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BOUNDARY BEHAVIOR OF SOLUTIONS TO
THE PARABOLIC p-LAPLACE EQUATION

BENNY AVELIN, TUOMO KUUSI AND KAJ NYSTRÖM

We establish boundary estimates for nonnegative solutions to the p-parabolic equation in the degenerate
range p > 2. Our main results include new parabolic intrinsic Harnack chains in cylindrical NTA domains
together with sharp boundary decay estimates. If the underlying domain is C 1;1-regular, we establish a
relatively complete theory of the boundary behavior, including boundary Harnack principles and Hölder
continuity of the ratios of two solutions, as well as fine properties of associated boundary measures. There
is an intrinsic waiting-time phenomenon present which plays a fundamental role throughout the paper. In
particular, conditions on these waiting times rule out well-known examples of explicit solutions violating
the boundary Harnack principle.

1. Introduction and results

This paper is devoted to a study of the boundary behavior of nonnegative solutions to the p-parabolic
equation, in the degenerate range p> 2. We restrict the analysis to space-time cylinders �T D��.0;T /,
T > 0, where �� Rn is a bounded domain, i.e., an open and connected set. Given p, 1< p <1, fixed,
recall that the p-parabolic equation is

@tu��pu WD @tu�r � .jrujp�2
ru/D 0: (1-1)

In the special case p D 2, the p-parabolic equation coincides with the heat equation, and in this case
we refer to [Kemper 1972; Salsa 1981], and also [Fabes et al. 1984; 1986; 1999; Fabes and Safonov 1997;
Garofalo 1984; Nyström 1997] concerning the boundary behavior of nonnegative solutions. Key results
established in these works, in the context of Lipschitz-cylinders �T , include Carleson-type estimates,
the relation between the associated parabolic measure and the Green’s function, the backward-in-time
Harnack inequality, boundary Harnack principles (local and global) and Hölder continuity up to the
boundary of quotients of nonnegative solutions vanishing on the lateral boundary.

On the contrary for p ¤ 2, 1< p <1, much less is known concerning these problems and we refer
the reader to [Avelin 2016; Avelin et al. 2016; Kuusi et al. 2014] for accounts of the current literature.
For a relatively complete picture in the case of nonlinear parabolic operators with linear growth, we refer
to [Nyström et al. 2015]. However, it is also important to mention that there is interesting and related
recent literature devoted to the asymptotic and pointwise behavior of solutions to nonlinear diffusion

MSC2010: primary 35K20; secondary 35K65, 35B65.
Keywords: p-parabolic equation, degenerate, intrinsic geometry, waiting time phenomenon, intrinsic Harnack chains, boundary

Harnack principle, p-stability.
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equations on bounded domains; see [Stan and Vázquez 2013], and also [Bonforte and Vázquez 2015] for
the porous medium-type equations.

Considering nonnegative solutions to the p-parabolic equation, for p in the degenerate range p > 2, it
is a priori not clear to what extent and in what sense the above-mentioned results can hold. Indeed, on
the one hand we have to account for the lack of homogeneity of the p-parabolic equation, and on the
other hand we have to account for the fact that in the degenerate regime the phenomenon of finite speed
propagation is present. As a matter of fact, simple examples show that in this case there are, compared to
the case p D 2, much more delicate waiting-time phenomena to take into account.

To discuss the aspects of the waiting time phenomena further, we here first briefly describe some
by now classical results in the case p D 2; see [Fabes et al. 1986; Salsa 1981]. Assume that � is,
say, a Lipschitz domain, that x0 2 @� and let A˙ WD .ar .x0/; t0 ˙ r2/, where ar .x0/ is an interior
point of � with distance to the boundary comparable to r . Assume also that u and v are nonnegative
caloric functions in �T , i.e., functions satisfying (1-1) with p D 2 in �T , vanishing continuously on
.@�\Br .x0//� .t0 � r2; t0C r2/, where Br .x0/ � Rn is the standard Euclidean ball of radius r and
centered at x0 2 Rn. Then

c�1 u.A�/

v.AC/
�

u.x; t/

v.x; t/
� c

u.AC/

v.A�/
; (1-2)

for a universal constant c, whenever .x; t/ 2 .�\Br=2.x0//� .t0 � .r=2/
2; t0C .r=2/

2/. However, in
general an estimate like (1-2) dramatically fails in the case p ¤ 2. To see this, recall the following two
classical solutions, see, e.g., [Avelin et al. 2016], in the case when � WD Rn�1 � fxn W xn > 0g:

u.x; t/D cp.T � t/�1=.p�2/xp=.p�2/
n ; v.x; t/D xn: (1-3)

In view of the examples in (1-3) it is not clear under what conditions the boundary Harnack principle
in (1-2) could hold. Let us make a few observations. When defining u as in (1-3), we see that the larger
we take T, the longer the solution u exists and the smaller its pointwise values become at a fixed time
t < T . If we wish to show an estimate as in (1-2), we need to be able to rule out examples like u in (1-3);
see also some other examples in [Avelin et al. 2016]. We do this by simply requiring, for .x; t/ 2�T

fixed, that
T � t > C0u.x; t/2�pd.x; @�/p (1-4)

for a large enough constant C0. It is easily seen that the solution u in (1-3) does not satisfy (1-4) at any
point .x; t/ 2�T if we require C0 � c

p�2
p .

In this context, and for the p-parabolic equation, it is here natural to make a link to the by-now classical
method of intrinsic scaling due to [DiBenedetto 1993]. The intrinsic scalings define the canonical
geometry in which weak solutions to the p-parabolic equation become homogenized in a sense to be made
precise. Indeed, in this geometry we consider, instead of the standard parabolic cylinders, intrinsically
time-scaled cylinders of the type

Q�;C
r .x; t/ WD Br .x/� .t; t C�

2�prp/;

Q�;�
r .x; t/ WD Br .x/� .t ��

2�prp; t/;
� WD u.x; t/:



BOUNDARY BEHAVIOR OF SOLUTIONS TO THE PARABOLIC p-LAPLACE EQUATION 3

These kinds of intrinsic cylinders appear naturally in the context of Harnack inequalities, oscillation
reduction estimates, and decay estimates, and define the correct geometry in our setting.

The main goal of this paper is to study to what extent the theory developed in [Fabes et al. 1986; Salsa
1981] generalizes to the case p > 2, under suitable intrinsic conditions. We have already seen that it rules
out the pathological examples like u in (1-3). In fact, we prove that (1-4) is a sufficient condition for
developing a rather general theory concerning the boundary behavior of nonnegative solutions to the
p-parabolic equation. For instance, (1-4) allows us to prove a counterpart of (1-2) valid for 2< p <1;
see Theorem 9.4 below.

1A. Summary of results. We will now give an informal summary of our results. The precise statements
can be found in the body of the paper.

Harnack chains. Fundamental tools in the study of the boundary behavior of nonnegative solutions are the
Harnack inequality and Harnack chains. Harnack chains allow one to relate the value of nonnegative solu-
tions at different space-time points in the domain. For p D 2 the Harnack inequality is homogeneous and,
roughly, to control the values of the solution in a ball of size r requires a waiting time comparable to r2. For
p > 2 we have to use an intrinsic version of the Harnack inequality [DiBenedetto 1993; DiBenedetto et al.
2012]. In particular, the intrinsic Harnack inequality states, see Theorem 3.1, that if we have a nonnegative
solution u to the p-parabolic equation in �T , with .x; t/ 2�T , and Q

u.x;t/=ch;�
4r

.x; t/��T , then

u.x; t/� Ch inf
y2Br .x/

u

�
y; t C

�
ch

u.x; t/

�p�2

rp

�
;

provided that tC Œch=u.x; t/�
p�2rp < T . The intrinsic waiting time required in this Harnack inequality is

consistent with the condition stated in (1-4). In Section 3 we develop a sequence of Harnack chain estimates
and the goal of that section is twofold. First, we want to establish estimates applicable in cylindrical NTA
domains; see Definition 2.1. Second, we want to establish a p-stable counterpart of the sharp Harnack
chain estimate proved by Salsa [1981, Theorem C], which in the case p D 2 can be written as

u.y; s/� u.x; t/ exp
�
C

�
jx�yj2

t � s
C

t � s

k
C 1

��
; (1-5)

where kDminf1; s; d.x; @�/2; d.y; @�/2g, s< t , and .x; t/; .y; s/2�T . To do this we develop Harnack
chains based on the weak Harnack inequality proved in [Kuusi 2008], see Theorem 3.2 below, valid for
supersolutions to the p-parabolic equation. As truncations of our solutions are supersolutions to (1-1),
we are able to control the waiting times more precisely by adjusting the levels at which the solutions are
truncated. This is in sharp contrast to the Harnack chains developed in [Avelin 2016; Avelin et al. 2016]
for which there is very little control over the waiting time. Our approach to Harnack chains has at least
three advantages. First, it allows us to construct Harnack chains starting from the measure u.x; t0/ dx at
the initial time t0. Second, it allows us to develop a flexible Carleson estimate, see Section 4, generalizing
the one in [Avelin et al. 2016] and which, in addition, remains valid in the context of time-independent
NTA cylinders. We note that although the Carleson estimate proved in [Avelin 2016] is valid in the setting
of time-independent NTA cylinders, a difference compared to the results in this paper is that the Carleson
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estimate proved there is not p-stable as p! 2. Third, we develop a version of (1-5) which is p-stable in
the sense that we recover (1-5) as p! 2. To establish this Gaussian-type behavior for p> 2 is technically
rather involved.

Estimates of associated boundary measures. In the study of the boundary behavior of quasilinear equations
of p-Laplace type, certain Riesz measures supported on the boundary and associated to nonnegative
solutions vanishing on a portion of the boundary are important; see [Lewis and Nyström 2007; 2010].
These measures are nonlinear generalizations of the harmonic measure relevant in the study of the Laplace
equation and the Green’s function. Corresponding measures can also be associated to solutions to the
p-parabolic equation. Indeed, let u be a nonnegative solution in �T , assume that u is continuous on
the closure of �T , and that u vanishes on @p�T \Q with some open set Q. Extending u to be zero
in Q n�T , it is straightforward to see that u is a continuous weak subsolution to (1-1) in Q. Using this,
one can conclude that there exists a unique locally finite positive Borel measure �, supported on ST \Q,
such that Z

Q

u @t� dx dt �

Z
Q

jrujp�2
ru � r� dx dt D

Z
Q

� d� (1-6)

whenever � 2 C1
0
.Q/. In Section 5 we establish, in cylindrical NTA domains, both upper and lower

bounds for the measure � in terms of u. If � is smooth, then d�D jrujp�1 dH n�1 dt . Based on this,
the lower bound established on � can be interpreted as a nondegeneracy estimate, close to the boundary,
of the solution. Our proof of the lower bound for the measure � is a modification of the elliptic proof; see
for example [Avelin and Nyström 2013; Kilpeläinen and Zhong 2003]. However, our proof is genuinely
nonlinear, it applies to much more general operators of p-parabolic type, and the result seems to be new
already in the case p D 2.

A “complete theory” in C 1;1-domains. We establish a “complete theory” concerning the boundary
behavior of nonnegative solutions in �T in the case when � is a C 1;1-domain. As comprehensive
literature is missing, we in Sections 8 and 9 develop both a local, as well as a global, theory of boundary
behavior in C 1;1-cylinders. In the global setting we are able, as in [Fabes et al. 1986] with corresponding
estimates in the case p D 2, to give a rather complete picture. For nonnegative solutions vanishing on the
lateral boundary, our results include a global boundary Harnack principle and Hölder continuity of ratios.
On the other hand, in the local setting we prove a new intrinsic local boundary Harnack principle. In
the context of C 1;1-cylinders we are also able to show that the boundary measure in (1-6) is mutually
absolutely continuous with respect to the surface measure in a suitably chosen intrinsic geometry. The
results in Sections 8 and 9 are obtained by combining Harnack chains and Carleson estimates with explicit
barrier constructions from Section 6 and decay estimates from Section 7.

2. Notation and preliminaries

Points in RnC1 are denoted by x D .x1; : : : ;xn; t/. Given a set E � Rn, let E, @E, diam E, Ec, Eı,
denote the closure, boundary, diameter, complement and interior of E, respectively. Let � denote the
standard inner product on Rn, let jxj D .x �x/1=2 be the Euclidean norm of x, and let dx be the Lebesgue
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n-measure on Rn. Given x 2 Rn and r > 0, let Br .x/D fy 2 Rn W jx � yj < rg. Given E;F � Rn, let
d.E;F / be the Euclidean distance from E to F. When E D fyg, we write d.y;F /. For simplicity, we
define “sup” to be the essential supremum and “inf” to be the essential infimum. If O � Rn is open
and 1 � q � 1, then by W 1;q.O/ we denote the space of equivalence classes of functions f with
distributional gradient rf D .fx1

; : : : ; fxn
/, and both f and rf are q-th power integrable on O . Let

kf kW 1;q.O/ D kf kLq.O/Ckjrf jkLq.O/

be the norm in W 1;q.O/, where k � kLq.O/ denotes the usual Lebesgue q-norm in O . We define C1
0
.O/

to be the set of infinitely differentiable functions with compact support in O and we let W
1;q

0
.O/ denote

the closure of C1
0
.O/ in the norm k � kW 1;q.O/. We define W

1;q
loc .O/ in the standard way. By r � we

denote the divergence operator. Given t1 < t2 we denote by Lq.t1; t2;W
1;q.O// the space of functions

such that for almost every t , t1 � t � t2, the function x! u.x; t/ belongs to W 1;q.O/ and

kukLq.t1;t2;W 1;q.O// WD

�Z t2

t1

Z
O

�
ju.x; t/jqCjru.x; t/jq

�
dx dt

�1=q

<1:

The spaces Lq.t1; t2;W
1;q

0
.O// and L

q
loc.t1; t2;W

1;q
loc .O// are defined analogously. Finally, for I � R,

we define C.I ILq.O// as the space of functions such that t !ku.t; � /kLq.O/ is continuous whenever
t 2 I . We define Cloc.I IL

q
loc.O// analogously.

2A. Weak solutions. Let �� Rn be a bounded domain, i.e., a connected open set. For t1 < t2, we let
�t1;t2

WD�� .t1; t2/. Given p, 1< p <1, we say that u is a weak solution to

@tu��puD 0 (2-1)

in �t1;t2
if u 2L

p
loc.t1; t2;W

1;p
loc .�// andZ
�t1;t2

.�u @t�Cjrujp�2
ru � r�/ dx dt D 0 (2-2)

whenever � 2 C1
0
.�t1;t2

/. If u is a weak solution to (2-1) in the above sense, then we will often refer
to u as being p-parabolic in �t1;t2

. For p 2 .2;1/ we have by the parabolic regularity theorem, see
[DiBenedetto 1993], that any p-parabolic function u has a locally Hölder continuous representative. In
particular, in the following we will assume that p 2 .2;1/ and any solution u is continuous. If (2-2)
holds with “D” replaced by “�” (“�”) for all � 2 C1

0
.�t1;t2

/, � � 0, then we will refer to u as a weak
supersolution (subsolution).

2B. Geometry. We here state the geometrical notions used throughout the paper.

Definition 2.1. A bounded domain � is called nontangentially accessible (NTA) if there exist M � 2

and r0 such that the following are fulfilled:

(1) Corkscrew condition: for any w 2 @�, 0< r < r0, there exists a point ar .w/ 2� such that

M�1r < jar .w/�wj< r; d.ar .w/; @�/ >M�1r:
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(2) Rn n� satisfies (1).

(3) Uniform condition: if w 2 @�, 0< r < r0, and w1; w2 2 Br .w/\�, then there exists a rectifiable
curve  W Œ0; 1�!� with  .0/D w1,  .1/D w2, such that

(a) H 1. /�M jw1�w2j,
(b) minfH 1. .Œ0; t �//;H 1. .Œt; 1�//g �M d. .t/; @�/ for all t 2 Œ0; 1�.

We choose this definition as it very useful when we explicitly construct the parabolic Harnack chains
in Section 3; see specifically Theorem 3.5. The values M and r0 will be called the NTA constants of �.
For more on the notion of NTA domains we refer to [Jerison and Kenig 1982].

Definition 2.2. Let � � Rn be a bounded domain. We say that � satisfies the ball condition with
radius r0 > 0 if for each point y 2 @� there exist points xC 2� and x� 2�c such that Br0

.xC/��,
Br0

.x�/��c, @Br0
.xC/\@�D fyg D @Br0

.x�/\@�, and such that the points xC.y/, x�.y/, y are
collinear for each y 2 @�.

Remark 2.3. It is easy to see that a domain satisfying the ball condition with radius r0 > 0 is an NTA
domain with a constant M and r0. In particular, we may canonically choose

ar .x0/ WD x0C
r

2

xC�x0

jxC�x0j
;

since the direction given by .xC � x0/=jx
C � x0j is unique. The exterior corkscrew point is defined

analogously.

Remark 2.4. Let �� Rn be a bounded domain. Then � is a C 1;1 domain if and only if it satisfies the
ball condition. For a proof of this fact, see for example [Aikawa et al. 2007, Lemma 2.2].

2C. The continuous Dirichlet problem. Assuming that � is a bounded NTA domain one can prove, see
[Björn et al. 2015; Kilpeläinen and Lindqvist 1996], that all points on the parabolic boundary

@p�T D ST [ .�� f0g/; ST D @�� Œ0;T �;

of the cylinder �T are regular for the Dirichlet problem for (2-1). In particular, for any f 2 C.@p�T /,
there exists a unique Perron solution uD u

�T

f
2 C.�T / to the Dirichlet problem @tu��puD 0 in �T

and uD f on @p�T .

3. Harnack chains

In this section we prove a sequence of results concerning intrinsic Harnack chains. Forward-in-time
chains describe the diffusion with an appropriate waiting time. On the other hand, backward-in-time
chains say that if the solution has existed for a long enough time, the future values will control the values
from the past as well. Throughout the section we let �� Rn be a bounded domain and given T > 0 we
let �T D�� .0;T /.
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3A. Local Harnack inequalities. We here collect two estimates from the literature. The following
theorem can be found in [DiBenedetto 1993; DiBenedetto et al. 2008; 2012].

Theorem 3.1. Let u be a nonnegative p-parabolic function in �T , let .x0; t0/ 2 �T and assume that
u.x0; t0/ > 0. There exist positive constants ch and Ch, depending only on p; n, such that if B4r .x0/��

and
.t0� �.4r/p; t0C �.4r/p/� .0;T �;

where � D .ch=u.x0; t0//
p�2, then

u.x0; t0/� Ch inf
Br .x0/

u. � ; t0C � rp/:

The constants ch and Ch are stable as p!2 and deteriorate as p!1 in the sense that ch.p/;Ch.p/!1

as p!1.

The next theorem is instead valid for nonnegative weak supersolutions. See [Kuusi 2008] for the proof.

Theorem 3.2. Let u be a nonnegative weak supersolution in B4r .x0/� .0;T /. There exist constants
Ci � Ci.p; n/, i D 1; 2, such that

/

Z
Br .x0/

u.x; t1/ dx �
1

2

�
C1rp

T � t1

�1=.p�2/

CC2 inf
Q

u

for almost every 0< t1 < T, where Q WD B2r .x0/� .t1CT1=2; t1CT1/, and

T1 Dmin
�

T � t1;C1rp

�

/

Z
Br .x0/

u.x; t1/ dx

�2�p�
:

In particular, if T1 < T � t1, then

/

Z
Br .x0/

u.x; t1/ dx � 2C2 inf
Q

u:

3B. Forward Harnack chains. We begin by describing a simple Harnack chain for weak supersolutions.

Lemma 3.3 (weak forward Harnack chains). Let � � Rn be a domain and let T > 0. Let x;y be two
points in � and assume that there exist a sequence of balls fB4r .xj /g

k
jD0

such that x0 D x, xk D y,
B4r .xj /�� for all j D 0; : : : ; k and xjC1 2 Br .xj /, j D 0; : : : ; k � 1. Assume that u is a continuous
nonnegative weak supersolution in �T with

Nƒ WD /

Z
Br .x0/

u.x; t0/ dx > 0:

There exist constants Nci � Nci.p; n/ > 1, i 2 f1; 2g, such that if

t0C �k
Nƒ2�prp < T; �k WD Nc1

kX
jD0

Nc
j.p�2/
2

;

then

/

Z
Br .x/

u.x; t0/ dx � NckC1
2

inf
z2B2r .y/

u.z; t0C �k
Nƒ2�prp/:

Furthermore, the constants Nci , i 2 f1; 2g, are stable as p! 2C. In particular, when p D 2, we have
�k D Nc1.kC 1/ with Nc1 D Nc1.n/.
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Proof. Using Theorem 3.2 we first get

Nƒ

2C2

� inf
z2B2r .x0/

u.z; t1/; t1 WD t0CC1
Nƒ2�prp: (3-1)

Define then
uj WDmin.u; ƒj /; ƒj WD .2C2/

�j Nƒ; tjC1 WD tj CC1ƒ
2�p
j rp

for j D f1; : : : ; k � 1g. Assume inductively that for tiC1 � T we have

Br .xi/� B2r .xi�1/

and
ui.z; ti/Dƒi for z 2 Br .xi/

hold for i 2 f0; : : : ; j g. For j D 1 this is certainly the case as we see from (3-1). Since uj is a nonnegative
weak supersolution, Theorem 3.2 gives us

ƒjC1 D
ƒj

2C2

� inf
z2B2r .xj /

uj .z; tjC1/;

and hence also
ujC1.z; tjC1/DƒjC1 for z 2 Br .xjC1/:

This proves the induction step. By the construction,

inf
z2Br .y/

uk.z; tk/Dƒk

holds. Thus, applying Theorem 3.2 one more time we get

inf
z2B2r .y/

u.z; Nt /� .2C2/
�.kC1/ Nƒ;

with

Nt WD t0CC1

kX
jD0

.2C2/
j.p�2/ Nƒ2�prp:

Setting Nc1 D C1 and Nc2 D 2C2 completes the proof of the lemma. �

For p-parabolic functions we have the following pointwise version of Lemma 3.3.

Proposition 3.4. Let � � Rn be a domain and let T > 0. Let x;y be two points in � and assume
that there exists a sequence of balls fB4r .xj /g

k
jD0

such that x0 D x, xk D y, B4r .xj / � � for all
j D 0; : : : ; k, and xjC1 2Br .xj /, j D 0; : : : ; k�1. Assume that u is a nonnegative p-parabolic function
in �T and assume that u.x; t0/ > 0. There exist constants c � c.p; n/ and c1 � c1.p; n; k/ > 1 such
that if

t0�

�
ch

u.x; t0/

�p�2

.4r/p > 0; t0C c1.k/u.x; t0/
2�prp < T;

then
u.x; t0/� ck inf

z2Br .y/
u.z; t0C c1.k/u.x; t0/

2�prp/:
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Furthermore, c1 satisfies the estimate

Qc1k � c1 � Qc1.kC 1/c.kC1/.p�2/;

with Qc1 � Qc1.p; n/ and Qc1.p; n/! Qc1.n/ as p! 2.

Proof. After applying Theorem 3.1 once, the result follows from Lemma 3.3. �

We next focus on cylindrical NTA domains. The first theorem, Theorem 3.5, holds for weak supersolu-
tions and shows how to bound the values of a solution at points close to the boundary using pointwise
interior values. A remarkable fact of the proof is that the waiting time is explicitly defined and, as p! 2,
it gives a supersolution version of [Salsa 1981, Theorem C], as alluded to in the Introduction; see (1-5).
The proof uses heavily the assumptions on NTA domains and iterations of Lemma 3.3.

Theorem 3.5. Let � � Rn be an NTA domain with constants M and r0, let x0 2 @�, T > 0 and
0< r < r0. Let x;y be two points in �\Br .x0/ such that

% WD d.x; @�/� r and d.y; @�/�
r

4
:

Assume that u is a nonnegative continuous weak supersolution in �T , and assume that

ƒ WD /

Z
B%=4.x/

u.z; t0/ dz > 0: (3-2)

Let ı 2 .0; 1�. Then there exist positive constants ci � ci.M;p; n/, i 2 f1; 2; 3g, such that if t0C � < T,
where

� WD ıp�1

�
c
�1=ı
2

�
r

%

��c3=ı

ƒ

�2�p

rp;

then

/

Z
B%=4.x/

u.z; t0/ dz � c
1=ı
1

�
r

%

�c3=ı

inf
z2Br=16.y/

u.z; t0C �/:

Furthermore, the constants ci , i 2 f1; 2; 3g, are stable as p! 2C.

Proof. We split the proof into three steps.

Step 1: parametrization of the curve connecting x and y. According to the uniform condition (3) in
Definition 2.1, we can find a rectifiable curve  connecting x and y such that  .0/D x,  .1/D y, and

(a) H 1. /�M jw1�w2j,

(b) minfH 1. .Œ0; t �//;H 1. .Œt; 1�//g �M d. .t/; @�/ for all t 2 Œ0; 1�.

We call a ball B � � admissible if 4B � � and is thus eligible for the Harnack inequality. Our goal
in this step is to construct a sequence of admissible balls covering the curve  . In the following we
may, without loss of generality, assume that H 1. .Œ0; 1�// > 2�4r . We define Ot1; Ot2 2 .0; 1/ such that
H 1. .Œ0; Ot1�//D 2�5r and H 1. .ŒOt2; 1�//D 2�5r . The technical part will be in the interval .0; Ot1/. To
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continue we choose k as the integer which satisfies 2�kr 2 .%=16; %=8�. We define sequence of real
numbers fsj g through

H 1. .Œ0; sj �//D 2�kCj H 1. .Œ0; Ot1�// WD 2�k�5Cj r; s0 D 0:

Then, for any s 2 Œsj ; sjC1/, (a) and (b) imply

d. .s/; @�/�
2�kCj�5r

M
and

H 1. .Œsj ; sjC1�//D 2�kCj�5r:

Thus, defining
%j WDN�12�kCj�5r; N 2 N; N � 29M;

we see that the piece  .Œsj ; sjC1�/ can be covered with N admissible balls of the type Bi;j WD B%j .yi;j /

such that yi;j 2  .Œsj ; sjC1�/ for i 2 f1; : : : ;N g, yi;j�1 2 Bi;j and  .Œsj ; sjC1�/�[iB
i;j. Finally, we

observe that the middle piece of the curve  .ŒOt1; Ot2�/, due to the definitions of Ot1; Ot2 together with (b) can
be covered with MN admissible balls of size r=N. Moreover we can cover the end piece  .ŒOt2; 1�/ with
N admissible balls of size r=N since  .ŒOt2; 1�/�Br=16.y/��. At this point, we consider N 2N to be
a free parameter such that N � 29M.

Step 2: iteration via Harnack estimates. Let now ƒ be as in (3-2). Theorem 3.2 implies that if

t0CC1ƒ
2�p%

p
0
< T;

then
inf

z2B%0
.x0/

u.z; t1/�
1

2C2

ƒ; t1 WD t0CC1ƒ
2�p%

p
0
:

Let
ƒ1 D �ƒ; � 2 .0; .2C2/

�1�:

Defining thus u1 WDmin.u; ƒ1/, we obtain by Lemma 3.3 (see also its proof) that there exist constants
Nc1 � Nc1.p; n/ and Nc2 � Nc2.p; n/, such that if

t2 WD t1C �Nƒ
2�p
1

%
p
1
< T; �N WD Nc1

N�1X
jD0

Nc
j.p�2/
2

2 Œ Nc1N; Nc1N Nc
N.p�2/
2

/; (3-3)

then
inf

z2B%2
. .s2//

u.z; t2/D inf
z2B2%1

. .s2//
u.z; t2/�

ƒ1

NcN
2

DWƒ2:

Define
ƒjC1 WD Nc

�.jC1/N
2

ƒ1; uj WDmin.u; ƒj /; j 2 N;

let Ok WD kCM C 1, and let

tjC1 WD

(
tj C �Nƒ

2�p
j %

p
j if j 2 f1; : : : ; kg;

tj C �Nƒ
2�p
j .r=N /p if j 2 fkC 1; : : : ; Okg:
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Iterating Lemma 3.3 it follows by induction that

u.y; t OkC1
/�ƒ OkC1

: (3-4)

Step 3: waiting time. Let us now analyze the waiting time t OkC1
, which we want to show to be precisely

t0C � by a suitable choice of ƒ1. We have

t OkC1
D t1CC1ƒ

2�p%
p
0
C �N

� kX
jD1

ƒ
2�p
j %

p
j C

OkX
jDkC1

ƒ
2�p
j %

p
j

�

D t0CC1ƒ
2�p%

p
0
CN�p�Nƒ

2�p
1

rp

�
2�kp

kX
jD0

.2p
Nc
.p�2/N
2

/j (3-5)

C Nc
.p�2/kN
2

MX
jD0

. Nc
.p�2/N
2

/j
�

(3-6)

DW t0CTƒ2�prp:

We can write the sum in (3-5) as

2�kp
kX

jD0

.2p
Nc
.p�2/N
2

/j D 2p
Nc
.p�2/.kC1/N
2

� 2�.kC1/p

2p Nc
.p�2/N
2

� 1
;

while the sum in (3-6) can be estimated similarly to �N , see (3-3):

Nc
.p�2/kN
2

MX
jD0

. Nc
.p�2/N
2

/j 2 .M Nc
.p�2/kN
2

;M Nc
.p�2/.kCM /N
2

�:

Hence, recalling the definitions of �N and T , we get after some straightforward estimation that

1
2
Nc1�

2�pN 1�p

�
r

%

�.p�2/ Nc4N

� T � 2 Nc3�
2�pN 1�p

Nc
.p�2/N
3

�
r

%

�.p�2/ Nc4N

(3-7)

for new constants Nc3; Nc4 depending only on p; n;M. We now choose N D Qc=ı and let Qc be a degree
of freedom. First note that choosing �1 D .2C2/

�1, then choosing c3 D Qcc4 and c2 D Œ Nc3�
Qc , for a large

enough Qc D Qc.p; n;M / we have

2 Nc3.2C2/
p�2
Qc1�p
Nc
.p�2/Qc=ı
3

�
r

%

�.p�2/ Nc4 Qc=ı

< c
.p�2/=ı
2

�
r

%

�.p�2/c3=ı

: (3-8)

Second we see that choosing �2 D c
�1=ı
5

for large enough c5 D c5.p; n;M / the following holds:

1
2
Nc1�

2�p
2
Qc1�p

�
r

%

�.p�2/ Nc4 Qc=ı

> c
.p�2/=ı
2

�
r

%

�.p�2/c3=ı

: (3-9)

With (3-8) and (3-9) and (3-7) at hand we see that there is a choice of � 2 Œ�2; �1� such that

T D ıp�1c
.p�2/=ı
2

�
r

%

�.p�2/c3=ı

;

and thus we have proved t OkC1
D t0CTƒ2�prp D t0C � . This together with (3-4) finishes the proof by

taking suitably large c1 in the statement. �
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For p-parabolic functions we have the following pointwise version of Theorem 3.5.

Theorem 3.6. Let��Rn be an NTA domain with constants M and r0, let x0 2 @�, T > 0 and 0< r < r0.
Let x;y be two points in �\Br .x0/ such that

% WD d.x; @�/� r and d.y; @�/�
r

4
:

Assume that u is a nonnegative p-parabolic function in �T , and assume that u.x; t0/ is positive. Let
ı 2 .0; 1�. Then there exist constants ci � ci.M;p; n/, i 2 f1; 2; 3g, such that if

t0� .ch=u.x; t0//
p�2.ı%/p > 0; t0C � < T;

with

� WD ıp�1

�
c
�1=ı
2

�
r

%

��c3=ı

u.x; t0/

�2�p

rp;

then

u.x; t0/� c
1=ı
1

�
r

%

�c3=ı

inf
z2Br=16.y/

u.z; t0C �/:

Furthermore, the constants ci , i 2 f1; 2; 3g, are stable as p! 2C.

Proof. Applying Theorem 3.1 once, we see that the theorem follows from Theorem 3.5. �

3C. Backward Harnack chains. The philosophy of the forward Harnack chains in Section 3B is that
the data at the starting point will start to diffuse according to the intrinsic Harnack inequality. The finite
speed of diffusion forces the waiting time to blow up if we wish to spread our information in an infinite
chain. In the backward Harnack chains that we develop in this section the philosophy is reversed. Instead
of looking to the future we look to the past. This means that if the value of the solution at a point .y; s/
is, say, 1, then we ask the question: how large can the values in the past be without violating the fact that
the solution is 1 at .y; s/.

We start with the weak version of the backward Harnack chains, valid for weak supersolutions.

Theorem 3.7. Let � � Rn be an NTA domain with constants M and r0, let x0 2 @�, T > 0, and
0< r < r0. Let x;y be two points in �\Br .x0/ such that

% WD d.x; @�/� r and d.y; @�/�
r

4
:

Assume that u is a nonnegative continuous weak supersolution in �T , and assume that u.y; s/ is positive.
Let ı 2 .0; 1�. Then there exist positive constants Ci � Ci.p; n/ and ci � ci.p; n;M /, i 2 f4; 5g, such
that if s 2 .�;T / and

t 2 Œs� �; s� ıp�1��;

with
� WD C4ŒC5u.y; s/�2�prp

then

/

Z
B%=4.x/

u.z; t/ dz � c
1=ı
4

�
r

%

�c5=ı

u.y; s/: (3-10)

Furthermore, the constants ci ;Ci , i 2 f4; 5g, are stable as p! 2C.
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Remark 3.8. If we assume that u 2 C.Œ0;T /IL2.�// then we can replace s 2 .�;T / with s 2 Œ�;T /.
That is, the chain can be taken all the way to the initial time, i.e., t D 0.

Proof. After scaling, we may assume that u.y; s/D 1. Assume now the contrary to (3-10), i.e.,

/

Z
B%=4.x/

u.z; t/ dz >H

�
r

%

�c5=ı

(3-11)

for constants c5;H to be fixed. Then Theorem 3.5 implies that with

Q� WD Qıp�1

�
c
�1=Qı
2

�
r

%

��c3=Qı

/

Z
B%=4.x/

u.z; t/ dz

�2�p

rp

we get

/

Z
B%=4.x/

u.z; t/ dz � c
1=Qı
1

�
r

%

�c3=Qı

inf
z2Br=16.y/

u.z; t C Q�/ (3-12)

with constants ci � ci.p; n;M /, i 2 f1; 2; 3g, and Qı 2 .0; ı�. Now we have an upper bound for Q� by
means of (3-11) as follows:

Q� � Qıp�1

�
c
�1=Qı
2

�
r

%

��c3=Qı

H

�
r

%

�c5=ı
�2�p

rp
D Qıp�1.c

�1=Qı
2

H /2�prp
� ıp�1�;

provided that

H � C5c
1=Qı
2
; Qı WD ıminf1;C4g

1=.p�1/; c5 WD
c3

minf1;C4g
1=.p�1/

: (3-13)

Therefore we have
t C Q� � s:

Observe that both C4 and C5 are still to be fixed. Thus we need to carry the information from the time
t C Q� up to s. To this end, connecting (3-11) and (3-12) with the choices in (3-13) leads to

Hc
�1=Qı
1

< inf
z2Br=16.y/

u.z; t C Q�/: (3-14)

Truncate u as
QuDmin.4C2;u/;

and take
H WD c

1=ı
4
; c4 WDmaxf4C2c1;C5c2g

1=minf1;C4g
1=.p�1/

; (3-15)

where C2 is as in Theorem 3.2. Then Qu is a continuous weak supersolution, and we have by (3-13) and
(3-15) and (3-14) that

/

Z
BQr .y/

Qu.z; t C Q�/ dz D 4C2; Qr 2
�
0;

r

16

i
:

Applying thus the forward-in-time weak Harnack estimate in Theorem 3.2 gives

4C2 � 2C2 inf
z2B2Qr .y/

Qu.z; t C Q� CC1.4C2/
2�p
Qrp/;
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provided that
t C Q� CC1.4C2/

2�p
Qrp < T:

Choosing C4 D 16�pC1 and C5 D 4C2, we can always find Qr � r=16 such that

t C Q� CC1.4C2/
2�p
Qrp
D s;

and hence
2� inf

z2B2Qr .y/
Qu.z; s/:

This gives a contradiction since we assumed that u.y; s/D 1, and thus the proof is complete. �

The following theorem is the corresponding result for weak solutions, where we use pointwise
information in the past instead of information in mean. The main difference this imposes on the assumptions
in Theorem 3.7 is that we have to require the solution to have lived for a certain amount of time, which is
precisely the price we have to pay if we wish to control pointwise values in the past.

Theorem 3.9. Let � � Rn be an NTA domain with constants M and r0, let x0 2 @�, T > 0, and
0< r < r0. Let x;y be two points in �\Br .x0/ such that

% WD d.x; @�/� r and d.y; @�/�
r

4
:

Assume that u is a nonnegative p-parabolic function in �T , and assume that u.y; s/ is positive. Let
ı 2 .0; 1�. Then there exist positive constants Ci � Ci.p; n/ and ci � ci.p; n;M /, i 2 f4; 5g, such that if
s < T and

max
��

c
1=ı
4

ch

�
r

%

�c5=ı

u.y; s/

�2�p

.ı%/p; s� �

�
� t � s� ıp�1�; (3-16)

with
� WD C4ŒC5u.y; s/�2�prp;

then

u.x; t/� c
1=ı
4

�
r

%

�c5=ı

u.y; s/:

Furthermore, the constants ci ;Ci , i 2 f4; 5g, are stable as p! 2C.

Proof. To prove the lemma we follow the same outline as the proof of Theorem 3.7, but instead of
assuming (3-11) we assume the contrary assumption

u.x; t/ >H

�
r

%

�c5=ı

for some constants c5;H to be fixed. Applying Theorem 3.6 instead of Theorem 3.5 we get

u.x; t/� c
1=Qı
1

�
r

%

�c3=Qı

inf
z2Br=16.y/

u.z; t C Q�/:

Note that it is the usage of Theorem 3.6 which requires (3-16). The proof now follows repeating the
remaining part of the proof of Theorem 3.7 essentially verbatim. �
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4. Carleson estimate

In this section we prove, using the improved Harnack chain estimate in Theorem 3.9, a flexible Carleson
estimate valid in cylindrical NTA domains. Versions of the Carleson estimate were originally proved,
for equations of p-parabolic type, in [Avelin et al. 2016] in Lipschitz cylinders, and in [Avelin 2016] in
certain time-dependent space-time domains. We begin with a standard oscillation decay lemma valid for
weak subsolutions; see for example [DiBenedetto 1993].

Lemma 4.1. Let��Rn be an NTA domain with constants M and r0. Let u be a nonnegative, continuous
weak subsolution in �T . Let .x0; t0/ 2 ST , 0< r < r0,

Q�
r .x0; t0/ WD .Br .x0/\�/� .t0��

2�prp; t0/��T ;

and assume that u vanishes continuously on ST \Q�
r .x0; t0/ and that

sup
Q�

r .x0;t0/

u� �:

Then there is a constant � depending only on p; n;M such that Q
�=2
�r .x0; t0/�Q�

r .x0; t0/ and

sup
Q
�=2
�r .x0;t0/

u�
�

2
:

In particular, we have
sup

Q2�j �

�j r
.x0;t0/

u� 2�j�

for any j 2 N.

The following theorem is usually referred to as a Carleson estimate. We want to point out that, compared
to [Avelin et al. 2016], not only does it hold for cylindrical NTA domains, but also the formulation is more
flexible for applications. In particular, we are able to adjust the waiting time, the height of the cylinder,
and the distance to the initial boundary. All these parameters influence the constant in the inequality and
a Gaussian-type behavior is proved to be present.

Theorem 4.2. Let �� Rn be an NTA domain with constants M and r0. Let u be a nonnegative, weak
solution in �T . Let .x; t/ 2 ST and 0< r < r0. Assume that u.ar .x/; t/ > 0 and let

� D
C4

4
ŒC5u.ar .x/; t/�

2�prp;

where C4 and C5, both depending on p; n, are as in Theorem 3.9. Assume that t >.ı
p�1
1
Cı

p�1
2
C2ı

p�1
3

/�

for 0<ı1� ı3� 1, ı2 2 .0; 1/, and that for a given �� 0, the function .u��/C vanishes continuously on
ST\Br .x/�.t�.ı

p�1
1
Cı

p�1
2
Cı

p�1
3

/�; t�ı
p�1
1

�/ from�T . Then there exist constants ci�ci.M;p; n/,
i 2 f6; 7g, such that

sup
Q

u�

�
c6

ı3

�c7=ı1

u.ar .x/; t/C�;

where Q WD Br .x/� .t � .ı
p�2
1
C ı

p�1
2

/�; t � ı
p�1
1

�/. Furthermore, the constants ci , i 2 f6; 7g, are
stable as p! 2C.
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Remark 4.3. Note that in the case p D 2, Theorem 4.2 for �D 0 is equivalent to the estimate above by
linearity. However, for p > 2 this result extends the ones in [Avelin 2016; Avelin et al. 2016] if � > 0.

Proof. By scaling the function u we can assume that u.ar .x/; t/ D 1, and replacing � with its scaled
version. Consider the boxes

zQ� WD .�\Br .x//� .t � .ı
p�1
1
C ı

p�1
2
C ı

p�1
3

/�; t � �p�1�/; � 2 fı1; ı3g;

and define also

Q�
r .x; t/ WD .�\Br .x//� .t � �

2�prp; t/; � > 0:

Observe that with the choice of � , we have by Theorem 3.9, for any .y; s/ 2 zQ� with d.y; @�/� r and
� 2 fı1; ı3g, that

u.y; s/� c
1=�
8

�
r

d.y; @�/

�c9=�

(4-1)

holds with c8; c9 depending only on p; n;M (apply Theorem 3.9 with the choice ı WD �minf1;C4=2g in
order to guarantee the conditions in (3-16)).

We proceed by induction via a contradiction assumption. Assume that P0 D .x0; t0/ 2Q, where Q is
as in the statement, is such that u.P0/ >H C� for some large H to be fixed. Assume then that we find
inductively points Pj D .xj ; tj /2 zQ Oıj

, where Oıj D ı3 if tj � t0�ı
p�1
3

�=2 and Oıj D ı1 if tj > t0�ı
p�1
3

�=2

for any j 2N. Set rj WD d.xj ; @�/ and let x0j 2 @� be such that rj D jxj �x0j j. Assume inductively that

u.Pj / > 2j H C� and t � .ı
p�1
1
C ı

p�1
2
C ı

p�1
3

/� < tj � tj�1 � tj C .2
j H /2�p.rj�1=�/

p (4-2)

hold for all j 2 f1; : : : ; kg, where � � �.p; n;M / 2 .0; 1/ is as in Lemma 4.1. We then want to show
that for large enough H this continues to hold for j D kC 1 as well.

To show the induction step, observe that (4-1) and the induction (4-2) imply

2j H C� < u.Pj /� c
1= Oıj
8

�
r

rj

�c9= Oıj

D) rj � .2
j Hc

�1= Oıj
8

/�
Oıj =c9 :

Fixing

H WD

�
4c

p=c9

8
c9

p�p log 2

�

rpı
p
3

�c9=Œpı1�

DW

�
c6

ı3

�c7=ı1

;

we have after simple manipulations that

r
p
j � �

p
ı

p�1
3

�

4
2�j Oıjp=c9

ı3p log 2

c9

� �p
ı

p�1
3

�

4

2�j Oıjp=c9P1
jD0 2�jı3p=c9

: (4-3)

In particular,

.2kC1H /2�p

�
rk

�

�p

�

�
rk

�

�p

�
ı

p�1
3

�

4
:
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Hence we set K1 WD Q2kH
rk

.x0
k
; tk/ and K2 WD Q2kC1H

rk=�
.x0

k
; tk/, and we deduce, by the induction

assumption and the estimate in the previous display, that K2 ��T . Now, if

sup
K2

.u��/C � 2kC1H;

then, using that .u��/C is a weak subsolution, Lemma 4.1 would imply

sup
K1

u� 2kH C�;

which is a contradiction since Pk 2K1. Thus there is PkC1 2K2 such that

u.PkC1/ > 2kC1H C�:

By the definition of K2 and PkC1, we must have

tkC1 � tk � tkC1C .2
kC1H /2�p.rk=�/

p:

Therefore we are left to show that tkC1 � t � .ı
p�1
1
Cı

p�1
2
Cı

p�1
3

/� in order to prove the induction step.
To this end, let now Ok � kC 1 be the largest integer such that t0 � t Ok � ı

p�1
3

�=2. We may without
loss of generality assume that Ok < kC 1, since otherwise tkC1 � t � .ı

p�1
1
C ı

p�1
2
C ı

p�1
3

/� , because
t0 > t � .ı

p�1
1
C ı

p�1
2

/� . Now (4-3) and (4-2), together with the fact that Oıj D ı3 for j > Ok, give

t0� tkC1 D .t0� t Ok/C .t Ok � tkC1/

�
ı

p�1
3

�

2
C

kX
jD Ok

.tj � tjC1/

�
ı

p�1
3

�

2
C .2

OkC1H /2�p

�
r Ok
�

�p

C

kX
jD OkC1

.2jC1H /2�p

�
rj

�

�p

�
ı

p�1
3

�

2
C
ı

p�1
3

�

4
C
ı

p�1
3

�

4

� 1X
jD0

2�jı3p=c9

��1 kX
jD OkC1

2�jı3p=c9 < ı
p�1
3

�: (4-4)

Therefore, since t0 > t � .ı
p�1
1
C ı

p�1
2

/� , we have

t � tkC1 D t � t0C t0� tk < .ı
p�1
1
C ı

p�1
2
C ı

p�1
3

/�;

which was to be proven. Hence we have concluded the proof of the induction step. As a consequence, we
have constructed a sequence of points Pj D .xj ; tj / 2 zQı1

such that d.xj ; @�/! 0 and u.Pj /!1 as
j !1. This violates the assumed continuity of .u��/C in the neighborhood of ST \

zQı1
, giving the

contradiction. Hence,

sup
Q

u�H C�;

completing the proof of the theorem. �
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5. Estimating the boundary-type Riesz measure

In this section we establish, in NTA cylinders, upper and lower bounds for the measure � defined in (1-6).

5A. Upper estimate on �. We will first provide an upper bound on the measure. The proof relies on the
Carleson estimate in Theorem 4.2 and the following standard Caccioppoli-type estimate; see [DiBenedetto
1993].

Lemma 5.1. Let u be a nonnegative weak subsolution in�T , and � 2C1
0
.��.t1;T // with � � 0. ThenZ t2

t1

Z
�

jrujp�p dx dt � C

�Z t2

t1

Z
�

up
jr�jp dx dt C

Z t2

t1

Z
�

u2.�t /C�
p�1 dx dt

�
for C D C.p; n/.

Theorem 5.2. Let � � Rn be an NTA domain with constants M and r0. Let 0 < r � r0 and let u be a
weak nonnegative solution in �T . Fix a point x0 2 @� and define

� D
C4

16
ŒC5u.ar .x0/; t0/�

2�prp;

where C4 and C5, both depending on p; n, are as in Theorem 3.9. Let 0 < ı � Qı � 1 and assume that
t0 > 5 Qıp�1� and that u vanishes continuously on ST \

�
Br .x/� .t0 � 4 Qıp�1�; t0 � ı

p�1�/
�

from �T .
Then there is a constant C � C.p; n/ and c8 � c8.p; n;M / such that

�.Q/

rn
� C

�
c6

Qı

�c8=ı

u.ar .x0/; t0/;

where � is the measure from (1-6),

Q WD Br=2.x0/� .t0� 2 Qıp�1�; t0� ı
p�1�/;

and c6 is from Theorem 4.2. Furthermore, the constants C , c8, are stable as p! 2C.

Proof. After scaling, we may assume that u.ar .x0/; t0/D 1. Let

yQD Br .x0/� .t0� 3 Qıp�1�; t0� ı
p�1�/;

and observe, by our assumptions, that Theorem 4.2 implies

sup
yQ

u�

�
c6

Qı

�c7=ı

DWƒ: (5-1)

As in the construction of the measure � in (1-6), we see that extending u to the entire cylinder yQ as zero,
we obtain a weak subsolution in yQ. Take a cut-off function � 2 C1. yQ/ vanishing on @p yQ such that
0� � � 1, � is 1 on Q, and

jr�j<
4

r
and .�t /C <

4

Œ Qıp�1��
:
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Then by (1-6), the definition of � and Hölder’s inequality we getZ
yQ

�p d��
Z
yQ

jrujp�1
jr�j�p�1 dx dt C

Z
yQ

u.�t /C�
p�1 dx dt

�
4

r

Z
yQ

jrujp�1�p�1 dx dt C

Z
yQ

u.�t /C�
p�1 dx dt

�
4

r
j yQj1=p

�Z
yQ

jrujp�p dx dt

�.p�1/=p

C

Z
yQ

u.�t /C�
p�1 dx dt:

Now using Lemma 5.1 and (5-1) we see that

�.Q/� C
j yQj1=p

r

�Z
yQ

up
jr�jpCu2.�t /C�

p�1 dx dt

�.p�1/=p

C

Z
yQ

u.�t /C�
p�1 dx dt

� C
j yQj1=p

r

�
j yQj

�
ƒp

rp
C

ƒ2

Qıp�1�

��.p�1/=p

CC j yQj
ƒ

Qıp�1�

� C
j yQj

Qıp�1rp
ƒp�1:

After scaling back, this can be rewritten in the homogeneous form

�.Qr /

rn
� C

�
c6

Qı

�.p�1/c7=ı

u.ar .x0/; t0/;

completing the proof with c8 D .p� 1/c7. �

5B. Lower estimate on �. We next prove the lower bound for the measure �.

Theorem 5.3. Let �� Rn be an NTA domain with constants M and r0, and let u be a weak nonnegative
solution in �T . Fix a point .x0; t0/ 2 @�� .0;T �, and define A�r D .ar=2.x0/; t0/ for 0< r < r0. There
exist C; �0; �1, all depending only on p; n;M, such that if�

t0� �0u.A�r /
2�prp; t0C .�0C �1/u.A

�
r /

2�prp
�
� .0;T /;

and if u vanishes continuously on ST \
�
Br .x/� .t0; t0C .�0C �1/u.A

�
r /

2�prp/
�

from �T , then

u.A�r /� C
�.Q/

rn
;

where � is the measure from (1-6) and

Q WD Br .x0/�
�
t0C �0u.A�r /

2�prp; t0C .�0C �1/u.A
�
r /

2�prp
�
:

Furthermore, the constants C; �0; �1, are stable as p! 2C.

To prove Theorem 5.3 we first consider the model problem in Lemma 5.4, and we prove that the
measure associated to this model problem is bounded from below by a constant. Returning to Theorem 5.3,
we then apply the intrinsic Harnack inequality to obtain a lower bound on the function such that by the
comparison principle the solution v in Lemma 5.4 is below our solution u. The result then follows by the
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fact that the corresponding measures are ordered according to Lemma 5.5, a fact easily realized if the
domain is smooth, as in this case the measure is just the modulus of the gradient to the power p� 1.

Lemma 5.4. Let �� Rn be an NTA domain with constants M and r0 D 2. There exist constants C;TM ,
both depending on p; n;M, such that if v is a continuous solution to the problem8<:

vt ��pv D 0 in .�\B2.0//� .0;T0/;

v D 0 on @.�\B2.0//� Œ0;T0/;

v D �B1=.4M /.a1.0// on .�\B2.0//� f0g;

then

�v.B2.0/� .0;T0//�
1

C
:

Furthermore, the constants C , TM are stable as p! 2C.

Proof. To begin with, extend v as zero to the rest of QDB2.0/� .0;T0/, i.e., set v� 0 in .B2.0/n�/�

.0;T0/, and let �v be the associated measure as in (1-6). Let then h be the solution to the problem�
ht ��phD 0 in Q;

hD w on @pQ:

We observe that the supremum of h and v, which is 1, is attained at the bottom of the cylinder. Let us now
recall the decay estimate in Lemma 4.1, which implies that for Q�

r .0; t0/ WD .�\Br .0//�.t0��
2�prp; t0/

we have

sup
Q2�j

�j
.0;t0/

v � 2�j (5-2)

for j 2 N provided that t0 2 Œ1;T0� and T0 > 1. On the other hand, Lemma 3.3 gives us

1D /

Z
B
.4M /�1 .a1.0//

h.x; 0/ dx � C inf
z2B

.2M /�1 .0/
u.z; �/;

with � and C depending on p; n;M. We then apply Theorem 3.2 in order to get

1� yC inf
yQ

h; yQ WD B1=M .0/�

�
T0

2
;T0

�
; (5-3)

by properly choosing T0 by means of � and C to be larger than 2. We then choose large enough j ? 2N

so that

2�j?
�

1

2 yC
and �j

�
1

M
:

Then, sliding t0 along .1;T0� in (5-2), we obtain by combining (5-2) and (5-3) that there is r1D r1.p; n;M /

such that

inf
zQ

.h� v/�
1

2 yC
DW �; zQ WD Br1

.0/�

�
T0

2
;T0

�
;

where � � �.p; n;M /.
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Let us now define � Dminfh� v; �g, which is vanishing on @pQ and is � on zQ. Then from the weak
formulation of h and v we getZ

Q\ft<�g

.h� v/t �C .jrhjp�2
rh� jrvjp�2

rv/ � r� dx dt D

Z
Q\ft<�g

� d�w:

For the time term, we integrate to obtainZ
Q\ft<�g

.h� v/t � dx dt D

Z
Q\ft<�g

@t

�Z h�v

0

min.s; �/ ds

�
dx dt �

1

2

Z
B2.0/

�2.x; �/ dx:

We also have the elementary inequality

.jrhjp�2
rh� jrvjp�2

rv/ � r� �
1

C
jr�jp;

since p > 2. Hence by combining the last three displays we arrive at

sup
0<t<T0

Z
B1.0/

�2.x; t/ dxC

Z
Q

jr�jp dx dt � C��v.Q/:

Using the parabolic Sobolev inequality [DiBenedetto 1993, Corollary I.3.1] we obtain

�p
j zQj �

Z
Q

�p dx dt

� C

�
sup

0<t<T0

Z
B2.0/

�p.x; t/ dxC

Z
Q

jr�jp dx dt

�
� C

�
�p�2 sup

0<t<T0

Z
B2.0/

�2.x; t/ dxC

Z
Q

jr�jp dx dt

�
:

Hence we see that
1� C �v.Q/

with a constant C � C.p; n;M / through the dependencies of �; r1;T0. �
The next lemma provides a comparison estimate for the measures. If two solutions are ordered, then

the corresponding measures will be ordered as well.

Lemma 5.5. Let �� Rn be a domain. Let u and v be weak solutions in .�\Br .0//� .0;T / such that
u� v � 0 and both vanish continuously on the lateral boundary .@�\Br .0//� .0;T /. Then

�v � �u in Br .0/� .0;T /

in the sense of measures.

Proof. To show this, consider the test function � Dmin.1; .u� v� �/C=�/ , where  is nonnegative
and belongs to C1

0
.Q/ with Q D Br .0/� .0;T /. Obviously � is supported in .�\Br .0//� .0;T /,

because both u and v vanish continuously on the lateral boundary .@�\Br .0//� .0;T /. Since both u

and v are weak solutions, we have, by extending them both by zero in .Br .0/ n�/� .0;T /, thatZ
Q

.u� v/t � dx dt C

Z
Q

.jrujp�2
ru� jrvjp�2

rv/ � r� dx dt D 0: (5-4)
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Let us first treat the time term. Integrating by parts we getZ
Q

.u� v/t � dx dt D

Z
Q

@t

�Z u�v

0

min
�

1;
.s� �/C

�

�
ds

�
 dx dt

D�

Z
Q

�Z u�v

0

min
�

1;
.s� �/C

�

�
ds

�
@t dx dt

!�

Z
Q

.u� v/ @t dx dt (5-5)

as �! 0. To treat the elliptic term, we begin by noting that

r� Dr min
�

1;
.u� v� �/C

�

�
C

1

�
 r.u� v/�U� ; (5-6)

where U� WD fu� v > �g \ .�\Br .0//� .0;T /. The second term in (5-6) will give rise to a positive
term in (5-4); hence we discard it and obtain the inequalityZ

Q

.jrujp�2
ru� jrvjp�2

rv/ � r� dx dt

�

Z
Q

.jrujp�2
ru� jrvjp�2

rv/ � r min
�

1;
.u� v� �/C

�

�
dx dt

!

Z
Q

.jrujp�2
ru� jrvjp�2

rv/ � r dx dt (5-7)

as �! 0 by dominated convergence. Combining the convergence in (5-5) and (5-7) with (5-4) we arrive
at the inequality

�

Z
Q

.u� v/ @t dx dt C

Z
Q

.jrujp�2
ru� jrvjp�2

rv/ � r dx dt � 0 (5-8)

after sending �! 0. Since the nonnegative function  2 C1
0
.Q/ is arbitrary, (5-8) finishes the proof

after recalling the definitions of �u and �v. �

We now have all the technical tools to complete the proof of Theorem 5.3.

Proof of Theorem 5.3. Let u be as in Theorem 5.3 with A�r WD .ar=2.x0/; t0/. Applying the Harnack
estimate in Theorem 3.6 yields for a constant C D C.p; n;M /

u.A�r /�
zC inf

y2Br=.8M /.ar=2.x0//
u.y; t0C �0u.A�r /

2�prp/; �0 WD
C

.2M /p
;

since

t0� �0u.A�r /
2�prp > 0:

Consider the scaled solution

Ou.x; t/D
1

�
u
�
x0C

r

2
x; t0C �0u.A�r /

2�prp
C�2�p

�
r

2

�p
t
�
; � WD

u.A�r /

zC
;
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so that

inf
y2B1=.4M /.a1.0//

Ou.y; 0/� 1;

and � is mapped to y� and .x0; t0C �0u.A�r /
2�prp/ to .0; 0/. The comparison principle shows that the

function v defined in Lemma 5.4 satisfies v � Ou in . y�\B2.0//� .0;T0/ provided that

t0C �0u.A�r /
2�prp

C�2�p
�

r

2

�p
T0 < T:

Thus we choose �1 WD
zC p�22�pT0 in the statement. Applying Lemmas 5.4 and 5.5

� Ou.B2.0/� .0;T0//� �v.B2.0/� .0;T0//�
1

C
:

Scaling back to u gives us the result. �

6. Construction of barriers

In this section we construct the barriers that will serve as the starting point for the estimates of the decay
rate of the solutions. The upper barrier in Lemma 6.4 is based on the function constructed in [DiBenedetto
et al. 1991, Theorem 4.1]. However the subsolution constructed in Lemma 6.1 seems to be new and
allows us to obtain p-stable estimates from below on the decay rate.

Lemma 6.1. Let T D .np�1p/�1 and for a 2 .0; 1/, let

%0 WDmin
�

ap

n.p� 2/
C 1; 2

�.p�1/=p

:

Then the function h,

h.x; t/D g.jxj; t/�g.%0; t/; g.r; t/D

�
1�

p� 2

pp=.p�1/

rp=.p�1/� 1

t1=.p�1/

�.p�1/=.p�2/

C

;

is a classical subsolution in .B%0
.0/ nB1.0//� .0;T / satisfying the boundary conditions8<:

hD 0 on @B%0
.0/� .0;T /;

hD 0 on .B%0
.0/ nB1.0//� f0g;

hD 1�g.%0; t/ on @B1.0/� .0;T /:

(6-1)

Furthermore, x 7! h.x; t/ is a radially decreasing function satisfying

inf
1�jxj�%0

jrh.x;T /j � n exp
�
�

n

p

�
.1� a/n=p;

and h.x; t/� hp.x; t/ tends to

exp
�
�
jxj2� 1

4t

�
� exp

�
�

1

4t

�
as p! 2C.



24 BENNY AVELIN, TUOMO KUUSI AND KAJ NYSTRÖM

Remark 6.2. Note that the function in Lemma 6.1 is not continuous up to the boundary at the corner
@B1.0/ � f0g. However, the limsup as we approach a point on this piece from the inside of D WD

.B%0
.0/nB1.0//� .0;T / is 1 for h. This implies, see [Kilpeläinen and Lindqvist 1996, Lemma 4.4], that

if we have a weak supersolution u in D, staying above the boundary conditions in (6-1) in liminf sense,
and staying above 1 on the corner @B1.0/� f0g again in the liminf sense, then u will be above h in D.

Proof. Let h and %0 be as stated. By construction, the boundary conditions for h are in force. To verify
that h is a classical subsolution in .B%0

.0/ nB1.0//� .0;T /, we first compute

rg.jxj; t/D�
x

jxj

�
1

p

jxj

t
g.jxj; t/

�1=.p�1/

;

jrg.jxj; t/jp�2
rg.jxj; t/D�

1

p

x

t
g.jxj; t/;

��pg.jxj; t/D

�
n

pt
g.jxj; t/.p�2/=.p�1/

�p�p=.p�1/ jxj
p=.p�1/

tp=.p�1/

�
g.jxj; t/1=.p�1/;

@tg.r; t/D p�p=.p�1/ r
p=.p�1/� 1

tp=.p�1/
g.r; t/1=.p�1/:

Observing that @th.x; t/� @tg.jxj; t/, it is enough to verify gt ��pg � 0 in .B%0
.0/ nB1.0//� .0;T /

for g > 0. Assuming g > 0, we see, since g.jxj; t/� 1 for jxj> 1, that

.ht ��ph/.x; t/

g.jxj; t/1=.p�1/
�

�
p�p=.p�1/ jxj

p=.p�1/� 1

tp=.p�1/
C

n

pt
g.jxj; t/.p�2/=.p�1/

�p�p=.p�1/ jxj
p=.p�1/

tp=.p�1/

�
�

1

pt

�
n�

�
1

pt

�1=.p�1/�
:

Since 0 < t < T D .np�1p/�1 we have ht ��ph � 0 for jxj > 1 and t 2 .0;T /. Note also that our
choices of parameters are stable as p! 2. Next, by yet another explicit calculation we obtain

inf
1�jxj�%0

jrh.x;T /j �

�
1

pT
g.%0;T /

�1=.p�1/

D ng.%0;T /
1=.p�1/:

To complete the proof we need to estimate g.%0;T / from below. To do this we note that

g.%0;T /
1=.p�1/

D

�
1�

n.p� 2/

p
.%

p=.p�1/
0

� 1/

�1=.p�2/

;

and we consider two cases. First, if %0 D 2.p�1/=p, then ap � n.p� 2/ and

g.%0;T /
1=.p�1/

D .1� s/b=s; s D
n.p� 2/

p
; b D

n

p
:
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Furthermore, for � 2 Œ0; 1/ we have

.1� �/b=� D exp
�
�

b

�

1X
kD1

�k

k

�
D exp

�
�b

1X
kD1

�k�1

k

�
D exp

�
�b� b

1X
kD1

�k

kC 1

�

� exp
�
�b� b

1X
kD1

�k

k

�
D e�b.1� �/b: (6-2)

Since ap � n.p� 2/ implies s � a< 1, we can apply (6-2) to get

g.%0;T /
1=.p�1/

� exp.�b/.1� s/b � exp.�b/.1� a/b:

Second, if %0 < 2.p�1/=p, then ap < n.p� 2/ and using (6-2) we get

g.%0;T /D .1� a/.p�1/=.p�2/
� .1� a/b=a � exp.�b/.1� a/b:

Collecting the results of the two cases completes the proof of the lemma. �

Remark 6.3. Note that we could, as in [Stan and Vázquez 2013], instead of the function in Lemma 6.1
use the Barenblatt fundamental solution together with the barriers from [Bidaut-Véron 2009] to establish
a version of Lemma 6.1. However, this would result in a construction which is not p-stable.

In the next lemma we construct a certain supersolution to be used in the subsequent arguments.

Lemma 6.4. Let T;H > 0 be given degrees of freedom. Let

k 2 .0; k0�; k0 WDmin
�

p� 1

n
;T 1=.p�1/H .p�2/=.p�1/

�
:

There exists a classical supersolution Qh in

N D f.x; t/ W 1< jxj< 1C k; 0< t < T g

such that 8̂<̂
:
Qh� 0 in @B1.0/� .0;T �;

Qh�H on .B1Ck.0/ nB1.0//� f0g;

Qh�H on @B1Ck.0/� Œ0;T �;

and such that
Qh.x;T /�

H exp.2/
k

.jxj � 1/ (6-3)

whenever x 2 B1Ck.0/ nB1.0/.

Proof. This type of construction was originally carried out in [DiBenedetto et al. 1991, Theorem 4.1] and
we here include a proof for completeness. Let

v.x; t/D exp
�

t �T

T
�
jxj � 1

k

�
;

and let
Qh.x; t/D zH .1� v.x; t//; zH DH exp.2/;
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accordingly. Then

@t
Qh.x; t/D�

zH

T
v.x; t/ and r Qh.x; t/D

zHx

kjxj
v.x; t/:

Observe also that zHv �H for all .x; t/ 2N and that Qh satisfies the boundary conditions. We now show
that Qh is a classical supersolution in N. Indeed, by a straightforward calculation we see that

Qht ��p
QhD�

zH

T
vC zH p�1vp�1

�
.p� 1/k�p

� k1�p n� 1

jxj

�
�

zH

T
v
�
�1CTH p�2k

1�p
0
CTH p�2k1�p..p� 1/k�1

0 � n/
�
� 0

whenever .x; t/ 2N. Finally, since

sup
1<jxj<1Ck

jr Qh.x;T /j �
zH

k
and Qh.x;T /D 0 for all x 2 @B1.0/;

we obtain the upper bound for Qh.x;T / as well. �

7. Decay estimates and a change of variables

In this section we prove a lower bound (Lemma 7.2) and an upper bound (Lemma 7.4) on the decay of
solutions. The following lemma, which is a change of variables, will be used in the proof of our decay
estimates. The proof of the lemma follows from [Kuusi 2008, Lemma 3.5].

Lemma 7.1. Let uD u.x; t/ be p-parabolic in �� .T0;T1/. Let C > 0 be given and let

f .�/D
1

C.p� 2/

�
exp.C.p� 2/�/� 1

�
; g.�/D .C.p� 2/�C 1/1=.p�2/

for p > 2, and
f .�/D �; g.�/D exp.C�/

for p D 2. Let w.x; �/D g.f .�//u.x; f .�//. Then w.x; �/ is a (weak) solution to the equation,

@�w D�pwCCw

in �� .�0; �1/, where f .�i/D Ti , i 2 f0; 1g.

7A. A lower bound on the decay. Using the classical subsolution constructed in Lemma 6.1 and the
change of variable outlined in Lemma 7.1 we here prove the following lemma, which describes the
optimal decay rate from below after a certain intrinsic waiting time. This lemma will be crucial when
proving global C 1;1-estimates, see Section 8, and when proving the local C 1;1-estimates, see Section 9.

Lemma 7.2. Let 0< %� r=4 and let g 2L2.Br .x0// be a nonnegative function satisfying

/

Z
B%.x0/

g dx � � > 0:
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Assume that Oh 2 C.Œt0;1/IL
2.Br .x0/// is a weak nonnegative solution solving the Cauchy problem�
Oht ��p

OhD 0 in Br .x0/� .t0;1/;
OhD g on Br .x0/� ft0g:

Then there exist constants ci � ci.%=r; n;p/, i 2 f1; 2g, such that

Oh.x; t/�
�

c1

�
c1.p� 2/

t � t0

�2�prp
C 1

��1=.p�2/
d.x; @Br .x0//

r

whenever .x; t/ 2 Br .x0/� .t0C c2�
2�prp;1/. Furthermore, the constants ci , i 2 f1; 2g, are stable as

p! 2C.

Proof. After scaling we may assume that x0 D 0, t0 D 0, r D 1, and �D 1. Let

%0 WDmin
�

1

2

p

n.p� 2/
C 1; 2

�.p�1/=p

:

Applying Lemma 3.3 we find a time t? � t?.n;p; %=r/ and a constant c? � c?.n;p; %=r/ such that

Oh.x; t?/�
1

c?
for all x 2 B1=%0

.0/:

Set Nh.x; t/D c? Oh.x=%0; t
?C t Œc?�p�2=%

p
0
/ and let w.x; �/D g.f .�// Nh.x; f .�//, where g and f are

defined as in Lemma 7.1. Then w.x; �/ is a nonnegative weak solution to the equation

@�w D�pwCCw

in B%0
.0/ � .0;1/ and w.x; 0/ � 1 for all x 2 B1.0/. In particular, w is a weak supersolution in

B%0
.0/ � .0;1/. Now, Theorem 3.2, [Kuusi 2008, Corollary 3.6], Lemma 7.1, and [Kuusi 2008,

Proposition 3.1] imply that we have, for a new constant Nc � Nc.n;p/ > 1,

w.x; �/�
1

Nc
; .x; �/ 2 B1.0/� .0;1/; (7-1)

provided we choose C large enough in the definitions of f and g in Lemma 7.1. Consider O� � 0 arbitrary,
let h be the classical subsolution of Lemma 6.1 and let T be as in Lemma 6.1. Then, simply using the
intrinsic scaling, the comparison principle, and (7-1) we see that

w.x; �/�
1

Nc
h.x; Nc2�p.� � O�// (7-2)

whenever .x; �/ 2 .B%0
.0/ nB1.0//� . O�; O� C Nc

p�2T /. Since O� � 0 is arbitrary we get from (7-2) and
Lemma 6.1 that there is a c � c.n;p/ such that

w.x; �/�
1

c
d.x; @B%0

.0//; .x; �/ 2 B%0
.0/� . Ncp�2T;1/: (7-3)

To complete the proof, it suffices to rephrase (7-3) in terms of Oh.x; t/. �
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7B. An upper bound on the decay. Working with solutions vanishing on the entire lateral boundary, we
will make use of the following decay estimates.

Lemma 7.3. Let u 2 C.Œ0;T /IL2.�// \ Lp.0;T IW
1;p

0
.�// be a nonnegative weak subsolution in

�� .0;T /. Then there exists a constant c D c.n;p; j�j/ such that

sup
�

u. � ; t/�
c

tn=�

�

/

Z
�

u.x; 0/ dx

�p=�

; � D n.p� 2/Cp:

The constant c is stable as p! 2C.

Proof. See [Kuusi and Parviainen 2009, Lemma 3.24] and use the L1-contractivity (test with the function
min.1;u=�/) and the comparison principle. �

In the following lemma we describe the optimal decay of the supremum of a solution vanishing on the
entire lateral boundary; it follows from an iterative rescaling and comparison together with the decay
estimate in Lemma 7.3.

Lemma 7.4. Let u 2 C.Œ0;T /IL2.�// \Lp.0;1IW
1;p

0
.�// be a nonnegative weak subsolution in

�� .0;1/. Then there exist constants ci � ci.p; n; j�j/, i 2 f1; 2g, such that the following holds. Let

Nƒ WD /

Z
�

u.x; 0/ dx:

Then

sup
�

u. � ; t/� c1

�
.p� 2/

Nƒp�2

c1

t C 1

��1=.p�2/

Nƒ

whenever t > c2
Nƒ2�p. The constants ci , i 2 f1; 2g, are stable as p! 2C.

Proof. Let w D w.x; t/ solve the Dirichlet problem�
wt ��pw D 0 in �� .0;1/;
w D 0 on @�� Œ0;1/

(7-4)

and assume that

/

Z
�

w.x; 0/ dx � 1: (7-5)

Applying Lemma 7.3 to w we see that

sup
�

w. � ; t/�
c

tn=�

for some c D c.n;p; j�j/, and for all t > 0. In particular, there exists t? D t?.n;p; j�j/ > 0 such that

sup
�

w. � ; t?/� 1
2
: (7-6)

To prove the lemma we will now use (7-6) in an iterative argument. In particular, consider the function

w1.x; t/ WD Nƒ
�1u.x; Nƒ2�pt/:
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Then w1 is a solution to (7-4) satisfying (7-5). Hence we have by (7-6) that

w1.x; t
?/� 1

2
;

which after scaling back becomes

u.x; Nƒ2�pt?/� 2�1 Nƒ whenever x 2�:

Next, consider the function

w2.x; t/ WD .2
�1 Nƒ/�1u.x; Nƒ2�pt?C .2�1 Nƒ/2�pt/;

which again satisfies (7-4) and (7-5). Applying (7-6) to the function w2 we deduce, by elementary
manipulations, that

sup
�

u. � ; . Nƒ2�p
C .2�1 Nƒ/2�p/t?/� 2�2 Nƒ:

Proceeding inductively we deduce that

sup
�

u. � ; tj /� 2�j Nƒ;

where

tj WD t? Nƒ2�p

j�1X
kD0

2k.p�2/; j 2 f1; 2; : : : g:

To complete the argument consider t 2 .t1;1/ and let j be the largest j such that tj � t . Then, by the
comparison principle and by construction,

sup
x2�

u. � ; t/� 2�j Nƒ

and

tj � t < tjC1:

Since

2�j
D

�
.2p�2� 1/

t?
Nƒp�2tj C 1

��1=.p�2/

;

and 2p�2 � 1 � log.2/.p � 2/, by retracing the argument we derive the conclusion of the lemma.
Furthermore, the constants ci , i 2 f1; 2g, are stable as p! 2C. In particular, we see that�

.p� 2/c�1
1 .n;p; j�j/ Nƒp�2t C 1

��1=.p�2/
! exp.�c�1

1 .n; 2; j�j/t/: �

8. Global estimates in C 1;1-domains

In this section we combine the optimal decay estimate established in Lemma 8.1 together with the barrier
function in Lemma 6.4 to obtain the sharp decay estimate from above. Note that taking the initial data to
be C1 allows us to see that this is sharp with respect to the so-called “friendly giant”; see for example
[Kuusi et al. 2016].
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Lemma 8.1. Let � � Rn be a bounded C 1;1-domain satisfying the ball condition with radius r0. Let
u 2 C.Œ0;1/IL2.�//\Lp.0;1IW

1;p
0

.�// be a nonnegative p-parabolic function in �� .0;1/. Let

Nƒ WD /

Z
�

u.x; 0/ dx:

Then there exists Ci � Ci.diam�=r0; n;p/, i 2 f1; 2g, such that

u.x; t/� C1
Nƒ..p� 2/C�1

1
Nƒp�2t C 1/�1=.p�2/d.x; @�/

whenever t > C2
Nƒ2�p. Furthermore, the constants Ci , i 2 f1; 2g, are stable as p! 2C.

Proof. By scaling we can without loss of generality assume that Nƒ D 1. Let Ox0 2 @� be an arbitrary
point. Assume, for simplicity, that a�

2r0
. Ox0/D 0, where a�

2r0
. Ox0/ is the exterior corkscrew point as in

Remark 2.3. Consider an arbitrary number Ot such that Ot > c2 (where c2 is from Lemma 7.4). Then, using
Lemma 7.4 we see that

u.x; t/� c1

�
p� 2

c1

Ot C 1

�1=.2�p/

DW Nƒu.Ot /; x 2�; t � Ot : (8-1)

Construct the function Qh in Lemma 6.4 with the choices T D Nƒ
2�p
u and H D Nƒu; then k0 from Lemma 6.4

simplifies to

k0 Dmin
�
Nƒ.2�p/=.p�1/

u
Nƒ.p�2/=.p�1/

u ;
p� 1

n

�
Dmin

�
1;

p� 1

n

�
:

Consider now the function Oh defined as

Oh.x; t/D Qh

�
x

r0

;
t � Ot

r
p
0

�
: (8-2)

The function Oh is a supersolution in

N WD .B.1C1=k0/r0
nBr0

/� .Ot ; Ot C Nƒ2�p
u r

p
0
/:

Thus, the comparison principle, Definition 2.2, (8-1) and (8-2) imply that

u.x; t/� Oh.x; t/ in N \�1:

Next, using the upper estimate (6-3) from Lemma 6.4 we see that

u.x; Ot C Nƒ2�p
u r

p
0
/� C Nƒu

�ˇ̌̌̌
x

r0

ˇ̌̌̌
� 1

�
(8-3)

for a constant C D C.n;p/. As Ox0 2 @� is arbitrary, we see, using (8-3) and (8-1), that

u.x; Ot Cƒ2�p
u r

p
0
/� Cd.x; @�/

for a new constant C � C.diam�=r0; n;p/. Furthermore, as Ot > c2 is arbitrary, we see that if t >
Nƒu.c2/

2�pr
p
0
C c2 WD C2, then

u.x; t/� C1..p� 2/C�1
1 t C 1/�1=.p�2/d.x; @�/

for a constant C1 � C1.diam�=r0; n;p/ > 1. �
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The next lemma provides the corresponding lower bound.

