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We consider the L? critical gKdV equation with a saturated perturbation: d,u+ (uxx +u’ —yulu|? 1), =0,
where ¢ > 5 and 0 < y < 1. For any initial data ug € H, the corresponding solution is always global
and bounded in H . This equation has a family of solutions, and our goal is to classify the dynamics near
solitons. Together with a suitable decay assumption, there are only three possibilities: (i) the solution
converges asymptotically to a solitary wave whose H ! norm is of size y ~2/@=1 as y — 0; (ii) the solution
is always in a small neighborhood of the modulated family of solitary waves, but blows down at +o00;
(iii) the solution leaves any small neighborhood of the modulated family of the solitary waves.

This extends the classification of the rigidity dynamics near the ground state for the unperturbed L? crit-
ical gKdV (corresponding to y = 0) by Martel, Merle and Raphaél. However, the blow-down behavior (ii)
is completely new, and the dynamics of the saturated equation cannot be viewed as a perturbation of
the L2 critical dynamics of the unperturbed equation. This is the first example of classification of the
dynamics near the ground state for a saturated equation in this context. The cases of L? critical NLS and
L? supercritical gKdV, where similar classification results are expected, are completely open.
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1. Introduction

1A. Setting of the problem. Let us consider the following Cauchy problem:

A+ (Uxx +u® —yulul9=1, =0, (t,x)€[0,T) xR,
u(0,x) =up(x) € H'(R),

withg >5and 0 <y < 1.

(gKdV,)
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The equation has two conservation laws, i.e., the mass and the energy:
M) = [ (e = Mo
E@@) =+ [ux? =L [u@ys+ L= [ju@yet = &
2 6 q+1

We can see that the solution of (gKdV,) is always global in time and bounded in H L First of all,
(gKdV,) is locally well-posed in H ! due to [Kato 1983; Kenig, Ponce and Vega 1993]; i.e., for any
ug € H', there exists a unique strong solution in C ([0, T'), H') with either T = +oc or T < +oc and
lim; 7 ||ux(¢)|| 2 = +o0. Since y > 0, g > 5, the mass and energy conservation laws ensure that, for
allt €[0,7),

_ 4
lux @172 S [Eol +y ™75 Mo < +oc,
so T = 400 and u(t) is always bounded in H !,

This equation does not have a standard scaling rule, but has the following pseudoscaling rule: for all
Ao >0, if u(z, x) is a solution to (ngVJ,), then

_1
Uz (1, %) = Ao 2u(Ag>t, A5 x) (1-1)
is a solution to
v+ (vxx + 07 =Ag™y|v|97 N =0, (1,x) €[0,A5°T) xR,

1
v(0,x) = Ay 2uo(Ay'x) € HY(R),
with
m=3(q—5)>0. (1-2)

The pseudoscaling rule (1-1) leaves the L2 norm of the initial data invariant.
There is a special class of solutions. We first introduce the ground state Q,, for 0 < w < 0™ K 1,
which is the unique radial nonnegative solution with exponential decay to the ODE!

Q= Qu + Q5 —wQu|Qwl?™ ! =0.
Then for all 19 > 0, 7o € R, xo € R with A;™y < w*, the following is a solution to (gKdV,):
1
u(t, x) = Ay Qa=my (Ao (x —x0) — Ag°>(t —10)).
A solution of this type is called a solitary wave solution.

1B. On the critical problem with saturated perturbation. The saturated perturbation was first introduced
for the nonlinear Schrodinger (NLS)

idsu+ Au+g(uPHu=0, (t,x)el0, T)x[R{d. (NLS)

I'The existence of such Q, was proved in [Berestycki and Lions 1983, Section 6], but in this paper we will give an alternative
proof for the existence.
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In many applications, the leading-order approximation of the nonlinearity, g(s), is the power nonlin-
earity; i.e., g(s) = £s. For example, g(s) = s leads to the focusing cubic NLS equation, which appears
in many contexts.

But such approximation may lead to nonphysical predictions. For example, from [Fibich 2015; Merle
and Raphaél 2005; Merle, Raphaél and Szeftel 2010; Sulem and Sulem 1999], for NLS with critical or
supercritical focusing nonlinearities (i.e., g(s) = s with ad > 2), blow up may occur. However, this
contradicts the experiments in the optical settings [Josserand and Rica 1997], which shows that there is
no “singularity” and the solution always remains bounded.

One way to correct this model is to replace the power nonlinearities by saturated nonlinearities. A
typical example? is g(s) = s — ys®tS, with § > 0, y > 0. Similar to (gKdV,), in this case any
H! solution to (NLS) is global in time and bounded in H 1

On the other hand, the saturated perturbation is also related to the problem of continuation after blow up
time. These kinds of problems arising in physics are poorly understood even at a formal level. One
approach is to consider the solution u.(¢) to the following critical NLS with saturated perturbation:

i0iu + Au + |u|3u—e|u|qu =0, (t,x)e[0,T)xR?,
u(0,x) = up(x) € H'(RY),

where
4 4

—<q<-—:

P
Suppose the solution u(¢) to the unperturbed NLS (i.e., ¢ = 0) with initial data u¢, blows up in finite
time 7" < 4o00. Then, it is easy to see that for all € > 0, the solution u.(¢) exists globally in time, and for
allt <T

lim ug(t) =u(t) in H'.
e—0

Now, we may consider the limit
lim ug(¢), t>T,
e—0

to see whether the limiting function exists and in what sense it satisfies the critical NLS. Such a construction
for blow-up solutions using the Virial identity was given by Merle [1992a]. An alternative way to construct
the approximate solution u.(¢) can also be found in [Merle 1989; 1992b; Merle, Raphaél and Szeftel
2013], but this only holds for very special cases. General constructions of this type are mostly open. In
all cases, the asymptotic behavior of the approximate solution u.(¢) is crucial in the analysis.

Therefore, the asymptotic dynamics of dispersive equations with a saturated perturbation becomes a
natural question.

1C. Results for L? critical gKdV equations. Let us recall some results for the following L? critical
gKdV equations:
O+ (Uxx +u2)x =0, (t,x)€[0,T)xR,

u(0,x) = ug(x) € H'(R). (gKdV)

2See [Glasner and Allen-Flowers 2016; Marzuola, Raynor and Simpson 2010] for other kinds of saturated perturbations.
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This equation is L2 critical since, for all A > 0,
=303, 31
Uy, x) =A"2u(A7"t, A" "x)

is still a solution to (gKdV) and |juy||z2 = |Ju]| 2.
There is a special class of solutions, i.e., the solitary waves, which is given by

1 x—xo—kgz(z‘—to)
with
_ 3 % Vi 5 __
Q(x)—(m)’ 0"-0+0°=0.

The function Q is called the ground state.

From variational arguments [Weinstein 1982], we know that if |[ug| ;2 < || Q||;2, then the solution
to (gKdV) is global in time and bounded in H!, while for |Jug||;2 > || Q|l.2, blow up may occur. The
blow up dynamics for solutions with slightly supercritical mass

1012 < lluoll2 <1IQll2 + e 1-3)

has been developed in a series papers [Martel and Merle 2002a; 2002b; 2002¢; Merle 2001]. In particular,
they prove the existence of blow up solutions with negative energy, and give a specific description of the
blow up dynamics and the formation of singularities.

Martel, Merle and Raphaél [2014; 2015a; 2015b] give an exclusive study of the asymptotic dynamics
near the ground state Q.

More precisely, consider the initial data set

.AaO:%uoEHl

uo = Q +¢o, |leoll g1 <060,/ y108%<1},
y>0

and the L? tube around the solitary wave family

inf
A0>0, x0€ER

7;*={MOEH1

<a*?.
L2

1 X — X0
uo_)ul)/zQ( Ao )

Theorem 1.1. For 0 < og < o* < 1 and ug € Ay, let u(t) be the corresponding solution to (gKdV),
and 0 < T < 400 be the maximal lifetime. Then one of the following scenarios occurs:

Then we have:

Blow up: The solution u(t) blows up in finite time 0 < T < 400 with
£(uo) +0(1)

T_1 s E(u()) > 0.

[u@) g1 =
In addition, forallt < T, we have u(t) € Ty*.

Soliton: The solution is global, and for allt < T = 400, we have u(t) € Ty*. In addition, there exist a
constant Aoo > 0 and a C' function x (t) such that
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1
Aot hoo - +x(1)) = Q in HL, ast — 400,
t
|Aoo — 1| S 8(a0), x(¢) ~ -5~ ast— +oo.
A'OO
Exit: For some finite time 0 < t* < T, we have u(t*) & Tg*.

Moreover, the blow-up and exit scenarios are stable by small perturbation in Agy,.

Martel, Merle, Nakanishi and Raphaél [2016] proved that the initial data in Ay, which corresponds to
the soliton regime is a codimension-one threshold submanifold between blow up and exit.

Theorem 1.2. Let
Ai‘oz{soeHl ‘||80||H1<0(0, / y108%<1, (20, 0) =0;¢.
y>0
Then there exist g > 0, Bo > 0,and a C 1 function A,
Azy = (—Bo. Bo).

such that for all yg € Aé‘o and a € [—Bo, Po], the solution of (gKdV) corresponding to ug = (1+a)Q + yo
satisfies

e the soliton regime if a = A(Yo);

e the blow-up regime if a > A(yp);

e the exit regime if a < A(yo).

In particular, let
_1
Q = {ug € H' | there exists Ao, xo such that ug = A, > Q(Ag ' (x — x0))}.

Then there exists a small neighborhood O of Q in H' N L?( yj_od y) and a codimension-one C' submani-
fold M of O such that Q C M and for all ug € O the corresponding solution of (gKdV) is in the soliton
regime if and only if ug € M.

1D. Statement of the main result. The aim of this paper is to classify the dynamics of (gKdV, ) near
the ground state Q for (gKdV), when y is small enough. The main idea is that the defocusing term
yu|u|?9~! has weaker nonlinear effect than the focusing term u°. So, we may expect that (gKdV,) has
similar separation behavior as (gKdV), when y is small.

More precisely, we fix a small universal constant ®* > 0 (to ensure the existence of the ground
state Q4 ), and then introduce the following L? tube around Qy:

) 1 X —Xo

A0>0,A6”1’I)l/f<w*, Xo€R o~ A(I)TQAJ’")/ (TO)

E*,y:%uoeHl

<a® } .

L2

Then we have:

Theorem 1.3 (dynamics in Agy,). For all g > 5, there exists a constant 0 < a*(q) < 1 such that if
0<y<Kap L a* <a*(q), then for all ug € Ay, the corresponding solution u(t) to (gKdV,) has one
and only one of the following behaviors:
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Soliton: For all t € [0, +00), we have u(t) € Ty*, . Moreover, there exist a constant Ao € (0, +00) and
a C! function x(t) such that

1
Adou(t, Aoo = +x(1)) = Qpzmy, in Hl(l)C ast — +o00, (1-4)
t
x(t) ~ iR ast — +oo. (1-5)
[e.e]

Blow down: For all t € [0, +00), we have u(t) € Ty, y. Moreover, there exist two C! functions A(t) and
x(t) such that

AZOut @) - +x(0) = O in Hl, ast — +o0; (1-6)
A(z)~tﬁ, x(l)wt% ast — 400, 1-7)

Exit: There exists 0 <1 < 400 such that u(t;) ¢ Ta*,y-

There exist solutions associated to each regime. Moreover, the soliton and exit regimes are stable under

small perturbation in Agy,.

Comments. (1) Classification of the flow near the ground state. Theorem 1.3 gives a detailed description
of the flow near the ground state Q) of (gKdV, ). This kind of problem has attracted considerable
attention, especially for dispersive equations. See for example, [Nakanishi and Schlag 2011; 2012a;
2012b] for Klein—Gordon and mass-supercritical nonlinear Schrédinger equations; [Fibich, Merle and
Raphaél 2006; Merle and Raphaél 2003; 2004; 2005; 2005; 2006; Raphaél 2005; Merle, Raphaél and
Szeftel 2013] for mass-critical nonlinear Schrodinger equations; [Martel, Merle and Raphagl 2014; 2015a]
for L? critical gKdV equations; [Kenig and Merle 2006; Duyckaerts and Merle 2009] for energy-critical
nonlinear Schrodinger equations; [Kenig and Merle 2008; Duyckaerts and Merle 2008; Krieger, Nakanishi
and Schlag 2013; 2014] for energy-critical wave equations; and [Collot, Merle and Raphaél 2017] for
energy-critical nonlinear heat equations. Note that the fact that the blow-down regime near the ground
state is a codimension-one threshold submanifold of initial data in 44, could be proved much as in
[Martel, Merle, Nakanishi and Raphaél 2016].

(2) Asymprotic stability of solitons for (gKdV,,). Since the soliton regime is open, Theorem 1.3 also
implies the asymptotic stability of the soliton Q, for (gKdV,,) under some suitable decay assumption.
Recall that from [Martel and Merle 2001], the soliton Q for the unperturbed critical gKdV equation is
not stable in H .

(3) Blow-down behaviors. Theorem 1.3 shows that a saturated perturbation may lead to some chaotic
behaviors (i.e., the blow-down behaviors), which does not seem to appear in the unperturbed case.
Examples of solutions with a blow-down behavior were also found in [Donninger and Krieger 2013] for
energy-critical wave equations. While for mass-critical NLS, the blow-down behavior can be obtained as
the pseudoconformal transformation of the log-log regime.® However, Theorem 1.3 is the first time that
this type of blow-down behavior is obtained in the context of a saturated perturbation. Furthermore, in

3See [Merle, Raphaél and Szeftel 2013, (1.16)], for example.
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Theorem 1.3, the blow-down regime is a codimension-one threshold between two stable ones, which is in
contrast with the mass-critical nonlinear Schrédinger case, where the blow-down regime is stable.

Now we consider the case when y — 0. As we mentioned before, the defocusing term yu|u|?~! has
weaker nonlinear effect than the focusing term u°>. So the results in Theorem 1.3 are expected to be a
perturbation of the one in Theorem 1.1.

More precisely, we have:

Theorem 1.4. Let us fix a nonlinearity ¢ > 5, and choose 0 < a9 K o* < a*(q) as in Theorem 1.3. For
all ug € Ay, let u(t) be the corresponding solution of (gKdV), and u,(t) be the corresponding solution
of (gKdV,). Then we have:

(1) If u(t) is in the blow-up regime defined in Theorem 1.1, then there exists 0 < y(ug, g, ™, q) < ag
such that if 0 <y < y(uo, o, ™, q), then u,(t) is in the soliton regime defined in Theorem 1.3.
Moreover, there exist constants d; = d; (ug,q) >0, i = 1,2, such that

d1yTT <Aoo < day T, (1-8)

where Ao is the constant defined in (1-4).

(2) If u(t) is in the exit regime defined in Theorem 1.1, then there exists 0 < y(ug, ag, @™, q) < g such
that if 0 <y < y(uo, 0. a™, q), then uy (t) is in the exit regime defined in Theorem 1.3.

Remark 1.5. We can see from Theorem 1.4 that (gKdV, ) is a perturbation of (gKdV) as y — 0: the
soliton regime of (gKdV,,) “converges” to the blow-up regime of (gKdV), and the exit regime “converges”
to the exit regime of (gKdV).

Remark 1.6. Theorem 1.4 is the first result of this type for nonlinear dispersive equations. One may
also expect similar results for the critical NLS or the slightly supercritical gKdV cases. But they are still
completely open.

Indeed, for critical NLS, Malkin [1993] predicted a similar asymptotic behavior for the solution to the
saturated problem of critical NLS in the log-log region. However, due to the different structures of NLS
and gKdV, it seems hard to apply the strategy in this paper to the NLS case.

While for the slightly supercritical gKdV case, the stable self-similar blow-up dynamics is well-studied
in [Lan 2016]. But, due to the fact that the self-similar profile constructed in [Koch 2015, Theorem 3]
is not in the energy space H !, we have to choose a suitable cut-off as an approximation of this profile.
As a consequence, this generates some error terms that are hard to control, which makes it impossible
to consider the saturated problem in this case. However, Strunk [2014] proved the local well-posedness
result for supercritical gKdV in a space that contains the self-similar profile, which provides an alternative
option for the saturated problems.

1E. Notation. For 0 <w <w™* < 1, we let Q,, be the unique nonnegative radial solution with exponential
decay to the ODE

Q! —Qu+ 0> —0Qy| Q77! =0. (1-9)
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For simplicity, we define Q = Qp. Recall that we have

3 S
Q) = (cosh2(2x)) '

We also introduce the linearized operator at Q,:

Lof=—f"+f-50%f +qu|Qu|""" f.
Similarly, we define L = Ly.

Next, we introduce the scaling operator
Af =3f +51"
Then, for a given small constant a*, we denote by §(a™) a generic small constant with
lim §(a™) =0.
a*—0

Finally, we denote the L? scalar product by

(f.9)= [ fwetax
1F. Outline of the proof.

