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BOUNDARY BEHAVIOR OF SOLUTIONS TO
THE PARABOLIC p-LAPLACE EQUATION

BENNY AVELIN, TUOMO KUUSI AND KAJ NYSTRÖM

We establish boundary estimates for nonnegative solutions to the p-parabolic equation in the degenerate
range p > 2. Our main results include new parabolic intrinsic Harnack chains in cylindrical NTA domains
together with sharp boundary decay estimates. If the underlying domain is C 1;1-regular, we establish a
relatively complete theory of the boundary behavior, including boundary Harnack principles and Hölder
continuity of the ratios of two solutions, as well as fine properties of associated boundary measures. There
is an intrinsic waiting-time phenomenon present which plays a fundamental role throughout the paper. In
particular, conditions on these waiting times rule out well-known examples of explicit solutions violating
the boundary Harnack principle.

1. Introduction and results

This paper is devoted to a study of the boundary behavior of nonnegative solutions to the p-parabolic
equation, in the degenerate range p> 2. We restrict the analysis to space-time cylinders �T D��.0;T /,
T > 0, where �� Rn is a bounded domain, i.e., an open and connected set. Given p, 1< p <1, fixed,
recall that the p-parabolic equation is

@tu��pu WD @tu�r � .jrujp�2
ru/D 0: (1-1)

In the special case p D 2, the p-parabolic equation coincides with the heat equation, and in this case
we refer to [Kemper 1972; Salsa 1981], and also [Fabes et al. 1984; 1986; 1999; Fabes and Safonov 1997;
Garofalo 1984; Nyström 1997] concerning the boundary behavior of nonnegative solutions. Key results
established in these works, in the context of Lipschitz-cylinders �T , include Carleson-type estimates,
the relation between the associated parabolic measure and the Green’s function, the backward-in-time
Harnack inequality, boundary Harnack principles (local and global) and Hölder continuity up to the
boundary of quotients of nonnegative solutions vanishing on the lateral boundary.

On the contrary for p ¤ 2, 1< p <1, much less is known concerning these problems and we refer
the reader to [Avelin 2016; Avelin et al. 2016; Kuusi et al. 2014] for accounts of the current literature.
For a relatively complete picture in the case of nonlinear parabolic operators with linear growth, we refer
to [Nyström et al. 2015]. However, it is also important to mention that there is interesting and related
recent literature devoted to the asymptotic and pointwise behavior of solutions to nonlinear diffusion
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equations on bounded domains; see [Stan and Vázquez 2013], and also [Bonforte and Vázquez 2015] for
the porous medium-type equations.

Considering nonnegative solutions to the p-parabolic equation, for p in the degenerate range p > 2, it
is a priori not clear to what extent and in what sense the above-mentioned results can hold. Indeed, on
the one hand we have to account for the lack of homogeneity of the p-parabolic equation, and on the
other hand we have to account for the fact that in the degenerate regime the phenomenon of finite speed
propagation is present. As a matter of fact, simple examples show that in this case there are, compared to
the case p D 2, much more delicate waiting-time phenomena to take into account.

To discuss the aspects of the waiting time phenomena further, we here first briefly describe some
by now classical results in the case p D 2; see [Fabes et al. 1986; Salsa 1981]. Assume that � is,
say, a Lipschitz domain, that x0 2 @� and let A˙ WD .ar .x0/; t0 ˙ r2/, where ar .x0/ is an interior
point of � with distance to the boundary comparable to r . Assume also that u and v are nonnegative
caloric functions in �T , i.e., functions satisfying (1-1) with p D 2 in �T , vanishing continuously on
.@�\Br .x0//� .t0 � r2; t0C r2/, where Br .x0/ � Rn is the standard Euclidean ball of radius r and
centered at x0 2 Rn. Then

c�1 u.A�/

v.AC/
�

u.x; t/

v.x; t/
� c

u.AC/

v.A�/
; (1-2)

for a universal constant c, whenever .x; t/ 2 .�\Br=2.x0//� .t0 � .r=2/
2; t0C .r=2/

2/. However, in
general an estimate like (1-2) dramatically fails in the case p ¤ 2. To see this, recall the following two
classical solutions, see, e.g., [Avelin et al. 2016], in the case when � WD Rn�1 � fxn W xn > 0g:

u.x; t/D cp.T � t/�1=.p�2/xp=.p�2/
n ; v.x; t/D xn: (1-3)

In view of the examples in (1-3) it is not clear under what conditions the boundary Harnack principle
in (1-2) could hold. Let us make a few observations. When defining u as in (1-3), we see that the larger
we take T, the longer the solution u exists and the smaller its pointwise values become at a fixed time
t < T . If we wish to show an estimate as in (1-2), we need to be able to rule out examples like u in (1-3);
see also some other examples in [Avelin et al. 2016]. We do this by simply requiring, for .x; t/ 2�T

fixed, that
T � t > C0u.x; t/2�pd.x; @�/p (1-4)

for a large enough constant C0. It is easily seen that the solution u in (1-3) does not satisfy (1-4) at any
point .x; t/ 2�T if we require C0 � c

p�2
p .

In this context, and for the p-parabolic equation, it is here natural to make a link to the by-now classical
method of intrinsic scaling due to [DiBenedetto 1993]. The intrinsic scalings define the canonical
geometry in which weak solutions to the p-parabolic equation become homogenized in a sense to be made
precise. Indeed, in this geometry we consider, instead of the standard parabolic cylinders, intrinsically
time-scaled cylinders of the type

Q�;C
r .x; t/ WD Br .x/� .t; t C�

2�prp/;

Q�;�
r .x; t/ WD Br .x/� .t ��

2�prp; t/;
� WD u.x; t/:
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These kinds of intrinsic cylinders appear naturally in the context of Harnack inequalities, oscillation
reduction estimates, and decay estimates, and define the correct geometry in our setting.

The main goal of this paper is to study to what extent the theory developed in [Fabes et al. 1986; Salsa
1981] generalizes to the case p > 2, under suitable intrinsic conditions. We have already seen that it rules
out the pathological examples like u in (1-3). In fact, we prove that (1-4) is a sufficient condition for
developing a rather general theory concerning the boundary behavior of nonnegative solutions to the
p-parabolic equation. For instance, (1-4) allows us to prove a counterpart of (1-2) valid for 2< p <1;
see Theorem 9.4 below.

1A. Summary of results. We will now give an informal summary of our results. The precise statements
can be found in the body of the paper.

Harnack chains. Fundamental tools in the study of the boundary behavior of nonnegative solutions are the
Harnack inequality and Harnack chains. Harnack chains allow one to relate the value of nonnegative solu-
tions at different space-time points in the domain. For p D 2 the Harnack inequality is homogeneous and,
roughly, to control the values of the solution in a ball of size r requires a waiting time comparable to r2. For
p > 2 we have to use an intrinsic version of the Harnack inequality [DiBenedetto 1993; DiBenedetto et al.
2012]. In particular, the intrinsic Harnack inequality states, see Theorem 3.1, that if we have a nonnegative
solution u to the p-parabolic equation in �T , with .x; t/ 2�T , and Q

u.x;t/=ch;�
4r

.x; t/��T , then

u.x; t/� Ch inf
y2Br .x/

u

�
y; t C

�
ch

u.x; t/

�p�2

rp

�
;

provided that tC Œch=u.x; t/�
p�2rp < T . The intrinsic waiting time required in this Harnack inequality is

consistent with the condition stated in (1-4). In Section 3 we develop a sequence of Harnack chain estimates
and the goal of that section is twofold. First, we want to establish estimates applicable in cylindrical NTA
domains; see Definition 2.1. Second, we want to establish a p-stable counterpart of the sharp Harnack
chain estimate proved by Salsa [1981, Theorem C], which in the case p D 2 can be written as

u.y; s/� u.x; t/ exp
�
C

�
jx�yj2

t � s
C

t � s

k
C 1

��
; (1-5)

where kDminf1; s; d.x; @�/2; d.y; @�/2g, s< t , and .x; t/; .y; s/2�T . To do this we develop Harnack
chains based on the weak Harnack inequality proved in [Kuusi 2008], see Theorem 3.2 below, valid for
supersolutions to the p-parabolic equation. As truncations of our solutions are supersolutions to (1-1),
we are able to control the waiting times more precisely by adjusting the levels at which the solutions are
truncated. This is in sharp contrast to the Harnack chains developed in [Avelin 2016; Avelin et al. 2016]
for which there is very little control over the waiting time. Our approach to Harnack chains has at least
three advantages. First, it allows us to construct Harnack chains starting from the measure u.x; t0/ dx at
the initial time t0. Second, it allows us to develop a flexible Carleson estimate, see Section 4, generalizing
the one in [Avelin et al. 2016] and which, in addition, remains valid in the context of time-independent
NTA cylinders. We note that although the Carleson estimate proved in [Avelin 2016] is valid in the setting
of time-independent NTA cylinders, a difference compared to the results in this paper is that the Carleson
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estimate proved there is not p-stable as p! 2. Third, we develop a version of (1-5) which is p-stable in
the sense that we recover (1-5) as p! 2. To establish this Gaussian-type behavior for p> 2 is technically
rather involved.

Estimates of associated boundary measures. In the study of the boundary behavior of quasilinear equations
of p-Laplace type, certain Riesz measures supported on the boundary and associated to nonnegative
solutions vanishing on a portion of the boundary are important; see [Lewis and Nyström 2007; 2010].
These measures are nonlinear generalizations of the harmonic measure relevant in the study of the Laplace
equation and the Green’s function. Corresponding measures can also be associated to solutions to the
p-parabolic equation. Indeed, let u be a nonnegative solution in �T , assume that u is continuous on
the closure of �T , and that u vanishes on @p�T \Q with some open set Q. Extending u to be zero
in Q n�T , it is straightforward to see that u is a continuous weak subsolution to (1-1) in Q. Using this,
one can conclude that there exists a unique locally finite positive Borel measure �, supported on ST \Q,
such that Z

Q

u @t� dx dt �

Z
Q

jrujp�2
ru � r� dx dt D

Z
Q

� d� (1-6)

whenever � 2 C1
0
.Q/. In Section 5 we establish, in cylindrical NTA domains, both upper and lower

bounds for the measure � in terms of u. If � is smooth, then d�D jrujp�1 dH n�1 dt . Based on this,
the lower bound established on � can be interpreted as a nondegeneracy estimate, close to the boundary,
of the solution. Our proof of the lower bound for the measure � is a modification of the elliptic proof; see
for example [Avelin and Nyström 2013; Kilpeläinen and Zhong 2003]. However, our proof is genuinely
nonlinear, it applies to much more general operators of p-parabolic type, and the result seems to be new
already in the case p D 2.

A “complete theory” in C 1;1-domains. We establish a “complete theory” concerning the boundary
behavior of nonnegative solutions in �T in the case when � is a C 1;1-domain. As comprehensive
literature is missing, we in Sections 8 and 9 develop both a local, as well as a global, theory of boundary
behavior in C 1;1-cylinders. In the global setting we are able, as in [Fabes et al. 1986] with corresponding
estimates in the case p D 2, to give a rather complete picture. For nonnegative solutions vanishing on the
lateral boundary, our results include a global boundary Harnack principle and Hölder continuity of ratios.
On the other hand, in the local setting we prove a new intrinsic local boundary Harnack principle. In
the context of C 1;1-cylinders we are also able to show that the boundary measure in (1-6) is mutually
absolutely continuous with respect to the surface measure in a suitably chosen intrinsic geometry. The
results in Sections 8 and 9 are obtained by combining Harnack chains and Carleson estimates with explicit
barrier constructions from Section 6 and decay estimates from Section 7.

2. Notation and preliminaries

Points in RnC1 are denoted by x D .x1; : : : ;xn; t/. Given a set E � Rn, let E, @E, diam E, Ec, Eı,
denote the closure, boundary, diameter, complement and interior of E, respectively. Let � denote the
standard inner product on Rn, let jxj D .x �x/1=2 be the Euclidean norm of x, and let dx be the Lebesgue
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n-measure on Rn. Given x 2 Rn and r > 0, let Br .x/D fy 2 Rn W jx � yj < rg. Given E;F � Rn, let
d.E;F / be the Euclidean distance from E to F. When E D fyg, we write d.y;F /. For simplicity, we
define “sup” to be the essential supremum and “inf” to be the essential infimum. If O � Rn is open
and 1 � q � 1, then by W 1;q.O/ we denote the space of equivalence classes of functions f with
distributional gradient rf D .fx1

; : : : ; fxn
/, and both f and rf are q-th power integrable on O . Let

kf kW 1;q.O/ D kf kLq.O/Ckjrf jkLq.O/

be the norm in W 1;q.O/, where k � kLq.O/ denotes the usual Lebesgue q-norm in O . We define C1
0
.O/

to be the set of infinitely differentiable functions with compact support in O and we let W
1;q

0
.O/ denote

the closure of C1
0
.O/ in the norm k � kW 1;q.O/. We define W

1;q
loc .O/ in the standard way. By r � we

denote the divergence operator. Given t1 < t2 we denote by Lq.t1; t2;W
1;q.O// the space of functions

such that for almost every t , t1 � t � t2, the function x! u.x; t/ belongs to W 1;q.O/ and

kukLq.t1;t2;W 1;q.O// WD

�Z t2

t1

Z
O

�
ju.x; t/jqCjru.x; t/jq

�
dx dt

�1=q

<1:

The spaces Lq.t1; t2;W
1;q

0
.O// and L

q
loc.t1; t2;W

1;q
loc .O// are defined analogously. Finally, for I � R,

we define C.I ILq.O// as the space of functions such that t !ku.t; � /kLq.O/ is continuous whenever
t 2 I . We define Cloc.I IL

q
loc.O// analogously.

