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A UNIFIED FLOW APPROACH TO
SMOOTH, EVEN Lp-MINKOWSKI PROBLEMS

PAUL BRYAN, MOHAMMAD N. IVAKI AND JULIAN SCHEUER

We study long-time existence and asymptotic behavior for a class of anisotropic, expanding curvature
flows. For this we adapt new curvature estimates, which were developed by Guan, Ren and Wang to treat
some stationary prescribed curvature problems. As an application we give a unified flow approach to the
existence of smooth, even Lp-Minkowski problems in RnC1 for p > �n� 1.

1. Introduction

Consider a smooth, closed, strictly convex hypersurface M0 in Euclidean space RnC1, n � 2, given
by a smooth embedding F0 WM ! RnC1. Suppose the origin is in the interior of the region enclosed
by M0. We study the long-time behavior of a family of hypersurfaces fMtg given by smooth maps
F WM � Œ0;T /! RnC1 satisfying the initial value problem

@tF.x; t/D '.�.x; t//
.F.x; t/ � �.x; t//2�p

K.x; t/
�.x; t/; F. � ; 0/D F0. � /: (1-1)

Here K. � ; t/ and �. � ; t/ are the Gauss curvature and the outer unit normal vector of Mt D F.M; t/ and
' is a positive, smooth function on Sn. Furthermore, T is the maximal time for which the solution exists.

For p D 2, ' � 1, flow (1-1) was studied in [Schnürer 2006] in R3 and in [Gerhardt 2014] in higher
dimensions. Both works rely on the reflection principle of [Chow and Gulliver 1996; McCoy 2003].
Their result is as follows: the volume-normalized flow evolves any M0 in the C1-topology to an origin-
centered sphere. For p > 2, ' � 1, it follows from [Chow and Gulliver 1996, Theorem 3.1], see also
[Tsai 2005, Example 1], that (1-1) evolves M0, after rescaling to fixed volume, in the C 1-topology to
an origin-centered sphere. We refer the reader to [Ivaki 2016] regarding a rather comprehensive list of
previous works on this curvature flow. In particular, in either case ' ¤ 1 or ' � 1, �n� 1< p < 2, we
are not aware of any result in the literature on the asymptotic behavior of the flow. The following theorem
was proved in [Ivaki 2016] regarding the case p D �n� 1, ' � 1; in this case the flow belongs to a
family of centroaffine normal flows introduced in [Stancu 2012].

Let us write B for the unit ball of RnC1 and put

zKt WD

�
V .B/

V .Kt /

� 1
nC1

Kt ;

MSC2010: primary 53C44; secondary 35K55, 52A05, 53A15, 58J35.
Keywords: curvature flow, anisotropic flow, Minkowski problem.
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where Kt denotes the convex body enclosed by Mt and V . � / is the .nC1/-dimensional Lebesgue
measure.

Theorem [Ivaki 2016]. Let n� 2, pD�n�1, '� 1 and suppose K0 has its Santaló point at the origin;
i.e., Z

Sn

u

hK0
.u/nC2

d�.u/D 0:

Then there exists a unique solution fMtg of flow (1-1) such that zMt converges in C1 to an origin-centered
ellipsoid.

Here hK0
is the support function of K0. A closed, convex hypersurface M0 can be described in terms

of its support function hK0
W Sn! R defined by

hK0
.u/D supfu �x W x 2M0g:

If M0 is smooth and strictly convex, then hK0
.u/D u �F0.�

�1.u//.
From the evolution equation of F. � ; t/ it follows that

h. � ; t/ WD hKt
. � / W Sn

� Œ0;T /! R

evolves by
@th.u; t/D '.u/.h

2�pSn/.u; t/; (1-2)

where Sn.u; t/D 1=K.��1.u; t/; t/. A homothetic self-similar solution of this flow satisfies

h1�p det.r2hC Id h/D
c

'
(1-3)

for some positive constant c. Here r is the covariant derivative on Sn. Note that Sn D det.r2hC Id h/.
We list the main results of the paper extending the previous-mentioned results.

Theorem 1. Let �n� 1< p <1 and ' be a positive, smooth function on Sn that is even, i.e., '.u/D
'.�u/. Suppose K0 is origin-symmetric. There exists a unique origin-symmetric solution fMtg of (1-1)
such that f zMtg converges for a subsequence of times in C 1 to a smooth, origin-symmetric, strictly convex
solution of (1-3). Also, when p � nC 1 the convergence is in C1, and if p � 1 the convergence holds for
the full sequence.

If �n�1< p ��n, we can extend the result of the previous theorem by dropping the assumption that
' is even.

Theorem 2. Let �n� 1< p � �n and K0 satisfyZ
Sn

u

'.u/hK0
.u/1�p

d�.u/D 0:

There exists a unique solution fMtg of flow (1-1) such that f zMtg converges for a subsequence of times in
C1 to a positive, smooth, strictly convex solution of (1-3).

Given any convex body K0, there exists a vector Ev such that K0C Ev has the origin in its interior and it
satisfies the assumption of the second theorem.
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For ' � 1 we prove the following theorem.

Theorem 3. Let 1¤ p > �n� 1, ' � 1 and K0 satisfyZ
Sn

u

hK0
.u/1�p

d�.u/D 0:

Then there exists a unique solution fMtg of (1-1) such that f zMtg converges in C 1 to the unit sphere. In
addition, for 1¤ p � nC 1 the convergence holds in C1.

For p ¤ nC 1, self-similar solutions to (1-1) are solutions of the Lp-Minkowski problem (1-4), and
for p D nC 1, a self-similar solution to (1-1) is a solution to the normalized LnC1-Minkowski problem
(1-5); we shall introduce them now.

The Minkowski problem deals with existence, uniqueness, regularity, and stability of closed convex hy-
persurfaces whose Gauss curvature (as a function of the outer normals) is preassigned. Major contributions
to this problem were made by Minkowski [1897; 1903], Aleksandrov [1938; 1939; 1942], Fenchel and
Jessen [1938], Lewy [1938a; 1938b], Nirenberg [1953], Calabi [1958], Pogorelov [1952; 1971], Cheng
and Yau [1976], Caffarelli, Nirenberg, and Spruck [Caffarelli et al. 1984], and others. A generalization of
the Minkowski problem known as the Lp-Minkowski problem was introduced in [Lutwak 1993], where
for any 1 < p ¤ nC 1 and a preassigned even Borel measure on Sn whose support does not lie in a
great sphere of Sn the existence and uniqueness of the solution were proved. This generalization for
1< p ¤ nC 1 was further studied in [Lutwak and Oliker 1995], where they obtained the C k;˛ regularity
of the solution. Solutions to many cases of these generalized problems followed later in [Ai et al. 2001;
Andrews 2000; 2002; 2003; Böröczky et al. 2013; Chen 2006; Chou and Wang 2006; Dou and Zhu 2012;
Gage 1993; Gage and Li 1994; Guan and Lin 2000; Huang and Lu 2013; Jiang 2010; Jiang et al. 2011; Lu
and Wang 2013; Lutwak et al. 2004; Stancu 1996; 2002; 2003; Umanskiy 2003; Zhu 2014; 2015a; 2015b].

For p ¤ nC 1, in the smooth category, the Lp-Minkowski problem asks, given a smooth, positive
function ' W Sn! R, if there exists a smooth, closed, strictly convex hypersurface M0 � RnC1 such that

h1�p.�.x//

K.x/
D

1

'.�.x//
; (1-4)

where x 2M0, h denotes the support function, K the Gauss curvature and � the Gauss map M0! Sn.
The even Lp-Minkowski problem requires, in addition, that ' is an even function. The case p D 1 is
the original Minkowski problem.

The special case of p D nC 1 is troubling since (1-4) might not have a solution. To remedy this,
Lutwak, Yang and Zhang [Lutwak et al. 2004] introduced a normalized formulation of the LnC1-
Minkowski problem and they proved the existence and uniqueness of the solution for any prescribed even
Borel measure on Sn whose support is not contained in a great sphere of Sn. In the smooth category,
the normalized LnC1-Minkowski problem asks for the existence of a smooth, closed, strictly convex
hypersurface M0 � RnC1 that solves

1

hn.�.x//K.x/
D

V .K0/

'.�.x//
; (1-5)
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where K0 is the convex body with the boundary M0. In the rest of the paper, the Lp-Minkowski problem
refers to either (1-4) or (1-5), and we avoid the word “normalized”.

The existence and regularity of solutions to the Lp-Minkowski problem are rather comprehensively
discussed in [Chou and Wang 2006] for p>�n�1. Our study on (1-1) provides an alternative variational
treatment (based on curvature flow) of the even Lp-Minkowski problem. For p D 1, Chou and Wang
[2000] treated the classical L1-Minkowski problem in the smooth category by a logarithmic Gauss
curvature flow. For nD 1 and 1¤ p > �3, the existence of solutions to the Lp-Minkowski problems
follows from Andrews’ results [1998] on the asymptotic behavior of a family of contracting and expanding
flows of curves. Also, in higher dimensions, the existence of solutions to the Lp-Minkowski problems
follows from [Andrews 2000] when �n� 1< p � �nC 1 (a short proof of this is also given in [Ivaki
2015]) or when ' is even (i.e., '.u/D '.�u/) and �nC 1< p < 1. See also [Andrews 1999; Andrews
et al. 2016; Guan and Ni 2017; Urbas 1998; 1999].

Using our results for the flows above, it is now a simple matter to give a new, unified proof of the
smooth, even Lp-Minkowski problem for all ranges of p > �n� 1.

Corollary 4. Let �n � 1 < p < 1 and ' be a positive, smooth function on Sn that is even, i.e.,
'.u/D '.�u/. Then for p ¤ nC 1 there exists an origin-symmetric, smooth, strictly convex body such
that (1-4) is satisfied. For p D nC 1, there exists an origin-symmetric, smooth, strictly convex body such
that (1-5) is satisfied.

Proof. By the first part of Theorem 1 (only the convergence for a subsequence of times is needed), there
exists a smooth, strictly convex body K with the volume of the unit ball and a constant c > 0 such that

h

K
D

chp

'
:

Hence c
R

Sn hp=' d� D .nC 1/V .Bn/. Thus there is a solution to

h1�p.�.x//

K.x/
D

�
.nC 1/V .B/R

Sn hp=' d�

�
1

'.�.x//
:

Now let us define

� WD

8̂̂̂̂
<̂
ˆ̂̂:

�R
Sn hp=' d�

.nC 1/V .B/

� 1
nC1�p

; p ¤ nC 1;�
.nC 1/V .B/

V .K/
R

Sn hnC1=' d�

� 1
nC1

; p D nC 1:

Therefore, �K solves the smooth, even Lp-Minkowski problem. �

Let us close this section with a brief outline of this paper. The main difficulty in proving convergence
of the normalized solutions is in obtaining long-time existence. The issue arises from the time-dependent
anisotropic factor (the support function). We believe in such generality, (1-1) serves as the first example
where a time-dependent anisotropic factor is allowed. To prove long-time existence, we first obtain bounds
on the Gauss curvature in Section 3.1. Using the well-known standard technique of [Tso 1985] we obtain
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upper bounds. We obtain lower bounds by applying the same technique to the evolution of the polar body
as in [Ivaki 2015]. Controlling the principal curvatures requires estimates of higher derivatives of the
speed, which is generally quite difficult due to the nonlinearity of the flow. In Section 3.2 we obtain
these crucial estimates by adapting the remarkable C 2 estimates of Guan, Ren and Wang [Guan et al.
2015, (4.2)] for the prescribed curvature problem. Long-time existence then follows readily by standard
arguments. Once it is proved that solutions to the flow exist until they expand to infinity uniformly in all
directions, the method of [Ivaki 2016, Section 8] applies and yields convergence of the volume-normalized
solutions in C 1 to self-similar solutions provided p¤ 1. Further work is required to establish convergence
of normalized solutions if p D 1, and to prove convergence in C1 for p � nC 1. This is accomplished
in Section 4; see also Remark 10.

2. Basic evolution equations

Let g D fgij g and W D fwij g denote, in order, the induced metric and the second fundamental form
of M. At every point in the hypersurface M choose a local orthonormal frame fe1; : : : ; eng.

We use the standard notation

w
j
i D gmjwim; .w2/

j
i D gmj grswirwsm; jW j

2
D gij gklwikwlj D wijw

ij :

Here, fgij g is the inverse matrix of fgij g.
We use semicolons to denote covariant derivatives. The following geometric formulas are well-known:

�Ii D w
k
i ek ; hIi D w

k
i .F � ek/;

�Iij D gklwij Ilek �w
l
iwlj�; hIij D wij � hwl

iwlj CF � rwij :

Note that above we considered the support function as a function on the boundary of the hypersurface;
that is, at the point x 2M we have

h.x/D F.x/ � �.x/:

For convenience, let  .x/D h2�p.x/'.�.x//. The following evolution can be deduced in a standard
manner; see for example [Gerhardt 2006].

Lemma 5. The following evolution equations hold:

@t� D�r

�
 

K

�
;

@tw
j
i D�

�
 

K

�
Iik

gkj
�

�
 

K

�
wk

i w
j

k

D  
Kkl

K2
w

j

iIkl
C 

Kkl

K2
wkrw

r
l w

j
i � .nC 1/

 

K
wk

i w
j

k
C 

Kkl;rs

K2
gjmwklIiwrsIm

�
2 

K3
gjmKIiKImC

1

K2
gjkKIk Ii C

1

K2
gjk IkKIi �

1

K
gjk Iik ;

@thD  
Kij

K2
hIij C h

Kij

K2
wl

iwlj � .n� 1/
 

K
�

1

K
F � r :
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3. Long-time existence

3.1. Lower and upper bounds on Gauss curvature. The proofs of the following two lemmas are similar
to the proofs of [Ivaki 2015, Lemmas 4.1, 4.2]. For completeness, we give the proofs here. In this section
we use r to denote covariant derivatives on the sphere with respect to the standard metric.

The matrix of the radii of the curvature of a smooth, closed, strictly convex hypersurface is denoted by
rD Œrij � and the entries of r are considered as functions on the unit sphere. They can be expressed in terms
of the support function as rij WD r

2
ij hC Ngij h, where Œ Ngij � is the standard metric on Sn. Additionally, we

recall that Sn D detŒrij �= detŒ Ngij �.

Lemma 6. Let fMtg be a solution of (1-1) on Œ0; t1�. If c2 � hKt
� c1 on Œ0; t1�, then K � c4 on Œ0; t1�.

Here c4 depends on K0, c1; c2;p; ' and t1.

Proof. We apply the maximum principle to the following auxiliary function defined on the unit sphere:

‚D
 Sn

2c1� h
D

@th

2c1� h
:

At any minimum of ‚ we have

0Dri‚Dri

�
 Sn

2c1� h

�
and r

2
ij‚� 0:

Therefore, we get
ri. Sn/

2c1� h
D�

 Snrih

.2c1� h/2

and
r

2
ij . Sn/C Ngij Sn �

� Snrij C 2c1 Sn Ngij

2c1� h
: (3-1)

Differentiating ‚ with respect to time yields

@t‚D
 S

ij
n

2c1� h
.r2

ij . Sn/C Ngij Sn/C
 2S2

n

.2c1� h/2
.1C .2�p/h�1.2c1� h//;

where S
ij
n is the derivative of Sn with respect to the entry rij . By applying inequality (3-1) to the

preceding identity we deduce

@t‚�‚
2.1� nC 2c1H/� c‚2; (3-2)

where
HD S�1

n S ij
n Ngij :

Therefore, we arrive at

.h2�p=K/'
2c1� h

.t;u/�

 
ct C

1

min
u2Sn

.h2�p=K/'
2c1�h

.0;u/

!�1

�

 
ct1C

1

min
u2Sn

.h2�p=K/'
2c1�h

.0;u/

!�1

: �

Lemma 7. Let fMtg be a solution of (1-1) on Œ0; t1�. If c1�hKt
� c2 on Œ0; t1�, then K� 1=.aCbt�

n
nC1 /

on .0; t1�, where a and b depend only on c1; c2;p; '. In particular, K � c3 on Œ0; t1� for a positive
number c3 that depends on K0, c1; c2;p; ' and is independent of t1.
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Proof. Suppose K�t is the polar body1of Kt with respect to the origin. We furnish quantities associated
with polar bodies with �. The polar bodies evolve by

@th
�
D� �S��1

n ; h�. � ; t/D hK�t
. � /;

where

 � D
.h�2Cjrh�j2/

nC1Cp
2

h�nC1
'

�
h�uCrh�p
h�2Cjrh�j2

�
I

see Lemma 11 for the proof. In addition, we have c0
1
D 1=c2 � h� � 1=c1 D c0

2
. We will show that the

function

‚D
 �S��1

n

h�� c0
1
=2

remains bounded. At any maximal point of ‚,

0Dri‚Dri

�
 �S��1

n

h�� c0
1
=2

�
and r

2
ij‚� 0:

Hence, we obtain
ri. 

�S��1
n /

h�� c0
1
=2
D
 �S��1

n rih
�

.h�� c0
1
=2/2

; (3-3)

and consequently,

r
2
ij . 

�S��1
n /C Ngij 

�S��1
n �

 �S��1
n r�ij � .c

0
1
=2/ �S��1

n Ngij

h�� c0
1
=2

: (3-4)

Differentiating ‚ with respect to time yields

@t‚D
 �S��2

n

h�� c0
1
=2

S�ijn .r2
ij . 

�S��1
n /C Ngij 

�S��1
n /C

S��1
n

h�� c0
1
=2
@t 

�
C‚2:

On the other hand, in view of

j@th
�
j D  �S��1

n ; kr@th
�
k D kr. �S��1

n /k D
 �S��1

n krh�k

h�� c0
1
=2

; krh�k � c02;

where for the second equation we used (3-3), we have

S��1
n

h�� c0
1
=2
@t 

�
� c.n;p; c1; c2; '/‚

2:

Employing this last inequality and inequality (3-4) we infer that, at any point where the maximum of ‚
is reached, we have

@t‚�‚
2

�
c0�

c0
1

2
H�
�
: (3-5)

1The polar body of a convex body K with the origin of RnC1 in its interior is the convex body defined by K� D fx 2 RnC1 W

x �y � 1 for all y 2Kg.
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Moreover, we have

H� � n

�
h�� c0

1
=2

 �S��1
n

�� 1
n
�

 �

h�� c0
1
=2

�� 1
n

� n‚
1
n

�
c00

c0
1
� c0

1
=2

�� 1
n

:

Therefore, we can rewrite the inequality (3-5) as

@t‚�‚
2.c � c0‚

1
n /

for positive constants c and c0 depending only on p; c1; c2; '. Hence,

‚� cC c0t�
n

nC1 (3-6)

for some positive constants depending only on p; c1; c2; '. This follows from the claim below.

Claim. Suppose f is a positive smooth function of t on Œ0; t1� that satisfies

d

dt
f � c0C c1f C c2f

2
� c3f

2Cp; (3-7)

where c3;p are positive. There exist constant c; c0 > 0 independent of the solution and depending only on
c0; c1; c2; c3;p, such that f � cC c0t�1=.pC1/ on .0; t1�.

Proof of claim. Note that there exists x0 > 0 such that c0C c1xC c2x2 � c3x2Cp < �c3=2x2Cp for
x > x0. If f .0/� x0, then f may increase forward in time, but when f reaches x0, then f must start
decreasing (since the right-hand side of (3-7) becomes negative). Thus we may assume, without loss of
generality, that f .0/ > x0. Therefore, f > x0 on a maximal time interval Œ0; t0/. On Œ0; t0/ we can solve

d

dt
f � �

c3

2
f 2Cp

to obtain

f �

�
c3

pC 1

2t

�� 1
pC1

:

At t0 we have c0C c1f C c2f
2� c3f

1Cp D�.c3=2/f
2Cp and f D x0; therefore the right-hand side

of (3-7) is still negative. So f � f .t0/ on Œt0; t1�. In conclusion,

f �max
��

c3

pC 1

2t

�� 1
pC1

; x0 D f .t0/

�
� cC c0t�

1
1Cp ;

where c; c0 do not depend on solutions. �

The inequality (3-6) implies that

S��1
n � a0C b0t�

n
nC1 (3-8)

for some a0 and b0 depending only on p; c1; c2; '. Now we can use the argument given in [Ivaki and
Stancu 2013, Lemma 2.3] to obtain the desired lower bound: For every u 2 Sn, there exists a unique
u� 2 Sn such that

.SnhnC2/.u/.S�n h�nC2/.u�/D 1I
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see [Hug 1996]. In view of this identity and (3-8) we conclude that on .0; t1� we have

K �
1

aC bt�
n

nC1

for some a and b depending only on p; c1; c2; '. The lower bound for K on Œ0; ı� for a small enough
ı > 0 follows from the short-time existence of the flow. The lower bound for K on Œı; t1� follows from
the inequality K � 1=.aC bı�

n
nC1 /. �

3.2. Upper and lower bounds on principal curvatures. To obtain upper and lower bounds on the princi-
pal curvatures, denoted by f�ig

n
iD1

, we will consider the auxiliary function used by Guan, Ren and Wang
[Guan et al. 2015, (4.2)] for a prescribed curvature problem.

Lemma 8. Let fMtg be a solution of (1-1) on Œ0; t1�. If c1 � hKt
� c2 on Œ0; t1�, then c5 � �i � c6 on

Œ0; t1�, where c5 and c6 depend on K0, c1; c2;p; ' and t1.

Proof. In view of Lemmas 6 and 7, it suffices to show that kW k remains bounded on Œ0; t1�. Consider the
auxiliary function

‚D 1
2

log.kW k2/�˛ log h:

Assume without loss of generality that c1 > 1, for otherwise we replace h by 2h=c1, which does not effect
the evolution equation of ‚. Using the parabolic maximum principle we show that for some ˛ large
enough ‚. � ; t/ is always negative on Œ0; t1�. If the conclusion of the theorem is false, we may choose
.x0; t0/ with t0 > 0 and such that ‚.x0; t0/D 0, ‚.x; t0/� 0, and ‚.x; t/ < 0 for t < t0. Then,

0� P‚� 
Kkl

K2
‚Ikl

D�
 

kW k2
Kkl

K2
w

j

iIk
wi

j Il C
2 

kW k4
Kkl

K2
w

j
i w

s
rw

i
j Ikw

r
sIl C 

Kkl

K2
wkrw

r
l � .nC 1/ 

.w2/
j
i w

i
j

KkW k2

C
 wi

j

kW k2

�
Kkl;rs

K2
wklIig

jpwrsIp � 2
gjpKIiKIp

K3

�
C

�
2

K2
gjp IiKIp �

1

K
gjp Iip

�
wi

j

kW k2

C .n� 1/
˛ 

hK
C

˛

hK
.F � r /�

˛ 

h2

Kkl

K2
hIkhIl �˛ 

Kkl

K2
wkrw

r
l :

Pick normal coordinates around x0 such that in .x0; t0/ it holds that

gij D ıij ; wij D wiiıij :

At .x0; t0/ we may write

Kkl;rswklIiwrsIi D Kkk;l lwkkIiwl lIi �Kkk;l lw2
klIi ;

due to the relation

Kkl;rswklIiwrsIjw
ij
D

X
i

wii

�X
p;q

@2K
@�p@�q

wppIiwqqIi C

X
p¤q

@K
@�p
�
@K
@�q

�p � �q
w2

pqIi

�
I (3-9)
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see for example [Gerhardt 2006, Lemma 2.1.14]. We obtain after multiplication by K2 that

0��
 

kW k2
Kii

X
l

w2
l lIi�

 

kW k2
Kii

X
p¤q

w2
pqIiC

2 

kW k4
Kii

�X
j

wjjwjj Ii

�2

C Kiiw2
ii�.nC1/ K

X
i

w3
ii

kW k2
C

 

kW k2

X
i

wii

�
Kpp;qqwppIiwqqIi�Kpp;qqw2

pqIi�2
.KIi/2

K

�
C

X
i

.2 IiKIi�K Iii/
wii

kW k2
C.n�1/

˛ K
h
C
˛K
h
.F �r /�

˛ 

h2
KklhIkhIl�˛ Kiiw2

ii :

At .x0; t0/ we have

0D‚Ik D
X

i

wiiwiiIk

kW k2
�˛

hIk

h
: (3-10)

We may assume at x0 that w11 Dmaxfwii W 1� i � ng. Therefore,

‚.x0; t0/D 0 D)
c˛

1
p

n
� w11 � c˛2 : (3-11)

On the other hand, since  is bounded above and below in view of the hypotheses of the lemma, we
obtain

 Ii � C0wii D) 2 IiKIi �
" 

c4

.KIi/2C
c4C 2

0

 "
w2

ii

� " 
.KIi/2

K
CC.";K0; '; t1/ w

2
ii ; (3-12)

where c4 (depending on t1) is from Lemma 6, and

 Iii � �C �Cwii �Cw2
ii C

X
k

wiiIkd� .@k/: (3-13)

Using (3-10) in (3-13) we obtain

�
K
kW k2

X
i

wii Iii �
K
kW k2

X
i

wii

�
C CCwii CCw2

ii �

X
k

wiiIkd� .@k/

�
�

K
kW k2

X
i

wii.C CCwii CCw2
ii/�

˛K
h

X
k

hIkd� .@k/

D
K
kW k2

X
i

wii.C CCwii CCw2
ii/�

˛K
h

X
i

wii.@i �F /d� .@i/

�
 

kW k2

X
i

wii.C CCw2
ii/�

˛K
h

X
i

wii.@i �F /d� .@i/: (3-14)

For the last inequality, we used that K is bounded above and  is bounded below (so the constant C

depends on K0; '; t1).
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Combining (3-10), (3-12) and (3-14) implies

0� �
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Kii
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l lIi �
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wii.C CCw2
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˛K
h

X
i

wii.@i �F /d� .@i/C .n� 1/
˛ K

h

C
˛K
h

X
s

.@s �F /dF .@s/C
˛K
h

X
i

wii.@i �F /d� .@i/�
˛ 

h2
Kiiw2

ii.@i �F /
2
�˛ Kiiw2
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kW k2

�X
l

wl l.C CCw2
l l/� nK

X
l

w3
l l CKiiw2

iikW k
2

�

C˛ 

�
nK
h
�Kiiw2

ii �
Kiiw2

ii.@i �F /
2

h2
C

K
h 

X
s

.@s �F /dF .@s/

�

� 
X

i

.Ai CBi CCi CDi �Ei/�
˛ K

h
� K

X
i

w3
ii

kW k2
; (3-15)

where C depends on ";K0; '; t1, and

Ai D
2� "

kW k2K
wii.KIi/2�

wii

kW k2

X
p;q

Kpp;qqwppIiwqqIi ;

Bi D
2

kW k2

X
j

wjjKjj ;iiw2
jj Ii ; Ci D

2

kW k2

X
j¤i

Kjjw2
jj Ii ;

Di D
1

kW k2
Kii

X
j

w2
jj Ii ; Ei D

2

kW k4
Kii

�X
j

wjjwjj Ii

�2

:

The terms Bi and Ci deserve some explanation. Ci comes from the second term in (3-15), which is
given by

�
 

kW k2

X
i

Kii
X
p¤q

w2
pqIi � �

 

kW k2

X
p¤q

Kppw2
pqIp �

 

kW k2

X
p¤q

Kqqw2
pqIq;

which is exactly Ci due to the Codazzi equation.
The third line of (3-15) arises from (3-9). Since the second term in the bracket of (3-9) is negative and

the hypersurface is convex, we can proceed in the same way as we derived Ci and just throw away all
indices i which are neither p nor q. This gives term Bi . The first term in the big bracket goes into Ai .

In Corollary 14 of the Appendix we will present an adaption of the method developed in [Guan et al.
2015] to deal with the curvature derivative terms Ai ;Bi ;Ci ;Di ;Ei . There we prove that we obtain the
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following alternative: there exist positive numbers ı2; : : : ; ın, which only depend on the dimension and
bounds on the Gauss curvature, such that either

wii > ıiw11 for all 2� i � n

or
Ai CBi CCi CDi �Ei � 0 for all 1� i � n:

By taking ˛ large in (3-11), in the first case we get a contradiction to the bound on the Gauss curvature.
In the second case, using also Kiiw2

ii D K
P

i wii , (3-15) yields

0�
 

kW k2

�X
l

wl l.C CCw2
l l/� nK

X
l

w3
l l

�
� .˛� 1/K 

X
i

wii

C˛ 

�
.n� 1/

K
h
�

K
h2

X
i

wii.@i �F /
2
C

K
h 

X
l

.@l �F /dF .@l/

�
:

Consequently we obtain

0�
C.";K0; '; t1/w

3
11

kW k2
� .˛� 1/K w11CC.K0; '; t1/˛;

where we discarded �.˛ � 1/K 
P

i¤1wii � 0 and used the bounds on h;  and K to bound w11 in
terms of w3

11
.

Now take ˛ such that .˛� 1/K � C.";K0; '; t1/C 1. Therefore, in view of (3-11)

0�
C.";K0; '; t1/w

3
11

kW k2
� .˛� 1/K w11CC.K0; '; t1/˛

� C.";K0; '; t1/

�
w2

11

kW k2
� 1

�
w11�w11CC.K0; '; t1/˛

� �
c˛

1
p

n
CC.K0; '; t1/˛: (3-16)

Taking ˛ large enough yields a contradiction. �

Proposition 9. The solution to (1-1) satisfies limt!T max hKt
D1.

Proof. First, let p � nC 1. In this case, by comparing with suitable outer balls, the flow exists on Œ0;1/.
For p > nC 1, consider an origin-centered ball Br such that K0 � Br . Then Kt � Br.t/, where

r.t/D ..min hK0
/p�n�1

C t.p� n� 1/min'/
1

p�n�1

and Br.t/ expands to infinity as t approaches1. For pD nC1, Kt �Br.t/ with r.t/D et min' min hK0

and Br.t/ expands to infinity as t approaches1.
Second, if p < nC 1, then the flow exists only on a finite-time interval. If max hKt

<1, then by
Lemmas 6, 7 and 8, the evolution equation (1-1) is uniformly parabolic on Œ0;T /. Thus, the result of
[Krylov and Safonov 1980] and standard parabolic theory allow us to extend the solution smoothly past
time T, contradicting its maximality. �
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4. Convergence of normalized solutions

4.1. Convergence in C 1; 1¤ p > �n� 1. By the proof of [Ivaki 2016, Corollary 7.5], there exist r;R

such that

0< r � h zKt
�R<1: (4-1)

Therefore, a subsequence of f zKtk
g converges in the Hausdorff distance to a limiting shape zK1 with the

origin in its interior. The argument of [Ivaki 2016, Section 8.1] implies

'h
1�p

zK1
f zK1

D c;

where f zK1 is the positive continuous curvature function of zK1 and c is some positive constant. By [Chou
and Wang 2006, Proposition 1.2], zK1 is smooth and strictly convex. The C 1 convergence follows, which
is purely geometric and does not depend on the evolution equation, from [Andrews 1997, Lemma 13].

Remark 10. Section 4.1 completes the discussion on the existence of solutions to the smooth, even
Lp-Minkowski problems in RnC1 for 1¤ p > �n� 1. The next section discusses the C1 convergence
when 1¤ p � nC 1, and also when p D 1 and solutions are origin-symmetric. We mention that in the
latter case, by the proof of [Ivaki 2016, Corollary 7.5], the estimate (4-1) still holds.

4.2. Convergence in C 1. By [Ivaki 2016, Lemma 9.2], there is a uniform upper bound on the Gauss
curvature of the normalized solution when p � nC 1. In the following, we first obtain a uniform lower
bound on the Gauss curvature of the normalized solution zKt .

Let h W Sn � Œ0;T /! RnC1 be a solution of (1-2). Then for each � > 0, Nh defined by

Nh W Sn
� Œ0;T=�

1Cn�p
nC1 /! RnC1;

Nh.u; t/D �
1

nC1 h.u; �
1Cn�p

nC1 t/;

is also a solution of evolution equation (1-2) but with the initial data �
1

nC1 h. � ; 0/.
For each fixed time t 2 Œ0;T /, define Nh a solution of (1-2) as follows:

Nh.u; �/D

�
V .B/

V .Kt /

� 1
nC1

h

�
u; t C

�
V .B/

V .Kt /

�1Cn�p
nC1

�

�
:

Note that Nh. � ; 0/ is the support function of .V .B/=V .Kt //
1

nC1 Kt ; therefore,

r � Nh.u; 0/�R:

Write K� for the convex body associated with Nh. � ; �/ and let Bc denote the ball of radius c centered
at the origin. Since BR encloses K0, the comparison principle implies that B2R will enclose K� for
� 2 Œ0; ı�, where ı depends only on p;R;  . By the first statement of Lemma 7 applied to Nh, there is a
uniform lower bound (depending only on r;R;p; ') on the Gauss curvature of K ı

2
.
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On the other hand, the volume of K ı
2

is bounded above by V .B2R/; therefore,

V .B/

V .B2R/
� ct WD

V .Kt /

V .K
tC. V .B/

V .Kt /
/
.1Cn�p/=.nC1/ ı

2

/
� 1

for all t 2 Œ0;T /. Consequently,�
V .B/

V .K
tC. V .B/

V .Kt /
/
.1Cn�p/=.nC1/ ı

2

/

� 1
nC1

h

�
u; t C

�
V .B/

V .Kt /

�1Cn�p
nC1 ı

2

�
D c

1
nC1

t
Nh

�
� ;
ı

2

�

has Gauss curvature bounded below for all t 2 Œ0;T /.
Now we show that for every Qt 2

�
.V .B/=V .K0//

1Cn�p
nC1 ı

2
;T
�
, we can find t 2 Œ0;T / such that

Qt D t C

�
V .B/

V .Kt /

�1Cn�p
nC1 ı

2
:

Define f .t/D t C .V .B/=V .Kt //
1Cn�p

nC1 ı
2
� Qt on Œ0;T /. Then f is continuous, and8<:

f .T /D T � Qt > 0; p < nC 1;

f .1/D1; p D nC 1;

f .0/� 0; p � nC 1:

The claim follows.
Next we obtain uniform lower and upper bounds on the principal curvatures of the normalized solution.
Consider the convex bodies zK� WD .V .B/=V .Kt //

1
nC1 Kt , where

�.t/ WD

Z t

0

�
V .Ks/

V .B/

�1Cn�p
nC1

ds:

Let us furnish all geometric quantities associated with zK� by a tilde. The evolution equation of Qh� is
given by

@� Qh� D ' Qh
2�p zSn�

R
Sn ' Qh

2�p zS2
n d�

.nC 1/V .B/
Qh:

Since .
R

Sn ' Qh
2�p zS2

n d�/=..nC 1/V .B// is uniformly bounded above, applying the maximum principle
to ‚D 1

2
log.k zW k2/�˛ log Qh, and arguing as in the proof of Lemma 8, we see that k zW k has a uniform

upper bound. This in turn, in view of our lower and upper bounds on the Gauss curvature of zK� , implies
that we have uniform lower and upper bounds on the principal curvatures of zK� . Higher-order regularity
estimates and convergence in C1 for a subsequence of f zK�g follow from [Krylov and Safonov 1980],
standard parabolic theory and the Arzelà-Ascoli theorem. The convergence for the full sequence when
p � 1 follows from the uniqueness of the self-similar solutions to (1-3); see [Lutwak 1993; Chou and
Wang 2006]. Moreover, note that when ' � 1 and �n� 1< p < 1, by the result of [Brendle et al. 2017],
the limit is the unit sphere.
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Appendix

Evolution of polar bodies. Let K be a smooth, strictly convex body with the origin in its interior.
Suppose @K, the boundary of K, is parametrized by the radial function r D r.u/ W Sn ! R. The
metric Œgij �, unit normal �, support function h, and the second fundamental form Œwij � of @K can be
written in terms of r and its partial derivatives as follows:

(a) gij D r2 Ngij Crirrj r .

(b) � D .ru�rr/=
p

r2Ckrrk2.

(c) hD r2=
p

r2Ckrrk2.

(d) wij D .�rr2
ij r C 2rirrj r C r2 Ngij /=

p
r2Ckrrk2.

Since 1=r is the support function of K�, see, e.g., [Schneider 2014, p. 57], we can calculate the entries
of Œr�ij �:

r�ij Dr
2
ij

1

r
C

1

r
Ngij D

�rr2
ij r C 2rirrj r C r2 Ngij

r3
:

Thus, using (d) we get

r�ij D

p
r2Ckrrk2

r3
wij :

Lemma 11. As Kt evolve by (1-2), their polars K�t evolve as follows:

@th
�
D�'

�
h�uCrh�p
h�2Cjrh�j2

�
.h�2Cjrh�j2/

nC1Cp
2

h�nC1S�n
; h�. � ; t/ WD hK�t

. � /:

Proof. To obtain the evolution equation of hK�t
, we first need to parametrize Mt over the unit sphere

F D r.u. � ; t/; t/u. � ; t/ W Sn
! RnC1;

where r.u. � ; t/; t/ is the radial function of Mt in the direction u. � ; t/. Note that

@t r D '
h2�p

K

p
r2Ckrrk2

r
;

and

KD
detwij

det gij
;

1

S�n
D

det Ngij

det r�ij
;

det Ngij

det gij
D

1

r2n�2.r2Ckrrk2/
; hD

1p
h�2Ckrh�k2

:

Now we calculate

@th
�
D @t

1

r
D�

h2�p

K

p
r2Ckrrk2

r3
'.�/

D�h2�p

p
r2Ckrrk2

r3

det gij

detwij
'.�/
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D�h2�p

p
r2Ckrrk2

r3

det Ngij

det r�ij

det gij

det Ngij

det r�ij
detwij

'.�/

D�

�p
r2Ckrrk2

r3

�nC1
r2n�2.r2Ckrrk2/

.h�2Ckrh�k2/
2�p

2

'.�/

S�n
:

Replacing r by 1=h� and taking into account (b) finishes the proof. �

Estimates for curvature derivatives. For convenience we present some of the main ideas regarding how
one can prove the alternative in Lemma 8 about balancing the curvature derivatives. This method was
used in [Guan et al. 2015] for a similar stationary prescribed curvature equation. Recall that

Ai D
2� "

kW k2K
wii.KIi/2�

wii

kW k2

X
p;q

Kpp;qqwppIiwqqIi ;

Bi D
2

kW k2

X
j

wjjKjj ;iiw2
jj Ii ; Ci D

2

kW k2

X
j¤i

Kjjw2
jj Ii ;

Di D
1

kW k2
Kii

X
j

w2
jj Ii ; Ei D

2

kW k4
Kii

�X
j

wjjwjj Ii

�2

:

Note that the term Ai looks slightly different from the term Ai in [Guan et al. 2015, p. 1309], where
the K is not present in the denominator. We have to define Ai in the way we did, because due to the
inverse nature of the curvature flow equation we obtain an extra good derivative term. This allows us to
choose the constant in Ai as 2� ", whereas a large constant was required in [Guan et al. 2015] (denoted
by K there). Fortunately the proofs of Lemmas 4.2 and 4.3 in that paper also work for sufficiently small ".
The remaining terms Bi ;Ci ;Di ;Ei are all identical to those in [Guan et al. 2015].

In the following �k denotes the k-th elementary symmetric function of principal curvatures. We begin
by recalling the following special case (k D n) of inequality (2.4) from [Guan et al. 2015, Lemma 2.2],
which can be deduced easily by differentiating

G D

�
�n

�l

� 1
n�l

twice, using the concavity of G and applying the Schwarz inequality. For any ı > 0, 1 � i � n and
1� l < n we have

�Kpp;qqwppIiwqqIiC

�
1�

1

n� l
C

1

.n� l/ı

�
.KIi/2

K
�

�
1C

1� ı

n� l

�
K..�l/Ii/

2

�2
l

�
K
�l

�
pp;qq

l
wppIiwqqIi :

In particular, by taking ı D 1=.2� "/, we have

.2� "/
.KIi/2

K
�Kpp;qqwppIiwqqIi �

�
1C

1� "

.n� 1/.2� "/

�
K..�l/Ii/

2

�2
l

�
K�pp;qq
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�l

; (A-1)

provided .2� "/ > 1, i.e., 0< " < 1.
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Lemma 12. For each i ¤ 1, if
p

3�i � �1, we have

Ai CBi CCi CDi �Ei � 0:

Proof. Note that from (A-1) with l D 1, it follows that Ai � 0 since �pp;qq
1

D 0. The proof that
BiCCiCDi �Ei � 0 can literally be taken from [Guan et al. 2015, Lemma 4.2], starting with (4.10) of
that paper. �

In the following proof we will write �n D K for better comparability with [Guan et al. 2015,
Lemma 4.3]. Also denote by �k.� j i/ the k-th elementary symmetric polynomial in the variables
�1; : : : ; �i�1; �iC1; : : : ; �n and �k.� j ij / accordingly.

Lemma 13. For �D 1; : : : ; n� 1 suppose there exists some ı � 1 such that ��=�1 � ı. There exists a
sufficiently small positive constant ı0 depending on ı, " and the bounds for K such that if ��C1=�1 � ı

0,
we have

Ai CBi CCi CDi �Ei � 0 for i D 1; : : : ; �:

Proof. This corresponds to [Guan et al. 2015, Lemma 4.3]. We highlight the main estimates in this proof.
First of all, from [Guan et al. 2015, (4.16), (4.17)] one can extract the following estimate:

kW k4.Bi CCi CDi �Ei/� kW k
2
X
j¤i

.�n�1.� j j /� 2�n�1.� j ij //w
2
jj Ii �w

2
ii�

ii
n w

2
iiIi

D kW k2
X
j¤i

�n�1.� j j /w
2
jj Ii �w

2
ii�

ii
n w

2
iiIi ; (A-2)

since �n�1.� j ij /D 0.
Now we show the right-hand side of (A-2) is dominated by kW k4Ai . From (A-1) we get for all

1� � < n and for all 1� i � nW

Ai D
.2�"/wii
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�
: (A-3)

For sufficiently small ı0 and �D 1 the simple estimates [Guan et al. 2015, (4.19), (4.20)] give

kW k4Ai � w
2
ii�

ii
n w

2
11Ii �C�wii

X
a¤1

w2
aaIi : (A-4)
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Combining this with (A-2) for i D 1 yields,

kW k2.A1CB1CC1CD1�E1/�
X
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�n�1.� j j /w
2
jj I1�
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X
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ı0w11

�
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w11

�
w2

jj I1; (A-5)

which is nonnegative for ı0 sufficiently small. Hence the lemma is true in the case �D 1.
For � > 1 the series of elementary estimates [Guan et al. 2015, (4.22)–(4.27)] gives

kW k4Ai � w
2
ii�

ii
n

X
a��

w2
aaIi �

wiiC�

ı2

X
a>�

w2
aaIi ;

after adapting � if necessary and choosing ı0 sufficiently small again. Combining this last inequality with
(A-2) for 1� i � � yields
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w11ı0
�
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wiiı2

�
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jj Ii ; (A-6)

which is nonnegative for small ı0 for the same reason as in (A-5). �

Corollary 14. There exist positive numbers ı2; : : : ; ın, depending only on the dimension, on � and on the
bounds for the Gauss curvature, such that either

�i > ıi�1 for all 2� i � n (A-7)

or

Ai CBi CCi CDi �Ei � 0 for all 1� i � n: (A-8)

Proof. Choosing �D 1 and ı D 1 in Lemma 13 yields the existence of ı0 with the following property: if
�2=�1 � ı

0, then

A1CB1CC1CD1�E1 � 0:

Note that �i � �2 for i � 2. Choose ı2 Dminfı0; 1=
p

3g. Therefore, in view of Lemma 12, �2=�1 � ı2

implies

Ai CBi CCi CDi �Ei � 0 for all i � 2:
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We now apply induction, assuming we have constructed ı2; : : : ; ıj . We may assume �i > ıi�1 for
2� i � j ; otherwise AiCBiCCiCDi�Ei � 0 is already true for 2� i � n. Choose ıD ıj and �D j

in Lemma 13 to get a ı0 so that if �jC1� ı
0�1, then AiCBiCCiCDi�Ei � 0 holds for 1� i � j . Now

in view of Lemma 12, taking ıjC1Dminfı0; 1=
p

3g gives AiCBiCCiCDi�Ei � 0 for j � i � n. �
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THE MUSKAT PROBLEM IN TWO DIMENSIONS:
EQUIVALENCE OF FORMULATIONS, WELL-POSEDNESS,

AND REGULARITY RESULTS

BOGDAN-VASILE MATIOC

We consider the Muskat problem describing the motion of two unbounded immiscible fluid layers with
equal viscosities in vertical or horizontal two-dimensional geometries. We first prove that the mathematical
model can be formulated as an evolution problem for the sharp interface separating the two fluids, which
turns out to be, in a suitable functional-analytic setting, quasilinear and of parabolic type. Based upon
these properties, we then establish the local well-posedness of the problem for arbitrary large initial data
and show that the solutions become instantly real-analytic in time and space. Our method allows us to
choose the initial data in the class H s, s ∈

( 3
2 , 2

)
, when neglecting surface tension, respectively in H s,

s ∈ (2, 3), when surface-tension effects are included. Besides, we provide new criteria for the global
existence of solutions.
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1. Introduction and the main results

The Muskat problem [1934] is a classical model describing the motion of two immiscible fluids in a
porous medium or a Hele-Shaw cell. We consider here the particular case when the fluids have equal
viscosities and we assume that the flows are two-dimensional. Furthermore, we consider an unbounded
geometry corresponding to fluid layers that occupy the entire space, the fluid motion being localized and
the fluid system close to the rest state far away from the origin. We further assume that the fluids are
separated by a sharp interface which flattens out at infinity, evolves in time, and is unknown. We consider
two different scenarios for this unconfined Muskat problem:
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(a) In the absence of surface-tension effects at the free boundary, the Hele-Shaw cell is vertical and the
fluid located below is more dense.

