the space of analytic functions f on \mathbb{D} such that

$$
\sup _{0<r<1} \int_{\mathbb{T}}|f(r \zeta)|^{p} d \zeta<\infty
$$

For $p=\infty$, let $H^{\infty}(\mathbb{D})$ denote the Hardy space consisting of all bounded analytic functions on \mathbb{D} with the sup-norm. Let $L^{p}(\mathbb{T})$ denote the Lebesgue spaces on the circle \mathbb{T} with respect to the normalized Lebesgue measure. The following result proves the existence of a boundary function for all $f \in H^{p}(\mathbb{D})$.

Theorem 2.2 [Cima et al. 2006, Theorem 1.9.4]. Let $0<p \leq \infty$ and $f \in H^{p}(\mathbb{D})$. Then the boundary function $\tilde{f}(\zeta)$ exists for m-almost all ζ in \mathbb{T} and belongs to $L^{p}(\mathbb{T})$. Furthermore, the norms of f in $H^{p}(\mathbb{D})$ and of $\tilde{f}(\zeta)$ in $L^{p}(\mathbb{T})$ coincide.

We know, see, e.g., [Cima et al. 2006, Lemma 2.1.11], that $H_{\mu} \in H^{p}(\mathbb{D})$ for all $0<p<1$; thus $\widetilde{H}_{\mu}(\zeta)$ exists for m-almost all ζ in \mathbb{T}. The density of μ can be recovered then from the boundary values of $\mathfrak{R} H_{\mu}$ by Fatou's theorem [Cima et al. 2006, Theorem 1.8.6] since $\mathfrak{R} \widetilde{H}_{\mu}=d \mu / d m m$-a.e. Note that the atoms of $\mu \in \mathscr{M}_{\mathbb{T}}$ can also be recovered from H_{μ} by Lebesgue's dominated convergence theorem via

$$
\lim _{r \rightarrow 1^{-}}(1-r) H_{\mu}(r \zeta)=2 \mu\{\zeta\} \quad \text { for all } \zeta \in \mathbb{T}
$$

Spectral distribution of the free unitary Brownian motion. For $\mu \in \mathscr{M}_{\mathbb{T}}$, let ψ_{μ} denote its momentgenerating function and χ_{μ} the function $\psi_{\mu} /\left(1+\psi_{\mu}\right)$. If μ has nonzero mean, we denote by χ_{μ}^{-1} the inverse function of χ_{μ} in some neighborhood of zero. In this case the Σ-transform of μ is defined by $\Sigma_{\mu}(z)=(1 / z) \chi_{\mu}^{-1}(z)$. The spectral distribution λ_{t} of the free unitary Brownian motion was introduced by Biane [1997a] as the unique probability measure on \mathbb{T} such that its Σ-transform is given by

$$
\Sigma_{\lambda_{t}}(z)=\exp \left(\frac{t}{2} \frac{1+z}{1-z}\right)
$$

It is the multiplicative analog of the semicircular distribution. Its moments are the large-size limits of observables of the free Brownian motion (of dimension d) $\left(U_{t}^{(d)}\right)_{t \geq 0}$ on the unitary group $\mathscr{U}(d)$:

$$
\lim _{d \rightarrow \infty} \frac{1}{d} \mathbb{E}\left(\operatorname{tr}\left[U_{t / d}^{(d)}\right]^{k}\right)=\int_{\mathbb{T}} \zeta^{k} d \lambda_{t}(\zeta), \quad k \geq 0
$$

This result was proved independently by Biane [1997a] and Rains [1997], who explicitly calculated these moments:

$$
\begin{equation*}
\tau\left(U_{t}^{k}\right)=e^{-k t / 2} \sum_{j=0}^{k-1} \frac{(-t)^{j}}{j!}\binom{k}{j+1} k^{j-1}, \quad k \geq 0 \tag{2-1}
\end{equation*}
$$

The equality (2-1) can be transformed into the PDE

$$
\begin{equation*}
\partial_{t} H+z H \partial_{z} H=0, \tag{2-2}
\end{equation*}
$$

with the initial condition $H(0, z)=(1+z) /(1-z)$ for the Herglotz transform $H_{\lambda_{2 t}}(z)$; see, e.g., the proof of [Izumi and Ueda 2015, Proposition 3.3]. The measure λ_{t} is described in [Biane 1997b] from the boundary behavior of the inverse function of $H_{\lambda_{t}}(z)$ as follows.
Theorem 2.3 [Biane 1997b]. For every $t>0$, the measure λ_{t} has a continuous density ρ_{t} with respect to the normalized Lebesgue measure on \mathbb{T}. Its support is the connected arc $\left\{e^{i \theta}:|\theta| \leq g(t)\right\}$ with

$$
g(t):=\frac{1}{2} \sqrt{t(4-t)}+\arccos \left(1-\frac{1}{2} t\right)
$$

for $t \in[0,4]$, and the whole circle for $t>4$. The density ρ_{t} is determined by $\Re h_{t}\left(e^{i \theta}\right)$, where $z=h_{t}\left(e^{i \theta}\right)$ is the unique solution (with positive real part) to