2A. Weak solutions. Let �� Rn be a bounded domain, i.e., a connected open set. For t1 < t2, we let
�t1;t2

WD�� .t1; t2/. Given p, 1< p <1, we say that u is a weak solution to

@tu��puD 0 (2-1)

in �t1;t2
if u 2L

p
loc.t1; t2;W

1;p
loc .�// andZ
�t1;t2

.�u @t�Cjrujp�2
ru � r�/ dx dt D 0 (2-2)

whenever � 2 C1
0
.�t1;t2

/. If u is a weak solution to (2-1) in the above sense, then we will often refer
to u as being p-parabolic in �t1;t2

. For p 2 .2;1/ we have by the parabolic regularity theorem, see
[DiBenedetto 1993], that any p-parabolic function u has a locally Hölder continuous representative. In
particular, in the following we will assume that p 2 .2;1/ and any solution u is continuous. If (2-2)
holds with “D” replaced by “�” (“�”) for all � 2 C1

0
.�t1;t2

/, � � 0, then we will refer to u as a weak
supersolution (subsolution).

2B. Geometry. We here state the geometrical notions used throughout the paper.

Definition 2.1. A bounded domain � is called nontangentially accessible (NTA) if there exist M � 2

and r0 such that the following are fulfilled:

(1) Corkscrew condition: for any w 2 @�, 0< r < r0, there exists a point ar .w/ 2� such that

M�1r < jar .w/�wj< r; d.ar .w/; @�/ >M�1r:
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(2) Rn n� satisfies (1).

(3) Uniform condition: if w 2 @�, 0< r < r0, and w1; w2 2 Br .w/\�, then there exists a rectifiable
curve  W Œ0; 1�!� with  .0/D w1,  .1/D w2, such that

(a) H 1. /�M jw1�w2j,
(b) minfH 1. .Œ0; t �//;H 1. .Œt; 1�//g �M d. .t/; @�/ for all t 2 Œ0; 1�.

We choose this definition as it very useful when we explicitly construct the parabolic Harnack chains
in Section 3; see specifically Theorem 3.5. The values M and r0 will be called the NTA constants of �.
For more on the notion of NTA domains we refer to [Jerison and Kenig 1982].

Definition 2.2. Let � � Rn be a bounded domain. We say that � satisfies the ball condition with
radius r0 > 0 if for each point y 2 @� there exist points xC 2� and x� 2�c such that Br0

.xC/��,
Br0

.x�/��c, @Br0
.xC/\@�D fyg D @Br0

.x�/\@�, and such that the points xC.y/, x�.y/, y are
collinear for each y 2 @�.

Remark 2.3. It is easy to see that a domain satisfying the ball condition with radius r0 > 0 is an NTA
domain with a constant M and r0. In particular, we may canonically choose

ar .x0/ WD x0C
r

2

xC�x0

jxC�x0j
;

since the direction given by .xC � x0/=jx
C � x0j is unique. The exterior corkscrew point is defined

analogously.

Remark 2.4. Let �� Rn be a bounded domain. Then � is a C 1;1 domain if and only if it satisfies the
ball condition. For a proof of this fact, see for example [Aikawa et al. 2007, Lemma 2.2].

2C. The continuous Dirichlet problem. Assuming that � is a bounded NTA domain one can prove, see
[Björn et al. 2015; Kilpeläinen and Lindqvist 1996], that all points on the parabolic boundary

@p�T D ST [ .�� f0g/; ST D @�� Œ0;T �;

of the cylinder �T are regular for the Dirichlet problem for (2-1). In particular, for any f 2 C.@p�T /,
there exists a unique Perron solution uD u

�T

f
2 C.�T / to the Dirichlet problem @tu��puD 0 in �T

and uD f on @p�T .

3. Harnack chains

In this section we prove a sequence of results concerning intrinsic Harnack chains. Forward-in-time
chains describe the diffusion with an appropriate waiting time. On the other hand, backward-in-time
chains say that if the solution has existed for a long enough time, the future values will control the values
from the past as well. Throughout the section we let �� Rn be a bounded domain and given T > 0 we
let �T D�� .0;T /.
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3A. Local Harnack inequalities. We here collect two estimates from the literature. The following
theorem can be found in [DiBenedetto 1993; DiBenedetto et al. 2008; 2012].

Theorem 3.1. Let u be a nonnegative p-parabolic function in �T , let .x0; t0/ 2 �T and assume that
u.x0; t0/ > 0. There exist positive constants ch and Ch, depending only on p; n, such that if B4r .x0/��

and
.t0� �.4r/p; t0C �.4r/p/� .0;T �;

where � D .ch=u.x0; t0//
p�2, then

u.x0; t0/� Ch inf
Br .x0/

u. � ; t0C � rp/:

The constants ch and Ch are stable as p!2 and deteriorate as p!1 in the sense that ch.p/;Ch.p/!1

as p!1.

The next theorem is instead valid for nonnegative weak supersolutions. See [Kuusi 2008] for the proof.

Theorem 3.2. Let u be a nonnegative weak supersolution in B4r .x0/� .0;T /. There exist constants
Ci � Ci.p; n/, i D 1; 2, such that

/

Z
Br .x0/

u.x; t1/ dx �
1

2

�
C1rp

T � t1

�1=.p�2/

CC2 inf
Q

u

for almost every 0< t1 < T, where Q WD B2r .x0/� .t1CT1=2; t1CT1/, and

T1 Dmin
�

T � t1;C1rp

�

/

Z
Br .x0/

u.x; t1/ dx

�2�p�
:

In particular, if T1 < T � t1, then

/

Z
Br .x0/

u.x; t1/ dx � 2C2 inf
Q

u:

3B. Forward Harnack chains. We begin by describing a simple Harnack chain for weak supersolutions.

Lemma 3.3 (weak forward Harnack chains). Let � � Rn be a domain and let T > 0. Let x;y be two
points in � and assume that there exist a sequence of balls fB4r .xj /g

k
jD0

such that x0 D x, xk D y,
B4r .xj /�� for all j D 0; : : : ; k and xjC1 2 Br .xj /, j D 0; : : : ; k � 1. Assume that u is a continuous
nonnegative weak supersolution in �T with

Nƒ WD /

Z
Br .x0/

u.x; t0/ dx > 0:

There exist constants Nci � Nci.p; n/ > 1, i 2 f1; 2g, such that if

t0C �k
Nƒ2�prp < T; �k WD Nc1

kX
jD0

Nc
j.p�2/
2

;

then

/

Z
Br .x/

u.x; t0/ dx � NckC1
2

inf
z2B2r .y/

u.z; t0C �k
Nƒ2�prp/:

Furthermore, the constants Nci , i 2 f1; 2g, are stable as p! 2C. In particular, when p D 2, we have
�k D Nc1.kC 1/ with Nc1 D Nc1.n/.



8 BENNY AVELIN, TUOMO KUUSI AND KAJ NYSTRÖM

Proof. Using Theorem 3.2 we first get

Nƒ

2C2

� inf
z2B2r .x0/

u.z; t1/; t1 WD t0CC1
Nƒ2�prp: (3-1)

Define then
uj WDmin.u; ƒj /; ƒj WD .2C2/

�j Nƒ; tjC1 WD tj CC1ƒ
2�p
j rp

for j D f1; : : : ; k � 1g. Assume inductively that for tiC1 � T we have

Br .xi/� B2r .xi�1/

and
ui.z; ti/Dƒi for z 2 Br .xi/

hold for i 2 f0; : : : ; j g. For j D 1 this is certainly the case as we see from (3-1). Since uj is a nonnegative
weak supersolution, Theorem 3.2 gives us

ƒjC1 D
ƒj

2C2

� inf
z2B2r .xj /

uj .z; tjC1/;

and hence also
ujC1.z; tjC1/DƒjC1 for z 2 Br .xjC1/:

This proves the induction step. By the construction,

inf
z2Br .y/

uk.z; tk/Dƒk

holds. Thus, applying Theorem 3.2 one more time we get

inf
z2B2r .y/

u.z; Nt /� .2C2/
�.kC1/ Nƒ;

with

Nt WD t0CC1

kX
jD0

.2C2/
j.p�2/ Nƒ2�prp:

Setting Nc1 D C1 and Nc2 D 2C2 completes the proof of the lemma. �

For p-parabolic functions we have the following pointwise version of Lemma 3.3.

Proposition 3.4. Let � � Rn be a domain and let T > 0. Let x;y be two points in � and assume
that there exists a sequence of balls fB4r .xj /g

k
jD0

such that x0 D x, xk D y, B4r .xj / � � for all
j D 0; : : : ; k, and xjC1 2Br .xj /, j D 0; : : : ; k�1. Assume that u is a nonnegative p-parabolic function
in �T and assume that u.x; t0/ > 0. There exist constants c � c.p; n/ and c1 � c1.p; n; k/ > 1 such
that if

t0�

�
ch

u.x; t0/

�p�2

.4r/p > 0; t0C c1.k/u.x; t0/
2�prp < T;

then
u.x; t0/� ck inf

z2Br .y/
u.z; t0C c1.k/u.x; t0/

2�prp/:
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Furthermore, c1 satisfies the estimate

Qc1k � c1 � Qc1.kC 1/c.kC1/.p�2/;

with Qc1 � Qc1.p; n/ and Qc1.p; n/! Qc1.n/ as p! 2.

Proof. After applying Theorem 3.1 once, the result follows from Lemma 3.3. �

We next focus on cylindrical NTA domains. The first theorem, Theorem 3.5, holds for weak supersolu-
tions and shows how to bound the values of a solution at points close to the boundary using pointwise
interior values. A remarkable fact of the proof is that the waiting time is explicitly defined and, as p! 2,
it gives a supersolution version of [Salsa 1981, Theorem C], as alluded to in the Introduction; see (1-5).
The proof uses heavily the assumptions on NTA domains and iterations of Lemma 3.3.

Theorem 3.5. Let � � Rn be an NTA domain with constants M and r0, let x0 2 @�, T > 0 and
0< r < r0. Let x;y be two points in �\Br .x0/ such that

% WD d.x; @�/� r and d.y; @�/�
r

4
:

Assume that u is a nonnegative continuous weak supersolution in �T , and assume that

ƒ WD /

Z
B%=4.x/

u.z; t0/ dz > 0: (3-2)

Let ı 2 .0; 1�. Then there exist positive constants ci � ci.M;p; n/, i 2 f1; 2; 3g, such that if t0C � < T,
where

� WD ıp�1

�
c
�1=ı
2

�
r

%

��c3=ı

ƒ

�2�p

rp;

then

/

Z
B%=4.x/

u.z; t0/ dz � c
1=ı
1

�
r

%

�c3=ı

inf
z2Br=16.y/

u.z; t0C �/:

Furthermore, the constants ci , i 2 f1; 2; 3g, are stable as p! 2C.

Proof. We split the proof into three steps.

Step 1: parametrization of the curve connecting x and y. According to the uniform condition (3) in
Definition 2.1, we can find a rectifiable curve  connecting x and y such that  .0/D x,  .1/D y, and

(a) H 1. /�M jw1�w2j,

(b) minfH 1. .Œ0; t �//;H 1. .Œt; 1�//g �M d. .t/; @�/ for all t 2 Œ0; 1�.