Lemma 8.2. Let��Rn be a bounded connected C 1;1-domain satisfying the ball condition with radius r0.
Let u 2 C.Œ0;1/IL2.�// be a nonnegative p-parabolic function in �� .0;1/. Suppose that there is a
ball B4r1

.x1/��, r1 2 .0; r0/, such that

Nƒ WD /

Z
Br1

.x1/

u.x; 0/ dx > 0:

Then there exist Ci � Ci..diam�/=r0; r1=r0; n;p/, i 2 f3; 4g, such that

u.x; t/�
Nƒ

C3

..p� 2/C3
Nƒp�2t C 1/�1=.p�2/d.x; @�/

whenever x 2� and t > C4
Nƒ2�p. Furthermore, the constants Ci , i 2 f3; 4g, are stable as p! 2C.

Proof. After scaling and translating we may assume that NƒD 1, x1 D 0 and r0 D 1. Note that with these
assumptions we have

/
Z

Br1
.0/

u.x; 0/ dx D 1: (8-4)

Define now the set
�ı WD fx 2� W d.x; �/ > ıg:

Since � is connected and satisfies the ball condition with radius 1, we also obtain that �ı is connected
for ı 2

�
0; 1

2

�
and thus any two points in �ı can be connected by a Harnack chain of balls of size ı=4 and

with length depending only on n;p; diam�, and ı. By using Lemma 3.3 and (8-4) we then find positive
constants c? and t?, both depending only on n;p; diam�, and r1, such that

inf
x2�1=2

u.x; t?/�
1

c?
:

Lemma 7.2 then proves the result whenever x 2�1. Next, let y 2� n�1 and let y? 2 @� be such that
d.y; @�/D jy � y?j. Since d.y; @�/ � 1 and since the direction is unique (see Remark 2.3) we have
that y D a2d.y;@�/.y

?/. With this at hand we can consider the point a2.y
?/ (which is collinear with

y;y?) satisfying

/

Z
B1=4.a2.y?//

u.x; t?/ dx �
1

c?
:

Applying Lemma 7.2 we see that

u.x; t/�
1

c?c1

�
c1.p� 2/Œc?�p�2.t � t?/C 1

��1=.p�2/
d.x; @B1.a2.y

?///

whenever x 2 B1.a2.y
?//, t > t?. Applying this for x D y completes the proof. �

Remark 8.3. Note that our tools are too rough to obtain the lower bound in Lemma 8.2 independent of
the distribution of the initial data. To remedy this, we assume that the initial data is positive in a region
away from the boundary.
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In the next theorem we combine the results of Lemmas 8.1 and 8.2 to obtain an elliptic-type global
Harnack estimate.

Theorem 8.4. Let �� Rn be a bounded C 1;1-domain satisfying the ball condition with radius r0. Let
u 2 C.Œ0;1/IL2.�//\Lp.0;1IW

1;p
0

.�// be a nonnegative p-parabolic function in �� .0;1/. Let

Nƒ WD /

Z
�

u.x; 0/ dx:

Assume that

supp u. � ; 0/��ı D fx 2� W d.x; @�/ > ıg:

Then there are constants ci � ci..diam�/=r0; ı=r0; n;p/, i 2 f1; 2g, such that

c1
�1
�

u.x; t C � Nƒ2�p/

u.x; t/
� c1

whenever � 2 Œ0; 1�, x 2 � and t � c2
Nƒ2�p. Furthermore, the constants ci , i 2 f1; 2g, are stable as

p! 2C.

Proof. In the following we will use the constants Ci , i 2f1; : : : ; 4g, introduced in Lemmas 8.1 and 8.2. Let
t0 DmaxfC2;C4g

Nƒ2�p and consider t � t0 and � 2 .0; 1/. Then, using Lemmas 8.1 and 8.2 we see that

u.x; t C � Nƒ2�p/

u.x; t/
� C1C3

�
.p� 2/C�1

1
.t Nƒp�2C �/C 1

.p� 2/C2t Nƒp�2C 1

��1=.p�2/

;

u.x; t C � Nƒ2�p/

u.x; t/
�

1

C1C3

�
.p� 2/C3.t Nƒ

p�2C �/C 1

.p� 2/C�1
1

t Nƒp�2C 1

��1=.p�2/

:

Theorem 8.5 follows from this by elementary manipulations. We omit further details. �

In the next theorem we use Lemmas 8.1 and 8.2 together with C 1;˛ estimates for weak solutions
to obtain a global boundary Harnack principle as well as Hölder continuity of ratios of solutions. The
intrinsic time interval ensures that the estimate is p-stable.

Theorem 8.5. Let �� Rn be a bounded C 1;1-domain satisfying the ball condition with radius r0. Let
u; v 2C.Œ0;1/IL2.�//\Lp.0;1IW

1;p
0

.�// be nonnegative p-parabolic functions in��.0;1/. Let

Nƒu D /

Z
�

u.x; 0/ dx; Nƒv D /

Z
�

v.x; 0/ dx:

Assume that the initial data is distributed as follows:

supp u. � ; 0/; supp v. � ; 0/��ı D fx 2� W d.x; @�/ > ıg:

Then there exists C 1 � C 1..diam�/=r0; ı=r0; n;p/ such that if C 1 � T� � TC satisfy

T�minf Nƒu; Nƒvg
2�p
� TCmaxf Nƒu; Nƒvg

2�p; (8-5)
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the following holds. There exist C i � C i..diam�/=r0; ı=r0;T�;TC; n;p/, i 2 f2; 3g, such that

C�1
2

Nƒu

Nƒv
�

u.x; t/

v.x; t/
� C 2

Nƒu

Nƒv
(8-6)

whenever

.x; t/ 2D WD��
�
T�minf Nƒu; Nƒvg

2�p; TCmaxf Nƒu; Nƒvg
2�p

�
:

Furthermore, there exists an exponent � � �.n;p/ 2 .0; 1/ such thatˇ̌̌̌
u.x; t/

v.x; t/
�

u.y; s/

v.y; s/

ˇ̌̌̌
� C 3

Nƒu

Nƒv

�
jx�yjCmaxf Nƒu; Nƒvg

.2�p/=p
jt � sj1=p

�� (8-7)

whenever .x; t/; .y; s/ 2D. The constants C i , i 2 f1; 2; 3g, and � are stable as p! 2C.

Proof. In the following we will let C1;C2;C3 and C4 be the constants in Lemmas 8.1 and 8.2. We begin
by proving (8-6). Indeed, using Lemmas 8.1 and 8.2 we see that

Nƒu

Nƒv

1

C1C3

�
.p� 2/C�1

1
Nƒ

p�2
v t C 1

.p� 2/C3
Nƒ

p�2
u t C 1

�1=.p�2/

�
u.x; t/

v.x; t/
; (8-8)

and
u.x; t/

v.x; t/
�

Nƒu

Nƒv
C1C3

�
.p� 2/C3

Nƒ
p�2
v t C 1

.p� 2/C�1
1
Nƒ

p�2
u t C 1

�1=.p�2/

(8-9)

whenever t � maxfC2;C4gminf Nƒu; Nƒvg
2�p. In particular we see that if T� > maxfC2;C4g, and if

T�;TC satisfy (8-5), then (8-6) holds with a constant C 2 depending only on .diam�/=r0, ı=r0, T�, TC,
n, p.

To proceed, consider the rescaled p-parabolic functions

Qu.x; t/D
u.x; Nƒ

2�p
u t/

Nƒu

; Qv.x; t/D
v.x; Nƒ

2�p
v t/

Nƒv
:

Using Lemma 7.4 for w 2 f Qu; Qvg we get for t > c2 that

sup
x2�

w.x; t/� c1..p� 2/c�1
1 t C 1/�1=.p�2/

� c1;

where c1; c2 are as in Lemma 7.4. Thus we can apply [Lieberman 1993, Theorem 0.1] to conclude that
there exist C and � , depending on �;p and n, such that, for w 2 f Qu; Qvg,

jrw.x; t/�rw. Qx; Qt/j � C.jx� QxjC jt � Qt j1=p/�

whenever .x; t/; . Qx; Qt/ 2�� .c2;1/. In particular, arguing as in [Kuusi et al. 2014, (3.31), p. 2717], we
have, for w 2 f Qu; Qvg, ˇ̌̌̌

w.x; t/

d.x; @�/
�
w. Qx; Qt/

d. Qx; @�/

ˇ̌̌̌
� C.jx� QxjC jt � Qt j1=p/� (8-10)
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whenever .x; t/; . Qx; Qt/ 2�� .c2;1/. Scaling back to the original u; v, (8-10) becomes, with w 2 fu; vg,ˇ̌̌̌
w.x; t/

d.x; @�/
�
w. Qx; Qt/

d. Qx; @�/

ˇ̌̌̌
� NƒwC.jx� QxjC Nƒ.p�2/=p

w jt � Qt j1=p/� (8-11)

whenever .x; t/; . Qx; Qt/ 2�� .c2
Nƒ

p�2
w ;1/. Next, using the identity

u.x; t/

v.x; t/
�

u.y; s/

v.y; s/

D
d.x; @�/

v.x; t/

�
u.x; t/

d.x; @�/
�

u.y; s/

d.y; @�/

�
C

u.y; s/

v.y; s/

d.x; @�/

v.x; t/

�
v.y; s/

d.y; @�/
�

v.x; t/

d.x; @�/

�
; (8-12)

assuming that s; t 2 .T�minf Nƒu; Nƒvg
2�p;TCmaxf Nƒu; Nƒvg

2�p/ and that T� > c2 (where c2 is from
Lemma 7.4), we can apply Lemmas 8.1 and 8.2 together with (8-6) and (8-11) in the identity (8-12) to
obtain (8-7). This completes the proof of Theorem 8.5. �

Remark 8.6. Considering the estimates (8-8) and (8-9) in the proof of Theorem 8.5, we see that the
nonlinearities dominate for large values of t . In particular, there exists a p-unstable constant C �

C..diam�=r0/; ı=r0; n;p/ such that

C�1
� lim

t!1

u.x; t/

v.x; t/
� C

whenever x 2�. Note that C is independent of the initial data. This does not happen when p D 2 and
the effect is purely nonlinear.

Remark 8.7. Note that to prove Theorem 8.5 we rely on estimates established in Lemmas 8.1 and 8.2,
instead of relying on the comparison principle, the Carleson estimate and the Harnack inequality, as in
[Fabes et al. 1986, Theorem 2.1]. This is why our estimates from below depend on the distribution of the
initial data. Furthermore, this falls fairly short of the result in [Fabes et al. 1986], but nonetheless we
provide a p-stable version of the phenomena involved in our case.

9. Local estimates in C 1;1-domains

In this section the main focus is to develop an intrinsic version of the boundary Harnack principle (1-2);
see Section 9B. To do this, we first prove an upper and a lower decay rate estimate in the next section.

9A. Upper and lower bound on the decay. We begin with the upper bound, which follows by combining
the barrier function from Lemma 6.4 together with the Carleson estimate Theorem 4.2. In the following,
M will denote the NTA constant of the C 1;1 domain �; see Remark 2.3.

Lemma 9.1. Let u be a nonnegative solution in �T , where � is a C 1;1 domain satisfying the ball
condition with radius r0. Let x0 2 @� and 0< r � r0. Let 0< ı � Qı � 1. Assume that u.ar .x0/; t0/ > 0

for a fixed t0 2 .0;T / and let

� D
C4

16
ŒC5u.ar .x0/; t0/�

2�prp;



BOUNDARY BEHAVIOR OF SOLUTIONS TO THE PARABOLIC p-LAPLACE EQUATION 35

where C4 and C5, both depending on p; n, are as in Theorem 3.9 and with t0 > 5 Qıp�1� . Assume
furthermore that u vanishes continuously on ST \

�
Br .x0/� .t0�4 Qıp�1�; t0�ı

p�1�/
�
. Then there exist

constants ci � ci.M;p; n/, i 2 f8; 9g, such that

sup
Q

u�

�
c8

Qı

�c9=ı d.x0; @�/

r
u.ar .x0/; t/;

where Q WD .Br .x0/\�/� .t0 � 2 Qıp�1�; t0 � ı
p�1�/. Furthermore, the constants ci , i 2 f8; 9g, are

stable as p! 2C.

Proof. Without loss of generality, we may after scaling assume that u.ar .x0/; t0/D 1 and r D 4. Applying
Lemma 6.4 and Theorem 4.2, with

k WDmin
�

p� 1

n
; Qı

�
C4

16
C

2�p
5

�1=.p�1/

; 1

�
; H WD

�
c6

Qı

�c7=ı

;

with constants as in Theorem 4.2 we get

u.x; t/�H

whenever .x; t/ 2 .B4.x0/\�/� .t0� 3 Qıp�1�; t0� ı
p�1�/. The comparison function, indexed by its

initial time s0 and center point y0, is

Ohy0;s0
.x; t/D Qh.x�y0; t � s0/

with T D Qıp�1� , where Qh is from Lemma 6.4. Let y 2 @�\B1.x0/ and consider y0 D a2.y/, an outer
corkscrew point as in Remark 2.3. Then, by the comparison principle

u.x; t/� Ohy0;s0
.x; t/; (9-1)

in

.�\ ŒB1Ck.y0/ nB1.y0/�/� .s0; s0CT /

whenever

.s0; s0CT /� .t0� 3 Qıp�1�; t0� ı
p�1�/:

From Lemma 6.4 and (9-1) we have the estimate

u.x; t/�
H exp.2/

k
.jy0�xj � 1/

whenever

.x; t/ 2 .�\ ŒB1Ck.y0/ nB1.y0/�/� .t0� 2 Qıp�1�; t0� ı
p�1�/;

and y0 2 @�\B1.x0/. From this the result follows by scaling back. �

The following lemma establishes a local lower bound on the decay, by combining the barrier from
Lemma 6.1 and the Harnack estimates in Theorem 3.6.
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Lemma 9.2. Let u be a nonnegative solution in �T , where � is a C 1;1 domain satisfying the ball
condition with radius r0. Let x0 2 @� and let 0< r < r0 be fixed. Let A�D .ar .x0/; t0/, ��Du.A�/2�p

and t0 2 .0;T /. There exist constants ci � ci.M;p; n/, i 2 f3; 4g, such that if

��rp < t0 and t0C 2c4��rp < T;

then
1

c3

d.x; @�/

r
u.A�/� u.x; t/

for x 2 Br .x0/\� and t0C c4��rp < t < t0C 2c4��rp. Furthermore, the constants ci , i 2 f3; 4g, are
stable as p! 2C.

Proof. Set �� WD u.A�/ and consider the scaled solution

v.y; s/D
1

��
u.x0C ry; t0C s�2�p

� rp/:

Set also z� WD fy W x0C ry 2�g so that 0 2 @ z�. For the new function v we have the following situation:
defining A�v D ..ar .x0/�x0/=r; 0/,

v.A�v /D 1; d.A�; @z�/D 1;

and v is a solution in z�� .�1; zT /, where zT WD .T � t0/�
p�2
� r�p. Since 0< r < r0=4 we know that z�

satisfies the ball condition with radius 4. To continue, consider the set

D D fy 2 z� W d.y;B1.0/\ @ z�/D d.y; @z�/D 1g:

Note that D � B2.0/\ z� and that supfd.a1.y0/;y/ W y 2Dg � 2 for any y0 2 @ z�\B1.0/. We obtain
from the Harnack chain estimate in Theorem 3.6 (applied with ı Dminfc.2�p/=p

h
; 1g where ch is from

Theorem 3.6) that there is a Q�1 > 0 depending only on n;p;M such that

v.x; Q�1/�
1

Qc1

whenever x 2
˚
y W d.y;D/ < 1

4

	
provided zT > Q�1. Using Lemma 7.2 (applied with r D 1, % D 1

4
,

g D v. � ; Q�1/, x0 D Qy 2D, t0 D Q�1) for all points Qy 2D, we get

v.y; t/�
1

Qc1c1

�
c1 Qc

2�p
1

.p� 2/.t � Q�2/C c1c2.p� 2/C 1
��1=.p�2/

d.y; z�/ (9-2)

whenever .y; t/ 2 . z�\B1.0//� . Q�2; zT /, with Q�2 D Q�1C c2 Qc
p�2
1

provided zT > Q�2. Going back to � and
u gives us the result provided zT > 2 Q�2. �

Combining Lemmas 9.1 and 9.2 we obtain the joint estimate.

Theorem 9.3. Let u be a nonnegative solution in �T , where � is a C 1;1 domain satisfying the ball
condition with radius r0. Let x0 2 @�, t0 2 .0;T /, and let 0 < r < r0 be fixed. Let A� D .ar .x0/; t0/

and �� D u.A�/2�p. There exist constants ci � ci.M;p; n/, i 2 f5; 6g, such that if

��rp < t0 and t0C 2c4��rp < T;
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then for AC D .ar .x0/; t0C 2c4��rp/ and �C D c�1
6

u.AC/2�p (where c4 is from Lemma 9.2), we have

5�C � ��:

Furthermore, if u vanishes continuously on

ST \
�
Br .x0/� .t0C Œ2c4��� 5�C�r

p; t0C Œ2c4��� �C�r
p/
�
;

then
1

c5

d.x; @�/

r
u.A�/� u.x; t/� c5

d.x; @�/

r
u.AC/

for x 2Br .x0/\� and t0C Œ2c4���2�C�r
p < t < t0C Œ2c4��� �C�r

p. Furthermore, the constants ci ,
i 2 f5; 6g, are stable as p! 2C.

Proof. Rescale u as in the proof of Lemma 9.2; let also Q�2 be as in the proof of Lemma 9.2. Thus

1

c3
d.x; @�/� v.x; t/

holds for .x; t/.Br .x0/\�/� . Q�2; 2 Q�2/. Define �C D 2 Q�2 and consider AC D .a1.0/; �C/. Then using
(9-2) we get

v.AC/
2�p
�

�
1

Qc1c1

�
c1 Qc

2�p
1

.p� 2/.t � Q�2/C c1c2.p� 2/C 1
��1=.p�2/

�2�p

D
1

. Qc1c1/2�p
Œc1 Qc

2�p
1

.p� 2/C c1c2.p� 2/C 1�

DW Qc2:

We will now apply Lemma 9.1 with (r D 1, ıp�1 Dminf.16=.5 Qc2C4//C
p�2
5

; 1g and Qı D ı, with C4;C5

from Lemma 9.1). Doing this we see that

v.x; t/� Qc3d.x; @z�/v.AC/

whenever .x; t/ 2 .B1.0/\�/� .�C� v.AC/
2�p; �C� v.AC/

2�p=2/. Going back to � and u gives us
the result. �

9B. Local boundary Harnack estimate. We are now ready to state and prove our local boundary Harnack
principle; consult Figure 1 for a schematic of the geometry.

Theorem 9.4. Let u; v be two nonnegative solutions in �T , where � is a C 1;1-domain satisfying the ball
condition with radius r0. Let x0 2 @�, t0 2 .0;T /, and let 0 < r < r0 be fixed. Let A� D .ar .x0/; t0/

and assume that u.A�/D v.A�/. Let the constants ci , i 2 f4; 5; 6g be as in Lemmas 9.2 and 9.3. Let
�� D u.A�/

2�p, and assume

��rp < t0 and t0C 2c4��rp < T:

Set
AC D .ar .x0/; t0C 2c4��rp/; �C;u D c�1

6 u.AC/
2�p:
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t

.x; t/

AC

A?C

A�

2c4��rp

�C;urp

�C;urp

�?C;vr
p

Figure 1. The boxes and denote the regions where the right- and left-hand sides
of Theorem 9.4 hold respectively.

Assume that v.AC/� u.AC/. Then there exists a time t?C, depending on v, satisfying

t?C 2 .t0C .2c4��� �C;u/r
p; t0C 2c4��rp/;

A?C D .ar .x0/; t
?
C/; �?C;v D c�1

6 v.A?C/
2�p

such that the following holds. If both u and v vanish continuously on

ST \
�
Br .x0/� .t0C Œ2c4��� 5�C;u�r

p; t0C Œ2c4��� �C;u�r
p/
�
;

then
1

c2
5

u.A�/

v.A?C/
�

u.x; t/

v.x; t/
� c2

5

u.AC/

v.A�/

whenever .x; t/ belongs to the set

.Br .x0/\�/�
�
t0C Œ2c4��� .�

?
C;vC �C;u/�r

p; t0C Œ2c4��� �C;u�r
p
�
:

Remark 9.5. It should be noted that we cannot control the time t?C except which interval it lies in; it is a
purely intrinsic parameter. Furthermore note that Theorem 9.4 is equivalent to the boundary Harnack
principle (1-2) when p D 2.

Proof. Let ci , i 2 f3; : : : ; 6g, be as in Lemmas 9.2 and 9.3. By the assumptions, we know that �C;u �
�C;v WD c�1

6
v.AC/

2�p. We then obtain by Theorem 9.3, for x 2Br .x0/\� and t0C.2c4���2�C;u/r
p<

t < t0C .2c4��� �C;u/r
p, that

1

c5

d.x; @�/

r
u.A�/� u.x; t/� c5

d.x; @�/

r
u.AC/: (9-3)
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Using Lemma 9.2 for x 2 Br .x0/\� and t0C c4��rp < t < t0C 2c4��rp we get that

1

c3

d.x; @�/

r
v.A�/� v.x; t/: (9-4)

Now let tC D t0C 2c4��rp and let t?C be a time to be fixed such that tC� �C;urp < t?C � tC. First note
that if t?C D tC we have for �?C;v D c�1

6
.v.ar .x0/; t

?
C//

2�p,

t?C� �
?
C;vr

p
� tC� �C;urp

I

furthermore, if t?C D tC� �
u
Crp then

t?C� �
?
C;vr

p < tC� �C;urp:

Thus by continuity there is a largest t?C such that

t?C� �
?
C;vr

p
D tC� �C;urp:

With t?C at hand we now apply Lemma 9.1 (with the same ı; Qı as in the proof of Theorem 9.3) combining
it with (9-4) to get

1

c5

d.x; @�/

r
v.A�/� v.x; t/� c5

d.x; @�/

r
v.A?C/ (9-5)

for x 2Br .x0/\� and t0C .2c4��� .�C;uC�
?
C;v//r

p < t < t0C .2c4����C;u/r
p . Combining (9-3)

and (9-5) we have completed the proof. �

9C. Boundary measures in C 1;1-domains. We conclude the section by describing the fine properties
of the boundary measure defined in (1-6). The theorem below says that the induced measure is mutually
absolutely continuous with respect to the surface measure of ST .

Theorem 9.6. Under the hypotheses of Theorem 9.3,

0< lim inf
%!0

�u.Q%.x; t//

%nC1
� lim sup

%!0

�u.Q%.x; t//

%nC1
<C1;

where Q%.x; t/ WD B%.x/� .t � %
2; t/, whenever .x; t/ 2 V ,

V WD .@�\Br .x0//�
�
t0C .2c4��� 2�C/r

p; t0C .2c4��� �C/r
p
�
:

In particular, �u is mutually absolutely continuous with respect to the surface measure of ST on V .

Proof. By Theorem 9.3 we have

��d.x; @�/� u.x; t/� �Cd.x; @�/; �˙ WD c˙1
5

u.A˙r /

r
(9-6)

whenever .x; t/ 2Q, with

Q WD .�\Br .x0//�
�
t0C .2c4��� 2�C/r

p; t0C .2c4��� �C/r
p
�
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and �˙ as in Theorem 9.3. We now pick a point .y; s/ 2 ST \ @pQ. Choose % small enough so that
U%.y; s/\ .��R/ is contained in Q, where

U%.y; s/ WD B%.y/� .s� Q�%
2; sC Q�%2/;

Q� WD �2�p
� maxf8C4C

2�p
5

; 2.�0C �1/g and C4;C5 and �0; �1 are as in Theorems 5.2 and 5.3. After a
simple covering argument using (9-6), and Theorems 5.2 and 5.3, we find a constant C �C.p; n;M; �˙/

such that
1

C
�
�u.U%=2.y; s//

%nC1
� C:

Taking a possibly larger C , and a smaller %, this actually implies

1

C
�
�u.Q%.y; s//

%nC1
� C

uniformly for small enough %. This proves the statement. �

Remark 9.7. Note that in the same region V as in Theorem 9.6 we have that the measure is doubling.
Moreover note that Lemma 9.2 implies a Hopf-type result on this boundary cylinder V ; thus together
with the fact that solutions are C 1;˛ up to the boundary, we get that the logarithm of the normal derivative
on the boundary is Hölder continuous. Now arguing as in [Avelin et al. 2011, (1.7)–(1.10)] we get, for
.x0; t0/ 2 V given, and � 2 .0; 1/, that

lim
%!0

�u.Q�%.x0; t0//

�u.Q%.x0; t0//
D �nC1:

In particular, the measure �u is asymptotically optimal doubling.
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ON ASYMPTOTIC DYNAMICS FOR L2 CRITICAL
GENERALIZED KDV EQUATIONS WITH

A SATURATED PERTURBATION

YANG LAN

We consider theL2 critical gKdV equation with a saturated perturbation: @tuC.uxxCu5�ujujq�1/xD0,
where q > 5 and 0 <  � 1. For any initial data u0 2H 1, the corresponding solution is always global
and bounded in H 1. This equation has a family of solutions, and our goal is to classify the dynamics near
solitons. Together with a suitable decay assumption, there are only three possibilities: (i) the solution
converges asymptotically to a solitary wave whoseH 1 norm is of size �2=.q�1/ as ! 0; (ii) the solution
is always in a small neighborhood of the modulated family of solitary waves, but blows down at C1;
(iii) the solution leaves any small neighborhood of the modulated family of the solitary waves.

This extends the classification of the rigidity dynamics near the ground state for the unperturbed L2 crit-
ical gKdV (corresponding to  D 0) by Martel, Merle and Raphaël. However, the blow-down behavior (ii)
is completely new, and the dynamics of the saturated equation cannot be viewed as a perturbation of
the L2 critical dynamics of the unperturbed equation. This is the first example of classification of the
dynamics near the ground state for a saturated equation in this context. The cases of L2 critical NLS and
L2 supercritical gKdV, where similar classification results are expected, are completely open.
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1. Introduction

1A. Setting of the problem. Let us consider the following Cauchy problem:�
@tuC .uxxCu

5� ujujq�1/x D 0; .t; x/ 2 Œ0; T /�R;

u.0; x/D u0.x/ 2H
1.R/;

(gKdV )

with q > 5 and 0 <  � 1.
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The equation has two conservation laws, i.e., the mass and the energy:

M.u.t//D

Z
u.t/2 DM0;

E.u.t//D
1

2

Z
ux.t/

2
�
1

6

Z
u.t/6C



qC 1

Z
ju.t/jqC1 DE0:

We can see that the solution of (gKdV ) is always global in time and bounded in H 1. First of all,
(gKdV ) is locally well-posed in H 1 due to [Kato 1983; Kenig, Ponce and Vega 1993]; i.e., for any
u0 2H

1, there exists a unique strong solution in C.Œ0; T /;H 1/ with either T DC1 or T <C1 and
limt!T kux.t/kL2 DC1. Since  > 0, q > 5, the mass and energy conservation laws ensure that, for
all t 2 Œ0; T /,

kux.t/k
2
L2
. jE0jC �

4
q�5M0 <C1;

so T DC1 and u.t/ is always bounded in H 1.
This equation does not have a standard scaling rule, but has the following pseudoscaling rule: for all

�0 > 0, if u.t; x/ is a solution to (gKdV ), then

u�0.t; x/D �
� 1
2

0 u.��30 t; ��10 x/ (1-1)

is a solution to (
@tvC .vxxC v

5���m0 vjvjq�1/x D 0; .t; x/ 2 Œ0; ��30 T /�R;

v.0; x/D �
� 1
2

0 u0.�
�1
0 x/ 2H 1.R/;

with

mD 1
2
.q� 5/ > 0: (1-2)

The pseudoscaling rule (1-1) leaves the L2 norm of the initial data invariant.
There is a special class of solutions. We first introduce the ground state Q! for 0 � ! < !� � 1,

which is the unique radial nonnegative solution with exponential decay to the ODE1

Q00! �Q! CQ5! �!Q! jQ! j
q�1
D 0:

Then for all �0 > 0, t0 2 R, x0 2 R with ��m0  < !�, the following is a solution to (gKdV ):

u.t; x/D �
� 1
2

0 Q��m0  .�
�1
0 .x� x0/��

�3
0 .t � t0//:

A solution of this type is called a solitary wave solution.

1B. On the critical problem with saturated perturbation. The saturated perturbation was first introduced
for the nonlinear Schrödinger (NLS)

i@tuC�uCg.juj
2/uD 0; .t; x/ 2 Œ0; T /�Rd : (NLS)

1The existence of such Q! was proved in [Berestycki and Lions 1983, Section 6], but in this paper we will give an alternative
proof for the existence.
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In many applications, the leading-order approximation of the nonlinearity, g.s/, is the power nonlin-
earity; i.e., g.s/D˙s�. For example, g.s/D s leads to the focusing cubic NLS equation, which appears
in many contexts.

But such approximation may lead to nonphysical predictions. For example, from [Fibich 2015; Merle
and Raphaël 2005; Merle, Raphaël and Szeftel 2010; Sulem and Sulem 1999], for NLS with critical or
supercritical focusing nonlinearities (i.e., g.s/D s� with �d � 2), blow up may occur. However, this
contradicts the experiments in the optical settings [Josserand and Rica 1997], which shows that there is
no “singularity” and the solution always remains bounded.

One way to correct this model is to replace the power nonlinearities by saturated nonlinearities. A
typical example2 is g.s/ D s� � s�Cı, with ı > 0,  > 0. Similar to (gKdV ), in this case any
H 1 solution to (NLS) is global in time and bounded in H 1.

On the other hand, the saturated perturbation is also related to the problem of continuation after blow up
time. These kinds of problems arising in physics are poorly understood even at a formal level. One
approach is to consider the solution u".t/ to the following critical NLS with saturated perturbation:�

i@tuC�uCjuj
4
d u� "jujquD 0; .t; x/ 2 Œ0; T /�Rd ;

u.0; x/D u0.x/ 2H
1.Rd /;

where
4

d
< q <

4

d � 2
:

Suppose the solution u.t/ to the unperturbed NLS (i.e., "D 0) with initial data u0, blows up in finite
time T <C1. Then, it is easy to see that for all " > 0, the solution u".t/ exists globally in time, and for
all t < T

lim
"!0

u".t/D u.t/ in H 1:

Now, we may consider the limit
lim
"!0

u".t/; t > T;

to see whether the limiting function exists and in what sense it satisfies the critical NLS. Such a construction
for blow-up solutions using the Virial identity was given by Merle [1992a]. An alternative way to construct
the approximate solution u".t/ can also be found in [Merle 1989; 1992b; Merle, Raphaël and Szeftel
2013], but this only holds for very special cases. General constructions of this type are mostly open. In
all cases, the asymptotic behavior of the approximate solution u".t/ is crucial in the analysis.

Therefore, the asymptotic dynamics of dispersive equations with a saturated perturbation becomes a
natural question.

1C. Results for L2 critical gKdV equations. Let us recall some results for the following L2 critical
gKdV equations: �

@tuC .uxxCu
5/x D 0; .t; x/ 2 Œ0; T /�R;

u.0; x/D u0.x/ 2H
1.R/:

(gKdV)

2See [Glasner and Allen-Flowers 2016; Marzuola, Raynor and Simpson 2010] for other kinds of saturated perturbations.
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This equation is L2 critical since, for all � > 0,

u�.t; x/D �
� 1
2u.��3t; ��1x/

is still a solution to (gKdV) and ku�kL2 D kukL2 .
There is a special class of solutions, i.e., the solitary waves, which is given by

u.t; x/D
1

�
1=2
0

Q

�
x� x0��

�2
0 .t � t0/

�0

�
;

with

Q.x/D

�
3

cosh2.2x/

�1
4

; Q00�QCQ5 D 0:

The function Q is called the ground state.
From variational arguments [Weinstein 1982], we know that if ku0kL2 < kQkL2 , then the solution

to (gKdV) is global in time and bounded in H 1, while for ku0kL2 � kQkL2 , blow up may occur. The
blow up dynamics for solutions with slightly supercritical mass

kQkL2 < ku0kL2 < kQkL2 C˛
� (1-3)

has been developed in a series papers [Martel and Merle 2002a; 2002b; 2002c; Merle 2001]. In particular,
they prove the existence of blow up solutions with negative energy, and give a specific description of the
blow up dynamics and the formation of singularities.

Martel, Merle and Raphaël [2014; 2015a; 2015b] give an exclusive study of the asymptotic dynamics
near the ground state Q.

More precisely, consider the initial data set

A˛0 D
�
u0 2H

1

ˇ̌̌̌
u0 DQC "0; k"0kH1 < ˛0;

Z
y>0

y10"20 < 1

�
;

and the L2 tube around the solitary wave family

T˛� D
�
u0 2H

1

ˇ̌̌̌
inf

�0>0;x02R

u0� 1

�
1=2
0

Q

�
x� x0

�0

�
L2
< ˛�

�
:

Then we have:

Theorem 1.1. For 0 < ˛0� ˛�� 1 and u0 2 A˛0 , let u.t/ be the corresponding solution to (gKdV),
and 0 < T �C1 be the maximal lifetime. Then one of the following scenarios occurs:

Blow up: The solution u.t/ blows up in finite time 0 < T <C1 with

ku.t/kH1 D
`.u0/C o.1/

T � t
; `.u0/ > 0:

In addition, for all t < T , we have u.t/ 2 T˛� .

Soliton: The solution is global, and for all t < T DC1, we have u.t/ 2 T˛� . In addition, there exist a
constant �1 > 0 and a C 1 function x.t/ such that
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�
1
2
1 u.t; �1 � Cx.t//!Q in H 1

loc as t !C1;

j�1� 1j. ı.˛0/; x.t/�
t

�21
as t !C1:

Exit: For some finite time 0 < t� < T , we have u.t�/ … T˛� .

Moreover, the blow-up and exit scenarios are stable by small perturbation in A˛0 .

Martel, Merle, Nakanishi and Raphaël [2016] proved that the initial data in A˛0 which corresponds to
the soliton regime is a codimension-one threshold submanifold between blow up and exit.

Theorem 1.2. Let

A?˛0 D
�
"0 2H

1

ˇ̌̌̌
k"0kH1 < ˛0;

Z
y>0

y10"20 < 1; ."0;Q/D 0

�
:

Then there exist ˛0 > 0, ˇ0 > 0, and a C 1 function A,

A?˛0 ! .�ˇ0; ˇ0/;

such that for all 0 2A?˛0 and a2 Œ�ˇ0; ˇ0�, the solution of (gKdV) corresponding to u0D .1Ca/QC0
satisfies

� the soliton regime if aD A.0/;

� the blow-up regime if a > A.0/;

� the exit regime if a < A.0/.

In particular, let

QD fu0 2H 1
j there exists �0; x0 such that u0 D �

� 1
2

0 Q.��10 .x� x0//g:

Then there exists a small neighborhood O of Q in H 1\L2.y10
C
dy/ and a codimension-one C 1 submani-

fold M of O such that Q�M and for all u0 2O the corresponding solution of (gKdV) is in the soliton
regime if and only if u0 2M.

1D. Statement of the main result. The aim of this paper is to classify the dynamics of (gKdV ) near
the ground state Q for (gKdV), when  is small enough. The main idea is that the defocusing term
ujujq�1 has weaker nonlinear effect than the focusing term u5. So, we may expect that (gKdV ) has
similar separation behavior as (gKdV), when  is small.

More precisely, we fix a small universal constant !� > 0 (to ensure the existence of the ground
state Q!), and then introduce the following L2 tube around Q :

T˛�;  D
�
u0 2H

1

ˇ̌̌̌
inf

�0>0;�
�m
0 <!�; x02R

u0� 1

�
1=2
0

Q��m0 

�
x� x0

�0

�
L2
< ˛�

�
:

Then we have:

Theorem 1.3 (dynamics in A˛0). For all q > 5, there exists a constant 0 < ˛�.q/ � 1 such that if
0 <  � ˛0� ˛� < ˛�.q/, then for all u0 2A˛0 the corresponding solution u.t/ to (gKdV ) has one
and only one of the following behaviors:
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Soliton: For all t 2 Œ0;C1/, we have u.t/ 2 T˛�;  . Moreover, there exist a constant �1 2 .0;C1/ and
a C 1 function x.t/ such that

�
1
2
1 u.t; �1 � Cx.t//!Q��m1  in H 1

loc as t !C1; (1-4)

x.t/�
t

�21
as t !C1: (1-5)

Blow down: For all t 2 Œ0;C1/, we have u.t/ 2 T˛�;  . Moreover, there exist two C 1 functions �.t/ and
x.t/ such that

�
1
2 .t/ u.t; �.t/ � Cx.t//!Q in H 1

loc as t !C1I (1-6)

�.t/� t
2
qC1 ; x.t/� t

q�3
qC1 as t !C1; (1-7)

Exit: There exists 0 < t� <C1 such that u.t� / … T˛�;  .

There exist solutions associated to each regime. Moreover, the soliton and exit regimes are stable under
small perturbation in A˛0 .

Comments. (1) Classification of the flow near the ground state. Theorem 1.3 gives a detailed description
of the flow near the ground state Q of (gKdV ). This kind of problem has attracted considerable
attention, especially for dispersive equations. See for example, [Nakanishi and Schlag 2011; 2012a;
2012b] for Klein–Gordon and mass-supercritical nonlinear Schrödinger equations; [Fibich, Merle and
Raphaël 2006; Merle and Raphaël 2003; 2004; 2005; 2005; 2006; Raphaël 2005; Merle, Raphaël and
Szeftel 2013] for mass-critical nonlinear Schrödinger equations; [Martel, Merle and Raphaël 2014; 2015a]
for L2 critical gKdV equations; [Kenig and Merle 2006; Duyckaerts and Merle 2009] for energy-critical
nonlinear Schrödinger equations; [Kenig and Merle 2008; Duyckaerts and Merle 2008; Krieger, Nakanishi
and Schlag 2013; 2014] for energy-critical wave equations; and [Collot, Merle and Raphaël 2017] for
energy-critical nonlinear heat equations. Note that the fact that the blow-down regime near the ground
state is a codimension-one threshold submanifold of initial data in A˛0 could be proved much as in
[Martel, Merle, Nakanishi and Raphaël 2016].

(2) Asymptotic stability of solitons for (gKdV ). Since the soliton regime is open, Theorem 1.3 also
implies the asymptotic stability of the soliton Q for (gKdV ) under some suitable decay assumption.
Recall that from [Martel and Merle 2001], the soliton Q for the unperturbed critical gKdV equation is
not stable in H 1.

(3) Blow-down behaviors. Theorem 1.3 shows that a saturated perturbation may lead to some chaotic
behaviors (i.e., the blow-down behaviors), which does not seem to appear in the unperturbed case.
Examples of solutions with a blow-down behavior were also found in [Donninger and Krieger 2013] for
energy-critical wave equations. While for mass-critical NLS, the blow-down behavior can be obtained as
the pseudoconformal transformation of the log-log regime.3 However, Theorem 1.3 is the first time that
this type of blow-down behavior is obtained in the context of a saturated perturbation. Furthermore, in

3See [Merle, Raphaël and Szeftel 2013, (1.16)], for example.
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Theorem 1.3, the blow-down regime is a codimension-one threshold between two stable ones, which is in
contrast with the mass-critical nonlinear Schrödinger case, where the blow-down regime is stable.

Now we consider the case when  ! 0. As we mentioned before, the defocusing term ujujq�1 has
weaker nonlinear effect than the focusing term u5. So the results in Theorem 1.3 are expected to be a
perturbation of the one in Theorem 1.1.

More precisely, we have:

Theorem 1.4. Let us fix a nonlinearity q > 5, and choose 0 < ˛0� ˛� < ˛�.q/ as in Theorem 1.3. For
all u0 2A˛0 , let u.t/ be the corresponding solution of (gKdV), and u .t/ be the corresponding solution
of (gKdV ). Then we have:

(1) If u.t/ is in the blow-up regime defined in Theorem 1.1, then there exists 0 < .u0; ˛0; ˛�; q/� ˛0

such that if 0 <  < .u0; ˛0; ˛�; q/, then u .t/ is in the soliton regime defined in Theorem 1.3.
Moreover, there exist constants di D di .u0; q/ > 0, i D 1; 2, such that

d1
2
q�1 � �1 � d2

2
q�1 ; (1-8)

where �1 is the constant defined in (1-4).

(2) If u.t/ is in the exit regime defined in Theorem 1.1, then there exists 0 < .u0; ˛0; ˛�; q/� ˛0 such
that if 0 <  < .u0; ˛0; ˛�; q/, then u .t/ is in the exit regime defined in Theorem 1.3.

Remark 1.5. We can see from Theorem 1.4 that (gKdV ) is a perturbation of (gKdV) as  ! 0: the
soliton regime of (gKdV ) “converges” to the blow-up regime of (gKdV), and the exit regime “converges”
to the exit regime of (gKdV).

Remark 1.6. Theorem 1.4 is the first result of this type for nonlinear dispersive equations. One may
also expect similar results for the critical NLS or the slightly supercritical gKdV cases. But they are still
completely open.

Indeed, for critical NLS, Malkin [1993] predicted a similar asymptotic behavior for the solution to the
saturated problem of critical NLS in the log-log region. However, due to the different structures of NLS
and gKdV, it seems hard to apply the strategy in this paper to the NLS case.

While for the slightly supercritical gKdV case, the stable self-similar blow-up dynamics is well-studied
in [Lan 2016]. But, due to the fact that the self-similar profile constructed in [Koch 2015, Theorem 3]
is not in the energy space H 1, we have to choose a suitable cut-off as an approximation of this profile.
As a consequence, this generates some error terms that are hard to control, which makes it impossible
to consider the saturated problem in this case. However, Strunk [2014] proved the local well-posedness
result for supercritical gKdV in a space that contains the self-similar profile, which provides an alternative
option for the saturated problems.

1E. Notation. For 0�!<!�� 1, we let Q! be the unique nonnegative radial solution with exponential
decay to the ODE

Q00! �Q! CQ5! �!Q! jQ! j
q�1
D 0: (1-9)
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For simplicity, we define QDQ0. Recall that we have

Q.x/D

�
3

cosh2.2x/

�1
4

:

We also introduce the linearized operator at Q! :

L!f D�f
00
Cf � 5Q4!f C q!jQ! j

q�1f:

Similarly, we define LD L0.
Next, we introduce the scaling operator

ƒf D 1
2
f Cyf 0:

Then, for a given small constant ˛�, we denote by ı.˛�/ a generic small constant with

lim
˛�!0

ı.˛�/D 0:

Finally, we denote the L2 scalar product by

.f; g/D

Z
f .x/g.x/ dx:

1F. Outline of the proof.

1F1. Decomposition of the flow. We are searching for solutions of the form

u.t; x/�
1

�.t/1=2
Qb.t/;!.t/

�
x� x.t/

�.t/

�
;

! D


�m
;

ds

dt
D

1

�3
;

�s

�
D�b;

xs

�
D 1;

which lead to the modified self-similar equation

bƒQb;! C .Q
00
b;! �Qb;! CQ

5
b;! �!Qb;! jQb;! j

q�1/0 D 0: (1-10)

Formal computations show that b and ! must satisfy the condition

bsC 2b
2
C c0!s D 0;

where c0 D c0.q/ > 0 is a universal constant.
Combining all the above, we get the formal finite-dimensional system8̂<̂

:
ds

dt
D

1

�3
;

�s

�
D�b;

xs

�
D 1;

bsC 2b
2
C c0!s D 0; ! D



�m
:

(1-11)

By standard computations, it is easy to see that (1-11) has the following behavior. Let

L0 D
b.0/

�2.0/
C

mc0

.mC 2/�mC2.0/
:
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We have:

(1) If L0 > 0, then

b.t/! 0; �.t/!

�
mc0

.mC 2/L0

� 1
mC2

; x.t/�

�
.mC 2/L0

mc0

� 2
mC2

t

as t !C1, which corresponds to the soliton regime.

(2) If L0 D 0, then

b.t/! 0; �.t/!C1; x.t/!C1

as t !C1, which corresponds to the blow-down regime.

(3) If L0 < 0, then

b.t/!�1; �.t/!C1

as t !C1, which corresponds to the exit regime.

1F2. Modulation theory. Our first step is to find a solution to (1-10). But for our analysis, it is enough
to consider a suitable approximation:4

Qb;!.y/DQ!.y/C b�.jbjˇy/P!.y/:

As long as the solution remains in T˛�;  , we can introduce the geometrical decomposition

u.t/D
1

�.t/1=2
ŒQb.t/;!.t/C ".t/�

�
x� x.t/

�.t/

�
;

with !.t/D =�.t/m and the error term satisfies some orthogonality conditions. Then the equations of
the parameters are roughly speaking of the form

�s

�
C b D

dJ1

ds
CO.k"k2

H1
loc
/;

bsC 2b
2
C c0!s D

dJ2

ds
CO.k"k2

H1
loc
/;

with

jJi j. k"kH1
loc
C

Z
y>0

j"j:

Therefore, a L1 control on the right is needed, otherwise Ji will perturb the formal system (1-11).

1F3. Monotonicity formula. Our next step is to derive a control for k"kH1
loc

. Similar to [Martel, Merle
and Raphaël 2014, Proposition 3.1], we introduce the nonlinear functional

F �
Z
. "2y C'"

2
� 5"2Q4b;! C q!"

2
jQb;! j

q�1 /

4See Section 2A for more details.
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for some well-chosen weight functions . ; '/, which decay exponentially to the left and grow polynomially
on the right. We will see from the choice of the orthogonality condition that the leading quadratic term of
F is coercive:

F & k"k2
H1

loc
:

Most importantly, we have the monotonicity formula

d

ds

�
F
�2j

�
C

k"k2
H1

loc

�2j
.
!2b2C b4

�2j

for j D 0; 1. This formula is crucial in all three cases.

1F4. Rigidity. The selection of the dynamics depends on:

(1) For all t , ˇ̌̌̌
b.t/C

mc0

mC 2
!.t/

ˇ̌̌̌
. k".t/k2

H1
loc
C b2.t/C!2.t/:

(2) For some t�1 < T DC1,

b.t�1 /C
mc0

mC 2
!.t�1 /�k".t/k

2

H1
loc
C b2.t/C!2.t/:

(3) For some t�1 < T DC1,

�b.t�1 /�
mc0

mC 2
!.t�1 /�k".t/k

2
H1

loc
C b2.t/C!2.t/:

We will see that in the first case we have for all t ,

jb.t/j � !.t/�k".t/k2
H1

loc
;

and in the second case we have
!.t/� jb.t/j � k".t/k2

H1
loc

for t > t�2 � t
�
1 as long as u.t/ remains in T˛�;  . While in the third case, we have

�b.t/� !.t/�k".t/k2
H1

loc

for t > t�1 as long as u.t/ remains in T˛�;  . Then reintegrating the modulation equations, we will see that
these three cases correspond to the blow-down, soliton and exit regimes respectively.

Moreover, the condition on b.t�1 / and !.t�1 / which determines the soliton and exit regimes is an open
condition to the initial data due to the continuity of the flow. On the other hand, it is easy to construct
solutions, which belongs to the soliton and exit regimes respectively. Since, the initial data set A˛0 is
connected, we can see that there exist solutions corresponding to the blow-down regime.

1F5. Proof of Theorem 1.4. The proof of Theorem 1.4 is based on the fact that the separation condition
for (gKdV ) is close to the separation condition for (gKdV) when  ! 0. Then Theorem 1.4 follows
immediately from a modified H 1 perturbation theory.5

5See [Killip, Kwon, Shao, and Visan 2012, Theorem 3.1] for the standard L2 perturbation theory.
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2. Nonlinear profile and decomposition of the flow

We will introduce the nonlinear profile and the geometrical decomposition similar to the one in [Martel,
Merle and Raphaël 2014], which turns out to lead to the desired rigidity dynamics.

2A. Structure of the linearized operator L!. Denote by Y the set of smooth functions f such that for
all k 2 N there exist rk > 0, Ck > 0 with

j@kyf .y/j � Ck.1Cjyj/
rke�jyj: (2-1)

Let us first recall some results about the linearized operator L.

Lemma 2.1 (properties of L [Martel and Merle 2001; Martel, Merle and Raphaël 2014; Weinstein 1985]).
The self-adjoint operator L (recall that we use the notation LD L0, which was introduced in Section 1E)
in L2 has the following properties:

(1) Eigenfunction: LQ3 D�8Q3, LQ0 D 0, kerLD faQ0ja 2 Rg.

(2) Scaling: L.ƒQ/D�2Q.

(3) For any function f 2 L2 orthogonal to Q0, there exists a unique g 2 H 2 such that Lg D f with
.g;Q0/D 0. Moreover, if f is even, then g is even, and if f is odd, then g is odd.

(4) If f 2 L2 such that Lf 2 Y , then f 2 Y .

(5) Coercivity: For all f 2H 1, if .f;Q3/D .f;Q0/D 0, then .Lf; f /� .f; f /. Moreover, there exists
�0 > 0 such that for all f 2H 1,

.Lf; f /� �0kf k
2
H1 �

1

�0
Œ.f;Q/2C .f;ƒQ/2C .f; yƒQ/2�:

Proposition 2.2 (nonlocalized profiles [Martel, Merle and Raphaël 2014, Proposition 2.2]). There exists
a unique function P with P 0 2 Y such that

.LP /0 DƒQ; lim
y!�1

P.y/D
1

2

Z
Q; jP.y/j. e�

y
2 for y > 0; (2-2)

.P;Q/D
1

16

�Z
Q

�2
; .P;Q0/D 0: (2-3)

Now for the ground state Q! and the linearized operator L! , we have the following properties:

Lemma 2.3. For 0 < ! < !�� 1, we have:

(1) Null space: kerL! D faQ0! j a 2 Rg.

(2) Pseudoscaling rule: L!.ƒQ!/D�2Q! C 1
2
.q� 5/!Qq! .

(3) For any function f 2 L2 orthogonal to Q0! , there exists a unique g 2H 2 such that L!g D f with
.g;Q0!/D 0. Moreover, if f is even, then g is even, and if f is odd, then g is odd.

(4) If f 2 L2 such that L!f 2 Y , then f 2 Y .

(5) Let Z! D @Q!=@!. Then Z! 2 Y , and L!Z! D�Q! jQ! jq�1.
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(6) Coercivity: There exists a �0 > 0 such that for all f 2H 1,

.L!f; f /� �0kf k
2
H1 �

1

�0
Œ.f;Q!/2C .f;ƒQ!/2C .f; yƒQ!/2�:

Proof. Part (1) follows from the same arguments as the proof of [Weinstein 1985, Proposition 2.8; 1986,
Proposition 3.2]. Part (2) follows from direct computation. Part (3) is a direct corollary of (1), while
for (4), from standard elliptic theory, we know that f is smooth and bounded. So we have Lf 2 Y , and
from Lemma 2.1, we have f 2 Y .

Now we turn to the proof of (5). Differentiating (1-9), we obtain L!Z! D �Q! jQ! jq�1. Since
Q! jQ! jq�1 2 Y , if we can show that Z! 2 L2, then we have Z! 2 Y . To do this, we introduce the map

F WH 2
e �R 7! L2e ; .u; !/ 7! �u00Cu�u5C!ujujq�1;

where H 2
e and L2e are the Banach spaces consisting of all H 2 and L2 functions, respectively, which are

even. Since H 2.R/ is continuously embedded into L1.R/, the map F is well-defined.
We claim that there exists a small !�>0 such that if 0�! <!�, then there exists a unique u.!/2H 2

e

such that F.u.!/; !/D 0. Since we have F.Q; 0/D 0, from implicit function theory, it only remains
to show that the Fréchet derivative with respect to u, i.e., @F=@uj.Q;0/ 2 L.H 2

e ; L
2
e/, is invertible and

continuous. But it is easy to see that
@F

@u

ˇ̌̌̌
.Q;0/

D L;

which is invertible and continuous due to part (3) of Lemma 2.1. Hence, we obtain the existence of
such u.!/. Moreover, since F is continuously differentiable with respect to both u and !, we have u.!/ is
continuously differentiable with respect to !. In particular, we have @u=@! 2H 2

e . But from the uniqueness
of u.!/, we must have u.!/DQ! . As a consequence, we have Z! D @Q!=@! D @u=@! 2H 2

e , which
concludes the proof of (5).

Finally, (6) follows immediately from a perturbation argument for part (5) of Lemma 2.1. More
precisely, since Q! is C 1 with respect to !, we have, for all f 2H 1,

.L!f; f /D .Lf; f /CO.!/kf k
2
H1 ;

and

.f;Q!/2C .f;ƒQ!/2C .f; yƒQ!/2 D .f;Q/2C .f;ƒQ/2C .f; yƒQ/2CO.!/kf k2H1 :

Together with part (5) of Lemma 2.1, we conclude the proof of part (6) of Lemma 2.3, which finishes the
proof of Lemma 2.3. �

Proposition 2.4. For 0 < ! < !�� 1, there exists a smooth function P! , with P 0! 2 Y , such that

.L!P!/
0
DƒQ! ; lim

y!�1
P!.y/D

1

2

Z
Q! ; (2-4)

.P! ;Q0!/D 0; .P! ;Q!/D
1

16

�Z
Q

�2
CF.!/; (2-5)
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where F is a C 1 function with F.0/D 0. Moreover there exist constants C0; C1; : : : , independent of !,
such that

jP!.y/jC

ˇ̌̌̌
@P!

@!
.y/

ˇ̌̌̌
� C0e

�
y
2 for all y > 0; (2-6)

jP!.y/jC

ˇ̌̌̌
@P!

@!
.y/

ˇ̌̌̌
� C0 for all y 2 R; (2-7)

j@kyP!.y/j � Cke
�
jyj
2 for all k 2 NC, y 2 R: (2-8)

Proof. The proof of Proposition 2.4 is almost parallel to Proposition 2.2. We look for a solution of
the form P! D zP! �

RC1
y ƒQ! . The function y!

RC1
y ƒQ! is bounded and decays exponentially as

y!C1. Then, P! solves (2-4) if and only if zP! solves

.L! zP!/
0
DƒQ! C

�
L!

Z C1
y

ƒQ!
�0
DR0! ;

where

R! D .ƒQ!/0� 5Q4!

Z C1
y

ƒQ! C q!jQ! jq�1
Z C1
y

ƒQ! :

Note that R! 2 Y . Since .ƒQ! ;Q!/ D 0 and L!Q0! D 0, we have .R! ;Q0!/ D �.R0! ;Q!/ D 0.
Then from Lemma 2.3, there exists a unique zP! 2 Y , orthogonal to Q0! , such that L! zP! DR! . Then
P! D zP! �

RC1
y ƒQ! satisfies (2-4) with .P! ;Q0!/ D 0 and limy!�1 P!.y/ D 1

2

R
Q! . Moreover,

we have

2

Z
P!Q! D�

Z
.L!P!/ƒQ! CO.!/D

Z
ƒQ!

Z C1
y

ƒQ! CO.!/

D
1

2

�Z
ƒQ!

�2
CO.!/D

1

8

�Z
Q

�2
CO.!/:

Let

F.!/D .P! ;Q!/�
1

16

�Z
Q

�2
:

Then F.0/D 0.
Next we claim that @ zP!=@! 2 Y . Let us differentiate the equation L! zP! DR! to get

L!

�
@ zP!

@!

�
D
@R!

@!
� 20Z!Q3! zP! C q.q� 1/!Z!Q! jQ! j

q�3 zP! C qjQ! jq�1 zP! : (2-9)

Since Z! 2 Y , it is easy to check that @R!=@! 2 Y . So Lemma 2.3 implies @ zP!=@! 2 Y .
Now it only remains to prove (2-6)–(2-8). But from [Berestycki and Lions 1983, Section 6], there exist

constants M0;M1; : : : , independent of !, such that for all k 2 N, y 2 R,

j@kyQ!.y/j �Mke
�
2jyj
3 :

Together with (2-9) and the construction of P! , we obtain (2-6)–(2-8). It is easy to see that (2-6)–(2-8)
also imply F 2 C 1. �
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Now, we proceed to a simple localization of the profile to avoid the nontrivial tail on the left. Let � be
a smooth function with 0� �� 1, �0 � 0, �.y/D 1 if y > �1, and �.y/D 0 if y < �2. We fix

ˇ D 3
4
; (2-10)

and define the localized profile

�b.y/D �.jbj
ˇy/; Qb;!.y/DQ! C b�b.y/P!.y/: (2-11)

Lemma 2.5 (localized profiles). For jbj< b�� 1, 0 < ! < !�� 1, we have:

(1) Estimates on Qb: For all y 2 R, k 2 N,

jQb;!.y/j. e�jyjCjbj.1Œ�2;0�.jbjˇy/C e�
jyj
2 /; (2-12)

j@kyQb;!.y/j. e
�jyj
Cjbje�

jyj
2 Cjbj1Ckˇ 1Œ�2;�1�.jbjˇy/; (2-13)

where 1I denotes the characteristic function of the interval I .

(2) Equation of Qb;w : Let

�‰b;! D bƒQb;! C .Q
00
b;! �Qb;! CQ

5
b;! �!Qb;! jQb;! j

q�1/0: (2-14)

Then, for all y 2 R,

�‰b;! D b
2..10Q3!P

2
!/y CƒP!/�

1
2
b2.1��b/P!

CO
�
jbj1Cˇ 1Œ�2;�1�.jbjˇy/C b2.!Cjbj/e�

jyj
2

�
: (2-15)

Moreover, we have

j@y‰b;!.y/j. jbj1C2ˇ 1Œ�2;�1�.jbjˇy/C b2e�
jyj
2 : (2-16)

(3) Mass and energy properties of Qb;! :ˇ̌̌̌Z
Q2b;! �

�Z
Q2! C 2b

Z
P!Q!

�ˇ̌̌̌
. jbj2�ˇ ; (2-17)

jE.Qb;!/j. jbjC!: (2-18)

Proof. The proof of (1) follows immediately from the definition of Qb;! and Proposition 2.4. For (2), let
us expand Qb;! DQ! C b�bP! in the expression of ‰b;! ; using the fact that

Q00! �Q! CQ5! �!Q! jQ! j
q�1
D 0; .L!P!/

0
DƒQ! ;

we have

�‰b;! D b.1��b/ƒQ! C b
�
�000b P! C 3�

00
bP
0
! C 2�

0
bP
00
! ��

0
bP! C 5�

0
bQ!P! � q!�

0
bjQ! j

q�1P!
�

C b2
�
.10Q3!�

2
bP

2
!/y CP!ƒ�bC�byP

0
!

�
C b3.10Q2!�

3
bP

3
!/y C b

4.5Q!�4bP
4
!/y C b

5.�5bP
5
!/y

�!
�
.Q! C b�bP!/jQ! C b�bP! jq�1�Q! jQ! jq�1� qb�bP! jQ! jq�1

�
y
:

We keep track of all terms up to b2. Then (2-15) and (2-16) follow from the construction of the profileQb;! .
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Finally, for (3), we have Z
�2bP

2
! . jbj

�ˇ :

Then (2-17) follows from Z
Q2b;! D

Z
Q2! C 2b

Z
�bP!Q! C b2

Z
�2bP

2
! :

While for (2-18), since E.Q!/DO.!/, we have

jE.Qb;!/j. jbjC jE.Q!/j. jbjC!: �

2B. Geometrical decomposition and modulation estimates. In this paper we consider H 1 solutions to
(gKdV ) a priori in the modulates tube T˛�;  of functions near the soliton manifold. More precisely:

Lemma 2.6. Assume that there exist .�1.t/; x1.t// 2 ..=!�/1=m;C1/�R and "1.t/ such that for all
t 2 Œ0; t0/, the solution u.t/ to (gKdV ) satisfies

u.t; x/D
1

�
1=2
1 .t/

ŒQ!1.t/C "1.t/�
�
x� x1.t/

�1.t/

�
; (2-19)

with, for all t 2 Œ0; t0/,
!1.t/Ck"1.t/kL2 � �� 1; (2-20)

where
!1.t/D



�m1 .t/
:

Then we have:

(1) There exist continuous functions .�.t/; x.t/; b.t// 2 .0;C1/�R2 such that for all t 2 Œ0; t0/,

".t; y/D �
1
2 .t/u.t; �.t/yC x.t//�Qb.t/;!.t/ (2-21)

satisfies the orthogonality conditions

.".t/;Q!.t//D .".t/;ƒQ!.t//D .".t/; yƒQ!.t//D 0; (2-22)
where

!.t/D


�m.t/
:

Moreover,

!.t/Ck".t/kL2 Cjb.t/jC

ˇ̌̌̌
1�

�1.t/

�.t/

ˇ̌̌̌
. ı.�/; (2-23)

k".0/kH1 . ı.k"1.0/kH1/: (2-24)

(2) The parameters and error term depend continuously on the initial data. Consider a family of
solutions un.t/, with u0;n2A˛0 , and u0;n!u0 inH 1 as n!C1. Let .�n.t/; bn.t/; xn.t/; "n.t// be the
corresponding geometrical parameters and error terms of un.t/. Suppose the geometrical decompositions
of un.t/ and u.t/ hold on Œ0; T0� for some T0 > 0. Then for all t 2 Œ0; T0�, we have

.�n.t/; bn.t/; xn.t/; "n.t//
R3�H1

���! .�.t/; b.t/; x.t/; ".t// (2-25)
as n!C1.
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Proof. Lemma 2.6 is a standard consequence of the implicit function theorem. We leave the proof for
Appendix A. �

Remark 2.7. Similar arguments have also been used in [Martel and Merle 2002a, Lemma 1; 2002c,
Lemma 1; Martel, Merle and Raphaël 2014, Lemma 2.5; Merle 2001, Lemma 2] etc.

Remark 2.8. The smallness of !.t/ ensures that Q!.t/ and Qb.t/;!.t/ are both well-defined.

2C. Modulation equation. In the framework of Lemma 2.6, we introduce the rescaled variables .s; y/

y D
x� x.t/

�.t/
; s D

Z t

0

1

�3.�/
d�: (2-26)

Then, we have the following properties:

Proposition 2.9. Assume for all t 2 Œ0; t0/,

!.t/Ck".t/kL2 C

Z
"2ye
�

3jyj
2.q�2/ dy � � (2-27)

for some small universal constant � >0. Then the functions .�.s/; x.s/; b.s// are all C 1 and the following
hold:

(1) Equation of ": For all s 2 Œ0; s0/,

"s � .L!"/y C bƒ"D

�
�s

�
C b

�
.ƒQb;! Cƒ"/C

�
xs

�
� 1

�
.Qb;! C "/y

� bs
@Qb;!

@b
�!s

@Qb;!

@!
C‰b;! � .Rb."//y � .RNL."//y ; (2-28)

where

‰b;! D�bƒQb;!�.Q
00
b;!�Qb;!CQ

5
b;!�!Qb;! jQb;! j

q�1/0; (2-29)

Rb."/D 5.Q
4
b;!�Q

4
!/"�q!.jQb;! j

q�1
�jQ! jq�1/"; (2-30)

RNL."/D ."CQb;!/
5
�5Q4b;!"�Q

5
b;!

�!
�
."CQb;!/j"CQb;! j

q�1
�q"jQb;! j

q�1
�Qb;! jQb;! j

q�1
�
: (2-31)

(2) Estimate induced by the conservation laws: For s 2 Œ0; s0/,

k"kL2 . jbj
1
4 C!

1
2 C

ˇ̌̌̌Z
u20�

Z
Q2
ˇ̌̌̌ 1
2

; (2-32)

k"yk
2
L2

�2
.
1

�2

�
!CjbjC

Z
"2e�

jyj
10

�
C 
k"yk

mC2
L2

�mC2
CjE0j: (2-33)
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(3) H 1 modulation equation: For all s 2 Œ0; s0/,ˇ̌̌̌
�s

�
C b

ˇ̌̌̌
C

ˇ̌̌̌
xs

�
� 1

ˇ̌̌̌
.
�Z

"2e�
jyj
10

�1
2

Cjbj.!Cjbj/; (2-34)

jbsjC j!sj. .!Cjbj/
��Z

"2e�
jyj
10

�1
2

Cjbj

�
C

Z
"2e�

jyj
10 : (2-35)

(4) L1 control on the right: Assume uniformly L1 control on the right; that is, for all t 2 Œ0; t0/,Z
y>0

j".t/j. ı.�/: (2-36)

Then the quantities J1 and J2 below are well-defined. Moreover, we have:

(a) Law of �: Let

�1.y/D
4�R
Q
�2 Z y

�1

ƒQ; J1.s/D .".s/; �1/; (2-37)

where Q is the ground state for (gKdV). Then we haveˇ̌̌̌
�s

�
C b� 2

�
.J1/sC

1

2

�s

�
J1

�ˇ̌̌̌
. .!Cjbj/

��Z
"2e�

jyj
10

�1
2

Cjbj

�
C

Z
"2e�

jyj
10 : (2-38)

(b) Law of b: Let

�2 D
16�R
Q
�2� .ƒP;Q/
kƒQk2

L2

ƒQCP �
1

2

Z
Q

�
� 8�1; J2.s/D .".s/; �2/; (2-39)

where P was introduced in Proposition 2.2. Then we haveˇ̌̌̌
bsC 2b

2
C!sG

0.!/C b

�
.J2/sC

1

2

�s

�
J2

�ˇ̌̌̌
.
Z
"2e�

jyj
10 C .!Cjbj/b2; (2-40)

where G 2 C 2 with G.0/D 0, G0.0/D c0 > 0, for some universal constant c0.

(c) Law of b=�2: Let
�D 4�1C �2 2 Y; J.s/D .".s/; �/: (2-41)

Then we haveˇ̌̌̌
d

ds

�
b

�2

�
C
b

�2

�
JsC

1

2

�s

�
J

�
C
!sG

0.!/

�2

ˇ̌̌̌
.
1

�2

�Z
"2e�

jyj
10 C .!Cjbj/b2

�
: (2-42)

Remark 2.10. The proof of Proposition 2.9 follows almost the same procedure as [Martel, Merle and
Raphaël 2014, Lemma 2.7]. It is important that there is no a priori assumption on the upper bound of �.t/.
This fact ensures that Proposition 2.9 can be used in all three regimes.6

Proof. (1) Equation (2-28) follows by direct computation from the equation of u.t/.

6We will see in Section 4 that we can’t expect any (finite) upper bound on the scaling parameter �.t/ in both the blow-down
and exit cases.
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(2) We write down the mass conservation lawZ
Q2b;! �

Z
Q2C

Z
"2C 2.";Qb;!/D

Z
u20�

Z
Q2: (2-43)

From (2-17) and the orthogonality condition (2-22), we haveZ
"2 . jbjC!Cjbj1�ˇk"kL2 C

ˇ̌̌̌Z
u20�

Z
Q2
ˇ̌̌̌
:

Then (2-32) follows from ˇ D 3
4

.
Similarly, we use the energy conservation law and (2-18) to obtain

2�2E0 D 2E.Qb;!/�2

Z
".Qb;!/yyC

Z
"2y�

1

3

Z
Œ.Qb;!C"/

6
�Q6b;! �

C
2!

qC1

Z
ŒjQb;!C"j

qC1
�jQb;! j

qC1�

DO.jbjC!/C

Z
"2y�2

Z
"Œ.Qb;!�Q!/yyC.Q5b;!�Q

5
!/C!.Qb;! jQb;! j

q�1
�Q! jQ! jq�1/�

�
1

3

Z
Œ.Qb;!C"/

6
�Q6b;!�6"Q

5
b;! �

C
2!

qC1

Z
ŒjQb;!C"j

qC1
�jQb;! j

qC1
�.qC1/"Qb;! jQb;! j

q�1�:

We estimate all terms in the above identity. By the definition of Qb;! , we haveˇ̌̌̌Z
"Œ.Qb;! �Q!/yy C .Q5b;! �Q5!/C!.Qb;! jQb;! j

q�1
�Q! jQ! jq�1/�

ˇ̌̌̌

. jbj
�Z

"2e�
jyj
10

�1
2

Cjbj1C2ˇ
Z
�2jbj�ˇ�y�0

j"j

. jbjC
Z
"2e�

jyj
10 :

For the nonlinear term, we use the Gagliardo–Nirenberg inequality to estimateˇ̌̌̌Z
Œ.Qb;! C "/

6
�Q6b;! � 6"Q

5
b;! �

ˇ̌̌̌
.
Z
"2Q4! C

Z
"6Cjbj

Z
"2

.
Z
"2e�

jyj
10 CjbjC k"k4

L2
k"yk

2
L2
;

andˇ̌̌̌
!

Z
ŒjQb;!C"j

qC1
�jQb;! j

qC1
�.qC1/"Qb;! jQb;! j

q�1�

ˇ̌̌̌
. !

�
jbjC

Z
"2e�

jyj
10 C

Z
j"jqC1

�
. jbjC

Z
"2e�

jyj
10 C



�m
k"k

qC3
2

L2
k"yk

mC2
L2

. jbjC
Z
"2e�

jyj
10 C

k"yk
mC2
L2

�m
:

Collecting all the estimates above, we obtain (2-33).
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(3) Let us differentiate the orthogonality conditions

.".t/;ƒQ!.t//D .".t/; yƒQ!.t//D 0:

Note that
d

ds
.";ƒQ!/D ."s; ƒQ!/C!s.";ƒZ!/;

where Z! D @Q!=@! 2 Y . So we haveˇ̌̌̌�
�s

�
C b

�
�
."; L!.ƒQ!/0/
kƒQ!k2L2

ˇ̌̌̌
C

ˇ̌̌̌�
xs

�
� 1

�
�
."; L!.yƒQ!/0/
kƒQ!k2L2

ˇ̌̌̌

.
�ˇ̌̌̌
�s

�
C b

ˇ̌̌̌
C

ˇ̌̌̌
xs

�
� 1

ˇ̌̌̌
Cjbj

�
�

�
!CjbjC

�Z
"2e�

jyj
10

�1
2
�

CjbsjC j!sjC

Z
"2e�

jyj
10 C

Z
"5e�

9jyj
10 C

Z
j"jqe�

9jyj
10 :

For the nonlinear term, we use Sobolev embedding and the a priori smallness (2-27),

k"e�
jyj
4 k

2
L1 � k"e

�
3jyj
4.q�2/ k

2
L1

.
Z
.@y"

2
C "2/e�

3jyj
4.q�2/

� 1;

to estimate Z
"5e�

9jyj
10 C

Z
j"jqe�

9jyj
10 . .k"e�

jyj
4 k

3
L1 Ck"e

�
3jyj
4.q�2/ k

q�2
L1 /

Z
"2e�

jyj
10 : (2-44)

Here we use the basic fact that q > 5.
For !s , we have

!s D�m!
�s

�
Dm!b�m!

�
�s

�
C b

�
: (2-45)

The above estimates implyˇ̌̌̌
�s

�
C b

ˇ̌̌̌
C

ˇ̌̌̌
xs

�
� 1

ˇ̌̌̌
. .!Cjbj/jbjC jbsjC

�Z
"2e�

jyj
10

�1
2

(2-46)

andˇ̌̌̌�
�s

�
C b

�
�
."; L!.ƒQ!/0/
kƒQ!k2L2

ˇ̌̌̌
C

ˇ̌̌̌�
xs

�
� 1

�
�
."; L!.yƒQ!/0/
kƒQ!k2L2

ˇ̌̌̌

. .!Cjbj/
��Z

"2e�
jyj
10

�1
2

Cjbj

�
C

Z
"2e�

jyj
10 : (2-47)
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Next, let us differentiate the relation .";Q!/D 0 to obtain

0D .";Q!/sD ."s;Q!/C
�
";!s

@Q!
@!

�
D!s

�
";
@Q!
@!

�
�.";L!.Q0!//�b.ƒ";Q!/

C

�
�s

�
Cb

�
Œ.ƒQb;! ;Q!/C.ƒ";Q!/�C

�
xs

�
�1

�
Œ.Q0b;! ;Q!/C."

0;Q!/�

�bsŒ.P!�b;Q!/C.ˇy�0b;Q!/��!s
�
Q! ;

@Qb;!

@!

�
C.‰b;! ;Q!/C.Rb."/CRNL."/;Q0!/: (2-48)

Substituting the facts

.P!�b;Q!/C .ˇy�0b;Q!/D .P! ;Q!/CO.b
10/� 1;

L!Q0! D 0; .Q! ; ƒQ!/D .Q! ;Q0!/D .";ƒQ!/D 0;

j.Rb."/CRNL."/;Q0!/j. .!Cjbj/
�Z

"2e�
jyj
10

�1
2

C

Z
"2e�

jyj
10

and (2-15), (2-16), (2-44), (2-45) into (2-48), we obtain

jbsj.
�
!CjbjC

�Z
"2e�

jyj
10

�1
2
��ˇ̌̌̌

�s

�
Cb

ˇ̌̌̌
C

ˇ̌̌̌
xs

�
�1

ˇ̌̌̌�
C.!Cjbj/

��Z
"2e�

jyj
10

�1
2

Cjbj

�
C

Z
"2e�

jyj
10 :

(2-49)
Combining (2-45), (2-46) and (2-49), we get (2-34) and (2-35).

(4) First, we claim the sharp equation

bsC 2b
2
C!sG

0.!/�
16b�R
Q
�2� .ƒP;Q/
kƒQk2

L2

."; L.ƒQ/0/C 20."; PQ3Q0/

�
DO

�
b2.!Cjbj/C

Z
"2e�

jyj
10

�
(2-50)

holds. To prove this, we take the scalar product of (2-28) with Q! . We keep track of all terms up to b2.
First, from (2-15), we have

.‰b;! ;Q!/D�b2..10P 2!Q
3
!/y CƒP! ;Q!/CO.b

2.jbjC!//

D�b2..10P 2Q3/y CƒP;Q/CO.b
2.jbjC!//

D�
1
8
b2kQk2

L1
CO.b2.jbjC!//; (2-51)

where for the last step we use the computation

.ƒP;Q/D�.P;ƒQ/D�.P; .LP /0/D .P; .P 00�P C 5Q4P /0/

D .P; P 000�P 0/C 10

Z
Q3Q0P 2;
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and from Proposition 2.2, we obtain

..10P 2Q3/y CƒP;Q/D
1
2

lim
y!�1

P 2 D 1
8
kQk2

L1
:

Next, from Proposition 2.4, we have�
bs
@Qb;!

@b
;Q!

�
D bs..�bCˇy�

0
b/P! ;Q!/D bs.P! ;Q!/CO.b

10/

D
1
16
bskQk

2
L1
CF.!/bsCO.b

10/; (2-52)

where F is the C 1 function introduced in Proposition 2.4. From Lemma 2.3, we have

.Z! ;Q!/D�
1

2
.L!Z! ; ƒQ!/CO.!/D

1

2

Z
.ƒQ!/Q! jQ! jq�1CO.!/

D
q� 1

4.qC 1/

Z
jQ! jqC1CO.!/ > 0:

Then from (2-35), we have�
!s
@Qb;!

@!
;Q!

�
D !s

1

2

@kQ!k2L2
@!

CO.jb!sj/D !s zG
0.!/CO

�
b2.!Cjbj/C

Z
"2e�

jyj
10

�
; (2-53)

with zG.!/D 1
2
.kQ!k2L2 �kQk

2
L2
/. It is easy to check zG.0/D 0, zG 2 C 1, and

zG0.0/D .Z! ;Q!/j!D0 D
q� 1

4.qC 1/

Z
jQjqC1 > 0:

Next, from Proposition 2.4 we have

j.Q0b;! C "y ;Q!/j.
�Z

"2e�
jyj
10

�1
2

Cj.Q0! ;Q!/jC j.P
0
! ;Q!/jC b

10;

which together with (2-34) impliesˇ̌̌̌�
xs

�
� 1

�
.Q0b;! C "y ;Q!/

ˇ̌̌̌
. b2.!Cjbj/C

Z
"2e�

jyj
10 : (2-54)

For the small linear term, we haveZ
Rb."/Q0! D 20b

Z
P!Q3!Q

0
!"Cjbj.!Cjbj/O

�Z
"2e�

jyj
10

�1
2

D 20b

Z
PQ3Q0"Cjbj.!Cjbj/O

�Z
"2e�

jyj
10

�1
2

: (2-55)

Since the nonlinear term can be estimated with the help of (2-44), we then have

bsC
2b2C!s zG

0.!/

1CH.!/
�

16

.1CH.!//.
R
Q/2

�
.ƒQb;! ;Q!/

�
�s

�
C b

�
C 20b."; PQ3Q0/

�
DO

�
b2.!Cjbj/C

Z
"2e�

jyj
10

�
;
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where

H.!/D
16�R
Q
�2F.!/:

From (2-47) we haveˇ̌̌̌�
�s

�
C b

�
�
."; L.ƒQ/0/

kƒQk2
L2

ˇ̌̌̌
. .!Cjbj/

��Z
"2e�

jyj
10

�1
2

Cjbj

�
C

Z
"2e�

jyj
10 :

Moreover, we have

j.ƒQb;! ;Q!/� b.ƒP;Q/j. b10Cjb.ƒP;Q/� b.ƒP! ;Q!/j. jbj.!Cjbj/:

We then conclude that

bsC
2b2C!s zG

0.!/

1CH.!/
�

16b

.1CH.!//.
R
Q/2

�
.ƒP;Q/

kƒQk2
L2

."; L.ƒQ/0/C 20."; PQ3Q0/

�
DO

�
b2.!Cjbj/C

Z
"2e�

jyj
10

�
: (2-56)

Finally, since H 2 C 1, H.0/D 0, it is enough to check that the function

G.!/D

Z !