(b) In the presence of surface-tension effects, the Hele-Shaw cell is either vertical or horizontal and we
make no restrictions on the densities of the fluids.

One big advantage of considering this setting is that the equations of motion can be very elegantly
formulated as a single evolution equation for the interface between the fluids. Indeed, parametrizing
this interface as the graph [y= f (t, x)], the Muskat problem is equivalent in this setting to an evolution
problem for the unknown function f , see Section 2, and it can be written as

∂t f (t, x)=
σk

2πµ
f ′(t, x)PV

∫
R

f (t, x)− f (t, x − y)
y2+ ( f (t, x)− f (t, x − y))2

(κ( f ))′(t, x − y) dy

+
σk

2πµ
PV
∫

R

y
y2+ ( f (t, x)− f (t, x − y))2

(κ( f ))′(t, x − y) dy

+
1ρk
2πµ

PV
∫

R

y( f ′(t, x)− f ′(t, x − y))
y2+ ( f (t, x)− f (t, x − y))2

dy for t > 0, x ∈ R,

f (0, · )= f0.

(1-1)

For brevity we write f ′ for the spatial derivative ∂x f . We let k denote the permeability of the homogeneous
porous medium, µ is the viscosity coefficient of the fluids, σ is the surface-tension coefficient at the free
boundary, and

1ρ := g(ρ−− ρ+),

where g is the Earth’s gravity and ρ± is the density of the fluid which occupies the domain�±(t) defined by

�−(t) := [y< f (t, x)] and �+(t) := [y> f (t, x)].

Furthermore, κ( f (t)) is the curvature of the graph [y= f (t, x)] and PVdenotes the principal value which,
depending on the regularity of the functions under the integral, is taken at zero and/or at infinity. Our
analysis covers the following scenarios

(a) σ = 0, 1ρ > 0 and (b) σ > 0, 1ρ ∈ R,

meaning that (a) corresponds to the stable case when the denser fluid is located below.
Due to its physical relevance [Bear 1972], the Muskat problem has been widely studied in the last

decades in several geometries and physical settings and with various methods. When neglecting surface-
tension effects the well-posedness of the Muskat problem is in strong relationship with the Rayleigh–Taylor
condition, being implied by the latter. The Rayleigh–Taylor condition, which appears first in [Saffman
and Taylor 1958], is a sign restriction on the jump of the pressure gradient in normal direction at the free
boundary. For fluids with equal viscosities moving in a vertical geometry, it reduces to the simple relation

1ρ > 0;

see, e.g., [Córdoba and Gancedo 2010; Escher et al. 2018] and also (2-1a)–(2-1b). The first local existence
result was established in [Yi 1996] by using Newton’s iteration method; the analysis in [Ambrose 2004;
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Berselli et al. 2014; Cheng et al. 2016; Gómez-Serrano and Granero-Belinchón 2014; Constantin et al.
2017; Córdoba et al. 2011; 2013; 2014; Córdoba and Gancedo 2007; 2010] is based on energy estimates
and the energy method; the authors of [Siegel et al. 2004] use methods from complex analysis and a version
of the Cauchy–Kowalewski theorem; a fixed-point argument is employed in [Bazaliy and Vasylyeva 2014]
for nonregular initial data, and the approach in [Escher and Matioc 2011; Escher et al. 2012; 2018] relies
on the formulation of the problem as a nonlinear and nonlocal parabolic equation together with an abstract
well-posedness result from [Da Prato and Grisvard 1979] based on continuous maximal regularity. Other
papers study the qualitative aspects of solutions to the Muskat problem for fluids with equal viscosities,
such as global existence of strong and weak solutions [Constantin et al. 2013; 2017; Granero-Belinchón
2014], existence of initial data for which solutions turn over [Castro et al. 2011; 2012; 2013], and the
absence of squirt or splash singularities [Córdoba and Gancedo 2010; Gancedo and Strain 2014].

Compared to the zero-surface-tension case, the Muskat problem with surface tension is less well-studied.
When allowing for surface tension, the Rayleigh–Taylor condition is no longer needed and the problem is
well-posed for general initial data. While some of the references require quite high regularity from the
initial data, see [Ambrose 2014; Friedman and Tao 2003; Hong et al. 1997; Tofts 2017], optimal results
are established in bounded or periodic geometries under the observation that the Muskat problem with
surface tension can be formulated as a quasilinear parabolic evolution problem; see [Escher et al. 2018;
Prüss and Simonett 2016a].

The stability properties of equilibria which are, depending on the physical scenario, horizontal lines
[Cheng et al. 2016; Ehrnström et al. 2013; Escher et al. 2012; Escher and Matioc 2011], finger-shaped
[Ehrnström et al. 2013; Escher et al. 2012; Escher and Matioc 2011], circular [Friedman and Tao 2003], or
a union of disjoint circles/spheres [Prüss and Simonett 2016b] have been also addressed in the references
just mentioned.

In this paper we first rigorously prove in Section 2 that the Muskat problem in the classical formulation
(2-1) and the system (1-1) are equivalent for a certain class of solutions. Thereafter, the analysis of (1-1)
starts from the obvious observation that the right-hand side of the first equation of (1-1) is linear with
respect to the highest-order spatial derivative of f ; that is, this particular Muskat problem has a quasilinear
structure (also when neglecting surface tension). This property is not obvious in the particular geometry
considered in [Escher et al. 2018; Yi 1996] (when σ = 0). In a suitable functional-analytic setting we then
prove that (1-1) is additionally parabolic for general initial data. The parabolic character was established
previously for bounded geometries [Escher et al. 2012; 2018; Escher and Matioc 2011; Prüss and Simonett
2016a; 2016b] (in the absence of surface-tension effects only when the Rayleigh–Taylor condition holds),
but for (1-1) only for small initial data; see [Constantin et al. 2013; Córdoba and Gancedo 2007]. These
two aspects, that is, the quasilinearity and the parabolicity, enable us to use abstract results for quasilinear
parabolic problems due to H. Amann [1993, Section 12] to prove, by similar strategies, the well-posedness
of the Muskat problem with and without surface tension.

It is worth emphasizing that for this particular Muskat problem the local well-posedness is established,
in the zero-surface-tension case, only for initial data that are twice-weakly differentiable and which belong
to W 2

p(R) for some p ∈ (1,∞]; see [Constantin et al. 2017]. Our first main result, i.e., Theorem 1.1,
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extends the local well-posedness to general initial data in H s(R) with s ∈
( 3

2 , 2
)
. For the unconfined

Muskat problem with surface tension, the well-posedness is considered only in [Ambrose 2014; Tofts
2017] and in both papers the authors require that f0 ∈ H s(X), with X ∈ {R,T} and s ≥ 6. In our well-
posedness result, i.e., Theorem 1.2, the curvature of the initial data may be even unbounded as we allow for
general initial data f0 ∈ H s(R) with s ∈ (2, 3). Additionally, we also obtain new criteria for the existence
of global solutions to the Muskat problem with and without surface tension and, as a consequence of
the parabolic character of the equations, we show that the fluid interfaces become instantly real-analytic.

Our strategy is the following: we formulate, in a suitable functional-analytic setting, (1-1) as a
quasilinear evolution problem of the form1

ḟ =8σ ( f )[ f ], t > 0, f (0)= f0,

and then we study the properties of the operator 8σ . We differentiate between the case σ = 0, studied in
Sections 3–5, when we simply write 8σ =:8, and the case σ > 0, as in the first case 8( f ) is a nonlocal
operator of order 1 and in the second case 8σ ( f ) has order 3 (for f appropriately chosen). At the core of
our estimates lies the following deep result from harmonic analysis: given a Lipschitz function a :R→R,
the singular integral operator

h 7→
[

x 7→ PV
∫

R

h(x − y)
y

exp
(

i
a(x)− a(x − y)

y

)
dy
]

(1-2)

belongs to L(L2(R)) and its norm is bounded by C(1+‖a′‖∞), see [Murai 1986], with C denoting a
universal constant independent of a. Relying on (1-2), we study the mapping properties of 8σ and show,
for suitable f , that 8σ ( f ) is the generator of a strongly continuous and real-analytic semigroup. The
main results of this paper, that is, Theorems 1.1–1.3, are then obtained by employing abstract results
presented in [Amann 1993, Section 12], and which we briefly recall at the end of this section. The line of
approach is close to the one we followed in [Escher et al. 2018]; however, the functional-analytic setting
and the methods used to establish the needed estimates are substantially different. We expect that our
method extends to the general case when µ− 6= µ+ and we believe to obtain, for periodic flows, a similar
stability behavior of the — flat and finger shaped — equilibria, as in [Escher and Matioc 2011].

Our first main result is the following well-posedness theorem for the Muskat problem without surface-
tension effects.

Theorem 1.1 (well-posedness: no surface tension). Let σ = 0 and 1ρ > 0. The problem (1-1) possesses
for each f0 ∈ H s(R), s ∈

( 3
2 , 2

)
, a unique maximal classical solution

f := f ( · ; f0) ∈ C([0, T+( f0)), H s(R))∩C((0, T+( f0)), H 2(R))∩C1((0, T+( f0)), H 1(R)),

with T+( f0) ∈ (0,∞], and [(t, f0) 7→ f (t; f0)] defines a semiflow on H s(R). Additionally, if

sup
[0,T+( f0))∩[0,T ]

‖ f (t)‖H s <∞ for all T > 0,

then T+( f0)=∞.

1We write ḟ to denote the derivative d f/dt .
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The quasilinear character of the problem is enhanced by the presence of surface tension. For this
reason we may consider, when σ > 0, initial data with unbounded curvature. We show in Theorem 1.3,
however, that the curvature becomes instantly real-analytic and bounded.

Theorem 1.2 (well-posedness: with surface tension). Let σ > 0 and1ρ ∈R. The problem (1-1) possesses
for each f0 ∈ H s(R), s ∈ (2, 3), a unique maximal classical solution

f := f ( · ; f0) ∈ C([0, T+( f0)), H s(R))∩C((0, T+( f0)), H 3(R))∩C1((0, T+( f0)), L2(R)),

with T+( f0) ∈ (0,∞], and [(t, f0) 7→ f (t; f0)] defines a semiflow on H s(R). Additionally, if

sup
[0,T+( f0))∩[0,T ]

‖ f (t)‖H s <∞ for all T > 0,

then T+( f0)=∞.

These results reflect the fact that the Muskat problem without surface tension is a first-order evolution
problem, while the Muskat problem with surface tension is of third order. The solutions obtained in
Theorems 1.1 and 1.2 become instantly real-analytic.

Theorem 1.3. Let s ∈
( 3

2 , 2
)

if σ = 0 and 1ρ > 0, and let s ∈ (2, 3) if σ > 0. Given f0 ∈ H s(R), let
f = f ( · ; f0) denote the unique maximal solution to (1-1) found in Theorems 1.1 and 1.2, respectively.

Then

[(t, x) 7→ f (t, x)] : (0, T+( f0))×R→ R

is a real-analytic function. In particular, f (t, · ) is real-analytic for each t ∈ (0, T+( f0)). Moreover, given
k ∈ N, it holds that

f ∈ Cω((0, T+( f0)), H k(R)),

where Cω denotes real-analyticity.

As a direct consequence of Theorems 1.1 and 1.3 and of [Constantin et al. 2013, Theorem 3.1], see
also [Constantin et al. 2016, Remark 6.2], we obtain a global existence result for solutions to the Muskat
problem without surface tension that correspond to initial data of medium size in H s(R), s ∈

( 3
2 , 2

)
. In

the following F denotes the Fourier transform.

Corollary 1.4. There exists a constant c0 ≥
1
5 such that for all f0 ∈ H s(R), s ∈

( 3
2 , 2

)
, with

‖| f0‖| :=

∫
R

|ξ ||F f0(ξ)| dξ < c0,

the solution found in Theorem 1.1 exists globally.

Proof. The claim follows from the inequality

‖| f ‖| =
∫

R

|ξ ||F f (ξ)| dξ ≤ ‖ f ‖H s

∫
R

1
(1+ |ξ |2)s−1 dξ ≤ C‖ f ‖H s

for s ∈
( 3

2 , 2
)

and f ∈ H s(R). �
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An abstract setting for quasilinear parabolic evolution equations. In Theorem 1.5 we collect abstract
results from [Amann 1993, Section 12] for a general class of abstract quasilinear parabolic evolution
equations, which we use in an essential way in our analysis.

Given Banach spaces E0, E1 with dense embedding E1 ↪→ E0, we define H(E1, E0) as the subset of
L(E1, E0) consisting of negative generators of strongly continuous analytic semigroups. More precisely,
A ∈H(E1, E0) if −A, considered as an unbounded operator in E0 with domain E1, generates a strongly
continuous and analytic semigroup in L(E0).

Theorem 1.5. Let E0, E1 be Banach spaces with dense embedding E1 ↪→ E0 and let Eθ := [E0, E1]θ for
0< θ < 1 be endowed with the ‖ · ‖θ -norm. Let further 0< β < α < 1 and assume that

−8 ∈ C1−(Oβ,H(E1, E0)), (1-3)

where Oβ denotes an open subset of Eβ and C1− stands for local Lipschitz continuity. The following
assertions hold for the quasilinear evolution problem

ḟ =8( f )[ f ], t > 0, f (0)= f0. (QP)

Existence: given f0 ∈Oα :=Oβ ∩ Eα, the problem (QP) possesses a maximal solution

f := f ( · ; f0) ∈ C([0, T+( f0)),Oα)∩C((0, T+( f0)), E1)∩C1((0, T+( f0)), E0)∩Cα−β([0, T ], Eβ)

for all T ∈ (0, T+( f0)), with T+( f0) ∈ (0,∞].

Uniqueness: if T̃ ∈ (0,∞], η ∈ (0, α−β], and f̃ ∈ C((0, T̃ ), E1)∩C1((0, T̃ ), E0) satisfies

f̃ ∈ Cη([0, T ], Eβ) for all T ∈ (0, T̃ )

and solves (QP), then T̃ ≤ T+( f0) and f̃ = f on [0, T̃ ).

Criterion for global existence: if f : [0, T ] ∩ [0, T+( f0))→ Oα is uniformly continuous for all T > 0,
then

T+( f0)=∞ or T+( f0) <∞ and dist( f (t), ∂Oα)→ 0 for t→ T+( f0).

Continuous dependence of initial data: the mapping [(t, f0) 7→ f (t; f0)] defines a semiflow on Oα and,
if 8 ∈ Cω(Oβ,L(E1, E0)), then

[(t, f0) 7→ f (t; f0)] : {(t, f0) : f0 ∈Oα, t ∈ (0, T+( f0))} → Eα

is a real-analytic map too.

As usual, [ · , · ]θ denotes the complex interpolation functor. We choose for our particular problem
Ei ∈ {H s(R) : 0≤ s ≤ 3}, i = 1, 2, and in this context we rely on the well-known interpolation property

[H s0(R), H s1(R)]θ = H (1−θ)s0+θs1(R), θ ∈ (0, 1), −∞< s0 ≤ s1 <∞; (1-4)

see, e.g., [Triebel 1978, Remark 2, Section 2.4.2].
The proof of Theorem 1.5 uses to a large extent the linear theory developed in [Amann 1995, Chapter II].

The main ideas of the proof of Theorem 1.5 can be found in [Amann 1986; 1988]. The uniqueness claim
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in Theorem 1.5 is slightly stronger compared to the result in [Amann 1993, Section 12] and it turns out
to be quite useful when establishing the uniqueness in Theorems 1.1–1.2. For this reason we present in
Appendix B the proof of Theorem 1.5.

In order to use Theorem 1.5 in the study of the Muskat problem (1-1), we have to write this evolution
problem in the form (QP) and to establish then the property (1-3). With respect to this goal, we use the
estimate provided in (1-2) and many techniques of nonlinear analysis.

2. The equations of motion and the equivalent formulation

We present the equations governing the dynamic of the fluids system and we prove, for a certain class of
solutions, that the latter are equivalent to the system (1-1). The Muskat problem was originally proposed
as a model for the encroachment of water into an oil sand, and therefore it is natural to assume that
both fluids are incompressible, of Newtonian type, and immiscible. Since for flows in porous media the
conservation of momentum equation can be replaced by Darcy’s law, see, e.g., [Bear 1972], the equations
governing the dynamic of the fluids are{

div v±(t)= 0 in �±(t),
v±(t)=−(k/µ)(∇ p±(t)+ (0, ρ±g)) in �±(t)

(2-1a)

for t > 0, where, using the subscript± for the fluid located at�±(t), we denote by v±(t) := (v1
±
(t), v2

±
(t))

the velocity vector and p±(t) the pressure of the fluid ±. These equations are supplemented by the natural
boundary conditions at the free surface{

p+(t)− p−(t)= σκ( f (t)) on [y= f (t, x)],
〈v+(t) | ν(t)〉 = 〈v−(t) | ν(t)〉 on [y= f (t, x)],

(2-1b)

where ν(t) is the unit normal at [y= f (t, x)] pointing into �+(t) and 〈 · | · 〉 is the inner product on R2.
Furthermore, the far-field boundary conditions{

f (t, x)→ 0 for |x | →∞,
v±(t, x, y)→ 0 for |(x, y)| →∞

(2-1c)

state that the fluid motion is localized, the fluids being close to the rest state far away from the origin.
The motion of the interface [y= f (t, x)] is coupled to that of the fluids through the kinematic boundary
condition

∂t f (t)= 〈v±(t) | (− f ′(t), 1)〉 on [y= f (t, x)]. (2-1d)

Finally, the interface at time t = 0 is assumed to be known,

f (0) = f0. (2-1e)

The equations (2-1) are known as the Muskat problem and they determine completely the dynamic of
the system. We now show that the Muskat problem (2-1) is equivalent to the system (1-1) presented in
the Introduction. The proof uses classical results on Cauchy-type integrals defined on regular curves; see,
e.g., [Lu 1993]. More precisely, we establish the following equivalence result.
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Proposition 2.1 (equivalence of the two formulations). Let σ ≥ 0 and T ∈ (0,∞]. The following are
equivalent:

(i) The Muskat problem (2-1) for2

f ∈ C1((0, T ), L2(R))∩C([0, T ), L2(R)), f (t) ∈ H 5(R) for all t ∈ (0, T ),

v±(t) ∈ C(�±(t))∩C1(�±(t)), p±(t) ∈ C1(�±(t))∩C2(�±(t)) for all t ∈ (0, T ).

(ii) The evolution problem (1-1) for

f ∈ C1((0, T ), L2(R))∩C([0, T ), L2(R)), f (t) ∈ H 5(R) for all t ∈ (0, T ).

Proof. We first establish the implication (i)⇒ (ii). Assuming that we are given a solution to (2-1) as in (i),
we have to show that the first equation of (1-1) holds for each t ∈ (0, T ). Therefore, we fix t ∈ (0, T )
and we do not write in the arguments that follow the dependence of the physical variables of time t
explicitly. In the following, 1E is the characteristic function of the set E . Introducing the global velocity
field v := (v1, v2) := v−1[y≤ f (x)]+ v+1[y> f (x)], Stokes’ theorem together with (2-1a) and (2-1b) yields
that the vorticity, which for two-dimensional flows corresponds to the scalar function ω := ∂xv

2
− ∂yv

1,
is supported on the free boundary, that is,

〈ω, ϕ〉 =

∫
R

ω̄(x)ϕ(x, f (x)) dx for all ϕ ∈ C∞0 (R
2),

where
ω̄ :=

k
µ
[σκ( f )−1ρ f ]′.

We next prove that the velocity is defined by the Biot–Savart law, that is, v = ṽ in R2
\ [y= f (x)], where

ṽ(x, y) := 1
2π

∫
R

(−(y− f (s)), x − s)
(x − s)2+ (y− f (s))2

ω̄(s) ds in R2
\ [y= f (x)]. (2-2)

To this end we compute the limits ṽ−(x, f (x)) and ṽ+(x, f (x)) of ṽ at (x, f (x)) when we approach this
point from below the interface [y= f (x)] or from above, respectively. Using the well-known Plemelj
formula, see, e.g., [Lu 1993], due to the fact that f ∈ H 4(R) and after changing variables, we find the
expressions

ṽ±(x, f (x))= 1
2π

PV
∫

R

(−( f (x)− f (x − s)), s)
s2+ ( f (x)− f (x − s))2

ω̄(x − s) ds∓ 1
2
(1, f ′(x))ω̄(x)

1+ f ′2(x)
, x ∈ R, (2-3)

where the principal value needs to be taken only at 0. In view of Lemma A.2 and of f ∈ H 5(R), the
restrictions ṽ± of ṽ to �± satisfy ṽ± ∈ C(�±)∩C1(�±) and moreover ṽ± vanish at infinity. Next, we
define the pressures p̃± ∈ C1(�±)∩C2(�±) by the formula

p̃±(x, y) := c±−
µ

k

∫ x

0
ṽ1
±
(s,±d) ds−

µ

k

∫ y

±d
ṽ2
±
(x, s) ds− ρ±gy, (x, y) ∈�±, (2-4)

2The regularity f (t) ∈ H5(R), t ∈ (0, T ), is not optimal; that is, the two formulations are still equivalent if f (t) ∈ Hr (R),
t ∈ (0, T ), for r < 5 suitably chosen. In fact, if σ = 0, we may take r = 3. However, as stated in Theorem 1.3, f (t) ∈ H∞(R)
for all t ∈ (0, T ), and there is no reason for seeking the optimal range for r .
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where d is a positive constant satisfying d > ‖ f ‖∞ and c± ∈R. For a proper choice of the constants c±, it
is not difficult to see that the pair ( p̃±, ṽ±) satisfies (2-1a)–(2-1c). Let V± := v±− ṽ±, V := (V 1, V 2) :=

V−1[y≤ f (x)]+ V+1[y> f (x)] ∈ C(R2), and

ψ±(x, y) :=
∫ y

f (x)
V 1
±
(x, s) ds−

∫ x

0
〈V±(s, f (s))|(− f ′(s), 1)〉 ds for (x, y) ∈�±,

be the stream function associated to V±. Recalling (2-1a)–(2-1c), we deduce that the function ψ :=
ψ−1[y≤ f ]+ψ+1[y> f ] satisfies 1ψ = 0 in D′(R2). Hence, ψ is the real part of a holomorphic function
u : C→ C. Since u′ is also holomorphic and u′ = ∂xψ − i∂yψ =−(V 2, V 1) is bounded and vanishes for
|(x, y)| →∞ it follows that u′ = 0; hence V = 0. This proves that v± = ṽ±.

We now infer from (2-1d) and (2-3) that the dynamic of the free boundary separating the fluids is
described by the evolution equation

∂t f (t, x)=
k

2πµ
f ′(t, x)PV

∫
R

f (t, x)− f (t, x − s)
s2+ ( f (t, x)− f (t, x − s))2

[σκ( f )−1ρ f ]′(t, x − s) ds

+
k

2πµ
PV
∫

R

s
s2+ ( f (t, x)− f (t, x − s))2

[σκ( f )−1ρ f ]′(t, x − s) ds

for t > 0 and x ∈ R. This equation can be further simplified by using the formula∫
δ<|x |<1/δ

∂

∂s
(
ln(s2
+( f (x)− f (x−s))2)

)
ds = ln

1+δ2( f (x)− f (x−1/δ))2

1+δ2( f (x)− f (x+1/δ))2
1+( f (x)− f (x+δ))2/δ2

1+( f (x)− f (x−δ))2/δ2

for δ ∈ (0, 1) and x ∈ R. Letting δ→ 0, we get

0= 1
2 PV

∫
R

∂

∂s
(
ln(s2
+ ( f (x)− f (x − s))2)

)
ds

= PV
∫

R

s
s2+ ( f (t, x)− f (t, x − s))2

ds+PV
∫

R

( f (t, x)− f (t, x − s) f ′(t, x − s)
s2+ ( f (t, x)− f (t, x − s))2

ds,

and now the principal value needs to be taken in the first integral at zero and at infinity. Using this identity,
we have shown that the mapping [t→ f (t)] satisfies the evolution problem (1-1).

The implication (ii)⇒ (i) is now obvious. �

3. The Muskat problem without surface tension: mapping properties

In Sections 3 and 4 we consider the stable case (a) mentioned on page 282. In this regime, after rescaling
time, we may rewrite (1-1) in the abstract form

ḟ =8( f )[ f ], t > 0, f (0)= f0, (3-1)

where 8( f ) is the linear operator formally defined by

8( f )[h](x) := PV
∫

R

y(h′(x)− h′(x − y))
y2+ ( f (x)− f (x − y))2

dy. (3-2)
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We show in the next two sections that the mapping 8 satisfies all the assumptions of Theorem 1.5 if we
make the following choices: E0 := H 1(R), E1 := H 2(R), Eα = H s(R) with s ∈

( 3
2 , 2

)
, and Oβ := H s̄(R)

with s̄ ∈
( 3

2 , s
)
. The first goal is to prove that

8 ∈ C1−(H s(R),L(H 2(R), H 1(R))) (3-3)

for each s ∈
( 3

2 , 2
)
. Because the property (3-3) holds for all s ∈

( 3
2 , 2

)
, the parameter s̄ will appear only

in the proof of Theorem 1.1, which we present at the end of Section 4.
For the sake of brevity we set

δ[x,y] f := f (x)− f (x − y) for x, y ∈ R,

and therewith

8( f )[h](x)= PV
∫

R

δ[x,y]h′/y
1+ (δ[x,y] f/y)2

dy.

Boundedness of some multilinear singular integral operators. We first consider some multilinear oper-
ators which are related to 8.3 The estimates in Lemmas 3.1 and 3.4 enable us in particular to establish
the regularity property (3-3). Lemma 3.1 is reconsidered later on, see Lemma 5.3, in a particular context
when showing that 8 is in fact real-analytic.

Lemma 3.1. Given n,m ∈ N, r ∈
( 3

2 , 2
)
, a1, . . . , an+1, b1, . . . , bm ∈ H r (R), and a function c ∈ L2(R)

we define

Am,n(a1, . . . , an+1)[b1, . . . , bm, c](x) := PV
∫

R

∏m
i=1(δ[x,y]bi/y)∏n+1

i=1 [1+ (δ[x,y]ai/y)2]

δ[x,y]c
y

dy.

Then:

(i) There exists a constant C , depending only on r , n, m, and maxi=1,...,n+1 ‖ai‖H r , such that

‖Am,n(a1, . . . , an+1)[b1, . . . , bm, c]‖2 ≤ C‖c‖2
m∏

i=1

‖bi‖H r (3-4)

for all b1, . . . , bm ∈ H r (R) and c ∈ L2(R).

(ii) Am,n ∈ C1−
(
(H r (R))n+1,Lm+1((H r (R))m × L2(R), L2(R))

)
.

Remark 3.2. We note that

8( f )[h] = A0,0( f )[h′] (3-5)

for all f ∈ H s(R), s ∈
( 3

2 , 2
)
, and h ∈ H 2(R), and

A0,0(0)[c](x)= PV
∫

R

δ[x,y]c
y

dy =− PV
∫

R

c(x − y)
y

dy =−πHc(x),

where H denotes the Hilbert transform [Stein 1993].

3As usual, the empty product is set to be equal to 1.
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Remark 3.3. In the proof of Lemma 3.1 we split the operator Am,n := Am,n(a1, . . . , an+1) into two
operators

Am,n = A1
m,n − A2

m,n.

If we keep b1, . . . , bm fixed, then A1
m,n is a multiplication-type operator

A1
m,n[b1, . . . , bm, c](x) := c(x)PV

∫
R

1
y

∏m
i=1(δ[x,y]bi/y)∏n+1

i=1 [1+ (δ[x,y]ai/y)2]
dy,

while A2
m,n is the singular integral operator

A2
m,n[b1, . . . , bm, c](x) := PV

∫
R

K (x, y)c(x − y) dy,

with the kernel K defined by

K (x, y) :=
1
y

∏m
i=1(δ[x,y]bi/y)∏n+1

i=1 [1+ (δ[x,y]ai/y)2]
for x ∈ R, y 6= 0.

Our proof shows that both operators Ai
m,n , 1 ≤ i ≤ 2, satisfy (3-4). While the boundedness of A1

m,n

follows by direct computation, the boundedness of A2
m,n follows from the estimate on the norm of operator

defined in (1-2) and an argument due to Calderón as it appears in the proof of [Meyer and Coifman 1997,
Theorem 9.7.11]. In fact, the arguments in the proof of Lemma 3.1 show that given Lipschitz functions
a1, . . . , an+m : R→ R, the singular integral operator

Bn,m(a1, . . . , an+m)[h](x) := PV
∫

R

h(x − y)
y

∏n
i=1(δ[x,y]ai/y)∏n+m

i=n+1[1+ (δ[x,y]ai/y)2]
dy

belongs to L(L2(R)) and ‖Bn,m(a1, . . . , an+m)‖L(L2(R)) ≤ C
∏n

i=1 ‖a
′

i‖∞, where C is a constant depend-
ing only on n,m and maxi=n+1,...,n+m ‖a′i‖∞.

It is worth pointing out that B0,0 = B0,1(0)= πH.

Proof of Lemma 3.1. The multilinear operator A1
m,n is bounded provided that the mapping[

x 7→ PV
∫

R

1
y

∏m
i=1(δ[x,y]bi/y)∏n+1

i=1 [1+ (δ[x,y]ai/y)2]
dy
]

belongs to L∞(R). To establish this boundedness property we note that∫
δ<|y|<1/δ

1
y

∏m
i=1(δ[x,y]bi/y)∏n+1

i=1 [1+(δ[x,y]ai/y)2]
dy=

∫ 1/δ

δ

1
y

∏m
i=1(δ[x,y]bi/y)∏n+1

i=1 [1+(δ[x,y]ai/y)2]
−

1
y

∏m
i=1(−δ[x,−y]bi/y)∏n+1

i=1 [1+(δ[x,−y]ai/y)2]
dy

=:

∫ 1/δ

δ

I (x, y)dy
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for δ ∈ (0, 1) and x ∈ R, where

I (x, y) :=
1
y

1∏n+1
i=1 [1+ (δ[x,y]ai/y)2]

( m∏
i=1

(δ[x,y]bi/y)−
m∏

i=1

(−δ[x,−y]bi/y)
)

+
1
y

( m∏
i=1

(−δ[x,−y]bi/y)
)∏n+1

i=1 [1+ (δ[x,−y]ai/y)2] −
∏n+1

i=1 [1+ (δ[x,y]ai/y)2]∏n+1
i=1 [1+ (δ[x,y]ai/y)2][1+ (δ[x,−y]ai/y)2]

.

We further have

1
y

( m∏
i=1

(δ[x,y]bi/y)−
m∏

i=1

(−δ[x,−y]bi/y)
)

=
1
y

m∏
i=1

bi (x)− bi (x − y)
y

−
1
y

m∏
i=1

bi (x + y)− bi (x)
y

=−

m∑
i=1

bi (x + y)− 2bi (x)+ bi (x − y)
y2

[i−1∏
j=1

(δ[x,y]bj/y)
][ m∏

j=i+1

(−δ[x,−y]bj/y)
]
,

and similarly

1
y

(n+1∏
i=1

[1+(δ[x,−y]ai/y)2]−
n+1∏
i=1

[1+(δ[x,y]ai/y)2]
)

=

n+1∑
i=1

[i−1∏
j=1

[1+(δ[x,−y]aj/y)2]
][ n+1∏

j=i+1

[1+(δ[x,y]aj/y)2]
]

×
ai (x+y)−ai (x−y)

y
ai (x+y)−2ai (x)+ai (x−y)

y2 .

Let us now observe that

|I (x, y)| ≤
2m+1
[1+ 4(n+ 1)maxi=1,...,n+1 ‖ai‖

2
∞
]

y2

m∏
i=1

‖bi‖∞ for x ∈ R, y ≥ 1. (3-6)

Furthermore, since r − 1
2 ∈ (1, 2), we find, by taking advantage of H r (R) ↪→ BCr−1/2(R), that

| f (x + y)− 2 f (x)+ f (x − y)|
yr−1/2 ≤ 4[ f ′]r−3/2 ≤ C‖ f ‖H r for all f ∈ H r (R), x ∈ R, y > 0; (3-7)

see [Lunardi 1995, Relation (0.2.2)]. Here [ · ]r−3/2 denotes the usual Hölder seminorm. Using (3-7), it
follows that

|I (x, y)| ≤ Cyr−5/2
[ m∑

i=1

(
‖bi‖H r

m∏
j=1, j 6=i

‖b′j‖∞

)
+

( m∏
i=1

‖b′i‖∞

) n+1∑
i=1

‖a′i‖∞‖ai‖H r

]
(3-8)
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for x ∈ R, y ∈ (0, 1). Combining (3-6) and (3-8) yields

sup
x∈R

∫
∞

0
|I (x, y)| dy ≤ C

m∏
i=1

‖bi‖H r ,

where C depends only on r , n, m, and maxi=1,...,n+1 ‖ai‖H r . The latter estimate shows that (3-4) is
satisfied when Am,n is replaced by A1

m,n .
To deal with A2

m,n , we define the functions F : Rn+m+1
→ R and A : R→ Rn+m+1 by

F(u1, . . . , un+1, v1, . . . , vm)=

∏m
i=1 vi∏n+1

i=1 (1+ u2
i )

and A := (a1, . . . , an+1, b1, . . . , bm),

where bi ∈ H r (R) satisfy ‖b′i‖∞ ≤ 1, 1≤ i ≤m. The function F is smooth and A is Lipschitz continuous
with a Lipschitz constant L :=

√

m+ (n+ 1)maxi=1,n+1 ‖a′i‖
2
∞
≥ ‖A′‖∞. We further observe that

K (x, y)=
1
y

F
(
δ[x,y]A

y

)
,

with |δ[x,y]A/y| ≤ L . Let F̃ be a smooth function on Rn+m+1 which is 4L-periodic in each variable and
which matches F on [−L , L]n+m+1. Expanding F̃ by its Fourier series

F̃ =
∑

p∈Zn+m+1

αpei(π/2L)〈p|· 〉,

the associated sequence (αp)p is rapidly decreasing. Furthermore, we can write the kernel K as

K (x, y)=
∑

p∈Zn+m+1

αp K p(x, y), x ∈ R, y 6= 0,

with

K p(x, y) :=
1
y

exp
(

i
π

2L
δ[x,y]〈p | A〉

y

)
, x ∈ R, y 6= 0, p ∈ Zn+m+1.

The kernels K p, p ∈ Zn+m+1, define operators in L(L2(R)) of the type (1-2) and with norms bounded by

C
(

1+
π

2L
|p|‖A′‖∞

)
≤ C(1+ |p|), p ∈ Zn+m+1,

with a universal constant C independent of p. Hence, the associated series is absolutely convergent in
L(L2(R)), meaning that the operator A2

m,n(a1, . . . , an+1)[b1, . . . , bm, · ] belongs to L(L2(R)) and

‖A2
m,n(a1, . . . , an+1)[b1, . . . , bm, c]‖2 ≤ C

(
n,m, max

i=1,...,n+1
‖a′i‖∞

)
‖c‖2

for all c ∈ L2(R) and for all bi ∈ H r (R) that satisfy ‖b′i‖∞ ≤ 1. The desired estimate (3-4) follows now
by using the linearity of A2

m,n in each argument. The claim (i) is now obvious.
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Concerning (ii), we note that

Am,n(ã1, . . . , ãn+1)[b1, . . . , bm, c] − Am,n(a1, . . . , an+1)[b1, . . . , bm, c]

=

n+1∑
i=1

Am+2,n+1(ã1, . . . , ãi , ai , . . . , an+1)[ai + ãi , ai − ãi , b1, . . . , bm, c],

and the desired assertion follows now from (i). �

We consider once more the operators Am,n defined in Lemma 3.5 in the case when m ≥ 1, but defined
on a different Hilbert-space product where a weaker regularity of bm is balanced by a higher regularity of
the variable c. The estimates in Lemma 3.4 are slightly related to the ones announced in [Calderon et al.
1978, Theorem 4] and, except for that reference, we did not find similar results.

Lemma 3.4. Let n ∈N, 1≤m ∈N, r ∈
( 3

2 , 2
)
, τ ∈

( 5
2−r, 1

)
, and a1, . . . , an+1 ∈ H r (R) be given. Then:

(i) There exists a constant C , depending only on r and τ , such that

‖Am,n(a1, . . . , an+1)[b1, . . . , bm, c]‖2 ≤ C‖c‖H τ ‖bm‖H r−1

m−1∏
i=1

‖b′i‖∞

for all b1, . . . , bm ∈ H r (R) and all c ∈ H 1(R). In particular, Am,n(a1, . . . , an+1) extends to a
bounded operator

Am,n(a1, . . . , an+1) ∈ Lm+1((H r (R))m−1
× H r−1(R)× H τ (R), L2(R)).

(ii) Am,n ∈ C1−
(
(H r (R))n+1,Lm+1((H r (R))m−1

× H r−1(R)× H τ (R), L2(R))
)
.

Proof. The claim (ii) is again a direct consequence of (i), so that we are left to prove the first claim. To
this end we write

Am,n(a1, . . . , an+1)[b1, . . . , bm, c](x)=
∫

R

K (x, y) dy,

where

K (x, y) :=
∏m−1

i=1 (δ[x,y]bi/y)∏n+1
i=1 [1+ (δ[x,y]ai/y)2]

δ[x,y]bm

y
δ[x,y]c

y
for x ∈ R, y 6= 0.

Using Minkowski’s integral inequality, we compute(∫
R

∣∣∣∣∫
R

K (x, y) dy
∣∣∣∣2 dx

)1/2

≤

∫
R

(∫
R

|K (x, y)|2 dx
)1/2

dy,

and exploiting the fact H r−1(R) ↪→ BCr−3/2(R), we get∫
R

|K (x, y)|2 dx ≤
C

y7−2r ‖bm‖
2
H r−1

(m−1∏
i=1

‖b′i‖
2
∞

)∫
R

|c− τyc|2 dx

=
C

y7−2r ‖bm‖
2
H r−1

(m−1∏
i=1

‖b′i‖
2
∞

)∫
R

|Fc(ξ)|2|eiyξ
− 1|2 dξ.
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Since

|eiyξ
− 1|2 ≤ C[(1+ |ξ |2)τ y2τ1(−1,1)(y)+ 1[|y|≥1](y)], y, ξ ∈ R,

it follows that∫
R

|K (x, y)|2 dx ≤ C‖c‖2H τ ‖bm‖
2
H r−1

(m−1∏
i=1

‖b′i‖
2
∞

)[
y2(r+τ)−71(−1,1)(y)+

1
y7−2r 1[|y|≥1](y)

]
,

and we conclude that∫
R

(∫
R

|K (x, y)|2 dx
)1/2

dy ≤ C‖c‖H τ ‖bm‖H r−1

m−1∏
i=1

‖b′i‖∞.

The claim (i) follows at once. �

Mapping properties. We now use Lemmas 3.1 and 3.4 to prove that the mapping 8 defined by (3-2)
is well-defined and locally Lipschitz continuous as an operator from H s(R) into the Banach space
L(H 2(R), H 1(R)) for each s ∈

( 3
2 , 2

)
.

Lemma 3.5. Given s ∈
( 3

2 , 2
)
, it holds that

8 ∈ C1−(H s(R),L(H 2(R), H 1(R))).

Proof. We first prove that 8( f ) ∈ L(H 2(R), H 1(R)) for each f ∈ H s(R). Remark 3.2 and Lemma 3.1
(with r = s) yield that 8( f ) ∈ L(H 2(R), L2(R)). In order to establish that 8( f )[h] ∈ H 1(R), we let
{τε}ε∈R denote the C0-group of right translations on L2(R), that is, τε f (x) := f (x − ε) for f ∈ L2(R)

and x , ε ∈ R. Given ε ∈ (0, 1), it holds that

τε(8( f )[h])−8( f )[h]
ε

=
τε(A0,0[ f ][h′])− A0,0( f )[h′]

ε
=

A0,0(τε f )[τεh′] − A0,0( f )[h′]
ε

= A0,0(τε f )
[
τεh′− h′

ε

]
− A2,1(τε f, f )

[
τε f + f,

τε f − f
ε

, h′
]

and the convergences

τε f
ε→0−−→ f in H s(R),

τε f − f
ε ε→0−−→− f ′ in H s−1(R),

τεh− h
ε ε→0−−→−h′ in H 1(R),

together with Lemma 3.1 (with r = s) and Lemma 3.4
(
with r = s, τ ∈

( 5
2 − s, 1

))
imply that 8( f )[h] ∈

H 1(R) and

(8( f )[h])′ = A0,0( f )[h′′] − 2A2,1( f, f )[ f, f ′, h′]. (3-9)

This proves that 8( f ) ∈ L(H 2(R), H 1(R)). Finally, the local Lipschitz continuity of 8 follows from the
local Lipschitz continuity properties established in Lemmas 3.1 and 3.4. �



296 BOGDAN-VASILE MATIOC

4. The Muskat problem without surface tension: the generator property

We now fix f ∈ H s(R), s ∈
( 3

2 , 2
)
. The goal of this section is to prove that 8( f ), regarded as an

unbounded operator in H 1(R) with definition domain H 2(R), is the generator of a strongly continuous
and analytic semigroup in L(H 1(R)), that is,

−8( f ) ∈H(H 2(R), H 1(R)).

In order to establish this property we first approximate locally the operator 8( f ), in a sense to be made
precise in Theorem 4.2, by Fourier multipliers and carry then the desired generator property, which we
establish for the Fourier multipliers, back to the original operator, see Theorem 4.4. A similar approach
was followed in [Escher 1994; Escher et al. 2018; Escher and Simonett 1995; 1997] in the context of
spaces of continuous functions. The situation here is different as we consider Sobolev spaces on the line.
The method though can be adapted to this setting after exploiting the structure of the operator 8( f ),
especially the fact that the functions f and f ′ both vanish at infinity. As a result of this decay property
we can use localization families with a finite number of elements, and this fact enables us to introduce
for each localization family an equivalent norm on the Sobolev spaces H k(R), k ∈N, which is suitable
for the further analysis, see Lemma 4.1. We start by choosing for each ε ∈ (0, 1), a finite ε-localization
family, that is, a family

{π εj : −N + 1≤ j ≤ N } ⊂ C∞(R, [0, 1]),

with N = N (ε) ∈ N sufficiently large, such that

• suppπ εj is an interval of length less or equal to ε for all | j | ≤ N − 1; (4-1)

• suppπ εN ⊂ (−∞,−xN ] ∪ [xN ,∞) and xN ≥ ε
−1; (4-2)

• suppπ εj ∩ suppπ εl =∅ if [| j − l| ≥ 2,max{| j |, |l|} ≤ N − 1] or [|l| ≤ N − 2, j = N ]; (4-3)

•
∑N

j=−N+1(π
ε
j )

2
= 1; (4-4)

• ‖(π εj )
(k)
‖∞ ≤ Cε−k for all k ∈ N, −N + 1≤ j ≤ N. (4-5)

Such ε-localization families can be easily constructed. Additionally, we choose for each ε ∈ (0, 1) a
second family

{χ εj : −N + 1≤ j ≤ N } ⊂ C∞(R, [0, 1])

with the properties

• χ εj = 1 on suppπ εj ; (4-6)

• suppχ εj is an interval of length less or equal to 3ε for | j | ≤ N − 1; (4-7)

• suppχ εN ⊂ [|x | ≥ xN − ε]. (4-8)

Each ε-localization family {π εj : −N+1≤ j ≤ N } defines a norm on H k(R), k ∈N, which is equivalent
to the standard H k-norm.
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Lemma 4.1. Given ε ∈ (0, 1), let {π εj : −N +1≤ j ≤ N } ⊂C∞(R, [0, 1]) be a family with the properties
(4-1)–(4-5). Then, for each k ∈ N, the mapping[

h 7→
N∑

j=−N+1

‖π εj h‖H k

]
: H k(R)→ [0,∞)

defines a norm on H k(R) which is equivalent to the standard H k-norm.