1F1. Decomposition of the flow. We are searching for solutions of the form

1 —x(t
u(t, x) ~ WQb(t),w(t) (XT);)())

y ds 1 As P
Am’oode A3 A T A
which lead to the modified self-similar equation

bAQb,a) + (QZ,,U - Qb,a) + QZ,w _wa,w|Qb,a)|q_1)/ =0.

Formal computations show that » and @ must satisfy the condition
bs +2b% + cows = 0,

where co = co(g) > 0 is a universal constant.

Combining all the above, we get the formal finite-dimensional system

ds 1 As Xs 1
e A3 A a7
4
bs +2b% + cows = 0, a)=/\—m.
By standard computations, it is easy to see that (1-11) has the following behavior. Let
b(0) mcoy
0

T 22(0) | (m+2)Amt2(0)

(1-10)

(1-11)
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‘We have:

(1) If Ly > 0, then
1 2
m+2 N Lo \m+z
b(t) =0, A(t)— (ﬂ) . ox(t) ~ (M) P
(m+2)Lo myco

as t — 400, which corresponds to the soliton regime.

(2) If Lo =0, then
b(t) >0, A(t)—> 400, x(t)—> 400

as t — +o0, which corresponds to the blow-down regime.

(3) If Ly <0, then
b(t) > —oo, A(t) > 400
as t — o0, which corresponds to the exit regime.

1F2. Modulation theory. Our first step is to find a solution to (1-10). But for our analysis, it is enough

to consider a suitable approximation:*

0b.0(¥) = Qu(») +bx(1b1P y) P ().

As long as the solution remains in T+ 5, we can introduce the geometrical decomposition

[Qb(t),0(r) T €1)] (x —x() )

u(t) 20

1
ORE

with w(t) = y/A(¢)™ and the error term satisfies some orthogonality conditions. Then the equations of
the parameters are roughly speaking of the form

T +b= s + 0(”8||H1<1,c)’
dJ
bs +2b% + coms = —= + O(el1).

with

515 Vellgy + [l

y>0
Therefore, a L! control on the right is needed, otherwise J; will perturb the formal system (1-11).

1F3. Monotonicity formula. Our next step is to derive a control for ||&|| H Similar to [Martel, Merle
and Raphaél 2014, Proposition 3.1], we introduce the nonlinear functional

Fo [ 408 =520, ¥ + 4021050l V)

4See Section 2A for more details.
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for some well-chosen weight functions (v, ¢), which decay exponentially to the left and grow polynomially
on the right. We will see from the choice of the orthogonality condition that the leading quadratic term of
F is coercive:
2
Fz el

Most importantly, we have the monotonicity formula

d ( F ) el _ w7+
ds \ A2J A27 12/
for j =0, 1. This formula is crucial in all three cases.

1F4. Rigidity. The selection of the dynamics depends on:

(1) For all ¢, '

(2) For some 1 < T = 400,

S e, +b2(0) +02(0).

b(t}) + — o w(t1)>> ||8(t)||H1 +D07(1) + 0> (1).
(3) For some 1 < T = 400,
G - —— —— o) > el +070) + ).

‘We will see that in the first case we have for all ¢,

|b()] ~ () > ||8(t)||§,]1 ,
and in the second case we have
(t) > [b(O)] > eI,

for t > 3 > t{ as long as u(¢) remains in 7g* ,. While in the third case, we have
—=b(1) > (1) > [|e(@)lI 7,

for ¢ >t as long as u(¢) remains in 7o+ 5. Then reintegrating the modulation equations, we will see that
these three cases correspond to the blow-down, soliton and exit regimes respectively.

Moreover, the condition on b(#{) and w(¢;) which determines the soliton and exit regimes is an open
condition to the initial data due to the continuity of the flow. On the other hand, it is easy to construct
solutions, which belongs to the soliton and exit regimes respectively. Since, the initial data set Agy, is
connected, we can see that there exist solutions corresponding to the blow-down regime.

1FS. Proof of Theorem 1.4. The proof of Theorem 1.4 is based on the fact that the separation condition
for (gKdV,) is close to the separation condition for (gKdV) when y — 0. Then Theorem 1.4 follows
immediately from a modified H! perturbation theory.”

5See [Killip, Kwon, Shao, and Visan 2012, Theorem 3.1] for the standard L2 perturbation theory.
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2. Nonlinear profile and decomposition of the flow

We will introduce the nonlinear profile and the geometrical decomposition similar to the one in [Martel,
Merle and Raphaél 2014], which turns out to lead to the desired rigidity dynamics.

2A. Structure of the linearized operator L. Denote by ) the set of smooth functions f such that for
all k € N there exist rp > 0, Ci > 0 with

|95 S ()] < Gl + |y e P, 2-1)
Let us first recall some results about the linearized operator L.

Lemma 2.1 (properties of L [Martel and Merle 2001; Martel, Merle and Raphaél 2014; Weinstein 1985]).
The self-adjoint operator L (recall that we use the notation L = L, which was introduced in Section 1E)
in L? has the following properties:

(1) Eigenfunction: LQ3 = —-803, LQ’ =0, ker L = {aQ’|a € R}.
(2) Scaling: L(AQ) = -20Q.

(3) For any function f € L? orthogonal to Q', there exists a unique g € H? such that Lg = f with
(g, Q') = 0. Moreover, if f is even, then g is even, and if f is odd, then g is odd.

4) If f € L? suchthat Lf €Y, then f € Y.

(5) Coercivity: Forall f € HY, if (f. 03) = (f. Q") =0, then (Lf. f) > (f, f). Moreover, there exists
ko > 0 such that for all f € H',

(LS, ) = «oll f Iz — %[(ﬁ 0)? + (£ AQ)* + (£ yAQ)?].

Proposition 2.2 (nonlocalized profiles [Martel, Merle and Raphaél 2014, Proposition 2.2]). There exists
a unique function P with P’ € Y such that

wry=no. im Po)=3 [0 IPGISeE pryo @
2

r.0=([e). @aor=o 3

Now for the ground state Q, and the linearized operator L, we have the following properties:
Lemma 2.3. For 0 < w < 0™ < 1, we have:
(1) Null space: ker Ly, ={aQ,, | a € R}.
(2) Pseudoscaling rule: Ly(AQy) = —2Q4 + %(q —5wod.

(3) For any function f € L? orthogonal to Q,,, there exists a unique g € H? such that L,g = f with
(g.9.,,) =0. Moreover, if f is even, then g is even, and if f is odd, then g is odd.

(4) If f € L?> suchthat Ly, f € Y, then f € Y.
(5) Let Zyy = Q4 /0w. Then Zy € Y, and Ly Zy = — Q| Q|97 L
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(6) Coercivity: There exists a kg > 0 such that for all f € H

(Lo fo )= k0l f 131 — K—IO[(ﬁ Q0)> + (f.AQw)* + (/. yAQw)?].

Proof. Part (1) follows from the same arguments as the proof of [Weinstein 1985, Proposition 2.8; 1986,
Proposition 3.2]. Part (2) follows from direct computation. Part (3) is a direct corollary of (1), while
for (4), from standard elliptic theory, we know that f is smooth and bounded. So we have Lf € ), and
from Lemma 2.1, we have f € ).

Now we turn to the proof of (5). Differentiating (1-9), we obtain LyZy = —Qu|Qw |9~ Since
Qo | Qa,|‘1_1 € ), if we can show that Z,, € L2 then we have Z,, € ). To do this, we introduce the map

F:HZ?xRw L2, (u,0) —u" +u—u’+ouul??,

where H? and L2 are the Banach spaces consisting of all H? and L? functions, respectively, which are
even. Since H?(R) is continuously embedded into L>°(R), the map F is well-defined.

We claim that there exists a small ®* > 0 such that if 0 < w < @*, then there exists a unique u(w) € H?2
such that F(u(w),w) = 0. Since we have F(Q,0) = 0, from implicit function theory, it only remains
to show that the Fréchet derivative with respect to u, i.e., dF/du|(g o) € L(H, 2,L2), is invertible and
continuous. But it is easy to see that

oF

- — L,
I |(0.0)

which is invertible and continuous due to part (3) of Lemma 2.1. Hence, we obtain the existence of
such u(w). Moreover, since F' is continuously differentiable with respect to both u# and w, we have u(w) is
continuously differentiable with respect to . In particular, we have du/dw € H2. But from the uniqueness
of u(w), we must have u(w) = Q. As a consequence, we have Z,, = 0Q,,/dw = du/dw € HZ, which
concludes the proof of (5).

Finally, (6) follows immediately from a perturbation argument for part (5) of Lemma 2.1. More
precisely, since Q,, is C 1 with respect to w, we have, for all f € H 1

(Lo f )= (LS )+ 0@ f 71,

and

(f.Q0)* + (£ AQw) + (L yAQw)? = (£. Q)* + (. AQ)? + (/. yAQ)? + O()|| f I -

Together with part (5) of Lemma 2.1, we conclude the proof of part (6) of Lemma 2.3, which finishes the
proof of Lemma 2.3. O

Proposition 2.4. For 0 < w < o™ <K 1, there exists a smooth function P, with Pé) € Y, such that

(LoPo) =0, tim_Pu() =3 [ Qo (24

1 2
(Pa),Q;)):Ov (Pw,Qw):R(/ Q) + F(w), (2-5)
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where F is a C' function with F(0) = 0. Moreover there exist constants Co, Cy, .. ., independent of w,
such that
oP, _y
Pol+| 20| = Coe™F forall y >0, 2-6)
0P,
[PoM]+ 15 =) = Co forally eR, 27
9K Py(3)] < Cre™  forallk €Ny, y €R. (2-8)

Proof. The proof of Proposition 2.4 is almost parallel to Proposition 2.2. We look for a solution of
the form P, = ﬁw f JrOOAQQ, The function y = f *°AQ,, is bounded and decays exponentially as
y — +4o00. Then, P, solves (2-4) if and only if Pw solves

- +o00 /
(Lwa)/=AQw+(Lw/ AQa)) =R;,,
y
where

400 400
Ry = (AQa))/_SQi/ AQw+qw|Qw|q_1/ AQy.
y

y

Note that R, € Y. Since (AQy, Qp) = 0 and L, Q,, = 0, we have (Ry, Q,) = —(R ,Qw) = 0.
Then from Lemma 2.3, there exists a unique Pw € ), orthogonal to Q, such that La,Pw = Ry. Then
P, =P, — fy+°°AQw satisfies (2-4) with (P, Q))) = 0 and limy, o Py (y) = 5 ! [ Qw. Moreover,
we have

/Pa,Qw— /(Lwa)AQw+0(a)) /Agw/ AQu + O(w)

1 > 1 >
= 5(/AQ¢,,) + O(w) = g(/ Q) + O(w).
Let
| 2
F(w) = (P,, Qw)—ﬁ(/ Q) .
Then F(0) =
Next we claim that d P,, /dw € Y. Let us differentiate the equation L, P, =Ry, to get
P, IRy
Lw(a—;’) = %—zoz 095 Po+4(q — 1) 0Z0 00| Q0|93 Py + q1Q0|? " Po. 2-9)

Since Z,, € Y, it is easy to check that dR,,/dw € ). So Lemma 2.3 implies 8ﬁw/8a) e.
Now it only remains to prove (2-6)—(2-8). But from [Berestycki and Lions 1983, Section 6], there exist
constants My, M1, ..., independent of w, such that forall k e N, y € R,
k 21yl
|3 Qo) = Mye 3.
Together with (2-9) and the construction of P,, we obtain (2-6)—(2-8). It is easy to see that (2-6)—(2-8)
also imply F € CL. O
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Now, we proceed to a simple localization of the profile to avoid the nontrivial tail on the left. Let y be
a smooth function with0 < y <1, ¥/ >0, y(y) =1if y > —1,and y(y) =0if y < —2. We fix

B =

EN[W)

) (2-10)
and define the localized profile

160 = x(6IPY). Qo) = Qo +bxs(y) Pu(y). (2-11)
Lemma 2.5 (localized profiles). For |b| < b* < 1, 0 < w < w* K 1, we have:

(1) Estimates on Qp: Forall y € R, k € N,

106,00 S e 4 blAa.0 (BB y) + e ), (2-12)

—_ v
195 Qb0 S e P lple™= + b P 1, _y(1bIP ). (2-13)
where 1] denotes the characteristic function of the interval I.
(2) Equation of Qp - Let
_lpb,w = bAQb,a) + (QZ’Q) - Qb,a) + Qliw _wa,w|Qb,w|q_l),' (2'14)
Then, forall y € R,

W, = b*((10Q] P2)y + AP,) — %bz(l —1b) Po
_l
+O0(IbI" P 1y (1P y) + b2 (@ + Be™ ). (2-15)

Moreover, we have
_ vl
19y Wh0 N S 161" 2P 115 _1y(101P ) + 5% > (2-16)
(3) Mass and energy properties of Qp -

[t (f @] r)

|E(Qp,0)| S |+ . (2-18)

<|b*P, (2-17)

Proof. The proof of (1) follows immediately from the definition of Qy ,, and Proposition 2.4. For (2), let
us expand Qp ,, = Qu + byp Py in the expression of Wy, ,,; using the fact that

Q) —Qu+ Q) —wQy|Qw?T =0, (LyPo) =AQu,
we have

~Up o =b(1 = xp)AQu + b(X}) Po + 31} Phy 42X} Py — X3y P + 5X)y Qw Por — q x| Qo' Pyy)
+b7((10Q x5 P2)y + Pulxs + x5 YP,,)
+53(10Q5, 13 Pa)y +b* (5Qu x5 Pa)y + 0% (13 Pa)y
_w((Qw + D) Pw)|Qw + by Pol T — Qu| Qo™ _qbXwa|Qa)|q_l)

We keep track of all terms up to b2 Then (2-15) and (2-16) follow from the construction of the profile O bw-

y°
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/ 2P2 < |b| /3
Then (2-17) follows from

/Qg,w=/Qi+2b/XwaQw+b2f x;iP2.

While for (2-18), since E(Qy) = O(w), we have
|E(Qb,0)| < bl + |E(Qw)| < 0] + w. [

Finally, for (3), we have

2B. Geometrical decomposition and modulation estimates. In this paper we consider H ! solutions to
(gKdV,)) a priori in the modulates tube 7y~ ;, of functions near the soliton manifold. More precisely:

Lemma 2.6. Assume that there exist (A1(t), x1(t)) € ((y/w*)V/™, +00) x R and €1 (t) such that for all
1 €[0,19), the solution u(t) to (gKdV,,) satisfies

1 —x1(7)
10 = Qo+l ) 19
with, forallt € [0, 1),
w1(2) + len@) 2 <k K1, (2-20)
where y
wi(t) = )Lrln(l)

Then we have:

(1) There exist continuous functions (A(t), x(t),b(t)) € (0, +00) x R? such that for all t € [0, to),

e(t.y) = A2 (Ou(t. A1)y +x(1) — Qb(e).w(r) (2-21)
satisfies the orthogonality conditions
(1), Qu(r)) = (6(t), AQu(r)) = (¢(t), YA Qu(r)) =0, (2-22)
where
w(t) = )Lm(l)
Moreover, )
o0+ ez + 1501+ [1- 512 < 800 23)
(1)
leO)Ir < 8([le1(0)]| g1)- (2-24)

(2) The parameters and error term depend continuously on the initial data. Consider a family of
solutions uy (t), withug n € Agy, and g, — g in H' asn— +oc. Let (A (t), by (t), xn (), e (t)) be the
corresponding geometrical parameters and error terms of u,(t). Suppose the geometrical decompositions
of un(t) and u(t) hold on [0, Ty] for some Ty > 0. Then for all t € [0, Ty], we have

(A (). b (0). Xn (1) £0 (1) B2 (A(1). b (1), x (1), £(1) (2-25)

asn — +oo.
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Proof. Lemma 2.6 is a standard consequence of the implicit function theorem. We leave the proof for
Appendix A. O

Remark 2.7. Similar arguments have also been used in [Martel and Merle 2002a, Lemma 1; 2002c,
Lemma 1; Martel, Merle and Raphaél 2014, Lemma 2.5; Merle 2001, Lemma 2] etc.

Remark 2.8. The smallness of w(t) ensures that Q,,(;) and Qp(s),w () are both well-defined.

