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ON THE STABILITY OF TYPE II BLOWUP FOR THE 1-COROTATIONAL
ENERGY-SUPERCRITICAL HARMONIC HEAT FLOW

TEJ-EDDINE GHOUL, SLIM IBRAHIM AND VAN TIEN NGUYEN

We consider the energy-supercritical harmonic heat flow from Rd into the d -sphere Sd with d � 7.
Under an additional assumption of 1-corotational symmetry, the problem reduces to the one-dimensional
semilinear heat equation
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We construct for this equation a family of C1 solutions which blow up in finite time via concentration of
the universal profile

u.r; t/�Q

�
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�
;

where Q is the stationary solution of the equation and the speed is given by the quantized rates

�.t/� cu.T � t /
`
 ; ` 2 N�; 2` >  D .d/ 2 .1; 2�:

The construction relies on two arguments: the reduction of the problem to a finite-dimensional one thanks to
a robust universal energy method and modulation techniques developed by Merle, Raphaël and Rodnianski
(Camb. J. Math. 3:4 (2015), 439–617) for the energy supercritical nonlinear Schrödinger equation and
by Raphaël and Schweyer (Anal. PDE 7:8 (2014), 1713–1805) for the energy critical harmonic heat flow.
Then we proceed by contradiction to solve the finite-dimensional problem and conclude using the Brouwer
fixed-point theorem. Moreover, our constructed solutions are in fact .`�1/-codimension stable under pertur-
bations of the initial data. As a consequence, the case `D 1 corresponds to a stable type II blowup regime.
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1. Introduction

We consider the harmonic map heat flow which is defined as the negative gradient flow of the Dirichlet
energy of maps between manifolds. Indeed, if ˆ is a map from Rd � Œ0; T / to a compact Riemannian
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manifold M� Rn, with second fundamental form ‡, then ˆ solves�
@tˆ��ˆD ‡.ˆ/.rˆ;rˆ/;

ˆ.t D 0/Dˆ0:
(1-1)

We assume that the target manifold is the d -sphere Sd � RdC1. Then, (1-1) becomes�
@tˆ��ˆD jrˆj

2ˆ;

ˆ.t D 0/Dˆ0:
(1-2)

We will study the problem (1-2) under an additional assumption of 1-corotational symmetry, namely that
a solution of (1-2) takes the form

ˆ.x; t/D

�
cos.u.jxj; t //

.x=jxj/ sin.u.jxj; t //

�
: (1-3)

Under this ansatz, the problem (1-2) reduces to the one-dimensional semilinear heat equation(
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u.t D 0/D u0;
(1-4)

where u.t/ W r 2 RC! u.r; t/ 2 Œ0; ��. The set of solutions to (1-4) is invariant by the scaling symmetry

u�.r; t/D u

�
r

�
;
t

�2

�
for all � > 0:

The energy associated to (1-4) is given by

E Œu�.t/D
Z C1
0

�
j@ruj

2
C
.d � 1/

r2
sin2.u/

�
rd�1 dr; (1-5)

which satisfies
EŒu��D �d�2E Œu�:

The criticality of the problem is reflected by the fact that the energy (1-5) is left invariant by the scaling
property when d D 2; hence, the case d � 3 corresponds to the energy-supercritical case.

The problem (1-4) is locally well-posed for data which are close in L1 to a uniformly continuous
map, see [Koch and Lamm 2012], or in BMO, see [Wang 2011]. Actually, Eells and Sampson [1964]
introduced the harmonic map heat flow as a process to deform any smooth map ˆ0 into a harmonic
map via (1-2). They also proved that the solution exists globally if the sectional curvature of the target
manifold is negative. There exist other assumptions for the global existence; for example, assuming the
image of the initial data u0 is contained in a ball of radius �=.2

p
�/, where � is an upper bound on

the sectional curvature of the target manifold M; see [Jost 1981; Lin and Wang 2008]. Without these
assumptions, the solution u.r; t/ may develop singularities in some finite time; see, for example, [Coron
and Ghidaglia 1989; Chen and Ding 1990] for d � 3, and [Chang, Ding and Ye 1992] for d D 2. In this
case, we say that u.r; t/ blows up in a finite time T <C1 in the sense that

lim
t!T
kru.t/kL1 DC1:
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Here we call T the blowup time of u.x; t/. The blowup has been divided by Struwe [1996] into two types:

u blows up with type I if lim sup
t!T

.T � t /
1
2 kru.t/kL1<C1;

u blows up with type II if lim sup
t!T

.T � t /
1
2 kru.t/kL1DC1:

Struwe [1988] showed that the type I singularities are asymptotically self-similar; that is, their profile
is given by a smooth shrinking function

u.r; t/D �

�
r

p
T � t

�
for all t 2 Œ0; T /;

where � solves the equation
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�
d � 1
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�
�0�
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2y2
sin.2�/D 0: (1-6)

Thus, the study of type I blowup reduces to the study of nonconstant solutions of (1-6).
When 3� d � 6, by using a shooting method, Fan [1999] proved that there exists an infinite sequence

of globally regular solutions �n of (1-6) which are called “shrinkers” (corresponding to the existence
of type I blowup solutions of (1-4)), where the integer index n denotes the number of intersections of
the function �n with �

2
. More detailed quantitative properties of such solutions were studied in [Biernat

and Bizoń 2011], where the authors conjectured that �1 is linear stable and provided numerical evidence
supporting that �1 corresponds to a generic profile of type I blowup. Very recently, Biernat, Donninger and
Schörkhuber [2016] proved the existence of a stable self-similar blowup solution for d D 3. Since (1-2)
is not time-reversible, there exists another family of self-similar solutions called “expanders”, which were
introduced in [Germain and Rupflin 2011]. These expanders have been recently proved to be nonlinearly
stable in [Germain, Ghoul and Miura 2017]. To our knowledge, the question on the existence of type II
blowup solutions for (1-4) remains open for 3� d � 6.

When d � 7, Bizoń and Wasserman [2015] proved that (1-4) has no self-similar shrinking solutions.
According to [Struwe 1988], this result implies that in dimensions d � 7, all singularities for (1-4) must
be of type II (see also [Biernat 2015] for a recent analysis of such singularities). Recently, Biernat and
Seki [2016], via the matched asymptotic method developed in [Herrero and Velázquez 1994], constructed
for (1-4) a countable family of type II blowup solutions, each characterized by a different blowup rate:

�.t/� .T � t /
`
 as t ! T; (1-7)

where ` 2 N� such that 2` >  and  D .d/ is given by

.d/D 1
2
.d � 2� Q/ 2 .1; 2� for d � 7; (1-8)

where Q D
p
d2� 8d C 8. The blowup rate (1-7) is in fact driven by the asymptotic behavior of a

stationary solution of (1-4), say Q, which is the unique (up to scaling) solution of the equation

Q00C
.d � 1/

r
Q0�

.d � 1/

2r2
sin.2Q/D 0; Q.0/D 0; Q0.0/D 1; (1-9)
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and admits the behavior for r large

Q.r/D
�

2
�
a0

r
CO

�
1

r2C

�
for some a0 D a0.d/ > 0; (1-10)

(see the Appendix in [Biernat 2015] for a proof of the existence of Q). Note that the case 2`D  only
happens in dimension d D 7. In this case, Biernat [2015] used the method of [Herrero and Velázquez
1994] and formally derived the blowup rate

�.t/�
.T � t /

1
2

jlog.T � t /j
as t ! T: (1-11)

He also provided numerical evidence supporting that the case `D 1 in (1-7) or (1-11) corresponds to a
generic blowup solution.

In the energy-critical case, i.e., d D 2, van den Berg, Hulshof and King [2003], through a formal
analysis based on the matched asymptotic technique of [Herrero and Velázquez 1994], predicted that
there are type II blowup solutions to (1-4) of the form

u.r; t/�Q

�
r

�.t/

�
;

where
Q.r/D 2 tan�1.r/ (1-12)

is the unique (up to scaling) solution of (1-9), and the blowup speed is governed by the quantized rates:

�.t/�
.T � t /`

jlog.T � t /j
2`
2`�1

for ` 2 N�:

This result was later confirmed by Raphaël and Schweyer [2014b]. Note that the case `D 1 was treated
in [Raphaël and Schweyer 2013] and corresponds to a stable blowup. In particular, in those papers, they
adapted the strategy developed in [Raphaël and Rodnianski 2012; Merle, Raphaël and Rodnianski 2011]
for the study of wave and Schrödinger maps to construct for (1-4) type II blowup solutions. Their method
relies on a two-step procedure:

� Construction of a suitable approximate blowup profile through iterated resolutions of elliptic equations.
The tail computation allows us to formally derive the blowup speed. As a matter of fact, the asymptotic
behavior at infinity of the stationary solution (1-12) is an essential algebraic fact for their analysis,
which in fact drives the derivation of the blowup law and the possibility of a blowup solution with
Q profile.

� Implementation of a robust universal energy method to control the solution in the blowup regime
through the derivation of suitable “Lyapunov” functionals involving critical Sobolev norms adapted to
the linearized flow near the ground state, which relies on neither spectral estimates nor the maximum
principle and may be easily applied to various settings.

In this work, by considering d � 7, we ask whether we can carry out the analysis of [Raphaël and
Schweyer 2014b] for the energy-critical case d D 2 to the construction of blowup solutions for (1-4) in
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the case d � 7. It happens that the asymptotic behavior (1-10) is perfectly suitable to replace the explicit
profile (1-12) for an implementation of the strategy of [Raphaël and Schweyer 2014b]. The following
theorem is the main result of this paper.

Theorem 1.1 (existence of type II blowup solutions to (1-4) with prescribed behavior). Let d � 7 and 
be defined as in (1-8), we fix an integer

` 2 N� such that 2` > ;

and an arbitrary Sobolev exponent

s 2 N; sD s.`/!C1 as `!C1:

Then there exists a smooth corotational radially symmetric initial data u0 such that the corresponding
solution to (1-4) is of the form

u.r; t/DQ

�
r

�.t/

�
C q

�
r

�.t/
; t

�
; (1-13)

where
�.t/D c.u0/.T � t /

`
 .1C ot!T .1//; c.u0/ > 0; (1-14)

and
lim
t!T
kr

�q.t/kL2 D 0 for all � 2
�
d
2
C 3; s

�
: (1-15)

Moreover, the case `D 1 corresponds to a stable blowup regime.

Remark 1.2. Since  D 2 for d D 7 and  2 .1; 2/ for d � 8, the condition 2` >  means that `� 2 for
d D 7 and `� 1 for d � 8. Note that the condition 2` >  allows us to avoid the presence of logarithmic
corrections in the construction of the approximate profile. In other words, the case 2`D  (equivalent to
`D 1 and d D 7) would involve an additional logarithmic gain related to the growth of the approximate
profile at infinity, which turns out to be essential for the derivation of the speed (1-11). Although our
analysis could be naturally extended to this case (`D 1 and d D 7) with some complicated computations,
we hope to treat this case in a separate work.

Remark 1.3. The quantization of the blowup rate (1-14) is the same as the one obtained in [Biernat and
Seki 2016]. Note that in that paper, they only claim the existence result of a type II blowup solution with
the rate (1-14) and say nothing about the dynamical description of the solution. On the contrary, our
result shows that the constructed solution blows up in finite time by concentration of a stationary state in
the supercritical regime. Moreover, our constructed solution is in fact .`�1/-codimension stable in the
sense that we will precise shortly.

Remark 1.4. Fix ` 2 N� such that 2` >  , an integer L� ` and s� L� 1. Then our initial data is of
the form

u0 DQb.0/C "0; (1-16)

where Qb is a deformation of the ground state Q and b D .b1; : : : ; bL/ corresponds to possible unstable
directions of the flow in the PH s topology in a suitable neighborhood of Q. We will show that for
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all "0 2 PH� \ PH s
�
for some � D �.d/ > d

2

�
small enough, for all .b1.0/; b`C1.0/; : : : ; bL.0// small

enough, there exists a choice of unstable directions .b2.0/; : : : ; b`.0// such that the solution of (1-4) with
the data (1-16) satisfies the conclusion of Theorem 1.1. This implies that our constructed solution is
.`�1/-codimension stable. In other words, the case `D 1 corresponds to a stable type II blowup regime,
which is in agreement with numerical evidence given in [Biernat 2015].

Remark 1.5. The harmonic heat flow shares many features with the semilinear heat equation

@tuD�uCjuj
p�1u in Rd : (1-17)

Two important critical exponents appear when considering the dynamics of (1-17):

pS D
d C 2

d � 2
and pJL D

8<:C1 for d � 10;

1C
4

d � 4� 2
p
d � 1

for d � 11

correspond to the cases d D 2 and d D 7 in the study of (1-4) respectively.
When 1 < p � pS , Giga and Kohn [1987] and Giga, Matsui and Sasayama [2004] showed that all

blowup solutions are of type I. Here the type I blowup means that

lim sup
t!T

.T � t /
1
p�1 ku.t/kL1 <C1I

otherwise we say the blowup solution is of type II.
When p D pS , Filippas, Herrero and Velázquez [2000] formally constructed for (1-17) type II blowup

solutions in dimensions 3 � d � 6; however, they could not do the same in dimensions d � 7. This
formal result is partly confirmed by Schweyer [2012] in dimension d D 4. Interestingly, Collot, Merle
and Raphaël [2017] showed that type II blowup is ruled out in dimension d � 7 near the solitary wave.

When pS < p < pJL, Matano and Merle [2004], see also [Mizoguchi 2004], proved that only type I
blowup occurs in the radial setting.

When p > pJL, Herrero and Velázquez [1994] formally derived the existence of type II blowup
solutions with the quantized rates

ku.t/kL1 � .T � t /
2`

.p�1/˛.d;p/ ; ` 2 N; 2` > ˛:

The formal result was clarified in [Matano and Merle 2009; Mizoguchi 2007; Collot 2017]. The collection
of these works yields a complete classification of the type II blowup scenario for the radially symmetric
energy-supercritical case.

In comparison to the case of the semilinear heat equation (1-17), it might be possible to prove that all
blowup solutions to (1-4) are of type I in dimensions 3� d � 6. However, due to the lack of monotonicity
of the nonlinear term, the analysis of the harmonic heat flow (1-4) is much more difficult than the case of
the semilinear heat equation (1-17) treated in [Matano and Merle 2004].

Let us briefly explain the main steps of the proof of Theorem 1.1, which follows the method of
[Raphaël and Schweyer 2014b] treated for the critical case d D 2. This kind of method has been
successfully applied for various nonlinear evolution equations, in particular in the dispersive setting
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for the nonlinear Schrödinger equation both in the mass-critical [Merle and Raphael 2005a; 2005b;
2004; 2003] and mass-supercritical [Merle, Raphaël and Rodnianski 2015] cases, the mass-critical
gKdV equation [Martel, Merle and Raphaël 2015a; 2015b; 2014], the energy-critical [Duyckaerts, Kenig
and Merle 2013; Hillairet and Raphaël 2012] and energy-supercritical [Collot 2018] wave equation,
the two-dimensional critical geometric equations, the wave maps [Raphaël and Rodnianski 2012], the
Schrödinger maps [Merle, Raphaël and Rodnianski 2013] and the harmonic heat flow [Raphaël and
Schweyer 2013; 2014b], the semilinear heat equation (1-17) in the energy-critical [Schweyer 2012]
and energy-supercritical [Collot 2017] cases, and the two-dimensional Keller–Segel model [Raphaël
and Schweyer 2014a; Ghoul and Masmoudi 2016]. In all these works, the method relies on two
arguments:

� Reduction of an infinite-dimensional problem to a finite-dimensional one, through the derivation of
suitable Lyapunov functionals and the robust energy method as mentioned in the two-step procedure
above.

� The control of the finite-dimensional problem thanks to a topological argument based on index theory.

Note that this kind of topological argument has proved to be successful also for the construction of
type I blowup solutions for the semilinear heat equation (1-17) in [Bricmont and Kupiainen 1994;
Merle and Zaag 1997; Nguyen and Zaag 2017] (see also [Nguyen and Zaag 2016] for the case of
logarithmic perturbations, [Bressan 1990; 1992; Ghoul, Nguyen and Zaag 2017] for the exponential
source and [Nouaili and Zaag 2015] for the complex-valued case), the Ginzburg–Landau equation in
[Masmoudi and Zaag 2008] (see also [Zaag 1998] for an earlier work), a nonvariational parabolic
system in [Ghoul, Nguyen and Zaag 2018] and the semilinear wave equation in [Côte and Zaag
2013].

For the reader’s convenience and for a better explanation, we first introduce notation used throughout
this paper.

Notation. For each d � 7, we define�
„ D

�
1
2

�
d
2
� 

�˘
2 N;

ı D 1
2

�
d
2
� 

�
�„; ı 2 .0; 1/;

(1-18)

where bxc 2 Z stands for the integer part of x, which is defined by bxc � x < bxcC 1. Note that ı ¤ 0.
Indeed, if ıD 0, then there is m2N such that 2 D d �4m2N. This only happens when  D 2 or  D 3

2

because  2 .1; 2�. The case  D 2 gives d D 7 and mD 3
4
62 N. The case  D 3

2
gives d D 17

2
62 N.

Given a large integer L� 1, we set

kD LC„C 1: (1-19)

Given b1 > 0 and � > 0, we define

B0 D
1
p
b1
; B1 D B

1C�
0 ; 0 < �� 1; (1-20)

and
f�.r/D f .y/ with y D

r

�
:
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Let � 2 C10 .Œ0;C1// be a positive nonincreasing cutoff function with supp.�/ � Œ0; 2� and � � 1
on Œ0; 1�. For all M > 0, we define

�M .y/D �

�
y

M

�
: (1-21)

We also introduce the differential operator

ƒf D y@yf

and the Schrödinger operator

L D�@yy �
.d � 1/

y
@y C

Z

y2
; with Z.y/D .d � 1/ cos.2Q.y//: (1-22)

Strategy of the proof. We now summary the main ideas of the proof of Theorem 1.1, which follows the
route map in [Raphaël and Schweyer 2014b; Merle, Raphaël and Rodnianski 2015]:

(i) Renormalized flow and iterated resonances. Following the scaling invariance of (1-4), let us make the
change of variables

w.y; s/D u.r; t/; y D
r

�.t/
;

ds

dt
D

1

�2.t/
;

which leads to the renormalized flow

@sw D @
2
ywC

.d � 1/

y
@yw� b1ƒw�

.d � 1/

2y2
sin.2w/; b1 D�

�s

�
: (1-23)

Assuming that the leading part of the solution w.y; s/ is given by the ground state profile Q admitting
the asymptotic behavior (1-10), the remaining part is governed by the Schrödinger operator L defined by
(1-22). The linear operator L admits the factorization (see Lemma 2.2 below)

L D A �A ; A f D�ƒQ@y

�
f

ƒQ

�
; A �f D

1

yd�1ƒQ
@y.y

d�1ƒQf /; (1-24)

which directly implies

L .ƒQ/D 0;

where from a direct computation,

ƒQ �
c0

y
as y!C1; with  defined in (1-8):

More generally, we can compute the kernel of the powers of L through the iterative scheme

L TkC1 D�Tk; T0 DƒQ; (1-25)

which displays a nontrivial tail at infinity (see Lemma 2.9 below),

Tk.y/� cky
2k� for y� 1: (1-26)
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(ii) Tail dynamics. Following the approach in [Raphaël and Schweyer 2014b], we look for a slowly
modulated approximate solution to (1-23) of the form

w.y; s/DQb.s/.y/;

where

b D .b1; : : : ; bL/; Qb.s/.y/DQ.y/C

LX
iD1

biTi .y/C

LC2X
iD2

Si .y/ (1-27)

with a priori bounds
bi � b

i
1; jSi .y/j. b

i
1y
2.i�1/� ;

so that Si is in some sense homogeneous of degree i in b1, and behaves better than Ti at infinity. The
construction of Si with the above a priori bounds is possible for a specific choice of the universal dynamical
system which drives the modes .bi /1�i�L. This is so-called the tail computation. Let us illustrate the
procedure of the tail computation. We plug the decomposition (1-27) into (1-23) and choose the law for
.bi /1�i�L which cancels the leading-order terms at infinity:

� At the order O.b1/: We cannot adjust the law of b1 for the first term1 and obtain from (1-23),

b1.LT1CƒQ/D 0:

� At the order O.b21 ; b2/: We obtain

.b1/sT1C b
2
1ƒT1C b2L T2CLS2 D b

2
1 NL1.T1;Q/;

where NL1.T1;Q/ corresponds to nonlinear interaction terms. Note from (1-26) and (1-25), we have

ƒT1 � .2� /T1 for y� 1; L T2 D�T1;

and thus,
.b1/sT1C b

2
1ƒT1C b2L T2 � Œ.b1/sC .2� /b

2
1 � b2�T1:

Hence the leading-order growth for y large is canceled by the choice

.b1/sC .2� /b
2
1 � b2 D 0:

We then solve for
LS2 D�b

2
1.ƒT1� .2� /T1/C b

2
1 NL1.T1;Q/;

and check the improved decay
jS2.y/j. b21y

2� for y� 1:

� At the order O.bkC11 ; bkC1/: We obtain an elliptic equation of the form

.bk/sTkC b1bkƒTkC bkC1L TkC1CLSkC1 D b
kC1
1 NLk.T1; : : : ; Tk;Q/:

1If .b1/s D�c1b1, then ��s=�� b1 � e�c1s ; hence after an integration in time, jlog�j. 1 and there is no blowup.
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From (1-26) and (1-25), we have

.bk/sTkC b1bkƒTkC bkC1L TkC1 � Œ.bk/sC .2k� /b1bk � bkC1�Tk;

which leads to the choice
.bk/sC .2k� /b1bk � bkC1 D 0

for the cancellation of the leading-order growth at infinity. We then solve for the remaining SkC1-term
and check that jSkC1.y/j . bkC11 y2k� for y large. We refer to Proposition 2.11 for all the details of
the tail computation.