Proof. The proof is a simple exercise. �

We now consider the mapping

[τ 7→8(τ f )] : [0, 1] → L(H 2(R), H 1(R)).

As a consequence of Lemma 3.5, this mapping continuously transforms the operator 8( f ), for which we
want to establish the generator property, into the operator 8(0)=−π(−∂2

x )
1/2. Indeed, since the Hilbert

transform is a Fourier multiplier with symbol [ξ 7→ −i sign(ξ)], we obtain together with Remark 3.2 that

F(8(0)[h])(ξ)=−πF(Hh′)(ξ)= iπ sign(ξ)F(h′)(ξ)=−π |ξ |(Fh)(ξ)=−πF((−∂2
x )

1/2h)(ξ)

for ξ ∈ R. The parameter τ will allow us to use a continuity argument when showing that the resolvent
set of 8( f ) contains a positive real number; see the proof Theorem 4.4.

Our next goal is to prove that the operator 8(τ f ) can be locally approximated for each τ ∈ [0, 1] by
Fourier multipliers, as stated below. The estimate (4-9) with j = N uses to a large extent the fact that f
and f ′ vanish at infinity.

Theorem 4.2. Let f ∈ H s(R), s ∈
( 3

2 , 2
)
, and µ > 0 be given.

Then, there exist ε ∈ (0, 1), a finite ε-localization family {π εj : −N + 1≤ j ≤ N } satisfying (4-1)–(4-5),
a constant K = K (ε), and for each j ∈ {−N + 1, . . . , N } and τ ∈ [0, 1] there exist operators

A j,τ ∈ L(H 2(R), H 1(R))

such that

‖π εj 8(τ f )[h] −A j,τ [π
ε
j h]‖H1 ≤ µ‖π εj h‖H2 + K‖h‖H (11−2s)/4 (4-9)

for all j ∈ {−N + 1, . . . , N }, τ ∈ [0, 1], and h ∈ H 2(R). The operators A j,τ are defined by

A j,τ :=

[
PV
∫

R

1
y

1
1+ τ 2(δ[xεj ,y] f/y)2

dy
]
∂x −

π

1+ (τ f ′(xεj ))2
(−∂2

x )
1/2, | j | ≤ N − 1, (4-10)

where xεj is a point belonging to suppπ εj , and

A N ,τ := −π(−∂
2
x )

1/2. (4-11)

Proof. Let {π εj : −N + 1≤ j ≤ N } be an ε-localization family satisfying the properties (4-1)–(4-5) and
{χ εj : −N +1≤ j ≤ N } be an associated family satisfying (4-6)–(4-8), with ε ∈ (0, 1) which will be fixed
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below. We first infer from Lemma A.1 that for each τ ∈ [0, 1] the function

aτ (x) := PV
∫

R

1
y

1
1+ τ 2(δ[x,y] f/y)2

dy, x ∈ R,

belongs to BCα(R)∩C0(R), with α := 1
2 s− 3

4 . We now write

A j,τ := A1
j,τ −A2

j,τ ,

where
A1

j,τ := αj,τ∂x , A2
j,τ := βj,τ (−∂

2
x )

1/2,

and

αj,τ :=

{
aτ (xεj ), | j | ≤ N − 1,
0, j = N ,

βj,τ :=

{ π

1+(τ f ′(xεj ))2
, | j | ≤ N − 1,

π, j = N .
(4-12)

Let now h ∈ H 2(R) be arbitrary. In the following we shall denote by C constants which are independent
of ε (and, of course, of h ∈ H 2(R), τ ∈ [0, 1], and j ∈ {−N + 1, . . . , N }), while the constants that we
denote by K may depend only upon ε.

Step 1: We first infer from Lemma 3.5 that

‖π εj 8(τ f )[h] −A j,τ [π
ε
j h]‖H1 ≤ ‖π εj 8(τ f )[h] −A j,τ [π

ε
j h]‖2+‖(π εj 8(τ f )[h] −A j,τ [π

ε
j h])′‖2

≤ (1+‖(π εj )
′
‖∞)‖A0,0(τ f )[h′]‖2+‖A j,τ [π

ε
j h]‖2

+ 2‖A2,1(τ f, τ f )[ f, f ′, h′]‖2+‖π εj A0,0(τ f )[h′′] −A j,τ [(π
ε
j h)′]‖2.

Using Lemma 3.4
(
with r = s and τ = 7

4 −
1
2 s
)

and Lemma 3.1 (with r = s), it follows that

‖π εj 8(τ f )[h] −A j,τ [π
ε
j h]‖H1 ≤ K‖h‖H (11−2s)/4 +‖π εj A0,0(τ f )[h′′] −A j,τ [(π

ε
j h)′]‖2. (4-13)

We are left to estimate the L2-norm of the highest-order term π εj A0,0(τ f )[h′′] −A j,τ [(π
ε
j h)′], and for

this we need several steps.

Step 2: With the notation introduced in Remark 3.3 we have

A0,0(τ f )[h′′] = aτh′′− B0,1(τ f )[h′′],
and therewith
‖π εj A0,0(τ f )[h′′] −A j,τ [(π

ε
j h)′]‖2

≤ ‖π εj aτh′′−A1
j,τ [(π

ε
j h)′]‖2+‖π εj B0,1(τ f )[h′′] −A2

j,τ [(π
ε
j h)′]‖2. (4-14)

By virtue of Lemma A.1, in particular of the estimate (A-1), and of χ εj = 1 on suppπ εj , we get for
| j | ≤ N − 1

‖π εj aτh′′−A1
j,τ [(π

ε
j h)′‖2 = ‖aτπ εj h′′− aτ (xεj )(π

ε
j h)′′‖2

≤ ‖(aτ − aτ (xεj ))(π
ε
j h)′′‖2+ K‖h‖H1

= ‖(aτ − aτ (xεj ))χ
ε
j (π

ε
j h)′′‖2+ K‖h‖H1

= ‖(aτ − aτ (xεj ))χ
ε
j ‖∞‖(π

ε
j h)′′‖2+ K‖h‖H1

≤
1
2µ‖π

ε
j h‖H2 + K‖h‖H1, (4-15)



THE MUSKAT PROBLEM IN TWO DIMENSIONS 299

provided that ε is sufficiently small. We have used here (and also later on without explicit mentioning)
the fact that | suppχ εj | ≤ 3ε. Since A1

N ,τ = 0, we obtain from (A-2) for ε sufficiently small that

‖π εN aτh′′−A1
N ,τ [(π

ε
N h)′‖2 = ‖π εN aτh′′‖2 ≤ ‖aτχ εN‖∞‖(π

ε
N h)′′‖2+ K‖h‖H1

≤
1
2µ‖π

ε
N h‖H2 + K‖h‖H1 . (4-16)

Step 3: We are left with the term ‖π εj B0,1(τ f )[h′′]−A2
j,τ [(π

ε
j h)′]‖2, and we consider first the case

| j | ≤ N − 1 (see Step 4 for j = N ). Observing that π(−∂2
x )

1/2
= B0,1(0) ◦ ∂x , it follows that

π εj B0,1(τ f )[h′′] −A2
j,τ [(π

ε
j h)′] = T1[h] − T2[h],

where
T1[h] := π εj B0,1(τ f )[h′′] −

1
1+ (τ f ′(xεj ))2

B0,1(0)[π εj h′′],

T2[h] :=
1

1+ (τ f ′(xεj ))2
B0,1(0)[(π εj )

′′h+ 2(π εj )
′h′].

Since by Remark 3.3
‖T2[h]‖2 ≤ K‖h‖H1, (4-17)

we are left to estimate T1[h], which is further decomposed as

T1[h] = T11[h] − T12[h],

with

T11[h](x) := PV
∫

R

[
1

1+ τ 2(δ[x,y] f/y)2
−

1
1+ (τ f ′(xεj ))2

]
(χ εj π

ε
j h′′)(x − y)

y
dy,

T12[h](x) := PV
∫

R

δ[x,y]π
ε
j /y

1+ τ 2(δ[x,y] f/y)2
h′′(x − y) dy.

Integrating by parts, we obtain the relation

T12[h] = B0,1(τ f )[(π εj )
′h′] − B1,1(π

ε
j , τ f )[h′] − 2τ 2 B2,2(π

ε
j , f, τ f, τ f )[ f ′h′]

+ 2τ 2 B3,2(π
ε
j , f, f, τ f, τ f )[h′],

and Remark 3.3 leads us to
‖T12[h]‖2 ≤ K‖h‖H1 . (4-18)

In order to deal with the term T11[h] we let Fj ∈ C(R) denote the Lipschitz function that satisfies

Fj = f on suppχ εj , F ′j = f ′(xεj ) on R \ suppχ εj , (4-19)

and we observe that

T11[h](x) := τ 2 PV
∫

R

[δ[x,y]( f ′(xεj )idR− f )/y][δ[x,y]( f ′(xεj )idR+ f )/y]

[1+ τ 2(δ[x,y] f/y)2][1+ (τ f ′(xεj ))2]

(χ εj π
ε
j h′′)(x − y)

y
dy

=
τ 2

1+ (τ f ′(xεj ))2
(T111[h] − T112[h])(x),
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where

T111[h] := χ εj B2,1( f ′(xεj )idR− f, f ′(xεj )idR+ f, τ f )[π εj h′′],

T112[h](x) := PV
∫

R

[δ[x,y]( f ′(xεj )idR− f )/y][δ[x,y]( f ′(xεj )idR+ f )/y](δ[x,y]χ εj /y)

1+ τ 2(δ[x,y] f/y)2
(π εj h′′)(x − y) dy.

Integrating by parts as in the case of T12[h], it follows from Remark 3.3 that

‖T112[h]‖2 ≤ K‖h‖H1 . (4-20)

On the other hand, (4-19), Remark 3.3 and the Hölder continuity of f ′ yield

‖T111[h]‖2 = ‖χ εj B2,1( f ′(xεj )idR− f, f ′(xεj )idR+ f, τ f )[π εj h′′]‖2

= ‖χ εj B2,1( f ′(xεj )idR− Fj , f ′(xεj )idR+ Fj , τ f )[π εj h′′]‖2

≤ C‖ f ′(xεj )− F ′j‖∞‖π
ε
j h′′‖2

= C‖ f ′(xεj )− f ′‖L∞(suppχεj )‖π
ε
j h′′‖2

≤
1
2µ‖π

ε
j h‖H2 + K‖h‖H1 . (4-21)

The desired estimate (4-9) follows for | j | ≤ N − 1 from (4-13)–(4-15) and (4-17), (4-18), (4-20), and
(4-21).

Step 4: We are left with the term ‖π εN B0,1(τ f )[h′′] −A2
N ,τ [(π

ε
N h)′]‖2, which we decompose as

(π εN B0,1(τ f )[h′′] −A2
N ,τ [(π

ε
N h)′])(x)

= π εN (x)PV
∫

R

h′′(x − y)
y

1
1+ τ 2(δ[x,y] f/y)2

dy−PV
∫

R

(π εN h)′′(x − y)
y

dy

=: T1[h](x)+ T2[h](x)− T3[h](x),

where
T1[h] := −τ 2 B2,1( f, f, τ f )[π εN h′′],

T2[h](x) := PV
∫

R

h′′(x − y)
δ[x,y]π

ε
N

y
1

1+ τ 2(δ[x,y] f/y)2
dy,

T3[h] := B0,1(0)[(π εN )
′′h+ 2(π εN )

′h′].

For the difference T2[h] − T3[h] we find, as in the previous step (see (4-17) and (4-18)), that

‖T2[h] − T3[h]‖2 ≤ K‖h‖H1 . (4-22)

When dealing with T1[h], we introduce the function FN ∈W 1
∞
(R) by the formula

FN (x) :=


f (x), |x | ≥ xN − ε,

x + xN − ε

2(xN − ε)
f (xN − ε)+

xN − ε− x

2(xN − ε)
f (−xN + ε), |x | ≤ xN − ε.
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The relation (4-2) implies ‖FN‖∞+‖F ′N‖∞→ 0 for ε→ 0. Moreover, it holds that

T1[h](x)=−τ 2 PV
∫

R

(χ εNπ
ε
N h′′)(x − y)

y
(δ[x,y] f/y)2

1+ τ 2(δ[x,y] f/y)2
=: T11[h](x)− T12[h](x),

where

T11[h](x) := τ 2 PV
∫

R

(π εN h′′)(x − y)
(δ[x,y] f/y)2(δ[x,y]χ εN/y)

1+ τ 2(δ[x,y] f/y)2
dy,

T12[h] := τ 2χ εN B2,1( f, f, τ f )[π εN h′′].

Recalling that suppπ εN ⊂ suppχ εN ⊂ [|x | ≥ xN−ε] and that f = FN on suppχ εN , it follows by Remark 3.3
that

‖T12[h]‖2 = ‖τ 2χ εN B2,1(FN , FN , τ f )[π εN h′′]‖2 ≤ ‖B2,1(FN , FN , τ f )[π εN h′′]‖2 ≤ C‖F ′N‖
2
∞
‖π εN h′′‖2

≤
1
2µ‖π

ε
j h‖H2 + K‖h‖H1 (4-23)

for small ε. As T11[h] can be estimated in the same manner as the term T112[h] in the previous step, we
obtain together with (4-22) and (4-23) that

‖π εN B0,1(τ f )[h′′] −A2
N ,τ [(π

ε
N h)′]‖2 ≤ 1

2µ‖π
ε
j h‖H2 + K‖h‖H1 (4-24)

if ε is sufficiently small. The claim (4-9) follows for j = N from (4-13)–(4-14), (4-16), and (4-24). �

The operators Aτ, j found in Theorem 4.2 are generators of strongly continuous analytic semigroups in
L(H 1(R)) and they satisfy resolvent estimates which are uniform with respect to xεj ∈ R and τ ∈ [0, 1];
see Proposition 4.3 below. To be more precise, in Proposition 4.3 and in the proof of Theorem 4.4, the
Sobolev spaces H k(R), k ∈ {1, 2}, consist of complex-valued functions and A j,τ are the natural extensions
(complexifications) of the operators introduced in Theorem 4.2.

Proposition 4.3. Let f ∈ H s(R), s ∈
( 3

2 , 2
)
, be fixed. Given x0 ∈ R and τ ∈ [0, 1], let

Ax0,τ := ατ∂x −βτ (−∂
2
x )

1/2,

where

ατ ∈ {0, aτ (x0)} and βτ ∈

{
π,

π

1+ (τ f ′(x0))2

}
,

with aτ denoting the function defined in Lemma A.1. Then, there exists a constant κ0 ≥ 1 such that

λ−Ax0,τ ∈ Isom(H 2(R), H 1(R)), (4-25)

κ0‖(λ−Ax0,τ )[h]‖H1 ≥ |λ| · ‖h‖H1 +‖h‖H2 (4-26)

for all x0 ∈ R, τ ∈ [0, 1], λ ∈ C with Re λ≥ 1, and h ∈ H 2(R).

Proof. The constants ατ , βτ defined above satisfy, in view of (A-3),

|ατ | ≤ 4
(
‖ f ‖2

∞
+

2‖ f ′‖∞[ f ′]s−3/2

s− 3
2

)
and βτ ∈

[
π

1+max | f ′|2
, π

]
. (4-27)
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Furthermore, the operator Ax0,τ is a Fourier multiplier with symbol

mτ (ξ) := −βτ |ξ | + iατ ξ, ξ ∈ R.

Given Re λ≥ 1, it is easy to see that the operator R(λ,Ax0,τ ) defined by

F(R(λ,Ax0,τ )[h])=
1

λ−mτ
Fh, h ∈ H 1(R),

belongs to L(H 1(R), H 2(R)) and that it is the inverse of λ−Ax0,τ . Moreover, for each Re λ ≥ 1 and
h ∈ H 2(R), we have

‖(λ−Ax0,τ )[h]‖
2
H1 =

∫
R

(1+ |ξ |2)|F((λ−Ax0,τ )[h])|
2(ξ) dξ =

∫
R

(1+ |ξ |2)|λ−mτ (ξ)|
2
|Fh|2(ξ) dξ

≥min{1, β2
τ }

∫
R

(1+ |ξ |2)2|Fh|2(ξ) dξ =min{1, β2
τ }‖h‖

2
H2 . (4-28)

Appealing to the inequality

|λ|2

|λ−mτ (ξ)|2
=

(Re λ)2

(Re λ+βτ |ξ |)2+ (Im λ−ατ ξ)2
+

(Im λ)2

(Re λ+βτ |ξ |)2+ (Im λ−ατ ξ)2

≤ 1+
2(Im λ−ατ ξ)

2
+ 2α2

τ ξ
2

(Re λ+βτ |ξ |)2+ (Im λ−ατ ξ)2
≤ 1+ 2

[
1+

(
ατ

βτ

)2]
≤ 3

[
1+

(
ατ

βτ

)2]
for λ ∈ C with Re λ≥ 1, the estimate (4-26) follows from the relations (4-27) and (4-28). �

We now establish the desired generation result.

Theorem 4.4. Let f ∈ H s(R), s ∈
( 3

2 , 2
)
, be given. Then

−8( f ) ∈H(H 2(R), H 1(R)). (4-29)

Proof. Let κ0 ≥ 1 be the constant determined in Proposition 4.3. Setting µ := 1
2κ0, we deduce from

Theorem 4.2 that there exists a constant ε ∈ (0, 1), an ε-localization family {π εj : −N + 1 ≤ j ≤ N }
that satisfies (4-1)–(4-5), a constant K = K (ε), and for each −N + 1≤ j ≤ N and τ ∈ [0, 1] operators
A j,τ ∈ L(H 2(R), H 1(R)) such that

‖π εj 8(τ f )[h] −A j,τ [π
ε
j h]‖H1 ≤

1
2κ0
‖π εj h‖H2 + K‖h‖H (11−2s)/4 (4-30)

for all −N + 1≤ j ≤ N, τ ∈ [0, 1], and h ∈ H 2(R). In view of Proposition 4.3, it holds that

κ0‖(λ−A j,τ )[π
ε
j h]‖H1 ≥ |λ| · ‖π εj h‖H1 +‖π εj h‖H2 (4-31)

for all −N + 1 ≤ j ≤ N, τ ∈ [0, 1], λ ∈ C with Re λ ≥ 1, and h ∈ H 2(R). The relations (4-30)–(4-31)
lead us to

κ0‖π
ε
j (λ−8(τ f ))[h]‖H1 ≥ κ0‖(λ−A j,τ )[π

ε
j h]‖H1 − κ0‖π

ε
j 8(τ f )[h] −A j,τ [π

ε
j h]‖H1

≥ |λ| · ‖π εj h‖H1 +
1
2‖π

ε
j h‖H2 − κ0K‖h‖H (11−2s)/4
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for all −N + 1 ≤ j ≤ N, τ ∈ [0, 1], λ ∈ C with Re λ ≥ 1, and h ∈ H 2(R). Summing up over
j ∈ {−N + 1, . . . , N }, we infer from Lemma 4.1 that there exists a constant C ≥ 1 with the property that

C‖h‖H (11−2s)/4 +C‖(λ−8(τ f ))[h]‖H1 ≥ |λ| · ‖h‖H1 +‖h‖H2

for all τ ∈ [0, 1], λ ∈ C with Re λ≥ 1, and h ∈ H 2(R). Using (1-4) together with Young’s inequality, we
may find constants κ ≥ 1 and ω > 0 such that

κ‖(λ−8(τ f ))[h]‖H1 ≥ |λ| · ‖h‖H1 +‖h‖H2 (4-32)

for all τ ∈ [0, 1], λ ∈ C with Re λ≥ ω, and h ∈ H 2(R). Furthermore, combining the property

(ω−8(τ f ))|τ=0 = ω−8(0)= ω+π(−∂2
x )

1/2
∈ Isom(H 2(R), H 1(R))

with (4-32), the method of continuity, see, e.g., [Gilbarg and Trudinger 1998, Theorem 5.2], yields that

ω−8( f ) ∈ Isom(H 2(R), H 1(R)). (4-33)

The relations (4-32) (with τ = 1), (4-33), and [Lunardi 1995, Corollary 2.1.3] lead us to the desired claim
(4-29). �

We are now in a position to prove the well-posedness result Theorem 1.1.

Proof of Theorem 1.1. Let s ∈
( 3

2 , 2
)

and s̄ ∈
( 3

2 , s
)

be given. Combining Lemma 3.5 and Theorem 4.4
yields

−8 ∈ C1−(H s̄(R),H(H 2(R), H 1(R))).

Setting α := s− 1 and β := s̄− 1, we have 0< β < α < 1 and (1-4) yields

H s̄(R)= [H 1(R), H 2(R)]β and H s(R)= [H 1(R), H 2(R)]α.

It follows now from Theorem 1.5 that (1-1), or equivalently (3-1), possesses a maximally defined solution

f := f ( · ; f0) ∈ C([0, T+( f0)), H s(R))∩C((0, T+( f0)), H 2(R))∩C1((0, T+( f0)), H 1(R))

with
f ∈ C s−s̄([0, T ], H s̄(R)) for all T < T+( f0).

Concerning uniqueness, we now show that any classical solution

f̃ ∈ C([0, T̃ ), H s(R))∩C((0, T̃ ), H 2(R))∩C1((0, T̃ )), H 1(R)), T̃ ∈ (0,∞],

satisfies
f̃ ∈ Cη([0, T ], H s̄(R)) for all T ∈ (0, T̃ ), (4-34)

where η := (s− s̄)/s ∈ (0, s− s̄). This proves then the uniqueness claim of Theorem 1.1. We pick thus
T ∈ (0, T̃ ) arbitrarily. Then it follows directly from Lemma 3.1(i) that

sup
(0,T ]
‖∂t f̃ ‖2 ≤ C;
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hence f̃ ∈BC1((0, T ], L2(R)). Since f̃ ∈C([0, T ], H s(R)), we conclude form (1-4), the previous bound,
and the mean value theorem, that

‖ f̃ (t)− f̃ (s)‖H s̄ ≤ ‖ f̃ (t)− f̃ (s)‖1−s̄/s
2 ‖ f̃ (t)− f̃ (s)‖s̄/sH s ≤ C |t − s|η, t, s ∈ [0, T ],

which proves (4-34).
Assume now that T+( f0) <∞ and

sup
[0,T+( f0))

‖ f (t)‖H s <∞.

Arguing as above, we find that

‖ f (t)− f (s)‖H (s+s̄)/2 ≤ C |t − s|(s−s̄)/2s, t, s ∈ [0, T+( f0)).

The criterion for global existence in Theorem 1.5 applied for α := (s+ s̄− 2)/2 and β := s̄− 1 implies
that the solution can be continued on an interval [0, τ ) with τ > T+( f0). Moreover, it holds that

f ∈ C (s−s̄)/2([0, T ], H s̄(R)) for all T ∈ (0, τ ).

The uniqueness claim in Theorem 1.5 leads us to a contradiction. Hence our assumption was false and
T+( f0)=∞. �

5. Instantaneous real-analyticity

We now improve the regularity of the solutions found in Theorems 1.1 and 1.2. To this end we first show
that the mapping 8 defined by (3-2) is actually real-analytic; see Proposition 5.1. As [ f 7→8( f )] is not
a Nemytskij-type operator, we cannot use classical results for such operators, as presented, e.g., in [Runst
and Sickel 1996]. Instead, we directly estimate the rest of the associated Taylor series. We conclude the
section with the proof of Theorem 1.3, which is obtained, via Proposition 5.1, from the real-analyticity
property of the semiflow as stated in Theorem 1.5, applied in the context of a nonlinear evolution problem
related to (1-1).

Proposition 5.1. Given s ∈
( 3

2 , 2
)
, it holds that

8 ∈ Cω(H s(R),L(H 2(R), H 1(R))). (5-1)

Proof. Let φ : R→ R be the map defined by φ(x) := (1+ x2)−1, x ∈ R. Then, given f0 ∈ H s(R), it
holds that

8( f0)[h](x)= PV
∫

R

δ[x,y]h′

y
φ

(
δ[x,y] f0

y

)
dy, h ∈ H 2(R).

Given n ∈ N, we let

∂n8( f0)[ f1, . . . , fn][h](x) := PV
∫

R

δ[x,y]h′

y

( n∏
i=1

δ[x,y] fi

y

)
φ(n)

(
δ[x,y] f0

y

)
dy

=

n∑
k=0, n+k∈2N

an
k An+k,n( f0, . . . , f0)[ f0, . . . , f0︸ ︷︷ ︸

k times

, f1, . . . , fn, h′](x)
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for fi ∈ H s(R), 1 ≤ i ≤ n, h ∈ H 2(R), and x ∈ R, where an
k , n ∈ N, 0 ≤ k ≤ n, are defined in

Lemma 5.2. Arguing as in the proof of Lemma 3.5, it follows from Lemmas 3.1 and 3.4 that ∂n8( f0) ∈

Ln
sym(H

s(R),L(H 2(R), H 1(R))); that is, ∂n8( f0) is a bounded n-linear and symmetric operator.
Moreover, given f0, f ∈ H s(R), n ∈N∗, and h ∈ H 2(R), Fubini’s theorem combined with Lebesgue’s

dominated convergence theorem and the continuity of the mapping[
τ 7→ PV

∫
R

δ[ · ,y]h′

y

(
δ[ · ,y] f

y

)n+1

φ(n+1)
(
δ[ · ,y]( f0+ τ f )

y

)
dy
]
: [0, 1] → H 1(R),

yield that

8( f0+ f )[h](x)−
n∑

k=0

∂k8( f0)[ f ]k[h](x)
k!

= PV
∫

R

δ[x,y]h′

y

(
δ[x,y] f

y

)n+1∫ 1

0

(1− τ)n

n!
φ(n+1)

(
δ[x,y]( f0+ τ f )

y

)
dτ dy

=

∫ 1

0

(1− τ)n

n!
PV
∫

R

δ[x,y]h′

y

(
δ[x,y] f

y

)n+1

φ(n+1)
(
δ[x,y]( f0+ τ f )

y

)
dy dτ,

and∥∥∥∥8( f0+ f )[h] −
n∑

k=0

∂k8( f0)[ f ]k[h]
k!

∥∥∥∥
H1

≤
1
n!

max
τ∈[0,1]

∥∥∥∥PV
∫

R

δ[ · ,y]h′

y

(
δ[ · ,y] f

y

)n+1

φ(n+1)(δ[ · ,y] fτ/y) dy
∥∥∥∥

H1
, (5-2)

where fτ := f0+ τ f , 0≤ τ ≤ 1. In order to estimate the right-hand side of (5-2) we note that∥∥∥∥PV
∫

R

δ[ · ,y]h′

y

(
δ[ · ,y] f

y

)n+1

φ(n+1)(δ[ · ,y] fτ/y)dy
∥∥∥∥

H1

≤

n+1∑
k=0,n+k+1∈2N

|an+1
k |

∥∥An+k+1,n+1( fτ , . . . , fτ )[ fτ , . . . , fτ︸ ︷︷ ︸
k times

, f, . . . , f︸ ︷︷ ︸
n+1 times

,h′]
∥∥

H1

≤

n+1∑
k=0,n+k+1∈2N

|an+1
k |

∥∥An+k+1,n+1( fτ , . . . , fτ )[ fτ , . . . , fτ︸ ︷︷ ︸
k times

, f, . . . , f︸ ︷︷ ︸
n+1 times

,h′]
∥∥

2

+

n+1∑
k=0,n+k+1∈2N

|an+1
k |

∥∥An+k+1,n+1( fτ , . . . , fτ )[ fτ , . . . , fτ︸ ︷︷ ︸
k times

, f, . . . , f︸ ︷︷ ︸
n+1 times

,h′′]
∥∥

2

+k
n+1∑

k=0,n+k+1∈2N

|an+1
k |

∥∥An+k+1,n+1( fτ , . . . , fτ )[ fτ , . . . , fτ︸ ︷︷ ︸
k−1 times

, f, . . . , f︸ ︷︷ ︸
n+1 times

, f ′τ ,h
′
]
∥∥

2

−2(n+2)
n+1∑

k=0,n+k+1∈2N

|an+1
k |

∥∥An+k+3,n+2( fτ , . . . , fτ )[ fτ , . . . , fτ︸ ︷︷ ︸
k+1 times

, f, . . . , f︸ ︷︷ ︸
n+1 times

, f ′τ ,h
′
]
∥∥

2. (5-3)
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Combining the results of Lemmas 5.2–5.4, we conclude that there exists an integer p > 0 and a positive
constant C (depending only on ‖ f0‖H s ) such that for all f ∈ H s(R) with ‖ f ‖H s ≤ 1 and all n ≥ 3 we
have ∥∥∥∥8( f0+ f )−

n∑
k=0

∂k8( f0)[ f ]k

k!

∥∥∥∥
L(H2(R),H1(R))

≤ Cn+1n p
‖ f ‖n+1

H s .

The claim follows. �

The following technical results are used in the proof of Proposition 5.1.

Lemma 5.2. Let φ : R→ R be defined by φ(x) := (1+ x2)−1, x ∈ R. Given n ∈ N, it holds that

φ(n)(x)=
1

(1+ x2)n+1

n∑
k=0

an
k xk,

where the coefficients an
k ∈ R satisfy |an

k | ≤ 4n(n+ 2)! for all 0≤ k ≤ n. Moreover, an
k = 0 if n+ k 6∈ 2N.

Proof. The claim for n ∈ {0, 1, 2, 3} is obvious. Assume that the claim holds for some integer n ≥ 3.
Since

(1+ x2)n+2φ(n+1)(x)= (1+ x2)

n∑
k=1

kan
k xk−1

− 2(n+ 1)x
n∑

k=0

an
k xk,

the coefficient an+1
k , 0≤ k ≤ n+ 1, of xk satisfies

|an+1
n+1 | ≤ n|an

n | + 2(n+ 1)|an
n | ≤ 4(n+ 1)|an

n | ≤ 4n+1(n+ 3)! ,

|an+1
n | ≤ (n− 1)|an

n−1| + 2(n+ 1)|an
n−1| = 0,

and for n− 1≥ k ≥ 2 we have

|an+1
k | ≤ (k+ 1)|an

k+1| + (k− 1)|an
k−1| + 2(n+ 1)|an

k−1| ≤ 4n+1(n+ 3)! ,

while
|an+1

1 | ≤ 2|an
2 | + 2(n+ 1)|an

0 | ≤ 4n+1(n+ 3)! ,

|an+1
0 | ≤ |an

1 | ≤ 4n+1(n+ 3)! .

The conclusion is now obvious. �

In the next lemma we estimate the first two terms that appear on the right-hand side of (5-3).

Lemma 5.3. Let n, k ∈ N satisfy n ≥ 3 and 0 ≤ k ≤ n+ 1, and let s ∈
(3

2 , 2
)
. Given f, fτ ∈ H s(R), it

holds that∥∥An+k+1,n+1( fτ , . . . , fτ )[ fτ , . . . , fτ︸ ︷︷ ︸
k times

, f, . . . , f︸ ︷︷ ︸
n+ 1 times

, · ]
∥∥
L(L2(R))

≤ Cnn4 max{1, ‖ fτ‖4H s }‖ f ‖n+1
H s , (5-4)

with a constant C ≥ 1 independent of n, k, f, and fτ .

Proof. Much as in the proof of Lemma 3.1 we write

An+k+1,n+1( fτ , . . . , fτ )[ fτ , . . . , fτ , f, . . . , f, · ] = M − S,
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where M is the multiplication operator

M[h](x) := h(x)PV
∫

R

1
y

(
δ[x,y] f

y

)n+1
(δ[x,y] fτ/y)k

[1+ (δ[x,y] fτ/y)2]n+2 dy

and S is the singular integral operator

S[h](x) := PV
∫

R

(
δ[x,y] f

y

)n+1
(δ[x,y] fτ/y)k

[1+ (δ[x,y] fτ/y)2]n+2

h(x − y)
y

dy

for h ∈ L2(R). Arguing as in proof of Lemma 3.1, it follows that

‖M‖L(L2(R)) ≤ nCn max{1, ‖ fτ‖H s }‖ f ‖n+1
H s (5-5)

with a constant C ≥ 1 independent of n, k, f, and fτ .
In order to deal with the operator S we consider the functions F : R2

→ R and A : R→ R2 defined by

F(x1, x2) :=
xn+1

1 xk
2

(1+ x2
2)

n+2
, A := (A1, A2) := ( f, fτ ).

The function F is smooth, A is Lipschitz continuous, and we set

aj := ‖A′j‖∞, 1≤ j ≤ 2.

Since S is the singular integral operator with kernel

K (x, y) :=
1
y

F
(
δ[x,y]A

y

)
, x ∈ R, y 6= 0,

and |δ[x,y]Aj/y| ≤ aj for 1≤ j ≤ 2, it is natural to introduce a smooth periodic function F̃ on R2, which
is 4aj -periodic in the variable x j , 1≤ j ≤ 2, and which matches F on

∏2
j=1[−aj , aj ]. More precisely,

we choose ϕ ∈ C∞0 (R, [0, 1]) with ϕ = 1 on [|x | ≤ 1] and ϕ = 0 on [|x | ≥ 2] and we define F̃ to be the
periodic extension of [

(x1, x2) 7→ F(x1, x2)

2∏
j=1

ϕ

(
x j

aj

)]
: Q→ R,

where Q :=
∏2

j=1[−2aj , 2aj ]. We now expand F̃ by its Fourier series

F̃(x1, x2)=
∑
p∈Z2

αp exp
(

i
2∑

j=1

pj x j

Tj

)
,

where

Tj :=
2aj

π
, αp :=

1
42a1a2

∫
Q

F̃(x1, x2) exp
(
−i

2∑
j=1

pj x j

Tj

)
d(x1, x2), p ∈ Z2,

and observe that

K (x, y)=
1
y

F̃
(
δ[x,y]A

y

)
=

∑
p∈Z2

αp K p(x, y), x ∈ R, y 6= 0,
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with

K p(x, y) :=
1
y

exp
(

i
δ[x,y]

(∑2
j=1(pj/Tj )Aj

)
y

)
, x ∈ R, y 6= 0, p ∈ Z2.

The kernels K p define operators in L(L2(R)) of type (1-2) and the norms of these operators can be
estimated from above by

C
(

1+
∥∥∥∥ 2∑

j=1

pj

Tj
A′j

∥∥∥∥
∞

)
≤ C(1+ |p|), p ∈ Z2.

Since
∑

p∈Z2(1+ |p|3)−1 <∞ we get

‖S‖L(L2(R)) ≤ C
∑
p∈Z2

|αp|(1+ |p|)≤ C sup
p∈Z2
[(1+ |p|4)|αp|].

We estimate next the quantity supp∈Z2(1+ |p|4)|αp|. To this end we write

αp =
1
42

2∏
j=1

Ij

aj
,

where

I1 :=

∫ 2a1

−2a1

xn+1
1 ϕ

(
x1

a1

)
e−i p1x1/T1 dx1, I2 :=

∫ 2a2

−2a2

xk
2

(1+ x2
2)

n+2
ϕ

(
x2

a2

)
e−i p2x2/T2 dx2.

Since ϕ = 0 in [|x | ≥ 2] and n ≥ 3, integration by parts leads us, in the case when p1 6= 0, to

|I1| ≤

(
T1

|p1|

)4 ∫ 2a1

−2a1

∣∣∣∣(xn+1
1 ϕ

(
x1

a1

))(4)∣∣∣∣ dx1 ≤ C
2nn4an+2

1

p4
1

, (5-6)

and similarly, since x2 ≤ 1+ x2
2 , we find for p2 6= 0 that

|I2| ≤ C
n4 max{a2, a5

2}

p4
2

. (5-7)

The estimates
|I1| ≤ C2nan+2

1 , |I2| ≤ Ca2, (5-8)

are valid for all p ∈ Z2. Combining (5-6)–(5-8), we arrive at

sup
p∈Z2

(1+ |p|4)|αp| ≤ C2nn4 max{1, a4
2}a

n+1
1 ,

which leads us to

‖S‖L(L2(R)) ≤ C2nn4 max{1, ‖ f ′τ‖
4
∞
}‖ f ′‖n+1

∞
≤ n4Cn max{1, ‖ fτ‖4H s }‖ f ‖n+1

H s .

This inequality together with (5-5) proves the desired claim. �

In the next lemma we estimate the last two terms on the right-hand side of (5-3) in the proof of
Proposition 5.1.
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Lemma 5.4. Let n, k ∈ N satisfy n ≥ 1 and 0 ≤ k ≤ n+ 1. Let further l ∈ {0, 1} and s ∈
( 3

2 , 2
)
. Given

f, fτ ∈ H s(R), it holds that∥∥An+k+1+2l,n+1+l( fτ , . . . , fτ )[ fτ , . . . , fτ︸ ︷︷ ︸
k− 1+ 2l times

, f, . . . , f︸ ︷︷ ︸
n+ 1 times

, f ′τ , · ]
∥∥
L(H1(R),L2(R))

≤Cn
‖ fτ‖H s‖ f ‖n+1

H s , (5-9)

with a constant C ≥ 1 independent of n, k, f , and fτ .

Proof. The proof is similar to that of Lemma 3.4. �

We are now in a position to prove Theorem 1.3 when σ = 0, where we use a parameter trick which
appears, in other forms, also in [Angenent 1990; Escher and Simonett 1996; Prüss et al. 2015]. We
present a new idea which uses only the abstract result Theorem 1.5 in the context of an evolution problem
related to (1-1), and not explicitly the maximal regularity property as in the above-mentioned papers.
The proof when σ > 0 is almost identical and is also discussed below, but it relies on some properties
established in Section 6.

Proof of Theorem 1.3. Assume first that σ = 0. We then pick f0 ∈ H s(R), s ∈
( 3

2 , 2
)
, and we let

f = f ( · ; f0) : [0, T+( f0))→ H s(R) denote the unique maximal solution to (1-1), whose existence is
guaranteed by Theorem 1.1. We further choose λ1, λ2 ∈ (0,∞) and we define

fλ1,λ2(t, x) := f (λ1t, x + λ2t), x ∈ R, 0≤ t < T+ := T+( f0)/λ1.

Classical arguments show that

fλ1,λ2 ∈ C([0, T+), H s(R))∩C((0, T+), H 2(R))∩C1((0, T+), H 1(R)).

We next introduce the function u := (u1, u2, u3) : [0, T+)→ R2
× H s(R), where

(u1, u2)(t) := (λ1, λ2), u3(t) := fλ1,λ2(t), 0≤ t < T+,

and we note that u solves the quasilinear evolution problem

u̇ =9(u)[u], t > 0, u(0)= (λ1, λ2, f0), (5-10)

with 9 : (0,∞)2× H s(R)→ L(R2
× H 2(R),R2

× H 1(R)) denoting the operator defined by

9((v1, v2, v3))[(u1, u2, u3)] := (0, 0, v18(v3)[u3] + v2∂x u3). (5-11)

Proposition 5.1 immediately yields

9 ∈ Cω
(
(0,∞)2× H s(R),L(R2

× H 2(R),R2
× H 1(R))

)
for all s ∈

( 3
2 , 2

)
.

Given v := (v1, v2, v3) ∈ (0,∞)2× H s(R), the operator 9(v) can be represented as a matrix

9(v)=

(
0 0
0 v18(v3)+v2∂x

)
: R2
× H 2(R)→ R2

× H 1(R),
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and we infer from [Amann 1995, Corollary I.1.6.3] that −9(v) ∈H(R2
× H 2(R),R2

× H 1(R)) if and
only if

−(v18(v3)+ v2∂x) ∈H(H 2(R), H 1(R)). (5-12)

We note that v2∂x is a first-order Fourier multiplier and its symbol is purely imaginary. Therefore, obvious
modifications of the arguments presented in the proofs of Theorem 4.2 and Proposition 4.3 enable us
to conclude that the property (5-12) is satisfied for each (v1, v2, v3) ∈ (0,∞)2× H s(R) and s ∈

( 3
2 , 2

)
.

Setting F0 := R2
× H 1(R) and F1 := R2

× H 2(R), it holds that

[F0, F1]θ = R2
× H 1+θ (R), θ ∈ (0, 1),

and we may now apply Theorem 1.5 in the context of the quasilinear parabolic problem (5-10) to conclude
(much as in the proof of Theorem 1.1), for each u0 = (λ1, λ2, f0) ∈ (0,∞)2× H s(R), s ∈

( 3
2 , 2

)
, the

existence of a unique maximal solution

u := u( · ; u0) ∈ C([0, T+(u0)), (0,∞)2× H s(R))∩C((0, T+(u0)), F1)∩C1((0, T+(u0)), F0).

Additionally, the set

� := {(λ1, λ2, f0, t) : t ∈ (0, T+((λ1, λ2, f0)))}

is open in (0,∞)2× H s(R)× (0,∞) and

[(λ1, λ2, f0, t) 7→ u(t; (λ1, λ2, f0))] :�→ R2
× H s(R)

is a real-analytic map.
So, if we fix f0 ∈ H s(R), then we may conclude that

T+( f0)

λ1
= T+((λ1, λ2, f0)) for all (λ1, λ2) ∈ (0,∞)2.

As we want to prove that f = f ( · ; f0) is real-analytic in (0, T+( f0))×R, it suffices to establish the
real-analyticity property in a small ball around (t0, x0) for each x0 ∈ R and t0 ∈ (0, T+( f0)). Let thus
(t0, x0) ∈ (0, T+( f0))× R be arbitrary. For (λ1, λ2) ∈ B((1, 1), ε) ⊂ (0,∞)2, with ε chosen suitably
small, we have that

t0 < T+((λ1, λ2, f0)) for all (λ1, λ2) ∈ B((1, 1), ε),

and therewith

B((1, 1), ε)×{ f0}× {t0} ⊂�.

Moreover, since u3( · ; u0)= fλ1,λ2 , the restriction

[(λ1, λ2) 7→ fλ1,λ2(t0)] : B((1, 1), ε)→ H s(R) (5-13)

is a real-analytic map. Since [h 7→ h(x0− t0)] : H s(R)→ R is a linear operator, the composition

[(λ1, λ2) 7→ f (λ1t0, x0− t0+ λ2t0)] : B((1, 1), ε)→ R (5-14)
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is real-analytic too. Furthermore, for δ > 0 small, the mapping ϕ : B((t0, x0), δ)→ B((1, 1), ε) with

ϕ(t, x) :=
(

t
t0
,

x − x0+ t0
t0

)
(5-15)

is well-defined and real-analytic, and therefore the composition of the functions defined by (5-14) and
(5-15), that is, the mapping

[(t, x) 7→ f (t, x)] : B((t0, x0), δ)→ R,

is also real-analytic. This proves the first claim.
Finally, the property f ∈ Cω((0, T+( f0)), H k(R)) for arbitrary k ∈N, is an immediate consequence of

(5-13).
The arguments presented above carry over to the case when σ > 0 (with the obvious modifications). If

σ > 0, the operator v2∂x appearing in (5-12) can be regarded as being a lower-order perturbation and
therefore the generator property of 9(v) follows in this case directly from the corresponding property of
the original operator; see Theorem 6.3. �

6. The Muskat problem with surface tension and gravity effects

We now consider surface-tension forces acting at the interface between the fluids; that is, we take σ > 0.
The motion of the fluids may also be influenced by gravity, but we make no restrictions on 1ρ , which is
now an arbitrary real number. If we model flows in a vertical Hele-Shaw cell, this means in particular
that the lower fluid may be less dense than the fluid above. Since 1ρ can be zero, (1-1) is also a model
for fluid motions in a horizontal Hele-Shaw cell as for these flows the effects due to gravity are usually
neglected, that is, g = 0. Again, we rescale the time appropriately and rewrite (1-1) as the system

∂t f (t, x)= f ′(t, x)PV
∫

R

f (t, x)− f (t, x − y)
y2+ ( f (t, x)− f (t, x − y))2

(κ( f ))′(t, x − y) dy

+PV
∫

R

y
y2+ ( f (t, x)− f (t, x − y))2

(κ( f ))′(t, x − y) dy

+2PV
∫

R

y( f ′(t, x)− f ′(t, x − y))
y2+ ( f (t, x)− f (t, x − y))2

dy for t > 0, x ∈ R,

f (0, · )= f0,

(6-1)

with

2 :=
1ρ

σ
∈ R.