2C. Modulation equation. In the framework of Lemma 2.6, we introduce the rescaled variables (s, y)

_x—x(1) [t 1
TR Sl 220

Then, we have the following properties:

Proposition 2.9. Assume for all t € [0, tg),
31y|
o)+ el + [ e dy < 227)

for some small universal constant k > 0. Then the functions (A(s), x(s), b(s)) are all C' and the following
hold:

(1) Equation of ¢: Forall s € [0, s9),

es—(Lye)y +bAe = (% + b) (AQp,» + Ae) + (% - 1)(Qb,w +€)y

aQb,a) aQb,a)
—bs— = —os— =+ Vo = (Rp(e))y — (RNL(9)y.  (2-28)
where
Wpo =—bA0p0w—(0} =0+ 03 0—00b.0lQpwl?™"), (2-29)
Ry(2) =5(03 ,—Qa)e—q0(| Qb0 T —|Qu|?™ Ve, (2-30)

Rni(e) = (6+0p.0) =50} ,6=03
_w[(8+ Qb,w)|‘9+ Qb,w |q_1_q8| Qb,a)lq_l_Qb,a)l Qb,w |q—1]' (2'31)

(2) Estimate induced by the conservation laws: For s € [0, s¢),

1
2
)

(2-32)

1 1
lellz2 < 16]% + w2 + ‘/u%—f 0?
m+2

||8y||i2 1 _lyl leyll)2
< o+ |b|+ [ ee 0 |+ y——""—+]|Ep|. (2-33)

2 ~ a2 Am+2
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(3) H' modulation equation: For all s € [0, s0),

1

As
Zyb
A+'+

1
2
byl + || < (@ + |b|>[( [ eze—'lyo) + |b|} + / 2e %, (2:35)

(4) L control on the right: Assume uniformly L' control on the right; that is, for all t € [0, tg),

Y

< (/ eze—lo)2 + |b|(w + |b]). (2-34)

AL

A

[ ko1, 2-36)
y>0
Then the quantities J1 and J» below are well-defined. Moreover, we have:

(a) Law of A: Let
y

4
1Y (y) = AQ’ J (S) = (E(S),,O )v (2'37)
1 (f Q)2 /;oo 1 1

where Q is the ground state for (gKdV). Then we have

swrmf([ec ) s o
< (w+ b)) /se o) +b| —i—/se 0, (2-38)

16 ((AP, Q) 1 )
AQ+P—— —-8p1, J = . 02), 2-39

where P was introduced in Proposition 2.2. Then we have

~+b —2((]1)5 + ETJl)

(b) Law of b: Let

p2 =

1A
bs + 2b% + wsG'(0) + b((JZ)s + ETSJZ)

< / £2¢7 10 + (w + )b, (2-40)

where G € C? with G(0) =0, G'(0) = co > 0, for some universal constant cq.

(c) Law of b/A?: Let

p=4p1+p2€l, J(s)=(e(s),p). (2-41)
Then we have
d (b b 1A wsG'(w) 1 5 vl 5
%(A—z)'f‘k—z(.]s'i‘iy.])-i‘k—z Sﬁ(/s e 10 +(a)+|b|)b . (2-42)

Remark 2.10. The proof of Proposition 2.9 follows almost the same procedure as [Martel, Merle and
Raphaél 2014, Lemma 2.7]. It is important that there is no a priori assumption on the upper bound of A(¢).

This fact ensures that Proposition 2.9 can be used in all three regimes.®

Proof. (1) Equation (2-28) follows by direct computation from the equation of u(¢).

5We will see in Section 4 that we can’t expect any (finite) upper bound on the scaling parameter A(¢) in both the blow-down
and exit cases.
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(2) We write down the mass conservation law

/Q}%,w—/QZ‘F/EZ—FZ(S, Qb@):/u%—/QZ. (2-43)

From (2-17) and the orthogonality condition (2-22), we have

/825 |b|+w+|b|1_ﬂII8IIL2+‘/M%-/QZ

Then (2-32) follows from 8 = %.
Similarly, we use the energy conservation law and (2-18) to obtain

202E0 = 2£(05.0)-2 [ #(Qslt [ -5 [1Qharter*~05,)

2w
422 / [10p0-+el7*1—0pol7+]
qg+1

— 014+ [ &2 el(@0= 0wy + (05— 05 +0(Cb.01 .0l =20l Qul" )]
-3 [(Q0t9°- 05,603 ]
2
+ 2 [ 10pw+el =1 0p 0|7 ~(g+ 10 0] Qp.0l7 ).
q+1

We estimate all terms in the above identity. By the definition of Qy 4, we have

' / e[(Qb 0 — Qu)yy + (05— O3) + (b0 Qb 0™ = Q| Q)]

1
2
< |b|( / eze—'lyo') +ipl 2 [ el
—2|b|—B<y=<0
vl
< |b|+/8ze_ly().

For the nonlinear term, we use the Gagliardo—Nirenberg inequality to estimate

5/5291+/86+|b|/82

2 _ 4 2
5/8 e 10 4] + el 42 lley 122,

|
§w(|b|+/826_1y0 —i—/ |6‘|q+1)

[1@b+0 - 05, ~ 603,

and

@ / [10b0+£9 105019 = (¢ + 1)eQp 0] 05 ol”™]

5 vl % q+3 5
Slbl+ [ e el e 17
m+2
I
5|b|+/e eIyl

Collecting all the estimates above, we obtain (2-33).
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(3) Let us differentiate the orthogonality conditions

(1), AQu(r)) = (e(t), YA Qu(r)) = 0.

Note that

d
%(8’ AQ(!)) = (8S7 AQC{)) + ws(ea AZa))»

where Z,, = 0Q,/dw € Y. So we have

‘(ﬁ n b) _ (6, Lw(AQw)) ‘(ﬁ _ 1) _ (6. Lo(YAQw)")
IAQwll?, A 1A Qull?,
<

A
%
);—s—l'+|b|) x (w+|b|+ (/sze_lyol) )
For the nonlinear term, we use Sobolev embedding and the a priori smallness (2-27),

As
Z4b
A+‘+

Ryl 9yl 9yl
+|bs|+|a)s|+/82€_‘y0 +/85e—15 +/ le|9e™ 10 .

vl _ 3l
lee™ ¥ |20 < [lee™ 3@ |20

_ 3l
< / (0y8% + &%)e a2

<1,
to estimate
/55e—913' +/ lel7e= " < (e 5 3o + e 50 ||§;2)/82e—'1yo'. (2-44)
Here we use the basic fact that ¢ > 5.
For wy, we have
wy = —mw— =mwb—mw| —+>). (2-45)
A A
The above estimates imply
2 ;
X vl
Ts—i-b‘-i— ! §(w+|b|)|b|+|bs|+(/eze_lyo) (2-46)
and
A & Lo(AQyp) x &, Lo(YAQw)
'(_s+b)_( w( zw))+‘(_s_1)_( w(y zw))
A [AQwll} > A IAQwll7»

=

=)

(2-47)

< (a)+|b|)|:([82e_|ly0)2 + |b|i| +/82e_1 .
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Next, let us differentiate the relation (g, Q) = 0 to obtain

=(&,Qu)s = (Es»Qw)+(8 Ws aQa)a))
=a)s( %) (e, Lo(Q))—b(Az, Q)

+(540) (0 pa 00 Ao 1+ (2

)[(Qba, 0u)+(#'. Q)]

Qba)

~bul(Put Qo)+ (B 1y Qo) -n (20252

)+(wbw,gw)+<Rb<a)+RNL(e) Q,). (248)
Substituting the facts

(Poxb. Qo) + (BY X Qw) = (Pw. Qw) + O(b') ~ 1,

LoQy =0, (QurAQu) = (Qur Q) = (6. AQu) =0,
[yl [yl

(Rp(e) + R (6). Q)| < (@ + |b|)(/ sze_i) +/82e—1

and (2-15), (2-16), (2-44), (2-45) into (2-48), we obtain

(o (o)) (ool 2 5) sm]e o

(2-49)
Combining (2-45), (2-46) and (2-49), we get (2-34) and (2-35).

As
Z4b
A+'+

(4) First, we claim the sharp equation

16b [(AP, 0)

bs +2b* + ;G (0) —
+2b% + G’ (w) oy Linolz,

(6. L(AQ)) +206e. PO
- O(bz(a) b)) + / sze_lol) (2-50)
holds. To prove this, we take the scalar product of (2-28) with Q,,. We keep track of all terms up to b2

First, from (2-15), we have

(Wpo. Q) = —b*((10P202), + APy, Qu) + O(b%(|b] + w))
= —b2((10P2Q%), + AP, Q) + O(b*(]b| + w))
=—2b%|01Z, + O(b*(|b] + w)). (2-51)

where for the last step we use the computation
(AP, Q) =—(P.AQ) = —(P.(LP)) = (P.(P"~ P +50%P)))
— (P, PIII_PI) + 10/ QSQ/PZ,
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and from Proposition 2.2, we obtain
(10P2Q%), + AP, Q) =5 lim P? =30l
Next, from Proposition 2.4, we have
(522 Qu) = bu(Ctn + 8323 P @) = b P 00) + O™
= 16b51QII7 1 + F(@)bs + 0(b"), (2-52)
where F is the C! function introduced in Proposition 2.4. From Lemma 2.3, we have

(Zor Q) = =3 (LoZu: A0 + 0@) = 5 [ (100)Ql Q0" + 0(0)

q+1
= = [1eu 0@ >0,

Then from (2-35), we have

3 Qw ~
(wsaQﬂ,Qw) —a)slm + O(|bws]) =a)sG’(a))+0(b2(w+|b|)+/ 2 "10), (2-53)
dw 2 dw

with G () = 3(||Qu 2, = I1Q112,). It is easy to check G(0) =0, G € C?, and

~ ~1
G'(0) = (Zwr Qo)lw=0 = 4(qq+1)/'Q'q+l>0

Next, from Proposition 2.4 we have
1

y 2
(0} o + v, Q)| (/eze—'w') 12, Qu)l + (Pl Qo)+,

which together with (2-34) implies

‘()iy )(wa+8y,Qw)

For the small linear term, we have

<b*(w+ |b]) + / o, (2-54)

1

[ Roter2l, =200 [ o3 0le + bl + |b|)0(/ Sze_lyo)z

R4

=20b/ PQ3Q’s+|b|(w+|b|)0(/ 826_1)2. (2-55)

Since the nonlinear term can be estimated with the help of (2-44), we then have

2b2+a)sé’(a)) 3 16
1+ H) (1+ H(w)(f 0)?

N

|:( Qba),Qa))( +b)+20b(8 PQ Q):|

= 0(p @b+ [ e

o‘i
N—
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where

16
H(w)=—5F(w).
(/ 0)°

< (@ +|b|)[(/8 e ll()l) +|b|j|+/£2e_1yo|_

[(AQp.ws Qo) —B(AP, Q)| S 5™ + [b(AP, Q) = b(APw, Qu)| < |bl(@ + |]).

From (2-47) we have

A (e, L(AQY))
sy p) =¥
‘( +) 1AQ12,

A

Moreover, we have

We then conclude that

bS+

2% + G’ (w) 16b [(AP, 0)

a ,L(AQ) 2O,P3/]
[+ Hw  (+H)(J 07| [ag|z, HAe)+20e Perey

- 0(b2(w+|b|)+[82e—'lyo'). (2-56)

Finally, since H € C 1 H(©0) =0, itis enough to check that the function

B 10} é/(x)
Glw) = /0 1+ H(x)

satisfies G € C2, G(0) =0, G’(0) = co > 0. Then, (2-56) implies (2-50) immediately.
Now, we turn to the proof of (2-38), (2-40) and (2-42). For all f € Y, independent of s, (s, f Y . ) is
well-defined due to (2-36). Moreover, we have

d y As y As y
%(8’/_00 f) — (6. Lo /) + (T—i-b)(AQb,w,/_oof) +T(As,/_oof)
Xs aQb,a) 8Qb,a) Y
_(7_1)(Qb,w+87f)_(bs b + ws o ’/—oof)

y
+ (Lpb,w,/_ f) + (Rp(e) + RnL(8), ).

Using (2-34), (2-35), (2-44) and Proposition 2.4, we have
d Y As
L))o L)+ (3
1A Y ~b
27l /oof)”(('b'*‘”)[(/ ") D

+ O0((|b] + w)|b]) + 0( yo) (2-57)
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Proof of (2-38). We apply (2-57) to f = AQ, using the facts
y 2 y
LAQ =20, (AQ,/_ AQ) = %(/ Q) , (Q’,/_ AQ) =0,

16(e, Q)

e (o) ool 2%) o] o)

Then (2-38) follows immediately from the orthogonality condition (2-22).

to obtain

2(J1)s =

Proof of (2-40). We apply (2-57) to f = p’,. Then from Lemma 2.1 and Proposition 2.2, we have

16 [ (AP, 1 32 Y
(AQ. pa) = 2( Q)AQ+P—5/Q,AQ)— (AQ,/ AQ)

(J 0)" \IAQ| .- (/ 0)° oo
6 Alolz, 1 ( )2
= [(AP, Q)+ (AQ, P)] + - AQ| =0,

(S o) fo? (o /

and
AP

0. 0= (Irgiaor+P.0) 5. 0)

Next, from

L(P") = (LP) +200'Q3P
=AQ +200'03P

and the orthogonality condition (g, A Q) = 0, we have

16 (AP, Q) ' /D /
L)y =——(e, L A P'|) =8, L
(e, Lpy) (fQ)z(g [||AQ||L2( Q) + (e, Lp})
__16 [(AP,Q)

(/ 0)*LIIAQIIZ,

Substituting all the above estimates into (2-57) with f* = p), we obtain

16 [(AP,Q)
(fQ)2 IAQI7 -

(e, L(AQ)') +20(s, PO Q)}#—O(w)(/ yo')z.

(e, L(AQY) + 20(e, PO Q)] e,

+0((|b|+a))[(/82e—'lyo)2 +|b|] +/ Ze_llol). (2-58)

Then (2-40) follows from (2-50) and (2-58).

(JZ)S =
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Proof of (2-42). From (2-38) and (2-42),

d(b\_bA2? 2 (%
ds\\2) )2 A2\ A

b As b As s _
ey ] 200 B -2 o ([ i)

b 1 As wsG'(w) 5 ol 2
= Az[‘]s ETJ] e +0(A2([ee 0 +(w+1b)b* ),

which is exactly (2-42).
Finally, it is easy to check that lim| |y oo p(y) = 0, which implies p € V. O

3. Monotonicity formula

We will introduce the monotonicity tools developed in [Martel and Merle 2002c; Martel, Merle and
Raphaél 2014]. This is the key technical argument of the analysis for solutions near the soliton.

3A. Pointwise monotonicity. Let (¢;);=1,2, ¥ € C°°(R) be such that

124 for y < —1,
gi(y)=q1+y for —1<y<i, ¢'(y)>0 forall y e R, (3-1)
y! for y > 2,
2y —1
vy =1° ory=— ¥'(y) =0 forall y € R. (3-2)
1 for y > —3,
Let B > 100 be a large universal constant to be chosen later. We then define the weight function
v =v(2). w0 =9(2) (3-3)
B ’ B
and the weighted Sobolev norm of ¢
Ni(s) =/(8§(s,y)1/f3(y)+82(s,y)<pi,3(y)) dy, i=12, (3-4)
Niaols) = [ 2630 50 dy. i =1.2 (3-5)

Then we have the following monotonicity:

Proposition 3.1 (monotonicity formula). There exist universal constants ;1 > 0, B = B(gq) > 100 and
0 <« < 1 such that the following holds. Let u(t) be a solution of (gKdV,,) satisfying (2-20) on [0, fo],
and hence the geometrical decomposition (2-21) holds on [0, to]. Let so = s(tg), and assume the following
a priori bounds hold for all s € [0, sg]:

(H1) Scaling-invariant bound:

() +1b(s)[ + Na(s) + lle(s) 2 + () lley ()72 < & (3-6)
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(H2) Bound related to H' scaling:
@(s) +[b(s)| + Na(s) _
K

A2(s) - ©-7)
(H3) L2%-weighted bound on the right:
1
10,2
e (s,y)dy <501+ ——— ). (3-8)
[ mar=sofi+5a5)
We define the Lyapounov functionals for (i, j) € {1,2}? as
Fij = f (eiwg + (14 7.)*0i.8 — 3VB[(Qp0 +6)°— 05, — 603 ]
2w _
# 2 10h e = 105l ~ 4+ DoChal Orol T WE ). ()
with’
Jij = (1 —J)~4U=D=2 _q (3-10)
Then the following estimates hold on [0, so]:
(1) Scaling-invariant Lyapounov control: fori =1, 2,
dF;
d;’l +M/(8§+82)<pl{,3 <p b*(0* + b?). (3-11)
(2) H!'-scaling Lyapounov control: fori = 1,2,
%(/\2)4_)&_2/(8))—’_8 )wi,B sB T (3—12)
(3) Coercivity and pointwise bounds: there hold for all (i, j) € {1,2}?,
Ni S Fij SN, (-13)
1
|Jil + 1T, 1 S N7 (3-14)

Remark 3.2. The proof of Proposition 3.1 is almost the same as that of [Martel, Merle and Raphaél 2014,
Proposition 3.1]. The only difference here is the additional terms involving w.

