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This work is concerned with the broad question of propagation of regularity for smooth solutions to
nonlinear Vlasov equations. For a class of equations (that includes Vlasov–Poisson and relativistic
Vlasov–Maxwell systems), we prove that higher regularity in space is propagated, locally in time, into
higher regularity for the moments in velocity of the solution. This in turn can be translated into some
anisotropic Sobolev higher regularity for the solution itself, which can be interpreted as a kind of weak
propagation of space regularity. To this end, we adapt the methods introduced by D. Han-Kwan and
F. Rousset (Ann. Sci. École Norm. Sup. 49:6 (2016) 1445–1495) in the context of the quasineutral limit
of the Vlasov–Poisson system.
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1. Introduction

This paper is concerned with the broad question of propagation of regularity for smooth solutions to
Vlasov equations of the general form

@tf C a.v/ � rxf CF.t;x; v/ � rvf D 0; (1-1)

set in the phase space Td �Rd (with Td D Rd=Zd endowed with normalized Lebesgue measure), where
F W RC �Td �Rd ! Rd is a force field satisfying rv �F D 0 and a W Rd ! Rd is an advection field
satisfying suitable assumptions, a.v/D v being the main example to be considered. The (scalar) function
f .t;x; v/ may be understood as the distribution function of a family of particles, which can be, depending
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on the physical context, e.g., electrons, ions in plasma physics, or stars in galactic dynamics. The choice
of the periodic torus Td is made for simplicity.

The two precise examples of equations we specifically have in mind are the Vlasov equations arising
from a coupling with Poisson or Maxwell equations, in which case the resulting coupled system is called
the Vlasov–Poisson or the relativistic Vlasov–Maxwell system (we will discuss as well several other
models).

� The Vlasov–Poisson system — either the repulsive or the attractive version, the sign of the interaction
here does not matter here — is given by8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

@tf C v � rxf ˙E � rvf D 0;

E.t;x/D�rx�.t;x/;

��x� D

Z
Rd

f dv�

Z
Td�Rd

f dv dx;

f jtD0 D f0:

(1-2)

In the repulsive version (that is, with the sign C in the Vlasov equation), this system describes the
dynamics of charged particles in a nonrelativistic plasma, with a self-induced electric field.

In the attractive version (that is, with the sign � in the Vlasov equation), it describes the dynamics of
stars or planets with gravitational interaction.

� The relativistic Vlasov–Maxwell system, in dimension d D 3, is given by8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

@tf C Ov � rxf CF � rvf D 0;

Ov WD
vp

1Cjvj2=c2
; F.t;x; v/ WDE.t;x/C

1

c
Ov�B.t;x/;

1

c
@tBCrx �E D 0; rx �E D

Z
R3

f dv�

Z
T3�R3

f dv dx;

�
1

c
@tECrx �B D

1

c

Z
R3

Ovf dv; rx �B D 0;

f jtD0 D f0; .E;B/jtD0 D .E0;B0/;

(1-3)

in which the parameter c is the speed of light. There are also related versions of (1-3) in lower dimensions.
This system describes the dynamics of charged particles in a relativistic plasma, with a self-induced
electromagnetic field. We recall that the (repulsive) Vlasov–Poisson system can be derived from (1-3) in
the nonrelativistic regime, that is to say, in the limit c!1, as studied in [Asano and Ukai 1986; Degond
1986; Schaeffer 1986].

In this paper, we will consider weighted Sobolev norms and associated weighted Sobolev spaces (based
on L2), defined, for k 2 N, r 2 R, as

kf kHk
r
WD

� X
j˛jCjˇj�k

Z
Td

Z
Rd

.1Cjvj2/r j@˛x@
ˇ
vf j

2 dv dx

�1
2

; (1-4)
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where for ˛ D .˛1; : : : ; ˛n/; ˇ D .ˇ1; : : : ; ˇn/ 2 f1; : : : ; dg
n, we write

j˛j D n; jˇj D n;

and
@˛x WD @x˛1

� � � @x˛n
; @ˇv WD @vˇ1

� � � @vˇn
:

As usual the notation H s will stand for the standard Sobolev spaces, without weight.
It will be also useful to introduce the weighted W k;1 space, whose norm is defined, for k 2N; r 2R, by

kf kWk;1
r
WD

X
j˛jCjˇj�k

k.1Cjvj2/
r
2 @˛x@

ˇ
vf kL1x;v : (1-5)

For the Vlasov–Poisson or Vlasov–Maxwell couplings, given an initial condition f0 satisfying

f0 2Hn
r

for n; r > 0 large enough (and with a smooth enough initial force F.0/), it is standard that there exists a
unique local solution f .t/ 2 C.0;T IHn

r /. Under fairly general assumptions on the advection field a and
the force F, the same result can also be shown for (1-1), as we will soon see.

Let us now present the precise problem we tackle in this work. Assuming some higher space regularity
such as

@nC1
x f0 2H0

r (or @p
xf0 2H0

r for p � nC 1), (1-6)

the question we ask is the following: is there also propagation of any higher regularity for the solution f .t/?
A first remark to be made is that there is no hope of proving that this sole additional assumption implies
that the solution f .t/ also satisfies @nC1

x f .t/ 2H0
r , even for small values of t . Indeed, regularity in x

and v is intricately intertwined for solutions of the Vlasov equation, as can be seen from the representation
of the solution using the method of characteristics.

For s; t �0 and .x; v/2Td�Rd, we define as usual the characteristic curves .X.s; t;x; v/;V .s; t;x; v//
as the solutions to the system of ODEs8̂<̂

:
d

ds
X.s; t;x; v/D a.V .s; t;x; v//; X.t; t;x; v/D x;

d

ds
V .s; t;x; v/D F.s;X.s; t;x; v/;V .s; t;x; v//; V .t; t;x; v/D v:

(1-7)

The existence and uniqueness of such curves are consequences of the Cauchy–Lipschitz theorem (assuming
we deal with smooth forces). The method of characteristics asserts that one can represent the solution
of (1-1) as

f .t;x; v/D f0.X.0; t;x; v/;V .0; t;x; v//: (1-8)

Therefore we see (except maybe in trivial cases such as F � 0) that derivatives in x of f .t/ involve
derivatives in x and in v of f0, so that regularity in x only of f0 cannot in general be propagated for f .t/.
However, given some smooth test function  .v/ (the case  D 1 is already interesting), we can also
wonder about the higher regularity of the moment m .t;x/ WD

R
Rd f .t;x; v/ .v/ dv. Such moments,
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which can be interpreted as hydrodynamic quantities, are important objects in kinetic theory. We have the
representation formula

m .t;x/D

Z
Rd

f0.X.0; t;x; v/;V .0; t;x; v//  .v/ dv:

We note that for t small enough, the map v 7!V .s; t;x; v/ is a diffeomorphism for all s 2 Œ0; t �. Indeed for
s D t this map is the identity and integrating with respect to s the equation satisfied by V .s; t;x; v/, we
note that for t small enough and s 2 Œ0; t �, the map v 7! V .s; t;x; v/ is a small perturbation of the identity,
hence our claim that it is a diffeomorphism. In particular the map v 7! V .0; t;x; v/ is a diffeomorphism
and we denote by V �1.t;x; v/ its inverse. Using this diffeomorphism as a change of variables (in v) we
get, for t small enough,

m .t;x/D

Z
Rd

f0.X.0; t;x;V
�1.t;x; v//; v/  .V �1.t;x; v// jdet DvV .0; t;x; v/j

�1 dv:

Thanks to this formula, at least formally, the Leibniz rule ensures that derivatives in x of the moment m 

only involve derivatives in x of f0. Recalling the extra higher regularity (1-6), it seems maybe natural
to expect that the moment m belongs to the Sobolev space H nC1 in x. In the case where F is a fixed
external force, assumed to be very smooth, say C1 with respect to all variables, since t is fixed, the fact
that m .t; � / belongs to H nC1

x follows indeed from the Leibniz formula, using the fact the characteristic
curves .X;V / inherit the C1 regularity of F.

However, this argument seems to break down in the case where F depends on the solution f .t/ itself,
as the regularity of F is then tightly linked to that of f . Let us discuss for instance the Poisson case —
the Maxwell case is actually worse in the sense that in the Vlasov–Poisson coupling, F gains, loosely
speaking, one derivative in x compared to f . As already mentioned, the local Cauchy theory yields
f .t/ 2C.0;T IHn

r /, and we have F 2C.0;T IH nC1
x /. Note then that when applying nC1 derivatives in

x on m , one needs to apply nC1 derivatives in x on jdet DvV .0; t;x; v/j
�1, which amounts to applying

in total nC 2 derivatives to V .0; t;x; v/. However, by (1-7), we observe that .X;V / inherits the same
order of regularity as F, and therefore it does not seem licit to take as many as nC 2 derivatives.

The goal of this work is to show that despite this apparent shortcoming, it is indeed possible to show
for a fairly wide class of nonlinear Vlasov equations (including the Vlasov–Poisson and Vlasov–Maxwell
system) a result of propagation of regularity in x for the moments, assuming higher-order space regularity
for the initial condition. This in turn can be translated into some anisotropic Sobolev higher regularity for
the solution itself, which can be interpreted as a kind of weak propagation of space regularity.

It turns out that the lagrangian approach, that is to say, the approach that we have just underlined,
based on representation formulas using characteristics, is not adapted to answer this question. Instead we
shall rely on an eulerian approach, which is based to a larger extent on the PDE itself, inspired by the
recent work of the author in collaboration with F. Rousset on the quasineutral limit of the Vlasov–Poisson
system [Han-Kwan and Rousset 2016; � 2019]. The quasineutral limit is a singular limit which loosely
consists in a penalization of the laplacian in the Poisson equation. The small parameter is the scaled
Debye length, which appears to be very small in several usual plasma settings. The limit leads to singular
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Vlasov equations, which display a loss of regularity of the force field compared to that of the distribution
function. As a consequence, these equations are in general ill-posed in the sense of Hadamard; see [Bardos
and Nouri 2012; Han-Kwan and Nguyen 2016]. This problem might therefore look quite different from
the one considered here; the similarity comes from the fact that the justification of the quasineutral limit
ultimately loosely comes down to the proof of a uniform1 propagation of one order of higher regularity
for moments of solutions of the Vlasov–Poisson equation. Note though that the analysis of [Han-Kwan
and Rousset 2016; � 2019] requires the introduction of pointwise Penrose stability conditions, and also
relies on pseudodifferential tools, which will not be the case in this paper. As a matter of fact, the singular
Vlasov equations which can be formally derived in the quasineutral limit will not enter the class of Vlasov
equations we will deal with in this work, precisely because of the aforementioned loss of derivative.

The methodology of [Han-Kwan and Rousset 2016] was also used in the context of large time estimates
for data close to stable equilibria for the Vlasov–Maxwell system in the nonrelativistic regime, in a recent
work in collaboration with T. Nguyen and F. Rousset [Han-Kwan et al. 2017].

As a matter of fact, the approach can be considered as semilagrangian, in the sense that at some point
we still rely on characteristics as in the lagrangian approach but at the level of the PDEs that arise after
applying derivatives on the Vlasov equation, whereas in the lagrangian approach, derivatives are taken
after using the representation of the solution by characteristics.

2. Main results

2A. The abstract framework. Let us now describe precisely the class of Vlasov equations we deal with.
We consider in this work the abstract equation

@tf C a.v/ � rxf CF � rvf D 0; (2-1)

with the following structural assumptions. Among all these assumptions, we highlight that the force
depends on the distribution function itself, but only through some of its moments in velocity.

� Assumptions on the advection field. The map a W Rd ! Rd is a one-to-one C1 function such that

ja.v/j � C.1Cjvj/ for all v 2 Rd ; (2-2)

k@˛vakL1 � C˛ for all j˛j ¤ 0; (2-3)

and its inverse a�1 (defined on a.Rd /) satisfies, for some � > 0,

j@˛va�1.w/j � C˛.1Cja
�1.w/j/1C�j˛j for all w 2 a.Rd /; for all ˛: (2-4)

� Assumptions on the force field. The vector field F is divergence-free in v (i.e., satisfies rv �F D 0) and
we have the following decomposition for some ` 2 N�:

F.t;x; v/D
X̀
jD1

Aj .v/Fj .t;x/: (2-5)

1With respect to the scaled Debye length.
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We assume that for all j 2 f1; : : : ; `g, Aj is a C1 scalar function satisfying

k@˛vAjkL1 � C˛ for all ˛: (2-6)

Furthermore, there exist C1 functions  1.v/; : : : ;  r .v/ with at most polynomial growth, i.e., there is
r0 > 0 such that

k i.v/kWk;1
�r0

� Ci;k for all k 2 N (2-7)

such that, defining

m i
.t;x/D

Z
Rd

f .t;x; v/  i.v/ dv

for all j D 1; : : : ; `, the vector field Fj is uniquely determined by these moments and the initial conditions,
through a map �

.m i
/iD1;:::;r ; .F

j .0//jD1;:::;`

�
7! Fj ; (2-8)

and for all large enough n> 1C d , and all t > 0, we have

kFj
kL2.0;t IH n

x /
� �.j/n

�
t; km 1

kL2.0;t IH n
x /
; : : : ; km r

kL2.0;t IH n
x /
;
X̀
jD1

kFj .0/kH n
x

�
; (2-9)

kFj
kL1.0;t IH n

x / � �
.j/0

n

�
t; km 1

kL1.0;t IH n
x /; : : : ; km r

kL1.0;t IH n
x /;
X̀
jD1

kFj .0/kH n
x

�
; (2-10)

where �.j/n , �.j/
0

n are polynomial functions that are nonincreasing with respect to each of their arguments
(the others being fixed nonnegative numbers).

Finally, the force field satisfies the following stability property. Let f and g be two solutions
of (2-1), and denote by F Œf � and F Œg� their associated force fields. Assume that the initial conditions
.Fj .0//jD1;:::;` are the same. Then, we have for all j D 1; : : : ; `,

kFj Œf ��Fj Œg�kL2.0;t IH n
x /

� �.j/]n

�
t;

Z .f �g/ i.v/ dv


L2.0;t IH n

x /

; : : : ;

Z .f �g/ r .v/ dv


L2.0;t IH n

x /

�
; (2-11)

where �.j/]n is a polynomial function that is nonincreasing with respect to each of its arguments and such
that �.j/

0

n .0; � /D 0.
We shall explain later why both Vlasov–Poisson and relativistic Vlasov–Maxwell systems enter the

abstract framework.

2B. Statement of the main results. The regularity and integrability indices that will be useful to handle
such equations will depend on the dimension d , the maximal growth of the moments that intervene in the
definition of F, which is r0, and the parameter of growth of the inverse of a, which is �; let us set

N WD 3
2
d C 4; R WDmax

�
1
2
d C 2.1C�/.1C d/C r0

�
: (2-12)

We use in the following statement the notation b � c for the floor function.
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The main result proved in this paper is the following theorem.

Theorem 2.1. Let n � N and r > R. Let n0 > n be an integer such that n >
�

1
2
n0
˘
C 1. Assume that

f0 2Hn
r and Fj .0/ 2H n0

x for all j 2 f1; : : : ; `g. Assume furthermore that the initial data f0 satisfies the
following higher anisotropic regularity:

@
2.n�b 1

2
n0cCk/

x @˛x@
ˇ
vf0 2H0

r for all j˛jC jˇj D n0� n� k; for all k 2
˚
1; : : : ; 2

�
1
2
n0
˘
� n

	
: (2-13)

Then there is T > 0 such that the following holds. There exists a unique solution .f .t/;F.t// with initial
data .f0;F.0// to (2-1) such that f .t/ 2 C.0;T IHn

r /.
Moreover, for all test functions  2L1.0;T IW n0;1

�r0
/, we haveZ f  dv


L2.0;T IH n0

x /

�ƒ .T;M /; (2-14)

where ƒ is a polynomial function and

M D kf0kHn
r
C

X̀
jD1

kFj .0/k
H n0

x
C

2b 1
2

n0c�nX
kD1

X
j˛jCjˇjDn0�n�k

k@
2.n�bn0

2
cCk/

x @˛x@
ˇ
vf0kH0

r
:

Thanks to (2-9), we immediately deduce from (2-14) that the force field satisfies as well the higher
regularity

Fj
2L2.0;T IH n0

x /:

Another consequence concerns the flow .X;V / D .X.t; 0;x; v/;V .t; 0;x; v// as defined in (1-7), for
which we also obtain a higher regularity property.

Corollary 2.2. For some T 0 � T, we have

@x;v.X �x� tv;V � v/ 2L1.0;T 0IL1v L2
x/ for all j j � n0:

Remark 2.3. Some remarks about Theorem 2.1 are in order:

� In the case where n D 2m � 1 and n0 D nC 1 D 2m, the assumption (2-13) is simply given by
@nC1

x f0 2 H0
r and we obtain the L2

t H nC1
x smoothness of the moments: in other words this gives an

answer to the question raised in the beginning of the Introduction. Note though that the regularity result
we prove is not pointwise in t .

� Observe that it is required that the higher regularity index n0 is not too large compared to n (i.e.,
n>

�
1
2
n0
˘
C 1); such a restriction is somehow reminiscent of a similar one appearing in the celebrated

result of Bony [1981, Théorème 6.1] concerning the propagation of Sobolev microlocal regularity at
characteristic points for general nonlinear PDEs. We remark however that the class of PDEs considered
in this work does not enter the framework of [Bony 1981], in particular because of the “nonlocality” in
velocity. We refer to Section 10 for some remarks and (counter-)examples in this direction.

� As a matter of fact, our result can be somehow interpreted as a kinetic (and nonlocal) analogue of
Bony’s aforementioned theorem.
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� If it is ensured that the solution .f .t/;F.t// to (2-1) is global, (e.g., for the Vlasov–Poisson system
in dimension d � 3, see [Lions and Perthame 1991; Pfaffelmoser 1992; Schaeffer 1991; Batt and Rein
1991; Horst 1993]), we do not know if the higher propagation of regularity for the moments is global.

� Let us mention that in a somewhat different direction, a vector field method was devised in [Smulevici
2016] (see also [Fajman et al. 2017]) in order to prove time decay of moments for Vlasov equations set in
unbounded spaces.

In the case where the force is one derivative smoother than the distribution function f itself (that is to
say, when estimates (2-9) hold with n�1 instead of n in the right-hand side), the statement of Theorem 2.1
may be strengthened, insofar as one may ask only for derivatives in x in the regularity assumption (2-13).
We refer to such a case as the transport/elliptic case, which includes in particular the Vlasov–Poisson
system; see Theorem 9.1 in Section 9.

As already mentioned in the Introduction, the higher regularity for moments as obtained in Theorem 2.1
actually yields regularity for the solution itself (see [Gérard 1990] for a microlocal version of this fact,
in the context of averaging lemmas) in anisotropic Sobolev spaces (as defined in [Hörmander 1976,
Chapter II, Section 2.5]), which we first introduce.

Definition 2.4. Let m; n 2 R. The anisotropic Sobolev space H
m;n
x;v is defined as

H m;n
x;v WD

˚
g 2 S 0.Td

�Rd / W .1Cjkj2/
m
2 .1Cj�j2/

n
2 Og.k; �/ 2L2.Zd

�Rd /
	
;

where Og stands for the Fourier transform2 of g. We also define

H m;�1
x;v WD

[
p2R

H m;p
x;v :

Corollary 2.5. Consider the same assumptions and notation as in Theorem 2.1. We have

f .t;x; v/ 2L2.0;T IH n0;�1
x;v /:

Corollary 2.5 is a direct consequence of some estimates obtained in the proof of Theorem 2.1; we will
provide a proof of this fact in Section 7. It is actually possible to give an estimate of a value of p < 0

such that f 2L2.0;T IH
n0;p
x;v /.

2C. Overview of the proof. We discuss in this section the ingredients, inspired by [Han-Kwan and
Rousset 2016], leading to the higher propagation of regularity for the moments (the local well-posedness
theory is fairly standard; see Section 3). We shall discuss here the case nD 2k � 1 and n0 D nC 1D 2k.
To ease readability, we assume here that the dimension is d D 1 (in higher dimensions, the algebra is
more involved but the basic principle is the same).

Taking derivatives. Since we intend to propagate regularity in space, the first step consists in understanding
how to appropriately apply derivatives in x to the Vlasov equation (2-1).

2Where Og.k; �/D 1=.2�/d
R

Td�Rd g.x; v/e�ix�ke�iv�� dx dv, although the convention that is chosen for the writing of
the Fourier transform does not matter here.
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We note that applying the operator @˛x does not seem relevant, as it does not commute well with the
operator F@v: as a result it is not possible to obtain a closed equation bearing on @˛xf without appealing
to @ˇx@


vf for  ¤ 0, and therefore such an approach would require a control of derivatives in v which we

do not have at initial time (this is of course reminiscent of the mixing in x and v that we have evoked in
the Introduction).