(iii) The universal system of ODEs. The above procedure leads to the following universal system of ODEs
after L iterations: 8<:.bk/sC .2k� /b1bk � bkC1 D 0; 1� k � L; bLC1 D 0;

�
�s

�
D b1;

ds

dt
D

1

�2
:

(1-28)

Unlike the critical case treated in [Raphaël and Schweyer 2014b], there is no further logarithmic correction
to take into account. The set of solutions to (1-28) (see Lemma 2.13 below) is explicitly given by8̂̂̂̂

ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

be
k
.s/D

ck

sk
; 1� k � L;

c1 D
`

2`� 
; ` 2 N�; 2` > ;

ckC1 D�
.`� k/

2`� 
ck; 1� k � `� 1; `� 2

cj D 0; j � `C 1;

�.s/� s�
`

2`� :

(1-29)

In the original time variable t , this implies that �.t/ goes to zero in finite time T with the asymptotic

�.t/� .T � t /
`
 :

Moreover, the linearized flow of (1-28) near the solution (1-29) is explicit and displays `� 1 unstable
directions (see Lemma 2.14 below). This implies that the case ` D 1 corresponds to a stable type II
blowup regime.

(iv) Decomposition of the flow and modulation equations. Let the approximate solution Qb be given by
(1-27), which by construction generates an approximate solution to the renormalized flow (1-23),

‰b D @sQb ��QbC bƒQbC
.d � 1/

2y2
sin.2Qb/DMod.t/CO.b2LC21 /;

where the modulation equation term is roughly of the form

Mod.t/D
LX
iD1

Œ.bi /sC .2i � /b1bi � biC1�Ti :
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We localize Qb in the zone y � B1 to avoid the irrelevant growing tails for y� 1=
p
b1. We then take

initial data of the form
u0.y/DQb.0/.y/C q0.y/;

where q0 is small in some suitable sense and b.0/ is chosen to be close to the exact solution (1-29). By a
standard modulation argument, we introduce the decomposition of the flow

u.r; t/D w.y; s/D .Qb.s/C q/.y; s/D .Qb.t/C v/

�
r

�.t/
; t

�
; (1-30)

where LC 1 modulation parameters .b.t/; �.t// are chosen in order to manufacture the orthogonality
conditions

hq;L iˆM i D 0; 0� i � L; (1-31)

where ˆM , see (3-4), is some fixed direction depending on some large constant M, generating an
approximation of the kernel of the powers of L . This orthogonal decomposition (1-30), which follows
from the implicit function theorem, allows us to compute the modulation equations governing the
parameters .b.t/; �.t// (see Lemmas 4.2 and 4.3 below),ˇ̌̌̌

�s

�
C b1

ˇ̌̌̌
C

LX
iD1

j.bi /sC .2i � /b1bi � biC1j. kqklocC b
LC1C�.ı;�/
1 ; (1-32)

where kqkloc measures a spatially localized norm of the radiation q and �.ı; �/ > 0.

(v) Control of Sobolev norms. According to (1-32), we need to show that local norms of q are under
control and do not perturb the dynamical system (1-28). This is achieved via high-order mixed energy
estimates which provide controls of the Sobolev norms adapted to the linear flow and based on the powers
of the linear operator L . In particular, we have the following coercivity of the high energy under the
orthogonality conditions (1-31) (see Lemma A.5):

E2k.s/D

Z
jL kqj2 &

Z
jr
2kqj2C

Z
jqj2

1Cy4k
;

where k is given by (1-19). Here the factorization (1-24) will help to simplify the proof. As in [Raphaël
and Rodnianski 2012; Raphaël and Schweyer 2014b; Merle, Raphaël and Rodnianski 2015], the control
of E2k is done through the use of the linearized equation in the original variables .r; t/; i.e., we work with
v in (1-30) and not q. The energy estimate is of the form (see Proposition 4.4)

d

ds

�
E2k

�4k�d

�
.
b
2LC1C2�.ı;�/
1

�4k�d
; �.ı; �/ > 0; (1-33)

where the right-hand side is controlled by the size of the error ‰b in the construction of the approximate
profile Qb above. An integration of (1-33) in time by using initial smallness assumptions, b1 � be1 and
�.s/� b

`=.2`�/
1 yields the estimateZ

jr
2kqj2C

Z
jqj2

1Cy4k
. E2k.s/. b2LC2�.ı;�/1 ;

which is good enough to control the local norms of q and close the modulation equations (1-32).
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Note that we also need to control lower energies E2m for „C 2 �m � k� 1 because the control of
the high energy E2k alone is not enough to control a nonlinear term appearing in the linearized equation
around Qb . In particular, we exhibit a Lyapunov functional with the dynamical estimate

d

ds

�
E2m

�4m�d

�
.
b
2.m�„/�1C2�0.ı;�/
1

�4m�d
; �0.ı; �/ > 0:

Then, an integration in time yields

E2m.s/.

(
b

`
2`�

.4m�d/

1 for „C 2�m� `C„;

b
2.m�„�1/C2�0.ı;�/
1 for „C `C 1�m� k� 1;

which is enough to control the nonlinear term. Let us remark that the condition m � „C 2 ensures
4m� d > 0 so that E2m is always controlled. By the coercivity of E2m, this means that we are only able
to control the Sobolev norms kr2�qk2

L2
for � � „C 2, resulting in the asymptotic (1-15).

The above scheme designs a bootstrap regime (see Definition 3.2 for a precise definition) which traps
the blowup solution with speed (1-14). According to Lemmas 2.13 and 2.14, such a regime displays `�1
unstable modes .b2; : : : ; b`/ which we can control through a topological argument based on the Brouwer
fixed-point theorem (see the proof of Proposition 3.5), and the proof of Theorem 1.1 follows.

The paper is organized as follows. In Section 2, we give the construction of the approximate solution
Qb of (1-4) and derive estimates on the generated error term ‰b (Proposition 2.11), as well as its
localization (Proposition 2.12). We also give in this section some elementary facts on the study of the
system (1-28) (Lemmas 2.13 and 2.14). Section 3 is devoted to the proof of Theorem 1.1, assuming a
main technical result (Proposition 3.6). In particular, we give the proof of the existence of the solution
trapped in some shrinking set to zero (Proposition 3.5) such that the constructed solution satisfies the
conclusion of Theorem 1.1. Readers not interested in technical details may stop there. In Section 4, we
give the proof of Proposition 3.6 which gives the reduction of the problem to a finite-dimensional one,
and this is the heart of our analysis.

2. Construction of an approximate profile

This section is devoted to the construction of a suitable approximate solution to (1-4) by using the same
approach developed in [Raphaël and Rodnianski 2012]. Similar approaches can also be found in [Raphaël
and Schweyer 2013; 2014a; Hillairet and Raphaël 2012; Schweyer 2012; Merle, Raphaël and Rodnianski
2015]. The key to this construction is the fact that the linearized operator L around Q is completely
explicit in the radial setting thanks to the explicit formulas of the kernel elements.

Following the scaling invariance of (1-4), we introduce the change of variables

w.y; s/D u.r; t/; y D
r

�.t/
;

ds

dt
D

1

�2.t/
; (2-1)

which leads to the renormalized flow

@sw D @
2
ywC

.d � 1/

y
@ywC

�s

�
ƒw�

.d � 1/

2y2
sin.2w/; (2-2)
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where �s D d�=ds. Noticing that in the setting (2-1) we have

@ru.r; t/D
1

�.t/
@yw.y; s/

and since we deal with the finite-time blowup of the problem (1-4), we naturally impose the condition

�.t/! 0 as t ! T

for some T 2 .0;C1/. Hence, @ru.r; t/ blows up in finite time T.
Let us assume that the leading part of the solution of (2-2) is given by the harmonic map Q, which is a

unique solution (up to scaling) of the equation

Q00C
.d � 1/

y
Q0�

.d � 1/

2y2
sin.2Q/D 0; Q.0/D 0; Q0.0/D 1: (2-3)

We aim to construct an approximate solution of (2-2) close to Q. The natural way is to linearize (2-2)
around Q, which generates the Schrödinger operator defined by (1-22). Let us now recall the main
properties of L in the following subsection.

2A. Structure of the linearized Hamiltonian. We recall the main properties of the linearized Hamiltonian
close to Q, which is the heart of both construction of the approximate profile and the derivation of the
coercivity properties serving for the high Sobolev energy estimates. Let us start by recalling the following
result from [Biernat 2015], which gives the asymptotic behavior of the harmonic map Q:

Lemma 2.1 (development of the harmonic map Q). Let d � 7. There exists a unique solution Q to (2-3)
which admits the following asymptotic behavior. For any k 2N �:

(i) (asymptotic behavior of Q)

Q.y/D

8̂̂̂<̂
ˆ̂:
yC

kX
iD1

ciy
2iC1
CO.y2kC3/ as y! 0;

�

2
�
a0

y

�
1CO

�
1

y2

�
CO

�
1

y Q

��
as y!C1;

(2-4)

where  is defined in (1-8), Q D
p
d2� 8d C 8 and a0 D a0.d/ > 0.

(ii) (degeneracy)

ƒQ > 0; ƒQ.y/D

8̂̂̂<̂
ˆ̂:
yC

kX
iD1

c0iy
2iC1
CO.y2kC3/ as y! 0;

a0

y

�
1CO

�
1

y2

�
CO

�
1

y Q

��
as y!C1:

(2-5)

Proof. The proof of (2-4) is done through the introduction of the variables xD logy and v.x/D2Q.y/��
and consists of the phase portrait analysis of the autonomous equation

v00.x/C .d � 2/v0.x/C .d � 2/ sin.v.x//D 0:
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All details of the proof can be found in [Biernat 2015, pages 184–185]. The proof of (2-5) directly follows
from the expansion (2-4). �

The linearized operator L displays a remarkable structure given by the following lemma:

Lemma 2.2 (factorization of L ). Let d � 7 and define the first-order operators

Aw D�@ywC
V

y
w D�ƒQ@y

�
w

ƒQ

�
; (2-6)

A �w D
1

yd�1
@y.y

d�1w/C
V

y
w D

1

yd�1ƒQ
@y.y

d�1ƒQw/; (2-7)

where

V.y/ WDƒ log.ƒQ/D

8<:1CO.y2/ as y! 0;

� CO
�
1

y2

�
CO

�
1

y Q

�
as y!C1:

(2-8)

We have
L D A �A ; zL D A A �; (2-9)

where zL stands for the conjugate Hamiltonian.

Remark 2.3. The adjoint operator A � is defined with respect to the Lebesgue measureZ C1
0

.A u/wyd�1 dy D

Z C1
0

u.A �w/yd�1 dy:

Remark 2.4. We have
L .ƒw/Dƒ.Lw/C 2Lw�

ƒZ

y2
w: (2-10)

Since L .ƒQ/D 0, one can express the definition of Z through the potential V as

Z.y/D V 2CƒV C .d � 2/V: (2-11)

Let zZ be defined by

zL D�@yy �
d � 1

y
@y C

zZ

y2
: (2-12)

Then, a direct computation yields

zZ.y/D .V C 1/2C .d � 2/.V C 1/�ƒV: (2-13)

From (2-6) and (2-7), we see that the kernels of A and A � are explicit:

Aw D 0 if and only if w 2 Span.ƒQ/;

A �w D 0 if and only if w 2 Span
�

1

yd�1ƒQ

�
:

Hence, the elements of the kernel of L are given by

Lw D 0 if and only if w 2 Span.ƒQ;�/; (2-14)
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where � can be found from the Wronskian relation

� 0ƒQ��.ƒQ/0 D
1

yd�1
; (2-15)

that is,

�.y/DƒQ.y/

Z y

1

d�

�d�1.ƒQ.�//2
;

which admits the asymptotic behavior

�.y/D

8̂̂<̂
:̂

1

dyd�1
CO.y/ as y! 0;

1

a0.d � 2� 2/yd�2�
CO

�
1

yd�

�
as y!C1:

(2-16)

From (2-14), we may invert L as follows:

L �1f D��.y/

Z y

0

f .x/ƒQ.x/xd�1 dxCƒQ.y/

Z y

0

f .x/�.x/xd�1 dx: (2-17)

The factorization of L allows us to compute L �1 in an elementary two-step process that will help us to
avoid tracking the cancellation in the formula (2-17) induced by the Wronskian relation when estimating
the growth of L �1f . In particular, we have the following:

Lemma 2.5 (inversion of L ). Let f be a C1 radially symmetric function and w DL �1f be given by
(2-17). Then

Lw D f; Aw D
1

yd�1ƒQ

Z y

0

f .x/ƒQ.x/xd�1 dx; w D�ƒQ

Z y

0

Aw.x/

ƒQ.x/
dx: (2-18)

Proof. From the relation (2-15), we compute

A � D�
1

yd�1ƒQ
:

Applying A to (2-17) and using the cancellation A .ƒQ/D 0, we obtain

Aw D
1

yd�1ƒQ

Z y

0

f .x/ƒQ.x/xd�1 dx:

From the definition (2-6) of A , we write

w D�ƒQ

Z y

0

Aw

ƒQ
dx: �

2B. Admissible functions. We define a class of admissible functions which display a suitable behavior
both at the origin and infinity.

Definition 2.6 (admissible function). Fix  > 0, we say that a smooth function f 2 C1.RC;R/ is
admissible of degree .p1; p2/ 2 N�Z if:
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(i) f admits a Taylor expansion to all orders around the origin,

f .y/D

pX
kDp1

cky
2kC1

CO.y2pC3/I

(ii) f and its derivatives admit the bounds, for y � 1,

for all k 2 N; j@kyf .y/j. y
2p2��k :

Remark 2.7. By (2-5), ƒQ is admissible of degree .0; 0/.

Note that L naturally acts on the class of admissible functions in the following way:

Lemma 2.8 (action of L and L �1 on admissible functions). Let f be an admissible function of degree
.p1; p2/ 2 N�Z. Then:

(i) ƒf is admissible of degree .p1; p2/.

(ii) L f is admissible of degree .maxf0; p1� 1g; p2� 1/.

(iii) L �1f is admissible of degree .p1C 1; p2C 1/.

Proof. (i)–(ii) This is simply a consequence of Definition 2.6.

(iii) We aim to prove that if f is admissible of degree .p1; p2/, then wDL �1f is admissible of degree
.p1C 1; p2C 1/. To do so, we use Lemma 2.5 to estimate

� for y� 1,

Aw D
1

yd�1ƒQ

Z y

0

fƒQxd�1 dx DO
�
1

yd

Z y

0

x2p1C1Cd dx

�
DO.y2p1C2/;

w D�ƒQ

Z y

0

Aw

ƒQ
dx DO

�
y

Z y

0

x2p1C1 dx

�
DO.y2.p1C1/C1/;

� for y � 1,

Aw DO
�

1

yd�1�

Z y

0

x2p2�2Cd�1 dx

�
DO.y2p2C1� /;

w DO
�
1

y

Z y

0

x2p2C1
�
DO.y2.p2C1/� /:

From the last formula in (2-18) and (2-8), we estimate

@yw D�@yƒQ

Z y

0

Aw

ƒQ
dx�Aw D�

@yƒQ

ƒQ
w�Aw DO.y2.p2C1/��1/:

Using Lw D f , we get

@yyw DO
�
j@ywj

y
C
jwj

y2
Cjf j

�
DO.y2.p2C1/��2/:

By taking radial derivatives of Lw D f , we obtain by induction

j@kywj. y
2.p2C1/��k; k 2 N; y � 1: �
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The following lemma is a consequence of Lemma 2.8:

Lemma 2.9 (generators of the kernel of L k). Consider the sequence of profiles

Tk D .�1/
kL �kƒQ; k 2 N: (2-19)

Then:

(i) Tk is admissible of degree .k; k/ for k 2 N.

(ii) ƒTk � .2k� /Tk is admissible of degree .k; k� 1/ for k 2 N�.

Proof. (i) We note from (2-5) that ƒQ is admissible of degree .0; 0/. By induction and part (iii) of
Lemma 2.8, the conclusion then follows.

(ii) We proceed by induction. For k D 1, we explicitly compute T1 D�L �1ƒQ by using Lemma 2.5
and the expansion (2-5) to get

for all m 2 N; @my T1.y/D e1;my
2��m

CO.y��m/ as y!C1:

By induction, one can easily check that @my ƒf Dƒ@
m
y f Cm@

m
y f for m 2 N�. Hence,

@my ŒƒT1� .2� /T1�Dƒ@
m
y T1� .2�  �m/@

m
y T1 DO.y��m/ as y!C1:

Since T1 and ƒT1 are admissible of degree .1; 1/, we deduce that ƒT1 � .2� /T1 is admissible of
degree .1; 0/.

We now assume the claim for k � 1, namely that ƒTk � .2k�/Tk is admissible of degree .k; k�1/.
Let us prove that ƒTkC1� .2.kC1/�/TkC1 is admissible of degree .kC1; k/. We use formula (2-10)
and definition (2-19) to write

L .ƒTkC1� .2kC 2� /TkC1/DƒL TkC1� .2k� /L TkC1�
ƒZ

y2
TkC1

DƒTk � .2k� /Tk �
ƒZ

y2
TkC1: (2-20)

From part (i), we know that TkC1 is admissible of degree .kC 1; kC 1/. From (2-11) and (2-8), one can
check that .ƒZ=y2/TkC1 admits the asymptotic

ƒZ

y2
TkC1 DO.y2kC1/ as y! 0;

and

@jy

�
ƒZ

y2
TkC1

�
DO.y2.kC1/�j��3/� y2.k�1/Cj� as y!C1:

Together with the induction hypothesis, we deduce that the right-hand side of (2-20) is admissible of
degree .k; k� 1/. The conclusion then follows by using part (iii) of Lemma 2.8. �

We end this subsection by introducing a simple notion of homogeneous admissible function.
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Definition 2.10 (homogeneous admissible function). LetL�1 be an integer andmD .m1; : : : ; mL/2NL.
We say that a function f .b; y/ with bD .b1; : : : ; bL/ is homogeneous of degree .p1; p2; p3/2N�Z�N

if it is a finite linear combination of monomials

Qf .y/

LY
kD1

b
mk
k
;

with Qf .y/ admissible of degree .p1; p2/ in the sense of Definition 2.6 and

.m1; : : : ; mL/ 2 NL;

LX
kD1

kmk D p3:

We set
deg.f / WD .p1; p2; p3/:

2C. Slowly modulated blowup profile. We use the explicit structure of the linearized operator L to
construct an approximate blowup profile. In particular, we claim the following:

Proposition 2.11 (construction of the approximate profile). Let d � 7 andL� 1 be an integer. LetM >0

be a large enough universal constant. Then there exists a small enough universal constant b�.M;L/ > 0
such that the following holds true. Consider a C1 map

b D .b1; : : : ; bL/ W Œs0; s1� 7! .�b�; b�/L;

with a priori bounds in Œs0; s1�,

0 < b1 < b
�; jbkj. bk1 ; 2� k � L: (2-21)

Then there exist homogeneous profiles

S1 D 0; Sk D Sk.b; y/; 2� k � LC 2;

such that

Qb.s/.y/DQ.y/C

LX
kD1

bk.s/Tk.y/C

LC2X
kD2

Sk.b; y/�Q.y/C‚b.s/.y/ (2-22)

generates an approximate solution to the renormalized flow (2-2)

@sQb � @yyQb �
.d � 1/

y
@yQbC b1ƒQbC

.d � 1/

2y2
sin.2Qb/D‰bCMod.t/; (2-23)

with the following properties:

(i) (modulation equation)

Mod.t/D
LX
kD1

Œ.bk/sC .2k� /b1bk � bkC1�

�
TkC

LC2X
jDkC1

@Sj

@bk

�
; (2-24)

where we use the convention bj D 0 for j � LC 1.
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(ii) (estimate on the profiles) The profiles .Sk/2�k�LC2 are homogeneous with

deg.Sk/D .k; k� 1; k/ for 2� k � LC 2;
@Sk

@bm
D 0 for 2� k �m� L:

(iii) (estimate on the error ‰b) For all 0�m� L, we have:

� (global weight bound)Z
y�2B1

jL „CmC1‰bj
2
C

Z
y�2B1

j‰bj
2

1Cy4.„CmC1/
. b2mC4C2.1�ı/�CL�1 ; (2-25)

where B1, „, ı are defined in (1-20) and (1-18).

� (improved local bound)

For all M � 1;
Z
y�2M

jL „CmC1‰bj
2 .MC b2LC61 : (2-26)

Proof. We aim to construct the profiles .Sk/2�k�LC2 such that ‰b.y/ defined from (2-23) has the least
possible growth as y!C1. The key to this construction is the fact that the structure of the linearized
operator L defined in (1-22) is completely explicit in the radial sector thanks to the explicit formulas of
the elements of the kernel. This procedure will lead to the leading-order modulation equation

.bk/s D�.2k� /b1bkC bkC1 for 1� k � L; (2-27)

which actually cancels the worst growth of Sk as y!C1.