Remark 3.3. Similar to Proposition 2.9, we do not assume any a priori control on the upper bound of
A(s) so that the monotonicity formula can be used in all three cases.

Remark 3.4. As mentioned in [Martel, Merle and Raphaél 2014, Proposition 3.1], the weight function ¥
decays faster than ¢; on the left. As a result, A and F; ; do not control f 85 <plf p (see Remark 3.5 of
that paper for more details).

TRecall that J; was defined in (2-37).
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Proof of Proposition 3.1. The proofs of (3-13) and (3-14) are exactly the same as [Martel, Merle and
Raphaél 2014, Proposition 3.1]. We only need to prove (3-11) and (3-12). To do this, we compute directly

to obtain that, for all (i, j) € {1,2}2,

o Fii
220 1)(/\2(;’1‘1)) =f+ 2t it fat fs
N

where

A
fi=2 [ (ex= 52 e -(meds o010V B0

A
f2 = 2/ (SS_TSAS)SLTI.:J.(pLB’

(3-15)

A A
1= 2 [ Ae-(mey)y + (1410608 VB BN+ (s [ 01?26 -D .

fa=—2 / U3 (Qp.o)s[ Ay o—560% , +q0e] 0p ol771],

2a)s

Is =

anba,+e|q“—|wa|q+1 G+ 1)e0p.0|0p.oli™ V.

Ab,w(g) = (Qb,a)+8)5_Qb,w_w(Qb,w+8)|Qb,w+3|q 1+wa,w|Qb,w|q L

Our goal is to show that for some 1o > 0,
d
G =m0 [ +e)g) 5+ 3, 0p) + CH0P +52),

fk

=10

The following properties will be used several times in this paper:®

/((s +%)¢) p+2,¥p) + Ch*(@> +b*) fork =2,3.4,5.

0" DD+ o] D+ 1" O+ [y D)+ 1y ()| S ¢f S giforall y € R,

W) + W )) S @)~ forall y e (—o0, 1],

2
Mioe SN2 joc SN SN2, /8 ©1,B8dy SN2 jocs

1 8
/ y282(5) < (1 + T)N;,loc(s)'
y>0 A9 (s)

Control of f1. First, we rewrite f1 using the equation of ¢ in the form

A
g5 — TsAs = (—&yy +&—Apu(e)y
aQb 17}

8Qb,a)

A X
(5 40)A000+ (5 -1) Qs+ =525

8See [Martel, Merle and Raphaél 2014, Section 3] for more details.

Yy 0
8w+b’w

(3-16)

(3-17)

(3-18)
(3-19)

(3-20)

(3-21)

(3-22)
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where —Wp, ,, = bAQp o, + (0}, — Opw + Op , —©Q0b | Ob.w|?™")y. This yields
fi=fir+ fig+ fiz+ fia+ fis,

with
fig= 2/(—8yy +e—Apow(©)y(—(¥YBEY)y + 601 B — VB A (e)),

A
fi2 =25 +0) [ AQvau(-(Umer)y + o015~V dnale)

fi3= 2();—s - 1) /(Qb,a) + &)y (—=(¥Bey)y +€0i, B — VB Apw(E)),

8 w a w
fa==2f (bs b |, 220, )(—(wgey)y+e¢i,3—wBAb,w(s)>,

fis = 2/ Vb0 (=(VBEY)y + £0i,B — VB Ap,w(€).
For the term f7,1, we integrate by parts to obtain a more manageable formula:
fia=2[ Cony t o= Boa@y ey +5 - Bpa@)Vn
42 gy 6= Bpa@)y(Vpey + elon — V).

We compute these terms separately. First, we have
2 [ ey 4 = BpaE)y (5ry + 2= B o)V

—— [ Whens + e Bpo(@)

—— [ Waler + o= Do @ — ey +02) = [ Wp(oeyy +02

— _|:/ Yp(es, +26) + &2 (Yp — wg’)] —/ Vg ([—eyy + 8= Ap u(e)]* — (—&yy +2)?).

Next, we integrate by parts to obtain

- / (Dpo(©)y (@5 — VB)e
- _% /(‘Pi,B —8) (b0 +9)° — 0p, =660} ] —6£[(Qp +2)° = Op ,])

=2 [ (un = V8)(Q5)s Qo0+~ 05, — 5604,

2w

Ta [ @1n =08 (1@ + £l = 105,07+ = @ + DEQp0| Q]

—(q+ 1)8[(Qb,a> + 5)|Qb,w + 8|q_1 - Qb,a)|Qb,a)|q_1])

420 / @15 —VB)(O.0)y[(Qbe + )| 0o+ 7" — 0p o Opwl?™ —gel 0p.0l4™'].
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and

2/ (_5yy =+ ‘9)y (_W}/_!;Ey +e(¢i,B —VB))

= —2[/ Ve, + /Ei (3918 —3V5—3VE)+ / e*(3(¢ —VB) — 3 (9B - 1ﬁ)&:)"')].
Finally, by direct expansion, we have
[ @oensvpes =5 [ Vs (@00 (@oa +8)* = 0 1+ (b +))
=40 [ Vs Q) [1Qba + 7™ = 1050l + 5,1 Qp o +e117").

Collecting all the estimates above, we have

f1’1=1+11,

where

1= [13¥pel, + Gvip + V5~ VS + (o s — 0l p)e)
~2[[§(@ba +9° = 05, ~ 6605, —el(@b +)° = 0 11t} 5 — V)
+2[ @+ 6 = 05, ~ 5603 ) Qb)s (Vi — i)
10 [ Ves (20w (@ +00* = 05,1+ £(Qp0 +)°)

- / Vo ([tyy & — Ap o (@ — (—eyy +)°)

=h+ 1L+ 13+ 14+ 15,
and

11 =20 / [IQb,w+e|q+1—|Qb,w|q+1—(q+1)eQb,w|Qb,w|q—1
qg+1
_8[(Qb,w +é)] Qb,w +8|q_1 - Qb,wl Qb,a) |q—1]] ((pz{,B - WI,;)

_Zw/[(Qb,a) +8)|0pw+el? " = 0p.wl0bwl? ' —q2| 0w 1(OQbw)y(VE—9¢iB)

—26160/ V5ey ((Qh,0)y[10b0+el9 —10p.0 7 T+ey| Q0 +el?™).

For I, k =1,2,3, 4, we can use the same strategy as in [Martel, Merle and Rapha&l 2014, Proposi-
tion 3.1] to obtain

Z Iy < —u /(8yyw3 —i—sygo, B + &2 @ B)—I—Cb4 (3-23)
k=1

for some universal constant p1 > 0.
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The idea is to split the integral into three parts. We denote by /,~, 1. and I, the integration on
y < —5, ly| < % and y > %, respectively, for k = 1,2,3, 4.

On the region y < —g, using the weighted Sobolev bound introduced in [Merle 2001, Lemma 6;
Martel, Merle and Raphaél 2014, Proposition 3.1],

,(@]'p)?
Vil < 1 ([ G0+ [ 25 <o00 [+ utn 020
B

we have

5415415 S €460, 860605 + 100l [ € 46005

< a(x)/(e§ +6%) ¢ g
Hence we have 4
Yo <—p / L€ Vh + e3¢ g +e%0] ) (3-25)
k=1 y<—3z

for some wp > 0.
For the region |y| < g, we have

Zlk =-z (3e§+82—5Q482+20yQ’Q382)+0(/
ly

B
|J’\<7

(|b] + w)e? —I—s)

|<
We then introduce the following coercivity lemma:

Lemma 3.5 [Martel, Merle and Raphaél 2014, Lemma 3.4]. There exist Bg > 100, w3 > 0 such that, for
all e € H' and B > By, we have

[yl

(38 + 62 —50%24+20y0'03%?) > us3 ez—i-ez—l e2e” 2.
yi<% yi<g B

The above lemma implies immediately that
DI =—w /| e+ s+ ) (3-26)
— YiI<%

while for the region y > %, we have Y5 = ¥z’ = 0. We also have

lel oo (= 2 S N6l ¢y ) SN2 < 8(6).

Hence, we have

4
315 £ 12sali(rn ) + iy ) @+

which implies

4
S 17 < - / (+e2 +e2) gl 5. (3-27)
»>5

Combining (3-25)—(3-27), we obtain (3-23).
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Now we turn to the estimate of /5. We have

[15] < f Vp(leyy| +lel + le® + wlel)(e* + wlel? +10p,pel)

<t [ @ cun( [ Guetvy+ [ e [1P0y). a2
Combining (3-24) and the hypothesis (H1), we have

[ 0305 1000y, [ P =t [, 200 (329

/ 00 < 2 [ / & < 5(6) / & +)g) 5+ ( / eiwg)%) L (330
and

2 2 212 1.4 2q—8 2112 1.4 -3 -5
" f P9y < 0?2 / £P975 < w22 W) d [ lel?3 ey 195

2
<60 [ 3605+ ( / ei(wgﬁ) ,

where we use the fact that w||ey |7, < k for the last inequality.
From ((¢')2 )” < ¢} and (H1), we have

(/ 85%)5) =( / eeyy (V)2 + 5 / (v} ),,)
< /gZ/giyw;g + (/ 82‘/’,{,3)2

<8(x) f (35 V5 +&°¢] p)- (3-31)
Substituting (3-29)—(3-31) into (3-28), we have
1Is| < 2L < (/ e, Vp + /(82 + 85)%{,3). (3-32)
Now, we turn to the estimate of /7. We write /I in the form
IH=I1~+1",
B B

where /1= and /1~ correspond to the integration on y < —% and y > —7 respectively.
For 1<, using the fact that ¥, ~ (¢] p)* for y < —2 we have

I 5‘”(/ L (BT 4100 1" ) g p+ /
y<—%

-£ y<_,

+w/ Valey (1197 +10p.wl? el + ey el + ey | Qb0 177 )
y<—

10}, |(1el7 +&2)¢: B)

s

- - M1
< cua [ o sl +1et)+ [V Hey D) + 45 [ Dol
y=—=
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We use (H1)-(H3) and the Gagliardo—Nirenberg inequality to estimate these terms separately. First, we

have
o f 7] < 020 p)F 2 / 6773
2 2, 2\ s 3t
w( / . / (e +ey)<o,-,3)(||sy||L§ el
o
< (wnsynzz)( f 82) / &+ )¢l p < 500) / &+ )¢l 5.
and

o [Iett4] 5 < 0] )}

< w( f 82)4 ( / (& +8§)w{,3) 13 eyl 3 < 860) / & 1)l .

From ¥’ < (¢})? and (3-31), we also have

2 —1 2 1.9 -5 2 1
o / Uy el < ol (W) 3o ]9 / ()}

< @lley |7 75 ( [ +e§>(wg)%) [

2
S 8(k) / (& + )¢ g+ ( / £ (wg)i)
< 8(K)(/ siylﬂ]'g + /(82 + 85)%{,3),

o / Vley1el97" S ol E2Wp) | 2o ley (W) # 12211 €194 2
< (wueyan)nsn'"“( G +e§)<wg>%) ( / ei%ﬁ)z
< 8(0) f (& +e2)gl 5+ ( / si(wg)é)z

=< 1000/(8 +8y)(plB+C(M'1)(/8 (wB) )

H1 2 2 2
5%([8”1%34—/(8 —I—sy)go{’B).

|II<|5%(/8§yw]/3+/(82+8§)(p;,3). (3-33)

and

In conclusion, we have
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For 117, we know that ¥/ = 0 for y > —g. Using Sobolev embedding, we have
||8||ioo(y>_g) S ||8||L2(y>_§)||8y||L2(y>_g) <N <L
Thus, we have
1715 0( [ @45+ [@abein) 50860 [ €+ o5 (334

Combining (3-23), (3-32), (3-33) and (3-34), we have

fir = [+l 5 +Cb* (3-35)

for some universal constant g > 0.
Now, let us deal with f; ». It is easy to see that

fia=1+ 11,
where

- Ag

P =27 +0) [ AQna(~(Wmes)y + 600~ V8l(@ar +27 = 03,
~ A,s _ —_
T =2w (T + b) / AQpo¥B(Qbw+8)Qbo +el" " = 05001, D

The term / can be estimated by the same argument as in [Martel, Merle and Raphaél 2014, Propos-
tion 3.1]. Thus, we have

17| < 5%00 /(82 +67)¢) g+ Cbh* (@ +b?).

We mention here that the modulation estimate (2-34) in this paper is slightly different from [Martel,
Merle and Raphaél 2014, (2.29)]; i.e., there is an additional term “w|b|” on the right-hand side of (2-34).
This additional term results in the appearance of the term “w?h?” on the right-hand side of the above

As
= 1b|(B
ol

Using (2-34) and the strategy for f1,1, we have

inequality.
While for 77 , we have

=

17| S w

1
/\/’i,zloc+/|8|qw3)‘

11| < % /(82 +&2)¢] g+ Ch*(@” +b?).

A similar argument can be applied to f; x, k = 3,4,5. Together with (3-35), we conclude the proof
of (3-16).
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Control of f>. For f>, we integrate by parts, using (3-22) to get

A
12 =23y 2018 ery +6= sy + (5 +5) A0k

X 905, 90Qs,
+ (TS - 1)(Qb,a) + &)y — by abw — Ws 3a)w + VY0 |

We integrate by parts, estimating all terms like we did for fj. Together with

1
[T, S 11l S NG < 8(k),
we have

| 2] S 8() / (> + &) ¢ g +b* (> +b7). (3-36)
Control of f3. Recall that
)LS 2 . As
f3= 27 Ae(—(YBey)y + (L + Ji,j)ewi.B — VB Abo(8)) + (Ti,j)s | vi,Be” —2(j — 1)7}3‘,1'-

Integrating by parts,’ we have
fs=1+11,
where
S | ,
=% [1e-2G - 0ywa-yv33
1 )'S . /
=33 [1e=20G - 0ws - y¥3l(Qsa + 9 - 05, ~ 6205,
As
+22 [ UaAQ Qo+ - 0F,, - 5501,

A ) A
+ @ [ Pon =204 3 [y =20 -DF 0+ [ 2o

and
~ 2w A q+3 . _
1= 2220 [ (L5 -20-0)p5 -5 [X[10nar+el1=10b0l"* =4+ 16 b0l 0ol

A ] ] ;
207 [ VBAQH[(Cb.0+0) Qb el = b0l b0l ~gel 0bal ']

Similarly, we can use the same strategy as in [Martel, Merle and Raphaél 2014, Proposition 3.1] to
estimate /, which leads to

17| < 5(/()/(82 +))¢] g +b* (> + D). (3-37)

9See [Martel, Merle and Raphaél 2014, Proposition 3.1, Step 5] and [Lan 2016, (5.22)] for more details.
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More precisely, we can rewrite / as
= % f[z(z—j)wB —yVhlel
s /[2(2 VB = yVpI % [(Qpo+e)°— 05, —6£03 ]
- ZTS / VBAQL[(Qpw+8)° — 03,5603,
il @ne-2-0a+30%] [Gon- e pe

As p
+ ll[(x-,,-)s —QU =D+ + @-)7] [ 3452

= fl + fz,
where

~ 1 As ’
i= {(Ji,j)s —@G =D+ + ~7i,j)7] [ veine

We also denote by I7, IA]: and IAk>, k = 1,2, the integration over y < —g, ly| < % and y > %
respectively.
For integration over |y| < £ the estimate is straightforward, we have

|fr|+|f;|ss<x) | (e3¢ 5.
y<

While for y < —B , using (2-34), we have

151+ 1151 < (bl + lloc)/ LB +1yIe g+ ¢i.B) () + &%) +|yl¢] ge?
<8

s@laiio| [ dviat [, biviae]
y<—7% y<—*

1 99

00 5\ 100

< (161 + lloc)|:/8§(pl{,3+(/ ByIOOeBS) ([ BeBez) }
y<—7 y<—7%

2
< (|p| + lloc) X (/ Si(pz{,B +'A/zll(<))(é) < 8(K)/(8§ +82)<P,{,B + Cb*.
Now, for y > g, we first have

igi,g—y¢; g =0
for all y > B. Hence

1771 < (b] + ,k,c)/(e L2l < S(K)[(e +e)gl .

