Vol. 12, No. 1, 2019

Download this article
Download this article For screen
For printing
Recent Issues

Volume 15
Issue 6, 1375–1616
Issue 5, 1131–1373
Issue 4, 891–1130
Issue 3, 567–890
Issue 2, 273–566
Issue 1, 1–272

Volume 14, 8 issues

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
ISSN: 1948-206X (e-only)
ISSN: 2157-5045 (print)
Author Index
To Appear
Other MSP Journals
This article is available for purchase or by subscription. See below.
On a boundary value problem for conically deformed thin elastic sheets

Heiner Olbermann

Vol. 12 (2019), No. 1, 245–258

We consider a thin elastic sheet in the shape of a disk that is clamped at its boundary such that the displacement and the deformation gradient coincide with a conical deformation with no stretching there. These are the boundary conditions of a so-called “d-cone”. We define the free elastic energy as a variation of the von Kármán energy, which penalizes bending energy in Lp with p (2, 8 3) (instead of, as usual, p = 2). We prove ansatz-free upper and lower bounds for the elastic energy that scale like hp(p1), where h is the thickness of the sheet.

PDF Access Denied

We have not been able to recognize your IP address as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 40.00:

thin elastic sheets, d-cone
Mathematical Subject Classification 2010
Primary: 49Q10, 74K20
Received: 4 January 2018
Revised: 5 March 2018
Accepted: 10 April 2018
Published: 2 August 2018
Heiner Olbermann
Universität Leipzig