$$
\frac{z-1}{z+1} e^{z t / 2}=e^{i \theta}
$$

3. Notation

We use here the same symbols as in [Hamdi 2017; 2018]. To a given pair of projections P, Q in \mathscr{A} that are independent of $\left(U_{t}\right)_{t \geq 0}$ we associate the symmetries $R=2 P-I$ and $S=2 Q-I$. Set $\alpha=\tau(R)$ and $\beta=\tau(S)$. We sometimes use the notation $a=|\alpha-\beta| / 2$ and $b=|\alpha+\beta| / 2$ for simplicity. Keep the symbols μ_{t} and ν_{t} above. The unit circle is identified with $(-\pi, \pi]$ by $e^{i \theta}$. According to [Hamdi 2017, Section 3], the measure v_{t} is connected to μ_{t} by the formula

$$
\begin{equation*}
v_{t}=2 \hat{\mu}_{t}-\frac{1}{2}(2-\alpha-\beta) \delta_{\pi}-\frac{1}{2}(\alpha+\beta) \delta_{0}, \tag{3-1}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\mu}_{t}:=\frac{1}{2}\left(\tilde{\mu}_{t}+\left(\left.\tilde{\mu}_{t}\right|_{(0, \pi)}\right) \circ j^{-1}\right) \tag{3-2}
\end{equation*}
$$

is the symmetrization on $(-\pi, \pi)$, with the mapping $j: \theta \in(0, \pi) \mapsto-\theta \in(-\pi, 0)$, of the positive measure $\tilde{\mu}_{t}(d \theta)$ on $[0, \pi]$ obtained from $\mu_{t}(d x)$ via the variable change $x=\cos ^{2}(\theta / 2)$. Equivalently, we obtain the following relationship between the Herglotz transforms $H_{\mu_{t}}$ and $H_{\nu_{t}}$:

$$
\begin{equation*}
H_{v_{t}}(z)=\frac{z-1}{z+1} H_{\mu_{t}}\left(\frac{4 z}{(1+z)^{2}}\right)-2(\alpha+\beta) \frac{z}{z^{2}-1} \tag{3-3}
\end{equation*}
$$

see [Hamdi 2017, Corollary 4.2]. The function $H_{v_{t}}(z)$, which we shall denote by $H(t, z)$, is analytic in both variables $z \in \mathbb{D}$ and $t>0$, see [Collins and Kemp 2014, Theorem 1.4], and solves the PDE

$$
\begin{equation*}
\partial_{t} H+z H \partial_{z} H=\frac{2 z\left(\alpha z^{2}+2 \beta z+\alpha\right)\left(\beta z^{2}+2 \alpha z+\beta\right)}{\left(1-z^{2}\right)^{3}} \tag{3-4}
\end{equation*}
$$

see [Hamdi 2017, Proposition 2.3]. Let

$$
\begin{equation*}
K(t, z):=\sqrt{H(t, z)^{2}-\left(a \frac{1-z}{1+z}+b \frac{1+z}{1-z}\right)^{2}} \tag{3-5}
\end{equation*}
$$

The PDE (3-4) is then transformed into

$$
\partial_{t} K+z H(t, z) \partial_{z} K=0
$$

Note that steady state solution $K(\infty, z)$ is the constant $\sqrt{1-(a+b)^{2}}$; see [Hamdi 2017, Remark 3.3]. The ordinary differential equations (ODEs for short) of the characteristic curves associated with this PDE are

$$
\left\{\begin{array}{l}
\partial_{t} \phi_{t}(z)=\phi_{t}(z) H\left(t, \phi_{t}(z)\right), \quad \phi_{0}(z)=z \tag{3-6}\\
\partial_{t}\left[K\left(t, \phi_{t}(z)\right)\right]=0
\end{array}\right.
$$

The second ODE of (3-6) implies that $K\left(t, \phi_{t}(z)\right)=K(0, z)$, while the first one is nothing but the radial Loewner ODE, see [Lawler 2005, Theorem 4.14], which defines a unique family of conformal transformations ϕ_{t} from some region $\Omega_{t} \subset \mathbb{D}$ onto \mathbb{D} with $\phi_{t}(0)=0$ and $\partial_{z} \phi_{t}(0)=e^{t}$. Moreover, from [Lawler 2005, Remark 4.15], ϕ_{t} is invertible from Ω_{t} onto \mathbb{D} and it has a continuous extension to $\mathbb{T} \cap \bar{\Omega}_{t}$ by [Hamdi 2018, Proposition 2.1]. Integrating the first ODE in (3-6), we get

$$
\phi_{t}(z)=z \exp \left(\int_{0}^{t} H\left(s, \phi_{s}(z)\right) d s\right)
$$

Let us define

$$
h_{t}(r, \theta)=1-\int_{0}^{t} \frac{1-\left|\phi_{s}\left(r e^{i \theta}\right)\right|^{2}}{-\ln r} \int_{\mathbb{T}} \frac{1}{\left|\xi-\phi_{s}\left(r e^{i \theta}\right)\right|^{2}} d v_{s}(\xi) d s
$$

so that

$$
\begin{equation*}
\ln \left|\phi_{t}\left(r e^{i \theta}\right)\right|=\ln r+\mathfrak{R} \int_{0}^{t} H\left(s, \phi_{s}\left(r e^{i \theta}\right)\right) d s=(\ln r) h_{t}(r, \theta) \tag{3-7}
\end{equation*}
$$

Define $R_{t}:[-\pi, \pi] \rightarrow[0,1]$ as

$$
R_{t}(\theta)=\sup \left\{r \in(0,1): h_{t}(r, \theta)>0\right\}
$$

and let

$$
I_{t}=\left\{\theta \in[-\pi, \pi]: h_{t}(\theta)<0\right\}
$$

where $h_{t}(\theta)=\lim _{r \rightarrow 1^{-}} h_{t}(r, \theta) \in \mathbb{R} \cup\{-\infty\}$; see the fact given under Lemma 3.2 in [Hamdi 2018]. The next result gives a description of Ω_{t} and its boundary.