Next, for f2> , we know from (2-38) that

A =D +2i
T (1= Jy)AU-DF2i+1

A
(T j)s (Jl)s—ﬁ(l—fl) < 1]+ N joc-
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Together with (3-7), (3-8) and (3-21), we have

1 8
|12 |<(|b|+N10c)( A190)/\/’1'791%

8
9

8
< |bI(1+ S(K)Ibl_f)/\/gloc + Nijoc(1 + 8(K) N; k,C)N loc
<800 [ €& +)9] 5 + D0+ 82).
Combining the above estimates, we obtain (3-37).
Finally, for 11, from the fact
q+3
VB + ’(q— —2(j — 1))1#3 y¥p| <B ¥} B
we have
N A
15 0|2] [ QT+ 17+ .
Using |As/A| < 8(k) and the strategy for f1,1, we have
1711586 [ 2+ Dol
In conclusion, we have
AIS800 [ € +)0] 5 + 5207 1),
Control of f4. From (2-5) and (3-12), we have
Qb 1) <
1(Qb,0)s| < + |os | = (o + [b])(|b] + 1100) §(x).

Using the Sobolev bounds (3-24) and the strategy for fj 1, we have

| fa] < 5(K)(/(a)|8|q + e + 82)%{,3) < 8(k) (/ e, Vp + /(82 + 85)(01{,3).

Control of f5. From (2-34) we know that

< 8(k).

|ws| = ma

)t

Thus, by the Sobolev bounds (3-24) and the strategy for fi,;, we have

|f51 5 8() / @[l + %) i p < 5(K)( / Vbt / (&2 +8§>¢5,B)-

77

(3-38)

(3-39)

(3-40)

Combining (3-36), (3-38), (3-39) and (3-40), we conclude the proof of (3-17), and hence the proof of

Proposition 3.1.

O
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3B. Dynamical control of the tail on the right. In order to close the bootstrap bound (H3), we need the
dynamical control of the L? tail on the right introduced in [Martel, Merle and Raphaél 2014]. More
precisely, we choose a smooth function

for y <0, ,

0
¢10(y) = {ylo §010 > 0.

for y > 1,
Then we have:
Lemma 3.6 (dynamical control of the tail on the right [Martel, Merle and Raphaél 2014]). Under the
assumption of Proposition 3.1, it holds that
1 d( 2 2

W%(A /</’108 <B N1,oc +b°. (3-41)

Proof. The proof of Lemma 3.6 is exactly the same as [Martel, Merle and Raphaél 2014, Lemma 3.7].
More precisely, from (3-22), we have

1d A A
275 P106* = /¢108|:TSA8 + (—eyy +e—Apo(e)y + (Ts + b)AQb,w
X aQb, aQb,
+ (Ts - 1)(Qb,w +¢)y —bs 8bw — Wy aa)w + Y0 |
where

Ab,a)(s) = (Qb,a) + 8)5 - le),a) _a)(Qb,a) + 5)|Qb,a) + 8|q_1 + wa,w|Qb,a)|q_1-

"

We integrate the linear term by parts using the fact that y ¢, = 10¢1o for y > 1, and ¢} < ¢}, for y

large, to obtain
®10€ ﬁAg-F(—g +) :_lﬁ y(/)/ 82_2 82(/)/ _l 82(/)/ +l gz(p///

A 3 1
_STS/(/)1082_5/8§‘pio_§/82§0/10+c~/\/‘1,10c-

Next, from (2-15), (2-34), and (2-35), it is easy to obtain

Xs aQb,a) aQb,a)
‘/%08[( +b)AQba) (7_1)(Qb,w+8)y_bs b — Wg o +qu,w

While for the nonlinear term, we integrate by parts to remove all derivatives on ¢ to obtain

_ vl
‘ / o106[D 0 ()]y| < f o102 3 (lellLooiyooy) + / Sl + / 690! < 8(6) / 0%,

where we use the fact that |Qp o, | + |0} | < e /2 for y > 0 and

S b2 +Nl,loc~

lellLoo(y>0) SNt K 1.

Hence, we have
d A
— [ @062 +10=2 / 010&% < b% 4+ N 1ocs
ds A

which, together with Gronwall’s inequality, implies (3-41) immediately. O
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4. Rigidity of the dynamics in Ay, and proof of Theorem 1.3

We will classify the behavior of any solution with initial data in A, , which directly implies Theorem 1.3.
To begin, we define

t* =sup{0 <t < +oo |forall /' €[0,], u(t') € Ty} 4-1)

Assume 0 < y < ap < * < 1; then the condition on the initial data, i.e., ug € Ag,, implies * > 0.
Next, by Lemma 2.6, u(¢) admits the following geometrical decomposition on [0, 7 *]:

x—x(t)
A) )

1
u(t, x) = M/—z(ﬂ[Qb(t),w(t) + 8(1)](

The condition ug € Agy,, implies
@(0) + [leO)[| g1 + @(0) ey ()| + [6(0)] + [1 = A(0)] < (exo), (4-2)

/ y1%%(0)dy <2. (4-3)
y>0
Using Holder’s inequality, we have
N2(0) < 8(ao). (4-4)
Then let us fix a 0 < k¥ < 1 as in Propositions 2.9 and 3.1, and define
t** =sup{0 <t <t* | (H1), (H2) and (H3) hold for all ¢’ € [0, ¢]}. (4-5)

Note that from (4-2)—(4-4), we have t** > 0. Let s* = 5(¢*) and s** = s(t**).

4A. Consequence of the monotonicity formula. We derive some crucial estimates from the monotonicity
formula introduced in Section 3.
Lemma 4.1. We have the following:

(1) Almost monotonicity of the localized Sobolev norm: There exists a universal constant Ko > 1 such

that, fori = 1,2 and 0 <51 < s5 < s*,

Ni(s2)+ / / (5. )+, )¢, 5 () dyds < Ko[Ni(s)+ sup [b@)P+ sup 03(s)]. (4-6)

S€[s1,52] S€[s1,52]

Ni(s2)
A2(s2)

+ / ™ [(/ (s§+82)(s)<ﬂ§,3)+b2(s)(|b(s)|+w(s))]ds

26)
- Ni(s1) b2(s1) + w?(s1) = b%(s2) + @?(s2)
—K°(A2<s1)+[ 26 A2 D @7

(2) Control of b and w: For all 0 < 51 < 55 < s*%,

o(s2) + / “b2(s)ds SMs) + o)+ sup (S, 4-8)

s€[s1,52]
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(3) Control of b/A?: Let ¢c1 = (m/(m + 2))G’(0) > 0, where G is the C? function introduced in (2-40).
Then there exists a universal constant K1 > 1 such that, for all 0 < s1 < sp < s**

b(s2) + cro(sz) b(Sl) + c1w(s1) <K (Nl(sl) . b2(S1) +a)2(s1) n bz(sz) +a)2(S2)). (4-9)

A2(s2) A2(s1) A2(s1) A2(s1) A2(s2)

(4) Refined control of A: Let Ao(s) = A(s)(1 — J1(s))% Then there exists a universal constant K» > 1
such that, for all s € [0, s**],

(AO)S
Ao

Proof. Proof of (4-6) and (4-8). From (2-50), we have

1 b| < KalAG + (Ib] + @)W + [B])]. (4-10)

d
%G(a)) + b2 < _bs + CNl,loc-

Integrating from s to 55, we have
52 52 §2

G+ [ 55 [ Mt G)+ b6 -b60I < [ N+ GG+ swp (b
N S1 S1 SE[s1,52]

Since G(w) ~ w, we obtain (4-8).
Next, from the monotonicity formulas (3-11) and (3-13) we obtain

Ni(52) + / / (2(5.7) +£2(5. ) @l p () dy ds
l 5/\fi(s1)+[ sup b2(s)+ sup a)z(s)]/ b%. (4-11)

5€[s1,52] 5€[s1,52]
Combining (4-8) and (4-11), we obtain (4-6).
Proof of (4-7). First, from (2-50) and (2-35), we have

2/S2 I /32 [_|b|bs —wsG'(w)|b] + CNT joc + 5(K)|b|3]
Ky N

a2 - A2

52 52 A oc bz 52 b3
=373 +0(/ b 0 )+8( )/ BL (4-12)
S1 S1

Recall that @ = y/A™. Then from (2-34) we have
/SZwbz_ SZAwa+/S2wb As+b
P EE L AW
1 52 w 52 a)b2 52 N] loc
< — | b+34 — 40 ’
<ova ) o) [ 55 o( ) 55)

52 2 2
L[ b 80 / wb”

- m+2 Jg,
N 0(/ Nl,loc b%(s1) + @*(s1)  b?(s2) + w?(s2)
51 A2 A2(s1) A2(s2)

1 1

1b]b|

). (4-13)
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From (2-50) and (2-35), we have

52 w 52 w m 2 ,
-/;1 )L_z(_bS)E/;I )L_2|:(2+F))b +wsG ((1))+C(H1)N1,10C:|

m 52 wh? 2 wswG'(w)
= (2+—) —2+/ T aim
10/ Js, 4 51 (v/o) /m

2 Mjoe | b2 (s1)+02(s1) | b?(s2)+w?(s2)
ro( [ e iy ) 4
From (2-34) and (2-35) again, we have
/SZ wswG'(@)| _ [M(w(s2)) — M(w(s1)] < w?(s1) C02(S2), 4-15)
si (y/w)?/m y2/m A2(s1)  A%(s2)

where a, ) )
M(a))=/ xw G (x) dx ~ w*tm
0

Therefore, combining (4-13)—(4-15), we have

52 bz 2+ 1 52 b2
[ = (s row) [55
S1 S1
2 M1,10c |:b2(51) +w3(s1) | b%(s2) + wz(sz)D
+ 0 / — 4 + . (4-16
( Y A2s1) 32(s) #10
Taking x > 0 small enough, from (4-12) and (4-16) we have

/sz b*(w + b)) </s2 N1,10c+|:b2(51)+w2(51)+52(S2)+w2(52)i|
s A2 Ts A2 A2(s1) A2(s2) '

Now, integrating the monotonicity formula (3-12), we have

NiGs2) [ , % p2(5) (@(s) + b))
wm*fsl A2()[(/ CRaROl B)} AZ( )+ ”/ 2e O

which implies (4-7) immediately.

(4-17)

1 1

Proof of (4-9). The proof of (4-9) is based on 1ntegrat1ng the equation of /A2, i.e., (2-42). More precisely,
from (2-34), (2-42) and the fact that |J| < N, (recall that J given by (2-41) is a well-localized L?
scalar product), we have

b o) wsG'(w) g
( /,\2 ) + ez e

1 loc

b b ws G’
=z) Tt T
As b 1
2 ‘ O(Az(/se 10+(a)+|b|)b))
b 2, 2

|J|+0 )LZ g“e” 10 + (w +|b))b

< O(pwl,m o |b|)b2>).
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We integrate this estimate in time using (4-7) to get

b §2 52 G/ b2 2 b2 2
b +/ s 2(60)61 < -/\[21(51) N (S1)2+60 (1) | (S2)2+60 (s2) (4-18)
A 51 A A%(s1) A%(s1) A%(s2)
Note that [e/ —1] <2|J| < ffc Together with (4-7), we have
b 52 b |2 b 52
|:A2 Jj| = A_Z H: leloc]
o . (4-19)
_Lb|® Lo Ni(s1) N b2(s1) + w*(s1) N b?(s2) + w*(s2)
A%, A2(s1) A2(s1) A2(s2) '
Next, from (2-35), (4-7) and |J| < Nllfc, we have
/Sz 2sG'@) syl / (0 + )b + Ni e
51 A2 ~ s A2
< Ni(s1) | b%(s1) + w?(s1) | b%(52) + w?(s2) (4-20)
A2(s1) A2(s1) A2(s2)

Finally, recall w = y/A™, so we have

/SZ wsG'(®) [ w;G'(w)  T(w)|?
s A2y em a2

1
where

Y(w) =

Z ,( )
xmG'(x)dx.
a)2/m 0

Recall that G is the C? function introduced in (2-40). We then have ¥ € C? and ¢; = ¥/(0) =
(m/(m +2))G’(0) > 0. Hence, we have

2 0;G'(w) _ ciw]” w?(s1) | 0*(s2)
[ 25 =5% . O(AZ(sl) +A2<s2>)‘ @20

Combining (4-18)—(4-21), we conclude the proof of (4-9).
Proof of (4-10). From (3-14), we have

1

A
——1 <|.11|</\/2 < 8(k);
Ao
thus we obtain from (2-38)
(AO)S )Ls J1
1—-J1)—+b-2(J - b
e 1—J1 (I=J)—+ (J1)s =7

s/ 5 4 (b + )N+ b,

This concludes the proof of (4-10), and hence the proof of Lemma 4.1. O
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4B. Rigidity dynamics in Ay,. In this part, we will give a specific classification for the asymptotic
behavior of solution with initial data in Ayg,.
We first introduce the separation time #;":

xJO it |5(0)+c10(0)] = C* (N1 (0)+57(0)+w?(0)),

“lsupto <t <* [forall £ € [0.1], |p(t)+e10(t)| = C* NG )+ () +0? @)} else, )

where!?
C* =100(K; + KoK>) > 0. (4-23)

Then we have:

Proposition 4.2 (rigidity dynamics). There exist universal constants 0 <y < g K a* < land C* > 1
such that the following hold. Let ug € Aa, and u(t) be the corresponding solution to (gKdV,,). Then we
have:

(1) The following trichotomy holds:

Blow down: If t{ =t* thent{ =t* =T = +o0, with
|b(t)| + Na(t) >0 ast — +o0, (4-24)
M) ~ T, x() ~ 14T ast — +o0. (4-25)
Exit: If tf < t* with
b(t}) +cro(1) = —C* N1 (1) + 02 (t]) + 0> (1)),

then t* < T = +oo0. In particular,

A0>0,Ag”i‘l;f<w*,xoeu% ui) =7 1/2 *o y(x)t—oxo) L2 = (+-20)
Movreover, we have
b(t*) < —C(a*) <0, A(*)> g((“:)) > 1. (4-27)
Soliton: If t{ < t* with
b(t) + cro(t]) = C*N1 (1)) + b* (1) + 0> (1)),
then t* = T = +00. Moreover, we have
Na(t)+ |b()] >0 ast — +oo, (4-28)
A(t) =Ao(1+0(1)), x(t)= (1 +o(l)) ast— oo, (4-29)

OO

for some A € (0, +00).

(2) All of the three scenarios introduced in (1) are known to occur. Moreover, the initial data sets which
lead to the soliton and exit cases are open in Ay, (under the topology of H InL2(yl Vi 0 dy)).

10Recall that Ko, K1, K2 and ¢ were introduced in Lemma 4.1.
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Remark 4.3. It is easy to see Proposition 4.2 implies Theorem 1.3 immediately.

Remark 4.4. The constant C* chosen here is not sharp. We can replace it by some slightly different
ones.

Proof of Proposition 4.2. The basic idea of the proof is to show that the assumptions (H1)—(H3) introduced
in Proposition 3.1 hold for all ¢ € [0,¢) (i.e., as long as the solution is close to the soliton manifold).
And then together with the estimates obtained in Lemma 4.1, we can show that the error term & does not
perturb the ODE system, and hence the parameters (b, A, x) have the same asymptotic behavior as the
formal system (1-11), which concludes the proof of Theorem 1.3.

In the blow-down and exit cases, this is done by improving the estimates in (H1)—(H3) on [0, £ **]
(recall that ¢** is the largest time ¢ such that (H1)—(H3) hold on [0, ¢]), and then a standard bootstrap
argument shows that 1** = ¢*, i.e., (H1)—(H3) hold on [0, #*), while in the soliton case it seems hard to
improve all the estimates on [0, **]. But, fortunately, we can use a similar bootstrap argument to show
that some modified assumptions (H1)’, (H2)’, (H3)’ hold on [0, *], which is also enough to obtain the

asymptotic behavior of the parameters.

I. The blow-down case. Assume that ;" = ¢*;i.e., for all # € [0, %],

b(1) + c1o(t)] < C*(N1(1) + b>(1) + 0*(1)). (4-30)
Step 1: Closing the bootstrap. We claim that 1** = t*; i.e., the bootstrap assumptions (H1), (H2) and
(H3) hold on [0, £*].
Indeed, we claim that for all s € [0, s**),
w(s) +[b(s)| + lle(s) L2 + N2 (s) < S(wo), (4-31)
A(s) = 2, (4-32)
/ v (s)dy <5. (4-33)
y>0

Then choosing o*, ag, y such that 0 < y < a9 K o™ < k, we can see that (4-31)—(4-33) imply ** =¢*
immediately.
First, from (4-30) we have, for all s € [0, s**),

b(s) < 4C*Ni(s) —|b(s)], (4-34)
1b(s)] S N1(s) + w(s), (4-35)
w(s) SNi(s) + |b(s)]. (4-36)

Then we apply (4-34) and (4-36) to (4-10) to obtain

(AO)S
0
> —5C*N7 +|b| =8(k)|b| = —MN.