0

zG0.x/

1CH.x/
dx

satisfies G 2 C 2, G.0/D 0, G0.0/D c0 > 0. Then, (2-56) implies (2-50) immediately.
Now, we turn to the proof of (2-38), (2-40) and (2-42). For all f 2 Y , independent of s,

�
";
R y
�1

f
�

is
well-defined due to (2-36). Moreover, we have

d

ds

�
";

Z y

�1

f

�
D�."; L!f /C

�
�s

�
C b

��
ƒQb;! ;

Z y

�1

f

�
C
�s

�

�
ƒ";

Z y

�1

f

�
�

�
xs

�
� 1

�
.Qb;! C "; f /�

�
bs
@Qb;!

@b
C!s

@Qb;!

@!
;

Z y

�1

f

�
C

�
‰b;! ;

Z y

�1

f

�
C .Rb."/CRNL."/; f /:

Using (2-34), (2-35), (2-44) and Proposition 2.4, we have

d

ds

�
";

Z y

�1

f

�
D�."; Lf /C

�
�s

�
C b

��
ƒQ;

Z y

�1

f

�
C

�
xs

�
� 1

�
.f;Q/

�
1

2

�s

�

�
";

Z y

�1

f

�
CO

�
.jbjC!/

��Z
"2e�

jyj
10

�1
2
��

CO..jbjC!/jbj/CO

�Z
"2e�

jyj
10

�
: (2-57)
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Proof of (2-38). We apply (2-57) to f DƒQ, using the facts

LƒQD�2Q;

�
ƒQ;

Z y

�1

ƒQ

�
D
1

8

�Z
Q

�2
;

�
Q0;

Z y

�1

ƒQ

�
D 0;

to obtain

2.J1/s D
16.";Q/�R

Q
�2 C��s� C b

�
�
�s

�
J1CO

�
.jbjC!/

��Z
"2e�

jyj
10

�1
2

Cjbj

�
C

Z
"2e�

jyj
10

�
:

Then (2-38) follows immediately from the orthogonality condition (2-22).

Proof of (2-40). We apply (2-57) to f D �02. Then from Lemma 2.1 and Proposition 2.2, we have

.ƒQ; �2/D
16�R
Q
�2� .ƒP;Q/kƒQkL2

ƒQCP �
1

2

Z
Q;ƒQ

�
�

32�R
Q
�2�ƒQ; Z y

�1

ƒQ

�

D
16�R
Q
�2 Œ.ƒP;Q/C .ƒQ;P /�C 4kQk2L1�R

Q
�2 � 16�R

Q
�2�Z ƒQ

�2
D 0;

and

.�0;Q/D
16�R
Q
�2� .ƒP;Q/kƒQkL2

.ƒQ/0CP 0;Q

�
� 8.�01;Q/:

Next, from

L.P 0/D .LP /0C 20Q0Q3P

DƒQC 20Q0Q3P

and the orthogonality condition .";ƒQ!/D 0, we have

."; L�02/D
16�R
Q
�2�"; L� .ƒP;Q/kƒQkL2

.ƒQ/0CP 0
��
� 8."; L�01/

D
16�R
Q
�2� .ƒP;Q/
kƒQk2

L2

."; L.ƒQ/0/C 20."; PQ3Q0/

�
CO.!/

�Z
"2e�

jyj
10

�1
2

:

Substituting all the above estimates into (2-57) with f D �02, we obtain

.J2/s D�
16�R
Q
�2� .ƒP;Q/
kƒQk2

L2

."; L.ƒQ/0/C 20."; PQ3Q0/

�
�
1

2

�s

�
J2

CO

�
.jbjC!/

��Z
"2e�

jyj
10

�1
2

Cjbj

�
C

Z
"2e�

jyj
10

�
: (2-58)

Then (2-40) follows from (2-50) and (2-58).
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Proof of (2-42). From (2-38) and (2-42),

d

ds

�
b

�2

�
D
bsC2b

2

�2
�
2b

�2

�
�s

�
Cb

�
D�

b

�2

�
.J2/sC

1

2

�s

�
J2

�
�
2b

�2

�
2.J1/sC

�s

�
J1

�
�
!sG

0.!/

�2
CO

�
1

�2

�Z
"2e�

jyj
10C.!Cjbj/b2

��
D�

b

�2

�
JsC

1

2

�s

�
J

�
�
!sG

0.!/

�2
CO

�
1

�2

�Z
"2e�

jyj
10C.!Cjbj/b2

��
;

which is exactly (2-42).
Finally, it is easy to check that limjyj!C1 �.y/D 0, which implies � 2 Y . �

3. Monotonicity formula

We will introduce the monotonicity tools developed in [Martel and Merle 2002c; Martel, Merle and
Raphaël 2014]. This is the key technical argument of the analysis for solutions near the soliton.

3A. Pointwise monotonicity. Let .'i /iD1;2,  2 C1.R/ be such that

'i .y/D

8<:
ey for y < �1;
1Cy for � 1

2
< y < 1

2
;

yi for y > 2;
'0.y/ > 0 for all y 2 R; (3-1)

 .y/D

�
e2y for y < �1;
1 for y > �1

2
;

 0.y/� 0 for all y 2 R: (3-2)

Let B > 100 be a large universal constant to be chosen later. We then define the weight function

 B.y/D  

�
y

B

�
; 'i;B.y/D '

�
y

B

�
; (3-3)

and the weighted Sobolev norm of "

Ni .s/D
Z �
"2y.s; y/ B.y/C "

2.s; y/'i;B.y/
�
dy; i D 1; 2; (3-4)

Ni;loc.s/D

Z
"2.s; y/'0i;B.y/ dy; i D 1; 2: (3-5)

Then we have the following monotonicity:

Proposition 3.1 (monotonicity formula). There exist universal constants � > 0, B D B.q/ > 100 and
0 < �� 1 such that the following holds. Let u.t/ be a solution of (gKdV ) satisfying (2-20) on Œ0; t0�,
and hence the geometrical decomposition (2-21) holds on Œ0; t0�. Let s0D s.t0/, and assume the following
a priori bounds hold for all s 2 Œ0; s0�:

(H1) Scaling-invariant bound:

!.s/Cjb.s/jCN2.s/Ck".s/kL2 C!.s/k"y.s/k
m
L2
� �: (3-6)
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(H2) Bound related to H 1 scaling:

!.s/Cjb.s/jCN2.s/
�2.s/

� �: (3-7)

(H3) L2-weighted bound on the right:Z
y>0

y10"2.s; y/ dy � 50

�
1C

1

�10.s/

�
: (3-8)

We define the Lyapounov functionals for .i; j / 2 f1; 2g2 as

Fi;j D
Z �

"2y B C .1CJi;j /"2'i;B � 1
3
 B Œ.Qb;! C "/

6
�Q6b;! � 6"Q

5
b;! �

C
2!

qC 1
ŒjQb;! C "j

qC1
� jQb;! j

qC1
� .qC 1/"Qb;! jQb;! j

q�1� B

�
; (3-9)

with7

Ji;j D .1�J1/�4.j�1/�2i � 1: (3-10)

Then the following estimates hold on Œ0; s0�:

(1) Scaling-invariant Lyapounov control: for i D 1; 2,

dFi;1
ds
C�

Z
."2y C "

2/'0i;B .B b
2.!2C b2/: (3-11)

(2) H 1-scaling Lyapounov control: for i D 1; 2,

d

ds

�
Fi;2
�2

�
C
�

�2

Z
."2y C "

2/'0i;B .B
b2.!2C b2/

�2
: (3-12)

(3) Coercivity and pointwise bounds: there hold for all .i; j / 2 f1; 2g2,

Ni . Fi;j .Ni ; (3-13)

jJi jC jJi;j j.N
1
2

2 : (3-14)

Remark 3.2. The proof of Proposition 3.1 is almost the same as that of [Martel, Merle and Raphaël 2014,
Proposition 3.1]. The only difference here is the additional terms involving !.

Remark 3.3. Similar to Proposition 2.9, we do not assume any a priori control on the upper bound of
�.s/ so that the monotonicity formula can be used in all three cases.

Remark 3.4. As mentioned in [Martel, Merle and Raphaël 2014, Proposition 3.1], the weight function  
decays faster than 'i on the left. As a result, N2 and Fi;j do not control

R
"2y'
0
i;B (see Remark 3.5 of

that paper for more details).

7Recall that J1 was defined in (2-37).
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Proof of Proposition 3.1. The proofs of (3-13) and (3-14) are exactly the same as [Martel, Merle and
Raphaël 2014, Proposition 3.1]. We only need to prove (3-11) and (3-12). To do this, we compute directly
to obtain that, for all .i; j / 2 f1; 2g2,

�2.j�1/
�

Fi;j
�2.j�1/

�
s

D f1Cf2Cf3Cf4Cf5; (3-15)

where

f1 D 2

Z �
"s�

�s

�
ƒ"

�
.�. B"/yC"'i;B� B�b;!."//;

f2 D 2

Z �
"s�

�s

�
ƒ"

�
"Ji;j'i;B ;

f3 D 2
�s

�

Z
ƒ".�. B"y/yC.1CJi;j /"'i;B� B�b;!."//C.Ji;j /s

Z
'i;B"

2
�2.j�1/

�s

�
Fi;j ;

f4 D�2

Z
 B.Qb;!/sŒ�b;!�5"Q

4
b;!Cq!"jQb;! j

q�1�;

f5 D
2!s

qC1

Z
ŒjQb;!C"j

qC1
�jQb;! j

qC1
�.qC1/"Qb;! jQb;! j

q�1� B ;

�b;!."/D .Qb;!C"/
5
�Q5b;!�!.Qb;!C"/jQb;!C"j

q�1
C!Qb;! jQb;! j

q�1:

Our goal is to show that for some �0 > 0,

d

ds
f1 � ��0

Z
.."2C "2/'0i;B C "

2
yy 

0
B/CCb

2.!2C b2/; (3-16)ˇ̌̌̌
d

ds
fk

ˇ̌̌̌
�
�0

10

Z
.."2C "2/'0i;B C "

2
yy 

0
B/CCb

2.!2C b2/ for k D 2; 3; 4; 5: (3-17)

The following properties will be used several times in this paper:8

j'000i .y/jC j'
00
i .y/jC j 

000.y/jC jy 0.y/jC j .y/j. '0i . 'i for all y 2 R; (3-18)

ejyj. .y/Cj 0.y/j/. '0i � 'i for all y 2
�
�1; 1

2

�
; (3-19)

N1;loc .N2;loc .N1 .N2;
Z
"2'1;B dy .N2;loc; (3-20)Z

y>0

y2"2.s/.
�
1C

1

�
10
9 .s/

�
N

8
9

2;loc.s/: (3-21)

Control of f1. First, we rewrite f1 using the equation of " in the form

"s �
�s

�
ƒ"D .�"yy C "��b;!."//y

C

�
�s

�
C b

�
ƒQb;! C

�
xs

�
� 1

�
.Qb;! C "/y � bs

@Qb;!

@b
�!s

@Qb;!

@!
C‰b;! ; (3-22)

8See [Martel, Merle and Raphaël 2014, Section 3] for more details.
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where �‰b;! D bƒQb;! C .Q00b;! �Qb;! CQ
5
b;!
�!Qb;! jQb;! j

q�1/y . This yields

f1 D f1;1Cf1;2Cf1;3Cf1;4Cf1;5;

with
f1;1 D 2

Z
.�"yy C "��b;!."//y.�. B"y/y C "'i;B � B�b;!."//;

f1;2 D 2

�
�s

�
C b

�Z
ƒQb;!.�. B"y/y C "'i;B � B�b;!."//;

f1;3 D 2

�
xs

�
� 1

�Z
.Qb;! C "/y.�. B"y/y C "'i;B � B�b;!."//;

f1;4 D�2

Z �
bs
@Qb;!

@b
C!s

@Qb;!

@!

�
.�. B"y/y C "'i;B � B�b;!."//;

f1;5 D 2

Z
‰b;!.�. B"y/y C "'i;B � B�b;!."//:

For the term f1;1, we integrate by parts to obtain a more manageable formula:

f1;1 D 2

Z
.�"yy C "��b;!."//y.�"yy C "��b;!."// B

C 2

Z
.�"yy C "��b;!."//y.� 

0
B"y C ".'B � B//:

We compute these terms separately. First, we have

2

Z
.�"yy C "��b;!."//y.�"yy C "��b;!."// B

D�

Z
 0B.�"yy C "��b;!."//

2

D�

Z
 0B
�
Œ�"yy C "��b;!."/�

2
� .�"yy C "/

2
�
�

Z
 0B.�"yy C "/

2

D�

�Z
 0B."

2
yy C 2"

2
y/C "

2. 0B � 
000
B /

�
�

Z
 0B
�
Œ�"yy C "��b;!."/�

2
� .�"yy C "/

2
�
:

Next, we integrate by parts to obtain

�2

Z
.�b;!."//y.'i;B � B/"

D�
1

3

Z
.'i;B � B/

0
�
Œ.Qb;! C "/

6
�Q6b;! � 6"Q

5
b;! �� 6"Œ.Qb;! C "/

5
�Q5b;! �

�
� 2

Z
.'i;B � B/.Qb;!/y Œ.Qb;! C "/

5
�Q5b;! � 5"Q

4
b;! �

C
2!

qC 1

Z
.'i;B � B/

0
�
ŒjQb;! C "j

qC1
� jQb;! j

qC1
� .qC 1/"Qb;! jQb;! j

q�1�

� .qC 1/"Œ.Qb;! C "/jQb;! C "j
q�1
�Qb;! jQb;! j

q�1�
�

C 2!

Z
.'i;B � B/.Qb;!/y

�
.Qb;! C "/jQb;! C "j

q�1
�Qb;! jQb;! j

q�1
� q"jQb;! j

q�1
�
;



70 YANG LAN

and

2

Z
.�"yy C "/y.� 

0
B"y C ".'i;B � B//

D�2

�Z
 0B"

2
yy C

Z
"2y
�
3
2
'0i;B �

1
2
 0B �

1
2
 000B

�
C

Z
"2
�
1
2
.'B � B/

0
�
1
2
.'B � B/

000
��
:

Finally, by direct expansion, we haveZ
.�b;!."//y 

0
B"y D 5

Z
 0B"y

�
.Qb;!/y Œ.Qb;! C "/

4
�Q4b;! �C "y.Qb;! C "/

4
�

� q!

Z
 0B"y

�
.Qb;!/y ŒjQb;! C "j

q�1
� jQb;! j

q�1�C "y jQb;! C "j
q�1

�
:

Collecting all the estimates above, we have

f1;1 D I C II;

where

I D�

Z
Œ3 0B"

2
yy C .3'

0
i;B C 

0
B � 

000
B /"

2
y C .'

0
i;B �'

000
i;B/"

2�

� 2

Z �
1
6
.Qb;! C "/

6
�Q6b;! � 6"Q

5
b;! � "Œ.Qb;! C "/

5
�Q5b;! �

�
.'0i;B � 

0
B/

C 2

Z
Œ.Qb;! C "/

5
�Q5b;! � 5"Q

4
b;! �.Qb;!/y. B �'i;B/

C 10

Z
 0B"y

�
.Qb;!/y Œ.Qb;! C "/

4
�Q4b;! �C "y.Qb;! C "/

4
�

�

Z
 0B
�
Œ�"yy C "��b;!."/�

2
� .�"yy C "/

2
�

D I1C I2C I3C I4C I5;

and

II D 2!

Z �
jQb;!C"j

qC1�jQb;! j
qC1�.qC1/"Qb;! jQb;! j

q�1

qC1

�"Œ.Qb;!C"/jQb;!C"j
q�1
�Qb;! jQb;! j

q�1�

�
.'0i;B� 

0
B/

�2!

Z
Œ.Qb;!C"/jQb;!C"j

q�1
�Qb;! jQb;! j

q�1
�q"jQb;! j

q�1�.Qb;!/y. B�'i;B/

�2q!

Z
 0B"y

�
.Qb;!/y ŒjQb;!C"j

q�1
�jQb;! j

q�1�C"y jQb;!C"j
q�1

�
:

For Ik , k D 1; 2; 3; 4, we can use the same strategy as in [Martel, Merle and Raphaël 2014, Proposi-
tion 3.1] to obtain

4X
kD1

Ik � ��1

Z
."2yy 

0
B C "

2
y'
0
i;B C "

2'0i;B/CCb
4 (3-23)

for some universal constant �1 > 0.
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The idea is to split the integral into three parts. We denote by I<
k

, I�
k

and I>
k

the integration on
y < �B

2
, jyj � B

2
and y > B

2
, respectively, for k D 1; 2; 3; 4.

On the region y < �B
2

, using the weighted Sobolev bound introduced in [Merle 2001, Lemma 6;
Martel, Merle and Raphaël 2014, Proposition 3.1],"2p'0i;B2L1 . k"k2L2�Z "2y'

0
i;B C

Z
"2
.'00i;B/

2

'0B

�
. ı.�/

Z
."2y C "

2/'0i;B ; (3-24)

we have

I<2 C I
<
3 C I

<
4 .B

Z
."6C "5Q0b;! C "

2
y"
4/'0i;B CkQb;!kL1.y<�B

2
/

Z
."2y C "

2/'0i;B

. ı.�/
Z
."2y C "

2/'0i;B :

Hence we have
4X
kD1

I<k � ��2

Z
y<�B

2

."2yy 
0
B C "

2
y'
0
i;B C "

2'0i;B/ (3-25)

for some �2 > 0.
For the region jyj � B

2
, we have

4X
kD1

I�k D�
1

B

Z
jyj<B

2

.3"2y C "
2
� 5Q4"2C 20yQ0Q3"2/CO

�Z
jyj<B

2

.jbjC!/"2C "6
�
:

We then introduce the following coercivity lemma:

Lemma 3.5 [Martel, Merle and Raphaël 2014, Lemma 3.4]. There exist B0 > 100, �3 > 0 such that, for
all " 2H 1 and B > B0, we haveZ

jyj<B
2

.3"2y C "
2
� 5Q4"2C 20yQ0Q3"2/� �3

Z
jyj<B

2

"2y C "
2
�
1

B

Z
"2e�

jyj
2 :

The above lemma implies immediately that
4X
kD1

I�k � ��2

Z
jyj<B

2

."2yy 
0
B C "

2
y'
0
i;B C "

2'0i;B/; (3-26)

while for the region y > B
2

, we have  0B D  
000
B � 0. We also have

k"k2
L1.y>B

2
/
. k"k2

H1.y>B
2
/
.N2 � ı.�/:

Hence, we have
4X
kD2

I>k . ŒkQb;!kL1.y>B
2
/Ck"kL1.y>B

2
/�

Z
."2y C "

2/'0i;B ;

which implies
4X
kD1

I>k � ��2

Z
y>B

2

.C"2y C "
2/'0i;B : (3-27)

Combining (3-25)–(3-27), we obtain (3-23).
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Now we turn to the estimate of I5. We have

jI5j.
Z
 0B.j"yy jC j"jC j"j

5
C!j"jq/.j"j5C!j"jqCjQb;!"j/

�
�1

100

Z
."2yy C "

2/ 0B CC.�1/

�Z
Q2b;!"

2 0B C

Z
"10 0B C!

2

Z
j"j2q 0B

�
: (3-28)

Combining (3-24) and the hypothesis (H1), we haveZ
Q2b;!"

2 0B . kQb;!k
2

L1.y<�B
2
/

Z
"2'0i;B �

�1

500

Z
."2yy C "

2/ 0B ; (3-29)Z
"10 0B . k"

2. 0B/
1
4 k
4
L1

Z
"2 . ı.�/

Z
."2y C "

2/'0i;B C

�Z
"2y. 

0
B/

1
2

�2
; (3-30)

and
!2
Z
j"j2q 0B . !

2
k"2. 0B/

1
4 k
4
L1

Z
j"j2q�8 . !2k"2. 0B/

1
4 k
4
L1k"k

q�3

L2
k"yk

q�5

L2

. ı.�/
Z
."2y C "

2/'0i;B C

�Z
"2y. 

0
B/

1
2

�2
;

where we use the fact that !k"ykmL2 � � for the last inequality.
From .. 0/

1
2 /00 . '0i and (H1), we have�Z

"2y. 
0
B/

1
2

�2
D

�
�

Z
""yy. 

0
B/

1
2 C

1

2

Z
"2.. 0B/

1
2 /00
�2

.
Z
"2
Z
"2yy 

0
B C

�Z
"2'0i;B

�2
. ı.�/

Z
."2yy 

0
B C "

2'0i;B/: (3-31)

Substituting (3-29)–(3-31) into (3-28), we have

jI5j.
�1

50

�Z
"2yy 

0
B C

Z
."2C "2y/'

0
i;B

�
: (3-32)

Now, we turn to the estimate of II . We write II in the form

II D II<C II>;

where II< and II> correspond to the integration on y < �B
2

and y > �B
2

respectively.
For II<, using the fact that  0B � .'

0
i;B/

2 for y < �B
2

, we have

jII<j. !
�Z
y<�B

2

.j"jqC1CjQb;! j
q�1"2/'0i;BC

Z
y<�B

2

jQ0b;! j.j"j
q
C"2/'i;B

�
C!

Z
y<�B

2

 0B j"y j
�
j"jq�1CjQb;! j

q�2
j"jCj"y jj"j

q�1
Cj"y jjQb;! j

q�1
�

� C.�1/!

�Z
'0i;B.j"j

qC1
Cj"jq/C

Z
 0B."

2
y j"j

q�1
Cj"y jj"j

q�1/

�
C
�1

500

Z
y<�B

2

."2C"2y/'
0
i;B :
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We use (H1)–(H3) and the Gagliardo–Nirenberg inequality to estimate these terms separately. First, we
have

!

Z
j"jqC1'0i;B . !k"

2.'0i;B/
1
2 k
2
L1

Z
j"jq�3

. !
�Z

"2
Z
."2C "2y/'

0
i;B

�
.k"yk

q�5
2

L2
k"k

q�1
2

L2
/

. .!k"ykmL2/
�Z

"2
�qC3

4
Z
."2C "2y/'

0
i;B . ı.�/

Z
."2C "2y/'

0
i;B ;

and

!

Z
j"jq'0i;B . !

"2.'0i;B/ 12 32L1j"j 12 .'0i;B/ 14L4j"j 2q�72 
L4=3

. !
�Z

"2
�3
4
�Z

."2C "2y/'
0
i;B

�
k"k

q�2
2

L2
k"yk

q�5
2

L2
. ı.�/

Z
."2C "2y/'

0
i;B :

From  0 . .'0i /
2 and (3-31), we also have

!

Z
 0B"

2
y j"j

q�1 . !k"2. 0B/
1
4 k
2
L1k"k

q�5
L1

Z
"2y. 

0
B/

1
2

. .!k"ykmL2/k"k
mC2
L2

�Z
."2C "2y/. 

0
B/

1
2

�Z
"2y. 

0
B/

1
2

. ı.�/
Z
."2C "2y/'

0
i;B C

�Z
"2y. 

0
B/

1
2

�2
. ı.�/

�Z
"2yy 

0
B C

Z
."2C "2y/'

0
i;B

�
;

and

!

Z
 0B j"y jj"j

q�1 . !k"2. 0B/
1
4 k

3
2

L1k"y. 
0
B/

1
4 kL2kj"j

q�4
kL2

. .!k"ykmL2/k"k
mC2
L2

�Z
."2C "2y/. 

0
B/

1
2

��Z
"2y. 

0
B/

1
2

�1
2

. ı.�/
Z
."2C "2y/'

0
i;B C

�Z
"2y. 

0
B/

1
2

�3
2

�
�1

1000

Z
."2C "2y/'

0
i;B CC.�1/

�Z
"2y. 

0
B/

1
2

�2
�
�1

500

�Z
"2yy 

0
B C

Z
."2C "2y/'

0
i;B

�
:

In conclusion, we have

jII<j �
�1

50

�Z
"2yy 

0
B C

Z
."2C "2y/'

0
i;B

�
: (3-33)
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For II>, we know that  0B � 0 for y > �B
2

. Using Sobolev embedding, we have

k"k2
L1.y>�B

2
/
. k"kL2.y>�B

2
/k"ykL2.y>�B

2
/ �N2 � 1:

Thus, we have

jII>j. !
�Z

"2'0i;B C

Z
.Qb;!/y"

2'i;B

�
.B ı.�/

Z
."2C "2y/'

0
i;B : (3-34)

Combining (3-23), (3-32), (3-33) and (3-34), we have

f1;1 � ��0

Z
."2C "2y/'

0
i;B CCb

4 (3-35)

for some universal constant �0 > 0.
Now, let us deal with f1;2. It is easy to see that

f1;2 D QI C eII ;
where

QI D 2

�
�s

�
C b

�Z
ƒQb;!

�
�. B"y/y C "'i;B � B Œ.Qb;! C "/

5
�Q5b;! �

�
;

eII D 2!��s
�
C b

�Z
ƒQb;! B..Qb;! C "/jQb;! C "j

q�1
�Qb;! jQ

q�1

b;!
j/:

The term QI can be estimated by the same argument as in [Martel, Merle and Raphaël 2014, Propos-
tion 3.1]. Thus, we have

j QI j �
�0

500

Z
."2C "2y/'

0
i;B CCb

2.!2C b2/:

We mention here that the modulation estimate (2-34) in this paper is slightly different from [Martel,
Merle and Raphaël 2014, (2.29)]; i.e., there is an additional term “!jbj” on the right-hand side of (2-34).
This additional term results in the appearance of the term “!2b2” on the right-hand side of the above
inequality.

While for eII, we have

jeII j. ! ˇ̌̌̌�s
�
C b

ˇ̌̌̌�
B
1
2N

1
2

i;locC

Z
j"jq B

�
:

Using (2-34) and the strategy for f1;1, we have

jeII j � �0

500

Z
."2C "2y/'

0
i;B CCb

2.!2C b2/:

A similar argument can be applied to f1;k , k D 3; 4; 5. Together with (3-35), we conclude the proof
of (3-16).
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Control of f2. For f2, we integrate by parts, using (3-22) to get

f2 D 2Ji;j
Z
"'i;B

�
.�"yy C "��b;!."//y C

�
�s

�
C b

�
ƒQb;!

C

�
xs

�
� 1

�
.Qb;! C "/y � bs

@Qb;!

@b
�!s

@Qb;!

@!
C‰b;!

�
:

We integrate by parts, estimating all terms like we did for f1. Together with

jJi;j j. jJ1j.N
1
2

2 . ı.�/;

we have

jf2j. ı.�/
Z
."2C "2y/'

0
i;B C b

2.!2C b2/: (3-36)

Control of f3. Recall that

f3 D 2
�s

�

Z
ƒ"
�
�. B"y/y C .1CJi;j /"'i;B � B�b;!."/

�
C .Ji;j /s

Z
'i;B"

2
� 2.j � 1/

�s

�
Fi;j :

Integrating by parts,9 we have

f3 D OI C yII ;

where

OI D
�s

�

Z
Œ.2� 2.j � 1// B �y 

0
B �"

2
y

�
1

3

�s

�

Z
Œ.2� 2.j � 1// B �y 

0
B �Œ.Qb;! C "/

6
�Q6b;! � 6"Q

5
b;! �

C 2
�s

�

Z
 BƒQbŒ.Qb;! C "/

5
�Q5b;! � 5"Q

4
b;! �

C .Ji;j /s
Z
"2'i;B �

�s

�
.1CJi;j /

Z
y'0i;B"

2
� 2.j � 1/

�s

�
.1CJi;j /

Z
"2'i;B ;

and

yII D
2!

qC1

�s

�

Z ��
qC3

q�1
�2.j�1/

�
 B�y 

0
B

�
�
�
jQb;!C"j

qC1
�jQb;! j

qC1
�.qC1/"Qb;! jQb;! j

q�1
�

�2!
�s

�

Z
 BƒQb

�
.Qb;!C"/jQb;!C"j

q�1
�Qb;! jQb;! j

q�1
�q"jQb;! j

q�1
�
:

Similarly, we can use the same strategy as in [Martel, Merle and Raphaël 2014, Proposition 3.1] to
estimate I, which leads to

j OI j. ı.�/
Z
."2C "2y/'

0
i;B C b

2.!2C b2/: (3-37)

9See [Martel, Merle and Raphaël 2014, Proposition 3.1, Step 5] and [Lan 2016, (5.22)] for more details.
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More precisely, we can rewrite OI as

OI D
�s

�

Z
Œ2.2� j / B �y 

0
B �"

2
y

�
1

3

�s

�

Z
Œ2.2� j / B �y 

0
B �� Œ.Qb;! C "/

6
�Q6b;! � 6"Q

5
b;! �

C 2
�s

�

Z
 BƒQbŒ.Qb;! C "/

5
�Q5b;! � 5"Q

4
b;! �

C
1

i

�
.Ji;j /s � 2.j � 1/.1CJi;j /

�s

�

� Z
.i'i;B �y'

0
i;B/"

2

C
1

i

�
.Ji;j /s � .2.j � 1/C i/.1CJi;j /

�s

�

� Z
y'0i;B"

2

D OI1C OI2;
where

OI2 D
1

i

�
.Ji;j /s � .2.j � 1/C i/.1CJi;j /

�s

�

� Z
y'0i;B"

2:

We also denote by OI<
k

, OI�
k

and OI>
k

, k D 1; 2, the integration over y < �B
2

, jyj < B
2

and y > B
2

respectively.
For integration over jyj< B

2
, the estimate is straightforward, we have

j OI�1 jC j
OI�2 j. ı.�/

Z
jyj<B

2

."2y C "
2/'0i;B :

While for y < �B
2

, using (2-34), we have

j OI<1 jC j
OI<2 j. .jbjCN

1
2

i;loc/

Z
y<�B

2

. B Cjyj'
0
i;B C'i;B/."

2
y C "

2/Cjyj'0i;B"
2

. .jbjCN
1
2

i;loc/

�Z
y<�B

2

"2y'
0
i;B C

Z
y<�B

2

jyj'0i;B"
2

�

. .jbjCN
1
2

i;loc/

�Z
"2y'
0
i;B C

�Z
y<�B

2

y100e
y
B "2

� 1
100
�Z
y<�B

2

e
y
B "2

� 99
100
�

. .jbjCN
1
2

i;loc/�

�Z
"2y'
0
i;B CN

99
100

i;loc

�
� ı.�/

Z
."2y C "

2/'0i;B CCb
4:

Now, for y > B
2

, we first have
i'i;B �y'

0
i;B D 0

for all y > B . Hence

j OI>1 j. .jbjCN
1
2

i;loc/

Z
."2y C "

2/'0i;B . ı.�/
Z
."2y C "

2/'0i;B :

Next, for OI>2 , we know from (2-38) thatˇ̌̌̌
.Ji;j /s � .2.j � 1/C i/.1CJi;j /

�s

�

ˇ̌̌̌
D

4.j � 1/C 2i

.1�J1/4.j�1/C2iC1

ˇ̌̌̌
.J1/s �

�s

2�
.1�J1/

ˇ̌̌̌
. jbjCNi;loc:
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Together with (3-7), (3-8) and (3-21), we have

j OI>2 j. .jbjCN
1
2

i;loc/

�
1C

1

�
10
9

�
N

8
9

i;loc

. jbj.1C ı.�/jbj�
5
9 /N

8
9

i;locCNi;loc.1C ı.�/N
� 5
9

i;loc/N
8
9

i;loc

. ı.�/
Z
."2y C "

2/'0i;B C b
2.!2C b2/:

Combining the above estimates, we obtain (3-37).
Finally, for yII, from the fact

 B C

ˇ̌̌̌�
qC 3

q� 1
� 2.j � 1/

�
 B �y 

0
B

ˇ̌̌̌
.B '0i;B ;

we have

j yII j. !
ˇ̌̌̌
�s

�

ˇ̌̌̌ Z
.j"jqC1Cj"jqC "2/'0i;B :

Using j�s=�j. ı.�/ and the strategy for f1;1, we have

j yII j. ı.�/
Z
."2C "2y/'

0
i;B :

In conclusion, we have

jf3j. ı.�/
Z
."2C "2y/'

0
i;B C b

2.!2C b2/: (3-38)

Control of f4. From (2-5) and (3-12), we have

j.Qb;!/sj. jbsj
ˇ̌̌̌
@Qb;!

@b

ˇ̌̌̌
Cj!sj

ˇ̌̌̌
@Qb;!

@!

ˇ̌̌̌
� .!Cjbj/.jbjCN

1
2

i;loc/. ı.�/:

Using the Sobolev bounds (3-24) and the strategy for f1;1, we have

jf4j. ı.�/
�Z

.!j"jqCj"j5C "2/'0i;B

�
. ı.�/

�Z
"2yy 

0
B C

Z
."2C "2y/'

0
i;B

�
: (3-39)

Control of f5. From (2-34) we know that

j!sj Dm!

ˇ̌̌̌
�s

�

ˇ̌̌̌
. ı.�/:

Thus, by the Sobolev bounds (3-24) and the strategy for f1;1, we have

jf5j. ı.�/
Z
.!j"jqC1C "2/'0i;B . ı.�/

�Z
"2yy 

0
B C

Z
."2C "2y/'

0
i;B

�
: (3-40)

Combining (3-36), (3-38), (3-39) and (3-40), we conclude the proof of (3-17), and hence the proof of
Proposition 3.1. �
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3B. Dynamical control of the tail on the right. In order to close the bootstrap bound (H3), we need the
dynamical control of the L2 tail on the right introduced in [Martel, Merle and Raphaël 2014]. More
precisely, we choose a smooth function

'10.y/D

�
0 for y < 0;
y10 for y > 1;

'010 � 0:

Then we have:

Lemma 3.6 (dynamical control of the tail on the right [Martel, Merle and Raphaël 2014]). Under the
assumption of Proposition 3.1, it holds that

1

�10
d

ds

�
�10

Z
'10"

2

�
.B N1;locC b

2: (3-41)

Proof. The proof of Lemma 3.6 is exactly the same as [Martel, Merle and Raphaël 2014, Lemma 3.7].
More precisely, from (3-22), we have

1

2

d

ds

Z
'10"

2
D

Z
'10"

�
�s

�
ƒ"C .�"yy C "��b;!."//y C

�
�s

�
C b

�
ƒQb;!

C

�
xs

�
� 1

�
.Qb;! C "/y � bs

@Qb;!

@b
�!s

@Qb;!

@!
C‰b;!

�
;

where

�b;!."/D .Qb;! C "/
5
�Q5b;! �!.Qb;! C "/jQb;! C "j

q�1
C!Qb;! jQb;! j

q�1:

We integrate the linear term by parts using the fact that y'010 D 10'10 for y � 1, and '00010� '010 for y
large, to obtainZ

'10"

�
�s

�
ƒ"C .�"yyC/y

�
D�

1

2

�s

�

Z
y'010"

2
�
3

2

Z
"2y'
0
10�

1

2

Z
"2'010C

1

2

Z
"2'00010

� �5
�s

�

Z
'10"

2
�
3

2

Z
"2y'
0
10�

1

2

Z
"2'010CCN1;loc:

Next, from (2-15), (2-34), and (2-35), it is easy to obtainˇ̌̌̌Z
'10"

��
�s

�
C b

�
ƒQb;! C

�
xs

�
� 1

�
.Qb;! C "/y � bs

@Qb;!

@b
�!s

@Qb;!

@!
C‰b;!

�ˇ̌̌̌
. b2CN1;loc:

While for the nonlinear term, we integrate by parts to remove all derivatives on " to obtainˇ̌̌̌Z
'10"Œ�b;!."/�y

ˇ̌̌̌
.
Z
'10"

2e�
jyj
2 .k"kL1.y>0//C

Z
"6'010C!

Z
j"jqC1'010 . ı.�/

Z
"2'010;

where we use the fact that jQb;! jC jQ0b;! j. e
�jyj=2 for y > 0 and

k"kL1.y>0/ .N1� 1:

Hence, we have
d

ds

Z
'10"

2
C 10

�s

�

Z
'10"

2 . b2CN1;loc;

which, together with Gronwall’s inequality, implies (3-41) immediately. �
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4. Rigidity of the dynamics in A˛0
and proof of Theorem 1.3

We will classify the behavior of any solution with initial data in A˛0 , which directly implies Theorem 1.3.
To begin, we define

t� D supf0 < t <C1 j for all t 0 2 Œ0; t �; u.t 0/ 2 T˛�; g: (4-1)

Assume 0 <  � ˛0� ˛�� 1; then the condition on the initial data, i.e., u0 2A˛0 , implies t� > 0.
Next, by Lemma 2.6, u.t/ admits the following geometrical decomposition on Œ0; t��:

u.t; x/D
1

�1=2.t/
ŒQb.t/;!.t/C ".t/�

�
x� x.t/

�.t/

�
:

The condition u0 2A˛0 implies

!.0/Ck".0/kH1 C!.0/k"y.0/k
m
L2
Cjb.0/jC j1��.0/j. ı.˛0/; (4-2)Z

y>0

y10"2.0/ dy � 2: (4-3)

Using Hölder’s inequality, we have
N2.0/. ı.˛0/: (4-4)

Then let us fix a 0 < �� 1 as in Propositions 2.9 and 3.1, and define

t�� D supf0 < t < t� j (H1), (H2) and (H3) hold for all t 0 2 Œ0; t �g: (4-5)

Note that from (4-2)–(4-4), we have t�� > 0. Let s� D s.t�/ and s�� D s.t��/.

4A. Consequence of the monotonicity formula. We derive some crucial estimates from the monotonicity
formula introduced in Section 3.

Lemma 4.1. We have the following:

(1) Almost monotonicity of the localized Sobolev norm: There exists a universal constant K0 > 1 such
that, for i D 1; 2 and 0� s1 < s2 � s��,

Ni .s2/C
Z s2

s1

Z
."2y.s; y/C"

2.s; y//'0i;B.y/ dyds�K0
�
Ni .s1/C sup

s2Œs1;s2�

jb.s/j3C sup
s2Œs1;s2�

!3.s/
�
; (4-6)

Ni .s2/
�2.s2/

C

Z s2
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1

�2.s/

��Z
."2y C "

2/.s/'0i;B

�
C b2.s/.jb.s/jC!.s//

�
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�K0

�
Ni .s1/
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C

�
b2.s1/C!

2.s1/

�2.s1/
C
b2.s2/C!

2.s2/

�2.s2/

��
: (4-7)

(2) Control of b and !: For all 0� s1 < s2 � s��,

!.s2/C

Z s2

s1

b2.s/ ds .N1.s1/C!.s1/C sup
s2Œs1;s2�

jb.s/j: (4-8)
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(3) Control of b=�2: Let c1 D .m=.mC 2//G0.0/ > 0, where G is the C 2 function introduced in (2-40).
Then there exists a universal constant K1 > 1 such that, for all 0� s1 < s2 � s��,ˇ̌̌̌

b.s2/C c1!.s2/

�2.s2/
�
b.s1/C c1!.s1/
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�
: (4-9)

(4) Refined control of �: Let �0.s/D �.s/.1�J1.s//2. Then there exists a universal constant K2 > 1
such that, for all s 2 Œ0; s���,ˇ̌̌̌

.�0/s

�0
C b

ˇ̌̌̌
�K2ŒN1C .jbjC!/.N

1
2

2 Cjbj/�: (4-10)

Proof. Proof of (4-6) and (4-8). From (2-50), we have

d

ds
G.!/C b2 � �bsCCN1;loc:

Integrating from s1 to s2, we have

G.!.s2//C
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s1
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Since G.!/� !, we obtain (4-8).
Next, from the monotonicity formulas (3-11) and (3-13) we obtain

Ni .s2/C
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Z
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Combining (4-8) and (4-11), we obtain (4-6).

Proof of (4-7). First, from (2-50) and (2-35), we have
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Recall that ! D =�m. Then from (2-34) we haveZ s2
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From (2-50) and (2-35), we haveZ s2
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From (2-34) and (2-35) again, we haveˇ̌̌̌Z s2
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Therefore, combining (4-13)–(4-15), we haveZ s2
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Taking � > 0 small enough, from (4-12) and (4-16) we haveZ s2
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Now, integrating the monotonicity formula (3-12), we have
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which implies (4-7) immediately.

Proof of (4-9). The proof of (4-9) is based on integrating the equation of b=�2, i.e., (2-42). More precisely,
from (2-34), (2-42) and the fact that jJ j . N 1=2

1;loc (recall that J given by (2-41) is a well-localized L2

scalar product), we haveˇ̌̌̌�
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We integrate this estimate in time using (4-7) to getˇ̌̌̌�
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Next, from (2-35), (4-7) and jJ j.N 1=2
1;loc, we haveˇ̌̌̌Z s2

s1

!sG
0.!/

�2
.eJ � 1/

ˇ̌̌̌
.
Z s2

s1

.b2C!2/b2CN1;loc

�2

.
N1.s1/
�2.s1/

C
b2.s1/C!

2.s1/

�2.s1/
C
b2.s2/C!

2.s2/

�2.s2/
: (4-20)

Finally, recall ! D =�m, so we haveZ s2

s1

!sG
0.!/

�2
D

Z s2

s1

!sG
0.!/

.=!/2=m
D
†.!/

�2

ˇ̌̌̌s2
s1

;

where

†.!/ WD
1

!2=m

Z !

0

x
2
mG0.x/ dx:

Recall that G is the C 2 function introduced in (2-40). We then have † 2 C 2 and c1 D †0.0/ D

.m=.mC 2//G0.0/ > 0. Hence, we haveZ s2

s1

!sG
0.!/

�2
D
c1!

�2

ˇ̌̌̌s2
s1

CO

�
!2.s1/

�2.s1/
C
!2.s2/

�2.s2/

�
: (4-21)

Combining (4-18)–(4-21), we conclude the proof of (4-9).

Proof of (4-10). From (3-14), we haveˇ̌̌̌
�

�0
� 1

ˇ̌̌̌
. jJ1j.N

1
2

2 . ı.�/I

thus we obtain from (2-38)ˇ̌̌̌
.�0/s

�0
C b

ˇ̌̌̌
D

ˇ̌̌̌
1

1�J1

�
.1�J1/

�s

�
C b� 2.J1/s

�
�

J1

1�J1
b

ˇ̌̌̌
.
Z
"2e�

jyj
10 C .jbjC!/.N

1
2

2 Cjbj/:

This concludes the proof of (4-10), and hence the proof of Lemma 4.1. �
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4B. Rigidity dynamics in A˛0
. In this part, we will give a specific classification for the asymptotic

behavior of solution with initial data in A˛0 .
We first introduce the separation time t�1 :

t�1D

�
0 if jb.0/Cc1!.0/j �C �.N1.0/Cb2.0/C!2.0//;
supf0< t < t� j for all t 0 2 Œ0; t �; jb.t 0/Cc1!.t 0/j �C �.N1.t 0/Cb2.t 0/C!2.t 0//g else;

(4-22)

where10

C � D 100.K1CK0K2/ > 0: (4-23)

Then we have:

Proposition 4.2 (rigidity dynamics). There exist universal constants 0 <  � ˛0� ˛�� 1 and C � > 1
such that the following hold. Let u0 2A˛0 , and u.t/ be the corresponding solution to (gKdV ). Then we
have:
(1) The following trichotomy holds:

Blow down: If t�1 D t
�, then t�1 D t

� D T DC1, with

jb.t/jCN2.t/! 0 as t !C1; (4-24)

�.t/� t
2
qC1 ; x.t/� t

q�3
qC1 as t !C1: (4-25)

Exit: If t�1 < t
� with

b.t�1 /C c1!.t
�
1 /� �C

�.N1.t�1 /C b
2.t�1 /C!

2.t�1 //;

then t� < T DC1. In particular,

inf
�0>0;�

�m
0 <!�; x02R

u.t�/� 1

�
1=2
0

Q��m0 

�
x� x0

�0

�
L2
D ˛�: (4-26)

Moreover, we have

b.t�/� �C.˛�/ < 0; �.t�/�
C.˛�/

ı.˛0/
� 1: (4-27)

Soliton: If t�1 < t
� with

b.t�1 /C c1!.t
�
1 /� C

�.N1.t�1 /C b
2.t�1 /C!

2.t�1 //;

then t� D T DC1. Moreover, we have

N2.t/Cjb.t/j ! 0 as t !C1; (4-28)

�.t/D �1.1C o.1//; x.t/D
t

�21
.1C o.1// as t !C1; (4-29)

for some �1 2 .0;C1/.

(2) All of the three scenarios introduced in (1) are known to occur. Moreover, the initial data sets which
lead to the soliton and exit cases are open in A˛0 (under the topology of H 1\L2.y10

C
dy/).

10Recall that K0, K1, K2 and c1 were introduced in Lemma 4.1.
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Remark 4.3. It is easy to see Proposition 4.2 implies Theorem 1.3 immediately.

Remark 4.4. The constant C � chosen here is not sharp. We can replace it by some slightly different
ones.

Proof of Proposition 4.2. The basic idea of the proof is to show that the assumptions (H1)–(H3) introduced
in Proposition 3.1 hold for all t 2 Œ0; t�/ (i.e., as long as the solution is close to the soliton manifold).
And then together with the estimates obtained in Lemma 4.1, we can show that the error term " does not
perturb the ODE system, and hence the parameters .b; �; x/ have the same asymptotic behavior as the
formal system (1-11), which concludes the proof of Theorem 1.3.

In the blow-down and exit cases, this is done by improving the estimates in (H1)–(H3) on Œ0; t���
(recall that t�� is the largest time t such that (H1)–(H3) hold on Œ0; t �), and then a standard bootstrap
argument shows that t�� D t�, i.e., (H1)–(H3) hold on Œ0; t�/, while in the soliton case it seems hard to
improve all the estimates on Œ0; t���. But, fortunately, we can use a similar bootstrap argument to show
that some modified assumptions .H1/0, .H2/0, .H3/0 hold on Œ0; t��, which is also enough to obtain the
asymptotic behavior of the parameters.

I. The blow-down case. Assume that t�1 D t
�; i.e., for all t 2 Œ0; t��,

jb.t/C c1!.t/j � C
�.N1.t/C b2.t/C!2.t//: (4-30)

Step 1: Closing the bootstrap. We claim that t�� D t�; i.e., the bootstrap assumptions (H1), (H2) and
(H3) hold on Œ0; t��.

Indeed, we claim that for all s 2 Œ0; s��/,

!.s/Cjb.s/jC k".s/kL2 CN2.s/. ı.˛0/; (4-31)

�.s/� 4
5
; (4-32)Z

y>0

y10"2.s/ dy � 5: (4-33)

Then choosing ˛�, ˛0,  such that 0 < � ˛0� ˛�� �, we can see that (4-31)–(4-33) imply t�� D t�

immediately.
First, from (4-30) we have, for all s 2 Œ0; s��/,

b.s/� 4C �N1.s/� jb.s/j; (4-34)

jb.s/j.N1.s/C!.s/; (4-35)

!.s/.N1.s/Cjb.s/j: (4-36)

Then we apply (4-34) and (4-36) to (4-10) to obtain

.�0/s

�0
� �b�N1�C.!Cjbj/.N

1
2

2 Cjbj/

� �5C �N1Cjbj � ı.�/jbj& �N1:
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Integrating this from s1 to s2 for some 0� s1 < s2 � s��, and using (4-6), we have

�.s2/�
9
10
�.s1/: (4-37)

In particular, we know from (4-2) that for all s 2 Œ0; s��/

�.s/� 9
10
�.0/� 4

5
: (4-38)

By our choice of  , we have

!.s/D


�m.s/
� 2m . ı.˛0/: (4-39)

Next, from (4-4), (4-6) and (4-35), we have for all s 2 Œ0; s��/

N2.s/.N2.0/C sup
s02Œ0;s�

N 3
2 .s
0/C sup

s02Œ0;s�

!3.s0/;

which together with (4-35) implies
jb.s/jCN2.s/. ı.˛0/

for all s 2 Œ0; s��/. Then from (2-32) and the condition on the initial data, we obtain

k".s/kL2 . ı.˛0/: (4-40)

From (2-33) and the condition on the initial data, we have

k"y.s/k
2
L2

�2.s/
. ı.˛0/C

k"y.s/k
mC2
L2

�mC2.s/
:

Since k"y.0/kL2 . ı.˛0/, �.0/� 1, from a standard bootstrap argument we have

k"y.s/k
2
L2

�2.s/
. ı.˛0/:

Thus, we have

!.s/k"y.s/k
m
L2
. 
k"y.s/k

m
L2

�m.s/
. ı.˛0/: (4-41)

Finally, let us integrate (3-41) from 0 to s, using (4-3), (4-6), (4-8), (4-37) and (4-38) to obtainZ
'10"

2.s/ dy �
�10.0/

�10.s/

Z
'10"

2.0/ dyCC

Z s

0

�10.s0/

�10.s/
.N1;loc.s

0/C b2.s0// ds0

� 3CC

Z s

0

.N1;loc.s
0/C b2.s0// ds0 � 3C ı.�/ < 5:

We therefore conclude the proof of (4-31)–(4-33), and obtain t��D t�. Since 0<˛0�˛�, the estimate
(4-31) implies t�� D t� D T DC1.

Step 2: Proof of (4-24) and (4-25). We first claim that �.t/!C1 as t !C1. Let

S D

Z C1
0

1

�3.�/
d� 2 .0;C1�:
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From (2-35), (4-6), (4-8) and (4-36) we haveZ C1
0

j!t j dt D

Z S

0

j!sj ds .
Z S

0

.N2;loc.s/C b
2.s// ds <C1;Z C1

0

2

�3C2m.t/
dt D

Z S

0

!2.s/ ds .
Z S

0

.N2;loc.s/C b
2.s// ds <C1:

This leads to �.t/!C1 as t !C1, or equivalently limt!C1 !.t/D 0.
Next, we claim that S DC1. Otherwise, b.s/; !.s/ 2 L1.Œ0; S//. Applying this to (4-10), we obtain

.�0/s

�0
2 L1.Œ0; S//:

But since �0.s/!C1 as s! S , we haveˇ̌̌̌Z S�ı0

0

.�0/s

�0
.s0/ ds0

ˇ̌̌̌
D

ˇ̌̌̌
log
�
�0.S � ı0/

�0.0/

�ˇ̌̌̌
!C1

as ı0! 0, which leads to a contradiction.
Now we can prove (4-24) and (4-25). To do this, we claim that, for all s 2 Œ0;C1/,

�m.s/N2.s/C
Z s

0

�m.s0/."2.s0/C "2y.s
0//'02;B ds

0 . 1: (4-42)

From (3-11) we have

1

�m
d

ds
.�mF2;1/� ��

Z
."2C "2y/'

0
2;B CO.b

4
C!2b2/�m

�s

�
F2;1: (4-43)

From (2-34), (3-13), (3-21) and (4-38), we haveˇ̌̌̌
�s

�
F2;1

ˇ̌̌̌
. .jbjCN

1
2

1;loc/

��
1C

1

�10=9.s/

�
N

8
9

2;locC

Z
"2y B

�
. b2C ı.�/

Z
."2C "2y/'

0
2;B :

Substituting this into (4-43) and integrating from 0 to s, using (4-35) and (4-36), we have,

�m.s/N2.s/C
Z s

0

�m.s0/."2.s0/C"2y.s
0//'02;B ds

0 .
Z s

0

�m.s0/!4.s0/ ds0Cı.�/

Z s

0

�m.s0/N1.s0/ ds0

. 
Z s

0

!3.s0/ ds0Cı.�/

Z s

0

�m.s0/N1.s0/ ds0

. 
Z s

0

b2.s0/ ds0Cı.�/

Z s

0

�m.s0/N1.s0/ ds0:

Together with (4-8), we obtain (4-42).
Since �.s/!C1 as s!C1, we have

N2.s/. ��m.s/! 0 as s!C1: (4-44)
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Now, using (4-10), (4-30) and (4-35), we haveˇ̌̌̌
�
.�0/s

�0
C c1!

ˇ̌̌̌
.
ˇ̌̌̌
.�0/s

�0
C b

ˇ̌̌̌
CjbC c1!j

.N1C b2C!2C .jbjC!/.N
1
2

2 Cjbj/.N1C ı.�/!:

Multiplying the above inequality by �m0 and integrating from 0 to s, we obtain

�C

Z s

0

�m0 N1C
1
2
c1s �

Z s

0

.�0/s�
m�1
0 � C

Z s

0

�m0 N1C 2c1s:

From (4-42) and j1��=�0j. ı.�/, we obtain

�m.s/� s as s!C1:

We then have

t .s/D

Z s

0

�3.s0/ ds0 � s
mC3
m D s

qC1
q�5 as s!C1;

which implies

�.t/� t
2
qC1 as t !C1:

Next, from (4-30) and (4-35), we have

b.t/! 0 as t !C1:

Finally, integrating (2-34), we obtain

x.t/� t
q�3
qC1 as t !C1;

which concludes the proof of (4-24) and (4-25).

II. The exit case. Assume t�1 < t
� with

b.t�1 /C c1!.t
�
1 /� �C

�.N1.t�1 /C b
2.t�1 /C!

2.t�1 //: (4-45)

Step 1: Closing the bootstrap. First of all, following the same procedure as in the blow-down case, we
have, for all s 2 Œ0; s�1 �,

!.s/Cjb.s/jC k".s/kL2 C!.s/k"y.s/k
m
L2
CN2.s/. ı.˛0/; (4-46)

�.s/� 4
5
; (4-47)Z

y>0

y10"2.s/ dy � 5: (4-48)

In particular, we have t�1 < t
�� � t�. Now, we claim t�� D t� < T DC1.

To prove this, we use a standard bootstrap argument by improving (H1), (H2) and (H3) on Œt�1 ; t
���.

Let

`� D
b.t�1 /C c1!.t

�
1 /

�2.t�1 /
< 0:
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It is easy to see that j`�j. ı.˛0/. Now we observe from (4-9) that, for all s 2 Œs�1 ; s
��/,

2`��C �
b2.s/C!2.s/

�2.s/
�
b.s/C c1!.s/

�2.s/
�
`�

2
CC �

b2.s/C!2.s/

�2.s/
;

which implies

�b.s/& !.s/ > 0; (4-49)

3`��C
!.s/

�2.s/
�
b.s/

�2.s/
�
`�

3
< 0: (4-50)

We then observe from (4-10) and (4-49) that

.�0/s

�0
& �N1;loc;

which after integration, yields the almost monotonicity:

for all s�1 � s1 < s2 � s
��; �.s2/�

9
10
�.s1/�

1
2
: (4-51)

So we obtain for all s 2 Œs�1 ; s
��/,

!.s/C
!.s/

�2.s/
.  . ı.˛0/:

Together with (4-7) and (4-50), we have, for all s 2 Œs�1 ; s
��/,

jb.s/jCN2.s/
�2.s/

. ı.˛0/;

which improves (H2) if we choose ˛0� �. Next, using the same strategy as in the blow-down case, we
have, for all s 2 Œs�1 ; s

��/, Z
'10"

2.s/ dy � 7:

Then, (H3) is improved. It now only remains to improve (H1). Since for all t 2 Œt�1 ; t
�/ we have

u.t/ 2 T˛�;  , following the argument in Lemma 2.6, for all t 2 Œ0; t�/ we have jb.t/j. ı.˛�/. By (2-32),
(4-6), and (4-49), we have, for all s 2 Œs�1 ; s

��/,

!.s/Ck".s/kL2 CN2.s/. ı.˛�/:

Now, following from the same argument as for (4-41), we have

!.s/k"y.s/k
m
L2
. ı.˛0/:

Then (H1) is improved, due to our choice of the universal constant, i.e., ˛�� �.
In conclusion, we have proved t�� D t�.

Step 2: Proof of (4-26) and (4-27). We first claim that the exit case occurs in finite time t� < C1.
Dividing (4-10) by �20, and using (4-49) to estimate on Œt�1 ; t

�/,

�
`�

3
�C

N1;loc

�2
� .�0/t � �3`

�
CC

N1;loc

�2
:
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Integrating from t�1 to t , we get

j`�j.t � t�1 /

3
�C1

Z t

t�1

N1;loc

�2
� �0.t/��0.t

�
1 /� 3j`

�
j.t � t�1 /CC2

Z t

t�1

N1;loc

�2
:

From (4-51), we have Z t

t�1

N1;loc

�2
D

Z s

s�1

�N1;loc . �.s/
Z s

s�1

N1;loc . ı.�/�.t/:

Thus, for all t 2 Œt�1 ; t
�/,

1
4
.j`�j.t � t�1 /C�0.t

�
1 //� �.t/� 4.j`

�
j.t � t�1 /C�0.t

�
1 //:

Next, from (4-49), we have for all t 2 Œt�1 ; t
�/,

�100j`�j.j`�j.t � t�1 /C�0.t
�
1 //

2
� b.t/� �

j`�j

100
.j`�j.t � t�1 /C�0.t

�
1 //

2:

If t� D T DC1, then the above estimate leads to b.t/!�1 as t !C1, which contradicts the fact
that jb.t/j. ı.˛�/ for all t 2 Œt�1 ; t

�/. Thus, we have t� < T DC1.
Finally, since 0 < t� <C1, by the definition of t�, we must have �b.t�/� C.˛�/ > 0. While from

(4-49), we have

�2.t�/�
1

2

jb.t�/j

j`�j
&
C.˛�/

ı.˛0/
� 1;

which concludes the proof of (4-26) and (4-27).

III. The soliton case. Assume t�1 < t
� with

b.t�1 /C c1!.t
�
1 /� C

�.N1.t�1 /C b
2.t�1 /C!

2.t�1 // > 0: (4-52)

Step 1: Estimates on the rescaled solution. Similar to the exit case, we have, for all s 2 Œ0; s�1 �,

!.s/Cjb.s/jC k".s/kL2 C!.s/k"y.s/k
m
L2
CN2.s/. ı.˛0/; (4-53)

�.s/� 4
5
; (4-54)Z

y>0

y10"2.s/ dy � 5: (4-55)

But here we can’t directly prove that t�� D t� as we did in the exit case. The main difficulty is that we
lack some control on the upper bound of �.t�1 /, which makes it hard to improve the bootstrap assumptions
(H2) and (H3). However, we will see that the bootstrap assumptions (H2) and (H3) are related to the
scaling symmetry of the problem. If we use the pseudoscaling rule (1-1) on Œt�1 ; t

�/ to rescale �.t�1 / to 1,
then we can get the desired result. Roughly speaking, on Œt�1 ; t

��, the bootstrap assumptions (H2) and
(H3) should be replaced by some other suitable assumptions .H2/0 and .H3/0.
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More precisely, we introduce the following change of coordinates. For all t 2 Œt�1 ; t
�/, let

Nt D
t � t�1
�3.t�1 /

; Nx D
x� x.t�1 /

�.t�1 /
; N D



�m.t�1 /
; Nt� D

t�� t�1
�3.t�1 /

; (4-56)

Nu.Nt ; Nx/D �
1
2u
�
�3.t�1 / Nt C t

�
1 ; �.t

�
1 / NxC x.t

�
1 /
�
: (4-57)

Then, from the pseudoscaling rule (1-1), Nu.Nt ; Nx/ is a solution to the Cauchy problem�
@Nt NuC . Nu Nx NxC Nu

5� N Nuj Nujq�1/ Nx D 0; .Nt ; Nx/ 2 Œ0; Nt�/�R;

Nu.0; Nx/DQb.t�1 /;!.t
�
1 /
. Nx/C ".t�1 ; Nx/ 2H

1.R/:
(4-58)

Moreover, for all Nt 2 Œ0; Nt�/ we define

N".Nt ; y/D ".�3.t�1 / Nt C t
�
1 ; y/;

N�.Nt /D
�.�3.t�1 / Nt C t

�
1 /

�.t�1 /
; N!.Nt /D

N

N�m.Nt /
; (4-59)

Nb.Nt /D b.�3.t�1 / Nt C t
�
1 /; Nx.Nt /D

x.�3.t�1 / Nt C t
�
1 /� x.t

�
1 /

�.t�1 /
: (4-60)

Then, from (2-21), it is easy to check that

Nu.Nt ; Nx/D
1

N�1=2.Nt /
ŒQ Nb.Nt /; N!.Nt /C N".

Nt /�

�
Nx� Nx.Nt /

N�.Nt /

�
;

with
.N".Ns/;Q N!.Ns//D .N".Ns/;ƒQ N!.Ns//D .N".Ns/; NyƒQ N!.Ns//D 0;

where .Ns; Ny/ are the scaling-invariant variables

Ns D

Z Nt
0

1

N�3.�/
d�; Ny D

Nx� Nx.Nt /

N�.Nt /
:

We then introduce the weighted Sobolev norms

N i .Ns/D

Z �
N"2Ny.Ns; Ny/ B. Ny/C N"

2.Ns; Ny/'i;B. Ny/
�
d Ny;

N i;loc.Ns/D

Z
N"2.Ns; Ny/'0i;B. Ny/ d Ny;

(4-61)

where 'i;B and  B are the weight functions introduced in Section 3.
From now on, for all Nt 2 Œ0; Nt�/, we let t D �3.t�1 / Nt C t

�
1 . In this setting, we have Ns.Nt /D s.t/� s�1 .

Since the pseudoscaling rule (1-1) is L2 invariant, we have

Nu.Nt / 2 T˛�; N () u.t/ 2 T˛�;  ;

which yields
Nt� D supf0 < Nt <C1 j for all t 0 2 Œ0; Nt �, Nu.t 0/ 2 T˛�; Ng:

Next, let � > 0 be the universal constant introduced in Proposition 2.9, Proposition 3.1 and Lemma 4.1.
We then define the following bootstrap assumptions for the rescaled solution Nu.Nt ; Nx/. For all Ns 2 Œ0; Ns.Nt //:
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.H1/0 Scaling-invariant bound:

N!.Ns/Cj Nb.Ns/jCN 2.Ns/CkN".Ns/kL2 C N!.Ns/kN" Ny.Ns/k
m
L2
� �: (4-62)

.H2/0 Bound related to H 1 scaling:

N!.Ns/Cj Nb.Ns/jCN 2.Ns/

N�2.Ns/
� �: (4-63)

.H3/0 L2 weighted bound on the right:Z
Ny>0

Ny10 N"2.Ns; Ny/ d Ny � 50

�
1C

1

N�10.Ns/

�
: (4-64)

We define Nt�� as

Nt�� D supf0 < Nt < Nt� j .H1/0, .H2/0 and .H3/0 hold for all t 0 2 Œ0; Nt �g: (4-65)

Our goal here is to prove that Nt�� D Nt� DC1, which gives us the desired asymptotic behaviors.11 Let
Ns� D Ns.Nt�/, Ns�� D Ns.Nt��/. Since

N�.0/D 1; Nx.0/D 0; Nb.0/D b.t�1 /; N!.0/D !.t�1 /; N".0; Ny/D ".t�1 ; Ny/; N . ; (4-66)

we know from (4-53)–(4-55), that Ns�� > 0.
On the other hand, on Œ0; Ns��/, all conditions of Propositions 2.9 and 3.1 and Lemmas 3.6 and 4.1 are

satisfied for Nu.Nt ; Nx/. Repeating the same procedure, we have:

Lemma 4.5 (estimates for the rescaled solution). For all Ns 2 Œ0; Ns��/ or equivalently s 2 Œs�1 ; s
�
1 C Ns

��/,
all estimates of Propositions 2.9 and 3.1 and Lemmas 3.6 and 4.1 hold with

.t; x; u; ; �.t/; b.t/; x.t/; !.t/; ".t/; s; y/

replaced by

.Nt ; Nx; Nu; N; N�.Nt /; Nb.Nt /; Nx.Nt /; N!.Nt /; N".Nt /; Ns; Ny/:

Remark 4.6. For simplicity, we skip the statement of these similar estimates for Nu. We also refer to the
equation number of the corresponding inequality for u.t/, when we need to use these estimates for Nu.Nt /.

Step 2: Closing the bootstrap. In this part, we will close the bootstrap argument to show that Nt�� D
Nt� DC1. This is done through the following steps:

(1) We prove that for Nt large enough, we have N!.Nt /� j Nb.Nt /j, which coincides with the formal ODE
system (1-11) in the soliton region, where we have !.t/ converges to a positive constant, while b.t/
converges to 0 as t !C1. Indeed, if j Nb.Nt /j& N!.Nt / holds for all Nt 2 Œ0; Nt���, we will obtain finite time
blow-up if Nb.0/ > 0 or exit behavior if Nb.0/ < 0. Both of them lead to a contradiction.

11Since �.t�1 /& 1, we know that (H1) is equivalent to .H1/0 and (H2) is weaker than .H2/0, while (H3) is stronger than .H3/0.
It is hard to determine whether t�� D �3.t�1 / Nt

��C t�1 holds.
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(2) The hardest part of the analysis is to prove that the scaling parameter N� is bounded from both above
and below for all Nt 2 Œ0; Nt���. This is done by proving that12�

1

N�2

�
s

CC N

�
1

N�2

�1Cm
2

� Ǹ
� > 0:

(3) The estimates of the rest of the terms can be done by arguments similar to those in the blow-down
and exit regions.

Now we turn to the proof of Nt�� D Nt� DC1. We first define

Nt�2 D

�
0 if j Nb.0/j � 1

100
c1 N!.0/;

supf0 < Nt < Nt� j for all t 0 2 Œ0; Nt �, j Nb.t 0/j � 1
100
c1 N!.t

0/g else.

Our first observation is that Nt�2 < Nt
�. Otherwise, since Nt�2 D Nt

� � Nt�� > 0, we have, for all Nt 2 Œ0; Nt��/,
Nb.Nt / 6D 0.

If Nb.0/ > 0, we claim that Nt�� D Nt�2 D Nt
� DC1. To prove this, we need to improve .H1/0, .H2/0 and

.H3/0 on Œ0; Nt���. Indeed, from the definition of Nt�2 , we have

0 < N!.Nt /. Nb.Nt / (4-67)

for all Nt 2 Œ0; Nt��/. Applying this to (4-10), we have

. N�0/Ns
N�0
� �NbCO.N 2;loc/C ı.�/j Nbj:

Integrating this from 0 to Nt using (4-6) and the fact that N�.0/D 1, we obtain the almost monotonicity

for all 0� Ns1 < Ns2 � Ns��; N�.Ns2/�
10
9
N�.Ns1/�

5
4
: (4-68)

On the other hand, we learn from (4-9), (4-52) and (4-66), that for all Ns 2 Œ0; Ns��/

99

100
Ǹ��K1

Nb2.Ns/C N!2.Ns/

N�2.Ns/
�

Nb.Ns/C c1 N!.Ns/

N�2.Ns/
�
101

100
Ǹ�CK1

Nb2.Ns/C N!2.Ns/

N�2.Ns/
; (4-69)

where

0 < Ǹ� D
Nb.0/C c1 N!.0/

N�2.0/
D b.t�1 /C c1!.t

�
1 /. ı.˛0/:

Together with (4-67), we have for all Ns 2 Œ0; Ns��/

Nb.Ns/

N�2.Ns/
� Ǹ
� . ı.˛0/;

N!.Ns/

N�2.Ns/
. Ǹ� . ı.˛0/: (4-70)

Then from (4-68), (4-6) and (4-7), we have for all Ns 2 Œ0; Ns��/

N 2.Ns/

N�2.Ns/
. ı.˛0/; N 2.Ns/C N!.Ns/Cj Nb.Ns/j. N�2.Ns/ Ǹ�C ı.˛0/� ı.˛0/: (4-71)

12See (4-88) and (4-90) for details.
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Then, from (2-32), (4-53) and fact

Nu.0; Nx/DQb.t�1 /;!.t
�
1 /
. Nx/C ".t�1 ; Nx/;

we know that

kN".Ns/kL2 . ı.˛0/C
ˇ̌̌̌Z
Nu2.0/�

Z
Q2
ˇ̌̌̌1
2

. ı.˛0/Ck".t�1 /kL2 Cjb.t
�
1 /j

1
2 C!

1
2 .t�1 /. ı.˛0/: (4-72)

Now, from (2-33) and (4-71), we have

N!.Ns/kN" Ny.Ns/k
m
L2
D N
kN" Ny.Ns/k

m
L2

N�m.Ns/
. ı.˛0/C

�
N
kN" Ny.Ns/k

m
L2

N�m.Ns/

�mC2
2

Cj N
2
mE. Nu.0//j

m
2 ;

where E. Nu.0// is the energy of the Cauchy problem (4-58), i.e.,

E. Nu.0//D
1

2

Z
Nu2Nx.0/�

1

6

Z
Nu6.0/C

N

qC 1

Z
j Nu.0/jqC1:

Since

Nu.0; Nx/D �
1
2 .t�1 /u.t

�
1 ; �.t

�
1 / NxC x.t

�
1 //;

from the energy conservation law of (gKdV ) and the condition on the initial data, we have

j N
2
mE. Nu.0//j D

ˇ̌̌̌

2
m
E. Nu.0//

�2.t�1 /

ˇ̌̌̌
D j

2
mE.u.t�1 //j D j

2
mE0j. ı.˛0/:

Thus, for all Ns 2 Œ0; Ns��/, we have

N!.Ns/kN" Ny.Ns/k
m
L2
. ı.˛0/C . N!.Ns/kN" Ny.Ns/kmL2/

1Cm
2 :

From (4-53) and (4-66), we have

N!.0/kN" Ny.0/k
m
L2
D !.s�1 /k"y.s

�
1 /k

m
L2
. ı.˛0/:

Then a standard bootstrap argument leads to

N!.Ns/kN" Ny.Ns/k
m
L2
. ı.˛0/ (4-73)

for all Ns 2 Œ0; Ns��/.
Finally, integrating (3-41), using (4-6) and (4-68) we obtainZ

'10. Ny/N"
2.Ns; Ny/ d Ny �

N�10.0/

N�10.Ns/

Z
'10. Ny/N"

2.0; Ny/ d NyC
C

N�10.Ns/

Z Ns
0

N�10.N 1;locC Nb
2/

�
1

N�10.Ns/

�
5CC N�10.0/

Z Ns
0

.N 1;locC Nb
2/

�
�
5C ı.�/

N�10.Ns/
: (4-74)
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Combining (4-70)–(4-74), we conclude that Nt�� D Nt�. Since all H 1 solutions of (4-58) are global in time,
we must have Nt�� D Nt� DC1, provided that ˛0� ˛�. Now we substitute (4-70) into (4-10) to obtain

Ǹ�

3
�C

N 1;loc

N�2
� �. N�0/Nt � 3

Ǹ�CC
N 1;loc

N�2
:

Integrating in time, we have for all Nt 2 Œ0;C1/

0 < N�0.Nt /� N�.0/�
Ǹ� Nt

3
CC

Z Nt
0

N 1;loc

N�2
:

From (4-68) and (4-6) we haveZ Nt
0

N 1;loc

N�2
D

Z Ns
0

N�.�/N 1;loc.�/ d� .
Z Ns
0

N 1;loc.�/ d� . ı.�/;

which implies that the solution blows up in finite time. This is a contradiction.
Now we consider the other case Nb.0/ < 0. We claim again that Nt�2 D Nt

�� D Nt� DC1. It is also done
by improving the three bootstrap assumptions. First, we know from (4-9), (4-52) and (4-66) that (4-69)
still holds in this case. And the definition of Nt�2 implies

0 < Ǹ� . �
Nb.Ns/

N�2.Ns/
�
N!.Ns/

N�2.Ns/
: (4-75)

Then we apply the fact that 0 < N! . �Nb to (4-10) to obtain

. N�0/Ns
N�0
� �

1
2
Nb�O.N 2;loc/:

Integrating in time we have

for all 0� Ns1 < Ns2 � Ns��; N�.Ns2/�
9
10
N�.Ns1/�

4
5
; (4-76)

which yields for all Ns 2 Œ0; Ns��/

N!.Ns/C
N!.Ns/

N�2.Ns/
. N . ı.˛0/: (4-77)

From (4-75), (4-6) and (4-7), we get

N 2.Ns/Cj Nb.Ns/jC
N 2.Ns/Cj Nb.Ns/j

N�2.Ns/
. ı.˛0/: (4-78)

Using the same argument as we did for (4-72)–(4-74), we have

kN".Ns/kL2 . ı.˛0/; N!.Ns/kN" Ny.Ns/k
m
L2
. ı.˛0/;

Z
'10 N"

2.Ns/ d Ny � 7: (4-79)

Combining (4-77)–(4-79), we conclude that Nt�� D Nt� DC1. But from (4-75), we have

�Nb � N!.Ns/& N
2

mC2 . Ǹ�/
m
mC2 > 0: (4-80)
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On the other hand, from (4-8), we have Z Ns��
0

Nb2.s0/ ds0 . 1:

The above two estimates imply

Ns�� D

Z C1
0

1

N�3.�/
d� <C1;

which leads to N�.Ntn/!C1 as n!C1 for some sequence Ntn!C1 or equivalently limn!C1 N!.Ntn/D0.
This contradicts (4-80).

In conclusion, we have proved that Nt�2 < Nt
� with

j Nb.Nt�2 /j �
1
100
c1 N!.Nt

�
2 /:

Let Ns�2 D Ns.Nt
�
2 /. Repeating the same procedure as before, we have for all Ns 2 Œ0; Ns�2 �

N!.Ns/Cj Nb.Ns/jC kN".Ns/kL2 C N!.Ns/kN" Ny.Ns/k
m
L2
CN 2.Ns/. ı.˛0/; (4-81)

N!.Ns/Cj Nb.Ns/jCN 2.Ns/

N�2.Ns/
. ı.˛0/; (4-82)Z

Ny>0

Ny10 N"2.Ns/ d Ny � 7

�
1C

1

N�10.Ns/

�
: (4-83)

In particular, we have Nt�2 < Nt
�� � Nt�. Similarly, we need to improve the three bootstrap assumptions on

ŒNt�2 ; Nt
��/ to obtain Nt�� D Nt� DC1.