Proposition 3.1 [Hamdi 2018, Proposition 3.3]. For any $t>0$, we have:
(1) $\Omega_{t}=\left\{r e^{i \theta}: h_{t}\left(r, e^{i \theta}\right)>0\right\}$.
(2) $\partial \Omega_{t} \cap \mathbb{D}=\left\{r e^{i \theta}: h_{t}\left(r, e^{i \theta}\right)=0\right.$ and $\left.\theta \in I_{t}\right\}$.
(3) $\partial \Omega_{t} \cap \mathbb{T}=\left\{e^{i \theta}: h_{t}\left(r, e^{i \theta}\right)=0\right.$ and $\left.\theta \in[-\pi, \pi] \backslash I_{t}\right\}$.

In closing, we recall the following result which will be of use later on; see the proof of Theorem 1.1 in [Hamdi 2018].

Lemma 3.2 [Hamdi 2018]. For every $t>0$, the function $K(t, \cdot)$ has a continuous extension to the unit circle \mathbb{T}.

4. Analysis of spectral distributions of $R U_{t} S U_{t}^{*}$

In this section, we shall prove Theorem 1.1. To this end, we start by giving a description of the spectral measure v_{t} of $R U_{t} S U_{t}^{*}$ for any $t>0$, and deriving a formula for its density. We notice that from the asymptotic freeness of R and $U_{t} S U_{t}^{*}$, the measure v_{t} converges weakly as $t \rightarrow \infty$, see [Hamdi 2017, Proposition 2.6], to

$$
\begin{equation*}
\nu_{\infty}=a \delta_{\pi}+b \delta_{0}+\frac{\sqrt{-\left(\cos \theta-r_{+}\right)\left(\cos \theta-r_{-}\right)}}{2 \pi|\sin \theta|} \mathbf{1}_{\left(\theta_{-}, \theta_{+}\right) \cup\left(-\theta_{+},-\theta_{-}\right)} d \theta \tag{4-1}
\end{equation*}
$$

with $r_{ \pm}=-\alpha \beta \pm \sqrt{\left(1-\alpha^{2}\right)\left(1-\beta^{2}\right)}$ and $\theta_{ \pm}=\arccos r_{ \pm}$. The following theorem asserts that an analogous result holds for finite t.

Theorem 4.1. For every $t>0$, the measure $\nu_{t}-a \delta_{\pi}-b \delta_{0}$ is absolutely continuous with respect to the normalized Lebesgue measure on $\mathbb{T}=(-\pi, \pi]$. Moreover, its density κ_{t} at the point $e^{i \theta}$ is equal to the real part of

$$
\sqrt{\left[K\left(t, e^{i \theta}\right)\right]^{2}+(a+b)^{2}-1-\frac{\left(\cos \theta-r_{+}\right)\left(\cos \theta-r_{-}\right)}{\sin ^{2} \theta}} .
$$

Proof. Define the function

$$
L(t, z)=\int_{\mathbb{T}} \frac{e^{i \theta}+z}{e^{i \theta}-z}\left(v_{t}-a \delta_{\pi}-b \delta_{0}\right)(d \theta)=H(t, z)-a \frac{1-z}{1+z}-b \frac{1+z}{1-z}
$$

The real part of this function is nothing but the Poisson integral of the measure $\nu_{t}-a \delta_{\pi}-b \delta_{0}$. Using (3-5) and multiplying by the conjugate, we get

$$
\begin{aligned}
L(t, z) & =\frac{K(t, z)^{2}}{\sqrt{K(t, z)^{2}+\left(a \frac{1-z}{1+z}+b \frac{1+z}{1-z}\right)^{2}}+a \frac{1-z}{1+z}+b \frac{1+z}{1-z}} \\
& =\frac{\left(1-z^{2}\right) K(t, z)^{2}}{\sqrt{\left[\left(1-z^{2}\right) K(t, z)\right]^{2}+\left[a(1-z)^{2}+b(1+z)^{2}\right]^{2}}+a(1-z)^{2}+b(1+z)^{2}}
\end{aligned}
$$

Note that $K(t, z)$ extends continuously to \mathbb{T} by Lemma 3.2. The denominator of the above expression does not vanish on the closed unit disc and

$$
z \mapsto\left(1-z^{2}\right)^{2} K(t, z)^{2}+\left[a(1-z)^{2}+b(1+z)^{2}\right]^{2}=\left(1-z^{2}\right) H(t, z)^{2}
$$

does not take negative values. These together imply that $L(t, z)$ has a continuous extension on the boundary \mathbb{T}. Hence, by uniqueness of the Herglotz representation (see Theorem 2.1), the measure $v_{t}-a \delta_{\pi}-b \delta_{0}$ is absolutely continuous with respect to the Haar measure in \mathbb{T} and its density is given by

$$
\begin{aligned}
\mathfrak{R}\left[H\left(t, e^{i \theta}\right)-a \frac{1-e^{i \theta}}{1+e^{i \theta}}-b \frac{1+e^{i \theta}}{1-e^{i \theta}}\right] & =\mathfrak{R} \sqrt{\left[K\left(t, e^{i \theta}\right)\right]^{2}+\left[a \frac{1-e^{i \theta}}{1+e^{i \theta}}-b \frac{1+e^{i \theta}}{1-e^{i \theta}}\right]^{2}} \\
& =\mathfrak{R} \sqrt{\left[K\left(t, e^{i \theta}\right)\right]^{2}-[a \tan (\theta / 2)-b \cot (\theta / 2)]^{2}}
\end{aligned}
$$