We call a ball B � � admissible if 4B � � and is thus eligible for the Harnack inequality. Our goal
in this step is to construct a sequence of admissible balls covering the curve  . In the following we
may, without loss of generality, assume that H 1. .Œ0; 1�// > 2�4r . We define Ot1; Ot2 2 .0; 1/ such that
H 1. .Œ0; Ot1�//D 2�5r and H 1. .ŒOt2; 1�//D 2�5r . The technical part will be in the interval .0; Ot1/. To



10 BENNY AVELIN, TUOMO KUUSI AND KAJ NYSTRÖM

continue we choose k as the integer which satisfies 2�kr 2 .%=16; %=8�. We define sequence of real
numbers fsj g through

H 1. .Œ0; sj �//D 2�kCj H 1. .Œ0; Ot1�// WD 2�k�5Cj r; s0 D 0:

Then, for any s 2 Œsj ; sjC1/, (a) and (b) imply

d. .s/; @�/�
2�kCj�5r

M
and

H 1. .Œsj ; sjC1�//D 2�kCj�5r:

Thus, defining
%j WDN�12�kCj�5r; N 2 N; N � 29M;

we see that the piece  .Œsj ; sjC1�/ can be covered with N admissible balls of the type Bi;j WD B%j .yi;j /

such that yi;j 2  .Œsj ; sjC1�/ for i 2 f1; : : : ;N g, yi;j�1 2 Bi;j and  .Œsj ; sjC1�/�[iB
i;j. Finally, we

observe that the middle piece of the curve  .ŒOt1; Ot2�/, due to the definitions of Ot1; Ot2 together with (b) can
be covered with MN admissible balls of size r=N. Moreover we can cover the end piece  .ŒOt2; 1�/ with
N admissible balls of size r=N since  .ŒOt2; 1�/�Br=16.y/��. At this point, we consider N 2N to be
a free parameter such that N � 29M.

Step 2: iteration via Harnack estimates. Let now ƒ be as in (3-2). Theorem 3.2 implies that if

t0CC1ƒ
2�p%

p
0
< T;

then
inf

z2B%0
.x0/

u.z; t1/�
1

2C2

ƒ; t1 WD t0CC1ƒ
2�p%

p
0
:

Let
ƒ1 D �ƒ; � 2 .0; .2C2/

�1�:

Defining thus u1 WDmin.u; ƒ1/, we obtain by Lemma 3.3 (see also its proof) that there exist constants
Nc1 � Nc1.p; n/ and Nc2 � Nc2.p; n/, such that if

t2 WD t1C �Nƒ
2�p
1

%
p
1
< T; �N WD Nc1

N�1X
jD0

Nc
j.p�2/
2

2 Œ Nc1N; Nc1N Nc
N.p�2/
2

/; (3-3)

then
inf

z2B%2
. .s2//

u.z; t2/D inf
z2B2%1

. .s2//
u.z; t2/�

ƒ1

NcN
2

DWƒ2:

Define
ƒjC1 WD Nc

�.jC1/N
2

ƒ1; uj WDmin.u; ƒj /; j 2 N;

let Ok WD kCM C 1, and let

tjC1 WD

(
tj C �Nƒ

2�p
j %

p
j if j 2 f1; : : : ; kg;

tj C �Nƒ
2�p
j .r=N /p if j 2 fkC 1; : : : ; Okg:
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Iterating Lemma 3.3 it follows by induction that

u.y; t OkC1
/�ƒ OkC1

: (3-4)

Step 3: waiting time. Let us now analyze the waiting time t OkC1
, which we want to show to be precisely

t0C � by a suitable choice of ƒ1. We have

t OkC1
D t1CC1ƒ

2�p%
p
0
C �N

� kX
jD1

ƒ
2�p
j %

p
j C

OkX
jDkC1

ƒ
2�p
j %

p
j

�

D t0CC1ƒ
2�p%

p
0
CN�p�Nƒ

2�p
1

rp

�
2�kp

kX
jD0

.2p
Nc
.p�2/N
2

/j (3-5)

C Nc
.p�2/kN
2

MX
jD0

. Nc
.p�2/N
2

/j
�

(3-6)

DW t0CTƒ2�prp:

We can write the sum in (3-5) as

2�kp
kX

jD0

.2p
Nc
.p�2/N
2

/j D 2p
Nc
.p�2/.kC1/N
2

� 2�.kC1/p

2p Nc
.p�2/N
2

� 1
;

while the sum in (3-6) can be estimated similarly to �N , see (3-3):

Nc
.p�2/kN
2

MX
jD0

. Nc
.p�2/N
2

/j 2 .M Nc
.p�2/kN
2

;M Nc
.p�2/.kCM /N
2

�:

Hence, recalling the definitions of �N and T , we get after some straightforward estimation that

1
2
Nc1�

2�pN 1�p

�
r

%

�.p�2/ Nc4N

� T � 2 Nc3�
2�pN 1�p

Nc
.p�2/N
3

�
r

%

�.p�2/ Nc4N

(3-7)

for new constants Nc3; Nc4 depending only on p; n;M. We now choose N D Qc=ı and let Qc be a degree
of freedom. First note that choosing �1 D .2C2/

�1, then choosing c3 D Qcc4 and c2 D Œ Nc3�
Qc , for a large

enough Qc D Qc.p; n;M / we have

2 Nc3.2C2/
p�2
Qc1�p
Nc
.p�2/Qc=ı
3

�
r

%

�.p�2/ Nc4 Qc=ı

< c
.p�2/=ı
2

�
r

%

�.p�2/c3=ı

: (3-8)

Second we see that choosing �2 D c
�1=ı
5

for large enough c5 D c5.p; n;M / the following holds:

1
2
Nc1�

2�p
2
Qc1�p

�
r

%

�.p�2/ Nc4 Qc=ı

> c
.p�2/=ı
2

�
r

%

�.p�2/c3=ı

: (3-9)

With (3-8) and (3-9) and (3-7) at hand we see that there is a choice of � 2 Œ�2; �1� such that

T D ıp�1c
.p�2/=ı
2

�
r

%

�.p�2/c3=ı

;

and thus we have proved t OkC1
D t0CTƒ2�prp D t0C � . This together with (3-4) finishes the proof by

taking suitably large c1 in the statement. �
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For p-parabolic functions we have the following pointwise version of Theorem 3.5.

Theorem 3.6. Let��Rn be an NTA domain with constants M and r0, let x0 2 @�, T > 0 and 0< r < r0.
Let x;y be two points in �\Br .x0/ such that

% WD d.x; @�/� r and d.y; @�/�
r

4
:

Assume that u is a nonnegative p-parabolic function in �T , and assume that u.x; t0/ is positive. Let
ı 2 .0; 1�. Then there exist constants ci � ci.M;p; n/, i 2 f1; 2; 3g, such that if

t0� .ch=u.x; t0//
p�2.ı%/p > 0; t0C � < T;

with

� WD ıp�1

�
c
�1=ı
2

�
r

%

��c3=ı

u.x; t0/

�2�p

rp;

then

u.x; t0/� c
1=ı
1

�
r

%

�c3=ı

inf
z2Br=16.y/

u.z; t0C �/:

Furthermore, the constants ci , i 2 f1; 2; 3g, are stable as p! 2C.

Proof. Applying Theorem 3.1 once, we see that the theorem follows from Theorem 3.5. �

3C. Backward Harnack chains. The philosophy of the forward Harnack chains in Section 3B is that
the data at the starting point will start to diffuse according to the intrinsic Harnack inequality. The finite
speed of diffusion forces the waiting time to blow up if we wish to spread our information in an infinite
chain. In the backward Harnack chains that we develop in this section the philosophy is reversed. Instead
of looking to the future we look to the past. This means that if the value of the solution at a point .y; s/
is, say, 1, then we ask the question: how large can the values in the past be without violating the fact that
the solution is 1 at .y; s/.

We start with the weak version of the backward Harnack chains, valid for weak supersolutions.

Theorem 3.7. Let � � Rn be an NTA domain with constants M and r0, let x0 2 @�, T > 0, and
0< r < r0. Let x;y be two points in �\Br .x0/ such that

% WD d.x; @�/� r and d.y; @�/�
r

4
:

Assume that u is a nonnegative continuous weak supersolution in �T , and assume that u.y; s/ is positive.
Let ı 2 .0; 1�. Then there exist positive constants Ci � Ci.p; n/ and ci � ci.p; n;M /, i 2 f4; 5g, such
that if s 2 .�;T / and

t 2 Œs� �; s� ıp�1��;

with
� WD C4ŒC5u.y; s/�2�prp

then

/

Z
B%=4.x/

u.z; t/ dz � c
1=ı
4

�
r

%

�c5=ı

u.y; s/: (3-10)

Furthermore, the constants ci ;Ci , i 2 f4; 5g, are stable as p! 2C.
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Remark 3.8. If we assume that u 2 C.Œ0;T /IL2.�// then we can replace s 2 .�;T / with s 2 Œ�;T /.
That is, the chain can be taken all the way to the initial time, i.e., t D 0.

Proof. After scaling, we may assume that u.y; s/D 1. Assume now the contrary to (3-10), i.e.,

/

Z
B%=4.x/

u.z; t/ dz >H

�
r

%

�c5=ı

(3-11)

for constants c5;H to be fixed. Then Theorem 3.5 implies that with

Q� WD Qıp�1

�
c
�1=Qı
2

�
r

%

��c3=Qı

/

Z
B%=4.x/

u.z; t/ dz

�2�p

rp

we get

/

Z
B%=4.x/

u.z; t/ dz � c
1=Qı
1

�
r

%

�c3=Qı

inf
z2Br=16.y/

u.z; t C Q�/ (3-12)

with constants ci � ci.p; n;M /, i 2 f1; 2; 3g, and Qı 2 .0; ı�. Now we have an upper bound for Q� by
means of (3-11) as follows:

Q� � Qıp�1

�
c
�1=Qı
2

�
r

%

��c3=Qı

H

�
r

%

�c5=ı
�2�p

rp
D Qıp�1.c

�1=Qı
2

H /2�prp
� ıp�1�;

provided that

H � C5c
1=Qı
2
; Qı WD ıminf1;C4g

1=.p�1/; c5 WD
c3

minf1;C4g
1=.p�1/

: (3-13)

Therefore we have
t C Q� � s:

Observe that both C4 and C5 are still to be fixed. Thus we need to carry the information from the time
t C Q� up to s. To this end, connecting (3-11) and (3-12) with the choices in (3-13) leads to

Hc
�1=Qı
1

< inf
z2Br=16.y/

u.z; t C Q�/: (3-14)

Truncate u as
QuDmin.4C2;u/;

and take
H WD c

1=ı
4
; c4 WDmaxf4C2c1;C5c2g

1=minf1;C4g
1=.p�1/

; (3-15)

where C2 is as in Theorem 3.2. Then Qu is a continuous weak supersolution, and we have by (3-13) and
(3-15) and (3-14) that

/

Z
BQr .y/

Qu.z; t C Q�/ dz D 4C2; Qr 2
�
0;

r

16

i
:

Applying thus the forward-in-time weak Harnack estimate in Theorem 3.2 gives

4C2 � 2C2 inf
z2B2Qr .y/

Qu.z; t C Q� CC1.4C2/
2�p
Qrp/;
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provided that
t C Q� CC1.4C2/

2�p
Qrp < T:

Choosing C4 D 16�pC1 and C5 D 4C2, we can always find Qr � r=16 such that

t C Q� CC1.4C2/
2�p
Qrp
D s;

and hence
2� inf

z2B2Qr .y/
Qu.z; s/:

This gives a contradiction since we assumed that u.y; s/D 1, and thus the proof is complete. �

The following theorem is the corresponding result for weak solutions, where we use pointwise
information in the past instead of information in mean. The main difference this imposes on the assumptions
in Theorem 3.7 is that we have to require the solution to have lived for a certain amount of time, which is
precisely the price we have to pay if we wish to control pointwise values in the past.

Theorem 3.9. Let � � Rn be an NTA domain with constants M and r0, let x0 2 @�, T > 0, and
0< r < r0. Let x;y be two points in �\Br .x0/ such that

% WD d.x; @�/� r and d.y; @�/�
r

4
:

Assume that u is a nonnegative p-parabolic function in �T , and assume that u.y; s/ is positive. Let
ı 2 .0; 1�. Then there exist positive constants Ci � Ci.p; n/ and ci � ci.p; n;M /, i 2 f4; 5g, such that if
s < T and

max
��

c
1=ı
4

ch

�
r

%

�c5=ı

u.y; s/

�2�p

.ı%/p; s� �

�
� t � s� ıp�1�; (3-16)

with
� WD C4ŒC5u.y; s/�2�prp;

then

u.x; t/� c
1=ı
4

�
r

%

�c5=ı

u.y; s/:

Furthermore, the constants ci ;Ci , i 2 f4; 5g, are stable as p! 2C.

Proof. To prove the lemma we follow the same outline as the proof of Theorem 3.7, but instead of
assuming (3-11) we assume the contrary assumption

u.x; t/ >H

�
r

%

�c5=ı

for some constants c5;H to be fixed. Applying Theorem 3.6 instead of Theorem 3.5 we get

u.x; t/� c
1=Qı
1

�
r

%

�c3=Qı

inf
z2Br=16.y/

u.z; t C Q�/:

Note that it is the usage of Theorem 3.6 which requires (3-16). The proof now follows repeating the
remaining part of the proof of Theorem 3.7 essentially verbatim. �
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4. Carleson estimate

In this section we prove, using the improved Harnack chain estimate in Theorem 3.9, a flexible Carleson
estimate valid in cylindrical NTA domains. Versions of the Carleson estimate were originally proved,
for equations of p-parabolic type, in [Avelin et al. 2016] in Lipschitz cylinders, and in [Avelin 2016] in
certain time-dependent space-time domains. We begin with a standard oscillation decay lemma valid for
weak subsolutions; see for example [DiBenedetto 1993].