The idea is to look for more appropriate differential operators, with nonconstant coefficients, satisfying
the following three key properties:

� At initial time, they involve only derivatives in x.

� They enjoy good commutation properties with the transport operator, so that it is eventually possible
to obtain closed systems involving these differential operators alone.

� They allow a good control of the Sobolev norm of the moments.

It turns out that second-order differential operators in x and v, with coefficients depending on the solution
itself, will be appropriate. More precisely, we consider the operator

L WD @2
xC'.t;x/@x@vC .t;x/@

2
v;

whose coefficients ' and  will depend on the force field F. Setting T WD @t C a.v/@x CF@v as the
transport operator, we ask that the coefficients '; solve a semilinear system of the form8̂̂<̂

:̂
T � D 2@xF CG1.�;  ; @x;vF /;

T  DG2.�;  ; @x;vF /;

'jtD0 D 0;  jtD0 D 0;

where G1;G2 are polynomial functions of degree greater than or equal to 2; this corresponds to zero-order
coupling terms. Note in particular that by definition, LD @2

x at time t D 0. The semilinear system is
precisely chosen in order to cancel bad terms in the commutation between L and T , so that for any
function g,

LT .g/D T L.g/C .LF / @vgC .La/ @xgC .@va/'Lg:

Applying this identity to the solution f of the Vlasov equation (1-1), this yields

T L.f /D�.LF / @vf � .La/ @xf � .@va/'Lf:

This formula will play a key role in the analysis. The main term (in terms of regularity issues) is�@2
xF@vf ,

since the others involve either more regular quantities (we recall indeed that F and a are assumed to be
smooth with respect to v), or the quantity Lf , which paves the way for a closed system involving only
compositions of L applied to f . As a consequence, the operators obtained as compositions of L appear
to be relevant for applying higher-order derivatives in x, since by construction:

� They require only a control of space regularity at initial time.
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� Denoting by Lk the composition of k operators L, one can obtain that Lkf satisfies an equation of
the form

T .Lkf /DA.Lkf /� .@
2k
x F / @vf CG..@˛x;vf /j˛j�2k�1/; (2-15)

where A;G are bounded linear operators. We note that this equation involves derivatives in v of the
solution, but only of order 2k � 1D n, which we control thanks to the local well-posedness theory. This
can therefore be seen as a closed equation for Lkf .

� One can show that for any smooth test function  ,Z
R

.Lkf / .t;x; v/ dv D

Z
R

.@2k
x f / .t;x; v/ dvC “controlled terms”:

In the controlled terms, the overload of derivatives in v falling on f is transferred to  by an integration-
by-parts argument.

All in all, this eventually shows that the Lk are indeed well-suited to study the regularity of moments.
This step is fully developed in Section 4. There are two separate difficulties in order to complete this task:
obtaining the right algebra as discussed here, and proving Sobolev estimates for all the involved objects.

(In the case where n0 > nC 1, we need to set up an induction argument, and this leads the study of
successive systems of coupled kinetic transport equations, which build on the general equation (2-15).)

Propagation of regularity on moments. We then turn to the study of moments of the solutions to (2-15).
This step is partly inspired from (and thus related to) the treatment of linear Landau damping in [Mouhot
and Villani 2011].

We first use the method of characteristics to invert the operator T �A. It is convenient at this stage to use
changes of variables in velocity (introduced and studied in Section 5) in order to straighten characteristics
and eventually, roughly speaking, come down from T to the free transport operator @tCa.v/ �rx . To this
end, it turns out to be efficient to introduce the change of variables v 7!ˆ where ˆ solves the Burgers’
equation

@tˆC a.ˆ/ � rxˆD F. � ; ˆ/; ˆjtD0 D v;

where we can prove that ˆ remains close to v in small time (in terms of Sobolev norms). The problem
comes down to the understanding of the contribution of the term �.@2k

x F / @vf , and eventually roughly
reduces to the study of an equation of the type

H1.t;x/D

Z t

0

Z
R

.@xH2/.s;x� .t � s/a.v//U.t; s;x; v/ dv dsC “controlled terms”;

where we know only that H2 is controlled in L2.0;T IL2
x/ and U is smooth, and we seek a bound of H1

in L2.0;T IL2
x/ (such an estimate corresponds to a control on the moments of Lkf ). The integral in

time is due to the use of Duhamel’s formula, and the integral in v to the fact that we study moments in v.
We observe that the operator in the right-hand side seems to feature a loss of derivative in x. However,
we use a smoothing effect to overcome this apparent loss, which was proved in [Han-Kwan and Rousset
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2016]. The outcome is the estimateZ t

0

Z
Rd

.rxH2/.s;x�.t�s/a.v//U.t; s;x; v/ dv ds


L2.0;t IL2

x/

. kH2kL2.0;t IL2
x/

sup
0�t;s�T

kU.t; s; � /k;

where k � k stands for a high-order weighted Sobolev norm (in x and v) which we will make precise later.
As noted in [Han-Kwan and Rousset 2016], this is reminiscent of (but different from) classical kinetic
averaging lemmas, as it loosely speaking involves the gain of one full derivative; we refer to Section 6 for
a thorough discussion.

2D. Content of the end of the paper. The paper is then organised as follows: the proofs of Corollaries 2.2
and 2.5 are provided at the end of Section 7. In Section 8, we check the general assumptions for the
Vlasov–Poisson and relativistic Vlasov–Maxwell equations, and discuss some extensions as well. As
already mentioned, Section 9 is devoted to the particular case of the transport/elliptic case, for which
Theorem 2.1 can be improved. We end the paper with the study of two examples that we cook up in order
to discuss the regularity assumptions of Theorem 2.1.

We will prove Theorem 2.1 when n is odd, of the form nD 2m� 1, and the higher regularity index n0

is even of the form n0 D 2.mCp/. The other cases follow by the same arguments. The requirement on n

and n0 is m> pC 2. The assumption (2-13) in this case is given by

@2.m�pCk/
x @˛x@

ˇ
vf0 2H0

r for all j˛jC jˇj D 2p� k; for all k D 0; : : : ; 2p: (2-16)

3. Local well-posedness

We prove in this section a basic local Sobolev well-posedness result for (2-1). We start by recalling useful
product estimates in weighted Sobolev spaces, taken from [Han-Kwan and Rousset 2016].

Lemma 3.1. Let s be a nonnegative integer. Consider a smooth nonnegative function � D �.v/ that
satisfies j@˛�j � C˛� for every multi-index ˛ such that j˛j � s:

� Consider two functions f D f .x; v/, g D g.x; v/; then we have for k � 1
2
s,

k�fgkH s
x;v
. kf k

W
k;1

x;v
k�gkH s

x;v
Ckgk

W
k;1

x;v
k�f kH s

x;v
: (3-1)

� Consider a function E DE.x/ and a function F.x; v/; then we have for any s0 > d ,

k�EFkH s
x;v
. kEk

H
s0
x
k�FkH s

x;v
CkEkH s

x
k�FkH s

x;v
: (3-2)

� Consider a vector field E DE.x/, a function A.v/, and a function f D f .x; v/; then we have for any
s0 > 1C d and for any multi-indices ˛, ˇ such that j˛jC jˇj D s � 1,

k�Œ@˛x@
ˇ
v ;A.v/E.x/ � rv �f kL2

x;v
. kAkW s;1

v
.kEk

H
s0
x
k�f kH s

x;v
CkEkH s

x
k�f kH s

x;v
/: (3-3)

� Consider two functions f D f .x; v/, gDg.x; v/; then we have for multi-indices ˛; ˇ with j˛jCjˇj � s,

k@˛x;vf @
ˇ
x;vgkL2 .

 1

�
f


L1x;v
k�gkH s

x;v
Ck�gkL1x;v

 1

�
f


H s
x;v

: (3-4)
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Proposition 3.2. Let n > d C 1 and r > r0C
1
2
d . Assume that f0 2 Hn

r and Fj .0/ 2 H n
x . Then there

exists T > 0 such that there is a unique solution .f .t/;F.t// with initial data .f0;F.0// to (2-1) such
that f .t/ 2 C.0;T IHn

r / and Fj .t/ 2L1.0;T IH n
x /.

Proof of Proposition 3.2. The existence part follows from a standard iterative construction. We define
recursively a sequence of distribution functions .f.k//k2N, denoting by F.k/ the force field associated to
f.k/ and the initial condition .Fj .0//. Let us define

R0 WD kf0kHn
r
C

X̀
jD1

kFj .0/kH n
x
:

We set f.0/ WD f0 and assume that f.k/ is already constructed (with associated force field F.k/), and is
such that for some Tk > 0, we have f.k/ 2 C.0;Tk IHn

r /, and

kf.k/kL1.0;Tk IHn
r / � 2R0: (3-5)

We define f.kC1/ as the unique solution on Œ0;Tk/ to the equation

@tf.kC1/C a.v/ � rxf.kC1/CF.k/ � rvf.kC1/ D 0; f.kC1/jtD0 D f0; (3-6)

obtained by the method of characteristics.
Applying the operator @˛x@

ˇ
v to (3-6) for j˛jC jˇj � n yields

.@t C a.v/ � rxCF.k/ � rv/.@
˛
x@
ˇ
vf.kC1//C Œ@

˛
x@
ˇ
v ; a.v/ � rxCF.k/ � rv �f.kC1/ D 0:

We then take the L2 scalar product with .1C jvj2/r @˛x@
ˇ
vf.kC1/ and sum for all j˛j C jˇj � n. By

using (2-3), we haveX
j˛jCjˇj�n

Z ˇ̌
Œ@˛x@

ˇ
v ; a.v/ � rx �f.kC1/ @

˛
x@
ˇ
vf.kC1/

ˇ̌
.1Cjvj2/r dv dx � kf.kC1/k

2
Hn

r
:

Thanks to (2-6) and estimate (3-3) in Lemma 3.1 with sD n, �.v/D .1Cjvj2/
1
2

r and s0D n (recall that
n> d C 1/, we have for all j 2 f1; : : : ; `g,�Œ@˛x@ˇv ;Aj .v/F

j

.k/
.x/ � rv �f.kC1/


L2

x;v
. kFj

.k/
kH n

x
kf.kC1/kHn

r
:

Therefore by Cauchy–Schwarz, we getX
j˛jCjˇj�n

Z ˇ̌
Œ@˛x@

ˇ
v ;F.k/ � rv �f.kC1/ @

˛
x@
ˇ
vf.kC1/

ˇ̌
.1Cjvj2/r dv dx . kFj

.k/
kH n

x
kf.kC1/k

2
Hn

r
:

Recalling that rv �F D 0, we deduce that for all t 2 .0;Tk/,

d

dt
kf.kC1/.t/kHn

r
.
�

1C
X̀
jD1

kF
j

.k/
kH n

x

�
kf.kC1/.t/kHn

r

so that

kf.kC1/.t/kHn
r
. kf0kHn

r
exp

�
C

Z t

0

�
1C

X̀
jD1

kF
j

.k/
.s/kH n

x

�
ds

�
: (3-7)
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We set

m i ;.k/.t;x/D

Z
Rd

f.k/.t;x; v/  i.v/ dv;

and by Cauchy–Schwarz and (2-7), we get, for r 0 > 1
2
d such that r � r0C r 0, which is possible thanks to

the assumption r > r0C
1
2
d , that

km i ;.k/kL2.0;t IH n/ D

X
j˛j�n

�Z
Rd

@˛xf.k/ i dv

�2 1
2

L2.0;t IL1
x/

.
X
j˛j�n

�Z
Rd

j@˛xf.k/j
2.1Cjvj2/r0Cr 0 dv

��Z
Rd

j i j
2 dv

.1Cjvj2/r0Cr 0

� 1
2

L2.0;t IL1
x/

.
X
j˛j�n

�Z
Rd

j@˛xf.k/j
2.1Cjvj2/r0Cr 0 dv

��Z
Rd

dv

.1Cjvj2/r
0

� 1
2

L2.0;t IL1
x/

. kf.k/kL2.0;t IHn
r /
:

Therefore, by (2-9), denoting by C > 0 a generic constant that does not depend on t or k, we obtain

kf.kC1/.t/kHn
r

. kf0kHn
r

exp
�
C t CC

p
t
X̀
jD1

kF
j

.k/
kL2.0;t IH n

x /

�

. kf0kHn
r

exp
�
C t CC

p
t
X̀
jD1

�.j/n

�
t; .
p

tkm i ;.k/kL1.0;t IH
n
x //iD1;:::;r ;

X̀
jD1

kFj .0/kH n
x

��

. kf0kHn
r

exp
�
C t CC

p
t
X̀
jD1

�.j/n

�
t;
p

tkf.k/kL1.0;t IHn
r /;
X̀
jD1

kFj .0/kH n
x

��
:

We now observe that if we choose T > 0 small enough so that

R0 exp
�
C T CC

p
T
X̀
jD1

�.j/n .T; 2
p

T R0;R0/

�
< 2R0; (3-8)

and Tk � T, then,

kf.kC1/.t/kL1.0;T IHn
r / � 2R0: (3-9)

Therefore, by induction, we obtain that for all k 2 N, we have f.k/ 2 C.0;T IHn
r /, and

kf.k/kL1.0;T IHn
r / � 2R0: (3-10)

For k 2 N n f0g, we set hk WD f.kC1/�f.k/, which satisfies the equation

@thk C a.v/ � rxhk CF Œfk � � rvhk C .F Œf.k/��F Œf.k�1/�/ � rvfk D 0: (3-11)
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By weighted L2 estimates, proceeding as before, we get

d

dt
khk.t/k

2

H0
r

.
�

1C
X̀
jD1

kFj Œf.k/�kH n
x

�
khk.t/k

2

H0
r
Ckf.k/kHn

r

X̀
jD1

kFj Œf.k/��Fj Œf.k�1/�kL2
x
khk.t/kH0

r
:

Let t 2 .0;T /. Integrating in time, applying Cauchy–Schwarz and using the stability property (2-11) and
the uniform estimates (3-10) for .f.k//, we obtain

khkkL1.0;t IH0
r /

.
Z t

0

�
1C

X̀
jD1

kFj Œf.k/�kH n
x

�
khk.s/kH0

r
dsC

X̀
jD1

Z t

0

kFj Œf.k/��Fj Œf.k�1/�kL2
x

ds

.
p

t

�
.
p

t CkFj Œf.k/�kL2.0;t IH n
x /
/khkkL1.0;t IH0

r /
C

X̀
jD1

kFj Œf.k/��Fj Œf.k�1/�kL2.0;t IL2
x/

�

.
p

t

�
khkkL1.0;t IH0

r /
C
p

t

rX
iD1

�.j/]n

�
t;

�
p

t

Z .f.k/�f.k�1// i.v/ dv


L1.0;t IL2

x/

�
iD1;:::;r

��

.
p

t

�
khkkL1.0;t IH0

r /
C
p

t

rX
iD1

�.j/]n .t;
p

tkhk�1kL1.0;t IH0
r /
/

�
:

We can thus pick a small enough time T 0 > 0, independently of k such that for all k 2 N n f0g,

kf.kC1/�f.k/kL1.0;T 0IH0
r /
�

1
2
kf.k/�f.k�1/kL1.0;T 0IH0

r /
:

We can therefore pass to the limit in (3-6) and find that the limit .f;F Œf �/ satisfies (in the sense of
distributions)

@tf C a.v/ � rxf CF Œf � � rvf D 0; (3-12)

with the initial conditions .f0;F
j .0//. We deduce from (3-12) that f 2 C 0.0;T 0IHn

r / and @tf 2

L2.0;T 0IHn�1
r�1

/. Also, thanks to (2-10), we deduce Fj 2L1.0;T 0IH n
x /. That the equation is satisfied

in a classical way follows from the smoothness of .f;F Œf /�/. Uniqueness is also a consequence of the
contraction estimate. �

The main matter is now to obtain the higher regularity statement for the moments. To this end, we will
focus only on the task of obtaining a priori estimates for smooth solutions of (2-1); setting

M WD kf0kH2m�1
r

C

2pX
kD0

X
j˛jCjˇjD2p�k

k@2.m�pCk/
x @˛x@

ˇ
vf0kH0

r
C

X̀
jD1

kFj .0/k
H

2.mCp/
x

; (3-13)
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we look for some time T0 > 0 depending only on M such that given a smooth test function  2
L1.0;T0IW

2.mCp/;1
�r0

/, the following estimate holds:Z f  .v/ dv


L2.0;T0IH

2.mCp/
x /

� C ƒ.T0;M /; (3-14)

where ƒ is a polynomial function which is nondecreasing with respect to each of its arguments, once the
others are fixed nonnegative numbers. In what follows, the function ƒ may change from line to line but
will always refer to such a function.

Once a priori estimates such as (3-14) as are obtained, we apply them to the sequence of solutions
built in the iteration scheme proving the existence of solutions in the proof of Proposition 3.2. Passing to
the limit yields the higher regularity for the moments of the solution f .t/.

4. Differential operators

In this section, we introduce and study the second-order differential operators (with coefficients depending
on t and x) that we use in order to apply derivatives in x on the Vlasov equation (2-1).

The basic operators are defined in (4-3) and the definition of the coefficients is provided in Lemma 4.1.
By definition these operators involve only derivatives in x at initial time. The key algebraic result
reflecting the good commutation properties of these operators with the transport operator is stated in
Lemma 4.2.

The composition of these operators is then studied:

� In Lemma 4.4, it is shown that they are indeed well suited to study the regularity of moments, as
after integration in v, they act like derivations in x only (plus remainders that we can control). The
proof is quite technical as one needs to be careful of the limited available smoothness on the coefficients
of the differential operators. Note that in the statement, one does assume some (limited) higher-order
smoothness for the moments: this is in prevision of a forthcoming induction argument.

� In Lemmas 4.5 and 4.6, the equations satisfied by the functions obtained after composition of these
operators is established. This is where the key algebraic Lemma 4.2 appears to be crucial. Whereas the
formal computation is straightforward, here again, the proof appears to be quite technical in order to
justify that remainders are indeed well controlled. One also needs to be careful in order to get some
Sobolev regularity for the coefficients involved in the equations.

� As the systems of equations in Lemmas 4.5 and 4.6 are not closed, this invites one to study the system
satisfied by a larger set of appropriate functions; this is the purpose of Lemmas 4.7 and 4.8 (whose proof
is similar to that of Lemmas 4.5 and 4.6).

4A. Second-order operators. As in the Introduction, we set T WD @tCa.v/ �rxCF �rv as the transport
operator to ease readability.

Lemma 4.1. Let n> d C 1. Assume that .Fj / 2L2.0;T 0IH n
x / with norm bounded by ƒ.T 0;M /. There

is T 2 .0;T 0/ such that there exists a unique smooth solution .'i;j

k;l
;  

i;j

k;l
/i;j ;k;l2f1;:::;dg on Œ0;T � of the
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system8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

T 'i;j

k;l
D

X
k0

@vk0
a.v/k  

i;j

k0;l
C

X
k0

@vk0
a.v/k  

i;j

l;k0
�

X
k0;l 0;m

@vl 0
a.v/m '

i;j

k0;l 0
'

k0;m
k;l

C ık;j @xi
Fl C ık;i @xjFl C

X
l 0

'
i;j

k;l 0
@vl 0

Fl ;

T  i;j

k;l
D�

X
k0;l 0;m

@vl 0
a.v/m '

i;j

k0;l 0
 

k0;m
k;l
C'

i;j

k;l
@xk

Fk C

X
k0

 
i;j

k0;l
@vk0

Fk C

X
l 0

 
i;j

k;l 0
@vl 0

Fl ;

'
i;j

k;l
jtD0 D  

i;j

k;l
jtD0 D 0;

(4-1)

where ı denotes the Kronecker function and a.v/k and Fk stand for the k-th coordinates of a.v/ and F.
Moreover we have the following estimates:

sup
Œ0;T �

sup
i;j ;k;l

k.'
i;j

k;l
;  

i;j

k;l
/kW p;1

x;v
.ƒ.T;M / for all p < n� 1� 1

2
d;

sup
Œ0;T �

sup
i;j ;k;l

k.'
i;j

k;l
;  

i;j

k;l
/kHn�1

�Qr
.ƒ.T;M / for all Qr > 1

2
d:

(4-2)

We will not reproduce the proof of Lemma 4.1, since it follows, mutatis mutandis, that of Lemma 4.2 of
[Han-Kwan and Rousset 2016]: System (4-1) is solved as a semilinear system of coupled kinetic transport
equations. Note that we use the assumptions (2-3) on a and (2-6) on A to control the contribution of the
additional linear and semilinear terms that appear compared to Lemma 4.2 of [Han-Kwan and Rousset
2016].