Since

(κ( f ))′ =
f ′′′

(1+ f ′2)3/2
− 3

f ′ f ′′2

(1+ f ′2)5/2
,

we observe that the first equation of (6-1) is again quasilinear, but now this property is due to the fact that
(κ( f ))′ is an affine function in the variable f ′′′.
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To be more precise we set

8σ ( f )[h](x) := f ′(x)PV
∫

R

δ[x,y] f
y2+ (δ[x,y] f )2

(
h′′′

(1+ f ′2)3/2
− 3

f ′ f ′′h′′

(1+ f ′2)5/2

)
(x − y) dy

+PV
∫

R

y
y2+ (δ[x,y] f )2

(
h′′′

(1+ f ′2)3/2
− 3

f ′ f ′′h′′

(1+ f ′2)5/2

)
(x − y) dy

+2PV
∫

R

y(δ[x,y]h′)
y2+ (δ[x,y] f )2

dy, (6-2)

and we recast the problem (6-1) in the compact form

ḟ =8σ ( f )[ f ], t > 0, f (0)= f0. (6-3)

We emphasize that there are also other ways to write (6-1) as a quasilinear problem. For example the
terms containing only f (l), 0≤ l ≤ 2, can be viewed as a nonlinear function [ f 7→ F( f )] which would
appear as an additive term to the right-hand side of (6-3), with 8σ ( f )[h] modified accordingly. However,
the formulation (6-2)–(6-3) appears to us as being optimal as it allows us to consider the largest set of
initial data among all formulations. To be more precise, the operator introduced by (6-2) satisfies, with
the notation in Lemma 3.1 and Remark 3.3, the relation

8σ ( f )[h]

= f ′B1,1( f, f )
[

h′′′

(1+ f ′2)3/2
−3

f ′ f ′′h′′

(1+ f ′2)5/2

]
+B0,1( f )

[
h′′′

(1+ f ′2)3/2
−3

f ′ f ′′h′′

(1+ f ′2)5/2

]
+2A0,0( f )[h′],

and we now claim, based on the results in Section 5, that

8σ ∈ Cω(H 2(R),L(H 3(R), L2(R))). (6-4)

Indeed, arguing as in Section 5, it follows that[
f 7→

[
h 7→ PV

∫
R

δ[ · ,y] f
y2+ (δ[ · ,y] f )2

h(· − y) dy
]]
∈ Cω(H 2(R),L(L2(R))),[

f 7→
[

h 7→ PV
∫

R

y
y2+ (δ[ · ,y] f )2

h(· − y) dy
]]
∈ Cω(H 2(R),L(L2(R))),[

f 7→
[

h 7→ PV
∫

R

y(δ[ · ,y]h′)
y2+ (δ[ · ,y] f )2

dy
]]
∈ Cω(H 2(R),L(H 3(R), L2(R))).

(6-5)

Moreover, classical arguments, see, e.g., [Runst and Sickel 1996, Theorem 5.5.3/4], yield that[
f 7→

[
h 7→

h′′′

(1+ f ′2)3/2
− 3

f ′ f ′′h′′

(1+ f ′2)5/2

]]
∈ Cω(H 2(R),L(H 3(R), L2(R))). (6-6)

The relations (6-5)–(6-6) immediately imply (6-4).
In the following, we prove that 8σ ( f ) is, for each f ∈ H 2(R), the generator of a strongly continuous

and analytic semigroup in L(L2(R)), that is,

−8σ ( f ) ∈H(H 3(R), L2(R)).
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To this end we write
8σ =8σ,1+8σ,2, (6-7)

where

8σ,1( f )[h] := f ′B1,1( f, f )
[

h′′′

(1+ f ′2)3/2

]
+ B0,1( f )

[
h′′′

(1+ f ′2)3/2

]
, (6-8)

8σ,2( f )[h] := −3 f ′B1,1( f, f )
[

f ′ f ′′h′′

(1+ f ′2)5/2

]
− 3B0,1( f )

[
f ′ f ′′h′′

(1+ f ′2)5/2

]
+2A0,0( f )[h′] (6-9)

for f ∈ H 2(R), h ∈ H 3(R). Since 8σ,2( f ) ∈ L(H 8/3(R), L2(R)) and [L2(R), H 3(R)]8/9 = H 8/3(R),
we can view 8σ,2( f ) as being a lower-order perturbation, see [Lunardi 1995, Proposition 2.4.1], and we
only need to establish the generator property for the leading-order term 8σ,1( f ). Much as in Section 4,
we consider a continuous mapping

[τ 7→8σ,1(τ f )] : [0, 1] → L(H 3(R), L2(R)),

which transforms the operator 8σ,1( f ) into the operator

8σ,1(0)= B0,1(0) ◦ ∂3
x =−π(∂

4
x )

3/4,

where (∂4
x )

3/4 is the Fourier multiplier with symbol [ξ 7→ |ξ |3]. We now establish the following result.

Theorem 6.1. Let f ∈ H 2(R) and µ > 0 be given.
Then, there exist ε ∈ (0, 1), a finite ε-localization family {π εj : −N + 1≤ j ≤ N } satisfying (4-1)–(4-5),

a constant K = K (ε), and for each j ∈ {−N + 1, . . . , N } and τ ∈ [0, 1] there exist operators

A j,τ ∈ L(H 3(R), L2(R))

such that
‖π εj 8σ,1(τ f )[h] −A j,τ [π

ε
j h]‖2 ≤ µ‖π εj h‖H3 + K‖h‖H2 (6-10)

for all j ∈ {−N + 1, . . . , N }, τ ∈ [0, 1], and h ∈ H 3(R). The operators A j,τ are defined by

A j,τ := −
π

(1+ τ 2 f ′2(xεj ))3/2
(∂4

x )
3/4, | j | ≤ N − 1, (6-11)

where xεj is a point belonging to suppπ εj , and

A N ,τ := −π(∂
4
x )

3/4. (6-12)

Proof. Let {π εj : −N + 1≤ j ≤ N } be an ε-localization family satisfying the properties (4-1)–(4-5) and
{χ εj : −N +1≤ j ≤ N } be an associated family satisfying (4-6)–(4-8), with ε ∈ (0, 1) which will be fixed
below.

To deal with both terms of 8σ,1(τ f ), see (6-8), at once, we consider the operator

Ka(τ f )[h] := f ′a,τ B1,1( fa,τ , τ f )
[

h′′′

(1+ τ 2 f ′2)3/2

]
,
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where, for a ∈ {0, 1}, we set

fa,τ := (1− a)τ f + a idR.

For a = 0 we recover the first term in the definition of 8σ,1(τ f )[h], while for a = 1 the expression
matches the second one.

In the following, h ∈ H 3(R) is arbitrary. Again, constants which are independent of ε (and, of course,
of h ∈ H 3(R), τ ∈ [0, 1], a ∈ {0, 1}, and j ∈ {−N + 1, . . . , N }) are denoted by C , while the constants
that we denote by K may depend only upon ε. We further let

Aa
j,τ := −π

f ′2a,τ (x
ε
j )

(1+ τ 2 f ′2(xεj ))5/2
(∂4

x )
3/4 for | j | ≤ N − 1,

and

Aa
N ,τ := −πa2(∂4

x )
3/4.

We analyze the cases j = N and | j | ≤ N − 1 separately.

The case | j | ≤ N − 1. For | j | ≤ N − 1 we write

π εj Ka(τ f )[h] −Aa
j,τ [π

ε
j h] := T1[h] + T2[h] + T3[h], (6-13)

where

T1[h] := π εj Ka(τ f )[h] − f ′a,τ (x
ε
j )B1,1( fa,τ , τ f )

[
π εj h′′′

(1+ τ 2 f ′2)3/2

]
,

T2[h] := f ′a,τ (x
ε
j )B1,1( fa,τ , τ f )

[
π εj h′′′

(1+ τ 2 f ′2)3/2

]
−

f ′a,τ (x
ε
j )

(1+ τ 2 f ′2(xεj ))3/2
B1,1( fa,τ , τ f )[π εj h′′′],

T3[h] :=
f ′a,τ (x

ε
j )

(1+ τ 2 f ′2(xεj ))3/2
B1,1( fa,τ , τ f )[π εj h′′′] −Aa

j,τ [π
ε
j h].

We consider first the term T1[h]. The identity χ εj π
ε
j = 1 on suppπ εj and integration by parts lead us to

the relation

T1[h] = χ εj ( f ′a,τ− f ′a,τ (x
ε
j ))B1,1( fa,τ ,τ f )

[
π εj h′′′

(1+τ 2 f ′2)3/2

]
+(1−χ εj )( f ′a,τ (x

ε
j )− f ′a,τ )B1,1( fa,τ ,τ f )

[
π εj
′h′′

(1+τ 2 f ′2)3/2
−3τ 2

π εj f ′ f ′′h′′

(1+τ 2 f ′2)5/2

]
+( f ′a,τ (x

ε
j )− f ′a,τ )

{
B1,1(χ

ε
j ,τ f )

[
π εj f ′a,τh′′

(1+τ 2 f ′2)3/2

]
−2B2,1( fa,τ ,χ

ε
j ,τ f )

[
π εj h′′

(1+τ 2 f ′2)3/2

]}
−2τ 2( f ′a,τ (x

ε
j )− f ′a,τ )B3,2( fa,τ ,χ

ε
j , f,τ f,τ f )

[
π εj f ′h′′

(1+τ 2 f ′2)3/2

]
+2τ 2( f ′a,τ (x

ε
j )− f ′a,τ )B4,2( fa,τ ,χ

ε
j , f, f,τ f,τ f )

[
π εj h′′

(1+τ 2 f ′2)3/2

]
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+3τ 2 f ′a,τ

{
π εj B1,1( fa,τ ,τ f )

[
f ′ f ′′h′′

(1+τ 2 f ′2)5/2

]
−B1,1( fa,τ ,τ f )

[
π εj f ′ f ′′h′′

(1+τ 2 f ′2)5/2

]}
+ f ′a,τ

{
B1,1(π

ε
j ,τ f )

[
f ′a,τh′′

(1+τ 2 f ′2)3/2

]
+B1,1( fa,τ ,τ f )

[
π εj
′h′′

(1+τ 2 f ′2)3/2

]}
−2 f ′a,τ B2,1(π

ε
j , fa,τ ,τ f )

[
h′′

(1+τ 2 f ′2)3/2

]
−2τ 2 f ′a,τ B3,2(π

ε
j , fa,τ , f,τ f,τ f )

[
f ′h′′

(1+τ 2 f ′2)3/2

]
+2τ 2 f ′a,τ B4,2(π

ε
j , fa,τ , f, f,τ f,τ f )

[
h′′

(1+τ 2 f ′2)3/2

]
.

Using Remark 3.3, the interpolation property (1-4), Young’s inequality, and the Hölder continuity of f ′a,τ ,
it follows that

‖T1[h]‖2 ≤ C[‖χ εj ( f ′a,τ − f ′a,τ (x
ε
j ))‖∞‖π

ε
j h′′′‖2+‖π εj h′′‖∞] + K‖h‖H2

≤
1
3µ‖π

ε
j h‖H3 + K‖h‖H2 (6-14)

provided that ε is sufficiently small.
Furthermore, we have

T2[h] =
τ 2 f ′a,τ (x

ε
j )

(1+ τ 2 f ′2(xεj ))3/2
B1,1( fa,τ , τ f )[Q( f ′(xεj )− f ′)π εj h′′′],

where

Q :=
( f ′(xεj )+ f ′)[(1+ τ 2 f ′2)2+ (1+ τ 2 f ′2)(1+ τ 2 f ′2(xεj ))+ (1+ τ

2 f ′2(xεj ))
2
]

(1+ τ 2 f ′2)3/2[(1+ τ 2 f ′2)3/2+ (1+ τ 2 f ′2(xεj ))3/2]
,

and therewith

‖T2[h]‖2 ≤ C‖χ εj ( f ′a,τ − f ′a,τ (x
ε
j ))‖∞‖π

ε
j h′′′‖2 ≤ 1

3µ‖π
ε
j h‖H3 + K‖h‖H2 (6-15)

if ε is sufficiently small.
Finally, arguing as in Step 3 of the proof of Theorem 4.4, we deduce that for ε sufficiently small we

have
‖T3[h]‖2 ≤ 1

3µ‖π
ε
j h‖H3 + K‖h‖H2 . (6-16)

Gathering (6-13)–(6-16), we have established the desired estimate (6-10) for | j | ≤ N − 1.

The case j = N. For j = N we write

π εN Ka(τ f )[h] −Aa
N ,τ [π

ε
N h] =: S1[h] + S2[h] + S3[h] + S4[h], (6-17)

where

S1[h] := π εN Ka(τ f )[h] − aB1,1( fa,τ , τ f )
[

π εN h′′′

(1+ τ 2 f ′2)3/2

]
,

S2[h] := aB1,1( fa,τ , τ f )
[

π εN h′′′

(1+ τ 2 f ′2)3/2

]
− aB1,1( fa,τ , τ f )[π εN h′′′],



316 BOGDAN-VASILE MATIOC

S3[h] := aB1,1( fa,τ , τ f )[π εN h′′′] − a2 B0,1(0)[π εN h′′′],

S4[h] := a2 B0,1(0)[π εN h′′′] −Aa
N ,τ [π

ε
N h].

Much as for T1[h], we derive the identity

S1[h] = τ(1−a)χ εN f ′B1,1( fa,τ , τ f )
[

π εN h′′′

(1+τ 2 f ′2)3/2

]
−τ(1−a) f ′(1−χ εN )B1,1( fa,τ , τ f )

[
π εN
′h′′

(1+τ 2 f ′2)3/2
−3τ 2 π εN f ′ f ′′h′′

(1+τ 2 f ′2)5/2

]
−τ(1−a) f ′

{
B1,1(χ

ε
N , τ f )

[
π εN f ′a,τh′′

(1+τ 2 f ′2)3/2

]
−2B2,1( fa,τ , χ

ε
N , τ f )

[
π εN h′′

(1+τ 2 f ′2)3/2

]}
+2τ 3(1−a) f ′B3,2( fa,τ , χ

ε
N , f, τ f, τ f )

[
π εN f ′h′′

(1+τ 2 f ′2)3/2

]
−2τ 3(1−a) f ′B4,2( fa,τ , χ

ε
N , f, f, τ f, τ f )

[
π εN h′′

(1+τ 2 f ′2)3/2

]
+3τ 2 f ′a,τ

{
π εN B1,1( fa,τ , τ f )

[
f ′ f ′′h′′

(1+τ 2 f ′2)5/2

]
−B1,1( fa,τ , τ f )

[
π εN f ′ f ′′h′′

(1+τ 2 f ′2)5/2

]}
+ f ′a,τ

{
B1,1(π

ε
N , τ f )

[
f ′a,τh′′

(1+τ 2 f ′2)3/2

]
+B1,1( fa,τ , τ f )

[
π εN
′h′′

(1+τ 2 f ′2)3/2

]}
−2 f ′a,τ B2,1(π

ε
N , fa,τ , τ f )

[
h′′

(1+τ 2 f ′2)3/2

]
−2τ 2 f ′a,τ B3,2(π

ε
N , fa,τ , f, τ f, τ f )

[
f ′h′′

(1+τ 2 f ′2)3/2

]
+2τ 2 f ′a,τ B4,2(π

ε
N , fa,τ , f, f, τ f, τ f )

[
h′′

(1+τ 2 f ′2)3/2

]
.

Recalling that f ′ vanishes at infinity, we obtain by virtue of Remark 3.3, the interpolation property (1-4),
and Young’s inequality that

‖S1[h]‖2 ≤ 1
3µ‖π

ε
j h‖H3 + K‖h‖H2 (6-18)

provided that ε is sufficiently small. Furthermore, Remark 3.3 implies that for ε sufficiently small

‖S2[h]‖2 = a
∥∥∥∥B11( fa,τ , τ f )

[
π εN h′′′

(1+ τ 2 f ′2)3/2
[1− (1+ τ 2 f ′2)3/2]

]∥∥∥∥
2

≤ C‖π εN h′′′‖2‖χ εN [1− (1+ τ
2 f ′2)3/2]‖∞ ≤ 1

3µ‖π
ε
j h‖H3 + K‖h‖H2 . (6-19)

Since a(1− a)= 0, we compute that

S3[h] = −a2 B2,1( f, f, τ f )[π N
ε h′′′],

and the arguments presented in Step 4 of the proof of Theorem 4.2 yield

‖S3[h]‖2 ≤ 1
3µ‖π

ε
j h‖H3 + K‖h‖H2 (6-20)
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for ε sufficiently small. Finally,

‖S4[h]‖2 = a2
‖B0,1(0)[3(π εN )

′h′′+ 3(π εN )
′′h′+ (π εN )

′′′h]‖2 ≤ K‖h‖H2, (6-21)

and combining (6-17)–(6-21) we obtain the estimate (6-10) for j = N. �

The Fourier multipliers defined by (6-11)–(6-12) are generators of strongly continuous analytic semi-
groups in L(L2(R)) and they satisfy resolvent estimates which are uniform with respect to xεj ∈ R and
τ ∈ [0, 1]. More precisely, we have the following result.

Proposition 6.2. Let f ∈ H 2(R) be fixed. Given x0 ∈ R and τ ∈ [0, 1], let

Ax0,τ := −
π

(1+ τ 2 f ′2(x0))3/2
(∂4

x )
3/4.

Then, there exists a constant κ0 ≥ 1 such that

λ−Ax0,τ ∈ Isom(H 3(R), L2(R)), (6-22)

κ0‖(λ−Ax0,τ )[h]‖2 ≥ |λ| · ‖h‖2+‖h‖H3 (6-23)

for all x0 ∈ R, τ ∈ [0, 1], λ ∈ C with Re λ≥ 1, and h ∈ H 3(R).

Proof. The proof is similar to that of Proposition 4.3 and therefore we omit it. �

We now conclude with the following general result.

Theorem 6.3. Let f ∈ H 2(R) be given. Then

−8σ ( f ) ∈H(H 3(R), L2(R)).

Proof. As mentioned in the discussion preceding Theorem 6.1, we only need to prove the claim for the
leading-order term 8σ,1( f ). Let κ0 ≥ 1 be the constant determined in Proposition 6.2 and let µ := 1

2κ0.
By virtue of Theorem 6.1 there exist constants ε ∈ (0, 1) and K = K (ε) > 0, an ε-localization family
{π εj : −N + 1≤ j ≤ N } that satisfies (4-1)–(4-5), and for each −N + 1≤ j ≤ N and τ ∈ [0, 1] operators
A j,τ ∈ L(H 3(R), L2(R)) such that

‖π εj 8σ,1(τ f )[h] −A j,τ [π
ε
j h]‖2 ≤

1
2κ0
‖π εj h‖H3 + K‖h‖H2 (6-24)

for all −N + 1≤ j ≤ N, τ ∈ [0, 1], and h ∈ H 3(R). Furthermore, Proposition 6.2 implies

κ0‖(λ−A j,τ )[π
ε
j h]‖2 ≥ |λ| · ‖π εj h‖2+‖π εj h‖H3 (6-25)

for all −N + 1≤ j ≤ N, τ ∈ [0, 1], λ ∈ C with Re λ≥ 1, and h ∈ H 3(R). Combining (6-24)–(6-25), we
find

κ0‖π
ε
j (λ−8σ,1(τ f ))[h]‖2 ≥ κ0‖(λ−A j,τ )[π

ε
j h]‖2− κ0‖π

ε
j 8σ,1(τ f )[h] −A j,τ [π

ε
j h]‖2

≥ |λ| · ‖π εj h‖2+ 1
2‖π

ε
j h‖H3 − κ0K‖h‖H2
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for all −N + 1 ≤ j ≤ N, τ ∈ [0, 1], λ ∈ C with Re λ ≥ 1, and h ∈ H 3(R). Summing up over
j ∈ {−N + 1, . . . , N }, we infer from Lemma 4.1 that there exists a constant C ≥ 1 with the property that

C‖h‖H2 +C‖(λ−8(τ f ))[h]‖2 ≥ |λ| · ‖h‖2+‖h‖H3

for all τ ∈ [0, 1], λ ∈ C with Re λ ≥ 1, and h ∈ H 3(R). Using (1-4) and Young’s inequality, it follows
that there exist constants κ ≥ 1 and ω > 0 with the property that

κ‖(λ−8σ,1(τ f ))[h]‖2 ≥ |λ| · ‖h‖2+‖h‖H3 (6-26)

for all τ ∈ [0, 1], λ ∈ C with Re λ ≥ ω, h ∈ H 3(R). Since (ω−8σ,1(τ f ))|τ=0 ∈ Isom(H 3(R), L2(R)),
the method of continuity together with (6-26) yields that

ω−8σ,1( f ) ∈ Isom(H 3(R), L2(R)). (6-27)

The claim follows from (6-26) (with τ = 1), (6-27), and [Lunardi 1995, Proposition 2.4.1 and Corol-
lary 2.1.3]. �

We are now in a position to prove the well-posedness for the Muskat problem with surface tension.

Proof of Theorem 1.2. Let s ∈ (2, 3), s̄ = 2, 1>α := 1
3 s >β := 2

3 > 0. Combining (6-4) and Theorem 6.3,
it follows that

−8σ ∈ Cω(H 2(R),H(H 3(R), L2(R))).

Since
H 2(R)= [L2(R), H 3(R)]β and H s(R)= [L2(R), H 3(R)]α,

we now infer from Theorem 1.5 that (1-1), or equivalently (6-3), possesses a maximally defined solution

f := f ( · ; f0) ∈ C([0, T+( f0)), H s(R))∩C((0, T+( f0)), H 3(R))∩C1((0, T+( f0)), L2(R))

with
f ∈ C (s−2)/3([0, T ], H 2(R)) for all T < T+( f0).

Concerning the uniqueness of solutions, we next show that any classical solution

f̃ ∈ C([0, T̃ ), H s(R))∩C((0, T̃ ), H 3(R))∩C1((0, T̃ )), L2(R)), T̃ ∈ (0,∞],

to (6-3) satisfies
f̃ ∈ Cη([0, T ], H 2(R)) for all T ∈ (0, T̃ ), (6-28)

where η := (s− 2)/(s+ 1). To this end, we recall that

8σ ( f )[ f ] = f ′B1,1( f, f )[(κ( f ))′] + B0,1( f )[(κ( f ))′] +2A0,0( f )[ f ′] for f ∈ H 3(R). (6-29)

Let T ∈ (0, T̃ ) be fixed. Lemma 3.1(i) implies that

sup
[0,T ]
‖A0,0( f̃ )[ f̃ ′]‖2 ≤ C. (6-30)
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We now consider the highest-order terms in (6-29). Arguing as in Lemma 3.5, it follows from
Remark 3.3 that B0,1( f )[κ( f )], B1,1( f, f )[κ( f )] ∈ H 1(R) for all f ∈ H 3(R), with

(B0,1( f )[κ( f )])′ = B0,1( f )[(κ( f ))′] − 2B2,2( f ′, f, f, f )[κ( f )],

(B1,1( f, f )[κ( f )])′ = B1,1( f, f )[(κ( f ))′] + B1,1( f ′, f )[κ( f )] − 2B3,2( f ′, f, f, f, f )[κ( f )].

Furthermore, given t ∈ (0, T ] and ϕ ∈ H 1(R), integration by parts together with f̃ ∈ C([0, T ], H s(R))

leads us to∣∣∣∣∫
R

f̃ ′(t)(B1,1( f̃ (t), f̃ (t))[κ( f̃ (t))])′ϕ dx
∣∣∣∣

=

∣∣∣∣∫
R

f̃ ′′(t)B1,1( f̃ (t), f̃ (t))[κ( f̃ (t))]ϕ dx
∣∣∣∣+ ∣∣∣∣∫

R

f̃ ′(t)B1,1( f̃ (t), f̃ (t))[κ( f̃ (t))]ϕ′ dx
∣∣∣∣≤ C‖ϕ‖H1,

so that
sup
(0,T ]
‖ f̃ ′(B1,1( f̃ , f̃ )[κ( f̃ )])′‖H−1 ≤ C, (6-31)

and similarly
sup
(0,T ]
‖(B0,1( f̃ )[κ( f̃ )])′‖H−1 ≤ C. (6-32)

We now estimate the term f ′B1,1( f ′, f )[κ( f )] with f ∈ H 3(R) in the H−1(R)-norm. To this end, we
rely on the formula

B1,1( f ′, f )[κ( f )] = T1( f )− T2( f )− T3( f ),

where

T1( f )(x) :=
∫
∞

0

κ( f )(x − y)− κ( f )(x + y)
y

f ′(x)− f ′(x − y)
y

1
1+ (δ[x,y] f/y)2

dy,

T2( f )(x) :=
∫
∞

0

κ( f )(x + y)
y

f ′(x + y)− 2 f ′(x)+ f ′(x − y)
y

1
1+ (δ[x,y] f/y)2

dy,

T3( f )(x) :=
∫
∞

0

κ( f )(x + y)
y

f ′(x)− f ′(x + y)
y

1
[1+ (δ[x,y] f/y)2][1+ (δ[x,−y] f/y)2]

×
f (x + y)− f (x − y)

y
f (x + y)− 2 f (x)+ f (x − y)

y
dy.

We estimate the terms f̃ ′Ti ( f̃ ), 1≤ i ≤ 3, separately. Given t ∈ (0, T ] and ϕ ∈ H 1(R), we compute∣∣∣∣∫
R

f̃ ′(t)T1( f̃ (t))ϕ dx
∣∣∣∣

≤ C‖ϕ‖∞

∫
∞

0

∫
R

|κ( f̃ (t))(x−y)−κ( f̃ (t))(x+y)|
y

| f̃ ′(t, x)− f̃ ′(t, x−y)|
y

dx dy

≤ C‖ϕ‖∞

∫
∞

0

1
y2

(∫
R

|κ( f̃ (t))(x−y)−κ( f̃ (t))(x+y)|2 dx
)1/2(∫

R

| f̃ ′(t, x)− f̃ ′(t, x−y)|2 dx
)1/2

dy

= C‖ϕ‖∞

∫
∞

0

1
y2

(∫
R

|F(κ( f̃ (t)))|2(ξ)|ei2ξ y
−1|2 dξ

)1/2(∫
R

|F( f̃ ′(t))|2(ξ)|eiyξ
−1|2 dξ

)1/2

dy,
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and since

|eiyξ
− 1|2 ≤ C(1+ |ξ |2)[y21(0,1)(y)+ 1[y≥1](y)],

|ei2yξ
− 1|2 ≤ C(1+ |ξ |2)s−2

[y2(s−2)1(0,1)(y)+ 1[y≥1](y)],
y > 0, ξ ∈ R,

it follows that∣∣∣∣∫
R

f̃ ′(t)T1( f̃ (t))ϕ dx
∣∣∣∣≤ C‖ϕ‖∞‖κ( f̃ (t))|H s−2‖ f̃ (t)‖H1

∫
∞

0
ys−31(0,1)(y)+ y−21[y≥1](y) dy

≤ C‖ϕ‖H1 . (6-33)

To bound the curvature term in the H s−2(R)-norm we have use the inequality

‖κ( f )‖H s−2 ≤ C‖(1+ f ′2)−3/2
‖BCs−3/2‖ f ‖H s for all f ∈ H s(R).

Similarly we have∣∣∣∣∫
R

f̃ ′(t)T2( f̃ (t))ϕ dx
∣∣∣∣≤ C‖ϕ‖∞

∫
∞

0

1
y2

(∫
R

|κ( f̃ (t))(x + y)|2 dx
)1/2

×

(∫
R

| f̃ ′(t, x + y)− 2 f̃ ′(t, x)+ f̃ ′(t, x − y)|2 dx
)1/2

dy

≤ C‖ϕ‖∞

∫
∞

0

1
y2

(∫
R

|F( f̃ ′(t))|2(ξ)|eiyξ
− 2+ e−iyξ

|
2 dξ

)1/2

dy

≤ C‖ϕ‖∞

∫
∞

0
ys−31(0,1)(y)+ y−21[y≥1](y) dy

≤ C‖ϕ‖H1 (6-34)

by virtue of

|eiyξ
− 2+ e−iyξ

|
2
≤ C(1+ |ξ |2)s−1

[y2(s−1)1(0,1)(y)+ 1[y≥1](y)], y > 0, ξ ∈ R.

Lastly, since H s−1(R) ↪→ BCs−3/2(R) for s 6= 5
2

(
the estimate (6-35) holds though also for s = 5

2

)
and

H s(R) ↪→ BC1(R), the inequality

|eiyξ
− 2+ e−iyξ

|
2
≤ C(1+ |ξ |2)2[y41(0,1)(y)+ 1[y≥1](y)], y > 0, ξ ∈ R,

leads us to∣∣∣∣∫
R

f̃ ′(t)T3( f̃ (t))ϕ dx
∣∣∣∣≤ C‖ϕ‖∞

∫
∞

0

ymin{1,s−3/2}

y3

(∫
R

|F( f̃ (t))|2(ξ)|eiyξ
− 2+ e−iyξ

|
2 dξ

)1/2

dy

≤ C‖ϕ‖∞

∫
∞

0
ymin{0,s−5/2}1(0,1)(y)+ y−21[y≥1](y) dy

≤ C‖ϕ‖H1 . (6-35)

Gathering (6-33)–(6-35), we conclude that

sup
(0,T ]
‖ f̃ ′B1,1( f̃ ′, f̃ )[κ( f̃ )]‖H−1 ≤ C, (6-36)
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and similarly we obtain

sup
(0,T ]

[
‖ f̃ ′B3,2( f̃ ′, f̃ , f̃ , f̃ , f̃ )[κ( f̃ )]‖H−1 +‖B2,2( f̃ ′, f̃ , f̃ , f̃ )[κ( f̃ )]‖H−1

]
≤ C. (6-37)

Combining (6-30)–(6-32), (6-36), and (6-37), it follows that f̃ ∈ BC1((0, T ], H−1(R)). Recalling that
η = (s− 2)/(s+ 1), (1-4) together with the mean value theorem yields

‖ f̃ (t)− f̃ (s)‖H2 ≤ ‖ f̃ (t)− f̃ (s)‖ηH−1‖ f̃ (t)− f̃ (s)‖1−ηH s ≤ C |t − s|η, t, s ∈ [0, T ],

which proves (6-28) and the uniqueness claim in Theorem 1.2.
Finally, let us assume that T+( f0) <∞ and that

sup
[0,T+( f0))

‖ f (t)‖H s <∞.

Arguing as above, we find that

‖ f (t)− f (s)‖H (s+2)/2 ≤ C |t − s|(s−2)/(2s+2), t, s ∈ [0, T+( f0)).

The criterion for global existence in Theorem 1.5 applied for α := 1
6(s+ 2) and β := 2

3 implies that the
solution can be continued on an interval [0, τ ) with τ > T+( f0) and that

f ∈ C (s−2)/6([0, T ], H 2(R)) for all T ∈ (0, τ ).

The uniqueness claim in Theorem 1.5 leads us to a contradiction. Hence our assumption was false and
T+( f0)=∞. �

Appendix A: Some technical results

The following lemma is used in the proof of Theorem 4.2.

Lemma A.1. Given f ∈ H s(R), s ∈
( 3

2 , 2
)
, and τ ∈ [0, 1], let aτ : R→ R be defined by

aτ (x) := PV
∫

R

y
y2+ τ 2(δ[x,y] f )2

dy, x ∈ R.

Let further α := 1
2 s− 3

4 ∈ (0, 1). Then, aτ ∈ BCα(R)∩C0(R),

sup
τ∈[0,1]

‖aτ‖BCα <∞, (A-1)

and, given ε0 > 0, there exists η > 0 such that

sup
τ∈[0,1]

sup
|x |≥η
|aτ (x)| ≤ ε0. (A-2)

Proof. It holds that

aτ (x)= τ 2 lim
δ→0

∫ 1/δ

δ

f (x + y)− 2 f (x)+ f (x − y)
y2

f (x + y)− f (x − y)
y

y4

5(x, y)
dy, x ∈ R,
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with

5(x, y) := [y2
+ τ 2(δ[x,−y] f )2][y2

+ τ 2(δ[x,y] f )2].

Letting

I (x, y) := τ 2 f (x + y)− 2 f (x)+ f (x − y)
y2

f (x + y)− f (x − y)
y

y4

5(x, y)
, (x, y) ∈ R× (0,∞),

it follows that

|I (x, y)| ≤ 8
(
‖ f ‖2

∞

1
y3 1[1,∞)(y)+‖ f ′‖∞[ f ′]s−3/2

1
y5/2−s 1(0,1)(y)

)
, (x, y) ∈ R× (0,∞). (A-3)

The latter estimate was obtained by using the fact that f ∈ BCs−1/2(R), s − 1
2 ∈ (1, 2), together with

(3-7). Hence,

aτ (x)=
∫
∞

0
I (x, y) dy, x ∈ R,

and supτ∈[0,1] ‖aτ‖∞ <∞. To estimate the Hölder seminorm of aτ , we compute for x, x ′ ∈ R that

|aτ (x)− aτ (x ′)| ≤
∫
∞

0
|I (x, y)− I (x ′, y)| dy ≤ T1+ T2+ T3, (A-4)

where

T1 :=

∫
∞

0

| f (x+ y)−2 f (x)+ f (x− y)|
y2

|[ f (x+ y)− f (x− y)]−[ f (x ′+ y)− f (x ′− y)]|
y

y4

5(x, y)
dy,

T2 :=

∫
∞

0

|[ f (x+ y)−2 f (x)+ f (x− y)]−[ f (x ′+ y)−2 f (x ′)+ f (x ′− y)]|
y2

×
| f (x ′+ y)− f (x ′− y)|

y
y4

5(x, y)
dy,

T3 :=

∫
∞

0

| f (x ′+ y)−2 f (x ′)+ f (x ′− y)|
y2

| f (x ′+ y)− f (x ′− y)|
y

|5(x, y)−5(x ′, y)|
y4 dy.

Using the mean value theorem, we have

|[ f (x+y)− f (x−y)]−[ f (x ′+y)− f (x ′−y)]|
y

≤ 2
∫ 1

0
| f ′(x+(2τ−1)y)− f ′(x ′+(2τ−1)y)| dτ

≤ 2[ f ′]s−3/2|x−x ′|s−3/2, y > 0,

and, much as above, we find that

|T1| ≤ C‖ f ‖2H s |x − x ′|2α. (A-5)

To deal with the second term we appeal to the formula

f (x + y)− 2 f (x)+ f (x − y)= y[ f ′(x + y)− f ′(x − y)] + y
∫ 1

0
f ′(x + τ y)− f ′(x + y) dτ

− y
∫ 1

0
f ′(x − τ y)− f ′(x − y) dτ for x , y ∈ R,
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and we get

|[ f (x + y)− 2 f (x)+ f (x − y)] − [ f (x ′+ y)− 2 f (x ′)+ f (x ′− y)]|
y2 ≤ T2a + T2b+ T2c,

where

T2a :=
|[ f ′(x + y)− f ′(x − y)] − [ f ′(x ′+ y)− f ′(x ′− y)]|

y

≤ 2[ f ′]2α

(
1
y

1[1,∞)(y)|x − x ′|2α + 2
1

y1−α 1(0,1)(y)|x − x ′|α
)
,

T2b :=
1
y

∫ 1

0

∣∣[ f ′(x + τ y)− f ′(x + y)] − [ f ′(x ′+ τ y)− f ′(x ′+ y)]
∣∣ dτ

≤ 2[ f ′]2α

(
1
y

1[1,∞)(y)|x − x ′|2α +
1

y1−α 1(0,1)(y)|x − x ′|α
)
,

T2c :=
1
y

∫ 1

0

∣∣[ f ′(x − τ y)− f ′(x − y)] − [ f ′(x ′− τ y)− f ′(x ′− y)]
∣∣ dτ

≤ 2[ f ′]2α

(
1
y

1[1,∞)(y)|x − x ′|2α +
1

y1−α 1(0,1)(y)|x − x ′|α
)
,

and therewith
|T2| ≤ C‖ f ‖2H s (|x − x ′|α + |x − x ′|2α). (A-6)

Finally, since
|5(x, y)−5(x ′, y)|

y4 ≤ 4‖ f ′‖∞(1+‖ f ′‖2
∞
)[ f ′]2α|x − x ′|2α,

we infer from (A-3) that

|T3| ≤ C‖ f ‖4H s (1+‖ f ‖2H s )(|x − x ′|α + |x − x ′|2α). (A-7)

The relation (A-1) is a simple consequence of (A-4)–(A-7) and of supτ∈[0,1] ‖aτ‖∞ <∞.
To prove that aτ vanishes at infinity, let ε0 > 0 be arbitrary. We write

aτ (x)=
∫ M

0
I (x, y) dy+

∫
∞

M
I (x, y) dy, x ∈ R,

for some M > 1 with
4‖ f ‖2

∞

M2 ≤
ε0

2
.

Recalling (A-3), it follows that for all x ∈ R we have∫
∞

M
|I (x, y)| dy ≤ 8‖ f ‖2

∞

∫
∞

M

1
y3 dy =

4‖ f ‖2
∞

M2 ≤
ε0

2
.

Let β ∈ (0, 1) be chosen such that 3
2 +β < s. Since f ∈ C0(R), there exists η > M with

| f (y)| ≤
[ (

s− 3
2 −β

)
ε0 M3/2+β−s

32([ f ′]s−3/2‖ f ′‖1−β∞ + 1)

]1/β

for all |y| ≥ η−M .
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Using this inequality, it follows that for all |x | ≥ η we have

|aτ (x)| ≤
∫ M

0
|I (x, y)| dy+ 1

2ε0 ≤
1
2ε0+ 8[ f ′]s−3/2‖ f ′‖1−β

∞

∫ M

0

| f (x + y)− f (x − y)|β

y5/2+β−s dy ≤ ε0;

hence aτ ∈ C0(R) and (A-2) holds true. �

The next result is used in Proposition 2.1.

Lemma A.2. Given f ∈ H 5(R) and ω̄ ∈ H 2(R), set

ṽ(x, y) := 1
2π

∫
R

(−(y− f (s), x − s)
(x − s)2+ (y− f (s))2

ω̄(s) ds in R2
\ [y= f (x)]. (A-8)

Let further �− := [y< f (x)], �+ := [y> f (x)], and ṽ± := ṽ|�± . Then, ṽ± ∈ C(�±)∩C1(�±) and

ṽ±(x, y)→ 0 for |(x, y)| →∞. (A-9)

Proof. It is easy to see that ṽ± ∈ C1(�±). Plemelj’s formula further shows that ṽ± ∈ C(�±) and

ṽ±(x, f (x))= 1
2π

PV
∫

R

(−( f (x)− f (x − s)), s)
s2+ ( f (x)− f (x − s))2

ω̄(x − s) ds∓ 1
2
(1, f ′(x))ω̄(x)

1+ f ′2(x)
, x ∈ R,

or equivalently, with the notation in Remark 3.3,

ṽ±|[y= f (x)] =±
1
2
(1, f ′)ω̄

1+ f ′2
−

1
2π

B1,1( f, f )[ω̄] + i
2π

B0,1( f )[ω̄].

Recalling that f ∈ H 5(R) and ω̄ ∈ H 2(R), the arguments in the proof of Lemma 3.5 show that
B1,1( f, f )[ω̄] and B0,1( f )[ω̄] belong to H 1(R); thus

ṽ±(x, f (x))→ 0 for |x | →∞. (A-10)

Furthermore, since f and ω̄ vanish at infinity, we find, much as in the proof of (A-2), that

sup
[y≥n]
|ṽ+| + sup

[y≤−n]
|ṽ−| → 0 for n→∞ (A-11)

and that, for arbitrary 0< a < b,

sup
[a≤y≤b]∩[|x |≥n]

|ṽ+| + sup
[−b≤y≤−a]∩[|x |≥n]

|ṽ−| → 0 for n→∞. (A-12)

Finally, arguing along the lines of the proof of Privalov’s theorem, see [Lu 1993, Theorem 3.1.1]
(the lengthy details, which for ω̄ ∈ W 1

∞
(R) are simpler than in that book, are left to the interested

reader), it follows that there exists a constant C , which depends only on f and ω̄, such that for each
z = (x, y) ∈ R2

\ [y= f (x)] with y ∈ [−‖ f ‖∞− 1, ‖ f ‖∞+ 1] the following inequalities hold:

|ṽ+(z)− ṽ+(x, f (x))| ≤ C |y− f (x)|1/2 if y > f (x),

|ṽ−(z)− ṽ−(x, f (x))| ≤ C |y− f (x)|1/2 if y < f (x).
(A-13)

The relation (A-9) is an obvious consequence of (A-10)–(A-13). �
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Appendix B: The proof of Theorem 1.5

This section is dedicated to the proof of Theorem 1.5. In the following E0 and E1 denote complex Banach
spaces4 and we assume that the embedding E1 ↪→ E0 is dense. In view of [Amann 1995, Theorem I.1.2.2],
we may represent the set H(E1, E0) of negative analytic generators as

H(E1, E0)=
⋃
κ≥1
ω>0

H(E1, E0, κ, ω),

where, given κ ≥ 1 and ω > 0, the class H(E1, E0, κ, ω) consists of the operators A ∈ L(E1, E0) having
the properties

• ω+A ∈ Isom(E1, E0), and

• κ−1
≤
‖(λ+A)x‖0
|λ| · ‖x‖0+‖x‖1

≤ κ for all 0 6= x ∈ E1 and all Re λ≥ ω.

Given A ∈H(E1, E0, κ, ω) and r ∈ (0, κ−1), it follows from [Amann 1995, Theorem I.1.3.1(i)] that

A+ B ∈H(E1, E0, κ/(1− κr), ω) for all ‖B‖L(E1,E0) ≤ r . (B-1)

This property shows in particular that H(E1, E0) is an open subset of L(E1, E0).
The proof of Theorem 1.5 uses to a large extent the powerful theory of parabolic evolution oper-

ators developed in [Amann 1995]. The following result is a direct consequence of Theorem II.5.1.1,
Lemma II.5.1.3 and Lemma II.5.1.4 in that paper.

Proposition B.1. Let T > 0, ρ ∈ (0, 1), L ≥ 0, κ ≥ 1, and ω > 0 be given constants. Moreover, let
A⊂ Cρ([0, T ],H(E1, E0)) be a family satisfying

• [A]ρ,[0,T ] := sup
t 6=s∈[0,T ]

‖A(t)−A(s)‖
|t − s|ρ

≤ L for all A ∈A, and

• A(t) ∈H(E1, E0, κ, ω) for all A ∈A and t ∈ [0, T ].

Then, given A ∈ A, there exists a unique parabolic evolution operator5 UA for A possessing E1 as a
regularity subspace. Moreover, the following hold:

(i) There exists a constant C > 0 such that

‖UA(t, s)‖L(Ej )+ (t − s)‖UA(t, s)‖L(E0,E1) ≤ C (B-2)

for all (t, s) ∈1∗T := {(t, s) ∈ [0, T ]2 : 0≤ s < t ≤ T }, j ∈ {0, 1}, and all A ∈A.

(ii) Let 1T := {(t, s) ∈ [0, T ]2 : 0 ≤ s ≤ t ≤ T } and 0 ≤ β ≤ α ≤ 1. Then, given x ∈ Eα, it holds that
UA( · , · )x ∈C(1T , Eα). Moreover, UA ∈C(1∗T ,L(Eβ, Eα)), and there exists a constant C > 0 such
that

(t − s)α−β‖UA(t, s)‖L(Eβ ,Eα) ≤ C (B-3)

for all (t, s) ∈1∗T and all A ∈A.

4The proof of Theorem 1.5 in the context of real Banach spaces is identical.
5In the sense of [Amann 1995, Section II].
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(iii) Given 0≤ β < 1 and 0< α ≤ 1, there exists a constant C > 0 such that

(t − s)β−α‖(UA−UB)(t, s)‖L(Eα,Eβ ) ≤ C max
τ∈[s,t]

‖A(τ )−B(τ )‖L(E1,E0) (B-4)

for all (t, s) ∈1∗T and all A, B ∈A.

Let now A be a family as in Proposition B.1. Given A ∈A and x ∈ E0, we consider the linear problem

u̇+A(t)u = 0, t ∈ (0, T ], u(0)= x . (B-5)

Using the fundamental properties of the parabolic evolution operator UA associated to A, it follows from
[Amann 1995, Remark II.2.1.2] that (B-5) has a unique classical solution u := u( · ; x,A), that is,

u := u( · ; x,A) ∈ C1((0, T ], E0)∩C((0, T ], E1)∩C([0, T ], E0)

and u satisfies the equation of (B-5) pointwise. This solution is given by the expression

u(t)=UA(t, 0)x, t ∈ [0, T ].

If x ∈ Eα for some α ∈ (0, 1), we may use the relations (B-2)–(B-4) to derive additional regularity
properties for the solution, as stated below.

Proposition B.2. Let A be a family as in Proposition B.1. The following hold true:

(i) Let 0≤ β ≤ α < 1 and x ∈ Eα. Then u ∈ Cα−β([0, T ], Eβ) and there exists C > 0 such that

‖u(t)− u(s)‖β ≤ C(t − s)α−β‖x‖α (B-6)

for all (t, s) ∈1T , x ∈ Eα, and A ∈A.

(ii) Let 0≤ β < α ≤ 1. Then, there exists C > 0 such that

‖u(t; x,A)− u(t; x,B)‖β ≤ Ctα−β max
τ∈[0,t]

‖A(τ )−B(τ )‖L(E1,E0)‖x‖α (B-7)

for all t ∈ [0, T ], x ∈ Eα, and A, B ∈A.