Lemma 4.1. Let��Rn be an NTA domain with constants M and r0. Let u be a nonnegative, continuous
weak subsolution in �T . Let .x0; t0/ 2 ST , 0< r < r0,

Q�
r .x0; t0/ WD .Br .x0/\�/� .t0��

2�prp; t0/��T ;

and assume that u vanishes continuously on ST \Q�
r .x0; t0/ and that

sup
Q�

r .x0;t0/

u� �:

Then there is a constant � depending only on p; n;M such that Q
�=2
�r .x0; t0/�Q�

r .x0; t0/ and

sup
Q
�=2
�r .x0;t0/

u�
�

2
:

In particular, we have
sup

Q2�j �

�j r
.x0;t0/

u� 2�j�

for any j 2 N.

The following theorem is usually referred to as a Carleson estimate. We want to point out that, compared
to [Avelin et al. 2016], not only does it hold for cylindrical NTA domains, but also the formulation is more
flexible for applications. In particular, we are able to adjust the waiting time, the height of the cylinder,
and the distance to the initial boundary. All these parameters influence the constant in the inequality and
a Gaussian-type behavior is proved to be present.

Theorem 4.2. Let �� Rn be an NTA domain with constants M and r0. Let u be a nonnegative, weak
solution in �T . Let .x; t/ 2 ST and 0< r < r0. Assume that u.ar .x/; t/ > 0 and let

� D
C4

4
ŒC5u.ar .x/; t/�

2�prp;

where C4 and C5, both depending on p; n, are as in Theorem 3.9. Assume that t >.ı
p�1
1
Cı

p�1
2
C2ı

p�1
3

/�

for 0<ı1� ı3� 1, ı2 2 .0; 1/, and that for a given �� 0, the function .u��/C vanishes continuously on
ST\Br .x/�.t�.ı

p�1
1
Cı

p�1
2
Cı

p�1
3

/�; t�ı
p�1
1

�/ from�T . Then there exist constants ci�ci.M;p; n/,
i 2 f6; 7g, such that

sup
Q

u�

�
c6

ı3

�c7=ı1

u.ar .x/; t/C�;

where Q WD Br .x/� .t � .ı
p�2
1
C ı

p�1
2

/�; t � ı
p�1
1

�/. Furthermore, the constants ci , i 2 f6; 7g, are
stable as p! 2C.
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Remark 4.3. Note that in the case p D 2, Theorem 4.2 for �D 0 is equivalent to the estimate above by
linearity. However, for p > 2 this result extends the ones in [Avelin 2016; Avelin et al. 2016] if � > 0.

Proof. By scaling the function u we can assume that u.ar .x/; t/ D 1, and replacing � with its scaled
version. Consider the boxes

zQ� WD .�\Br .x//� .t � .ı
p�1
1
C ı

p�1
2
C ı

p�1
3

/�; t � �p�1�/; � 2 fı1; ı3g;

and define also

Q�
r .x; t/ WD .�\Br .x//� .t � �

2�prp; t/; � > 0:

Observe that with the choice of � , we have by Theorem 3.9, for any .y; s/ 2 zQ� with d.y; @�/� r and
� 2 fı1; ı3g, that

u.y; s/� c
1=�
8

�
r

d.y; @�/

�c9=�

(4-1)

holds with c8; c9 depending only on p; n;M (apply Theorem 3.9 with the choice ı WD �minf1;C4=2g in
order to guarantee the conditions in (3-16)).

We proceed by induction via a contradiction assumption. Assume that P0 D .x0; t0/ 2Q, where Q is
as in the statement, is such that u.P0/ >H C� for some large H to be fixed. Assume then that we find
inductively points Pj D .xj ; tj /2 zQ Oıj

, where Oıj D ı3 if tj � t0�ı
p�1
3

�=2 and Oıj D ı1 if tj > t0�ı
p�1
3

�=2

for any j 2N. Set rj WD d.xj ; @�/ and let x0j 2 @� be such that rj D jxj �x0j j. Assume inductively that

u.Pj / > 2j H C� and t � .ı
p�1
1
C ı

p�1
2
C ı

p�1
3

/� < tj � tj�1 � tj C .2
j H /2�p.rj�1=�/

p (4-2)

hold for all j 2 f1; : : : ; kg, where � � �.p; n;M / 2 .0; 1/ is as in Lemma 4.1. We then want to show
that for large enough H this continues to hold for j D kC 1 as well.

To show the induction step, observe that (4-1) and the induction (4-2) imply

2j H C� < u.Pj /� c
1= Oıj
8

�
r

rj

�c9= Oıj

D) rj � .2
j Hc

�1= Oıj
8

/�
Oıj =c9 :

Fixing

H WD

�
4c

p=c9

8
c9

p�p log 2

�

rpı
p
3

�c9=Œpı1�

DW

�
c6

ı3

�c7=ı1

;

we have after simple manipulations that

r
p
j � �

p
ı

p�1
3

�

4
2�j Oıjp=c9

ı3p log 2

c9

� �p
ı

p�1
3

�

4

2�j Oıjp=c9P1
jD0 2�jı3p=c9

: (4-3)

In particular,

.2kC1H /2�p

�
rk

�

�p

�

�
rk

�

�p

�
ı

p�1
3

�

4
:
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Hence we set K1 WD Q2kH
rk

.x0
k
; tk/ and K2 WD Q2kC1H

rk=�
.x0

k
; tk/, and we deduce, by the induction

assumption and the estimate in the previous display, that K2 ��T . Now, if

sup
K2

.u��/C � 2kC1H;

then, using that .u��/C is a weak subsolution, Lemma 4.1 would imply

sup
K1

u� 2kH C�;

which is a contradiction since Pk 2K1. Thus there is PkC1 2K2 such that

u.PkC1/ > 2kC1H C�:

By the definition of K2 and PkC1, we must have

tkC1 � tk � tkC1C .2
kC1H /2�p.rk=�/

p:

Therefore we are left to show that tkC1 � t � .ı
p�1
1
Cı

p�1
2
Cı

p�1
3

/� in order to prove the induction step.
To this end, let now Ok � kC 1 be the largest integer such that t0 � t Ok � ı

p�1
3

�=2. We may without
loss of generality assume that Ok < kC 1, since otherwise tkC1 � t � .ı

p�1
1
C ı

p�1
2
C ı

p�1
3

/� , because
t0 > t � .ı

p�1
1
C ı

p�1
2

/� . Now (4-3) and (4-2), together with the fact that Oıj D ı3 for j > Ok, give

t0� tkC1 D .t0� t Ok/C .t Ok � tkC1/

�
ı

p�1
3

�

2
C

kX
jD Ok

.tj � tjC1/

�
ı

p�1
3

�

2
C .2

OkC1H /2�p

�
r Ok
�

�p

C

kX
jD OkC1

.2jC1H /2�p

�
rj

�

�p

�
ı

p�1
3

�

2
C
ı

p�1
3

�

4
C
ı

p�1
3

�

4

� 1X
jD0

2�jı3p=c9

��1 kX
jD OkC1

2�jı3p=c9 < ı
p�1
3

�: (4-4)

Therefore, since t0 > t � .ı
p�1
1
C ı

p�1
2

/� , we have

t � tkC1 D t � t0C t0� tk < .ı
p�1
1
C ı

p�1
2
C ı

p�1
3

/�;

which was to be proven. Hence we have concluded the proof of the induction step. As a consequence, we
have constructed a sequence of points Pj D .xj ; tj / 2 zQı1

such that d.xj ; @�/! 0 and u.Pj /!1 as
j !1. This violates the assumed continuity of .u��/C in the neighborhood of ST \

zQı1
, giving the

contradiction. Hence,

sup
Q

u�H C�;

completing the proof of the theorem. �
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5. Estimating the boundary-type Riesz measure

In this section we establish, in NTA cylinders, upper and lower bounds for the measure � defined in (1-6).

5A. Upper estimate on �. We will first provide an upper bound on the measure. The proof relies on the
Carleson estimate in Theorem 4.2 and the following standard Caccioppoli-type estimate; see [DiBenedetto
1993].

Lemma 5.1. Let u be a nonnegative weak subsolution in�T , and � 2C1
0
.��.t1;T // with � � 0. ThenZ t2

t1

Z
�

jrujp�p dx dt � C

�Z t2

t1

Z
�

up
jr�jp dx dt C

Z t2

t1

Z
�

u2.�t /C�
p�1 dx dt

�
for C D C.p; n/.

Theorem 5.2. Let � � Rn be an NTA domain with constants M and r0. Let 0 < r � r0 and let u be a
weak nonnegative solution in �T . Fix a point x0 2 @� and define

� D
C4

16
ŒC5u.ar .x0/; t0/�

2�prp;

where C4 and C5, both depending on p; n, are as in Theorem 3.9. Let 0 < ı � Qı � 1 and assume that
t0 > 5 Qıp�1� and that u vanishes continuously on ST \

�
Br .x/� .t0 � 4 Qıp�1�; t0 � ı

p�1�/
�

from �T .
Then there is a constant C � C.p; n/ and c8 � c8.p; n;M / such that

�.Q/

rn
� C

�
c6

Qı

�c8=ı

u.ar .x0/; t0/;

where � is the measure from (1-6),

Q WD Br=2.x0/� .t0� 2 Qıp�1�; t0� ı
p�1�/;

and c6 is from Theorem 4.2. Furthermore, the constants C , c8, are stable as p! 2C.

Proof. After scaling, we may assume that u.ar .x0/; t0/D 1. Let

yQD Br .x0/� .t0� 3 Qıp�1�; t0� ı
p�1�/;

and observe, by our assumptions, that Theorem 4.2 implies

sup
yQ

u�

�
c6

Qı

�c7=ı

DWƒ: (5-1)

As in the construction of the measure � in (1-6), we see that extending u to the entire cylinder yQ as zero,
we obtain a weak subsolution in yQ. Take a cut-off function � 2 C1. yQ/ vanishing on @p yQ such that
0� � � 1, � is 1 on Q, and

jr�j<
4

r
and .�t /C <

4

Œ Qıp�1��
:



BOUNDARY BEHAVIOR OF SOLUTIONS TO THE PARABOLIC p-LAPLACE EQUATION 19

Then by (1-6), the definition of � and Hölder’s inequality we getZ
yQ

�p d��
Z
yQ

jrujp�1
jr�j�p�1 dx dt C

Z
yQ

u.�t /C�
p�1 dx dt

�
4

r

Z
yQ

jrujp�1�p�1 dx dt C

Z
yQ

u.�t /C�
p�1 dx dt

�
4

r
j yQj1=p

�Z
yQ

jrujp�p dx dt

�.p�1/=p

C

Z
yQ

u.�t /C�
p�1 dx dt:

Now using Lemma 5.1 and (5-1) we see that

�.Q/� C
j yQj1=p

r

�Z
yQ

up
jr�jpCu2.�t /C�

p�1 dx dt

�.p�1/=p

C

Z
yQ

u.�t /C�
p�1 dx dt

� C
j yQj1=p

r

�
j yQj

�
ƒp

rp
C

ƒ2

Qıp�1�

��.p�1/=p

CC j yQj
ƒ

Qıp�1�

� C
j yQj

Qıp�1rp
ƒp�1:

After scaling back, this can be rewritten in the homogeneous form

�.Qr /

rn
� C

�
c6

Qı

�.p�1/c7=ı

u.ar .x0/; t0/;

completing the proof with c8 D .p� 1/c7. �

5B. Lower estimate on �. We next prove the lower bound for the measure �.

Theorem 5.3. Let �� Rn be an NTA domain with constants M and r0, and let u be a weak nonnegative
solution in �T . Fix a point .x0; t0/ 2 @�� .0;T �, and define A�r D .ar=2.x0/; t0/ for 0< r < r0. There
exist C; �0; �1, all depending only on p; n;M, such that if�

t0� �0u.A�r /
2�prp; t0C .�0C �1/u.A

�
r /

2�prp
�
� .0;T /;

and if u vanishes continuously on ST \
�
Br .x/� .t0; t0C .�0C �1/u.A

�
r /

2�prp/
�

from �T , then

u.A�r /� C
�.Q/

rn
;

where � is the measure from (1-6) and

Q WD Br .x0/�
�
t0C �0u.A�r /

2�prp; t0C .�0C �1/u.A
�
r /

2�prp
�
:

Furthermore, the constants C; �0; �1, are stable as p! 2C.