> b N\ —Clo+ BN + b))
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Integrating this from s; to s, for some 0 <57 < 55 <s** and using (4-6), we have
A(s2) = T5A(s1). (4-37)

In particular, we know from (4-2) that for all s € [0, s**)

A(s) = 5A(0) > 2. (4-38)
By our choice of y, we have
4
W) = 7y <27 5 8(e0) (4-39)

Next, from (4-4), (4-6) and (4-35), we have for all s € [0, s**)

Na(s) SN2(0)+ sup N3 (s)+ sup w’(s"),

s’€[0,s] s’€[0,s]
which together with (4-35) implies
|b(s)| +Na(s) < (o)

for all s € [0, s**). Then from (2-32) and the condition on the initial data, we obtain

le(s)l|z2 < 8(xo)- (4-40)
From (2-33) and the condition on the initial data, we have
ley ()17, < 8(a0) + lley () 11757
/\z(s) ~ 0 )Lm+2(s)
Since |l&y(0)[|z2 < 8(aeg), A(0) ~ 1, from a standard bootstrap argument we have
2
&y (s
lley ()72 < 8(0).
A2 (s)
Thus, we have
ey (T
0()lley ()7 S ¥y == S 8(e0). (4-41)
AT (s)
Finally, let us integrate (3-41) from O to s, using (4-3), (4-6), (4-8), (4-37) and (4-38) to obtain

AIO 0 K /\10 !
/fploez(S) dy < ATES;/QDN?E‘Z(O) dy+C/0 AT(&))(MJOC(S’)+1?2(S/)) ds’'

N
<3+4+C / (M1oc(s") + b2 (s")) ds’ <3 +8(k) < 5.
0

We therefore conclude the proof of (4-31)—(4-33), and obtain ** =¢*. Since 0 < o9 <K ¥, the estimate
(4-31) implies t** =t* =T = 4o0.
Step 2: Proof of (4-24) and (4-25). We first claim that A(¢) — 400 as t — +o00. Let

+o0 1
S = —d 0, .
/0 0 7 € (0, +00]
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From (2-35), (4-6), (4-8) and (4-36) we have
+o00 S S
[ torddr = [ lolds 5 [ Nai(s) + 26D ds < +x.
0 0 0

+o00 )/2 S 5 S .
/0 A3+2m () dt =/0 w(s) dSS/O (N2,10c(s) + b7 (5)) ds < 4o0.

This leads to A(t) — 400 as t — +o00, or equivalently lim;— 4o @(2) = 0.
Next, we claim that S = +o00. Otherwise, b(s), w(s) € L1 ([0, S)). Applying this to (4-10), we obtain

(A'O)S
Ao

e L(]0,9)).

But since A¢(s) — +00 as s — S, we have

S—6
0 (AO)S I /
/(; TO(S )dS

_ Ao(S — o)
_‘IOg( 70(0) )’*m

as 8o — 0, which leads to a contradiction.
Now we can prove (4-24) and (4-25). To do this, we claim that, for all s € [0, +00),

N
A (s)Na(s) —1—/ A (s (e2(s") + si (")Ngy pds’ <1 (4-42)
0
From (3-11) we have
Li()V"Jf )< —i | (€ +ed)gh p+ O(b* + w?b?) — s (4-43)
A ds 2,1) =—H & 8y §02,B w m 1 2,1- -

From (2-34), (3-13), (3-21) and (4-38), we have

1 1 8
< (|b|+N12,10c)[(1+W9(S))N29,10c+/8§¢3]

5b2+5(,<)/(82+e§)<p§,3.

As
7-7:2,1

Substituting this into (4-43) and integrating from O to s, using (4-35) and (4-36), we have,
N2+ [ AN a5 5 [ 46046 ds 80 [ A d
<y /O "3 ds () /0 MM () ds’
<y fo B2y ds'+5(0) /0 T M) ds'

Together with (4-8), we obtain (4-42).
Since A(s) - +o0 as s — +00, we have

No(s) SAT"(s) >0 ass— +oo. (4-44)
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Now, using (4-10), (4-30) and (4-35), we have

‘_ (Ao)s (Ao)s
Ao Ao

1
SN +b%+w? + (Jb] + ©)(NF + |b]) SN + (K)o,

+clw‘5‘ +b'+|b+61w|

Multiplying the above inequality by A{' and integrating from O to s, we obtain

N N S
—C/ Ao N + %clys 5/ (Ao)sAl 1 < C/ Ao N1 +2c1ys.
0 0 0
From (4-42) and |1 —A/A¢| < é(k), we obtain

A" (s) ~s ass — 400.

We then have

N
+3 a+1
t(s)=/ /\3(s/)ds/~smm =595 ass— 400,
0

which implies

At) ~ tﬁzrl ast — +o0.

Next, from (4-30) and (4-35), we have
b(t) >0 ast— +oo.

Finally, integrating (2-34), we obtain

x(t) ~ tg%r? ast — 400,
which concludes the proof of (4-24) and (4-25).
II. The exit case. Assume ¢; < ¢* with

b(1f) + crot) < =C* N1 (1) + b2 (1) + 0> (1)) (4-45)

Step 1: Closing the bootstrap. First of all, following the same procedure as in the blow-down case, we
have, for all s € [0, s7],

w(s) + |b(s)| + lle(s) 2 4+ @(s) ey () T2 + N2(s) < 8(wo), (4-46)
A(s) = 2, (4-47)
/ 192 (s) dy < 5. (4-48)

y>0

In particular, we have ¢;" < ** <t* Now, we claim t** =¢* < T = 4o0.

To prove this, we use a standard bootstrap argument by improving (H1), (H2) and (H3) on [¢]", t**].
Let
_ b)) + cro(ty)

E*
A2(t])

< 0.
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It is easy to see that [£*| < 6(cg). Now we observe from (4-9) that, for all s € [s7,s**),

pr_ R PPO 020 _bs) Ferwls) L b2s) + o)
A2(s) A2(s) 2 A2(s)
which implies
—b(s) 2 w(s) >0, (4-49)
o(s) _ b(s) _
3*—C 5~ 0. 4-50
22() = 2206) ~ 3 (4-50)
‘We then observe from (4-10) and (4-49) that
(AO)s =
_N oC»
o 1,1
which after integration, yields the almost monotonicity:
forall sT <s1 <s2 <s™, A(s2) > )L(sl) % (4-51)

So we obtain for all s € [s], s*%),

w(s)
A2(s)
Together with (4-7) and (4-50), we have, for all s € [s], s**),

|b(s)| + Na(s)
A2(s)

which improves (H2) if we choose o9 < . Next, using the same strategy as in the blow-down case, we

w(s) + ISYSEICTVE

< (o),

have, for all s € [s],s**),
[owsrar=<1

Then, (H3) is improved. It now only remains to improve (H1). Since for all ¢ € [t,¢*) we have
u(t) € Ta+,y, following the argument in Lemma 2.6, for all ¢ € [0,7*) we have |b(7)| < 6(a™). By (2-32),
(4-6), and (4-49), we have, for all s € [s], s*%),

@(s) + [[e(s) 2 + Na(s) < (™).
Now, following from the same argument as for (4-41), we have

w(s)lley () < 8(o).

Then (H1) is improved, due to our choice of the universal constant, i.e., «* < k.

In conclusion, we have proved ** = t*.

Step 2: Proof of (4-26) and (4-27). We first claim that the exit case occurs in finite time * < +o00.
Dividing (4-10) by A2, and using (4-49) to estimate on [1]", 1*),

E* Nl loc
3

Nl loc
A2

<(Ao): < —3*+C
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Integrating from ;" to ¢, we get

E* -t oc oc
| (t t) C/ Nll N11

A2

< Ao(t) —Ao(t]) <3|L* |(z—t1)+C2/

From (4-51), we have

Nl loc

E3
1

/ AN e S AGS) / Nioe < 8GOA().

Thus, for all ¢ € [t], %),
(1@ = 1) + Ao () < A1) < 43|t —15) + Ao (1))

Next, from (4-49), we have for all ¢ € [t],1%),

*
—H00JE* (€710 — 1) + Ao < b(e) < — e — 1) + Aol
If t* = T = +o00, then the above estimate leads to b(t) — —oo as t — +o00, which contradicts the fact
that |b(¢)| < 8(a™) forall ¢ € [t],t*). Thus, we have t* < T = +o0.

Finally, since 0 < * < 400, by the definition of #*, we must have —b(t*) > C(a™) > 0. While from

(4-49), we have
b)) . C@”)

A2(t*) > = 1,
2306 % )
which concludes the proof of (4-26) and (4-27).
III. The soliton case. Assume ¢]" < ¢* with
b(t}) + cro(t}) = C*N1(t]) + > (1)) + 0 (t])) > 0. (4-52)

Step I: Estimates on the rescaled solution. Similar to the exit case, we have, for all s € [0, s7],

w(s) +[b(s)| + [le(s)] 2 + w(S)||8y (T2 +Na(s) < 8(ao), (4-53)
OES (4-54)
/ y0e2(s)dy < 5. (4-55)

y>0

But here we can’t directly prove that ** = ¢* as we did in the exit case. The main difficulty is that we
lack some control on the upper bound of A(#{"), which makes it hard to improve the bootstrap assumptions
(H2) and (H3). However, we will see that the bootstrap assumptions (H2) and (H3) are related to the
scaling symmetry of the problem. If we use the pseudoscaling rule (1-1) on [¢]", *) to rescale A(#]") to I,
then we can get the desired result. Roughly speaking, on [¢{", #*], the bootstrap assumptions (H2) and
(H3) should be replaced by some other suitable assumptions (H2)" and (H3)'.
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More precisely, we introduce the following change of coordinates. For all 1 € [t]", ¢*), let
t—tf _x—x@) vy t_*_t*—tl*
B YT ey VT oameyy U T By

(7, %) = A2u(W3A) T+ 15, A E + x(tF)).

=1

=

Then, from the pseudoscaling rule (1-1), #(z, X) is a solution to the Cauchy problem
07t + (izz +u° —yulu|?Hz =0, (7,%)€[0,*) xR,
1(0,%) = Qp(r),0(n(¥) +e(t], %) € H' (R).

Moreover, for all 7 € [0, 1*) we define

~ ~ _ A k?’ * * ~ =
BE.y) = Q2T+ iy A = (j(t),f)” L e = s
3(+%\ 7 *\ *
b)Y = bR +10), w1 = 2 (“);Z%) x0)
1
Then, from (2-21), it is easy to check that
I 1 [ x—x()
u(t,x) = —ZI/Z(Z_) [Q;;(,-),a—,(;) +8(t)](—/_\(l_) ),

with
(€(5), Qai)) = (6(5), AQsi)) = (6(5), YAQ4;)) =0

where (5, y) are the scaling-invariant variables

[P X%
=) ret T e

We then introduce the weighted Sobolev norms

Ki®) = [ B6.508() + 26 9)6.8() d7.
Kiws) = [ 26,501 551 5.

where ¢; p and Y p are the weight functions introduced in Section 3.

(4-56)

(4-57)

(4-58)

(4-59)

(4-60)

(4-61)

From now on, for all 7 € [0,7*), we let 1 = A3(¢)7 + ¢ In this setting, we have 5(7) = s(t) — s7}.

Since the pseudoscaling rule (1-1) is L2 invariant, we have

u(t) € Tary <= u(t) € Tax,y,
which yields
1* =sup{0 <7 < +oo|forall ' €[0,7], u(t') € T+ 7}

Next, let ¥ > 0 be the universal constant introduced in Proposition 2.9, Proposition 3.1 and Lemma 4.1.

We then define the following bootstrap assumptions for the rescaled solution (7, X). For all 5 € [0, 5(7)):
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(H1)" Scaling-invariant bound:
&) +16G)| + N2 + [EG) L2 + 0@ E5 G172 <. (4-62)
(H2)" Bound related to H! scaling:

0G®) + b+ N2() _

~ 4-63
A2(5) (+69)
(H3)" L? weighted bound on the right:
1
S1022(c 5y T 5
82(5,7)dy <50(1+ = . (4-64)
fy_>0y ($,y)dy ( 110(5))
We define ** as

** =sup{0 <7 <1*| (H1), (H2) and (H3)' hold for all t' € [0,7]}. (4-65)

Our goal here is to prove that ¢
§* =5@%*), 5 =5(@**). Since

** — [* = 400, which gives us the desired asymptotic behaviors.!! Let

M0)=1, X(0)=0, bO0)=b(t]), @0)=w(]), &0.5)=e(].7). 7Sy, (4-66)

we know from (4-53)—(4-55), that s** > 0.
On the other hand, on [0, 5**), all conditions of Propositions 2.9 and 3.1 and Lemmas 3.6 and 4.1 are
satisfied for i(z, ). Repeating the same procedure, we have:

Lemma 4.5 (estimates for the rescaled solution). For all § € [0,5**) or equivalently s € [s,s] +5**),
all estimates of Propositions 2.9 and 3.1 and Lemmas 3.6 and 4.1 hold with

t, x,u,y, A1), b(t), x(t), w(t),e(t),s,y)
replaced by
(fv )?’ I’_l’ J79 X(lT)i 5(t_)’ ')E(t_)’ CZ)(t_)’ é(f)’ E’ .)_})
Remark 4.6. For simplicity, we skip the statement of these similar estimates for u. We also refer to the
equation number of the corresponding inequality for u(¢), when we need to use these estimates for (7).

Step 2: Closing the bootstrap. In this part, we will close the bootstrap argument to show that ** =
t* = 4o00. This is done through the following steps:

(1) We prove that for 7 large enough, we have &(7) > |b(7)|, which coincides with the formal ODE
system (1-11) in the soliton region, where we have w(t) converges to a positive constant, while b(z)
converges to 0 as  — +o0. Indeed, if |5(7)| = &(7) holds for all 7 € [0, 7**], we will obtain finite time
blow-up if 5(0) > 0 or exit behavior if 5(0) < 0. Both of them lead to a contradiction.

Hgince A(ll* ) = 1, we know that (H1) is equivalent to (H1)" and (H2) is weaker than (H2)’, while (H3) is stronger than (H3)'.
It is hard to determine whether 1** = A3 (1) 7** + ¢} holds.
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(2) The hardest part of the analysis is to prove that the scaling parameter A is bounded from both above

and below for all 7 € [0, 7**]. This is done by proving that!?

! ci( 2 e >0
(AZ)S y(AZ)

(3) The estimates of the rest of the terms can be done by arguments similar to those in the blow-down
and exit regions.

Now we turn to the proof of 7** = * = +o00. We first define

_{o it [6(0)] < 1g5¢1(0),
" |sup{0 <7 <7* |forallt’ €[0,7], |b(t")| > ﬁcla')(t’)} else.

iy

Our first observation is that 7 < 7*. Otherwise, since £} = t* > t** > 0, we have, for all 7 € [0, 1**),
b(f) #0.

If b(0) > 0, we claim that 7** = ty =t* = +o0. To prove this, we need to improve (H1)’, (H2)" and
(H3)' on [0, #**]. Indeed, from the definition of 7', we have

0 <o) S b() (4-67)

for all ¢ € [0, 7**). Applying this to (4-10), we have

05 < b+ O(Na.100) + 8()|b].

Integrating this from 0 to 7 using (4-6) and the fact that A(0) = 1, we obtain the almost monotonicity
forall 0 <51 <5, <5**, A(5) < QA1) < 3. (4-68)
On the other hand, we learn from (4-9), (4-52) and (4-66), that for all 5 € [0, 5**)
Do e b2 (5) + &% (5) - b(5) + c10(5) _ ot LK b2 (5) + @2 (5)

4 _ — 4 , 4-69
100 TR T 22G) 100 G o
where ~
. b(0)+c10(0 . ,
0< ™= % =b(t]) +cro(t]) < 8(ao).
Together with (4-67), we have for all 5 € [0, 5*%*)
bG) @G) _ 5
_ ~ 0" <), =—— S LF < 8(ap). 4-70
20 < 8(o) 26G) (o) (4-70)
Then from (4-68), (4-6) and (4-7), we have for all § € [0, §**)
T S0, a0 +6() + 50 S T+ o) = Ao @71)
5

128ee (4-88) and (4-90) for details.
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Then, from (2-32), (4-53) and fact

(0, %) = Qp(er)wer)(X) +e(tf, X),

we know that

166) 12 < 8(eo) + ‘ / 72(0) - f 02|
< 8(@o) + et L2 + BUH|? + 02 (1F) < (o). 4-72)

Now, from (2-33) and (4-71), we have

R Ol & @I
SOIOI: = T S a0+ (7 ) +|

<
M
D1I

@(0))]%
where E (ii(0)) is the energy of the Cauchy problem (4-58), i.e.,

EaO) = [ #0)-¢ [ a0+ [loe.
Since
10, %) = A2 () u(t A(tHE + x (1)),
from the energy conservation law of (gKdV, ) and the condition on the initial data, we have

. E(u1(0))

20y | =BG = 1y Eol £ 8(@o)
1

§\w

|7 E(i1(0)] =

Thus, for all 5 € [0, 5**), we have
@ E5E7> < 3eo) + @E)E G722
From (4-53) and (4-66), we have
@(0)85(0) 75 = w(s7) lley (DT> < (o).
Then a standard bootstrap argument leads to

d($)E5()7> < 8(eo) (4-73)

for all § € [0, §*%).
Finally, integrating (3-41), using (4-6) and (4-68) we obtain

[ @654 y<w()/¢1o<y>e( 7 dy+ = m(s)[ O e +57)

[s+ Ci10) /O (Tt +52)] PR

110(5) ’

1
= 4-74
< Tog, (4-74)
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Combining (4-70)—(4-74), we conclude that 7** = 7*. Since all H! solutions of (4-58) are global in time,
we must have 1** = * = +00, provided that ag < a*. Now we substitute (4-70) into (4-10) to obtain

Z* Nl loc Nl IOC
—-C —(Ao); <3(*+C
3 lz ( O)t + )k
Integrating in time, we have for all ¢ € [0, +00)
N l loc

0<A0(t)</\(0)——+C/ .