First, it is easy to see that (4-69) holds on ŒNs�2 ; Ns
��/. So the definition of Ns�2 yields13

19

20
Ǹ� �

c1 N!.Ns
�
2 /

N�2.Ns�2 /
�
21

20
Ǹ�; (4-84)

which implies

9

10

�
Ǹ�

c1 N

� 2
mC2

�
1

N�2.Ns�2 /
�
11

10

�
Ǹ�

c1 N

� 2
mC2

: (4-85)

Next, we let

C1 D
99

100
c1 < c1; C2 D

101

100
c1 > c1:

Then, we learn from (4-69) that, for all Ns 2 ŒNs�2 ; Ns
��/,

99

100
Ǹ� �

Nb.Ns/CC2 N!.Ns/

N�2.Ns/
�
c1

100

N!.Ns/

N�2.Ns/
CO

�
Nb2.Ns/C N!2.Ns/

N�2.Ns/

�
�

Nb.Ns/CC2 N!.Ns/

N�2.Ns/
�
c1

100

N!.Ns/

N�2.Ns/
C ı.�/

�ˇ̌̌̌
Nb.Ns/CC2 N!.Ns/

N�2.Ns/

ˇ̌̌̌
C

ˇ̌̌̌
N!.Ns/

N�2.Ns/

ˇ̌̌̌�
;

13Recall that c1 DG0.0/ > 0, where G is the C 2 function introduced in (2-40).
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which implies14

49

50
Ǹ� �

Nb.Ns/CC2 N!0.Ns/

N�20.Ns/
�
c1

200

N!0.Ns/

N�20.Ns/
; (4-86)

where

N!0.Ns/D
N

N�m0 .Ns/
:

Substituting (4-10) into (4-86), using (4-7) and the fact that15

Nb.Ns/CC2 N!0.Ns/

N�20.Ns/
> 0;

we have

49

50
Ǹ� �

101

100

�
�
. N�0/Ns
N�30
C
C2 N!0.Ns/

N�20.Ns/

�
�

1

100

�
Nb.Ns/CC2 N!0.Ns/

N�20.Ns/

�
�
c1

200

N!0.Ns/

N�20.Ns/

C
101K2

100

N 1.Ns/

N�20.Ns/
C ı.�/

�ˇ̌̌̌
Nb.Ns/CC2 N!0.Ns/

N�20.Ns/

ˇ̌̌̌
C

ˇ̌̌̌
N!0.Ns/

N�20.Ns/

ˇ̌̌̌�

�
101

100

�
�
. N�0/Ns
N�30
C
C2 N!0.Ns/

N�20.Ns/

�
�

1

100

�
Nb.Ns/CC2 N!0.Ns/

N�20.Ns/

�
�
c1

300

N!0.Ns/

N�20.Ns/

C
101K0K2

100

.N 1.0/C Nb
2.0/C N!2.0//

N�20.0/
C ı.�/

�ˇ̌̌̌
Nb.Ns/CC2 N!0.Ns/

N�20.Ns/

ˇ̌̌̌
C

ˇ̌̌̌
N!0.Ns/

N�20.Ns/

ˇ̌̌̌�

�
101

100

�
�
. N�0/Ns
N�30
C
C2 N!0.Ns/

N�20.Ns/

�
C
51K0K2

50

.N 1.0/C Nb
2.0/C N!2.0//

N�2.0/
:

(4-87)
From (4-52) and (4-66), we have

Ǹ� D

Nb.0/C c1 N!.0/

N�2.0/
� 100.K1CK0K2/

.N 1.0/C Nb
2.0/C N!2.0//

N�2.0/
:

So (4-87) implies that for all Ns 2 ŒNs�2 ; Ns
��/,

1

2

�
1

N�20

�
Ns

CC2 N

�
1

N�20

�1Cm
2

�
9

10
Ǹ�: (4-88)

Similar to (4-86), we have

51

50
Ǹ� �

Nb.Ns/CC1 N!0.Ns/

N�20.Ns/
C
c1

200

N!0.Ns/

N�20.Ns/
� ı.�/

ˇ̌̌̌
Nb.Ns/CC2 N!0.Ns/

N�20.Ns/

ˇ̌̌̌
; (4-89)

14Here we use the fact that j1� . N�= N�0/j. jJ 1j. ı.�/.
15This is a direct consequence of (4-86).
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which leads to

51

50
Ǹ� �

99

100

�
�
. N�0/Ns
N�30
C
C1 N!0.Ns/

N�20.Ns/

�
C

1

100

�
Nb.Ns/CC1 N!0.Ns/

N�20.Ns/

�
C
c1

200

N!0.Ns/

N�20.Ns/

C
99K2

100

N 1.Ns/

N�20.Ns/
� ı.�/

�ˇ̌̌̌
Nb.Ns/CC2 N!0.Ns/

N�20.Ns/

ˇ̌̌̌
C

ˇ̌̌̌
N!0.Ns/

N�20.Ns/

ˇ̌̌̌�
;

and

51

50
Ǹ� �

101

100

�
�
. N�0/Ns
N�30
C
C1 N!0.Ns/

N�20.Ns/

�
�

1

100

�
Nb.Ns/CC1 N!0.Ns/

N�20.Ns/

�
C
c1

200

N!0.Ns/

N�20.Ns/

C
101K2

100

N 1.Ns/

N�20.Ns/
� ı.�/

�ˇ̌̌̌
Nb.Ns/CC2 N!0.Ns/

N�20.Ns/

ˇ̌̌̌
C

ˇ̌̌̌
N!0.Ns/

N�20.Ns/

ˇ̌̌̌�
:

Using the same strategy as (4-87), and discussing the sign of . Nb.Ns/CC1 N!0.Ns//= N�20.Ns/, we have

1

2

�
1

N�20

�
Ns

CC1 N

�
1

N�20

�1Cm
2

�
11

10
Ǹ�: (4-90)

Then we need following basic lemma:

Lemma 4.7. Let F : Œ0; x0/! .0;C1/ be a C 1 function. Let � > 0, L > 0 be two positive constants.
Then we have:

(1) If for all x 2 Œ0; x0/

FxCF
1C�
� L;

then for all x 2 Œ0; x0/,

F.x/�min.F.0/; L
1
1C� /:

(2) If for all x 2 Œ0; x0/

FxCF
1C�
� L;

then for all x 2 Œ0; x0/,

F.x/�max.F.0/; L
1
1C� /:

It is easy to prove Lemma 4.7 by standard ODE theory. Now we apply Lemma 4.7 to (4-88) and (4-90)
on ŒNs�2 ; Ns

��/, using (4-85) to obtain

90

101

�
Ǹ�

c1 N

� 2
mC2

�
1

N�2.Ns/
�
10

9

�
Ǹ�

c1 N

� 2
mC2

(4-91)

for all Ns 2 ŒNs�2 ; Ns
��/. This also implies that, for all Ns 2 ŒNs�2 ; Ns

��/,

N!.Ns/� N
2

mC2 . Ǹ�/
m
mC2 . ı.˛0/;

N!.Ns/

N�2.Ns/
� Ǹ
� . ı.˛0/: (4-92)
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From (4-86) and (4-89), we have

Nb.Ns/CC2 N!0.Ns/

N�20.Ns/
�
49

50
Ǹ�;

Nb.Ns/CC1 N!0.Ns/

N�20.Ns/
� 2 Ǹ�I

together with (4-92), we haveˇ̌̌̌
Nb.Ns/

N�2.Ns/

ˇ̌̌̌
. Ǹ� . ı.˛0/; j Nb.Ns/j. N

2
mC2 . Ǹ�/

m
mC2 . ı.˛0/: (4-93)

Again, from the mass conservation law (2-32), the energy conservation law (2-33) and the almost
monotonicity (4-6), (4-7), we have for all Ns 2 ŒNs�2 ; Ns

��/

kN".Ns/kL2 C N!.Ns/kN" Ny.Ns/k
m
L2
CN 2.Ns/C

N 2.Ns/

N�2.Ns/
. ı.˛0/: (4-94)

Finally, we learn from (4-91) that, for all Ns�2 � Ns1 < Ns2 � Ns
��,

1

4
<
�
81

101

�5
�

�
N�.Ns1/

N�.Ns2/

�10
�

�
101

81

�5
< 4:

Then for all Ns 2 ŒNs�2 ; Ns
��/, we integrate (3-41) from Ns�2 to Ns to obtainZ

'10. Ny/N"
2.Ns; Ny/ d Ny �

N�10.Ns�2 /

N�10.Ns/

Z
'10. Ny/N"

2.Ns�2 ; Ny/ d NyC
C

N�10.Ns/

Z Ns
Ns2

N�10.N 1;locC Nb
2/

�

N�10.Ns�2 /

N�10.Ns/
� 7

�
1C

1

N�10.Ns�2 /

�
C 4C

Z Ns
Ns2

.N 1;locC Nb
2/

� 28

�
1C

1

N�10.Ns/

�
C ı.�/ < 30

�
1C

1

N�10.Ns/

�
: (4-95)

Combining (4-92)–(4-95), we have improved .H1/0, .H2/0 and .H3/0; hence Nt�� D Nt� DC1. This
also implies t� DC1.

Step 3: Proof of (4-28) and (4-29). Now it is sufficient to prove

j Nb.Nt /jCN 2.Nt /! 0; N�.Nt /! N�1 2 .0;C1/

as Nt !C1. First of all, from (4-91), we know that

Ns�� D Ns� D

Z C1
0

1

N�3.�/
d� DC1:

Then we claim that NbNs Nb 2 L1..0;C1//. Indeed, from (2-50), we have

j Nb NbNsC N!NsG
0. N!/ Nbj. Nb2C

Z
N"2e�

j Nyj
10 2 L1..0;C1//:
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From (2-34), we have

N!NsG
0. N!/ Nb Dm N!G0. N!/ Nb2CO

�
N!

ˇ̌̌̌
Nb

�
N�Ns
N�
C Nb

�ˇ̌̌̌�
DO

�
Nb2C

Z
N"2e�

j Nyj
10

�
:

The above two estimates implyZ C1
0

j NbNs Nb.s
0/j ds0 D

Z C1
0

1
2
j. Nb2/Nsj<C1:

Together with Z C1
0

Nb2.Ns/ d Ns <C1;

we conclude that Nb.Nt /! 0 as Nt !C1. Next, we use (2-50) again to obtain

j NbNsC N!NsG
0. N!/j. Nb2C

Z
N"2e�

j Nyj
10 2 L1..0;C1//:

Thus, we have Z C1
0

j. NbCG. N!//Ns.s
0/j ds0 <C1:

We then know that b.Nt /CG. N!.Nt // has a limit as Nt !C1. Since limNt!C1 Nb.Nt /D 0, we obtain that
G. N!.Nt // has a limit as Nt !C1. On the other hand, we have G0.0/ > 0, N!.Nt /� 1, so there exists a
constant N!1 > 0 such that

lim
Nt!C1

N!.Nt /D N!1 � N
2

mC2 . Ǹ�/
m
mC2 ;

or equivalently

lim
Nt!C1

N�.Nt /D N�1 �

�
c1 N

Ǹ�

� 1
mC2

:

Let

`� D
b.t�1 /C c1!.t

�
1 /

�2.t�1 /
> 0:

Recall that

N D


�m.t�1 /
; Ǹ� D b.t�1 /C c1!.t

�
1 /;

N�.Nt /D
�.�3.t�1 / Nt C t

�
1 /

�.t�1 /
:

We obtain

lim
t!C1

�.t/D �1 �

�
c1

`�

� 1
mC2

: (4-96)

Next, the inequality (4-6) implies the existence of a sequence Nsn such that

N 1.Nsn/.
Z
.N"2.Nsn/C N"

2
Ny.Nsn//'

0
2;B ! 0 as n!C1;

where limn!C1 Nsn DC1. Using the monotonicity (4-11), we have

N 1.Ns/! 0 as Ns!C1:
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Together with (3-21) and (4-91), we obtain

N 2.Nt /! 0 as Nt !C1;

which implies
N2.t/! 0 as t !C1:

Finally, from (2-34), we have

�2.t/xt .t/� 1 as t !C1;

which after integration implies

x.t/�
t

�21
as t !C1:

We then conclude the proof of (4-28) and (4-29), and hence the proof of the first part of Proposition 4.2.

IV. Nonemptiness and stability. Now we give the proof of the second part of Proposition 4.2.
First, we show that the soliton and exit regimes are stable under small perturbation in A˛0 . From (2-25),

we know that the parameters depend continuously on the initial data, which implies that the exit and soliton
cases are both open in A˛0 , since the separation condition is an open condition of initial data in A˛0 .

Indeed, for all u0 2A˛0 , if the corresponding solution u.t/ to (gKdV ) belongs to the soliton regime,
we let t�1 be the separation time introduced in Proposition 4.2. For all Qu0 2 A˛0 , close enough to u0,
we let Qu.t/ be the corresponding solution to (gKdV ), and Qb.t/, Qx.t/, Q�.t/, Q".t/ be the corresponding
geometrical parameters and error term. Then from local theory, we have supt2Œ0;t�1 � ku.t/� Qu.t/kH1� 1,
which together with (2-25), leads to

Qb.t�1 /C c1 Q!.t
�
1 /�

999
1000

C �.eN 1.t
�
1 /C

Qb2.t�1 /C Q!
2.t�1 //:

So Qu.t/ must belong to the soliton regime. This implies the openness of soliton regime. The openness
of the exit regime follows from the same argument.

Next, we claim that there exists initial data in A˛0 such that the corresponding solution to (gKdV )
belongs to the soliton and exit regimes respectively. First, it is easy to check that the traveling wave solution

u.t; x/DQ .x� t /

belongs to the soliton regime. On the other hand, from (2-43), we can see, in both the soliton and
blow-down cases, we have

ku0kL2 � kQkL2 :

Hence, for initial data u0 2 A˛0 with16 ku0kL2 < kQkL2 , the corresponding solution must belong to
the exit regime.

Finally, since the sets of initial data which lead to the soliton and exit regimes are both open and
nonempty in A˛0 , together with the fact that A˛0 is connected, we conclude that there exists u0 2A˛0
such that the corresponding solution to (gKdV ) belongs to the blow-down regime. �

16Since we assume that  � ˛0, such u0 exists in A˛0 .
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5. Proof of Theorem 1.4

In this part we will use the local Cauchy theory of generalized KdV equations developed in [Kenig, Ponce
and Vega 1993] to prove Theorem 1.4.

5A. H 1 perturbation theory. First of all, let us introduce the following:

Lemma 5.1 [Kenig, Ponce and Vega 1993]. The following linear estimates hold:

(1) For all u0 2H 1,  @@xW.t/u0

L1x L

2
t .R/

CkW.t/u0kL5xL10t .R/
. ku0kL2 ; (5-1)

kD
˛q
x D

ˇq
t W.t/u0kLpxLrt .I /

. kDsqx u0kL2 ; (5-2)

where q > 5 is the power of the defocusing nonlinear term of (gKdV ), and

W.t/f D e�t@
3
xf; sq D

1

2
�

2

.q� 1/
;

˛q D
1

10
�

2

5.q� 1/
; ˇq D

3

10
�

6

5.q� 1/
;

1

p
D

2

5.q� 1/
C
1

10
;

1

r
D

3

10
�

4

5.q� 1/
:

(2) For all well-localized g, we have

sup
t2I

 @@x
Z t

0

W.t � t 0/g. � ; t 0/ dt 0

L2x

. kgkL1xL2t .I /; (5-3) @2@x2
Z t

0

W.t � t 0/g. � ; t 0/ dt 0

L1x L

2
t .I /

. kgkL1xL2t .I /; (5-4)Z t

0

W.t � t 0/g. � ; t 0/ dt 0

L5xL

10
t .I /

. kgk
L
5=4
x L

10=9
t .I /

; (5-5)D˛qx Dˇqt Z t

0

W.t � t 0/g. � ; t 0/ dt 0

L
p
xL

r
t .I /

. kgk
L
p0

x L
r0

t .I /
; (5-6)

kgk
L
5.q�1/=4
x L

5.q�1/=2
t

. kD˛qx D
ˇq
t gkLpxLrt

; (5-7)

where

1D
1

p
C
1

p0
D
1

r
C
1

r 0
:

Proof. See Theorem 3.5, Corollary 3.8, Lemma 3.14, Lemma 3.15 and Corollary 3.16 in [Kenig, Ponce
and Vega 1993] for the proofs of (1) and (2). �
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Now we define the norms

�1I .w/D kwkL5xL10t .I /
; �2I .w/D kwxkL1x L2t .I /

; �3I .w/D kD
˛q
x D

ˇq
t wkLpxLrt .I /

;

�I .w/D max
jD1;2

Œ�
j
I .w/C �

j
I .wx/�C �

3
I .w/;

�I .h/D khkL1xL2t .I /
CkhxkL5=4x L

10=9
t .I /

CkhxkL1xL2t .I /
CkhxxkL5=4x L

10=9
t .I /

CkhxkLp
0

x L
r0

t .I /

for all interval I � R.
Then we have the following:

Proposition 5.2 (modified long-time H 1 perturbation theory). Let I be an interval containing 0 and Qu
be an H 1 solution to�

@t QuC .@xx QuC Qu
5�  Quj Qujq�1/x D ex; .t; x/ 2 I �R;

Qu.0; x/D Qu0 2H
1:

(5-8)

Suppose we have
sup
t2I

k Qu.t/kH1 C�I . Qu/�M

for some M > 0 independent of  . Let u0 2H 1 be such that

ku0� Qu0kH1CkekL1xL2t .I /
CkexkL5=4x L

10=9
t .I /

CkexkL1xL2t .I /
CkexxkL5=4x L

10=9
t .I /

CkexkLp
0

x L
r0

t .I /
� "

for some small 0 < " < "0.M/. Then the solution of (gKdV ) with initial data u0 satisfies

sup
t2I

ku� QukH1 C�I .u� Qu/� C.M/": (5-9)

Remark 5.3. The perturbation theory still holds true if we replace H 1 by H s, with s � 1
2
�2=.q�1/ > 0.

Proof of Proposition 5.2. Without loss of generality, we assume that I D Œ0; T0� for some T0 > 0.
We first claim the following:

Lemma 5.4 (short-time perturbation theory). Under the same notation as Proposition 5.2, if we assume
in addition that �I . Qu/ � "0 for some small 0 < "0 D "1.M/� 1, then there exists a constant C0.M/

which depends only on M such that if 0 < " < "0 D "1.M/, then

sup
t2I

ku� QukH1 C�I .u� Qu/� C0.M/": (5-10)

We leave the proof of Lemma 5.4 for Appendix B.
Now we turn to the proof of Proposition 5.2. Let "0 D "1.2M/ > 0 as in Lemma 5.4. We then choose

0D t0 < t1 < � � �< tN D T0 (recall that we assume I D Œ0; T0�) such that for all j D 1; : : : ; N,

�Œtj�1;tj �. Qu/� "0:

From a standard argument, we know that N D N.M; "0/ D N.M/ > 0. We use Lemma 5.4 on each
interval Œtj�1; tj � to obtain

sup
t2Œtj�1;tj �

ku.t/� Qu.t/kH1 C�Œtj�1;tj �. Qu/� C0.M/max."; ku.tj�1/� Qu.tj�1/kH1/:
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Arguing by induction, using ku.0/� Qu.0/kH1 � ", we have for all j D 1; : : : ; N,

sup
t2Œtj�1;tj �

ku.t/� Qu.t/kH1 C�Œtj�1;tj �. Qu/� C.j;M/":

Summarizing these estimates, we have

sup
t2I

ku� QukH1 C�I . Qu/�

NX
jD1

sup
t2Œtj�1;tj �

ku.t/� Qu.t/kH1 C�Œtj�1;tj �. Qu/

�

NX
jD1

C.j;M/"D C.M/";

which concludes the proof of Proposition 5.2. �

5B. End of the proof of Theorem 1.4. Now for 0 < � ˛0� ˛�� 1, we choose a u0 2A˛0=2 �A˛0
such that the corresponding solution u.t/ to (gKdV) belongs to the blow-up regime with blow-up time
T <C1. Let u .t/ be the corresponding solution to (gKdV ). From [Martel, Merle and Raphaël 2014,
Section 4.4], we know that there exists a 0 < T �1 < T <C1, geometrical parameters .�.t/; b.t/; x.t//
and an error term ".t/ such that the following geometrical decomposition holds on Œ0; T �1 �:

u.t; x/D
1

�.t/1=2
ŒQb.t/C ".t/�

�
x� x.t/

�.t/

�
; (5-11)

with
.";Q/D .";ƒQ/D ."; yƒQ/D 0: (5-12)

Moreover, we have for all t 2 Œ0; T �1 �

N2.t/Ck".t/kL2 Cjb.t/jC j1��.t/j. ı.˛0/; (5-13)Z
y>0

y10"2.t; y/ dy � 5; (5-14)

b.T �1 /� 2C
�N1.T �1 /; (5-15)

where C � is the universal constant17 introduced in Section 4B. One may easily check that C � defined by
(4-23) is independent of  .

Next, we claim that there exists a constant C.u0; q/ > 1 which depends only on u0 and q such that

sup
t2Œ0;T �1 �

ku.t/kH1 C�Œ0;T �1 �
.u/C�Œ0;T �1 �

.ujujq�1/� C.u0; q/ <C1: (5-16)

Indeed, from [Kenig, Ponce and Vega 1993, Corollary 2.11] (taking s D 1), we have

�1
Œ0;T �1 �

.u/C �1
Œ0;T �1 �

.ux/C �
2
Œ0;T �1 �

.u/C �2
Œ0;T �1 �

.ux/� C.u0; q/ <C1:

17The constant C� chosen here might be different from the one in [Martel, Merle and Raphaël 2014, (4.23)]. But we can
always replace C� (both constants in this paper and in [Martel, Merle and Raphaël 2014]) by some larger universal constant.
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Then, from Duhamel’s principle, we have

u.t/DW.t/u0C

Z t

0

.W.t � t 0/@x.u
5// dt 0:

Together with (5-2), (5-6) and the Gagliardo–Nirenberg inequality introduced in [Bahouri, Chemin and
Danchin 2011, Theorem 2.44], we have

�3
Œ0;T �1 �

.u/. kuxu4kLp0x Lr0t Cku0kH1 . kuk4
L5xL

10
t

kuxkLp0x L
r0
t
Cku0kH1

. kuk4
L5xL

10
t

kD
sq
x uk

1�sq

L5xL
10
t

kD
sq
x uxk

sq

L1x L
2
t

Cku0kH1

. kuk4
L5xL

10
t

.kuk
1�sq

L5xL
10
t

kuxk
sq

L5xL
10
t

/1�sq .kuxk
1�sq

L1x L
2
t

kuxxk
sq

L1x L
2
t

/sq Cku0kH1

.
�
�1
Œ0;T �1 �

.u/C �1
Œ0;T �1 �

.ux/C �
2
Œ0;T �1 �

.u/C �2
Œ0;T �1 �

.ux/
�5
Cku0kH1 ;

where
1

p0
D

1

10
�

2

5.q� 1/
;

1

r0
D

3

10
C

4

5.q� 1/
:

This implies �Œ0;T �1 �.u/� C.u0; q/ <C1.
Next, using the arguments in [Kenig, Ponce and Vega 1993, Section 6], we obtain

�Œ0;T �1 �
.ujujq�1/. .�Œ0;T �1 �.u//

q
� C.u0; q/;

which yields (5-16).
Then we apply Proposition 5.2 to u.t/ and u .t/, with e D ujujq�1. Note that from (5-16), we have

�Œ0;T �1 �
.e/ < C.u0; q/� 

1
2 � "0.C.u0; q//;

provided that 0 <  < .u0; ˛0; ˛�; q/� 1. Then Proposition 5.2 implies that, for all t 2 Œ0; T �1 �, we
have

ku.t/�u .t/kH1 . 
1
2 : (5-17)

Combining with (5-11)–(5-14), we know that u .t/ 2 T˛0; for all t 2 Œ0; T �1 �. This allows us to apply
Lemma 2.6 to u .t/ on Œ0; T �1 �; i.e., there exist geometrical parameters .b .t/; � .t/; x .t// and an error
term " .t/, such that

u .t; x/D
1

� .t/1=2
ŒQb .t/;! .t/C " .t/�

�
x� x .t/

� .t/

�
;

with
! .t/D



�m .t/
:

Moreover, the orthogonality conditions (2-22) hold.
Now, from Lemma 2.6 and (5-17) we obtain that, for all t 2 Œ0; T �1 �,ˇ̌̌̌

1�
�.t/

� .t/

ˇ̌̌̌
Cjb .t/� b.t/jC jx .t/� x.t/jC k" .t/� ".t/kH1 . ı./: (5-18)
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Together with (5-13)–(5-15), we have the following:

(1) For all t 2 Œ0; T �1 �, (4-53)–(4-55) hold for u .t/.

(2) At the time t D T �1 ,

b .T
�
1 /C c1! .T

�
1 /� C

�.N1; .T �1 /C b
2
 .T
�
1 /C!

2
 .T
�
1 //;

where

Ni; .t/D
Z
." /

2
y B C "

2
'i;B :

By the argument in Section 4, we know that u .t/ belongs to the soliton regime introduced in
Theorem 1.3. Moreover, we also obtain (1-8) from (4-96). This concludes the proof of the first part of
Theorem 1.4.

The second part of Theorem 1.4 follows from exactly the same procedure. Thus, we complete the
proof of Theorem 1.4.

Appendix A. Proof of the geometrical decomposition

We will give the proof of Lemma 2.6. We first introduce the following notation: for all suitable,
. Q�; Qx; Qb; Q!; v/

F1. Q�; Qx; Qb; Q!; v/D .Q Q! ; "Q�; Qx; Qb; Q!;v/; (A-1)

F2. Q�; Qx; Qb; Q!; v/D .ƒQ Q! ; "Q�; Qx; Qb; Q!;v/; (A-2)

F3. Q�; Qx; Qb; Q!; v/D .yƒQ Q! ; "Q�; Qx; Qb; Q!;v/; (A-3)

where

"Q�; Qx; Qb; Q!;v.y/D
Q�
1
2 v. Q�yC Qx/�Q Qb; Q!.y/:

We mention here that we don’t assume

Q! D


Q�m
:

At . Q�; Qx; Qb; Q!; v/D .1; 0; 0; 0;Q/, we have�
@F1

@ Q�
;
@F1

@ Qx
;
@F1

@ Qb

�
D
�
.ƒQ;Q/; .Q0;Q/; .P;Q/

�
;�

@F2

@ Q�
;
@F2

@ Qx
;
@F2

@ Qb

�
D
�
.ƒQ;ƒQ/; .Q0; ƒQ/; .P;ƒQ/

�
;�

@F3

@ Q�
;
@F3

@ Qx
;
@F3

@ Qb

�
D
�
.ƒQ; yƒQ/; .Q0; yƒQ/; .P; yƒQ/

�
:

Since

.ƒQ;Q/D .Q0;Q/D .Q0; ƒQ/D .ƒQ; yƒQ/D 0;

.P;Q/ 6D 0; .ƒQ;ƒQ/ 6D 0; .Q0; yƒQ/ 6D 0;
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it is easy to see that the above Jacobian is not degenerate. Hence, from implicit function theory, we have:
there exist unique continuous maps

. Q�0; Qx0; Qb0/ W . Q!; v/ 7! .1� ı; 1C ı/� .�ı; ı/� .�ı; ı/; ı > 0; (A-4)

such that for all Q!� 1, kv�QkH1 � 1, it holds that

Fj
�
Q�0. Q!; v/; Qx0. Q!; v/; Qb0. Q!; v/; Q!; v

�
D 0; j D 1; 2; 3: (A-5)

The uniqueness also implies that, for all Q!� 1, we have

Q�0. Q!;Q Q!/� 1: (A-6)

Next we fix a time t 2 Œ0; t0/ as in Lemma 2.6. For a solution u.t/ to (gKdV ) with

u.t; x/D
1

�
1=2
1 .t/

ŒQ!1.t/C "1.t/�
�
x� x1.t/

�1.t/

�
;

and

!1.t/D


�m1 .t/
� 1;

we let

v.t; � /D �
1
2

1 .t/u.t; �1.t/ � Cx1.t//DQ!1.t/. � /C "1.t; � /:

Then we have kv.t; � /�Q. � /kH1 � 1.
We claim that there exists a �.t/ > 0 such that

�1.t/ Q�0

�


�m.t/
; v.t/

�
D �.t/;



�m.t/
� 1: (A-7)

This is easily verified by implicit function theory. We let

M.�; v/D ���1.t/ Q�0

�


�m
; v

�
:

Then we have
M.�1.t/;Q!1.t//D 0;

@M

@�

ˇ̌̌̌
.�;v/D.�1.t/;Q!1.t//

D 1Cm!1.t/
@ Q�0

@ Q!
.!1.t/;Q!1.t// > 0;

which implies (A-7) immediately.
Applying (A-4)–(A-7) to v.t/, we have

Fj
�
Q�0.!.t/; v.t//; Qx0.!.t/; v.t//; Qb0.!.t/; v.t//; !.t/; v.t/

�
D 0; j D 1; 2; 3; (A-8)

�1.t/ Q�0.!.t/; v.t//D �.t/; (A-9)

where

!.t/D


�m.t/
:
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Now, we let

�.t/D �.t/; b.t/D Qb0.!.t/; v.t//; x.t/D x1.t/C�1.t/ Qx0.!.t/; v.t//; (A-10)

!.t/D


�m.t/
; ".t; y/D �

1
2 .t/u.t; �.t/ � Cx.t//�Qb.t/;!.t/: (A-11)

We claim that this .�.t/; x.t/; b.t// satisfies the orthogonality conditions (2-22). Indeed, from (A-7)–
(A-9), we have

0D F1
�
Q�0.!.t/; v.t//; Qx0.!.t/; v.t//; Qb0.!.t/; v.t//; !.t/; v.t/

�
D

�
Q!.t/. � /; Q�

1
2

0 .!.t/; v.t//v
�
t; Q�0.!.t/; v.t// � C Qx0.!.t/; v.t//

�
�Qb.t/;!.t/. � /

�
D

�
Q!.t/. � /; Œ�1.t/ Q�0.!.t/; v.t//�

1
2

�u
�
t; �1.t/Œ Q�0.!.t/; v.t// � C Qx0.!.t/; v.t//�Cx1.t/

�
�Qb.t/;!.t/. � /

�
D
�
Q!.t/. � /; �

1
2 .t/u.t; �.t/ � Cx.t//�Qb.t/;!.t/. � /

�
D .Q!.t/; ".t//:

The other two orthogonality conditions can be verified similarly.
Finally, since the maps

. Q�0; Qx0; Qb0/ W . Q!; v/ 7! .1� ı; 1C ı/� .�ı; ı/� .�ı; ı/

are continuous, the remaining part of Lemma 2.6 follows immediately.

Appendix B. Proof of Lemma 5.4

We give the proof of the modified short-time perturbation theory, i.e., Lemma 5.4.
First, we let v.t; x/D u.t; x/� Qu.t; x/, S.t/D�Œ0;t�.v/. We claim the following estimate holds true

for all t 2 I :

S.t/.M "CS.t/.S.t/4CS.t/q�1C�I . Qu/
4
C�I . Qu/

q�1/: (B-1)

Since S.0/D 0 and �I . Qu/� "0, we know that Lemma 5.4 follows from a standard bootstrap argument.
Now it only remains to prove (B-1).

First, by Duhamel’s principle, we have

v.t/DW.t/. Qu0�u0/C

Z t

0

�
W.t � t 0/@xŒ Qu

5
�  Quj Qujq�1� . QuC v/5C . QuC v/j QuC vjq�1� e�

�
dt 0

D vL.t/C vN .t/:

For the linear part vL, from Lemma 5.1, we have

�Œ0;t�.vL/C sup
t 02Œ0;t�

kvLkH1 . k Qu0�u0kH1 . ": (B-2)
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Now, for the nonlinear part vN , we use Lemma 5.1 to estimate

�1Œ0;t�.vN /. kexkL5=4x L
10=9
t .Œ0;t�/

Ck.vC Qu/4.vC Qu/x � Qu
4
QuxkL5=4x L

10=9
t .Œ0;t�/

CkjvC Qujq�1.vC Qu/x � j Quj
q�1
QuxkL5=4x L

10=9
t .Œ0;t�/

:

By Hölder’s inequality, we have

k.vC Qu/4.vC Qu/x � Qu
4
QuxkL5=4x L

10=9
t .Œ0;t�/

. k..vC Qu/4� Qu4/ QuxkL5=4x L
10=9
t
Ck.vC Qu/4vxkL5=4x L

10=9
t

. .k Quk3
L5xL

10
t

Ckvk3
L5xL

10
t

/kvkL5xL10t
k QuxkL1x L2t

Ckvk4
L5xL

10
t

.kvxkL1x L2t
Ck QuxkL1x L2t

/

. S.t/.S.t/4CS.t/q�1C�I . Qu/4C�I . Qu/q�1/;
and

kjvC Qujq�1.vC Qu/x � j Quj
q�1
QuxkL5=4x L

10=9
t .Œ0;t�/

. k.jvC Qujq�1� j Qujq�1/ QuxkL5=4x L
10=9
t
CkjvC Qujq�1vxkL5=4x L

10=9
t

. .k Qukq�2
L
5.q�1/=4
x L

5.q�1/=2
t

Ckvk
q�2

L
5.q�1/=4
x L

5.q�1/=2
t

/kvk
L
5.q�1/=4
x L

5.q�1/=2
t

k QuxkL1x L2t

Ckvk
q�1

L
5.q�1/=4
x L

5.q�1/=2
t

.kvxkL1x L2t
Ck QuxkL1x L2t

/

. .kD˛qx D
ˇq
t Quk

q�2

L
p
xL

r
t

CkD
˛q
x D

ˇq
t vk

q�2

L
p
xL

r
t

/kD
˛q
x D

ˇq
t vkLpxLrt

k QuxkL1x L2t

CkD
˛q
x D

ˇq
t vk

q�1

L
p
xL

r
t

.kvxkL1x L2t
Ck QuxkL1x L2t

/

. S.t/.S.t/4CS.t/q�1C�I . Qu/4C�I . Qu/q�1/;

where we used (5-7) for the last two inequalities. The above two estimates imply

�1Œ0;t�.vN /. S.t/.S.t/
4
CS.t/q�1C�I . Qu/

4
C�I . Qu/

q�1/C ": (B-3)

Similarly, we have

�1Œ0;t�.@xvN /. kexxkL5=4x L
10=9
t .Œ0;t�/

Ck..vC Qu/5� Qu5/xxkL5=4x L
10=9
t .Œ0;t�/

Ck..vC Qu/jvC Qujq�1� Quj Qujq�1/xxkL5=4x L
10=9
t .Œ0;t�/

:

By Hölder’s inequality again, we have

k..vC Qu/5� Qu5/xxkL5=4x L
10=9
t .Œ0;t�/

. k.vC Qu/4vxxkL5=4x L
10=9
t
Ck.vC Qu/3.vxC 2 Qux/vxkL5=4x L

10=9
t

. .k Quk4
L5xL

10
t

Ckvk4
L5xL

10
t

/kvxxkL1x L2t
Ckvk3

L5xL
10
t

kvxkL1x L2t
.kvxkL5xL10t

Ck QuxkL5xL10t
/

. S.t/.S.t/4CS.t/q�1C�I . Qu/4C�I . Qu/q�1/;
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and

k..vC Qu/jvC Qujq�1� Quj Qujq�1/xxkL5=4x L
10=9
t .Œ0;t�/

. kjvC Qujq�1vxxkL5=4x L
10=9
t
CkjvC Qujq�2.vxC 2 Qux/vxkL5=4x L

10=9
t

. .k Qukq�1
L
5.q�1/=4
x L

5.q�1/=2
t

Ckvk
q�1

L
5.q�1/=4
x L

5.q�1/=2
t

/kvxxkL1x L2t

Ckvk
q�2

L
5.q�1/=4
x L

5.q�1/=2
t

kvxkL1x L2t
.kvxC 2 QuxkL5.q�1/=4x L

5.q�1/=2
t

/

. S.t/.S.t/4CS.t/q�1C�I . Qu/4C�I . Qu/q�1/:

Collecting these estimates, we have

�1Œ0;t�.@xvN /. S.t/.S.t/
4
CS.t/q�1C�I . Qu/

4
C�I . Qu/

q�1/C ": (B-4)

Next, using a similar strategy, we have

�2Œ0;t�.vN /. kekL1xL2t .Œ0;t�/Ck.vCQu/
5
�Qu5kL1xL2t .Œ0;t�/

Ck.vCQu/jvCQujq�1�Quj Qujq�1kL1xL2t .Œ0;t�/

. "C.k Quk4
L5xL

10
t

Ckvk4
L5xL

10
t

/kvkL5xL10t
C.kvk

q�1

L
5.q�1/=4
x L

5.q�1/=2
t

Ck Quk
q�1

L
5.q�1/=4
x L

5.q�1/=2
t

/kvkL5xL10t

.S.t/.S.t/4CS.t/q�1C�I . Qu/4C�I . Qu/q�1/C"; (B-5)

and
�2Œ0;t�.@xvN /. kexkL1xL2t .Œ0;t�/Ck..vC Qu/

5
� Qu5/xkL1xL2t .Œ0;t�/

Ck..vC Qu/jvC Qujq�1� Quj Qujq�1/xkL1xL2t .Œ0;t�/

. "Ck..vC Qu/4� Qu4/ QuxkL1xL2t .Œ0;t�/Ck.vC Qu/
4vxkL1xL2t .Œ0;t�/

Ck.jvC Qujq�1� j Qujq�1/ QuxkL1xL2t .Œ0;t�/
CkjvC Qujq�1vxkL1xL2t .Œ0;t�/

. S.t/.S.t/4CS.t/q�1C�I . Qu/4C�I . Qu/q�1/C ": (B-6)

Finally, we need to estimate �3
Œ0;t�

.vN /. From Lemma 5.1, we have

�3Œ0;t�.vN /. kexkLp0x Lr0t .Œ0;t�/Ck..vC Qu/
5
� Qu5/xkLp

0

x L
r0

t .Œ0;t�/

Ck..vC Qu/jvC Qujq�1� Quj Qujq�1/xkLp
0

x L
r0

t .Œ0;t�/

. "Ck..vC Qu/4� Qu4/ QuxkLp0x Lr0t Ck.vC Qu/
4vxkLp

0

x L
r0

t

Ck.jvC Qujq�1� j Qujq�1/ QuxkLp
0

x L
r0

t

CkjvC Qujq�1vxkLp
0

x L
r0

t

:

By similar technique to that used for (B-6), we have

k..vC Qu/4� Qu4/ QuxkLp
0

x L
r0

t

Ck.vC Qu/4vxkLp
0

x L
r0

t

. k.vC Qu/4� Qu4k
L
5=4
x L

5=2
t
k QuxkLp0x L

r0
t
Ck.vC Qu/4k

L
5=4
x L

5=2
t
kvxkLp0x L

r0
t

. kvxkLp0x L
r0
t
.S.t/4C�Œ0;t�. Qu/

4/Ck QuxkLp0x L
r0
t
S.t/.S.t/3C�Œ0;t�. Qu/

3/;
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and

k.jvC Qujq�1� j Qujq�1/ QuxkLp
0

x L
r0

t

CkjvC Qujq�1vxkLp
0

x L
r0

t

. kvxkLp0x L
r0
t
.S.t/q�1C�Œ0;t�. Qu/

q�1/Ck QuxkLp0x L
r0
t
S.t/.S.t/q�2C�Œ0;t�. Qu/

q�2/;

where
1

p0
D

1

10
�

2

5.q� 1/
;

1

r0
D

3

10
C

4

5.q� 1/
:

By the Gagliardo–Nirenberg inequality introduced in [Bahouri, Chemin and Danchin 2011, Theorem 2.44],
we have

kvxkLp0x L
r0
t
. kDsqx vk

1�sq

L5xL
10
t

kD
sq
x vxk

sq

L1x L
2
t

. .kvk1�sq
L5xL

10
t

kvxk
sq

L5xL
10
t

/1�sq .kvxk
1�sq

L1x L
2
t

kvxxk
sq

L1x L
2
t

/sq . S.t/:
Similarly, we have

k QuxkLp0x L
r0
t
.�Œ0;t�. Qu/I

hence
�3Œ0;t�.vN /. S.t/.S.t/

4
CS.t/q�1C�I . Qu/

4
C�I . Qu/

q�1/C ": (B-7)

Combining (B-2)–(B-7), we conclude the proof of (B-1), and hence the proof of Lemma 5.4.
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ON THE STABILITY OF TYPE II BLOWUP FOR THE 1-COROTATIONAL
ENERGY-SUPERCRITICAL HARMONIC HEAT FLOW

TEJ-EDDINE GHOUL, SLIM IBRAHIM AND VAN TIEN NGUYEN

We consider the energy-supercritical harmonic heat flow from Rd into the d -sphere Sd with d � 7.
Under an additional assumption of 1-corotational symmetry, the problem reduces to the one-dimensional
semilinear heat equation

@tuD @
2
ruC

.d � 1/

r
@ru�

.d � 1/

2r2
sin.2u/:

We construct for this equation a family of C1 solutions which blow up in finite time via concentration of
the universal profile

u.r; t/�Q

�
r

�.t/

�
;

where Q is the stationary solution of the equation and the speed is given by the quantized rates

�.t/� cu.T � t /
`
 ; ` 2 N�; 2` >  D .d/ 2 .1; 2�:

The construction relies on two arguments: the reduction of the problem to a finite-dimensional one thanks to
a robust universal energy method and modulation techniques developed by Merle, Raphaël and Rodnianski
(Camb. J. Math. 3:4 (2015), 439–617) for the energy supercritical nonlinear Schrödinger equation and
by Raphaël and Schweyer (Anal. PDE 7:8 (2014), 1713–1805) for the energy critical harmonic heat flow.
Then we proceed by contradiction to solve the finite-dimensional problem and conclude using the Brouwer
fixed-point theorem. Moreover, our constructed solutions are in fact .`�1/-codimension stable under pertur-
bations of the initial data. As a consequence, the case `D 1 corresponds to a stable type II blowup regime.
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3. Proof of Theorem 1.1 assuming technical results 140
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1. Introduction

We consider the harmonic map heat flow which is defined as the negative gradient flow of the Dirichlet
energy of maps between manifolds. Indeed, if ˆ is a map from Rd � Œ0; T / to a compact Riemannian
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manifold M� Rn, with second fundamental form ‡, then ˆ solves�
@tˆ��ˆD ‡.ˆ/.rˆ;rˆ/;

ˆ.t D 0/Dˆ0:
(1-1)

We assume that the target manifold is the d -sphere Sd � RdC1. Then, (1-1) becomes�
@tˆ��ˆD jrˆj

2ˆ;

ˆ.t D 0/Dˆ0:
(1-2)

We will study the problem (1-2) under an additional assumption of 1-corotational symmetry, namely that
a solution of (1-2) takes the form

ˆ.x; t/D

�
cos.u.jxj; t //

.x=jxj/ sin.u.jxj; t //

�
: (1-3)

Under this ansatz, the problem (1-2) reduces to the one-dimensional semilinear heat equation(
@tuD @

2
ruC

.d � 1/

r
@ru�

.d � 1/

2r2
sin.2u/;

u.t D 0/D u0;
(1-4)

where u.t/ W r 2 RC! u.r; t/ 2 Œ0; ��. The set of solutions to (1-4) is invariant by the scaling symmetry

u�.r; t/D u

�
r

�
;
t

�2

�
for all � > 0:

The energy associated to (1-4) is given by

E Œu�.t/D
Z C1
0

�
j@ruj

2
C
.d � 1/

r2
sin2.u/

�
rd�1 dr; (1-5)

which satisfies
EŒu��D �d�2E Œu�:

The criticality of the problem is reflected by the fact that the energy (1-5) is left invariant by the scaling
property when d D 2; hence, the case d � 3 corresponds to the energy-supercritical case.

The problem (1-4) is locally well-posed for data which are close in L1 to a uniformly continuous
map, see [Koch and Lamm 2012], or in BMO, see [Wang 2011]. Actually, Eells and Sampson [1964]
introduced the harmonic map heat flow as a process to deform any smooth map ˆ0 into a harmonic
map via (1-2). They also proved that the solution exists globally if the sectional curvature of the target
manifold is negative. There exist other assumptions for the global existence; for example, assuming the
image of the initial data u0 is contained in a ball of radius �=.2

p
�/, where � is an upper bound on

the sectional curvature of the target manifold M; see [Jost 1981; Lin and Wang 2008]. Without these
assumptions, the solution u.r; t/ may develop singularities in some finite time; see, for example, [Coron
and Ghidaglia 1989; Chen and Ding 1990] for d � 3, and [Chang, Ding and Ye 1992] for d D 2. In this
case, we say that u.r; t/ blows up in a finite time T <C1 in the sense that

lim
t!T
kru.t/kL1 DC1:
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Here we call T the blowup time of u.x; t/. The blowup has been divided by Struwe [1996] into two types:

u blows up with type I if lim sup
t!T

.T � t /
1
2 kru.t/kL1<C1;

u blows up with type II if lim sup
t!T

.T � t /
1
2 kru.t/kL1DC1:

Struwe [1988] showed that the type I singularities are asymptotically self-similar; that is, their profile
is given by a smooth shrinking function

u.r; t/D �

�
r

p
T � t

�
for all t 2 Œ0; T /;

where � solves the equation

�00C

�
d � 1

y
C
y

2

�
�0�

d � 1

2y2
sin.2�/D 0: (1-6)

Thus, the study of type I blowup reduces to the study of nonconstant solutions of (1-6).
When 3� d � 6, by using a shooting method, Fan [1999] proved that there exists an infinite sequence

of globally regular solutions �n of (1-6) which are called “shrinkers” (corresponding to the existence
of type I blowup solutions of (1-4)), where the integer index n denotes the number of intersections of
the function �n with �

2
. More detailed quantitative properties of such solutions were studied in [Biernat

and Bizoń 2011], where the authors conjectured that �1 is linear stable and provided numerical evidence
supporting that �1 corresponds to a generic profile of type I blowup. Very recently, Biernat, Donninger and
Schörkhuber [2016] proved the existence of a stable self-similar blowup solution for d D 3. Since (1-2)
is not time-reversible, there exists another family of self-similar solutions called “expanders”, which were
introduced in [Germain and Rupflin 2011]. These expanders have been recently proved to be nonlinearly
stable in [Germain, Ghoul and Miura 2017]. To our knowledge, the question on the existence of type II
blowup solutions for (1-4) remains open for 3� d � 6.

When d � 7, Bizoń and Wasserman [2015] proved that (1-4) has no self-similar shrinking solutions.
According to [Struwe 1988], this result implies that in dimensions d � 7, all singularities for (1-4) must
be of type II (see also [Biernat 2015] for a recent analysis of such singularities). Recently, Biernat and
Seki [2016], via the matched asymptotic method developed in [Herrero and Velázquez 1994], constructed
for (1-4) a countable family of type II blowup solutions, each characterized by a different blowup rate:

�.t/� .T � t /
`
 as t ! T; (1-7)

where ` 2 N� such that 2` >  and  D .d/ is given by

.d/D 1
2
.d � 2� Q/ 2 .1; 2� for d � 7; (1-8)

where Q D
p
d2� 8d C 8. The blowup rate (1-7) is in fact driven by the asymptotic behavior of a

stationary solution of (1-4), say Q, which is the unique (up to scaling) solution of the equation

Q00C
.d � 1/

r
Q0�

.d � 1/

2r2
sin.2Q/D 0; Q.0/D 0; Q0.0/D 1; (1-9)
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and admits the behavior for r large

Q.r/D
�

2
�
a0

r
CO

�
1

r2C

�
for some a0 D a0.d/ > 0; (1-10)

(see the Appendix in [Biernat 2015] for a proof of the existence of Q). Note that the case 2`D  only
happens in dimension d D 7. In this case, Biernat [2015] used the method of [Herrero and Velázquez
1994] and formally derived the blowup rate

�.t/�
.T � t /

1
2

jlog.T � t /j
as t ! T: (1-11)

He also provided numerical evidence supporting that the case `D 1 in (1-7) or (1-11) corresponds to a
generic blowup solution.

In the energy-critical case, i.e., d D 2, van den Berg, Hulshof and King [2003], through a formal
analysis based on the matched asymptotic technique of [Herrero and Velázquez 1994], predicted that
there are type II blowup solutions to (1-4) of the form

u.r; t/�Q

�
r

�.t/

�
;

where
Q.r/D 2 tan�1.r/ (1-12)

is the unique (up to scaling) solution of (1-9), and the blowup speed is governed by the quantized rates:

�.t/�
.T � t /`

jlog.T � t /j
2`
2`�1

for ` 2 N�:

This result was later confirmed by Raphaël and Schweyer [2014b]. Note that the case `D 1 was treated
in [Raphaël and Schweyer 2013] and corresponds to a stable blowup. In particular, in those papers, they
adapted the strategy developed in [Raphaël and Rodnianski 2012; Merle, Raphaël and Rodnianski 2011]
for the study of wave and Schrödinger maps to construct for (1-4) type II blowup solutions. Their method
relies on a two-step procedure:

� Construction of a suitable approximate blowup profile through iterated resolutions of elliptic equations.
The tail computation allows us to formally derive the blowup speed. As a matter of fact, the asymptotic
behavior at infinity of the stationary solution (1-12) is an essential algebraic fact for their analysis,
which in fact drives the derivation of the blowup law and the possibility of a blowup solution with
Q profile.

� Implementation of a robust universal energy method to control the solution in the blowup regime
through the derivation of suitable “Lyapunov” functionals involving critical Sobolev norms adapted to
the linearized flow near the ground state, which relies on neither spectral estimates nor the maximum
principle and may be easily applied to various settings.

In this work, by considering d � 7, we ask whether we can carry out the analysis of [Raphaël and
Schweyer 2014b] for the energy-critical case d D 2 to the construction of blowup solutions for (1-4) in
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the case d � 7. It happens that the asymptotic behavior (1-10) is perfectly suitable to replace the explicit
profile (1-12) for an implementation of the strategy of [Raphaël and Schweyer 2014b]. The following
theorem is the main result of this paper.

Theorem 1.1 (existence of type II blowup solutions to (1-4) with prescribed behavior). Let d � 7 and 
be defined as in (1-8), we fix an integer

` 2 N� such that 2` > ;

and an arbitrary Sobolev exponent

s 2 N; sD s.`/!C1 as `!C1:

Then there exists a smooth corotational radially symmetric initial data u0 such that the corresponding
solution to (1-4) is of the form

u.r; t/DQ

�
r

�.t/

�
C q

�
r

�.t/
; t

�
; (1-13)

where
�.t/D c.u0/.T � t /

`
 .1C ot!T .1//; c.u0/ > 0; (1-14)

and
lim
t!T
kr

�q.t/kL2 D 0 for all � 2
�
d
2
C 3; s

�
: (1-15)

Moreover, the case `D 1 corresponds to a stable blowup regime.

Remark 1.2. Since  D 2 for d D 7 and  2 .1; 2/ for d � 8, the condition 2` >  means that `� 2 for
d D 7 and `� 1 for d � 8. Note that the condition 2` >  allows us to avoid the presence of logarithmic
corrections in the construction of the approximate profile. In other words, the case 2`D  (equivalent to
`D 1 and d D 7) would involve an additional logarithmic gain related to the growth of the approximate
profile at infinity, which turns out to be essential for the derivation of the speed (1-11). Although our
analysis could be naturally extended to this case (`D 1 and d D 7) with some complicated computations,
we hope to treat this case in a separate work.

Remark 1.3. The quantization of the blowup rate (1-14) is the same as the one obtained in [Biernat and
Seki 2016]. Note that in that paper, they only claim the existence result of a type II blowup solution with
the rate (1-14) and say nothing about the dynamical description of the solution. On the contrary, our
result shows that the constructed solution blows up in finite time by concentration of a stationary state in
the supercritical regime. Moreover, our constructed solution is in fact .`�1/-codimension stable in the
sense that we will precise shortly.

Remark 1.4. Fix ` 2 N� such that 2` >  , an integer L� ` and s� L� 1. Then our initial data is of
the form

u0 DQb.0/C "0; (1-16)

where Qb is a deformation of the ground state Q and b D .b1; : : : ; bL/ corresponds to possible unstable
directions of the flow in the PH s topology in a suitable neighborhood of Q. We will show that for
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all "0 2 PH� \ PH s
�
for some � D �.d/ > d

2

�
small enough, for all .b1.0/; b`C1.0/; : : : ; bL.0// small

enough, there exists a choice of unstable directions .b2.0/; : : : ; b`.0// such that the solution of (1-4) with
the data (1-16) satisfies the conclusion of Theorem 1.1. This implies that our constructed solution is
.`�1/-codimension stable. In other words, the case `D 1 corresponds to a stable type II blowup regime,
which is in agreement with numerical evidence given in [Biernat 2015].

Remark 1.5. The harmonic heat flow shares many features with the semilinear heat equation

@tuD�uCjuj
p�1u in Rd : (1-17)

Two important critical exponents appear when considering the dynamics of (1-17):

pS D
d C 2

d � 2
and pJL D

8<:C1 for d � 10;

1C
4

d � 4� 2
p
d � 1

for d � 11

correspond to the cases d D 2 and d D 7 in the study of (1-4) respectively.
When 1 < p � pS , Giga and Kohn [1987] and Giga, Matsui and Sasayama [2004] showed that all

blowup solutions are of type I. Here the type I blowup means that

lim sup
t!T

.T � t /
1
p�1 ku.t/kL1 <C1I

otherwise we say the blowup solution is of type II.
When p D pS , Filippas, Herrero and Velázquez [2000] formally constructed for (1-17) type II blowup

solutions in dimensions 3 � d � 6; however, they could not do the same in dimensions d � 7. This
formal result is partly confirmed by Schweyer [2012] in dimension d D 4. Interestingly, Collot, Merle
and Raphaël [2017] showed that type II blowup is ruled out in dimension d � 7 near the solitary wave.

When pS < p < pJL, Matano and Merle [2004], see also [Mizoguchi 2004], proved that only type I
blowup occurs in the radial setting.

When p > pJL, Herrero and Velázquez [1994] formally derived the existence of type II blowup
solutions with the quantized rates

ku.t/kL1 � .T � t /
2`

.p�1/˛.d;p/ ; ` 2 N; 2` > ˛:

The formal result was clarified in [Matano and Merle 2009; Mizoguchi 2007; Collot 2017]. The collection
of these works yields a complete classification of the type II blowup scenario for the radially symmetric
energy-supercritical case.

In comparison to the case of the semilinear heat equation (1-17), it might be possible to prove that all
blowup solutions to (1-4) are of type I in dimensions 3� d � 6. However, due to the lack of monotonicity
of the nonlinear term, the analysis of the harmonic heat flow (1-4) is much more difficult than the case of
the semilinear heat equation (1-17) treated in [Matano and Merle 2004].

Let us briefly explain the main steps of the proof of Theorem 1.1, which follows the method of
[Raphaël and Schweyer 2014b] treated for the critical case d D 2. This kind of method has been
successfully applied for various nonlinear evolution equations, in particular in the dispersive setting
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for the nonlinear Schrödinger equation both in the mass-critical [Merle and Raphael 2005a; 2005b;
2004; 2003] and mass-supercritical [Merle, Raphaël and Rodnianski 2015] cases, the mass-critical
gKdV equation [Martel, Merle and Raphaël 2015a; 2015b; 2014], the energy-critical [Duyckaerts, Kenig
and Merle 2013; Hillairet and Raphaël 2012] and energy-supercritical [Collot 2018] wave equation,
the two-dimensional critical geometric equations, the wave maps [Raphaël and Rodnianski 2012], the
Schrödinger maps [Merle, Raphaël and Rodnianski 2013] and the harmonic heat flow [Raphaël and
Schweyer 2013; 2014b], the semilinear heat equation (1-17) in the energy-critical [Schweyer 2012]
and energy-supercritical [Collot 2017] cases, and the two-dimensional Keller–Segel model [Raphaël
and Schweyer 2014a; Ghoul and Masmoudi 2016]. In all these works, the method relies on two
arguments:

� Reduction of an infinite-dimensional problem to a finite-dimensional one, through the derivation of
suitable Lyapunov functionals and the robust energy method as mentioned in the two-step procedure
above.

� The control of the finite-dimensional problem thanks to a topological argument based on index theory.

Note that this kind of topological argument has proved to be successful also for the construction of
type I blowup solutions for the semilinear heat equation (1-17) in [Bricmont and Kupiainen 1994;
Merle and Zaag 1997; Nguyen and Zaag 2017] (see also [Nguyen and Zaag 2016] for the case of
logarithmic perturbations, [Bressan 1990; 1992; Ghoul, Nguyen and Zaag 2017] for the exponential
source and [Nouaili and Zaag 2015] for the complex-valued case), the Ginzburg–Landau equation in
[Masmoudi and Zaag 2008] (see also [Zaag 1998] for an earlier work), a nonvariational parabolic
system in [Ghoul, Nguyen and Zaag 2018] and the semilinear wave equation in [Côte and Zaag
2013].

For the reader’s convenience and for a better explanation, we first introduce notation used throughout
this paper.

Notation. For each d � 7, we define�
„ D

�
1
2

�
d
2
� 

�˘
2 N;

ı D 1
2

�
d
2
� 

�
�„; ı 2 .0; 1/;

(1-18)

where bxc 2 Z stands for the integer part of x, which is defined by bxc � x < bxcC 1. Note that ı ¤ 0.
Indeed, if ıD 0, then there is m2N such that 2 D d �4m2N. This only happens when  D 2 or  D 3

2

because  2 .1; 2�. The case  D 2 gives d D 7 and mD 3
4
62 N. The case  D 3

2
gives d D 17

2
62 N.

Given a large integer L� 1, we set

kD LC„C 1: (1-19)

Given b1 > 0 and � > 0, we define

B0 D
1
p
b1
; B1 D B

1C�
0 ; 0 < �� 1; (1-20)

and
f�.r/D f .y/ with y D

r

�
:
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Let � 2 C10 .Œ0;C1// be a positive nonincreasing cutoff function with supp.�/ � Œ0; 2� and � � 1
on Œ0; 1�. For all M > 0, we define

�M .y/D �

�
y

M

�
: (1-21)

We also introduce the differential operator

ƒf D y@yf

and the Schrödinger operator

L D�@yy �
.d � 1/

y
@y C

Z

y2
; with Z.y/D .d � 1/ cos.2Q.y//: (1-22)

Strategy of the proof. We now summary the main ideas of the proof of Theorem 1.1, which follows the
route map in [Raphaël and Schweyer 2014b; Merle, Raphaël and Rodnianski 2015]:

(i) Renormalized flow and iterated resonances. Following the scaling invariance of (1-4), let us make the
change of variables

w.y; s/D u.r; t/; y D
r

�.t/
;

ds

dt
D

1

�2.t/
;

which leads to the renormalized flow

@sw D @
2
ywC

.d � 1/

y
@yw� b1ƒw�

.d � 1/

2y2
sin.2w/; b1 D�

�s

�
: (1-23)

Assuming that the leading part of the solution w.y; s/ is given by the ground state profile Q admitting
the asymptotic behavior (1-10), the remaining part is governed by the Schrödinger operator L defined by
(1-22). The linear operator L admits the factorization (see Lemma 2.2 below)

L D A �A ; A f D�ƒQ@y

�
f

ƒQ

�
; A �f D

1

yd�1ƒQ
@y.y

d�1ƒQf /; (1-24)

which directly implies

L .ƒQ/D 0;

where from a direct computation,

ƒQ �
c0

y
as y!C1; with  defined in (1-8):

More generally, we can compute the kernel of the powers of L through the iterative scheme

L TkC1 D�Tk; T0 DƒQ; (1-25)

which displays a nontrivial tail at infinity (see Lemma 2.9 below),

Tk.y/� cky
2k� for y� 1: (1-26)
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(ii) Tail dynamics. Following the approach in [Raphaël and Schweyer 2014b], we look for a slowly
modulated approximate solution to (1-23) of the form

w.y; s/DQb.s/.y/;

where

b D .b1; : : : ; bL/; Qb.s/.y/DQ.y/C

LX
iD1

biTi .y/C

LC2X
iD2

Si .y/ (1-27)

with a priori bounds
bi � b

i
1; jSi .y/j. b

i
1y
2.i�1/� ;

so that Si is in some sense homogeneous of degree i in b1, and behaves better than Ti at infinity. The
construction of Si with the above a priori bounds is possible for a specific choice of the universal dynamical
system which drives the modes .bi /1�i�L. This is so-called the tail computation. Let us illustrate the
procedure of the tail computation. We plug the decomposition (1-27) into (1-23) and choose the law for
.bi /1�i�L which cancels the leading-order terms at infinity:

� At the order O.b1/: We cannot adjust the law of b1 for the first term1 and obtain from (1-23),

b1.LT1CƒQ/D 0:

� At the order O.b21 ; b2/: We obtain

.b1/sT1C b
2
1ƒT1C b2L T2CLS2 D b

2
1 NL1.T1;Q/;

where NL1.T1;Q/ corresponds to nonlinear interaction terms. Note from (1-26) and (1-25), we have

ƒT1 � .2� /T1 for y� 1; L T2 D�T1;

and thus,
.b1/sT1C b

2
1ƒT1C b2L T2 � Œ.b1/sC .2� /b

2
1 � b2�T1:

Hence the leading-order growth for y large is canceled by the choice

.b1/sC .2� /b
2
1 � b2 D 0:

We then solve for
LS2 D�b

2
1.ƒT1� .2� /T1/C b

2
1 NL1.T1;Q/;

and check the improved decay
jS2.y/j. b21y

2� for y� 1:

� At the order O.bkC11 ; bkC1/: We obtain an elliptic equation of the form

.bk/sTkC b1bkƒTkC bkC1L TkC1CLSkC1 D b
kC1
1 NLk.T1; : : : ; Tk;Q/:

1If .b1/s D�c1b1, then ��s=�� b1 � e�c1s ; hence after an integration in time, jlog�j. 1 and there is no blowup.
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From (1-26) and (1-25), we have

.bk/sTkC b1bkƒTkC bkC1L TkC1 � Œ.bk/sC .2k� /b1bk � bkC1�Tk;

which leads to the choice
.bk/sC .2k� /b1bk � bkC1 D 0

for the cancellation of the leading-order growth at infinity. We then solve for the remaining SkC1-term
and check that jSkC1.y/j . bkC11 y2k� for y large. We refer to Proposition 2.11 for all the details of
the tail computation.

(iii) The universal system of ODEs. The above procedure leads to the following universal system of ODEs
after L iterations: 8<:.bk/sC .2k� /b1bk � bkC1 D 0; 1� k � L; bLC1 D 0;

�
�s

�
D b1;

ds

dt
D

1

�2
:

(1-28)

Unlike the critical case treated in [Raphaël and Schweyer 2014b], there is no further logarithmic correction
to take into account. The set of solutions to (1-28) (see Lemma 2.13 below) is explicitly given by8̂̂̂̂

ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

be
k
.s/D

ck

sk
; 1� k � L;

c1 D
`

2`� 
; ` 2 N�; 2` > ;

ckC1 D�
.`� k/

2`� 
ck; 1� k � `� 1; `� 2

cj D 0; j � `C 1;

�.s/� s�
`

2`� :

(1-29)

In the original time variable t , this implies that �.t/ goes to zero in finite time T with the asymptotic

�.t/� .T � t /
`
 :

Moreover, the linearized flow of (1-28) near the solution (1-29) is explicit and displays `� 1 unstable
directions (see Lemma 2.14 below). This implies that the case ` D 1 corresponds to a stable type II
blowup regime.

(iv) Decomposition of the flow and modulation equations. Let the approximate solution Qb be given by
(1-27), which by construction generates an approximate solution to the renormalized flow (1-23),

‰b D @sQb ��QbC bƒQbC
.d � 1/

2y2
sin.2Qb/DMod.t/CO.b2LC21 /;

where the modulation equation term is roughly of the form

Mod.t/D
LX
iD1

Œ.bi /sC .2i � /b1bi � biC1�Ti :
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We localize Qb in the zone y � B1 to avoid the irrelevant growing tails for y� 1=
p
b1. We then take

initial data of the form
u0.y/DQb.0/.y/C q0.y/;

where q0 is small in some suitable sense and b.0/ is chosen to be close to the exact solution (1-29). By a
standard modulation argument, we introduce the decomposition of the flow

u.r; t/D w.y; s/D .Qb.s/C q/.y; s/D .Qb.t/C v/

�
r

�.t/
; t

�
; (1-30)

where LC 1 modulation parameters .b.t/; �.t// are chosen in order to manufacture the orthogonality
conditions

hq;L iˆM i D 0; 0� i � L; (1-31)

where ˆM , see (3-4), is some fixed direction depending on some large constant M, generating an
approximation of the kernel of the powers of L . This orthogonal decomposition (1-30), which follows
from the implicit function theorem, allows us to compute the modulation equations governing the
parameters .b.t/; �.t// (see Lemmas 4.2 and 4.3 below),ˇ̌̌̌

�s

�
C b1

ˇ̌̌̌
C

LX
iD1

j.bi /sC .2i � /b1bi � biC1j. kqklocC b
LC1C�.ı;�/
1 ; (1-32)

where kqkloc measures a spatially localized norm of the radiation q and �.ı; �/ > 0.

(v) Control of Sobolev norms. According to (1-32), we need to show that local norms of q are under
control and do not perturb the dynamical system (1-28). This is achieved via high-order mixed energy
estimates which provide controls of the Sobolev norms adapted to the linear flow and based on the powers
of the linear operator L . In particular, we have the following coercivity of the high energy under the
orthogonality conditions (1-31) (see Lemma A.5):

E2k.s/D

Z
jL kqj2 &

Z
jr
2kqj2C

Z
jqj2

1Cy4k
;

where k is given by (1-19). Here the factorization (1-24) will help to simplify the proof. As in [Raphaël
and Rodnianski 2012; Raphaël and Schweyer 2014b; Merle, Raphaël and Rodnianski 2015], the control
of E2k is done through the use of the linearized equation in the original variables .r; t/; i.e., we work with
v in (1-30) and not q. The energy estimate is of the form (see Proposition 4.4)

d

ds

�
E2k

�4k�d

�
.
b
2LC1C2�.ı;�/
1

�4k�d
; �.ı; �/ > 0; (1-33)

where the right-hand side is controlled by the size of the error ‰b in the construction of the approximate
profile Qb above. An integration of (1-33) in time by using initial smallness assumptions, b1 � be1 and
�.s/� b

`=.2`�/
1 yields the estimateZ

jr
2kqj2C

Z
jqj2

1Cy4k
. E2k.s/. b2LC2�.ı;�/1 ;

which is good enough to control the local norms of q and close the modulation equations (1-32).
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Note that we also need to control lower energies E2m for „C 2 �m � k� 1 because the control of
the high energy E2k alone is not enough to control a nonlinear term appearing in the linearized equation
around Qb . In particular, we exhibit a Lyapunov functional with the dynamical estimate

d

ds

�
E2m

�4m�d

�
.
b
2.m�„/�1C2�0.ı;�/
1

�4m�d
; �0.ı; �/ > 0:

Then, an integration in time yields

E2m.s/.

(
b

`
2`�

.4m�d/

1 for „C 2�m� `C„;

b
2.m�„�1/C2�0.ı;�/
1 for „C `C 1�m� k� 1;

which is enough to control the nonlinear term. Let us remark that the condition m � „C 2 ensures
4m� d > 0 so that E2m is always controlled. By the coercivity of E2m, this means that we are only able
to control the Sobolev norms kr2�qk2

L2
for � � „C 2, resulting in the asymptotic (1-15).

The above scheme designs a bootstrap regime (see Definition 3.2 for a precise definition) which traps
the blowup solution with speed (1-14). According to Lemmas 2.13 and 2.14, such a regime displays `�1
unstable modes .b2; : : : ; b`/ which we can control through a topological argument based on the Brouwer
fixed-point theorem (see the proof of Proposition 3.5), and the proof of Theorem 1.1 follows.

The paper is organized as follows. In Section 2, we give the construction of the approximate solution
Qb of (1-4) and derive estimates on the generated error term ‰b (Proposition 2.11), as well as its
localization (Proposition 2.12). We also give in this section some elementary facts on the study of the
system (1-28) (Lemmas 2.13 and 2.14). Section 3 is devoted to the proof of Theorem 1.1, assuming a
main technical result (Proposition 3.6). In particular, we give the proof of the existence of the solution
trapped in some shrinking set to zero (Proposition 3.5) such that the constructed solution satisfies the
conclusion of Theorem 1.1. Readers not interested in technical details may stop there. In Section 4, we
give the proof of Proposition 3.6 which gives the reduction of the problem to a finite-dimensional one,
and this is the heart of our analysis.

2. Construction of an approximate profile

This section is devoted to the construction of a suitable approximate solution to (1-4) by using the same
approach developed in [Raphaël and Rodnianski 2012]. Similar approaches can also be found in [Raphaël
and Schweyer 2013; 2014a; Hillairet and Raphaël 2012; Schweyer 2012; Merle, Raphaël and Rodnianski
2015]. The key to this construction is the fact that the linearized operator L around Q is completely
explicit in the radial setting thanks to the explicit formulas of the kernel elements.

Following the scaling invariance of (1-4), we introduce the change of variables

w.y; s/D u.r; t/; y D
r

�.t/
;

ds

dt
D

1

�2.t/
; (2-1)

which leads to the renormalized flow

@sw D @
2
ywC

.d � 1/

y
@ywC

�s

�
ƒw�

.d � 1/

2y2
sin.2w/; (2-2)
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where �s D d�=ds. Noticing that in the setting (2-1) we have

@ru.r; t/D
1

�.t/
@yw.y; s/

and since we deal with the finite-time blowup of the problem (1-4), we naturally impose the condition

�.t/! 0 as t ! T

for some T 2 .0;C1/. Hence, @ru.r; t/ blows up in finite time T.
Let us assume that the leading part of the solution of (2-2) is given by the harmonic map Q, which is a

unique solution (up to scaling) of the equation

Q00C
.d � 1/

y
Q0�

.d � 1/

2y2
sin.2Q/D 0; Q.0/D 0; Q0.0/D 1: (2-3)

We aim to construct an approximate solution of (2-2) close to Q. The natural way is to linearize (2-2)
around Q, which generates the Schrödinger operator defined by (1-22). Let us now recall the main
properties of L in the following subsection.

2A. Structure of the linearized Hamiltonian. We recall the main properties of the linearized Hamiltonian
close to Q, which is the heart of both construction of the approximate profile and the derivation of the
coercivity properties serving for the high Sobolev energy estimates. Let us start by recalling the following
result from [Biernat 2015], which gives the asymptotic behavior of the harmonic map Q:

Lemma 2.1 (development of the harmonic map Q). Let d � 7. There exists a unique solution Q to (2-3)
which admits the following asymptotic behavior. For any k 2N �:

(i) (asymptotic behavior of Q)

Q.y/D

8̂̂̂<̂
ˆ̂:
yC

kX
iD1

ciy
2iC1
CO.y2kC3/ as y! 0;

�

2
�
a0

y

�
1CO

�
1

y2

�
CO

�
1

y Q

��
as y!C1;

(2-4)

where  is defined in (1-8), Q D
p
d2� 8d C 8 and a0 D a0.d/ > 0.

(ii) (degeneracy)

ƒQ > 0; ƒQ.y/D

8̂̂̂<̂
ˆ̂:
yC

kX
iD1

c0iy
2iC1
CO.y2kC3/ as y! 0;

a0

y

�
1CO

�
1

y2

�
CO

�
1

y Q

��
as y!C1:

(2-5)

Proof. The proof of (2-4) is done through the introduction of the variables xD logy and v.x/D2Q.y/��
and consists of the phase portrait analysis of the autonomous equation

v00.x/C .d � 2/v0.x/C .d � 2/ sin.v.x//D 0:



126 TEJ-EDDINE GHOUL, SLIM IBRAHIM AND VAN TIEN NGUYEN

All details of the proof can be found in [Biernat 2015, pages 184–185]. The proof of (2-5) directly follows
from the expansion (2-4). �

The linearized operator L displays a remarkable structure given by the following lemma:

Lemma 2.2 (factorization of L ). Let d � 7 and define the first-order operators

Aw D�@ywC
V

y
w D�ƒQ@y

�
w

ƒQ

�
; (2-6)

A �w D
1

yd�1
@y.y

d�1w/C
V

y
w D

1

yd�1ƒQ
@y.y

d�1ƒQw/; (2-7)

where

V.y/ WDƒ log.ƒQ/D

8<:1CO.y2/ as y! 0;

� CO
�
1

y2

�
CO

�
1

y Q

�
as y!C1:

(2-8)

We have
L D A �A ; zL D A A �; (2-9)

where zL stands for the conjugate Hamiltonian.

Remark 2.3. The adjoint operator A � is defined with respect to the Lebesgue measureZ C1
0

.A u/wyd�1 dy D

Z C1
0

u.A �w/yd�1 dy:

Remark 2.4. We have
L .ƒw/Dƒ.Lw/C 2Lw�

ƒZ

y2
w: (2-10)

Since L .ƒQ/D 0, one can express the definition of Z through the potential V as

Z.y/D V 2CƒV C .d � 2/V: (2-11)

Let zZ be defined by

zL D�@yy �
d � 1

y
@y C

zZ

y2
: (2-12)

Then, a direct computation yields

zZ.y/D .V C 1/2C .d � 2/.V C 1/�ƒV: (2-13)

From (2-6) and (2-7), we see that the kernels of A and A � are explicit:

Aw D 0 if and only if w 2 Span.ƒQ/;

A �w D 0 if and only if w 2 Span
�

1

yd�1ƒQ

�
:

Hence, the elements of the kernel of L are given by

Lw D 0 if and only if w 2 Span.ƒQ;�/; (2-14)
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where � can be found from the Wronskian relation

� 0ƒQ��.ƒQ/0 D
1

yd�1
; (2-15)

that is,

�.y/DƒQ.y/

Z y

1

d�

�d�1.ƒQ.�//2
;

which admits the asymptotic behavior

�.y/D

8̂̂<̂
:̂

1

dyd�1
CO.y/ as y! 0;

1

a0.d � 2� 2/yd�2�
CO

�
1

yd�

�
as y!C1:

(2-16)

From (2-14), we may invert L as follows:

L �1f D��.y/

Z y

0

f .x/ƒQ.x/xd�1 dxCƒQ.y/

Z y

0

f .x/�.x/xd�1 dx: (2-17)

The factorization of L allows us to compute L �1 in an elementary two-step process that will help us to
avoid tracking the cancellation in the formula (2-17) induced by the Wronskian relation when estimating
the growth of L �1f . In particular, we have the following:

Lemma 2.5 (inversion of L ). Let f be a C1 radially symmetric function and w DL �1f be given by
(2-17). Then

Lw D f; Aw D
1

yd�1ƒQ

Z y

0

f .x/ƒQ.x/xd�1 dx; w D�ƒQ

Z y

0

Aw.x/

ƒQ.x/
dx: (2-18)

Proof. From the relation (2-15), we compute

A � D�
1

yd�1ƒQ
:

Applying A to (2-17) and using the cancellation A .ƒQ/D 0, we obtain

Aw D
1

yd�1ƒQ

Z y

0

f .x/ƒQ.x/xd�1 dx:

From the definition (2-6) of A , we write

w D�ƒQ

Z y

0

Aw

ƒQ
dx: �

2B. Admissible functions. We define a class of admissible functions which display a suitable behavior
both at the origin and infinity.

Definition 2.6 (admissible function). Fix  > 0, we say that a smooth function f 2 C1.RC;R/ is
admissible of degree .p1; p2/ 2 N�Z if:
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(i) f admits a Taylor expansion to all orders around the origin,

f .y/D

pX
kDp1

cky
2kC1

CO.y2pC3/I

(ii) f and its derivatives admit the bounds, for y � 1,

for all k 2 N; j@kyf .y/j. y
2p2��k :

Remark 2.7. By (2-5), ƒQ is admissible of degree .0; 0/.

Note that L naturally acts on the class of admissible functions in the following way:

Lemma 2.8 (action of L and L �1 on admissible functions). Let f be an admissible function of degree
.p1; p2/ 2 N�Z. Then:

(i) ƒf is admissible of degree .p1; p2/.

(ii) L f is admissible of degree .maxf0; p1� 1g; p2� 1/.

(iii) L �1f is admissible of degree .p1C 1; p2C 1/.

Proof. (i)–(ii) This is simply a consequence of Definition 2.6.

(iii) We aim to prove that if f is admissible of degree .p1; p2/, then wDL �1f is admissible of degree
.p1C 1; p2C 1/. To do so, we use Lemma 2.5 to estimate

� for y� 1,

Aw D
1

yd�1ƒQ

Z y

0

fƒQxd�1 dx DO
�
1

yd

Z y

0

x2p1C1Cd dx

�
DO.y2p1C2/;

w D�ƒQ

Z y

0

Aw

ƒQ
dx DO

�
y

Z y

0

x2p1C1 dx

�
DO.y2.p1C1/C1/;

� for y � 1,

Aw DO
�

1

yd�1�

Z y

0

x2p2�2Cd�1 dx

�
DO.y2p2C1� /;

w DO
�
1

y

Z y

0

x2p2C1
�
DO.y2.p2C1/� /:

From the last formula in (2-18) and (2-8), we estimate

@yw D�@yƒQ

Z y

0

Aw

ƒQ
dx�Aw D�

@yƒQ

ƒQ
w�Aw DO.y2.p2C1/��1/:

Using Lw D f , we get

@yyw DO
�
j@ywj

y
C
jwj

y2
Cjf j

�
DO.y2.p2C1/��2/:

By taking radial derivatives of Lw D f , we obtain by induction

j@kywj. y
2.p2C1/��k; k 2 N; y � 1: �
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The following lemma is a consequence of Lemma 2.8:

Lemma 2.9 (generators of the kernel of L k). Consider the sequence of profiles

Tk D .�1/
kL �kƒQ; k 2 N: (2-19)

Then:

(i) Tk is admissible of degree .k; k/ for k 2 N.