Proof. The claim (i) follows from [Amann 1995, Theorem II.5.3.1], while (ii) is a consequence of
Theorem II.5.2.1 of the same book. �

By means of a contraction argument we now obtain as a preliminary result the following (uniform)
local existence theorem, which stays at the basis of Theorem 1.5.

Proposition B.3. Let the assumptions of Theorem 1.5 be satisfied and let f̄ ∈Oα :=Oβ ∩Eα . Then, there
exist constants δ = δ( f̄ ) > 0 and r = r( f̄ ) > 0 with the property that for all f0 ∈Oα with ‖ f0− f̄ ‖α ≤ r
the problem

ḟ =8( f )[ f ], t > 0, f (0)= f0, (QP)

possesses a classical solution

f ∈ C([0, δ],Oα)∩C((0, δ], E1)∩C1((0, δ], E0)∩Cα−β([0, δ], Eβ).
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Moreover, if h is a further solution to (QP) with

h ∈ C((0, δ], E1)∩C1((0, δ], E0)∩Cη([0, δ],Oβ) for some η ∈ (0, α−β],

then f ≡ h.

Proof. Existence: We first note that Oα is an open subset of Eα; see, e.g., [Amann 1995, Section I.2.11].
Since by assumption −8 ∈ C1−(Oβ,H(E1, E0)), it follows from (B-1) there exist constant R > 0, L > 0,
κ ≥ 1, and ω > 0 such that

‖8( f )−8(g)‖L(E1,E0) ≤ L‖ f − g‖β for all f, g ∈ BEβ ( f̄ , R)⊂Oβ, (B-8)

−8( f ) ∈H(E1, E0, κ, ω) for all f ∈ BEβ ( f̄ , R). (B-9)

Let ρ ∈ (0, α−β) be fixed. If r > 0 is sufficiently small, it holds that

BEα ( f̄ , r)⊂ BEβ ( f̄ , R)∩Oα. (B-10)

Given δ > 0, r > 0 such that (B-10) holds (r and δ will be fixed later on) and f0 ∈ BEα ( f̄ , r), we define
the set

M :=
{

f ∈ C([0, δ],BEβ ( f̄ , R)) : f (0)= f0 and ‖ f (t)− f (s)‖β ≤ |t − s|ρ for all t, s ∈ [0, δ]
}
.

Since M is a closed subset of C([0, δ], Eβ), it is also a (nonempty) complete metric space. Given f ∈M,
we define

A f (t) := −8( f (t)), t ∈ [0, δ].

As a direct consequence of (B-8) and of the definition of M, it follows that

‖A f (t)−A f (s)‖L(E1,E0) ≤ L‖ f (t)− f (s)‖β ≤ L|t − s|ρ, t, s ∈ [0, δ],

and (B-9) yields that A f (t) ∈H(E1, E0, κ, ω) for all f ∈M and all t ∈ [0, δ]. Proposition B.1 ensures the
existence of a parabolic evolution operator UA f for A f . Given f ∈M, it is natural to consider the linear
evolution problem

ġ+A f (t)g = 0, t ∈ (0, δ], g(0)= f0, (B-11)

which has, in view of Proposition B.2, a unique classical solution

g := 0( f ) :=UA f ( · , 0) f0 ∈ Cα−β([0, δ], Eβ)∩C([0, δ], Eα).

The existence part of Proposition B.1 reduces to proving that 0 :M→M is a strict contraction for suitable
r and δ. Clearly 0( f )(0)= f0. Moreover, (B-6) yields

‖0( f )(t)−0( f )(s)‖β ≤C |t−s|α−β‖ f0‖α ≤Cδα−β−ρ(‖ f̄ ‖α+r)|t−s|ρ ≤ |t−s|ρ for all t, s ∈ [0, δ],

provided that

Cδα−β−ρ(‖ f̄ ‖α + r)≤ 1. (B-12)
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The latter estimate (with s = 0) yields

‖0( f )(t)− f̄ ‖β ≤ ‖0( f )(t)−0( f )(0)‖β+‖ f0− f̄ ‖β ≤ δρ+r‖iEα↪→Eβ‖L(Eα,Eβ ) ≤ R for all t ∈ [0, δ],

if we additionally require that
δρ + r‖iEα↪→Eβ‖L(Eα,Eβ ) ≤ R. (B-13)

We now assume that r and δ are chosen such that (B-12)–(B-13) hold true. It then follows that 0 :M→M

is a well-defined map. Furthermore, given f, h ∈M, the estimate (B-7) together with (B-8) yields

‖0( f )(t)−0(h)(t)‖β = ‖UA f (t, 0) f0−UAh (t, 0) f0‖β

≤ Ctα−β max
τ∈[0,t]

‖A f (τ )−Ah(τ )‖L(E1,E0)‖ f0‖α

≤ Cδα−βL(‖ f̄ ‖α + r) max
t∈[0,δ]

‖ f (t)− h(t)‖β

≤
1
2 max

t∈[0,δ]
‖ f (t)− h(t)‖β for all t ∈ [0, δ],

provided that
Cδα−βL(‖ f̄ ‖α + r)≤ 1

2 . (B-14)

Hence, if r and δ are chosen such that also (B-14) is satisfied, then 0 is a strict contraction and Banach’s
fixed-point theorem ensures that 0 has a fixed point. This proves the existence part.

Uniqueness: Let f be a solution to (QP) as found above and let h 6≡ f be a further classical solution
such that h ∈ Cη([0, δ], Eβ) for some η ∈ (0, α−β]. The real number

t0 :=max{t ∈ [0, δ] : f |[0,t] = h|[0,t]}

satisfies 0≤ t0 < δ and f = h on [0, t0]. Since f (t0) ∈Oα, there exist R > 0, L > 0, κ ≥ 1, and ω > 0
such that

‖8(u)−8(v)‖L(E1,E0) ≤ L‖u− v‖β for all u, v ∈ BEβ ( f (t0), R)⊂Oβ,

−8(u) ∈H(E1, E0, κ, ω) for all u ∈ BEβ ( f (t0), R).

Given δ0 ∈ (t0, δ], the set

M0 :=

{
h∈C([0, δ0−t0],BEβ ( f (t0), R)) :h(0)= f (t0),

‖h(t)− h(s)‖β
|t − s|η/2

≤ 1 for all t 6= s ∈ [0, δ0− t0]
}

is a (nonempty) complete metric space. Letting Ah(t) := −8(h(t)) for h ∈M0 and t ∈ [0, δ0− t0], we
may argue as in the existence part of this proof to conclude that the linear problem

u̇+Ah(t)u = 0, t ∈ (0, δ0− t0], h(0)= f (t0)

has a unique classical solution 00(h) ∈ Cα−β([0, δ0 − t0], Eβ) ∩ C([0, δ0 − t0], Eα). Furthermore,
00 : M0 → M0 is a 1

2 -contraction provided that δ0 is sufficiently close to t0; hence 00 has a unique
fixed point. But, if δ0 − t0 is sufficiently small, then it can be easily seen that f ( · + t0)|[0,δ0−t0] and
h( · +t0)|[0,δ0−t0] both belong to M0 and these functions are therefore fixed points of 00. This implies f =h
on [0, δ0] for some δ0 > t0, in contradiction with the definition of t0. This proves the uniqueness claim. �
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We are now in a position to prove Theorem 1.5.

Proof of Theorem 1.5. Let f0 ∈Oα be given. According to Proposition B.3 (with f̄ := f0), there exists
δ > 0 and a classical solution

f ∈ C([0, δ],Oα)∩C((0, δ], E1)∩C1((0, δ], E0)∩Cα−β([0, δ], Eβ)

to (QP). This solution can be continued as follows. Applying Proposition B.3 (with f̄ := f (δ)), we find
r > 0 and δ1 > 0 such that

ḣ =8(h)[h], t ∈ (0, δ1], h(0)= f1 (B-15)

has a classical solution h ∈ C([0, δ1],Oα)∩C((0, δ1], E1)∩C1((0, δ1], E0)∩Cα−β([0, δ1], Eβ) for each
f1 ∈Oα with ‖ f1− f (t0)‖α ≤ r . Let t0 ∈ (0, δ) be such that

t0+ δ1 > δ and ‖ f (t0)− f̄ ‖α ≤ r.

Hence it is possible to choose f1 := f (t0) as an initial value in (B-15). Since f ( · + t0) : [0, δ− t0]→Oα
and h : [0, δ− t0] →Oα are both classical solutions to

ḣ =8(h)[h], t ∈ (0, δ− t0], h(0)= f (t0),

by Proposition B.3 they must coincide. Consequently, the function F : [0, t0+ δ1] →Oα defined by

F(t) :=
{

f (t), t ∈ [0, δ],
h(t − t0), t ∈ [δ, t0+ δ1]

is a classical solution to (QP) which extends f . The maximal solution f = f ( · ; f0) : I ( f0)→ Oα in
Theorem 1.5 is defined by setting

I ( f0) :=
⋃{
[0, δ] : (QP) has a classical solution fδ on [0, δ] with fδ ∈ Cα−β([0, δ], Eβ)

}
,

f (t) := fδ(t) for t ∈ [0, δ].

The construction above shows that f is well-defined and that I ( f0)= [0, T+( f0)) with T+( f0)≤∞. This
proves the existence claim in Theorem 1.5. The uniqueness assertion is an immediate consequence of
Proposition B.3.

We now prove the criterion for global existence. Hence, let us assume that the unique classical maximal
solution f = f ( · ; f0) : [0, T+( f0))→Oα to (QP) is uniformly continuous when restricted to each interval
[0, T ] ∩ [0, T+( f0)), with T > 0 arbitrary. We further assume that τ := T+( f0) <∞; otherwise we are
done. Then, since f is uniformly continuous on [0, τ ), it is straightforward to see that the limit

f (τ ) := lim
t↗τ

f (t)

exists in Oα. If dist( f (t), ∂Oα) 6→ 0 for t→ τ , it must hold that f (τ ) ∈Oα. Proceeding as above, we
may extend in view of Proposition B.3 this maximal solution to an interval [0, τ + δ1) for some δ1 > 0,
which is a contradiction and we are done.
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Finally, the semiflow property of the solution map [(t, f0) 7→ f (t; f0)] stated at the end of Theorem 1.5
is proven in detail in [Amann 1988, Theorem 8.1]. Furthermore, if 8 is additionally smooth, then
proceeding as in Theorem 11.3 of the same paper one may show that the semiflow map is also smooth. For
real-analytic 8, the real-analyticity of [(t, f0) 7→ f (t; f0)] follows by estimating the Fréchet derivatives
of the flow map, which is a rather tedious and lengthy procedure which we refrain from presenting
here. �
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MAXIMAL GAIN OF REGULARITY IN VELOCITY AVERAGING LEMMAS

DIOGO ARSÉNIO AND NADER MASMOUDI

We investigate new settings of velocity averaging lemmas in kinetic theory where a maximal gain of
half a derivative is obtained. Specifically, we show that if the densities f and g in the transport equation
v � rxf D g belong to Lr

xLr 0

v , where 2n=.nC 1/ < r � 2 and n� 1 is the dimension, then the velocity
averages belong to H

1=2
x .

We further explore the setting where the densities belong to L
4=3
x L2

v and show, by completing the work
initiated by Pierre-Emmanuel Jabin and Luis Vega on the subject, that velocity averages almost belong
to W

n=.4.n�1//;4=3
x in this case, in any dimension n� 2, which strongly indicates that velocity averages

should almost belong to W
1=2;2n=.nC1/

x whenever the densities belong to L
2n=.nC1/
x L2

v .
These results and their proofs bear a strong resemblance to the famous and notoriously difficult

problems of boundedness of Bochner–Riesz multipliers and Fourier restriction operators, and to smoothing
conjectures for Schrödinger and wave equations, which suggests interesting links between kinetic theory,
dispersive equations and harmonic analysis.
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1. Introduction and main results

Velocity averaging lemmas are a category of regularity results concerning the kinetic transport equation

.@t C v � rx/f .t;x; v/D g.t;x; v/; (1-1)

where .t;x; v/ 2 Œ0;1/�Rn �Rn, or its stationary counterpart

v � rxf .x; v/D g.x; v/; (1-2)

where .x; v/ 2 Rn �Rn, with n� 1.
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by NSF grant no. DMS-1716466.
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Variants of the above equations are also relevant. Indeed, different spatial and velocity domains, as
well as nonlinear velocity fields (consider the relativistic case), are sometimes studied. Nevertheless,
for the sake of simplicity, we will focus exclusively on the Euclidean stationary setting (1-2), which,
we believe, captures the essential features of kinetic transport (at least as far as velocity averaging is
concerned). We refer the interested reader to Appendix C, where we establish an equivalence of velocity
averaging lemmas for velocities in Rn and in Sn�1. In particular, this provides a rather general method
to adapt the results contained in the present work to settings where velocities belong to a manifold of
codimension 1, which includes the nonstationary transport equation (1-1).

The classical velocity averaging lemma was established first in [Golse et al. 1988]. It asserts that if
f;g 2L2

x;v satisfy the transport relation (1-2), then the velocity averages of f enjoy the regularizationZ
Rn

f .x; v/ '.v/ dv 2H
1
2

x

for any given ' 2L1c .R
n/ (that is, any measurable function bounded almost everywhere with compact

support). Note that such regularity results had already been suggested in weaker forms in [Agoshkov
1984; Golse et al. 1985].

An extension of this fundamental result to the L
p
x;v setting, with 1 < p <1, was also obtained in

[Golse et al. 1988] and later substantially improved in [Bézard 1994; DeVore and Petrova 2001; DiPerna
et al. 1991]. Generally speaking, such generalizations are deduced by interpolating the preceding L2

x;v

case with the degenerate L1
x;v and L1x;v cases. In this setting, it is established that, for any ' 2L1c .R

n/,Z
Rn

f .x; v/ '.v/ dv 2W s;p
x

whenever f;g 2L
p
x;v, with s D 1� 1

p
if p � 2 and for any 0� s < 1

p
if p > 2.

When p � 2, the optimality of the regularity index s D 1� 1
p

in the preceding result was shown in
[Lions 1995] through a straightforward dimensional analysis. As for the case p > 2, it was also argued in
that paper that the regularity of velocity averages cannot be improved beyond the value s D 1

p
, but this

optimality argument remains incomplete, for it requires the use of a larger class of velocity weights '.v/
with unbounded support. In fact, it turns out that, in general, the value s D 1

p
is not optimal in the

range 2< p <1, for it is possible to largely improve this regularity index beyond the value s D 1
p

in
dimension nD 1, as stated in the following one-dimensional theorem.

Theorem 1.1. In dimension nD 1, let f;g 2L
p
x;v, with 2< p <1, be such that (1-2) holds true.

Then, Z
R

f .x; v/ '.v/ dv 2W s;p
x

for all 0� s < 1� 1
p

and any ' 2L1c .R/.

This result clearly follows from the more general Theorem 4.3, by setting p D r therein, which is
established later on in Section 4.
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The question of the optimality of the value s D 1
p

, when p > 2, in higher dimensions n � 2 was
finally definitely settled in [DeVore and Petrova 2001, Theorem 1.3], where a remarkable construction
of a convoluted counterexample shows the necessity of the constraint s � 1

p
whenever p > 2 and n� 2.

Note however that it remained so far unknown whether the endpoint value s D 1
p

is admissible or not. It
turns out that, as a byproduct of our methods, we are able to settle this question here by showing that the
endpoint value s D 1

p
is indeed admissible when p > 2 (see Theorem 3.6).

On the whole, the maximal gain of regularity, when n� 2, clearly happens for the value p D 2, where
half a derivative is gained by averaging in velocity.

It is to be emphasized that the refined interpolation methods used in [DeVore and Petrova 2001] yield
more precise results. Indeed, it is established therein that, for each 1 < p <1, the velocity averages
actually belong to the Besov space Bs

p;p.R
n/ with s Dmin

˚
1
p
; 1� 1

p

	
, which is smaller than W s;p.Rn/

for values 1< p � 2, and that this is optimal. Nevertheless, for the sake of simplicity, we will only focus
here on standard Sobolev spaces and we will omit the more precise formulations of velocity averaging
lemmas in Besov spaces, which can be easily deduced from our proofs if needed (we refer to the proof of
Proposition 3.2 in Section 3 for some more details on this matter).

Numerous generalizations of velocity averaging lemmas are available. For instance, several settings
where f and g belong to distinct spaces (possibly with different homogeneity) of different kinds (Besov,
Sobolev, etc.) with mixed integrability and regularity in space and velocity have been considered in
[Arsénio and Masmoudi 2014; Bézard 1994; DiPerna et al. 1991; Jabin and Vega 2004; Westdickenberg
2002]. Naturally, the ensuing gain of regularity on the velocity averages depends then on the different
parameters used to characterize these function spaces. In these more general settings, the phenomena of
dispersion (as discovered in [Castella and Perthame 1996]) and hypoellipticity (as discovered in [Bouchut
2002]; see also [Arsénio and Saint-Raymond 2011]) in kinetic transport equations come into play and,
loosely speaking, interact with the regularization due to velocity averaging to produce new interesting
results. We refer to [Arsénio and Masmoudi 2014; Westdickenberg 2002] and [Arsénio and Masmoudi
2014; Arsénio and Saint-Raymond 2011; Jabin and Vega 2004] for such results combining velocity
averaging with the dispersive and hypoelliptic effects, respectively. Note that none of these phenomena is
fully distinct from the others.

It was argued in [Arsénio and Masmoudi 2014; Westdickenberg 2002] that the influence of dispersion on
velocity averaging produces a gain of integrability which can be interpreted, through Sobolev embeddings,
as a regularity gain which is sometimes larger than half a derivative and even possibly close or equal
to a whole derivative (note that the gain of regularity can never be larger than a whole derivative, for the
transport operator is a differential operator of order 1). Furthermore, the hypoelliptic phenomenon may
also produce a regularity gain close or equal to a whole derivative on the velocity average, see [Arsénio and
Masmoudi 2014; Jabin and Vega 2004], but this requires assuming some regularity on f and g a priori.

In this article, we will exclusively focus on the gain of regularity due to velocity averaging, possibly
combined with dispersion (without interpreting the gain of regularity through Sobolev embeddings as
was done in [Arsénio and Masmoudi 2014; Westdickenberg 2002], though), and will mostly ignore
the aforementioned effects produced by hypoellipticity that were analyzed in [Arsénio and Masmoudi
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2014; Jabin and Vega 2004]. To this end, we will only consider settings where f and g belong to mixed
Lebesgue spaces and no a priori regularity is assumed. In this case, it is largely agreed that the gain
of regularity cannot exceed half a derivative in dimension n � 2 (but there is no proof of this general
assertion, yet).

Thus, so far, the maximal gain of half a derivative is only known to be attained when f and g both
belong to L2

x;v. In the present work, we explore new settings of velocity averaging lemmas where a
maximal gain of half a derivative is obtained. Our first main result shows that it is possible to gain exactly
half a derivative even if f and g do not belong to L2

x;v.

Theorem 1.2. In any dimension n� 1, let f;g 2Lr
xLr 0

v , with 2n
nC1

< r � 2, be such that (1-2) holds true.
Then, Z

Rn

f .x; v/ '.v/ dv 2H
1
2

x

for any ' 2L1c .R
n/.

This result clearly follows from the more general Theorem 3.6 by setting a D 2 therein, which is
established later on in Section 3. It is based on a T T �-argument combined with the dispersion due to
kinetic transport studied in Section 2 and velocity averaging.

Such a result had already been hinted at in [Jabin and Vega 2003; 2004], where it was established that,
in two dimensions only (nD 2), velocity averages of f belong to H s

x , for any 0 � s < 1
2

, provided f
and g belong to L

4
3
x L1v ; see [Jabin and Vega 2004, Theorem 1.3].

In fact, in [Jabin and Vega 2003; 2004], the authors further identified another case which could
potentially lead to a gain of almost half a derivative on the velocity averages. More precisely, they showed
that, in two dimensions only (nD 2), velocity averages of f belong to W

s; 4
3

x for any 0� s < 1
2

, provided
f and g belong to L

4
3
x L2

v and under the peculiar assumption that g.x; v/ '.v/ is an even function in v;
see [Jabin and Vega 2004, Theorem 1.2]. The latter assumption is rather unnatural and it remained unclear
whether this evenness condition could be removed or not.

By building upon the work from [Jabin and Vega 2004], combining our methods with the remarkable
proof of Theorem 1.2 therein, we are able to bring a definitive answer to this two-dimensional problem,
which is precisely the content of the following result.

Theorem 1.3. In dimension nD 2, let f;g 2L
4
3
x L2

v be such that (1-2) holds true.
Then, Z

R2

f .x; v/ '.v/ dv 2W
s; 4

3
x

for all 0� s < 1
2

and any ' 2L1c .R
2/.

This result clearly follows from the more general Theorem 5.4, by setting r D 4
3

therein, which
is proved later on in Section 5. Its proof follows from the analysis of the boundedness of some adjoint
transport operator on the dual space L4

x D .L
4
3
x /
0 and uses crucially the trivial fact that the exponent 4

is an even integer to control the square of this adjoint transport operator in L2
x rather than the operator

itself in L4
x . This fact, among other characteristics of the proof, is strikingly reminiscent of the proofs of
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boundedness of Bochner–Riesz multipliers and Fourier restriction operators in two dimensions. We refer
to [Grafakos 2009] for more on these subjects from harmonic analysis.

In higher dimensions, we extend the preceding result into the following theorem.

Theorem 1.4. In any dimension n� 3, let f;g 2L
4
3
x L2

v be such that (1-2) holds true.
Then, Z

Rn

f .x; v/ '.v/ dv 2W
s; 4

3
x

for all 0� s < n
4.n�1/

and any ' 2L1c .R
n/.

This result clearly follows from the more general Theorem 6.8 by setting r D 4
3

therein, which is
proved later on in Section 6.

Observe that, employing rather general interpolation methods, it is possible to deduce a large variety
of velocity averaging results, similar to those asserted in the above theorems, combining spaces for f
and g with distinct integrabilities. We refer to [Arsénio and Masmoudi 2014] (see in particular the very
general Theorem 4.7 therein) for such interpolation techniques.

It is likely that Theorem 1.4 may be largely improved. Indeed, note that a formal interpolation would
yield

.L1
xL2

v;L
2n

nC1
x L2

v/ n
2.n�1/

DL
4
3
x L2

v and .L1
x;W

1
2
; 2n

nC1
x / n

2.n�1/
DW

n
4.n�1/

; 4
3

x ; (1-3)

whence formally extrapolating the above regularity result has us believe that, for any ' 2L1c .R
n/,Z

Rn

f .x; v/ '.v/ dv 2W
s; 2n

nC1
x (1-4)

for all 0 � s < 1
2

, whenever f;g 2 L
2n

nC1
x L2

v (see [Arsénio 2015] for a survey of velocity averaging
lemmas and more on such conjectures; see also Figure 2 and the related comments following the proof of
Theorem 6.8, below). In other words, Theorem 1.4 would follow from a formal interpolation of (1-4)
with the degenerate L1 case.

However, we do not know how to prove this estimate. . .

Finally, we would like to emphasize that, in this work, we investigate velocity averaging for its own
sake, as a functional analytic study. Indeed, the search for maximal regularity in velocity averaging
lemmas has already proved a challenging and interesting endeavor requiring diverse and original methods
(extending beyond the classical settings of velocity averaging), producing interesting new results and
leading to exciting research perspectives.

However, it should not be overlooked that velocity averaging lemmas also enjoy concrete applications
to a wide variety of fundamental problems from kinetic theory. Such applications include, for instance,
the existence of renormalized solutions to the Boltzmann equation [DiPerna and Lions 1989] and the con-
vergence of such solutions to Leray solutions of the Navier–Stokes equations in a viscous incompressible
hydrodynamic regime [Golse and Saint-Raymond 2004].

The investigation of sharp versions of averaging lemmas, such as the ones presented in this work,
may lead to fundamental applications, as well. Indeed, we believe that such results may be very useful
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in establishing optimal regularity estimates in nonlinear conservation laws, through the study of their
corresponding kinetic formulations. In particular, averaging lemmas with mixed integrability in x and v
may be crucial in such attempts, for kinetic formulations are often based on densities which display
distinct integrability or regularity properties in each variable.

We refer to [Lions et al. 1994a] (see Theorem 4 therein; see also [Lions et al. 1994b, Proposition 7] in
the context of isentropic gas dynamics) for an early application of velocity averaging lemmas to kinetic
formulations of scalar conservation laws, showing the existence of a regularizing phenomena as a truly
nonlinear effect in hyperbolic equations. Nevertheless, the smoothness properties obtained through such
applications have so far fallen short of the expected optimal regularity. In fact, other methods have already
succeeded in establishing better results, see [Golse and Perthame 2013], which are sharp. However, one
should keep in mind that the versions of velocity averaging lemmas used in these works were not sharp in
the first place (for the kinetic formulation under consideration). In fact, it is likely that sharp versions of
velocity averaging lemmas would yield sharp regularity properties in conservation laws, when kinetic
formulations are available, which would largely expand the possibilities of reaching optimal regularity
results in nonlinear conservation laws.

However, such research would require significant efforts and we will therefore not delve any further
into this realm of applications, leaving it for subsequent works.

2. The transport operator and dispersive estimates

Let f .x; v/;g.x; v/ 2 S.Rn
x �Rn

v/ (S denotes the Schwartz space of rapidly decaying functions) be a
solution of the transport equation (1-2). Then, introducing some cutoff function � 2 S.R/ such that
�.0/D 1 and recalling the Fourier inversion formula

�.r/D
1

2�

Z
R

eirs
O�.s/ ds D

Z
R

e�irs
Q�.s/ ds;

where

O�.r/D

Z
R

e�irs�.s/ ds;

Q�.r/D
1

2�

Z
R

eirs�.s/ ds;

one can show that

f .x; v/DAtf .x; v/C tBtg.x; v/; (2-1)

with

Atf .x; v/D

Z
R

f .x� stv; v/ Q�.s/ ds;

Btg.x; v/D

Z
R

g.x� stv; v/ Q�.s/ ds;

where �.s/D .1� �.s//=.is/ and t 2 R is an interpolation parameter. We refer the reader to [Arsénio
and Masmoudi 2014, Section 3] for full details on the derivation of this decomposition formula.
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Further considering the Fourier transform in the space variable only,

Of .�; v/D Fxf .�; v/D

Z
Rn

e�i��xf .x; v/ dx;

it holds that
FxAtf .�; v/D �.t� � v/Fxf .�; v/;

FxBtg.�; v/D �.t� � v/Fxg.�; v/:
(2-2)

Notice that � is smooth near the origin, for �.0/D 1, and that

Q�.s/D
1

2�

Z
R

eisr 1� �.r/

i r
dr D 1fs�0g�

Z s

�1

Q�.�/ d�: (2-3)

In particular, Q� is bounded pointwise and, if Q� is compactly supported, so is Q� . Observe, however, that it
is not possible to isolate the origin from the support of Q� .

Generally speaking, the estimates established in this work clearly apply to both operators At and Bt .
Nevertheless, for the sake of simplicity, we only formulate our results in terms of the operator At . The
corresponding results for Bt are easily deduced by replacing � by � .

In this section, we study the dispersive properties of the operators At and Bt , which will serve in the
proof of Theorem 3.6 below. To this end, we will use the following basic dispersive estimate established
in [Castella and Perthame 1996]:
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for all 1� r � p �1: (2-4)

Our first dispersive estimate on At below is an elementary application of (2-4) to the operator At . We
will not make any direct use of this simple result later on. It does, however, provide some insight into the
dispersive properties of At and, therefore, we list it here for completeness.

Proposition 2.1. For any given 1� r � p �1, the operator At satisfies the estimate

kAtf kLp
xLr

v
�

1

jt jn.
1
r
� 1

p
/

 Q�.s/

sn. 1
r
� 1

p
/


L1

kf kLr
xL

p
v

for all t ¤ 0.

Proof. This result is a simple extension of the standard dispersive estimate (2-4). Indeed, we have
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Next, combining the dispersion of the free transport flow (2-4) with a T T �-argument yields the
following proposition.

Proposition 2.2. Let 2� a�1, 2< q �1 and 1� r � p �1 be such that
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Then, the operator At satisfies the estimate
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for all t ¤ 0, where C > 0 only depends on q.

Proof. First of all, notice that the case q D1, so that aD p D r , is obvious, with a constant C D 1. We
may therefore assume, without any loss of generality, that q <1.

Thus, we estimate, using the dispersion (2-4),
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Hence, by virtue of the Hardy–Littlewood–Sobolev inequality,
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where C > 0 only depends on q. �

The preceding proposition only accepts parameters in the range 2 � a �1. The next proposition
handles the range 1� a� 2. It is obtained by interpolating the estimate from the preceding proposition
with the degenerate L1 case. Figure 1 represents the range of validity of the parameters 1

p
and 1

r
for both

Propositions 2.2 and 2.3. More precisely, the shaded region therein delimited by the points .0; 0/,
�

1
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; 0
�
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2
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is handled by Proposition 2.2, whereas the shaded region bounded by the points�
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�
and .1; 1/ concerns Proposition 2.3.

Proposition 2.3. Let 1� a� 2, a0 < q �1 and 1� r � p �1 be such that
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Then, the operator At satisfies the estimate
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for all t ¤ 0, where C > 0 only depends on q and a.
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Figure 1. Range of validity of the parameters 1
r

and 1
p

in Propositions 2.2 and 2.3.

Proof. This result will follow from the interpolation of the case aD 2 from Proposition 2.2 and the trivial
estimate

kAtf kL1
x;v
� k Q�kL1kf kL1
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: (2-5)

Thus, without any loss of generality, we assume that 1< a< 2 and we define 0< � < 1, 2< q1 �1

and 1� r1 � p1 �1 by
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In particular, notice that, since 2
q1
< 1, necessarily 1< r1 � p1 <1. On Figure 1, the point
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It follows then from Proposition 2.2 that
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where C > 0 only depends on q1.
Now, standard results from complex interpolation theory of Lebesgue spaces, see [Bergh and Löfström

1976, Section 5.1], establish that
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Therefore, interpolating estimates (2-5) and (2-6) (these estimates remain valid for complex-valued
functions), which are multilinear in Q� and f (use the multilinear complex interpolation theorem [Bergh
and Löfström 1976, Theorem 4.4.1]), we arrive at
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;

where C > 0 only depends on q and a. �
Note that the adjoint operator of At satisfies A�t DA�t . Combining Propositions 2.2 and 2.3 with a

duality argument yields the following result.

Proposition 2.4. Let 1� a�1, maxf2; ag< q �1 and 1� r � p �1 be such that
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Then, the operator At satisfies the estimate
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for all t ¤ 0, where C > 0 only depends on q and a.

Proof. This result easily follows from a duality argument. Indeed, by Proposition 2.2 (if 1� a� 2) or
Proposition 2.3 (if 2� a�1), we haveˇ̌̌̌Z
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where C > 0 only depends on q and a. Then, taking the supremum over all g 2L
p0

x Lr 0

v easily concludes
the proof of the proposition. �

3. Dispersion and velocity averaging

We proceed now to combining the dispersive estimates from the previous section with the classical
regularizing effects due to velocity averaging. This will eventually lead to our first main result Theorem 3.6.

To this end, we consider, for any t ¤ 0 and '.v/2L1c .R
n/, the velocity averaging operator Tt defined,

for all f .x; v/ 2 S.Rn �Rn/, by

Ttf .x/D

Z
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In particular, for all g.x/ 2 S.Rn/, one has, by duality,Z
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Z
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f .x; v/T �t g.x; v/ dx dv;
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where the adjoint operator T �t is defined by

T �t g.x; v/DA�t .g.x/ '.v//D

Z
R

g.xC stv/ Q�.s/ ds '.v/:

We will also consider the operators Tt and T �t defined with Bt instead of At .
For clarity, throughout this section, we will always consider the same given velocity weight '.v/ 2

L1c .R
n/ and we will assume that its support is contained inside a closed ball of radius R> 0 centered at

the origin.
We begin by applying the classical Hilbertian methods of velocity averaging from [Golse et al. 1988] to

the operator Tt and its adjoint T �t . The resulting estimates are recorded in the following proposition. For
the sake of completeness and convenience of the reader, we provide a complete justification of these results.

Proposition 3.1. The operator Tt and its adjoint T �t satisfy the estimates
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for all t ¤ 0, where C > 0 only depends on the dimension.

Proof. We deal with the estimate on the adjoint operator T �t first. Thus, it is readily seen, by Plancherel’s
theorem and using the Fourier representation (2-2) of At , that
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Furthermore, using again Plancherel’s theorem, we find that
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where we have rescaled the variable v by a factor j�j in the direction �
j�j

only.
Then, writing v0 D .v2; : : : ; vn/ and recalling that the support of ' is contained in a closed ball of

radius R> 0 centered at the origin, we deduce that
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Finally, combining estimates (3-1) and (3-2) establishes the estimate on T �t .
The estimate on Tt is then easily deduced from the estimate on T �t by a duality argument. �
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Interpolating the preceding result with the degenerate L1 case yields the following proposition.

Proposition 3.2. For any given 1� a� 2, the operator Tt and its adjoint T �t satisfy the estimates
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for all t ¤ 0, where s D 1� 1
a

and C > 0 only depends on a and the dimension.

Proof. We deal with the estimate on Tt first.
It was established in [DeVore and Petrova 2001, Theorem 3.2] that the real interpolation space

.L1;H
1
2 /2s;a, where s D 1� 1

a
with 1< a< 2, is precisely the Besov space Bs

a;a, which is continuously
embedded into the classical fractional Sobolev space W s;a; that is,
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x :

Note that it would be possible to formulate a better result by using below the smaller Besov space Bs
a;a,

as in [DeVore and Petrova 2001]. However, for the sake of simplicity, we choose not to do so and stick to
Sobolev spaces. We refer to [DeVore and Petrova 2001] for more details on this.

Next, it is well known from the real interpolation theory of Lebesgue spaces, see [Bergh and Löfström
1976, Theorem 5.2.1], that

.L1
x;v;L

2
x;v/2s;a DLa

x;v:

Therefore, the first part of this result easily follows from the real interpolation of the classical estimate
on Tt from Proposition 3.1 with the case p D 1 of the simple estimate
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valid for any 1� p �1.
There only remains to establish the estimate on the adjoint operator T �t . To this end, note that T �t

commutes with the differentiation in x so that the estimate on T �t from Proposition 3.1 can be recast as
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where C > 0 only depends on the dimension.
We wish now to complex interpolate the preceding estimate with the elementary control
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where h1 denotes the local Hardy space; see [Runst and Sickel 1996, Section 2.1.2] for a definition.
To this end, we use the results from complex interpolation theory, see [Bergh and Löfström 1976,

Theorem 5.1.1; Runst and Sickel 1996, Section 2.5.2],

.L1
x;v;L

2
x;v/Œ2s� DLa

x;v and .h1
x;H

� 1
2

x /Œ2s� DW �s;a
x ;



MAXIMAL GAIN OF REGULARITY IN VELOCITY AVERAGING LEMMAS 345

to deduce that
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Finally, we easily conclude the proof of the proposition by using again that T �t commutes with the
differentiation in x and replacing g by .1��x/

s
2 g in the above estimate. �

Combining now the preceding proposition with a duality argument yields the following result.

Proposition 3.3. For any given 2� a�1, the operator Tt and its adjoint T �t satisfy the estimates
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for all t ¤ 0, where s D 1
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and C > 0 only depends on a and the dimension.

Proof. These estimates follow straightforwardly from Proposition 3.2 through a duality argument.
Indeed, by Proposition 3.2, noticing that both Tt and T �t commute with differentiation in x, it holds thatˇ̌̌̌Z
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where C > 0 only depends on a and the dimension. Then, taking the supremum over all g 2La0
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concludes the proof of the first estimate on Tt .

Similarly, using Proposition 3.2 again, it holds thatˇ̌̌̌Z
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where C > 0 only depends on a and the dimension. Finally, taking the supremum over all f 2 La0
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easily concludes the proof of the proposition. �



346 DIOGO ARSÉNIO AND NADER MASMOUDI

From now on, in this section, we assume that the cutoff function �.r/ may be decomposed as a product
�.r/D�1.r/�2.r/, so that Q�.s/D Q�1� Q�2.s/. Naturally, we will denote by Ai

t , T i
t and T i�

t , where iD1; 2,
the respective operators At , Tt and T �t where we replace the cutoff � by �i . It is then readily seen that
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�tT
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t : (3-3)

As shown below, this useful trick allows us to combine the previous regularity results from this section
with the dispersive estimates from Section 2 to obtain new estimates on the operators Tt and T �t .

Proposition 3.4. Let 1� a�1, maxf2; ag< q �1 and 1� r � p �1 be such that
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Then, the operator T �t satisfies the estimate
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Proof. We treat the case 1 � a � 2 first, so that q > 2 and s D 1� 1
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successively employing Propositions 2.4 and 3.2, we find, noticing A1
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where C > 0 only depends on q, a and the dimension. Since jt j � 1, this concludes the proof of the
proposition when a� 2.

The case a�2 is handled similarly. One now has that q>a and sD 1
a

. Therefore, applying successively
Propositions 2.4 and 3.3, we find that
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where C > 0 only depend on q, a and the dimension. Since jt j � 1, this concludes the proof of the
proposition. �

Combining the previous result with a duality argument yields estimates on the operator Tt , which are
contained in the following proposition.

Proposition 3.5. Let 1� a�1, maxf2; a0g< q �1 and 1� r � p �1 be such that
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Then, the operator Tt satisfies the estimate
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Proof. This estimate follows straightforwardly from Proposition 3.4 through a duality argument.
Indeed, using Proposition 3.4, we find, since T �t commutes with differentiation in x, thatˇ̌̌̌Z
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where C > 0 only depends on q, a, ' and the dimension. Finally, taking the supremum over all g 2La0

x

easily concludes the proof of the proposition.
Note that, in order to deduce this result, we could just as well have applied here a combination of

Propositions 2.2 and 2.3 with Propositions 3.3 and 3.2, respectively. �

We proceed now to the main theorem of this section. It contains Theorem 1.2 presented in the
Introduction as special case (corresponding to the case aD 2 below) and provides a considerable extension
of the classical velocity averaging lemma in L2

x;v (corresponding to the case a D p D r D 2 below).
Indeed, observe that the case aD 2 therein yields a maximal gain of regularity of half a derivative on
velocity averages for a variety of parameters, which was previously known to occur only in the classical
L2

x;v setting.

Theorem 3.6. In any dimension n� 1, let 1� a�1, maxf2; a0g< q �1 and 1� r � p �1 be such
that

2

a
D

1

p
C

1

r
and n

�
1

r
�

1

p

�
D

2

q
:

Then, for any f;g 2Lr
x.R

nIL
p
v .R

n// such that (1-2) holds true, one hasZ
Rn

f .x; v/ '.v/ dv 2W s;a
x .Rn/
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for any ' 2L1c .R
n/, where s Dmin

˚
1� 1

a
; 1

a

	
. Furthermore, one has the estimate.1��x/

s
2

Z
Rn

f ' dv


La

x

� C.kf kLr
xL

p
v
CkgkLr

xL
p
v
/;

where C > 0 only depends on ' and constant parameters.

Proof. We consider first the refined interpolation formula (2-1), which is valid for solutions of the
transport equation (1-2), for some given cutoff � 2 S.R/. Clearly, further differentiating (2-1) in x and
then averaging in v yields.1��x/

s
2

Z
Rn

f ' dv


La

x

�

.1��x/
s
2

Z
Rn

Atf ' dv


La

x

C t

.1��x/
s
2

Z
Rn

Btg' dv


La

x

: (3-5)

We wish now to apply Proposition 3.5 to the preceding estimate. To this end, according to (3-3), we
take the decompositions

�.r/D �1.r/�2.r/ and �.r/D
1� �.r/

i r
D �1.r/�2.r/;

where
�1.r/D

1

.1C r2/
ˇ
2

; �1.r/D
1

.1C r2/
ˇ
2

;

�2.r/D .1C r2/
ˇ
2 �.r/; �2.r/D .1C r2/

ˇ
2 �.r/

for some fixed 1
q
< ˇ < 1

2
. In view of the technical Lemma B.1 from Appendix B, it then holds that

Q�1; Q�1 2Lq0 ; Q�2; Q�2 2L1 and �2; �2 2L1\L2:

All constants involving norms of the cutoff functions �1, �2, �1 and �2 in the right-hand side of (3-4) are
therefore finite.

Thus, applying Proposition 3.5 to estimate (3-5), we conclude, for any 0< t < 1, that.1��x/
s
2

Z
Rn

f ' dv


La

x

� C

 
1

t
1
q
Cs
kf kLr

xL
p
v
C t1�. 1

q
Cs/
kgkLr

xL
p
v

!
;

where C > 0 only depends on constant parameters. �

4. The one-dimensional case

In the previous section, by combining kinetic dispersion with velocity averaging, we have established, in
Theorem 3.6, a whole new range of regularity results on the solutions of the kinetic transport equation (1-2).
The results from Theorem 3.6 are valid in any dimension n� 1. In one dimension (nD 1), it turns out that
it is possible to obtain more results for a wide range of parameters which are not covered by Theorem 3.6.
This is due to the fact that, in one dimension, spatial frequencies are always parallel to velocities.

In the present section, we explore this one-dimensional setting, which provides a good test case
for velocity averaging lemmas in mixed Lebesgue spaces and allows one to get familiar with the
decompositions used in this work in a much simpler setting. It does not, however, set a road map
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for the remaining more involved sections concerning higher dimensions, for it heavily relies on the
elementary structure of the transport equation in one dimension.

We use the same notation as in the previous sections.

Proposition 4.1. In dimension nD 1, let 1< p <1, 1� r <1, 0� s < 1
r

and � 2 S.R/ be such that
Q� has its support contained inside a ball of radius r0 > 0 centered at the origin.

Then, the operator T �t satisfies the estimate

k.1��x/
s
2 T �t gkLp

xLr
v
�

C

jt js
.r0k Q�kL1/

1� 1
r .k Q�kL1 Ck.��/

sr
2 Q�kL1/

1
r kgkLp

x

for all t ¤ 0 such that jt j � 1, where C > 0 only depends on p, s and '.

Proof. First, it is readily seen, for any 1� r � p �1, that

kT �t gkLp
xLr

v
� kT �t gkLr

vL
p
x
� k Q�kL1 k'kLr

v
kgkLp

x
: (4-1)

When the restriction r � p is not satisfied, the above estimate fails and we need a more convoluted
estimate to handle this case. To this end, we write that

jT �t g.x; v/j D

ˇ̌̌̌Z
R

g.xC stv/ Q�.s/ ds'.v/

ˇ̌̌̌
D

ˇ̌̌̌
1

tv

Z
R

g.xC r/ Q�

�
r

tv

�
dr '.v/

ˇ̌̌̌
� k Q�kL1

ˇ̌̌̌
1

tv

Z
fjr j�jtvjr0g

g.xC r/ dr '.v/

ˇ̌̌̌
� 2r0k Q�kL1Mg.x/j'.v/j;

where Mg denotes the Hardy–Littlewood maximal function of g defined by

Mg.x/D sup
ı>0

1

2ı

Z
fjyj�ıg

jg.x�y/j dy:

Recall that the Hardy–Littlewood maximal operator g 7!Mg is bounded over Lp.R/ for any 1<p<1,
and maps L1.R/ into the standard weak-L1 space L1;1.R/; see [Grafakos 2008, Theorem 2.1.6]. It
therefore easily follows from the previous estimate that

kT �t gk
L

1;1
x Lr

v
� C r0k Q�kL1 k'kLr

v
kgkL1

x

and
kT �t gkLp

xLr
v
� C r0k Q�kL1 k'kLr

v
kgkLp

x
(4-2)

for any 1< p <1 and 1� r �1, where C > 0 only depends on p.
Next, we further compute, exploiting the one-dimensional structure of the operators, for any 0< ˛ < 1,

.��x/
˛
2 T �t g.x; v/D

Z
R

.��x/
˛
2 g.xC stv/ Q�.s/ ds '.v/

D
1

jtvj˛

Z
R

.��s/
˛
2 .g.xC stv// Q�.s/ ds '.v/

D
1

jtvj˛

Z
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g.xC stv/.��/
˛
2 Q�.s/ ds '.v/;
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whence, for any 1� p �1,

k.��x/
˛
2 T �t gkLp

xL1
v
� k.��x/

˛
2 T �t gkL1

vL
p
x
�
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2 Q�kL1

 1
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L1
v

kgkLp
x
;

which, when combined with (4-1), yields

k.1��x/
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v
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�
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�
kgkLp

x
; (4-3)

where C > 0 only depends on p and ˛.
We wish now to interpolate the bound (4-2), where we set r D1, with (4-3). To this end, recalling

that T �t commutes with differentiation in x, we first recast (4-3) as

kT �t gkLp
xL1

v
� C

�
k Q�kL1k'kL1

v
C

1

jt j˛
k.��/

˛
2 Q�kL1

 1
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'


L1
v

�
kgkW �˛;px

; (4-4)

and then we use the standard results from complex interpolation theory, see [Bergh and Löfström 1976,
Sections 5.1 and 6.4], valid for any 1< p; r <1,

.Lp
xL1v ;L

p
xL1

v/Œ 1
r
� DLp

xLr
v and .Lp

x ;W
�˛;p

x /Œ 1
r
� DW

�˛
r
;p

x ;

to deduce from the interpolation of (4-2) and (4-4) that
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 1
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kgk
W
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;

where C > 0 only depends on p and ˛. �

Note that it would be possible to improve the gain of regularity in the preceding proposition by assuming
that the support of the velocity weight '.v/ does not contain the origin. However, this is a rather unnatural
setting which we prefer to avoid here.