� Expansion of ‰b . From (2-23) and (2-3), we write

@sQb � @yyQb �
.d � 1/

y
@yQbC b1ƒQbC

.d � 1/

2y2
sin.2Qb/

D b1ƒQC @s‚b � @yy‚b �
.d � 1/

y
@y‚y C

.d � 1/

y2
cos.2Q/‚bC b1ƒ‚b

C
.d � 1/

2y2
Œsin.2QC 2‚b/� sin.2Q/� 2 cos.2Q/‚b�

WD A1CA2:

Using the expression (2-22) of ‚b and the definition (2-19) of Tk (note that L Tk D �Tk�1 with the
convention T0 DƒQ), we write

A1 D b1ƒQC

LX
kD1

Œ.bk/sTkC bkL TkC b1bkƒTk�C

LC2X
kD2

Œ@sSkCLSkC b1ƒSk�

D

LX
kD1

Œ.bk/sTk � bkC1TkC b1bkƒTk�C

LC2X
kD2

Œ@sSkCLSkC b1ƒSk�
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D

LX
kD1

Œ.bk/s � bkC1C .2k� /b1bk�Tk

C

LX
kD1

ŒLSkC1C @sSkC b1bkŒƒTk � .2k� /Tk�C b1ƒSk�

C ŒLSLC2C @sSLC1C b1ƒSLC1�C Œ@sSLC2C b1ƒSLC2�:

We now write

@sSk D

LX
jD1

.bj /s
@Sk

@bj
D

LX
jD1

Œ.bj /sC .2j � /b1bj � bjC1�
@Sk

@bj
�

LX
jD1

Œ.2j � /b1bj � bjC1�
@Sk

@bj
:

Hence,

A1 DMod.t/C
LC1X
kD1

ŒLSkC1CEk�CELC2;

where for k D 1; : : : ; L,

Ek D b1bkŒƒTk � .2k� /Tk�C b1ƒSk �

k�1X
jD1

Œ.2j � /b1bj � bjC1�
@Sk

@bj
; (2-28)

and for k D LC 1;LC 2,

Ek D b1ƒSk �

LX
jD1

Œ.2j � /b1bj � bjC1�
@Sk

@bj
: (2-29)

For the expansion of the nonlinear term A2, let us set

f .x/D sin.2x/

and use a Taylor expansion to write (see page 1740 in [Raphaël and Schweyer 2014b] for a similar
computation)

A2 D
.d � 1/

2y2

�LC2X
iD2

f .i/.Q/

iŠ
‚ibCR2

�
D
.d � 1/

2y2

�LC2X
iD2

Pi CR1CR2

�
;

where

Pi D

LC2X
jD2

f .j /.Q/

j Š

X
jJ j1Dj; jJ j2Di

cJ

LY
kD1

b
ik
k
T
ik
k

LC2Y
kD2

S
jk
k
; (2-30)

R1 D

LC2X
jD2

f .j /.Q/

j Š

X
jJ j1Dj; jJ j2�LC3

cJ

LY
kD1

b
ik
k
T
ik
k

LC2Y
kD2

S
jk
k
; (2-31)

R2 D
‚LC3
b

.LC 2/Š

Z 1

0

.1� �/LC2f .LC3/.QC �‚b/ d�; (2-32)
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with J D .i1; : : : ; iL; j2; : : : ; jLC2/ 2 N2LC1 and

jJ j1 D

LX
kD1

ikC

LC2X
kD2

jk; jJ j2 D

LX
kD1

kikC

LC2X
kD2

kjk : (2-33)

In conclusion, we have

‰b D

LC1X
kD1

�
LSkC1CEkC

.d � 1/

2y2
PkC1

�
CELC2C

.d � 1/

2y2
.R1CR2/: (2-34)

� Construction of Sk . From the expression of ‰b given in (2-34), we construct iteratively the sequences
of profiles .Sk/1�k�LC2 through the scheme�

S1 D 0;

Sk D�L �1Fk; 2� k � LC 2;
(2-35)

where

Fk DEk�1C
.d � 1/

2y2
Pk for 2� k � LC 2:

We claim by induction on k that Fk is homogeneous with

deg.Fk/D .k� 1; k� 2; k/ for 2� k � LC 2; (2-36)

and
@Fk

@bm
D 0 for 2� k �m� LC 2: (2-37)

From item (iii) of Lemma 2.8 and (2-36), we deduce that Sk is homogeneous with

deg.Sk/D .k; k� 1; k/ for 2� k � LC 2;

and from (2-37), we get
@Sk

@bm
D 0 for 2� k �m� LC 2;

which is the conclusion of item (ii).
Let us now give the proof of (2-36) and (2-37). We proceed by induction.

Case k D 2: We compute explicitly from (2-28) and (2-30),

F2 DE1C
.d � 1/

2y2
P2 D b

2
1

�
ƒT1� .2� /T1C

.d � 1/f 00.Q/

2y2
T 21

�
;

which directly follows (2-37). From Lemma 2.9, we know that T1 and ƒT1� .2� /T1 are admissible
of degrees .1; 1/ and .1; 0/ respectively. Using (2-4), one can check the bound

for all m; j 2 N2;

ˇ̌̌̌
@my

�
f .j /.Q/

y2

�ˇ̌̌̌
. y��2�m as y!C1: (2-38)

Since T1 is admissible of degree .1; 1/, we have

for all m 2 N; j@my .T
2
1 /j. y

4�2�m as y!C1:
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By the Leibniz rule and the fact that 2 � 2 > 0, we get

for all m; j 2 N2;

ˇ̌̌̌
@my

�
f .j /.Q/

y2
T 21

�ˇ̌̌̌
. y��m�.2�2/ . y��m:

We also have the expansion near the origin,

f .j /.Q/

y2
T 21 D

kX
iD2

ciy
2iC1
CO.y2kC3/; k � 1:

Hence, .f 00.Q/=y2/T 21 is admissible of degree .2; 0/, which concludes the proof of (2-36) for k D 2.

Case k! kC 1: Estimate (2-37) holds by direct inspection. Let us now assume that Sk is homogeneous
of degree .k; k�1; k/ and prove that SkC1 is homogeneous of degree .kC1; k; kC1/. In particular, the
claim immediately follows from part (iii) of Lemma 2.8 once we show that FkC1 is homogeneous with

deg.FkC1/D deg
�
EkC

PkC1

y2

�
D .k; k� 1; kC 1/: (2-39)

From part (ii) of Lemma 2.9 and the a priori assumption (2-21), we see that b1bk.ƒTk � .2k � /Tk/
is homogeneous of degree .k; k� 1; kC 1/. From part (i) of Lemma 2.8 and the induction hypothesis,
b1ƒSk is also homogeneous of degree .k; k � 1; kC 1/. By definition, b1.@Sk=@b1/ is homogeneous
and has the same degree as Sk . Thus,�

.2j � /b1�
b2

b1

��
b1
@Sk

@b1

�
is homogeneous of degree .k; k� 1; kC 1/. From definitions (2-28) and (2-29), we derive

deg.Ek/D .k; k� 1; kC 1/; k � 1:

It remains to control the term PkC1=y
2. From the definition (2-30), we see that PkC1=y2 is a linear

combination of monomials of the form

MJ .y/D
f .j /.Q/

y2

LY
mD1

bimm T
im
m

LC2Y
mD2

Sjmm ;

with

J D .i1; : : : ; iL; j2; : : : ; jLC2/; jJ j1 D j; jJ j2 D kC 1; 2� j � kC 1:

Recall from part (i) of Lemma 2.9 the bound

for all n 2 N; j@nyTmj. y
2m��n as y!C1;

and from the induction hypothesis and the a priori bound (2-21),

for all n 2 N; j@nySmj. b
m
1 y

2.m�1/��n as y!C1:
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Together with the bound (2-38), we obtain the following bound at infinity:

jMJ j. bjJ j21 y2jJ j2��jJ j1�2�2
PLC2
mD2 jm . bkC11 y2.k�1/� :

The control of @nyMJ follows by the Leibniz rule and the above estimates. One can also check that
MJ is of order y2jJ j2CjJ j1�1 near the origin. This concludes the proof of (2-39) as well as part (ii) of
Proposition 2.11.
� Estimate on ‰b . From (2-34) and (2-35), the expression of ‰b is now reduced to

‰b DELC2C
.d � 1/

y2
.R1CR2/;

where ELC2, R1 and R2 are given by (2-29), (2-31) and (2-32).
We start by estimating the ELC2 term defined by (2-29). Since SLC2 is homogeneous of degree

.LC 2;LC 1;LC 2/, so are ƒSLC2 and b1.@SLC2=@b1/. It follows that ELC2 is homogeneous of
degree .LC2;LC1;LC3/. Using part (ii) of Lemma 2.8 and the relation d �2 �4„D 4ı, see (1-18),
we estimate for all 0�m� LZ

y�2B1

jL „CmC1ELC2j
2 . b2LC61

Z
y�2B1

jy2.LC1/��2.„CmC1/j2yd�1 dy

. b2LC61

Z
y�2B1

y4.L�mCı/�1 dy

. b.2LC6/�2.L�mCı/.1C�/1 . b2mC4C2.1�ı/�CL�1 ;

where �D �.L/, 0 < �� 1.
We now turn to the control of the term R1=y

2, which is a linear combination of terms of the form,
see (2-31),

zMJ D
f .j /.Q/

y2

LY
nD1

binn T
in
n

LC2Y
nD2

S
jn
k
;

with
J D .i1; : : : ; iL; j2; : : : ; jLC2/; jJ j1 D j; jJ j2 � LC 3; 2� j � LC 2:

Using the admissibility of Tn and the homogeneity of Sn, we get the bounds

j zMJ j. bLC31 y2jJ j2Cj�1 . bLC31 y2LC6 as y! 0;

and
j zMJ j. bjJ j21 y2jJ j2�j�2� as y!C1;

where we used the facts that j � 2 and 2� j  < 0, and similarly for higher derivatives by the Leibniz
rule. Thus, we obtain the round estimate for all 0�m� L,Z

y�2B1

ˇ̌̌̌
L „CmC1

�
R1

y2

�ˇ̌̌̌2
. b2jJ j21

Z
y�2B1

jy2jJ j2�j��2�2.„CmC1/j2yd�1 dy

. b2mC4C2.1�ı/�CL�1 :
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The term R2=y
2 is estimated exactly as the term R1=y

2 using the definition (2-32). Similarly, the control
of
R
y�2B1

j‰bj
2=.1Cy4.„CmC1// is obtained along the exact same lines as above. This concludes

the proof of (2-25). The local estimate (2-26) directly follows from the homogeneity of Sk and the
admissibility of Tk . �

We now proceed to a simple localization of the profile Qb to avoid the growth of tails in the region
y � 2B1� B0. More precisely, we claim the following:

Proposition 2.12 (estimates on the localized profile). Under the assumptions of Proposition 2.11, we
assume in addition the a priori bound

j.b1/sj. b21 : (2-40)

Consider the localized profile

zQb.s/.y/DQ.y/C

LX
kD1

bk zTkC

LC2X
kD2

zSk with zTk D �B1Tk; zSk D �B1Sk; (2-41)

where B1 and �B1 are defined as in (1-20) and (1-21). Then

@s zQb � @yy zQb �
.d � 1/

y
@y zQbC b1ƒ zQbC

.d � 1/

2y2
sin.2 zQb/D z‰bC�B1 Mod.t/; (2-42)

where z‰b satisfies the bounds:

(i) (large Sobolev bound) For all 0�m� L� 1,Z
jL „CmC1 z‰bj

2
C

Z
jA L „Cm z‰bj

2

1Cy2
C

Z
jL „Cm z‰bj

2

1Cy4
C

Z
j z‰bj

2

1Cy4.„CmC1/
. b2mC2C2.1�ı/�CL�1 ;

(2-43)
andZ
jL „CLC1 z‰bj

2
C

Z
jA L „CL z‰bj

2

1Cy2
C

Z
jL „CL z‰bj

2

1Cy4
C

Z
j z‰bj

2

1Cy4.„CLC1/
. b2LC2C2.1�ı/.1C�/1 ;

(2-44)
where „ and ı are defined by (1-18).

(ii) (very local bound) For all M � 1
2
B1 and 0�m� L,Z

y�2M

jL „CmC1 z‰bj
2 .MC b2LC61 : (2-45)

(iii) (refined local bound near B0) For all 0�m� L,Z
y�2B0

jL „CmC1 z‰bj
2
C

Z
y�2B0

j z‰bj
2

1Cy4.„CmC1/
. b2mC4C2.1�ı/�CL�1 : (2-46)
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Proof. By a direct computation, we have

@s zQb � @yy zQb �
.d � 1/

y
@y zQbC b1ƒ zQbC

.d � 1/

2y2
sin.2 zQb/

D �B1

�
@sQb � @yyQb �

.d � 1/

y
@yQbC b1ƒQbC

.d � 1/

2y2
sin.2Qb/

�
C‚b

�
@s�B1 �

�
@yy�B1C

d � 1

y
@y�B1

�
Cb1ƒ�B1

�
�2@y�B1@y‚bCb1.1��B1/ƒQ

C
.d � 1/

2y2
Œsin.2 zQb/� sin.2Q/��B1.sin.2Qb/� sin.2Q//�:

According to (2-23) and (2-42), we write

z‰b D �B1‰bC
y‰b;

where

y‰b D b1.1��B1/ƒQ„ ƒ‚ …
y‰
.1/

b

C
.d � 1/

2y2
Œsin.2 zQb/� sin.2Q/��B1.sin.2Qb/� sin.2Q//�„ ƒ‚ …

y‰
.2/

b

C‚b

�
@s�B1 �

�
@yy�B1 C

d � 1

y
@y�B1

�
C b1ƒ�B1

�
� 2@y�B1@y‚b„ ƒ‚ …

y‰
.3/

b

:

The contribution of the term �b1‰b to the bounds (2-43), (2-44), (2-45) and (2-46) follows in exactly
the same way as in the proof of (2-25) and (2-26). We are therefore left to estimate the term y‰b . All the
terms in the expression of y‰b are localized in B1 � y � 2B1, except for the first one whose support is a
subset of fy � B1g. Hence, the estimates (2-45) and (2-46) directly follow from (2-26) and (2-25).

Let us now find the contribution of y‰b to the bounds (2-43) and (2-44). We estimate

for all n 2 N;

ˇ̌̌̌
dn

dyn
.1��B1/ƒQ

ˇ̌̌̌
.

1

yCn
1y�B1 I

hence, using the relation d � 2 � 4„ D 4ı, see (1-18), and the definition (1-20) of B1, we estimate for
all 0�m� L,Z

jL „CmC1 y‰
.1/

b
j
2 . b21

Z
y�B1

yd�1

y4.„CmC1/C2
. b2mC2C2.1�ı/.1C�/C2m�1 :

For the nonlinear term y‰.2/
b

, we note from the admissibility of Tk and the homogeneity of Sk that the
Tk-terms dominate for y � B1 in ‚b . Thus, for y � B1,

for all n 2 N; j@ny‚bj.
LX
kD1

bk1y
2k��n1y�B1 : (2-47)
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Using (2-47) and noting that y‰.2/
b

is localized in B1 � y � 2B1, we obtain the round bound

j@ny
y‰
.2/

b
j.

LX
kD1

bk1y
2.k�1/��n1B1�y�2B1

.
b1

yCn

LX
kD1

b
�.k�1/�
1 1B1�y�2B1 :

We then estimate for 0�m� L,Z
jL „CmC1 y‰

.2/

b
j. b21

LX
kD1

b
�2.k�1/�
1

Z
B1�y�2B1

yd�1

y4.„CmC1/C2
dy

. b2mC2C2.1�ı/.1C�/1

LX
kD1

b
.2m�2kC2/�
1 :

To control y‰.3/
b

, we first note from the definition (1-21) and the assumption (2-40) that

j@s�B1 j.
.b1/s

b1

y

B1
1B1�y�2B1 . b11B1�y�2B1 :

Using (2-47), we estimate for 0�m� L,Z
jL „CmC1 y‰

.3/

b
j.

LX
kD1

b21b
2k
1

Z
B1�y�2B1

yd�1

y4.„CmC1/C2�4kC2
dy

. b2mC2C2.1�ı/.1C�/1

LX
kD1

b
.2m�2k/�
1 :

Gathering all the bounds yieldsZ
jL „CmC1 y‰bj

2 . b2mC2C2.1�ı/.1C�/1

LX
kD1

b
.2m�2k/�
1 . b2mC2C2.1�ı/.1C�/C2�.m�L/1 :

The control of Z
jA L „Cm z‰bj

2

1Cy2
;

Z
jL „Cm z‰bj

2

1Cy4
; and

Z
j y‰bj

2

1Cy4.„CmC1/

is obtained along the exact same lines as above. This concludes the proof of (2-43) and (2-44), as well as
Proposition 2.12. �

2D. Study of the dynamical system for b D .b1; : : : ; bL/. The construction of the Qb profile formally
leads to the finite-dimensional dynamical system for bD .b1; : : : ; bL/ by setting to zero the inhomogeneous
Mod.t/ term given in (2-24):

.bk/sC .2k� /b1bk � bkC1 D 0; 1� k � L; bLC1 D 0: (2-48)
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Unlike the critical case .d D 2/ treated in [Raphaël and Schweyer 2014b], there is no further logarithmic
correction to be taken into account in the system (2-48). In particular, the system (2-48) admits explicit
solutions and the linearized operator near these solutions is explicit.

Lemma 2.13 (solution to the system (2-48)). Let

1
2
 < `� L; ` 2 N�;

and consider the sequence 8̂̂̂̂
<̂
ˆ̂̂:

c1 D
`

2`� 
;

ckC1 D�
.`� k/

2`� 
ck; 1� k � `� 1;

ckC1 D 0; k � `:

(2-49)

Then the explicit choice
bek.s/D

ck

sk
; s > 0; 1� k � L; (2-50)

is a solution to (2-48).

The proof of Lemma 2.13 directly follows from an explicit computation which is left to the reader. We
claim that the linearized flow of (2-48) near the solution (2-50) is explicit and displays `� 1 unstable
directions. Note that the stability is considered in the sense that

sup
s
skjbk.s/j � Ck; 1� k � L:

In particular, we have the following result which was proved in [Merle, Raphaël and Rodnianski 2015]:

Lemma 2.14 (linearization of (2-48) around (2-50)). Let

bk.s/D b
e
k.s/C

Uk.s/
sk

; 1� k � `; (2-51)

and note that U D .U1; : : : ;U`/. Then, for 1� k � `� 1,

.bk/sC .2k� /b1bk � bkC1 D
1

skC1
Œs.Uk/s � .A`U/kCO.jU j2/�; (2-52)

.b`/sC .2`� /b1b` D
1

skC1
Œs.U`/s � .A`U/`CO.jU j2/�; (2-53)

where

A` D .ai;j /1�i;j�` with

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

a1;1 D
.`� 1/

2`� 
� .2� /c1;

ai;i D
.`� i/

2`� 
; 2� i � `;

ai;iC1 D 1; 1� i � `� 1;

a1;i D�.2i � /ci ; 2� i � `;

ai;j D 0 otherwise:
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Moreover, A` is diagonalizable:

A` D P
�1
` D`P`; D` D diag

�
�1;

2

2`� 
;
3

2`� 
; : : : ;

`

2`� 

�
: (2-54)

Proof. Since we have an analogous system to the one in [Merle, Raphaël and Rodnianski 2015] and the
proof is essentially the same as written there, we kindly refer the reader to Lemma 3.7 in that paper for
all details of the proof. �

3. Proof of Theorem 1.1 assuming technical results

This section is devoted to the proof of Theorem 1.1. We proceed in three subsections:

� In the first subsection, we give an equivalent formulation of the linearization of the problem in the
setting (1-30).

� In the second subsection, we prepare the initial data and define the shrinking set SK (see Definition 3.2)
such that the solution trapped in this set satisfies the conclusion of Theorem 1.1.

� In the third subsection, we give all arguments of the proof of the existence of solutions trapped in
SK (Proposition 3.5) assuming an important technical result (Proposition 3.6) whose proof is left to
the next section. Then we conclude the proof of Theorem 1.1.