To prove Theorem 5.3 we first consider the model problem in Lemma 5.4, and we prove that the
measure associated to this model problem is bounded from below by a constant. Returning to Theorem 5.3,
we then apply the intrinsic Harnack inequality to obtain a lower bound on the function such that by the
comparison principle the solution v in Lemma 5.4 is below our solution u. The result then follows by the
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fact that the corresponding measures are ordered according to Lemma 5.5, a fact easily realized if the
domain is smooth, as in this case the measure is just the modulus of the gradient to the power p� 1.

Lemma 5.4. Let �� Rn be an NTA domain with constants M and r0 D 2. There exist constants C;TM ,
both depending on p; n;M, such that if v is a continuous solution to the problem8<:

vt ��pv D 0 in .�\B2.0//� .0;T0/;

v D 0 on @.�\B2.0//� Œ0;T0/;

v D �B1=.4M /.a1.0// on .�\B2.0//� f0g;

then

�v.B2.0/� .0;T0//�
1

C
:

Furthermore, the constants C , TM are stable as p! 2C.

Proof. To begin with, extend v as zero to the rest of QDB2.0/� .0;T0/, i.e., set v� 0 in .B2.0/n�/�

.0;T0/, and let �v be the associated measure as in (1-6). Let then h be the solution to the problem�
ht ��phD 0 in Q;

hD w on @pQ:

We observe that the supremum of h and v, which is 1, is attained at the bottom of the cylinder. Let us now
recall the decay estimate in Lemma 4.1, which implies that for Q�

r .0; t0/ WD .�\Br .0//�.t0��
2�prp; t0/

we have

sup
Q2�j

�j
.0;t0/

v � 2�j (5-2)

for j 2 N provided that t0 2 Œ1;T0� and T0 > 1. On the other hand, Lemma 3.3 gives us

1D /

Z
B
.4M /�1 .a1.0//

h.x; 0/ dx � C inf
z2B

.2M /�1 .0/
u.z; �/;

with � and C depending on p; n;M. We then apply Theorem 3.2 in order to get

1� yC inf
yQ

h; yQ WD B1=M .0/�

�
T0

2
;T0

�
; (5-3)

by properly choosing T0 by means of � and C to be larger than 2. We then choose large enough j ? 2N

so that

2�j?
�

1

2 yC
and �j

�
1

M
:

Then, sliding t0 along .1;T0� in (5-2), we obtain by combining (5-2) and (5-3) that there is r1D r1.p; n;M /

such that

inf
zQ

.h� v/�
1

2 yC
DW �; zQ WD Br1

.0/�

�
T0

2
;T0

�
;

where � � �.p; n;M /.
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Let us now define � Dminfh� v; �g, which is vanishing on @pQ and is � on zQ. Then from the weak
formulation of h and v we getZ

Q\ft<�g

.h� v/t �C .jrhjp�2
rh� jrvjp�2

rv/ � r� dx dt D

Z
Q\ft<�g

� d�w:

For the time term, we integrate to obtainZ
Q\ft<�g

.h� v/t � dx dt D

Z
Q\ft<�g

@t

�Z h�v

0

min.s; �/ ds

�
dx dt �

1

2

Z
B2.0/

�2.x; �/ dx:

We also have the elementary inequality

.jrhjp�2
rh� jrvjp�2

rv/ � r� �
1

C
jr�jp;

since p > 2. Hence by combining the last three displays we arrive at

sup
0<t<T0

Z
B1.0/

�2.x; t/ dxC

Z
Q

jr�jp dx dt � C��v.Q/:

Using the parabolic Sobolev inequality [DiBenedetto 1993, Corollary I.3.1] we obtain

�p
j zQj �

Z
Q

�p dx dt

� C

�
sup

0<t<T0

Z
B2.0/

�p.x; t/ dxC

Z
Q

jr�jp dx dt

�
� C

�
�p�2 sup

0<t<T0

Z
B2.0/

�2.x; t/ dxC

Z
Q

jr�jp dx dt

�
:

Hence we see that
1� C �v.Q/

with a constant C � C.p; n;M / through the dependencies of �; r1;T0. �
The next lemma provides a comparison estimate for the measures. If two solutions are ordered, then

the corresponding measures will be ordered as well.

Lemma 5.5. Let �� Rn be a domain. Let u and v be weak solutions in .�\Br .0//� .0;T / such that
u� v � 0 and both vanish continuously on the lateral boundary .@�\Br .0//� .0;T /. Then

�v � �u in Br .0/� .0;T /

in the sense of measures.

Proof. To show this, consider the test function � Dmin.1; .u� v� �/C=�/ , where  is nonnegative
and belongs to C1

0
.Q/ with Q D Br .0/� .0;T /. Obviously � is supported in .�\Br .0//� .0;T /,

because both u and v vanish continuously on the lateral boundary .@�\Br .0//� .0;T /. Since both u

and v are weak solutions, we have, by extending them both by zero in .Br .0/ n�/� .0;T /, thatZ
Q

.u� v/t � dx dt C

Z
Q

.jrujp�2
ru� jrvjp�2

rv/ � r� dx dt D 0: (5-4)
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Let us first treat the time term. Integrating by parts we getZ
Q

.u� v/t � dx dt D

Z
Q

@t

�Z u�v

0

min
�

1;
.s� �/C

�

�
ds

�
 dx dt

D�

Z
Q

�Z u�v

0

min
�

1;
.s� �/C

�

�
ds

�
@t dx dt

!�

Z
Q

.u� v/ @t dx dt (5-5)

as �! 0. To treat the elliptic term, we begin by noting that

r� Dr min
�

1;
.u� v� �/C

�

�
C

1

�
 r.u� v/�U� ; (5-6)

where U� WD fu� v > �g \ .�\Br .0//� .0;T /. The second term in (5-6) will give rise to a positive
term in (5-4); hence we discard it and obtain the inequalityZ

Q

.jrujp�2
ru� jrvjp�2

rv/ � r� dx dt

�

Z
Q

.jrujp�2
ru� jrvjp�2

rv/ � r min
�

1;
.u� v� �/C

�

�
dx dt

!

Z
Q

.jrujp�2
ru� jrvjp�2

rv/ � r dx dt (5-7)

as �! 0 by dominated convergence. Combining the convergence in (5-5) and (5-7) with (5-4) we arrive
at the inequality

�

Z
Q

.u� v/ @t dx dt C

Z
Q

.jrujp�2
ru� jrvjp�2

rv/ � r dx dt � 0 (5-8)

after sending �! 0. Since the nonnegative function  2 C1
0
.Q/ is arbitrary, (5-8) finishes the proof

after recalling the definitions of �u and �v. �

We now have all the technical tools to complete the proof of Theorem 5.3.

Proof of Theorem 5.3. Let u be as in Theorem 5.3 with A�r WD .ar=2.x0/; t0/. Applying the Harnack
estimate in Theorem 3.6 yields for a constant C D C.p; n;M /

u.A�r /�
zC inf

y2Br=.8M /.ar=2.x0//
u.y; t0C �0u.A�r /

2�prp/; �0 WD
C

.2M /p
;

since

t0� �0u.A�r /
2�prp > 0:

Consider the scaled solution

Ou.x; t/D
1

�
u
�
x0C

r

2
x; t0C �0u.A�r /

2�prp
C�2�p

�
r

2

�p
t
�
; � WD

u.A�r /

zC
;
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so that

inf
y2B1=.4M /.a1.0//

Ou.y; 0/� 1;

and � is mapped to y� and .x0; t0C �0u.A�r /
2�prp/ to .0; 0/. The comparison principle shows that the

function v defined in Lemma 5.4 satisfies v � Ou in . y�\B2.0//� .0;T0/ provided that

t0C �0u.A�r /
2�prp

C�2�p
�

r

2

�p
T0 < T:

Thus we choose �1 WD
zC p�22�pT0 in the statement. Applying Lemmas 5.4 and 5.5

� Ou.B2.0/� .0;T0//� �v.B2.0/� .0;T0//�
1

C
:

Scaling back to u gives us the result. �

6. Construction of barriers

In this section we construct the barriers that will serve as the starting point for the estimates of the decay
rate of the solutions. The upper barrier in Lemma 6.4 is based on the function constructed in [DiBenedetto
et al. 1991, Theorem 4.1]. However the subsolution constructed in Lemma 6.1 seems to be new and
allows us to obtain p-stable estimates from below on the decay rate.

Lemma 6.1. Let T D .np�1p/�1 and for a 2 .0; 1/, let

%0 WDmin
�

ap

n.p� 2/
C 1; 2

�.p�1/=p

:

Then the function h,

h.x; t/D g.jxj; t/�g.%0; t/; g.r; t/D

�
1�

p� 2

pp=.p�1/

rp=.p�1/� 1

t1=.p�1/

�.p�1/=.p�2/

C

;

is a classical subsolution in .B%0
.0/ nB1.0//� .0;T / satisfying the boundary conditions8<:

hD 0 on @B%0
.0/� .0;T /;

hD 0 on .B%0
.0/ nB1.0//� f0g;

hD 1�g.%0; t/ on @B1.0/� .0;T /:

(6-1)

Furthermore, x 7! h.x; t/ is a radially decreasing function satisfying

inf
1�jxj�%0

jrh.x;T /j � n exp
�
�

n

p

�
.1� a/n=p;

and h.x; t/� hp.x; t/ tends to

exp
�
�
jxj2� 1

4t

�
� exp

�
�

1

4t

�
as p! 2C.
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Remark 6.2. Note that the function in Lemma 6.1 is not continuous up to the boundary at the corner
@B1.0/ � f0g. However, the limsup as we approach a point on this piece from the inside of D WD

.B%0
.0/nB1.0//� .0;T / is 1 for h. This implies, see [Kilpeläinen and Lindqvist 1996, Lemma 4.4], that

if we have a weak supersolution u in D, staying above the boundary conditions in (6-1) in liminf sense,
and staying above 1 on the corner @B1.0/� f0g again in the liminf sense, then u will be above h in D.

Proof. Let h and %0 be as stated. By construction, the boundary conditions for h are in force. To verify
that h is a classical subsolution in .B%0

.0/ nB1.0//� .0;T /, we first compute

rg.jxj; t/D�
x

jxj

�
1

p

jxj

t
g.jxj; t/

�1=.p�1/

;

jrg.jxj; t/jp�2
rg.jxj; t/D�

1

p

x

t
g.jxj; t/;

��pg.jxj; t/D

�
n

pt
g.jxj; t/.p�2/=.p�1/

�p�p=.p�1/ jxj
p=.p�1/

tp=.p�1/

�
g.jxj; t/1=.p�1/;

@tg.r; t/D p�p=.p�1/ r
p=.p�1/� 1

tp=.p�1/
g.r; t/1=.p�1/:

Observing that @th.x; t/� @tg.jxj; t/, it is enough to verify gt ��pg � 0 in .B%0
.0/ nB1.0//� .0;T /

for g > 0. Assuming g > 0, we see, since g.jxj; t/� 1 for jxj> 1, that

.ht ��ph/.x; t/

g.jxj; t/1=.p�1/
�

�
p�p=.p�1/ jxj

p=.p�1/� 1

tp=.p�1/
C

n

pt
g.jxj; t/.p�2/=.p�1/

�p�p=.p�1/ jxj
p=.p�1/

tp=.p�1/

�
�

1

pt

�
n�

�
1

pt

�1=.p�1/�
:

Since 0 < t < T D .np�1p/�1 we have ht ��ph � 0 for jxj > 1 and t 2 .0;T /. Note also that our
choices of parameters are stable as p! 2. Next, by yet another explicit calculation we obtain

inf
1�jxj�%0

jrh.x;T /j �

�
1

pT
g.%0;T /

�1=.p�1/

D ng.%0;T /
1=.p�1/:

To complete the proof we need to estimate g.%0;T / from below. To do this we note that

g.%0;T /
1=.p�1/

D

�
1�

n.p� 2/

p
.%

p=.p�1/
0

� 1/

�1=.p�2/

;

and we consider two cases. First, if %0 D 2.p�1/=p, then ap � n.p� 2/ and

g.%0;T /
1=.p�1/

D .1� s/b=s; s D
n.p� 2/

p
; b D

n

p
:
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Furthermore, for � 2 Œ0; 1/ we have

.1� �/b=� D exp
�
�

b

�

1X
kD1

�k

k

�
D exp

�
�b

1X
kD1

�k�1

k

�
D exp

�
�b� b

1X
kD1

�k

kC 1

�

� exp
�
�b� b

1X
kD1

�k

k

�
D e�b.1� �/b: (6-2)

Since ap � n.p� 2/ implies s � a< 1, we can apply (6-2) to get

g.%0;T /
1=.p�1/

� exp.�b/.1� s/b � exp.�b/.1� a/b:

Second, if %0 < 2.p�1/=p, then ap < n.p� 2/ and using (6-2) we get

g.%0;T /D .1� a/.p�1/=.p�2/
� .1� a/b=a � exp.�b/.1� a/b:

Collecting the results of the two cases completes the proof of the lemma. �

Remark 6.3. Note that we could, as in [Stan and Vázquez 2013], instead of the function in Lemma 6.1
use the Barenblatt fundamental solution together with the barriers from [Bidaut-Véron 2009] to establish
a version of Lemma 6.1. However, this would result in a construction which is not p-stable.