(ii) ƒTk � .2k� /Tk is admissible of degree .k; k� 1/ for k 2 N�.

Proof. (i) We note from (2-5) that ƒQ is admissible of degree .0; 0/. By induction and part (iii) of
Lemma 2.8, the conclusion then follows.

(ii) We proceed by induction. For k D 1, we explicitly compute T1 D�L �1ƒQ by using Lemma 2.5
and the expansion (2-5) to get

for all m 2 N; @my T1.y/D e1;my
2��m

CO.y��m/ as y!C1:

By induction, one can easily check that @my ƒf Dƒ@
m
y f Cm@

m
y f for m 2 N�. Hence,

@my ŒƒT1� .2� /T1�Dƒ@
m
y T1� .2�  �m/@

m
y T1 DO.y��m/ as y!C1:

Since T1 and ƒT1 are admissible of degree .1; 1/, we deduce that ƒT1 � .2� /T1 is admissible of
degree .1; 0/.

We now assume the claim for k � 1, namely that ƒTk � .2k�/Tk is admissible of degree .k; k�1/.
Let us prove that ƒTkC1� .2.kC1/�/TkC1 is admissible of degree .kC1; k/. We use formula (2-10)
and definition (2-19) to write

L .ƒTkC1� .2kC 2� /TkC1/DƒL TkC1� .2k� /L TkC1�
ƒZ

y2
TkC1

DƒTk � .2k� /Tk �
ƒZ

y2
TkC1: (2-20)

From part (i), we know that TkC1 is admissible of degree .kC 1; kC 1/. From (2-11) and (2-8), one can
check that .ƒZ=y2/TkC1 admits the asymptotic

ƒZ

y2
TkC1 DO.y2kC1/ as y! 0;

and

@jy

�
ƒZ

y2
TkC1

�
DO.y2.kC1/�j��3/� y2.k�1/Cj� as y!C1:

Together with the induction hypothesis, we deduce that the right-hand side of (2-20) is admissible of
degree .k; k� 1/. The conclusion then follows by using part (iii) of Lemma 2.8. �

We end this subsection by introducing a simple notion of homogeneous admissible function.
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Definition 2.10 (homogeneous admissible function). LetL�1 be an integer andmD .m1; : : : ; mL/2NL.
We say that a function f .b; y/ with bD .b1; : : : ; bL/ is homogeneous of degree .p1; p2; p3/2N�Z�N

if it is a finite linear combination of monomials

Qf .y/

LY
kD1

b
mk
k
;

with Qf .y/ admissible of degree .p1; p2/ in the sense of Definition 2.6 and

.m1; : : : ; mL/ 2 NL;

LX
kD1

kmk D p3:

We set
deg.f / WD .p1; p2; p3/:

2C. Slowly modulated blowup profile. We use the explicit structure of the linearized operator L to
construct an approximate blowup profile. In particular, we claim the following:

Proposition 2.11 (construction of the approximate profile). Let d � 7 andL� 1 be an integer. LetM >0

be a large enough universal constant. Then there exists a small enough universal constant b�.M;L/ > 0
such that the following holds true. Consider a C1 map

b D .b1; : : : ; bL/ W Œs0; s1� 7! .�b�; b�/L;

with a priori bounds in Œs0; s1�,

0 < b1 < b
�; jbkj. bk1 ; 2� k � L: (2-21)

Then there exist homogeneous profiles

S1 D 0; Sk D Sk.b; y/; 2� k � LC 2;

such that

Qb.s/.y/DQ.y/C

LX
kD1

bk.s/Tk.y/C

LC2X
kD2

Sk.b; y/�Q.y/C‚b.s/.y/ (2-22)

generates an approximate solution to the renormalized flow (2-2)

@sQb � @yyQb �
.d � 1/

y
@yQbC b1ƒQbC

.d � 1/

2y2
sin.2Qb/D‰bCMod.t/; (2-23)

with the following properties:

(i) (modulation equation)

Mod.t/D
LX
kD1

Œ.bk/sC .2k� /b1bk � bkC1�

�
TkC

LC2X
jDkC1

@Sj

@bk

�
; (2-24)

where we use the convention bj D 0 for j � LC 1.
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(ii) (estimate on the profiles) The profiles .Sk/2�k�LC2 are homogeneous with

deg.Sk/D .k; k� 1; k/ for 2� k � LC 2;
@Sk

@bm
D 0 for 2� k �m� L:

(iii) (estimate on the error ‰b) For all 0�m� L, we have:

� (global weight bound)Z
y�2B1

jL „CmC1‰bj
2
C

Z
y�2B1

j‰bj
2

1Cy4.„CmC1/
. b2mC4C2.1�ı/�CL�1 ; (2-25)

where B1, „, ı are defined in (1-20) and (1-18).

� (improved local bound)

For all M � 1;
Z
y�2M

jL „CmC1‰bj
2 .MC b2LC61 : (2-26)

Proof. We aim to construct the profiles .Sk/2�k�LC2 such that ‰b.y/ defined from (2-23) has the least
possible growth as y!C1. The key to this construction is the fact that the structure of the linearized
operator L defined in (1-22) is completely explicit in the radial sector thanks to the explicit formulas of
the elements of the kernel. This procedure will lead to the leading-order modulation equation

.bk/s D�.2k� /b1bkC bkC1 for 1� k � L; (2-27)

which actually cancels the worst growth of Sk as y!C1.

� Expansion of ‰b . From (2-23) and (2-3), we write

@sQb � @yyQb �
.d � 1/

y
@yQbC b1ƒQbC

.d � 1/

2y2
sin.2Qb/

D b1ƒQC @s‚b � @yy‚b �
.d � 1/

y
@y‚y C

.d � 1/

y2
cos.2Q/‚bC b1ƒ‚b

C
.d � 1/

2y2
Œsin.2QC 2‚b/� sin.2Q/� 2 cos.2Q/‚b�

WD A1CA2:

Using the expression (2-22) of ‚b and the definition (2-19) of Tk (note that L Tk D �Tk�1 with the
convention T0 DƒQ), we write

A1 D b1ƒQC

LX
kD1

Œ.bk/sTkC bkL TkC b1bkƒTk�C

LC2X
kD2

Œ@sSkCLSkC b1ƒSk�

D

LX
kD1

Œ.bk/sTk � bkC1TkC b1bkƒTk�C

LC2X
kD2

Œ@sSkCLSkC b1ƒSk�
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D

LX
kD1

Œ.bk/s � bkC1C .2k� /b1bk�Tk

C

LX
kD1

ŒLSkC1C @sSkC b1bkŒƒTk � .2k� /Tk�C b1ƒSk�

C ŒLSLC2C @sSLC1C b1ƒSLC1�C Œ@sSLC2C b1ƒSLC2�:

We now write

@sSk D

LX
jD1

.bj /s
@Sk

@bj
D

LX
jD1

Œ.bj /sC .2j � /b1bj � bjC1�
@Sk

@bj
�

LX
jD1

Œ.2j � /b1bj � bjC1�
@Sk

@bj
:

Hence,

A1 DMod.t/C
LC1X
kD1

ŒLSkC1CEk�CELC2;

where for k D 1; : : : ; L,

Ek D b1bkŒƒTk � .2k� /Tk�C b1ƒSk �

k�1X
jD1

Œ.2j � /b1bj � bjC1�
@Sk

@bj
; (2-28)

and for k D LC 1;LC 2,

Ek D b1ƒSk �

LX
jD1

Œ.2j � /b1bj � bjC1�
@Sk

@bj
: (2-29)

For the expansion of the nonlinear term A2, let us set

f .x/D sin.2x/

and use a Taylor expansion to write (see page 1740 in [Raphaël and Schweyer 2014b] for a similar
computation)

A2 D
.d � 1/

2y2

�LC2X
iD2

f .i/.Q/

iŠ
‚ibCR2

�
D
.d � 1/

2y2

�LC2X
iD2

Pi CR1CR2

�
;

where

Pi D

LC2X
jD2

f .j /.Q/

j Š

X
jJ j1Dj; jJ j2Di

cJ

LY
kD1

b
ik
k
T
ik
k

LC2Y
kD2

S
jk
k
; (2-30)

R1 D

LC2X
jD2

f .j /.Q/

j Š

X
jJ j1Dj; jJ j2�LC3

cJ

LY
kD1

b
ik
k
T
ik
k

LC2Y
kD2

S
jk
k
; (2-31)

R2 D
‚LC3
b

.LC 2/Š

Z 1

0

.1� �/LC2f .LC3/.QC �‚b/ d�; (2-32)
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with J D .i1; : : : ; iL; j2; : : : ; jLC2/ 2 N2LC1 and

jJ j1 D

LX
kD1

ikC

LC2X
kD2

jk; jJ j2 D

LX
kD1

kikC

LC2X
kD2

kjk : (2-33)

In conclusion, we have

‰b D

LC1X
kD1

�
LSkC1CEkC

.d � 1/

2y2
PkC1

�
CELC2C

.d � 1/

2y2
.R1CR2/: (2-34)

� Construction of Sk . From the expression of ‰b given in (2-34), we construct iteratively the sequences
of profiles .Sk/1�k�LC2 through the scheme�

S1 D 0;

Sk D�L �1Fk; 2� k � LC 2;
(2-35)

where

Fk DEk�1C
.d � 1/

2y2
Pk for 2� k � LC 2:

We claim by induction on k that Fk is homogeneous with

deg.Fk/D .k� 1; k� 2; k/ for 2� k � LC 2; (2-36)

and
@Fk

@bm
D 0 for 2� k �m� LC 2: (2-37)

From item (iii) of Lemma 2.8 and (2-36), we deduce that Sk is homogeneous with

deg.Sk/D .k; k� 1; k/ for 2� k � LC 2;

and from (2-37), we get
@Sk

@bm
D 0 for 2� k �m� LC 2;

which is the conclusion of item (ii).
Let us now give the proof of (2-36) and (2-37). We proceed by induction.

Case k D 2: We compute explicitly from (2-28) and (2-30),

F2 DE1C
.d � 1/

2y2
P2 D b

2
1

�
ƒT1� .2� /T1C

.d � 1/f 00.Q/

2y2
T 21

�
;

which directly follows (2-37). From Lemma 2.9, we know that T1 and ƒT1� .2� /T1 are admissible
of degrees .1; 1/ and .1; 0/ respectively. Using (2-4), one can check the bound

for all m; j 2 N2;

ˇ̌̌̌
@my

�
f .j /.Q/

y2

�ˇ̌̌̌
. y��2�m as y!C1: (2-38)

Since T1 is admissible of degree .1; 1/, we have

for all m 2 N; j@my .T
2
1 /j. y

4�2�m as y!C1:
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By the Leibniz rule and the fact that 2 � 2 > 0, we get

for all m; j 2 N2;

ˇ̌̌̌
@my

�
f .j /.Q/

y2
T 21

�ˇ̌̌̌
. y��m�.2�2/ . y��m:

We also have the expansion near the origin,

f .j /.Q/

y2
T 21 D

kX
iD2

ciy
2iC1
CO.y2kC3/; k � 1:

Hence, .f 00.Q/=y2/T 21 is admissible of degree .2; 0/, which concludes the proof of (2-36) for k D 2.

Case k! kC 1: Estimate (2-37) holds by direct inspection. Let us now assume that Sk is homogeneous
of degree .k; k�1; k/ and prove that SkC1 is homogeneous of degree .kC1; k; kC1/. In particular, the
claim immediately follows from part (iii) of Lemma 2.8 once we show that FkC1 is homogeneous with

deg.FkC1/D deg
�
EkC

PkC1

y2

�
D .k; k� 1; kC 1/: (2-39)

From part (ii) of Lemma 2.9 and the a priori assumption (2-21), we see that b1bk.ƒTk � .2k � /Tk/
is homogeneous of degree .k; k� 1; kC 1/. From part (i) of Lemma 2.8 and the induction hypothesis,
b1ƒSk is also homogeneous of degree .k; k � 1; kC 1/. By definition, b1.@Sk=@b1/ is homogeneous
and has the same degree as Sk . Thus,�

.2j � /b1�
b2

b1

��
b1
@Sk

@b1

�
is homogeneous of degree .k; k� 1; kC 1/. From definitions (2-28) and (2-29), we derive

deg.Ek/D .k; k� 1; kC 1/; k � 1:

It remains to control the term PkC1=y
2. From the definition (2-30), we see that PkC1=y2 is a linear

combination of monomials of the form

MJ .y/D
f .j /.Q/

y2

LY
mD1

bimm T
im
m

LC2Y
mD2

Sjmm ;

with

J D .i1; : : : ; iL; j2; : : : ; jLC2/; jJ j1 D j; jJ j2 D kC 1; 2� j � kC 1:

Recall from part (i) of Lemma 2.9 the bound

for all n 2 N; j@nyTmj. y
2m��n as y!C1;

and from the induction hypothesis and the a priori bound (2-21),

for all n 2 N; j@nySmj. b
m
1 y

2.m�1/��n as y!C1:
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Together with the bound (2-38), we obtain the following bound at infinity:

jMJ j. bjJ j21 y2jJ j2��jJ j1�2�2
PLC2
mD2 jm . bkC11 y2.k�1/� :

The control of @nyMJ follows by the Leibniz rule and the above estimates. One can also check that
MJ is of order y2jJ j2CjJ j1�1 near the origin. This concludes the proof of (2-39) as well as part (ii) of
Proposition 2.11.
� Estimate on ‰b . From (2-34) and (2-35), the expression of ‰b is now reduced to

‰b DELC2C
.d � 1/

y2
.R1CR2/;

where ELC2, R1 and R2 are given by (2-29), (2-31) and (2-32).
We start by estimating the ELC2 term defined by (2-29). Since SLC2 is homogeneous of degree

.LC 2;LC 1;LC 2/, so are ƒSLC2 and b1.@SLC2=@b1/. It follows that ELC2 is homogeneous of
degree .LC2;LC1;LC3/. Using part (ii) of Lemma 2.8 and the relation d �2 �4„D 4ı, see (1-18),
we estimate for all 0�m� LZ

y�2B1

jL „CmC1ELC2j
2 . b2LC61

Z
y�2B1

jy2.LC1/��2.„CmC1/j2yd�1 dy

. b2LC61

Z
y�2B1

y4.L�mCı/�1 dy

. b.2LC6/�2.L�mCı/.1C�/1 . b2mC4C2.1�ı/�CL�1 ;

where �D �.L/, 0 < �� 1.
We now turn to the control of the term R1=y

2, which is a linear combination of terms of the form,
see (2-31),

zMJ D
f .j /.Q/

y2

LY
nD1

binn T
in
n

LC2Y
nD2

S
jn
k
;

with
J D .i1; : : : ; iL; j2; : : : ; jLC2/; jJ j1 D j; jJ j2 � LC 3; 2� j � LC 2:

Using the admissibility of Tn and the homogeneity of Sn, we get the bounds

j zMJ j. bLC31 y2jJ j2Cj�1 . bLC31 y2LC6 as y! 0;

and
j zMJ j. bjJ j21 y2jJ j2�j�2� as y!C1;

where we used the facts that j � 2 and 2� j  < 0, and similarly for higher derivatives by the Leibniz
rule. Thus, we obtain the round estimate for all 0�m� L,Z

y�2B1

ˇ̌̌̌
L „CmC1

�
R1

y2

�ˇ̌̌̌2
. b2jJ j21

Z
y�2B1

jy2jJ j2�j��2�2.„CmC1/j2yd�1 dy

. b2mC4C2.1�ı/�CL�1 :
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The term R2=y
2 is estimated exactly as the term R1=y

2 using the definition (2-32). Similarly, the control
of
R
y�2B1

j‰bj
2=.1Cy4.„CmC1// is obtained along the exact same lines as above. This concludes

the proof of (2-25). The local estimate (2-26) directly follows from the homogeneity of Sk and the
admissibility of Tk . �

We now proceed to a simple localization of the profile Qb to avoid the growth of tails in the region
y � 2B1� B0. More precisely, we claim the following:

Proposition 2.12 (estimates on the localized profile). Under the assumptions of Proposition 2.11, we
assume in addition the a priori bound

j.b1/sj. b21 : (2-40)

Consider the localized profile

zQb.s/.y/DQ.y/C

LX
kD1

bk zTkC

LC2X
kD2

zSk with zTk D �B1Tk; zSk D �B1Sk; (2-41)

where B1 and �B1 are defined as in (1-20) and (1-21). Then

@s zQb � @yy zQb �
.d � 1/

y
@y zQbC b1ƒ zQbC

.d � 1/

2y2
sin.2 zQb/D z‰bC�B1 Mod.t/; (2-42)

where z‰b satisfies the bounds:

(i) (large Sobolev bound) For all 0�m� L� 1,Z
jL „CmC1 z‰bj

2
C

Z
jA L „Cm z‰bj

2

1Cy2
C

Z
jL „Cm z‰bj

2

1Cy4
C

Z
j z‰bj

2

1Cy4.„CmC1/
. b2mC2C2.1�ı/�CL�1 ;

(2-43)
andZ
jL „CLC1 z‰bj

2
C

Z
jA L „CL z‰bj

2

1Cy2
C

Z
jL „CL z‰bj

2

1Cy4
C

Z
j z‰bj

2

1Cy4.„CLC1/
. b2LC2C2.1�ı/.1C�/1 ;

(2-44)
where „ and ı are defined by (1-18).

(ii) (very local bound) For all M � 1
2
B1 and 0�m� L,Z

y�2M

jL „CmC1 z‰bj
2 .MC b2LC61 : (2-45)

(iii) (refined local bound near B0) For all 0�m� L,Z
y�2B0

jL „CmC1 z‰bj
2
C

Z
y�2B0

j z‰bj
2

1Cy4.„CmC1/
. b2mC4C2.1�ı/�CL�1 : (2-46)
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Proof. By a direct computation, we have

@s zQb � @yy zQb �
.d � 1/

y
@y zQbC b1ƒ zQbC

.d � 1/

2y2
sin.2 zQb/

D �B1

�
@sQb � @yyQb �

.d � 1/

y
@yQbC b1ƒQbC

.d � 1/

2y2
sin.2Qb/

�
C‚b

�
@s�B1 �

�
@yy�B1C

d � 1

y
@y�B1

�
Cb1ƒ�B1

�
�2@y�B1@y‚bCb1.1��B1/ƒQ

C
.d � 1/

2y2
Œsin.2 zQb/� sin.2Q/��B1.sin.2Qb/� sin.2Q//�:

According to (2-23) and (2-42), we write

z‰b D �B1‰bC
y‰b;

where

y‰b D b1.1��B1/ƒQ„ ƒ‚ …
y‰
.1/

b

C
.d � 1/

2y2
Œsin.2 zQb/� sin.2Q/��B1.sin.2Qb/� sin.2Q//�„ ƒ‚ …

y‰
.2/

b

C‚b

�
@s�B1 �

�
@yy�B1 C

d � 1

y
@y�B1

�
C b1ƒ�B1

�
� 2@y�B1@y‚b„ ƒ‚ …

y‰
.3/

b

:

The contribution of the term �b1‰b to the bounds (2-43), (2-44), (2-45) and (2-46) follows in exactly
the same way as in the proof of (2-25) and (2-26). We are therefore left to estimate the term y‰b . All the
terms in the expression of y‰b are localized in B1 � y � 2B1, except for the first one whose support is a
subset of fy � B1g. Hence, the estimates (2-45) and (2-46) directly follow from (2-26) and (2-25).

Let us now find the contribution of y‰b to the bounds (2-43) and (2-44). We estimate

for all n 2 N;

ˇ̌̌̌
dn

dyn
.1��B1/ƒQ

ˇ̌̌̌
.

1

yCn
1y�B1 I

hence, using the relation d � 2 � 4„ D 4ı, see (1-18), and the definition (1-20) of B1, we estimate for
all 0�m� L,Z

jL „CmC1 y‰
.1/

b
j
2 . b21

Z
y�B1

yd�1

y4.„CmC1/C2
. b2mC2C2.1�ı/.1C�/C2m�1 :

For the nonlinear term y‰.2/
b

, we note from the admissibility of Tk and the homogeneity of Sk that the
Tk-terms dominate for y � B1 in ‚b . Thus, for y � B1,

for all n 2 N; j@ny‚bj.
LX
kD1

bk1y
2k��n1y�B1 : (2-47)
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Using (2-47) and noting that y‰.2/
b

is localized in B1 � y � 2B1, we obtain the round bound

j@ny
y‰
.2/

b
j.

LX
kD1

bk1y
2.k�1/��n1B1�y�2B1

.
b1

yCn

LX
kD1

b
�.k�1/�
1 1B1�y�2B1 :

We then estimate for 0�m� L,Z
jL „CmC1 y‰

.2/

b
j. b21

LX
kD1

b
�2.k�1/�
1

Z
B1�y�2B1

yd�1

y4.„CmC1/C2
dy

. b2mC2C2.1�ı/.1C�/1

LX
kD1

b
.2m�2kC2/�
1 :

To control y‰.3/
b

, we first note from the definition (1-21) and the assumption (2-40) that

j@s�B1 j.
.b1/s

b1

y

B1
1B1�y�2B1 . b11B1�y�2B1 :

Using (2-47), we estimate for 0�m� L,Z
jL „CmC1 y‰

.3/

b
j.

LX
kD1

b21b
2k
1

Z
B1�y�2B1

yd�1

y4.„CmC1/C2�4kC2
dy

. b2mC2C2.1�ı/.1C�/1

LX
kD1

b
.2m�2k/�
1 :

Gathering all the bounds yieldsZ
jL „CmC1 y‰bj

2 . b2mC2C2.1�ı/.1C�/1

LX
kD1

b
.2m�2k/�
1 . b2mC2C2.1�ı/.1C�/C2�.m�L/1 :

The control of Z
jA L „Cm z‰bj

2

1Cy2
;

Z
jL „Cm z‰bj

2

1Cy4
; and

Z
j y‰bj

2

1Cy4.„CmC1/

is obtained along the exact same lines as above. This concludes the proof of (2-43) and (2-44), as well as
Proposition 2.12. �

2D. Study of the dynamical system for b D .b1; : : : ; bL/. The construction of the Qb profile formally
leads to the finite-dimensional dynamical system for bD .b1; : : : ; bL/ by setting to zero the inhomogeneous
Mod.t/ term given in (2-24):

.bk/sC .2k� /b1bk � bkC1 D 0; 1� k � L; bLC1 D 0: (2-48)
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Unlike the critical case .d D 2/ treated in [Raphaël and Schweyer 2014b], there is no further logarithmic
correction to be taken into account in the system (2-48). In particular, the system (2-48) admits explicit
solutions and the linearized operator near these solutions is explicit.

Lemma 2.13 (solution to the system (2-48)). Let

1
2
 < `� L; ` 2 N�;

and consider the sequence 8̂̂̂̂
<̂
ˆ̂̂:

c1 D
`

2`� 
;

ckC1 D�
.`� k/

2`� 
ck; 1� k � `� 1;

ckC1 D 0; k � `:

(2-49)

Then the explicit choice
bek.s/D

ck

sk
; s > 0; 1� k � L; (2-50)

is a solution to (2-48).

The proof of Lemma 2.13 directly follows from an explicit computation which is left to the reader. We
claim that the linearized flow of (2-48) near the solution (2-50) is explicit and displays `� 1 unstable
directions. Note that the stability is considered in the sense that

sup
s
skjbk.s/j � Ck; 1� k � L:

In particular, we have the following result which was proved in [Merle, Raphaël and Rodnianski 2015]:

Lemma 2.14 (linearization of (2-48) around (2-50)). Let

bk.s/D b
e
k.s/C

Uk.s/
sk

; 1� k � `; (2-51)

and note that U D .U1; : : : ;U`/. Then, for 1� k � `� 1,

.bk/sC .2k� /b1bk � bkC1 D
1

skC1
Œs.Uk/s � .A`U/kCO.jU j2/�; (2-52)

.b`/sC .2`� /b1b` D
1

skC1
Œs.U`/s � .A`U/`CO.jU j2/�; (2-53)

where

A` D .ai;j /1�i;j�` with

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

a1;1 D
.`� 1/

2`� 
� .2� /c1;

ai;i D
.`� i/

2`� 
; 2� i � `;

ai;iC1 D 1; 1� i � `� 1;

a1;i D�.2i � /ci ; 2� i � `;

ai;j D 0 otherwise:
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Moreover, A` is diagonalizable:

A` D P
�1
` D`P`; D` D diag

�
�1;

2

2`� 
;
3

2`� 
; : : : ;

`

2`� 

�
: (2-54)

Proof. Since we have an analogous system to the one in [Merle, Raphaël and Rodnianski 2015] and the
proof is essentially the same as written there, we kindly refer the reader to Lemma 3.7 in that paper for
all details of the proof. �

3. Proof of Theorem 1.1 assuming technical results

This section is devoted to the proof of Theorem 1.1. We proceed in three subsections:

� In the first subsection, we give an equivalent formulation of the linearization of the problem in the
setting (1-30).

� In the second subsection, we prepare the initial data and define the shrinking set SK (see Definition 3.2)
such that the solution trapped in this set satisfies the conclusion of Theorem 1.1.

� In the third subsection, we give all arguments of the proof of the existence of solutions trapped in
SK (Proposition 3.5) assuming an important technical result (Proposition 3.6) whose proof is left to
the next section. Then we conclude the proof of Theorem 1.1.

3A. Linearization of the problem. Let L� 1 be an integer and s0� 1. We introduce the renormalized
variables

y D
r

�.t/
; s D s0C

Z t

0

d�

�2.�/
; (3-1)

and the decomposition

u.r; t/D w.y; s/D . zQb.s/C q/.y; s/D . zQb.t/C q/

�
r

�.t/
; t

�
; (3-2)

where zQb is constructed in Proposition 2.12 and the modulation parameters

�.t/ > 0; b.t/D .b1.t/; : : : ; bL.t//

are determined from the LC 1 orthogonality conditions

hq;L kˆM i D 0; 0� k � L; (3-3)

where ˆM is a fixed direction depending on some large constant M defined by

ˆM D

LX
kD0

ck;ML k.�MƒQ/; (3-4)

with

c0;M D 1; ck;M D .�1/
kC1

Pk�1
jD0 cj;M h�ML j .�MƒQ/; Tki

h�MƒQ;ƒQi
; 1� k � L: (3-5)
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Here, ˆM is built to ensure the nondegeneracy

hˆM ; ƒQi D h�MƒQ;ƒQi&M d�2 (3-6)

and the cancellation

hˆM ; Tki D

k�1X
jD0

cj;M hL
j .�MƒQ/; TkiC ck;M .�1/

k
h�MƒQ;ƒQi D 0: (3-7)

In particular, we have

hL iTk; ˆM i D .�1/
k
h�MƒQ;ƒQiıi;k; 0� i; k � L: (3-8)

From (2-2), we see that q satisfies the equation

@sq�
�s

�
ƒqCL q D�z‰b � bModCH.q/�N .q/� F ; (3-9)

where
bModD�

�
�s

�
C b1

�
ƒ zQb ��B1 Mod; (3-10)

H is the linear part given by

H.q/D
.d � 1/

y2
Œcos.2Q/� cos.2 zQb/�q; (3-11)

and N is the purely nonlinear term

N .q/D
.d � 1/

2y2
Œsin.2 zQbC 2q/� sin.2 zQb/� 2q cos.2 zQb/�: (3-12)

We also need to write (3-9) in the original variables. To do so, consider the rescaled linearized operator

L� D�@rr �
.d � 1/

r
@r C

Z�

r2
(3-13)

and the renormalized function

v.r; t/D q.y; s/; @tv D
1

�2.t/

�
@sq�

�s

�
ƒq

�
�

:

Then from (3-9), v satisfies

@tvCL�v D
1

�2
F�; F�.r; t/D F.y; s/: (3-14)

Note that

L� D
1

�2
L :

3B. Preparation of the initial data. We now describe the set of initial data u0 of the problem (1-4),
as well as the initial data for .b; �/ leading to the blowup scenario of Theorem 1.1. Assume that
u0 2H

1.Rd / satisfies

ku0�Qk PH s � 1 for d
2
� s � k: (3-15)
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By continuity of the flow and a standard argument, the smallness assumption (3-15) is propagated on a
small time interval Œ0; t1/. Thus, the decomposition (3-2),

u.r; t/D . zQb.t/C q/

�
r

�.t/
; t

�
; �.t/ > 0; b D .b1; : : : ; bL/; (3-16)

can be uniquely defined on the interval t 2 Œ0; t1�.
The existence of the decomposition (3-16) is a standard consequence of the implicit function theorem

and the explicit relations

@

@�
. zQb.t//�;

@

@b1
. zQb.t//�; : : : ;

@

@bL
. zQb.t//�

ˇ̌̌̌
�D1; bD0

D .ƒQ; T1; : : : ; TL/;

which implies the nondegeneracy of the Jacobianˇ̌̌̌�
@

@.�; bj /
. zQb.t//�;L

iˆM

�
1�j�L;0�i�L

ˇ̌̌̌
�D1; bD0

D jh�MƒQ;ƒQij
LC1
¤ 0:

In fact, the decomposition (3-16) exists as long as t < T and q remains small in the energy topology. We
now set up the bootstrap for the control of the parameters .b; �/ and the radiation q. We will measure the
regularity of the map through the following coercive norms of q:

E2k D

Z
jL kqj2 � C.M/

k�1X
mD0

Z
jLmqj2

1Cy4.k�m/
for „C 1� k � k: (3-17)

Our construction is built on a careful choice of the initial data for the modulation parameter b and the
radiation q at time s D s0. In particular, we will choose it in the following way:

Definition 3.1 (choice of the initial data). Take � and ı as in (1-20) and (1-18). Let consider the variable

V D P`U ; (3-18)

where U D .U1; : : : ;U`/ is introduced in the linearization (2-51), namely

Uk D skbk � ck; with ck given by (2-49);

and P` refers to the diagonalization (2-54) of A`.
Let s0 � 1. We assume

� (smallness of the initial perturbation for the bk-unstable modes)

js
�
2
.1�ı/

0 Vk.s0/j< 1 for 2� k � `; (3-19)

� (smallness of the initial perturbation for the bk-stable modes)

js
�
2
.1�ı/

0 V1.s0/j< 1; jbk.s0/j< s
�
5`.2k�/
2`�

0 for `C 1� k � L; (3-20)
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� (smallness of the data)
kX

kD„C2

E2k.s0/ < s
� 10L`
2`�

0 ; (3-21)

� (normalization) up to a fixed rescaling, we may always assume

�.s0/D 1: (3-22)

In particular, the initial data described in Definition 3.1 belongs to the following set which shrinks to
zero as s!C1:

Definition 3.2 (definition of the shrinking set). Take � and ı as in (1-20) and (1-18). For all K � 1 and
s � 1, we define SK.s/ as the set of all .b1.s/; : : : ; bL.s/; q.s// such that

jVk.s/j � 10s�
�
2
.1�ı/ for 1� k � `;

jbk.s/j � s
�k for `C 1� k � L;

E2k.s/�Ks
�.2LC2.1�ı/.1C�//;

E2m.s/�

�
Ks�

`
2`�

.4m�d/ for „C 2�m� `C„;
s�2.m�„�1/�2.1�ı/CK� for `C„C 1�m� k� 1:

Remark 3.3. From (2-51), the bounds given in Definition 3.2 imply that for � small enough,

b1.s/�
c1

s
; jbk.s/j. jb1.s/jk :

Hence, the choice of the initial data .b.s0/; q.s0// belongs in SK.s0/ if s0 is large enough.

Remark 3.4. The introduction of the high Sobolev norm E2k is reflected in the relationˇ̌̌̌
�s

�
C b1

ˇ̌̌̌
C

LX
kD1

j.bk/sC .2k� /b1bk � bkC1j. C.M/
p

E2kC l:o:t:; (3-23)

which is computed thanks to the LC 1 orthogonality conditions (3-3) (see Lemmas 4.2 and 4.3 below).

3C. Existence of solutions trapped in SK .s/ and conclusion of Theorem 1.1. We claim the following
proposition:

Proposition 3.5 (existence of solutions trapped in SK.s/). There exists K1 � 1 such that for K � K1,
there exists s0;1.K/ such that for all s0 � s0;1, there exists initial data for the unstable modes

.V2.s0/; : : : ;V`.s0// 2 Œ�s
�
�
2
.1�ı/

0 ; s
�
�
2
.1�ı/

0 �`�1

such that the corresponding solution .b.s/; q.s// is in SK.s/ for all s � s0.

Let us briefly give the proof of Proposition 3.5. Let us consider K � 1 and s0 � 1 and .b.s0/; q.s0//
as in Definition 3.1. We introduce the exit time

s� D s�.b.s0/; q.s0//D supfs � s0 such that .b.s/; q.s// 2 SK.s/g;
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and assume that for any choice of

.V2.s0/; : : : ;V`.s0// 2 Œ�s
�
�
2
.1�ı/

0 ; s
�
�
2
.1�ı/

0 �`�1;

the exit time satisfies s� <C1 and look for a contradiction. By the definition of SK.s�/, at least one of
the inequalities in that definition is an equality. Owing the following proposition, this can happen only
for the components .V2.s�/; : : : ;V`.s�//. Precisely, we have the following result which is the heart of
our analysis:

Proposition 3.6 (control of .b.s/; q.s// in SK.s/ by .V2.s/; : : : ;V`.s//). There existsK2�1 such that for
eachK �K2, there exists s0;2.K/� 1 such that for all s0 � s0;2.k/, the following holds: Given the initial
data at sD s0 as in Definition 3.1, if .b.s/; q.s//2SK.s/ for all s2 Œs0; s1�, with .b.s1/; q.s1//2@SK.s1/
for some s1 � s0, then:

(i) (reduction to a finite-dimensional problem)

.V2.s1/; : : : ;V`.s1// 2 @

"
�

K

s
�
2
.1�ı/

1

;
K

s
�
2
.1�ı/

1

#`�1
:

(ii) (transverse crossing)

d

ds

�X̀
iD2

js
�
2
.1�ı/Vi .s/j2

�ˇ̌̌̌
sDs1

> 0:

Let us assume Proposition 3.6 and continue the proof of Proposition 3.5. From part (i) of Proposition 3.6,
we see that

.V2.s�/; : : : ;V`.s�// 2 @

"
�

K

s
�
2
.1�ı/
�

;
K

s
�
2
.1�ı/
�

#`�1
;

and the mapping

‡ W Œ�1; 1�`�1! @.Œ�1; 1�`�1/;

s
�
2
.1�ı/

0 .V2.s0/; : : : ;V`.s0// 7!
s
�
2
.1�ı/
�

K
.V2.s�/; : : : ;V`.s�//;

is well-defined. Applying the transverse-crossing property given in part (ii) of Proposition 3.6, we see
that .b.s/; q.s// leaves SK.s/ at s D s0; hence, s� D s0. This is a contradiction since ‡ is the identity
map on the boundary sphere and it cannot be a continuous retraction of the unit ball. This concludes the
proof of Proposition 3.5, assuming that Proposition 3.6 holds.

� Conclusion of Theorem 1.1 assuming Proposition 3.6. From Proposition 3.5, we know that there exists
initial data .b.s0/; q.s0// such that

.b.s/; q.s// 2 SK.s/ for all s � s0:

From (4-57), (4-58), we have
���t D c.u0/�

2`�
` Œ1C o.1/�;
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which yields

��1�
2`�
` �t D c.u0/.1C o.1//:

We easily conclude that � vanishes in finite time T D T .u0/ <C1 with the following behavior near the
blowup time:

�.t/D c.u0/.1C o.1//.T � t /
`
 ;

which is the conclusion of item (i) of Theorem 1.1.
For the control of the Sobolev norms, we observe from (B-3) and Definition 3.2 that

for all „C 2�m� k;
Z
j@2my qj2 . E2m! 0 as s!C1:

From the relation d D 4„C 4ıC 2 , we deduce that

for all � 2
�
d
2
C 3; 2k

�
;

Z
jr
�qj2! 0 as s!C1;

which yields (ii) of Theorem 1.1.

4. Reduction of the problem to a finite-dimensional one

We now prove Proposition 3.6, which is the heart of our analysis. We proceed in three separate subsections:

� In the first subsection, we derive the laws for the parameters .b; �/ thanks to the orthogonality
condition (3-3) and the coercivity of the powers of L .

� In the second subsection, we prove the main monotonicity tools for the control of the infinite-
dimensional part of the solution. In particular, we derive a suitable Lyapunov functional for the E2k

energy, as well as the monotonicity formula for the lower Sobolev energy.

� In the third subsection, we conclude the proof of Proposition 3.6 thanks to the identities obtained in
the first two parts.

4A. Modulation equations. We derive here the modulation equations for .b; �/. The derivation is mainly
based on the orthogonality (3-3) and the coercivity of the powers of L . Let us start with elementary
estimates relating to the fixed direction ˆM .

Lemma 4.1 (estimate for ˆM ). Given ˆM as defined in (3-4), we have

jck;M j.M 2k for all 1� k � L;Z
jˆM j

2 .M d�2 ;

Z
jLˆM j

2 .M d�2�4:

Proof. Arguing by induction, we assume that

jcj;M j.M 2j ; 1� j � k:
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Using the fact that L jTi is admissible of degree .maxf0; i � j g; i � j /, we estimate from the definition
(3-5),

jckC1;M j.
1

M d�2

kX
jD0

M 2j

Z
j�MƒQL j .TkC1/j

.
1

M d�2

kX
jD0

M 2j

Z
y�M

yd�1

y
y2.kC1�j /� dy .M 2.kC1/:

Using the estimate for ck;M yieldsZ
jˆM j

2 .
Z
j�MƒQj

2
C

LX
jD1

jcj;M j
2

Z
jL j .�MƒQ/j

2 .M d�2�4;

and Z
jLˆM j

2 .
LX
jD0

jcj;M j
2

Z
jL jC1.�MƒQ/j

2 .M d�2 : �

From the orthogonality conditions (3-3) and (3-9), we claim the following:

Lemma 4.2 (modulation equations). Take „, ı and � as defined in (1-18) and (1-20). For K � 1, we
assume that there is s0.K/� 1 such that .b.s/; q.s// 2 SK.s/ for s 2 Œs0; s1� for some s1 � s0. Then, the
following hold for s 2 Œs0; s1�:

L�1X
kD1

j.bk/sC .2k� /b1bk � bkC1jC

ˇ̌̌̌
b1C

�s

�

ˇ̌̌̌
. bLC1C.1�ı/.1C�/1 ; (4-1)

and

j.bL/sC .2L� /b1bLj.
p

E2k

M 2ı
C b

LC1C.1�ı/.1C�/
1 : (4-2)

Proof. We start with the law for bL. Let

D.t/D

ˇ̌̌̌
b1C

�s

�

ˇ̌̌̌
C

LX
kD1

j.bk/sC .2k� /b1bk � bkC1j;

where we recall that bk � 0 if k � LC 1.
Now, we take the inner product of (3-9) with LLˆM and use the orthogonality (3-3) to write

hbMod.t/;LLˆM i D �hL
L z‰b; ˆM i � hL

LC1q;ˆM i �

�
�
�s

�
ƒq�L.q/CN .q/;LLˆM

�
: (4-3)

From the definition (3-4), we see that ˆM is localized in y � 2M. From (3-10) and (2-24), we compute
by using the identity (3-8),

hbMod.t/;LLˆM i D .�1/
L
hƒQ;ˆM iŒ.bL/sC .2L� /b1bL�CO.MC b1D.t//:
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The error term is estimated by using (2-26) with mD L�„� 1 and Lemma 4.1:

jhLL z‰b; ˆM ij �

�Z
y�2M

jLL z‰bj
2

�1
2
�Z
y�2M

jˆM j
2

�1
2

.MC bLC31 . bLC1C.1�ı/.1C�/1 :

For the linear term, we apply Lemma A.5 with k D k� 1:

E2k.q/&
Z

jLLC1qj2

y4.1Cy4.„�1//
&
Z
jLLC1qj2

1Cy4„
:

Hence, the Cauchy–Schwarz inequality yields

jhLLC1q;ˆM ij.M 2„

�Z
jLLC1qj2

1Cy4„

�1
2
�Z
jˆM j

2

�1
2

.M 2„Cd
2
�
p

E2k:

The remaining terms are easily estimated by using the following bound coming from Lemma A.5 and
Lemma A.4:

E2k.q/&
Z

jL qj2

y4.1Cy4.k�2//
&
Z

j@yqj
2

y4.1Cy4.k�2/C2/
C

Z
q2

y6.1Cy4.k�2/C2/
: (4-4)

This implies ˇ̌̌̌�
�
�s

�
ƒqCL.q/CN .q/;LLˆM

�ˇ̌̌̌
.MC b1.

p
E2kCD.t//:

Putting all the above estimates into (4-3) and using (3-6) together with the relation (1-18), we arrive at

j.bL/sC .2L� /b1bLj.
p

E2k

M 2ı
C b

LC1C.1�ı/.1C�/
1 CMC b1D.t/: (4-5)

For the modulation equations for bk with 1 � k � L� 1, we take the inner product of (3-9) with
L kˆM and use the orthogonality (3-3) to write for 1� k � L� 1,

hbMod.t/;L kˆM i D �hL
k z‰b; ˆM i �

�
�
�s

�
ƒq�L.q/CN .q/;L kˆM

�
:

Proceeding as for bL, we end up with

j.bk/sC .2k� /b1bk � bkC1j. b
LC1C.1�ı/.1C�/
1 CMC b1.

p
E2kCD.t//: (4-6)

Similarly, we have by taking the inner product of (3-9) with ˆM ,ˇ̌̌̌
�s

�
C b1

ˇ̌̌̌
. bLC1C.1�ı/.1C�/1 CMC b1.

p
E2kCD.t//: (4-7)

From (4-5), (4-6) and (4-7), we obtain the round bound

D.t/.MC
p

E2kC b
LC1C.1�ı/.1C�/
1 :

The conclusion then follows by substituting this bound into (4-5), (4-6) and (4-7). �
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From the bound for Ek given in Definition 3.2 and the modulation equation (4-2), we only have the
pointwise bound

j.bL/sC .2L� /b1bLj. bLC.1�ı/.1C�/1 ;

which is not good enough to close the expected one

j.bL/sC .2L� /b1bLj � bLC11 :

We claim that the main linear term can be removed up to an oscillation in time leading to the improved
modulation equation for bL as follows:

Lemma 4.3 (improved modulation equation for bL). Under the assumption of Lemma 4.2, the following
bound holds for all s 2 Œs0; s1�:ˇ̌̌̌

.bL/sC .2L� /b1bLC
d

ds

�
hLLq; �B0ƒQi

hƒQ;�B0ƒQi

�̌̌̌̌
.

1

B2ı0
ŒC.M/

p
E2kC b

LC1C.1�ı/�CL�
1 �: (4-8)

Proof. We commute (3-9) with LL and take the inner product with �B0ƒQ to get

hƒQ;�B0ƒQi

�
d

ds

�
hLLq; �B0ƒQi

hƒQ;�B0ƒQi

�
� hLLq; �B0ƒQi

d

ds

�
1

hƒQ;�B0ƒQi

��
D hLLq;ƒQ@s.�B0/i � hL

LC1q; �B0ƒQiC
�s

�
hLLƒq; �B0ƒQi

� hLL z‰b; �B0ƒQi � hL
L bMod.t/; �B0ƒQiC hL

L.L.q/�N .q//; �B0ƒQi: (4-9)

We recall from (2-5) that

B
d�2
0 . jhƒQ;�B0ƒQij. B

d�2
0 : (4-10)

Let us estimate the second term in the left-hand side of (4-9). We use Cauchy–Schwarz and Lemma A.5
to estimate

jhLLq; �B0ƒQij. B
2„C2
0 k�B0ƒQkL2

�Z
jLLqj2

1Cy4„C4

�1
2

. B
d
2
�C2„C2

0

p
E2k: (4-11)

We writeˇ̌̌̌
hLLq; �B0ƒQi

d

ds

�
1

hƒQ;�B0ƒQi

�ˇ̌̌̌
.
jhLLq; �B0ƒQij

hƒQ;�B0ƒQi
2

ˇ̌̌̌
.b1/s

b1

ˇ̌̌̌ Z
B0�y�2B0

jƒQj2

. b1
B
d
2
�C2„C2

0

p
E2k

B
2d�4
0

B
d�2
0 .

p
E2k

B2ı0
;

where we used the relation (1-18).
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For the first three terms in the right-hand side of (4-9), we use Cauchy–Schwarz, Lemma A.5 and the
fact that L .ƒQ/D 0 to find that

jhLLq;ƒQ@s.�B0/ij.
ˇ̌̌̌
.b1/s

b1

ˇ̌̌̌�Z
B0�y�2B0

.1Cy4„C4/jƒQj2
�1
2
�Z

jLLqj2

1Cy4„C4

�1
2

. b1B
d
2
�C2„C2

0

p
E2k . B

d
2
�C2„

0

p
E2k;

jhLLC1q; �B0ƒQij.
�Z

.1Cy4„/j�B0ƒQj
2

�1
2
�Z
jLLC1qj2

1Cy4„

�1
2

. B
d
2
�C2„

0

p
E2k

and ˇ̌̌̌
�s

�
hLLƒq; �B0ƒQi

ˇ̌̌̌
. b1

�Z
.1Cy4.LC„/C2/jLL.�B0ƒQ/j

2

�1
2
�Z

j@yqj
2

1Cy4.LC„/C2

�1
2

. B
d
2
�C2„

0

p
E2k:

The error term is estimated by using (2-46):

jhLL z‰b; �B0ƒQij.
�Z

.1Cy4.LC„C1//jLL.�B0ƒQ/j
2

�1
2
�Z

j z‰bj
2

1Cy4.LC„C1/

�1
2

. B
d
2
�C2„C2

0 b
LC2C.1�ı/�CL�
1 :

The last term in the right-hand side of (4-9) is estimated in the same way:

jhLL.L.q/�N .q//; �B0ƒQij.
Z
jL.q/LL.�B0ƒQ/jC

Z
jN .q/LL.�B0ƒQ/j

.
�Z

jL.q/j2

1Cy4k�4

�1
2
�Z

.1Cy4k�4/jLL.�B0ƒQ/j
2

�1
2

C

�Z
jN .q/j2

1Cy4k

�1
2
�Z

.1Cy4k/jLL.�B0ƒQ/j
2

�1
2

. B
d
2
�1�C2„

0

p
E2kC b1B

2
0B

d
2
�1�C2„

0

p
Ek

. B
d
2
�C2„

0

p
E2k:

For the remaining term, we recall that L .ƒQ/D0, LLTkD0 for 1�k�L�1, and LLTLD .�1/
LƒQ,

from which
LL.Tk�B1/D�LL.Tk.1��B1//; 1� k � L� 1:

From (3-10), (2-24) and the fact that �B0.1��B1/D 0, we writeˇ̌
hLL bMod.t/;�B0ƒQi�.�1/

L
hƒQ;�B0ƒQiŒ.bL/sC.2L�/b1bL�

ˇ̌
.

LX
kD1

j.bk/sC.2k�/b1bL�bkC1j

ˇ̌̌̌� LC2X
jDkC1

@ zSj

@bk
;LL.�B0ƒQ/

�ˇ̌̌̌
C

ˇ̌̌̌
�s

�
Cb1

ˇ̌̌̌
jhƒz‚b;L

L.�B0ƒQ/ij:
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Recalling that Tk is admissible of degree .k; k/ and Sk is homogeneous of degree .k; k�1; k/, we derive
the round bounds for y � B0:

jƒ‚bj. b1y2� ;
LC2X
jDkC1

ˇ̌̌̌
@Sj

@bk

ˇ̌̌̌
�

LC2X
jDkC1

b
j�k
1 y2.j�1/� . b1y2k� :

Thus, from Lemma 4.2, we derive the boundˇ̌̌̌
�s

�
C b1

ˇ̌̌̌
jhƒz‚b;L

L.�B0ƒQ/ijC

LX
kD1

j.bk/sC .2k� /b1bL� bkC1j

ˇ̌̌̌� LC2X
jDkC1

@ zSj

@bk
;LL.�B0ƒQ/

�ˇ̌̌̌

. .C.M/
p

E2kC b
LC1C.1�ı/.1C�/
1 /b1

Z
B0�y�2B0

y2L�yd�1

y2LC
dy

. .C.M/
p

E2kC b
LC1C.1�ı/.1C�/
1 /b1B

d�2
0 :

The equation (4-8) follows by gathering all the above estimates into (4-9), dividing both sides of (4-9)
by .�1/LhƒQ;�B0ƒQi and using the relation (1-18). �

4B. Monotonicity. We derive in this subsection the main monotonicity formula for E2k for „C1� k� k.
We claim the following which is the heart of this paper:

Proposition 4.4 (Lyapounov monotonicity for the high Sobolev norm). We have

d

dt

�
E2k

�4k�d
Œ1CO.b�.1�ı/1 /�

�
�

b1

�4k�dC2

�
E2k

M 2ı
Cb

LC.1�ı/.1C�/
1

p
E2kCb

2LC2.1�ı/.1C�/
1

�
; (4-12)

and for „C 2�m� k� 1,

d

dt

�
E2m

�4m�d
Œ1CO.b1/�

�
�

b1

�4m�dC2
Œb
m�„�1C.1�ı/�C�
1

p
E2mC b

2.m�„�1/C2.1�ı/�C�
1 �: (4-13)

Proof. The proof uses some ideas developed in [Raphaël and Schweyer 2014b; Merle, Raphaël and
Rodnianski 2015]. Because the proof of (4-13) follows exactly the same lines as for (4-12), we only deal
with the proof of (4-12). Let us start the proof of (4-12).

Step 1: suitable derivatives and energy identity. For k 2N, we define the suitable derivatives of q and v
as follows:

q2k DL kq; q2kC1 D A L kq; v2k DL k
� v; v2kC1 D A�L k

� v; (4-14)

where q D q.y; s/ and vD v.r; t/ satisfy (3-9) and (3-14) respectively, the linearized operator L and L�
are defined by (1-22) and (3-13), A and A � are the first-order operators defined by (2-6) and (2-7), and

A�f D�@rf C
V�

r
f; A �� f D

1

rd�1
@r.r

d�1f /C
V�

r
f;

with V Dƒ logƒQ admitting the asymptotic behaviors as in (2-8).
With the notation (4-14), we note that

q2kC1 D A q2k; q2kC2 D A �q2kC1; v2kC1 D A�v2k; v2kC2 D A �� v2kC1:
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Recall from Lemma 2.2, we have the factorization

L D A �A ; zL D A A �; L� D A �� A�; zL� D A�A �� ;

where

zL D�@yy �
d � 1

y
@y C

zZ

y2
; (4-15)

zL� D�@rr �
d � 1

r
@r C

zZ�

r2
; (4-16)

with zZ expressed in terms of V as in (2-13).
We commute (3-14) with L k�1

�
and use the notation (4-14) to derive

@tv2k�2CL�v2k�2 D Œ@t ;L
k�1
� �vCL k�1

�

�
1

�2
F�
�
: (4-17)

Now commuting this equation with A� yields

@tv2k�1C zL�v2k�1 D
@tV�

r
v2k�2CA�Œ@t ;L

k�1
� �vCA�L k�1

�

�
1

�2
F�
�
: (4-18)

Since L� D .1=�
2/L , we then have

L k
� v D

1

�2k
L kqI

hence, Z
jL k
� vj

2
D

1

�4k�d

Z
jL kqj2:

Using the definition (4-16) of zL� and an integration by parts, we write

1

2

d

dt

�
1

�4k�d
E2k

�
D
1

2

d

dt

Z
jL k
� vj

2
D
1

2

d

dt

Z
zL�v2k�1v2k�1

D

Z
zL�v2k�1@tv2k�1C

1

2

Z
@t . zZ�/

r2
v22k�1

D

Z
zL�v2k�1@tv2k�1C b1

Z
.ƒ zZ/�

2�2r2
v22k�1�

�
�s

�
C b1

�Z
.ƒ zZ/�

2�2r2
v22k�1:

Using the definition (2-7) of A � and an integration by parts together with the definition (2-13) of zZ, we
write Z

b1.ƒV /�

�2r
v2k�1A

�
� v2k�1 D

b1

�4k�dC2

Z
ƒV

y
q2k�1A

�q2k�1

D
b1

�4k�dC2

Z
ƒV.2V C d/�ƒ2V

2y2
q22k�1

D
b1

�4k�dC2

Z
ƒ zZ

2y2
q22k�1 D

Z
b1.ƒ zZ/�

2�2r2
v22k�1:
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From (4-17), we write

d

dt

Z
b1.ƒV /�

�2r
v2k�1v2k�2 D

Z
d

dt

�
b1.ƒV /�

�2r

�
v2k�1v2k�2C

Z
b1.ƒV /�

�2r
v2k�2@tv2k�1

C

Z
b1.ƒV /�

�2r
v2k�1

�
�A �� v2k�1C Œ@t ;L

k�1
� �vCL k�1

�

�
1

�2
F�
��
:

Gathering all the above identities and using (4-18) yields the energy identity

1

2

d

dt

��
1

�4k�d
E2k

�
C2

Z
b1.ƒV /�

�2r
v2k�1v2k�2

�
D�

Z
j zL�v2k�1j

2
�

�
�s

�
Cb1

�Z
.ƒ zZ/�

2�2r2
v22k�1�

Z
b1.ƒV /�

�2r
v2k�2 zL�v2k�1

C

Z
d

dt

�
b1.ƒV /�

�2r

�
v2k�1v2k�2C

Z
b1.ƒV /�

�2r
v2k�1

�
Œ@t ;L

k�1
� �vCL k�1

�

�
1

�2
F�
��

C

Z �
zL�v2k�1C

b1.ƒV /�

�2r
v2k�2

��
@tV�

r
v2k�2CA�Œ@t ;L

k�1
� �vCA�L k�1

�

�
1

�2
F�
��
: (4-19)

We now estimate all terms in (4-19). The proof uses the coercivity estimate given in Lemma A.5. In
particular, we shall apply Lemma A.5 with k D k� 1 to get the estimate

E2k &
Z
jq2k�1j

2

y2
C

k�1X
mD0

Z
jq2mj

2

y4.1Cy4.k�1�m//
C

k�2X
mD0

Z
jq2mC1j

2

y6.1Cy4.k�2�m//
: (4-20)

Step 2: control of the lower-order quadratic terms. Let us start with the second term in the left-hand side
of (4-19). From (2-8) and (2-13), we have the round bound

jƒ zZ.y/jC jƒV.y/j.
y2

1Cy4
for all y 2 Œ0;C1/: (4-21)

Making a change of variables and using the Cauchy–Schwarz inequality together with (4-20), we estimateˇ̌̌̌Z
b1.ƒV /�

�2r
v2k�1v2k�2

ˇ̌̌̌
D

ˇ̌̌̌
b1

�4k�d
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ƒV
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�Z
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.
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�4k�d
E2k:

Using (4-21), (4-1) and (4-20), we estimateˇ̌̌̌�
�s
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C b1

�Z
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v22k�1
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�4k�dC2
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q22k�1

ˇ̌̌̌

.
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LC1C.1�ı/.1C�/
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�4k�dC2

Z
q22k�1

y2
.

b21

�4k�dC2
E2k:
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For the third term in the right-hand side of (4-19), we writeˇ̌̌̌Z
b1.ƒV /�

�2r
v2k�2 zL�v2k�1

ˇ̌̌̌
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4

Z
j zL�v2k�1j
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C 4

Z �
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Z
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Z
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q22k�2

�
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4

Z
j zL�v2k�1j

2
C

Cb21

�4k�dC2
E2k:

A direct computation yields the round boundˇ̌̌̌
d

dt

�
b1.ƒV /�

�2

�ˇ̌̌̌
.
b21
�4
.jƒV jC jƒ2V j/:

Thus, we use (4-21), the Cauchy–Schwarz inequality and (4-20) to estimateˇ̌̌̌Z
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dt
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.
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Similarly, we haveˇ̌̌̌Z �
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Z
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�
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Z
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2
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We claim the bound Z
jŒ@t ;L

k�1
�

�vj2

�2.1Cy2/
C

Z
jA�Œ@t ;L

k�1
� �vj2 .

b21

�4k�dC2
E2k; (4-22)

whose proof is left to Appendix C.
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The collection of all the above estimates to (4-19) yields
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�
: (4-23)

Step 3: further use of dissipation. We aim to estimate all terms in the right-hand side of (4-23). From
(4-21), (4-20) and the Cauchy–Schwarz inequality, we writeˇ̌̌̌Z
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Similarly, we haveˇ̌̌̌Z
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For the last term in (4-23), let us introduce the function

�L D
hLLq; �B0ƒQi

hƒQ;�B0ƒQi
zTL (4-24)

and the decomposition

F D @s�LCF0CF1; F0 D�z‰b � bMod� @s�L; F1 DH.q/�N .q/; (4-25)

where z‰b is as referred to in (2-42), and bMod, H.q/ and N .q/ are as defined in (3-10) (3-11) and (3-12)
respectively. Actually, we introduced the decomposition (4-25) and �L to take advantage of the improved
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bound obtained in Lemma 4.3. We now writeZ
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Injecting all these bounds into (4-23) yields

1

2

d

dt

�
E2k

�4k�d
Œ1CO.b1/�

�
� �

1

8

Z
j zL�v2k�1j

2
C

Cb21

�4k�dC2
E2kC

1

�4k�dC2

Z
L kqL k.@s�L/

C
b1

�4k�dC2

p
E2k

��Z
jA L k�1F j2

1Cy2

�1
2

C

�Z
jL k�1F j2

1Cy4

�1
2
�

C
C

�4k�dC2

�p
E2kkL

kF0kL2 CkA L k�1F1k2L2
�
: (4-26)

Step 4: estimates for z‰b term. Recall from (2-44) that we already have the following estimate for z‰b:

kL k z‰bkL2 C
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jA L k�1 z‰bj
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�Z
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Step 5: estimates for bMod term. We claim the following:�Z
jL k�1 bModj2

1Cy4
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C
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; (4-28)
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�
; (4-29)

where
eModD bModC @s�L:

Let us prove (4-28). We only deal with the first term since the second term is estimated similarly. We
recall from (3-10) the definition of bMod:

bModD�
�
�s

�
C b1

�
ƒ zQbC

LX
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�
zTi C

X
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@bi
�B1

�
;
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where zQb is defined as in (2-41) and we know from Lemma 2.9 that Ti is admissible of degree .i; i/ and
from Proposition 2.11 that Sj is homogeneous of degree .j; j � 1; j /.

Since jbj j. bj1 and LƒQD 0, we use Lemma 2.8 to estimateZ
jL k�1ƒ zQbj

2
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.
LX
iD1

b2i

Z
jL k�1ƒ zTi j
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C b2LC41

Z
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1Cy4„C2

. b21 ;

where we used the algebra 4.k�L/C 2 � d C 1D 5� 4ı > 1.
Using the cancellation L kTi D 0 for 1� i � L and the admissibility of Ti , we estimate

LX
iD1

Z
jL k�1.�B1Ti /j

2

1Cy4
.

LX
iD1

Z
B1�y�2B1

y4.i�k/�2Cd�1 dy . b2.1�ı/.1C�/1 :

Using the homogeneity of Sj , we estimate for 1� i � L,

LC2X
jDiC1

Z
1

1Cy4

ˇ̌̌̌
L k�1

�
�B1

@Sj

@bi

�ˇ̌̌̌2
.

LC2X
jDiC1

b
2.j�i/
1

Z
B1�y�2B1

y4.j�1�k/�2yd�1 dy . b21 ;

provided that �� 1
ı
� 1.

The collection of the above bounds together with (4-1) and (4-2) yields�Z
jL k�1 bModj2

1Cy4

�1
2

. b.1�ı/.1C�/1

�p
E2k

M 2ı
C b

LC1C.1�ı/.1C�/
1

�
:

The same estimate holds for
�R
jA L k�1 bModj2=.1Cy2/

�1=2 by following the same lines as above. This
concludes the proof of (4-28).

We now prove (4-29). Let us write

eModD�
�
�s

�
C b1

�
ƒ zQbC

L�1X
iD1

Œ.bi /sC .2i � /b1bi � biC1� zTi

C

LX
iD1

Œ.bi /sC .2i � /b1bi � biC1��B1

LC2X
jDiC1

@Sj

@bi

C

�
.bL/sC .2i � /b1bLC

d

ds

�
hLLq; �B0ƒQi

hƒQ;�B0ƒQi

��
zTLC

hLLq; �B0ƒQi

hƒQ;�B0ƒQi
@s zTL:
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Proceeding as in the proof of (4-28) yields the estimateZ
jL kƒ zQbj

2
C

L�1X
iD1

Z
jL k zTi j

2
C

LX
iD1

LC2X
jDiC1

Z ˇ̌̌̌
L k

�
�B1

@Sj

@bi

�ˇ̌̌̌2
. b21 ;

and Z
jL k zTLj

2 . b2.1�ı/.1C�/1 : (4-30)

From (4-10) and (4-11), we have the boundˇ̌̌̌
hLLq; �B0ƒQi

hƒQ;�B0ƒQi

ˇ̌̌̌
. B2.1�ı/0

p
E2k D b

�.1�ı/
1

p
E2k: (4-31)

We also have Z
jL k.@s�B1TL/j

2 . b21
Z
B1�y�2B1

yd�1 dy

y4.k�L/C2
. b21b

2.1�ı/.1C�/
1 :

The collection of the above bounds together with Lemmas 4.2 and 4.3 yields�Z
jL k eModj2

�1
2

. b1
�p

E2k

M 2ı
C b

LC1C.1�ı/.1C�/
1

�
C b

.1�ı/.1C�/
1 bı1.C.M/

p
E2kC b

LC1C.1�ı/.1C�/
1 /

C b
�.1�ı/
1

p
E2kb1b

.1�ı/.1C�/
1

. b1
�p

E2k

M 2ı
C b

�.1�ı/
1

p
E2kC b

LC1C.1�ı/.1C�/
1

�
;

which is the conclusion of (4-29).
Injecting the estimates (4-27), (4-28) and (4-29) into (4-26), we arrive at

1

2

d

dt

�
E2k

�4k�d
Œ1CO.b1/�

�
� �

1

8

Z
j zL�v2k�1j

2
C

b1

�4k�dC2

�
E2k

M 2ı
C b

�.1�ı/
1 E2kC b

LC.1�ı/.1C�/
1

p
E2k

�

C
b1
p

E2k

�4k�dC2

��Z
jA L k�1F1j2

1Cy2

�1
2

C

�Z
jL k�1F1j2

1Cy4

�1
2
�

C
1

�4k�dC2
kA L k�1F1k2L2 C

1

�4k�dC2

Z
L kqL k.@s�L/: (4-32)

Step 6: estimates for the linear small term H.q/. We claimZ
jA L k�1H.q/j2C

Z
jA L k�1H.q/j2

1Cy2
C
jL k�1H.q/j2

1Cy4
. b21E2k: (4-33)

We only deal with the estimate for the first term because the last two terms are estimated similarly. Let us
rewrite from (3-11) the definition of H.q/,

H.q/Dˆq with ˆD
.d � 1/

y2
Œcos.2Q/� cos.2QC 2z‚b/�;
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where

z‚b D

LX
iD1

bi zTi C

LC2X
iD2

zSi .b; y/:

From the asymptotic behavior of Q given in (2-4), the admissibility of Ti and the homogeneity of Si , we
deduce that ˆ is a regular function both at the origin and at infinity. We then apply the Leibniz rule (C-2)
with k D k� 1 and � Dˆ to write

A L k�1H.q/D
k�1X
mD0

Œq2mC1ˆ2k�1;2mC1C q2mˆ2k�1;2m�;

where ˆ2k�1;i with 0 � i � 2k � 1 are defined by the recurrence relation given in Lemma C.1. In
particular, we have the estimate

jˆk;i j.
b1

1CyC.k�i/
.

b1

1Cy1Ck�i
for all k � 1; 0� i � k:

Hence, we estimate from (4-20),Z
jA L k�1H.q/j2 .

k�1X
mD0

�Z
jq2mC1ˆ2k�1;2mC1j

2
C

Z
jq2mˆ2k�1;2mj

2

�

. b21
k�1X
mD0

�Z
jq2mC1j

2

1Cy2C2.2k�1�2m�1/
C

Z
jq2mj

2

1Cy2C2.2k�1�2m/

�

. b21
k�1X
mD0

�Z
jq2mC1j

2

1Cy2C4.k�1�m/
C

Z
jq2mj

2

1Cy4C4.k�1�m/

�
. b21E2k:

This concludes the proof of (4-33).

Step 7: estimates for the nonlinear term N .q/. This is the most delicate point in the proof of (4-12). We
claim the following: Z

jA L k�1N .q/j2 . b2LC1C2.1�ı/.1C�/1 ; (4-34)Z
jA L k�1N .q/j2

1Cy2
C

Z
jL k�1N .q/j2

1Cy4
. b2LC2C2.1�ı/.1C�/1 ; (4-35)

provided that � and 1=L are small enough. We only deal with the proof of (4-34) since the same proof
holds for (4-35).

Control for y < 1. Let us rewrite from (3-12) the definition of N .q/:

N .q/D
q2

y
ˆ with ˆD

�
�
.d � 1/

y

Z 1

0

.1� �/ sin.2 zQbC 2�q/ d�
�
:
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From (B-2) and the admissibility of Ti , we write

q2

y
D
1

y

� kX
iD0

ciTi .y/C rq.y/

�2
D

k�1X
iD0

Qciy
2iC1
C Qrq for y < 1; (4-36)

where
j Qci j. E2k; j@jy Qrq.y/j. y

2k�d
2
�j
j lnyjkE2k; 0� j � 2k� 1; y < 1:

Let � 2 Œ0; 1� and
v� D zQbC �q:

We obtain from Proposition 2.11 and the expansion (B-2),

v� D

k�1X
iD0

Ociy
2iC1
C Orq;

with
j Oci j. 1; j@jy Orqj. y

2k�d
2
�j
j lnyjk; 0� j � 2k� 1; y < 1:

Together with the Taylor expansion of sin.x/ at x D 0, we write

ˆ.q/D

k�1X
iD0

Nciy
2i
C Nrq; (4-37)

with
j Nci j. 1; j@jy Nrqj. y

2k�d
2
�1�j

j lnyjk; 0� j � 2k� 1; y < 1:

From (4-36) and (4-37), we have the expansion of N near the origin,

N .q/D
k�1X
iD0

OQciy
2iC1
C OQrq;

with
j OQci j. E2k; j@jy

OQrqj. y2k�d
2
�j
j lnyjkE2k; 0� j � 2k� 1; y < 1:

From the definitions of A and A �, see (2-6) and (2-7), one can check that for y < 1,

jA L k�1 OQrqj.
2k�1X
iD0

@iy
OQrq

y2k�1�i
. E2k

2k�1X
iD0

y2k�d
2
�i
j lnyjk

y2k�1�i
. y�

d
2
C1
j lnyjkE2k:

Note from the asymptotic behavior (2-8) of V that A .y/DO.y2/ for y < 1, which impliesˇ̌̌̌
A L k�1

�k�1X
iD0

OQciy
2iC1

�ˇ̌̌̌
.

k�1X
iD0

j OQci jy
2 . y2E2k:

We then concludeZ
y<1

jA L k�1N .q/j2 . E 22k

Z
y<1

yj lnyj2k dy . E 22k . b
2LC1C2.1�ı/.1C�/
1 :
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Control for y � 1. Let us rewrite the definition of N .q/:

N .q/DZ2 ; Z D
q

y
;  D�.d � 1/

Z 1

0

.1� �/ sin.2 zQbC 2�q/ d�: (4-38)

Note from the definitions of A and A � that

for all k 2 N; jA L kf j.
2kC1X
iD0

j@iyf j

y2kC1�i
;

from which and the Leibniz rule, we writeZ
y�1

jA L k�1N .q/j2 .
2k�1X
kD0

Z
y�1

j@kyN .q/j2

y4k�2k�2

.
2k�1X
kD0

kX
iD0

Z
y�1

j@iyZ
2j2j@k�iy  j2

y4k�2k�2

.
2k�1X
kD0

kX
iD0

iX
mD0

Z
y�1

j@my Zj
2j@i�my Zj2j@k�iy  j2

y4k�2k�2
:

We aim to use the pointwise estimate (B-5) to prove that for 0� k � 2k�1, 0� i � k and 0�m� i ,

Ak;i;m WD

Z
y�1

j@my Zj
2j@i�my Zj2j@k�iy  j2

y4k�2k�2
. b2LC1C2.1�ı/.1C�/1 ; (4-39)

which concludes the proof of (4-34).
To prove (4-39), we distinguish three cases:

Case I: kD 0. Since 0�m� i � k, we have kD i DmD 0. Although this is the simplest case, it gives us
a basic idea to handle the other cases. From (4-38), it is obvious that j j is uniformly bounded. We write

A0;0;0 D

Z
y�1

jqj4j j2

y4kC2
yd�1 dy .

Z
1�y�B0

jqj4

y4kC3�d
dyC

Z
y�B0

jqj4

y4kC3�d
dy:

Using (B-5), Definition 3.2, b1 � 1
s

and the fact that d D 4„C 2 C 4ı, see (1-18), we estimateZ
1�y�B0

jqj4

y4kC3�d
dy .

yd�2jqj2y2.2k�1/


L1.y>1/

 yd�2jqj2

y2.2`C2„C3/


L1.y>1/

Z
1�y�B0

y4`C5�4ı�2 dy

. E2kE2.`C„C2/B
4`C6�4ı�2
0

.Kb2LC2.1�ı/.1C�/1 b
2.`C1/C2.1�ı/�K�
1 b

�2`�3C2ıC
1

.Kb2LC2.1�ı/.1C�/1 b
1C�K�
1 . b2LC1C2.1�ı/.1C�/1 :



1-COROTATIONAL ENERGY SUPERCRITICAL HARMONIC HEAT FLOW 161

For the integral on the domain y � B0, let us writeZ
y�B0

jqj4

y4kC3�d
dy .

 yd�2jqj2

y2.2k�2`�1/


L1.y>1/

 yd�2jqj2

y2.2`C2„C1/


L1.y>1/

Z
y�B0

dy

y4ıC2�1

. E2.k�`/E2.`C„C1/B
2�4ı�2
0

. b2.k�`�„�1/C2.1�ı/�K�1 b
2`C2.1�ı/�K�
1 b

2ıC�1
1

. b2LC2.1�ı/.1C�/1 b
1C�.KC2.1�ı//�
1 . b2LC1C2.1�ı/.1C�/1 :

This concludes the proof of (4-39) when k D i DmD 0.

Case II: k � 1 and k D i . We first use the Leibniz rule to write

for all l 2 N; j@lyZj
2 .

lX
jD0

j@
j
yqj

2

y2C2l�2j
; (4-40)

from which,

Ak;k;m .
mX
jD0

k�mX
lD0

Z
y�1

j@
j
yqj

2j@lyqj
2

y4k�2j�2lC2
yd�1 dy:

We claim that for all .j; l/ 2 N2 and 1� j C l � 2k� 1,

Bj;l;0 WD

Z
y�1

j@
j
yqj

2j@lyqj
2

y4k�2j�2lC2
yd�1 dy . b2LC1C2.1�ı/.1C�/C

.�1/
2

1 ; (4-41)

which immediately follows from (4-39) for the case when k D i .
To prove (4-41), we proceed as for the case k D 0 by splitting the integral in two parts as follows:

Bj;l;0

D

Z
1�y�B0

.yd�2j@
j
yqj

2/.yd�2j@lyqj
2/

y4k�2j�2lC4„C6
y7�4ı�2 dyC

Z
y�B0

.yd�2j@
j
yqj

2/.yd�2j@lyqj
2/

y4k�2j�2lC4„

dy

y4ıC2�1

.
.yd�2j@jyqj2/.yd�2j@lyqj2/y4k�2j�2lC4„C6


L1.y�1/

b
2ıC�4
1 C

.yd�2j@jyqj2/.yd�2j@lyqj2/y4k�2j�2lC4„


L1.y�1/

b
2ıC�1
1

D

.yd�2j@jyqj2/.yd�2j@lyqj2/y2J1�2jC2J2�2l


L1.y�1/

b
2ıC�4
1 C

.yd�2j@jyqj2/.yd�2j@lyqj2/y2J3�2jC2J4�2l


L1.y�1/

b
2ıC�1
1

WDBj;l;0;J1;J2b
2ıC�4
1 CBj;l;0;J3;J4b

2ıC�1
1 ;

where Jn.nD 1; 2; 3; 4/ satisfy

J1CJ2 D 2kC 2„C 3; J3CJ4 D 2kC 2„:

We now estimate Bj;l;0;J1;J2 .
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� If l is even, we take

J2 D

�
l C 2 if l � 2k� 4;
l if l D 2k� 2:

This gives
2„C 4� J2 � 2k� 2; 2„C 5� J1 D 2kC 2„C 3�J2 � 2k� 1:

Using (B-5), we have the estimate

Bj;l;0;J1;J2 .
yd�2j@jyqj2y2J1�2j


L1.y�1/

yd�2j@lyqj2y2J2�2l


L1.y�1/

. EJ1C1
p

EJ2EJ2C2:

� If l is odd, we simply take J2 D l C 1, which gives

2„C 4� J2 � 2k� 2; 2„C 5� J1 � 2k� 1:

Hence,
Bj;l;0;J1;J2 . EJ1C1

p
EJ2EJ2C2:

Recall from Definition 3.2 that for all even integers m in the range 2„C 4�m� 2k,

Em �

(
b

`
2`�

.2m�d/

1 for 2„C 4�m� 2„C 2`;

b
m�2„�2C2.1�ı/�K�
1 for 2„C 2`C 2�m� 2k:

(4-42)

� If J1C 1� 2„C 2`C 2 and J2 � 2„C 2`C 2, then

Bj;l;0;J1;J2 . b
J1CJ2�4„�2C4.1�ı/�2K�
1 . b2LC2C4.1�ı/�K�1 :

� If J1C1� 2„C2`, then J2D 2kC2„C3�J1� 2k�2`C4� 2„C2`C2 because k� `. This implies

Bj;l;0;J1;J2 . b
`

2`�
.2J1C2�d/CJ2C1�2.„C1/C2.1�ı/�K�

1 . b2LC2C4.1�ı/�K�1 :

Hence, we obtain

Bj;l;0;J1;J2 . b
2LC2C4.1�ı/�K�
1 for J1CJ2 D 2kC 2„C 3:

Similarly, one can prove that

Bj;l;0;J3;J4 . b
2L�1C4.1�ı/�K�
1 for J3CJ4 D 2kC 2„:

Therefore,

Bj;l;0 . b
2LC2C4.1�ı/�K�
1 b

2ıC�4
1 C b

2L�1C4.1�ı/�K�
1 b

2ıC�1
1

. b2LC1C2.1�ı/.1C�/C.�1/�.KC2�2ı/�1 . b2LC1C2.1�ı/.1C�/C
.�1/
2

1

for �� . � 1/=.2.KC 2� 2ı//. This concludes the proof of (4-41) as well as (4-39) when k D i .

Case III: k � 1 and k� i � 1. Let us write from (4-39) and (4-40),

Ak;m;i .
mX
jD0

i�mX
lD0

Z
y�1

j@
j
yqj

2j@lyqj
2

y4k�2j�2lC2

j@k�iy  j2

y�2.k�i/
: (4-43)
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At this stage, we need to make precise the decay of j@ny j to archive the bound (4-39). To do so, let us
recall that Ti is admissible of degree .i; i/ (see Lemma 2.9) and Si is homogeneous of degree .i; i �1; i/
(see Proposition 2.11). Together with (2-4), we estimate

for all j � 1; j@jy zQbj.
1

yCj
C

2LC2X
lD1

bl1y
2l

yCj
1fy�2B1g .

b
�.2LC2/�
1

yCj
:

Let � 2 Œ0; 1� and v� D zQbC �q. We use the Faà di Bruno formula to write

for all n 2 N; j@ny j
2 .

Z 1

0

X
m�Dn

j@m1C���Cmnv�
sin.v� /j2

nY
iD1

j@iy
zQbC @

i
yqj

2mi d�

.
X
m�Dn

nY
iD1

�
b
�C.L/�
1

y2C2i
Cj@iyqj

2

�mi
; m� D

nX
iD1

imi :

For 1� y � B0, we use (B-5) to estimate

j@iyqj
2
D y4k�2i�2

ˇ̌̌̌
@iyq

y2k�i�1

ˇ̌̌̌2
� B4k�2i�d

0 E2k � b
�C.K/�CiC
1 �

b
�C.K/�
1

y2C2i
;

from which, we have

j@ny j
2 .