To complete the proof, we need only show that

$$
[a \tan (\theta / 2)-b \cot (\theta / 2)]^{2}=1-(a+b)^{2}+\frac{\left(\cos \theta-r_{+}\right)\left(\cos \theta-r_{-}\right)}{\sin ^{2} \theta}
$$

or equivalently that

$$
\left(1-a^{2}-b^{2}\right) \sin ^{2} \theta-a^{2} \sin ^{2} \theta \tan ^{2}(\theta / 2)-b^{2} \sin ^{2} \theta \cot ^{2}(\theta / 2)=-\left(\cos \theta-r_{+}\right)\left(\cos \theta-r_{-}\right)
$$

Working from the left-hand side and using the identities

$$
\sin ^{2} \theta=1-\cos ^{2} \theta, \quad \sin ^{2} \theta \tan ^{2}(\theta / 2)=(1-\cos \theta)^{2}, \quad \sin ^{2} \theta \cot ^{2}(\theta / 2)=(1+\cos \theta)^{2}
$$

we get

$$
\left(1-a^{2}-b^{2}\right)\left(1-\cos ^{2} \theta\right)-a^{2}(1-\cos \theta)^{2}-b^{2}(1+\cos \theta)^{2}
$$

Rearranging these terms, we obtain

$$
-\cos ^{2} \theta+2\left(a^{2}-b^{2}\right) \cos \theta-2\left(a^{2}+b^{2}\right)+1
$$

So, by substituting the equalities $\alpha \beta=b^{2}-a^{2}$ and $\alpha^{2}+\beta^{2}=2\left(a^{2}+b^{2}\right)$, we obtain the required formula:

$$
-\cos ^{2} \theta-2 \alpha \beta \cos \theta+1-\alpha^{2}-\beta^{2}=-\left(\cos \theta-r_{+}\right)\left(\cos \theta-r_{-}\right)
$$

Remark 4.2. We can prove directly that κ_{t} is an L^{∞}-density. In fact, by (3-5), we have

$$
K(t, z)^{2}=H(t, z)^{2}-\left(a \frac{1-z}{1+z}+b \frac{1+z}{1-z}\right)^{2}=L(t, z)\left(L(t, z)+2 a \frac{1-z}{1+z}+2 b \frac{1+z}{1-z}\right)
$$

Then

$$
(\Re L(t, z))^{2} \leq \Re L(t, z) \Re\left(L(t, z)+2 a \frac{1-z}{1+z}+2 b \frac{1+z}{1-z}\right) \leq\left|K(t, z)^{2}\right|
$$

But, the function $K(t, z)$ is analytic in \mathbb{D} and extends continuously to \mathbb{T}. It becomes then of Hardy class $H^{\infty}(\mathbb{D})$, and hence the density of $v_{t}-a \delta_{\pi}-b \delta_{0}$ belongs to $L^{\infty}(\mathbb{T})$ by [Koosis 1998, Theorem on p. 15].
Proposition 4.3. The support of v_{t} is a subset of $\left\{\phi_{t}\left(R_{t}(\theta) e^{i \theta}\right): \theta \in I_{t}\right\}$.
Proof. By (3-7), we have

$$
\int_{0}^{t} \Re H\left(s, \phi_{s}\left(R_{t}(\theta) e^{i \theta}\right)\right) d s=-\ln R_{t}(\theta)
$$

where we used the fact that $\ln \left|\phi_{t}\left(R_{t}(\theta) e^{i \theta}\right)\right|=0$ due to the equality $\left|\phi_{t}\left(R_{t}(\theta) e^{i \theta}\right)\right|=1$. Then, by continuity of $s \mapsto \mathfrak{R} H\left(s, \phi_{s}\left(R_{t}(\theta) e^{i \theta}\right)\right)$ on $[0, t]$, we deduce that the assertion $\mathfrak{\Re H (t , \phi _ { t } (R _ { t } (\theta) e ^ { i \theta })) > 0}$ yields $R_{t}(\theta) \neq 1$. Finally, by the definition of $R_{t}(\theta)$ and I_{t}, we have

$$
\left\{\theta: R_{t}(\theta) \neq 1\right\}=\left\{\theta: \exists r_{0} \in(0,1), h_{t}\left(r_{0}, e^{i \theta}\right)=0\right\}=\left\{\theta: h_{t}(\theta)<0\right\}=I_{t}
$$

We now proceed to the proof of Theorem 1.1.
Proof of Theorem 1.1. By (3-1), we have

$$
v_{t}-a \delta_{\pi}-b \delta_{0}=2\left[\hat{\mu}_{t}-(1-\min \{\tau(P), \tau(Q)\}) \delta_{\pi}-\max \{\tau(P)+\tau(Q)-1,0\} \delta_{0}\right] .
$$