We introduce now the second-order operators

Li;j WD @
2
xi ;xj

C

X
1�k;l�d

.'
i;j

k;l
@xk

@vl
C 

i;j

k;l
@2
vk ;vl

/ for all i; j 2 f1; : : : ; dg: (4-3)

We observe that by uniqueness of the solution of (4-1) and a symmetry argument, Li;j DLj ;i .
One of the interests of the operators Li;j comes from the following lemma.

Lemma 4.2. For all smooth functions f , we have the formula

Li;jT .f /D T Li;j .f /C

�
@2

xi ;xj
F C

X
k;l

'
i;j

k;l
@xk

@vl
F C 

i;j

k;l
@2
vk ;vl

F

�
� rvf

C

X
k;l

 
i;j

k;l
@2
vk ;vl

a.v/ � rxf C
X

k;l;m

@vl
a.v/m '

i;j

k;l
Lk;mf: (4-4)

Remark 4.3. Formula (4-4) can also be written in a more synthetic form:

Li;jT .f /D T Li;j .f /C .Li;j F / � rvf C .Li;j a/ � rxf C
X

k;l;m

@vl
a.v/m '

i;j

k;l
Lk;mf:
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Proof of Lemma 4.2. We have by direct computations

@2
xi xj

.T f /D T .@2
xi ;xj

f /C @2
xi ;xj

F � rvf C @xi
F � rv@xj f C @xjF � rv@xi

f;

'
i;j

k;l
@xk

@vl
.T f /D T .'i;j

k;l
@xk

@vl
f /� T .'i;j

k;l
/@xk

@vl
f

C'
i;j

k;l

�
@vl

a.v/ � rx@xk
f C @xk

F � rv@vl
f C @vl

F � rv@xk
f C @xk

@vl
F � rvf

�
;

 
i;j

k;l
@2
vk ;vl

.T f /D T . i;j

k;l
@2
vk ;vl

f /� T . i;j

k;l
/@2
vk ;vl

f

C 
i;j

k;l

�
@vl

a.v/ � rx@vk
f C @vk

a.v/ � rx@vl
f C @2

vk ;vl
a.v/ � rvf

C @vk
F � rv@vl

f C @vl
F � rv@vk

f C @2
vk ;vl

F � rvf
�
:

We can rewrite

'
i;j

k;l
@vl

a.v/ � rx@xk
f D '

i;j

k;l

X
m

@vl
a.v/m @xm

@xk
f

D '
i;j

k;l

X
m

@vl
a.v/m

�
Lk;mf �

X
k0;l 0

.'
k;m
k0;l 0

@xk0
@vl 0
C 

k;m
k0;l 0

@2
vk0 ;vl 0

/f

�
;

which gives

Li;jT .f /D T Li;j .f /C@xi xjF �rvf

C

X
k;l

�
'

i;j

k;l
@xk

@vl
F �rvfC 

i;j

k;l
@2
vk ;vl

F �rvfC 
i;j

k;l
@2
vk ;vl

a.v/�rxf
�

C

X
k;l;m

@vl
a.v/m'

i;j

k;l
Lk;mf

C

X
k;l

@xk
@vl
f

�
�T 'i;j

k;l
C

X
k0

@vk0
a.v/k 

i;j

k0;l
C

X
k0

@vk0
a.v/k 

i;j

l;k0

�

X
k0;l 0;m

@vl 0
a.v/m'

i;j

k0;l 0
'

k0;m
k;l
Cık;j @xi

FlCık;i @xjFlC

X
l 0

'
i;j

k;l 0
@vl 0

Fl

�

C

X
k;l

@2
vk ;vl

f

�
�T  i;j

k;l
�

X
k0;l 0;m

@vl 0
a.v/m'

i;j

k0;l 0
 

k0;m
k;l
C'

i;j

k;l
@xk

Fk

C

X
k0

 
i;j

k0;l
@vk0

FkC

X
l 0

 
i;j

k;l 0
@vl 0

Fl

�
:

We therefore deduce (4-4), because .'i;j

k;l
;  

i;j

k;l
/ solves (4-1). �

4B. Composition of the second-order operators. Relying on Lemma 4.2, we shall use the Li;j operators
in order to apply derivatives to the solution f of the Vlasov equation (2-1).

Set for I;J 2 f1; : : : ; dgk ,
LI;J

WDLi1;j1
� � �Lik ;jk

: (4-5)

Let us also introduce the following useful notation. Given I D .i1; : : : ; ik/ and J D .j1; : : : ; jk/, we set

˛.I;J / WD .i1; j1; : : : ; ik ; jk/; (4-6)
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and
@˛.I;J /x D @xi1

@xj1
� � � @xik

@xjk
: (4-7)

Note that by construction,
LI;J
jtD0 D @

˛.I;J /
x :

In what follows, f will systematically stand for the solution of (2-1), starting from f0 satisfying the
assumptions of Theorem 2.1.

4C. Moments in v. We study in this section the moments in v of the LI;J f . Until the end of the section,
the times T > 0 will be such that the solution to (2-1) satisfies

kf kL1.0;T IH2m�1
r / � 2R0;

thanks to Proposition 3.2.

Lemma 4.4. � Let k D 0; : : : ;p and I;J 2 f1; : : : ; dgmCk. Assume that the force field satisfies Fj 2

L2.0;T IH
2.mCk/�1
x / with norm bounded by ƒ.T;M /. Assume that for all nD 2m; : : : ; 2.mC k/� 1,

for all ' 2L1.0;T IW dC2Cn�2m;1
�r0

/ such that k'k
L1.0;T IWdC2Cn�2m;1

�r0
/
�ƒ.T;M /, and all j˛j D n,

we have Z
Rd

.@˛xf / '.t;x; v/ dv


L2.0;T IL2

x/

�ƒ.T;M /: (4-8)

Let  2L1.0;T IW dC2C2k;1
�r0

/ satisfy k k
L1.0;T IWdC2C2k;1

�r0
/
�ƒ.T;M /. We haveZ

Rd

LI;J f  .t;x; v/ dv D

Z
Rd

@˛.I;J /x f  .t;x; v/ dvCRI;J ; ; (4-9)

where RI;J ; is a remainder satisfying the estimate

kRI;J ; kL2.0;T IL2
x/
�ƒ.T;M /: (4-10)

� Let kD0; : : : ;p�1 and I;J 2f1; : : : ; dgmCk. Assume the force field satisfies Fj 2L2.0;T IH
2.mCk/
x /

with norm bounded by ƒ.T;M /. Assume that for all nD 2m; : : : ; 2.mC k/, for all j˛j D n, and for all
' 2L1.0;T IW dC2Cn�2m;1

�r0
/ such that k'k

L1.0;T IWdC2Cn�2m;1
�r0

/
�ƒ.T;M /, we haveZ

Rd

.@˛xf / '.t;x; v/ dv


L2.0;T IL2

x/

�ƒ.T;M /: (4-11)

Let  2 L1.0;T IW dC3C2k;1
�r0

/ satisfy k k
L1.0;T IWdC3C2k;1

�r0
/
� ƒ.T;M /. Let @ D @xi

or @vi
for

some i 2 f1; : : : ; dg. We haveZ
Rd

@LI;J f  .t;x; v/ dv D

Z
Rd

@˛.I;J /x @f  .t;x; v/ dvCRI;J ; ; (4-12)

where RI;J ; is a remainder satisfying the estimate

kRI;J ; kL2.0;T IL2
x/
�ƒ.T;M /: (4-13)
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This result will allow us to set up an induction argument: indeed, with the assumption (4-8) (resp. (4-11))
that corresponds to regularity of the moments up to order 2.mC k/� 1 (resp. 2.mC k/), this will imply
that controlling the moments of the .LI;J f / gives information on the regularity of the moments up to
order 2.mC k/ (resp. 2.mC k/C 1).

Proof of Lemma 4.4. Let us focus only on the first item (the proof of the second one is completely similar).
Let  2 L1.0;T IW dC2C2k;1

�r0
/. The beginning of the proof closely follows that of Lemma 4.3 of

[Han-Kwan and Rousset 2016]. At first, we can expand fI;J DLI;J f in a more tractable form. Let us
set for readability

U WD .'
i˛;jˇ
k0;l

;  
i˛;jˇ
k0;l

/1�k0;l�d;1�˛;ˇ�mCk :

Then, by induction, we obtain

fI;J D @
˛.I;J /
x f C

2.mCk/�2X
sD0

X
e; ˛;k0;:::;ks

Pk0
s;e;˛.U /Pk1

s;e;˛.@U / � � �P
ks
s;e;˛.@

sU / @e
v@
˛f

DW @˛.I;J /x f C

2.mCk/�2X
sD0

X
e; ˛;k0;:::;ks

Rk0;:::;ks
s;e;˛ ; (4-14)

where the sum is taken on indices such that

jej D 1; j˛j D 2.mC k/� 1� s;

k0C k1C � � �C ks �mC k; k0 � 1; k1C 2k2C � � �C sks D s;
(4-15)

and for all 0� p � s, we have P
kp

s;e;˛.X / is a polynomial of degree smaller than kp (we denote by @kU

the vector made of all the partial derivatives of length k of all components of U ). We can set

RI;J ; D

Z
Rd

 . � ; v/

2.mCk/�2X
sD0

X
e; ˛;k0;:::;ks

Rk0;:::;ks
s;e;˛ dv;

so that we have to estimate
R

Rd  Rk0;:::;ks
s;e;˛ dv. All the following estimates are uniform in time for

t 2 Œ0;T � and we shall dismiss the time parameter to ease readability.
We begin by estimating the terms for which s � 2kC 1. Note that for all these terms the total number

of derivatives applied to f is at most 2m� 1.

� When s < 2.mC k/� 1
2
d � 2, we can use estimate (4-2) in Lemma 4.1 to obtain

kPk0
s;e;˛.U /Pk1

s;e;˛.@U / � � �P
ks
s;e;˛.@

sU /kL1x;v �ƒ.T;M /;

and hence using that

sup
v
j.1Cjvj2/�

1
2

r0 . � ; v/j �ƒ.T;M /;
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we obtain by Cauchy–Schwarz that since r > r0C r 0 for some r 0 > 1
2
d , we haveZ Rk0;:::;ks

e;s;˛ dv


L2

x

�
k.1Cjvj2/� 1

2
.r0�r 0/ kL2

v
k.1Cjvj2/

1
2
.r0Cr 0/ @e

v@
˛f kL2

v


�ƒ.T;M /

�Z
Rd

dv

.1Cjvj2/r
0

�1
2

kf kH2m�1
r

�ƒ.T;M /:

� Let us now consider s � 2.mCk/�2� 1
2
d . We start with the case where in the sequence .k1; : : : ; ks/,

the largest index l such that kl ¤ 0 and kp = 0 for every p > l is such that l > 1
2
s. In this case, since

lkl � s has to hold, we necessarily have kl D 1. Moreover, for the indices p < l such that kp ¤ 0,
we must have p � pkp <

1
2
s. Thus, we can use estimate (4-2) in Lemma 4.1 to bound k@pU kL1x;v

provided 1
2
s � 2.mCk/� 1

2
d �2. Since s � 2.mCk/�2, this is satisfied thanks to the assumption that

2m> 2C d . We thus obtainZ Rk0;:::;ks
e;s;˛ dv


L2

x

�ƒ.T;M /

Z  @lU @e
v@
˛f dv


L2

x

:

Next, we can use the fact thatZ  @lU @e
v@
˛f


L2

x

.ƒ.T;M /
k.1Cjvj2/� 1

2
r @lU kL2

v
k.1Cjvj2/

1
2
.r0Cr/ @e

v@
˛f kL2

v


L2

x

.ƒ.T;M /kU kH2m�2
�r

sup
x
k.1Cjvj2/

1
2

r @e
v@
˛f kL2

v
:

By the Sobolev embedding in x, we have

sup
x
k.1Cjvj2/

1
2

r @e
v@
˛f kL2

v
. kf kH2m�1

r

as soon as 2m�1> 1Cj˛jC 1
2
d D 1C2.mCk/�1� sC 1

2
d , which is equivalent to s > 1C2kC 1

2
d .

Since we are in the case where s � 2.mCk/�2� 1
2
d , the condition is matched, thanks to the assumption

2m> 3C d . Consequently, by using estimate (4-2) in Lemma 4.1, we obtain again thatZ Rk0;:::;ks
e;s;˛ dv


L2

x

.ƒ.T;M /:

Finally, it remains to handle the case where kl D 0 for every l > 1
2
s. As above, we necessarily have

1
2
s < 2.mC k/� 1

2
d � 2 and hence by using again estimate (4-2) in Lemma 4.1, we find

k@lU kL1x;v �ƒ.T;M /; l � 1
2
s:

We deduce Z Rk0;:::;ks
e;s;˛ dv


L2

x

�ƒ.T;M /kf kH2m�1
r

�ƒ.T;M /:

It remains to treat the cases corresponding to s � 2k; that is to say, Rk0;:::;ks
e;s;˛ contains the maximal

number of derivatives applied to f . This means that j˛j D 2m� 1; : : : ; 2.mC k/� 1 so that at least
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2m derivatives of f are involved. We define for readability the associated coefficient

� WD  Pk0
s;e;˛.U /Pk1

s;e;˛.@U / � � �P
ks
s;e;˛.@

sU /;

and we have to study the L2
x norm of

R
� @e

v@
˛f dv.

First, assume that j˛j � 2.mC k/ � 2 (which corresponds to s � 1). We note that for all s0 D

0; : : : ; 2.mC k/� 1� j˛j, we have by Lemma 4.1 that

k@s0U k
W

k;1
x;v
�ƒ.T;M / for all k < 2.mC k/� 2� 1

2
d � s0:

Since s0 � 2.mCk/� 1� j˛j, we have 2.mCk/� 2� 1
2
d � s0 � j˛j � 1

2
d � 1> d C 2Cj˛jC 1� 2m

because 2m> 3
2
d C 4. Therefore

k@s0U k
W

dC2Cj˛jC1�2m;1
x;v

�ƒ.T;M /;

k�kWdC2Cj˛jC1�2m;1
�r0

�ƒ.T;M /:

We can thus use the assumption (4-8) to obtain the boundZ � @e
v@
˛f dv


L2

x

�ƒ.T;M /: (4-16)

Assume finally that j˛jD 2.mCk/�1 (which corresponds to sD 0); that is to say, 2.mCk/ derivatives
of f are involved. We can write, by integration by parts in v (relying on the fast decay of f and its
derivatives at infinity) Z

Rd

� @e
v@
˛f dv D�

Z
Rd

@e
v� @

˛f dv:

We have
k@e
v�kWdC1C2k;1

�r0

�ƒ.T;M /;

and we can use again (4-8) to obtainZ @e
v� @

˛f dv


L2

x

�ƒ.T;M /:

In summary, we have proved
kRI;J ; kL2

x
�ƒ.T;M /: �

4D. The equation satisfied by LI;J f . Using the algebraic identities of Lemma 4.2, we obtain:

Lemma 4.5. For all k D 0; : : : ;p, the following holds. Assume that .Fj / 2L2.0;T IH
2.mCk/�1
x / with

norm bounded by ƒ.T;M /. For all I;J 2 f1; : : : ; dgmCk, we have

T .LI;J f /C @˛.I;J /x F � rvf D

mCkX
rDm�k

X
K ;L2f1;:::;dgr

X
j˛jCjˇjDmCk�r


I;J
K ;L;˛;ˇ

LK ;L @˛x@
ˇ
vf CRI;J ;

(4-17)
where

� 
I;J
K ;L;˛;ˇ

are coefficients satisfying

k
I;J
K ;L;˛;ˇ

k
L2.0;T IW

dC2;1
x;v /

.ƒ.T;M /; (4-18)
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� RI;J is a remainder satisfying

kRI;J kL1.0;T IH0
Qr
/ .ƒ.T;M / for all Qr � r � 1

2
d:

A version of this lemma was proved in [Han-Kwan and Rousset 2016] in the case k D 0.
Lemma 4.5 will be useful in the induction argument to treat the case of even integers. For odd integers,

we have the following result.

Lemma 4.6. For all k D 0; : : : ;p�1, the following holds. Assume that .Fj / 2L2.0;T IH
2.mCk/
x / with

norm bounded by ƒ.T;M /. For all I;J 2 f1; : : : ; dgmCk , and i D 1; : : : ; d , we have

T .LI;J @xi
f /C @xi

@˛.I;J /x F � rvf D

mCkX
rDm�k�1

X
K ;L2f1;:::;dgr

X
j˛jCjˇjDmCkC1�r


xi ;I;J

K ;L;˛;ˇ
LK ;L @˛x@

ˇ
vf CRxi ;I;J ; (4-19)

T .LI;J @vi
f /C @vi

@˛.I;J /x F � rvf D

mCkX
rDm�k�1

X
K ;L2f1;:::;dgr

X
j˛jCjˇjDmCkC1�r


vi ;I;J

K ;L;˛;ˇ
LK ;L @˛x@

ˇ
vf CRvi ;I;J ; (4-20)

where

� 
xi I;J

K ;L;˛;ˇ
,  vi I;J

K ;L;˛;ˇ
are coefficients satisfying

k
xi ;I;J

K ;L;˛;ˇ
; 
vi ;I;J

K ;L;˛;ˇ
k

L2.0;T IW
dC2;1

x;v /
.ƒ.T;M /; (4-21)

� Rxi ;I;J , Rvi ;I;J are remainders satisfying

kRxi ;I;J kL1.0;T IH0
Qr
/CkRvi ;I;J kL1.0;T IH0

Qr
/ .ƒ.T;M / for all Qr � r � 1

2
d:

4E. The equation satisfied by LI;J @˛x@
ˇ
v f . Lemma 4.5 invites us to search for a closed equation on

LI;J @˛x@
ˇ
vf for k 2 f0; : : : ;pg, r 2 fm�k; : : : ;mCkg, I;J 2 f1; : : : ; dgr and all j˛jCjˇjDmCk�r

(and similarly for Lemma 4.6). This is the purpose of the next two lemmas.

Lemma 4.7. Let k D 0; : : : ;p. Let r Dm� k; : : : ;mC k. Assume that .Fj / 2 L2.0;T IH
2.mCk/�1
x /

with norm bounded by ƒ.T;M /. For all I;J 2 f1; : : : ; dgr and all j˛jC jˇj DmC k � r , we have

T .LI;J @˛x@
ˇ
vf /C @

˛
x@
ˇ
v@
˛.I;J /
x F � rvf D

rX
r 0Dm�k

X
K ;L2f1;:::;dgr

0

X
j˛0jCjˇ0jDmCk�r 0


I;J ;˛;ˇ

K ;L;˛0;ˇ0
LK ;L @˛

0

x @
ˇ0

v f CRI;J ;˛;ˇ; (4-22)

where

� 
I;J ;˛;ˇ

K ;L;˛0;ˇ0
are coefficients satisfying

k
xi ;I;J

K ;L;˛;ˇ
; 
vi ;I;J

K ;L;˛;ˇ
k

L2.0;T IW
dC2;1

x;v /
.ƒ.T;M /; (4-23)

� RI;J ;˛;ˇ is a remainder satisfying

kRI;J ;˛;ˇkL1.0;T IH0
Qr
/ .ƒ.T;M / for all Qr � r � 1

2
d:
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Lemma 4.8. Let kD0; : : : ;p�1. Let r Dm�k�1; : : : ;mCk. Assume that .Fj /2L2.0;T IH
2.mCk/
x /

with norm bounded by ƒ.T;M /. For all I;J 2 f1; : : : ; dgr , and all j˛jC jˇj DmCkC 1� r , we have

T .LI;J @˛x@
ˇ
vf /C @

˛
x@
ˇ
v@
˛.I;J /
x F � rvf

D

rX
r 0Dm�k�1

X
K ;L2f1;:::;dgr

0

X
j˛0jCjˇ0jDmCkC1�r 0


I;J ;˛;ˇ

K ;L;˛0;ˇ0
LK ;L @˛

0

x @
ˇ0

v f CRI;J ;˛;ˇ; (4-24)

where

� 
I;J ;˛;ˇ

K ;L;˛0;ˇ0
are coefficients satisfying

k
xi ;I;J

K ;L;˛;ˇ
; 
vi ;I;J

K ;L;˛;ˇ
k

L2.0;T IW
dC2;1

x;v /
.ƒ.T;M /; (4-25)

� RI;J ;˛;ˇ is a remainder satisfying

kRI;J ;˛;ˇkL1.0;T IH0
Qr
/ .ƒ.T;M / for all Qr � r � 1

2
d:

We observe that as wanted, Lemmas 4.7 and 4.8 provide closed systems of equations.