In the next lemma we construct a certain supersolution to be used in the subsequent arguments.

Lemma 6.4. Let T;H > 0 be given degrees of freedom. Let

k 2 .0; k0�; k0 WDmin
�

p� 1

n
;T 1=.p�1/H .p�2/=.p�1/

�
:

There exists a classical supersolution Qh in

N D f.x; t/ W 1< jxj< 1C k; 0< t < T g

such that 8̂<̂
:
Qh� 0 in @B1.0/� .0;T �;

Qh�H on .B1Ck.0/ nB1.0//� f0g;

Qh�H on @B1Ck.0/� Œ0;T �;

and such that
Qh.x;T /�

H exp.2/
k

.jxj � 1/ (6-3)

whenever x 2 B1Ck.0/ nB1.0/.

Proof. This type of construction was originally carried out in [DiBenedetto et al. 1991, Theorem 4.1] and
we here include a proof for completeness. Let

v.x; t/D exp
�

t �T

T
�
jxj � 1

k

�
;

and let
Qh.x; t/D zH .1� v.x; t//; zH DH exp.2/;



26 BENNY AVELIN, TUOMO KUUSI AND KAJ NYSTRÖM

accordingly. Then

@t
Qh.x; t/D�

zH

T
v.x; t/ and r Qh.x; t/D

zHx

kjxj
v.x; t/:

Observe also that zHv �H for all .x; t/ 2N and that Qh satisfies the boundary conditions. We now show
that Qh is a classical supersolution in N. Indeed, by a straightforward calculation we see that

Qht ��p
QhD�

zH

T
vC zH p�1vp�1

�
.p� 1/k�p

� k1�p n� 1

jxj

�
�

zH

T
v
�
�1CTH p�2k

1�p
0
CTH p�2k1�p..p� 1/k�1

0 � n/
�
� 0

whenever .x; t/ 2N. Finally, since

sup
1<jxj<1Ck

jr Qh.x;T /j �
zH

k
and Qh.x;T /D 0 for all x 2 @B1.0/;

we obtain the upper bound for Qh.x;T / as well. �

7. Decay estimates and a change of variables

In this section we prove a lower bound (Lemma 7.2) and an upper bound (Lemma 7.4) on the decay of
solutions. The following lemma, which is a change of variables, will be used in the proof of our decay
estimates. The proof of the lemma follows from [Kuusi 2008, Lemma 3.5].

Lemma 7.1. Let uD u.x; t/ be p-parabolic in �� .T0;T1/. Let C > 0 be given and let

f .�/D
1

C.p� 2/

�
exp.C.p� 2/�/� 1

�
; g.�/D .C.p� 2/�C 1/1=.p�2/

for p > 2, and
f .�/D �; g.�/D exp.C�/

for p D 2. Let w.x; �/D g.f .�//u.x; f .�//. Then w.x; �/ is a (weak) solution to the equation,

@�w D�pwCCw

in �� .�0; �1/, where f .�i/D Ti , i 2 f0; 1g.

7A. A lower bound on the decay. Using the classical subsolution constructed in Lemma 6.1 and the
change of variable outlined in Lemma 7.1 we here prove the following lemma, which describes the
optimal decay rate from below after a certain intrinsic waiting time. This lemma will be crucial when
proving global C 1;1-estimates, see Section 8, and when proving the local C 1;1-estimates, see Section 9.

Lemma 7.2. Let 0< %� r=4 and let g 2L2.Br .x0// be a nonnegative function satisfying

/

Z
B%.x0/

g dx � � > 0:
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Assume that Oh 2 C.Œt0;1/IL
2.Br .x0/// is a weak nonnegative solution solving the Cauchy problem�
Oht ��p

OhD 0 in Br .x0/� .t0;1/;
OhD g on Br .x0/� ft0g:

Then there exist constants ci � ci.%=r; n;p/, i 2 f1; 2g, such that

Oh.x; t/�
�

c1

�
c1.p� 2/

t � t0

�2�prp
C 1

��1=.p�2/
d.x; @Br .x0//

r

whenever .x; t/ 2 Br .x0/� .t0C c2�
2�prp;1/. Furthermore, the constants ci , i 2 f1; 2g, are stable as

p! 2C.

Proof. After scaling we may assume that x0 D 0, t0 D 0, r D 1, and �D 1. Let

%0 WDmin
�

1

2

p

n.p� 2/
C 1; 2

�.p�1/=p

:

Applying Lemma 3.3 we find a time t? � t?.n;p; %=r/ and a constant c? � c?.n;p; %=r/ such that

Oh.x; t?/�
1

c?
for all x 2 B1=%0

.0/:

Set Nh.x; t/D c? Oh.x=%0; t
?C t Œc?�p�2=%

p
0
/ and let w.x; �/D g.f .�// Nh.x; f .�//, where g and f are

defined as in Lemma 7.1. Then w.x; �/ is a nonnegative weak solution to the equation

@�w D�pwCCw

in B%0
.0/ � .0;1/ and w.x; 0/ � 1 for all x 2 B1.0/. In particular, w is a weak supersolution in

B%0
.0/ � .0;1/. Now, Theorem 3.2, [Kuusi 2008, Corollary 3.6], Lemma 7.1, and [Kuusi 2008,

Proposition 3.1] imply that we have, for a new constant Nc � Nc.n;p/ > 1,

w.x; �/�
1

Nc
; .x; �/ 2 B1.0/� .0;1/; (7-1)

provided we choose C large enough in the definitions of f and g in Lemma 7.1. Consider O� � 0 arbitrary,
let h be the classical subsolution of Lemma 6.1 and let T be as in Lemma 6.1. Then, simply using the
intrinsic scaling, the comparison principle, and (7-1) we see that

w.x; �/�
1

Nc
h.x; Nc2�p.� � O�// (7-2)

whenever .x; �/ 2 .B%0
.0/ nB1.0//� . O�; O� C Nc

p�2T /. Since O� � 0 is arbitrary we get from (7-2) and
Lemma 6.1 that there is a c � c.n;p/ such that

w.x; �/�
1

c
d.x; @B%0

.0//; .x; �/ 2 B%0
.0/� . Ncp�2T;1/: (7-3)

To complete the proof, it suffices to rephrase (7-3) in terms of Oh.x; t/. �
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7B. An upper bound on the decay. Working with solutions vanishing on the entire lateral boundary, we
will make use of the following decay estimates.

Lemma 7.3. Let u 2 C.Œ0;T /IL2.�// \ Lp.0;T IW
1;p

0
.�// be a nonnegative weak subsolution in

�� .0;T /. Then there exists a constant c D c.n;p; j�j/ such that

sup
�

u. � ; t/�
c

tn=�

�

/

Z
�

u.x; 0/ dx

�p=�

; � D n.p� 2/Cp:

The constant c is stable as p! 2C.

Proof. See [Kuusi and Parviainen 2009, Lemma 3.24] and use the L1-contractivity (test with the function
min.1;u=�/) and the comparison principle. �

In the following lemma we describe the optimal decay of the supremum of a solution vanishing on the
entire lateral boundary; it follows from an iterative rescaling and comparison together with the decay
estimate in Lemma 7.3.

Lemma 7.4. Let u 2 C.Œ0;T /IL2.�// \Lp.0;1IW
1;p

0
.�// be a nonnegative weak subsolution in

�� .0;1/. Then there exist constants ci � ci.p; n; j�j/, i 2 f1; 2g, such that the following holds. Let

Nƒ WD /

Z
�

u.x; 0/ dx:

Then

sup
�

u. � ; t/� c1

�
.p� 2/

Nƒp�2

c1

t C 1

��1=.p�2/

Nƒ

whenever t > c2
Nƒ2�p. The constants ci , i 2 f1; 2g, are stable as p! 2C.

Proof. Let w D w.x; t/ solve the Dirichlet problem�
wt ��pw D 0 in �� .0;1/;
w D 0 on @�� Œ0;1/

(7-4)

and assume that

/

Z
�

w.x; 0/ dx � 1: (7-5)

Applying Lemma 7.3 to w we see that

sup
�

w. � ; t/�
c

tn=�

for some c D c.n;p; j�j/, and for all t > 0. In particular, there exists t? D t?.n;p; j�j/ > 0 such that

sup
�

w. � ; t?/� 1
2
: (7-6)

To prove the lemma we will now use (7-6) in an iterative argument. In particular, consider the function

w1.x; t/ WD Nƒ
�1u.x; Nƒ2�pt/:
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Then w1 is a solution to (7-4) satisfying (7-5). Hence we have by (7-6) that

w1.x; t
?/� 1

2
;

which after scaling back becomes

u.x; Nƒ2�pt?/� 2�1 Nƒ whenever x 2�:

Next, consider the function

w2.x; t/ WD .2
�1 Nƒ/�1u.x; Nƒ2�pt?C .2�1 Nƒ/2�pt/;

which again satisfies (7-4) and (7-5). Applying (7-6) to the function w2 we deduce, by elementary
manipulations, that

sup
�

u. � ; . Nƒ2�p
C .2�1 Nƒ/2�p/t?/� 2�2 Nƒ:

Proceeding inductively we deduce that

sup
�

u. � ; tj /� 2�j Nƒ;

where

tj WD t? Nƒ2�p

j�1X
kD0

2k.p�2/; j 2 f1; 2; : : : g:

To complete the argument consider t 2 .t1;1/ and let j be the largest j such that tj � t . Then, by the
comparison principle and by construction,

sup
x2�

u. � ; t/� 2�j Nƒ

and

tj � t < tjC1:

Since

2�j
D

�
.2p�2� 1/

t?
Nƒp�2tj C 1

��1=.p�2/

;

and 2p�2 � 1 � log.2/.p � 2/, by retracing the argument we derive the conclusion of the lemma.
Furthermore, the constants ci , i 2 f1; 2g, are stable as p! 2C. In particular, we see that�

.p� 2/c�1
1 .n;p; j�j/ Nƒp�2t C 1

��1=.p�2/
! exp.�c�1

1 .n; 2; j�j/t/: �

8. Global estimates in C 1;1-domains

In this section we combine the optimal decay estimate established in Lemma 8.1 together with the barrier
function in Lemma 6.4 to obtain the sharp decay estimate from above. Note that taking the initial data to
be C1 allows us to see that this is sharp with respect to the so-called “friendly giant”; see for example
[Kuusi et al. 2016].
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Lemma 8.1. Let � � Rn be a bounded C 1;1-domain satisfying the ball condition with radius r0. Let
u 2 C.Œ0;1/IL2.�//\Lp.0;1IW

1;p
0

.�// be a nonnegative p-parabolic function in �� .0;1/. Let

Nƒ WD /

Z
�

u.x; 0/ dx:

Then there exists Ci � Ci.diam�=r0; n;p/, i 2 f1; 2g, such that

u.x; t/� C1
Nƒ..p� 2/C�1

1
Nƒp�2t C 1/�1=.p�2/d.x; @�/

whenever t > C2
Nƒ2�p. Furthermore, the constants Ci , i 2 f1; 2g, are stable as p! 2C.

Proof. By scaling we can without loss of generality assume that Nƒ D 1. Let Ox0 2 @� be an arbitrary
point. Assume, for simplicity, that a�

2r0
. Ox0/D 0, where a�

2r0
. Ox0/ is the exterior corkscrew point as in

Remark 2.3. Consider an arbitrary number Ot such that Ot > c2 (where c2 is from Lemma 7.4). Then, using
Lemma 7.4 we see that

u.x; t/� c1

�
p� 2

c1

Ot C 1

�1=.2�p/

DW Nƒu.Ot /; x 2�; t � Ot : (8-1)

Construct the function Qh in Lemma 6.4 with the choices T D Nƒ
2�p
u and H D Nƒu; then k0 from Lemma 6.4

simplifies to

k0 Dmin
�
Nƒ.2�p/=.p�1/

u
Nƒ.p�2/=.p�1/

u ;
p� 1

n

�
Dmin

�
1;

p� 1

n

�
:

Consider now the function Oh defined as

Oh.x; t/D Qh

�
x

r0

;
t � Ot

r
p
0

�
: (8-2)

The function Oh is a supersolution in

N WD .B.1C1=k0/r0
nBr0

/� .Ot ; Ot C Nƒ2�p
u r

p
0
/:

Thus, the comparison principle, Definition 2.2, (8-1) and (8-2) imply that

u.x; t/� Oh.x; t/ in N \�1:

Next, using the upper estimate (6-3) from Lemma 6.4 we see that

u.x; Ot C Nƒ2�p
u r

p
0
/� C Nƒu

�ˇ̌̌̌
x

r0

ˇ̌̌̌
� 1

�
(8-3)

for a constant C D C.n;p/. As Ox0 2 @� is arbitrary, we see, using (8-3) and (8-1), that

u.x; Ot Cƒ2�p
u r

p
0
/� Cd.x; @�/

for a new constant C � C.diam�=r0; n;p/. Furthermore, as Ot > c2 is arbitrary, we see that if t >
Nƒu.c2/

2�pr
p
0
C c2 WD C2, then

u.x; t/� C1..p� 2/C�1
1 t C 1/�1=.p�2/d.x; @�/

for a constant C1 � C1.diam�=r0; n;p/ > 1. �
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The next lemma provides the corresponding lower bound.