This measure is absolutely continuous with respect to the normalized Lebesgue measure $d \theta /(2 \pi)$ on $\mathbb{T}=(-\pi, \pi]$, by Theorem 4.1, and its density is given by the function κ_{t}. Hence, (3-2) implies

$$
\left(\tilde{\mu}_{t}-(1-\min \{\tau(P), \tau(Q)\}) \delta_{\pi}-\max \{\tau(P)+\tau(Q)-1,0\} \delta_{0}\right)(d \theta)=\kappa_{t}(\theta) \frac{d \theta}{2 \pi}, \quad \theta \in[0, \pi]
$$

and so the desired assertion holds via the variable change $\theta=2 \arccos (\sqrt{x})$.
Remark 4.4. It is worth noting that the spectral distribution v_{t} is stationary for all traces of the symmetries, when the initial operators R and S are free. Actually, by Proposition 2.5 in [Hamdi 2017], we have

$$
H(0, z)=\sqrt{1+4 z\left(\frac{b^{2}}{(1-z)^{2}}-\frac{a^{2}}{(1+z)^{2}}\right)}
$$

so that

$$
K(0, z)=\sqrt{H(0, z)^{2}-\left(a \frac{1-z}{1+z}+b \frac{1+z}{1-z}\right)^{2}}=\sqrt{1-(a+b)^{2}}
$$

Hence, for every $z \in \mathbb{D}$ and $t \geq 0$, we have $K(t, z)=K\left(0, \phi_{t}^{-1}(z)\right)=\sqrt{1-(a+b)^{2}}$, and therefore v_{t} coincides with the measure ν_{∞}.

The above fact can be explained directly by use of the sequence of moments

$$
m_{n}(t):=\tau\left[\left(P U_{t} Q U_{t}^{*} P\right)^{n}\right], \quad n \geq 1
$$

In fact, we can prove by induction on n that $m_{n}(t)$ becomes stationary when P and Q are free. Recall from [Demni et al. 2012] that $m_{n}(t)$ satisfy the infinite system of ODEs

$$
\begin{gather*}
\partial_{t} m_{1}(t)=-m_{1}(t)+\tau[P] \tau[Q] \tag{4-2}\\
\partial_{t} m_{n}(t)=-n m_{n}(t)+n \sum_{k=1}^{n-1} m_{n-k}(t)\left(m_{k-1}(t)-m_{k}(t)\right), \quad n \geq 2 \tag{4-3}
\end{gather*}
$$

with $m_{0}(t)=\tau[P]+\tau[Q]$. When $n=1$, (4-2) can be solved explicitly and gives $m_{1}(t)=\tau[P] \tau[Q]+$ $e^{-t}\left(m_{1}(0)-\tau[P] \tau[Q]\right)$. Since $m_{1}(0)=\tau[P Q]=\tau[P] \tau[Q]$ by freeness, we get $m_{1}(t)=m_{1}(0)$. For $n \geq 2$, we note that the moments

$$
c_{n}:=m_{n}(0)=\tau\left[(P Q)^{n}\right]
$$

satisfy

$$
c_{n}=\sum_{k=1}^{n-1} c_{n-k}\left(c_{k-1}-c_{k}\right)
$$

Assume that $m_{k}(t)=c_{k}$ holds up to level $n-1$. Then, the ODE (4-3) can be written in the form

$$
\partial_{t} m_{n}(t)=-n m_{n}(t)+n c_{n}
$$

with solution the constant c_{n}. Thus, μ_{t} (and therefore v_{t}) is stationary.

5. Special cases

We present here some specializations for which the measure v_{t} (and hence μ_{t}) is explicitly determined.
Centered initial operators. That is, $\tau(R)=\tau(S)=0$ or $a=b=0$. In this case, the PDE (3-4) can be rewritten as

$$
\partial_{t} H+z H \partial_{z} H=0,
$$

and the measure v_{t} becomes identical to the probability distribution of $U U_{2 t}$, where U is a free unitary whose distribution is v_{0}; see [Izumi and Ueda 2015, Proposition 3.3] or [Hamdi 2017, Remark 4.7]. Hence, the measure v_{t} is given by the multiplicative free convolution $v_{0} \boxtimes \lambda_{2 t}$, studied in [Zhong 2015]. The density of this measure and its support are explicitly computed in Theorem 3.8 and Corollary 3.9 of that paper. In particular, when v_{0} is a Dirac mass at 1 (on the unit circle), the Herglotz transforms $H(t, z)$ of v_{t} satisfy the PDE

$$
\partial_{t} H+z H \partial_{z} H=0, \quad H(0, z)=\frac{1+z}{1-z}
$$

Then it follows from the uniqueness of the solution of (2-2) that $H(t, z)=H_{\lambda_{2 t}}(z)$, and by uniqueness of the Herglotz representation, v_{t} coincides with the law $\lambda_{2 t}$ of $U_{2 t}$. Hence, by Theorem 2.3 the density
of v_{t} is given by the formula $\kappa_{t}(\omega)=\rho_{2 t}(\omega)$ and the support is the full unit circle for $t>2$ and the set $\left\{e^{i \theta}:|\theta|<g(2 t)\right\}$ for $t \in[0,2]$.