To conclude this section, we shall give the proofs of Lemmas 4.5 and 4.7 (the proofs of the remaining
Lemmas 4.6 and 4.8 being very similar).

4F. Proofs of Lemmas 4.5 and 4.7.

Proof of Lemma 4.5. Let Qr < r � 1
2
d . Since r > d , we can assume, without loss of generality, that

Qr > 1
2
d . We can write, by an induction argument relying on Lemma 4.2, that

T .LI;J f /D FI;J ;

with the source term FI;J given by FI;J D�
P4

iD1 Fi , where

F1 D

mCk�1X
`D1

Li1;j1
� � �LimCk�`;jmCk�`

�
�
.@2

ximCk�`C1
;xjmCk�`C1

F / � rvLimCk�`C2;jmCk�`C2
� � �LimCk ;jmCk

f
�
; (4-26)

F2 D

mCk�1X
`D1

Li1;j1
� � �LimCk�`;jmCk�`

�

��X
k;l

'
imCk�`C1;jmCk�`C1

k;l
@ximCk�`C1

@vjmCk�`C1
F

C 
imCk�`C1;jmCk�`C1

k;l
@2
vimCk�`C1

;vjmCk�`C1
F

�
� rvLimCk�`C2;jmCk�`C2

� � �LimCk ;jmCk
f

�
; (4-27)

F3 D

mCk�1X
`D1

Li1;j1
� � �LimCk�`;jmCk�`

�

��X
k;l

 
imCk�`C1;jmCk�`C1

k;l
@2
vimCk�`C1

;vjmCk�`C1
a

�
�rxLimCk�`C2;jmCk�`C2

� � �LimCk ;jmCk
f

�
; (4-28)
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F4 D

mCk�1X
`D1

Li1;j1
� � �LimCk�`;jmCk�`

�

X
k0;l 0;m0

@vl 0
a.v/m0 '

imCk�`C1;jmCk�`C1

k0;l 0
Lk0;m0LimCk�`C2;jmCk�`C2

� � �LimCk ;jmCk
f: (4-29)

We shall focus on the contribution of F1. We have to estimate terms of the form

F1;` DLmCk�`G`; G` D @
2E � rvL

`�1; (4-30)

where we use the notation Ln for the composition of n operators of type Li;j (the exact combination of
the operators involved in the composition does not matter here). Note that as in (4-14), we can write Ln

in the form

Ln
D @˛n

x C

2n�2X
sD0

X
e; ˛;k0;:::;ks

Pk0
s;e;˛.U /Pk1

s;e;˛.@U / � � �P
ks
s;e;˛.@

sU / @e
v@
˛; (4-31)

where for all 0� p � s, we have P
kp

s;e;˛.X / is a polynomial of degree smaller than kp , the multi-index ˛n

has length 2n and the sum is taken on indices such that

jej D 1; j˛j D 2n� 1� s; k0C k1C � � �C ks � n; k0 � 1; k1C 2k2C � � �C sks D s: (4-32)

Let us first establish a general estimate, adapted from [Han-Kwan and Rousset 2016]. We set for any
function G.x; v/,

Jp.G/.x; v/D
X

s; ˇ;K2E

Jp;s;ˇ;K .G/; (4-33)

where K D .k0; : : : ; ks/ and

Jp;s;ˇ;K .G/.x; v/D P
k0

s;ˇ
.U /P

k1

s;ˇ
.@U / � � �P

ks

s;ˇ
.@sU / @ˇG; (4-34)

where for all 0� r � s, we have P
kr

s;ˇ
.X / is a polynomial of degree smaller than kr and the sum is taken

over indices belonging to the set E defined by

jˇj D p� s; k0C k1C � � �C ks �
1
2
p; k1C 2k2C � � �C sks D s; 0� s � p� 2: (4-35)

Lemma 4.9. For 2.mC k/� 1 � p � 1, 2m > d C 3, Qr > 1
2
d and s, p, K satisfying (4-35), we have

the estimate
kJp.G/kH0

Qr
�ƒ.T;M /

�
kGkHp

Qr
C

X
l�2.mCk/� 1

2
d�2

lCj˛j�p; j˛j�2

k@lU @˛GkH0
Qr

�
: (4-36)

Proof of Lemma 4.9. For the terms in the sum such that s < 2.mCk/� 1
2
d �2, we can use estimate (4-2)

in Lemma 4.1 to obtain
kJp;s;ˇ;K .G/kH0

Qr
�ƒ.T;M /kGkHp

Qr
:

When s � 2.mC k/� 1
2
d � 2, we first consider the terms for which in the sequence .k1; : : : ; ks/ the

largest index l for which kl ¤ 0 is such that l < 2.mCk/� 1
2
d � 2. Then again thanks to estimate (4-2)
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in Lemma 4.1, we obtain
kJp;s;ˇ;K .G/kH0

Qr
�ƒ.T;M /kGkHp

Qr
:

When l � 2.mCk/� 1
2
d �2, we first observe that we necessarily have kl D 1. Indeed if kl � 2, because

of (4-35), we must have l � 1
2
s. This is possible only if 2.mCk/� 1

2
d �2� 1

2
p� 2� 1

2
.2.mCk/�3/,

which corresponds to mCk � 1
2
dC1, and hence this is impossible. Consequently kl D 1. Moreover, we

note that for the other indices Ql for which kQl ¤ 0, because of (4-35), we must have QlkQl � s� lkl , so that

Ql � s� l � s� 2.mC k/C 1
2
d C 2� 1

2
d � 1;

and we observe that 1
2
d�1< 2m� 1

2
d�2. Consequently, by another use of estimate (4-2) in Lemma 4.1,

we obtain
kJp;s;ˇ;K .G/kH0

Qr
�ƒ.T;M /

X
l�2.mCk/� 1

2
d�2

lCj˛j�p; j˛j�2

k@lU @˛GkH0
Qr
:

The fact that j˛j � 2 comes from (4-35). �

We shall now estimate F1;`. Looking at the expansion of LmCk�` given by (4-31), we have to estimate
terms of the form Jp.G`/ with p � 2.mC k � `/. Using (4-31), we decompose G` as

G` D @
2F � rvL

`�1f D @2F � rv.H`;CCH`;�/DWG`;CCG`;�;

where:

� In H`C, we gather all terms of the form (4-34), with G D f , such that 2kC 1C jˇj � 2`. These
terms may contribute to terms with at least 2m derivatives of f .

� On the other hand in H`;�, the terms that arise correspond to 2kC 1Cjˇj< 2`, which involve at
most 2m� 1 derivatives of f .

We first focus on the contribution of G`;�; we define

F1;`;� WDLmCk�`G`;�:

Let us start with the case `� 1
2
.mCk/. We can use the decomposition (4-31), which means that we have

to estimate terms of the form Jp.G`;�/ with p�2.mCk�`/�2.mCk/�1, and apply Lemma 4.9 to get

kF1;`;�kL2.0;T IH0
Qr
/

�ƒ.T;M /

�
kG`;�kL2.0;T IH2.mCk�`/

Qr
/
C

X
l�2.mCk/� 1

2
d�2

lCj˛j�2.mCk�`/; j˛j�2

k@lU @˛G`;�kL2.0;T IH0
Qr
/

�
: (4-37)

We observe that in the right-hand side of (4-37), we have l � 2.mCk�`/�2�mCk�2; consequently,
since 2m� 1> d � 1, we have l < 2.mC k/� 1

2
d � 2, and hence we can estimate k@lU kL1 by using

estimate (4-2) in Lemma 4.1. This yields

kF1;`;�kL2.0;T IH0
Qr
/ �ƒ.T;M /kG`;�kL1.0;T IH2.mCk�`/

Qr
/
; `� 1

2
.mC k/:
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Then we use estimate (3-2) in Lemma 3.1 with s D 2.mC k � `/ and s0 D d C 1, and the definition of
G`;� to estimate kG`;�kH2.mCk�`/

Qr

. Since dC2< 2m�1 and 2.mCk�`/C2� 2.mCk/�1 (because

`� 1
2
.mC k/� 2), we obtain

kF1;`;�kL2.0;T IH0
Qr
/�ƒ.T;M /

�
sup

j

kFj
kL2.0;T IH dC1/krvH`;�kL1.0;T IH2.mCk�`/

Qr
/

Csup
j

kFj
kL2.0;T IH 2.mCk�`/C2/krvH`;�kL1.0;T IH2.mCk�`/

Qr
/

�
�ƒ.T;M /sup

j

kFj
kL2.0;T IH 2.mCk/�1/krvH`;�kL1.0;T IH2.mCk�`/

Qr
/
: (4-38)

By using the regularity assumption on Fj, this yields

kF1;`;�kL2.0;T IH0
Qr
/ �ƒ.T;M /krvH`;�kL1.0;T IH2.mCk�`/

Qr
/
:

To estimate the above right-hand side, we need to estimate @x;vH`;� with j j � 2.mC k � `/C 1.
Recalling the definition of H`;�, by taking derivatives using the expression (4-31), we see that we have to
estimate terms under the form Jp.f / with p � 2m� 1. Using Lemma 4.9 one more time, we thus obtain

kF1;`;�kL2.0;T IH0
Qr
/ �ƒ.T;M /

�
kf kL1.0;T IH2m�1

Qr
/C

X
l�2.mCk/� 1

2
d�2

lCj˛j�2m�1; j˛j�2

k@lU @˛f kL1.0;T IH0
Qr
/

�
:

To estimate the right-hand side, we argue as follows. Let r 0 > 1
2
d be such that Qr C r 0 � r . Since j˛j � 2

and j˛j�2C l � 2m�3, we can use estimate (3-4) in Lemma 3.1 (taking �.v/D .1Cjvj2/
1
2

r 0) to obtain

k@lU.1Cjvj2/
1
2
Qr @˛f kL2

x;v
. kU kH2m�3

�r 0
k.1Cjvj2/r @2f kL1 CkU kL1kf kH2m�1

r
: (4-39)

By using again estimate (4-2) in Lemma 4.1 and the Sobolev embedding, we finally obtain

kF1;`;�kL2.0;T IH0
Qr
/ �ƒ.T;M /kf kL1.0;T IH2m�1

r / �ƒ.T;M /; `� 1
2
.mC k/: (4-40)

It remains to handle the case `� 1
2
.mC k/. Note that necessarily, for these cases to be meaningful,

we must have 2k C 1 < 2`. Assume first ` � 2. We obtain again (4-37). We first need to estimate
k@2F � rvH`;�kL2.0;T IH2.mCk�`/

Qr
/
. We thus have to study

k@ˇ@2F � rv@
H`;�kL2.0;T IH0

Qr
/;

with jˇjCj j � 2.mCk�`/. Since `� 2, we have jˇjC2� 2.mCk�1/. If jˇjC2< 2.mCk/�1� 1
2
d ,

then we get, by the Sobolev embedding, the bound

k@ˇ@2F � rv@
H`;�kL2.0;T IH0

Qr
/ � sup

j

k@ˇ@2Fj
kL2.0;T IL1x /krv@

H`;�kL2.0;T IH0
Qr
/

� sup
j

kFj
k

L2.0;T IH
2.mCk/�1
x /

kf kL2.0;T IH2m�1
Qr

/

�ƒ.T;M /;
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recalling the definition of H`;�. If jˇj � 2.mCk/�3� 1
2
d , then j j � 2.mCk�`/�2.mCk/C3C 1

2
d

and thus the term rv@H`;� involves at most 1
2
d C 2 derivatives. Since 2m� 1> 3

2
d C 2, we have

k@ˇ@2F � rv@
H`;�kL2.0;T IH0

Qr
/ � sup

j

k@ˇ@2Fj
kL2.0;T IL2

x/
kH`;�kL2.0;T IWd=2C2;1

Qr
/

� sup
j

kFj
k

L2.0;T IH
2.mCk/�1
x

kf kL2.0;T IH2m�1
r /

�ƒ.T;M /:

We also have to estimate terms in (4-37) of the form

k@lU @ˇ@2F @rvH`;�kH0
Qr
;

with l � 2.mCk/� 1
2
d�2 and lCjˇjCj j� 2.mCk�`/. Note that this implies jˇj� 2.mCk�`/�l �

1
2
dC2�2`� 1

2
d since we have `� 1. In particular this yields jˇjC2< 2m�1� 1

2
d since 2m> 3C 1

2
d ,

and thus by using the Sobolev embedding and (2-9), we obtain

k@lU @ˇ@2F @rvH`;�kH0
Qr
. sup

j

kFj
kH 2m�1

x
k@lU @rvH`;�kH0

Qr

. .kf kH2m�1
r

C sup
j

kFj .0/kH 2m�1
x

/k@lU @rvH`;�kH0
Qr

�ƒ.T;M /k@lU @rvH`;�kH0
Qr
:

Consequently, it remains to estimate k@lU @rvH`;�kH0
Qr

for l � 2.mC k/ � 1
2
d � 2 and l C j j �

2.mCk�`/. By using again (4-31) and the definition of H`;�, we can expand @rvH`;� as terms of the
form Jp.f /, with p� 2.`�k/Cj j�1. Since we have 2.`�k/Cj j�1� 1C 1

2
d < 2.mCk/� 1

2
d�2,

we can use estimate (4-2) in Lemma 4.1 again to estimate all the terms in the expression of Jp.f /

involving U and its derivatives in L1. This yields

k@lU @rvH`;�kH0
Qr
�ƒ.T;M /

X
Q

k@lU @ Qf kH0
Qr
;

with j Q j � j jC 2.`� k/� 1. Consequently, arguing as for (4-39), we obtain

k@lU @rvH`;�kH0
Qr
�ƒ.T;M /

�
kU kL1kf kH2m�1

r
Ck.1Cjvj2/rf kL1x;vkU kH2m�1

�r 0

�
;

where we recall r 0 > 1
2
d and we conclude finally by invoking estimate (4-2) in Lemma 4.1 and the

Sobolev embedding that

kF1;`;�kL2.0;T IH0
Qr
/ �ƒ.T;M /; 2� `� 1

2
.mC k/: (4-41)

For the case `D 1 to be meaningful, k must be equal to 0. We set aside the term @
˛.I;J /
x F � rvf , which

appears in the formula (4-17), and we thus have to study the term

Li1;j1
� � �Lim�1;jm�1

.@2
xim ;xjm

F � rvf /� @
˛.I;J /
x F � rvf:
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We argue exactly as before to obtain a bound in L2.0;T IH0
Qr
/ by ƒ.T;M / (note indeed that at most

2m� 1 derivatives of f and F are involved). Gathering all pieces together, we have thus proven that

kF1;`;�kL2.0;T IH0
Qr
/ �ƒ.T;M /: (4-42)

Let us now treat the contribution of G`;C, which will give rise to terms involving 2m up to 2.mC k/

derivatives of f . Let j 2 f0; : : : ; 2kg. Let us describe the form of the terms involving derivatives of
order 2mC j of f . We note that 2mC j � 1� 2m� 1>mCp� 1�mCk � 1. This means that such
terms are necessarily of the form�

@˛
0

x @ˇ
0

v Li1;j1
� � �Lik ;jk

@˛
k

x @ˇ
k

v � � �LimCj�k ;jmCj�k
@˛

mCj�k

x @ˇ
mCj�k

v

�
f; (4-43)

with
mCj�kX

kD0

j˛k
jC jˇk

j D 2k � j ;

mCj�kX
kD0

jˇk
j ¤ 0:

In order to have exactly 2mC j derivatives of f , this expression can be rewritten as LK ;L @˛x@
ˇ
vf , where

jKj D jLj D mC j � k and j˛j C jˇj D 2k � j, jˇj � 1. Indeed if derivatives fall on a coefficient of
one of the Lik ;jk

, then there are less than 2mC j derivatives of f .
We denote by  I;J ;1

K ;L;˛;ˇ
the coefficient associated to such terms. Note that for j j � 2k � j � 1,

we have @x@2F i 2 L2.0;T IH
2mCj�2
x /. Since we have 2m > 3

2
d C 4, we can bound this term in

L2.0;T IW
dC2;1

x / by the Sobolev embedding. Likewise, for j j � 2k�j �1, since 2mCj �1� 1
2
d >

d C 2 we have @x;vU 2L1.0;T IW
dC2;1

x;v /. All in all, we deduce

k
I;J ;1
K ;L;˛;ˇ

k
L2.0;T IW

dC2;1
x;v /

�ƒ.T;M /:

It remains to treat the other terms that all involve at most 2m�1 derivatives on f . If k � 1, we set aside the
term @

˛.I;J /
x F � rvf in (4-17), which corresponds to the case `D 1 treated above (relevant when k D 0).

The other terms can be considered as remainders that are uniformly bounded in L2.0;T IH0
Qr
/, since

at most 2m� 1 derivatives are involved on f and at most 2.mC k/� 1 derivatives are involved on F ;
these terms can be treated exactly as we treated the remainders in G`;�.

The treatment of F2;F3;F4 gives rise to similar terms and we omit it. �

Proof of Lemma 4.7. The proof is similar to the previous one. We shall only explain why the terms
involving at least 2m derivatives of f are indeed of the form appearing in (4-22).

Let k D 0; : : : ;p � 1, and r D mC j for j D �k � 1; : : : ; k. We look for the terms involving
2mC l derivatives of f for l D 0; : : : ; k C 1C j. Among the operators in LI;J there are exactly
2mC l � .mC kC 1� r/D 2mC j C l � k � 1 derivatives to be applied on f . Since m> p � kC 1,
we have 2mC j C l �k � 1>mC j. This means that these derivatives must be of the form LK ;L @


x@
ı
v ,

with jKj D jLj D mC l � k � 1 and j j C jıj D j � l C k C 1 (up to commutations between the
differential operators as in (4-43), which is treated as in the previous proof). In the end, the terms
involving 2mC l derivatives of f are thus necessarily of the form LK ;L @


x@
ı
vf , with

jKj D jLj DmC l � k � 1; j jC jıj D 2kC 2� l;

as appearing in (4-22). �
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Remark 4.10. An inspection of the proof reveals that the uniform regularity of the coefficients in (4-18),
(4-21), (4-23), (4-25) can be improved to L2.0;T IW

p;1
x;v / for all p < 2m� 2� 1

2
d .

5. Burgers’ equation and the semilagrangian approach

In this section, we explain the procedure to straighten the transport operator T , which allows, loosely
speaking, to come down to the operator @t C a.v/ � rv. This relies on several changes of variables in
velocity that we introduce now.

Let ˆ.t;x; v/ satisfy the Burgers’ equation(
@tˆC a.ˆ/ � rxˆD F.t;x; ˆ/;

ˆ.0;x; v/D v:
(5-1)

The interest in introducing the vector field ˆ comes from the following algebraic identity.

Lemma 5.1. Given a smooth function g satisfying T g DR, the function

G.t;x; v/ WD g.t;x; ˆ.t;x; v//

solves the equation
@tGC a.ˆ.t;x; v// � rxG DR.t;x; ˆ.t;x; v//: (5-2)

Proof of Lemma 5.1. We compute

@tG D .@tg/.t;x; ˆ.t;x; v//C @tˆ � .rvg/.t;x; ˆ.t;x; v//;

a.ˆ/ � rxG D a.ˆ/ � .rxg/.t;x; ˆ.t;x; v//C Œa.ˆ/ � rxˆ� � .rvg/.t;x; ˆ.t;x; v//:

Since T g DR, we have

.@tg/.t;x; ˆ.t;x; v//C a.ˆ/ � .rxg/.t;x; ˆ.t;x; v//

D�F.t;x; ˆ/ � .rvg/.t;x; ˆ.t;x; v//CR.t;x; ˆ.t;x; v//:

From (5-1), we deduce (5-2) as claimed. �

In other words, the change of variables in velocity v 7!ˆ.t;x; v/ allows us to straighten the vector
field T .

We now provide a lemma concerning the existence, uniqueness and regularity of solutions of (5-1).

Lemma 5.2. Assume that for all j D 1; : : : ; `, we have Fj 2 L2.0;T 0IH n
x / with norm bounded by

ƒ.T 0;M /. There is T 2 .0;T 0� such that the following holds. There exists a unique solution ˆ.t;x; v/ 2
C 0.0;T IW

k;1
x;v / of (5-1) and we have the following estimates:

sup
Œ0;T �

sup
v

X
j˛j�n

k@˛x;v.ˆ� v/kL2
x;v
C sup
Œ0;T �

kˆ� vk
W

k;1
x;v
.ƒ.T;M /; (5-3)

sup
Œ0;T �

sup
v

X
j˛j�n

k@˛x;v.a.ˆ/� a.v//kL2
x;v
C sup
Œ0;T �

ka.ˆ/� a.v/k
W

k;1
x;v
.ƒ.T;M / (5-4)

for all k < n� 1
2
d .
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We shall not provide the proof of Lemma 5.2 as it follows closely the proof of Lemma 4.6 in [Han-
Kwan and Rousset 2016]. Here the source is semilinear, whereas there it is linear; however, the proof is
essentially the same (see also [Han-Kwan et al. 2017] for a similar issue).