X
m�Dn

nY
iD1

�
b
�C.L/�
1

y2C2i
C
b
�C.K/�
1

y2C2i

�mi
.
b
�C.K;L/�
1

y2C2n
for all 1� y � B0: (4-44)

For y � B0, we use again (B-5) to write for all 1� n� 2k� 1,

j@ny j
2.

X
m�Dn

2„C2`C1Y
iD1

�
b
�C.L/�
1

y2C2i
Cy4„C4`C2�2i

ˇ̌̌̌
@iyq

y2„C2`C1�i

ˇ̌̌̌2�mi nY
iD2„C2`C1

�
b
�C.L/�
1

y2C2i
Cj@iyqj

2

�mi

.
X
m�Dn

2„C2`C1Y
iD1

.b
�C.L/�CCi
1 Cb

�K�CiC
1 b

2`C2.1�ı/
1 y4`C4.1�ı//mi

�

nY
iD2„C2`C1

.b
�C.L/�CCi
1 Cb

�K�CCi
1 /mi

. b�C.L;K/�CnC
Pn
iD1mi

1 .b1y
2/.2`C2.1�ı//

P2„C2`C1
iD1

mi for all y �B0:
(4-45)

Injecting (4-44) and (4-45) into (4-43), we arrive at

Ak;i;m . b
�C�
1

mX
jD0

i�mX
lD0

�Z
1�y�B0

j@
j
yqj

2j@lyqj
2

y4k�2j�2lC2C2
C b˛1

Z
y�B0

j@
j
yqj

2j@lyqj
2

y4k�2j�2lC2�2˛

�
;

where ˛ D k� i C .2`C 2.1� ı//
P2„C2`C1
iD1 mi . Arguing as for the proof of (4-41), we end up with

Ak;i;m . b
�C�
1 .b

2LC1CC2.1�ı/.1��/C .�1/
2

1 C b
2LC1C2.1�ı/.1��/C .�1/

2

1 /. b2LC1C2.1�ı/.1��/1
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for � small enough. This finishes the proof of (4-39) as well as (4-34). Since the proof of (4-35) follows
exactly the same lines as the proof of (4-34), we omit it.

Inserting (4-33), (4-34) and (4-35) into (4-32) and recalling from Definition 3.2 that

E2k �Kb
2LC2.1�ı/.1C�/
1 ;

we arrive at

1

2

d

dt

�
E2k

�4k�d
Œ1CO.b1/�

�
.

b1

�4k�dC2

�
E2k

M 2ı
Cb

LC.1�ı/.1C�/
1

p
E2kCb

2LC2.1�ı/.1C�/
1

�
C

1

�4k�dC2

Z
L kqL k.@s�L/: (4-46)

Step 8: time oscillations. In this step, we want to find the contribution of the last term in (4-46) to the
estimate (4-12). Let us write

1

�4k�dC2

Z
L kqL k.@s�L/D

d

ds

�
1

�4k�dC2

�Z
L kqL k�L�

1

2

Z
jL k�Lj

2

��
C
4k� d C 2

�4k�dC2

�s

�

�Z
L kqL k�LC

1

2

Z
jL k�Lj

2

�
�

1

�4k�dC2

Z
L k.@sq� @s�L/L

k�L: (4-47)

From (4-30) and (4-31), we have Z
jL k�Lj

2 . b2�.1�ı/1 E2k: (4-48)

This implies ˇ̌̌̌Z
L kqL k�L

ˇ̌̌̌
.
�Z
jL kqj2

�1
2
�Z
jL k�Lj

2

�1
2

.
p

E2k b
�.1�ı/
1

p
E2k b

.1�ı/.1C�/
1 D b

�.1�ı/
1 E2k:

Since dt=ds D �2, we then write

d

ds

�
1

�4k�dC2

�Z
L kqL k�L�

1

2

Z
jL k�Lj

2

��
D
d

dt

�
E2k

�4k�d
O.b�.1�ı/1 /

�
: (4-49)

Noting from (4-1) that j�s=�j. b1, this givesˇ̌̌̌
�s

�

�Z
L kqL k�LC

1

2

Z
jL k�Lj

2

�ˇ̌̌̌
. b1b�.1�ı/1 E2k: (4-50)

For the last term in (4-47), we use (3-9) and the decomposition (4-25) to writeZ
L k.@sq� @s�L/L

k�L

D

�
�

Z
L kqL kC1�LC

�s

�

Z
ƒqL 2k�L

�
C

Z
L kŒ�z‰b � eModCH.q/CN .q/�L k�L: (4-51)
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Using (4-31), the admissibility of TL and the fact that L kTi D 0 if i < k, we estimateZ
jL kC1�Lj

2 .
ˇ̌̌̌
hLLq; �B0ƒQi

hƒQ;�B0ƒQi

ˇ̌̌̌2 Z
jL kC1Œ.1��B1/TL�j

2

. b�2.1�ı/1 E2k

Z
y�B1

y2.2L��2.kC1//yd�1 dy

. b�2.1�ı/1 E2kb
.4�2ı/.1C�/
1 . b21b

2�.1�ı/
1 E2k;

from which we obtain ˇ̌̌̌Z
L kqL kC1�L

ˇ̌̌̌
. b1b�.1�ı/1 E2k:

Similarly, we have the estimateZ
.1Cy4k/jL 2k�Lj

2 . b�2.1�ı/1 E2k

Z
y�B1

y4ky2.2L��4k/yd�1 dy . b2�.1�ı/1 E2kI

hence, using (4-4) and (4-1), we getˇ̌̌̌
�s

�

Z
ƒqL 2k�L

ˇ̌̌̌
. b1

�Z
j@yqj

2

1Cy4k�2

�1
2
�Z

.1Cy4k/jL 2k�Lj
2

�1
2

. b1b�.1�ı/1 E2k:

From (4-48), (4-27) and (4-29), we haveˇ̌̌̌Z
L k.z‰bC eMod/L k�L

ˇ̌̌̌
.
�Z
jL k�Lj

2

�1
2
�Z
jL k.z‰bC eMod/j2

�1
2

. b1b�.1�ı/1 E2kC b1b
LC.1�ı/.1C�/
1

p
E2k:

In the same manner, we have the estimateZ
.1Cy4/jL kC1�Lj

2 . b�2.1�ı/1 E2k

Z
y�B1

y4y2.2L��2.kC1//yd�1 dy . b2�.1�ı/1 E2k;

from which, together with (4-33) and (4-35), we get the boundˇ̌̌̌Z
L k�1.H.q/CN .q//L kC1�L

ˇ̌̌̌
.
�Z
jL k�1.H.q/CN .q//j2

1Cy4

�1
2
�Z

.1Cy4/jL kC1�Lj
2

�1
2

. b1b�.1�ı/1 E2kC b1b
LC.1�ı/.1C�/
1

p
E2k:

Collecting these final bounds into (4-51) yieldsˇ̌̌̌Z
L k.@sq� @s�L/L

k�L

ˇ̌̌̌
. b1b�.1�ı/1 E2kC b1b

LC.1�ı/.1C�/
1

p
E2k: (4-52)

Substituting (4-47), (4-49), (4-50) and (4-52) into (4-46) concludes the proof of (4-12) as well as
Proposition 4.4. �
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4C. Conclusion of Proposition 3.6. We give the proof of Proposition 3.6 in this subsection in order to
complete the proof of Theorem 1.1. Note that this section corresponds to Section 6.1 of [Merle, Raphaël
and Rodnianski 2015]. Here we follow exactly the same lines as in that paper and no new ideas are
needed. We divide the proof into two parts:

Part 1: reduction to a finite-dimensional problem. Assume that for a given K > 0 large and an initial
time s0 � 1 large, we have .b.s/; q.s// 2 SK.s/ for all s 2 Œs0; s1� for some s1 � s0. By using (4-1),
(4-8), (4-12) and (4-13), we derive new bounds on V1.s/, bk.s/ for `C 1 � k � L and E2.„Cm/ for
1�m�LC1, which are better than those defining SK.s/ (see Definition 3.2). It then remains to control
.V2.s/; : : : ;V`.s//. This means that the problem is reduced to the control of a finite-dimensional function
.V2.s/; : : : ;V`.s//, and then we get the conclusion (i) of Proposition 3.6.

Part 2: transverse crossing. We aim to prove that if .V2.s/; : : : ;V`.s// touches

@ySK.s/ WD @
�
�

K

s
�
2 .1� ı/

;
K

s
�
2 .1� ı/

�̀ �1
at s D s1, it actually leaves @ySK.s/ at s D s1 for s1 � s0, provided that s0 is large enough. We then get
the conclusion (ii) of Proposition 3.6.

Part 1: reduction to a finite-dimensional problem. We give the proof of item (i) of Proposition 3.6 in this
part. Given K > 0, s0 � 1 and the initial data at sD s0 as in Definition 3.1, we assume for all s 2 Œs0; s1�,
.b.s/; q.s// 2 SK.s/ for some s1 � s0. We claim that for all s 2 Œs0; s1�,

jV1.s/j � s�
�
2
.1�ı/; (4-53)

jbk.s/j. s�.kC�.1�ı// for `C 1� k � L; (4-54)

E2m �

(
1
2
Ks�

`.4m�d/
2`� for „C 2�m� `C„;

1
2
s�2.m�„�1/�2.1�ı/CK� for `C„C 1�m� k� 1;

(4-55)

E2k �
1
2
Ks�.2LC2.1�ı/.1C�//; (4-56)

Once these estimates are proved, it immediately follows from Definition 3.2 of SK that if .b.s1/; q.s1// 2
@SK.s1/, then .V2; : : : ;V`//.s1/ must be in @ySK.s1/, which concludes the proof of Proposition 3.6(i).

Before going to the proof of (4-53)–(4-56), let us compute explicitly the scaling parameter �. To do so,
let us note from (2-51) and the a priori bound on U1 given in Definition 3.2

b1.s/D
c1

s
C

U1
s
D

`

.2`� /s
CO

�
1

s1Cc�

�
:

Using (4-1) yields

�
�s

�
D

`

.2`� /s
CO

�
1

s1Cc�

�
; (4-57)

from which we write ˇ̌̌
d

ds
flog.s

`
2`� �.s//g

ˇ̌̌
.

1

s1Cc�
:
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We now integrate by using the initial data value �.s0/D 1 to get

�.s/D

�
s0

s

� `
2`�

Œ1CO.s�c�/� for s0� 1: (4-58)

This implies

s
� `
2`�

0 .
s�

`
2`�

�.s/
. s
� `
2`�

0 : (4-59)

Improved control of E2k: We aim to use (4-12) to derive the improved bound (4-56). To do so, we inject
the bound of E2k given in Definition 3.2 into the monotonicity formula (4-12) and integrate in time by
using �.s0/D 1: For all s 2 Œs0; s1/,

E2k.s/� C�.s/
4k�d

�
E2k.s0/C

�
K

M 2ı
C
p
KC 1

�Z s

s0

��.2LC1C2.1�ı/.1C�//

�.�/4k�d
d�

�
:

Using (4-59), we estimate

�.s/4k�d
Z s

s0

��.2LC1C2.1�ı/.1C�//

�.�/4k�d
d� . s�

`.4k�d/
2`�

Z s

s0

�
`.4k�d/
2`�

�.2LC1C2.1�ı/.1C�// d�

. s�.2LC2.1�ı/.1C�//:

Here we used the fact that the integral is divergent because

`.4k� d/

2`� 
� Œ2LC 1C 2.1� ı/.1C �/�D

2L

2`� 
COL!C1.1/��1:

Using again (4-59) and the initial bound (3-21), we estimate

�.s/4k�dE2k.s0/�

�
s0

s

�`.4k�d/
2`�

s
� 10L`
2`�

0 . s�.2LC2.1�ı/.1C�//

for L large enough. Therefore, we obtain

E2k.s/� C

�
K

M 2ı
C
p
KC 1

�
s�.2LC2.1�ı/.1C�// �

K

2
s�.2LC2.1�ı/.1C�//

for K DK.M/ large enough. This concludes the proof of (4-56).

Improved control of E2m: We can improve the control of E2m by using the monotonicity formula (4-13).
We distinguish two cases:

Case 1: „C 2�m� `C„. From the bound of E2m given in Definition 3.2 and b1.s/� 1
s

, we integrate
(4-13) in time s by using �.s0/D 1 to find that

E2m.s/� C�.s/
4m�d

�
E2m.s0/C

p
K

Z s

s0

��
`

2`�
.2m�d

2
/�.m�„C1�ı�C�/

�.�/4m�d
d�

C

Z s

s0

��.2m�2„�1C2.1�ı/�C�/

�.�/4m�d
d�

�
:
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Using the initial bound (3-21) and (4-59), we estimate

C�.s/4m�dE2m.s0/. s�
`

2`�
.4m�d/

for s0 large.
Using (4-59) and the identity

`

2`� 

�
2m�

d

2

�
� .m�„C 1� ı�C�/D�



2
� 1CC�C



2`� 

�
m�„� ı�



2

�
� �1�

ı

2`� 
CC� < �1;

we estimate

�.s/4m�d
Z s

s0

��
`

2`�
.2m�d

2
/�.m�„C1�ı�C�/

�.�/4m�d
d� . s�

`
2`�

.4m�d/

Z s

s0

�
`

2`�
.2m�d

2
/�.m�„C1�ı�C�/d�

. s�
`

2`�
.4m�d/

Z s

s0

d�

�1C"
. s�

`
2`�

.4m�d/:

Similarly, thanks to the identity

`

2`� 
.4m� d/� .2m� 2„� 1C 2.1� ı/�C�/

D� � 1CC�C


2`� 
.2m� 2„� 2ı� /� �1�

2ı

2`� 
CC� < �1;

we obtain

�.s/4m�d
Z s

s0

��.2m�2„�1C2.1�ı/�C�/

�.�/4m�d
d� . s�

`
2`�

.4m�d/:

Therefore, we deduce that

E2m.s/� C.1C
p
K/s�

`
2`�

.4m�d/
�
K

2
s�

`
2`�

.4m�d/

for K large, which yields the improved bound (4-55) for „C 2�m� `C„.

Case 2: `C„C 1�m� k� 1. Proceeding as in the previous case, we arrive at

E2m.s/� C�.s/
4m�d

�
E2m.s0/C

Z s

s0

��Œ2m�2„�1C2.1�ı/�.CC
K
2
/��

�.�/4m�d
d�

�
:

From the identity

`

2`�
.4m�d/�

�
2m�2„�1C2.1�ı/�

�
CC

K

2

�
�

�
D��1C

�
CC

K

2

�
�C



2`�
.2m�2„�2ı�/

��1C
2.1�ı/

2`�
C

�
CC

K

2

�
�>�1; (4-60)
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together with (4-59), we estimate

�.s/4m�d
Z s

s0

��Œ2m�2„�1C2.1�ı/�.CC
K
2
/��

�.�/4m�d
d�

. s�
`.4m�d/
2`�

Z s

s0

�
`.4m�d/
2`�

�Œ2m�2„�1C2.1�ı/�.CCK
2
/�� d�

. s�Œ2.m�„�1/C2.1�ı/�.CC
K
2
/��
�
1
4
s�Œ2.m�„�1/C2.1�ı/�K��:

Using (4-60), (4-59) and the initial bound (3-21), we derive

C�.s/4m�dE2m.s0/. s�
`.4m�d/
2`� . s�Œ2.m�„�1/C2.1�ı/�.CC

K
2
/��
�
1
4
s�Œ2.m�„�1/C2.1�ı/�K��:

This concludes the proof of (4-55).

Control of the stable modes, bk’s. We now close the control of the stable modes .b`C1; : : : ; bL/; in
particular, we prove (4-54). We first treat the case when k D L. Let

QbL D bLC
hLLq; �B0ƒQi

hƒQ;�B0ƒQi
:

Then from (4-31) and (4-56),

j QbL� bLj. b�.1�ı/1

p
E2k . bLC�.1�ı/1 ;

and hence from the improved modulation equation (4-8),

j. QbL/sC .2L� /b1 QbLj. b1j QbL� bLjC
1

B2ı0
ŒC.M/

p
E2kC b

LC.1�ı/
1 �. bLC1C�.1�ı/1 :

This implies ˇ̌̌̌
d

ds

�
QbL

�2L�

�̌̌̌̌
.
b
LC1C�.1�ı/
1

�2L�
:

Integrating this identity in time from s0 and recalling that �.s0/D 1 yields

QbL.s/. C�.s/2L�
�
QbL.s0/C

Z s

s0

b1.�/
LC1C�.1�ı/

�.�/2L�
d�

�
:

Using (4-31), b1.s/� 1
s

, the initial bounds (3-20) and (3-21) together with (4-59), we estimate

�.s/2L� QbL.s0/.
�
s0

s

�`.2L�/
2`�

.s
�
5`.2L�/
2`�

0 C s
�.1�ı/
0 s

� 5L`
2`�

0 /. s�L��.1�ı/

and

�.s/2L�
Z s

s0

b1.�/
LC1C�.1�ı/

�.�/2L�
d� . s�

`.2L�/
2`�

Z s

s0

�
`.2L�/
2`�

�L�1��.1�ı/ d� . s�L��.1�ı/:

Therefore,
bL.s/. j QbL.s/jC j QbL.s/� bL.s/j. s�L��.1�ı/;
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which concludes the proof of (4-54) for k D L. Now we will propagate this improvement that we found
for the bound of bL to all bk for all `C 1� k �L� 1. To do so we do a descending induction where the
initialization is for k D L. Assume the bound

jbkj. b
kC�.1�ı/
1

for kC 1 and let’s prove it for k. Indeed, from (4-1) and the induction bound, we haveˇ̌̌̌
.bk/s � .2k� /

�s

�
bk

ˇ̌̌̌
. bLC11 CjbkC1j. b

kC1C�.1�ı/
1 ;

which implies ˇ̌̌̌
d

ds

�
bk

�2k�

�̌̌̌̌
.
b
kC1C�.1�ı/
1

�2k�
:

Integrating this identity in time as for the case k D L, we end up with

bk.s/. C�.s/2k�
�
bk.s0/C

Z s

s0

b1.�/
kC1C�.1�ı/

�.�/2k�
d�

�
. s�k��.1�ı/;

where we used the initial bound (3-20), (4-59) and k � `C 1. This concludes the proof of (4-54).

Control of the stable mode V1. We recall from (2-51) and (3-18) that

bk D b
e
kC

Uk
sk
; 1� k � `; V D P` U ;

where P` diagonalizes the matrix A` with spectrum (2-54). From (2-52), and (4-1), we estimate for
1� k � `� 1,

js.Uk/s � .A`U/kj. skC1j.bk/sC .2k� /b1bk � bkC1jC jU j2 . s�LCkCjU j2:

From (2-53), (4-1) and the improved bound (4-54), we have

js.U`/s � .A`U/`j. s`C1
�
j.bk/sC .2k� /b1b`� b`C1jC jb`C1j

�
CjU j2 . s��.1�ı/CjU j2:

Using the diagonalization (2-54), we obtain

sVs DD`VCO.s��.1�ı//: (4-61)

Using (2-54) again yields the control of the stable mode V1:

j.sV1/sj. s��.1�ı/:

Thus from the initial bound (3-20),

js�.1�ı/V1.s/j �
�
s0

s

�1��.1�ı/
s
�.1��/
0 V1.s0/C 1. s�.1�ı/0 ;

which yields (4-53) for s0 � s0.�/ large enough.
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Part 2: transverse crossing. We give the proof of item (ii) of Proposition 3.6 in this part. We compute
from (4-61) and (2-54) at the exit time s D s1

1

2

d

ds

�X̀
kD2

js
�
2
.1�ı/Vk.s/j2

�ˇ̌̌̌
sDs1

D

�
s�.1�ı/�1

X̀
kD2

�
�

2
.1�ı/V2k.s/CsVk.Vk/s

��ˇ̌̌̌
sDs1

D

�
s�.1�ı/�1

�X̀
kD2

�
k

2k�
C
�

2
.1�ı/

�
V2k.s/CO

�
1

s
3
2
�.1�ı/

���ˇ̌̌̌
sDs1

�
1

s1

"
c.d; `/

X̀
kD2

js
�
2
.1�ı/

1 Vk.s1/j2CO

 
1

s
�
2
.1�ı/

1

!#

�
1

s1

"
c.d; `/CO

 
1

s
�
2
.1�ı/

1

!#
> 0;

where we used item (i) of Proposition 3.6 in the last step. This completes the proof of Proposition 3.6.

Appendix A: Coercivity of the adapted norms

We give in this section the coercivity estimates for the operator L as well as the iterates of L under
some suitable orthogonality condition. We first recall the standard Hardy-type inequalities for the class of
radially symmetric functions,

Drad D ff 2 C1c .R
d / with radial symmetryg:

For simplicity, we write Z
f WD

Z C1
0

f .y/yd�1 dy

and

Dk D

�
�m if k D 2m;
@y�

m if k D 2mC 1:
We have the following:

Lemma A.1 (Hardy-type inequalities). Let d � 7 and f 2 Drad. Then:

(i) (Hardy near the origin)Z 1

0

j@yf j
2

y2i
�
.d � 2� 2i/2

4

Z 1

0

f 2

y2C2i
�C.d/f 2.1/; i D 0; 1; 2:

(ii) (Hardy away from the origin for the noncritical exponent) Let ˛ > 0, ˛ ¤ 1
2
.d � 2/. ThenZ C1

1

j@yf j
2

y2˛
�

�
d � .2˛C 2/

2

�2Z C1
1

f 2

y2C2˛
�C.˛; d/f 2.1/:
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(iii) (Hardy away from the origin for the critical exponent) Let ˛ D 1
2
.d � 2/. ThenZ C1

1

j@yf j
2

y2˛
�
1

4

Z C1
1

f 2

y2C2˛.1C logy/2
�C.d/f 2.1/:

(iv) (general weighted Hardy) For any � > 0, k � 2 an integer and 1� j � k� 1,Z
jDjf j2

1Cy�C2.k�j /
.j;�

Z
jDkf j2

1Cy�
C

Z
f 2

1Cy�C2k
:

Proof. The proof can be found in [Merle, Raphaël and Rodnianski 2015, Lemma B.1]. �

From the Hardy-type inequalities, we derive the following coercivity of A �:

Lemma A.2 (weight coercivity of A �). Let ˛ � 0. There exists c˛ > 0 such that for all f 2 Drad,Z
jA �f j2

y2i .1Cy2˛/
� c˛

�Z
j@yf j

2

y2i .1Cy2˛/
C

Z
f 2

y2iC2.1Cy2˛/

�
; i D 0; 1; 2: (A-1)

Proof. We proceed in two steps:

Step 1: subcoercive estimate for A �. We first prove the following subcoercive bound for A �: for
i D 0; 1; 2 and ˛ � 0,Z

jA �f j2

y2i .1Cy2˛/
&
Z

f 2

y2iC2.1Cy2˛/
C

Z
j@yf j

2

y2i .1Cy2˛/
�f 2.1/�

Z
f 2

1Cy2iC2˛C4
: (A-2)

From the definition (2-7) of A � and the asymptotic of V given in (2-8), we use an integration by parts to
estimate near the originZ

y�1

jA �f j2

y2i .1Cy2˛/
&
Z
y�1

1

y2i

ˇ̌̌̌
@yf C

d

y
f CO.jyf j/

ˇ̌̌̌2
&
Z
y�1

j@yf j
2

y2i
C d

Z
y�1

@y.f
2/

y2iC1
C d2

Z
y�1

f 2

y2iC2
CO

�Z
y�1

f 2

y2i�2

�
&
Z
y�1

j@yf j
2

y2i
C .2C 2i/d

Z
y�1

f 2

y2iC2
C df 2.1/CO

�Z
y�1

f 2

y2i�2

�
&
Z
y�1

�
j@yf j

2

y2i
C

f 2

y2iC2

�
�

Z
y�1

y2f 2:

Away from the origin, we use (2-8) to estimateZ
y�1

jA �f j2

y2i .1Cy2˛/
&
Z
y�1

1

y2iC2˛

�
@yf C

d � 1� 

y
f

�2
�

Z
y�1

f 2

y2iC2˛C4
:
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We make the change of variable g D yd�1�f and use the Hardy inequality given in part (ii) of
Lemma A.1 to writeZ

y�1

j@y.y
d�1�f /j2

y2iC2˛C2.d�1�/
dy D

Z
y�1

j@ygj
2

y2iC2˛C2.d�1�/
dy &

Z
y�1

g2

y2iC2˛C2.d�1�/C2
dy �g2.1/

&
Z
y�1

f 2

y2iC2˛C2
�f 2.1/:

Gathering the above bounds together with the trivial bound from (2-8),Z
y�1

j@yf j
2

y2iC2˛
.
Z
y�1

jA �f j2

y2iC2˛
C

Z
y�1

f 2

y2iC2˛C2

yields the subcoercivity (A-2).

Step 2: coercivity of A �. We now argue by contradiction to show the coercivity of A �. Assume that
(A-1) does not hold. Up to a renormalization, we consider the sequence fn 2 Drad withZ

f 2n
y2iC2.1Cy2˛/

C

Z
j@yfnj

2

y2i .1Cy2˛/
D 1 and

Z
jA �fnj

2

y2i .1Cy2˛/
�
1

n
: (A-3)

This implies by (A-2),

f 2n .1/C

Z
f 2n

1Cy2iC2˛C4
& 1: (A-4)

From (A-3), the sequence fn is bounded in H 1
loc. Hence, from a standard diagonal extraction argument,

there exists f1 2H 1
loc such that up to a subsequence,

fn*f1 in H 1
loc;

and from the local compactness of one-dimensional Sobolev embeddings

fn! f1 in L2loc; fn.1/! f1.1/:

This implies by (A-3) and (A-4),

f 21.1/C

Z
f 21

1Cy2iC2˛C4
& 1 and

Z
f 21

y2iC2.1Cy2˛/
. 1; (A-5)

which means that f1 ¤ 0. On the other hand, from (A-3) and the lower semicontinuity of norms for the
weak topology, we have

A �f1 D 0:

Hence,

f1 D
ˇ

yd�1ƒQ
for some ˇ ¤ 0:

Since ƒQ � y near the origin, we haveZ
y�1

f 21
y2iC2

&
Z
y�1

yd�1

y2dC2iC2
dy D

Z
y�1

dy

ydC2iC3
DC1;

which contradicts the a priori regularity of f1 given in (A-5). �
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We also need the following subcoercivity of A .

Lemma A.3 (weight coercivity of A ). Let p � 0 and i D 0; 1; 2 such that j2pC 2i � .d � 2� 2/j ¤ 0,
where  2 .1; 2� is defined by (1-8). We haveZ

jA f j2

y2i .1Cy2p/
&
Z

j@yf j
2

y2i .1Cy2p/
C

Z
f 2

y2iC2.1Cy2p/
�

�
f 2.1/C

Z
f 2

1Cy2iC2pC4

�
: (A-6)

Assume in addition that
hf;ˆM i D 0 if 2i C 2p > d � 2 � 2;

where ˆM is defined in (3-4). Then we haveZ
jA f j2

y2i .1Cy2p/
&
Z

j@yf j
2

y2i .1Cy2p/
C

Z
f 2

y2iC2.1Cy2p/
: (A-7)

Proof. The proof is very similar to the proof of Lemma A.2. We proceed into two steps. The first step is
to derive the subcoercive estimate (A-6). In the second step, we use a compactness argument to show the
coercivity of A under a suitable condition.

Step 1: subcoercive estimate for A . From the definition (2-6) of A and the asymptotic of V given in
(2-8), we estimate near the originZ

y�1

jA f j2

y2i .1Cy2p/
&
Z
y�1

1

y2i

ˇ̌̌̌
�@yf C

f

y
CO.jyf j/

ˇ̌̌̌2
&
Z
y�1

j@yf j
2

y2i
C

Z
y�1

f 2

y2iC2
�

Z
y�1

@y.f
2/

y2iC1
�

Z
y�1

f 2

y2i�2

&
Z
y�1

j@yf j
2

y2i
C .d � 2i � 1/

Z
y�1

f 2

y2iC2
�f 2.1/�

Z
y�1

f 2

y2i�2

&
Z
y�1

j@yf j
2

y2i
C

Z
y�1

f 2

y2iC2
�f 2.1/�

Z
y�1

y2f 2:

Away from the origin, we estimate from (2-8)Z
y�1

jA f j2

y2i .1Cy2p/
&
Z
y�1

1

y2iC2p

�
@yf C



y
f

�2
�

Z
y�1

f 2

y2iC2pC4
:

We make the change of variable g D yf . From the assumption j2i C 2p� .d � 2� 2/j ¤ 0, we use
the Hardy inequality given in part (ii) of Lemma A.1 to writeZ

y�1

j@y.y
f /j2

y2iC2pC2
D

Z
y�1

j@ygj
2

y2iC2pC2
&
Z
y�1

g2

y2iC2pC2C2
�g2.1/&

Z
y�1

f 2

y2iC2pC2
�f 2.1/:

Note also that we have the trivial bound from (2-8),Z
y�1

jA f j2

y2iC2p
C

Z
y�1

f 2

y2iC2pC2
&
Z
y�1

j@yf j
2

y2iC2p
:

The collection of the above bounds yields the subcoercivity (A-6).
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Step 2: coercivity of A . Arguing as the proof of (A-1), we end up with the existence of f1¤ 0 such thatZ
f 21

y2iC2.1Cy2p/
. 1 and A f1 D 0:

Hence, from the definition (2-6) of A , we have

f1 D ˇƒQ for some ˇ ¤ 0.

If 2i C 2p > d � 2 � 2, we use the orthogonality condition to deduce that

0D hf1; ˆM i D ˇhƒQ;�MƒQi:

Thus, ˇ D 0. If 2i C 2p � d � 2 � 2, we use the fact that ƒQ � 1=y as y!C1 to estimateZ
y�1

jƒQj2yd�1 dy

y2iC2.1Cy2p/
&
Z
y�1

yd�1�2�2i�2p�2 dy &
Z
y�1

y�1 dy DC1;

which contradicts with the regularity of f1. �

From the coercivities of A and A �, we claim the following coercivity for L :

Lemma A.4 (weighted coercivity of L under a suitable orthogonality condition). Let k 2 N, i D 0; 1; 2,
and M D M.k/ large enough. Then there exists cM;k > 0 such that for all f 2 Drad satisfying the
orthogonality

hf;ˆM i D 0 if 2i C 2k > d � 2 � 4;

where ˆM is defined by (3-4) and „ is given in (1-18), we haveZ
jL f j2

y2i .1Cy2k/
� cM;k

Z �
j@yyf j

2

y2i .1Cy2k/
C

j@yf j
2

y2i .1Cy2kC2/
C

jf j2

y2iC2.1Cy2kC2/

�
; (A-8)

and Z
jL f j2

y2i .1Cy2k/
� cM;k

Z �
jA f j2

y2iC2.1Cy2k/
C

Z
jf j2

y2i .1Cy2kC4/

�
: (A-9)

Proof. We proceed in two steps:

Step 1: subcoercivity of L . We apply Lemma A.2 to A f with ˛ D k and note that

@y.A f /D A .@yf /C @y

�
V

y

�
f;

to writeZ
jL f j2

y2i .1Cy2k/
&
Z

jA f j2

y2iC2.1Cy2k/
C

Z
j@y.A f /j

2

y2i .1Cy2k/
(A-10)

&
Z

jA f j2

y2i .1Cy2kC2/
C

Z
j@y.A f /j

2

y2i .1Cy2k/

&
Z

jA f j2

y2i .1Cy2kC2/
C

Z
jA .@yf /j

2

y2i .1Cy2k/
�

Z
jf j2

y2iC2.1Cy2k/
: (A-11)



176 TEJ-EDDINE GHOUL, SLIM IBRAHIM AND VAN TIEN NGUYEN

Applying Lemma A.3 to f with pD kC1 and noting that the condition j2.kC1/C2i�.d�2�2/j¤ 0
is always satisfied (if not, we have d D 4C 2

p
.kC 1C i/2C 2 62 N), we haveZ

jA f j2

y2i .1Cy2kC2/
&
Z

j@yf j
2

y2i .1Cy2kC2/
C

Z
f 2

y2iC2.1Cy2kC2/
�

�
f 2.1/C

Z
f 2

1Cy2kC2iC6

�
:

We apply again Lemma A.3 to @yf with p D k to estimateZ
jA .@yf /j

2

y2i .1Cy2k/
&
Z

j@yyf j
2

y2i .1Cy2k/
C

Z
j@yf j

2

y2iC2.1Cy2k/
�

�
j@yf .1/j

2
C

Z
j@yf j

2

1Cy2kC2iC4

�
:

Injecting these bounds into (A-11) yields the subcoercive estimate for L ,Z
jL f j2

y2i .1Cy2k/
&
Z

j@yyf j
2

y2i .1Cy2k/
C

Z
j@yf j

2

y2i .1Cy2kC2/
C

Z
f 2

y2iC2.1Cy2kC2/

�

�
f 2.1/Cjfy.1/j

2
C

Z
jfy j

2

1Cy2kC2iC4
C

Z
f 2

1Cy2kC2iC6

�
: (A-12)

Step 2: coercivity of L . We argue by contradiction. Assume that (A-8) does not hold. Up to a
renormalization, there exists a sequence of functions fn 2 Drad such thatZ

jL fnj
2

y2i .1Cy2k/
�
1

n
;

Z
j@yyfnj

2

y2i .1Cy2k/
C

Z
j@yfnj

2

y2i .1Cy2kC2/
C

Z
jfnj

2

y2iC2.1Cy2kC2/
D 1: (A-13)

This implies by (A-12),

f 2n .1/Cj@yfn.1/j
2
C

Z
j@yfnj

2

1Cy2kC2iC4
C

Z
f 2n

y2.1Cy2kC2iC6/
& 1: (A-14)

From (A-13), the sequence fn is bounded in H 2
loc. Hence, from a standard diagonal extraction argument,

there exists f1 2H 2
loc such that up to a subsequence,

fn*f1 in H 2
loc;

and from the local compactness of one-dimensional Sobolev embeddings

fn! f1 in H 1
loc;

and
fn.1/! f1.1/; @yfn.1/! @yf1.1/:

This implies by (A-13) and (A-14),

f 21.1/Cj@yf1.1/j
2
C

Z
j@yf1j

2

1Cy2kC2iC4
C

Z
f 21

y2.1Cy2kC2iC6/
& 1;

which means that f1 ¤ 0. On the other hand, from (A-13) and the lower semicontinuity of norms for the
weak topology, we deduce that f1 is a nontrivial function in the kernel of L , namely that

L f1 D 0;
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which implies
f1 D ��CˇƒQ;

where � and ˇ two real numbers.
From (A-13) and the lower semicontinuity, we haveZ

f 21

y2iC2.1Cy2kC2/
<C1:

Recall from (2-16) that � � 1=yd�1 as y! 0. This yields the estimateZ
y�1

�2

y2iC2.1Cy2kC2/
&
Z
y�1

dy

y2iC2Cd�1
DC1I

hence, �D 0.
From (2-5), we have ƒQ � 1=y as y!C1. If 2i C 2k � d � 2 � 4, we haveZ

y�1

jƒQj2yd�1 dy

y2iC2.1Cy2kC2/
&
Z
y�1

yd�1�2i�2k�4�2 dy &
Z
y�1

y�1 dy DC1I

hence, ˇ D 0. If 2i C 2k > d � 2 � 4, we use the orthogonality condition to deduce

0D hf1; ˆM i D ˇhƒQ;�MƒQi;

which yields ˇ D 0; hence f1 D 0. The contradiction then follows and the coercivity (A-8) is proved.
The estimate (A-9) simply follows from (A-8) and (A-10). �

We are now in a position to prove the coercivity of L k under a suitable orthogonality condition. We
claim the following:

Lemma A.5 (coercivity of the iterate of L ). Let k 2 N and M DM.k/ large enough. Then there exists
cM;k > 0 such that for all f 2 Drad satisfying the orthogonality condition

hf;LmˆM i D 0; 0�m� k�„;

where „ is defined as in (1-18), we have

E2kC2.f /D

Z
jL kC1f j2

� cM;k

�Z
jA .L kf /j2

y2
C

kX
mD0

Z
jLmf j2

y4.1Cy4.k�m//
C

k�1X
mD0

jA .Lmf /j2

y6.1Cy4.k�m�1//

�
: (A-15)

Proof. We argue by induction on k. For k D 0, we apply Lemma A.2 to A f with i D 0 and ˛ D 0, then
Lemma A.3 to f with i D 1 and p D 0 to write

E2.f /D

Z
jL f j2 &

Z
jA f j2

y2
&
Z
jA f j2

y2
C

Z
f 2

y4
:

Note that we had to use the orthogonality condition hf;ˆM i when „ D 0. In fact, the case „ D 0 only
happens when d D 7. In this case, the condition 2 > d � 2 � 2 is fulfilled when applying Lemma A.2
with i D 1 and p D 0.
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We now assume the claim for k � 0 and prove it for kC 1. We have the orthogonality condition

hf;LmˆM i D 0; 0�m� kC 1�„:

Let g DL f , then we have
hg;LmˆM i D 0; 0�m� k�„:

By induction hypothesis, we writeZ
jL kC2f j2 D

Z
jL kC1gj2

&
Z
jA .L kg/j2

y2
C

kX
mD0

Z
jLmgj2

y4.1Cy4.k�m//
C

k�1X
mD0

jA .Lmg/j2

y6.1Cy4.k�m�1//

D

Z
jA .L kC1f /j2

y2
C

kC1X
mD1

Z
jLmf j2

y4.1Cy4.kC1�m//
C

kX
mD1

jA .Lmf /j2

y6.1Cy4.k�m//
:

Note that we have the orthogonality condition hf;ˆM i D 0 when k � „� 1. The case k � „� 2 implies

4C 4k � 4C 4

�
d

4
�


2
� ı

�
� 8� d � 2 � 4:

Hence, we use the coercivity bound (A-9) to deriveZ
jL f j2

y4.1Cy4k/
&
Z

jA f j2

y6.1Cy4k/
C

Z
f 2

y4.1Cy4kC4/
;

which concludes the proof of Lemma A.5. �

Appendix B: Interpolation bounds

We derive in this section interpolation bounds on q which are the consequence of the coercivity property
given in Lemma A.5. We have the following:

Lemma B.1 (interpolation bounds). (i) Weighted bounds for qi : for 1�m� k,Z
jq2mj

2
C

2k�1X
iD0

Z
jqi j

2

y2.1Cy4m�2i�2/
� C.M/E2m: (B-1)

(ii) Development near the origin:

q D

kX
iD1

ciTk�i C rq; (B-2)

with bounds

jci j.
p

E2k;

j@jyrqj. y
2k�d

2
�j
j ln.y/jk

p
E2k; 0� j � 2k� 1; y < 1:
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(iii) Bounds near the origin for qi and @iyq: for y � 1
2

,

jq2i jC j@
2i
y qj. y

�d
2
C2
j lnyjk

p
E2k for 0� i � k� 1;

jq2i�1jC j@
2i�1
y qj. y�

d
2
C1
j lnyjk

p
E2k for 1� i � k:

(iv) Weighted bounds for @iyq: for 1�m� k,

2mX
iD0

Z
j@iyqj

2

1Cy4m�2i
. E2m: (B-3)

Moreover, let .i; j / 2 N�N� with 2� i C j � 2k. ThenZ
j@iyqj

2

1Cy2j
.
�

E2m for i C j D 2m; 1�m� k;
p

E2m
p

E2.mC1/ for i C j D 2mC 1; 1�m� k� 1:
(B-4)

(v) Pointwise bound far away: Let .i; j / 2 N�N with 1� i C j � 2k� 1. We have for y � 1,ˇ̌̌̌
@iyq

yj

ˇ̌̌̌2
.

1

yd�2

�
E2m for i C j C 1D 2m; 1�m� k;
p

E2m
p

E2.mC1/ for i C j D 2m; 1�m� k� 1:
(B-5)

Proof. (i) The estimate (B-1) directly follows from Lemma A.5.

(ii) For 1�m� k, we claim that q2k�2m admits the Taylor expansion at the origin

q2k�2m D

mX
iD1

ci;mTm�i C r2m; (B-6)

with the bounds

jci;mj.
p

E2k;

j@jyr2mj. y
2m�d

2
�j
j ln.y/jm

p
E2k; 0� j � 2m� 1; y < 1;

The expansion (B-2) then follows from (B-6) with mD k.
We proceed by induction in m for the proof of (B-6). For mD 1, we write from the definition (2-7)

of A �,

r1.y/D q2k�1.y/D
1

yd�1ƒQ

Z y

0

q2kƒQx
d�1 dxC

d1

yd�1ƒQ
:

Note from (B-1) that
R
jq2k�1j

2=y2 . E2k and from (2-5) that ƒQ� y as y! 0; we deduce that d1D 0.
Using the Cauchy–Schwarz inequality, we derive the pointwise estimate

jr1.y/j �
1

yd

�Z y

0

jq2kj
2xd�1 dx

�1
2
�Z y

0

x2xd�1 dx

�1
2

. y�
d
2
C1
p

E2k; y < 1:

We remark that there exists a 2
�
1
2
; 1
�

such that

jq2k�1.a/j
2 .

Z
y�1

jq2k�1j
2 . E2k:
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We then define

r2.y/D�ƒQ

Z y

a

r1

ƒQ
dx;

and obtain from the pointwise estimate of r1,

jr2.y/j. yy�
d
2
C1
p

E2k

Z y

a

dx

x
. y�

d
2
C2
j ln.x/j

p
E2k; y < 1:

By construction and the definition (2-6) of A , we have

A r2 D r1 D q2k�1; L r2 D A �q2k�1 D q2k DL q2k�2:

Recall that Span.L / D fƒQ;�g, where � admits the singular behavior (2-16). From (B-1), we haveR
jq2k�2j

2=y4 . E2k <C1. This implies that there exists c2 2 R such that

q2k�2 D c2ƒQC r2:

Moreover, there exists a 2
�
1
2
; 1
�

such that

jq2k�2.a/j
2 .

Z
jyj�1

jq2k�2j
2 . E2k;

which implies
jc2j.

p
E2k; jq2k�2j. y�

d
2
C2
jln.y/j

p
E2k; y < 1:

Since A r2 D r1, we then write from the definition (2-6) of A ,

j@yr2j. jr1jC
ˇ̌̌̌
r2

y

ˇ̌̌̌
. y�

d
2
C2
jln.y/j

p
E2k; y < 1:

This concludes the proof of (B-6) for mD 1.
We now assume that (B-6) holds for m� 1 and prove it for mC 1. The term r2m is built as follows:

r2m�1 D
1

yd�1ƒQ

Z y

0

r2m�2ƒQx
d�1 dx; r2m D�ƒQ

Z y

a

r2m�1

ƒQ
dx; a 2

�
1
2
; 1
�
:

We now use the induction hypothesis to estimate

jr2mC1j D

ˇ̌̌̌
1

yd�1ƒQ

Z y

0

r2mƒQx
d�1 dx

ˇ̌̌̌
.

1

yd

p
E2k

Z y

0

x2mC
d
2 j ln.x/jm dx

. y2m�
d
2

p
E2k

Z y

0

j ln.x/jm dx

. y2m�
d
2
C1
j ln.y/jm

p
E2k:

Here we used the identity

Im D

Z y

0

Œln.x/�m dx . yj ln.y/jm; m� 1; y < 1:
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Indeed, we have I1 D
R y
0 ln.x/ dx D y ln.y/�y . yj ln.y/j for y < 1. Assuming the claim for m� 1,

we use an integration by parts to estimate for mC 1

ImC1 D

Z y

0

Œln.x/�m.x ln.x/� x/0 dx

D yŒln.y/�mC1�yŒln.y/�m�m.Im� Im�1/. yj ln.y/jmC1:

Using an integration by parts yieldsZ y

a

Œln.x/�m

x
dx D

Œln.y/�mC1� Œln.a/�mC1

mC 1
:

Hence, we have the estimate

jr2mC2j D

ˇ̌̌̌
ƒQ

Z y

a

r2mC1

ƒQ
dx

ˇ̌̌̌
. y2m�

d
2
C2
p

E2k

Z y

a

jln.x/jm

x
dx

. y2m�
d
2
C2
jln.y/jmC1

p
E2k:

By construction, we have

A r2mC2 D r2mC1; L r2mC2 D r2m:

From the induction hypothesis and the definition (2-19) of Tk , we write

L q2k�2.mC1/ D q2k�2m D

mX
iD1

ci;mTm�i C r2m D

mX
iD1

ci;mL TmC1�i CL r2mC2:

The singularity (2-16) of � at the origin and the bound
R
y�1 jq2k�2.mC1/j

2=y4 . E2k allows us to deduce

q2k�2.mC1/ D

mX
iD1

ci;mTmC1�i C c2mC2ƒQC r2mC2:

From (B-1), we see that there exists a 2
�
1
2
; 1
�

such that

jq2k�2.mC1/.a/j
2 .

Z
y�1

jq2k�2.mC1/j
2 . E2k:

Together with the induction hypothesis jci;mj.
p

E2k and the pointwise estimate on r2mC2, we get the
bound jc2mC2j �

p
E2k.

A brute force computation using the definitions of A and A � and the asymptotic behavior (2-8) ensure
that for any function f ,

@jyf D

jX
iD0

Pi;jfi ; jPi;j j.
1

yj�i
; (B-7)

and we estimate

j@jyr2mC2j.
jX
iD0

jr2mC2�i j

yj�i
.
p

E2k

jX
iD0

y2mC2�i�
d
2 j ln.y/jmC1

yj�i
. y2mC2�

d
2
�j
j ln.y/jmC1

p
E2k:

This concludes the proof of (B-6) as well as (B-2).
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(iii) The proof of (iii) directly follows from (B-6).

(iv) We have from (B-7),

j@kyqj.
kX

jD0

jqj j

yk�j
;

and thus, using (B-1) and the pointwise bounds given in part (iii) yields

2mX
iD0

Z
j@iyqj

2

1Cy4m�2i
. E2mC

2m�1X
iD0

Z
y<1

j@iyqj
2
C

2m�1X
iD0

Z
y>1

j@iyqj
2

y4m�2i

. E2mC E2k

Z
y<1

yj lnyjk dyC
2m�1X
iD0

iX
jD0

Z
y>1

jqj j
2

y4m�2j
. E2m;

which concludes the proof of (B-3).
The estimate (B-4) simply follows from (B-3). Indeed, if i C j D 2m with 1�m� k, we haveZ

j@iyqj
2

1Cy2j
D

Z
j@iyqj

2

1Cy4m�2i
. E2m:

If i C j D 2mC 1 with 1�m� k� 1, we writeZ
j@iyqj

2

1Cy2j
D

Z
j@iyqj

2

1Cy4m�2iC2
.
�Z

j@iyqj
2

1Cy4m�2i

�1
2
�Z

j@iyqj
2

1Cy4m�2iC4

�1
2

.
p

E2m
p

E2.mC1/:

(v) Let i; j � 0 with 1� i C j � 2k� 1. Then 2� i C j C 1� 2k and we conclude from (B-4) that for
y � 1, ˇ̌̌̌

@iyq

yj

ˇ̌̌̌2
.
ˇ̌̌̌Z C1
y

@x

�
.@ixq/

2

x2j

�
dx

ˇ̌̌̌
.

1

yd�2

�Z C1
y

j@ixqj
2

x2jC2
C

Z C1
y

j@iC1x qj2

x2j

�
.

1

yd�2

�
E2m for i C j C 1D 2m; 1�m� k;
p

E2m
p

E2.mC1/ for i C j C 1D 2mC 1; 1�m� k� 1: �

Appendix C: Proof of (4-22)

We give here the proof of (4-22). Before going to the proof, we need the following Leibniz rule for L k .

Lemma C.1 (Leibniz rule for L k). Let � be a smooth function and k 2 N, we have

L kC1.�f /D

kC1X
mD0

f2m�2kC2;2mC

kX
mD0

f2mC1�2kC2;2mC1; (C-1)

A L k.�f /D

kX
mD0

f2mC1�2kC1;2mC1C

kX
mD0

f2m�2kC1;2m; (C-2)
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where for k D 0,

�1;0 D�@y�; �1;1 D �;

�2;0 D�@
2
y� �

d � 1C 2V

y
@y�; �2;1 D 2@y�; �2;2 D �;

and for k � 1,

�2kC1;0 D�@y�2k;0;

�2kC1;2i D�@y�2k;2i ��2k;2i�1; 1� i � k;

�2kC1;2iC1 D �2k;2i C
d � 1C 2V

y
�2k;2iC1� @y�2k;2iC1; 0� i � k� 1;

�2kC1;2kC1 D �2k;2k D �;

�2kC2;0 D @y�2kC1;0C
d � 1C 2V

y
�2kC1;0;

�2kC2;2i D �2kC1;2i�1C @y�2kC1;2i C
d � 1C 2V

y
�2kC1;2i ; 1� i � k;

�2kC2;2iC1 D��2kC1;2i C @y�2kC1;2iC1; 0� i � k;

�2kC2;2kC2 D �2kC1;2kC1 D �:

Proof. We use the relations

A .�f /D �A f � @y�f; A �.�f /D �A �f C @y�f;

A f CA �f D
d � 1C 2V

y
f

to compute

A .�f /D f1�Cf .�@y�/;

L .�f /D A �A .�f /D f2�Cf1.2@y�/Cf

�
�@2y� �

d � 1C 2V

y
@y�

�
;

which is the conclusions of (C-1) and (C-2) for k D 0.
Assume that (C-1) and (C-2) hold for k 2 N; let us compute for k! kC 1. Using (C-1), we write

A L kC1.�f /D

kC1X
mD0

A Œf2m�2kC2;2m�C

kX
mD0

�
�A �C

d � 1C 2V

y

�
f2mC1�2kC2;2mC1

D

kC1X
mD0

ff2mC1�2kC2;2mCf2m.�@y�2kC2;2m/g

C

kX
mD0

�
f2mC2.��2kC2;2mC1/Cf2mC1.�@y�2kC2;2mC1/

Cf2mC1

�
d � 1C 2V

y
�2kC2;2mC1

��
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D

kX
mD0

f2mC1

�
�2kC2;2m� @y�2kC2;2mC1C

d � 1C 2V

y
�2kC2;2mC1

�

C

kX
mD1

f2m.�@y�2kC2;2m��2kC2;2mC1/Cf2kC3�2kC2;2kC2Cf .�@y�2kC2;0/;

which yields the recurrence relation for �2kC3;j with 0� j � 2kC 3.
Similarly, we write L kC2.�f /D A �ŒA L kC1.�f /� and use the formula (C-2) with kC 1 to obtain

the recurrence relation for �2kC4;j with 0� j � 2kC 4. �

Let us now give the proof of (4-22). By induction and the definition (3-13), we have

Œ@t ;L
k�1
� �v D

k�2X
mD0

Lm
� .Œ@t ;L��L

k�2�m
� v/D

k�2X
mD0

Lm
�

�
@tZ�

r2
L k�2�m
� v

�
:

Noting that
@tZ�

r2
D
b1ƒZ

�4y2
;

we make a change of variables to obtainZ
1

�2.1Cy2/
jŒ@t ;L

k�1
� �vj2 D

b21

�4k�dC2

Z
1

1Cy2

ˇ̌̌̌ k�2X
mD0

Lm

�
ƒZ

y2
L k�2�mq

�ˇ̌̌̌2

.
b21

�4k�dC2

k�2X
mD0

Z
1

1Cy2

ˇ̌̌̌
Lm

�
ƒZ

y2
L k�2�mq

�ˇ̌̌̌2
:

For mD 0, we use (4-21) and (4-20) to estimateZ
1

1Cy2

ˇ̌̌̌�
ƒZ

y2
L k�2q

�ˇ̌̌̌2
.
Z
jq22k�4j

1Cy10
. E2k:

For mD 1; : : : ; k� 2, we apply (C-1) with

� D
ƒZ

y2
D
.d � 1/ƒ cos.2Q/

y2

and note from (2-4) that

j�k;i j.
1

1Cy2C2C.2k�i/
.

1

1Cy4C.2k�i/
; k 2 N�; 0� i � 2k;

which yields Z
1

1Cy2

ˇ̌̌̌
Lm

�
ƒZ

y2
L k�2�mq

�ˇ̌̌̌2
.
2mX
iD0

Z
q22k�4�2m�i

.1Cy10C.4m�2i//
. E2k:

Thus, Z
1

�2.1Cy2/
jŒ@t ;L

k�1
� �vj2 .

b21

�4k�dC2
E2k:
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Similarly, we use (C-2) to get the estimateZ
jA Œ@t ;L

k�1
� �vj2 .

b21

�4k�dC2
E2k:

This concludes the proof of (4-22).
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ON PROPAGATION OF HIGHER SPACE REGULARITY FOR NONLINEAR
VLASOV EQUATIONS

DANIEL HAN-KWAN

This work is concerned with the broad question of propagation of regularity for smooth solutions to
nonlinear Vlasov equations. For a class of equations (that includes Vlasov–Poisson and relativistic
Vlasov–Maxwell systems), we prove that higher regularity in space is propagated, locally in time, into
higher regularity for the moments in velocity of the solution. This in turn can be translated into some
anisotropic Sobolev higher regularity for the solution itself, which can be interpreted as a kind of weak
propagation of space regularity. To this end, we adapt the methods introduced by D. Han-Kwan and
F. Rousset (Ann. Sci. École Norm. Sup. 49:6 (2016) 1445–1495) in the context of the quasineutral limit
of the Vlasov–Poisson system.
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1. Introduction

This paper is concerned with the broad question of propagation of regularity for smooth solutions to
Vlasov equations of the general form

@tf C a.v/ � rxf CF.t;x; v/ � rvf D 0; (1-1)

set in the phase space Td �Rd (with Td D Rd=Zd endowed with normalized Lebesgue measure), where
F W RC �Td �Rd ! Rd is a force field satisfying rv �F D 0 and a W Rd ! Rd is an advection field
satisfying suitable assumptions, a.v/D v being the main example to be considered. The (scalar) function
f .t;x; v/ may be understood as the distribution function of a family of particles, which can be, depending
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on the physical context, e.g., electrons, ions in plasma physics, or stars in galactic dynamics. The choice
of the periodic torus Td is made for simplicity.

The two precise examples of equations we specifically have in mind are the Vlasov equations arising
from a coupling with Poisson or Maxwell equations, in which case the resulting coupled system is called
the Vlasov–Poisson or the relativistic Vlasov–Maxwell system (we will discuss as well several other
models).

� The Vlasov–Poisson system — either the repulsive or the attractive version, the sign of the interaction
here does not matter here — is given by8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

@tf C v � rxf ˙E � rvf D 0;

E.t;x/D�rx�.t;x/;

��x� D

Z
Rd

f dv�

Z
Td�Rd

f dv dx;

f jtD0 D f0:

(1-2)

In the repulsive version (that is, with the sign C in the Vlasov equation), this system describes the
dynamics of charged particles in a nonrelativistic plasma, with a self-induced electric field.

In the attractive version (that is, with the sign � in the Vlasov equation), it describes the dynamics of
stars or planets with gravitational interaction.

� The relativistic Vlasov–Maxwell system, in dimension d D 3, is given by8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

@tf C Ov � rxf CF � rvf D 0;

Ov WD
vp

1Cjvj2=c2
; F.t;x; v/ WDE.t;x/C

1

c
Ov�B.t;x/;

1

c
@tBCrx �E D 0; rx �E D

Z
R3

f dv�

Z
T3�R3

f dv dx;

�
1

c
@tECrx �B D

1

c

Z
R3

Ovf dv; rx �B D 0;

f jtD0 D f0; .E;B/jtD0 D .E0;B0/;

(1-3)

in which the parameter c is the speed of light. There are also related versions of (1-3) in lower dimensions.
This system describes the dynamics of charged particles in a relativistic plasma, with a self-induced
electromagnetic field. We recall that the (repulsive) Vlasov–Poisson system can be derived from (1-3) in
the nonrelativistic regime, that is to say, in the limit c!1, as studied in [Asano and Ukai 1986; Degond
1986; Schaeffer 1986].

In this paper, we will consider weighted Sobolev norms and associated weighted Sobolev spaces (based
on L2), defined, for k 2 N, r 2 R, as

kf kHk
r
WD

� X
j˛jCjˇj�k

Z
Td

Z
Rd

.1Cjvj2/r j@˛x@
ˇ
vf j

2 dv dx

�1
2

; (1-4)
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where for ˛ D .˛1; : : : ; ˛n/; ˇ D .ˇ1; : : : ; ˇn/ 2 f1; : : : ; dg
n, we write

j˛j D n; jˇj D n;

and
@˛x WD @x˛1

� � � @x˛n
; @ˇv WD @vˇ1

� � � @vˇn
:

As usual the notation H s will stand for the standard Sobolev spaces, without weight.
It will be also useful to introduce the weighted W k;1 space, whose norm is defined, for k 2N; r 2R, by

kf kWk;1
r
WD

X
j˛jCjˇj�k

k.1Cjvj2/
r
2 @˛x@

ˇ
vf kL1x;v : (1-5)

For the Vlasov–Poisson or Vlasov–Maxwell couplings, given an initial condition f0 satisfying

f0 2Hn
r

for n; r > 0 large enough (and with a smooth enough initial force F.0/), it is standard that there exists a
unique local solution f .t/ 2 C.0;T IHn

r /. Under fairly general assumptions on the advection field a and
the force F, the same result can also be shown for (1-1), as we will soon see.

Let us now present the precise problem we tackle in this work. Assuming some higher space regularity
such as

@nC1
x f0 2H0

r (or @p
xf0 2H0

r for p � nC 1), (1-6)

the question we ask is the following: is there also propagation of any higher regularity for the solution f .t/?
A first remark to be made is that there is no hope of proving that this sole additional assumption implies
that the solution f .t/ also satisfies @nC1

x f .t/ 2H0
r , even for small values of t . Indeed, regularity in x

and v is intricately intertwined for solutions of the Vlasov equation, as can be seen from the representation
of the solution using the method of characteristics.

For s; t �0 and .x; v/2Td�Rd, we define as usual the characteristic curves .X.s; t;x; v/;V .s; t;x; v//
as the solutions to the system of ODEs8̂<̂

:
d

ds
X.s; t;x; v/D a.V .s; t;x; v//; X.t; t;x; v/D x;

d

ds
V .s; t;x; v/D F.s;X.s; t;x; v/;V .s; t;x; v//; V .t; t;x; v/D v:

(1-7)

The existence and uniqueness of such curves are consequences of the Cauchy–Lipschitz theorem (assuming
we deal with smooth forces). The method of characteristics asserts that one can represent the solution
of (1-1) as

f .t;x; v/D f0.X.0; t;x; v/;V .0; t;x; v//: (1-8)

Therefore we see (except maybe in trivial cases such as F � 0) that derivatives in x of f .t/ involve
derivatives in x and in v of f0, so that regularity in x only of f0 cannot in general be propagated for f .t/.
However, given some smooth test function  .v/ (the case  D 1 is already interesting), we can also
wonder about the higher regularity of the moment m .t;x/ WD

R
Rd f .t;x; v/ .v/ dv. Such moments,
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which can be interpreted as hydrodynamic quantities, are important objects in kinetic theory. We have the
representation formula

m .t;x/D

Z
Rd

f0.X.0; t;x; v/;V .0; t;x; v//  .v/ dv:

We note that for t small enough, the map v 7!V .s; t;x; v/ is a diffeomorphism for all s 2 Œ0; t �. Indeed for
s D t this map is the identity and integrating with respect to s the equation satisfied by V .s; t;x; v/, we
note that for t small enough and s 2 Œ0; t �, the map v 7! V .s; t;x; v/ is a small perturbation of the identity,
hence our claim that it is a diffeomorphism. In particular the map v 7! V .0; t;x; v/ is a diffeomorphism
and we denote by V �1.t;x; v/ its inverse. Using this diffeomorphism as a change of variables (in v) we
get, for t small enough,

m .t;x/D

Z
Rd

f0.X.0; t;x;V
�1.t;x; v//; v/  .V �1.t;x; v// jdet DvV .0; t;x; v/j

�1 dv:

Thanks to this formula, at least formally, the Leibniz rule ensures that derivatives in x of the moment m 

only involve derivatives in x of f0. Recalling the extra higher regularity (1-6), it seems maybe natural
to expect that the moment m belongs to the Sobolev space H nC1 in x. In the case where F is a fixed
external force, assumed to be very smooth, say C1 with respect to all variables, since t is fixed, the fact
that m .t; � / belongs to H nC1

x follows indeed from the Leibniz formula, using the fact the characteristic
curves .X;V / inherit the C1 regularity of F.

However, this argument seems to break down in the case where F depends on the solution f .t/ itself,
as the regularity of F is then tightly linked to that of f . Let us discuss for instance the Poisson case —
the Maxwell case is actually worse in the sense that in the Vlasov–Poisson coupling, F gains, loosely
speaking, one derivative in x compared to f . As already mentioned, the local Cauchy theory yields
f .t/ 2C.0;T IHn

r /, and we have F 2C.0;T IH nC1
x /. Note then that when applying nC1 derivatives in

x on m , one needs to apply nC1 derivatives in x on jdet DvV .0; t;x; v/j
�1, which amounts to applying

in total nC 2 derivatives to V .0; t;x; v/. However, by (1-7), we observe that .X;V / inherits the same
order of regularity as F, and therefore it does not seem licit to take as many as nC 2 derivatives.

The goal of this work is to show that despite this apparent shortcoming, it is indeed possible to show
for a fairly wide class of nonlinear Vlasov equations (including the Vlasov–Poisson and Vlasov–Maxwell
system) a result of propagation of regularity in x for the moments, assuming higher-order space regularity
for the initial condition. This in turn can be translated into some anisotropic Sobolev higher regularity for
the solution itself, which can be interpreted as a kind of weak propagation of space regularity.

It turns out that the lagrangian approach, that is to say, the approach that we have just underlined,
based on representation formulas using characteristics, is not adapted to answer this question. Instead we
shall rely on an eulerian approach, which is based to a larger extent on the PDE itself, inspired by the
recent work of the author in collaboration with F. Rousset on the quasineutral limit of the Vlasov–Poisson
system [Han-Kwan and Rousset 2016; � 2019]. The quasineutral limit is a singular limit which loosely
consists in a penalization of the laplacian in the Poisson equation. The small parameter is the scaled
Debye length, which appears to be very small in several usual plasma settings. The limit leads to singular
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Vlasov equations, which display a loss of regularity of the force field compared to that of the distribution
function. As a consequence, these equations are in general ill-posed in the sense of Hadamard; see [Bardos
and Nouri 2012; Han-Kwan and Nguyen 2016]. This problem might therefore look quite different from
the one considered here; the similarity comes from the fact that the justification of the quasineutral limit
ultimately loosely comes down to the proof of a uniform1 propagation of one order of higher regularity
for moments of solutions of the Vlasov–Poisson equation. Note though that the analysis of [Han-Kwan
and Rousset 2016; � 2019] requires the introduction of pointwise Penrose stability conditions, and also
relies on pseudodifferential tools, which will not be the case in this paper. As a matter of fact, the singular
Vlasov equations which can be formally derived in the quasineutral limit will not enter the class of Vlasov
equations we will deal with in this work, precisely because of the aforementioned loss of derivative.

The methodology of [Han-Kwan and Rousset 2016] was also used in the context of large time estimates
for data close to stable equilibria for the Vlasov–Maxwell system in the nonrelativistic regime, in a recent
work in collaboration with T. Nguyen and F. Rousset [Han-Kwan et al. 2017].

As a matter of fact, the approach can be considered as semilagrangian, in the sense that at some point
we still rely on characteristics as in the lagrangian approach but at the level of the PDEs that arise after
applying derivatives on the Vlasov equation, whereas in the lagrangian approach, derivatives are taken
after using the representation of the solution by characteristics.

2. Main results

2A. The abstract framework. Let us now describe precisely the class of Vlasov equations we deal with.
We consider in this work the abstract equation

@tf C a.v/ � rxf CF � rvf D 0; (2-1)

with the following structural assumptions. Among all these assumptions, we highlight that the force
depends on the distribution function itself, but only through some of its moments in velocity.

� Assumptions on the advection field. The map a W Rd ! Rd is a one-to-one C1 function such that

ja.v/j � C.1Cjvj/ for all v 2 Rd ; (2-2)

k@˛vakL1 � C˛ for all j˛j ¤ 0; (2-3)

and its inverse a�1 (defined on a.Rd /) satisfies, for some � > 0,

j@˛va�1.w/j � C˛.1Cja
�1.w/j/1C�j˛j for all w 2 a.Rd /; for all ˛: (2-4)

� Assumptions on the force field. The vector field F is divergence-free in v (i.e., satisfies rv �F D 0) and
we have the following decomposition for some ` 2 N�:

F.t;x; v/D
X̀
jD1

Aj .v/Fj .t;x/: (2-5)

1With respect to the scaled Debye length.
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We assume that for all j 2 f1; : : : ; `g, Aj is a C1 scalar function satisfying

k@˛vAjkL1 � C˛ for all ˛: (2-6)

Furthermore, there exist C1 functions  1.v/; : : : ;  r .v/ with at most polynomial growth, i.e., there is
r0 > 0 such that

k i.v/kWk;1
�r0

� Ci;k for all k 2 N (2-7)

such that, defining

m i
.t;x/D

Z
Rd

f .t;x; v/  i.v/ dv

for all j D 1; : : : ; `, the vector field Fj is uniquely determined by these moments and the initial conditions,
through a map �

.m i
/iD1;:::;r ; .F

j .0//jD1;:::;`

�
7! Fj ; (2-8)

and for all large enough n> 1C d , and all t > 0, we have

kFj
kL2.0;t IH n

x /
� �.j/n

�
t; km 1

kL2.0;t IH n
x /
; : : : ; km r

kL2.0;t IH n
x /
;
X̀
jD1

kFj .0/kH n
x

�
; (2-9)

kFj
kL1.0;t IH n

x / � �
.j/0

n

�
t; km 1

kL1.0;t IH n
x /; : : : ; km r

kL1.0;t IH n
x /;
X̀
jD1

kFj .0/kH n
x

�
; (2-10)

where �.j/n , �.j/
0

n are polynomial functions that are nonincreasing with respect to each of their arguments
(the others being fixed nonnegative numbers).

Finally, the force field satisfies the following stability property. Let f and g be two solutions
of (2-1), and denote by F Œf � and F Œg� their associated force fields. Assume that the initial conditions
.Fj .0//jD1;:::;` are the same. Then, we have for all j D 1; : : : ; `,

kFj Œf ��Fj Œg�kL2.0;t IH n
x /

� �.j/]n

�
t;

Z .f �g/ i.v/ dv


L2.0;t IH n

x /

; : : : ;

Z .f �g/ r .v/ dv


L2.0;t IH n

x /

�
; (2-11)

where �.j/]n is a polynomial function that is nonincreasing with respect to each of its arguments and such
that �.j/

0

n .0; � /D 0.
We shall explain later why both Vlasov–Poisson and relativistic Vlasov–Maxwell systems enter the

abstract framework.

2B. Statement of the main results. The regularity and integrability indices that will be useful to handle
such equations will depend on the dimension d , the maximal growth of the moments that intervene in the
definition of F, which is r0, and the parameter of growth of the inverse of a, which is �; let us set

N WD 3
2
d C 4; R WDmax

�
1
2
d C 2.1C�/.1C d/C r0

�
: (2-12)

We use in the following statement the notation b � c for the floor function.
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The main result proved in this paper is the following theorem.

Theorem 2.1. Let n � N and r > R. Let n0 > n be an integer such that n >
�

1
2
n0
˘
C 1. Assume that

f0 2Hn
r and Fj .0/ 2H n0

x for all j 2 f1; : : : ; `g. Assume furthermore that the initial data f0 satisfies the
following higher anisotropic regularity:

@
2.n�b 1

2
n0cCk/

x @˛x@
ˇ
vf0 2H0

r for all j˛jC jˇj D n0� n� k; for all k 2
˚
1; : : : ; 2

�
1
2
n0
˘
� n

	
: (2-13)

Then there is T > 0 such that the following holds. There exists a unique solution .f .t/;F.t// with initial
data .f0;F.0// to (2-1) such that f .t/ 2 C.0;T IHn

r /.
Moreover, for all test functions  2L1.0;T IW n0;1

�r0
/, we haveZ f  dv


L2.0;T IH n0

x /

�ƒ .T;M /; (2-14)

where ƒ is a polynomial function and

M D kf0kHn
r
C

X̀
jD1

kFj .0/k
H n0

x
C

2b 1
2

n0c�nX
kD1

X
j˛jCjˇjDn0�n�k

k@
2.n�bn0

2
cCk/

x @˛x@
ˇ
vf0kH0

r
:

Thanks to (2-9), we immediately deduce from (2-14) that the force field satisfies as well the higher
regularity

Fj
2L2.0;T IH n0

x /:

Another consequence concerns the flow .X;V / D .X.t; 0;x; v/;V .t; 0;x; v// as defined in (1-7), for
which we also obtain a higher regularity property.

Corollary 2.2. For some T 0 � T, we have

@x;v.X �x� tv;V � v/ 2L1.0;T 0IL1v L2
x/ for all j j � n0:

Remark 2.3. Some remarks about Theorem 2.1 are in order:

� In the case where n D 2m � 1 and n0 D nC 1 D 2m, the assumption (2-13) is simply given by
@nC1

x f0 2 H0
r and we obtain the L2

t H nC1
x smoothness of the moments: in other words this gives an

answer to the question raised in the beginning of the Introduction. Note though that the regularity result
we prove is not pointwise in t .

� Observe that it is required that the higher regularity index n0 is not too large compared to n (i.e.,
n>

�
1
2
n0
˘
C 1); such a restriction is somehow reminiscent of a similar one appearing in the celebrated

result of Bony [1981, Théorème 6.1] concerning the propagation of Sobolev microlocal regularity at
characteristic points for general nonlinear PDEs. We remark however that the class of PDEs considered
in this work does not enter the framework of [Bony 1981], in particular because of the “nonlocality” in
velocity. We refer to Section 10 for some remarks and (counter-)examples in this direction.

� As a matter of fact, our result can be somehow interpreted as a kinetic (and nonlocal) analogue of
Bony’s aforementioned theorem.
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� If it is ensured that the solution .f .t/;F.t// to (2-1) is global, (e.g., for the Vlasov–Poisson system
in dimension d � 3, see [Lions and Perthame 1991; Pfaffelmoser 1992; Schaeffer 1991; Batt and Rein
1991; Horst 1993]), we do not know if the higher propagation of regularity for the moments is global.

� Let us mention that in a somewhat different direction, a vector field method was devised in [Smulevici
2016] (see also [Fajman et al. 2017]) in order to prove time decay of moments for Vlasov equations set in
unbounded spaces.

In the case where the force is one derivative smoother than the distribution function f itself (that is to
say, when estimates (2-9) hold with n�1 instead of n in the right-hand side), the statement of Theorem 2.1
may be strengthened, insofar as one may ask only for derivatives in x in the regularity assumption (2-13).
We refer to such a case as the transport/elliptic case, which includes in particular the Vlasov–Poisson
system; see Theorem 9.1 in Section 9.

As already mentioned in the Introduction, the higher regularity for moments as obtained in Theorem 2.1
actually yields regularity for the solution itself (see [Gérard 1990] for a microlocal version of this fact,
in the context of averaging lemmas) in anisotropic Sobolev spaces (as defined in [Hörmander 1976,
Chapter II, Section 2.5]), which we first introduce.

Definition 2.4. Let m; n 2 R. The anisotropic Sobolev space H
m;n
x;v is defined as

H m;n
x;v WD

˚
g 2 S 0.Td

�Rd / W .1Cjkj2/
m
2 .1Cj�j2/

n
2 Og.k; �/ 2L2.Zd

�Rd /
	
;

where Og stands for the Fourier transform2 of g. We also define

H m;�1
x;v WD

[
p2R

H m;p
x;v :

Corollary 2.5. Consider the same assumptions and notation as in Theorem 2.1. We have

f .t;x; v/ 2L2.0;T IH n0;�1
x;v /:

Corollary 2.5 is a direct consequence of some estimates obtained in the proof of Theorem 2.1; we will
provide a proof of this fact in Section 7. It is actually possible to give an estimate of a value of p < 0

such that f 2L2.0;T IH
n0;p
x;v /.

2C. Overview of the proof. We discuss in this section the ingredients, inspired by [Han-Kwan and
Rousset 2016], leading to the higher propagation of regularity for the moments (the local well-posedness
theory is fairly standard; see Section 3). We shall discuss here the case nD 2k � 1 and n0 D nC 1D 2k.
To ease readability, we assume here that the dimension is d D 1 (in higher dimensions, the algebra is
more involved but the basic principle is the same).

Taking derivatives. Since we intend to propagate regularity in space, the first step consists in understanding
how to appropriately apply derivatives in x to the Vlasov equation (2-1).

2Where Og.k; �/D 1=.2�/d
R

Td�Rd g.x; v/e�ix�ke�iv�� dx dv, although the convention that is chosen for the writing of
the Fourier transform does not matter here.
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We note that applying the operator @˛x does not seem relevant, as it does not commute well with the
operator F@v: as a result it is not possible to obtain a closed equation bearing on @˛xf without appealing
to @ˇx@


vf for  ¤ 0, and therefore such an approach would require a control of derivatives in v which we

do not have at initial time (this is of course reminiscent of the mixing in x and v that we have evoked in
the Introduction).

The idea is to look for more appropriate differential operators, with nonconstant coefficients, satisfying
the following three key properties:

� At initial time, they involve only derivatives in x.

� They enjoy good commutation properties with the transport operator, so that it is eventually possible
to obtain closed systems involving these differential operators alone.

� They allow a good control of the Sobolev norm of the moments.

It turns out that second-order differential operators in x and v, with coefficients depending on the solution
itself, will be appropriate. More precisely, we consider the operator

L WD @2
xC'.t;x/@x@vC .t;x/@

2
v;

whose coefficients ' and  will depend on the force field F. Setting T WD @t C a.v/@x CF@v as the
transport operator, we ask that the coefficients '; solve a semilinear system of the form8̂̂<̂

:̂
T � D 2@xF CG1.�;  ; @x;vF /;

T  DG2.�;  ; @x;vF /;

'jtD0 D 0;  jtD0 D 0;

where G1;G2 are polynomial functions of degree greater than or equal to 2; this corresponds to zero-order
coupling terms. Note in particular that by definition, LD @2

x at time t D 0. The semilinear system is
precisely chosen in order to cancel bad terms in the commutation between L and T , so that for any
function g,

LT .g/D T L.g/C .LF / @vgC .La/ @xgC .@va/'Lg:

Applying this identity to the solution f of the Vlasov equation (1-1), this yields

T L.f /D�.LF / @vf � .La/ @xf � .@va/'Lf:

This formula will play a key role in the analysis. The main term (in terms of regularity issues) is�@2
xF@vf ,

since the others involve either more regular quantities (we recall indeed that F and a are assumed to be
smooth with respect to v), or the quantity Lf , which paves the way for a closed system involving only
compositions of L applied to f . As a consequence, the operators obtained as compositions of L appear
to be relevant for applying higher-order derivatives in x, since by construction:

� They require only a control of space regularity at initial time.
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� Denoting by Lk the composition of k operators L, one can obtain that Lkf satisfies an equation of
the form

T .Lkf /DA.Lkf /� .@
2k
x F / @vf CG..@˛x;vf /j˛j�2k�1/; (2-15)

where A;G are bounded linear operators. We note that this equation involves derivatives in v of the
solution, but only of order 2k � 1D n, which we control thanks to the local well-posedness theory. This
can therefore be seen as a closed equation for Lkf .

� One can show that for any smooth test function  ,Z
R

.Lkf / .t;x; v/ dv D

Z
R

.@2k
x f / .t;x; v/ dvC “controlled terms”:

In the controlled terms, the overload of derivatives in v falling on f is transferred to  by an integration-
by-parts argument.

All in all, this eventually shows that the Lk are indeed well-suited to study the regularity of moments.
This step is fully developed in Section 4. There are two separate difficulties in order to complete this task:
obtaining the right algebra as discussed here, and proving Sobolev estimates for all the involved objects.

(In the case where n0 > nC 1, we need to set up an induction argument, and this leads the study of
successive systems of coupled kinetic transport equations, which build on the general equation (2-15).)