3A. Linearization of the problem. Let L� 1 be an integer and s0� 1. We introduce the renormalized
variables

y D
r

�.t/
; s D s0C

Z t

0

d�

�2.�/
; (3-1)

and the decomposition

u.r; t/D w.y; s/D . zQb.s/C q/.y; s/D . zQb.t/C q/

�
r

�.t/
; t

�
; (3-2)

where zQb is constructed in Proposition 2.12 and the modulation parameters

�.t/ > 0; b.t/D .b1.t/; : : : ; bL.t//

are determined from the LC 1 orthogonality conditions

hq;L kˆM i D 0; 0� k � L; (3-3)

where ˆM is a fixed direction depending on some large constant M defined by

ˆM D

LX
kD0

ck;ML k.�MƒQ/; (3-4)

with

c0;M D 1; ck;M D .�1/
kC1

Pk�1
jD0 cj;M h�ML j .�MƒQ/; Tki

h�MƒQ;ƒQi
; 1� k � L: (3-5)
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Here, ˆM is built to ensure the nondegeneracy

hˆM ; ƒQi D h�MƒQ;ƒQi&M d�2 (3-6)

and the cancellation

hˆM ; Tki D

k�1X
jD0

cj;M hL
j .�MƒQ/; TkiC ck;M .�1/

k
h�MƒQ;ƒQi D 0: (3-7)

In particular, we have

hL iTk; ˆM i D .�1/
k
h�MƒQ;ƒQiıi;k; 0� i; k � L: (3-8)

From (2-2), we see that q satisfies the equation

@sq�
�s

�
ƒqCL q D�z‰b � bModCH.q/�N .q/� F ; (3-9)

where
bModD�

�
�s

�
C b1

�
ƒ zQb ��B1 Mod; (3-10)

H is the linear part given by

H.q/D
.d � 1/

y2
Œcos.2Q/� cos.2 zQb/�q; (3-11)

and N is the purely nonlinear term

N .q/D
.d � 1/

2y2
Œsin.2 zQbC 2q/� sin.2 zQb/� 2q cos.2 zQb/�: (3-12)

We also need to write (3-9) in the original variables. To do so, consider the rescaled linearized operator

L� D�@rr �
.d � 1/

r
@r C

Z�

r2
(3-13)

and the renormalized function

v.r; t/D q.y; s/; @tv D
1

�2.t/

�
@sq�

�s

�
ƒq

�
�

:

Then from (3-9), v satisfies

@tvCL�v D
1

�2
F�; F�.r; t/D F.y; s/: (3-14)

Note that

L� D
1

�2
L :

3B. Preparation of the initial data. We now describe the set of initial data u0 of the problem (1-4),
as well as the initial data for .b; �/ leading to the blowup scenario of Theorem 1.1. Assume that
u0 2H

1.Rd / satisfies

ku0�Qk PH s � 1 for d
2
� s � k: (3-15)
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By continuity of the flow and a standard argument, the smallness assumption (3-15) is propagated on a
small time interval Œ0; t1/. Thus, the decomposition (3-2),

u.r; t/D . zQb.t/C q/

�
r

�.t/
; t

�
; �.t/ > 0; b D .b1; : : : ; bL/; (3-16)

can be uniquely defined on the interval t 2 Œ0; t1�.
The existence of the decomposition (3-16) is a standard consequence of the implicit function theorem

and the explicit relations

@

@�
. zQb.t//�;

@

@b1
. zQb.t//�; : : : ;

@

@bL
. zQb.t//�

ˇ̌̌̌
�D1; bD0

D .ƒQ; T1; : : : ; TL/;

which implies the nondegeneracy of the Jacobianˇ̌̌̌�
@

@.�; bj /
. zQb.t//�;L

iˆM

�
1�j�L;0�i�L

ˇ̌̌̌
�D1; bD0

D jh�MƒQ;ƒQij
LC1
¤ 0:

In fact, the decomposition (3-16) exists as long as t < T and q remains small in the energy topology. We
now set up the bootstrap for the control of the parameters .b; �/ and the radiation q. We will measure the
regularity of the map through the following coercive norms of q:

E2k D

Z
jL kqj2 � C.M/

k�1X
mD0

Z
jLmqj2

1Cy4.k�m/
for „C 1� k � k: (3-17)

Our construction is built on a careful choice of the initial data for the modulation parameter b and the
radiation q at time s D s0. In particular, we will choose it in the following way:

Definition 3.1 (choice of the initial data). Take � and ı as in (1-20) and (1-18). Let consider the variable

V D P`U ; (3-18)

where U D .U1; : : : ;U`/ is introduced in the linearization (2-51), namely

Uk D skbk � ck; with ck given by (2-49);

and P` refers to the diagonalization (2-54) of A`.
Let s0 � 1. We assume

� (smallness of the initial perturbation for the bk-unstable modes)

js
�
2
.1�ı/

0 Vk.s0/j< 1 for 2� k � `; (3-19)

� (smallness of the initial perturbation for the bk-stable modes)

js
�
2
.1�ı/

0 V1.s0/j< 1; jbk.s0/j< s
�
5`.2k�/
2`�

0 for `C 1� k � L; (3-20)
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� (smallness of the data)
kX

kD„C2

E2k.s0/ < s
� 10L`
2`�

0 ; (3-21)

� (normalization) up to a fixed rescaling, we may always assume

�.s0/D 1: (3-22)

In particular, the initial data described in Definition 3.1 belongs to the following set which shrinks to
zero as s!C1:

Definition 3.2 (definition of the shrinking set). Take � and ı as in (1-20) and (1-18). For all K � 1 and
s � 1, we define SK.s/ as the set of all .b1.s/; : : : ; bL.s/; q.s// such that

jVk.s/j � 10s�
�
2
.1�ı/ for 1� k � `;

jbk.s/j � s
�k for `C 1� k � L;

E2k.s/�Ks
�.2LC2.1�ı/.1C�//;

E2m.s/�

�
Ks�

`
2`�

.4m�d/ for „C 2�m� `C„;
s�2.m�„�1/�2.1�ı/CK� for `C„C 1�m� k� 1:

Remark 3.3. From (2-51), the bounds given in Definition 3.2 imply that for � small enough,

b1.s/�
c1

s
; jbk.s/j. jb1.s/jk :

Hence, the choice of the initial data .b.s0/; q.s0// belongs in SK.s0/ if s0 is large enough.

Remark 3.4. The introduction of the high Sobolev norm E2k is reflected in the relationˇ̌̌̌
�s

�
C b1

ˇ̌̌̌
C

LX
kD1

j.bk/sC .2k� /b1bk � bkC1j. C.M/
p

E2kC l:o:t:; (3-23)

which is computed thanks to the LC 1 orthogonality conditions (3-3) (see Lemmas 4.2 and 4.3 below).

3C. Existence of solutions trapped in SK .s/ and conclusion of Theorem 1.1. We claim the following
proposition:

Proposition 3.5 (existence of solutions trapped in SK.s/). There exists K1 � 1 such that for K � K1,
there exists s0;1.K/ such that for all s0 � s0;1, there exists initial data for the unstable modes

.V2.s0/; : : : ;V`.s0// 2 Œ�s
�
�
2
.1�ı/

0 ; s
�
�
2
.1�ı/

0 �`�1

such that the corresponding solution .b.s/; q.s// is in SK.s/ for all s � s0.

Let us briefly give the proof of Proposition 3.5. Let us consider K � 1 and s0 � 1 and .b.s0/; q.s0//
as in Definition 3.1. We introduce the exit time

s� D s�.b.s0/; q.s0//D supfs � s0 such that .b.s/; q.s// 2 SK.s/g;
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and assume that for any choice of

.V2.s0/; : : : ;V`.s0// 2 Œ�s
�
�
2
.1�ı/

0 ; s
�
�
2
.1�ı/

0 �`�1;

the exit time satisfies s� <C1 and look for a contradiction. By the definition of SK.s�/, at least one of
the inequalities in that definition is an equality. Owing the following proposition, this can happen only
for the components .V2.s�/; : : : ;V`.s�//. Precisely, we have the following result which is the heart of
our analysis:

Proposition 3.6 (control of .b.s/; q.s// in SK.s/ by .V2.s/; : : : ;V`.s//). There existsK2�1 such that for
eachK �K2, there exists s0;2.K/� 1 such that for all s0 � s0;2.k/, the following holds: Given the initial
data at sD s0 as in Definition 3.1, if .b.s/; q.s//2SK.s/ for all s2 Œs0; s1�, with .b.s1/; q.s1//2@SK.s1/
for some s1 � s0, then:

(i) (reduction to a finite-dimensional problem)

.V2.s1/; : : : ;V`.s1// 2 @

"
�

K

s
�
2
.1�ı/

1

;
K

s
�
2
.1�ı/

1

#`�1
:

(ii) (transverse crossing)

d

ds

�X̀
iD2

js
�
2
.1�ı/Vi .s/j2

�ˇ̌̌̌
sDs1

> 0:

Let us assume Proposition 3.6 and continue the proof of Proposition 3.5. From part (i) of Proposition 3.6,
we see that

.V2.s�/; : : : ;V`.s�// 2 @

"
�

K

s
�
2
.1�ı/
�

;
K

s
�
2
.1�ı/
�

#`�1
;

and the mapping

‡ W Œ�1; 1�`�1! @.Œ�1; 1�`�1/;

s
�
2
.1�ı/

0 .V2.s0/; : : : ;V`.s0// 7!
s
�
2
.1�ı/
�

K
.V2.s�/; : : : ;V`.s�//;

is well-defined. Applying the transverse-crossing property given in part (ii) of Proposition 3.6, we see
that .b.s/; q.s// leaves SK.s/ at s D s0; hence, s� D s0. This is a contradiction since ‡ is the identity
map on the boundary sphere and it cannot be a continuous retraction of the unit ball. This concludes the
proof of Proposition 3.5, assuming that Proposition 3.6 holds.

� Conclusion of Theorem 1.1 assuming Proposition 3.6. From Proposition 3.5, we know that there exists
initial data .b.s0/; q.s0// such that

.b.s/; q.s// 2 SK.s/ for all s � s0:

From (4-57), (4-58), we have
���t D c.u0/�

2`�
` Œ1C o.1/�;
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which yields

��1�
2`�
` �t D c.u0/.1C o.1//:

We easily conclude that � vanishes in finite time T D T .u0/ <C1 with the following behavior near the
blowup time:

�.t/D c.u0/.1C o.1//.T � t /
`
 ;

which is the conclusion of item (i) of Theorem 1.1.
For the control of the Sobolev norms, we observe from (B-3) and Definition 3.2 that

for all „C 2�m� k;
Z
j@2my qj2 . E2m! 0 as s!C1:

From the relation d D 4„C 4ıC 2 , we deduce that

for all � 2
�
d
2
C 3; 2k

�
;

Z
jr
�qj2! 0 as s!C1;

which yields (ii) of Theorem 1.1.

4. Reduction of the problem to a finite-dimensional one

We now prove Proposition 3.6, which is the heart of our analysis. We proceed in three separate subsections:

� In the first subsection, we derive the laws for the parameters .b; �/ thanks to the orthogonality
condition (3-3) and the coercivity of the powers of L .

� In the second subsection, we prove the main monotonicity tools for the control of the infinite-
dimensional part of the solution. In particular, we derive a suitable Lyapunov functional for the E2k

energy, as well as the monotonicity formula for the lower Sobolev energy.

� In the third subsection, we conclude the proof of Proposition 3.6 thanks to the identities obtained in
the first two parts.

4A. Modulation equations. We derive here the modulation equations for .b; �/. The derivation is mainly
based on the orthogonality (3-3) and the coercivity of the powers of L . Let us start with elementary
estimates relating to the fixed direction ˆM .

Lemma 4.1 (estimate for ˆM ). Given ˆM as defined in (3-4), we have

jck;M j.M 2k for all 1� k � L;Z
jˆM j

2 .M d�2 ;

Z
jLˆM j

2 .M d�2�4:

Proof. Arguing by induction, we assume that

jcj;M j.M 2j ; 1� j � k:
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Using the fact that L jTi is admissible of degree .maxf0; i � j g; i � j /, we estimate from the definition
(3-5),

jckC1;M j.
1

M d�2

kX
jD0

M 2j

Z
j�MƒQL j .TkC1/j

.
1

M d�2

kX
jD0

M 2j

Z
y�M

yd�1

y
y2.kC1�j /� dy .M 2.kC1/:

Using the estimate for ck;M yieldsZ
jˆM j

2 .
Z
j�MƒQj

2
C

LX
jD1

jcj;M j
2

Z
jL j .�MƒQ/j

2 .M d�2�4;

and Z
jLˆM j

2 .
LX
jD0

jcj;M j
2

Z
jL jC1.�MƒQ/j

2 .M d�2 : �

From the orthogonality conditions (3-3) and (3-9), we claim the following:

Lemma 4.2 (modulation equations). Take „, ı and � as defined in (1-18) and (1-20). For K � 1, we
assume that there is s0.K/� 1 such that .b.s/; q.s// 2 SK.s/ for s 2 Œs0; s1� for some s1 � s0. Then, the
following hold for s 2 Œs0; s1�:

L�1X
kD1

j.bk/sC .2k� /b1bk � bkC1jC

ˇ̌̌̌
b1C

�s

�

ˇ̌̌̌
. bLC1C.1�ı/.1C�/1 ; (4-1)

and

j.bL/sC .2L� /b1bLj.
p

E2k

M 2ı
C b

LC1C.1�ı/.1C�/
1 : (4-2)

Proof. We start with the law for bL. Let

D.t/D

ˇ̌̌̌
b1C

�s

�

ˇ̌̌̌
C

LX
kD1

j.bk/sC .2k� /b1bk � bkC1j;

where we recall that bk � 0 if k � LC 1.
Now, we take the inner product of (3-9) with LLˆM and use the orthogonality (3-3) to write

hbMod.t/;LLˆM i D �hL
L z‰b; ˆM i � hL

LC1q;ˆM i �

�
�
�s

�
ƒq�L.q/CN .q/;LLˆM

�
: (4-3)

From the definition (3-4), we see that ˆM is localized in y � 2M. From (3-10) and (2-24), we compute
by using the identity (3-8),

hbMod.t/;LLˆM i D .�1/
L
hƒQ;ˆM iŒ.bL/sC .2L� /b1bL�CO.MC b1D.t//:
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The error term is estimated by using (2-26) with mD L�„� 1 and Lemma 4.1:

jhLL z‰b; ˆM ij �

�Z
y�2M

jLL z‰bj
2

�1
2
�Z
y�2M

jˆM j
2

�1
2

.MC bLC31 . bLC1C.1�ı/.1C�/1 :

For the linear term, we apply Lemma A.5 with k D k� 1:

E2k.q/&
Z

jLLC1qj2

y4.1Cy4.„�1//
&
Z
jLLC1qj2

1Cy4„
:

Hence, the Cauchy–Schwarz inequality yields

jhLLC1q;ˆM ij.M 2„

�Z
jLLC1qj2

1Cy4„

�1
2
�Z
jˆM j

2

�1
2

.M 2„Cd
2
�
p

E2k:

The remaining terms are easily estimated by using the following bound coming from Lemma A.5 and
Lemma A.4:

E2k.q/&
Z

jL qj2

y4.1Cy4.k�2//
&
Z

j@yqj
2

y4.1Cy4.k�2/C2/
C

Z
q2

y6.1Cy4.k�2/C2/
: (4-4)

This implies ˇ̌̌̌�
�
�s

�
ƒqCL.q/CN .q/;LLˆM

�ˇ̌̌̌
.MC b1.

p
E2kCD.t//:

Putting all the above estimates into (4-3) and using (3-6) together with the relation (1-18), we arrive at

j.bL/sC .2L� /b1bLj.
p

E2k

M 2ı
C b

LC1C.1�ı/.1C�/
1 CMC b1D.t/: (4-5)

For the modulation equations for bk with 1 � k � L� 1, we take the inner product of (3-9) with
L kˆM and use the orthogonality (3-3) to write for 1� k � L� 1,

hbMod.t/;L kˆM i D �hL
k z‰b; ˆM i �

�
�
�s

�
ƒq�L.q/CN .q/;L kˆM

�
:

Proceeding as for bL, we end up with

j.bk/sC .2k� /b1bk � bkC1j. b
LC1C.1�ı/.1C�/
1 CMC b1.

p
E2kCD.t//: (4-6)

Similarly, we have by taking the inner product of (3-9) with ˆM ,ˇ̌̌̌
�s

�
C b1

ˇ̌̌̌
. bLC1C.1�ı/.1C�/1 CMC b1.

p
E2kCD.t//: (4-7)

From (4-5), (4-6) and (4-7), we obtain the round bound

D.t/.MC
p

E2kC b
LC1C.1�ı/.1C�/
1 :

The conclusion then follows by substituting this bound into (4-5), (4-6) and (4-7). �
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From the bound for Ek given in Definition 3.2 and the modulation equation (4-2), we only have the
pointwise bound

j.bL/sC .2L� /b1bLj. bLC.1�ı/.1C�/1 ;

which is not good enough to close the expected one

j.bL/sC .2L� /b1bLj � bLC11 :

We claim that the main linear term can be removed up to an oscillation in time leading to the improved
modulation equation for bL as follows:

Lemma 4.3 (improved modulation equation for bL). Under the assumption of Lemma 4.2, the following
bound holds for all s 2 Œs0; s1�:ˇ̌̌̌

.bL/sC .2L� /b1bLC
d

ds

�
hLLq; �B0ƒQi

hƒQ;�B0ƒQi

�̌̌̌̌
.

1

B2ı0
ŒC.M/

p
E2kC b

LC1C.1�ı/�CL�
1 �: (4-8)

Proof. We commute (3-9) with LL and take the inner product with �B0ƒQ to get

hƒQ;�B0ƒQi

�
d

ds

�
hLLq; �B0ƒQi

hƒQ;�B0ƒQi

�
� hLLq; �B0ƒQi

d

ds

�
1

hƒQ;�B0ƒQi

��
D hLLq;ƒQ@s.�B0/i � hL

LC1q; �B0ƒQiC
�s

�
hLLƒq; �B0ƒQi

� hLL z‰b; �B0ƒQi � hL
L bMod.t/; �B0ƒQiC hL

L.L.q/�N .q//; �B0ƒQi: (4-9)

We recall from (2-5) that

B
d�2
0 . jhƒQ;�B0ƒQij. B

d�2
0 : (4-10)

Let us estimate the second term in the left-hand side of (4-9). We use Cauchy–Schwarz and Lemma A.5
to estimate

jhLLq; �B0ƒQij. B
2„C2
0 k�B0ƒQkL2

�Z
jLLqj2

1Cy4„C4

�1
2

. B
d
2
�C2„C2

0

p
E2k: (4-11)

We writeˇ̌̌̌
hLLq; �B0ƒQi

d

ds

�
1

hƒQ;�B0ƒQi

�ˇ̌̌̌
.
jhLLq; �B0ƒQij

hƒQ;�B0ƒQi
2

ˇ̌̌̌
.b1/s

b1

ˇ̌̌̌ Z
B0�y�2B0

jƒQj2

. b1
B
d
2
�C2„C2

0

p
E2k

B
2d�4
0

B
d�2
0 .

p
E2k

B2ı0
;

where we used the relation (1-18).
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For the first three terms in the right-hand side of (4-9), we use Cauchy–Schwarz, Lemma A.5 and the
fact that L .ƒQ/D 0 to find that

jhLLq;ƒQ@s.�B0/ij.
ˇ̌̌̌
.b1/s

b1

ˇ̌̌̌�Z
B0�y�2B0

.1Cy4„C4/jƒQj2
�1
2
�Z

jLLqj2

1Cy4„C4

�1
2

. b1B
d
2
�C2„C2

0

p
E2k . B

d
2
�C2„

0

p
E2k;

jhLLC1q; �B0ƒQij.
�Z

.1Cy4„/j�B0ƒQj
2

�1
2
�Z
jLLC1qj2

1Cy4„

�1
2

. B
d
2
�C2„

0

p
E2k

and ˇ̌̌̌
�s

�
hLLƒq; �B0ƒQi

ˇ̌̌̌
. b1

�Z
.1Cy4.LC„/C2/jLL.�B0ƒQ/j

2

�1
2
�Z

j@yqj
2

1Cy4.LC„/C2

�1
2

. B
d
2
�C2„

0

p
E2k:

The error term is estimated by using (2-46):

jhLL z‰b; �B0ƒQij.
�Z

.1Cy4.LC„C1//jLL.�B0ƒQ/j
2

�1
2
�Z

j z‰bj
2

1Cy4.LC„C1/

�1
2

. B
d
2
�C2„C2

0 b
LC2C.1�ı/�CL�
1 :

The last term in the right-hand side of (4-9) is estimated in the same way:

jhLL.L.q/�N .q//; �B0ƒQij.
Z
jL.q/LL.�B0ƒQ/jC

Z
jN .q/LL.�B0ƒQ/j

.
�Z

jL.q/j2

1Cy4k�4

�1
2
�Z

.1Cy4k�4/jLL.�B0ƒQ/j
2

�1
2

C

�Z
jN .q/j2

1Cy4k

�1
2
�Z

.1Cy4k/jLL.�B0ƒQ/j
2

�1
2

. B
d
2
�1�C2„

0

p
E2kC b1B

2
0B

d
2
�1�C2„

0

p
Ek

. B
d
2
�C2„

0

p
E2k:

For the remaining term, we recall that L .ƒQ/D0, LLTkD0 for 1�k�L�1, and LLTLD .�1/
LƒQ,

from which
LL.Tk�B1/D�LL.Tk.1��B1//; 1� k � L� 1:

From (3-10), (2-24) and the fact that �B0.1��B1/D 0, we writeˇ̌
hLL bMod.t/;�B0ƒQi�.�1/

L
hƒQ;�B0ƒQiŒ.bL/sC.2L�/b1bL�

ˇ̌
.