In the rest of the paper, we illustrate how the family of measures $\left(v_{t}\right)_{t \geq 0}$ provides a continuous interpolation between freeness and different type of independence.

Classically independent initial operators. In this case, the measure v_{t} is considered as a t-free convolution which interpolates between classical independence and free independence; see [Benaych-Georges and Lévy 2011]. Let R, S be two independent symmetries. From the facts given above Lemma 5.4 in [Hamdi 2017], we have

$$
H(0, z)=1+2 \sum_{n \geq 1} \tau\left(R^{n}\right) \tau\left(S^{n}\right) z^{n}=\frac{1+z^{2}+2 z \tau(R) \tau(S)}{1-z^{2}}
$$

In particular, when $\tau(R)=\tau(S)=0$, the function $H(t, z)$ satisfies the PDE

$$
\partial_{t} H+z H \partial_{z} H=0, \quad H(0, z)=\frac{1+z^{2}}{1-z^{2}}
$$

and hence, by (2-2), it coincides with $H_{\lambda_{4 t}}\left(z^{2}\right)$. We retrieve then the result obtained in [Benaych-Georges and Lévy 2011, Theorem 3.6]: for any $t \geq 0$, the push-forward of ν_{t} by the map $z \mapsto z^{2}$ coincides with the law of $U_{4 t}$. In particular, the density of v_{t} is given by $\kappa_{t}(\omega)=\rho_{4 t}\left(\omega^{2}\right)$ for any ω in the unit circle and the support is the full unit circle for $t>1$ and the set $\left\{e^{i \theta}:|\theta|<g(4 t) / 2\right\}$ for $t \in[0,1]$.

Boolean independent initial operators. To a given probability measure μ on the unit circle, we keep the same notation ψ_{μ}, H_{μ} and χ_{μ} as in Section 2. Let $\mu_{1}, \mu_{2} \in \mathscr{M}_{\mathbb{T}}$ and set $F_{\mu}(z)=(1 / z) \chi_{\mu}(z)$. Then the multiplicative boolean convolution $\mu=\mu_{1} \boxtimes \mu_{2}$ is uniquely determined by

$$
F_{\mu}(z)=F_{\mu_{1}}(z) F_{\mu_{2}}(z)
$$

see [Hamdi 2015; Franz 2008] for more details. Then, for boolean independent symmetries R, S with law $\mu=\frac{1}{2}\left(\delta_{1}+\delta_{-1}\right)$, we have

$$
\psi_{\mu}(z)=\frac{z^{2}}{1-z^{2}}, \quad \chi_{\mu}(z)=z^{2}, \quad F_{\mu}(z)=z
$$

and therefore $F_{\mu \otimes \mu}(z)=F_{\mu}(z)^{2}=z^{2}$. It follows that

$$
\psi_{\mu \boxtimes \mu}(z)=\frac{z^{3}}{1-z^{3}} \quad \text { and } \quad H_{\mu \boxtimes \mu}(z)=\frac{1+z^{3}}{1-z^{3}}
$$

Hence, by (2-2) the Herglotz transform $H(t, z)$ of v_{t} and $H_{\lambda_{6 t}}\left(z^{3}\right)$ solve the same PDE with the initial condition $H(0, z)=\left(1+z^{3}\right) /\left(1-z^{3}\right)$. By uniqueness, it follows that the push-forward of v_{t} by the map $z \mapsto z^{3}$ coincides with the law of $U_{6 t}$ for any $t \geq 0$. In particular, we have $\kappa_{t}(\omega)=\rho_{6 t}\left(\omega^{3}\right)$ for any ω in the unit circle and v_{t} is supported in the full unit circle for $t>\frac{2}{3}$ and the set $\left\{e^{i \theta}:|\theta|<g(6 t) / 3\right\}$ for $t \in\left[0, \frac{2}{3}\right]$.

Monotone independent initial operators. For $\mu_{1}, \mu_{2} \in \mathscr{M}_{\mathbb{\pi}}$, the multiplicative monotone convolution $\mu=\mu_{1} \triangleright \mu_{2}$ is uniquely determined by

$$
\chi_{\mu}(z)=\chi_{\mu_{1}}\left(\chi_{\mu_{2}}(z)\right)
$$

see [Hamdi 2015; Franz 2006] for more details. Here, we shall compute the measure v_{t} for monotone independent symmetries R, S with law $\mu=\frac{1}{2}\left(\delta_{1}+\delta_{-1}\right)$. As usual, we have

$$
\psi_{\mu}(z)=\frac{z^{2}}{1-z^{2}}, \quad \chi_{\mu}(z)=z^{2}
$$

and then $\chi_{\mu \triangleright \mu}(z)=\chi_{\mu}\left(\chi_{\mu}(z)\right)=z^{4}$. Hence,

$$
\psi_{\mu \triangleright \mu}(z)=\frac{z^{4}}{1-z^{4}} \quad \text { and } \quad H_{\mu \triangleright \mu}(z)=\frac{1+z^{4}}{1-z^{4}}
$$

It follows that $H(t, z)=H_{\lambda_{8 t}}\left(z^{4}\right)$ by uniqueness. Thus, the push-forward of v_{t} by the map $z \mapsto z^{4}$ coincides with the law of $U_{8 t}$ for any $t \geq 0$. In particular, we have $\kappa_{t}(\omega)=\rho_{8 t}\left(\omega^{4}\right)$ for any ω in the unit circle and v_{t} is supported in the full unit circle for $t>\frac{1}{2}$ and the set $\left\{e^{i \theta}:|\theta|<g(8 t) / 4\right\}$ for $t \in\left[0, \frac{1}{2}\right]$.