We now introduce the characteristics associated to ˆ, defined as the solution to(
@t X.t; s;x; v/D a.ˆ/.t;X.t; s;x; v/; v/;

X.s; s;x; v/D x;
(5-5)

and study the deviation of X from the (modified) free transport flow.3

Lemma 5.3. Assume that for all j D 1; : : : ; `, we have Fj 2 L1.0;T 0IH n
x / with norm bounded by

ƒ.T 0;M /. There is T 2 .0;T 0� such that the following holds. For every 0� s; t � T, we can write

X.t; s;x; v/D xC .t � s/.a.v/C zX.t; s;x; v//; (5-6)

with zX that satisfies the estimate

sup
t;s2Œ0;T �

sup
v

X
j˛j�n

k@˛x;v
zX.t; s;x; v/kL2

x
C sup

t;s2Œ0;T �

kzX.t; s;x; v/k
W

k;1
x;v
.ƒ.T;M / (5-7)

for all k < n� 1
2
d . Moreover, the map x 7! xC .t � s/zX.t; s;x; v/ is a diffeomorphism, and there exists

‰.t; s;x; v/ such that the identity

X.t; s;x; ‰.t; s;x; v//D xC .t � s/a.v/

holds. Finally, we have the estimate

sup
t;s2Œ0;T �

�
sup
v

X
j˛j�n

k@˛x;v.‰.t; s;x; v/� v/kL2
x
Ck‰.t; s;x; v/� vk

W
k;1

x;v

�
.ƒ.T;M / (5-8)

for all k < n� 1
2
d .

Again, we will not reproduce the proof of Lemma 5.3 as it follows closely that of Lemma 5.1 in
[Han-Kwan and Rousset 2016].

In what follows, the procedure will consist in applying derivatives on (2-1) using multiple combinations
of the operators LI;J that were introduced and studied in the previous section. This yields systems of
Vlasov equations with sources, such as (4-22) in Lemma 4.7. It is on these equations that we will apply
the change of variables v 7!ˆ.t;x; v/ in order to straighten the transport operator T . We then integrate
along characteristics, which is why the X.t; s;x; v/ are useful, and average in velocity to obtain equations
bearing on moments. In these equations, it will be crucial to apply various changes of variables based on
the zX and ‰ introduced in Lemma 5.3.

This is what we refer to as the semilagrangian approach.

3Note that the X introduced here is not the same as the X previously defined in (1-7).
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6. Averaging operators

For i 2 f1; : : : ; dg and a smooth function U.t; s;x; v/, we define the following integral operator K
.i/
U

acting on scalar functions H.t;x/:

K
.i/
U
.H /.t;x/D

Z t

0

Z
Rd

.@xi
H /.s;x� .t � s/a.v//U.t; s;x; v/ dv ds: (6-1)

The integral operator K can be seen as a modified version of the operator K.i/U

K
.i/
U .H /.t;x/D

Z t

0

Z
R3

.@xi
H /.s;x� .t � s/v/U.t; s;x; v/ dv ds

that was studied in [Han-Kwan and Rousset 2016].

6A. The smoothing estimate. We note that the operators K
.i/
U

and K
.i/
U seem to feature a loss of derivative

in x. It was nevertheless proved in [Han-Kwan and Rousset 2016, Proposition 5.1 and Remark 5.1]
that for the operators K

.i/
U , this loss is only apparent, provided that U is sufficiently smooth in x; v and

decaying in v: this is the content of the following theorem.

Theorem 6.1 [Han-Kwan and Rousset 2016]. Let k > 1C d and � > 1
2
d . For all H 2 L2.0;T IL2

x/,
and for all i 2 f1; : : : ; dg, we have

kK
.i/
U .H /kL2.0;T IL2

x/
. sup

0�s; t�T

kU.t; s; � /kHk
�
kHkL2.0;T IL2

x/
: (6-2)

Based on this result, we deduce the following smoothing estimate4 for the operators K
.i/
U

.

Proposition 6.2. Let k > 1C d and � > 1
2
d . For all H 2 L2.0;T IL2

x/, and for all i 2 f1; : : : ; dg, we
have

kK
.i/
U
.H /kL2.0;T IL2

x/
. sup

0�s; t�T

kU.t; s; � /kHk
rk

kHkL2.0;T IL2
x/
; (6-3)

with rk D � C .1C�/.d C k/.

Proof of Proposition 6.2. To ease readability we set @x D @xi
and we forget about the subscript i . We

come down from the modified to the straight operator by using the change of variable w WD a.v/. We get

KU .H /.t;x/D

Z t

0

Z
a.Rd /

.@xH /.s;x� .t � s/w/U.t; s;x; a�1.w//jdet Da.a�1.w//j�1 dw ds

D KU.H /.t;x/;

with
U.t; s;x; w/ WD U.t; s;x; a�1.w//jdet Da.a�1.w//j�11a.Rd /:

Let k > 1C d and � > 1
2
d . By Theorem 6.1, we get

kKU .H /kL2.Œ0;T �IL2
x/
D kKU.H /kL2.Œ0;T �IL2

x/
. sup

0�s; t�T

kU.t; s; � /kHk
�
kHkL2.Œ0;T �IL2

x/
:

4A close version of this result is also stated in [Han-Kwan et al. 2017] for the special case a.v/D Ov.



220 DANIEL HAN-KWAN

By the assumption on a, we have

j@˛wa�1.w/j. .1Cja�1.w/j/1C�j˛j:

In particular, we deduce

jdet Da.a�1.w//j�1 . .1Cja�1.w/j/d.1C�/:

As a consequence, we have, by the Faà di Bruno formula, and using the reverse change of variable
v D a�1.w/ and (2-3), that

kU.t; s; � /kHk
�
. kU.t; s; � /kHk

�C.dCk/.1C�/
;

and hence the claimed estimate. �

6B. Intermission: a comparison to averaging lemmas. We end this section with a comparison of the
smoothing estimate we have just shown, in the simple case where a.v/ D v, which corresponds to
Theorem 6.1, with kinetic averaging lemmas. Averaging lemmas were introduced in [Golse et al. 1985;
1988; Agoshkov 1984] and now generically stand for various smoothing effects in average for kinetic
transport-type equations.5 They proved over the years to be fundamental in several contexts of kinetic
theory, as they provide compactness and regularity. There exist many versions of these, involving several
different assumptions on the functional spaces, on the number of derivatives in v or in x in the source etc.;
see, e.g., [DiPerna et al. 1991; Perthame and Souganidis 1998; Golse and Saint-Raymond 2002; Bouchut
2002; Jabin and Vega 2004; Jabin 2009; Arsénio and Saint-Raymond 2011; Arsénio and Masmoudi 2014]
for more recent advances. The closest (to Theorem 6.1) analogue of averaging lemmas is arguably the
following result.

Theorem 6.3 [Perthame and Souganidis 1998]. Let 1< p <1. Let f;g D .gj /jD1;:::;d 2L
p
t;x;v satisfy

the transport equation

@tf C v � rxf D

dX
jD1

@xj @
k
vgj ; (6-4)

where k is an arbitrary multi-index. Let '.v/ be a C1 compactly supported function and set

�'.t;x/D

Z
Rd

f .t;x; v/ '.v/ dv:

Then we have, for all ˛ 2
�
0;min

�
1
p
; 1

p0

��
,

k�'kLp
t;x
� Cd;p;˛;'kf k

1� ˛
jkjC1

L
p
t;x;v

kgk
˛
jkjC1

L
p
t;x;v

: (6-5)

Let us focus especially on the case p D 2, jkj D 0, in which case (6-5) actually also holds for ˛ D 1
2

.
Theorem 6.1 can also be understood as a kind of averaging lemma for the moments in v of the kinetic

5Actually this can be embedded in a more general framework; see in particular [Gérard 1990; Gérard and Golse 1992; Gérard
et al. 1996].
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equation (6-4), in the special case where the source has the form
dX

jD1

@xjHj .t;x/ @
k
vUj .t;x; v/; (6-6)

where Uj is smooth in x and v, and the initial condition is f jtD0 D 0. Let '.t;x; v/ be a smooth and
decaying test function. Then by the method of characteristics,

f .t;x; v/D

Z t

0

dX
jD1

@xjHj .s;x� .t � s/v/ @k
vUj .s;x� .t � s/v; v/ ds;

and thus

�'.t;x/D

Z t

0

Z
Rd

dX
jD1

@xjHj .s;x�.t�s/v/ @k
vUj .s;x�.t�s/v; v/ '.t;x; v/ ds D

dX
jD1

K
.j/
Uj
.Hj /.t;x/;

setting Uj .s; t;x; v/D @
k
vUj .s;x� .t � s/v; v/ '.t;x; v/. The regularity assumption of Theorem 6.1 can

be written as
sup

0�s; t�T

kUj .t; s; � /kHk
�
<1

for k > 1C d , � > 1
2
d , and the consequence is

k� kL2.0;t IL2
x/
. sup

0�s; t�T

X
j

kUj .t; s; � /kHk
�
kHjkL2.0;t IL2

x/
: (6-7)

This estimate is not a consequence of Theorem 6.3. Indeed, note that it does not involve the L2 norm of
the solution f : somehow, this can be roughly seen as a version of Theorem 6.3 allowing ˛ D 1, whereas
Theorem 6.3 only allows ˛� 1

2
, at the expense of asking for the structure assumption (6-6) on the source g

and of considering a norm for the source that is more demanding than the L2 norm of estimate (6-5).
Observe also that Theorem 6.1 does not require the test function in v to be decaying at infinity, as long

as for all j, we have Uj in (6-6) is itself decaying sufficiently fast at infinity.

7. Proofs of Theorem 2.1 and Corollaries 2.2 and 2.5

We finally set up an induction argument, which relies on the machinery developed in the previous sections,
and will ultimately lead to the proof of Theorem 2.1. We summarize the procedure below:

� By induction, we assume smoothness on the moments until order n0� 1. We can first apply Lemma 4.1
to obtain the same smoothness for the coefficients of the operators Li;j .

� We apply Lemma 4.7 or 4.8 in order to get the system of equations satisfied by .LK ;L@˛x@
ˇ
vf /, which

is of the abstract form
T .F/CAFD B;

where A is a matrix whose coefficients we control and B is the rest we need to control. Loosely speaking,
B consists either of remainders we can control thanks to the induction assumption, and terms of the form
�@

˛.K ;L/
x F � rvf for K;L 2 f1; : : : ; dgmCk , whose contribution is the main matter.
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� We then invert the operator T CA in order to solve the equation. At this stage, after integration in
velocity (remember that we are interested in the regularity of moments), we use the changes of variables
introduced in Lemmas 5.1, 5.2 and 5.3.

� What is rather straightforward then is the study of the contribution of the initial data and of the remainder
terms in B. As already said, the contribution of the terms �@˛.K ;L/x F � rvf is more serious and involves
the study of integrals of the formZ t

0

Z
Rd

.@xi
@˛.K ;L/x F /.s;x� .t � s/a.v//U.t; s;x; v/ dv ds;

which seem to feature a loss of derivative in x. We recognize the integral operators introduced and studied
in Section 6. This is where the smoothing estimate of Proposition 6.2 proves to be crucial.

7A. End of the proof of Theorem 2.1. For n� 2m� 1, let P.n/ be the following statement:

There is T > 0 such that for all test functions

 .t;x; v/ 2L1.0;T IW dC2Cn�2m;1
�r0

/;

setting for all j˛j D n,

m ;˛.t;x/D

Z
Rd

@˛xf .t;x; v/  .t;x; v/ dv;

there exists ƒ for which X
j˛jDn

km ;˛kL2.0;T IL2
x/
.ƒ.T;M /: (7-1)

By Proposition 3.2, it is clear that P.2m� 1/ is verified.
Let n 2 f2m; : : : ; 2.mC p/g. Let us assume that n is even, of the form 2.mC k/. We shall not

proceed with the case where n is odd, as it follows by completely similar arguments. Assume that
P.2m/; : : : ;P.n�1/ are satisfied and let T > 0 be a time on which the estimates (7-1) (for 2m; : : : ;n�1)
are satisfied. We shall prove that P.n/ is also verified. Once this is done, we deduce by induction that
P.2m/; : : : ;P.2.mCp// are satisfied; we then deduce the required estimates (3-14).

Thanks to the property P.n� 1/ applied to the . j /jD1;:::;r , and (2-9), we first haveX̀
jD1

kFj
k

L2.0;T IH
2.mCk/�1
x /

�ƒ.T;M /: (7-2)

We can therefore apply Lemma 4.1 and obtain a possible smaller time, still denoted by T, and operators
Li;j with coefficients .'i;j

k;l
;  

i;j

k;l
/i;j ;k;l2f1;:::;dg belonging to L1.0;T IH2.mCk/�2

�Qr
/ for all Qr > 1

2
d , with

uniform regularity
k.'

i;j

k;l
;  

i;j

k;l
/i;j ;k;lkL1.0;T IH2.mCk/�2

�Qr
/
�ƒ.T;M /:

Let us consider the vector (the precise ordering does not matter)

FD .LK ;L@˛x@
ˇ
vf /r2fm�k;:::;mCkg;K ;L2f1;:::;dgr ; j˛jCjˇjDmCk�r : (7-3)
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By Lemma 4.7, it follows that F satisfies the system

T .F/CAFD BCR; (7-4)

where A.t;x; v/ is a matrix with coefficients in L2.0;T IW
dC2;1

x;v /, satisfying

kAk
L2.0;T IW

dC2;1
x;v /

.ƒ.T;M /: (7-5)

(The term AF encodes the contribution of the leading-order terms in the triple sum of the right-hand side
of (4-22).) On the other hand, R is a remainder satisfying the estimate

kRkL2.0;T IH0
Qr
/ .ƒ.T;M / (7-6)

for all Qr < r� 1
2
d and B is defined as follows: all its components are equal to 0 except those corresponding

to the components associated to some K;L 2 f1; : : : ; dgmCk, in which case it is equal to

�@˛.K ;L/x F � rvf:

The next step consists in using the change of variables v 7! ˆ.t;x; v/, where ˆ solves (5-1), in order
to straighten the vector field T ; see Lemma 5.1. To this end, we use Lemma 5.2 (reduce again T > 0

if necessary) and use the notation ıˆ to denote the composition in v with ˆ. Setting F D F ıˆ, we
obtain

.@t C a.ˆ/ � rx/F C .A ıˆ/F D B ıˆCR ıˆ: (7-7)

Let A.s; t;x; v/ be the operator, whose existence is ensured by the Cauchy–Lipschitz theorem, as the
solution of the following linear ODE

@sA.s; t;x; v/D A.s;x; ˆ.s;x; v//A.s; t;x; v/; A.t; t;x; v/D Id:

Thanks to (7-5), we also have

kA. � ; t; � /k
L1.0;T IW

dC2;1
x;v /

Ck@sA. � ; t; � /kL2.0;T IW
dC2;1

x;v /
.ƒ.T;M /: (7-8)

By the method of characteristics we get

F.t;x;v/DA.t;0;x;v/F.0;X.0; t;x;v/;v/

C

Z t

0

A.t;s;x;v/Bıˆ.s;X.s; t;x;v/;v/dsC

Z t

0

A.t;s;x;v/Rıˆ.s;X.s; t;x;v/;v/ds: (7-9)

Suppose  .t;x; v/ 2L1.0;T IW dC2C2k;1
�r0

/. Then we multiply the representation formula (7-9) by
 .t;x; ˆ.t;x; v//jdet Dvˆ.t;x; v/j and integrate in v to obtainZ

Rd

F.t;x; v/  .t;x; ˆ.t;x; v//jdet Dvˆ.t;x; v/j dv D I0C I1C I2; (7-10)
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with

I0 D

Z
Rd

A.t; 0;x; v/F.0;X.0; t;x; v/; v/  ıˆjdet Dvˆ.t;x; v/j dv;

I1 D

Z t

0

Z
Rd

A.t; s;x; v/ .R ıˆ/.s;X.s; t;x; v/; v/  ıˆjdet Dvˆ.t;x; v/j dv ds;

I2 D

Z t

0

Z
Rd

A.t; s;x; v/ .B ıˆ/.s;X.s; t;x; v/; v/  ıˆjdet Dvˆ.t;x; v/j dv ds:

(7-11)

By the change of variables v 7!ˆ.t;x; v/, we haveZ
Rd

F.t;x; v/  .t;x; ˆ.t;x; v//jdet Dvˆ.t;x; v/j dv D

Z
Rd

F.t;x; v/  .t;x; v/ dv:

Let us first study this term. Since P.2m/; : : : ;P.2.mCk/�1/ are satisfied, we can apply Lemma 4.4 (the
assumption (4-8) is indeed verified), which yields, see (4-9) and (4-10), that for all I;J 2 f1; : : : ; dgmCk ,Z

Rd

LI;J f  .t;x; v/ dv D

Z
Rd

@˛.I;J /x f  .t;x; v/ dvCRI;J ; ;

where RI;J ; is a remainder satisfying the estimate

kRI;J ; kL2.0;T IL2
x/
�ƒ.T;M /:

Consequently, recalling the definition of F in (7-3), if we are able to obtain the bound

kI0kL2.0;T IL2
x/
CkI1kL2.0;T IL2

x/
CkI2kL2.0;T IL2

x/
�ƒ.T;M /;

then we deduce the bound X
I;J

Z
Rd

@˛.I;J /x f  dv


L2.0;T IL2

x/

�ƒ.T;M /I

that is, we obtain the sought bound (7-1) at rank n.

7A1. Study of I0. Let us begin by treating the contribution of the initial data, which corresponds to the
term I0. First by using estimate (5-3) in Lemma 5.2, the L1 bound for A in (7-8), and the estimate

k.1Cjvj2/�
1
2

r0 kL1x;v . 1; (7-12)

we have for all x 2 Td,ˇ̌̌̌Z
Rd

A.t; 0;x; v/F.0;X.0; t;x; v/; v/.1Cjvj2/
1
2

r0 jdet Dvˆ.t;x; v/j dv

ˇ̌̌̌
�ƒ.T;M /

Z
jF.0;X.0; t;x; v/; v/j.1Cjvj2/

1
2

r0 dv:

Therefore, we get that

kI0kL2.0;T IL2
x/
�ƒ.T;M /

Z
Rd

kF.0;X.0; t; � ; v/; v/kL2
x
.1Cjvj2/

1
2

r0 dv


L2.0;T /

:
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By using the change of variable y D X.0; t;x; v/C ta.v/D x� t zX.0; t;x; v/ and Lemma 5.3, we obtain

kF.0;X.0; t; � ; v/; v/kL2
x
�ƒ.T;M /kF.0; � � ta.v/; v/kL2

x
�ƒ.T;M /kF.0; � ; v/kL2

x

and hence, we deduce that since r > r0C
1
2
d , for some r 0 > 1

2
d , it holds that

kI0kL2.0;T IL2
x/
�ƒ.T;M /

�Z
Rd

dv

.1Cjvj2/r
0

�1
2

kF.0/kH0
r
:

By using the fact that at t D 0 we have ˆ.0;x; v/D v and L.K ;L/jtD0 D @
˛.K ;L/
x , we end up with

kF.0/kH0
r
D kF.0/kH0

r
�ƒ.M /

mCkX
jDm�k

X
j˛jCjˇjDmCk�j

k@2j
x @

˛
x@
ˇ
vf0kH0

r
;

and hence we finally obtain

kI0kL2.0;T IL2
x/
�ƒ.T;M /:

7A2. Study of I1. We treat the other remainder term I1 in a similar fashion. Indeed, using again
estimate (5-3) in Lemma 5.2, (7-8) and (7-12), we first get

kI1kL2.0;T IL2
x/

�ƒ.T;M /

Z t

0

Z
Rd

kR.s;X.s; t; � ; v/; ˆ.s;X.s; t; � ; v/; v//kL2
x
.1Cjvj2/

1
2

r0 dv ds


L2.0;T /

:

Thanks to the change of variable x 7! X.s; t;x; v/ and to the estimates of Lemma 5.3, it follows that

kI1kL2.0;T IL2
x/
�ƒ.T;M /

Z t

0

Z
Rd

kR.s; � ; ˆ.s; � ; v//kL2
x
.1Cjvj2/

1
2

r0 dv ds


L2.0;T /

�ƒ.T;M /

Z t

0

k.R ıˆ/.s/kH0
Qr
ds


L2.0;T /

�ƒ.T;M /T kR ıˆkL2.0;T IH0
Qr
/;

by choosing Qr > r0 C
1
2
d , which is possible since r > r0 C d . Using again the change of variables

v 7!ˆ.t;x; v/, Lemma 5.2 and the estimate (7-6), we thus obtain

kI1kL2.0;T IL2
x/
�ƒ.T;M /:

7A3. Study of I2. The main matter thus concerns the contribution of the term I2, which features an
apparent loss of derivative in x. This is however not the case, thanks to Proposition 6.2. Let K;L 2

f1; : : : ; dgmCk . Writing @˛.K ;L/x D @x@
˛0

x with j˛0j D j˛.K;L/j � 1, we are led to study terms of the
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form (here F
j
i stands for the i -th coordinate of Fj )X̀

jD1

Z t

0

Z
Rd

.@x@
˛0

x F
j
i /.s;X.s; t;x; v//  .t;X.s; t;x; v/; ˆ.s;X.s; t;x; v/; v//

�AI;J
K ;L

�
t; s; ;X.s; t;x; v/; ˆ.s;X.s; t;x; v/; v/

�
Aj .ˆ.s;X.s; t;x; v/; v//

� @vi
f
�
s;X.s; t;x; v/; ˆ.s;X.s; t;x; v/; v/

�
jdet Dvˆ.t;x; v/j dv ds;

where kAI;J
K ;L
k

L1.0;T IW
dC2;1

x;v /
�ƒ.T;M /.