LX
kD1

j.bk/sC.2k�/b1bL�bkC1j

ˇ̌̌̌� LC2X
jDkC1

@ zSj

@bk
;LL.�B0ƒQ/

�ˇ̌̌̌
C

ˇ̌̌̌
�s

�
Cb1

ˇ̌̌̌
jhƒz‚b;L

L.�B0ƒQ/ij:
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Recalling that Tk is admissible of degree .k; k/ and Sk is homogeneous of degree .k; k�1; k/, we derive
the round bounds for y � B0:

jƒ‚bj. b1y2� ;
LC2X
jDkC1

ˇ̌̌̌
@Sj

@bk

ˇ̌̌̌
�

LC2X
jDkC1

b
j�k
1 y2.j�1/� . b1y2k� :

Thus, from Lemma 4.2, we derive the boundˇ̌̌̌
�s

�
C b1

ˇ̌̌̌
jhƒz‚b;L

L.�B0ƒQ/ijC

LX
kD1

j.bk/sC .2k� /b1bL� bkC1j

ˇ̌̌̌� LC2X
jDkC1

@ zSj

@bk
;LL.�B0ƒQ/

�ˇ̌̌̌

. .C.M/
p

E2kC b
LC1C.1�ı/.1C�/
1 /b1

Z
B0�y�2B0

y2L�yd�1

y2LC
dy

. .C.M/
p

E2kC b
LC1C.1�ı/.1C�/
1 /b1B

d�2
0 :

The equation (4-8) follows by gathering all the above estimates into (4-9), dividing both sides of (4-9)
by .�1/LhƒQ;�B0ƒQi and using the relation (1-18). �

4B. Monotonicity. We derive in this subsection the main monotonicity formula for E2k for „C1� k� k.
We claim the following which is the heart of this paper:

Proposition 4.4 (Lyapounov monotonicity for the high Sobolev norm). We have

d

dt

�
E2k

�4k�d
Œ1CO.b�.1�ı/1 /�

�
�

b1

�4k�dC2

�
E2k

M 2ı
Cb

LC.1�ı/.1C�/
1

p
E2kCb

2LC2.1�ı/.1C�/
1

�
; (4-12)

and for „C 2�m� k� 1,

d

dt

�
E2m

�4m�d
Œ1CO.b1/�

�
�

b1

�4m�dC2
Œb
m�„�1C.1�ı/�C�
1

p
E2mC b

2.m�„�1/C2.1�ı/�C�
1 �: (4-13)

Proof. The proof uses some ideas developed in [Raphaël and Schweyer 2014b; Merle, Raphaël and
Rodnianski 2015]. Because the proof of (4-13) follows exactly the same lines as for (4-12), we only deal
with the proof of (4-12). Let us start the proof of (4-12).

Step 1: suitable derivatives and energy identity. For k 2N, we define the suitable derivatives of q and v
as follows:

q2k DL kq; q2kC1 D A L kq; v2k DL k
� v; v2kC1 D A�L k

� v; (4-14)

where q D q.y; s/ and vD v.r; t/ satisfy (3-9) and (3-14) respectively, the linearized operator L and L�
are defined by (1-22) and (3-13), A and A � are the first-order operators defined by (2-6) and (2-7), and

A�f D�@rf C
V�

r
f; A �� f D

1

rd�1
@r.r

d�1f /C
V�

r
f;

with V Dƒ logƒQ admitting the asymptotic behaviors as in (2-8).
With the notation (4-14), we note that

q2kC1 D A q2k; q2kC2 D A �q2kC1; v2kC1 D A�v2k; v2kC2 D A �� v2kC1:
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Recall from Lemma 2.2, we have the factorization

L D A �A ; zL D A A �; L� D A �� A�; zL� D A�A �� ;

where

zL D�@yy �
d � 1

y
@y C

zZ

y2
; (4-15)

zL� D�@rr �
d � 1

r
@r C

zZ�

r2
; (4-16)

with zZ expressed in terms of V as in (2-13).
We commute (3-14) with L k�1

�
and use the notation (4-14) to derive

@tv2k�2CL�v2k�2 D Œ@t ;L
k�1
� �vCL k�1

�

�
1

�2
F�
�
: (4-17)

Now commuting this equation with A� yields

@tv2k�1C zL�v2k�1 D
@tV�

r
v2k�2CA�Œ@t ;L

k�1
� �vCA�L k�1

�

�
1

�2
F�
�
: (4-18)

Since L� D .1=�
2/L , we then have

L k
� v D

1

�2k
L kqI

hence, Z
jL k
� vj

2
D

1

�4k�d

Z
jL kqj2:

Using the definition (4-16) of zL� and an integration by parts, we write

1

2

d

dt

�
1

�4k�d
E2k

�
D
1

2

d

dt

Z
jL k
� vj

2
D
1

2

d

dt

Z
zL�v2k�1v2k�1

D

Z
zL�v2k�1@tv2k�1C

1

2

Z
@t . zZ�/

r2
v22k�1

D

Z
zL�v2k�1@tv2k�1C b1

Z
.ƒ zZ/�

2�2r2
v22k�1�

�
�s

�
C b1

�Z
.ƒ zZ/�

2�2r2
v22k�1:

Using the definition (2-7) of A � and an integration by parts together with the definition (2-13) of zZ, we
write Z

b1.ƒV /�

�2r
v2k�1A

�
� v2k�1 D

b1

�4k�dC2

Z
ƒV

y
q2k�1A

�q2k�1

D
b1

�4k�dC2

Z
ƒV.2V C d/�ƒ2V

2y2
q22k�1

D
b1

�4k�dC2

Z
ƒ zZ

2y2
q22k�1 D

Z
b1.ƒ zZ/�

2�2r2
v22k�1:
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From (4-17), we write

d

dt

Z
b1.ƒV /�

�2r
v2k�1v2k�2 D

Z
d

dt

�
b1.ƒV /�

�2r

�
v2k�1v2k�2C

Z
b1.ƒV /�

�2r
v2k�2@tv2k�1

C

Z
b1.ƒV /�

�2r
v2k�1

�
�A �� v2k�1C Œ@t ;L

k�1
� �vCL k�1

�

�
1

�2
F�
��
:

Gathering all the above identities and using (4-18) yields the energy identity

1

2

d

dt

��
1

�4k�d
E2k

�
C2

Z
b1.ƒV /�

�2r
v2k�1v2k�2

�
D�

Z
j zL�v2k�1j

2
�

�
�s

�
Cb1

�Z
.ƒ zZ/�

2�2r2
v22k�1�

Z
b1.ƒV /�

�2r
v2k�2 zL�v2k�1

C

Z
d

dt

�
b1.ƒV /�

�2r

�
v2k�1v2k�2C

Z
b1.ƒV /�

�2r
v2k�1

�
Œ@t ;L

k�1
� �vCL k�1

�

�
1

�2
F�
��

C

Z �
zL�v2k�1C

b1.ƒV /�

�2r
v2k�2

��
@tV�

r
v2k�2CA�Œ@t ;L

k�1
� �vCA�L k�1

�

�
1

�2
F�
��
: (4-19)

We now estimate all terms in (4-19). The proof uses the coercivity estimate given in Lemma A.5. In
particular, we shall apply Lemma A.5 with k D k� 1 to get the estimate

E2k &
Z
jq2k�1j

2

y2
C

k�1X
mD0

Z
jq2mj

2

y4.1Cy4.k�1�m//
C

k�2X
mD0

Z
jq2mC1j

2

y6.1Cy4.k�2�m//
: (4-20)

Step 2: control of the lower-order quadratic terms. Let us start with the second term in the left-hand side
of (4-19). From (2-8) and (2-13), we have the round bound

jƒ zZ.y/jC jƒV.y/j.
y2

1Cy4
for all y 2 Œ0;C1/: (4-21)

Making a change of variables and using the Cauchy–Schwarz inequality together with (4-20), we estimateˇ̌̌̌Z
b1.ƒV /�

�2r
v2k�1v2k�2

ˇ̌̌̌
D

ˇ̌̌̌
b1

�4k�d

Z
ƒV

y
q2k�1q2k�2

ˇ̌̌̌

.
b1

�4k�d

�Z
jq2k�1j

2

y2

�1
2
�Z
jq2k�2j

2

1Cy4

�1
2

.
b1

�4k�d
E2k:

Using (4-21), (4-1) and (4-20), we estimateˇ̌̌̌�
�s

�
C b1

�Z
.ƒ zZ/�

�2r
v22k�1

ˇ̌̌̌
D

ˇ̌̌̌�
�s

�
C b1

�
1

�4k�dC2

Z
ƒ zZ

y2
q22k�1

ˇ̌̌̌

.
b
LC1C.1�ı/.1C�/
1

�4k�dC2

Z
q22k�1

y2
.

b21

�4k�dC2
E2k:
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For the third term in the right-hand side of (4-19), we writeˇ̌̌̌Z
b1.ƒV /�

�2r
v2k�2 zL�v2k�1

ˇ̌̌̌
�
1

4

Z
j zL�v2k�1j

2
C 4

Z �
b1.ƒV /�

�2r

�2
v22k�2

D
1

4

Z
j zL�v2k�1j

2
C

4b21

�4k�dC2

Z
jƒV j2

y2
q22k�2

�
1

4

Z
j zL�v2k�1j

2
C

Cb21

�4k�dC2
E2k:

A direct computation yields the round boundˇ̌̌̌
d

dt

�
b1.ƒV /�

�2

�ˇ̌̌̌
.
b21
�4
.jƒV jC jƒ2V j/:

Thus, we use (4-21), the Cauchy–Schwarz inequality and (4-20) to estimateˇ̌̌̌Z
d

dt

�
b1.ƒV /�

�2r

�
v2k�1v2k�2

ˇ̌̌̌
.

b21

�4k�dC2

Z
jƒV jC jƒ2V j

y
jq2k�1q2k�2j

.
b21

�4k�dC2

�Z
q22k�1

y2

�1
2
�Z

q22k�2

1Cy4

�1
2

.
b21

�4k�dC2
E2k:

Similarly, we haveˇ̌̌̌Z �
zL�v2k�1C

b1.ƒV /�

�2r
v2k�2

�
@tV�

r
v2k�2

ˇ̌̌̌
�
1

4

Z
j zL�v2k�1j

2
C

Cb21

�4k�dC2

Z
jƒV j2

y2
q22k�2

�
1

4

Z
j zL�v2k�1j

2
C

Cb21

�4k�dC2
E2k

andˇ̌̌̌Z
b1.ƒV /�

�2r
v2k�1Œ@t ;L

k�1
� �v

ˇ̌̌̌
C

ˇ̌̌̌Z �
zL�v2k�1C

b1.ƒV /�

�2r
v2k�2

�
A�Œ@t ;L

k�1
� �v

ˇ̌̌̌
�
1

4

Z
j zL�v2k�1j

2
CC

�
b21

�4k�dC2
E2kC

Z
jŒ@t ;L

k�1
�

�vj2

�2.1Cy2/
C

Z
jA�Œ@t ;L

k�1
� �vj2

�
:

We claim the bound Z
jŒ@t ;L

k�1
�

�vj2

�2.1Cy2/
C

Z
jA�Œ@t ;L

k�1
� �vj2 .

b21

�4k�dC2
E2k; (4-22)

whose proof is left to Appendix C.
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The collection of all the above estimates to (4-19) yields

1

2

d

dt

�
E2k

�4k�d
Œ1CO.b1/�

�
� �

1

4

Z
j zL�v2k�1j

2
C

Cb21

�4k�dC2
E2k

C

Z
b1.ƒV /�

�2r
v2k�1L

k�1
�

�
1

�2
F�
�

C

Z
b1.ƒV /�

�2r
v2k�2A�L k�1

�

�
1

�2
F�
�

C

Z
zL�v2k�1A�L k�1

�

�
1

�2
F�
�
: (4-23)

Step 3: further use of dissipation. We aim to estimate all terms in the right-hand side of (4-23). From
(4-21), (4-20) and the Cauchy–Schwarz inequality, we writeˇ̌̌̌Z

b1.ƒV /�

�2r
v2k�1L

k�1
�

�
1

�2
F�
�ˇ̌̌̌
D

ˇ̌̌̌
b1

�4k�dC2

Z
ƒV

y
q2k�1L

k�1F
ˇ̌̌̌

.
b1

�4k�dC2

�Z
q22k�1

y2

�1
2
�Z
jL k�1F j2

1Cy4

�1
2

.
b1

�4k�dC2

p
E2k

�Z
jL k�1F j2

1Cy4

�1
2

:

Similarly, we haveˇ̌̌̌Z
b1.ƒV /�

�2r
v2k�2A�L k�1

�

�
1

�2
F�
�ˇ̌̌̌
D

ˇ̌̌̌
b1

�4k�dC2

Z
ƒV

y
q2k�2A L k�1F

ˇ̌̌̌

.
b1

�4k�dC2

�Z
q22k�2

1Cy4

�1
2
�Z
jA L k�1F j2

1Cy2

�1
2

.
b1

�4k�dC2

p
E2k

�Z
jA L k�1F j2

1Cy2

�1
2

:

For the last term in (4-23), let us introduce the function

�L D
hLLq; �B0ƒQi

hƒQ;�B0ƒQi
zTL (4-24)

and the decomposition

F D @s�LCF0CF1; F0 D�z‰b � bMod� @s�L; F1 DH.q/�N .q/; (4-25)

where z‰b is as referred to in (2-42), and bMod, H.q/ and N .q/ are as defined in (3-10) (3-11) and (3-12)
respectively. Actually, we introduced the decomposition (4-25) and �L to take advantage of the improved
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bound obtained in Lemma 4.3. We now writeZ
zL�v2k�1A�L k�1

�

�
1

�2
F�
�

D
1

�4k�dC2

�Z
A �q2k�1L

k.@s�L/C

Z
A �q2k�1L

kF0C
Z
zL q2k�1A L k�1F1

�

�
1

�4k�dC2

Z
L kqL k.@s�L/C

C

�4k�dC2

�Z
jL kqj2

�1
2
�Z
jL kF0j

�1
2

C
1

8

Z
j zL�v2k�1j

2
C

C

�4k�dC2

Z
jA L k�1F1j2

D
1

�4k�dC2

Z
L kqL k.@s�L/C

1

8

Z
j zL�v2k�1j

2

C
C

�4k�dC2

�p
E2kkL

kF0kL2 CkA L k�1F1k2L2
�
:

Injecting all these bounds into (4-23) yields

1

2

d

dt

�
E2k

�4k�d
Œ1CO.b1/�

�
� �

1

8

Z
j zL�v2k�1j

2
C

Cb21

�4k�dC2
E2kC

1

�4k�dC2

Z
L kqL k.@s�L/

C
b1

�4k�dC2

p
E2k

��Z
jA L k�1F j2

1Cy2

�1
2

C

�Z
jL k�1F j2

1Cy4

�1
2
�

C
C

�4k�dC2

�p
E2kkL

kF0kL2 CkA L k�1F1k2L2
�
: (4-26)

Step 4: estimates for z‰b term. Recall from (2-44) that we already have the following estimate for z‰b:

kL k z‰bkL2 C

�Z
jA L k�1 z‰bj

2

1Cy2

�1
2

C

�Z
jL k�1 z‰bj

2

1Cy4

�1
2

. bLC1C.1�ı/.1C�/1 : (4-27)

Step 5: estimates for bMod term. We claim the following:�Z
jL k�1 bModj2

1Cy4

�1
2

C

�Z
jA L k�1 bModj2

1Cy2

�1
2

. b.1�ı/.1C�/1

�p
E2k

M 2ı
C b

LC1C.1�ı/.1C�/
1

�
; (4-28)

�Z
jL k eModj2

�1
2

. b1
�p

E2k

M 2ı
C b

�.1�ı/
1

p
E2kC b

LC1C.1�ı/.1C�/
1

�
; (4-29)

where
eModD bModC @s�L:

Let us prove (4-28). We only deal with the first term since the second term is estimated similarly. We
recall from (3-10) the definition of bMod:

bModD�
�
�s

�
C b1

�
ƒ zQbC

LX
iD1

Œ.bi /sC .2i � /b1bi � biC1�

�
zTi C

X
jDiC1

@Sj

@bi
�B1

�
;
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where zQb is defined as in (2-41) and we know from Lemma 2.9 that Ti is admissible of degree .i; i/ and
from Proposition 2.11 that Sj is homogeneous of degree .j; j � 1; j /.

Since jbj j. bj1 and LƒQD 0, we use Lemma 2.8 to estimateZ
jL k�1ƒ zQbj

2

1Cy4

.
LX
iD1

b2i

Z
jL k�1ƒ zTi j

2

1Cy4
C

LC2X
iD2

Z
jL k�1ƒ zSi j

2

1Cy4

.
LX
iD1

b2i1

Z
y�2B1

yd�1 dy

1Cy4.k�i/C2
C

LC1X
iD2

b2i1

Z
y�2B1

yd�1 dy

1Cy4.k�iC1/C2
C b2LC41

Z
y�2B1

yd�1 dy

1Cy4„C2

. b21 ;

where we used the algebra 4.k�L/C 2 � d C 1D 5� 4ı > 1.
Using the cancellation L kTi D 0 for 1� i � L and the admissibility of Ti , we estimate

LX
iD1

Z
jL k�1.�B1Ti /j

2

1Cy4
.

LX
iD1

Z
B1�y�2B1

y4.i�k/�2Cd�1 dy . b2.1�ı/.1C�/1 :

Using the homogeneity of Sj , we estimate for 1� i � L,

LC2X
jDiC1

Z
1

1Cy4

ˇ̌̌̌
L k�1

�
�B1

@Sj

@bi

�ˇ̌̌̌2
.

LC2X
jDiC1

b
2.j�i/
1

Z
B1�y�2B1

y4.j�1�k/�2yd�1 dy . b21 ;

provided that �� 1
ı
� 1.

The collection of the above bounds together with (4-1) and (4-2) yields�Z
jL k�1 bModj2

1Cy4

�1
2

. b.1�ı/.1C�/1

�p
E2k

M 2ı
C b

LC1C.1�ı/.1C�/
1

�
:

The same estimate holds for
�R
jA L k�1 bModj2=.1Cy2/

�1=2 by following the same lines as above. This
concludes the proof of (4-28).

We now prove (4-29). Let us write

eModD�
�
�s

�
C b1

�
ƒ zQbC

L�1X
iD1

Œ.bi /sC .2i � /b1bi � biC1� zTi
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LC2X
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@Sj
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�
.bL/sC .2i � /b1bLC

d

ds

�
hLLq; �B0ƒQi

hƒQ;�B0ƒQi

��
zTLC

hLLq; �B0ƒQi

hƒQ;�B0ƒQi
@s zTL:
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Proceeding as in the proof of (4-28) yields the estimateZ
jL kƒ zQbj

2
C

L�1X
iD1

Z
jL k zTi j
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iD1

LC2X
jDiC1
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and Z
jL k zTLj

2 . b2.1�ı/.1C�/1 : (4-30)

From (4-10) and (4-11), we have the boundˇ̌̌̌
hLLq; �B0ƒQi

hƒQ;�B0ƒQi

ˇ̌̌̌
. B2.1�ı/0

p
E2k D b

�.1�ı/
1

p
E2k: (4-31)

We also have Z
jL k.@s�B1TL/j

2 . b21
Z
B1�y�2B1

yd�1 dy

y4.k�L/C2
. b21b

2.1�ı/.1C�/
1 :

The collection of the above bounds together with Lemmas 4.2 and 4.3 yields�Z
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LC1C.1�ı/.1C�/
1

�
;

which is the conclusion of (4-29).
Injecting the estimates (4-27), (4-28) and (4-29) into (4-26), we arrive at
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kA L k�1F1k2L2 C
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�4k�dC2

Z
L kqL k.@s�L/: (4-32)

Step 6: estimates for the linear small term H.q/. We claimZ
jA L k�1H.q/j2C

Z
jA L k�1H.q/j2

1Cy2
C
jL k�1H.q/j2

1Cy4
. b21E2k: (4-33)

We only deal with the estimate for the first term because the last two terms are estimated similarly. Let us
rewrite from (3-11) the definition of H.q/,

H.q/Dˆq with ˆD
.d � 1/

y2
Œcos.2Q/� cos.2QC 2z‚b/�;
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where

z‚b D

LX
iD1

bi zTi C

LC2X
iD2

zSi .b; y/:

From the asymptotic behavior of Q given in (2-4), the admissibility of Ti and the homogeneity of Si , we
deduce that ˆ is a regular function both at the origin and at infinity. We then apply the Leibniz rule (C-2)
with k D k� 1 and � Dˆ to write

A L k�1H.q/D
k�1X
mD0

Œq2mC1ˆ2k�1;2mC1C q2mˆ2k�1;2m�;

where ˆ2k�1;i with 0 � i � 2k � 1 are defined by the recurrence relation given in Lemma C.1. In
particular, we have the estimate

jˆk;i j.
b1

1CyC.k�i/
.

b1

1Cy1Ck�i
for all k � 1; 0� i � k:

Hence, we estimate from (4-20),Z
jA L k�1H.q/j2 .

k�1X
mD0

�Z
jq2mC1ˆ2k�1;2mC1j

2
C

Z
jq2mˆ2k�1;2mj

2

�

. b21
k�1X
mD0

�Z
jq2mC1j

2

1Cy2C2.2k�1�2m�1/
C

Z
jq2mj

2

1Cy2C2.2k�1�2m/

�

. b21
k�1X
mD0

�Z
jq2mC1j

2

1Cy2C4.k�1�m/
C

Z
jq2mj

2

1Cy4C4.k�1�m/

�
. b21E2k:

This concludes the proof of (4-33).

Step 7: estimates for the nonlinear term N .q/. This is the most delicate point in the proof of (4-12). We
claim the following: Z

jA L k�1N .q/j2 . b2LC1C2.1�ı/.1C�/1 ; (4-34)Z
jA L k�1N .q/j2

1Cy2
C

Z
jL k�1N .q/j2

1Cy4
. b2LC2C2.1�ı/.1C�/1 ; (4-35)

provided that � and 1=L are small enough. We only deal with the proof of (4-34) since the same proof
holds for (4-35).