Propagation of regularity on moments. We then turn to the study of moments of the solutions to (2-15).
This step is partly inspired from (and thus related to) the treatment of linear Landau damping in [Mouhot
and Villani 2011].

We first use the method of characteristics to invert the operator T �A. It is convenient at this stage to use
changes of variables in velocity (introduced and studied in Section 5) in order to straighten characteristics
and eventually, roughly speaking, come down from T to the free transport operator @tCa.v/ �rx . To this
end, it turns out to be efficient to introduce the change of variables v 7!ˆ where ˆ solves the Burgers’
equation

@tˆC a.ˆ/ � rxˆD F. � ; ˆ/; ˆjtD0 D v;

where we can prove that ˆ remains close to v in small time (in terms of Sobolev norms). The problem
comes down to the understanding of the contribution of the term �.@2k

x F / @vf , and eventually roughly
reduces to the study of an equation of the type

H1.t;x/D

Z t

0

Z
R

.@xH2/.s;x� .t � s/a.v//U.t; s;x; v/ dv dsC “controlled terms”;

where we know only that H2 is controlled in L2.0;T IL2
x/ and U is smooth, and we seek a bound of H1

in L2.0;T IL2
x/ (such an estimate corresponds to a control on the moments of Lkf ). The integral in

time is due to the use of Duhamel’s formula, and the integral in v to the fact that we study moments in v.
We observe that the operator in the right-hand side seems to feature a loss of derivative in x. However,
we use a smoothing effect to overcome this apparent loss, which was proved in [Han-Kwan and Rousset
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2016]. The outcome is the estimateZ t

0

Z
Rd

.rxH2/.s;x�.t�s/a.v//U.t; s;x; v/ dv ds


L2.0;t IL2

x/

. kH2kL2.0;t IL2
x/

sup
0�t;s�T

kU.t; s; � /k;

where k � k stands for a high-order weighted Sobolev norm (in x and v) which we will make precise later.
As noted in [Han-Kwan and Rousset 2016], this is reminiscent of (but different from) classical kinetic
averaging lemmas, as it loosely speaking involves the gain of one full derivative; we refer to Section 6 for
a thorough discussion.

2D. Content of the end of the paper. The paper is then organised as follows: the proofs of Corollaries 2.2
and 2.5 are provided at the end of Section 7. In Section 8, we check the general assumptions for the
Vlasov–Poisson and relativistic Vlasov–Maxwell equations, and discuss some extensions as well. As
already mentioned, Section 9 is devoted to the particular case of the transport/elliptic case, for which
Theorem 2.1 can be improved. We end the paper with the study of two examples that we cook up in order
to discuss the regularity assumptions of Theorem 2.1.

We will prove Theorem 2.1 when n is odd, of the form nD 2m� 1, and the higher regularity index n0

is even of the form n0 D 2.mCp/. The other cases follow by the same arguments. The requirement on n

and n0 is m> pC 2. The assumption (2-13) in this case is given by

@2.m�pCk/
x @˛x@

ˇ
vf0 2H0

r for all j˛jC jˇj D 2p� k; for all k D 0; : : : ; 2p: (2-16)

3. Local well-posedness

We prove in this section a basic local Sobolev well-posedness result for (2-1). We start by recalling useful
product estimates in weighted Sobolev spaces, taken from [Han-Kwan and Rousset 2016].

Lemma 3.1. Let s be a nonnegative integer. Consider a smooth nonnegative function � D �.v/ that
satisfies j@˛�j � C˛� for every multi-index ˛ such that j˛j � s:

� Consider two functions f D f .x; v/, g D g.x; v/; then we have for k � 1
2
s,

k�fgkH s
x;v
. kf k

W
k;1

x;v
k�gkH s

x;v
Ckgk

W
k;1

x;v
k�f kH s

x;v
: (3-1)

� Consider a function E DE.x/ and a function F.x; v/; then we have for any s0 > d ,

k�EFkH s
x;v
. kEk

H
s0
x
k�FkH s

x;v
CkEkH s

x
k�FkH s

x;v
: (3-2)

� Consider a vector field E DE.x/, a function A.v/, and a function f D f .x; v/; then we have for any
s0 > 1C d and for any multi-indices ˛, ˇ such that j˛jC jˇj D s � 1,

k�Œ@˛x@
ˇ
v ;A.v/E.x/ � rv �f kL2

x;v
. kAkW s;1

v
.kEk

H
s0
x
k�f kH s

x;v
CkEkH s

x
k�f kH s

x;v
/: (3-3)

� Consider two functions f D f .x; v/, gDg.x; v/; then we have for multi-indices ˛; ˇ with j˛jCjˇj � s,

k@˛x;vf @
ˇ
x;vgkL2 .

 1

�
f


L1x;v
k�gkH s

x;v
Ck�gkL1x;v

 1

�
f


H s
x;v

: (3-4)
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Proposition 3.2. Let n > d C 1 and r > r0C
1
2
d . Assume that f0 2 Hn

r and Fj .0/ 2 H n
x . Then there

exists T > 0 such that there is a unique solution .f .t/;F.t// with initial data .f0;F.0// to (2-1) such
that f .t/ 2 C.0;T IHn

r / and Fj .t/ 2L1.0;T IH n
x /.

Proof of Proposition 3.2. The existence part follows from a standard iterative construction. We define
recursively a sequence of distribution functions .f.k//k2N, denoting by F.k/ the force field associated to
f.k/ and the initial condition .Fj .0//. Let us define

R0 WD kf0kHn
r
C

X̀
jD1

kFj .0/kH n
x
:

We set f.0/ WD f0 and assume that f.k/ is already constructed (with associated force field F.k/), and is
such that for some Tk > 0, we have f.k/ 2 C.0;Tk IHn

r /, and

kf.k/kL1.0;Tk IHn
r / � 2R0: (3-5)

We define f.kC1/ as the unique solution on Œ0;Tk/ to the equation

@tf.kC1/C a.v/ � rxf.kC1/CF.k/ � rvf.kC1/ D 0; f.kC1/jtD0 D f0; (3-6)

obtained by the method of characteristics.
Applying the operator @˛x@

ˇ
v to (3-6) for j˛jC jˇj � n yields

.@t C a.v/ � rxCF.k/ � rv/.@
˛
x@
ˇ
vf.kC1//C Œ@

˛
x@
ˇ
v ; a.v/ � rxCF.k/ � rv �f.kC1/ D 0:

We then take the L2 scalar product with .1C jvj2/r @˛x@
ˇ
vf.kC1/ and sum for all j˛j C jˇj � n. By

using (2-3), we haveX
j˛jCjˇj�n

Z ˇ̌
Œ@˛x@

ˇ
v ; a.v/ � rx �f.kC1/ @

˛
x@
ˇ
vf.kC1/

ˇ̌
.1Cjvj2/r dv dx � kf.kC1/k

2
Hn

r
:

Thanks to (2-6) and estimate (3-3) in Lemma 3.1 with sD n, �.v/D .1Cjvj2/
1
2

r and s0D n (recall that
n> d C 1/, we have for all j 2 f1; : : : ; `g,�Œ@˛x@ˇv ;Aj .v/F

j

.k/
.x/ � rv �f.kC1/


L2

x;v
. kFj

.k/
kH n

x
kf.kC1/kHn

r
:

Therefore by Cauchy–Schwarz, we getX
j˛jCjˇj�n

Z ˇ̌
Œ@˛x@

ˇ
v ;F.k/ � rv �f.kC1/ @

˛
x@
ˇ
vf.kC1/

ˇ̌
.1Cjvj2/r dv dx . kFj

.k/
kH n

x
kf.kC1/k

2
Hn

r
:

Recalling that rv �F D 0, we deduce that for all t 2 .0;Tk/,

d

dt
kf.kC1/.t/kHn

r
.
�

1C
X̀
jD1

kF
j

.k/
kH n

x

�
kf.kC1/.t/kHn

r

so that

kf.kC1/.t/kHn
r
. kf0kHn

r
exp

�
C

Z t

0

�
1C

X̀
jD1

kF
j

.k/
.s/kH n

x

�
ds

�
: (3-7)
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We set

m i ;.k/.t;x/D

Z
Rd

f.k/.t;x; v/  i.v/ dv;

and by Cauchy–Schwarz and (2-7), we get, for r 0 > 1
2
d such that r � r0C r 0, which is possible thanks to

the assumption r > r0C
1
2
d , that

km i ;.k/kL2.0;t IH n/ D

X
j˛j�n

�Z
Rd

@˛xf.k/ i dv

�2 1
2

L2.0;t IL1
x/

.
X
j˛j�n

�Z
Rd

j@˛xf.k/j
2.1Cjvj2/r0Cr 0 dv

��Z
Rd

j i j
2 dv

.1Cjvj2/r0Cr 0

� 1
2

L2.0;t IL1
x/

.
X
j˛j�n

�Z
Rd

j@˛xf.k/j
2.1Cjvj2/r0Cr 0 dv

��Z
Rd

dv

.1Cjvj2/r
0

� 1
2

L2.0;t IL1
x/

. kf.k/kL2.0;t IHn
r /
:

Therefore, by (2-9), denoting by C > 0 a generic constant that does not depend on t or k, we obtain

kf.kC1/.t/kHn
r

. kf0kHn
r

exp
�
C t CC

p
t
X̀
jD1

kF
j

.k/
kL2.0;t IH n

x /

�

. kf0kHn
r

exp
�
C t CC

p
t
X̀
jD1

�.j/n

�
t; .
p

tkm i ;.k/kL1.0;t IH
n
x //iD1;:::;r ;

X̀
jD1

kFj .0/kH n
x

��

. kf0kHn
r

exp
�
C t CC

p
t
X̀
jD1

�.j/n

�
t;
p

tkf.k/kL1.0;t IHn
r /;
X̀
jD1

kFj .0/kH n
x

��
:

We now observe that if we choose T > 0 small enough so that

R0 exp
�
C T CC

p
T
X̀
jD1

�.j/n .T; 2
p

T R0;R0/

�
< 2R0; (3-8)

and Tk � T, then,

kf.kC1/.t/kL1.0;T IHn
r / � 2R0: (3-9)

Therefore, by induction, we obtain that for all k 2 N, we have f.k/ 2 C.0;T IHn
r /, and

kf.k/kL1.0;T IHn
r / � 2R0: (3-10)

For k 2 N n f0g, we set hk WD f.kC1/�f.k/, which satisfies the equation

@thk C a.v/ � rxhk CF Œfk � � rvhk C .F Œf.k/��F Œf.k�1/�/ � rvfk D 0: (3-11)
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By weighted L2 estimates, proceeding as before, we get

d

dt
khk.t/k

2

H0
r

.
�

1C
X̀
jD1

kFj Œf.k/�kH n
x

�
khk.t/k

2

H0
r
Ckf.k/kHn

r

X̀
jD1

kFj Œf.k/��Fj Œf.k�1/�kL2
x
khk.t/kH0

r
:

Let t 2 .0;T /. Integrating in time, applying Cauchy–Schwarz and using the stability property (2-11) and
the uniform estimates (3-10) for .f.k//, we obtain

khkkL1.0;t IH0
r /

.
Z t

0

�
1C

X̀
jD1

kFj Œf.k/�kH n
x

�
khk.s/kH0

r
dsC

X̀
jD1

Z t

0

kFj Œf.k/��Fj Œf.k�1/�kL2
x

ds

.
p

t

�
.
p

t CkFj Œf.k/�kL2.0;t IH n
x /
/khkkL1.0;t IH0

r /
C

X̀
jD1

kFj Œf.k/��Fj Œf.k�1/�kL2.0;t IL2
x/

�

.
p

t

�
khkkL1.0;t IH0

r /
C
p

t

rX
iD1

�.j/]n

�
t;

�
p

t

Z .f.k/�f.k�1// i.v/ dv


L1.0;t IL2

x/

�
iD1;:::;r

��

.
p

t

�
khkkL1.0;t IH0

r /
C
p

t

rX
iD1

�.j/]n .t;
p

tkhk�1kL1.0;t IH0
r /
/

�
:

We can thus pick a small enough time T 0 > 0, independently of k such that for all k 2 N n f0g,

kf.kC1/�f.k/kL1.0;T 0IH0
r /
�

1
2
kf.k/�f.k�1/kL1.0;T 0IH0

r /
:

We can therefore pass to the limit in (3-6) and find that the limit .f;F Œf �/ satisfies (in the sense of
distributions)

@tf C a.v/ � rxf CF Œf � � rvf D 0; (3-12)

with the initial conditions .f0;F
j .0//. We deduce from (3-12) that f 2 C 0.0;T 0IHn

r / and @tf 2

L2.0;T 0IHn�1
r�1

/. Also, thanks to (2-10), we deduce Fj 2L1.0;T 0IH n
x /. That the equation is satisfied

in a classical way follows from the smoothness of .f;F Œf /�/. Uniqueness is also a consequence of the
contraction estimate. �

The main matter is now to obtain the higher regularity statement for the moments. To this end, we will
focus only on the task of obtaining a priori estimates for smooth solutions of (2-1); setting

M WD kf0kH2m�1
r

C

2pX
kD0

X
j˛jCjˇjD2p�k

k@2.m�pCk/
x @˛x@

ˇ
vf0kH0

r
C

X̀
jD1

kFj .0/k
H

2.mCp/
x

; (3-13)
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we look for some time T0 > 0 depending only on M such that given a smooth test function  2
L1.0;T0IW

2.mCp/;1
�r0

/, the following estimate holds:Z f  .v/ dv


L2.0;T0IH

2.mCp/
x /

� C ƒ.T0;M /; (3-14)

where ƒ is a polynomial function which is nondecreasing with respect to each of its arguments, once the
others are fixed nonnegative numbers. In what follows, the function ƒ may change from line to line but
will always refer to such a function.

Once a priori estimates such as (3-14) as are obtained, we apply them to the sequence of solutions
built in the iteration scheme proving the existence of solutions in the proof of Proposition 3.2. Passing to
the limit yields the higher regularity for the moments of the solution f .t/.

4. Differential operators

In this section, we introduce and study the second-order differential operators (with coefficients depending
on t and x) that we use in order to apply derivatives in x on the Vlasov equation (2-1).

The basic operators are defined in (4-3) and the definition of the coefficients is provided in Lemma 4.1.
By definition these operators involve only derivatives in x at initial time. The key algebraic result
reflecting the good commutation properties of these operators with the transport operator is stated in
Lemma 4.2.

The composition of these operators is then studied:

� In Lemma 4.4, it is shown that they are indeed well suited to study the regularity of moments, as
after integration in v, they act like derivations in x only (plus remainders that we can control). The
proof is quite technical as one needs to be careful of the limited available smoothness on the coefficients
of the differential operators. Note that in the statement, one does assume some (limited) higher-order
smoothness for the moments: this is in prevision of a forthcoming induction argument.

� In Lemmas 4.5 and 4.6, the equations satisfied by the functions obtained after composition of these
operators is established. This is where the key algebraic Lemma 4.2 appears to be crucial. Whereas the
formal computation is straightforward, here again, the proof appears to be quite technical in order to
justify that remainders are indeed well controlled. One also needs to be careful in order to get some
Sobolev regularity for the coefficients involved in the equations.

� As the systems of equations in Lemmas 4.5 and 4.6 are not closed, this invites one to study the system
satisfied by a larger set of appropriate functions; this is the purpose of Lemmas 4.7 and 4.8 (whose proof
is similar to that of Lemmas 4.5 and 4.6).

4A. Second-order operators. As in the Introduction, we set T WD @tCa.v/ �rxCF �rv as the transport
operator to ease readability.

Lemma 4.1. Let n> d C 1. Assume that .Fj / 2L2.0;T 0IH n
x / with norm bounded by ƒ.T 0;M /. There

is T 2 .0;T 0/ such that there exists a unique smooth solution .'i;j

k;l
;  

i;j

k;l
/i;j ;k;l2f1;:::;dg on Œ0;T � of the
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system8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

T 'i;j

k;l
D

X
k0

@vk0
a.v/k  

i;j

k0;l
C

X
k0

@vk0
a.v/k  

i;j

l;k0
�

X
k0;l 0;m

@vl 0
a.v/m '

i;j

k0;l 0
'

k0;m
k;l

C ık;j @xi
Fl C ık;i @xjFl C

X
l 0

'
i;j

k;l 0
@vl 0

Fl ;

T  i;j

k;l
D�

X
k0;l 0;m

@vl 0
a.v/m '

i;j

k0;l 0
 

k0;m
k;l
C'

i;j

k;l
@xk

Fk C

X
k0

 
i;j

k0;l
@vk0

Fk C

X
l 0

 
i;j

k;l 0
@vl 0

Fl ;

'
i;j

k;l
jtD0 D  

i;j

k;l
jtD0 D 0;

(4-1)

where ı denotes the Kronecker function and a.v/k and Fk stand for the k-th coordinates of a.v/ and F.
Moreover we have the following estimates:

sup
Œ0;T �

sup
i;j ;k;l

k.'
i;j

k;l
;  

i;j

k;l
/kW p;1

x;v
.ƒ.T;M / for all p < n� 1� 1

2
d;

sup
Œ0;T �

sup
i;j ;k;l

k.'
i;j

k;l
;  

i;j

k;l
/kHn�1

�Qr
.ƒ.T;M / for all Qr > 1

2
d:

(4-2)

We will not reproduce the proof of Lemma 4.1, since it follows, mutatis mutandis, that of Lemma 4.2 of
[Han-Kwan and Rousset 2016]: System (4-1) is solved as a semilinear system of coupled kinetic transport
equations. Note that we use the assumptions (2-3) on a and (2-6) on A to control the contribution of the
additional linear and semilinear terms that appear compared to Lemma 4.2 of [Han-Kwan and Rousset
2016].

We introduce now the second-order operators

Li;j WD @
2
xi ;xj

C

X
1�k;l�d

.'
i;j

k;l
@xk

@vl
C 

i;j

k;l
@2
vk ;vl

/ for all i; j 2 f1; : : : ; dg: (4-3)

We observe that by uniqueness of the solution of (4-1) and a symmetry argument, Li;j DLj ;i .
One of the interests of the operators Li;j comes from the following lemma.

Lemma 4.2. For all smooth functions f , we have the formula

Li;jT .f /D T Li;j .f /C

�
@2

xi ;xj
F C

X
k;l

'
i;j

k;l
@xk

@vl
F C 

i;j

k;l
@2
vk ;vl

F

�
� rvf

C

X
k;l

 
i;j

k;l
@2
vk ;vl

a.v/ � rxf C
X

k;l;m

@vl
a.v/m '

i;j

k;l
Lk;mf: (4-4)

Remark 4.3. Formula (4-4) can also be written in a more synthetic form:

Li;jT .f /D T Li;j .f /C .Li;j F / � rvf C .Li;j a/ � rxf C
X

k;l;m

@vl
a.v/m '

i;j

k;l
Lk;mf:
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Proof of Lemma 4.2. We have by direct computations

@2
xi xj

.T f /D T .@2
xi ;xj

f /C @2
xi ;xj

F � rvf C @xi
F � rv@xj f C @xjF � rv@xi

f;

'
i;j

k;l
@xk

@vl
.T f /D T .'i;j

k;l
@xk

@vl
f /� T .'i;j

k;l
/@xk

@vl
f

C'
i;j

k;l

�
@vl

a.v/ � rx@xk
f C @xk

F � rv@vl
f C @vl

F � rv@xk
f C @xk

@vl
F � rvf

�
;

 
i;j

k;l
@2
vk ;vl

.T f /D T . i;j

k;l
@2
vk ;vl

f /� T . i;j

k;l
/@2
vk ;vl

f

C 
i;j

k;l

�
@vl

a.v/ � rx@vk
f C @vk

a.v/ � rx@vl
f C @2

vk ;vl
a.v/ � rvf

C @vk
F � rv@vl

f C @vl
F � rv@vk

f C @2
vk ;vl

F � rvf
�
:

We can rewrite

'
i;j

k;l
@vl

a.v/ � rx@xk
f D '

i;j

k;l

X
m

@vl
a.v/m @xm

@xk
f

D '
i;j

k;l

X
m

@vl
a.v/m

�
Lk;mf �

X
k0;l 0

.'
k;m
k0;l 0

@xk0
@vl 0
C 

k;m
k0;l 0

@2
vk0 ;vl 0

/f

�
;

which gives

Li;jT .f /D T Li;j .f /C@xi xjF �rvf

C

X
k;l

�
'

i;j

k;l
@xk

@vl
F �rvfC 

i;j

k;l
@2
vk ;vl

F �rvfC 
i;j

k;l
@2
vk ;vl

a.v/�rxf
�

C

X
k;l;m

@vl
a.v/m'

i;j

k;l
Lk;mf

C

X
k;l

@xk
@vl
f

�
�T 'i;j

k;l
C

X
k0

@vk0
a.v/k 

i;j

k0;l
C

X
k0

@vk0
a.v/k 

i;j

l;k0

�

X
k0;l 0;m

@vl 0
a.v/m'

i;j

k0;l 0
'

k0;m
k;l
Cık;j @xi

FlCık;i @xjFlC

X
l 0

'
i;j

k;l 0
@vl 0

Fl

�

C

X
k;l

@2
vk ;vl

f

�
�T  i;j

k;l
�

X
k0;l 0;m

@vl 0
a.v/m'

i;j

k0;l 0
 

k0;m
k;l
C'

i;j

k;l
@xk

Fk

C

X
k0

 
i;j

k0;l
@vk0

FkC

X
l 0

 
i;j

k;l 0
@vl 0

Fl

�
:

We therefore deduce (4-4), because .'i;j

k;l
;  

i;j

k;l
/ solves (4-1). �

4B. Composition of the second-order operators. Relying on Lemma 4.2, we shall use the Li;j operators
in order to apply derivatives to the solution f of the Vlasov equation (2-1).

Set for I;J 2 f1; : : : ; dgk ,
LI;J

WDLi1;j1
� � �Lik ;jk

: (4-5)

Let us also introduce the following useful notation. Given I D .i1; : : : ; ik/ and J D .j1; : : : ; jk/, we set

˛.I;J / WD .i1; j1; : : : ; ik ; jk/; (4-6)
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and
@˛.I;J /x D @xi1

@xj1
� � � @xik

@xjk
: (4-7)

Note that by construction,
LI;J
jtD0 D @

˛.I;J /
x :

In what follows, f will systematically stand for the solution of (2-1), starting from f0 satisfying the
assumptions of Theorem 2.1.

4C. Moments in v. We study in this section the moments in v of the LI;J f . Until the end of the section,
the times T > 0 will be such that the solution to (2-1) satisfies

kf kL1.0;T IH2m�1
r / � 2R0;

thanks to Proposition 3.2.

Lemma 4.4. � Let k D 0; : : : ;p and I;J 2 f1; : : : ; dgmCk. Assume that the force field satisfies Fj 2

L2.0;T IH
2.mCk/�1
x / with norm bounded by ƒ.T;M /. Assume that for all nD 2m; : : : ; 2.mC k/� 1,

for all ' 2L1.0;T IW dC2Cn�2m;1
�r0

/ such that k'k
L1.0;T IWdC2Cn�2m;1

�r0
/
�ƒ.T;M /, and all j˛j D n,

we have Z
Rd

.@˛xf / '.t;x; v/ dv


L2.0;T IL2

x/

�ƒ.T;M /: (4-8)

Let  2L1.0;T IW dC2C2k;1
�r0

/ satisfy k k
L1.0;T IWdC2C2k;1

�r0
/
�ƒ.T;M /. We haveZ

Rd

LI;J f  .t;x; v/ dv D

Z
Rd

@˛.I;J /x f  .t;x; v/ dvCRI;J ; ; (4-9)

where RI;J ; is a remainder satisfying the estimate

kRI;J ; kL2.0;T IL2
x/
�ƒ.T;M /: (4-10)

� Let kD0; : : : ;p�1 and I;J 2f1; : : : ; dgmCk. Assume the force field satisfies Fj 2L2.0;T IH
2.mCk/
x /

with norm bounded by ƒ.T;M /. Assume that for all nD 2m; : : : ; 2.mC k/, for all j˛j D n, and for all
' 2L1.0;T IW dC2Cn�2m;1

�r0
/ such that k'k

L1.0;T IWdC2Cn�2m;1
�r0

/
�ƒ.T;M /, we haveZ

Rd

.@˛xf / '.t;x; v/ dv


L2.0;T IL2

x/

�ƒ.T;M /: (4-11)

Let  2 L1.0;T IW dC3C2k;1
�r0

/ satisfy k k
L1.0;T IWdC3C2k;1

�r0
/
� ƒ.T;M /. Let @ D @xi

or @vi
for

some i 2 f1; : : : ; dg. We haveZ
Rd

@LI;J f  .t;x; v/ dv D

Z
Rd

@˛.I;J /x @f  .t;x; v/ dvCRI;J ; ; (4-12)

where RI;J ; is a remainder satisfying the estimate

kRI;J ; kL2.0;T IL2
x/
�ƒ.T;M /: (4-13)
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This result will allow us to set up an induction argument: indeed, with the assumption (4-8) (resp. (4-11))
that corresponds to regularity of the moments up to order 2.mC k/� 1 (resp. 2.mC k/), this will imply
that controlling the moments of the .LI;J f / gives information on the regularity of the moments up to
order 2.mC k/ (resp. 2.mC k/C 1).

Proof of Lemma 4.4. Let us focus only on the first item (the proof of the second one is completely similar).
Let  2 L1.0;T IW dC2C2k;1

�r0
/. The beginning of the proof closely follows that of Lemma 4.3 of

[Han-Kwan and Rousset 2016]. At first, we can expand fI;J DLI;J f in a more tractable form. Let us
set for readability

U WD .'
i˛;jˇ
k0;l

;  
i˛;jˇ
k0;l

/1�k0;l�d;1�˛;ˇ�mCk :

Then, by induction, we obtain

fI;J D @
˛.I;J /
x f C

2.mCk/�2X
sD0

X
e; ˛;k0;:::;ks

Pk0
s;e;˛.U /Pk1

s;e;˛.@U / � � �P
ks
s;e;˛.@

sU / @e
v@
˛f

DW @˛.I;J /x f C

2.mCk/�2X
sD0

X
e; ˛;k0;:::;ks

Rk0;:::;ks
s;e;˛ ; (4-14)

where the sum is taken on indices such that

jej D 1; j˛j D 2.mC k/� 1� s;

k0C k1C � � �C ks �mC k; k0 � 1; k1C 2k2C � � �C sks D s;
(4-15)

and for all 0� p � s, we have P
kp

s;e;˛.X / is a polynomial of degree smaller than kp (we denote by @kU

the vector made of all the partial derivatives of length k of all components of U ). We can set

RI;J ; D

Z
Rd

 . � ; v/

2.mCk/�2X
sD0

X
e; ˛;k0;:::;ks

Rk0;:::;ks
s;e;˛ dv;

so that we have to estimate
R

Rd  Rk0;:::;ks
s;e;˛ dv. All the following estimates are uniform in time for

t 2 Œ0;T � and we shall dismiss the time parameter to ease readability.
We begin by estimating the terms for which s � 2kC 1. Note that for all these terms the total number

of derivatives applied to f is at most 2m� 1.

� When s < 2.mC k/� 1
2
d � 2, we can use estimate (4-2) in Lemma 4.1 to obtain

kPk0
s;e;˛.U /Pk1

s;e;˛.@U / � � �P
ks
s;e;˛.@

sU /kL1x;v �ƒ.T;M /;

and hence using that

sup
v
j.1Cjvj2/�

1
2

r0 . � ; v/j �ƒ.T;M /;
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we obtain by Cauchy–Schwarz that since r > r0C r 0 for some r 0 > 1
2
d , we haveZ Rk0;:::;ks

e;s;˛ dv


L2

x

�
k.1Cjvj2/� 1

2
.r0�r 0/ kL2

v
k.1Cjvj2/

1
2
.r0Cr 0/ @e

v@
˛f kL2

v


�ƒ.T;M /

�Z
Rd

dv

.1Cjvj2/r
0

�1
2

kf kH2m�1
r

�ƒ.T;M /:

� Let us now consider s � 2.mCk/�2� 1
2
d . We start with the case where in the sequence .k1; : : : ; ks/,

the largest index l such that kl ¤ 0 and kp = 0 for every p > l is such that l > 1
2
s. In this case, since

lkl � s has to hold, we necessarily have kl D 1. Moreover, for the indices p < l such that kp ¤ 0,
we must have p � pkp <

1
2
s. Thus, we can use estimate (4-2) in Lemma 4.1 to bound k@pU kL1x;v

provided 1
2
s � 2.mCk/� 1

2
d �2. Since s � 2.mCk/�2, this is satisfied thanks to the assumption that

2m> 2C d . We thus obtainZ Rk0;:::;ks
e;s;˛ dv


L2

x

�ƒ.T;M /

Z  @lU @e
v@
˛f dv


L2

x

:

Next, we can use the fact thatZ  @lU @e
v@
˛f


L2

x

.ƒ.T;M /
k.1Cjvj2/� 1

2
r @lU kL2

v
k.1Cjvj2/

1
2
.r0Cr/ @e

v@
˛f kL2

v


L2

x

.ƒ.T;M /kU kH2m�2
�r

sup
x
k.1Cjvj2/

1
2

r @e
v@
˛f kL2

v
:

By the Sobolev embedding in x, we have

sup
x
k.1Cjvj2/

1
2

r @e
v@
˛f kL2

v
. kf kH2m�1

r

as soon as 2m�1> 1Cj˛jC 1
2
d D 1C2.mCk/�1� sC 1

2
d , which is equivalent to s > 1C2kC 1

2
d .

Since we are in the case where s � 2.mCk/�2� 1
2
d , the condition is matched, thanks to the assumption

2m> 3C d . Consequently, by using estimate (4-2) in Lemma 4.1, we obtain again thatZ Rk0;:::;ks
e;s;˛ dv


L2

x

.ƒ.T;M /:

Finally, it remains to handle the case where kl D 0 for every l > 1
2
s. As above, we necessarily have

1
2
s < 2.mC k/� 1

2
d � 2 and hence by using again estimate (4-2) in Lemma 4.1, we find

k@lU kL1x;v �ƒ.T;M /; l � 1
2
s:

We deduce Z Rk0;:::;ks
e;s;˛ dv


L2

x

�ƒ.T;M /kf kH2m�1
r

�ƒ.T;M /:

It remains to treat the cases corresponding to s � 2k; that is to say, Rk0;:::;ks
e;s;˛ contains the maximal

number of derivatives applied to f . This means that j˛j D 2m� 1; : : : ; 2.mC k/� 1 so that at least
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2m derivatives of f are involved. We define for readability the associated coefficient

� WD  Pk0
s;e;˛.U /Pk1

s;e;˛.@U / � � �P
ks
s;e;˛.@

sU /;

and we have to study the L2
x norm of

R
� @e

v@
˛f dv.

First, assume that j˛j � 2.mC k/ � 2 (which corresponds to s � 1). We note that for all s0 D

0; : : : ; 2.mC k/� 1� j˛j, we have by Lemma 4.1 that

k@s0U k
W

k;1
x;v
�ƒ.T;M / for all k < 2.mC k/� 2� 1

2
d � s0:

Since s0 � 2.mCk/� 1� j˛j, we have 2.mCk/� 2� 1
2
d � s0 � j˛j � 1

2
d � 1> d C 2Cj˛jC 1� 2m

because 2m> 3
2
d C 4. Therefore

k@s0U k
W

dC2Cj˛jC1�2m;1
x;v

�ƒ.T;M /;

k�kWdC2Cj˛jC1�2m;1
�r0

�ƒ.T;M /:

We can thus use the assumption (4-8) to obtain the boundZ � @e
v@
˛f dv


L2

x

�ƒ.T;M /: (4-16)

Assume finally that j˛jD 2.mCk/�1 (which corresponds to sD 0); that is to say, 2.mCk/ derivatives
of f are involved. We can write, by integration by parts in v (relying on the fast decay of f and its
derivatives at infinity) Z

Rd

� @e
v@
˛f dv D�

Z
Rd

@e
v� @

˛f dv:

We have
k@e
v�kWdC1C2k;1

�r0

�ƒ.T;M /;

and we can use again (4-8) to obtainZ @e
v� @

˛f dv


L2

x

�ƒ.T;M /:

In summary, we have proved
kRI;J ; kL2

x
�ƒ.T;M /: �

4D. The equation satisfied by LI;J f . Using the algebraic identities of Lemma 4.2, we obtain:

Lemma 4.5. For all k D 0; : : : ;p, the following holds. Assume that .Fj / 2L2.0;T IH
2.mCk/�1
x / with

norm bounded by ƒ.T;M /. For all I;J 2 f1; : : : ; dgmCk, we have

T .LI;J f /C @˛.I;J /x F � rvf D

mCkX
rDm�k

X
K ;L2f1;:::;dgr

X
j˛jCjˇjDmCk�r


I;J
K ;L;˛;ˇ

LK ;L @˛x@
ˇ
vf CRI;J ;

(4-17)
where

� 
I;J
K ;L;˛;ˇ

are coefficients satisfying

k
I;J
K ;L;˛;ˇ

k
L2.0;T IW

dC2;1
x;v /

.ƒ.T;M /; (4-18)
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� RI;J is a remainder satisfying

kRI;J kL1.0;T IH0
Qr
/ .ƒ.T;M / for all Qr � r � 1

2
d:

A version of this lemma was proved in [Han-Kwan and Rousset 2016] in the case k D 0.
Lemma 4.5 will be useful in the induction argument to treat the case of even integers. For odd integers,

we have the following result.

Lemma 4.6. For all k D 0; : : : ;p�1, the following holds. Assume that .Fj / 2L2.0;T IH
2.mCk/
x / with

norm bounded by ƒ.T;M /. For all I;J 2 f1; : : : ; dgmCk , and i D 1; : : : ; d , we have

T .LI;J @xi
f /C @xi

@˛.I;J /x F � rvf D

mCkX
rDm�k�1

X
K ;L2f1;:::;dgr

X
j˛jCjˇjDmCkC1�r


xi ;I;J

K ;L;˛;ˇ
LK ;L @˛x@

ˇ
vf CRxi ;I;J ; (4-19)

T .LI;J @vi
f /C @vi

@˛.I;J /x F � rvf D

mCkX
rDm�k�1

X
K ;L2f1;:::;dgr

X
j˛jCjˇjDmCkC1�r


vi ;I;J

K ;L;˛;ˇ
LK ;L @˛x@

ˇ
vf CRvi ;I;J ; (4-20)

where

� 
xi I;J

K ;L;˛;ˇ
,  vi I;J

K ;L;˛;ˇ
are coefficients satisfying

k
xi ;I;J

K ;L;˛;ˇ
; 
vi ;I;J

K ;L;˛;ˇ
k

L2.0;T IW
dC2;1

x;v /
.ƒ.T;M /; (4-21)

� Rxi ;I;J , Rvi ;I;J are remainders satisfying

kRxi ;I;J kL1.0;T IH0
Qr
/CkRvi ;I;J kL1.0;T IH0

Qr
/ .ƒ.T;M / for all Qr � r � 1

2
d:

4E. The equation satisfied by LI;J @˛x@
ˇ
v f . Lemma 4.5 invites us to search for a closed equation on

LI;J @˛x@
ˇ
vf for k 2 f0; : : : ;pg, r 2 fm�k; : : : ;mCkg, I;J 2 f1; : : : ; dgr and all j˛jCjˇjDmCk�r

(and similarly for Lemma 4.6). This is the purpose of the next two lemmas.

Lemma 4.7. Let k D 0; : : : ;p. Let r Dm� k; : : : ;mC k. Assume that .Fj / 2 L2.0;T IH
2.mCk/�1
x /

with norm bounded by ƒ.T;M /. For all I;J 2 f1; : : : ; dgr and all j˛jC jˇj DmC k � r , we have

T .LI;J @˛x@
ˇ
vf /C @

˛
x@
ˇ
v@
˛.I;J /
x F � rvf D

rX
r 0Dm�k

X
K ;L2f1;:::;dgr

0

X
j˛0jCjˇ0jDmCk�r 0


I;J ;˛;ˇ

K ;L;˛0;ˇ0
LK ;L @˛

0

x @
ˇ0

v f CRI;J ;˛;ˇ; (4-22)

where

� 
I;J ;˛;ˇ

K ;L;˛0;ˇ0
are coefficients satisfying

k
xi ;I;J

K ;L;˛;ˇ
; 
vi ;I;J

K ;L;˛;ˇ
k

L2.0;T IW
dC2;1

x;v /
.ƒ.T;M /; (4-23)

� RI;J ;˛;ˇ is a remainder satisfying

kRI;J ;˛;ˇkL1.0;T IH0
Qr
/ .ƒ.T;M / for all Qr � r � 1

2
d:
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Lemma 4.8. Let kD0; : : : ;p�1. Let r Dm�k�1; : : : ;mCk. Assume that .Fj /2L2.0;T IH
2.mCk/
x /

with norm bounded by ƒ.T;M /. For all I;J 2 f1; : : : ; dgr , and all j˛jC jˇj DmCkC 1� r , we have

T .LI;J @˛x@
ˇ
vf /C @

˛
x@
ˇ
v@
˛.I;J /
x F � rvf

D

rX
r 0Dm�k�1

X
K ;L2f1;:::;dgr

0

X
j˛0jCjˇ0jDmCkC1�r 0


I;J ;˛;ˇ

K ;L;˛0;ˇ0
LK ;L @˛

0

x @
ˇ0

v f CRI;J ;˛;ˇ; (4-24)

where

� 
I;J ;˛;ˇ

K ;L;˛0;ˇ0
are coefficients satisfying

k
xi ;I;J

K ;L;˛;ˇ
; 
vi ;I;J

K ;L;˛;ˇ
k

L2.0;T IW
dC2;1

x;v /
.ƒ.T;M /; (4-25)

� RI;J ;˛;ˇ is a remainder satisfying

kRI;J ;˛;ˇkL1.0;T IH0
Qr
/ .ƒ.T;M / for all Qr � r � 1

2
d:

We observe that as wanted, Lemmas 4.7 and 4.8 provide closed systems of equations.

To conclude this section, we shall give the proofs of Lemmas 4.5 and 4.7 (the proofs of the remaining
Lemmas 4.6 and 4.8 being very similar).

4F. Proofs of Lemmas 4.5 and 4.7.

Proof of Lemma 4.5. Let Qr < r � 1
2
d . Since r > d , we can assume, without loss of generality, that

Qr > 1
2
d . We can write, by an induction argument relying on Lemma 4.2, that

T .LI;J f /D FI;J ;

with the source term FI;J given by FI;J D�
P4

iD1 Fi , where

F1 D

mCk�1X
`D1

Li1;j1
� � �LimCk�`;jmCk�`

�
�
.@2

ximCk�`C1
;xjmCk�`C1

F / � rvLimCk�`C2;jmCk�`C2
� � �LimCk ;jmCk

f
�
; (4-26)

F2 D

mCk�1X
`D1

Li1;j1
� � �LimCk�`;jmCk�`

�

��X
k;l

'
imCk�`C1;jmCk�`C1

k;l
@ximCk�`C1

@vjmCk�`C1
F

C 
imCk�`C1;jmCk�`C1

k;l
@2
vimCk�`C1

;vjmCk�`C1
F

�
� rvLimCk�`C2;jmCk�`C2

� � �LimCk ;jmCk
f

�
; (4-27)

F3 D

mCk�1X
`D1

Li1;j1
� � �LimCk�`;jmCk�`

�

��X
k;l

 
imCk�`C1;jmCk�`C1

k;l
@2
vimCk�`C1

;vjmCk�`C1
a

�
�rxLimCk�`C2;jmCk�`C2

� � �LimCk ;jmCk
f

�
; (4-28)
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F4 D

mCk�1X
`D1

Li1;j1
� � �LimCk�`;jmCk�`

�

X
k0;l 0;m0

@vl 0
a.v/m0 '

imCk�`C1;jmCk�`C1

k0;l 0
Lk0;m0LimCk�`C2;jmCk�`C2

� � �LimCk ;jmCk
f: (4-29)

We shall focus on the contribution of F1. We have to estimate terms of the form

F1;` DLmCk�`G`; G` D @
2E � rvL

`�1; (4-30)

where we use the notation Ln for the composition of n operators of type Li;j (the exact combination of
the operators involved in the composition does not matter here). Note that as in (4-14), we can write Ln

in the form

Ln
D @˛n

x C

2n�2X
sD0

X
e; ˛;k0;:::;ks

Pk0
s;e;˛.U /Pk1

s;e;˛.@U / � � �P
ks
s;e;˛.@

sU / @e
v@
˛; (4-31)

where for all 0� p � s, we have P
kp

s;e;˛.X / is a polynomial of degree smaller than kp , the multi-index ˛n

has length 2n and the sum is taken on indices such that

jej D 1; j˛j D 2n� 1� s; k0C k1C � � �C ks � n; k0 � 1; k1C 2k2C � � �C sks D s: (4-32)

Let us first establish a general estimate, adapted from [Han-Kwan and Rousset 2016]. We set for any
function G.x; v/,

Jp.G/.x; v/D
X

s; ˇ;K2E

Jp;s;ˇ;K .G/; (4-33)

where K D .k0; : : : ; ks/ and

Jp;s;ˇ;K .G/.x; v/D P
k0

s;ˇ
.U /P

k1

s;ˇ
.@U / � � �P

ks

s;ˇ
.@sU / @ˇG; (4-34)

where for all 0� r � s, we have P
kr

s;ˇ
.X / is a polynomial of degree smaller than kr and the sum is taken

over indices belonging to the set E defined by

jˇj D p� s; k0C k1C � � �C ks �
1
2
p; k1C 2k2C � � �C sks D s; 0� s � p� 2: (4-35)

Lemma 4.9. For 2.mC k/� 1 � p � 1, 2m > d C 3, Qr > 1
2
d and s, p, K satisfying (4-35), we have

the estimate
kJp.G/kH0

Qr
�ƒ.T;M /

�
kGkHp

Qr
C

X
l�2.mCk/� 1

2
d�2

lCj˛j�p; j˛j�2

k@lU @˛GkH0
Qr

�
: (4-36)

Proof of Lemma 4.9. For the terms in the sum such that s < 2.mCk/� 1
2
d �2, we can use estimate (4-2)

in Lemma 4.1 to obtain
kJp;s;ˇ;K .G/kH0

Qr
�ƒ.T;M /kGkHp

Qr
:

When s � 2.mC k/� 1
2
d � 2, we first consider the terms for which in the sequence .k1; : : : ; ks/ the

largest index l for which kl ¤ 0 is such that l < 2.mCk/� 1
2
d � 2. Then again thanks to estimate (4-2)
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in Lemma 4.1, we obtain
kJp;s;ˇ;K .G/kH0

Qr
�ƒ.T;M /kGkHp

Qr
:

When l � 2.mCk/� 1
2
d �2, we first observe that we necessarily have kl D 1. Indeed if kl � 2, because

of (4-35), we must have l � 1
2
s. This is possible only if 2.mCk/� 1

2
d �2� 1

2
p� 2� 1

2
.2.mCk/�3/,

which corresponds to mCk � 1
2
dC1, and hence this is impossible. Consequently kl D 1. Moreover, we

note that for the other indices Ql for which kQl ¤ 0, because of (4-35), we must have QlkQl � s� lkl , so that

Ql � s� l � s� 2.mC k/C 1
2
d C 2� 1

2
d � 1;

and we observe that 1
2
d�1< 2m� 1

2
d�2. Consequently, by another use of estimate (4-2) in Lemma 4.1,

we obtain
kJp;s;ˇ;K .G/kH0

Qr
�ƒ.T;M /

X
l�2.mCk/� 1

2
d�2

lCj˛j�p; j˛j�2

k@lU @˛GkH0
Qr
:

The fact that j˛j � 2 comes from (4-35). �

We shall now estimate F1;`. Looking at the expansion of LmCk�` given by (4-31), we have to estimate
terms of the form Jp.G`/ with p � 2.mC k � `/. Using (4-31), we decompose G` as

G` D @
2F � rvL

`�1f D @2F � rv.H`;CCH`;�/DWG`;CCG`;�;

where:

� In H`C, we gather all terms of the form (4-34), with G D f , such that 2kC 1C jˇj � 2`. These
terms may contribute to terms with at least 2m derivatives of f .

� On the other hand in H`;�, the terms that arise correspond to 2kC 1Cjˇj< 2`, which involve at
most 2m� 1 derivatives of f .

We first focus on the contribution of G`;�; we define

F1;`;� WDLmCk�`G`;�:

Let us start with the case `� 1
2
.mCk/. We can use the decomposition (4-31), which means that we have

to estimate terms of the form Jp.G`;�/ with p�2.mCk�`/�2.mCk/�1, and apply Lemma 4.9 to get

kF1;`;�kL2.0;T IH0
Qr
/

�ƒ.T;M /

�
kG`;�kL2.0;T IH2.mCk�`/

Qr
/
C

X
l�2.mCk/� 1

2
d�2

lCj˛j�2.mCk�`/; j˛j�2

k@lU @˛G`;�kL2.0;T IH0
Qr
/

�
: (4-37)

We observe that in the right-hand side of (4-37), we have l � 2.mCk�`/�2�mCk�2; consequently,
since 2m� 1> d � 1, we have l < 2.mC k/� 1

2
d � 2, and hence we can estimate k@lU kL1 by using

estimate (4-2) in Lemma 4.1. This yields

kF1;`;�kL2.0;T IH0
Qr
/ �ƒ.T;M /kG`;�kL1.0;T IH2.mCk�`/

Qr
/
; `� 1

2
.mC k/:
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Then we use estimate (3-2) in Lemma 3.1 with s D 2.mC k � `/ and s0 D d C 1, and the definition of
G`;� to estimate kG`;�kH2.mCk�`/

Qr

. Since dC2< 2m�1 and 2.mCk�`/C2� 2.mCk/�1 (because

`� 1
2
.mC k/� 2), we obtain

kF1;`;�kL2.0;T IH0
Qr
/�ƒ.T;M /

�
sup

j

kFj
kL2.0;T IH dC1/krvH`;�kL1.0;T IH2.mCk�`/

Qr
/

Csup
j

kFj
kL2.0;T IH 2.mCk�`/C2/krvH`;�kL1.0;T IH2.mCk�`/

Qr
/

�
�ƒ.T;M /sup

j

kFj
kL2.0;T IH 2.mCk/�1/krvH`;�kL1.0;T IH2.mCk�`/

Qr
/
: (4-38)

By using the regularity assumption on Fj, this yields

kF1;`;�kL2.0;T IH0
Qr
/ �ƒ.T;M /krvH`;�kL1.0;T IH2.mCk�`/

Qr
/
:

To estimate the above right-hand side, we need to estimate @x;vH`;� with j j � 2.mC k � `/C 1.
Recalling the definition of H`;�, by taking derivatives using the expression (4-31), we see that we have to
estimate terms under the form Jp.f / with p � 2m� 1. Using Lemma 4.9 one more time, we thus obtain

kF1;`;�kL2.0;T IH0
Qr
/ �ƒ.T;M /

�
kf kL1.0;T IH2m�1

Qr
/C

X
l�2.mCk/� 1

2
d�2

lCj˛j�2m�1; j˛j�2

k@lU @˛f kL1.0;T IH0
Qr
/

�
:

To estimate the right-hand side, we argue as follows. Let r 0 > 1
2
d be such that Qr C r 0 � r . Since j˛j � 2

and j˛j�2C l � 2m�3, we can use estimate (3-4) in Lemma 3.1 (taking �.v/D .1Cjvj2/
1
2

r 0) to obtain

k@lU.1Cjvj2/
1
2
Qr @˛f kL2

x;v
. kU kH2m�3

�r 0
k.1Cjvj2/r @2f kL1 CkU kL1kf kH2m�1

r
: (4-39)

By using again estimate (4-2) in Lemma 4.1 and the Sobolev embedding, we finally obtain

kF1;`;�kL2.0;T IH0
Qr
/ �ƒ.T;M /kf kL1.0;T IH2m�1

r / �ƒ.T;M /; `� 1
2
.mC k/: (4-40)

It remains to handle the case `� 1
2
.mC k/. Note that necessarily, for these cases to be meaningful,

we must have 2k C 1 < 2`. Assume first ` � 2. We obtain again (4-37). We first need to estimate
k@2F � rvH`;�kL2.0;T IH2.mCk�`/

Qr
/
. We thus have to study

k@ˇ@2F � rv@
H`;�kL2.0;T IH0

Qr
/;

with jˇjCj j � 2.mCk�`/. Since `� 2, we have jˇjC2� 2.mCk�1/. If jˇjC2< 2.mCk/�1� 1
2
d ,

then we get, by the Sobolev embedding, the bound

k@ˇ@2F � rv@
H`;�kL2.0;T IH0

Qr
/ � sup

j

k@ˇ@2Fj
kL2.0;T IL1x /krv@

H`;�kL2.0;T IH0
Qr
/

� sup
j

kFj
k

L2.0;T IH
2.mCk/�1
x /

kf kL2.0;T IH2m�1
Qr

/

�ƒ.T;M /;
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recalling the definition of H`;�. If jˇj � 2.mCk/�3� 1
2
d , then j j � 2.mCk�`/�2.mCk/C3C 1

2
d

and thus the term rv@H`;� involves at most 1
2
d C 2 derivatives. Since 2m� 1> 3

2
d C 2, we have

k@ˇ@2F � rv@
H`;�kL2.0;T IH0

Qr
/ � sup

j

k@ˇ@2Fj
kL2.0;T IL2

x/
kH`;�kL2.0;T IWd=2C2;1

Qr
/

� sup
j

kFj
k

L2.0;T IH
2.mCk/�1
x

kf kL2.0;T IH2m�1
r /

�ƒ.T;M /:

We also have to estimate terms in (4-37) of the form

k@lU @ˇ@2F @rvH`;�kH0
Qr
;

with l � 2.mCk/� 1
2
d�2 and lCjˇjCj j� 2.mCk�`/. Note that this implies jˇj� 2.mCk�`/�l �

1
2
dC2�2`� 1

2
d since we have `� 1. In particular this yields jˇjC2< 2m�1� 1

2
d since 2m> 3C 1

2
d ,

and thus by using the Sobolev embedding and (2-9), we obtain

k@lU @ˇ@2F @rvH`;�kH0
Qr
. sup

j

kFj
kH 2m�1

x
k@lU @rvH`;�kH0

Qr

. .kf kH2m�1
r

C sup
j

kFj .0/kH 2m�1
x

/k@lU @rvH`;�kH0
Qr

�ƒ.T;M /k@lU @rvH`;�kH0
Qr
:

Consequently, it remains to estimate k@lU @rvH`;�kH0
Qr

for l � 2.mC k/ � 1
2
d � 2 and l C j j �

2.mCk�`/. By using again (4-31) and the definition of H`;�, we can expand @rvH`;� as terms of the
form Jp.f /, with p� 2.`�k/Cj j�1. Since we have 2.`�k/Cj j�1� 1C 1

2
d < 2.mCk/� 1

2
d�2,

we can use estimate (4-2) in Lemma 4.1 again to estimate all the terms in the expression of Jp.f /

involving U and its derivatives in L1. This yields

k@lU @rvH`;�kH0
Qr
�ƒ.T;M /

X
Q

k@lU @ Qf kH0
Qr
;

with j Q j � j jC 2.`� k/� 1. Consequently, arguing as for (4-39), we obtain

k@lU @rvH`;�kH0
Qr
�ƒ.T;M /

�
kU kL1kf kH2m�1

r
Ck.1Cjvj2/rf kL1x;vkU kH2m�1

�r 0

�
;

where we recall r 0 > 1
2
d and we conclude finally by invoking estimate (4-2) in Lemma 4.1 and the

Sobolev embedding that

kF1;`;�kL2.0;T IH0
Qr
/ �ƒ.T;M /; 2� `� 1

2
.mC k/: (4-41)

For the case `D 1 to be meaningful, k must be equal to 0. We set aside the term @
˛.I;J /
x F � rvf , which

appears in the formula (4-17), and we thus have to study the term

Li1;j1
� � �Lim�1;jm�1

.@2
xim ;xjm

F � rvf /� @
˛.I;J /
x F � rvf:
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We argue exactly as before to obtain a bound in L2.0;T IH0
Qr
/ by ƒ.T;M / (note indeed that at most

2m� 1 derivatives of f and F are involved). Gathering all pieces together, we have thus proven that

kF1;`;�kL2.0;T IH0
Qr
/ �ƒ.T;M /: (4-42)

Let us now treat the contribution of G`;C, which will give rise to terms involving 2m up to 2.mC k/

derivatives of f . Let j 2 f0; : : : ; 2kg. Let us describe the form of the terms involving derivatives of
order 2mC j of f . We note that 2mC j � 1� 2m� 1>mCp� 1�mCk � 1. This means that such
terms are necessarily of the form�

@˛
0

x @ˇ
0

v Li1;j1
� � �Lik ;jk

@˛
k

x @ˇ
k

v � � �LimCj�k ;jmCj�k
@˛

mCj�k

x @ˇ
mCj�k

v

�
f; (4-43)

with
mCj�kX

kD0

j˛k
jC jˇk

j D 2k � j ;

mCj�kX
kD0

jˇk
j ¤ 0:

In order to have exactly 2mC j derivatives of f , this expression can be rewritten as LK ;L @˛x@
ˇ
vf , where

jKj D jLj D mC j � k and j˛j C jˇj D 2k � j, jˇj � 1. Indeed if derivatives fall on a coefficient of
one of the Lik ;jk

, then there are less than 2mC j derivatives of f .
We denote by  I;J ;1

K ;L;˛;ˇ
the coefficient associated to such terms. Note that for j j � 2k � j � 1,

we have @x@2F i 2 L2.0;T IH
2mCj�2
x /. Since we have 2m > 3

2
d C 4, we can bound this term in

L2.0;T IW
dC2;1

x / by the Sobolev embedding. Likewise, for j j � 2k�j �1, since 2mCj �1� 1
2
d >

d C 2 we have @x;vU 2L1.0;T IW
dC2;1

x;v /. All in all, we deduce

k
I;J ;1
K ;L;˛;ˇ

k
L2.0;T IW

dC2;1
x;v /

�ƒ.T;M /:

It remains to treat the other terms that all involve at most 2m�1 derivatives on f . If k � 1, we set aside the
term @

˛.I;J /
x F � rvf in (4-17), which corresponds to the case `D 1 treated above (relevant when k D 0).

The other terms can be considered as remainders that are uniformly bounded in L2.0;T IH0
Qr
/, since

at most 2m� 1 derivatives are involved on f and at most 2.mC k/� 1 derivatives are involved on F ;
these terms can be treated exactly as we treated the remainders in G`;�.

The treatment of F2;F3;F4 gives rise to similar terms and we omit it. �

Proof of Lemma 4.7. The proof is similar to the previous one. We shall only explain why the terms
involving at least 2m derivatives of f are indeed of the form appearing in (4-22).

Let k D 0; : : : ;p � 1, and r D mC j for j D �k � 1; : : : ; k. We look for the terms involving
2mC l derivatives of f for l D 0; : : : ; k C 1C j. Among the operators in LI;J there are exactly
2mC l � .mC kC 1� r/D 2mC j C l � k � 1 derivatives to be applied on f . Since m> p � kC 1,
we have 2mC j C l �k � 1>mC j. This means that these derivatives must be of the form LK ;L @


x@
ı
v ,

with jKj D jLj D mC l � k � 1 and j j C jıj D j � l C k C 1 (up to commutations between the
differential operators as in (4-43), which is treated as in the previous proof). In the end, the terms
involving 2mC l derivatives of f are thus necessarily of the form LK ;L @


x@
ı
vf , with

jKj D jLj DmC l � k � 1; j jC jıj D 2kC 2� l;

as appearing in (4-22). �
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Remark 4.10. An inspection of the proof reveals that the uniform regularity of the coefficients in (4-18),
(4-21), (4-23), (4-25) can be improved to L2.0;T IW

p;1
x;v / for all p < 2m� 2� 1

2
d .

5. Burgers’ equation and the semilagrangian approach

In this section, we explain the procedure to straighten the transport operator T , which allows, loosely
speaking, to come down to the operator @t C a.v/ � rv. This relies on several changes of variables in
velocity that we introduce now.

Let ˆ.t;x; v/ satisfy the Burgers’ equation(
@tˆC a.ˆ/ � rxˆD F.t;x; ˆ/;

ˆ.0;x; v/D v:
(5-1)

The interest in introducing the vector field ˆ comes from the following algebraic identity.

Lemma 5.1. Given a smooth function g satisfying T g DR, the function

G.t;x; v/ WD g.t;x; ˆ.t;x; v//

solves the equation
@tGC a.ˆ.t;x; v// � rxG DR.t;x; ˆ.t;x; v//: (5-2)

Proof of Lemma 5.1. We compute

@tG D .@tg/.t;x; ˆ.t;x; v//C @tˆ � .rvg/.t;x; ˆ.t;x; v//;

a.ˆ/ � rxG D a.ˆ/ � .rxg/.t;x; ˆ.t;x; v//C Œa.ˆ/ � rxˆ� � .rvg/.t;x; ˆ.t;x; v//:

Since T g DR, we have

.@tg/.t;x; ˆ.t;x; v//C a.ˆ/ � .rxg/.t;x; ˆ.t;x; v//

D�F.t;x; ˆ/ � .rvg/.t;x; ˆ.t;x; v//CR.t;x; ˆ.t;x; v//:

From (5-1), we deduce (5-2) as claimed. �

In other words, the change of variables in velocity v 7!ˆ.t;x; v/ allows us to straighten the vector
field T .

We now provide a lemma concerning the existence, uniqueness and regularity of solutions of (5-1).

Lemma 5.2. Assume that for all j D 1; : : : ; `, we have Fj 2 L2.0;T 0IH n
x / with norm bounded by

ƒ.T 0;M /. There is T 2 .0;T 0� such that the following holds. There exists a unique solution ˆ.t;x; v/ 2
C 0.0;T IW

k;1
x;v / of (5-1) and we have the following estimates:

sup
Œ0;T �

sup
v

X
j˛j�n

k@˛x;v.ˆ� v/kL2
x;v
C sup
Œ0;T �

kˆ� vk
W

k;1
x;v
.ƒ.T;M /; (5-3)

sup
Œ0;T �

sup
v

X
j˛j�n

k@˛x;v.a.ˆ/� a.v//kL2
x;v
C sup
Œ0;T �

ka.ˆ/� a.v/k
W

k;1
x;v
.ƒ.T;M / (5-4)

for all k < n� 1
2
d .
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We shall not provide the proof of Lemma 5.2 as it follows closely the proof of Lemma 4.6 in [Han-
Kwan and Rousset 2016]. Here the source is semilinear, whereas there it is linear; however, the proof is
essentially the same (see also [Han-Kwan et al. 2017] for a similar issue).

We now introduce the characteristics associated to ˆ, defined as the solution to(
@t X.t; s;x; v/D a.ˆ/.t;X.t; s;x; v/; v/;

X.s; s;x; v/D x;
(5-5)

and study the deviation of X from the (modified) free transport flow.3

Lemma 5.3. Assume that for all j D 1; : : : ; `, we have Fj 2 L1.0;T 0IH n
x / with norm bounded by

ƒ.T 0;M /. There is T 2 .0;T 0� such that the following holds. For every 0� s; t � T, we can write

X.t; s;x; v/D xC .t � s/.a.v/C zX.t; s;x; v//; (5-6)

with zX that satisfies the estimate

sup
t;s2Œ0;T �

sup
v

X
j˛j�n

k@˛x;v
zX.t; s;x; v/kL2

x
C sup

t;s2Œ0;T �

kzX.t; s;x; v/k
W

k;1
x;v
.ƒ.T;M / (5-7)

for all k < n� 1
2
d . Moreover, the map x 7! xC .t � s/zX.t; s;x; v/ is a diffeomorphism, and there exists

‰.t; s;x; v/ such that the identity

X.t; s;x; ‰.t; s;x; v//D xC .t � s/a.v/

holds. Finally, we have the estimate

sup
t;s2Œ0;T �

�
sup
v

X
j˛j�n

k@˛x;v.‰.t; s;x; v/� v/kL2
x
Ck‰.t; s;x; v/� vk

W
k;1

x;v

�
.ƒ.T;M / (5-8)

for all k < n� 1
2
d .

Again, we will not reproduce the proof of Lemma 5.3 as it follows closely that of Lemma 5.1 in
[Han-Kwan and Rousset 2016].

In what follows, the procedure will consist in applying derivatives on (2-1) using multiple combinations
of the operators LI;J that were introduced and studied in the previous section. This yields systems of
Vlasov equations with sources, such as (4-22) in Lemma 4.7. It is on these equations that we will apply
the change of variables v 7!ˆ.t;x; v/ in order to straighten the transport operator T . We then integrate
along characteristics, which is why the X.t; s;x; v/ are useful, and average in velocity to obtain equations
bearing on moments. In these equations, it will be crucial to apply various changes of variables based on
the zX and ‰ introduced in Lemma 5.3.

This is what we refer to as the semilagrangian approach.

3Note that the X introduced here is not the same as the X previously defined in (1-7).
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6. Averaging operators

For i 2 f1; : : : ; dg and a smooth function U.t; s;x; v/, we define the following integral operator K
.i/
U

acting on scalar functions H.t;x/:

K
.i/
U
.H /.t;x/D

Z t

0

Z
Rd

.@xi
H /.s;x� .t � s/a.v//U.t; s;x; v/ dv ds: (6-1)

The integral operator K can be seen as a modified version of the operator K.i/U

K
.i/
U .H /.t;x/D

Z t

0

Z
R3

.@xi
H /.s;x� .t � s/v/U.t; s;x; v/ dv ds

that was studied in [Han-Kwan and Rousset 2016].

6A. The smoothing estimate. We note that the operators K
.i/
U

and K
.i/
U seem to feature a loss of derivative

in x. It was nevertheless proved in [Han-Kwan and Rousset 2016, Proposition 5.1 and Remark 5.1]
that for the operators K

.i/
U , this loss is only apparent, provided that U is sufficiently smooth in x; v and

decaying in v: this is the content of the following theorem.

Theorem 6.1 [Han-Kwan and Rousset 2016]. Let k > 1C d and � > 1
2
d . For all H 2 L2.0;T IL2

x/,
and for all i 2 f1; : : : ; dg, we have

kK
.i/
U .H /kL2.0;T IL2

x/
. sup

0�s; t�T

kU.t; s; � /kHk
�
kHkL2.0;T IL2

x/
: (6-2)

Based on this result, we deduce the following smoothing estimate4 for the operators K
.i/
U

.

Proposition 6.2. Let k > 1C d and � > 1
2
d . For all H 2 L2.0;T IL2

x/, and for all i 2 f1; : : : ; dg, we
have

kK
.i/
U
.H /kL2.0;T IL2

x/
. sup

0�s; t�T

kU.t; s; � /kHk
rk

kHkL2.0;T IL2
x/
; (6-3)

with rk D � C .1C�/.d C k/.

Proof of Proposition 6.2. To ease readability we set @x D @xi
and we forget about the subscript i . We

come down from the modified to the straight operator by using the change of variable w WD a.v/. We get

KU .H /.t;x/D

Z t

0

Z
a.Rd /

.@xH /.s;x� .t � s/w/U.t; s;x; a�1.w//jdet Da.a�1.w//j�1 dw ds

D KU.H /.t;x/;

with
U.t; s;x; w/ WD U.t; s;x; a�1.w//jdet Da.a�1.w//j�11a.Rd /:

Let k > 1C d and � > 1
2
d . By Theorem 6.1, we get

kKU .H /kL2.Œ0;T �IL2
x/
D kKU.H /kL2.Œ0;T �IL2

x/
. sup

0�s; t�T

kU.t; s; � /kHk
�
kHkL2.Œ0;T �IL2

x/
:

4A close version of this result is also stated in [Han-Kwan et al. 2017] for the special case a.v/D Ov.
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By the assumption on a, we have

j@˛wa�1.w/j. .1Cja�1.w/j/1C�j˛j:

In particular, we deduce

jdet Da.a�1.w//j�1 . .1Cja�1.w/j/d.1C�/:

As a consequence, we have, by the Faà di Bruno formula, and using the reverse change of variable
v D a�1.w/ and (2-3), that

kU.t; s; � /kHk
�
. kU.t; s; � /kHk

�C.dCk/.1C�/
;

and hence the claimed estimate. �

6B. Intermission: a comparison to averaging lemmas. We end this section with a comparison of the
smoothing estimate we have just shown, in the simple case where a.v/ D v, which corresponds to
Theorem 6.1, with kinetic averaging lemmas. Averaging lemmas were introduced in [Golse et al. 1985;
1988; Agoshkov 1984] and now generically stand for various smoothing effects in average for kinetic
transport-type equations.5 They proved over the years to be fundamental in several contexts of kinetic
theory, as they provide compactness and regularity. There exist many versions of these, involving several
different assumptions on the functional spaces, on the number of derivatives in v or in x in the source etc.;
see, e.g., [DiPerna et al. 1991; Perthame and Souganidis 1998; Golse and Saint-Raymond 2002; Bouchut
2002; Jabin and Vega 2004; Jabin 2009; Arsénio and Saint-Raymond 2011; Arsénio and Masmoudi 2014]
for more recent advances. The closest (to Theorem 6.1) analogue of averaging lemmas is arguably the
following result.

Theorem 6.3 [Perthame and Souganidis 1998]. Let 1< p <1. Let f;g D .gj /jD1;:::;d 2L
p
t;x;v satisfy

the transport equation

@tf C v � rxf D

dX
jD1

@xj @
k
vgj ; (6-4)

where k is an arbitrary multi-index. Let '.v/ be a C1 compactly supported function and set

�'.t;x/D

Z
Rd

f .t;x; v/ '.v/ dv:

Then we have, for all ˛ 2
�
0;min

�
1
p
; 1

p0

��
,

k�'kLp
t;x
� Cd;p;˛;'kf k

1� ˛
jkjC1

L
p
t;x;v

kgk
˛
jkjC1

L
p
t;x;v

: (6-5)

Let us focus especially on the case p D 2, jkj D 0, in which case (6-5) actually also holds for ˛ D 1
2

.
Theorem 6.1 can also be understood as a kind of averaging lemma for the moments in v of the kinetic

5Actually this can be embedded in a more general framework; see in particular [Gérard 1990; Gérard and Golse 1992; Gérard
et al. 1996].
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equation (6-4), in the special case where the source has the form
dX

jD1

@xjHj .t;x/ @
k
vUj .t;x; v/; (6-6)

where Uj is smooth in x and v, and the initial condition is f jtD0 D 0. Let '.t;x; v/ be a smooth and
decaying test function. Then by the method of characteristics,

f .t;x; v/D

Z t

0

dX
jD1

@xjHj .s;x� .t � s/v/ @k
vUj .s;x� .t � s/v; v/ ds;

and thus

�'.t;x/D

Z t

0

Z
Rd

dX
jD1

@xjHj .s;x�.t�s/v/ @k
vUj .s;x�.t�s/v; v/ '.t;x; v/ ds D

dX
jD1

K
.j/
Uj
.Hj /.t;x/;

setting Uj .s; t;x; v/D @
k
vUj .s;x� .t � s/v; v/ '.t;x; v/. The regularity assumption of Theorem 6.1 can

be written as
sup

0�s; t�T

kUj .t; s; � /kHk
�
<1

for k > 1C d , � > 1
2
d , and the consequence is

k� kL2.0;t IL2
x/
. sup

0�s; t�T

X
j

kUj .t; s; � /kHk
�
kHjkL2.0;t IL2

x/
: (6-7)

This estimate is not a consequence of Theorem 6.3. Indeed, note that it does not involve the L2 norm of
the solution f : somehow, this can be roughly seen as a version of Theorem 6.3 allowing ˛ D 1, whereas
Theorem 6.3 only allows ˛� 1

2
, at the expense of asking for the structure assumption (6-6) on the source g

and of considering a norm for the source that is more demanding than the L2 norm of estimate (6-5).
Observe also that Theorem 6.1 does not require the test function in v to be decaying at infinity, as long

as for all j, we have Uj in (6-6) is itself decaying sufficiently fast at infinity.

7. Proofs of Theorem 2.1 and Corollaries 2.2 and 2.5

We finally set up an induction argument, which relies on the machinery developed in the previous sections,
and will ultimately lead to the proof of Theorem 2.1. We summarize the procedure below:

� By induction, we assume smoothness on the moments until order n0� 1. We can first apply Lemma 4.1
to obtain the same smoothness for the coefficients of the operators Li;j .

� We apply Lemma 4.7 or 4.8 in order to get the system of equations satisfied by .LK ;L@˛x@
ˇ
vf /, which

is of the abstract form
T .F/CAFD B;

where A is a matrix whose coefficients we control and B is the rest we need to control. Loosely speaking,
B consists either of remainders we can control thanks to the induction assumption, and terms of the form
�@

˛.K ;L/
x F � rvf for K;L 2 f1; : : : ; dgmCk , whose contribution is the main matter.
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� We then invert the operator T CA in order to solve the equation. At this stage, after integration in
velocity (remember that we are interested in the regularity of moments), we use the changes of variables
introduced in Lemmas 5.1, 5.2 and 5.3.

� What is rather straightforward then is the study of the contribution of the initial data and of the remainder
terms in B. As already said, the contribution of the terms �@˛.K ;L/x F � rvf is more serious and involves
the study of integrals of the formZ t

0

Z
Rd

.@xi
@˛.K ;L/x F /.s;x� .t � s/a.v//U.t; s;x; v/ dv ds;

which seem to feature a loss of derivative in x. We recognize the integral operators introduced and studied
in Section 6. This is where the smoothing estimate of Proposition 6.2 proves to be crucial.

7A. End of the proof of Theorem 2.1. For n� 2m� 1, let P.n/ be the following statement:

There is T > 0 such that for all test functions

 .t;x; v/ 2L1.0;T IW dC2Cn�2m;1
�r0

/;

setting for all j˛j D n,

m ;˛.t;x/D

Z
Rd

@˛xf .t;x; v/  .t;x; v/ dv;

there exists ƒ for which X
j˛jDn

km ;˛kL2.0;T IL2
x/
.ƒ.T;M /: (7-1)

By Proposition 3.2, it is clear that P.2m� 1/ is verified.
Let n 2 f2m; : : : ; 2.mC p/g. Let us assume that n is even, of the form 2.mC k/. We shall not

proceed with the case where n is odd, as it follows by completely similar arguments. Assume that
P.2m/; : : : ;P.n�1/ are satisfied and let T > 0 be a time on which the estimates (7-1) (for 2m; : : : ;n�1)
are satisfied. We shall prove that P.n/ is also verified. Once this is done, we deduce by induction that
P.2m/; : : : ;P.2.mCp// are satisfied; we then deduce the required estimates (3-14).

Thanks to the property P.n� 1/ applied to the . j /jD1;:::;r , and (2-9), we first haveX̀
jD1

kFj
k

L2.0;T IH
2.mCk/�1
x /

�ƒ.T;M /: (7-2)

We can therefore apply Lemma 4.1 and obtain a possible smaller time, still denoted by T, and operators
Li;j with coefficients .'i;j

k;l
;  

i;j

k;l
/i;j ;k;l2f1;:::;dg belonging to L1.0;T IH2.mCk/�2

�Qr
/ for all Qr > 1

2
d , with

uniform regularity
k.'

i;j

k;l
;  

i;j

k;l
/i;j ;k;lkL1.0;T IH2.mCk/�2

�Qr
/
�ƒ.T;M /:

Let us consider the vector (the precise ordering does not matter)

FD .LK ;L@˛x@
ˇ
vf /r2fm�k;:::;mCkg;K ;L2f1;:::;dgr ; j˛jCjˇjDmCk�r : (7-3)
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By Lemma 4.7, it follows that F satisfies the system

T .F/CAFD BCR; (7-4)

where A.t;x; v/ is a matrix with coefficients in L2.0;T IW
dC2;1

x;v /, satisfying

kAk
L2.0;T IW

dC2;1
x;v /

.ƒ.T;M /: (7-5)

(The term AF encodes the contribution of the leading-order terms in the triple sum of the right-hand side
of (4-22).) On the other hand, R is a remainder satisfying the estimate

kRkL2.0;T IH0
Qr
/ .ƒ.T;M / (7-6)

for all Qr < r� 1
2
d and B is defined as follows: all its components are equal to 0 except those corresponding

to the components associated to some K;L 2 f1; : : : ; dgmCk, in which case it is equal to

�@˛.K ;L/x F � rvf:

The next step consists in using the change of variables v 7! ˆ.t;x; v/, where ˆ solves (5-1), in order
to straighten the vector field T ; see Lemma 5.1. To this end, we use Lemma 5.2 (reduce again T > 0

if necessary) and use the notation ıˆ to denote the composition in v with ˆ. Setting F D F ıˆ, we
obtain

.@t C a.ˆ/ � rx/F C .A ıˆ/F D B ıˆCR ıˆ: (7-7)

Let A.s; t;x; v/ be the operator, whose existence is ensured by the Cauchy–Lipschitz theorem, as the
solution of the following linear ODE

@sA.s; t;x; v/D A.s;x; ˆ.s;x; v//A.s; t;x; v/; A.t; t;x; v/D Id:

Thanks to (7-5), we also have

kA. � ; t; � /k
L1.0;T IW

dC2;1
x;v /

Ck@sA. � ; t; � /kL2.0;T IW
dC2;1

x;v /
.ƒ.T;M /: (7-8)

By the method of characteristics we get

F.t;x;v/DA.t;0;x;v/F.0;X.0; t;x;v/;v/

C

Z t

0

A.t;s;x;v/Bıˆ.s;X.s; t;x;v/;v/dsC

Z t

0

A.t;s;x;v/Rıˆ.s;X.s; t;x;v/;v/ds: (7-9)

Suppose  .t;x; v/ 2L1.0;T IW dC2C2k;1
�r0

/. Then we multiply the representation formula (7-9) by
 .t;x; ˆ.t;x; v//jdet Dvˆ.t;x; v/j and integrate in v to obtainZ

Rd

F.t;x; v/  .t;x; ˆ.t;x; v//jdet Dvˆ.t;x; v/j dv D I0C I1C I2; (7-10)
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with

I0 D

Z
Rd

A.t; 0;x; v/F.0;X.0; t;x; v/; v/  ıˆjdet Dvˆ.t;x; v/j dv;

I1 D

Z t

0

Z
Rd

A.t; s;x; v/ .R ıˆ/.s;X.s; t;x; v/; v/  ıˆjdet Dvˆ.t;x; v/j dv ds;

I2 D

Z t

0

Z
Rd

A.t; s;x; v/ .B ıˆ/.s;X.s; t;x; v/; v/  ıˆjdet Dvˆ.t;x; v/j dv ds:

(7-11)

By the change of variables v 7!ˆ.t;x; v/, we haveZ
Rd

F.t;x; v/  .t;x; ˆ.t;x; v//jdet Dvˆ.t;x; v/j dv D

Z
Rd

F.t;x; v/  .t;x; v/ dv:

Let us first study this term. Since P.2m/; : : : ;P.2.mCk/�1/ are satisfied, we can apply Lemma 4.4 (the
assumption (4-8) is indeed verified), which yields, see (4-9) and (4-10), that for all I;J 2 f1; : : : ; dgmCk ,Z

Rd

LI;J f  .t;x; v/ dv D

Z
Rd

@˛.I;J /x f  .t;x; v/ dvCRI;J ; ;

where RI;J ; is a remainder satisfying the estimate

kRI;J ; kL2.0;T IL2
x/
�ƒ.T;M /:

Consequently, recalling the definition of F in (7-3), if we are able to obtain the bound

kI0kL2.0;T IL2
x/
CkI1kL2.0;T IL2

x/
CkI2kL2.0;T IL2

x/
�ƒ.T;M /;

then we deduce the bound X
I;J

Z
Rd

@˛.I;J /x f  dv


L2.0;T IL2

x/

�ƒ.T;M /I

that is, we obtain the sought bound (7-1) at rank n.