Combining the previous result with a duality argument yields estimates on the operator Tt , which are
contained in the following proposition.

Proposition 4.2. In dimension nD 1, let 1< p <1, 1< r �1, 0� s < 1� 1
r

and � 2 S.R/ be such
that Q� has its support contained inside a ball of radius r0 > 0 centered at the origin.

Then, the operator Tt satisfies the estimate

k.1��x/
s
2 Ttf kLp

x
�

C

jt js
.r0k Q�kL1/

1
r .k Q�kL1 Ck.��/

sr 0

2 Q�kL1/1�
1
r kf kLp

xLr
v

(4-5)

for all t ¤ 0 such that jt j � 1, where C > 0 only depends on p, s and '.

Proof. This estimate follows straightforwardly from Proposition 4.1 through a duality argument.
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Indeed, using Proposition 4.1, we find, since T �t commutes with differentiation in x, thatˇ̌̌̌Z
R

.1��x/
s
2 Ttf .x/g.x/ dx
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D
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;

where C > 0 only depends on p, s and '. Finally, taking the supremum over all g 2L
p0

x easily concludes
the proof of the proposition. �

We proceed now to the main theorem of this section.

Theorem 4.3. In dimension nD 1, let 1< p <1 and 1< r �1.
Then, for any f;g 2L

p
x.RIL

r
v.R// such that (1-2) holds true, one hasZ

R

f .x; v/ '.v/ dv 2W s;p
x .R/

for any ' 2L1c .R/ and any 0� s < 1� 1
r

. Furthermore, one has the estimate.1��x/
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xLr

v
CkgkLp

xLr
v
/;

where C > 0 only depends on ' and constant parameters.

Proof. We consider first the refined interpolation formula (2-1), which is valid for solutions of the
transport equation (1-2) for some given cutoff � 2 S.R/. Clearly, further differentiating (2-1) in x and
then averaging in v yields.1��x/

s
2

Z
R

f ' dv


L

p
x

�

.1��x/
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2

Z
R

Atf ' dv
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: (4-6)

We wish now to apply Proposition 4.2 to the preceding estimate. To this end, note that Q� and all of its
derivatives clearly are bounded pointwise and integrable. In order to apply that result, we also further
need to ask that Q� be compactly supported, which is always possible.

Next, in view of (2-3), notice that Q� also is bounded pointwise, integrable and compactly supported.
Therefore, there only remains to check that .��/

˛
2 Q� is integrable for any 0< ˛ < 1. This, in fact, easily

follows from a direct application of the technical Lemma B.2 from Appendix B to

F Œ.��/
˛
2 Q��D jr j˛

1� �.r/

i r
:

All constants involving norms of the cutoff functions � and � in the right-hand side of (4-5) are therefore
finite.

Thus, applying Proposition 4.2 to estimate (4-6), we conclude, for any 0< t < 1, that.1��x/
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;

where C > 0 only depends on constant parameters. �
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5. The two-dimensional case

Our study of the one-dimensional case in the previous section showed that it is possible to largely improve
the classical velocity averaging results in that setting. In particular, we showed therein that the gain of
regularity of velocity averages is, in some cases, substantially improved beyond the value 1

2
.

While such a general improvement is not achievable in higher dimensions (n � 2), in view of the
counterexamples from [DeVore and Petrova 2001, Theorem 1.3] discussed in our Introduction, it is
nevertheless possible, as shown below, to obtain new cases displaying a gain of regularity of velocity
averages of almost half a derivative.

In two dimensions (nD 2), this was already strongly suggested in [Jabin and Vega 2004, Theorem 1.2].
Here, we build upon the work from that paper to obtain refined two-dimensional velocity averaging results
displaying an almost maximal gain of regularity of half a derivative. In the next section, we will generalize
these methods to higher dimensions (n� 3), without achieving a gain of half a derivative, though.

We define now, in any dimension n� 1, the velocity averaging operator on the sphere

Stf .x/D

Z
Sn�1

Atf .x; v/ dv D

Z
Sn�1

Z
R

f .x� stv; v/ Q�.s/ ds dv;

and its adjoint operator

S�t g.x; v/DA�t .g.x//.x; v/D

Z
R

g.xC stv/ Q�.s/ ds;

so that Z
Rn

Stf .x/g.x/ dx D

Z
Rn�Sn�1

f .x; v/S�t g.x; v/ dx dv:

We will also consider the operators St and S�t defined with Bt instead of At . These operators correspond
to the kinetic transport equation (1-2) with velocities restricted to the sphere v 2 Sn�1 and are introduced
here for mere convenience and simplicity of analysis later on.

This reduction to the sphere is possible here because the regularization phenomenon in the transport equa-
tion (1-2) comes from averaging in velocity directions rather than integration along velocity magnitudes. In
fact, any bound established on St and S�t will yield a corresponding bound on Tt and T �t , respectively, as
shown below in Proposition 5.3 (we also refer the reader to Appendix C for a discussion of the equivalence
of velocity averaging lemmas with velocities in the full Euclidean space Rn and on the sphere Sn�1).

Note that this is not true in general. For instance, in the two-dimensional time-dependent setting
(1-1) with velocities restricted to the sphere S1 and f;g 2 L2

x;v, it was identified in [Bournaveas and
Perthame 2001] that only a quarter of a derivative could be gained on the velocity average of f , whereas
half a derivative is gained when velocities range in an open subset of R2 (which corresponds to a three-
dimensional setting .t;x/ 2 R1C2 with velocities restricted to a manifold of dimension 2, much like the
stationary case x 2 R3 with v 2 S2).

For completeness, we begin our analysis of the operators St and S�t by establishing their smoothing
effect in L2 employing the classical Hilbertian methods of velocity averaging from [Golse et al. 1988]. This
result is valid in any dimension n�2 and will also be used in the next section on higher-dimensional results.
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Proposition 5.1. In any dimension n � 2, the operator St and its adjoint S�t satisfy the estimates, for
any 0� s � 1

2
,
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s
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x
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x

for all t ¤ 0, where C > 0 only depends on the dimension.

Proof. This proof is almost identical to the general case of Proposition 3.1. Nevertheless, for later appli-
cations of this result, it is important to carefully keep track of the dependence of the constants on t and �.

We deal with the estimate on the adjoint operator S�t first. Thus, it is readily seen, by Plancherel’s
theorem, that
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: (5-1)

Furthermore, using again Plancherel’s theorem, we find that
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with the convention that jS0j D 2 when nD 2.
Hence, if n� 3, we easily deduce that
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In the two-dimensional case, the bound on the cutoff � is only slightly more involved. We estimate, in
this case, for any N > 0, that
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It therefore follows that, in any dimension n� 2,

k.��x/
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: (5-2)

Finally, combining estimates (5-1) and (5-2) establishes the estimate on S�t .
The estimate on St is then easily deduced from the estimate on S�t by a duality argument. �
At this stage, we need to further introduce a classical Littlewood–Paley decomposition, which will

be used in our proofs. To this end, let  0.�/;  .�/ 2 C1c .Rn/ be compactly supported smooth cutoff
functions, whose supports satisfy

supp 0 � fj�j � 1g and supp �
˚
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and such that
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D 1 for all � 2 Rn:

For any tempered distribution f .x/2S 0.Rn/, we define the dyadic blocks�0f .x/;�2kf .x/2S.Rn/,
for each k 2 Z, by

�0f D F�1 0.�/Ff and �2kf D F�1 
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so that

f D�0f C

1X
kD0

�2kf in S 0.Rn/: (5-3)

As in Section 3, from now on, we assume that the cutoff function �.r/ may be decomposed as a
product �.r/D �1.r/�2.r/, so that Q�.s/D Q�1 � Q�2.s/. We recall from (3-3) that

At DA1
t A2

t DA2
t A1

t ; St D S1
t A2

t D S2
t A1

t ; S�t DA2
�tS

1�
t DA1

�tS
2�
t ; (5-4)

where Ai
t , S i

t and S i�
t , with i D 1; 2, denote the respective operators At , St and S�t with the cutoff �

replaced by �i .
As shown in the results below, a key idea here is to use this trick to gain integration in one dimension

along v through the straightforward estimate

jS�t g.x; v/j2 D jA1
�tS

2�
t g.x; v/j2

� k Q�1kL1
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� k Q�1kL1 k Q�1kL1
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t g.xC stv; v/j2 ds;

(5-5)

where supp Q�1 � Œ�r1; r1�, for some r1 > 0, and thus obtain new estimates on the adjoint operator S�t .
The next proposition contains an estimate which is central to the present two-dimensional setting. It

strongly relies on the clever and elegant proof of Theorem 1.2 from [Jabin and Vega 2004], which it
crucially improves by exploiting the structure of the operator At through the use of (5-5).
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Proposition 5.2. In dimension nD 2, let 2� p � 4, 0� s < s0 <
1
2

and �1; �2 2 S.R/ be such that Q�1

and Q�2 have their supports contained inside balls of radii r1; r2 > 0, respectively, centered at the origin.
Then, the operator S�t satisfies the estimate
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for all t ¤ 0 such that jt j � 1, where C > 0 only depends on fixed parameters.

Proof. First, notice that, for any 2� p �1,
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As for the regularity estimate, we employ the bound (5-5) and the standard Littlewood–Paley dyadic
frequency decomposition previously introduced, to deduce, writing gk D�2k g for convenience, for any
k � 0, that
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Further using Proposition 5.1, we deduce that, for all t > 0 and any given 0< s < 1
2

,
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We claim now that

sup
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; (5-8)

where C > 0 only depends on fixed parameters. In order to establish (5-8), we employ the change of
variables .s1; s2/ 7! z D s1tv1C s2tv2 whenever v1 and v2 form a basis, which holds almost everywhere.
It is readily seen that the Jacobian determinant of this transformation is given by t2 sin � , where � 2 Œ0; ��
is the angle between v1 and v2 defined by cos � D v1 �v2. Thus, noticing that jzjD js1tv1Cs2tv2j� 2r1jt j,
we infer
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where we have used the notation

v? D

�
v1

v2

�?
D

�
�v2

v1

�
for any v 2 S1, and have decomposed the domain of integration v1 2 S1 into
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1[
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Si ;
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Si D

�
v1 2 S1

W
1
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< j sin � j �

1
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�
:

Recall now that Q�2 is supported inside a ball of radius r2 > 0 centered at the origin. Therefore, we find
that, in the last integrand above,
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?
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and

jzC stv1j � .2r1C r2/jt j:

Hence, considering a smooth cutoff function � 2 C1c .R/ such that 1fjsj�1g � �.s/� 1fjsj�2g, setting for
convenience r0 D 2.r1C r2/jt j, and defining, for each given x 2 R2, v2 2 S1 and i 2 N,
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we deduce from (5-9) that, using Proposition 5.1,
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;

where C > 0 is an independent constant.
Next, a direct application of the technical Lemma A.1 from Appendix A to the preceding estimate yields
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which establishes our claim (5-8).
Finally, combining estimates (5-7) and (5-8), we arrive at
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where C > 0 is an independent constant.
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In order to conclude, we write jg.x/j D
R1

0 1fjg.x/j�sg ds to deduce from the preceding estimate,
assuming g is nonnegative, that
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where L
4;1
x denotes a standard Lorentz space; see [Bergh and Löfström 1976, Section 1.3] or [Grafakos

2008, Section 1.4] for definitions and properties of Lorentz spaces. When, g is signed, we arrive at the
same estimate simply by decomposing g D gC�g� into its positive and negative parts, treating each
contribution separately, and then noticing that

kgCk
L

4;1
x
Ckg�k

L
4;1
x
� C

Z 1
0

ˇ̌
fjgC.x/j � sg

ˇ̌ 1
4 C

ˇ̌
fjg�.x/j � sg

ˇ̌ 1
4 ds

� C

Z 1
0

�ˇ̌
fjgC.x/j � sg

ˇ̌
C
ˇ̌
fjg�.x/j � sg

ˇ̌� 1
4 ds

� C

Z 1
0

ˇ̌
fjg.x/j � sg

ˇ̌ 1
4 ds � Ckgk

L
4;1
x
:

Moreover, by allowing an arbitrarily small loss of regularity, that is, by replacing 0< s < 1
2

by a slightly
smaller value, it is possible to replace the Lorentz space L

4;1
x by the standard Lebesgue space L4

x in the
right-hand side of the above estimate.

Therefore, on the whole, for any 0� s < s0 <
1
2

, we have established the estimate

kS�t gkkL4
xL2

v
�

C

jt j
1
2 2ks
k Q�1k

1
2

L1 k Q�1k
1
2

L1
.r1C r2/

1
4 .1C r1C r2/

1
2

�

  �2.r/

jr j
1
2
�s0


L2

Ck.1Cjr js0/�2.r/kL1 Ck Q�2kL1

!
kgkL4

x
;

where C > 0 only depends on constant parameters, which, when combined with the easy bound (5-6)
for low frequencies, yields
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Finally, recalling from complex interpolation theory, see [Bergh and Löfström 1976, Section 5.1], that,
for any 2< p < 4,
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v;L
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p
� DLp
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x;L
4
x/Œ2� 4
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x ;

we conclude the proof of the proposition by interpolating the estimate (5-10) with the classical estimate
on S�t from Proposition 5.1. �

Next, we utilize the previous result on the adjoint operator S�t to deduce corresponding estimates on
Tt and T �t .

Proposition 5.3. In dimension nD 2, let 4
3
� r � 2, 2 � p � 4, 0 � s < s0 <

1
2

and �1; �2 2 S.R/ be
such that Q�1 and Q�2 have their supports contained inside balls of radii r1; r2 > 0, respectively, centered at
the origin.

Then, the operators Tt and T �t satisfy the estimates
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and
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for all t ¤ 0 such that jt j � 1, where C > 0 only depends on fixed parameters.

Proof. It is readily seen that
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Therefore, for any 2� p �1, we compute in polar coordinates, recalling that the support of the velocity
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2/ is contained inside a closed ball of radius R> 0 centered at the origin,
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Then, combining Proposition 5.2 with the above estimate, we find
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where C > 0 is an independent constant, which establishes the estimate on T �t .
The estimate on Tt is then easily deduced from the estimate on T �t by a duality argument. �

We proceed now to the main theorem of this section. Note that an equivalent version of this result with
spherical averages and an identical regularity gain can be readily obtained by applying the methods from
Appendix C.

Theorem 5.4. In dimension nD 2, let 4
3
� r � 2.

Then, for any f;g 2Lr
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where C > 0 only depends on ' and constant parameters.

Proof. We consider first the refined interpolation formula (2-1), which is valid for solutions of the
transport equation (1-2), for some given cutoff � 2 S.R/. Clearly, further differentiating (2-1) in x and
then averaging in v yields.1��x/
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We wish now to apply Proposition 5.3 to the preceding estimate. To this end, according to (5-4), we
take the decompositions

�.r/D �1.r/�2.r/ and �.r/D
1� �.r/

i r
D �1.r/�2.r/;

where
Q�1.r/ 2 C1c .R/; �1.r/D

1

.1C r2/
1
4

;

Q�2.r/ 2 C1c .R/; �2.r/D .1C r2/
1
4 �.r/:

Clearly, all constants involving norms of the cutoff functions �1 and �2 in the right-hand side of (5-11)
are finite and we may therefore straightforwardly apply Proposition 5.3 to control the first term in the
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right-hand side of (5-12). However, the same is not so obviously true concerning the cutoff functions
�1 and �2. The application of Proposition 5.3 to the second term in the right-hand side of (5-12) will
therefore require some substantial technical work, which we present now.

To this end, we employ a homogeneous Littlewood–Paley frequency decomposition, see (5-3), of �1

and �2 to write
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In view of the linearity of the operator Tt with respect to the cutoffs � or � , we only need to verify the
finiteness of the constants in (5-11) with �2j �1 and �j

3
playing the roles of �1 and �2, respectively, and

then with �2j �2 and �j
4

instead of �1 and �2, respectively. It is to be emphasized here that the ensuing
bounds on the cutoffs will then depend on j 2 Z. In order to guarantee the boundedness of Tt , we will
therefore need to make sure that our method eventually yields constants that are summable in j 2 Z.

We evaluate now the norms involved in the right-hand side of (5-11) where we replace �1 by �2j �1

(or �2j �2) and �2 by �j
3

(or �j
4

). The bounds on �2j �2 and �j
4

are handled in a strictly similar manner
and so we omit the corresponding details.

First, note that a direct application of Lemma B.3 from Appendix B together with the fact that �1 and
�2 are smooth so that their Fourier transforms decay faster than any inverse power at infinity, shows that
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for any arbitrarily large N > 0.
Furthermore, in view of Lemma B.4, it holds that each �j
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uniformly in j 2 Z.
Therefore, using the bounds (5-13) and (5-14) to evaluate the terms involving �1D�2j �1 and �2 D �

j
3

in the right-hand side of (5-11), we compute that the corresponding norm of the operator in (5-11) is no



362 DIOGO ARSÉNIO AND NADER MASMOUDI

larger than a multiple of�
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which is summable over j 2 Z, provided N > 3
4

.
Thus, we conclude, according to Proposition 5.3, that the operators in the right-hand side of (5-12) are

bounded.
It follows that, for any 0< t < 1,.1��x/
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where C > 0 only depends on constant parameters. �

6. The higher-dimensional case

We move on now to the higher-dimensional case. More precisely, in the present section, we generalize the
methods leading to Theorem 5.4 to establish an analog result valid in any dimension. Unfortunately, the
ensuing result does not reach a maximal gain of regularity of half a derivative on the velocity averages,
but only a gain of n

4.n�1/
derivatives, where n� 3 is the dimension. This drawback mainly stems from

the fact that we work in the L4
x setting, because our methods exploit the trivial fact that the exponent 4 is

an even integer in order to control the square of some transport operator in L2
x rather than the operator

itself in L4
x .

We begin with a few technical results. Loosely speaking, a key idea behind Proposition 5.2 consisted
in noticing that S�t g.x; v/ is regular along the direction v and then using some duality argument in L4

x to
gain an integration variable in another nondegenerate direction. In higher dimensions, in order to carry
out a similar strategy, we need to gain integration variables in n� 1 nondegenerate directions. The next
few lemmas will allow us to achieve such a dimensional build up of integration variables.

The following lemma generalizes estimate (5-8) from the proof of Proposition 5.2 and corresponds to
a situation where we have already managed to build up the integration dimension all the way up to n

(notice the n-dimensional integration in S in the estimate below).

Lemma 6.1. In any dimension n� 2, let 0< s < 1
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S2�

t �2k g

�
xC

nX
jD1

sj tvj ; v1

�ˇ̌̌̌2
dv1 � � � dvn�1 dS

�
C.kC 1/

jt j2k2s
.r1C r2/

n�1.1C r1C r2/
2

  �2.r/

jr j
1
2
�s


2

L2

Ck.1Cjr js/�2.r/k
2
L1 Ck Q�2k

2
L1

!
kgk2L1x

for all t ¤ 0 such that jt j � 1, where C > 0 is independent of k, r1, r2 and �2.
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Proof. We assume that fv2; : : : ; vng is a linearly independent set of vectors, which holds almost everywhere,
and denote its span by H. Further let u1 2 Rn be a unit vector orthogonal to H. The specific choice
of unit vector is irrelevant, any such vector will do. Note that det.u1; v2; : : : ; vn/¤ 0. Moreover, since
v1 � .v1 � u1/u1 belongs to H and recalling that the determinant is linear with respect to each of its
column vectors, it holds that

det.v1; : : : ; vn/D v1 �u1 det.u1; v2; : : : ; vn/:

We wish now to perform the change of variable z D z.S/ D
Pn

jD1sj tvj in Rn, whose Jacobian
determinant is given by ˇ̌̌̌

@z

@S

ˇ̌̌̌
D tn det.v1; : : : ; vn/: (6-1)

However, this operation becomes singular as v1 approaches H, that is, as v1 �u1 becomes small. Therefore,
in order to deal with this degeneracy, we consider the following partition in v1 of Sn�1:

Sn�1
n fv1 �u1 D 0g D

1[
iD0

Si ;

with

Si D

�
v1 2 Sn�1

W
1

2iC1
jv1 �u1j �

1

2i

�
:

Then, defining r0 D n.r1C r2/jt j and writing gk D �2k g, for convenience, one has the following
straightforward estimate on

S
2i>r02k2s Si :Z

S
2i>r02k2s Si

ˇ̌̌̌
S2�

t gk

�
xC

nX
jD1

sj tvj ; v1

�ˇ̌̌̌2
dv1 �

X
2i>r02k2s

jSi jk Q�2k
2
L1 kgk

2
L1

�
C

r02k2s
k Q�2k

2
L1 kgk

2
L1 ; (6-2)

where C > 0 only depends on the dimension.
Now, on each domain Si , with 2i � r02k2s , the Jacobian determinant (6-1) remains bounded away

from zero. More precisely, for every v1 2 Si , it holds that

jtn det.u1; v2; : : : ; vn/j

Z
Œ�r1;r1�n

ˇ̌̌̌
S2�

t gk

�
xC

nX
jD1

sj tvj ; v1

�ˇ̌̌̌2
dS

D
1

jv1 �u1j

Z
z.Œ�r1;r1�n/

jS2�
t gk.xC z; v1/j

2 dz

� 2iC1

Z
fjzj�nr1jt j;jz�u1j�

r1jtj

2i
g
jS2�

t gk.xC z; v1/j
2 dz

D 2iC1

Z
fjzj�nr1jt j;jz�u1j�

r1jtj

2i
g

ˇ̌̌̌Z
R

gk.xC zC stv1/ Q�2.s/ ds

ˇ̌̌̌2
dz; (6-3)
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where we have used that, for each S 2 Œ�r1; r1�
n,

jzj D

ˇ̌̌̌ nX
jD1

sj tvj

ˇ̌̌̌
� nr1jt j and jz �u1j D

ˇ̌̌̌� nX
jD1

sj tvj

�
�u1

ˇ̌̌̌
D js1tv1 �u1j �

r1jt j

2i
:

Next, further notice that, whenever jzj � nr1jt j, jz �u1j � r1jt j=2
i , jsj � r2 and v1 2 Si , it holds that

jzC stv1j � .nr1C r2/jt j and j.zC stv1/ �u1j �
.r1C r2/jt j

2i
:

It therefore follows from (6-3) that

jtn det.u1; v2; : : : ; vn/j

Z
Œ�r1;r1�n

ˇ̌̌̌
S2�

t gk

�
xC

nX
jD1

sj tvj ; v1

�ˇ̌̌̌2
dS

� 2iC1

Z
fjzj�nr1jt j;jz�u1j�

r1jtj

2i
g

ˇ̌̌̌Z
R

gk.xC zC stv1/1fjzCstv1j�r0;j.zCstv1/�u1j�
r0

2i
g Q�2.s/ ds

ˇ̌̌̌2
dz

� 2iC1

Z
Rn

jS2�
t Ki;k

x;u1
.z; v1/j

2 dz; (6-4)

where

Ki;k
x;u1

.z/D gk.xC z/�

�
jz� .z �u1/u1j

r0

�
�

�
2i jz �u1j

r0

�
;

and � 2 C1c .R/ is a smooth cutoff function such that 1fjsj�1g � �.s/� 1fjsj�2g.
Further integrating (6-4) in v1 2 Si and then applying Proposition 5.1, we find that

jtn det.u1; v2; : : : ; vn/j

Z
Si

Z
Œ�r1;r1�n

ˇ̌̌̌
S2�

t gk

�
xC

nX
jD1

sj tvj ; v1

�ˇ̌̌̌2
dS dv1

� 2iC1

Z
Sn�1

Z
Rn

jS2�
t Ki;k

x;u1
.z; v1/j

2 dz dv1

� C
2i

jt j2s

  �2.r/

jr j
1
2
�s


2

L2

Ck.1Cjr js/�2.r/k
2
L1

!
k.1��z/

� s
2 Ki;k

x;u1
.z/k2

L2
z
;

where C > 0 only depends on the dimension. Moreover, a direct application of Lemma A.1 from
Appendix A on paradifferential calculus yields

k.1��z/
� s

2 Ki;k
x;u1

.z/k2
L2

z
�

C rn
0

2i2k2s
kgk2L1

for every i; k 2 N such that 2i � r02k2s , where C > 0 is independent of i , k and r0, whence

jtn det.u1; v2; : : : ; vn/j

Z
Si

Z
Œ�r1;r1�n

ˇ̌̌̌
S2�

t gk

�
xC

nX
jD1

sj tvj ; v1

�ˇ̌̌̌2
dS dv1

� C
rn
0

jt j2s2k2s

  �2.r/

jr j
1
2
�s


2

L2

Ck.1Cjr js/�2.r/k
2
L1

!
kgk2L1 ; (6-5)

where C > 0 is independent of i , k, r0 and �2.
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On the whole, combining (6-2), which is valid when 2i > r02k2s, with (6-5), which is valid when
2i � r02k2s, we arrive atZ
Œ�r1;r1�n

Z
Sn�1

ˇ̌̌̌
S2�

t gk

�
xC

nX
jD1

sj tvj ; v1

�ˇ̌̌̌2
dv1 dS

D

X
2i�r02k2s

Z
Œ�r1;r1�n

Z
Si

ˇ̌̌̌
S2�

t gk

�
xC

nX
jD1

sjvj ; v1

�ˇ̌̌̌2
dv1 dS

C

Z
Œ�r1;r1�n

Z
S

2i>r02k2s Si

ˇ̌̌̌
S2�

t gk

�
xC

nX
jD1

sjvj ; v1

�ˇ̌̌̌2
dv1 dS

�
C

jdet.u1; v2; : : : ; vn/jjt j2s

  �2.r/

jr j
1
2
�s


2

L2

Ck.1Cjr js/�2.r/k
2
L1

!
�

X
2i�r02k2s

rn
0

jt jn2k2s
kgk2L1 C

C rn
1

r02k2s
k Q�2k

2
L1 kgk

2
L1

� C
.kC 1/.r1C r2/

n log.2C r1C r2/

jdet.u1; v2; : : : ; vn/jjt j2s2k2s

�

  �2.r/

jr j
1
2
�s


2

L2

Ck.1Cjr js/�2.r/k
2
L1

!
kgk2L1 C

C rn�1
1

jt j2k2s
k Q�2k

2
L1 kgk

2
L1 : (6-6)

Note that, when nD 2, the proof is then finished for jdet.u1; v2/j D 1. Therefore, when n� 3, there
only remains to show that

sup
vn2Sn�1

Z
Sn�1

� � �

Z
Sn�1

1

jdet.u1; v2; : : : ; vn/j
dv2 � � � dvn�1 <1; (6-7)

which will clearly conclude the proof of the lemma upon integrating (6-6) in velocities .v2; : : : ; vn�1/

and combining the resulting estimate with (6-7).
In fact, the control (6-7) easily follows from a careful use of integration in spherical coordinates.

Indeed, for each 2� j � n� 1 and any choice of orthonormal vectors fujC1; : : : ;ung, one has that (the
unit vector u1 is characterized here by the fact that it is orthogonal to the set fv2; : : : ; vj ;ujC1; : : : ;ung)Z

Sn�1

� � �

Z
Sn�1

1

jdet.u1; v2; : : : ; vj ;ujC1; : : : ;un/j
dv2 � � � dvj

D

Z
Sj�1?fujC1;:::;ung

�Z
Sn�1

� � �

Z
Sn�1

1

jdet.u1; v2; : : : ; vj�1;uj ; : : : ;un/j
dv2 � � � dvj�1

�
duj

�

Z �

0

� � �

Z �

0

sinn�3 �n � � � sinj�2 �jC1 d�jC1 � � � d�n

� C sup
uj2Sn�1

uj �uiD0
for all iDjC1;:::;n

Z
Sn�1

� � �

Z
Sn�1

1

jdet.u1; v2; : : : ; vj�1;uj ; : : : ;un/j
dv2 � � � dvj�1:



366 DIOGO ARSÉNIO AND NADER MASMOUDI

Note that the unit vector u1 above is also characterized by the fact that it is orthogonal to the set
fv2; : : : ; vj�1;uj ; : : : ;ung. Hence, we deduce, for every 2� j � n� 1, that

sup
ujC1;:::;un2Sn�1

ui �ukD0 if i¤k

Z
Sn�1

� � �

Z
Sn�1

1

jdet.u1; v2; : : : ; vj ;ujC1; : : : ;un/j
dv2 � � � dvj

� C sup
uj ;:::;un2Sn�1

ui �ukD0 if i¤k

Z
Sn�1�����Sn�1

1

jdet.u1; v2; : : : ; vj�1;uj ; : : : ;un/j
dv2 � � � dvj�1:

Applying now the preceding estimate n� 2 times to reduce iteratively the number of integrations over
spheres, we find that

sup
vn2Sn�1

Z
Sn�1

� � �

Z
Sn�1

1

jdet.u1; v2; : : : ; vn/j
dv2 � � � dvn�1

� C sup
uj ;:::;un2Sn�1

ui �ukD0 if i¤k

Z
Sn�1�����Sn�1

1

jdet.u1; v2; : : : ; vj�1;uj ; : : : ;un/j
dv2 � � � dvj�1

� C sup
u2;:::;un2Sn�1

ui �ukD0 if i¤k

1

jdet.u1;u2; : : : ;un/j
;

where the unit vector u1 is orthogonal to fu2; : : : ;ung, which implies

jdet.u1;u2; : : : ;un/j D 1;

and thus establishes (6-7). �

For convenience, we introduce now, for any integer N � 2, setting S D .s2; : : : ; sN�1/ 2 RN�2 and
V D .v1; : : : ; vN�1/ 2 .S

n�1/N�1, the following nonlinear operator:

IN gD

Z
Rn

Z
Sn�1

jS�t g.x; vN /j
2

�Z
Œ�r1;r1�N�2

Z
.Sn�1/N�1

ˇ̌̌̌
S�t g

�
xC

N�1X
jD2

sj tvj ; v1

�ˇ̌̌̌2
dV dS

�
dvN dx:

In particular, when N D 2, we have I2g D kS�t gk4
L4

xL2
v

.
Recall that, employing (5-5), it is possible to extract a one-dimensional integration from S�t g.x; vN /

and S�t g
�
xC

PN�1
jD2 sj tvj ; v1

�
along vN and v1, respectively. Therefore, it is possible, at least formally,

to gain an N -dimensional spatial integration in the above integrand by exploiting the integration along
the variables sj . Thus, loosely speaking, the number N represents the expected gain of spatial dimension
on the domain of integration in IN .

Prior to delving any further into our proofs, we take some time now to explain the general strategy
behind the dimensional build up which will eventually allow us to apply Lemma 6.1 and establish the
boundedness of S�t WL

4
x!W

s;4
x L2

v for any 0� s < n
4.n�1/

, in Proposition 6.6, below.
More precisely, the aforementioned boundedness of S�t will be shown to follow from four properties

of the nonlinear operator IN :
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� For N D 2,

I2hD kS�t hk4
L4

xL2
v
: (6-8)

This property is a direct interpretation of the definition of I2.

� For N D n and any 0< s < 1
2

, assuming for simplicity that h.x/ has frequencies localized inside an
annulus of inner and outer radii comparable to 2k, with k 2 N,

Inh�
C

2k4s
khk2

L2
x
khk2L1x

; (6-9)

where C > 0 is independent of k. This estimate displays a gain of regularity, is a consequence of
Lemma 6.1 and is established in Lemma 6.2, below.

� For any N � 2,

.IN h/2 � kS�t hk4
L4

xL2
v
I2N�2h; (6-10)

which is a simple consequence of the Cauchy–Schwarz inequality (in x) followed by a careful change of
variable. This estimate is established in Lemma 6.3, below.

� For any N � 2,

.IN h/2 � CkS2�hk4
L4

x;v
I2N�1h; (6-11)

where C > 0 is an independent constant, which is a direct consequence of an application of (5-5) followed
by a careful use of the Cauchy–Schwarz inequality with a change of variable. This estimate is established
in Lemma 6.4, below.

The rule of the game of dimensional build up will then consist in employing estimates (6-10) and (6-11)
to go from (6-8) to (6-9). In other words, by exploiting the mappings N 7! 2N � 2 and N 7! 2N � 1,
for integers N � 2, we want to go from 2 to the dimension n. The fact that such a dimensional build up
is actually possible is explained by the simple yet tricky Lemma 6.5, below.

Eventually, the appropriate combination of these estimates (and the handling of more technical
difficulties) will give rise to the main result of this section, namely Theorem 6.8.

We proceed now with the actual preliminary results leading to Theorem 6.8.
For the sake of simplicity of notation, from now on, the variable S will denote the vector whose

components are any number of integration variables sj 2 Œ�r1; r1�, whereas the variable V will denote
the vector whose components are any number of integration variables vj 2 Sn�1. At each step of our
proofs, the exact meaning of S and V will be easily deduced from a careful inspection of the integrands
and domains of integration.

Applying the preceding lemma combined with Proposition 5.1 to the above nonlinear operator IN ,
when N D n is the dimension, yields the following result.

Lemma 6.2. In any dimension n� 2, let 0< s < 1
2

and �1; �2 2 S.R/ be such that Q�1 and Q�2 have their
supports contained inside balls of radii r1; r2 > 0, respectively, centered at the origin.
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Then, it holds that, for any k 2 N,

In�2k g �
C.kC 1/

t22k4s
k Q�1k

2
L1 k Q�1k

2
L1.r1C r2/

n�1.1C r1C r2/
2

�

  �2.r/

jr j
1
2
�s


L2

Ck.1Cjr js/�2.r/kL1 Ck Q�2kL1

!4

kgk2
L2

x
kgk2L1x

for all t ¤ 0 such that jt j � 1, where C > 0 only depends on fixed parameters.

Proof. In view of the simple estimate (5-5), it holds that

In�2k g � k Q�1k
2
L1 k Q�1k

2
L1

Z
Rn

Z
Sn�1

Z
Œ�r1;r1�

jS2�
t �2k g.xC sntvn; vn/j

2 dsn

�

�Z
Œ�r1;r1�n�1

Z
.Sn�1/n�1
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S2�

t �2k g

�
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n�1X
jD1
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�ˇ̌̌̌2
dV dS

�
dvn dx

� k Q�1k
2
L1 k Q�1k

2
L1

Z
Rn

Z
Sn�1

jS2�
t �2k g.x; vn/j

2

�

�Z
Œ�r1;r1�n

Z
.Sn�1/n�1

ˇ̌̌̌
S2�

t �2k g

�
xC

nX
jD1

sj tvj ; v1

�ˇ̌̌̌2
dV dS

�
dvn dx

� k Q�1k
2
L1 k Q�1k

2
L1 kS

2�
t �2k gk2

L2
x;v

� sup
x2Rn

vn2Sn�1

Z
Œ�r1;r1�n

Z
.Sn�1/n�1

ˇ̌̌̌
S2�

t �2k g

�
xC

nX
jD1

sj tvj ; v1

�ˇ̌̌̌2
dV dS:

Therefore, applying Proposition 5.1 and Lemma 6.1 to the preceding estimate yields

In�2k g �
C.kC 1/

t22k4s
k Q�1k

2
L1 k Q�1k

2
L1.r1C r2/

n�1.1C r1C r2/
2

�

  �2.r/

jr j
1
2
�s


L2

Ck.1Cjr js/�2.r/kL1 Ck Q�2kL1

!4

kgk2
L2

x
kgk2L1x

: �

The next result explains how to increase the expected dimension of the domain of integration in the
nonlinear operator IN from N to 2N � 2.

Lemma 6.3. In any dimension n� 2, it holds that, for any integer N � 2,

.IN g/2 � kS�t gk4
L4

xL2
v
I2N�2g:

Proof. First, by the Cauchy–Schwarz inequality, we find

IN gD

Z
Rn

�Z
Sn�1

jS�t g.x;vN /j
2 dvN

��Z
Œ�r1;r1�N�2

Z
.Sn�1/N�1

ˇ̌̌̌
S�t g

�
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N�1X
jD2

sj tvj ;v1

�ˇ̌̌̌2
dV dS

�
dx

�kS�t gk2
L4

xL2
v

Z
Œ�r1;r1�N�2

Z
.Sn�1/N�1

ˇ̌̌̌
S�t g

�
xC

N�1X
jD2

sj tvj ;v1

�ˇ̌̌̌2
dV dS


L2

x

;



MAXIMAL GAIN OF REGULARITY IN VELOCITY AVERAGING LEMMAS 369

whence

.IN g/2 � kS�t gk4
L4

xL2
v

Z
Rn

�Z
Œ�r1;r1�N�2

Z
.Sn�1/N�1
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�
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�
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N�1X
jD2
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dV dS
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Then, exploiting the integration in x to transfer the term
P2N�3

jDN sj tvj in the above integrand, we deduce
that

.IN g/2�kS�t gk4
L4

xL2
v

Z
Rn

Z
Sn�1
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dV dS

�
dv2N�2 dx: �

The next result explains how to increase the expected dimension of the domain of integration in the
nonlinear operator IN from N to 2N � 1.

Lemma 6.4. In any dimension n � 2, let �1 2 S.R/ be such that Q�1 has its support contained inside a
ball of radius r1 > 0 centered at the origin.

Then, it holds that, for any integer N � 2,

.IN g/2 � 4k Q�1k
2
L1 k Q�1k

2
L1 r1kS
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t gk4
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I2N�1g:

Proof. First, in view of the simple estimate (5-5), one has
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Hence, by the Cauchy–Schwarz inequality, we find

.IN g/2 � 4k Q�1k
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�
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Finally, exploiting the integration in x to transfer first the term sN tvN and then the term
P2N�2

jDNC1 sj tvj

in the above integrand, we deduce that
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The following result is a simple technical lemma which, at first, may seem somewhat unrelated but
will prove very useful later on for building up dimensions in the proof of Proposition 6.6.

Lemma 6.5. Let the mappings ƒ0; ƒ1 W N n f0; 1g ! N n f0; 1g be defined by

ƒ0k D 2k � 2 and ƒ1k D 2k � 1:

Then, for any integer n� 3, there exists L 2 N and a0; a1; : : : ; aL 2 f0; 1g such that

nDƒa0
ƒa1
� � �ƒaL

2;

and

n� 2D

LX
kD0

ak2k :

Moreover, the above decomposition is unique provided aL D 1.
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Proof. We introduce first the auxiliary mappings zƒ0; zƒ1 W N! N defined by

zƒ0k D 2k and zƒ1k D 2kC 1:

In particular, for any k 2 N, it holds that

.zƒ0k/C 2Dƒ0.kC 2/ and .zƒ1k/C 2Dƒ1.kC 2/:

Next, let L 2 N and a0; a1; : : : ; aL 2 f0; 1g be the parameters appearing in the dyadic decomposition
of the positive integer n� 2:

n� 2D

LX
kD0

ak2k :

Note that, assuming aL D 1, the above choice of parameters is unique. Then, we have

n� 2D zƒa0

�L�1X
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akC12k

�
D zƒa0

zƒa1

�L�2X
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�
D � � � D zƒa0
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� � � zƒaL

0:

It finally follows that

nD 2C zƒa0
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� � � zƒaL

0
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.2C zƒa1

� � � zƒaL
0/
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ƒa1

.2C zƒa2
� � � zƒaL

0/D � � � Dƒa0
ƒa1
� � �ƒaL

2: �

Notice that, using the language of Lemma 6.5, it is possible to unify Lemmas 6.3 and 6.4 in the
following estimate, for any N � 2:

.IN g/2 � .4k Q�1k
2
L1 k Q�1k

2
L1r1/

a
kS�t gk

4.1�a/

L4
xL2

v

kS2�
t gk4a

L4
x;v

IƒaN g; (6-12)

where a 2 f0; 1g.
Now, appropriately combining Lemmas 6.2, 6.3 and 6.4, with the help of Lemma 6.5, we arrive at our

main estimate on the operator S�t , which is recorded in the next proposition and generalizes Proposition 5.2
to higher dimensions.

Proposition 6.6. In any dimension n � 3, let 2 � p � 4, 0 � s < s0 <
1
2

and �1; �2 2 S.R/ be such
that Q�1 and Q�2 have their supports contained inside balls of radii r1; r2 > 0, respectively, centered at the
origin.

Then, the operator S�t satisfies the estimate

k.1��x/
.2nCp�4/s

2p.n�1/ S�t gkLp
xL2

v
�

C

jt j
n

4.n�1/

k Q�1k
1
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L1 k Q�1k
1
2
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2n�3
4.n�1/ .1C r1C r2/

1
2.n�1/

�

� �2.r/

jr j
1
2
�s0


L2

Ck.1Cjr js0/�2.r/kL1 Ck Q�2kL1

�
kgkLp

x

for all t ¤ 0 such that jt j � 1, where C > 0 only depends on fixed parameters.



372 DIOGO ARSÉNIO AND NADER MASMOUDI

Proof. First, notice that, for any 2� p �1,

kS�t gkLp
xL2

v
� kS�t gkL2

vL
p
x
� jSn�1

j
1
2 k Q�kL1 kgkLp

x
: (6-13)

As for the regularity estimate, we employ the standard Littlewood–Paley dyadic frequency decomposi-
tion previously introduced to estimate gk D�2k g for any k � 0.

To this end, we first decompose the dimension n� 3 according to Lemma 6.5,

nDƒa0
ƒa1
� � �ƒaL

2;

where L 2 N and a0; a1; : : : ; aL 2 f0; 1g, and then apply successively estimate (6-12) to deduce that
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Hence, it follows that

kS�t gkk
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v
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Next, further applying Proposition 5.1 and Lemma 6.2 to the preceding bound yields

kS�t gkk
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xL2

v
�

C.kC 1/
1
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jt j
n
4 2k n
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s
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x
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2

L1x
;

where C > 0 is an independent constant.
The remainder of the demonstration follows the arguments from the end of the proof of Proposition 5.2,

which we adapt to the present setting for completeness and convenience of the reader.
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Thus, in order to conclude, we write jg.x/j D
R1

0 1fjg.x/j�sg ds to deduce from the preceding estimate,
assuming g is nonnegative, that
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L
4;1
x
;

where L
4;1
x denotes a standard Lorentz space; see [Bergh and Löfström 1976, Section 1.3] or [Grafakos

2008, Section 1.4] for definitions and properties of Lorentz spaces. When, g is signed, we arrive at the
same estimate simply by decomposing g D gC�g� into its positive and negative parts, treating each
contribution separately, and then noticing that

kgCk
L

4;1
x
Ckg�k

L
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x
� C
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4 C
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:

Moreover, by allowing an arbitrarily small loss of regularity, that is, by replacing 0< s < 1
2

by a slightly
smaller value, it is possible to replace the Lorentz space L

4;1
x by the standard Lebesgue space L4

x in the
right-hand side of the above estimate.

Therefore, on the whole, for any 0� s < s0 <
1
2

, we have established the estimate
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;

where C > 0 only depends on constant parameters, which, when combined with the easy bound (6-13)
for low frequencies, yields
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Finally, since S�t commutes with differentiation in x and recalling from complex interpolation theory,
see [Bergh and Löfström 1976, Sections 5.1 and 6.4], that, for any 2< p < 4,

.L2
xL2

v;L
4
xL2

v/Œ2� 4
p
� DLp

xL2
v and .W �s;2

x ;W
�s n

2.n�1/
;4

x /Œ2� 4
p
� DW

�s 2nCp�4
p.n�1/

;p

x ;

we conclude the proof of the proposition by interpolating the estimate (6-14) with the classical estimate
on S�t from Proposition 5.1. �

Next, we utilize the previous result on the adjoint operator S�t to deduce corresponding estimates on
Tt and T �t .

Proposition 6.7. In any dimension n� 3, let 4
3
� r � 2, 2� p � 4, 0� s < s0 <

1
2

and �1; �2 2 S.R/
be such that Q�1 and Q�2 have their supports contained inside balls of radii r1; r2 > 0, respectively, centered
at the origin.

Then, the operators Tt and T �t satisfy the estimates
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and
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for all t ¤ 0 such that jt j � 1, where C > 0 only depends on fixed parameters.