Control for y < 1. Let us rewrite from (3-12) the definition of N .q/:

N .q/D
q2

y
ˆ with ˆD

�
�
.d � 1/

y

Z 1

0

.1� �/ sin.2 zQbC 2�q/ d�
�
:
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From (B-2) and the admissibility of Ti , we write

q2

y
D
1

y

� kX
iD0

ciTi .y/C rq.y/

�2
D

k�1X
iD0

Qciy
2iC1
C Qrq for y < 1; (4-36)

where
j Qci j. E2k; j@jy Qrq.y/j. y

2k�d
2
�j
j lnyjkE2k; 0� j � 2k� 1; y < 1:

Let � 2 Œ0; 1� and
v� D zQbC �q:

We obtain from Proposition 2.11 and the expansion (B-2),

v� D

k�1X
iD0

Ociy
2iC1
C Orq;

with
j Oci j. 1; j@jy Orqj. y

2k�d
2
�j
j lnyjk; 0� j � 2k� 1; y < 1:

Together with the Taylor expansion of sin.x/ at x D 0, we write

ˆ.q/D

k�1X
iD0

Nciy
2i
C Nrq; (4-37)

with
j Nci j. 1; j@jy Nrqj. y

2k�d
2
�1�j

j lnyjk; 0� j � 2k� 1; y < 1:

From (4-36) and (4-37), we have the expansion of N near the origin,

N .q/D
k�1X
iD0

OQciy
2iC1
C OQrq;

with
j OQci j. E2k; j@jy

OQrqj. y2k�d
2
�j
j lnyjkE2k; 0� j � 2k� 1; y < 1:

From the definitions of A and A �, see (2-6) and (2-7), one can check that for y < 1,

jA L k�1 OQrqj.
2k�1X
iD0

@iy
OQrq

y2k�1�i
. E2k

2k�1X
iD0

y2k�d
2
�i
j lnyjk

y2k�1�i
. y�

d
2
C1
j lnyjkE2k:

Note from the asymptotic behavior (2-8) of V that A .y/DO.y2/ for y < 1, which impliesˇ̌̌̌
A L k�1

�k�1X
iD0

OQciy
2iC1

�ˇ̌̌̌
.

k�1X
iD0

j OQci jy
2 . y2E2k:

We then concludeZ
y<1

jA L k�1N .q/j2 . E 22k

Z
y<1

yj lnyj2k dy . E 22k . b
2LC1C2.1�ı/.1C�/
1 :
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Control for y � 1. Let us rewrite the definition of N .q/:

N .q/DZ2 ; Z D
q

y
;  D�.d � 1/

Z 1

0

.1� �/ sin.2 zQbC 2�q/ d�: (4-38)

Note from the definitions of A and A � that

for all k 2 N; jA L kf j.
2kC1X
iD0

j@iyf j

y2kC1�i
;

from which and the Leibniz rule, we writeZ
y�1

jA L k�1N .q/j2 .
2k�1X
kD0

Z
y�1

j@kyN .q/j2

y4k�2k�2

.
2k�1X
kD0

kX
iD0

Z
y�1

j@iyZ
2j2j@k�iy  j2

y4k�2k�2

.
2k�1X
kD0

kX
iD0

iX
mD0

Z
y�1

j@my Zj
2j@i�my Zj2j@k�iy  j2

y4k�2k�2
:

We aim to use the pointwise estimate (B-5) to prove that for 0� k � 2k�1, 0� i � k and 0�m� i ,

Ak;i;m WD

Z
y�1

j@my Zj
2j@i�my Zj2j@k�iy  j2

y4k�2k�2
. b2LC1C2.1�ı/.1C�/1 ; (4-39)

which concludes the proof of (4-34).
To prove (4-39), we distinguish three cases:

Case I: kD 0. Since 0�m� i � k, we have kD i DmD 0. Although this is the simplest case, it gives us
a basic idea to handle the other cases. From (4-38), it is obvious that j j is uniformly bounded. We write

A0;0;0 D

Z
y�1

jqj4j j2

y4kC2
yd�1 dy .

Z
1�y�B0

jqj4

y4kC3�d
dyC

Z
y�B0

jqj4

y4kC3�d
dy:

Using (B-5), Definition 3.2, b1 � 1
s

and the fact that d D 4„C 2 C 4ı, see (1-18), we estimateZ
1�y�B0

jqj4

y4kC3�d
dy .

yd�2jqj2y2.2k�1/


L1.y>1/

 yd�2jqj2

y2.2`C2„C3/


L1.y>1/

Z
1�y�B0

y4`C5�4ı�2 dy

. E2kE2.`C„C2/B
4`C6�4ı�2
0

.Kb2LC2.1�ı/.1C�/1 b
2.`C1/C2.1�ı/�K�
1 b

�2`�3C2ıC
1

.Kb2LC2.1�ı/.1C�/1 b
1C�K�
1 . b2LC1C2.1�ı/.1C�/1 :
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For the integral on the domain y � B0, let us writeZ
y�B0

jqj4

y4kC3�d
dy .

 yd�2jqj2

y2.2k�2`�1/


L1.y>1/

 yd�2jqj2

y2.2`C2„C1/


L1.y>1/

Z
y�B0

dy

y4ıC2�1

. E2.k�`/E2.`C„C1/B
2�4ı�2
0

. b2.k�`�„�1/C2.1�ı/�K�1 b
2`C2.1�ı/�K�
1 b

2ıC�1
1

. b2LC2.1�ı/.1C�/1 b
1C�.KC2.1�ı//�
1 . b2LC1C2.1�ı/.1C�/1 :

This concludes the proof of (4-39) when k D i DmD 0.

Case II: k � 1 and k D i . We first use the Leibniz rule to write

for all l 2 N; j@lyZj
2 .

lX
jD0

j@
j
yqj

2

y2C2l�2j
; (4-40)

from which,

Ak;k;m .
mX
jD0

k�mX
lD0

Z
y�1

j@
j
yqj

2j@lyqj
2

y4k�2j�2lC2
yd�1 dy:

We claim that for all .j; l/ 2 N2 and 1� j C l � 2k� 1,

Bj;l;0 WD

Z
y�1

j@
j
yqj

2j@lyqj
2

y4k�2j�2lC2
yd�1 dy . b2LC1C2.1�ı/.1C�/C

.�1/
2

1 ; (4-41)

which immediately follows from (4-39) for the case when k D i .
To prove (4-41), we proceed as for the case k D 0 by splitting the integral in two parts as follows:

Bj;l;0

D

Z
1�y�B0

.yd�2j@
j
yqj

2/.yd�2j@lyqj
2/

y4k�2j�2lC4„C6
y7�4ı�2 dyC

Z
y�B0

.yd�2j@
j
yqj

2/.yd�2j@lyqj
2/

y4k�2j�2lC4„

dy

y4ıC2�1

.
.yd�2j@jyqj2/.yd�2j@lyqj2/y4k�2j�2lC4„C6


L1.y�1/

b
2ıC�4
1 C

.yd�2j@jyqj2/.yd�2j@lyqj2/y4k�2j�2lC4„


L1.y�1/

b
2ıC�1
1

D

.yd�2j@jyqj2/.yd�2j@lyqj2/y2J1�2jC2J2�2l


L1.y�1/

b
2ıC�4
1 C

.yd�2j@jyqj2/.yd�2j@lyqj2/y2J3�2jC2J4�2l


L1.y�1/

b
2ıC�1
1

WDBj;l;0;J1;J2b
2ıC�4
1 CBj;l;0;J3;J4b

2ıC�1
1 ;

where Jn.nD 1; 2; 3; 4/ satisfy

J1CJ2 D 2kC 2„C 3; J3CJ4 D 2kC 2„:

We now estimate Bj;l;0;J1;J2 .
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� If l is even, we take

J2 D

�
l C 2 if l � 2k� 4;
l if l D 2k� 2:

This gives
2„C 4� J2 � 2k� 2; 2„C 5� J1 D 2kC 2„C 3�J2 � 2k� 1:

Using (B-5), we have the estimate

Bj;l;0;J1;J2 .
yd�2j@jyqj2y2J1�2j


L1.y�1/

yd�2j@lyqj2y2J2�2l


L1.y�1/

. EJ1C1
p

EJ2EJ2C2:

� If l is odd, we simply take J2 D l C 1, which gives

2„C 4� J2 � 2k� 2; 2„C 5� J1 � 2k� 1:

Hence,
Bj;l;0;J1;J2 . EJ1C1

p
EJ2EJ2C2:

Recall from Definition 3.2 that for all even integers m in the range 2„C 4�m� 2k,

Em �

(
b

`
2`�

.2m�d/

1 for 2„C 4�m� 2„C 2`;

b
m�2„�2C2.1�ı/�K�
1 for 2„C 2`C 2�m� 2k:

(4-42)

� If J1C 1� 2„C 2`C 2 and J2 � 2„C 2`C 2, then

Bj;l;0;J1;J2 . b
J1CJ2�4„�2C4.1�ı/�2K�
1 . b2LC2C4.1�ı/�K�1 :

� If J1C1� 2„C2`, then J2D 2kC2„C3�J1� 2k�2`C4� 2„C2`C2 because k� `. This implies

Bj;l;0;J1;J2 . b
`

2`�
.2J1C2�d/CJ2C1�2.„C1/C2.1�ı/�K�

1 . b2LC2C4.1�ı/�K�1 :

Hence, we obtain

Bj;l;0;J1;J2 . b
2LC2C4.1�ı/�K�
1 for J1CJ2 D 2kC 2„C 3:

Similarly, one can prove that

Bj;l;0;J3;J4 . b
2L�1C4.1�ı/�K�
1 for J3CJ4 D 2kC 2„:

Therefore,

Bj;l;0 . b
2LC2C4.1�ı/�K�
1 b

2ıC�4
1 C b

2L�1C4.1�ı/�K�
1 b

2ıC�1
1

. b2LC1C2.1�ı/.1C�/C.�1/�.KC2�2ı/�1 . b2LC1C2.1�ı/.1C�/C
.�1/
2

1

for �� . � 1/=.2.KC 2� 2ı//. This concludes the proof of (4-41) as well as (4-39) when k D i .

Case III: k � 1 and k� i � 1. Let us write from (4-39) and (4-40),

Ak;m;i .
mX
jD0

i�mX
lD0

Z
y�1

j@
j
yqj

2j@lyqj
2

y4k�2j�2lC2

j@k�iy  j2

y�2.k�i/
: (4-43)
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At this stage, we need to make precise the decay of j@ny j to archive the bound (4-39). To do so, let us
recall that Ti is admissible of degree .i; i/ (see Lemma 2.9) and Si is homogeneous of degree .i; i �1; i/
(see Proposition 2.11). Together with (2-4), we estimate

for all j � 1; j@jy zQbj.
1

yCj
C

2LC2X
lD1

bl1y
2l

yCj
1fy�2B1g .

b
�.2LC2/�
1

yCj
:

Let � 2 Œ0; 1� and v� D zQbC �q. We use the Faà di Bruno formula to write

for all n 2 N; j@ny j
2 .

Z 1

0

X
m�Dn

j@m1C���Cmnv�
sin.v� /j2

nY
iD1

j@iy
zQbC @

i
yqj

2mi d�

.
X
m�Dn

nY
iD1

�
b
�C.L/�
1

y2C2i
Cj@iyqj

2

�mi
; m� D

nX
iD1

imi :

For 1� y � B0, we use (B-5) to estimate

j@iyqj
2
D y4k�2i�2

ˇ̌̌̌
@iyq

y2k�i�1

ˇ̌̌̌2
� B4k�2i�d

0 E2k � b
�C.K/�CiC
1 �

b
�C.K/�
1

y2C2i
;

from which, we have

j@ny j
2 .

X
m�Dn

nY
iD1

�
b
�C.L/�
1

y2C2i
C
b
�C.K/�
1

y2C2i

�mi
.
b
�C.K;L/�
1

y2C2n
for all 1� y � B0: (4-44)

For y � B0, we use again (B-5) to write for all 1� n� 2k� 1,

j@ny j
2.

X
m�Dn

2„C2`C1Y
iD1

�
b
�C.L/�
1

y2C2i
Cy4„C4`C2�2i

ˇ̌̌̌
@iyq

y2„C2`C1�i

ˇ̌̌̌2�mi nY
iD2„C2`C1

�
b
�C.L/�
1

y2C2i
Cj@iyqj

2

�mi

.
X
m�Dn

2„C2`C1Y
iD1

.b
�C.L/�CCi
1 Cb

�K�CiC
1 b

2`C2.1�ı/
1 y4`C4.1�ı//mi

�

nY
iD2„C2`C1

.b
�C.L/�CCi
1 Cb

�K�CCi
1 /mi

. b�C.L;K/�CnC
Pn
iD1mi

1 .b1y
2/.2`C2.1�ı//

P2„C2`C1
iD1

mi for all y �B0:
(4-45)

Injecting (4-44) and (4-45) into (4-43), we arrive at

Ak;i;m . b
�C�
1

mX
jD0

i�mX
lD0

�Z
1�y�B0

j@
j
yqj

2j@lyqj
2

y4k�2j�2lC2C2
C b˛1

Z
y�B0

j@
j
yqj

2j@lyqj
2

y4k�2j�2lC2�2˛

�
;

where ˛ D k� i C .2`C 2.1� ı//
P2„C2`C1
iD1 mi . Arguing as for the proof of (4-41), we end up with

Ak;i;m . b
�C�
1 .b

2LC1CC2.1�ı/.1��/C .�1/
2

1 C b
2LC1C2.1�ı/.1��/C .�1/

2

1 /. b2LC1C2.1�ı/.1��/1
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for � small enough. This finishes the proof of (4-39) as well as (4-34). Since the proof of (4-35) follows
exactly the same lines as the proof of (4-34), we omit it.

Inserting (4-33), (4-34) and (4-35) into (4-32) and recalling from Definition 3.2 that

E2k �Kb
2LC2.1�ı/.1C�/
1 ;

we arrive at

1

2

d

dt

�
E2k

�4k�d
Œ1CO.b1/�

�
.

b1

�4k�dC2

�
E2k

M 2ı
Cb

LC.1�ı/.1C�/
1

p
E2kCb

2LC2.1�ı/.1C�/
1

�
C

1

�4k�dC2

Z
L kqL k.@s�L/: (4-46)

Step 8: time oscillations. In this step, we want to find the contribution of the last term in (4-46) to the
estimate (4-12). Let us write

1

�4k�dC2

Z
L kqL k.@s�L/D

d

ds

�
1

�4k�dC2

�Z
L kqL k�L�

1

2

Z
jL k�Lj

2

��
C
4k� d C 2

�4k�dC2

�s

�

�Z
L kqL k�LC

1

2

Z
jL k�Lj

2

�
�

1

�4k�dC2

Z
L k.@sq� @s�L/L

k�L: (4-47)

From (4-30) and (4-31), we have Z
jL k�Lj

2 . b2�.1�ı/1 E2k: (4-48)

This implies ˇ̌̌̌Z
L kqL k�L

ˇ̌̌̌
.
�Z
jL kqj2

�1
2
�Z
jL k�Lj

2

�1
2

.
p

E2k b
�.1�ı/
1

p
E2k b

.1�ı/.1C�/
1 D b

�.1�ı/
1 E2k:

Since dt=ds D �2, we then write

d

ds

�
1

�4k�dC2

�Z
L kqL k�L�

1

2

Z
jL k�Lj

2

��
D
d

dt

�
E2k

�4k�d
O.b�.1�ı/1 /

�
: (4-49)

Noting from (4-1) that j�s=�j. b1, this givesˇ̌̌̌
�s

�

�Z
L kqL k�LC

1

2

Z
jL k�Lj

2

�ˇ̌̌̌
. b1b�.1�ı/1 E2k: (4-50)

For the last term in (4-47), we use (3-9) and the decomposition (4-25) to writeZ
L k.@sq� @s�L/L

k�L

D

�
�

Z
L kqL kC1�LC

�s

�

Z
ƒqL 2k�L

�
C

Z
L kŒ�z‰b � eModCH.q/CN .q/�L k�L: (4-51)
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Using (4-31), the admissibility of TL and the fact that L kTi D 0 if i < k, we estimateZ
jL kC1�Lj

2 .
ˇ̌̌̌
hLLq; �B0ƒQi

hƒQ;�B0ƒQi

ˇ̌̌̌2 Z
jL kC1Œ.1��B1/TL�j

2

. b�2.1�ı/1 E2k

Z
y�B1

y2.2L��2.kC1//yd�1 dy

. b�2.1�ı/1 E2kb
.4�2ı/.1C�/
1 . b21b

2�.1�ı/
1 E2k;

from which we obtain ˇ̌̌̌Z
L kqL kC1�L

ˇ̌̌̌
. b1b�.1�ı/1 E2k:

Similarly, we have the estimateZ
.1Cy4k/jL 2k�Lj

2 . b�2.1�ı/1 E2k

Z
y�B1

y4ky2.2L��4k/yd�1 dy . b2�.1�ı/1 E2kI

hence, using (4-4) and (4-1), we getˇ̌̌̌
�s

�

Z
ƒqL 2k�L

ˇ̌̌̌
. b1

�Z
j@yqj

2

1Cy4k�2

�1
2
�Z

.1Cy4k/jL 2k�Lj
2

�1
2

. b1b�.1�ı/1 E2k:

From (4-48), (4-27) and (4-29), we haveˇ̌̌̌Z
L k.z‰bC eMod/L k�L

ˇ̌̌̌
.
�Z
jL k�Lj

2

�1
2
�Z
jL k.z‰bC eMod/j2

�1
2

. b1b�.1�ı/1 E2kC b1b
LC.1�ı/.1C�/
1

p
E2k:

In the same manner, we have the estimateZ
.1Cy4/jL kC1�Lj

2 . b�2.1�ı/1 E2k

Z
y�B1

y4y2.2L��2.kC1//yd�1 dy . b2�.1�ı/1 E2k;

from which, together with (4-33) and (4-35), we get the boundˇ̌̌̌Z
L k�1.H.q/CN .q//L kC1�L

ˇ̌̌̌
.
�Z
jL k�1.H.q/CN .q//j2

1Cy4

�1
2
�Z

.1Cy4/jL kC1�Lj
2

�1
2

. b1b�.1�ı/1 E2kC b1b
LC.1�ı/.1C�/
1

p
E2k:

Collecting these final bounds into (4-51) yieldsˇ̌̌̌Z
L k.@sq� @s�L/L

k�L

ˇ̌̌̌
. b1b�.1�ı/1 E2kC b1b

LC.1�ı/.1C�/
1

p
E2k: (4-52)

Substituting (4-47), (4-49), (4-50) and (4-52) into (4-46) concludes the proof of (4-12) as well as
Proposition 4.4. �
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4C. Conclusion of Proposition 3.6. We give the proof of Proposition 3.6 in this subsection in order to
complete the proof of Theorem 1.1. Note that this section corresponds to Section 6.1 of [Merle, Raphaël
and Rodnianski 2015]. Here we follow exactly the same lines as in that paper and no new ideas are
needed. We divide the proof into two parts:

Part 1: reduction to a finite-dimensional problem. Assume that for a given K > 0 large and an initial
time s0 � 1 large, we have .b.s/; q.s// 2 SK.s/ for all s 2 Œs0; s1� for some s1 � s0. By using (4-1),
(4-8), (4-12) and (4-13), we derive new bounds on V1.s/, bk.s/ for `C 1 � k � L and E2.„Cm/ for
1�m�LC1, which are better than those defining SK.s/ (see Definition 3.2). It then remains to control
.V2.s/; : : : ;V`.s//. This means that the problem is reduced to the control of a finite-dimensional function
.V2.s/; : : : ;V`.s//, and then we get the conclusion (i) of Proposition 3.6.

Part 2: transverse crossing. We aim to prove that if .V2.s/; : : : ;V`.s// touches

@ySK.s/ WD @
�
�

K

s
�
2 .1� ı/

;
K

s
�
2 .1� ı/

�̀ �1
at s D s1, it actually leaves @ySK.s/ at s D s1 for s1 � s0, provided that s0 is large enough. We then get
the conclusion (ii) of Proposition 3.6.

Part 1: reduction to a finite-dimensional problem. We give the proof of item (i) of Proposition 3.6 in this
part. Given K > 0, s0 � 1 and the initial data at sD s0 as in Definition 3.1, we assume for all s 2 Œs0; s1�,
.b.s/; q.s// 2 SK.s/ for some s1 � s0. We claim that for all s 2 Œs0; s1�,

jV1.s/j � s�
�
2
.1�ı/; (4-53)

jbk.s/j. s�.kC�.1�ı// for `C 1� k � L; (4-54)

E2m �

(
1
2
Ks�

`.4m�d/
2`� for „C 2�m� `C„;

1
2
s�2.m�„�1/�2.1�ı/CK� for `C„C 1�m� k� 1;

(4-55)

E2k �
1
2
Ks�.2LC2.1�ı/.1C�//; (4-56)

Once these estimates are proved, it immediately follows from Definition 3.2 of SK that if .b.s1/; q.s1// 2
@SK.s1/, then .V2; : : : ;V`//.s1/ must be in @ySK.s1/, which concludes the proof of Proposition 3.6(i).

Before going to the proof of (4-53)–(4-56), let us compute explicitly the scaling parameter �. To do so,
let us note from (2-51) and the a priori bound on U1 given in Definition 3.2

b1.s/D
c1

s
C

U1
s
D

`

.2`� /s
CO

�
1

s1Cc�

�
:

Using (4-1) yields

�
�s

�
D

`

.2`� /s
CO

�
1

s1Cc�

�
; (4-57)

from which we write ˇ̌̌
d

ds
flog.s

`
2`� �.s//g

ˇ̌̌
.