From (4-68) and (4-6) we have

P 5 §
/ N_l,loc :/ Z(T)/\—/l’loc(f)df 5/ N1joe(t)dT <8(k),
0 A2 0 0

which implies that the solution blows up in finite time. This is a contradiction.

Now we consider the other case 5(0) < 0. We claim again that Ly =t** =1* = +o0. It is also done
by improving the three bootstrap assumptions. First, we know from (4-9), (4-52) and (4-66) that (4-69)
still holds in this case. And the definition of ;' implies

B b(3) a0

0<{*S——" v —2, (4-75)
A2(3)  A%(3)
Then we apply the fact that 0 < @ < —b to (4-10) to obtain
Xo)s _ _
ok~ 15— O(Waue0)
Ao
Integrating in time we have
forall 0 <§; <5 <5, A(2) = A (1) > 2, (4-76)
which yields for all 5 € [0, §**
o(s) _ _
_ <y < 8(xo). 4-77)
20 ¥ < 8(xo)
From (4-75), (4-6) and (4-7), we get
= N2(B)+ |G
M26) +166) + 22PN s, @78)
A2(3)
Using the same argument as we did for (4-72)—(4-74), we have
IE®)Iz2 < 8(c0), @) E5 ()72 < S(o), /901052(5) dy <17. (4-79)

Combining (4-77)—(4-79), we conclude that t** = * = +o00. But from (4-75), we have

b~ @@) = g (0% > 0. (4-80)
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On the other hand, from (4-8), we have

5** _
[ b2(s") ds' < 1.
0

The above two estimates imply

+o0 1
= / - dt < 400,
0 A3(7)

which leads to )_L(t_,,) — 400 as n — +oo for some sequence ¢, — +00 or equivalently limy,—, 4 oo @ (f) =0.
This contradicts (4-80).
In conclusion, we have proved that 7 < t* with

b(73)] < 15¢16(E5).

Let 55 = 5(;). Repeating the same procedure as before, we have for all § € [0, 53]

@)+ 1bG)| + 1EG) L2 + @5 G)IT> +N2(3) < 8(a). (4-81)
@(3) + |bG)| + N2(5)
2G) < 8(o). (4-82)
=10=2 /5y 75 B
/)7>0y g (S)dy§7(l+ilo(§))' (4-83)

In particular, we have £ < ** < ¢*. Similarly, we need to improve the three bootstrap assumptions on
£, 1**) to obtain ** =1* = +o0.
[£;,1*%) to obtain ** =1* = +

First, it is easy to see that (4-69) holds on [55, 5**). So the definition of 55 yields'?

Q'* < C]CZ)(E;) < 2'*

= 4-84
200 — A2(5%) —20 "’ (4-84)
which implies
- 2 - 2
0* \m+2 1 0* \m+z
) <)
10\ 1y 12(32) 10\ c17
Next, we let
_ % _ 101
C1 = 10001 <Cy, Cz— 1006‘1 > (1.

Then, we learn from (4-69) that, for all 5 € [55,5**),

99 7o _ BG) +C20G) 1 66) 0(52(5) +a‘)2(§))

1000 = 22(3) 100 A2 (5) A2(5)
- E(E)j-(,:zcb(i)_c_lf?)(i_) +8(K)('5(§)jrC_2a3(§) +‘fb(5_) )
22(5) 100 12(5) A2(5) 22(5)

13Recall that ¢q = G’ (0) > 0, where G is the C 2 function introduced in (2-40).
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which implies!'#

49, b))+ Cado(5) 1 @o(5)
22 _ - 4-86
500 = A3(5) 200 A2(s) (4-86)
where )
e
wo(5) = 181(5).
Substituting (4-10) into (4-86), using (4-7) and the fact that!®
b(s) + Cza)o(s)
A3(5)
we have
497 _ 101( (A0)s N Cza_)o(i)) 1 (b(s)+C2wo(S))_C_10_)0(5)
500 ~ 100\ 33 22(3) 100 22 (3) 200 A2(5)
N 101K, N1(3) 5(/{)()1}(5) + Coao(3)| | @o(5) )
100 22(5) A3(5) A2(5)
_ 1ot ( (Xo)s n Cza')o(i)) 1 (b(S) + Czwo(S)) _c1 wo(s)
=100 A3 A2(5) 100 A2(5) 300 A2(3)
101Ko K> (N1(0) + b2(0) + &2(0)) b(5) 4+ Cado(5)| | @o(5)
+ = +68(k) =—— =5
100 22(0) A2(5) A3 ()
_lol ( (X0)s Czcﬁo(i)) n 51KoK2 (N1(0) + b%(0) + 652(0))
= 100 23 22(5) 50 22(0)
(4-87)
From (4-52) and (4-66), we have
A - 12 2
= b(O)_+ c10(0) > 100(K; + KoK» )(NI(O) +b%(0) + @ (0))
22(0) A2(0)
So (4-87) implies that for all § € [55,5**),
1 1 — 1 1+% 9 %
() er(m) = o
0/s 0
Similar to (4-86), we have
517 _ bG)+Cido() | c1 @0B) . |bE) + Cado(5)
00T e 200mm )' 26) @5

14Here we use the fact that |1 — (A/X0)| S [T 1] S 8(k).
15This is a direct consequence of (4-86).
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which leads to

Slpe . 99 (_(/_\0)5 +C1650(§)) L (15<5)+clcao(s)) L €1 B0G)

500 =100\ 23 22(5) 100 12(5) 200 12(3)
99K, N1 (5) b(3) + C200(3) | | |@o(5)
100 22(5) —0 A2(3) &

0 0 0

and

S5lgw o 101( (Ko)s+C1cDo(§)) 1 (b(s)+clw0(s))+ c1 @o(5)

500 =100\ 33 22(5) 100 2(5) 200 Az(s)
101K, Ny (5) 5 )('b(s)JrCza')o(E) wo(3) )
100 12() A2(3) A23)1)

Using the same strategy as (4-87), and discussing the sign of (b(5) + C1@¢(3))/A2 0(5), we have

e NE

Then we need following basic lemma:

Lemma 4.7. Let F: [0, x9) — (0, +00) be a C! function. Let v > 0, L > 0 be two positive constants.
Then we have:
(1) If for all x € [0, x9)
Fx+F'"™>1L,
then for all x € [0, xo),
F(x) > min(F(0), LT#v).
(2) If forall x € [0, xg)
Fe+F'™ <L,
then for all x € [0, xo),
F(x) < max(F(0), LT#).

It is easy to prove Lemma 4.7 by standard ODE theory. Now we apply Lemma 4.7 to (4-88) and (4-90)
on [53,5**), using (4-85) to obtain

- 2 - 2
7* \ni2 1 7% \mT2
B 5(E)
10T\ ¢1y A2(s) ~ 9 \ay
for all § € [53,5**). This also implies that, for all § € [55,5**),
5G) ~ 7 (@) < 8@0), 2O P < b(a). (4-92)

A2(5)
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From (4-86) and (4-89), we have

bG) + Cado(5) _ 495 bE) +CranG) _ 5,

a2Gs) 507 A2(5) ’
together with (4-92), we have
E(E) 7 = 2w
= | S <o), bS] Sy (LT) 2 < 8(ao). (4-93)
A2(5)

Again, from the mass conservation law (2-32), the energy conservation law (2-33) and the almost
monotonicity (4-6), (4-7), we have for all § € [55,5*%)

N2 (5)
A2(3)

1EG) 22 + ()85 G)IT> + N2 (5) + < 8(ao). (4-94)

Finally, we learn from (4-91) that, for all 55 <§; < 3§, <§*%,

o) =(36) = () =

Then for all 5 € [§5,5**), we integrate (3-41) from 55 to § to obtain

o B ilO(g*) o .
[oon26 a5 =52 [onmees. nas+

Xlo oX
< ﬁ X 7(1 +
A10(3)

1
< 28(1 + iT(S_)) +38(k) < 30(1 +

C
/_\10(5)

s - - -
/: AIO(Nl,loc + bz)
52

_ +4C/ N1oe + b?
Am@)) [ W8

= . 4-95
) s

Combining (4-92)—(4-95), we have improved (H1)’, (H2)" and (H3)’; hence t** = t* = +o00. This
also implies t* = +o0.

Step 3: Proof of (4-28) and (4-29). Now it is sufficient to prove
b))+ N2(f) =0, A7) = Aoo € (0, +00)

as  — +oo. First of all, from (4-91), we know that

+o00 1
E**=§*=/ _ dt = 4o00.
o Av)

Then we claim that bgb € L!((0, +00)). Indeed, from (2-50), we have

_Ll

|bbs + @5G’ (&)b| 552+/52e 0 e L1((0, +00)).
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+15)D - 0(152 +/§2e—1%).
The above two estimates imply

+oo +00 _
/0 |bsb(s")| ds’ =/0 %|(b2)§| < 400.

From (2-34), we have

>Jl|h>,"

056G’ (@)b = madG' (@)b? + 0(@‘5(

Together with
+oo _
/ b2(5) d5§ < +o0,
0

we conclude that l;(t_ ) — 0 as 1 — 4o00. Next, we use (2-50) again to obtain

Lyl

|bs + @5G'(&)] < b + / g2e” 10 e L1((0, +00)).
Thus, we have

400
[ |(b + G(@))s(s")| ds’ < +o0.
0

We then know that b(7) 4+ G(@(f)) has a limit as  — +o0. Since lim;_, , ., b(f) = 0, we obtain that
G(@(1)) has a limit as  — +00. On the other hand, we have G’(0) > 0, @(7) < 1, so there exists a
constant wso > 0 such that

_lim @(F) = Goo ~ 2 ()72,
t—>+00
or equivalently
} 17\ 2
Im A() =Aoo~ | —=
f—>l+oo © o ( 0+ )
Let . .
= b({) + cia)(ll) 0.
kz(tl)
Recall that s ~
- 14 VES * * /7 /\(A (tik)["ktik)
=——, {T=b( 1), Alt)= :
Y Am(l‘f) (1)+Clw(1) ( ) /\([ik)
‘We obtain .
lim A(r) = A cuy " (4-96)
t—>H-|{loo T 0+ ' i

Next, the inequality (4-6) implies the existence of a sequence §, such that

K16 5 @60+ E6a)php >0 asn—+oo,
where limy,_, 4 0 §, = +00. Using the monotonicity (4-11), we have

Ni(5) =0 as§— +oo.
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Together with (3-21) and (4-91), we obtain

Na(f) =0 asf— +oo,
which implies
Na(t) -0 ast— +oo.

Finally, from (2-34), we have

A2(t)x(t) ~1 ast— +oo,
which after integration implies

(1) ! t— +
x()~— as 0.
A%

We then conclude the proof of (4-28) and (4-29), and hence the proof of the first part of Proposition 4.2.

IV. Nonemptiness and stability. Now we give the proof of the second part of Proposition 4.2.

First, we show that the soliton and exit regimes are stable under small perturbation in Ag,,. From (2-25),
we know that the parameters depend continuously on the initial data, which implies that the exit and soliton
cases are both open in Ay, since the separation condition is an open condition of initial data in Agy,.

Indeed, for all ug € Ay, if the corresponding solution u(z) to (gKdV,, ) belongs to the soliton regime,
we let tl* be the separation time introduced in Proposition 4.2. For all 119 € Ay, close enough to uo,
we let () be the corresponding solution to (gKdV,,), and 15(1), x(1), i(t), £(t) be the corresponding
geometrical parameters and error term. Then from local theory, we have SUP;e[0,r4] lu@)—u@®)| g <1,
which together with (2-25), leads to

btf) +c10(t]) > s C*(N1(t]) + b2 () + @ (t])).

So 1 (¢) must belong to the soliton regime. This implies the openness of soliton regime. The openness
of the exit regime follows from the same argument.

Next, we claim that there exists initial data in Ay, such that the corresponding solution to (gKdV,,)
belongs to the soliton and exit regimes respectively. First, it is easy to check that the traveling wave solution

u(t,x) = Qy(x—1)

belongs to the soliton regime. On the other hand, from (2-43), we can see, in both the soliton and
blow-down cases, we have

luoll2 = 121 L2

Hence, for initial data ug € Ag, with!® [lug|lz2 < ||Q |12, the corresponding solution must belong to
the exit regime.

Finally, since the sets of initial data which lead to the soliton and exit regimes are both open and
nonempty in Ay, together with the fact that Ag, is connected, we conclude that there exists ug € Ag,
such that the corresponding solution to (gKdV,,) belongs to the blow-down regime. O

168ince we assume that Y < ag, such ug exists in Agy,.
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5. Proof of Theorem 1.4

In this part we will use the local Cauchy theory of generalized KdV equations developed in [Kenig, Ponce
and Vega 1993] to prove Theorem 1.4.

5A. H! perturbation theory. First of all, let us introduce the following:
Lemma 5.1 [Kenig, Ponce and Vega 1993]. The following linear estimates hold:

(1) Forallug e HY,

%W(l‘)uo

e + W ol 310Gy < lluollz2, 5-1)
x ot

| DS DI W@l o pr iy < 1D uoll2 (5-2)

where q > 5 is the power of the defocusing nonlinear term of (gKdV,,), and

493 1 2
WS =e"™f s=5-15
1 2 8 3 6
o = " -, = — — s
7710 5¢g-1" " 10 5(g-1)
1 2 1 1_3 4

» 5q=D 100 r 10 5q-1)

(2) For all well-localized g, we have

a /t / / /
sup||—— | Wt —1)g(-.1")dt Slglprzay (5-3)
rerl ox Jo gy~ B
H 82 /t
== | W—t)g(-.t)adr Slglpirzay: (5-4)
ax2 0 L‘)’COL%(I) LxLi(I)
t
Wt —1tg(-,t")dt < llgll,s/4,10/9, s (5-5)
H/o LYLIOD) L L)
t
HngDtﬂq/ W(t_t/)g("t/)dt/ s ”g”Ll)/Lr’(I)’ (5'6)
0 LYL(D) v
gl s-vrs sz S 1DE DY gl gy, (5-7)
where
lio1,1
p p ror

Proof. See Theorem 3.5, Corollary 3.8, Lemma 3.14, Lemma 3.15 and Corollary 3.16 in [Kenig, Ponce
and Vega 1993] for the proofs of (1) and (2). O



102 YANG LAN

Now we define the norms
) = [wlps gy 1) = lwelepzgye 1@ =105 DM wlLppr ).
(1) = max [} (w) + 117 (w)] + nj (w).
Ar(h)y = lhllpy 2oy + Wxlipsraproro gy + hxllpy 2y + Vsl s proro gy + sl o g gy

for all interval 1 C R.
Then we have the following:

Proposition 5.2 (modified long-time H ! perturbation theory). Let I be an interval containing 0 and i
be an H' solution to

01t + (Oxxti +0° —yulii|? ™y =ex, (t,x) €l xR, (5-8)
1(0,x) =tig e H'.

Suppose we have

sup @)l g1 + Q7 (@) < M
te

for some M > 0 independent of y. Let ug € H' be such that

lnto—iollzrs +llell 21y + w3/ 10 gy + lewll g 2oy + lewnll s 0oy + el gy <

for some small 0 < & < go(M). Then the solution of (gKdV,,) with initial data ug satisfies
su1;>||u—ft||H1 +Qr(u—u) <C(M)e. (5-9)
te

Remark 5.3. The perturbation theory still holds true if we replace H! by H*, with s > %— 2/(g—1)>0.