Lemma 8.2. Let��Rn be a bounded connected C 1;1-domain satisfying the ball condition with radius r0.
Let u 2 C.Œ0;1/IL2.�// be a nonnegative p-parabolic function in �� .0;1/. Suppose that there is a
ball B4r1

.x1/��, r1 2 .0; r0/, such that

Nƒ WD /

Z
Br1

.x1/

u.x; 0/ dx > 0:

Then there exist Ci � Ci..diam�/=r0; r1=r0; n;p/, i 2 f3; 4g, such that

u.x; t/�
Nƒ

C3

..p� 2/C3
Nƒp�2t C 1/�1=.p�2/d.x; @�/

whenever x 2� and t > C4
Nƒ2�p. Furthermore, the constants Ci , i 2 f3; 4g, are stable as p! 2C.

Proof. After scaling and translating we may assume that NƒD 1, x1 D 0 and r0 D 1. Note that with these
assumptions we have

/

Z
Br1

.0/

u.x; 0/ dx D 1: (8-4)

Define now the set
�ı WD fx 2� W d.x; �/ > ıg:

Since � is connected and satisfies the ball condition with radius 1, we also obtain that �ı is connected
for ı 2

�
0; 1

2

�
and thus any two points in �ı can be connected by a Harnack chain of balls of size ı=4 and

with length depending only on n;p; diam�, and ı. By using Lemma 3.3 and (8-4) we then find positive
constants c? and t?, both depending only on n;p; diam�, and r1, such that

inf
x2�1=2

u.x; t?/�
1

c?
:

Lemma 7.2 then proves the result whenever x 2�1. Next, let y 2� n�1 and let y? 2 @� be such that
d.y; @�/D jy � y?j. Since d.y; @�/ � 1 and since the direction is unique (see Remark 2.3) we have
that y D a2d.y;@�/.y

?/. With this at hand we can consider the point a2.y
?/ (which is collinear with

y;y?) satisfying

/

Z
B1=4.a2.y?//

u.x; t?/ dx �
1

c?
:

Applying Lemma 7.2 we see that

u.x; t/�
1

c?c1

�
c1.p� 2/Œc?�p�2.t � t?/C 1

��1=.p�2/
d.x; @B1.a2.y

?///

whenever x 2 B1.a2.y
?//, t > t?. Applying this for x D y completes the proof. �

Remark 8.3. Note that our tools are too rough to obtain the lower bound in Lemma 8.2 independent of
the distribution of the initial data. To remedy this, we assume that the initial data is positive in a region
away from the boundary.
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In the next theorem we combine the results of Lemmas 8.1 and 8.2 to obtain an elliptic-type global
Harnack estimate.

Theorem 8.4. Let �� Rn be a bounded C 1;1-domain satisfying the ball condition with radius r0. Let
u 2 C.Œ0;1/IL2.�//\Lp.0;1IW

1;p
0

.�// be a nonnegative p-parabolic function in �� .0;1/. Let

Nƒ WD /

Z
�

u.x; 0/ dx:

Assume that

supp u. � ; 0/��ı D fx 2� W d.x; @�/ > ıg:

Then there are constants ci � ci..diam�/=r0; ı=r0; n;p/, i 2 f1; 2g, such that

c1
�1
�

u.x; t C � Nƒ2�p/

u.x; t/
� c1

whenever � 2 Œ0; 1�, x 2 � and t � c2
Nƒ2�p. Furthermore, the constants ci , i 2 f1; 2g, are stable as

p! 2C.

Proof. In the following we will use the constants Ci , i 2f1; : : : ; 4g, introduced in Lemmas 8.1 and 8.2. Let
t0 DmaxfC2;C4g

Nƒ2�p and consider t � t0 and � 2 .0; 1/. Then, using Lemmas 8.1 and 8.2 we see that

u.x; t C � Nƒ2�p/

u.x; t/
� C1C3

�
.p� 2/C�1

1
.t Nƒp�2C �/C 1

.p� 2/C2t Nƒp�2C 1

��1=.p�2/

;

u.x; t C � Nƒ2�p/

u.x; t/
�

1

C1C3

�
.p� 2/C3.t Nƒ

p�2C �/C 1

.p� 2/C�1
1

t Nƒp�2C 1

��1=.p�2/

:

Theorem 8.5 follows from this by elementary manipulations. We omit further details. �

In the next theorem we use Lemmas 8.1 and 8.2 together with C 1;˛ estimates for weak solutions
to obtain a global boundary Harnack principle as well as Hölder continuity of ratios of solutions. The
intrinsic time interval ensures that the estimate is p-stable.

Theorem 8.5. Let �� Rn be a bounded C 1;1-domain satisfying the ball condition with radius r0. Let
u; v 2C.Œ0;1/IL2.�//\Lp.0;1IW

1;p
0

.�// be nonnegative p-parabolic functions in��.0;1/. Let

Nƒu D /

Z
�

u.x; 0/ dx; Nƒv D /

Z
�

v.x; 0/ dx:

Assume that the initial data is distributed as follows:

supp u. � ; 0/; supp v. � ; 0/��ı D fx 2� W d.x; @�/ > ıg:

Then there exists C 1 � C 1..diam�/=r0; ı=r0; n;p/ such that if C 1 � T� � TC satisfy

T�minf Nƒu; Nƒvg
2�p
� TCmaxf Nƒu; Nƒvg

2�p; (8-5)
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the following holds. There exist C i � C i..diam�/=r0; ı=r0;T�;TC; n;p/, i 2 f2; 3g, such that

C�1
2

Nƒu

Nƒv
�

u.x; t/

v.x; t/
� C 2

Nƒu

Nƒv
(8-6)

whenever

.x; t/ 2D WD��
�
T�minf Nƒu; Nƒvg

2�p; TCmaxf Nƒu; Nƒvg
2�p

�
:

Furthermore, there exists an exponent � � �.n;p/ 2 .0; 1/ such thatˇ̌̌̌
u.x; t/

v.x; t/
�

u.y; s/

v.y; s/

ˇ̌̌̌
� C 3

Nƒu

Nƒv

�
jx�yjCmaxf Nƒu; Nƒvg

.2�p/=p
jt � sj1=p

�� (8-7)

whenever .x; t/; .y; s/ 2D. The constants C i , i 2 f1; 2; 3g, and � are stable as p! 2C.

Proof. In the following we will let C1;C2;C3 and C4 be the constants in Lemmas 8.1 and 8.2. We begin
by proving (8-6). Indeed, using Lemmas 8.1 and 8.2 we see that

Nƒu

Nƒv

1

C1C3

�
.p� 2/C�1

1
Nƒ

p�2
v t C 1

.p� 2/C3
Nƒ

p�2
u t C 1

�1=.p�2/

�
u.x; t/

v.x; t/
; (8-8)

and
u.x; t/

v.x; t/
�

Nƒu

Nƒv
C1C3

�
.p� 2/C3

Nƒ
p�2
v t C 1

.p� 2/C�1
1
Nƒ

p�2
u t C 1

�1=.p�2/

(8-9)

whenever t � maxfC2;C4gminf Nƒu; Nƒvg
2�p. In particular we see that if T� > maxfC2;C4g, and if

T�;TC satisfy (8-5), then (8-6) holds with a constant C 2 depending only on .diam�/=r0, ı=r0, T�, TC,
n, p.

To proceed, consider the rescaled p-parabolic functions

Qu.x; t/D
u.x; Nƒ

2�p
u t/

Nƒu

; Qv.x; t/D
v.x; Nƒ

2�p
v t/

Nƒv
:

Using Lemma 7.4 for w 2 f Qu; Qvg we get for t > c2 that

sup
x2�

w.x; t/� c1..p� 2/c�1
1 t C 1/�1=.p�2/

� c1;

where c1; c2 are as in Lemma 7.4. Thus we can apply [Lieberman 1993, Theorem 0.1] to conclude that
there exist C and � , depending on �;p and n, such that, for w 2 f Qu; Qvg,

jrw.x; t/�rw. Qx; Qt/j � C.jx� QxjC jt � Qt j1=p/�

whenever .x; t/; . Qx; Qt/ 2�� .c2;1/. In particular, arguing as in [Kuusi et al. 2014, (3.31), p. 2717], we
have, for w 2 f Qu; Qvg, ˇ̌̌̌

w.x; t/

d.x; @�/
�
w. Qx; Qt/

d. Qx; @�/

ˇ̌̌̌
� C.jx� QxjC jt � Qt j1=p/� (8-10)
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whenever .x; t/; . Qx; Qt/ 2�� .c2;1/. Scaling back to the original u; v, (8-10) becomes, with w 2 fu; vg,ˇ̌̌̌
w.x; t/

d.x; @�/
�
w. Qx; Qt/

d. Qx; @�/

ˇ̌̌̌
� NƒwC.jx� QxjC Nƒ.p�2/=p

w jt � Qt j1=p/� (8-11)

whenever .x; t/; . Qx; Qt/ 2�� .c2
Nƒ

p�2
w ;1/. Next, using the identity

u.x; t/

v.x; t/
�

u.y; s/

v.y; s/

D
d.x; @�/

v.x; t/

�
u.x; t/

d.x; @�/
�

u.y; s/

d.y; @�/

�
C

u.y; s/

v.y; s/

d.x; @�/

v.x; t/

�
v.y; s/

d.y; @�/
�

v.x; t/

d.x; @�/

�
; (8-12)

assuming that s; t 2 .T�minf Nƒu; Nƒvg
2�p;TCmaxf Nƒu; Nƒvg

2�p/ and that T� > c2 (where c2 is from
Lemma 7.4), we can apply Lemmas 8.1 and 8.2 together with (8-6) and (8-11) in the identity (8-12) to
obtain (8-7). This completes the proof of Theorem 8.5. �

Remark 8.6. Considering the estimates (8-8) and (8-9) in the proof of Theorem 8.5, we see that the
nonlinearities dominate for large values of t . In particular, there exists a p-unstable constant C �

C..diam�=r0/; ı=r0; n;p/ such that

C�1
� lim

t!1

u.x; t/

v.x; t/
� C

whenever x 2�. Note that C is independent of the initial data. This does not happen when p D 2 and
the effect is purely nonlinear.

Remark 8.7. Note that to prove Theorem 8.5 we rely on estimates established in Lemmas 8.1 and 8.2,
instead of relying on the comparison principle, the Carleson estimate and the Harnack inequality, as in
[Fabes et al. 1986, Theorem 2.1]. This is why our estimates from below depend on the distribution of the
initial data. Furthermore, this falls fairly short of the result in [Fabes et al. 1986], but nonetheless we
provide a p-stable version of the phenomena involved in our case.

9. Local estimates in C 1;1-domains

In this section the main focus is to develop an intrinsic version of the boundary Harnack principle (1-2);
see Section 9B. To do this, we first prove an upper and a lower decay rate estimate in the next section.

9A. Upper and lower bound on the decay. We begin with the upper bound, which follows by combining
the barrier function from Lemma 6.4 together with the Carleson estimate Theorem 4.2. In the following,
M will denote the NTA constant of the C 1;1 domain �; see Remark 2.3.

Lemma 9.1. Let u be a nonnegative solution in �T , where � is a C 1;1 domain satisfying the ball
condition with radius r0. Let x0 2 @� and 0< r � r0. Let 0< ı � Qı � 1. Assume that u.ar .x0/; t0/ > 0

for a fixed t0 2 .0;T / and let

� D
C4

16
ŒC5u.ar .x0/; t0/�

2�prp;
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where C4 and C5, both depending on p; n, are as in Theorem 3.9 and with t0 > 5 Qıp�1� . Assume
furthermore that u vanishes continuously on ST \

�
Br .x0/� .t0�4 Qıp�1�; t0�ı

p�1�/
�
. Then there exist

constants ci � ci.M;p; n/, i 2 f8; 9g, such that

sup
Q

u�

�
c8

Qı

�c9=ı d.x0; @�/

r
u.ar .x0/; t/;

where Q WD .Br .x0/\�/� .t0 � 2 Qıp�1�; t0 � ı
p�1�/. Furthermore, the constants ci , i 2 f8; 9g, are

stable as p! 2C.