1

s1Cc�
:
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We now integrate by using the initial data value �.s0/D 1 to get

�.s/D

�
s0

s

� `
2`�

Œ1CO.s�c�/� for s0� 1: (4-58)

This implies

s
� `
2`�

0 .
s�

`
2`�

�.s/
. s
� `
2`�

0 : (4-59)

Improved control of E2k: We aim to use (4-12) to derive the improved bound (4-56). To do so, we inject
the bound of E2k given in Definition 3.2 into the monotonicity formula (4-12) and integrate in time by
using �.s0/D 1: For all s 2 Œs0; s1/,

E2k.s/� C�.s/
4k�d

�
E2k.s0/C

�
K

M 2ı
C
p
KC 1

�Z s

s0

��.2LC1C2.1�ı/.1C�//

�.�/4k�d
d�

�
:

Using (4-59), we estimate

�.s/4k�d
Z s

s0

��.2LC1C2.1�ı/.1C�//

�.�/4k�d
d� . s�

`.4k�d/
2`�

Z s

s0

�
`.4k�d/
2`�

�.2LC1C2.1�ı/.1C�// d�

. s�.2LC2.1�ı/.1C�//:

Here we used the fact that the integral is divergent because

`.4k� d/

2`� 
� Œ2LC 1C 2.1� ı/.1C �/�D

2L

2`� 
COL!C1.1/��1:

Using again (4-59) and the initial bound (3-21), we estimate

�.s/4k�dE2k.s0/�

�
s0

s

�`.4k�d/
2`�

s
� 10L`
2`�

0 . s�.2LC2.1�ı/.1C�//

for L large enough. Therefore, we obtain

E2k.s/� C

�
K

M 2ı
C
p
KC 1

�
s�.2LC2.1�ı/.1C�// �

K

2
s�.2LC2.1�ı/.1C�//

for K DK.M/ large enough. This concludes the proof of (4-56).

Improved control of E2m: We can improve the control of E2m by using the monotonicity formula (4-13).
We distinguish two cases:

Case 1: „C 2�m� `C„. From the bound of E2m given in Definition 3.2 and b1.s/� 1
s

, we integrate
(4-13) in time s by using �.s0/D 1 to find that

E2m.s/� C�.s/
4m�d

�
E2m.s0/C

p
K

Z s

s0

��
`

2`�
.2m�d

2
/�.m�„C1�ı�C�/

�.�/4m�d
d�

C

Z s

s0

��.2m�2„�1C2.1�ı/�C�/

�.�/4m�d
d�

�
:
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Using the initial bound (3-21) and (4-59), we estimate

C�.s/4m�dE2m.s0/. s�
`

2`�
.4m�d/

for s0 large.
Using (4-59) and the identity

`

2`� 

�
2m�

d

2

�
� .m�„C 1� ı�C�/D�



2
� 1CC�C



2`� 

�
m�„� ı�



2

�
� �1�

ı

2`� 
CC� < �1;

we estimate

�.s/4m�d
Z s

s0

��
`

2`�
.2m�d

2
/�.m�„C1�ı�C�/

�.�/4m�d
d� . s�

`
2`�

.4m�d/

Z s

s0

�
`

2`�
.2m�d

2
/�.m�„C1�ı�C�/d�

. s�
`

2`�
.4m�d/

Z s

s0

d�

�1C"
. s�

`
2`�

.4m�d/:

Similarly, thanks to the identity

`

2`� 
.4m� d/� .2m� 2„� 1C 2.1� ı/�C�/

D� � 1CC�C


2`� 
.2m� 2„� 2ı� /� �1�

2ı

2`� 
CC� < �1;

we obtain

�.s/4m�d
Z s

s0

��.2m�2„�1C2.1�ı/�C�/

�.�/4m�d
d� . s�

`
2`�

.4m�d/:

Therefore, we deduce that

E2m.s/� C.1C
p
K/s�

`
2`�

.4m�d/
�
K

2
s�

`
2`�

.4m�d/

for K large, which yields the improved bound (4-55) for „C 2�m� `C„.

Case 2: `C„C 1�m� k� 1. Proceeding as in the previous case, we arrive at

E2m.s/� C�.s/
4m�d

�
E2m.s0/C

Z s

s0

��Œ2m�2„�1C2.1�ı/�.CC
K
2
/��

�.�/4m�d
d�

�
:

From the identity

`

2`�
.4m�d/�

�
2m�2„�1C2.1�ı/�

�
CC

K

2

�
�

�
D��1C

�
CC

K

2

�
�C



2`�
.2m�2„�2ı�/

��1C
2.1�ı/

2`�
C

�
CC

K

2

�
�>�1; (4-60)
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together with (4-59), we estimate

�.s/4m�d
Z s

s0

��Œ2m�2„�1C2.1�ı/�.CC
K
2
/��

�.�/4m�d
d�

. s�
`.4m�d/
2`�

Z s

s0

�
`.4m�d/
2`�

�Œ2m�2„�1C2.1�ı/�.CCK
2
/�� d�

. s�Œ2.m�„�1/C2.1�ı/�.CC
K
2
/��
�
1
4
s�Œ2.m�„�1/C2.1�ı/�K��:

Using (4-60), (4-59) and the initial bound (3-21), we derive

C�.s/4m�dE2m.s0/. s�
`.4m�d/
2`� . s�Œ2.m�„�1/C2.1�ı/�.CC

K
2
/��
�
1
4
s�Œ2.m�„�1/C2.1�ı/�K��:

This concludes the proof of (4-55).

Control of the stable modes, bk’s. We now close the control of the stable modes .b`C1; : : : ; bL/; in
particular, we prove (4-54). We first treat the case when k D L. Let

QbL D bLC
hLLq; �B0ƒQi

hƒQ;�B0ƒQi
:

Then from (4-31) and (4-56),

j QbL� bLj. b�.1�ı/1

p
E2k . bLC�.1�ı/1 ;

and hence from the improved modulation equation (4-8),

j. QbL/sC .2L� /b1 QbLj. b1j QbL� bLjC
1

B2ı0
ŒC.M/

p
E2kC b

LC.1�ı/
1 �. bLC1C�.1�ı/1 :

This implies ˇ̌̌̌
d

ds

�
QbL

�2L�

�̌̌̌̌
.
b
LC1C�.1�ı/
1

�2L�
:

Integrating this identity in time from s0 and recalling that �.s0/D 1 yields

QbL.s/. C�.s/2L�
�
QbL.s0/C

Z s

s0

b1.�/
LC1C�.1�ı/

�.�/2L�
d�

�
:

Using (4-31), b1.s/� 1
s

, the initial bounds (3-20) and (3-21) together with (4-59), we estimate

�.s/2L� QbL.s0/.
�
s0

s

�`.2L�/
2`�

.s
�
5`.2L�/
2`�

0 C s
�.1�ı/
0 s

� 5L`
2`�

0 /. s�L��.1�ı/

and

�.s/2L�
Z s

s0

b1.�/
LC1C�.1�ı/

�.�/2L�
d� . s�

`.2L�/
2`�

Z s

s0

�
`.2L�/
2`�

�L�1��.1�ı/ d� . s�L��.1�ı/:

Therefore,
bL.s/. j QbL.s/jC j QbL.s/� bL.s/j. s�L��.1�ı/;
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which concludes the proof of (4-54) for k D L. Now we will propagate this improvement that we found
for the bound of bL to all bk for all `C 1� k �L� 1. To do so we do a descending induction where the
initialization is for k D L. Assume the bound

jbkj. b
kC�.1�ı/
1

for kC 1 and let’s prove it for k. Indeed, from (4-1) and the induction bound, we haveˇ̌̌̌
.bk/s � .2k� /

�s

�
bk

ˇ̌̌̌
. bLC11 CjbkC1j. b

kC1C�.1�ı/
1 ;

which implies ˇ̌̌̌
d

ds

�
bk

�2k�

�̌̌̌̌
.
b
kC1C�.1�ı/
1

�2k�
:

Integrating this identity in time as for the case k D L, we end up with

bk.s/. C�.s/2k�
�
bk.s0/C

Z s

s0

b1.�/
kC1C�.1�ı/

�.�/2k�
d�

�
. s�k��.1�ı/;

where we used the initial bound (3-20), (4-59) and k � `C 1. This concludes the proof of (4-54).

Control of the stable mode V1. We recall from (2-51) and (3-18) that

bk D b
e
kC

Uk
sk
; 1� k � `; V D P` U ;

where P` diagonalizes the matrix A` with spectrum (2-54). From (2-52), and (4-1), we estimate for
1� k � `� 1,

js.Uk/s � .A`U/kj. skC1j.bk/sC .2k� /b1bk � bkC1jC jU j2 . s�LCkCjU j2:

From (2-53), (4-1) and the improved bound (4-54), we have

js.U`/s � .A`U/`j. s`C1
�
j.bk/sC .2k� /b1b`� b`C1jC jb`C1j

�
CjU j2 . s��.1�ı/CjU j2:

Using the diagonalization (2-54), we obtain

sVs DD`VCO.s��.1�ı//: (4-61)

Using (2-54) again yields the control of the stable mode V1:

j.sV1/sj. s��.1�ı/:

Thus from the initial bound (3-20),

js�.1�ı/V1.s/j �
�
s0

s

�1��.1�ı/
s
�.1��/
0 V1.s0/C 1. s�.1�ı/0 ;

which yields (4-53) for s0 � s0.�/ large enough.
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Part 2: transverse crossing. We give the proof of item (ii) of Proposition 3.6 in this part. We compute
from (4-61) and (2-54) at the exit time s D s1

1

2

d

ds

�X̀
kD2

js
�
2
.1�ı/Vk.s/j2

�ˇ̌̌̌
sDs1

D

�
s�.1�ı/�1

X̀
kD2

�
�

2
.1�ı/V2k.s/CsVk.Vk/s

��ˇ̌̌̌
sDs1

D

�
s�.1�ı/�1

�X̀
kD2

�
k

2k�
C
�

2
.1�ı/

�
V2k.s/CO

�
1

s
3
2
�.1�ı/

���ˇ̌̌̌
sDs1

�
1

s1

"
c.d; `/

X̀
kD2

js
�
2
.1�ı/

1 Vk.s1/j2CO

 
1

s
�
2
.1�ı/

1

!#

�
1

s1

"
c.d; `/CO

 
1

s
�
2
.1�ı/

1

!#
> 0;

where we used item (i) of Proposition 3.6 in the last step. This completes the proof of Proposition 3.6.

Appendix A: Coercivity of the adapted norms

We give in this section the coercivity estimates for the operator L as well as the iterates of L under
some suitable orthogonality condition. We first recall the standard Hardy-type inequalities for the class of
radially symmetric functions,

Drad D ff 2 C1c .R
d / with radial symmetryg:

For simplicity, we write Z
f WD

Z C1
0

f .y/yd�1 dy

and

Dk D

�
�m if k D 2m;
@y�

m if k D 2mC 1:
We have the following:

Lemma A.1 (Hardy-type inequalities). Let d � 7 and f 2 Drad. Then:

(i) (Hardy near the origin)Z 1

0

j@yf j
2

y2i
�
.d � 2� 2i/2

4

Z 1

0

f 2

y2C2i
�C.d/f 2.1/; i D 0; 1; 2:

(ii) (Hardy away from the origin for the noncritical exponent) Let ˛ > 0, ˛ ¤ 1
2
.d � 2/. ThenZ C1

1

j@yf j
2

y2˛
�

�
d � .2˛C 2/

2

�2Z C1
1

f 2

y2C2˛
�C.˛; d/f 2.1/:
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(iii) (Hardy away from the origin for the critical exponent) Let ˛ D 1
2
.d � 2/. ThenZ C1

1

j@yf j
2

y2˛
�
1

4

Z C1
1

f 2

y2C2˛.1C logy/2
�C.d/f 2.1/:

(iv) (general weighted Hardy) For any � > 0, k � 2 an integer and 1� j � k� 1,Z
jDjf j2

1Cy�C2.k�j /
.j;�

Z
jDkf j2

1Cy�
C

Z
f 2

1Cy�C2k
:

Proof. The proof can be found in [Merle, Raphaël and Rodnianski 2015, Lemma B.1]. �

From the Hardy-type inequalities, we derive the following coercivity of A �:

Lemma A.2 (weight coercivity of A �). Let ˛ � 0. There exists c˛ > 0 such that for all f 2 Drad,Z
jA �f j2

y2i .1Cy2˛/
� c˛

�Z
j@yf j

2

y2i .1Cy2˛/
C

Z
f 2

y2iC2.1Cy2˛/

�
; i D 0; 1; 2: (A-1)

Proof. We proceed in two steps:

Step 1: subcoercive estimate for A �. We first prove the following subcoercive bound for A �: for
i D 0; 1; 2 and ˛ � 0,Z

jA �f j2

y2i .1Cy2˛/
&
Z

f 2

y2iC2.1Cy2˛/
C

Z
j@yf j

2

y2i .1Cy2˛/
�f 2.1/�

Z
f 2

1Cy2iC2˛C4
: (A-2)

From the definition (2-7) of A � and the asymptotic of V given in (2-8), we use an integration by parts to
estimate near the originZ

y�1

jA �f j2

y2i .1Cy2˛/
&
Z
y�1

1

y2i

ˇ̌̌̌
@yf C

d

y
f CO.jyf j/

ˇ̌̌̌2
&
Z
y�1

j@yf j
2

y2i
C d

Z
y�1

@y.f
2/

y2iC1
C d2

Z
y�1

f 2

y2iC2
CO

�Z
y�1

f 2

y2i�2

�
&
Z
y�1

j@yf j
2

y2i
C .2C 2i/d

Z
y�1

f 2

y2iC2
C df 2.1/CO

�Z
y�1

f 2

y2i�2

�
&
Z
y�1

�
j@yf j

2

y2i
C

f 2

y2iC2

�
�

Z
y�1

y2f 2:

Away from the origin, we use (2-8) to estimateZ
y�1

jA �f j2

y2i .1Cy2˛/
&
Z
y�1

1

y2iC2˛

�
@yf C

d � 1� 

y
f

�2
�

Z
y�1

f 2

y2iC2˛C4
:
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We make the change of variable g D yd�1�f and use the Hardy inequality given in part (ii) of
Lemma A.1 to writeZ

y�1

j@y.y
d�1�f /j2

y2iC2˛C2.d�1�/
dy D

Z
y�1

j@ygj
2

y2iC2˛C2.d�1�/
dy &

Z
y�1

g2

y2iC2˛C2.d�1�/C2
dy �g2.1/

&
Z
y�1

f 2

y2iC2˛C2
�f 2.1/:

Gathering the above bounds together with the trivial bound from (2-8),Z
y�1

j@yf j
2

y2iC2˛
.
Z
y�1

jA �f j2

y2iC2˛
C

Z
y�1

f 2

y2iC2˛C2

yields the subcoercivity (A-2).

Step 2: coercivity of A �. We now argue by contradiction to show the coercivity of A �. Assume that
(A-1) does not hold. Up to a renormalization, we consider the sequence fn 2 Drad withZ

f 2n
y2iC2.1Cy2˛/

C

Z
j@yfnj

2

y2i .1Cy2˛/
D 1 and

Z
jA �fnj

2

y2i .1Cy2˛/
�
1

n
: (A-3)

This implies by (A-2),

f 2n .1/C

Z
f 2n

1Cy2iC2˛C4
& 1: (A-4)

From (A-3), the sequence fn is bounded in H 1
loc. Hence, from a standard diagonal extraction argument,

there exists f1 2H 1
loc such that up to a subsequence,

fn*f1 in H 1
loc;

and from the local compactness of one-dimensional Sobolev embeddings

fn! f1 in L2loc; fn.1/! f1.1/:

This implies by (A-3) and (A-4),

f 21.1/C

Z
f 21

1Cy2iC2˛C4
& 1 and

Z
f 21

y2iC2.1Cy2˛/
. 1; (A-5)

which means that f1 ¤ 0. On the other hand, from (A-3) and the lower semicontinuity of norms for the
weak topology, we have

A �f1 D 0:

Hence,

f1 D
ˇ

yd�1ƒQ
for some ˇ ¤ 0:

Since ƒQ � y near the origin, we haveZ
y�1

f 21
y2iC2

&
Z
y�1

yd�1

y2dC2iC2
dy D

Z
y�1

dy

ydC2iC3
DC1;

which contradicts the a priori regularity of f1 given in (A-5). �
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We also need the following subcoercivity of A .

Lemma A.3 (weight coercivity of A ). Let p � 0 and i D 0; 1; 2 such that j2pC 2i � .d � 2� 2/j ¤ 0,
where  2 .1; 2� is defined by (1-8). We haveZ

jA f j2

y2i .1Cy2p/
&
Z

j@yf j
2

y2i .1Cy2p/
C

Z
f 2

y2iC2.1Cy2p/
�

�
f 2.1/C

Z
f 2

1Cy2iC2pC4

�
: (A-6)

Assume in addition that
hf;ˆM i D 0 if 2i C 2p > d � 2 � 2;

where ˆM is defined in (3-4). Then we haveZ
jA f j2

y2i .1Cy2p/
&
Z

j@yf j
2

y2i .1Cy2p/
C

Z
f 2

y2iC2.1Cy2p/
: (A-7)

Proof. The proof is very similar to the proof of Lemma A.2. We proceed into two steps. The first step is
to derive the subcoercive estimate (A-6). In the second step, we use a compactness argument to show the
coercivity of A under a suitable condition.

Step 1: subcoercive estimate for A . From the definition (2-6) of A and the asymptotic of V given in
(2-8), we estimate near the originZ

y�1

jA f j2

y2i .1Cy2p/
&
Z
y�1

1

y2i

ˇ̌̌̌
�@yf C

f

y
CO.jyf j/

ˇ̌̌̌2
&
Z
y�1

j@yf j
2

y2i
C

Z
y�1

f 2

y2iC2
�

Z
y�1

@y.f
2/

y2iC1
�

Z
y�1

f 2

y2i�2

&
Z
y�1

j@yf j
2

y2i
C .d � 2i � 1/

Z
y�1

f 2

y2iC2
�f 2.1/�

Z
y�1

f 2

y2i�2

&
Z
y�1

j@yf j
2

y2i
C

Z
y�1

f 2

y2iC2
�f 2.1/�

Z
y�1

y2f 2:

Away from the origin, we estimate from (2-8)Z
y�1

jA f j2

y2i .1Cy2p/
&
Z
y�1

1

y2iC2p

�
@yf C



y
f

�2
�

Z
y�1

f 2

y2iC2pC4
:

We make the change of variable g D yf . From the assumption j2i C 2p� .d � 2� 2/j ¤ 0, we use
the Hardy inequality given in part (ii) of Lemma A.1 to writeZ

y�1

j@y.y
f /j2

y2iC2pC2
D

Z
y�1

j@ygj
2

y2iC2pC2
&
Z
y�1

g2

y2iC2pC2C2
�g2.1/&

Z
y�1

f 2

y2iC2pC2
�f 2.1/:

Note also that we have the trivial bound from (2-8),Z
y�1

jA f j2

y2iC2p
C

Z
y�1

f 2

y2iC2pC2
&
Z
y�1

j@yf j
2

y2iC2p
:

The collection of the above bounds yields the subcoercivity (A-6).
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Step 2: coercivity of A . Arguing as the proof of (A-1), we end up with the existence of f1¤ 0 such thatZ
f 21

y2iC2.1Cy2p/
. 1 and A f1 D 0:

Hence, from the definition (2-6) of A , we have

f1 D ˇƒQ for some ˇ ¤ 0.