Proof of Proposition 5.2. Without loss of generality, we assume that / = [0, Tp] for some Tp > 0.
We first claim the following:

Lemma 5.4 (short-time perturbation theory). Under the same notation as Proposition 5.2, if we assume
in addition that Qy (1) < &g for some small 0 < g9 = £1(M) < 1, then there exists a constant Co(M)
which depends only on M such that if 0 < & <egg = e1(M), then

sup ||[u —i| g1 + 2r(u—u) < Co(M)e. (5-10)
tel

We leave the proof of Lemma 5.4 for Appendix B.
Now we turn to the proof of Proposition 5.2. Let eg = £1(2M) > 0 as in Lemma 5.4. We then choose
0=ty <t; <--- <ty = Tp (recall that we assume [ = [0, Tp]) such that forall j =1,..., N,

Q[tj_l,tj](a) =< &op.

From a standard argument, we know that N = N(M,g9) = N(M) > 0. We use Lemma 5.4 on each
interval [¢; _1, ;] to obtain

[sup | (@) —a @) | gy + L,y ,0,1@) < Co(M) max(e, [[u(tj—1) —u(tj—1) | g1)-
teltj—1,t;
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Arguing by induction, using ||u(0) —u(0)| g1 <e, we have forall j =1,..., N,
sup  |lu(@) —u @)l g1 + L,y ,010) < CJ, M)e.
t€[tj—1,t5]
Summarizing these estimates, we have

N
SuI;IIu—ftllHlJrQI(ﬁ)SZ sup  [Ju(®) —u @)l g1 + Lz 1,100
te

j=1 tG[l‘j_l,tj]
N

<> C(j. M)e=C(M)e,
j=1

which concludes the proof of Proposition 5.2. O

5B. End of the proof of Theorem 1.4. Now for 0 <y < ap K a® < 1, we choose a ug € Ay, /2 C Ag,
such that the corresponding solution u(¢) to (gKdV) belongs to the blow-up regime with blow-up time
T < +o0. Let uy(¢) be the corresponding solution to (gKdV,,). From [Martel, Merle and Rapha&l 2014,
Section 4.4], we know that there exists a 0 < T}* < T' < +00, geometrical parameters (A(¢), b(t), x(t))
and an error term &(¢) such that the following geometrical decomposition holds on [0, 77*]:

1 x—x(t)
1.0 = 1 si7310m0 + )57 G-11)
with
(6, 0) = (e, AQ) = (e, yAQ) = 0. (5-12)
Moreover, we have for all ¢ € [0, Tl*]
N (@) + ez + 1b(O)] + |1 = A ()] < 8(o), (5-13)
/ y102(t. y) dy <5, (5-14)
y>0
b(T}") = 2C* N1 (Ty), (5-15)

where C* is the universal constant'’ introduced in Section 4B. One may easily check that C* defined by

(4-23) is independent of y.
Next, we claim that there exists a constant C(u¢,q) > 1 which depends only on u¢ and ¢ such that

?UP | @)l 1 + Lo, 71 () + A[0,T;*](“|“|q_l) < C(uo,q) < +o0. (5-16)
tel0, T

Indeed, from [Kenig, Ponce and Vega 1993, Corollary 2.11] (taking s = 1), we have
77[10’7"1*](“) + 77[10,T1*](ux) + U[ZO’TI*](“) + 77[20,T1*](”x) < C(uo,q) < +oo.

17The constant C* chosen here might be different from the one in [Martel, Merle and Rapha¢l 2014, (4.23)]. But we can
always replace C* (both constants in this paper and in [Martel, Merle and Raphaél 2014]) by some larger universal constant.
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Then, from Duhamel’s principle, we have

u(t) = W(t)uo + /O t(W(z — 1)) dt'.

Together with (5-2), (5-6) and the Gagliardo—Nirenberg inequality introduced in [Bahouri, Chemin and
Danchin 2011, Theorem 2.44], we have

4
|

Mo 7700 S Tttt e+ ol S Nl ol o o + oo

4 K} 1—s K} K}
< lullf s poll Dl 5 ol DX e 2 + ol
4 1—s K 1— 1—s s
< Ml ol 5o el 10 ™ (el 2% o e e 20 + ol
1 1 2 2 5
< (77[0,7’1*](”) + n[O,Tl*](MX) + n[O,Tl*](u) + n[O,Tl*](“x)) + [luoll g1,

where
1 1 2 1 3 4

70 10 5@-1) ro 10 5q-1)
This implies Q[O,Tl*](“) < C(ug,q) < +oo.
Next, using the arguments in [Kenig, Ponce and Vega 1993, Section 6], we obtain

A[(),T;“](M|M|q_1) < (o, @))? = C(uo. q),

which yields (5-16).
Then we apply Proposition 5.2 to u() and u, (¢), with e = yu|u|?~. Note that from (5-16), we have

1
Apo,ry1(e) <yCuo.q) < y? Keo(C(uo.q)).

provided that 0 < y < y(ug, o, @™, g) < 1. Then Proposition 5.2 implies that, for all ¢ € [0, T}"], we
have

e (6) —uy ()| g1 S 2. (5-17)

Combining with (5-11)—(5-14), we know that 1, (t) € Ty, for all ¢ € [0, T}*]. This allows us to apply
Lemma 2.6 to uy(t) on [0, T}*]; i.e., there exist geometrical parameters (by, (¢), Ay (), x,(¢)) and an error
term &, (), such that

1 X —xy (1)
uy(t,x) = W[Qby(t),wy(t) + EV(Z)](T();))’
with
14
(1) = -
AT

Moreover, the orthogonality conditions (2-22) hold.
Now, from Lemma 2.6 and (5-17) we obtain that, for all ¢ € [0, Tl*],

A(0)
Ay (1)

‘1— ‘+ 1By (1) = ()] + [ty ()= X (0)] + lley () — O L1 < ). (5-18)
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Together with (5-13)—(5-15), we have the following:
(1) Forall ¢ € [0, T}"], (4-53)—(4-55) hold for u, (¢).
(2) Atthe time t = T,
by(T7) + 100y (Tf) = C* (N1 (T) + B2(T]) + w2(T)),
where

Ny () = [ (e)2V5 +¢201.5.

By the argument in Section 4, we know that u, () belongs to the soliton regime introduced in
Theorem 1.3. Moreover, we also obtain (1-8) from (4-96). This concludes the proof of the first part of
Theorem 1.4.

The second part of Theorem 1.4 follows from exactly the same procedure. Thus, we complete the
proof of Theorem 1.4.

Appendix A. Proof of the geometrical decomposition

VYe Wi~ll give the proof of Lemma 2.6. We first introduce the following notation: for all suitable,
A, X.b,0,v)
Fi(L%,5,0,v) = (6,65 5 5.5.0)" (A-1)
(A, %,5,0,v) = (AQ3. 65 5 j.5.0): (A-2)
(A-3)
where
&35 5,500 = A2y +5) = 0 ;).

We mention here that we don’t assume

At (i,)?, 5, @,v)=(1,0,0,0, Q), we have

(aﬂ oF, 0F,

LR 5) — (A0. 0).(0". 0).(P. Q).

OF, OF, 0F,\ ,

(K’ ) 5) — ((AQ.AQ). (0. AQ). (P. AQ)).
OFy OF; OF3\ :

(ﬁ’ e} 5) — ((AQ. YAQ). (Q', YAQ). (P. yAD)).

Since

(AQ.0)=(Q".0)=(0".A0) = (AQ.yAQ) =0,
(P.Q)#0. (AQ,AQ)#0. (Q".yAQ)#0,



106 YANG LAN

it is easy to see that the above Jacobian is not degenerate. Hence, from implicit function theory, we have:

there exist unique continuous maps
(Ao, %0.b0) : (@,v) > (1=8,1+8) x (=8,8) x (=8,8), §>0,
such that for all ® < 1, ||[v— Q| g1 < 1, it holds that
Fj(Ao(@, v), Fo(@, ), bo(@,v),@,v) =0, j=1,2,3.
The uniqueness also implies that, for all ® < 1, we have
Lo(@. Q) = L.

Next we fix a time 7 € [0, 7o) as in Lemma 2.6. For a solution u(#) to (gKdV,,) with

1
u(t,x) = 11/2( )[Qw1(1)+81(t)](#;)(1‘))’

and
Y

AT ()

wi(t) = <1,

we let 1
v(t,-) = )Llf(t)u(t,/\l(t) c+x1(1)) = Qo 1) (+) +e1(z, ).

Then we have |[v(t,-) — Q() |z K 1.
We claim that there exists a A(¢) > 0 such that

MOk s v 0) =20, s <

This is easily verified by implicit function theory. We let

M v) = A—Al(z)io(klm, v).

Then we have
MA1(t), Qu () =0,
oM X
e =1 +mw1(t)—(a)1(t) Quwi (1)) > 0,
£ 1A0)=(A1),Q0, 1))

which implies (A-7) immediately.
Applying (A-4)—(A-7) to v(t), we have

Fj (Ro((@), v(1)), (), v(1)), bo((1), v(1)), (1), v(1)) =0, j =1,2,3,

A1) ho(@(t), v(t)) = A1),

where

w(t) = Am(z)

(A-4)

(A-5)

(A-6)

(A-7)

(A-8)
(A-9)
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Now, we let

MO =4(0), b)) =bo(@®),v(), x(1)=x1() + I (D)Fo(w(), v(1)), (A-10)

et y) = At A1) - +x(0) = Qbey.w)- (A-11)

o= T

We claim that this (A(¢), x(¢), b(¢)) satisfies the orthogonality conditions (2-22). Indeed, from (A-7)—
(A-9), we have

0= F1(o(w(t), (1)), Fo(w (), v(1)), bo(w (1), v(1)), w(t), v(t))
= (Qw(t)(')’ ié(w(l), v(f))v(t,io(w(t)» v(t)) - +Xo(w(2), v(f)))—Qb(t),w(t)(-))

_ (Qw(,)m, O o(@(0). v
(£ A1 (o (@(1). V(D)) - +Fo(@(0), v(t))]+x1<t>>—Qb(t),w(m-))

= (Quy (), AZ(Out, A1) - +x(1) = Qby.0() ()
= (Qu(r), £(1)).

The other two orthogonality conditions can be verified similarly.
Finally, since the maps

(Ao, %0,b0) : (@,v) > (1=8,148) x (=8,8) x (=8, )

are continuous, the remaining part of Lemma 2.6 follows immediately.

Appendix B. Proof of Lemma 5.4

We give the proof of the modified short-time perturbation theory, i.e., Lemma 5.4.
First, we let v(z, x) = u(t, x) —u(t, x), S(t) = Q[o,(v). We claim the following estimate holds true
forallt € I:

S Sme+SOSO*+ SO + Q@) + Q@) h). (B-1)
Since S(0) =0 and 27 (1) < g9, we know that Lemma 5.4 follows from a standard bootstrap argument.

Now it only remains to prove (B-1).
First, by Duhamel’s principle, we have

t

v(t) = W(t)(iio — uo) + /0 (Wt —1")dx[i° — ya|it|?™" — (i +v)° + y (@ +v)|ii +v]? " —e]) dt’

=vr(t)+uon(2).

For the linear part vy, from Lemma 5.1, we have

Qro,q(ve) + sup |lvrllgr < [ldo —uollgr <& (B-2)
t’€[0,¢]
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Now, for the nonlinear part vy, we use Lemma 5.1 to estimate

1 i)t i TMlY
o1 ON) S llexll g/ 105 o,y + 10+ i) =it 374 109 g0,
o+l i) — [l Vil s/e 109 g )

By Holder’s inequality, we have

0+ )40+ i) = 773 100 o
< I +@)* —ii*)iix ”Lf/“L}O/g + (v + ﬁ)4UX||L§/4L}°/9
< (||ﬁ||z)sth10 + ||v”2;5th10)||v”L§thlo”ﬁx”L?COL% + ||U||2§L}o(||vx||L§0L$ + ||72x||L§°L%)
SSOESO*+ SO +Qr@* + @,

and

~g—1 Sy ~g—1s
|||U +M| (U+“)x |M| Mx||L§(/4L;O/9([OJ])
SN +al"" =1l il 74 oo + [0+ 814 el 374 1079
~nqg—2 q—2 ]
< (”u”L)SC(q—l)/élL?(q—l)/Z + vl 5(q—1)/4L5(q—1)/2)||v||L)SC(‘1_1)/4L?(‘/_1)/2”ux”L)OCOL%
+ ||U||L5(q 1)/4L5(q—l)/2(||vx”L§°L% + ||ﬁx||L§OL%)
o By ~ Q B Q B ~
SUDSDIaILS, + 1D DI VL DIDE DI vl gy il o 2
ag nB ~
D8 DE I (ol o2 + il ge2)
SSOESO*+ SO+ Q@) +Qr@)h,

where we used (5-7) for the last two inequalities. The above two estimates imply

M. N) S SOESO* + SO+ Qr@)* + Q)7 +e. (B-3)
Similarly, we have
n[lo,t](ax UN) 5 ”exx ”L)SCML}O/Q([O,I]) + ” ((U + 12)5 - ﬁs)xx ||L§/4L;0/9([0,t])

=+ ” ((U + ﬁ)lv +u |q_1 - ﬁlﬁ |q_l)xx ||L)SC/4L:0/9([O,I])'
By Holder’s inequality again, we have
(v +)° =) xx ”Li/“L,‘O/Q([o,t])
< v+ 7’7)4Uxx ||L§(/4L;0/9 + [|(v + ﬁ)?’(vx + 2ux)vx ||Li/4L:0/9

< (”ﬁ”ii”o + ||v||z§cL;0)”vxx||LgoL% + ”v”sz;O||vx||L§°L?(”Ux”L§L}0 + ”ax”L;SCL}O)
SSOSO*+ SO+ @ + @,
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and
(@ + @) + |7 =] xxll 574 105 1g 17

S o+ 719 el s 1079 + [0+ 71920 + 2ol 5 1o
< (|l q_l_ _ + v q—l_ _ v 2
(I ”Li(q D/4p 5172 [ ”Li(q W“Lf(; )l xx”LgOLt
q—

+ v ||L5(q—1)/4L5(q—1)/2 [vx ||L;°L%(||Ux + 2uix ||L§C(q*1)/4Lf(q*1>/2)
X t
SSOEO*+ SO + i@t + Q@
Collecting these estimates, we have
Mo, Bxvw) SSOESO* + SO+ @* + Q@) +e. (B-4)
Next, using a similar strategy, we have
77[20,;] (vw) < llellzr 22,y +II (@ +u)>—i° Izt 220, Hl(w+w) v+ it Izt 22(10,17)
S e+(Jlu ||2§CL;0+||U ||2§CL;0)||U ”L)SCL,]O
-1 ~n1q—1
+(|Jv ||i§c(q—1)/4L?(q—1)/2 +||u ”(ll,i(q_l)MLf(q_”/z) v ”L)SCL,'O
SSOESO+SOTT +Qr @) +Qr (@) )+, (B-5)
and
U[zo,;](axUN) < llex ”L}cL?([O,t]) + (v +i)° — i) ”L}CL%([()J])

+ (v +@)|v+ @97 — |9, IZ122(10.07)

Se+(+n)* —at)iy Izt 2o, + (v + i) vy Izt z2(0,1)

~g—1 1= 1a—1\s ~1g—1
+ (v + @l =i )iy ||L}CL%([0J]) + |l|v 4 ]9 vx”L,‘CL%([O,t])
SSOSO*+SOIT !+ Q@) + Q@) ) + e (B-6)

Finally, we need to estimate 77[30 t](v ~). From Lemma 5.1, we have

Moy (VN < llexll o 17 o,y + 1@+ =2l 1 (0.

+ (@ + Do+ a1 =@l el Ly o

Se+ @+t —aitellpr o+ 1@+ D) vxll o
~g— ~1a—1y5 ~1g—1
+ (o + a7t — [a)? 1)ux||L£fL;/+|||v+ulq Vall o g

By similar technique to that used for (B-6), we have

I+ @) =iyl pr o+ 10 +0) x|

LY L2’y
4 ~4 . _ 4
S +u)* —u ||L§/4L§/2 %]l 7o 7o + 1| (v +132) ||L§/4L§/2||Ux||L§0Lj0

< lvxllgzo o (S(O* + Q10,0 D) + it 20 170 S (S (1) + Qo 11 (1)),



110 YANG LAN

and
R e I U N I [ [C Y
< llvxllroro (SO + Qo)) + |liix 70 70 SISO + Qo ()72,

where
1 1 2 1 3 4

po 10 5G=D o 10 5g-1)
By the Gagliardo—Nirenberg inequality introduced in [Bahouri, Chemin and Danchin 2011, Theorem 2.44],
we have

loxllzzopr0 < 1D vl 5 Yoo 1D vl -
< (ol s o lloxlys o) = vl 27 2 vl oo, 2% S SCO).
Similarly, we have
]l 70 ro < S210,17 ();
hence
Mo (V) S SOSO* + ST +Qr)* + Q@7 +e. (B-7)

Combining (B-2)-(B-7), we conclude the proof of (B-1), and hence the proof of Lemma 5.4.
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