Proof. Without loss of generality, we may after scaling assume that u.ar .x0/; t0/D 1 and r D 4. Applying
Lemma 6.4 and Theorem 4.2, with

k WDmin
�

p� 1

n
; Qı

�
C4

16
C

2�p
5

�1=.p�1/

; 1

�
; H WD

�
c6

Qı

�c7=ı

;

with constants as in Theorem 4.2 we get

u.x; t/�H

whenever .x; t/ 2 .B4.x0/\�/� .t0� 3 Qıp�1�; t0� ı
p�1�/. The comparison function, indexed by its

initial time s0 and center point y0, is

Ohy0;s0
.x; t/D Qh.x�y0; t � s0/

with T D Qıp�1� , where Qh is from Lemma 6.4. Let y 2 @�\B1.x0/ and consider y0 D a2.y/, an outer
corkscrew point as in Remark 2.3. Then, by the comparison principle

u.x; t/� Ohy0;s0
.x; t/; (9-1)

in

.�\ ŒB1Ck.y0/ nB1.y0/�/� .s0; s0CT /

whenever

.s0; s0CT /� .t0� 3 Qıp�1�; t0� ı
p�1�/:

From Lemma 6.4 and (9-1) we have the estimate

u.x; t/�
H exp.2/

k
.jy0�xj � 1/

whenever

.x; t/ 2 .�\ ŒB1Ck.y0/ nB1.y0/�/� .t0� 2 Qıp�1�; t0� ı
p�1�/;

and y0 2 @�\B1.x0/. From this the result follows by scaling back. �

The following lemma establishes a local lower bound on the decay, by combining the barrier from
Lemma 6.1 and the Harnack estimates in Theorem 3.6.
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Lemma 9.2. Let u be a nonnegative solution in �T , where � is a C 1;1 domain satisfying the ball
condition with radius r0. Let x0 2 @� and let 0< r < r0 be fixed. Let A�D .ar .x0/; t0/, ��Du.A�/2�p

and t0 2 .0;T /. There exist constants ci � ci.M;p; n/, i 2 f3; 4g, such that if

��rp < t0 and t0C 2c4��rp < T;

then
1

c3

d.x; @�/

r
u.A�/� u.x; t/

for x 2 Br .x0/\� and t0C c4��rp < t < t0C 2c4��rp. Furthermore, the constants ci , i 2 f3; 4g, are
stable as p! 2C.

Proof. Set �� WD u.A�/ and consider the scaled solution

v.y; s/D
1

��
u.x0C ry; t0C s�2�p

� rp/:

Set also z� WD fy W x0C ry 2�g so that 0 2 @ z�. For the new function v we have the following situation:
defining A�v D ..ar .x0/�x0/=r; 0/,

v.A�v /D 1; d.A�; @z�/D 1;

and v is a solution in z�� .�1; zT /, where zT WD .T � t0/�
p�2
� r�p. Since 0< r < r0=4 we know that z�

satisfies the ball condition with radius 4. To continue, consider the set

D D fy 2 z� W d.y;B1.0/\ @ z�/D d.y; @z�/D 1g:

Note that D � B2.0/\ z� and that supfd.a1.y0/;y/ W y 2Dg � 2 for any y0 2 @ z�\B1.0/. We obtain
from the Harnack chain estimate in Theorem 3.6 (applied with ı Dminfc.2�p/=p

h
; 1g where ch is from

Theorem 3.6) that there is a Q�1 > 0 depending only on n;p;M such that

v.x; Q�1/�
1

Qc1

whenever x 2
˚
y W d.y;D/ < 1

4

	
provided zT > Q�1. Using Lemma 7.2 (applied with r D 1, % D 1

4
,

g D v. � ; Q�1/, x0 D Qy 2D, t0 D Q�1) for all points Qy 2D, we get

v.y; t/�
1

Qc1c1

�
c1 Qc

2�p
1

.p� 2/.t � Q�2/C c1c2.p� 2/C 1
��1=.p�2/

d.y; z�/ (9-2)

whenever .y; t/ 2 . z�\B1.0//� . Q�2; zT /, with Q�2 D Q�1C c2 Qc
p�2
1

provided zT > Q�2. Going back to � and
u gives us the result provided zT > 2 Q�2. �

Combining Lemmas 9.1 and 9.2 we obtain the joint estimate.

Theorem 9.3. Let u be a nonnegative solution in �T , where � is a C 1;1 domain satisfying the ball
condition with radius r0. Let x0 2 @�, t0 2 .0;T /, and let 0 < r < r0 be fixed. Let A� D .ar .x0/; t0/

and �� D u.A�/2�p. There exist constants ci � ci.M;p; n/, i 2 f5; 6g, such that if

��rp < t0 and t0C 2c4��rp < T;
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then for AC D .ar .x0/; t0C 2c4��rp/ and �C D c�1
6

u.AC/2�p (where c4 is from Lemma 9.2), we have

5�C � ��:

Furthermore, if u vanishes continuously on

ST \
�
Br .x0/� .t0C Œ2c4��� 5�C�r

p; t0C Œ2c4��� �C�r
p/
�
;

then
1

c5

d.x; @�/

r
u.A�/� u.x; t/� c5

d.x; @�/

r
u.AC/

for x 2Br .x0/\� and t0C Œ2c4���2�C�r
p < t < t0C Œ2c4��� �C�r

p. Furthermore, the constants ci ,
i 2 f5; 6g, are stable as p! 2C.

Proof. Rescale u as in the proof of Lemma 9.2; let also Q�2 be as in the proof of Lemma 9.2. Thus

1

c3
d.x; @�/� v.x; t/

holds for .x; t/.Br .x0/\�/� . Q�2; 2 Q�2/. Define �C D 2 Q�2 and consider AC D .a1.0/; �C/. Then using
(9-2) we get

v.AC/
2�p
�

�
1

Qc1c1

�
c1 Qc

2�p
1

.p� 2/.t � Q�2/C c1c2.p� 2/C 1
��1=.p�2/

�2�p

D
1

. Qc1c1/2�p
Œc1 Qc

2�p
1

.p� 2/C c1c2.p� 2/C 1�

DW Qc2:

We will now apply Lemma 9.1 with (r D 1, ıp�1 Dminf.16=.5 Qc2C4//C
p�2
5

; 1g and Qı D ı, with C4;C5

from Lemma 9.1). Doing this we see that

v.x; t/� Qc3d.x; @z�/v.AC/

whenever .x; t/ 2 .B1.0/\�/� .�C� v.AC/
2�p; �C� v.AC/

2�p=2/. Going back to � and u gives us
the result. �

9B. Local boundary Harnack estimate. We are now ready to state and prove our local boundary Harnack
principle; consult Figure 1 for a schematic of the geometry.

Theorem 9.4. Let u; v be two nonnegative solutions in �T , where � is a C 1;1-domain satisfying the ball
condition with radius r0. Let x0 2 @�, t0 2 .0;T /, and let 0 < r < r0 be fixed. Let A� D .ar .x0/; t0/

and assume that u.A�/D v.A�/. Let the constants ci , i 2 f4; 5; 6g be as in Lemmas 9.2 and 9.3. Let
�� D u.A�/

2�p, and assume

��rp < t0 and t0C 2c4��rp < T:

Set
AC D .ar .x0/; t0C 2c4��rp/; �C;u D c�1

6 u.AC/
2�p:
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t

.x; t/

AC

A?C

A�

2c4��rp

�C;urp

�C;urp

�?C;vr
p

Figure 1. The boxes and denote the regions where the right- and left-hand sides
of Theorem 9.4 hold respectively.

Assume that v.AC/� u.AC/. Then there exists a time t?C, depending on v, satisfying

t?C 2 .t0C .2c4��� �C;u/r
p; t0C 2c4��rp/;

A?C D .ar .x0/; t
?
C/; �?C;v D c�1

6 v.A?C/
2�p

such that the following holds. If both u and v vanish continuously on

ST \
�
Br .x0/� .t0C Œ2c4��� 5�C;u�r

p; t0C Œ2c4��� �C;u�r
p/
�
;

then
1

c2
5

u.A�/

v.A?C/
�

u.x; t/

v.x; t/
� c2

5

u.AC/

v.A�/

whenever .x; t/ belongs to the set

.Br .x0/\�/�
�
t0C Œ2c4��� .�

?
C;vC �C;u/�r

p; t0C Œ2c4��� �C;u�r
p
�
:

Remark 9.5. It should be noted that we cannot control the time t?C except which interval it lies in; it is a
purely intrinsic parameter. Furthermore note that Theorem 9.4 is equivalent to the boundary Harnack
principle (1-2) when p D 2.

Proof. Let ci , i 2 f3; : : : ; 6g, be as in Lemmas 9.2 and 9.3. By the assumptions, we know that �C;u �
�C;v WD c�1

6
v.AC/

2�p. We then obtain by Theorem 9.3, for x 2Br .x0/\� and t0C.2c4���2�C;u/r
p<

t < t0C .2c4��� �C;u/r
p, that

1

c5

d.x; @�/

r
u.A�/� u.x; t/� c5

d.x; @�/

r
u.AC/: (9-3)
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Using Lemma 9.2 for x 2 Br .x0/\� and t0C c4��rp < t < t0C 2c4��rp we get that

1

c3

d.x; @�/

r
v.A�/� v.x; t/: (9-4)

Now let tC D t0C 2c4��rp and let t?C be a time to be fixed such that tC� �C;urp < t?C � tC. First note
that if t?C D tC we have for �?C;v D c�1

6
.v.ar .x0/; t

?
C//

2�p,

t?C� �
?
C;vr

p
� tC� �C;urp

I

furthermore, if t?C D tC� �
u
Crp then

t?C� �
?
C;vr

p < tC� �C;urp:

Thus by continuity there is a largest t?C such that

t?C� �
?
C;vr

p
D tC� �C;urp:

With t?C at hand we now apply Lemma 9.1 (with the same ı; Qı as in the proof of Theorem 9.3) combining
it with (9-4) to get

1

c5

d.x; @�/

r
v.A�/� v.x; t/� c5

d.x; @�/

r
v.A?C/ (9-5)

for x 2Br .x0/\� and t0C .2c4��� .�C;uC�
?
C;v//r

p < t < t0C .2c4����C;u/r
p . Combining (9-3)

and (9-5) we have completed the proof. �

9C. Boundary measures in C 1;1-domains. We conclude the section by describing the fine properties
of the boundary measure defined in (1-6). The theorem below says that the induced measure is mutually
absolutely continuous with respect to the surface measure of ST .

Theorem 9.6. Under the hypotheses of Theorem 9.3,

0< lim inf
%!0

�u.Q%.x; t//

%nC1
� lim sup

%!0

�u.Q%.x; t//

%nC1
<C1;

where Q%.x; t/ WD B%.x/� .t � %
2; t/, whenever .x; t/ 2 V ,

V WD .@�\Br .x0//�
�
t0C .2c4��� 2�C/r

p; t0C .2c4��� �C/r
p
�
:

In particular, �u is mutually absolutely continuous with respect to the surface measure of ST on V .

Proof. By Theorem 9.3 we have

��d.x; @�/� u.x; t/� �Cd.x; @�/; �˙ WD c˙1
5

u.A˙r /

r
(9-6)

whenever .x; t/ 2Q, with

Q WD .�\Br .x0//�
�
t0C .2c4��� 2�C/r

p; t0C .2c4��� �C/r
p
�
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and �˙ as in Theorem 9.3. We now pick a point .y; s/ 2 ST \ @pQ. Choose % small enough so that
U%.y; s/\ .��R/ is contained in Q, where

U%.y; s/ WD B%.y/� .s� Q�%
2; sC Q�%2/;

Q� WD �2�p
� maxf8C4C

2�p
5

; 2.�0C �1/g and C4;C5 and �0; �1 are as in Theorems 5.2 and 5.3. After a
simple covering argument using (9-6), and Theorems 5.2 and 5.3, we find a constant C �C.p; n;M; �˙/

such that
1

C
�
�u.U%=2.y; s//

%nC1
� C:

Taking a possibly larger C , and a smaller %, this actually implies

1

C
�
�u.Q%.y; s//

%nC1
� C

uniformly for small enough %. This proves the statement. �

Remark 9.7. Note that in the same region V as in Theorem 9.6 we have that the measure is doubling.
Moreover note that Lemma 9.2 implies a Hopf-type result on this boundary cylinder V ; thus together
with the fact that solutions are C 1;˛ up to the boundary, we get that the logarithm of the normal derivative
on the boundary is Hölder continuous. Now arguing as in [Avelin et al. 2011, (1.7)–(1.10)] we get, for
.x0; t0/ 2 V given, and � 2 .0; 1/, that

lim
%!0

�u.Q�%.x0; t0//

�u.Q%.x0; t0//
D �nC1:

In particular, the measure �u is asymptotically optimal doubling.
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