If 2i C 2p > d � 2 � 2, we use the orthogonality condition to deduce that

0D hf1; ˆM i D ˇhƒQ;�MƒQi:

Thus, ˇ D 0. If 2i C 2p � d � 2 � 2, we use the fact that ƒQ � 1=y as y!C1 to estimateZ
y�1

jƒQj2yd�1 dy

y2iC2.1Cy2p/
&
Z
y�1

yd�1�2�2i�2p�2 dy &
Z
y�1

y�1 dy DC1;

which contradicts with the regularity of f1. �

From the coercivities of A and A �, we claim the following coercivity for L :

Lemma A.4 (weighted coercivity of L under a suitable orthogonality condition). Let k 2 N, i D 0; 1; 2,
and M D M.k/ large enough. Then there exists cM;k > 0 such that for all f 2 Drad satisfying the
orthogonality

hf;ˆM i D 0 if 2i C 2k > d � 2 � 4;

where ˆM is defined by (3-4) and „ is given in (1-18), we haveZ
jL f j2

y2i .1Cy2k/
� cM;k

Z �
j@yyf j

2

y2i .1Cy2k/
C

j@yf j
2

y2i .1Cy2kC2/
C

jf j2

y2iC2.1Cy2kC2/

�
; (A-8)

and Z
jL f j2

y2i .1Cy2k/
� cM;k

Z �
jA f j2

y2iC2.1Cy2k/
C

Z
jf j2

y2i .1Cy2kC4/

�
: (A-9)

Proof. We proceed in two steps:

Step 1: subcoercivity of L . We apply Lemma A.2 to A f with ˛ D k and note that

@y.A f /D A .@yf /C @y

�
V

y

�
f;

to writeZ
jL f j2

y2i .1Cy2k/
&
Z

jA f j2

y2iC2.1Cy2k/
C

Z
j@y.A f /j

2

y2i .1Cy2k/
(A-10)

&
Z

jA f j2

y2i .1Cy2kC2/
C

Z
j@y.A f /j

2

y2i .1Cy2k/

&
Z

jA f j2

y2i .1Cy2kC2/
C

Z
jA .@yf /j

2

y2i .1Cy2k/
�

Z
jf j2

y2iC2.1Cy2k/
: (A-11)
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Applying Lemma A.3 to f with pD kC1 and noting that the condition j2.kC1/C2i�.d�2�2/j¤ 0
is always satisfied (if not, we have d D 4C 2

p
.kC 1C i/2C 2 62 N), we haveZ

jA f j2

y2i .1Cy2kC2/
&
Z

j@yf j
2

y2i .1Cy2kC2/
C

Z
f 2

y2iC2.1Cy2kC2/
�

�
f 2.1/C

Z
f 2

1Cy2kC2iC6

�
:

We apply again Lemma A.3 to @yf with p D k to estimateZ
jA .@yf /j

2

y2i .1Cy2k/
&
Z

j@yyf j
2

y2i .1Cy2k/
C

Z
j@yf j

2

y2iC2.1Cy2k/
�

�
j@yf .1/j

2
C

Z
j@yf j

2

1Cy2kC2iC4

�
:

Injecting these bounds into (A-11) yields the subcoercive estimate for L ,Z
jL f j2

y2i .1Cy2k/
&
Z

j@yyf j
2

y2i .1Cy2k/
C

Z
j@yf j

2

y2i .1Cy2kC2/
C

Z
f 2

y2iC2.1Cy2kC2/

�

�
f 2.1/Cjfy.1/j

2
C

Z
jfy j

2

1Cy2kC2iC4
C

Z
f 2

1Cy2kC2iC6

�
: (A-12)

Step 2: coercivity of L . We argue by contradiction. Assume that (A-8) does not hold. Up to a
renormalization, there exists a sequence of functions fn 2 Drad such thatZ

jL fnj
2

y2i .1Cy2k/
�
1

n
;

Z
j@yyfnj

2

y2i .1Cy2k/
C

Z
j@yfnj

2

y2i .1Cy2kC2/
C

Z
jfnj

2

y2iC2.1Cy2kC2/
D 1: (A-13)

This implies by (A-12),

f 2n .1/Cj@yfn.1/j
2
C

Z
j@yfnj

2

1Cy2kC2iC4
C

Z
f 2n

y2.1Cy2kC2iC6/
& 1: (A-14)

From (A-13), the sequence fn is bounded in H 2
loc. Hence, from a standard diagonal extraction argument,

there exists f1 2H 2
loc such that up to a subsequence,

fn*f1 in H 2
loc;

and from the local compactness of one-dimensional Sobolev embeddings

fn! f1 in H 1
loc;

and
fn.1/! f1.1/; @yfn.1/! @yf1.1/:

This implies by (A-13) and (A-14),

f 21.1/Cj@yf1.1/j
2
C

Z
j@yf1j

2

1Cy2kC2iC4
C

Z
f 21

y2.1Cy2kC2iC6/
& 1;

which means that f1 ¤ 0. On the other hand, from (A-13) and the lower semicontinuity of norms for the
weak topology, we deduce that f1 is a nontrivial function in the kernel of L , namely that

L f1 D 0;
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which implies
f1 D ��CˇƒQ;

where � and ˇ two real numbers.
From (A-13) and the lower semicontinuity, we haveZ

f 21

y2iC2.1Cy2kC2/
<C1:

Recall from (2-16) that � � 1=yd�1 as y! 0. This yields the estimateZ
y�1

�2

y2iC2.1Cy2kC2/
&
Z
y�1

dy

y2iC2Cd�1
DC1I

hence, �D 0.
From (2-5), we have ƒQ � 1=y as y!C1. If 2i C 2k � d � 2 � 4, we haveZ

y�1

jƒQj2yd�1 dy

y2iC2.1Cy2kC2/
&
Z
y�1

yd�1�2i�2k�4�2 dy &
Z
y�1

y�1 dy DC1I

hence, ˇ D 0. If 2i C 2k > d � 2 � 4, we use the orthogonality condition to deduce

0D hf1; ˆM i D ˇhƒQ;�MƒQi;

which yields ˇ D 0; hence f1 D 0. The contradiction then follows and the coercivity (A-8) is proved.
The estimate (A-9) simply follows from (A-8) and (A-10). �

We are now in a position to prove the coercivity of L k under a suitable orthogonality condition. We
claim the following:

Lemma A.5 (coercivity of the iterate of L ). Let k 2 N and M DM.k/ large enough. Then there exists
cM;k > 0 such that for all f 2 Drad satisfying the orthogonality condition

hf;LmˆM i D 0; 0�m� k�„;

where „ is defined as in (1-18), we have

E2kC2.f /D

Z
jL kC1f j2

� cM;k

�Z
jA .L kf /j2

y2
C

kX
mD0

Z
jLmf j2

y4.1Cy4.k�m//
C

k�1X
mD0

jA .Lmf /j2

y6.1Cy4.k�m�1//

�
: (A-15)

Proof. We argue by induction on k. For k D 0, we apply Lemma A.2 to A f with i D 0 and ˛ D 0, then
Lemma A.3 to f with i D 1 and p D 0 to write

E2.f /D

Z
jL f j2 &

Z
jA f j2

y2
&
Z
jA f j2

y2
C

Z
f 2

y4
:

Note that we had to use the orthogonality condition hf;ˆM i when „ D 0. In fact, the case „ D 0 only
happens when d D 7. In this case, the condition 2 > d � 2 � 2 is fulfilled when applying Lemma A.2
with i D 1 and p D 0.
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We now assume the claim for k � 0 and prove it for kC 1. We have the orthogonality condition

hf;LmˆM i D 0; 0�m� kC 1�„:

Let g DL f , then we have
hg;LmˆM i D 0; 0�m� k�„:

By induction hypothesis, we writeZ
jL kC2f j2 D

Z
jL kC1gj2

&
Z
jA .L kg/j2

y2
C

kX
mD0

Z
jLmgj2

y4.1Cy4.k�m//
C

k�1X
mD0

jA .Lmg/j2

y6.1Cy4.k�m�1//

D

Z
jA .L kC1f /j2

y2
C

kC1X
mD1

Z
jLmf j2

y4.1Cy4.kC1�m//
C

kX
mD1

jA .Lmf /j2

y6.1Cy4.k�m//
:

Note that we have the orthogonality condition hf;ˆM i D 0 when k � „� 1. The case k � „� 2 implies

4C 4k � 4C 4

�
d

4
�


2
� ı

�
� 8� d � 2 � 4:

Hence, we use the coercivity bound (A-9) to deriveZ
jL f j2

y4.1Cy4k/
&
Z

jA f j2

y6.1Cy4k/
C

Z
f 2

y4.1Cy4kC4/
;

which concludes the proof of Lemma A.5. �

Appendix B: Interpolation bounds

We derive in this section interpolation bounds on q which are the consequence of the coercivity property
given in Lemma A.5. We have the following:

Lemma B.1 (interpolation bounds). (i) Weighted bounds for qi : for 1�m� k,Z
jq2mj

2
C

2k�1X
iD0

Z
jqi j

2

y2.1Cy4m�2i�2/
� C.M/E2m: (B-1)

(ii) Development near the origin:

q D

kX
iD1

ciTk�i C rq; (B-2)

with bounds

jci j.
p

E2k;

j@jyrqj. y
2k�d

2
�j
j ln.y/jk

p
E2k; 0� j � 2k� 1; y < 1:
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(iii) Bounds near the origin for qi and @iyq: for y � 1
2

,

jq2i jC j@
2i
y qj. y

�d
2
C2
j lnyjk

p
E2k for 0� i � k� 1;

jq2i�1jC j@
2i�1
y qj. y�

d
2
C1
j lnyjk

p
E2k for 1� i � k:

(iv) Weighted bounds for @iyq: for 1�m� k,

2mX
iD0

Z
j@iyqj

2

1Cy4m�2i
. E2m: (B-3)

Moreover, let .i; j / 2 N�N� with 2� i C j � 2k. ThenZ
j@iyqj

2

1Cy2j
.
�

E2m for i C j D 2m; 1�m� k;
p

E2m
p

E2.mC1/ for i C j D 2mC 1; 1�m� k� 1:
(B-4)

(v) Pointwise bound far away: Let .i; j / 2 N�N with 1� i C j � 2k� 1. We have for y � 1,ˇ̌̌̌
@iyq

yj

ˇ̌̌̌2
.

1

yd�2

�
E2m for i C j C 1D 2m; 1�m� k;
p

E2m
p

E2.mC1/ for i C j D 2m; 1�m� k� 1:
(B-5)

Proof. (i) The estimate (B-1) directly follows from Lemma A.5.

(ii) For 1�m� k, we claim that q2k�2m admits the Taylor expansion at the origin

q2k�2m D

mX
iD1

ci;mTm�i C r2m; (B-6)

with the bounds

jci;mj.
p

E2k;

j@jyr2mj. y
2m�d

2
�j
j ln.y/jm

p
E2k; 0� j � 2m� 1; y < 1;

The expansion (B-2) then follows from (B-6) with mD k.
We proceed by induction in m for the proof of (B-6). For mD 1, we write from the definition (2-7)

of A �,

r1.y/D q2k�1.y/D
1

yd�1ƒQ

Z y

0

q2kƒQx
d�1 dxC

d1

yd�1ƒQ
:

Note from (B-1) that
R
jq2k�1j

2=y2 . E2k and from (2-5) that ƒQ� y as y! 0; we deduce that d1D 0.
Using the Cauchy–Schwarz inequality, we derive the pointwise estimate

jr1.y/j �
1

yd

�Z y

0

jq2kj
2xd�1 dx

�1
2
�Z y

0

x2xd�1 dx

�1
2

. y�
d
2
C1
p

E2k; y < 1:

We remark that there exists a 2
�
1
2
; 1
�

such that

jq2k�1.a/j
2 .

Z
y�1

jq2k�1j
2 . E2k:
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We then define

r2.y/D�ƒQ

Z y

a

r1

ƒQ
dx;

and obtain from the pointwise estimate of r1,

jr2.y/j. yy�
d
2
C1
p

E2k

Z y

a

dx

x
. y�

d
2
C2
j ln.x/j

p
E2k; y < 1:

By construction and the definition (2-6) of A , we have

A r2 D r1 D q2k�1; L r2 D A �q2k�1 D q2k DL q2k�2:

Recall that Span.L / D fƒQ;�g, where � admits the singular behavior (2-16). From (B-1), we haveR
jq2k�2j

2=y4 . E2k <C1. This implies that there exists c2 2 R such that

q2k�2 D c2ƒQC r2:

Moreover, there exists a 2
�
1
2
; 1
�

such that

jq2k�2.a/j
2 .

Z
jyj�1

jq2k�2j
2 . E2k;

which implies
jc2j.

p
E2k; jq2k�2j. y�

d
2
C2
jln.y/j

p
E2k; y < 1:

Since A r2 D r1, we then write from the definition (2-6) of A ,

j@yr2j. jr1jC
ˇ̌̌̌
r2

y

ˇ̌̌̌
. y�

d
2
C2
jln.y/j

p
E2k; y < 1:

This concludes the proof of (B-6) for mD 1.
We now assume that (B-6) holds for m� 1 and prove it for mC 1. The term r2m is built as follows:

r2m�1 D
1

yd�1ƒQ

Z y

0

r2m�2ƒQx
d�1 dx; r2m D�ƒQ

Z y

a

r2m�1

ƒQ
dx; a 2

�
1
2
; 1
�
:

We now use the induction hypothesis to estimate

jr2mC1j D

ˇ̌̌̌
1

yd�1ƒQ

Z y

0

r2mƒQx
d�1 dx

ˇ̌̌̌
.

1

yd

p
E2k

Z y

0

x2mC
d
2 j ln.x/jm dx

. y2m�
d
2

p
E2k

Z y

0

j ln.x/jm dx

. y2m�
d
2
C1
j ln.y/jm

p
E2k:

Here we used the identity

Im D

Z y

0

Œln.x/�m dx . yj ln.y/jm; m� 1; y < 1:
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Indeed, we have I1 D
R y
0 ln.x/ dx D y ln.y/�y . yj ln.y/j for y < 1. Assuming the claim for m� 1,

we use an integration by parts to estimate for mC 1

ImC1 D

Z y

0

Œln.x/�m.x ln.x/� x/0 dx

D yŒln.y/�mC1�yŒln.y/�m�m.Im� Im�1/. yj ln.y/jmC1:

Using an integration by parts yieldsZ y

a

Œln.x/�m

x
dx D

Œln.y/�mC1� Œln.a/�mC1

mC 1
:

Hence, we have the estimate

jr2mC2j D

ˇ̌̌̌
ƒQ

Z y

a

r2mC1

ƒQ
dx

ˇ̌̌̌
. y2m�

d
2
C2
p

E2k

Z y

a

jln.x/jm

x
dx

. y2m�
d
2
C2
jln.y/jmC1

p
E2k:

By construction, we have

A r2mC2 D r2mC1; L r2mC2 D r2m:

From the induction hypothesis and the definition (2-19) of Tk , we write

L q2k�2.mC1/ D q2k�2m D

mX
iD1

ci;mTm�i C r2m D

mX
iD1

ci;mL TmC1�i CL r2mC2:

The singularity (2-16) of � at the origin and the bound
R
y�1 jq2k�2.mC1/j

2=y4 . E2k allows us to deduce

q2k�2.mC1/ D

mX
iD1

ci;mTmC1�i C c2mC2ƒQC r2mC2:

From (B-1), we see that there exists a 2
�
1
2
; 1
�

such that

jq2k�2.mC1/.a/j
2 .

Z
y�1

jq2k�2.mC1/j
2 . E2k:

Together with the induction hypothesis jci;mj.
p

E2k and the pointwise estimate on r2mC2, we get the
bound jc2mC2j �

p
E2k.

A brute force computation using the definitions of A and A � and the asymptotic behavior (2-8) ensure
that for any function f ,

@jyf D

jX
iD0

Pi;jfi ; jPi;j j.
1

yj�i
; (B-7)

and we estimate

j@jyr2mC2j.
jX
iD0

jr2mC2�i j

yj�i
.
p

E2k

jX
iD0

y2mC2�i�
d
2 j ln.y/jmC1

yj�i
. y2mC2�

d
2
�j
j ln.y/jmC1

p
E2k:

This concludes the proof of (B-6) as well as (B-2).
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(iii) The proof of (iii) directly follows from (B-6).

(iv) We have from (B-7),

j@kyqj.
kX

jD0

jqj j

yk�j
;

and thus, using (B-1) and the pointwise bounds given in part (iii) yields

2mX
iD0

Z
j@iyqj

2

1Cy4m�2i
. E2mC

2m�1X
iD0

Z
y<1

j@iyqj
2
C

2m�1X
iD0

Z
y>1

j@iyqj
2

y4m�2i

. E2mC E2k

Z
y<1

yj lnyjk dyC
2m�1X
iD0

iX
jD0

Z
y>1

jqj j
2

y4m�2j
. E2m;

which concludes the proof of (B-3).
The estimate (B-4) simply follows from (B-3). Indeed, if i C j D 2m with 1�m� k, we haveZ

j@iyqj
2

1Cy2j
D

Z
j@iyqj

2

1Cy4m�2i
. E2m:

If i C j D 2mC 1 with 1�m� k� 1, we writeZ
j@iyqj

2

1Cy2j
D

Z
j@iyqj

2

1Cy4m�2iC2
.
�Z

j@iyqj
2

1Cy4m�2i

�1
2
�Z

j@iyqj
2

1Cy4m�2iC4

�1
2

.
p

E2m
p

E2.mC1/:

(v) Let i; j � 0 with 1� i C j � 2k� 1. Then 2� i C j C 1� 2k and we conclude from (B-4) that for
y � 1, ˇ̌̌̌

@iyq

yj

ˇ̌̌̌2
.
ˇ̌̌̌Z C1
y

@x

�
.@ixq/

2

x2j

�
dx

ˇ̌̌̌
.

1

yd�2

�Z C1
y

j@ixqj
2

x2jC2
C

Z C1
y

j@iC1x qj2

x2j

�
.

1

yd�2

�
E2m for i C j C 1D 2m; 1�m� k;
p

E2m
p

E2.mC1/ for i C j C 1D 2mC 1; 1�m� k� 1: �

Appendix C: Proof of (4-22)

We give here the proof of (4-22). Before going to the proof, we need the following Leibniz rule for L k .

Lemma C.1 (Leibniz rule for L k). Let � be a smooth function and k 2 N, we have

L kC1.�f /D

kC1X
mD0

f2m�2kC2;2mC

kX
mD0

f2mC1�2kC2;2mC1; (C-1)

A L k.�f /D

kX
mD0

f2mC1�2kC1;2mC1C

kX
mD0

f2m�2kC1;2m; (C-2)
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where for k D 0,

�1;0 D�@y�; �1;1 D �;

�2;0 D�@
2
y� �

d � 1C 2V

y
@y�; �2;1 D 2@y�; �2;2 D �;

and for k � 1,

�2kC1;0 D�@y�2k;0;

�2kC1;2i D�@y�2k;2i ��2k;2i�1; 1� i � k;

�2kC1;2iC1 D �2k;2i C
d � 1C 2V

y
�2k;2iC1� @y�2k;2iC1; 0� i � k� 1;

�2kC1;2kC1 D �2k;2k D �;

�2kC2;0 D @y�2kC1;0C
d � 1C 2V

y
�2kC1;0;

�2kC2;2i D �2kC1;2i�1C @y�2kC1;2i C
d � 1C 2V

y
�2kC1;2i ; 1� i � k;

�2kC2;2iC1 D��2kC1;2i C @y�2kC1;2iC1; 0� i � k;

�2kC2;2kC2 D �2kC1;2kC1 D �:

Proof. We use the relations

A .�f /D �A f � @y�f; A �.�f /D �A �f C @y�f;

A f CA �f D
d � 1C 2V

y
f

to compute

A .�f /D f1�Cf .�@y�/;

L .�f /D A �A .�f /D f2�Cf1.2@y�/Cf

�
�@2y� �

d � 1C 2V

y
@y�

�
;

which is the conclusions of (C-1) and (C-2) for k D 0.
Assume that (C-1) and (C-2) hold for k 2 N; let us compute for k! kC 1. Using (C-1), we write

A L kC1.�f /D

kC1X
mD0

A Œf2m�2kC2;2m�C

kX
mD0

�
�A �C

d � 1C 2V

y

�
f2mC1�2kC2;2mC1

D

kC1X
mD0

ff2mC1�2kC2;2mCf2m.�@y�2kC2;2m/g

C

kX
mD0

�
f2mC2.��2kC2;2mC1/Cf2mC1.�@y�2kC2;2mC1/

Cf2mC1

�
d � 1C 2V

y
�2kC2;2mC1

��
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D

kX
mD0

f2mC1

�
�2kC2;2m� @y�2kC2;2mC1C

d � 1C 2V

y
�2kC2;2mC1

�

C

kX
mD1

f2m.�@y�2kC2;2m��2kC2;2mC1/Cf2kC3�2kC2;2kC2Cf .�@y�2kC2;0/;

which yields the recurrence relation for �2kC3;j with 0� j � 2kC 3.
Similarly, we write L kC2.�f /D A �ŒA L kC1.�f /� and use the formula (C-2) with kC 1 to obtain

the recurrence relation for �2kC4;j with 0� j � 2kC 4. �

Let us now give the proof of (4-22). By induction and the definition (3-13), we have

Œ@t ;L
k�1
� �v D

k�2X
mD0

Lm
� .Œ@t ;L��L

k�2�m
� v/D

k�2X
mD0

Lm
�

�
@tZ�

r2
L k�2�m
� v

�
:

Noting that
@tZ�

r2
D
b1ƒZ

�4y2
;

we make a change of variables to obtainZ
1

�2.1Cy2/
jŒ@t ;L

k�1
� �vj2 D

b21

�4k�dC2

Z
1

1Cy2

ˇ̌̌̌ k�2X
mD0

Lm

�
ƒZ

y2
L k�2�mq

�ˇ̌̌̌2

.
b21

�4k�dC2

k�2X
mD0

Z
1

1Cy2

ˇ̌̌̌
Lm

�
ƒZ

y2
L k�2�mq

�ˇ̌̌̌2
:

For mD 0, we use (4-21) and (4-20) to estimateZ
1

1Cy2

ˇ̌̌̌�
ƒZ

y2
L k�2q

�ˇ̌̌̌2
.
Z
jq22k�4j

1Cy10
. E2k:

For mD 1; : : : ; k� 2, we apply (C-1) with

� D
ƒZ

y2
D
.d � 1/ƒ cos.2Q/

y2

and note from (2-4) that

j�k;i j.
1

1Cy2C2C.2k�i/
.

1

1Cy4C.2k�i/
; k 2 N�; 0� i � 2k;

which yields Z
1

1Cy2

ˇ̌̌̌
Lm

�
ƒZ

y2
L k�2�mq

�ˇ̌̌̌2
.
2mX
iD0

Z
q22k�4�2m�i

.1Cy10C.4m�2i//
. E2k:

Thus, Z
1

�2.1Cy2/
jŒ@t ;L

k�1
� �vj2 .

b21

�4k�dC2
E2k:
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Similarly, we use (C-2) to get the estimateZ
jA Œ@t ;L

k�1
� �vj2 .

b21

�4k�dC2
E2k:

This concludes the proof of (4-22).
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