We use the change of variables v D ‰.s; t;x; w/ to rewrite this expression as
P`

jD1 KUj .@
˛0

x F
j
i /,

with

Uj .s; t;x; v/DAj

�
ˆ.s;x� .t � s/ a.v/; ‰.s; t;x; v//

�
�AI;J

K ;L

�
t; s;x� .t � s/ a.v/;ˆ.s;x� .t � s/ a.v/; ‰.s; t;x; v//

�
� 

�
t;x� .t � s/ a.v/;ˆ.s;x� .t � s/ a.v/; ‰.s; t;x; v//

�
� @vi

f
�
s;x� .t � s/ a.v/;ˆ.s;x� .t � s/ a.v/; ‰.s; t;x; v//

�
� jdet Dvˆ.t;x; ‰.s; t;x; v//jjdet Dv‰.s; t;x; v/j; (7-13)

where we recall the operators K were introduced in Section 6. In order to apply Proposition 6.2, we have
to estimate, s; t being fixed, Uj in H2Cd

r 0 , with r 0> 1
2
dC2.1C�/.1Cd/ and r � r 0Cr0, which is possible

since r >R as defined in (2-12). First, by (2-3), (2-6), (7-8), (5-3) in Lemma 5.2 and estimate (5-8) in
Lemma 5.3, we can uniformly bound in L1 all terms involving Aj , ˆ, ‰ and their derivatives (since
only at most 2C d derivatives can be involved). For  , we use

k.1Cjvj2/�
1
2

r0@˛ kL1x;v . 1 for all j˛j � d C 2:

We are therefore led to estimate integrals of the form

I D

ˇ̌̌̌Z
Td�Rd

jg.x� .t � s/ a.v/;ˆ.s;x� .t � s/v;‰.s; t;x; v///j2.1Cjvj2/r0Cr 0 dv dx

ˇ̌̌̌
;

where g D @˛f , j˛j � d C 3. To this end, we can use the change of variables v 7!w D‰.s; t;x; v/ and
rely on estimate (5-7) in Lemma 5.3 to obtain the bound

I �ƒ.T;M /

Z
Td�Rd

jg.X.s; t;x; w/;ˆ.s;X.s; t;x; w/; w//j2.1Cjwj2/r0Cr 0 dx dw:

Next, arguing as for I1, we can use successively the change of variable x 7! y D X.s; t;x; w/ with
the estimates of Lemma 5.3, and the change of variable w 7! u D ˆ.s;y; w/ with estimate (5-3) in
Lemma 5.2, to finally obtain

I �ƒ.T;M /kgk2H0
r
�ƒ.T;M /kf k2H2m�1

r
;

since 2m� 1� d C 3 and r >R. As a result we obtain the bound

sup
s;t
kUjkH2Cd

r 0
�ƒ.T;M /kf k2H2m�1

r
�ƒ.T;M /: (7-14)
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We can therefore apply Proposition 6.2 to get the bound

kKUj ;i .F
j
i /kL2.0;T IL2

x/
. sup

s;t
kUjkH2Cd

r 0
kF

j
i kL2.0;T IH

2.mCk/�1
x /

�ƒ.T;M /kF
j
i kL2.0;T IH

2.mCk/�1
x /

�ƒ.T;M /; (7-15)

thanks to estimate (7-2). We deduce

kI2kL2.0;T IL2
x/
�ƒ.T;M /

and gathering all pieces together, we therefore obtain (7-1) at rank n, and the induction argument is
complete. Theorem 2.1 follows.

7B. Proof of Corollary 2.2. In order to prove the higher-order regularity for the characteristics, we
proceed as in [Han-Kwan and Rousset 2016, Lemma 5.1].

By Theorem 2.1 and the assumption (2-9), we have for all j D 1; : : : ; `,

Fj
2L2.0;T IH n0

x /

and thus by Sobolev embedding, we deduce that for k < n0� 1
2
d ,

Fj
2L2.0;T IW k;1

x /: (7-16)
We set

Z WD .Y;W / WD .X � tv�x;V � v/:

Let us first prove that Z 2L1.0;T IW
k;1

x;v / for k < n0� 1
2
d . Note that by the definition of .X;V /, we

know Z satisfies the equation

Z D

�Z t

0

.Y C v/ ds;

Z t

0

X̀
jD1

Aj .W C v/Fj .Y CxC tv/ ds

�
:

By (2-6) and (7-16), we obtain by induction (on the number of applied derivatives) that for t � T,

sup
j˛j<n0� 1

2
d

sup
Œ0;t �

k@˛x;vZkL1x;v .
Z t

0

�.s/
�
1C sup
j˛j<n0� 1

2
d

sup
Œ0;s�

k@˛x;vZkL1x;v
�

ds;

where � is a nonnegative function belonging to L2.0;T /, with norm bounded by ƒ.T;M /. We deduce
our claim thanks to the Gronwall inequality, which yields

sup
j˛j<n0� 1

2
d

sup
Œ0;t �

k@˛x;vZkL1x;v �
p

tƒ.T;M /: (7-17)

We deduce in particular from this estimate that for T 0 2 .0;T � small enough, for all v 2 Rd, the map
x 7!X.T 0; 0;x; v/ is a C 1 diffeomorphism.

Next, let us turn to the L1t L1v L2
x estimate. We set

N .t/ WD sup
j˛j�n0

sup
Œ0;t �

k@˛x;vZkL1v L2
x
:
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By an application of the Faà di Bruno formula, we obtain

N .t/.
X̀
jD1

Z t

0

X
k1;k2;ˇ1;:::;ˇk1Ck2

J
j

k1;k2;ˇ1;:::;ˇk1Ck2

ds;

with

J
j

k1;k2;ˇ1;:::;ˇk1Ck2

WD
j.Dk1

v Aj / ıV .s/.Dk2
x Fj / ıX.s/jj@ˇ1

x;v.X;V /j � � � j@
ˇk1Ck2
x;v .X;V /j


L1v L2

x
;

and where the sum is taken only on indices such that k1Ck2 DW k � j˛j � n0, ˇ1C � � �Cˇk D j˛j with
for every j, j ǰ j � 1 and jˇ1j � jˇ2j � � � � � jˇk j.

Let us observe that in the sum, if k1C k2 D k � 2, we necessarily have jˇk�1j < n0 � 1
2
d . Indeed,

otherwise, we would have jˇ1jC � � � C jˇk j � 2n0� d and thus n0 � 2n0� d , which means n0 � d . This
is impossible by assumption on n0. Next:

� If k2 < n0� 1
2
d and k1C k2 D k � 2, we obtain thanks to the above observation and (7-17) that for

i D 1; : : : ; k � 1,
k@ˇi

x;v.X;V /kL1x;v . 1CT Ck@ˇi
x;v.Z/kL1x;v .ƒ.T;M /: (7-18)

Moreover, using (2-6), (7-16) we get

J
j

k1;k2;ˇ1;:::;ˇk1Ck2

� kDk1AjkL1x;vkD
k2Fj

kL1x;v

k�1Y
iD1

@ˇi
x;v.X;V /


L1x;v

k@ˇk
x;v.X;V /kL1v L2

x

�ƒ.T;M /kDk2Fj
kL1x;v .1CN .s//:

If k D 1, the above estimate is clearly also valid.

� If k2 � n0 � 1
2
d , we observe that for every i , we have jˇi j � jˇk j � n0 � .k � 1/ < 1

2
d . In particular

jˇi j< n0� 1
2
d by assumption on n0 and we have that (7-18) holds for all i D 1; : : : ; k. This yields

J
j

k1;k2;ˇ1;:::;ˇk1Ck2

. k.Dk1
v Aj / ıV kL1v L2

x
k.Dk2

x Fj / ıXkL1v L2
x
ƒ.T;M /

. kDk1
x;vAjkL1v k.D

k2
x Fj / ıXkL1v L2

x
ƒ.T;M /

.ƒ.T;M /k.Dk2
x Fj /kL2

x
:

To get the last estimate, we restrict to T 0 � T small enough so that we can use the change of variable
y DX.t; 0;x; v/ when computing the L2

x norm of .Dk2
x;vF

j / ıX .

By combining the above estimates, we obtain that for t � T 0,

N .t/�
p

tƒ.T;M /C

Z t

0

ƒ.T;M / sup
j

kFj .s/k
H n0

x
N .s/ ds:

By using again (7-16) and the Gronwall inequality, we thus obtain that for t � T 0,

N .t/.
p

tƒ.T;M /;

which concludes the proof of Corollary 2.2.
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7C. Proof of Corollary 2.5. The idea, as in [Gérard 1990, Proposition 5.2], consists in applying Theorem 2.1
with the test function

 �.v/D e�v�� 2W n0;1
x;v ;

where � 2 Rd has to be seen as the Fourier variable in velocity. A close inspection of the proofs reveals
that the conclusion of Theorem 2.1 can be refined into

for all � 2 Rd ;

Z f  � dv


L2.0;T0IH

n0
x /

�ƒ.T0;M; k �kW n0;1
v

/; (7-19)

where ƒ is a polynomial function. Moreover, k �kW n0;1
v
. ƒ0.j�j/, where ƒ0 is also a polynomial

function (of degree n0). Since

1

.2�/
1
2

d

Z
f  � dv D Fvf .t;x; �/;

we deduce from (7-19) that for some p > 0 taken large enough, Of .t; k; �/.1Cjkj2/ 1
2

n0.1Cj�j2/�
1
2

p


L2.0;T0IL2.Zd�Rd //
<1;

which means that f 2L2.0;T0IH
n0;�p
x;v /.

8. Application to classical models from physics

The goal of this section is to briefly explain why both Vlasov–Poisson and relativistic Vlasov–Maxwell
systems enter the abstract framework, and thus why Theorem 2.1 (and its corollaries) apply to these
classical models.

8A. Vlasov–Poisson. The Cauchy problem for the Vlasov–Poisson system (1-2) was studied (among
many other references)

� for (global) weak solutions in [Arsen’ev 1975],

� for local strong solutions in [Ukai and Okabe 1978], and for global strong solutions in [Bardos and
Degond 1985; Lions and Perthame 1991; Pfaffelmoser 1992; Schaeffer 1991; Glassey 1996; Batt
and Rein 1991; Horst 1993].

Let us check the following structural assumptions for (1-2).

� Assumptions on the advection field. In this model, a.v/D v, so that all required assumptions on a are
straightforward properties. One can take �D 0 in (2-4).

� Assumptions on the force field. For the force field F, we can write `D 1, A1 D 1 and F1 D �rx�,
where � is computed thanks to the moment of order 0 of f only; that is,  1 D 1 (thus r0 D 0) and

m 1
D

Z
Rd

f dv:
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The assumption (2-9) follows straightforwardly from the Poisson equation, as for all n 2 N, it holds that

for all t � 0; kF1.t/kH n
x
. km 1

.t/kH n�1
x

:

We however do not need the smoothing effect due to the Poisson equation. It follows directly that both
estimates (2-9) and (2-10) hold. The stability estimate (2-11) holds because of the same estimate, by
linearity of the Poisson equation. It turns out that using the smoothing estimate, we can obtain a stronger
version of Theorem 2.1: we embed this situation in what we refer to as transport/elliptic systems, and
refer to Theorem 9.1 in Section 9.

Note also that the Vlasov–Poisson system with dynamics constrained on geodesics introduced in the
context of stellar dynamics in [Diacu et al. 2016] enters the abstract framework as well (and in this model
there is no smoothing of the force field).

8B. Relativistic Vlasov–Maxwell. The Cauchy problem for the relativistic Vlasov–Maxwell system (1-3)
was studied (among many other references)

� for (global) weak solutions in [DiPerna and Lions 1989],

� for (local) strong solutions in [Wollman 1984; 1987; Degond 1986; Asano 1986; Glassey and Strauss
1986; 1987; Glassey 1996; Schaeffer 2004; Bouchut et al. 2003; Klainerman and Staffilani 2002;
Pallard 2015; Luk and Strain 2016].

Let us check the following structural assumptions for (1-3).

� Assumptions on the advection field. In this model, a.v/D Ov, and one can check by a straightforward
induction that

k@˛v OvkL1v � C˛ for all ˛:

We have a.Rd /D B.0; c/ and the explicit formula

for all w 2 B.0; c/; a�1.w/D
wp

1� jwj2=c2
:

It follows that one can take �D 2 in (2-4).

� Assumptions on the force field. For the force field F, we observe that we can take `D 4 and write

A1 D 1; F1
DE; (8-1)

and setting B D .B1;B2;B3/ in an orthonormal basis .e1; e2; e3/,

A2 D Ov1; F2
D B2e3�B3e1;

A3 D Ov2; F3
D B3e1�B1e3;

A4 D Ov3; F4
D B1e2�B2e1:

(8-2)

The electromagnetic field .E;B/ is computed only from initial data .E0;B0/ and the moments of order 0

and 1, which correspond to  1 D 1;  2 D Ov (so that r0 D 0) and

m 1
D

Z
Rd

f dv; m 2
D

Z
Rd

f Ov dv:
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The assumption (2-9) follows from classical energy estimates for Maxwell equations: we have for all
n 2 N and all t � 0,

k.E;B/kL2.0;t IH n
x /
� Cnt

3
2

2X
iD1

km i
kL2.0;t IH n

x /
Ck.E;B/.0/kL2.0;t IH n

x /
I

see, e.g., [Han-Kwan et al. 2017, Lemma 3.2]. The estimate (2-10) is proved similarly. The stability
estimate (2-11) holds because of the same energy estimate, by linearity of the Maxwell equations.

8C. Remarks. Some remarks about possible generalizations of the abstract framework are in order:

� It is possible to add a smooth force, of C k regularity with k large enough, and still adapt the results
of Theorem 2.1, without significantly modifying the analysis. This allows one for instance to consider
Vlasov–Poisson systems with a smooth external magnetic field.

� The so-called relativistic gravitational Vlasov–Poisson system (which may be relevant for galactic
dynamics) enters the abstract framework as well, by a combination of the estimates of Section 8A and 8B
(see, e.g., [Glassey and Schaeffer 1985; Hadžić and Rein 2007; Kiessling and Tahvildar-Zadeh 2008;
Lemou et al. 2008] for some references about this system).

� The divergence-free (in v) condition for F is not an absolute requirement for the analysis. It may be
dropped, but would sometimes necessitate introducing more complicated formulas. In particular, it is
likely that fluid/kinetic systems for sprays such as Vlasov–Stokes or Vlasov–Navier–Stokes in dimension
d D 2 enter this framework (or a slightly modified version of it) as well. We refer, e.g., to [Jabin 2000;
Boudin et al. 2009; 2015; Desvillettes 2010] for some references about these equations. See also [Baranger
and Desvillettes 2006; Moussa and Sueur 2013] for other fluid/kinetic systems.

� Note that the so-called nonrelativistic Vlasov–Maxwell system (that is system (1-3) with v replacing
all occurrences of Ov) does not enter the abstract framework. Indeed the assumption (2-6) is not satisfied.
However, we claim that (2-6) is crucial only for having a good local well-posedness theory in Hn

r spaces.
This means that without (2-6), we can still obtain a result similar to that of Theorem 2.1, except that we
have to assume the existence of a solution of (2-1) with the required regularity. For the nonrelativistic
Vlasov–Maxwell system, such solutions do exist, following [Asano 1986], which requires the introduction
of Sobolev spaces with loss of integrability in velocity.

9. The case of transport/elliptic-type Vlasov equations

9A. An improvement of Theorem 2.1. Let us assume in this section that the following strengthened
version of (2-9) is satisfied:

kFj
kL2.0;t IH n

x /
� �.j/n

�
t; km 1

kL2.0;t IH n�1
x /; : : : ; km r

kL2.0;t IH n�1
x /;

X̀
jD1

kFj .0/kH n
x

�
: (9-1)

In other words, the force is smoothed out and gains one derivative compared to the distribution function.
We refer to such a situation as the transport/elliptic-type case. This includes in particular the Vlasov–
Poisson system. We then have the following version of Theorem 2.1. This is an improved version in the
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sense that the higher regularity we ask for is only regularity in x and not at all in v (compare (9-2) below
to (2-13) in Theorem 2.1).

Theorem 9.1. Let n�N and r >R. Let n0 > n be an integer such that n>
�

1
2
n0
˘
Cd C 1. Assume that

f0 2Hn
r and Fj .0/ 2H n0

x for all j 2 f1; : : : ; `g. Assume furthermore that the initial data f0 satisfies the
following higher space regularity:

@˛xf0 2H0
r for all j˛j D n0: (9-2)

Then there is T > 0 such that the following holds. There exists a unique solution .f .t/;F.t// with initial
data .f0;F.0// to (2-1) such that f .t/ 2 C.0;T IHn

r /.
Moreover, for all test functions  2L1.0;T IW n0;1

�r0
/, we haveZ

f  dv 2L2.0;T IH n0

x /: (9-3)

As in Corollary 2.5, we may deduce as well under the assumptions of Theorem 9.1 that

f 2L2.0;T IH n0;�1
x;v /: (9-4)

Proof of Theorem 9.1. The beginning of the proof is the same as for Theorem 2.1 (of which we keep the
notations). Let us set in this context

M WD kf0kH2m�1
r

C

2pX
kD0

X
j˛jD2mCk

k@˛xf0kH0
r
C

X̀
jD1

kFj .0/k
H

2.mCp/
x

: (9-5)

We proceed with the same induction argument, treating all terms similarly except for6 the treatment of
the term I0, for which the following is an improvement of Section 7. The idea will be to use integration
by parts in v to trade derivatives in v against derivatives in x, allowing us to obtain estimates depending
on (9-5) (compared to (3-13) for Theorem 2.1).