Finally, we recall (see the first subsection above) that $v_{t}=v_{0} \boxtimes \lambda_{2 t}$ for centered initial operators R, S (i.e., $\tau(R)=\tau(S)=0$). Hence, the discussions so far can be summarized in Theorem 1.2.

References

[Benaych-Georges and Lévy 2011] F. Benaych-Georges and T. Lévy, "A continuous semigroup of notions of independence between the classical and the free one", Ann. Probab. 39:3 (2011), 904-938. MR Zbl
[Biane 1997a] P. Biane, "Free Brownian motion, free stochastic calculus and random matrices", pp. 1-19 in Free probability theory (Waterloo, ON, 1995), edited by D.-V. Voiculescu, Fields Inst. Commun. 12, Amer. Math. Soc., Providence, RI, 1997. MR Zbl
[Biane 1997b] P. Biane, "Segal-Bargmann transform, functional calculus on matrix spaces and the theory of semi-circular and circular systems", J. Funct. Anal. 144:1 (1997), 232-286. MR Zbl
[Cima et al. 2006] J. A. Cima, A. L. Matheson, and W. T. Ross, The Cauchy transform, Mathematical Surveys and Monographs 125, Amer. Math. Soc., Providence, RI, 2006. MR Zbl
[Collins and Kemp 2014] B. Collins and T. Kemp, "Liberation of projections", J. Funct. Anal. 266:4 (2014), 1988-2052. MR Zbl
[Demni 2008] N. Demni, "Free Jacobi process", J. Theoret. Probab. 21:1 (2008), 118-143. MR Zbl
[Demni 2016] N. Demni, "Free Jacobi process associated with one projection: local inverse of the flow", Complex Anal. Oper. Theory 10:3 (2016), 527-543. MR Zbl
[Demni and Hamdi 2018] N. Demni and T. Hamdi, "Inverse of the flow and moments of the free Jacobi process associated with one projection", Random Matrices Theory Appl. 7:2 (2018), art. id. 1850001. MR
[Demni and Hmidi 2014] N. Demni and T. Hmidi, "Spectral distribution of the free Jacobi process associated with one projection", Colloq. Math. 137:2 (2014), 271-296. MR Zbl
[Demni et al. 2012] N. Demni, T. Hamdi, and T. Hmidi, "Spectral distribution of the free Jacobi process", Indiana Univ. Math. J. 61:3 (2012), 1351-1368. MR Zbl
[Franz 2006] U. Franz, "Multiplicative monotone convolutions", pp. 153-166 in Quantum probability, edited by M. Bożejko et al., Banach Center Publ. 73, Polish Acad. Sci. Inst. Math., Warsaw, 2006. MR Zbl
[Franz 2008] U. Franz, "Boolean convolution of probability measures on the unit circle", pp. 83-94 in Analyse et probabilités, edited by P. Biane et al., Sémin. Congr. 16, Soc. Math. France, Paris, 2008. MR Zbl
[Hamdi 2015] T. Hamdi, "Monotone and boolean unitary Brownian motions", Infin. Dimens. Anal. Quantum Probab. Relat. Top. 18:2 (2015), art. id. 1550012. MR Zbl
[Hamdi 2017] T. Hamdi, "Liberation, free mutual information and orbital free entropy", preprint, 2017. arXiv
[Hamdi 2018] T. Hamdi, "Free mutual information for two projections", Complex Anal. Oper. Theory (Online publication April 2018).
[Hiai and Ueda 2009] F. Hiai and Y. Ueda, "A log-Sobolev type inequality for free entropy of two projections", Ann. Inst. Henri Poincaré Probab. Stat. 45:1 (2009), 239-249. MR Zbl
[Izumi and Ueda 2015] M. Izumi and Y. Ueda, "Remarks on free mutual information and orbital free entropy", Nagoya Math. J. 220 (2015), 45-66. MR Zbl
[Koosis 1998] P. Koosis, Introduction to H_{p} spaces, 2nd ed., Cambridge Tracts in Mathematics 115, Cambridge University Press, 1998. MR Zbl
[Lawler 2005] G. F. Lawler, Conformally invariant processes in the plane, Mathematical Surveys and Monographs 114, Amer. Math. Soc., Providence, RI, 2005. MR Zbl
[Nica and Speicher 2006] A. Nica and R. Speicher, Lectures on the combinatorics of free probability, London Mathematical Society Lecture Note Series 335, Cambridge University Press, Cambridge, 2006. MR Zbl
[Raeburn and Sinclair 1989] I. Raeburn and A. M. Sinclair, "The C^{*}-algebra generated by two projections", Math. Scand. 65:2 (1989), 278-290. MR Zbl
[Rains 1997] E. M. Rains, "Combinatorial properties of Brownian motion on the compact classical groups", J. Theoret. Probab. 10:3 (1997), 659-679. MR Zbl
[Voiculescu 1999] D. Voiculescu, "The analogues of entropy and of Fisher's information measure in free probability theory, VI: Liberation and mutual free information", Adv. Math. 146:2 (1999), 101-166. MR Zbl
[Voiculescu et al. 1992] D. V. Voiculescu, K. J. Dykema, and A. Nica, Free random variables: a noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups, CRM Monograph Series 1, Amer. Math. Soc., Providence, RI, 1992. MR Zbl
[Zhong 2015] P. Zhong, "On the free convolution with a free multiplicative analogue of the normal distribution", J. Theoret. Probab. 28:4 (2015), 1354-1379. MR Zbl

