Vol. 11, No. 8, 2018

Download this article
Download this article For screen
For printing
Recent Issues

Volume 11
Issue 8, 1841–2148
Issue 7, 1587–1839
Issue 6, 1343–1586
Issue 5, 1083–1342
Issue 4, 813–1081
Issue 3, 555–812
Issue 2, 263–553
Issue 1, 1–261

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editors’ Interests
Scientific Advantages
Submission Guidelines
Submission Form
Editorial Login
Contacts
Author Index
To Appear
 
ISSN: 1948-206X (e-only)
ISSN: 2157-5045 (print)
Rigidity of minimizers in nonlocal phase transitions

Ovidiu Savin

Vol. 11 (2018), No. 8, 1881–1900
DOI: 10.2140/apde.2018.11.1881
Abstract

We obtain the classification of certain global bounded solutions for semilinear nonlocal equations of the type

su = W(u) in n, with s (1 2,1),

where W is a double-well potential.

Keywords
nonlocal phase transitions, De Giorgi conjecture
Mathematical Subject Classification 2010
Primary: 35J61
Milestones
Received: 8 December 2016
Revised: 9 February 2018
Accepted: 9 April 2018
Published: 6 June 2018
Authors
Ovidiu Savin
Department of Mathematics
Columbia University
New York, NY
United States