First note using the smoothing estimate (9-1) that we improve (7-2) toX̀
jD1

kFj
k

L2.0;T IH
2.mCk/
x /

�ƒ.T;M /: (9-6)

We can use this improved estimate with Remark 4.10 to deduce that the coefficients of A, as appearing
in (7-4), satisfy the improved form of (7-5)

kAkL2.0;T IW
p;1

x;v / .ƒ.T;M / for all p < 2m� 1
2
d � 1: (9-7)

Therefore we deduce the improved form of (7-8):

kA. � ; t; � /kL1.0;T IW p;1
x;v / .ƒ.T;M / for all p < 2m� 1

2
d � 1: (9-8)

6We also remark that in order to treat the term I2, we do not absolutely need to use Proposition 6.2; we can indeed rely on
the smoothing estimate (9-6) on the force instead and argue as we did for I1. This observation will be useful later in order to
treat other Vlasov models.
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The treatment of I0 then leads to the study of terms of the general form

J D

Z
Rd

.@˛x@
ˇ
vF/.0;X.0; t;x; v/; v/m.t;x; v/ dv;

where, for j Dm� k; : : : ;mC k, we have j˛jC jˇj DmC kC j, j˛j � 2j, and

kmkL1.0;T IHN
�r 0�r0

/ �ƒ.T;M /

for all N < 2m� 1
2
d � 1 and all r 0 > 1

2
d . If jˇj D 0, there is nothing special to do, as only derivatives in

x are involved, so let us assume that jˇj � 1. We write @ˇv D @
ˇ0

v @v. We have

J D

Z
Rd

@v Œ.@
˛
x@
ˇ0

v F/.0;X.0; t;x; v/; v/�m.t;x; v/ dv

�

Z
Rd

.@˛x@
ˇ0

v /.@vX.0; t;x; v/ � rxF/.0;X.0; t;x; v/; v/m.t;x; v/ dv;

and thus by integration by parts in v, we get

J D�

Z
Rd

Œ.@˛x@
ˇ0

v F/.0;X.0; t;x; v/; v/� @vm.t;x; v/ dv

�

Z
Rd

.@˛x@
ˇ0

v /.@vX.0; t;x; v/ � rxF/.0;X.0; t;x; v/; v/m.t;x; v/ dv:

We therefore observe that this procedure allows us to trade derivatives in v for derivatives in x.
Assume now that one can write, for some l 2 f1; : : : ; jˇjg,

J D
X
jˇ0j�l

X
j˛0j�j˛jCjˇj�l

Z
Rd

Œ.@˛
0

x @
ˇ0

v F/.0;X.0; t;x; v/; v/�m˛0;ˇ0.t;x; v/ dvCRl ;

where
km˛0;ˇ0kL1.0;T IHNl

�r 0�r0
/
�ƒ.T;M / (9-9)

for all Nl < 2m� 1
2
d � 1� jˇjC l and all r 0 > 1

2
d , and Rl is a remainder satisfying

kRlkL2.0;T IL2
x/
�ƒ.T;M /:

Let us show that this property holds as well for at rank l � 1. Following the same integration-by-parts
argument as above, we may write

J �Rl D J1CJ2CJ3;

where

J1 D

X
j˛0j�j˛jCjˇj�l

Z
Rd

Œ.@˛
0

x F/.0;X.0; t;x; v/; v/�m˛0;0.t;x; v/ dv;

J2 D�

X
jˇ0j�l

X
ˇ0D.ˇ00;j/

X
j˛0j�j˛jCjˇj�l

Z
Rd

Œ.@˛
0

x @
ˇ00

v F/.0;X.0; t;x; v/; v/� @vjm˛0;ˇ0.t;x; v/ dv;

J3 D�

X
jˇ0j�l

X
ˇ0D.ˇ00;j/

X
j˛0j�j˛jCjˇj�l

Z
Rd

.@˛
0

x @
ˇ00

v /.@vjX.0; t;x; v/ � rxF/.0;X.0; t;x; v/; v/
�m˛0;ˇ0.t;x; v/ dv:
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The terms J1 and J2 have good forms already. For J3, by using the Leibniz rule, we observe that we
need to study terms of the form

J D

Z
Rd

@x;vX.0; t;x; v/ @�1
x @

�2
v F.0;X.0; t;x; v/; v/m˛0;ˇ0.t;x; v/ dv;

with j�2j � jˇ
00j D l � 1, 1� j�1j � j˛

0jC 1, and j j D j˛0jC jˇ00j � j�1j � j�2jC 2.
Assume first that j�1jC j�2j � 2m� 1. If j�1jC j�2j< 2m� 1� d , then by the Sobolev embedding

we have the bound

k.1Cjvj2/
1
2

r .@�1
x @

�2
v F/.0;X.0; t;x; v/; v/kL1x;v � kf0kH2m�1

r
�ƒ.M /:

Since 0< j j � 2.mC k/, we use (9-6) and Lemma 5.2 to get

k@XkL1.0;T IL1v L2
x/
�ƒ.T;M /:

(This is where the elliptic estimate (9-1) is crucially used.) Furthermore, since 2m� 1
2
d � 1� 2p > d ,

we have the bound

km˛0;ˇ0kL1.0;T IW0;1

�r 0�r0
/
�ƒ.T;M /

for r 0 > 1
2
d such that r > r 0C r0C d . Therefore such terms satisfy the bound

kJkL2.0;T IL2
x;v/
�ƒ.T;M /;

and thus can be put into the remainder Rl�1. If j�1jC j�2j � 2m� 1� d , then j j � 2kC d C 1. Since
2m� d � 1> 1

2
d , we can use k@XkL1.0;T IL1x;v/ �ƒ.T;M / and again, arguing as in the treatment of

I0 in the proof of Theorem 2.1, such terms are remainders.
Otherwise j�1j C j�2j � 2m. Then we have j j � 2k and thus 2.mC k/� j j � 2m. We set in this

case m�1;�2
WD @


x;vX m˛0;ˇ0 . In order to show that @x;vX m˛0;ˇ0 has the required regularity, we are led to

study terms of the form

zJ D k@a
x;v@


x;vX @b

x;vm˛0;ˇ0kL1.0;T IH0
�r 0�r0

/; jajC jbj DNl�1;

for all Nl < 2m� 1
2
d � 1� jˇjC l � 1 and all r 0 > 1

2
d . Assume first that jaj< 2m� 1

2
d ; then we have

jajC j j< 2.mC k/� 1
2
d and we use estimate (5-7) in Lemma 5.2 to get k@a

x;v@

x;vXkL1.0;T IL1x;v/ �

ƒ.T;M /, and apply (9-9) to obtain the bound

k@b
x;vm˛0;ˇ0kL1.0;T IH0

�r 0�r0
/ �ƒ.T;M /:

Otherwise, jaj � 2m� 1
2
d . Since we have 2.mC k/� j j �Nl�1 for all Nl�1 < 2m� 2� jˇjC l , we

can use estimate (5-7) in Lemma 5.2 to getX
jaj�Nl�1

k@a
x;v@


x;vXkL1.0;T IL1v L2

x/
�ƒ.T;M /:
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Since jbj DNl�1� jaj �Nl�1� 2mC 1
2
d , we have Nl � jbj � 2mC 1� 1

2
d > d . As a result, by (9-9)

and the Sobolev embedding we get

k@b
x;vm˛0;ˇ0kL1.0;T IW0;1

�r 0�r0
/
�ƒ.T;M /:

In all cases, we have obtained
zJ �ƒ.T;M /:

Therefore the corresponding terms of J3 can be written in the formZ
Rd

.@�1
x @

�2
v F/.0;X.0; t;x; v/; v/m�1;�2

.t;x; v/ dv;

with
km�1;�2

k
L1.0;T IHNl�1

�r 0�r0
/
�ƒ.T;M /

for all Nl�1 < 2m� 1� jˇjC .l � 1/ and r 0 > 1
2
d .

We conclude by induction that we can write at rank l D 0

J D
X

j˛0j�mCkCj

Z
Rd

Œ.@˛
0

x F/.0;X.0; t;x; v/; v/�m˛0;0.t;x; v/ dvCR;

with
km˛0;ˇ0kL1.0;T IHN

�r 0�r0
/ �ƒ.T;M /

for all N < 2m� 1� jˇj and r 0 > 1
2
d , and kRkL2.0;T IL2

x/
�ƒ.T;M / is a remainder.

We then note that 2m� 2� 2k > d , so that

km˛0;ˇ0kL1.0;T IW0;1

�r 0�r0
/
�ƒ.T;M /:

Arguing as in the previous treatment of I0 in the proof of Theorem 2.1, we finally conclude that

kI0kL2.0;T IL2
x/
�ƒ.T;M /

mCkX
jDm�k

X
j˛jDmCk�j

k@˛xf0kH0
r
: (9-10)

This allows us to conclude the proof. �

As already noted in the proof of Theorem 9.1, we actually do not need to use Proposition 6.2 to treat
the term I2 in view of Theorem 9.1; we can indeed rely on the smoothing estimate (9-1) on the force
instead. Furthermore, one can obtain L1t estimates instead of the L2

t theory that we have developed.
This observation implies the following fact: replacing (9-1) by the slightly weaker estimate (in the sense
that it is implied by (9-1))

kFj
kL2.0;t IH n

x /
� �.j/n

�
t; km 1

kL1.0;t IH n�1
x /; : : : ; km r

kL1.0;t IH n�1
x /;

X̀
jD1

kFj .0/kH n
x

�
; (9-11)

together with an associated stability estimate replacing (2-11) with L1t norms instead of L2
t for the

moments on the right-hand side, Theorem 9.1 still holds. It suffices to estimate all terms (that is to say, the
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moments, I0, I1, I2; : : :) in L1.0;T IL2
x/ instead of L2.0;T IL2

x/ as previously done. This remark is
useful in particular to treat the so-called Vlasov–Darwin model from plasma physics, which we introduce
in the following section.

9B. Vlasov–Darwin. The Vlasov–Darwin system is another model that allows one to describe the
dynamics of charged particles in a plasma, which lies between Vlasov–Poisson and relativistic Vlasov
Maxwell systems. Like Vlasov–Poisson, it can be derived from the Vlasov–Maxwell system in the
nonrelativistic regime, that is to say, in the limit c!1. The difference is that the Vlasov–Darwin system
happens to be a higher-order approximation than the Vlasov–Poisson, see [Bauer and Kunze 2005]; in
particular it retains self-induced magnetic effects that have disappeared completely in the Vlasov–Poisson
dynamics. It is given by 8̂̂̂̂

ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

@tf C Ov � rxf C
�
EC

1

c
Ov�B

�
� rvf D 0;

E D�rx� �
1

c
@tA; B Drx �A;

�rx� D

Z
R3

f dv�

Z
T3�R3

f dv dx;

��xAD
1

c
P

Z
R3

Ovf dv; rx �AD 0;

(9-12)

where c > 0 is the speed of light and P denotes the Leray projection. The Cauchy problem for the
Vlasov–Darwin system (1-3) was studied (among many other references)

� for (global) weak solutions in [Pallard 2006],

� for strong solutions in [Pallard 2006; Seehafer 2008; Sospedra-Alfonso et al. 2012].

To embed this system into the abstract framework, we need to make the additional assumption that
all initial conditions f0 that are considered are a.e. nonnegative. By a standard property of the Vlasov
equation, any associated solution f .t/ is also a.e. nonnegative.

� Assumptions on the advection field. In this model a.v/D Ov, which is already treated for the relativistic
Vlasov–Maxwell case.

� Assumptions on the force field. We have the decomposition (8-1)–(8-2) as well. Let us set

E DELCET ; EL Drx�; ET D�
1

c
@tA

and introduce

 1 D 1;  2 D Ov;  3 D
Ov˝ Ovp

1Cjvj2=c2
;  3 D Id�m 3

(so that r0 D 0) and

m i
D

Z
Rd

 if dv;
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where m 3
and m 4

are symmetric matrices. Since EL and ET derive from potentials solving a Poisson
equation, we have

for all t � 0; k.EL;B/.t/kH n
x
.

2X
iD1

km i
.t/kH n�1

x
;

and thus

k.EL;B/kL1.0;t IH n
x / .

2X
iD1

km i
.t/kL1.0;t IH n�1

x /:

For ET , this is a little more subtle; this is where we need that f .t/ � 0 a.e. As in [Pallard 2006,
Lemma 2.10], we obtain that ET satisfies the inhomogeneous elliptic equation

��ET C
1

c
m 4

ET D�
1

c
.m 4

EL�m 2
�B �rx Wm 3

/: (9-13)

We fix the time t � 0, which is a parameter here (we take the L1t norm in the end). Let n > d . By
[Pallard 2006, Lemma 2.10], which relies on the fact that m 4

is actually a semidefinite symmetric matrix,
it follows that (9-13) has a unique solution ET in H 1

x , with the bound

kET kH 1
x
. km 4

ELkH�1
x
Ckm 2

�BkH�1
x
Ckr Wm 3

kH�1
x

. km 4
ELkL2

x
Ckm 2

�BkL2
x
Ckm 3

kL2
x

. km 4
kH n

x
kELkH n

x
Ckm 2

kH n
x
kBkH n

x
Ckm 3

kH n
x

.
�

1C

2X
iD1

km i
.t/kH n

x

�
.km 4

kH n
x
Ckm 2

kH n
x
Ckm 3

kH n
x
/:

Then assume by induction that we have a bound of the form

for all k D 1; : : : ;N; kET kH k
x
. �k.km 1

kH n
x
; : : : ; km 4

kH n
x
/ (9-14)

for N � n, where �k is a polynomial function. Assume first that N < n� 1
2
d . Let j˛j DN. We note that

@˛xET satisfies

��@˛xET C
1

c
m 4

@˛xET D�
1

c
@˛x.m 4

EL�m 2
�B �rx Wm 3

/� Œ@˛x;m 4
�ET :

We have by standard tame Sobolev estimates@˛x.m 4
EL�m 2

�B �rx Wm 3
/


H�1
x

.
�

1C

2X
iD1

km i
.t/kH n

x

�
.km 4

kH n
x
Ckm 2

kH n
x
Ckm 3

kH n
x
/: (9-15)

Since N < n� 1
2
d , we can use the Sobolev embedding to obtain

kŒ@˛x;m 4
�ET kH�1

x
. km 4

k
W

N;1
x
kET kH N

x

. km 4
kH n

x
�k.km 1

kH n
x
; : : : ; km 4

kH n
x
/:
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We apply again the H 1
x estimate of [Pallard 2006, Lemma 2.10] to obtain a bound of the form

kET kH NC1
x
. �NC1.km 1

kH n
x
; : : : ; km 4

kH n
x
/:

We deduce by induction that for all N < n� 1
2
d ,

kET kH NC1
x
. �NC1.km 1

kH n
x
; : : : ; km 4

kH n
x
/:

In particular, since n> d , we deduce

kET kL1x . �.km 1
kH n

x
; : : : ; km 4

kH n
x
/: (9-16)

Now assume we have (9-14) for some N � n. We have the tame Sobolev estimate

kŒ@˛x;m 4
�ET kH�1

x
. km 4

kH n.kET kH N
x
CkET kL1x /

. km 4
kH n

x
�N .km 1

kH n
x
; : : : ; km 4

kH n
x
/;

by (9-14) at rank N and (9-16). Thus using the H 1
x estimate of [Pallard 2006, Lemma 2.10], we

obtain (9-14) at rank N C 1. By induction, we conclude that

kET kL1.0;T IH nC1
x /
. �nC1.km 1

kL1.0;T IH n
x /; : : : ; km 4

kL1.0;T IH n
x //;

which is an estimate of the requested form (9-11). A stability estimate of the same form also holds
because of similar considerations.

10. On the regularity assumptions of Theorem 2.1

The goal of this short last section is to discuss the type of regularity assumptions which could be
conceivable for proving propagation of higher regularity.

Example 1. Consider the free transport equation

@tf C v @xf D 0; (10-1)

set in R�R to simplify the discussion. Let '.v/ be a C1 function, with compact support in
�
�

1
2
; 1

2

�
and

such that
R

R
' dv D 0. Let g be the piecewise continuous function defined by g.x/D 1 for x 2 Œ�1; 1�

and 0 elsewhere. Observe that in the sense of distributions, we have g0.x/D ıxD�1� ıxD�1, where ı
stands for the Dirac measure. We consider the initial condition

f jtD0 D g.x/ '.v/ 2L2
x;v;

and the solution to (10-1) can be written as

f .t;x; v/D g.x� tv/ '.v/:

It follows by explicit computations that �.t;x/ WD
R

R
f dv satisfies

@x�.t;x/D '

�
xC 1

t

�
�'

�
x� 1

t

�
;

@k
x�.t;x/D

1

tk�1

�
'.k�1/

�
xC 1

t

�
�'.k�1/

�
x� 1

t

��
for all k 2 N�:



ON PROPAGATION OF HIGHER SPACE REGULARITY FOR NONLINEAR VLASOV EQUATIONS 239

We have for t < 4,

k@k
x�.t/k

2

L2
x
D

1

t2.k�1/

�'.k�1/

�
xC 1

t

�2

L2
x

C

'.k�1/

�
x� 1

t

�2

L2
x

�
;

since ' is compactly supported in
�
�

1
2
; 1

2

�
, and thus

k@k
x�.t/k

2

L2
x
D

2

t2.k�1/�1
k'.k�1/

k
2

L2
x
:

We deduce that for any T > 0, we have � 62L2.0;T IH 2
x /. However, �.0;x/D 0 2H k

x for all k 2 N.
This example shows that regularity of moments at initial time may not be propagated, and more precise

information such as (2-13) is somehow required to obtain higher regularity for moments.

Example 2. Consider the equation

@tf C v @xf CF.t;x/ @vf D 0 (10-2)

on T�R, with
F.t;x/D

Z
R

 .v/f .t;x; v/ dv;

where  2C1c .Rd / with compact support in
�
�

1
2
; 1

2

�
. It is clear that (10-2) enters the abstract framework

of this work.
We consider the initial condition

f jtD0 D f
.1/

0
Cf

.2/
0
;

where f .2/
0

is a smooth nonnegative function, with support in T�
�
�

1
2
; 1

2

�
and f .1/

0
is a smooth nonnegative

function, with support in T� Œ1; 2�.
Consider f .1/ the solution of (10-2) associated to the initial condition f .1/

0
, and assume that it is

defined on an interval Œ0;T � for T > 0 small enough. Now define f .2/ as the solution on Œ0;T � of the
linear kinetic transport equation

@tf C v @xf C

�Z
R

 .v/f .1/ dv

�
@vf D 0;

with initial condition f .2/
0

.
Because of the form of the force F , notably because  is localised in

�
�

1
2
; 1

2

�
, we observe that up to

reducing T > 0, the solution f on Œ0;T � of (10-2) can be written as

f D f .1/Cf .2/;

since T > 0 can be chosen small enough so that the support in velocity of f .2/.t/ is disjoint from that
of  , and thus Z

R

 .v/ f .2/.t/ dv D 0:

Now let k 2 N and assume that there is .x0; v0/ 2 T � .1; 2/ such that f jtD0.x0; v0/ is not zero and
is locally H k around this point. Because of the assumptions on the supports, this is equivalent to
asking that f .2/

0
.x0; v0/ is not zero and is locally H k around this point. However, we can choose



240 DANIEL HAN-KWAN

(independently of f .2/
0

) f .1/
0

so that
R

R
 .v/f .1/ dv is not H k, in such a way that f .2/.t/ (and thus

f .t/) is not locally H k around points of the form .X.0; t;x0; v0/;V .0; t;x0; v0//, where .X;V / denotes
the characteristics associated to F, as defined in (1-7).

This example shows that local regularity may not be propagated (along characteristics), contrary to
what happens for the class of PDEs considered in [Bony 1981]. This is due to the “nonlocality” in velocity.
Therefore a global regularity assumption is required in order to obtain propagation of higher regularity.

This example can (also) be slightly modified, in order to prove that a local version of (2-13) cannot
either be propagated into higher local regularity of moments; see the next (and last) example.

Example 3. Consider the equation

@tf C v @xf CF
�
t;xC 1

4

�
@vf D 0 (10-3)

on T�R (here we identify T with Œ0; 1/ with periodic boundary conditions). Let us consider as in the
previous example

F.t;x/D

Z
R

 .v/ f .t;x; v/ dv:

We consider the initial condition
f jtD0 D f

.1/
0
Cf

.2/
0
;

where f .1/
0

is a nonnegative function, with compact support in
�
0; 1

8

�
�R, and f .2/

0
is a nonnegative

function, with compact support in
�

1
4
; 3

8

�
�R.

Observe that because of the shift in the argument of the force, by looking at the supports in x, the
solution f .2/ associated to the initial condition f .2/

0
is equal to f .2/

0
.t;x � tv; v/ on Œ0;T � for T > 0

small enough. Moreover, we have�Z
R

 .v/f .2/
�
t;xC 1

4
; v
�

dv

�
@vf

.2/
D 0:

Now define f .1/ as the solution on Œ0;T � of the linear kinetic transport equation

@tf C v @xf C

�Z
R

 .v/ f
.2/

0

�
xC 1

4
� tv; v

�
dv

�
@vf D 0;

with initial condition f .2/
0

.
We observe that up to reducing T > 0, the solution f on Œ0;T � of (10-2) can be written as

f D f .1/Cf .2/:

Indeed, by looking at the supports in x, we can impose T > 0 small enough so that�Z
R

 .v/ f .1/
�
t;xC 1

4
; v
�

dv

�
@vf

.2/
D 0;�Z

R

 .v/ f .1/
�
t;xC 1

4
; v
�

dv

�
@vf

.1/
D 0:

Now let k 2N and assume that there is x0 2
�
0; 1

8

�
such that

R
R
f jtD0.x0; v/ dv¤ 0 and f jtD0 is locally

H k
x around this point. This is equivalent to asking that

R
R
f
.1/

0
.x0; v/ dv ¤ 0 and f .1/

0
is locally H k

x
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around this point. This corresponds to a local analogue of (2-13). However, we can choose (independently
of f .1/

0
) f .2/

0
so that

R
R
 .v/f

.2/
0
.x � tv; v/ dv is not locally H k, in such a way that the moments in

velocity of f .1/.t/ (and thus of f .t/) are not locally H k
x around points of the form X.0; t;x0; v0/, for

some v0 2 R.
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[Hadžić and Rein 2007] M. Hadžić and G. Rein, “Global existence and nonlinear stability for the relativistic Vlasov–Poisson
system in the gravitational case”, Indiana Univ. Math. J. 56:5 (2007), 2453–2488. MR Zbl

[Han-Kwan and Nguyen 2016] D. Han-Kwan and T. T. Nguyen, “Ill-posedness of the hydrostatic Euler and singular Vlasov
equations”, Arch. Ration. Mech. Anal. 221:3 (2016), 1317–1344. MR Zbl

[Han-Kwan and Rousset 2016] D. Han-Kwan and F. Rousset, “Quasineutral limit for Vlasov–Poisson with Penrose stable data”,
Ann. Sci. Éc. Norm. Supér. .4/ 49:6 (2016), 1445–1495. MR Zbl

[Han-Kwan and Rousset � 2019] D. Han-Kwan and F. Rousset, “From Vlasov–Poisson to the kinetic Euler equation”, in
preparation.