Proof. It is readily seen that

T �t g.x; v/D

Z
R

g.xC stv/ Q�.s/ ds '.v/D '.v/S�
jvjtg

�
x;

v

jvj

�
:

Therefore, for any 2� p �1, we compute in polar coordinates, recalling that the support of the velocity
weight ' 2L1c .R

n/ is contained inside a closed ball of radius R> 0 centered at the origin,
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� k'kL1
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:

Then, combining Proposition 6.6 with the above estimate, we find
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where C > 0 is an independent constant, which establishes the estimate on T �t .
The estimate on Tt is then easily deduced from the estimate on T �t by a duality argument, which

completes the proof of the proposition. �

We proceed now to the main theorem of this section.

Theorem 6.8. In any dimension n� 3, let 4
3
� r � 2.

Then, for any f;g 2Lr
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Furthermore, one has the estimate.1��x/
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where C > 0 only depends on ' and constant parameters.

Proof. This demonstration follows the same ideas as the proof of Theorem 5.4. Nevertheless, for the sake
of clarity and convenience of the reader, we provide a complete justification of this result.

We consider first the refined interpolation formula (2-1), which is valid for solutions of the transport
equation (1-2), for some given cutoff � 2 S.R/. Clearly, further differentiating (2-1) in x and then
averaging in v yields.1��x/
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: (6-16)
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We wish now to apply Proposition 6.7 to the preceding estimate. To this end, according to (5-4), we
take the decompositions

�.r/D �1.r/�2.r/ and �.r/D
1� �.r/

i r
D �1.r/�2.r/;

where

Q�1.r/ 2 C1c .R/; �1.r/D
1

.1C r2/
1
4

;

Q�2.r/ 2 C1c .R/; �2.r/D .1C r2/
1
4 �.r/:

Clearly, all constants involving norms of the cutoff functions �1 and �2 in the right-hand side of (5-11)
are finite and we may therefore straightforwardly apply Proposition 6.7 to control the first term in the
right-hand side of (6-16). However, the same is not so obviously true concerning the cutoff functions
�1 and �2. The application of Proposition 6.7 to the second term in the right-hand side of (6-16) will
therefore require some substantial technical work, which we present now.

To this end, we employ a homogeneous Littlewood–Paley frequency decomposition, see (5-3), of �1

and �2 to write that
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��
� �1:

In view of the linearity of the operator Tt with respect to the cutoffs � or � , we only need to verify the
finiteness of the constants in (6-15) with �2j �1 and �j

3
playing the roles of �1 and �2, respectively, and

then with �2j �2 and �j
4

instead of �1 and �2, respectively. It is to be emphasized here that the ensuing
bounds on the cutoffs will then depend on j 2 Z. In order to guarantee the boundedness of Tt , we will
therefore need to make sure that our method eventually yields constants that are summable in j 2 Z.

We evaluate now the norms involved in the right-hand side of (6-15) where we replace �1 by �2j �1

(or �2j �2) and �2 by �j
3

(or �j
4

). The bounds on �2j �2 and �j
4

are handled in a strictly similar manner
and so we omit the corresponding details.

First, note that a direct application of Lemma B.3 from Appendix B together with the fact that �1 and
�2 are smooth so that their Fourier transforms decay faster than any inverse power at infinity, shows that
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(6-17)

for any arbitrarily large N > 0.
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Figure 2. Range of validity of the parameters 1
r

and s in Theorem 6.8 extended by
interpolation with the degenerate L1 case.

Furthermore, in view of Lemma B.4, it holds that each �j
3

satisfies

j�
j
3
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1Cjr j
1
2

for some uniform C > 0 independent of j 2 Z, whence, for any 0< s0 <
1
2

,

�
j
3
.r/

jr j
1
2
�s0

2L2.R/ and .1Cjr js0/�
j
3
.r/ 2L1.R/; (6-18)

uniformly in j 2 Z.
Therefore, using the bounds (6-17) and (6-18) to evaluate the terms involving �1D�2j �1 and �2D �

j
3

in the right-hand side of (6-15), we compute that the corresponding norm of the operator in (6-15) is no
larger than a multiple of�

2
j
2

1C 2jN

�1
2
�

1

2
j
2 .1C 2jN /

�1
2

2j 2n�3
4.n�1/ .1C 2j /

1
2.n�1/ � C

2j 2n�3
4.n�1/

.1C 2j /N�
1

2.n�1/

;

which is summable over j 2 Z, provided N > 2n�1
4.n�1/

.
Thus, we conclude, according to Proposition 6.7, that the operators in the right-hand side of (6-16) are

bounded.
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It follows that, for any 0< t < 1,.1��x/
s
2

Z
Rn

f ' dv


Lr

x

� C

�
1

t
n

4.n�1/

kf kLr
xL2

v
C t1� n

4.n�1/ kgkLr
xL2

v

�
;

where C > 0 only depends on constant parameters. �

As already mentioned at the end of our Introduction, it is possible that Theorem 6.8 may be largely
improved. In fact, the formal interpolation result (1-3) seems to indicate that Theorem 6.8 should hold for
all parameters 2n

nC1
� r � 2 and 1� s < 1

2
. The range of parameters defined by 3

4
� r � 2 and

0� s <
1

2

�
3�

4

r

�
C

n

4.n�1/

�
4

r
� 2

�
would then be recovered by interpolation with the degenerate L1 case.

Indeed, Figure 2 represents the range of validity of the parameters 1
r

and s in Theorem 6.8 extended
by interpolation with the degenerate L1 case. More precisely, Theorem 6.8 handles the region bounded
by the points

�
1
2
; 0
�
,
�

3
4
; 0
�
,
�

3
4
; n

4.n�1/

�
and

�
1
2
; 1

2

�
, which yields the shaded region in Figure 2 when

interpolated with the trivial L1 case corresponding to the point .1; 0/. Observe that the points
�

nC1
2n
; 1

2

�
,�

3
4
; n

4.n�1/

�
and .1; 0/ are all supported by the same line. It seems therefore natural to conjecture that

a similar result should hold for all parameters encompassed by the area delimited by the points
�

1
2
; 0
�
,

.1; 0/,
�

nC1
2n
; 1

2

�
and

�
1
2
; 1

2

�
; see [Arsénio 2015] for more on such conjectures. This situation strongly

resembles the corresponding existing conjectures for the boundedness of Bochner–Riesz multipliers and
Fourier restriction operators.

Appendix A. Some paradifferential calculus

In this appendix, we record for reference a useful technical lemma. The proof of this lemma is based on
classical methods from paradifferential calculus and paraproduct decompositions.

Lemma A.1. Let �1 2 S.Rn�1/ and �2 2 S.R/. For each i 2 N and L> 0, we define

hL
i .x/D �1

�
x0

L

�
�2

�
2ixn

L

�
;

where x0 D .x1; : : : ;xn�1/ 2 Rn�1. Further consider fixed parameters s > 0 and 0< � < 1.
Then, for all g 2L1.Rn/, it holds that

k.1��/�
s
2 ..�2k g/hL

i /kL2.Rn/ �
CL

n
2

2
i
2 2ks
kgkL1.Rn/

for every i; k 2 N such that 2i �L2�k , where C > 0 is independent of i , k and L.

Proof. We first write a standard paraproduct decomposition (see (5-3) for the definition of dyadic blocks
and the Littlewood–Paley decomposition):

.�2k g/hL
i D�2k g

�
�0hL

i C

k�3X
jD0

�2j hL
i

�
C�2k g

kC2X
jDk�2

�2j hL
i C

1X
jDkC3

�2k g�2j hL
i :
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It is then easy to see that in the right-hand side above

(1) the first term has frequencies localized inside an annulus of inner radius 2k�2 and outer radius 9�2k�2,

(2) the second term has frequencies localized inside a ball of radius 5 � 2kC1,

(3) each summand in the third term has frequencies localized inside an annulus of inner radius 2j�2 and
outer radius 9 � 2j�2.

Accordingly, we estimate that

k.1��/�
s
2 ..�2k g/hL

i /kL2

�
C

2ks
kgkL1 kh

L
i kL2 CCkgkL1

kC2X
jDk�2

k�2j hL
i kL2 CC

� 1X
jDkC3

1

2js

�
kgkL1kh

L
i kL2

�
CL

n
2

2
i
2 2ks
kgkL1 CCkgkL1

kC2X
jDk�2

k�2j hL
i kL2 : (A-1)

There only remains to control the terms k�2j hL
i kL2 above. To this end, noticing that

 .�/D  .�/.1
fj�0j� 1

4
g
C1
fj�0j< 1

4
g
/

� 1
f 1

4
�j�0j�2g1fj�nj�2gC1

fj�0j< 1
4
g
1
f 1

4
�j�nj�2g � 1

f 1
4
�j�0j�2gC1

f 1
4
�j�nj�2g;

where �0 D .�1; : : : ; �n�1/ 2 Rn�1, and using Plancherel’s theorem, we obtain

k�2j hL
i kL2 D

L
n
2

.2�/
n
2 2i

 � �

L2j

�
O�1.�

0/ O�2

�
�n

2i

�
L2
�

�
L

n
2

.2�/
n
2 2i

1fL2j�2�j�0j�L2jC1g O�1.�
0/


L2
�0

 O�2

�
�n

2i

�
L2
�n

C
L

n
2

.2�/
n
2 2i
k O�1.�

0/kL2
�0

1fL2j�2�j�nj�L2jC1g O�2

�
�n

2i

�
L2
�n

� C
L

n
2 .L2j /

n�1
2

2
i
2

1f 1
4
�j�0j�2g O�1.L2j�0/


L2
�0

CC
L

n
2 .L2j /

1
2

2i

1f 1
4
�j�nj�2g O�2

�
L2j

2i
�n

�
L2
�n

:

Hence, recalling that both O�1 and O�2 decay faster than any inverse power at infinity, we find, for any
given large N1;N2 > 0,

k�2j hL
i kL2 � C

L
n
2

2
i
2 .L2j /N1�

n�1
2

CC
L

n
2 2.N2�

1
2
/i

2
i
2 .L2j /N2�

1
2

� C
L

n
2

2
i
2

��
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L2j

�N1�
n�1

2

C

�
2i

L2j

�N2�
1
2
�

� C
L

n
2

2
i
2

�
1

2.N1�
n�1

2
/.1��/k

C
1

2.N2�
1
2
/.1��/k

�
;
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so that, choosing N1 and N2 such that

N1�
n�1

2
DN2�

1

2
�

s

1��
;

we get

k�2j hL
i kL2 � C

L
n
2

2
i
2 2ks

; (A-2)

where C > 0 is independent of i , k and L.
On the whole, incorporating (A-2) into (A-1) yields

k.1��/�
s
2 ..�2k g/hL

i /kL2 �
CL

n
2

2
i
2 2ks
kgkL1 : �

Appendix B. Boundedness of Fourier transforms in Lp, with 1 � p < 2

For reference, we show here a few handy criteria for establishing the boundedness in Lebesgue spaces Lp,
with 1� p < 2, of Fourier transforms of given functions.

Lemma B.1. Let f .x/ 2 C ˛.Rn/, for some given ˛ 2 N, be such that

sup
2Nn

j j�˛

jxjj jj@xf .x/j �
C

.1Cjxj/�
for all x 2 Rn; (B-1)

for some � > 0.
Then, the Fourier transform Of belongs to Lp.Rn/ for any 1� p < 2 satisfying

˛ > n
�

1

p
�

1

2

�
and � > n

�
1�

1

p

�
: (B-2)

In particular, for any given 1� p < 2 and any ˇ > 1
p0

, the Fourier transform of .1Cjxj2/�
nˇ
2 belongs

to Lp.Rn/.

Proof. Let  0.x/;  .x/ 2 C1c .Rn/ be compactly supported smooth cutoff functions, whose supports
satisfy

supp 0 � fjxj � 1g and supp �
˚

1
2
� jxj � 2

	
;

and such that

 0.x/C

1X
jD0

 

�
x

2j

�
D 1 for all x 2 Rn:

We define g.�/; hj .�/ 2 S.Rn/, for each j 2 N, by the inverse Fourier transforms

Qg.x/D  0.x/f .x/ and Qhj .x/D  

�
x

2j

�
f .x/;

so that
Of .�/D g.�/C

1X
jD0

hj .�/ in S 0.Rn/: (B-3)
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Then, for any 1�p< 2 satisfying (B-2), so that .2p˛/=.2�p/>n, and by Hölder’s inequality, we haveZ
Rn

jg.�/jp d�D

Z
Rn

.1Cj�j/p˛jg.�/jp
1

.1Cj�j/p˛
d�

�

�Z
Rn

.1Cj�j/2˛jg.�/j2 d�
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2

 Z
Rn

1
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2p˛
2�p

d�

!1�p
2

� C

�Z
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�p
2

;

and, similarly,Z
Rn

jhj .�/j
p d�D

Z
Rn

.1C 2j
j�j/p˛jhj .�/j

p 1

.1C 2j j�j/p˛
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�Z
Rn

.1C 2j
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�p
2

 Z
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1

.1C 2j j�j/
2p˛
2�p
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!1�p
2

� C 2�jn.1�p
2
/
�Z

Rn

.1C 2j
j�j/2˛jhj .�/j

2 d�

�p
2

;

where C > 0 only depends on p, ˛ and the dimension.
Next, since

.1C 2j
j�j/˛ � C

�
1C 2j˛

nX
iD1

j�i j
˛

�
;

it follows from Plancherel’s theorem that

kg.�/kLp �Ck.1Cj�j/˛g.�/kL2 �C
X
2Nn

j j�˛
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X
2Nn

j j�˛
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xf .x/kL2 <1:

and, further using (B-1),

2jn. 1
p
� 1

2
/
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� C
X
2Nn
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2j j j
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�
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�
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� C
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2Nn

j j�˛
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1f2j�1�jxj�2jC1g@
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L2

� C
X
2Nn

j j�˛

1f2j�1�jxj�2jC1gjxj
j j@xf .x/


L2 � C

2j n
2

1C 2j�
:

Hence, for any large N 2 N, since �� n
�
1� 1

p

�
> 0,

sup
N2N

g.�/C

NX
jD0

hj .�/


Lp

� C

1X
jD0

2jn.1� 1
p
/

1C 2j�
<1:
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Therefore, according to (B-3), we deduce that the tempered distribution Of coincides with the weak limit
of functions uniformly bounded in Lp, which implies that Of 2Lp for any 1� p < 2 satisfying (B-2). �

Lemma B.2. Let f .x/ 2 C ˛.Rn n f0g/, for some given ˛ 2 N, be such that

sup
2Nn

j j�˛

jxjj jj@xf .x/j �
C jxj�

.1Cjxj/�C�
for all x 2 Rn

n f0g; (B-4)

for some � > 0 and � > ��.
Then, the Fourier transform Of belongs to Lp.Rn/ for any 1� p < 2 satisfying

˛ > n
�

1

p
�

1

2

�
and � > n

�
1�

1

p

�
> ��: (B-5)

In particular, for any given 1�p<2 and any ˇ> 1
p0
>�ı, the Fourier transform of jxjnı.1Cjxj2/�

n.ˇCı/
2

belongs to Lp.Rn/.

Proof. Let  .x/ 2 C1c .Rn/ be a compactly supported smooth cutoff function whose support satisfies

supp �
˚

1
2
� jxj � 2

	
;

and such that X
j2Z

 

�
x

2j

�
D 1 for all x 2 Rn

n f0g:

We define hj .�/ 2 S.Rn/, for each j 2 Z, by the inverse Fourier transforms

Qhj .x/D  

�
x

2j

�
f .x/;

so that
Of .�/D

X
j2Z

hj .�/ in S 0.Rn/: (B-6)

Then, for any 1� p < 2 satisfying (B-5), so that .2p˛/=.2�p/ > n, and by Hölder’s inequality, we
have Z

Rn

jhj .�/j
p d�D

Z
Rn

.1C 2j
j�j/p˛jhj .�/j

p 1

.1C 2j j�j/p˛
d�

�

�Z
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.1C 2j
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2

� C 2�jn.1�p
2
/
�Z
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.1C 2j
j�j/2˛jhj .�/j

2 d�

�p
2

;

where C > 0 only depends on p, ˛ and the dimension.
Next, since

.1C 2j
j�j/˛ � C

�
1C 2j˛

nX
iD1

j�i j
˛

�
;
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it follows from Plancherel’s theorem and (B-4) that

2jn. 1
p
� 1

2
/
khj .�/kLp � Ck.1C 2j

j�j/˛hj .�/kL2

� C
X
2Nn

j j�˛
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� C
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2Nn
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2
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Hence, for any large N 2 N, since �� n
�
1� 1

p

�
> 0 and � C n

�
1� 1
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�
> 0,

sup
N2N

 NX
jD�N

hj .�/


Lp

� C
X
j2Z

2j.n.1� 1
p
/C�/

1C 2j.�C�/
<1:

Therefore, according to (B-6), we deduce that the tempered distribution Of coincides with the weak limit
of functions uniformly bounded in Lp, which implies that Of 2Lp for any 1� p < 2 satisfying (B-5). �

Lemma B.3. Let f .x/ 2 C 1.R n f0g/ be such that

jf .x/j; jxf 0.x/j �
C

jxj�
for all x 2 Rn

n f0g;

for some 0< � < 1.
Then, the Fourier transform Of belongs to L1CL1 and satisfies

j Of .�/j �
C

j�j1��
for almost every � 2 Rn;

for some independent constant C > 0.

Proof. Consider a cutoff � 2 C1c .R/ such that 1fjxj�1g � �.x/ � 1fjxj�2g. Then, on the one hand,
the function �.x/f .x/ clearly is integrable so that its Fourier transform is bounded pointwise almost
everywhere. On the other hand, the function .1��/.x/f .x/ clearly verifies the hypotheses of Lemma B.1
so that its Fourier transform always coincides with an integrable function. This establishes that Of 2
L1CL1.

Next, for any t > 0, we have the estimate
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�
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�
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fjxj�2tg
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1
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:

Therefore, optimizing the preceding estimate in t > 0, which amounts to setting t D 1
j�j

above, yields

j Of .�/j �
C

j�j1��
: �

Lemma B.4. Let f 2L1.R/ be such that

jf .x/j �
C

1Cjxj˛
for all x 2 R;

for some 0� ˛ < 1, and consider the convolution

fR.x/D

Z
R

R�.R.x�y//f .y/ dy

for any R> 0, where � 2 S.R/.
Then, the convolution fR also satisfies

jfR.x/j �
C
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for all x 2 R;

for some constant C > 0 independent of R.

Proof. Note first that
kfRkL1 � k�kL1 kf kL1 :

Therefore, we only have to consider values jxj � 1, say. Furthermore, by possibly replacing � and f by
j�j and jf j, respectively, we may assume that � and f are both nonnegative.

Then, for any N > 1, we estimate that
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Further noticing that
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R>0

R

1CRN jxjN
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�
sup

0<R� 1
jxj
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we deduce

fR.x/�
C
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Appendix C. Velocities restricted to a manifold of codimension 1

In this final independent appendix section, we explore the connection between averaging lemmas for the
stationary transport equation (1-2) for velocities in the Euclidean space v 2 Rn and averaging lemmas
for the same equation for velocities lying in an appropriate manifold of codimension 1 in Rn. Here, for
simplicity, we only consider the case v 2 Sn�1. However, the elementary methods developed here can be
used to establish similar connections with settings in other manifolds of codimension 1. In particular, this
approach includes the time dependent case (1-1) where .t;x/ 2 RnC1 and v 2 Rn and, thus, allows us to
translate the main results contained in this work to several other interesting and relevant situations.

Proposition C.1. Let n� 2, s > 0 and 1� p; q; r �1 be such that

p � r; sC n
�

1

p
�

1

r

�
� 1 and 1

q
C sC

�
1

p
�

1

r

�
� 1; (C-1)

and suppose that, for any ' 2L1c .R
n/, there exists C > 0 such that one has the estimateZ
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f ' dv
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v
/ (C-2)

for any f;g 2L
p
x.R

nIL
q
v.R

n// such that (1-2) holds true.
Then, for some other constant C > 0, one has the estimateZ
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f dv


W
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v
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q
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for any f;g 2L
p
x.R

nIL
q
v.S

n�1// such that (1-2) holds true.

It is possible to show, though a dimensional analysis, that the restrictions (C-1) are in fact necessary in
order that (C-2) may hold; see [Arsénio 2015, Section 4] for details.

Proof. We employ a strategy similar to the one used in [Arsénio and Saint-Raymond 2011, Appendix C]
to go from the stationary case to a time-dependent setting. To this end, for any f;g 2L

p
x.R

nIL
q
v.S

n�1//

such that (1-2) holds true, we introduce an artificial radial dimension by defining, for all .x; v/ 2Rn�Rn,
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�
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v
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jvj

�
�.jvj/

for some given nonnegative cutoff function � 2L1c .R/.
Assuming that '.v/� 1 on the support of �.jvj/, it is then readily seen thatZ
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Further observe that (1-2) also holds with Qf and Qg in place of f and g, respectively. Therefore, by
plugging Qf and Qg into (C-2), we deduce the validity of estimate (C-3). �

A converse to the preceding proposition is also available.

Proposition C.2. Let n� 2, s > 0 and 1� p; q; r �1 be such that

p � r; sC n
�

1

p
�

1

r

�
� 1 and 1

q
C sC

�
1

p
�

1

r

�
� 1; (C-4)

and suppose that there exists C > 0 such that one has the estimateZ
Sn�1

f dv


W

s;r
x

� C.kf kLp
xL

q
v
CkgkLp

xL
q
v
/ (C-5)

for any f;g 2L
p
x.R

nIL
q
v.S

n�1// such that (1-2) holds true.
Then, for any ' 2L1c .R

n/, there exists C > 0 such that one has the estimateZ
Rn

f ' dv


W

s;r
x

� C.kf kLp
xL

q
v
CkgkLp

xL
q
v
/ if p � q;Z

Rn

f ' dv


W

s;r
x

� C.kf kLq
vL

p
x
CkgkLq

vL
p
x
/ if p � q

(C-6)

for any f;g 2L
p
x.R

nIL
q
v.R

n// if p � q, or f;g 2L
q
v.R

nIL
p
x.R

n// if p � q, such that (1-2) holds true.

Proof. We first assume that p � q. For any f;g 2L
p
x.R

nIL
q
v.R

n// such that (1-2) holds true, we define,
for all .x; v/ 2 Rn �Sn�1, � > 0 and ' 2L1c .R

n/,

Qf�.x; v/D f .�x; �v/ '.�v/ and Qg�.x; v/D g.�x; �v/ '.�v/:

It is then readily seen thatZ
Sn�1

Qf� dv


Lr

x

D ��
n
r

Z
Sn�1

f .x; �v/ '.�v/ dv


Lr

x

;Z
Sn�1

Qf� dv


PW

s;r
x

D �s�n
r

Z
Sn�1

f .x; �v/ '.�v/ dv


PW

s;r
x

and
k Qf�kLp

x.RnIL
q
v.Sn�1// D �

� n
p kf .x; �v/ '.�v/kLp

x.RnIL
q
v.Sn�1//;

k Qg�kLp
x.RnIL

q
v.Sn�1// D �

� n
p kg.x; �v/ '.�v/kLp

x.RnIL
q
v.Sn�1//:

Further observe that (1-2) also holds with Qf� and Qg� in place of f and g, respectively. Therefore, by
plugging Qf and Qg into (C-5), we deduce that

�n. 1
p
� 1

r
/
Z

Sn�1

f .x; �v/ '.�v/ dv


Lr

x

C�sCn. 1
p
� 1

r
/
Z

Sn�1

f .x; �v/ '.�v/ dv


PW

s;r
x

� C
�
kf .x; �v/ '.�v/kLp

x.RnIL
q
v.Sn�1//Ckg.x; �v/ '.�v/kLp

x.RnIL
q
v.Sn�1//

�
:
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Next, recalling that ' is compactly supported within some large ball B.0;R/, say, noticing that
�

n�1
q0
�s�n. 1

p
� 1

r
/
2L

q0

�
.Œ0;R�/, by (C-4), and then integrating the preceding estimate in � over Œ0;R�, we

findZ
Rn

f .x; v/ '.v/ dv


W

s;r
x

�

Z R

0

�n�1

Z
Sn�1

f .x; �v/ '.�v/ dv


W

s;r
x

d�

� C

Z R

0

�n�1�s�n. 1
p
� 1

r
/
kf .x; �v/ '.�v/kLp

x.RnIL
q
v.Sn�1// d�

CC

Z R

0

�n�1�s�n. 1
p
� 1

r
/
kg.x; �v/ '.�v/kLp

x.RnIL
q
v.Sn�1// d�

� C

�Z R

0

kf .x; �v/ '.�v/k
q

L
p
x.RnIL

q
v.Sn�1//

�n�1 d�

� 1
q

CC

�Z R

0

kg.x; �v/ '.�v/k
q

L
p
x.RnIL

q
v.Sn�1//

�n�1 d�

� 1
q

� C
�
kf kLp

x.RnIL
q
v.Rn//CkgkLp

x.RnIL
q
v.Rn//

�
;

which concludes the proof of (C-6), when p � q.
The case p � q is obtained similarly. �
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ON THE EXISTENCE AND STABILITY OF BLOWUP FOR
WAVE MAPS INTO A NEGATIVELY CURVED TARGET

ROLAND DONNINGER AND IRFAN GLOGIĆ

We consider wave maps on .1Cd/-dimensional Minkowski space. For each dimension d � 8 we construct
a negatively curved, d -dimensional target manifold that allows for the existence of a self-similar wave
map which provides a stable blowup mechanism for the corresponding Cauchy problem.

1. Introduction

We consider the Cauchy problem for a wave map from the Minkowski spacetime .R1;d; �/ into a warped
product manifold N d D RC �g Sd�1 with metric h; see, e.g., [O’Neill 1983; Tachikawa 1985] for a
definition. The metric h has the form

hD du2Cg.u/2 d�2; (1-1)

where .u; �/ 2 RC �Sd�1 is the natural polar coordinate system on N d, d�2 is the standard metric on
Sd�1 and

g 2 C1.R/; g is odd; g0.0/D 1; g > 0 on .0;1/: (1-2)

Furthermore, we endow the Minkowski space with standard spherical coordinates .t; r; !/2R�RC�Sd�1.
The metric � thereby becomes

�D�dt2C dr2C r2 d!2: (1-3)

In this setting, a map U W .R1;d; �/! .N d; h/ can be written as

U.t; r; !/D .u.t; r; !/; �.t; r; !//:

We restrict our attention to the special subclass of so-called 1-equivariant or corotational maps where

u.t; r; !/D u.t; r/ and �.t; r; !/D !:

Under this ansatz the wave maps equation for U reduces to the single semilinear radial wave equation�
@2t � @

2
r �

d � 1

r
@r

�
u.t; r/C

d � 1

r2
g.u.t; r//g0.u.t; r//D 0I (1-4)

see, e.g., [Shatah and Tahvildar-Zadeh 1994].
It is not hard to see that the Cauchy problem for (1-4) is locally well-posed for sufficiently smooth data

and even the low-regularity theory is well understood [Shatah and Tahvildar-Zadeh 1994]. Consequently,
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the interesting questions concern the global Cauchy problem and in particular, the formation of singularities
in finite time. There is by now a sizable literature on blowup for wave maps which we cannot review
here in its entirety. Let it suffice to say that the energy-critical case d D 2 attracted particular attention;
see, e.g., [Bizoń et al. 2001; Struwe 2003; Krieger et al. 2008; Rodnianski and Sterbenz 2010; Raphaël
and Rodnianski 2012; Sterbenz and Tataru 2010a; 2010b; Krieger and Schlag 2012; Côte et al. 2015a;
2015b; Côte 2015; Gao and Krieger 2015; Lawrie and Oh 2016] for recent contributions. In supercritical
dimensions d � 3 the existence of self-similar solutions is typical [Shatah 1988; Turok and Spergel 1990;
Cazenave et al. 1998; Bizoń 2000; Bizoń and Biernat 2015] and stability results for blowup were obtained
in [Bizoń et al. 2000; Donninger 2011; Donninger et al. 2012; Bizoń and Biernat 2015; Biernat et al.
2017; Chatzikaleas et al. 2017]. For nonexistence of type II blowup see [Dodson and Lawrie 2015]. Note,
however, that there exists nonself-similar blowup in sufficiently high dimensions [Ghoul et al. 2018].

According to a heuristic principle, one typically has finite-time blowup if the curvature of the target is
positive. For negatively curved targets, on the other hand, one expects global well-posedness. A notable
exception to that rule is provided by the construction of a self-similar solution for a negatively curved
target for d D 7 in [Cazenave et al. 1998], which indicates that the situation is more subtle. Here we
show that the example from that paper is not a peculiarity. We construct suitable target manifolds for
any dimension d � 8 that allow for the existence of an explicit self-similar solution. Moreover, we claim
that the corresponding self-similar blowup is nonlinearly asymptotically stable under small perturbations
of the initial data. In the case d D 9 we prove this claim rigorously. This provides the first example of
stable blowup for wave maps into a negatively curved target.

1A. Self-similar solutions. In order to look for self-similar solutions, we first observe that (1-4) has the
natural scaling symmetry

u.t; r/ 7! u�.t; r/ WD u

�
t

�
;
r

�

�
; � > 0; (1-5)

in the sense that if u solves (1-4) then u� solves it, too. Consequently, it is natural to look for solutions
of the form u.t; r/D �.r=t/. Taking into account the time-translation and reflection symmetries of (1-4),
we arrive at the slightly more general ansatz

u.t; r/D �.�/; �D
r

T � t
; (1-6)

where the free parameter T > 0 is the blowup time. By plugging the ansatz (1-6) into (1-4) we obtain the
ordinary differential equation

.1� �2/�00.�/C

�
d � 1

�
� 2�

�
�0.�/�

.d � 1/g.�.�//g0.�.�//

�2
D 0: (1-7)

By recasting (1-7) into an integral equation and then using a fixed-point argument, one can show that any
solution to (1-7) that vanishes together with its first derivative at � D 0 is identically zero near � D 0.
Therefore, any nontrivial smooth solution � to (1-7) for which �.0/D 0 must have �0.0/ 6D 0, and since

@

@r
�

�
r

T � t

�ˇ̌̌̌
rD0

D
�0.0/

T � t
; (1-8)
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such a � gives rise to a smooth solution of (1-4) which suffers a gradient blowup at the origin in finite time.
Furthermore, due to finite speed of propagation, this type of singularity arises from smooth, compactly
supported initial data. In the following, we restrict ourselves to the study of the solution in the backward
lightcone of the singularity,

CT WD f.t; r/ W t 2 Œ0; T /; r 2 Œ0; T � t �g: (1-9)

Note that in terms of the coordinate �, CT corresponds to the interval Œ0; 1�. Consequently, we look for
solutions of (1-7) that belong to C1Œ0; 1�.

2. Existence of blowup for a negatively curved target manifold

We construct for every d � 8 a negatively curved d -dimensional Riemannian manifold .N d; h/ which
allows for a wave map U W .R1;d; �/! .N d; h/ that starts off smooth and blows up in finite time. We do
this by a suitable choice of the function g that defines the metric on N d by means of (1-1). To begin
with, we restrict ourselves to small u and set

g.u/ WD u

q
1C 7u2� .23d � 170/u4: (2-1)

Clearly, g is odd and smooth locally around the origin. Furthermore, g.u/ > 0 for small u > 0 and
g0.0/D 1; see (1-2). In addition, for d � 8, the metric (1-1) makes the manifold N d negatively curved
locally around uD 0; see Proposition 2.1. Next, (1-4) takes the form�

@2t � @
2
r �

d � 1

r
@r

�
u.t; r/C

.d � 1/Œu.t; r/C 14u.t; r/3� 3.23d � 170/u.t; r/5�

r2
D 0; (2-2)

and the corresponding ordinary differential equation (1-7) becomes

.1� �2/�00.�/C

�
d � 1

�
� 2�

�
�0.�/�

.d � 1/Œ�.�/C 14�.�/3� 3.23d � 170/�.�/5�

�2
D 0: (2-3)

As already discussed, any nonzero function � 2 C1Œ0; 1� that solves (2-3) and vanishes at �D 0 yields a
classical solution to (2-2) that blows up in finite time. In fact, (2-3) has an explicit formal solution

�0.�/D
a�p
b� �2

; (2-4)

where

aD

r
d

E.d/
; b D 1C

d

2
�
7d.d � 1/

E.d/

and

E.d/D
p
.46d2� 291d � 49/.d � 1/C 7.d � 1/:

Furthermore, if d � 8 then E.d/ is positive and b > 1, which makes �0 a smooth and increasing function
on Œ0; 1�. Now we have the following result.
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Proposition 2.1. For each d � 8 there exists an " > 0 and a function g W R! R satisfying (1-2) such
that g.u/D u

p
1C 7u2� .23d � 170/u4 for juj < �0.1/C " and the manifold N d with metric given

by (1-1) has all sectional curvatures negative.

The proof is somewhat lengthy but elementary and therefore postponed to Appendix A.
We define

uT .t; r/ WD �0

�
r

T � t

�
; .t; r/ 2 CT : (2-5)

Note that j�0.�/j � �0.1/ for all � 2 Œ0; 1� and thus,

U T .t; r; !/ WD .uT .t; r/; !/

is a wave map from CT � R1;d to .N d; h/. By finite speed of propagation we obtain the following result.

Theorem 2.2. For every d � 8 there exists a d -dimensional, negatively curved Riemannian manifold
N d such that the Cauchy problem for wave maps from Minkowski space R1;d into N d admits a solution
which develops from smooth Cauchy data of compact support and forms a singularity in finite time.

Remark 2.3. Our focus in this work was on functions g which lead to polynomial-type nonlinearities gg0

in (1-4). Since
d

du
.g.u/2/D 2g.u/g0.u/;

this is equivalent to g2 being an even polynomial. The lowest-degree even polynomial g2 which, through
the metric (1-1), yields negative curvature (locally around the pole uD 0) on the target manifold N d is
of the form

g.u/2 D u2C c1u
4
C c2u

6 (2-6)

for an appropriate choice of c1; c2 2R. Furthermore, the function g given by (2-6) gives rise to a (formal)
solution to (1-7) of the form (2-4). This solution in turn yields a bona fide self-similar blowup in the
corresponding wave maps equation only if it is smooth on Œ0; 1� and the corresponding function uT

from (2-5) stays inside the negatively curved neighborhood of the pole u D 0 whose metric is given
by (2-6). The construction of such solutions, by a proper choice of coefficients c1 and c2 in (2-6), is in
fact possible only for d � 8. There is, of course, some freedom in the choice of c1 and c2, and the one
we made in (2-1) was led by the objective of “minimizing” their dependence on d by allowing them to
depend at most linearly on it.

In order to determine the role of the solution uT for generic evolutions, it is necessary to investigate its
stability under perturbations. In fact, we claim that for any d � 8, the self-similar solution (2-5) exhibits
stable blowup; i.e., there is an open set of radial initial data that give rise to solutions which approach uT

in CT as t ! T �. The rest of the paper is devoted to the proof of this stability property. We emphasize
that the fact that the solutions we constructed are explicit is crucial for our approach to their stability
analysis (see the proof of Proposition 3.7). Due to certain technical difficulties (see Remark 3.17) we
restrict ourselves to the lowest odd dimension d D 9.
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3. Stability of blowup

From now on we fix d D 9. In view of (1-4) and (2-1), we consider the Cauchy problem8̂<̂
:
�
@2t � @

2
r �

8

r
@r

�
u.t; r/C

8Œu.t; r/C 14u.t; r/3� 111u.t; r/5�

r2
D 0; .t; r/ 2 CT ;

u.0; r/D u0.r/; @0u.0; r/D u1.r/; r 2 Œ0; T �:

(3-1)

The restriction to the backward lightcone CT is possible and natural by finite speed of propagation.
Furthermore, to ensure regularity of the solution at the origin r D 0, we impose the boundary condition

u.t; 0/D 0 for t 2 Œ0; T /: (3-2)

The blowup solution (2-4) now becomes

uT .t; r/D �0.�/D
3�p

2.155� 74�2/
; where �D

r

T � t
: (3-3)

Note that by construction, the wave map evolution for the target manifold N 9 is given by (3-1), provided
that ju.t; r/j � �0.1/C"1 for some small "1 > 0. We are only interested in the evolution in the backward
lightcone of the point of blowup and therefore study (3-1) with no a priori restriction on the size of u.
A posteriori we show that the solutions we construct stay below �0.1/C "1.

Note further that (3-1) can be viewed as a nonlinear wave equation with polynomial nonlinearity.
Indeed, the boundary condition (3-2) allows for a change of variable u.t; r/D rv.t; r/ which leads to an
eleven-dimensional radial wave equation in v,�

@2t � @
2
r �

10

r
@r

�
v.t; r/D�8Œ14v.t; r/3� 111r2v.t; r/5�: (3-4)

In fact, this is the point of view we adopt here. In particular, the nonlinear term in (3-1) becomes smooth
and therefore admits a uniform Lipschitz estimate needed for a contraction mapping argument; see
Lemma 3.12. We also remark that (3-4), in spite of its defocusing character (at least for small values
of v), admits an explicit self-similar blowup solution. This is in stark contrast to the cubic defocusing
wave equation �

@2t � @
2
r �

10

r
@r

�
v.t; r/D�v.t; r/3

for which no self-similar solutions exist. The self-similar blowup in (3-4) can therefore be understood
as a consequence of the presence of the focusing quintic term which dominates the dynamics for large
initial data.

3A. Main result. We start by intuitively describing the main result. We fix T0 > 0 and prescribe initial
data uŒ0� that are close to uT0 Œ0� on a ball of radius slightly larger than T0. Here and throughout the paper
we use the abbreviation uŒt � WD .u.t; � /; @tu.t; � //. Then we prove the existence of a particular T near
T0 for which the solution u converges to uT inside the backward lightcone CT in a norm adapted to the
blowup behavior of uT. For the precise statement of the main result we use Definitions 3.4 and 3.5.
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Theorem 3.1. Fix T0 > 0. There exist constants M; ı; " > 0 such that for any radial initial data uŒ0�
satisfying j � j�1�uŒ0�.j � j/�uT0 Œ0�.j � j/�

H6.B11
T0Cı

/�H5.B11
T0Cı

/
�
ı

M
(3-5)

the following statements hold:

(i) The blowup time at the origin T WD TuŒ0� belongs to the interval ŒT0� ı; T0C ı�.

(ii) The solution u W CT ! R to (3-1) satisfies

.T � t /�
9
2
Ck
j � j�1.u.t; j � j/�uT .t; j � j// PHk.B11T�t /

� ı.T � t /"; (3-6)

.T � t /�
7
2
Cl
j � j�1.@tu.t; j � j/� @tuT .t; j � j// PH l .B11T�t /

� ı.T � t /" (3-7)

for integers 0� k � 6 and 0� l � 5. Furthermore,

ku.t; � /�uT .t; � /kL1.0;T�t/ � ı.T � t /
": (3-8)

Remark 3.2. The normalizing factor on the left-hand side of (3-6) and (3-7) appears naturally as it
reflects the behavior of the self-similar solution uT in the respective Sobolev norm; i.e.,j � j�1uT .t; j � j/ PHk.B11T�t /

D

j � j�1�0� j � jT � t

�
PHk.B11T�t /

D .T � t /
9
2
�k
j � j�1�0.j � j/ PHk.B111 /

andj � j�1 @tuT .t; j � j/ PH l .B11T�t /
D .T � t /�2

�00� j � jT � t

�
PH l .B11T�t /

D .T � t /
7
2
�l
k�00.j � j/k PH l .B111 /

:

Remark 3.3. Since �0 is monotonically increasing on Œ0; 1�, we have

kuT .t; � /kL1.0;T�t/ D max
�2Œ0;1�

k�0.�/k D �0.1/: (3-9)

Therefore, given "1 > 0, it follows from (3-8) and (3-9) that ı can be chosen small enough so that

ku.t; � /kL1.0;T�t/ � ku.t; � /�u
T .t; � /kL1.0;T�t/Cku

T .t; � /kL1.0;T�t/ � "1C�0.1/:

Hence, for t < T the solution u.t; r/ stays inside a neighborhood of u D 0 where the metric is given
by (2-1); i.e., the portion of the target manifold that participates in the dynamics of the blowup solution is
described by the metric (2-1).

3B. Outline of the proof. We use the method developed in the series of papers [Donninger 2011; 2014;
2017; Donninger and Schörkhuber 2012; 2014; 2016; 2017; Costin et al. 2017]. First, we introduce the
rescaled variables

v1.t; r/ WD
T � t

r
u.t; r/; v2.t; r/ WD

.T � t /2

r
@tu.t; r/: (3-10)
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Division by r is justified by the boundary condition (3-2) and the presence of the prefactors involving
T � t has to do with the change of variables we subsequently introduce. That is, we introduce similarity
coordinates .�; �/ defined by

� WD � log.T � t /C logT; � WD
r

T � t
; (3-11)

and set
 j .�; �/ WD vj .T .1� e

�� /; Te���/ (3-12)

for j D 1; 2. As a consequence, (3-4) can be written as an abstract evolution equation,

@�‰.�/DL0‰.�/CM .‰.�//; (3-13)

where‰.�/D . 1.�; � /;  2.�; � //,L0 is the spatial part of the radial wave operator in the new coordinates,
andM .‰.�// consists of the remaining nonlinear terms. The benefit of passing to the new variables (3-11)
and (3-12) is that the backward lightcone CT is transformed into a cylinder

C WD f.�; �/ W � 2 Œ0;1/; � 2 Œ0; 1�g;

the rescaled self-similar blowup solution uT becomes a �-independent function ‰res (this justifies the
presence of t -dependent prefactors in (3-10)), and the problem of stability of blowup transforms into the
problem of asymptotic stability of a static solution. We subsequently follow the standard approach for
studying the stability of steady-state solutions and plug the ansatz ‰.�/D‰resCˆ.�/ into (3-13). This
leads to an evolution equation in ˆ,

@�ˆ.�/DL0ˆ.�/CL
0ˆ.�/CN .ˆ.�//; (3-14)

where L0 is the Fréchet derivative ofM at ‰res andN .ˆ.�// is the nonlinear remainder. We then proceed
by studying (3-14) as an ordinary differential equation in a Hilbert space with the norm

kuk2 D k.u1; u2/k
2
WD ku1.j � j/k

2
H6.B11/

Cku2.j � j/k
2
H5.B11/

: (3-15)

However, passing to new variables also comes with a price. Namely, the radial wave operator L0 is not
self-adjoint. Nonetheless, we establish well-posedness of the linearized problem (that is, (3-14) withN re-
moved) by using methods from semigroup theory. In particular, we use a norm equivalent to (3-15) and the
Lumer–Phillips theorem to show thatL0 generates a semigroup .S0.�//��0 with a negative growth bound.
This in particular allows for locating the spectrum ofL0. Furthermore,L0 is compact soL WDL0CL0 gen-
erates a strongly continuous semigroup .S .�//��0 and well-posedness of the linearized problem follows.

The stability of the solution uT follows from a decay estimate on the semigroup S .�/. To obtain such
an estimate we exploit the relation between the growth bound of a semigroup and the location of the
spectrum of its generator. We therefore study �.L/ which, thanks to the compactness of L0, amounts
to studying the eigenvalue problem .��L/u D 0. We subsequently show that �.L/ is contained in
the left half-plane except for the point � D 1. However, this unstable eigenvalue corresponds to an
apparent instability and we later use it to fix the blowup time. We therefore proceed by defining a spectral
projection P onto the unstable space and study the semigroup S .�/ restricted to rg.1�P/. Furthermore,
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we establish a uniform bound on the resolvent RL.�/ and invoke the Gearhart–Prüss theorem to obtain a
negative growth bound on .1�P/S .�/.

Appealing to Duhamel’s principle, we rewrite (3-14) in the integral form

ˆ.�/D S .�/U .v; T /C

Z �

0

S .� � s/N .ˆ.s// ds; (3-16)

where U .v; T / represents the rescaled initial data. We remark that the parameter T does not appear in
the equation itself but in the initial data only. To obtain a decaying solution to (3-16) we suppress the
unstable part of S .�/ by introducing a correction term

C .ˆ;U .v; T // WDP

�
U .v; T /C

Z 1
0

e�sN .ˆ.s// ds

�
into (3-16). That is, we consider the modified equation

ˆ.�/D S .�/
�
U .v; T /�C .ˆ;U .v; T //

�
C

Z �

0

S .� � s/N .ˆ.s// ds: (3-17)

We subsequently prove that for a fixed T0 and small enough initial data v, every T close to T0 yields
a unique solution to (3-17) that decays to zero at the linear decay rate. In other words, we prove the
existence of a solution curve to (3-17) parametrized by T inside a small neighborhood of T0, provided v
is small enough.

Finally, we use the very presence of the unstable eigenvalue �D 1 to prove the existence of a particular
T near T0 for which C .ˆ;U .v; T //D 0 and hence obtain a decaying solution to (3-16) which, when
translated back to the original coordinates, implies the main result.