Received 23 Nov 2017. Revised 20 Mar 2018. Accepted 19 Apr 2018.
TAREK HAMDI: tarek.hamdi@mail.com
Department of Management Information Systems, College of Business Administration, Qassim University, Buraydah,
Saudi Arabia
and
Laboratoire d'Analyse Mathématiques et Applications LR11ES11, Université de Tunis El-Manar, Tunis, Tunisia

Analysis \& PDE

msp.org/apde

EDITORS

Editor-In-Chief
Patrick Gérard
patrick.gerard@math.u-psud.fr
Université Paris Sud XI
Orsay, France

Board of Editors

Massimiliano Berti	Scuola Intern. Sup. di Studi Avanzati, Italy berti@sissa.it	Clément Mouhot	Cambridge University, UK c.mouhot@dpmms.cam.ac.uk
Sun-Yung Alice Chang	Princeton University, USA chang@math.princeton.edu	Werner Müller	Universität Bonn, Germany mueller@math.uni-bonn.de
Michael Christ	University of California, Berkeley, USA mchrist@math.berkeley.edu	Gilles Pisier	Texas A\&M University, and Paris 6 pisier@math.tamu.edu
Alessio Figalli	ETH Zurich, Switzerland alessio.figalli@math.ethz.ch	Tristan Rivière	ETH, Switzerland riviere@math.ethz.ch
Charles Fefferman	Princeton University, USA cf@math.princeton.edu	Igor Rodnianski	Princeton University, USA irod@math.princeton.edu
Ursula Hamenstaedt	Universität Bonn, Germany ursula@math.uni-bonn.de	Sylvia Serfaty	New York University, USA serfaty@cims.nyu.edu
Vaughan Jones	U.C. Berkeley \& Vanderbilt University vaughan.f.jones@ vanderbilt.edu	Yum-Tong Siu	Harvard University, USA siu@math.harvard.edu
Vadim Kaloshin	University of Maryland, USA vadim.kaloshin@gmail.com	Terence Tao	University of California, Los Angeles, USA tao@math.ucla.edu
Herbert Koch	Universität Bonn, Germany koch@math.uni-bonn.de	Michael E. Taylor	Univ. of North Carolina, Chapel Hill, USA met@math.unc.edu
Izabella Laba	University of British Columbia, Canada ilaba@math.ubc.ca	Gunther Uhlmann	University of Washington, USA gunther@math.washington.edu
Gilles Lebeau	Université de Nice Sophia Antipolis, France lebeau@unice.fr	András Vasy	Stanford University, USA andras@math.stanford.edu
Richard B. Melrose	Massachussets Inst. of Tech., USA rbm@math.mit.edu	Dan Virgil Voiculescu	University of California, Berkeley, USA dvv@math.berkeley.edu
Frank Merle	Université de Cergy-Pontoise, France Frank.Merle@u-cergy.fr	Steven Zelditch	Northwestern University, USA zelditch@math.northwestern.edu
William Minicozzi II	Johns Hopkins University, USA minicozz@math.jhu.edu	Maciej Zworski	University of California, Berkeley, USA zworski@math.berkeley.edu

PRODUCTION

production@msp.org
Silvio Levy, Scientific Editor
See inside back cover or msp.org/apde for submission instructions.
The subscription price for 2018 is US $\$ 275 /$ year for the electronic version, and $\$ 480 /$ year ($+\$ 55$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis \& PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

APDE peer review and production are managed by EditFlow ${ }^{\circledR}$ from MSP.
PUBLISHED BY

mathematical sciences publishers

ANALYSIS \& PDE
 Volume 11 No. 82018

Invariant measure and long time behavior of regular solutions of the Benjamin-Ono equation 1841Mouhamadou Sy
Rigidity of minimizers in nonlocal phase transitions 1881
Ovidiu Savin
Propagation and recovery of singularities in the inverse conductivity problem 1901Allan Greenleaf, Matti Lassas, Matteo Santacesaria, Samuli Siltanenand Gunther Uhlmann
Quantitative stochastic homogenization and regularity theory of parabolic equations 1945
Scott Armstrong, Alexandre Bordas and Jean-Christophe Mourrat
Hopf potentials for the Schrödinger operator 2015Luigi Orsina and Augusto C. Ponce
Monotonicity of nonpluripolar products and complex Monge-Ampère equations with pre- 2049
scribed singularityTamás Darvas, Eleonora Di Nezza and Chinh H. Lu
On weak weighted estimates of the martingale transform and a dyadic shift 2089
Fedor NaZarov, Alexander Reznikov, Vasily Vasyunin and Alexander Volberg
Two-microlocal regularity of quasimodes on the torus 2111
Fabricio Macià and Gabriel Rivière
Spectral distribution of the free Jacobi process, revisited 2137
Tarek Hamdi

[^0]: MSC2010: 42B37, 46L54.
 Keywords: free Jacobi process, free unitary Brownian motion, multiplicative convolution, spectral distribution, Herglotz transform, Szegő transformation.