[Han-Kwan et al. 2017] D. Han-Kwan, T. T. Hguyen, and F. Rousset, “Long time estimates for the Vlasov–Maxwell system in
the non-relativistic limit”, preprint, 2017. arXiv

[Hörmander 1976] L. Hörmander, Linear partial differential operators, Springer, 1976. MR Zbl

[Horst 1993] E. Horst, “On the asymptotic growth of the solutions of the Vlasov–Poisson system”, Math. Methods Appl. Sci.
16:2 (1993), 75–86. MR Zbl

http://dx.doi.org/10.1002/mma.1670080135
http://dx.doi.org/10.1002/mma.1670080135
http://msp.org/idx/mr/870991
http://msp.org/idx/zbl/0619.35088
http://dx.doi.org/10.1016/j.cma.2009.08.008
http://msp.org/idx/mr/2601394
http://msp.org/idx/zbl/1227.76067
http://dx.doi.org/10.1007/s00220-016-2608-9
http://dx.doi.org/10.1007/s00220-016-2608-9
http://msp.org/idx/mr/3537338
http://msp.org/idx/zbl/1351.35224
http://dx.doi.org/10.1002/cpa.3160420603
http://msp.org/idx/mr/1003433
http://msp.org/idx/zbl/0698.35128
http://dx.doi.org/10.1016/S0294-1449(16)30264-5
http://msp.org/idx/mr/1127927
http://msp.org/idx/zbl/0763.35014
http://dx.doi.org/10.2140/apde.2017.10.1539
http://dx.doi.org/10.2140/apde.2017.10.1539
http://msp.org/idx/mr/3683922
http://msp.org/idx/zbl/1373.35046
http://dx.doi.org/10.24033/asens.1599
http://msp.org/idx/mr/1042388
http://msp.org/idx/zbl/0725.35003
http://dx.doi.org/10.1002/cpa.3160450102
http://msp.org/idx/mr/1135922
http://msp.org/idx/zbl/0832.35020
http://dx.doi.org/10.4310/MRL.1996.v3.n4.a7
http://msp.org/idx/mr/1406014
http://msp.org/idx/zbl/0864.44001
http://dx.doi.org/10.1137/1.9781611971477
http://msp.org/idx/mr/1379589
http://msp.org/idx/zbl/0858.76001
http://dx.doi.org/10.1007/BF01210740
http://msp.org/idx/mr/815195
http://msp.org/idx/zbl/0582.35110
http://dx.doi.org/10.1007/BF00250732
http://dx.doi.org/10.1007/BF00250732
http://msp.org/idx/mr/816621
http://msp.org/idx/zbl/0595.35072
http://dx.doi.org/10.1007/BF01223511
http://msp.org/idx/mr/919231
http://msp.org/idx/zbl/0646.35072
http://dx.doi.org/10.1016/S1631-073X(02)02302-6
http://msp.org/idx/mr/1903763
http://msp.org/idx/zbl/1154.35326
http://msp.org/idx/mr/808622
http://msp.org/idx/zbl/0591.45007
http://dx.doi.org/10.1016/0022-1236(88)90051-1
http://dx.doi.org/10.1016/0022-1236(88)90051-1
http://msp.org/idx/mr/923047
http://msp.org/idx/zbl/0652.47031
http://dx.doi.org/10.1512/iumj.2007.56.3064
http://dx.doi.org/10.1512/iumj.2007.56.3064
http://msp.org/idx/mr/2360616
http://msp.org/idx/zbl/1133.35011
http://dx.doi.org/10.1007/s00205-016-0985-z
http://dx.doi.org/10.1007/s00205-016-0985-z
http://msp.org/idx/mr/3509003
http://msp.org/idx/zbl/1344.35085
http://smf4.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_1445-1495.php
http://msp.org/idx/mr/3592362
http://msp.org/idx/zbl/1361.35179
http://msp.org/idx/arx/1710.03335
http://msp.org/idx/mr/0404822
http://msp.org/idx/zbl/0321.35001
http://dx.doi.org/10.1002/mma.1670160202
http://msp.org/idx/mr/1200156
http://msp.org/idx/zbl/0782.35079


ON PROPAGATION OF HIGHER SPACE REGULARITY FOR NONLINEAR VLASOV EQUATIONS 243

[Jabin 2000] P.-E. Jabin, “Large time concentrations for solutions to kinetic equations with energy dissipation”, Comm. Partial
Differential Equations 25:3-4 (2000), 541–557. MR Zbl

[Jabin 2009] P.-E. Jabin, “Averaging lemmas and dispersion estimates for kinetic equations”, Riv. Mat. Univ. Parma .8/ 1 (2009),
71–138. MR Zbl

[Jabin and Vega 2004] P.-E. Jabin and L. Vega, “A real space method for averaging lemmas”, J. Math. Pures Appl. .9/ 83:11
(2004), 1309–1351. MR Zbl

[Kiessling and Tahvildar-Zadeh 2008] M. K.-H. Kiessling and A. S. Tahvildar-Zadeh, “On the relativistic Vlasov–Poisson
system”, Indiana Univ. Math. J. 57:7 (2008), 3177–3207. MR Zbl

[Klainerman and Staffilani 2002] S. Klainerman and G. Staffilani, “A new approach to study the Vlasov–Maxwell system”,
Commun. Pure Appl. Anal. 1:1 (2002), 103–125. MR Zbl

[Lemou et al. 2008] M. Lemou, F. Méhats, and P. Raphaël, “Stable self-similar blow up dynamics for the three dimensional
relativistic gravitational Vlasov–Poisson system”, J. Amer. Math. Soc. 21:4 (2008), 1019–1063. MR Zbl

[Lions and Perthame 1991] P.-L. Lions and B. Perthame, “Propagation of moments and regularity for the 3-dimensional
Vlasov–Poisson system”, Invent. Math. 105:2 (1991), 415–430. MR Zbl

[Luk and Strain 2016] J. Luk and R. M. Strain, “Strichartz estimates and moment bounds for the relativistic Vlasov–Maxwell
system”, Arch. Ration. Mech. Anal. 219:1 (2016), 445–552. MR Zbl

[Mouhot and Villani 2011] C. Mouhot and C. Villani, “On Landau damping”, Acta Math. 207:1 (2011), 29–201. MR Zbl

[Moussa and Sueur 2013] A. Moussa and F. Sueur, “On a Vlasov–Euler system for 2D sprays with gyroscopic effects”, Asymptot.
Anal. 81:1 (2013), 53–91. MR Zbl

[Pallard 2006] C. Pallard, “The initial value problem for the relativistic Vlasov–Darwin system”, Int. Math. Res. Not. 2006
(2006), art. id. 57191. MR Zbl

[Pallard 2015] C. Pallard, “A refined existence criterion for the relativistic Vlasov–Maxwell system”, Commun. Math. Sci. 13:2
(2015), 347–354. MR Zbl

[Perthame and Souganidis 1998] B. Perthame and P. E. Souganidis, “A limiting case for velocity averaging”, Ann. Sci. École
Norm. Sup. .4/ 31:4 (1998), 591–598. MR Zbl

[Pfaffelmoser 1992] K. Pfaffelmoser, “Global classical solutions of the Vlasov–Poisson system in three dimensions for general
initial data”, J. Differential Equations 95:2 (1992), 281–303. MR Zbl

[Schaeffer 1986] J. Schaeffer, “The classical limit of the relativistic Vlasov–Maxwell system”, Comm. Math. Phys. 104:3 (1986),
403–421. MR Zbl

[Schaeffer 1991] J. Schaeffer, “Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions”, Comm.
Partial Differential Equations 16:8-9 (1991), 1313–1335. MR Zbl

[Schaeffer 2004] J. Schaeffer, “A small data theorem for collisionless plasma that includes high velocity particles”, Indiana Univ.
Math. J. 53:1 (2004), 1–34. MR Zbl

[Seehafer 2008] M. Seehafer, “Global classical solutions of the Vlasov–Darwin system for small initial data”, Commun. Math.
Sci. 6:3 (2008), 749–764. MR Zbl

[Smulevici 2016] J. Smulevici, “Small data solutions of the Vlasov–Poisson system and the vector field method”, Ann. PDE 2:2
(2016), art. id. 11. MR

[Sospedra-Alfonso et al. 2012] R. Sospedra-Alfonso, M. Agueh, and R. Illner, “Global classical solutions of the relativistic
Vlasov–Darwin system with small Cauchy data: the generalized variables approach”, Arch. Ration. Mech. Anal. 205:3 (2012),
827–869. MR Zbl

[Ukai and Okabe 1978] S. Ukai and T. Okabe, “On classical solutions in the large in time of two-dimensional Vlasov’s equation”,
Osaka J. Math. 15:2 (1978), 245–261. MR Zbl

[Wollman 1984] S. Wollman, “An existence and uniqueness theorem for the Vlasov–Maxwell system”, Comm. Pure Appl. Math.
37:4 (1984), 457–462. MR Zbl

[Wollman 1987] S. Wollman, “Local existence and uniqueness theory of the Vlasov–Maxwell system”, J. Math. Anal. Appl.
127:1 (1987), 103–121. MR Zbl

http://dx.doi.org/10.1080/03605300008821523
http://msp.org/idx/mr/1748358
http://msp.org/idx/zbl/0965.35014
http://rivista.math.unipr.it/fulltext/2009-1/articoli/02_jabin.pdf
http://msp.org/idx/mr/2597793
http://msp.org/idx/zbl/1190.35152
http://dx.doi.org/10.1016/j.matpur.2004.03.004
http://msp.org/idx/mr/2096303
http://msp.org/idx/zbl/1082.35043
http://dx.doi.org/10.1512/iumj.2008.57.3387
http://dx.doi.org/10.1512/iumj.2008.57.3387
http://msp.org/idx/mr/2492230
http://msp.org/idx/zbl/1173.35008
http://dx.doi.org/10.3934/cpaa.2002.1.103
http://msp.org/idx/mr/1877669
http://msp.org/idx/zbl/1037.35088
http://dx.doi.org/10.1090/S0894-0347-07-00579-6
http://dx.doi.org/10.1090/S0894-0347-07-00579-6
http://msp.org/idx/mr/2425179
http://msp.org/idx/zbl/1206.82092
http://dx.doi.org/10.1007/BF01232273
http://dx.doi.org/10.1007/BF01232273
http://msp.org/idx/mr/1115549
http://msp.org/idx/zbl/0741.35061
http://dx.doi.org/10.1007/s00205-015-0899-1
http://dx.doi.org/10.1007/s00205-015-0899-1
http://msp.org/idx/mr/3437855
http://msp.org/idx/zbl/1337.35150
http://dx.doi.org/10.1007/s11511-011-0068-9
http://msp.org/idx/mr/2863910
http://msp.org/idx/zbl/1239.82017
http://dx.doi.org/10.3233/ASY-2012-1123
http://msp.org/idx/mr/3060032
http://msp.org/idx/zbl/1284.35440
http://dx.doi.org/10.1155/IMRN/2006/57191
http://msp.org/idx/mr/2250010
http://msp.org/idx/zbl/1110.35095
http://dx.doi.org/10.4310/CMS.2015.v13.n2.a4
http://msp.org/idx/mr/3291372
http://msp.org/idx/zbl/1309.76228
http://dx.doi.org/10.1016/S0012-9593(98)80108-0
http://msp.org/idx/mr/1634024
http://msp.org/idx/zbl/0956.45010
http://dx.doi.org/10.1016/0022-0396(92)90033-J
http://dx.doi.org/10.1016/0022-0396(92)90033-J
http://msp.org/idx/mr/1165424
http://msp.org/idx/zbl/0810.35089
http://dx.doi.org/10.1007/BF01210948
http://msp.org/idx/mr/840744
http://msp.org/idx/zbl/0597.35109
http://dx.doi.org/10.1080/03605309108820801
http://msp.org/idx/mr/1132787
http://msp.org/idx/zbl/0746.35050
http://dx.doi.org/10.1512/iumj.2004.53.2515
http://msp.org/idx/mr/2048181
http://msp.org/idx/zbl/1059.35152
http://dx.doi.org/10.4310/CMS.2008.v6.n3.a11
http://msp.org/idx/mr/2455474
http://msp.org/idx/zbl/1157.35335
http://dx.doi.org/10.1007/s40818-016-0016-2
http://msp.org/idx/mr/3595457
http://dx.doi.org/10.1007/s00205-012-0518-3
http://dx.doi.org/10.1007/s00205-012-0518-3
http://msp.org/idx/mr/2960034
http://msp.org/idx/zbl/1256.35172
http://projecteuclid.org/euclid.ojm/1200771271
http://msp.org/idx/mr/504289
http://msp.org/idx/zbl/0405.35002
http://dx.doi.org/10.1002/cpa.3160370404
http://msp.org/idx/mr/745326
http://msp.org/idx/zbl/0592.45010
http://dx.doi.org/10.1016/0022-247X(87)90143-0
http://msp.org/idx/mr/904213
http://msp.org/idx/zbl/0645.35013


244 DANIEL HAN-KWAN

Received 12 Oct 2017. Revised 19 Mar 2018. Accepted 19 Apr 2018.

DANIEL HAN-KWAN: daniel.han-kwan@polytechnique.edu
CMLS, École polytechnique, CNRS, Palaiseau, France

mathematical sciences publishers msp

mailto:daniel.han-kwan@polytechnique.edu
http://msp.org


Analysis & PDE
msp.org/apde

EDITORS

EDITOR-IN-CHIEF

Patrick Gérard
patrick.gerard@math.u-psud.fr

Université Paris Sud XI
Orsay, France

BOARD OF EDITORS

Massimiliano Berti Scuola Intern. Sup. di Studi Avanzati, Italy
berti@sissa.it

Sun-Yung Alice Chang Princeton University, USA
chang@math.princeton.edu

Michael Christ University of California, Berkeley, USA
mchrist@math.berkeley.edu

Alessio Figalli ETH Zurich, Switzerland
alessio.figalli@math.ethz.ch

Charles Fefferman Princeton University, USA
cf@math.princeton.edu

Ursula Hamenstaedt Universität Bonn, Germany
ursula@math.uni-bonn.de

Vaughan Jones U.C. Berkeley & Vanderbilt University
vaughan.f.jones@vanderbilt.edu

Vadim Kaloshin University of Maryland, USA
vadim.kaloshin@gmail.com

Herbert Koch Universität Bonn, Germany
koch@math.uni-bonn.de

Izabella Laba University of British Columbia, Canada
ilaba@math.ubc.ca

Gilles Lebeau Université de Nice Sophia Antipolis, France
lebeau@unice.fr

Richard B. Melrose Massachussets Inst. of Tech., USA
rbm@math.mit.edu

Frank Merle Université de Cergy-Pontoise, France
Frank.Merle@u-cergy.fr

William Minicozzi II Johns Hopkins University, USA
minicozz@math.jhu.edu

Clément Mouhot Cambridge University, UK
c.mouhot@dpmms.cam.ac.uk

Werner Müller Universität Bonn, Germany
mueller@math.uni-bonn.de

Gilles Pisier Texas A&M University, and Paris 6
pisier@math.tamu.edu

Tristan Rivière ETH, Switzerland
riviere@math.ethz.ch

Igor Rodnianski Princeton University, USA
irod@math.princeton.edu

Sylvia Serfaty New York University, USA
serfaty@cims.nyu.edu

Yum-Tong Siu Harvard University, USA
siu@math.harvard.edu

Terence Tao University of California, Los Angeles, USA
tao@math.ucla.edu

Michael E. Taylor Univ. of North Carolina, Chapel Hill, USA
met@math.unc.edu

Gunther Uhlmann University of Washington, USA
gunther@math.washington.edu

András Vasy Stanford University, USA
andras@math.stanford.edu

Dan Virgil Voiculescu University of California, Berkeley, USA
dvv@math.berkeley.edu

Steven Zelditch Northwestern University, USA
zelditch@math.northwestern.edu

Maciej Zworski University of California, Berkeley, USA
zworski@math.berkeley.edu

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2019 is US $310/year for the electronic version, and $520/year (+$60, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Uni-
versity of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and
additional mailing offices.

APDE peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

http://msp.org/apde
mailto:patrick.gerard@math.u-psud.fr
mailto:berti@sissa.it
mailto:chang@math.princeton.edu
mailto:mchrist@math.berkeley.edu
mailto:alessio.figalli@math.ethz.ch
mailto:cf@math.princeton.edu
mailto:ursula@math.uni-bonn.de
mailto:vaughan.f.jones@vanderbilt.edu
mailto:vadim.kaloshin@gmail.com
mailto:koch@math.uni-bonn.de
mailto:ilaba@math.ubc.ca
mailto:lebeau@unice.fr
mailto:rbm@math.mit.edu
mailto:Frank.Merle@u-cergy.fr
mailto:minicozz@math.jhu.edu
mailto:c.mouhot@dpmms.cam.ac.uk
mailto:mueller@math.uni-bonn.de
mailto:pisier@math.tamu.edu
mailto:riviere@math.ethz.ch
mailto:irod@math.princeton.edu
mailto:serfaty@cims.nyu.edu
mailto:siu@math.harvard.edu
mailto:tao@math.ucla.edu
mailto:met@math.unc.edu
mailto:gunther@math.washington.edu
mailto:andras@math.stanford.edu
mailto:dvv@math.berkeley.edu
mailto:zelditch@math.northwestern.edu
mailto:zworski@math.berkeley.edu
mailto:production@msp.org
http://msp.org/apde
http://msp.org/
http://msp.org/


ANALYSIS & PDE
Volume 12 No. 1 2019

1Boundary behavior of solutions to the parabolic p-Laplace equation
BENNY AVELIN, TUOMO KUUSI and KAJ NYSTRÖM

43On asymptotic dynamics for L2 critical generalized KdV equations with a saturated perturba-
tion

YANG LAN

113On the stability of type II blowup for the 1-corotational energy-supercritical harmonic heat
flow

TEJ-EDDINE GHOUL, SLIM IBRAHIM and VAN TIEN NGUYEN

189On propagation of higher space regularity for nonlinear Vlasov equations
DANIEL HAN-KWAN

245On a boundary value problem for conically deformed thin elastic sheets
HEINER OLBERMANN

2157-5045(2019)12:1;1-P

A
N

A
LY

SIS
&

PD
E

Vol.12,
N

o.1
2019


	1. Introduction
	2. Main results
	2A. The abstract framework
	2B. Statement of the main results
	2C. Overview of the proof
	2D. Content of the end of the paper

	3. Local well-posedness
	4. Differential operators
	4A. Second-order operators
	4B. Composition of the second-order operators
	4C. Moments in v
	4D. The equation satisfied by L^{I,J}f
	4E. The equation satisfied by LI,J x v f
	4F. Proofs of Lemmas 4.5 and 4.7

	5. Burgers' equation and the semilagrangian approach
	6. Averaging operators
	6A. The smoothing estimate
	6B. Intermission: a comparison to averaging lemmas

	7. Proofs of Theorem 2.1 and Corollaries 2.2 and 2.5
	7A. End of the proof of Theorem 2.1
	7A1. Study of I_0
	7A2. Study of I_1
	7A3. Study of I_2

	7B. Proof of Corollary 2.2
	7C. Proof of Corollary 2.5

	8. Application to classical models from physics
	8A. Vlasov–Poisson
	8B. Relativistic Vlasov–Maxwell
	8C. Remarks

	9. The case of transport/elliptic-type Vlasov equations
	9A. An improvement of Theorem 2.1
	9B. Vlasov–Darwin

	10. On the regularity assumptions of Theorem 2.1
	Acknowledgements
	References
	
	