7A1. Study of I0. Let us begin by treating the contribution of the initial data, which corresponds to the
term I0. First by using estimate (5-3) in Lemma 5.2, the L1 bound for A in (7-8), and the estimate

k.1Cjvj2/�
1
2

r0 kL1x;v . 1; (7-12)

we have for all x 2 Td,ˇ̌̌̌Z
Rd

A.t; 0;x; v/F.0;X.0; t;x; v/; v/.1Cjvj2/
1
2

r0 jdet Dvˆ.t;x; v/j dv

ˇ̌̌̌
�ƒ.T;M /

Z
jF.0;X.0; t;x; v/; v/j.1Cjvj2/

1
2

r0 dv:

Therefore, we get that

kI0kL2.0;T IL2
x/
�ƒ.T;M /

Z
Rd

kF.0;X.0; t; � ; v/; v/kL2
x
.1Cjvj2/

1
2

r0 dv


L2.0;T /

:
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By using the change of variable y D X.0; t;x; v/C ta.v/D x� t zX.0; t;x; v/ and Lemma 5.3, we obtain

kF.0;X.0; t; � ; v/; v/kL2
x
�ƒ.T;M /kF.0; � � ta.v/; v/kL2

x
�ƒ.T;M /kF.0; � ; v/kL2

x

and hence, we deduce that since r > r0C
1
2
d , for some r 0 > 1

2
d , it holds that

kI0kL2.0;T IL2
x/
�ƒ.T;M /

�Z
Rd

dv

.1Cjvj2/r
0

�1
2

kF.0/kH0
r
:

By using the fact that at t D 0 we have ˆ.0;x; v/D v and L.K ;L/jtD0 D @
˛.K ;L/
x , we end up with

kF.0/kH0
r
D kF.0/kH0

r
�ƒ.M /

mCkX
jDm�k

X
j˛jCjˇjDmCk�j

k@2j
x @

˛
x@
ˇ
vf0kH0

r
;

and hence we finally obtain

kI0kL2.0;T IL2
x/
�ƒ.T;M /:

7A2. Study of I1. We treat the other remainder term I1 in a similar fashion. Indeed, using again
estimate (5-3) in Lemma 5.2, (7-8) and (7-12), we first get

kI1kL2.0;T IL2
x/

�ƒ.T;M /

Z t

0

Z
Rd

kR.s;X.s; t; � ; v/; ˆ.s;X.s; t; � ; v/; v//kL2
x
.1Cjvj2/

1
2

r0 dv ds


L2.0;T /

:

Thanks to the change of variable x 7! X.s; t;x; v/ and to the estimates of Lemma 5.3, it follows that

kI1kL2.0;T IL2
x/
�ƒ.T;M /

Z t

0

Z
Rd

kR.s; � ; ˆ.s; � ; v//kL2
x
.1Cjvj2/

1
2

r0 dv ds


L2.0;T /

�ƒ.T;M /

Z t

0

k.R ıˆ/.s/kH0
Qr
ds


L2.0;T /

�ƒ.T;M /T kR ıˆkL2.0;T IH0
Qr
/;

by choosing Qr > r0 C
1
2
d , which is possible since r > r0 C d . Using again the change of variables

v 7!ˆ.t;x; v/, Lemma 5.2 and the estimate (7-6), we thus obtain

kI1kL2.0;T IL2
x/
�ƒ.T;M /:

7A3. Study of I2. The main matter thus concerns the contribution of the term I2, which features an
apparent loss of derivative in x. This is however not the case, thanks to Proposition 6.2. Let K;L 2

f1; : : : ; dgmCk . Writing @˛.K ;L/x D @x@
˛0

x with j˛0j D j˛.K;L/j � 1, we are led to study terms of the
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form (here F
j
i stands for the i -th coordinate of Fj )X̀

jD1

Z t

0

Z
Rd

.@x@
˛0

x F
j
i /.s;X.s; t;x; v//  .t;X.s; t;x; v/; ˆ.s;X.s; t;x; v/; v//

�AI;J
K ;L

�
t; s; ;X.s; t;x; v/; ˆ.s;X.s; t;x; v/; v/

�
Aj .ˆ.s;X.s; t;x; v/; v//

� @vi
f
�
s;X.s; t;x; v/; ˆ.s;X.s; t;x; v/; v/

�
jdet Dvˆ.t;x; v/j dv ds;

where kAI;J
K ;L
k

L1.0;T IW
dC2;1

x;v /
�ƒ.T;M /.

We use the change of variables v D ‰.s; t;x; w/ to rewrite this expression as
P`

jD1 KUj .@
˛0

x F
j
i /,

with

Uj .s; t;x; v/DAj

�
ˆ.s;x� .t � s/ a.v/; ‰.s; t;x; v//

�
�AI;J

K ;L

�
t; s;x� .t � s/ a.v/;ˆ.s;x� .t � s/ a.v/; ‰.s; t;x; v//

�
� 

�
t;x� .t � s/ a.v/;ˆ.s;x� .t � s/ a.v/; ‰.s; t;x; v//

�
� @vi

f
�
s;x� .t � s/ a.v/;ˆ.s;x� .t � s/ a.v/; ‰.s; t;x; v//

�
� jdet Dvˆ.t;x; ‰.s; t;x; v//jjdet Dv‰.s; t;x; v/j; (7-13)

where we recall the operators K were introduced in Section 6. In order to apply Proposition 6.2, we have
to estimate, s; t being fixed, Uj in H2Cd

r 0 , with r 0> 1
2
dC2.1C�/.1Cd/ and r � r 0Cr0, which is possible

since r >R as defined in (2-12). First, by (2-3), (2-6), (7-8), (5-3) in Lemma 5.2 and estimate (5-8) in
Lemma 5.3, we can uniformly bound in L1 all terms involving Aj , ˆ, ‰ and their derivatives (since
only at most 2C d derivatives can be involved). For  , we use

k.1Cjvj2/�
1
2

r0@˛ kL1x;v . 1 for all j˛j � d C 2:

We are therefore led to estimate integrals of the form

I D

ˇ̌̌̌Z
Td�Rd

jg.x� .t � s/ a.v/;ˆ.s;x� .t � s/v;‰.s; t;x; v///j2.1Cjvj2/r0Cr 0 dv dx

ˇ̌̌̌
;

where g D @˛f , j˛j � d C 3. To this end, we can use the change of variables v 7!w D‰.s; t;x; v/ and
rely on estimate (5-7) in Lemma 5.3 to obtain the bound

I �ƒ.T;M /

Z
Td�Rd

jg.X.s; t;x; w/;ˆ.s;X.s; t;x; w/; w//j2.1Cjwj2/r0Cr 0 dx dw:

Next, arguing as for I1, we can use successively the change of variable x 7! y D X.s; t;x; w/ with
the estimates of Lemma 5.3, and the change of variable w 7! u D ˆ.s;y; w/ with estimate (5-3) in
Lemma 5.2, to finally obtain

I �ƒ.T;M /kgk2H0
r
�ƒ.T;M /kf k2H2m�1

r
;

since 2m� 1� d C 3 and r >R. As a result we obtain the bound

sup
s;t
kUjkH2Cd

r 0
�ƒ.T;M /kf k2H2m�1

r
�ƒ.T;M /: (7-14)
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We can therefore apply Proposition 6.2 to get the bound

kKUj ;i .F
j
i /kL2.0;T IL2

x/
. sup

s;t
kUjkH2Cd

r 0
kF

j
i kL2.0;T IH

2.mCk/�1
x /

�ƒ.T;M /kF
j
i kL2.0;T IH

2.mCk/�1
x /

�ƒ.T;M /; (7-15)

thanks to estimate (7-2). We deduce

kI2kL2.0;T IL2
x/
�ƒ.T;M /

and gathering all pieces together, we therefore obtain (7-1) at rank n, and the induction argument is
complete. Theorem 2.1 follows.

7B. Proof of Corollary 2.2. In order to prove the higher-order regularity for the characteristics, we
proceed as in [Han-Kwan and Rousset 2016, Lemma 5.1].

By Theorem 2.1 and the assumption (2-9), we have for all j D 1; : : : ; `,

Fj
2L2.0;T IH n0

x /

and thus by Sobolev embedding, we deduce that for k < n0� 1
2
d ,

Fj
2L2.0;T IW k;1

x /: (7-16)
We set

Z WD .Y;W / WD .X � tv�x;V � v/:

Let us first prove that Z 2L1.0;T IW
k;1

x;v / for k < n0� 1
2
d . Note that by the definition of .X;V /, we

know Z satisfies the equation

Z D

�Z t

0

.Y C v/ ds;

Z t

0

X̀
jD1

Aj .W C v/Fj .Y CxC tv/ ds

�
:

By (2-6) and (7-16), we obtain by induction (on the number of applied derivatives) that for t � T,

sup
j˛j<n0� 1

2
d

sup
Œ0;t �

k@˛x;vZkL1x;v .
Z t

0

�.s/
�
1C sup
j˛j<n0� 1

2
d

sup
Œ0;s�

k@˛x;vZkL1x;v
�

ds;

where � is a nonnegative function belonging to L2.0;T /, with norm bounded by ƒ.T;M /. We deduce
our claim thanks to the Gronwall inequality, which yields

sup
j˛j<n0� 1

2
d

sup
Œ0;t �

k@˛x;vZkL1x;v �
p

tƒ.T;M /: (7-17)

We deduce in particular from this estimate that for T 0 2 .0;T � small enough, for all v 2 Rd, the map
x 7!X.T 0; 0;x; v/ is a C 1 diffeomorphism.

Next, let us turn to the L1t L1v L2
x estimate. We set

N .t/ WD sup
j˛j�n0

sup
Œ0;t �

k@˛x;vZkL1v L2
x
:
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By an application of the Faà di Bruno formula, we obtain

N .t/.
X̀
jD1

Z t

0

X
k1;k2;ˇ1;:::;ˇk1Ck2

J
j

k1;k2;ˇ1;:::;ˇk1Ck2

ds;

with

J
j

k1;k2;ˇ1;:::;ˇk1Ck2

WD
j.Dk1

v Aj / ıV .s/.Dk2
x Fj / ıX.s/jj@ˇ1

x;v.X;V /j � � � j@
ˇk1Ck2
x;v .X;V /j


L1v L2

x
;

and where the sum is taken only on indices such that k1Ck2 DW k � j˛j � n0, ˇ1C � � �Cˇk D j˛j with
for every j, j ǰ j � 1 and jˇ1j � jˇ2j � � � � � jˇk j.

Let us observe that in the sum, if k1C k2 D k � 2, we necessarily have jˇk�1j < n0 � 1
2
d . Indeed,

otherwise, we would have jˇ1jC � � � C jˇk j � 2n0� d and thus n0 � 2n0� d , which means n0 � d . This
is impossible by assumption on n0. Next:

� If k2 < n0� 1
2
d and k1C k2 D k � 2, we obtain thanks to the above observation and (7-17) that for

i D 1; : : : ; k � 1,
k@ˇi

x;v.X;V /kL1x;v . 1CT Ck@ˇi
x;v.Z/kL1x;v .ƒ.T;M /: (7-18)

Moreover, using (2-6), (7-16) we get

J
j

k1;k2;ˇ1;:::;ˇk1Ck2

� kDk1AjkL1x;vkD
k2Fj

kL1x;v

k�1Y
iD1

@ˇi
x;v.X;V /


L1x;v

k@ˇk
x;v.X;V /kL1v L2

x

�ƒ.T;M /kDk2Fj
kL1x;v .1CN .s//:

If k D 1, the above estimate is clearly also valid.

� If k2 � n0 � 1
2
d , we observe that for every i , we have jˇi j � jˇk j � n0 � .k � 1/ < 1

2
d . In particular

jˇi j< n0� 1
2
d by assumption on n0 and we have that (7-18) holds for all i D 1; : : : ; k. This yields

J
j

k1;k2;ˇ1;:::;ˇk1Ck2

. k.Dk1
v Aj / ıV kL1v L2

x
k.Dk2

x Fj / ıXkL1v L2
x
ƒ.T;M /

. kDk1
x;vAjkL1v k.D

k2
x Fj / ıXkL1v L2

x
ƒ.T;M /

.ƒ.T;M /k.Dk2
x Fj /kL2

x
:

To get the last estimate, we restrict to T 0 � T small enough so that we can use the change of variable
y DX.t; 0;x; v/ when computing the L2

x norm of .Dk2
x;vF

j / ıX .

By combining the above estimates, we obtain that for t � T 0,

N .t/�
p

tƒ.T;M /C

Z t

0

ƒ.T;M / sup
j

kFj .s/k
H n0

x
N .s/ ds:

By using again (7-16) and the Gronwall inequality, we thus obtain that for t � T 0,

N .t/.
p

tƒ.T;M /;

which concludes the proof of Corollary 2.2.
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7C. Proof of Corollary 2.5. The idea, as in [Gérard 1990, Proposition 5.2], consists in applying Theorem 2.1
with the test function

 �.v/D e�v�� 2W n0;1
x;v ;

where � 2 Rd has to be seen as the Fourier variable in velocity. A close inspection of the proofs reveals
that the conclusion of Theorem 2.1 can be refined into

for all � 2 Rd ;

Z f  � dv


L2.0;T0IH

n0
x /

�ƒ.T0;M; k �kW n0;1
v

/; (7-19)

where ƒ is a polynomial function. Moreover, k �kW n0;1
v
. ƒ0.j�j/, where ƒ0 is also a polynomial

function (of degree n0). Since

1

.2�/
1
2

d

Z
f  � dv D Fvf .t;x; �/;

we deduce from (7-19) that for some p > 0 taken large enough, Of .t; k; �/.1Cjkj2/ 1
2

n0.1Cj�j2/�
1
2

p


L2.0;T0IL2.Zd�Rd //
<1;

which means that f 2L2.0;T0IH
n0;�p
x;v /.

8. Application to classical models from physics

The goal of this section is to briefly explain why both Vlasov–Poisson and relativistic Vlasov–Maxwell
systems enter the abstract framework, and thus why Theorem 2.1 (and its corollaries) apply to these
classical models.

8A. Vlasov–Poisson. The Cauchy problem for the Vlasov–Poisson system (1-2) was studied (among
many other references)

� for (global) weak solutions in [Arsen’ev 1975],

� for local strong solutions in [Ukai and Okabe 1978], and for global strong solutions in [Bardos and
Degond 1985; Lions and Perthame 1991; Pfaffelmoser 1992; Schaeffer 1991; Glassey 1996; Batt
and Rein 1991; Horst 1993].

Let us check the following structural assumptions for (1-2).

� Assumptions on the advection field. In this model, a.v/D v, so that all required assumptions on a are
straightforward properties. One can take �D 0 in (2-4).

� Assumptions on the force field. For the force field F, we can write `D 1, A1 D 1 and F1 D �rx�,
where � is computed thanks to the moment of order 0 of f only; that is,  1 D 1 (thus r0 D 0) and

m 1
D

Z
Rd

f dv:
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The assumption (2-9) follows straightforwardly from the Poisson equation, as for all n 2 N, it holds that

for all t � 0; kF1.t/kH n
x
. km 1

.t/kH n�1
x

:

We however do not need the smoothing effect due to the Poisson equation. It follows directly that both
estimates (2-9) and (2-10) hold. The stability estimate (2-11) holds because of the same estimate, by
linearity of the Poisson equation. It turns out that using the smoothing estimate, we can obtain a stronger
version of Theorem 2.1: we embed this situation in what we refer to as transport/elliptic systems, and
refer to Theorem 9.1 in Section 9.

Note also that the Vlasov–Poisson system with dynamics constrained on geodesics introduced in the
context of stellar dynamics in [Diacu et al. 2016] enters the abstract framework as well (and in this model
there is no smoothing of the force field).

8B. Relativistic Vlasov–Maxwell. The Cauchy problem for the relativistic Vlasov–Maxwell system (1-3)
was studied (among many other references)

� for (global) weak solutions in [DiPerna and Lions 1989],

� for (local) strong solutions in [Wollman 1984; 1987; Degond 1986; Asano 1986; Glassey and Strauss
1986; 1987; Glassey 1996; Schaeffer 2004; Bouchut et al. 2003; Klainerman and Staffilani 2002;
Pallard 2015; Luk and Strain 2016].

Let us check the following structural assumptions for (1-3).

� Assumptions on the advection field. In this model, a.v/D Ov, and one can check by a straightforward
induction that

k@˛v OvkL1v � C˛ for all ˛:

We have a.Rd /D B.0; c/ and the explicit formula

for all w 2 B.0; c/; a�1.w/D
wp

1� jwj2=c2
:

It follows that one can take �D 2 in (2-4).

� Assumptions on the force field. For the force field F, we observe that we can take `D 4 and write

A1 D 1; F1
DE; (8-1)

and setting B D .B1;B2;B3/ in an orthonormal basis .e1; e2; e3/,

A2 D Ov1; F2
D B2e3�B3e1;

A3 D Ov2; F3
D B3e1�B1e3;

A4 D Ov3; F4
D B1e2�B2e1:

(8-2)

The electromagnetic field .E;B/ is computed only from initial data .E0;B0/ and the moments of order 0

and 1, which correspond to  1 D 1;  2 D Ov (so that r0 D 0) and

m 1
D

Z
Rd

f dv; m 2
D

Z
Rd

f Ov dv:
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The assumption (2-9) follows from classical energy estimates for Maxwell equations: we have for all
n 2 N and all t � 0,

k.E;B/kL2.0;t IH n
x /
� Cnt

3
2

2X
iD1

km i
kL2.0;t IH n

x /
Ck.E;B/.0/kL2.0;t IH n

x /
I

see, e.g., [Han-Kwan et al. 2017, Lemma 3.2]. The estimate (2-10) is proved similarly. The stability
estimate (2-11) holds because of the same energy estimate, by linearity of the Maxwell equations.

8C. Remarks. Some remarks about possible generalizations of the abstract framework are in order:

� It is possible to add a smooth force, of C k regularity with k large enough, and still adapt the results
of Theorem 2.1, without significantly modifying the analysis. This allows one for instance to consider
Vlasov–Poisson systems with a smooth external magnetic field.

� The so-called relativistic gravitational Vlasov–Poisson system (which may be relevant for galactic
dynamics) enters the abstract framework as well, by a combination of the estimates of Section 8A and 8B
(see, e.g., [Glassey and Schaeffer 1985; Hadžić and Rein 2007; Kiessling and Tahvildar-Zadeh 2008;
Lemou et al. 2008] for some references about this system).

� The divergence-free (in v) condition for F is not an absolute requirement for the analysis. It may be
dropped, but would sometimes necessitate introducing more complicated formulas. In particular, it is
likely that fluid/kinetic systems for sprays such as Vlasov–Stokes or Vlasov–Navier–Stokes in dimension
d D 2 enter this framework (or a slightly modified version of it) as well. We refer, e.g., to [Jabin 2000;
Boudin et al. 2009; 2015; Desvillettes 2010] for some references about these equations. See also [Baranger
and Desvillettes 2006; Moussa and Sueur 2013] for other fluid/kinetic systems.

� Note that the so-called nonrelativistic Vlasov–Maxwell system (that is system (1-3) with v replacing
all occurrences of Ov) does not enter the abstract framework. Indeed the assumption (2-6) is not satisfied.
However, we claim that (2-6) is crucial only for having a good local well-posedness theory in Hn

r spaces.
This means that without (2-6), we can still obtain a result similar to that of Theorem 2.1, except that we
have to assume the existence of a solution of (2-1) with the required regularity. For the nonrelativistic
Vlasov–Maxwell system, such solutions do exist, following [Asano 1986], which requires the introduction
of Sobolev spaces with loss of integrability in velocity.

9. The case of transport/elliptic-type Vlasov equations

9A. An improvement of Theorem 2.1. Let us assume in this section that the following strengthened
version of (2-9) is satisfied:

kFj
kL2.0;t IH n

x /
� �.j/n

�
t; km 1

kL2.0;t IH n�1
x /; : : : ; km r

kL2.0;t IH n�1
x /;

X̀
jD1

kFj .0/kH n
x

�
: (9-1)

In other words, the force is smoothed out and gains one derivative compared to the distribution function.
We refer to such a situation as the transport/elliptic-type case. This includes in particular the Vlasov–
Poisson system. We then have the following version of Theorem 2.1. This is an improved version in the
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sense that the higher regularity we ask for is only regularity in x and not at all in v (compare (9-2) below
to (2-13) in Theorem 2.1).

Theorem 9.1. Let n�N and r >R. Let n0 > n be an integer such that n>
�

1
2
n0
˘
Cd C 1. Assume that

f0 2Hn
r and Fj .0/ 2H n0

x for all j 2 f1; : : : ; `g. Assume furthermore that the initial data f0 satisfies the
following higher space regularity:

@˛xf0 2H0
r for all j˛j D n0: (9-2)

Then there is T > 0 such that the following holds. There exists a unique solution .f .t/;F.t// with initial
data .f0;F.0// to (2-1) such that f .t/ 2 C.0;T IHn

r /.
Moreover, for all test functions  2L1.0;T IW n0;1

�r0
/, we haveZ

f  dv 2L2.0;T IH n0

x /: (9-3)

As in Corollary 2.5, we may deduce as well under the assumptions of Theorem 9.1 that

f 2L2.0;T IH n0;�1
x;v /: (9-4)

Proof of Theorem 9.1. The beginning of the proof is the same as for Theorem 2.1 (of which we keep the
notations). Let us set in this context

M WD kf0kH2m�1
r

C

2pX
kD0

X
j˛jD2mCk

k@˛xf0kH0
r
C

X̀
jD1

kFj .0/k
H

2.mCp/
x

: (9-5)

We proceed with the same induction argument, treating all terms similarly except for6 the treatment of
the term I0, for which the following is an improvement of Section 7. The idea will be to use integration
by parts in v to trade derivatives in v against derivatives in x, allowing us to obtain estimates depending
on (9-5) (compared to (3-13) for Theorem 2.1).

First note using the smoothing estimate (9-1) that we improve (7-2) toX̀
jD1

kFj
k

L2.0;T IH
2.mCk/
x /

�ƒ.T;M /: (9-6)

We can use this improved estimate with Remark 4.10 to deduce that the coefficients of A, as appearing
in (7-4), satisfy the improved form of (7-5)

kAkL2.0;T IW
p;1

x;v / .ƒ.T;M / for all p < 2m� 1
2
d � 1: (9-7)

Therefore we deduce the improved form of (7-8):

kA. � ; t; � /kL1.0;T IW p;1
x;v / .ƒ.T;M / for all p < 2m� 1

2
d � 1: (9-8)

6We also remark that in order to treat the term I2, we do not absolutely need to use Proposition 6.2; we can indeed rely on
the smoothing estimate (9-6) on the force instead and argue as we did for I1. This observation will be useful later in order to
treat other Vlasov models.
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The treatment of I0 then leads to the study of terms of the general form

J D

Z
Rd

.@˛x@
ˇ
vF/.0;X.0; t;x; v/; v/m.t;x; v/ dv;

where, for j Dm� k; : : : ;mC k, we have j˛jC jˇj DmC kC j, j˛j � 2j, and

kmkL1.0;T IHN
�r 0�r0

/ �ƒ.T;M /

for all N < 2m� 1
2
d � 1 and all r 0 > 1

2
d . If jˇj D 0, there is nothing special to do, as only derivatives in

x are involved, so let us assume that jˇj � 1. We write @ˇv D @
ˇ0

v @v. We have

J D

Z
Rd

@v Œ.@
˛
x@
ˇ0

v F/.0;X.0; t;x; v/; v/�m.t;x; v/ dv

�

Z
Rd

.@˛x@
ˇ0

v /.@vX.0; t;x; v/ � rxF/.0;X.0; t;x; v/; v/m.t;x; v/ dv;

and thus by integration by parts in v, we get

J D�

Z
Rd

Œ.@˛x@
ˇ0

v F/.0;X.0; t;x; v/; v/� @vm.t;x; v/ dv

�

Z
Rd

.@˛x@
ˇ0

v /.@vX.0; t;x; v/ � rxF/.0;X.0; t;x; v/; v/m.t;x; v/ dv:

We therefore observe that this procedure allows us to trade derivatives in v for derivatives in x.
Assume now that one can write, for some l 2 f1; : : : ; jˇjg,

J D
X
jˇ0j�l

X
j˛0j�j˛jCjˇj�l

Z
Rd

Œ.@˛
0

x @
ˇ0

v F/.0;X.0; t;x; v/; v/�m˛0;ˇ0.t;x; v/ dvCRl ;

where
km˛0;ˇ0kL1.0;T IHNl

�r 0�r0
/
�ƒ.T;M / (9-9)

for all Nl < 2m� 1
2
d � 1� jˇjC l and all r 0 > 1

2
d , and Rl is a remainder satisfying

kRlkL2.0;T IL2
x/
�ƒ.T;M /:

Let us show that this property holds as well for at rank l � 1. Following the same integration-by-parts
argument as above, we may write

J �Rl D J1CJ2CJ3;

where

J1 D

X
j˛0j�j˛jCjˇj�l

Z
Rd

Œ.@˛
0

x F/.0;X.0; t;x; v/; v/�m˛0;0.t;x; v/ dv;

J2 D�

X
jˇ0j�l

X
ˇ0D.ˇ00;j/

X
j˛0j�j˛jCjˇj�l

Z
Rd

Œ.@˛
0

x @
ˇ00

v F/.0;X.0; t;x; v/; v/� @vjm˛0;ˇ0.t;x; v/ dv;

J3 D�

X
jˇ0j�l

X
ˇ0D.ˇ00;j/

X
j˛0j�j˛jCjˇj�l

Z
Rd

.@˛
0

x @
ˇ00

v /.@vjX.0; t;x; v/ � rxF/.0;X.0; t;x; v/; v/
�m˛0;ˇ0.t;x; v/ dv:
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The terms J1 and J2 have good forms already. For J3, by using the Leibniz rule, we observe that we
need to study terms of the form

J D

Z
Rd

@x;vX.0; t;x; v/ @�1
x @

�2
v F.0;X.0; t;x; v/; v/m˛0;ˇ0.t;x; v/ dv;

with j�2j � jˇ
00j D l � 1, 1� j�1j � j˛

0jC 1, and j j D j˛0jC jˇ00j � j�1j � j�2jC 2.
Assume first that j�1jC j�2j � 2m� 1. If j�1jC j�2j< 2m� 1� d , then by the Sobolev embedding

we have the bound

k.1Cjvj2/
1
2

r .@�1
x @

�2
v F/.0;X.0; t;x; v/; v/kL1x;v � kf0kH2m�1

r
�ƒ.M /:

Since 0< j j � 2.mC k/, we use (9-6) and Lemma 5.2 to get

k@XkL1.0;T IL1v L2
x/
�ƒ.T;M /:

(This is where the elliptic estimate (9-1) is crucially used.) Furthermore, since 2m� 1
2
d � 1� 2p > d ,

we have the bound

km˛0;ˇ0kL1.0;T IW0;1

�r 0�r0
/
�ƒ.T;M /

for r 0 > 1
2
d such that r > r 0C r0C d . Therefore such terms satisfy the bound

kJkL2.0;T IL2
x;v/
�ƒ.T;M /;

and thus can be put into the remainder Rl�1. If j�1jC j�2j � 2m� 1� d , then j j � 2kC d C 1. Since
2m� d � 1> 1

2
d , we can use k@XkL1.0;T IL1x;v/ �ƒ.T;M / and again, arguing as in the treatment of

I0 in the proof of Theorem 2.1, such terms are remainders.
Otherwise j�1j C j�2j � 2m. Then we have j j � 2k and thus 2.mC k/� j j � 2m. We set in this

case m�1;�2
WD @


x;vX m˛0;ˇ0 . In order to show that @x;vX m˛0;ˇ0 has the required regularity, we are led to

study terms of the form

zJ D k@a
x;v@


x;vX @b

x;vm˛0;ˇ0kL1.0;T IH0
�r 0�r0

/; jajC jbj DNl�1;

for all Nl < 2m� 1
2
d � 1� jˇjC l � 1 and all r 0 > 1

2
d . Assume first that jaj< 2m� 1

2
d ; then we have

jajC j j< 2.mC k/� 1
2
d and we use estimate (5-7) in Lemma 5.2 to get k@a

x;v@

x;vXkL1.0;T IL1x;v/ �

ƒ.T;M /, and apply (9-9) to obtain the bound

k@b
x;vm˛0;ˇ0kL1.0;T IH0

�r 0�r0
/ �ƒ.T;M /:

Otherwise, jaj � 2m� 1
2
d . Since we have 2.mC k/� j j �Nl�1 for all Nl�1 < 2m� 2� jˇjC l , we

can use estimate (5-7) in Lemma 5.2 to getX
jaj�Nl�1

k@a
x;v@


x;vXkL1.0;T IL1v L2

x/
�ƒ.T;M /:
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Since jbj DNl�1� jaj �Nl�1� 2mC 1
2
d , we have Nl � jbj � 2mC 1� 1

2
d > d . As a result, by (9-9)

and the Sobolev embedding we get

k@b
x;vm˛0;ˇ0kL1.0;T IW0;1

�r 0�r0
/
�ƒ.T;M /:

In all cases, we have obtained
zJ �ƒ.T;M /:

Therefore the corresponding terms of J3 can be written in the formZ
Rd

.@�1
x @

�2
v F/.0;X.0; t;x; v/; v/m�1;�2

.t;x; v/ dv;

with
km�1;�2

k
L1.0;T IHNl�1

�r 0�r0
/
�ƒ.T;M /

for all Nl�1 < 2m� 1� jˇjC .l � 1/ and r 0 > 1
2
d .

We conclude by induction that we can write at rank l D 0

J D
X

j˛0j�mCkCj

Z
Rd

Œ.@˛
0

x F/.0;X.0; t;x; v/; v/�m˛0;0.t;x; v/ dvCR;

with
km˛0;ˇ0kL1.0;T IHN

�r 0�r0
/ �ƒ.T;M /

for all N < 2m� 1� jˇj and r 0 > 1
2
d , and kRkL2.0;T IL2

x/
�ƒ.T;M / is a remainder.

We then note that 2m� 2� 2k > d , so that

km˛0;ˇ0kL1.0;T IW0;1

�r 0�r0
/
�ƒ.T;M /:

Arguing as in the previous treatment of I0 in the proof of Theorem 2.1, we finally conclude that

kI0kL2.0;T IL2
x/
�ƒ.T;M /

mCkX
jDm�k

X
j˛jDmCk�j

k@˛xf0kH0
r
: (9-10)

This allows us to conclude the proof. �

As already noted in the proof of Theorem 9.1, we actually do not need to use Proposition 6.2 to treat
the term I2 in view of Theorem 9.1; we can indeed rely on the smoothing estimate (9-1) on the force
instead. Furthermore, one can obtain L1t estimates instead of the L2

t theory that we have developed.
This observation implies the following fact: replacing (9-1) by the slightly weaker estimate (in the sense
that it is implied by (9-1))

kFj
kL2.0;t IH n

x /
� �.j/n

�
t; km 1

kL1.0;t IH n�1
x /; : : : ; km r

kL1.0;t IH n�1
x /;

X̀
jD1

kFj .0/kH n
x

�
; (9-11)

together with an associated stability estimate replacing (2-11) with L1t norms instead of L2
t for the

moments on the right-hand side, Theorem 9.1 still holds. It suffices to estimate all terms (that is to say, the
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moments, I0, I1, I2; : : :) in L1.0;T IL2
x/ instead of L2.0;T IL2

x/ as previously done. This remark is
useful in particular to treat the so-called Vlasov–Darwin model from plasma physics, which we introduce
in the following section.

9B. Vlasov–Darwin. The Vlasov–Darwin system is another model that allows one to describe the
dynamics of charged particles in a plasma, which lies between Vlasov–Poisson and relativistic Vlasov
Maxwell systems. Like Vlasov–Poisson, it can be derived from the Vlasov–Maxwell system in the
nonrelativistic regime, that is to say, in the limit c!1. The difference is that the Vlasov–Darwin system
happens to be a higher-order approximation than the Vlasov–Poisson, see [Bauer and Kunze 2005]; in
particular it retains self-induced magnetic effects that have disappeared completely in the Vlasov–Poisson
dynamics. It is given by 8̂̂̂̂

ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

@tf C Ov � rxf C
�
EC

1

c
Ov�B

�
� rvf D 0;

E D�rx� �
1

c
@tA; B Drx �A;

�rx� D

Z
R3

f dv�

Z
T3�R3

f dv dx;

��xAD
1

c
P

Z
R3

Ovf dv; rx �AD 0;

(9-12)

where c > 0 is the speed of light and P denotes the Leray projection. The Cauchy problem for the
Vlasov–Darwin system (1-3) was studied (among many other references)

� for (global) weak solutions in [Pallard 2006],

� for strong solutions in [Pallard 2006; Seehafer 2008; Sospedra-Alfonso et al. 2012].

To embed this system into the abstract framework, we need to make the additional assumption that
all initial conditions f0 that are considered are a.e. nonnegative. By a standard property of the Vlasov
equation, any associated solution f .t/ is also a.e. nonnegative.

� Assumptions on the advection field. In this model a.v/D Ov, which is already treated for the relativistic
Vlasov–Maxwell case.

� Assumptions on the force field. We have the decomposition (8-1)–(8-2) as well. Let us set

E DELCET ; EL Drx�; ET D�
1

c
@tA

and introduce

 1 D 1;  2 D Ov;  3 D
Ov˝ Ovp

1Cjvj2=c2
;  3 D Id�m 3

(so that r0 D 0) and

m i
D

Z
Rd

 if dv;
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where m 3
and m 4

are symmetric matrices. Since EL and ET derive from potentials solving a Poisson
equation, we have

for all t � 0; k.EL;B/.t/kH n
x
.

2X
iD1

km i
.t/kH n�1

x
;

and thus

k.EL;B/kL1.0;t IH n
x / .

2X
iD1

km i
.t/kL1.0;t IH n�1

x /:

For ET , this is a little more subtle; this is where we need that f .t/ � 0 a.e. As in [Pallard 2006,
Lemma 2.10], we obtain that ET satisfies the inhomogeneous elliptic equation

��ET C
1

c
m 4

ET D�
1

c
.m 4

EL�m 2
�B �rx Wm 3

/: (9-13)

We fix the time t � 0, which is a parameter here (we take the L1t norm in the end). Let n > d . By
[Pallard 2006, Lemma 2.10], which relies on the fact that m 4

is actually a semidefinite symmetric matrix,
it follows that (9-13) has a unique solution ET in H 1

x , with the bound

kET kH 1
x
. km 4

ELkH�1
x
Ckm 2

�BkH�1
x
Ckr Wm 3

kH�1
x

. km 4
ELkL2

x
Ckm 2

�BkL2
x
Ckm 3

kL2
x

. km 4
kH n

x
kELkH n

x
Ckm 2

kH n
x
kBkH n

x
Ckm 3

kH n
x

.
�

1C

2X
iD1

km i
.t/kH n

x

�
.km 4

kH n
x
Ckm 2

kH n
x
Ckm 3

kH n
x
/:

Then assume by induction that we have a bound of the form

for all k D 1; : : : ;N; kET kH k
x
. �k.km 1

kH n
x
; : : : ; km 4

kH n
x
/ (9-14)

for N � n, where �k is a polynomial function. Assume first that N < n� 1
2
d . Let j˛j DN. We note that

@˛xET satisfies

��@˛xET C
1

c
m 4

@˛xET D�
1

c
@˛x.m 4

EL�m 2
�B �rx Wm 3

/� Œ@˛x;m 4
�ET :

We have by standard tame Sobolev estimates@˛x.m 4
EL�m 2

�B �rx Wm 3
/


H�1
x

.
�

1C

2X
iD1

km i
.t/kH n

x

�
.km 4

kH n
x
Ckm 2

kH n
x
Ckm 3

kH n
x
/: (9-15)

Since N < n� 1
2
d , we can use the Sobolev embedding to obtain

kŒ@˛x;m 4
�ET kH�1

x
. km 4

k
W

N;1
x
kET kH N

x

. km 4
kH n

x
�k.km 1

kH n
x
; : : : ; km 4

kH n
x
/:
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We apply again the H 1
x estimate of [Pallard 2006, Lemma 2.10] to obtain a bound of the form

kET kH NC1
x
. �NC1.km 1

kH n
x
; : : : ; km 4

kH n
x
/:

We deduce by induction that for all N < n� 1
2
d ,

kET kH NC1
x
. �NC1.km 1

kH n
x
; : : : ; km 4

kH n
x
/:

In particular, since n> d , we deduce

kET kL1x . �.km 1
kH n

x
; : : : ; km 4

kH n
x
/: (9-16)

Now assume we have (9-14) for some N � n. We have the tame Sobolev estimate

kŒ@˛x;m 4
�ET kH�1

x
. km 4

kH n.kET kH N
x
CkET kL1x /

. km 4
kH n

x
�N .km 1

kH n
x
; : : : ; km 4

kH n
x
/;

by (9-14) at rank N and (9-16). Thus using the H 1
x estimate of [Pallard 2006, Lemma 2.10], we

obtain (9-14) at rank N C 1. By induction, we conclude that

kET kL1.0;T IH nC1
x /
. �nC1.km 1

kL1.0;T IH n
x /; : : : ; km 4

kL1.0;T IH n
x //;

which is an estimate of the requested form (9-11). A stability estimate of the same form also holds
because of similar considerations.

10. On the regularity assumptions of Theorem 2.1

The goal of this short last section is to discuss the type of regularity assumptions which could be
conceivable for proving propagation of higher regularity.

Example 1. Consider the free transport equation

@tf C v @xf D 0; (10-1)

set in R�R to simplify the discussion. Let '.v/ be a C1 function, with compact support in
�
�

1
2
; 1

2

�
and

such that
R

R
' dv D 0. Let g be the piecewise continuous function defined by g.x/D 1 for x 2 Œ�1; 1�

and 0 elsewhere. Observe that in the sense of distributions, we have g0.x/D ıxD�1� ıxD�1, where ı
stands for the Dirac measure. We consider the initial condition

f jtD0 D g.x/ '.v/ 2L2
x;v;

and the solution to (10-1) can be written as

f .t;x; v/D g.x� tv/ '.v/:

It follows by explicit computations that �.t;x/ WD
R

R
f dv satisfies

@x�.t;x/D '

�
xC 1

t

�
�'

�
x� 1

t

�
;

@k
x�.t;x/D

1

tk�1

�
'.k�1/

�
xC 1

t

�
�'.k�1/

�
x� 1

t

��
for all k 2 N�:
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We have for t < 4,

k@k
x�.t/k

2

L2
x
D

1

t2.k�1/

�'.k�1/

�
xC 1

t

�2

L2
x

C

'.k�1/

�
x� 1

t

�2

L2
x

�
;

since ' is compactly supported in
�
�

1
2
; 1

2

�
, and thus

k@k
x�.t/k

2

L2
x
D

2

t2.k�1/�1
k'.k�1/

k
2

L2
x
:

We deduce that for any T > 0, we have � 62L2.0;T IH 2
x /. However, �.0;x/D 0 2H k

x for all k 2 N.
This example shows that regularity of moments at initial time may not be propagated, and more precise

information such as (2-13) is somehow required to obtain higher regularity for moments.

Example 2. Consider the equation

@tf C v @xf CF.t;x/ @vf D 0 (10-2)

on T�R, with
F.t;x/D

Z
R

 .v/f .t;x; v/ dv;

where  2C1c .Rd / with compact support in
�
�

1
2
; 1

2

�
. It is clear that (10-2) enters the abstract framework

of this work.
We consider the initial condition

f jtD0 D f
.1/

0
Cf

.2/
0
;

where f .2/
0

is a smooth nonnegative function, with support in T�
�
�

1
2
; 1

2

�
and f .1/

0
is a smooth nonnegative

function, with support in T� Œ1; 2�.
Consider f .1/ the solution of (10-2) associated to the initial condition f .1/

0
, and assume that it is

defined on an interval Œ0;T � for T > 0 small enough. Now define f .2/ as the solution on Œ0;T � of the
linear kinetic transport equation

@tf C v @xf C

�Z
R

 .v/f .1/ dv

�
@vf D 0;

with initial condition f .2/
0

.
Because of the form of the force F , notably because  is localised in

�
�

1
2
; 1

2

�
, we observe that up to

reducing T > 0, the solution f on Œ0;T � of (10-2) can be written as

f D f .1/Cf .2/;

since T > 0 can be chosen small enough so that the support in velocity of f .2/.t/ is disjoint from that
of  , and thus Z

R

 .v/ f .2/.t/ dv D 0:

Now let k 2 N and assume that there is .x0; v0/ 2 T � .1; 2/ such that f jtD0.x0; v0/ is not zero and
is locally H k around this point. Because of the assumptions on the supports, this is equivalent to
asking that f .2/

0
.x0; v0/ is not zero and is locally H k around this point. However, we can choose
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(independently of f .2/
0

) f .1/
0

so that
R

R
 .v/f .1/ dv is not H k, in such a way that f .2/.t/ (and thus

f .t/) is not locally H k around points of the form .X.0; t;x0; v0/;V .0; t;x0; v0//, where .X;V / denotes
the characteristics associated to F, as defined in (1-7).

This example shows that local regularity may not be propagated (along characteristics), contrary to
what happens for the class of PDEs considered in [Bony 1981]. This is due to the “nonlocality” in velocity.
Therefore a global regularity assumption is required in order to obtain propagation of higher regularity.

This example can (also) be slightly modified, in order to prove that a local version of (2-13) cannot
either be propagated into higher local regularity of moments; see the next (and last) example.

Example 3. Consider the equation

@tf C v @xf CF
�
t;xC 1

4

�
@vf D 0 (10-3)

on T�R (here we identify T with Œ0; 1/ with periodic boundary conditions). Let us consider as in the
previous example

F.t;x/D

Z
R

 .v/ f .t;x; v/ dv:

We consider the initial condition
f jtD0 D f

.1/
0
Cf

.2/
0
;

where f .1/
0

is a nonnegative function, with compact support in
�
0; 1

8

�
�R, and f .2/

0
is a nonnegative

function, with compact support in
�

1
4
; 3

8

�
�R.

Observe that because of the shift in the argument of the force, by looking at the supports in x, the
solution f .2/ associated to the initial condition f .2/

0
is equal to f .2/

0
.t;x � tv; v/ on Œ0;T � for T > 0

small enough. Moreover, we have�Z
R

 .v/f .2/
�
t;xC 1

4
; v
�

dv

�
@vf

.2/
D 0:

Now define f .1/ as the solution on Œ0;T � of the linear kinetic transport equation

@tf C v @xf C

�Z
R

 .v/ f
.2/

0

�
xC 1

4
� tv; v

�
dv

�
@vf D 0;

with initial condition f .2/
0

.
We observe that up to reducing T > 0, the solution f on Œ0;T � of (10-2) can be written as

f D f .1/Cf .2/:

Indeed, by looking at the supports in x, we can impose T > 0 small enough so that�Z
R

 .v/ f .1/
�
t;xC 1

4
; v
�

dv

�
@vf

.2/
D 0;�Z

R

 .v/ f .1/
�
t;xC 1

4
; v
�

dv

�
@vf

.1/
D 0:

Now let k 2N and assume that there is x0 2
�
0; 1

8

�
such that

R
R
f jtD0.x0; v/ dv¤ 0 and f jtD0 is locally

H k
x around this point. This is equivalent to asking that

R
R
f
.1/

0
.x0; v/ dv ¤ 0 and f .1/

0
is locally H k

x
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around this point. This corresponds to a local analogue of (2-13). However, we can choose (independently
of f .1/

0
) f .2/

0
so that

R
R
 .v/f

.2/
0
.x � tv; v/ dv is not locally H k, in such a way that the moments in

velocity of f .1/.t/ (and thus of f .t/) are not locally H k
x around points of the form X.0; t;x0; v0/, for

some v0 2 R.
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ON A BOUNDARY VALUE PROBLEM FOR
CONICALLY DEFORMED THIN ELASTIC SHEETS

HEINER OLBERMANN

We consider a thin elastic sheet in the shape of a disk that is clamped at its boundary such that the
displacement and the deformation gradient coincide with a conical deformation with no stretching there.
These are the boundary conditions of a so-called “d-cone”. We define the free elastic energy as a variation
of the von Kármán energy, which penalizes bending energy in Lp with p 2

�
2; 8
3

�
(instead of, as usual,

p D 2). We prove ansatz-free upper and lower bounds for the elastic energy that scale like hp=.p�1/,
where h is the thickness of the sheet.

1. Introduction

Strong deformations of thin elastic sheets under the influence of some external force have been a topic of
considerable interest in the physics and engineering community over the last decades. These “postbuckling”
phenomena are relevant on many length scales, e.g., for structural failure, for the design of protective
structures, or in atomic-force microscopy of virus capsids and bacteria. In the physics literature, one
finds numerous contributions that discuss the focusing of elastic energy in ridges and conical vertices;
see [Cerda et al. 1999; Venkataramani 2004; Lobkovsky and Witten 1997]. The overview article [Witten
2007] contains a comprehensive review of the activities in that area of physics. However, quoting the
seminal work [Lobkovsky et al. 1995], the “understanding of the strongly buckled state remains primitive”,
and this fact has not changed fundamentally since the publication of that article more than 20 years ago.

In the mathematical literature on thin elastic sheets, there have been two major topics: On the one hand,
there are the derivations of lower-dimensional models starting from three-dimensional finite elasticity
[Ciarlet 1997; Le Dret and Raoult 1995; Friesecke et al. 2002; 2006]. On the other hand, there has been
quite some effort to investigate the qualitative properties of plate models by determining the scaling
behavior of the free elastic energy with respect to the small parameters in the model (such as the thickness
of the sheet). Such scaling laws have been derived, e.g., in [Bella and Kohn 2014; Ben Belgacem et al.
2002; Bourne et al. 2017; Kohn and Nguyen 2013]. Building on the results from [Venkataramani 2004], it
has been proved in [Conti and Maggi 2008] that the free energy per unit thickness of the so-called “single
fold” scales like h5=3, where h is the thickness of the sheet. This is also the conjectured scaling behavior
for the confinement problem, which consists in determining the minimum of elastic energy necessary to
fit a thin elastic sheet into a container whose size is smaller than the diameter of the sheet. The energy
focusing in conical vertices has been investigated in [Brandman et al. 2013; Müller and Olbermann 2014],
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where the following has been proved: Consider a thin elastic sheet in the shape of a disc, and fix it at
the boundary and at the center such that it agrees with a (nonflat) conical configuration there. Then the
elastic energy scales like h2 log.1=h/. On a technical level, [Conti and Maggi 2008; Brandman et al.
2013; Müller and Olbermann 2014] consider an energy functional of the form

Ih.y/D

Z
�

jDyTDy � Id2�2j2C h2jD2yj2 dx; (1)

where �� R2 is the undeformed sheet, y W�! R3 is the deformation, and Id2�2 is the 2-by-2 identity
matrix. The first term is the (nonconvex) membrane energy, and the second is the bending energy. If one
manages to derive scaling laws for this two-dimensional model, then as a consequence, it is often the
case that analogous results for three-dimensional elasticity are not difficult to derive as a corollary by the
results from [Friesecke et al. 2002]; see for example [Conti and Maggi 2008; Brandman et al. 2013]. Of
course, the character of the variational problem heavily depends on the chosen boundary conditions.

While the mentioned articles have contributed a lot to the mathematical understanding of folds and
vertices in thin sheets, they do not consider situations where the constraints prevent the sheet from adopting
an isometric immersion with respect to the reference metric as its configuration, but do not prevent it
from adopting a short map as its configuration. (We recall that a map y W�! R3 is short if every path
 �� is mapped to a shorter path y./� R3.) Such a situation is characteristic of postbuckling, and in
particular, the confinement problem.

The reason why short maps are problematic can be found in the famous Nash–Kuiper theorem [Nash
1954; Kuiper 1955a; 1955b]: if one is given a short map y0 2C 1.�IR3/ and ">0, then there exists an iso-
metric immersion y 2C 1.�IR3/with ky�y0kC0 <". This is relevant in the present context, since the dif-
ference between the induced metric and the flat reference metric is the leading-order term in the energy (1).
Thus, if short maps are permissible, then there exists a vast amount of configurations with vanishing or very
small membrane energy. One needs a principle that is capable of showing that all these maps are associated
with a large amount of bending energy. As has recently been shown in [Lewicka and Pakzad 2017], this
problem is not only encountered when dealing with the geometrically fully nonlinear plate model (1). It is
also present in the von Kármán model, which we are going to treat here. In fact, the proof in [Lewicka and
Pakzad 2017] is based on a suitable adaptation of the Nash–Kuiper argument to the von Kármán model.

Possibly the simplest example of a variational problem where isometric immersions are prohibited by
the boundary conditions, but short maps are not, is given by a modification of the “conically constrained”
sheets from [Brandman et al. 2013; Müller and Olbermann 2014]. The modification consists in considering
clamped boundary conditions (for displacements and deformation gradients), and dropping the constraint
on the deformation at the center of the sheet. This completely changes the character of the problem, and
the method of proof from [Brandman et al. 2013; Müller and Olbermann 2014] breaks down.

This is the variational problem we will consider here, and we will prove an energy scaling law for it; see
Theorem 2.1 below. There is one caveat: we penalize the bending energy in Lp with p 2

�
2; 8
3

�
, see (6),

instead of, as would be dictated by a heuristic derivation of the von Kármán model from three-dimensional
elasticity, p D 2. For a discussion of this modification, see Remark 2.2.
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Our method of proof builds on the observations we made in [Olbermann 2016; 2017], where we proved
scaling laws for an elastic sheet with a single disclination. The guiding principle is that the (linearized)
Gauss curvature is controlled by both the membrane and the bending energy, in different function spaces.
The boundary conditions can be used to show that the Gauss curvature is bounded from below in a certain
space “in between” in the sense of interpolation. In the recent paper [Olbermann 2018], we showed that
for the setting of [Olbermann 2016; 2017], it is not necessary to use interpolation, and lower bounds for
the bending energy can be obtained by using the control over the membrane energy alone. The present
setting with a flat reference metric however defines an interpolation-type problem for the Gauss curvature,
and we hope that this approach can also yield results for similar variational problems.

This paper is structured as follows: In Section 2, we state our main result, Theorem 2.1. In Section 3,
we collect some facts from the literature, concerning the Brouwer degree, Sobolev and Triebel–Lizorkin
spaces, and interpolation theory. The proof of Theorem 2.1 is contained in Section 4.

Notation. We write B1D fx 2R2 W jxj< 1g and S1D @B1. When dealing with functions on S1, we will
identify S1 with the one-dimensional torus R=.2�Z/. For x D .x1; x2/ 2 R2, we write Ox D x=jxj and
x? D .�x2; x1/. In Section 2 below, we introduce a function ˇ 2W 2;p.S1/ that can be considered as
fixed for the rest of the paper. The symbol “C ” is used as follows: A statement such as “f � Cg” is
shorthand for “there exists a constant C > 0 that only depends on ˇ such that f � Cg”. The value of C
may change within the same line. For f � Cg, we also write f . g. The symmetrized gradient of a
function u W U ! R2 with U � R2 is denoted by symDuD 1

2
.DuCDuT /.

2. Setting and statement of the main theorem

Let ˇ 2W 2;p.S1/ withZ
S1
.ˇ2.t/�ˇ02.t// dt D 0 and

Z
S1
jˇCˇ00j dt > 0: (2)

Using the identification of S1 D fx 2 R2 W jxj D 1g with the torus R=.2�Z/, we define

.t/ WD �
ˇ2.t/

2
�.t/ WD

1

2

Z t

0

ˇ2.s/�ˇ02.s/ ds; (3)

and we define uˇ W R2! R2 by

uˇ .x/ � Ox WD jxj. Ox/; uˇ .x/ � Ox
?
WD jxj�. Ox/; (4)

Furthermore, we set
vˇ .x/D jxjˇ. Ox/: (5)

Note that the deformation defined by uˇ ; vˇ is an isometric immersion in the von Kármán sense; i.e.,

symDuˇ C
1
2
Dvˇ ˝Dvˇ D 0;

but D2vˇ 62 Lp for p � 2. The set of allowed configurations is given by

Aˇ;p WD f.u; v/ 2W 1;2.B1/�W
2;p.B1/ W v D vˇ ; Dv DDvˇ and uD uˇ on S1g:
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The energy is given by a sum of membrane and bending energy,

Ih;p.u; v/D
symDuC 1

2
Dv˝Dv

2
L2.B1/

C h2kD2vk2Lp.B1/: (6)

In the statement of our main theorem, the dual exponent p0 is defined as usual by 1=pC 1=p0 D 1. We
are going to prove:

Theorem 2.1. Let p 2
�
2; 8
3

�
. Then there exists a constant C D C.ˇ; p/ > 0 such that

C�1hp
0

� inf
y2Aˇ;p

Ih;p.y/� Ch
p0 :

Remark 2.2. (i) The arguments of the energy functional .u; v/ W B1 ! R3 can be thought of as the
displacements of a deformation x 7!xC"2u.x/C"v.x/e3, where " is another small parameter (with h�").
The membrane energy geometrically corresponds to the deviation of the induced metric tensor from the flat
Euclidean metric: the induced metric is given by .Id2�2C"2DuC"e3˝Dv/T .Id2�2C"2DuC"e3˝Dv/,
and the membrane term symDuC 1

2
Dv˝Dv is the leading-order term of the difference to the flat

reference metric. We say that detD2v is the “linearized Gauss curvature” since we have that the Gauss
curvature is given by K D "2 detD2vC o."2/. Rigorously, the von Kármán energy, (6) with p D 2,
has only been justified as a limit of three-dimensional finite elasticity for small deformations [Ciarlet
1980; Friesecke et al. 2006]. Nevertheless, it has a long and successful history of describing phenomena
including moderate deformations.

(ii) The conditions on the boundary values in (2) are the von Kármán version of the requirement that the
associated conical deformation defined by uˇ ; vˇ has no membrane energy and is not contained in a plane.

(iii) The restriction to the range p 2
�
2; 8
3

�
is due to our method of proof, which is an application of the

Gagliardo–Nirenberg inequality to the linearized Gauss curvature detD2v. This interpolation inequality
is only valid for that range. The standard von Kármán model is linear in the material response, and
hence it penalizes the bending energy in L2. In this case, one expects an energy scaling law of the form
Ih;2 � h

2 log.1=h/, as is the case when the center of the sheet is fixed; see [Brandman et al. 2013; Müller
and Olbermann 2014]. In order to obtain lower bounds for this case, one would have to show “additional
regularity”, in the sense that one would need to control higher Lp norms of D2v by the L2 norm. One
might hope that such estimates are possible, e.g., for minimizers of the functional. However, we do not
know if this is possible.

(iv) We do not know if our method of proof can be adapted to prove an analogous result for the
geometrically fully nonlinear plate model that is given by the energy QIh;p WW 2;p.B1IR

3/! R,

QIh;p.y/D

Z
B1

jDyTDy � Id2�2j2 dxC h2kD2yk2Lp.B1/:

The reason is that it seems much more complicated to obtain a good test function inW 1;p for
P
i detD2yi

(which is the appropriate linearization of Gauss curvature in that setting) that would yield a lower bound
for this quantity in the Sobolev space W �1;p

0

. In the von Kármán case, we can simply use the identity

.div /jDv.x/ detD2v.x/D div
�
 .Dv.x// cofD2v.x/

�
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and compute a lower bound for this quantity by Gauss’ theorem, using the boundary values of Dv.
In the case of y 2W 2;p.B1IR

3/, we cannot argue similarly component by component: only the sumP
i detD2yi is controlled by the energy. The task is to find a test function that (a) allows us to use Gauss’

theorem and the boundary values to obtain a lower bound of order 1, and (b) is controlled in W 1;p by
the bending energy. We have not found a way to do so.

3. Preliminaries

The Brouwer degree. At the heart of our proof of the lower bound for the energy is an interpolation
estimate for the linearized Gauss curvature. This quantity can be thought of as a pull-back of the volume
form on R2 under the map Dv W B1! R2. This is where the Brouwer degree becomes relevant, since
integrals over the linearized Gauss curvature “downstairs” (on B1) can be expressed as integrals “upstairs”
(on R2) over the Brouwer degree of Dv.

For a bounded set U � Rn, f 2 C1.U IRn/ and y 2 Rn n f .@U /, the Brouwer degree deg.f; U; y/
may be defined as follows: Let Ay;f denote the connected component of Rn n f .@U / that contains y,
and let � be a smooth n-form on Rn with support in Ay;f such that

R
Rn
�D 1. Then we set

deg.f; U; y/D
Z
U

f #�;

where f # denotes the pull-back under f . By approximation with smooth functions, deg.f; U; y/ may be
defined for every f 2 C 0.U IRn/ and y 2 Rn n f .@U /. If f 2W 1;1.U IRn/ and � is an n-form with
regularity W 1;1, it follows straightforwardly from the definition thatZ

Rn
deg.f; U; � /�D

Z
U

f #�:

If �D ' dz, where dz is the canonical volume form on Rn, this can be written asZ
Rn
'.z/ deg.f; U; z/ dz D

Z
U

'.f .x// detDf.x/ dx: (7)

If f 2 C 1.U IRn/, U has Lipschitz boundary and � is a smooth .n�1/-form on Rn, then we haveZ
Rn

deg.f; U; � / d�D
Z
U

f #.d�/D
Z
@U

f #�: (8)

It can be shown that y 7! deg.f; U; y/ is constant on the connected components of Rn nf .@U /. Finally,
we are going to use the fact that deg.f; U; y/ only depends on f j@U . Thus for every continuous function
Qf W @U ! RN, and y 62 Qf .@U /, we may define

deg@. Qf ; @U; y/D deg.f; U; y/;

where f is any continuous extension of Qf to U. For more details (in particular for the proofs of the
statements made here), see [Fonseca and Gangbo 1995].
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Function spaces. Our main estimate for the Gauss curvature is a version of the Gagliardo–Nirenberg
inequality for the spaces W �m;p with m 2 N and p 2 .1;1/. To define these spaces, let �� Rn be a
bounded open set. For u 2 L1.�/ with compact support in �, we set

kukWm;p
0 .�/ WD

�Z
�

jDmujp dx
�1=p

:

This defines a norm on the space W m;p
0 .�/ which is defined as the set of those u 2 L1.�/ that are

compactly supported in � and satisfy kukWm;p
0 .�/ <1. The dual space of W m;p

0 .�/ is denoted by
W �m;p

0

.�/, where p0 satisfies 1=pC 1=p0 D 1. The norm on W �m;p
0

.�/ is given by

kf kW �m;p0 .�/ D supfhf; 'i W ' 2W m;p
0 .�/; k'kWm;p

0 .�/ � 1g:

Additionally, we define the space W m;p.Rn/ as the completion of C1c .R
n/ under the norm

kukWm;p.Rn/ D

�Z
Rn
jDmujp dx

�1=p
:

The Gagliardo–Nirenberg inequality that we want to prove is an interpolation inequality for the spaces
W �m;p

0

.�/. In fact, the interpolation can be carried out in the spaces W m;p (with m � 0 and the
understanding W 0;p � Lp). These will be derived by appealing to results from the literature, where
one finds a well-developed interpolation theory for the Triebel–Lizorkin spaces F sp;q , which contains the
appropriate interpolation between Lebesgue and Sobolev spaces as a special case.

Let D0.Rn/ denote the space of temperate distributions on Rn, and let F W D0.Rn/! D0.Rn/ denote
the Fourier transform. We briefly recall the Littlewood–Paley decomposition of temperate distributions:
Let �0 2 C1c .R

n/ be such that 0 � �0 � 1, �0.x/ D 1 for jxj � 1, �0.x/ D 0 for jxj � 2. Set
�j .x/D �0.2

�jx/� �0.2
�jC1x/ for j � 1.

Definition 3.1 [Triebel 1983, Chapter 2.3.1]. For �1< s <1, 0 < p; q <1, let

F sp;q.R
n/D ff 2 D0.Rn/ W kf kF sp;q.Rn/ WD kk2

sjF�1�jFf klqkLp.Rn/ <1g:

The following special cases of the Triebel–Lizorkin spaces will be relevant for us (see [Triebel 1983,
Sections 2.2.2 and 2.3.5]):

Lp.Rn/D F 0p;2.R
n/;

W k;p.Rn/D F kp;2.R
n/ for k 2 N:

(9)

Apart from their interpolation properties, the following embedding theorem will play a role in our proof:

Theorem 3.2 [Triebel 1983, Theorem 2.7.1]. Suppose �1 < s1 < s0 <1, 0 < p0 < p1 <1 and
0 < q0; q1 <1 such that

s1�
n

p1
D s0�

n

p0
:

Then we have the continuous embedding

F s0p0;q0.R
n/� F s1p1;q1.R

n/:
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Real interpolation. We recall some basic facts concerning the real interpolation method. Let X0; X1
be Banach spaces such that there exists a topological vector space Z with continuous embeddings
X0; X1 �Z. In such a situation, let t > 0 and x 2X0CX1. We define

K.t; x/ WD inffkx0kX0 C tkx1kX1 W x0 2X0; x1 2X1; x0C x1 D xg:

Let 0� � � 1 and p � 1. The real interpolation space .X0; X1/�;p is defined as

.X0; X1/�;p D fx 2X0CX1 Wˆ�;p.x/ <1g;

where

ˆ�;p.x/D

8<:
�Z 1

0

jt��K.t; x/jp
dt
t

�1=p
if p <1;

supt>0 jt
��K.t; x/j else:

The interpolation space .X0; X1/�;p is a normed space with the norm ˆ�;p.x/. For every p <1, we
have the continuous embedding

.X0; X1/�;p � .X0; X1/�;1: (10)

For a proof, see, e.g., Chapter 1.3 of [Triebel 1978]. Concerning real interpolation of Triebel–Lizorkin
spaces, we have the following theorem:

Theorem 3.3 [Triebel 1978, Theorem 1 in Chapter 2.4.2]. Let �1<s0; s1<1, 1<p0; p1; q0; q1<1,
0 < � < 1 and

s D .1� �/s0C �s1;
1

p
D
1��

p0
C
�

p1
:

Then we have

.F s0p0;q0.R
n/; F s1p1;q1.R

n//�;p D F
s
p;p.R

n/:

4. Proof of Theorem 2.1

A sketch of the proof of Theorem 2.1 goes as follows: As usual, the upper bound is provided by a conical
construction that is smoothed on a ball around the origin with the appropriate length scale; see Lemma 4.1.
At the heart of the lower bound, we have an interpolation inequality for the linearized Gauss curvature
detD2v. The Gagliardo–Nirenberg inequality [Nirenberg 1959] yields

k detD2vkW �1;p0 .B1/ . k detD2vk1�˛
W �2;2.B1/

k detD2vk˛
Lp=2.B1/

(formally); (11)

with ˛ 2
�
1
2
; 1
�

determined by
2

p0
� 1D

�
2

p=2
� 2

�
˛C 1�˛;

i.e.,

˛ D
2

3p� 4
:
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In (11), the left-hand side can be bounded from below using the boundary conditions and an argument
involving the mapping degree. Namely, for an appropriately chosen test function ' 2 C1c .R

2/, we haveZ
B1

' ıDv.x/ detD2v dx D
Z

R2
'.z/ deg.Dv;B1; z/ dz DO.1/:

For the details see Lemma 4.2.
The exponents in (11) are chosen such that the terms on the right-hand side can be estimated by the

energy,
k detD2vkW �2;2 .

symDuC 1
2
Dv˝Dv


L2
. Ih;p.u; v/1=2;

k detD2vkLp=2 . kD2vk2Lp . h
�2Ih;p.u; v/:

(12)

With these estimates, we obtain the desired lower bound.
Basically, all that remains is to prove the aforementioned lemmas, and justify (11). We could not find

a proof of the Gagliardo–Nirenberg inequality for “negative orders of differentiation” in the literature.
We believe that it holds true, and that a proof could be given using the machinery from [Triebel 1978].
However, in our case a shorter route exists, using the fact that v W B1 ! R has a natural extension
to R2 with vanishing membrane energy on R2 nB1, and existing results on interpolation of Sobolev and
Triebel–Lizorkin spaces on Rn; see again [Triebel 1978].

Now we start with the proof.

Lemma 4.1. We have
inf

y2Aˇ;p
Ih;p.y/ < Ch

p0:

Proof. Recall the definition of uˇ ; vˇ from (3)–(5). Let �2C1.Œ0;1// with �.t/D 0 for t < 1
2

, �.t/D 1
for t � 1. We set

vˇ;h.x/D �

�
jxj

hp
0=2

�
vˇ .x/:

Now we have ˇ̌
symDuˇ .x/C

1
2
Dvˇ;h.x/˝Dvˇ;h.x/

ˇ̌
D

�
0 if jxj � hp

0=2;

O.1/ else.

Furthermore, we haveZ
B1

jD2vˇ;hj
p
D

Z
B1nBhp0=2

dx
ˇ̌̌̌
ˇ00. Ox/Cˇ. Ox/

jxj

ˇ̌̌̌p
C

Z
B
hp
0=2

O.h�p.p
0=2// dx . h.2�p/p

0=2:

This implies

Ih;p.uˇ ; vˇ;h/D

Z
B1

ˇ̌
symDuˇ .x/C

1
2
Dvˇ;h.x/˝Dvˇ;h.x/

ˇ̌2 dxCh2
�Z
B1

jD2vˇ;hj
p dx

�2=p
. hp

0

:

�

Lemma 4.2. Assume that ˇ 2W 2;p.S1/ withZ
ˇ2.t/�ˇ02.t/ dt D 0 and

Z
jˇCˇ00j dt ¤ 0;
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and let vˇ be defined by (5). Then there exists 'ˇ 2 C1c .R
2/ such that supp'ˇ \Dvˇ .S1/D∅ andZ

R2
'ˇ .z/ deg@.Dvˇ ; S

1; z/ dz > 0:

Proof. Step 1: reduction to the smooth case. We claim that we may assume ˇ 2 C1.S1/. Indeed, for
every " > 0 we may choose Q̌ 2 C1.S1IR2/ such that

kˇ� Q̌kW 2;p < " and
Z
j Q̌ C Q̌

00
j dt ¤ 0:

Additionally, we may choose Q̌ such thatZ
S1
. Q̌2� Q̌02/ dt D 0:

We have

Dvˇ D ˇ. Ox/ OxCˇ
0. Ox/ Ox?; Dv Q̌ D Q̌. Ox/ OxC Q̌

0. Ox/ Ox?:

By the continuous embedding W 2;p! C 1, we have that kDvˇ �Dv Q̌kC0.S1/ and hence we can also
make k deg@.Dvˇ ; S1; � /� deg@.Dv Q̌ ; S1; � /kL1.R2/ arbitrarily small by a suitable choice of ". If we
manage to show deg@.Dv Q̌ ; S1; � / ¤ 0 in L1.R2/, then we have also proved the claim of the lemma.
Hence, from now on we prove the claim of the lemma for ˇ 2 C1.S1/.

Step 2: taking the derivative of “deg”. For t 2 S1, let et D .cos t; sin t /. Let  W S1! R2 be defined by

.t/D ˇ.t/et Cˇ
0.t/e?t :

It is enough to show that deg@.Dvˇ ; S1; � /D deg@.; S1; � / is nonzero in L1.R2/. By (8), we have for
any smooth one-form ! D !1 dx1C!2 dx2 on R2,Z

R2
deg@.; S1; � / d! D

Z
S1
#!:

If we show that the right-hand side is nonzero for some choice of !, we are done. Let f W R2! R2 be
defined by

x 7!
X

t2�1.x/

 0.t/D
X

t2�1.x/

.ˇ.t/Cˇ00.t//e?t : (13)

Then we have

.#!/.t/D .!1..t//; !2..t/// �f ..t// dt;

and we see that it suffices to show that f ¤ 0 on a set of positive H1 measure to prove the claim of the
lemma.

Step 3: proof of the lemma by contradiction. We assume that f D 0 H1-almost everywhere and show
that this leads to a contradiction. Since  0.t/D .ˇ.t/Cˇ00.t//e?t , we have that  0.t/D 0 if and only if
ˇ.t/Cˇ00.t/D 0. Let U be an open interval such that  0¤ 0 on U and  WU ! .U / is a diffeomorphism.
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Our aim is now to show that up to H1 null sets, we have

�1..U // nU D U C�;

where we are using the identification of S1 with R=.2�Z/.

Since f D 0 H1-almost everywhere on .U / and by the explicit form (13) of f , there exists E1 � S1

with H1.E1/D 0 such that
.U nE1/� .S

1
nU/: (14)

Next let
E2 WD ft 2 S

1
W  0.t/D 0g; A WD .E2/:

By Sard’s lemma, we have H1.A/D 0. Furthermore, let

E3 WD 
�1..U nE1/ nA/ nU;

and let E4 �E3 be the set of points that are not of density 1, i.e.,

E4 WD

�
x 2E3 W lim inf

"!0

H1..x� "; xC "/\E3/
2"

< 1

�
:

It is a well-known fact from measure theory that H1.E4/D 0. Let E5 WD �1..E4//\U. Then also
H1.E5/D 0.

Now let p 2 U n .E1[E5/. Then .p/ 62 A[ .E4/, and by (14), we have

.p/ 2 .S1 nU/ n .A[ .E5//:

Hence there exists p0 2E3nE4 with .p0/D .p/. We may choose a sequence p0
k

, k 2N, with p0
k
2E3,

.p0
k
/¤ .p0/, and p0

k
! p0. Since  jU is a diffeomorphism, we may set

pk WD  j
�1
U ..p0k//

and obtain a sequence pk! p in U, with .pk/¤ .p/. Now we have for every k,

.pk/� .p/

j.pk/� .p/j
D

.p0
k
/� .p0/

j.p0
k
/� .p0/j

:

Passing to a suitable subsequence and taking the limit k!1 in that equation, we obtain that the vectors
 0.p/ and  0.p0/ are parallel. Since

 0.t/D .ˇ.t/Cˇ00.t//e?t

and p ¤ p0, we must have ep D�ep0 , and hence (using the identification of S1 with R=.2�Z/)

p0 D pC�:

Summarizing, we have shown that for H1-almost every p 2 U, we have pC� 2 �1..U // nU. We
also may conclude that for every p0 2E3 nE4, it holds that p0C� 2 U. Hence, as desired, we have

�1..U // nU D U C� up to H1 null sets.
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Since for every x 2 S1 nE2 there exists a neighborhood U of x with the properties we have assumed
above, we obtain that for H1-almost every t 2 S1 nE2, we have .t/D .t C�/. Hence,

ˇ.t/et Cˇ
0.t/e?t D�ˇ.t C�/et �ˇ

0.t C�/e?t ;

which implies

ˇ.t C�/D�ˇ.t/; ˇ0.t C�/D�ˇ0.t/ for H1-a.e. t 2 S1 nE2: (15)

We claim that we even have

ˇ.t C�/D�ˇ.t/ for t 2 S1: (16)

Indeed, let t 2 S1. If t 2 S1 nE2, then the claim follows from (15). If t is in the interior of E2, then let
T 2 @E2 such that .t; T /�E2. Then we have that also .t C�; T C�/�E2, and ˇ.T C�/D�ˇ.T /,
ˇ0.T C�/D�ˇ0.T /. The values of ˇ.t/; ˇ.t C�/ are then determined by the initial values of ˇ; ˇ0 at
the points T; T C� and by the ODE ˇCˇ00D 0. By the linearity and translation invariance of this initial
value problem, we obtain ˇ.t C�/D�ˇ.t/ as desired. This proves the claim (16).

By (16), we have
R
S1 ˇ.t/ dt D 0. By the Poincaré–Wirtinger inequality, we have thatZ

S1
.ˇ2�ˇ02/ dt � 0;

with equality only if ˇ is of the form ˇ.t/D C sin.t C˛/ for some C; ˛ 2 R. Equality must hold true by
assumption, which yields

ˇCˇ00 D 0 on S1;

in contradiction to our assumptions. This proves the lemma. �

Lemma 4.3. Let p 2
�
2; 8
3

�
, and

� D 1�
2

3p� 4
;

1

q
D

1� �

p=.p� 2/
C
�

2
:

Then we have

W 1;p.R2/� .Lp=.p�2/.R2/;W 2;2.R2//�;q:

Proof. By (9), we have Lp=.p�2/.R2/D F 0
p=.p�2/;2

.R2/ and W 2;2.R2/D F 22;2.R
2/. By Theorem 3.3,

we obtain

.Lp=.p�2/.R2/;W 2;2.R2//�;q D F
2�
q;q.R

2/:

Finally, by Theorem 3.2, we have

W 1;p.R2/D F 1p;2.R
2/� F 2�q;q.R

2/:

Note that the assumption s1 < s0 in Theorem 3.2 is fulfilled by 1 > 2� , which in turn is a consequence of
p 2

�
2; 8
3

�
. �
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In the next lemma, we use the following notation: for .u; v/ 2Aˇ;p , we let Nv W R2! R be defined by

Nu.x/D

�
u.x/ if x 2 B1;
uˇ .x/ if x 2 R2 nB1;

Qv.x/D

�
v.x/ if x 2 B1;
vˇ .x/ if x 2 R2 nB1;

where uˇ ; vˇ are as defined in (3)–(5).

Lemma 4.4. Let .u; v/ 2Aˇ;p. Then

k detD2 NvkW �2;2.R2/ .
symDuC 1

2
Dv˝Dv


L2.B1/

:

Proof. We write down the Hessian determinant of Nv in its very weak form,

detD2 Nv D . Nv;1 Nv;2/;12� 1
2
. Nv2;1/;22�

1
2
. Nv2;2/;11�D�

1
2

curl curlD Nv˝D Nv:

Here, we have introduced curl.w1; w2/Dw1;2�w2;1. (In the formula above, curl is first applied in each
row of the matrix D Nv˝D Nv, and then on the components of the resulting column vector.) Since we have
curl curl.DwT CDw/D 0 for every w 2W 1;2.B1IR

2/, we obtain

detD2 Nv D� curl curl
�
symD NuC 1

2
D Nv˝D Nv

�
:

We note that
symD NuC 1

2
D Nv˝D Nv D 0 on R2 nB1:

Hence for every ' 2 W 2;2.R2/, we obtain by two integrations by parts, and the Cauchy–Schwarz
inequality, Z

R2
detD2 Nv ' dx D�

Z
R2

�
symD NuC 1

2
D Nv˝D Nv

�
W cofD2' dx

�
symDuC 1

2
Dv˝Dv


L2.B1/

k'kW 2;2.R2/: �

Proof of Theorem 2.1. The upper bound has been proved in Lemma 4.1. It remains to prove the lower
bound.

For any .u; v/ 2 Aˇ;p we have DvjS1 DDvˇ jS1 , and hence deg.Dv;B1; � /D deg@.Dv; S1; � /D
deg@.Dvˇ ; S1; � /. By Lemma 4.2, we may choose ' 2 C1c .R

2/ such that ' ıDv 2 W 1;p
0 .B1/ �

W 1;p.R2/ and

0 < C.ˇ/D

Z
R2
'.z/ deg.Dv;B1; z/ dz

D

Z
B1

detD2v.x/'.Dv.x// dx

D

Z
R2

detD2 Nv.x/'.D Nv.x// dx;

where we have used the notation introduced above Lemma 4.4, and the fact that detD2 Nv D 0 on R2 nB1.
By Lemma 4.3,  WD ' ıDv 2 .Lp=.p�2/.R2/;W 2;2.R2//�;q . Hence by (10), there exist functions
 0 W R

C! Lp=.p�2/.R2/ and  1 W RC!W 2;2.R2/ such that  0.t/C 1.t/D  for all t 2 RC and

t��k 0.t/kLp=.p�2/.R2/C t
1��
k 1.t/kW 2;2.R2/ . k kW 1;p.R2/:



ON A BOUNDARY VALUE PROBLEM FOR CONICALLY DEFORMED THIN ELASTIC SHEETS 257

Rearranging, we have for every t > 0 that

k 0.t/kLp=.p�2/.R2/ . t�k kW 1;p.R2/;

k 1.t/kW 2;2.R2/ . t��1k kW 1;p.R2/:

Now we fix the argument,

t WD
k detD2 NvkW �2;2
k detD2 NvkLp=2

;

and write  0 D  0.t/;  1 D  1.t/. Hence we may estimate

C.ˇ/D

Z
R2

detD2 Nv.x/'.D Nv.x// dx

. k detD2 NvkLp=2k 0kLp=.p�2/ Ck detD2 NvkW �2;2k 1kW 2;2

. k detD2 Nvk�
W �2;2

k detD2 Nvk1��
Lp=2
k kW 1;p

. I �=2
h;p

.h�2Ih;p/
1�� .h�2Ih;p/

1=2

. I .3��/=2
h;p

h2��3; (17)

where we have used Lemma 4.4 and the facts

j detD2vj � jD2vj2; detD2 Nv D 0 on R2 nB1

to obtain the fourth line from the third. This implies

Ih;p & h.6�4�/=.3��/ D hp=.p�1/ D hp
0

;

which proves the theorem. �
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