3C. Notation. We denote by BdR the d -dimensional open ball of radius R centered at the origin. For
brevity we let Bd WD Bd1 . We write 2-component vector quantities in boldface, e.g., uD .u1; u2/. By
B.H/ we denote the space of bounded operators on the Hilbert space H. We denote by �.L/ and �p.L/
the spectrum and the point spectrum, respectively, of a linear operator L. Also, we denote by �.L/ the
resolvent set Cn�.L/ and use the convention RL.�/ WD .��L/

�1, � 2 �.L/, for the resolvent operator.
We use the symbol . with the standard meaning: a . b if there exists a positive constant c, independent
of a; b, such that a � cb. Also, a' b means that both a . b and b . a hold.

3D. Similarity coordinates and cylinder formulation. After introducing the similarity coordinates

� WD � log.T � t /C logT; � WD
r

T � t
;

and the rescaled variables

v1.t; r/ WD
T � t

r
u.t; r/; v2.t; r/ WD

.T � t /2

r
@tu.t; r/;

 j .�; �/D vj .T .1� e
�� /; T�e�� /; j D 1; 2;

we obtain from (3-1) the first-order system�
@� 1
@� 2

�
D

�
�� @� 1� 1C 2

@2� 1C .10=�/ @� 1� �@� 2� 2 2

�
�

�
0

8.14 31 � 111�
2 51 /

�
(3-18)
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for .�; �/ 2 C. Furthermore, the initial data become�
 1.0; �/

 2.0; �/

�
D
1

�

�
u0.T�/

T u1.T�/

�
D
1

�

�
uT0.0; T�/

T @0u
T0.0; T�/

�
C
1

�

�
F.T�/

TG.T�/

�
; (3-19)

where T0 is a fixed parameter and

F WD u0�u
T0.0; � /; G WD u1� @0u

T0.0; � /:

In addition, we have the regularity conditions

@� 1.�; �/j�D0 D @� 2.�; �/j�D0 D 0

for � � 0. Note further that we are studying the dynamics around uT0 for a fixed T0 and thus, it is natural
to split the initial data as in (3-19). The parameter T is assumed to be close to T0 and will be fixed later.
As a consequence, the proximity of the initial data to uT0 Œ0� is measured by v WD .F;G/.

3E. Perturbations of the blowup solution. For convenience, we set

‰.�/.�/ WD

�
 1.�; �/

 2.�; �/

�
:

In the rescaled variables the blowup solution uT becomes � -independent, i.e.,�
..T � t /=r/uT .t; r/

..T � t /2=r/@tu
T .t; r/

�
D

�
.1=�/�0.�/

�00.�/

�
DW‰res.�/.�/:

We proceed by studying the dynamics of (3-18) around ‰res. Our aim is to prove the asymptotic stability
of ‰res, which in turn translates into the appropriate notion of stability of uT. We therefore follow the
standard method and plug the ansatz ‰ D‰resCˆ into (3-18), where ˆ.�/.�/ WD .'1.�; �/; '2.�; �//.
This leads to an evolution equation for the perturbation ˆ,�

@�ˆ.�/D zLˆ.�/CN .ˆ.�//;

ˆ.0/D U .v; T /;
(3-20)

where zL and N are spatial operators and U .v; T / are the initial data. More precisely, zL WD zL0CL0,
where

zL0u.�/ WD

�
��u01.�/�u1.�/Cu2.�/

u001.�/C .10=�/u
0
1.�/� �u

0
2.�/� 2u2.�/

�
; (3-21)

L0u.�/ WD

�
0

W.�; �0.�//u1.�/

�
; (3-22)

N .u/.�/ WD

�
0

N.�; u1.�//

�
(3-23)
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for a 2-component function u.�/D .u1.�/; u2.�//, where

N.�; u1.�//D�
8

�3
Œn.�0.�/C �u1.�//�n.�0.�//�n

0.�0.�//�u1.�/�;

W.�; �0.�//D�
8

�2
n0.�0.�// for n.x/D 14x3� 111x5:

(3-24)

Also, we write the initial data as

ˆ.0/.�/D U .v; T /.�/D

"
.1=�/�0..T=T0/�/

.T 2=T 20 /�
0
0..T=T0/�/

#
�

�
.1=�/�0.�/

�00.�/

�
CV .v; T /.�/; (3-25)

where

V .v; T /.�/ WD

�
.1=�/F.T�/

.T=�/G.T�/

�
; vD

�
F

G

�
:

3F. Strong lightcone solutions and blowup time at the origin. To proceed, we need the notion of a
solution to the problem (3-20). In Section 3G we introduce the space

H WDH 6
rad.B

11/�H 5
rad.B

11/

and prove that the closure of the operator zL, defined on a suitable domain, generates a strongly continuous
semigroup S .�/ on H. Consequently, we formulate the problem (3-20) as an abstract integral equation
via Duhamel’s formula,

ˆ.�/D S .�/U .v; T /C

Z �

0

S .� � s/N .ˆ.s// ds: (3-26)

This in particular establishes the well-posedness of the problem (3-20) in H. We are now in the position
to introduce the following definitions.

Definition 3.4. We say that u W CT !R is a solution to (3-1) if the corresponding ˆ W Œ0;1/!H belongs
to C.Œ0;1/IH/ and satisfies (3-26) for all � � 0.

Definition 3.5. For the radial initial data .u0; u1/ we define T .u0; u1/ as the set of all T > 0 such that
there exists a solution u W CT ! R to (3-1). We call

T.u0;u1/ WD sup.T .u0; u1/[f0g/ (3-27)

the blowup time at the origin.

3G. Functional setting. We consider radial Sobolev functions Ou W B11R ! C, i.e., Ou.�/ D u.j�j/ for
� 2 B11R and some u W Œ0; R/! C. We furthermore define

u 2Hm
rad.B

11
R / if and only if Ou 2Hm.B11R / WDW

m;2.B11R /:

With the norm

kukHm
rad.B

11
R /
WD k OukHm.B11R /

;
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Hm
rad.B

11
R / becomes a Banach space. In the rest of this paper we do not distinguish between u and Ou.

Now we define the Hilbert space

H WDH 6
rad.B

11/�H 5
rad.B

11/;

with the induced norm

kuk2 D k.u1; u2/k
2
WD ku1k

2
H6

rad.B
11/
Cku2k

2
H5

rad.B
11/
:

3H. Well-posedness of the linearized equation. To establish well-posedness of the problem (3-20) we
start by defining the domain of the free operator zL0; see (3-21). We follow [Donninger and Schörkhuber
2017] and let

D. zL0/ WD fu 2 C1.0; 1/2\H W w1 2 C 3Œ0; 1�; w001.0/D 0; w2 2 C
2Œ0; 1�g;

where

wj .�/ WDD11uj .�/ WD

�
1

�

d

d�

�4
.�9uj .�//D

4X
nD0

cn�
nC1u

.n/
j .�/

for certain positive constants cn, � 2 Œ0; 1�, and j D 1; 2. Since C1.B11/ is dense in Hm.B11/,

C1evenŒ0; 1�
2
WD fu 2 C1Œ0; 1�2 W u.2kC1/.0/D 0; k D 0; 1; 2; : : : g � D. zL0/

is dense in H, which in turn implies that zL0 is densely defined on H. Furthermore, we have the following
result.

Proposition 3.6. The operator zL0 W D. zL0/�H!H is closable and its closure L0 W D.L0/�H!H
generates a strongly continuous one-parameter semigroup .S0.�//��0 of bounded operators on H
satisfying the growth estimate

kS0.�/k �Me
�� (3-28)

for all � �0 and someM >0. Furthermore, the operatorL WDL0CL0 WD.L/�H!H, D.L/DD.L0/,
is the generator of a strongly continuous semigroup .S .�//��0 on H and L0 WH!H is compact.

Proof. The proof essentially follows the one of Proposition 3.1 in [Chatzikaleas et al. 2017] for d D 9. �

3I. The spectrum of the free operator. By exploiting the relation between the growth bound of a semi-
group and the spectral bound of its generator, we can locate the spectrum of the operator L0. Namely,
according to [Engel and Nagel 2000, p. 55, Theorem 1.10] the estimate (3-28) implies

�.L0/� f� 2 C W Re�� �1g: (3-29)

3J. The spectrum of the full linear operator. To understand the properties of the semigroup S .�/ we
investigate the spectrum of the full linear operator L. First of all, we remark that �D 1 is an eigenvalue
of L (see Section 3K), which is an artifact of the freedom of choice of the parameter T ; see, e.g., [Costin
et al. 2017] for a discussion on this. What is more, �D 1 is the only spectral point ofL with a nonnegative
real part. To prove this we first focus on the point spectrum.
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Proposition 3.7. We have

�p.L/� f� 2 C W Re� < 0g[ f1g: (3-30)

Proof. We argue by contradiction and assume there exists a � 2 �p.L/ n f1g with Re�� 0. This means
that there exists a uD .u1; u2/2D.L/nf0g such that u2 ker.��L/. The spectral equation .��L/uD 0
implies that the first component u1 satisfies the equation

.1� �2/u001.�/C

�
10

�
� 2.�C 2/�

�
u01.�/� .�C 1/.�C 2/u1.�/�V.�/u1.�/D 0 (3-31)

for � 2 .0; 1/, where

V.�/ WD �W.�; �0.�//D
8n0.�0.�//

�2
D�

54.3737�2� 4340/

.155� 74�2/2
:

Since u 2 H, we know u1 must be an element of H 6
rad.B

11/. From the smoothness of the coefficients
in (3-31) we have an a priori regularity u1 2 C1.0; 1/. In fact, we claim that u1 2 C1Œ0; 1�. To show
this, we use the Frobenius method. Namely, both �D 0 and �D 1 are regular singularities of (3-31) and
Frobenius’ theory gives a series form of solutions locally around singular points.

The Frobenius indices at �D 0 are s1D 0 and s2D�9. Therefore, two independent solutions of (3-31)
have the form

u11.�/D

1X
iD0

ai�
i and u21.�/D C log.�/u11.�/C �

�9
1X
iD0

bi�
i

for some constant C 2C and a0D b0D 1. Since u11.�/ is analytic at �D 0 and u21.�/ does not belong to
H 6

rad.B
11/, we conclude that u1 is a multiple of u11 and therefore, u1 2 C1Œ0; 1/.

The Frobenius indices at � D 1 are s1 D 0 and s2 D 4� �, and we distinguish different cases. If
4�� … Z then the two linearly independent solutions are

u11.�/D

1X
iD0

ai .1� �/
i and u21.�/D .1� �/

4��
1X
iD0

bi .1� �/
i

with a0 D b0 D 1. Since u11.�/ is analytic at �D 1 and u21 does not belong to H 6
rad.B

11/, we conclude
that u1 2 C1Œ0; 1�. If 4�� 2 N0, then the fundamental solutions around �D 1 are of the form

u11.�/D .1� �/
4��

1X
iD0

ai .1� �/
i and u21.�/D

1X
iD0

bi .1� �/
i
CC log.1� �/u11.�/;

with a0 D b0 D 1. Since u11.�/ is analytic at �D 1 and u21 does not belong to H 6
rad.B

11/ unless C D 0,
we again conclude that u1 2 C1Œ0; 1�. Finally, if 4� � is a negative integer, the linearly independent
solutions around �D 1 are

u11.�/D

1X
iD0

ai .1� �/
i and u21.�/D .1� �/

4��
1X
iD0

bi .1� �/
i
CC log.1� �/u11.�/;
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with a0 D b0 D 1. Once again, since u11.�/ is analytic at �D 1 and u21 is not a member of H 6
rad.B

11/, we
infer that u1 2 C1Œ0; 1�.

To obtain the desired contradiction, it remains to prove that (3-31) does not have a solution in C1Œ0; 1�
for Re�� 0 and �¤ 1. This claim is called the mode stability of the solution uT. A general approach
to proving mode stability of explicit self-similar blowup solutions to nonlinear wave equations of the
type (1-4) was developed in [Costin et al. 2016; 2017]. We argue here along the lines of [Costin et al.
2017]. Also, for the rest of the proof, we follow the terminology of that paper. Namely, we call � 2 C an
eigenvalue if it yields a C1Œ0; 1� solution to the equation in question. Also, if an eigenvalue � satisfies
Re�� 0 we say it is unstable; otherwise we call it stable. Our aim is therefore to prove that, apart from
�D 1, there are no unstable eigenvalues of the problem (3-31).

First of all, we make the substitution v.�/D �u1.�/. This leads to the equation

.1� �2/v00.�/C

�
8

�
� 2.�C 1/�

�
v0.�/��.�C 1/v.�/� yV .�/v.�/D 0; (3-32)

where

yV .�/ WD �
10.15799�4� 5084�2� 19220/

�2.155� 74�2/2
:

Now we formulate the corresponding supersymmetric problem,

.1� �2/ Qv00.�/C

�
8

�
� 2.�C 1/�

�
Qv0.�/� .�C 2/.�� 1/ Qv.�/� zV .�/ Qv.�/D 0; (3-33)

where

zV .�/ WD �
18.3737�4C 5735�2� 24025/

�2.155� 74�2/2
I

see [Costin et al. 2017, Section 3.2] for the derivation. We claim that, apart from �D 1, (3-32) and (3-33)
have the same set of unstable eigenvalues. This is proved by a straightforward adaptation of the proof of
Proposition 3.1 in [Costin et al. 2017].

To establish the nonexistence of unstable eigenvalues of the supersymmetric problem (3-33) we follow
the proof of Theorem 4.1 in [Costin et al. 2017]. We start by introducing the change of variables

x D �2; Qv.�/D
x

p
155� 74x

y.x/: (3-34)

Equation (3-33) transforms into Heun’s equation in its canonical form,

y00.x/C

�
13

2x
C
�� 3

x� 1
�

74

74x� 155

�
y0.x/C

74�.�C 3/x� .155�2C 775�C 1656/

4x.x� 1/.74x� 155/
y.x/D 0: (3-35)

Note that (3-34) preserves the analyticity of solutions at 0 and 1, and consequently, (3-33) and (3-35)
have the same set of eigenvalues. The Frobenius indices of (3-35) at x D 0 are s1 D 0 and s2 D�112 , so
its normalized analytic solution at x D 0 is given by the power series

1X
nD0

an.�/x
n; a0.�/D 1: (3-36)



402 ROLAND DONNINGER AND IRFAN GLOGIĆ

The strategy is to study the asymptotic behavior of the coefficients an.�/ as n!1. More precisely, we
prove that if � 2 H1 then limn!1 anC1.�/=an.�/D 1. Since x D 1 is the only singular point of (3-35)
on the unit circle, it follows that the solution given by the series (3-36) is not analytic at x D 1.

First, we obtain the recurrence relation for coefficients fan.�/gn2N0 . By inserting (3-36) into (3-35)
we get

310.2nC 15/.nC 2/anC2.�/

D Œ155�.�C 4nC 9/C 2.458n2C 2357nC 2727/�anC1.�/� 74.�C 2nC 3/.�C 2n/an.�/;

where a�1.�/D 0 and a0.�/D 1, or, written differently,

anC2.�/D An.�/ anC1.�/CBn.�/ an.�/; (3-37)
where

An.�/D
155�.�C 4nC 9/C 2.458n2C 2357nC 2727/

310.2nC 15/.nC 2/

and

Bn.�/D
�37.�C 2nC 3/.�C 2n/

155.2nC 15/.nC 2/
:

We now let

rn.�/D
anC1.�/

an.�/
; (3-38)

and thereby transform (3-37) into

rnC1.�/D An.�/C
Bn.�/

rn.�/
; (3-39)

with the initial condition

r0.�/D
a1.�/

a0.�/
D A�1.�/D

1
26
�2C 5

26
�C 828

2015
:

Analogous to Lemma 4.2 in [Costin et al. 2017] we have that, given � 2 H, either

lim
n!1

rn.�/D 1 (3-40)
or

lim
n!1

rn.�/D
74
155
: (3-41)

Our aim is to prove that (3-40) holds throughout H. We do that by approximately solving (3-39) for
� 2 H. Namely, we define an approximate solution (also called a quasisolution)

Qrn.�/D
�2

4n2C 28nC 27
C

�

nC 7
C
2nC 12

2nC 23

to (3-39); see [Costin et al. 2016, Section 4.1] for a discussion on how to obtain such an expression.
Subsequently, we let

ın.�/D
rn.�/

Qrn.�/
� 1 (3-42)

1Here, as in [Costin et al. 2017], H denotes the closed complex right half-plane.



BLOWUP FOR WAVE MAPS INTO A NEGATIVELY CURVED TARGET 403

and from (3-39) we get the recurrence relation

ınC1 D "n�Cn
ın

1C ın
(3-43)

for ın, where

"n D
An QrnCBn

Qrn QrnC1
� 1 and Cn D

Bn

Qrn QrnC1
: (3-44)

Now, for all � 2 H and n� 7 we have the bounds

jı7.�/j �
1
3
; j"n.�/j �

1
12
; jCn.�/j �

1
2
: (3-45)

The last two inequalities above are proved in the same way as the corresponding ones in Lemma 4.4 in
[Costin et al. 2017]. However, the proof of the first one needs to be slightly adjusted and we provide it
in the appendix; see Proposition B.1. Next, by a simple inductive argument we conclude from (3-43)
and (3-45) that

jın.�/j �
1
3

for all n� 7 and � 2 H: (3-46)

Since for any fixed � 2H we have limn!1 Qrn.�/D 1, (3-46) and (3-42) exclude the case (3-41). Hence,
(3-40) holds throughout H and we conclude that there are no unstable eigenvalues of the supersymmetric
problem (3-33), thus arriving at a contradiction and thereby completing the proof of the proposition. �

Remark 3.8. Apart from � D 1 the point spectrum of the operator L is completely contained in the
open left half-plane. It is natural to try to locate the eigenvalues that are closest to the imaginary axis, as
their location is typically related to the rate of convergence to the blowup solution uT. Our numerical
calculations indicate that �0:98˙ 3:76 i is the approximate location of the pair of (complex conjugate)
stable eigenvalues with the largest real parts. It is interesting to contrast this with the analogous spectral
problems for equivariant wave maps into the sphere and Yang–Mills fields, where all eigenvalues appear
to be real; see [Bizoń and Biernat 2015].

Corollary 3.9. We have
�.L/� f� 2 C W Re� < 0g[ f1g:

Proof. Assume there exists a � 2 �.L/n f1g with Re�� 0. From (3-29) we see that � is contained in the
resolvent set of L0. Therefore, we have the identity

��LD Œ1�L0RL0.�/�.��L0/: (3-47)

This implies that 1 2 �.L0RL0.�// and since L0RL0.�/ is compact, it follows that 1 2 �p.L0RL0.�//.
Thus, there exists a nontrivial f 2H such that Œ1�L0RL0.�/�f D 0. Consequently, u WDRL0.�/f 6D 0

satisfies .��L/uD 0 and thus, � 2 �p.L/, but this is in conflict with Proposition 3.7. �

3K. The eigenspace of the isolated eigenvalue. In this section, we prove that the (geometric) eigenspace
of the isolated eigenvalue �D 1 for the full linear operator L is spanned by

g.�/ WD

�
g1.�/

g2.�/

�
D

�
�00.�/

��000.�/C 2�
0
0.�/

�
: (3-48)
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Namely, we are looking for all uD .u1; u2/ 2D.L/n f0g which belong to ker.1�L/. A straightforward
calculation shows that the spectral equation .1�L/uD0 is equivalent to the system of ordinary differential
equations �

u2.�/D �u
0
1.�/C 2u1.�/;

.1� �2/u001.�/C .10=�� 6�/u
0
1.�/�

�
6C .8=�2/n0.�0.�//

�
u1.�/D 0

(3-49)

for � 2 .0; 1/. One can easily verify that a fundamental system of the second equation is given by the
functions �00.�/ and ��9A.�/, where A.�/ is analytic and nonvanishing at �D 0. We can therefore write
the general solution to the second equation as

u1.�/D C1�
0
0.�/CC2

A.�/

�9
:

The condition u 2 D.L/ requires u1 to lie in the Sobolev space H 6
rad.B

11/. Since �00 2 C
1Œ0; 1�, this

requirement yields C2 D 0 which, according to the first equation in (3-49), gives uD C1g. In conclusion,

ker.1�L/D hgi; (3-50)

as initially claimed.

3L. Time evolution of the linearized problem. To get around the spurious instability on the linear level,
we use the fact that �D 1 is isolated to introduce a (nonorthogonal) spectral projection P and study the
subspace semigroup S .�/.1�P/. From Corollary 3.9 we then infer that the spectrum of its generator
is contained in the left half-plane. This does not necessarily imply the desired decay on S .�/.1�P/.
We nonetheless establish such a decay by first proving uniform boundedness of the resolvent of L in a
half-plane that strictly contains H and then using the Gearhart–Prüss theorem. For this purpose, we define

�";R WD f� 2 C W Re�� �1C "; j�j �Rg

for "; R > 0.

Proposition 3.10. Let " > 0. Then there exists a constant R" > 0 such that the resolvent RL exists on
�";R" and satisfies

kRL.�/k �
2

"

for all � 2�";R" .

Proof. Fix " > 0 and take � 2�";R for an arbitrary R � 2. Then � 2 �.L0/ and the identity (3-47) holds.
The proof proceeds as follows. For large enough R, we show that the operator 1�L0RL0.�/ is invertible
in �";R and RL0.�/ and Œ1�L0RL0.�/�

�1 are uniformly norm bounded there. Via (3-47) this implies
the desired bound on RL.�/.

First of all, semigroup theory yields the estimate

kRL0.�/k �
1

Re�C 1
I (3-51)
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see [Engel and Nagel 2000, p. 55, Theorem 1.10]. Next, by a Neumann series argument, the operator
1�L0RL0.�/ is invertible if kL0RL0.�/k< 1. To prove smallness of L0RL0.�/, we recall the definition
of L0, (3-22),

L0u.�/ WD

�
0

zW .�/u1.�/

�
; zW .�/D�

8

�2
n0.�0.�// for n.x/D 14x3� 111x5:

Let uDRL0.�/f or, equivalently, .��L0/uD f . The latter equation implies

.�C 1/u1.�/D u2.�/� �u
0
1.�/Cf1.�/:

Now we use Lemma 4.1 from [Donninger and Schörkhuber 2017] and k zW .k/kL1.0;1/ . 1 for all
k 2 f0; 1; : : : ; 5g to obtain

j�C 1jkL0RL0.�/f k D j�C 1jkL
0uk ' k zW .u2� . � /u

0
1Cf1/kH5

rad.B
11/

. ku2kH5
rad.B

11/Ck. � /u
0
1kH5

rad.B
11/Ckf1kH5

rad.B
11/

. ku2kH5
rad.B

11/Cku1kH6
rad.B

11/Ckf1kH6
rad.B

11/

. kukCkf k.
�

1

Re�C 1
C 1

�
kf k. kf k;

where we used (3-51). In other words,

kL0RL0.�/k.
1

j�C 1j
�

1

j�j � 1
�

1

R� 1

and by choosingR sufficiently large, we can achieve kL0RL0.�/k�
1
2

. As a consequence, Œ1�L0RL0.�/�
�1

exists for � 2�";R" and we obtain the bound

kRL.�/k D kRL0.�/Œ1�L
0RL0.�/�

�1
k

� kRL0.�/kkŒ1�L
0RL0.�/�

�1
k

� kRL0.�/k

1X
nD0

kL0RL0.�/k
n
�
2

"
: �

We now show the existence of a projection P which decomposes the Hilbert space H into a stable
and an unstable subspace and furthermore prove that data from the stable subspace lead to solutions that
decay exponentially in time. We also remark that it is crucial to ensure that rankP D 1, i.e., that g is the
only unstable direction in H.

Proposition 3.11. There exists a projection operator

P 2 B.H/; P WH! hgi;

which commutes with the semigroup .S .�//��0. In addition, we have

S .�/Pf D e�Pf (3-52)
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and there are constants C; " > 0 such that

k.1�P/S .�/f k � Ce�"�k.1�P/f k (3-53)

for all f 2H and � � 0.

Proof. By Proposition 3.7, the eigenvalue �D 1 of the operator L is isolated. We therefore introduce the
spectral projection

P WH!H; P WD
1

2�i

Z


RL.�/ d�;

where  is a positively oriented circle around �D 1. The radius of the circle is chosen small enough so
that  is completely contained inside the resolvent set of L and such that the interior of  contains no
spectral points of L other than �D 1. The projection P commutes with the operator L and therefore with
the semigroup S .�/. Moreover, the Hilbert space H is decomposed as HDM˚N, where M WD rgP
and N WD rg.1�P/ D kerP. Also, the spaces M and N reduce the operator L, which is therefore
decomposed into LM and LN . The spectra of these operators are given by

�.LN /D �.L/ n f1g; �.LM/D f1g: (3-54)

We refer the reader to [Kato 1980, Chapter III, Section 6.4] for these standard results.
To proceed with the proof we show that rankP WD dim rgP <C1. We argue by contradiction and

assume that rankP DC1. This means that �D 1 belongs to the essential spectrum of L; see [Kato
1980, p. 239, Theorem 5.28]. But according to Proposition 3.6 the operator L0 DL�L0 is a compact
perturbation of L, and due to the stability of the essential spectrum under compact perturbations we
conclude that � D 1 is a spectral point of L0. However, this is in conflict with (3-29), and therefore
rankP <C1.

Now we prove that hgi D rgP. From the definition of the projection P we have Pg D g. Therefore
hgi � rgP and it remains to prove the reverse inclusion. From the fact that the operator 1�LM acts on
the finite-dimensional Hilbert space MD rgP and (3-54) we infer that �D 0 is the only spectral point
of 1�LM. Hence, 1�LM is nilpotent; i.e., there exists a k 2 N such that

.1�LM/
kuD 0

for all u 2 rgP and we assume k to be minimal. Due to (3-50) the claim follows immediately for k D 1.
We therefore assume that k � 2. This implies the existence of a nontrivial function u 2 rgP �D.L/ such
that .1�LM/u is nonzero and belongs to ker.1�LM/� ker.1�L/D hgi. Therefore .1�L/uD ˛g
for some ˛ 2Cnf0g. For convenience and without loss of generality, we set ˛D�1. By a straightforward
computation we see that the first component of u satisfies the differential equation

.1� �2/u001.�/C

�
10

�
� 6�

�
u01.�/�

�
6C

8

�2
n0.�0.�//

�
u1.�/DG.�/ (3-55)

for � 2 .0; 1/, where
G.�/ WD 2��000.�/C 5�

0
0.�/; � 2 Œ0; 1�:
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To find a general solution to (3-55) we first observe that

Ou1.�/ WD g1.�/D �
0
0.�/; � 2 .0; 1/;

is a particular solution to the homogeneous equation

.1� �2/u001.�/C

�
10

�
� 6�

�
u01.�/�

�
6C

8

�2
n0.�0.�//

�
u1.�/D 0I

see (3-48) and (3-49). Note that the Wronskian for the equation above is

W.�/ WD
.1� �2/2

�10
:

Therefore, another linearly independent solution is

Ou2.�/ WD Ou1.�/

Z 1

�

.1� x2/2

x10
1

�00.x/
2
dx

for all � 2 .0; 1/. Note that near �D 0 we have the expansion

Ou2.�/D
1

�9

1X
jD0

aj�
j ; a0 ¤ 0;

as already indicated in Section 3K. Furthermore, we have

Ou2.�/D .1� �/
3
1X
jD0

bj .1� �/
j ; b0 ¤ 0;

near �D 1. Now, by the variation-of-constants formula we see that the general solution to (3-55) can be
written as

u1.�/D c1 Ou1.�/C c2 Ou2.�/C Ou2.�/

Z �

0

Ou1.y/G.y/y
10

.1�y2/3
dy � Ou1.�/

Z �

0

Ou2.y/G.y/y
10

.1�y2/3
dy

for some constants c1; c2 2 C and for all � 2 .0; 1/. The fact that u1 2H 6
rad.B

11/ implies c2 D 0 as Ou2
has a ninth-order pole at �D 0. Therefore

u1.�/D c1 Ou1.�/C Ou2.�/

Z �

0

Ou1.y/G.y/y
10

.1�y2/3
dy � Ou1.�/

Z �

0

Ou2.y/G.y/y
10

.1�y2/3
dy: (3-56)

The last term in (3-56) is smooth on Œ0; 1�. To analyze the second term, we set

I.�/ WD Ou2.�/
Z �

0

F.y/

.1�y/3
dy;

where

F.y/ WD
Ou1.y/G.y/y

10

.1Cy/3
D
y10.2y�00.y/�

00
0.y/C 5�

0
0.y/

2/

.1Cy/3
:

By a direct calculation we get F 00.1/ 6D 0 and thus, the expansion of I.�/ near �D 1 contains a term of
the form .1� �/3 log.1� �/. Consequently, I.4/ … L2

�
1
2
; 1
�
, which is a contradiction to u1 2H 6

rad.B
11/.
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Finally we prove (3-52) and (3-53). Note that (3-52) follows from the fact that �D 1 is an eigenvalue
of the operator L with eigenfunction g and rgP D hgi. Next, from Corollary 3.9 and Proposition 3.10
we deduce the existence of constants D; " > 0 such that

kRL.�/.1�P/k �D

for all complex � with Re� > �". Thus, (3-53) follows from the Gearhart–Prüss theorem; see [Engel
and Nagel 2000, p. 302, Theorem 1.11]. �

3M. Estimates for the nonlinearity. In the next section we employ a fixed-point argument to prove
the existence of decaying solutions to (3-26) for small initial data. To accomplish that, we need a
Lipschitz-type estimate for the nonlinear operator N ; see (3-23). We first define

Bı WD fu 2H W kuk D k.u1; u2/kH6
rad.B

11/�H5
rad.B

11/ � ıg:

Lemma 3.12. Let ı > 0. For u; v 2 Bı , we have

kN .u/�N .v/k. .kukCkvk/ku� vk: (3-57)

Remark 3.13. From this lemma we infer the estimate

kN .u/�N .v/k. ıku� vk: (3-58)

Therefore, the implied Lipschitz constant in (3-58) can be made as small as needed by adjusting the size
of ı.

Proof. Based on (3-23) and (3-3), the difference N.�; u/�N.�; v/ can be written as

N.�; u/�N.�; v/D

4X
jD1

nj .�
2/.ujC1� vjC1/; (3-59)

where nj 2 C1Œ0; 1�. For ı > 0, we have u; v 2 Bı , and due to the bilinear estimate

kf1f2kH6
rad.B

11/ . kf1kH6
rad.B

11/kf2kH6
rad.B

11/;

we have
kN .u/�N .v/k D kN. � ; u1/�N. � ; v1/kH5

rad.B
11/

� kN. � ; u1/�N. � ; v1/kH6
rad.B

11/

.
4X

jD1

knj .. � /
2/kH6

rad.B
11/ku

jC1
1 � v

jC1
1 kH6

rad.B
11/

. .ku1kH6
rad.B

11/Ckv1kH6
rad.B

11//ku1� v1kH6
rad.B

11/

� .kukCkvk/ku� vk: �
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3N. The abstract nonlinear Cauchy problem. In this section we treat the existence and uniqueness of
solutions to (3-20) for small initial data. According to Definition 3.4 we study the integral equation

ˆ.�/D S .�/U .v; T /C

Z �

0

S .� � s/N .ˆ.s// ds (3-60)

for � � 0 and v 2 H small. In order to employ a fixed-point argument, we introduce the necessary
definitions. First, we define a Banach space

X WD fˆ 2 C.Œ0;1/;H/ W kˆkX WD sup�>0 e
"�
kˆ.�/k<1g; (3-61)

where " is sufficiently small and fixed. We denote by Xı the closed ball in X with radius ı; that is,

Xı WD fˆ 2 X W kˆkX � ıg: (3-62)

Finally, we define the correction term

C .ˆ;u/ WDP

�
uC

Z 1
0

e�sN .ˆ.s// ds

�
;

and set

K .ˆ;u/.�/ WD S .�/.u�C .ˆ;u//C

Z �

0

S .� � s/N .ˆ.s// ds:

The correction term serves the purpose of suppressing the exponential growth of the semigroup S .�/ on
the unstable space. We have the following result.

Theorem 3.14. There exist constants ı; C > 0 such that for every u 2H which satisfies kuk � ı=C , there
exists a unique ˆu 2 Xı such that

ˆu DK .ˆu;u/: (3-63)

In addition, the solution ˆu is unique in the whole space X and the solution map u 7! ˆu is Lipschitz
continuous.

The proof coincides with the one of Theorem 3.7 in [Chatzikaleas et al. 2017].
We now study the initial data U .v; T /, see (3-25), and prove its continuity in T near T0. For that

reason we define
HR WDH 6

rad �H
5
rad.B

11
R /;

with the induced norm

kwk2HR D kw1.j � j/k
2
H6.B11R /

Ckw2.j � j/k
2
H5.B11R /

:

Lemma 3.15. Fix T0 > 0. Let j � j�1v 2HT0Cı for ı positive and sufficiently small. Then the map

T 7! U .v; T / W ŒT0� ı; T0C ı�!H

is continuous. Furthermore, for all T 2 ŒT0� ı; T0C ı�,

kj � j
�1v


HT0Cı � ı D) kU .v; T /k. ı:
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Proof. We prove the result for T0D 1 only, as the general case is treated similarly. Assume j � j�1v 2H1Cı

for ı positive but less than 1
2
T0 D

1
2

. We first introduce some auxiliary facts. Namely, by scaling we see
that for f 2H 6

rad.B
11
1Cı

/ and T 2 Œ1� ı; 1C ı�,

kf .jT � j/kH6.B111 /
. kf .j � j/kH6.B11

1Cı
/:

Furthermore, from the density of C1evenŒ0; 1C ı� in H 6
rad.B

11
1Cı

/ we conclude that given " > 0, there exists
a Qv1 2C1evenŒ0; 1Cı� such that kj � j�1v1.j � j/� Qv1.j � j/kH6

rad.B
11
1Cı

/ < ". Also, the functions .1=T�/�0.T�/
and Qv.T�/ are smooth on Œ0; 1� for T 2 Œ1� ı; 1C ı�. Therefore,

lim
T!zT

jT � j�1��0.jT � j/��0.j zT � j/�H6.B11/
CkQv1.jT � j/� Qv1.j zT � j/kH6.B11/ D 0: (3-64)

Using these facts, we prove the continuity of the first component of the map T ! U .v; T /. Namely,
given " > 0, there exists a Qv1 2 C1evenŒ0; 1C ı� such that for T; zT 2 Œ1� ı; 1C ı� we haveŒU .v; T /�1� ŒU .v; zT /�1H6.B11/

D
j � j�1�0.jT � j/Cj � j�1v1.jT � j/� j � j�1�0.j zT � j/� j � j�1v1.j zT � j/H6.B11/

.
j � j�1.�0.jT � j/��0.j zT � j//H6.B11/

C
jT � j�1v1.jT � j/� Qv1.jT � j/H6.B11/

C
 Qv1.jT � j/� Qv1.j zT � j/H6.B11/

C
jT � j�1 Qv1.j zT � j/� v1.j zT � j/H6.B11/

.
jT � j�1.�0.jT � j/��0.j zT � j//H6.B11/

C
j � j�1v1.j � j/� Qv1.j � j/H6.B11

1Cı
/

C
 Qv1.jT � j/� Qv1.j zT � j/H6.B11/

�
jT � j�1��0.jT � j/��0.j zT � j/�H6.B11/

C
 Qv1.jT � j/� Qv1.j zT � j/H6.B11/

C ";

This together with (3-64) implies that ŒU .v; T /�1 is continuous. The second component is treated
analogously. Now, given kj � j�1vkH1Cı � ı and T 2 Œ1� ı; 1C ı�, we have

kŒU .v; T /�1kH6.B11/ D
j � j�1�0.jT � j/� j � j�1�0.j � j/Cj � j�1v1.jT � j/H6.B11/

. jT � 1jC kj � j�1v1kH6.B11
1Cı

/ . ı:

We obtain a similar estimate for the second component and finally deduce that

kU .v; T /k. ı: �

As already mentioned, the unstable eigenvalue �D 1 is present due to the freedom of choice of the
parameter T, and is therefore not considered a “real” instability of the linear problem. The following
theorem is the precise version of this statement. Namely, for a given T0 and small enough initial data v,
there exists a Tv close to T0 that makes the correction term C .ˆU .v;Tv/;U .v; Tv// vanish. This in turn
allows for proving the existence and uniqueness of an exponentially decaying solution to (3-60).

Theorem 3.16. Fix T0 > 0. Then there exist ı;M > 0 such that for any v that satisfies

kj � j
�1vkHT0Cı �

ı

M



BLOWUP FOR WAVE MAPS INTO A NEGATIVELY CURVED TARGET 411

there exists a T 2 ŒT0� ı; T0C ı� and a function ˆ 2 Xı which satisfies

ˆ.�/D S .�/U .v; T /C

Z �

0

S .� � s/N .ˆ.s// ds (3-65)

for all � > 0. Moreover, ˆ is the unique solution of this equation in C.Œ0;1/;H/.

Proof. Let T0 > 0 be fixed. We first prove that for any T in a small neighborhood of T0 and small enough
initial data v there exists a unique solution to (3-63) for u D U .v; T /. From Lemma 3.15 we deduce
the existence of sufficiently small ı and sufficiently large M > 0 so that for every T 2 ŒT0� ı; T0C ı�,
kj � j�1vkHT0Cı � ı=M implies kU .v; T /kH � ı=C for a large enough C > 0. Via Theorem 3.14 this
yields the unique solution to (3-63) for every T in the designated range. It remains to show that for
small enough v, there exists a particular Tv 2 ŒT0� ı; T0C ı� that makes the correction term vanish, i.e.,
C .ˆU .v;Tv/;U .v; Tv//D 0. Since C has values in rgP D hgi, the latter is equivalent to the existence
of a Tv 2 ŒT0� ı; T0C ı� such that˝

C .ˆU .v;Tv/;U .v; Tv//;g
˛
H D 0: (3-66)

By definition, we have

@T

"
.1=�/�0..T=T0/�/

.T 2=T 20 /�
0
0..T=T0/�/

#ˇ̌̌̌
ˇ
TDT0

D
g.�/

T0

and this yields the expansion˝
C .ˆU .v;Tv/;U .v; T //;g

˛
H D
kgk2

T0
.T �T0/CO..T �T0/

2/CO

�
ı

M
T 0
�
CO.ı2T 0/:

A simple fixed-point argument now proves (3-66); see [Donninger and Schörkhuber 2017, Theorem 4.15]
for full details. �

Proof of Theorem 3.1. Fix T0 > 0 and assume the radial initial data uŒ0� satisfyj � j�1.uŒ0��uT0 Œ0�/
H6.B11

T0Cı
/�H5.B11

T0Cı
/
�

ı

M 2
0

with ı;M0 > 0 to be chosen later. We set v WD uŒ0��uT0 Œ0�; see Section 3E. Then we have

kj � j
�1vkHT0Cı D

j � j�1.uŒ0��uT0 Œ0�/HT0Cı � ı

M 2
0

:

Now, upon choosing ı > 0 sufficiently small and M0 > 0 sufficiently large, Theorem 3.16 yields a
T 2 ŒT0� ı=M0; T0C ı=M0�� Œ1� ı; 1C ı� such that there exists a unique solution ˆD .'1; '2/ 2 X
to (3-65) with kˆ.�/k � .ı=M0/e

�2"� for all � � 0 and some " > 0. Therefore, by construction,

u.t; r/D uT .t; r/C
r

T � t
'1

�
log

T

T � t
;

r

T � t

�
solves the original wave maps (3-1). Moreover,

@tu.t; r/D @tu
T .t; r/C

r

.T � t /2
'2

�
log

T

T � t
;

r

T � t

�
:
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Therefore,

.T�t /k�
9
2

j � j�1.u.t; j � j/�uT .t; j � j// PHk.B11T�t /
D .T�t /k�

11
2

'1�log
T

T�t
;
j � j

T�t

�
PHk.B11T�t /

D

'1�log
T

T�t
; j � j

�
PHk.B11/

�

ˆ�log
T

T�t

�
H

�
ı

M0
.T�t /2"

for all t 2 Œ0; T / and any integer 0� k � 6. Furthermore,

.T � t /l�
7
2

j � j�1.@tu.t; j � j/� @tuT .t; j � j// PH l .B11T�t /

D .T � t /l�
11
2

'2�log
T

T � t
;
j � j

T � t

�
PH l .B11T�t /

D

'2� log
T

T � t
; j � j

�
PH l .B11/

�

ˆ�log
T

T � t

�
H
�

ı

M0
.T � t /2"

for all l D 0; 1; : : : ; 5. Finally, by Sobolev embedding we infer

ku.t; � /�uT .t; � /kL1.0;T�t/ � .T � t /
j � j�1.u.t; j � j/�uT .t; j � j//

L1.0;T�t/

. .T � t /
j � j�1.u.t; j � j/�uT .t; j � j//

H11=2C".B11T�t /

.
ı

M0
.T � t /"

and this finishes the proof by setting M WDM 2
0 . �

Remark 3.17. Based on [Donninger and Schörkhuber 2017; Chatzikaleas et al. 2017], the analogue of
Theorem 3.1 in any odd dimension d � 11 follows from the mode stability of the solution uT. However,
a nontrivial adjustment of the method of the proof of Proposition 3.7 is required in order to establish the
analogous result for all higher odd d simultaneously. This will be addressed in a forthcoming publication.

Appendix A: Proof of Proposition 2.1

A straightforward computation shows that all sectional curvatures of the manifold N d are given by either

.i/
�g00.u/

g.u/
or .ii/

1�g0.u/2

g.u/2
: (A-1)

We first show that the two expressions above are negative provided d � 8 and u 2 I WD Œ0; �0.1/�. For
convenience we let d D eC 8. We now have

g00.u/

g.u/
D
6.23eC 14/2u6� 63.23eC 14/u4� 2.115eC 21/u2C 21

Œ.23eC 14/u4� 7u2� 1�2
: (A-2)

Denote the numerator in the above expression by N.e; u/. To show that the first quantity in (A-1) is
negative it suffices to prove that N.e; u/ > 0 for .e; u/ 2 Œ0;1/� I . To that end, it is enough to show
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that for any fixed e � 0 the following inequalities hold:

.i/ N.e; 0/ > 0; .ii/ N.e; �0.1// > 0 and .iii/ @2uN.e; u/ < 0 for u 2 I: (A-3)

We start by proving the third claim above. Note that it is enough to show that

.i/ @2uN.e; 0/ < 0; and .ii/ @3uN.e; u/� 0 for u 2 I: (A-4)

To establish (A-4) we need the following:

@2uN.e; u/D 4Œ45.23eC 14/
2u4� 189.23eC 14/u2� 115e� 21�; (A-5)

@3uN.e; u/D 72.23eC 14/uŒ10.23eC 14/u
2
� 21�; (A-6)

@5uN.e; u/D 4320u.23eC 14/
2: (A-7)

Equation (A-5) gives @2uN.e; 0/D�4.115eC 21/ and the first claim in (A-4) follows. From (A-7) we
see that @3uN.e; u/ is convex for u 2 I . Therefore, since @3uN.e; 0/D 0 it is enough to show that

@3uN.e; �0.1//� 0 (A-8)

for the second claim in (A-4) to hold. To establish this inequality, we first use definition (2-4) to compute

�0.1/D

�
2p

.eC 7/.46e2C 445eC 567/� 7.eC 7/

�1
2

:

Now, according to (A-6), it is enough to prove that 10.23eC 14/�0.1/2� 21 < 0 for (A-8) to hold. This
inequality is equivalent to 441e2� 925eC 1316 > 0, which clearly holds for all e � 0. This concludes
the proof of the third claim in (A-3). Since the first claim in (A-3) is obviously true, it is left to prove that
N.e; �0.1// > 0. To that end we first compute

N.e; �0.1//D
2.P.e/

p
Q.e/�R.e//

Œ
p
Q.e/� 7.eC 7/�3

; (A-9)

where
P.e/D 7.69e3C 1831e2C 11500eC 17094/;

Q.e/D .eC 7/.46e2C 445eC 567/;

R.e/D 20723e4C 433338e3C 3077307e2C 8566502eC 7537866:

The denominator in (A-9) is positive if and only of Q.e/2 � 49.e C 7/2 > 0. This is equivalent to
2.eC 8/.eC 7/.23eC 14/ > 0, which is manifestly true for e � 0. The numerator in (A-9) is positive if
and only if P.e/2Q.e/�R.e/2 > 0, which is equivalent to 2.23eC 14/2S.e/ > 0, where

S.e/D 10143e7C 289189e6C 2979735e5C 12402439e4C 11046366e3

� 30567884e2C 15651132eC 22614480:

The positivity of S.e/ is easily shown; for example we have

12402439e4C 22614480 > 30567884e2:

The positivity of N.e; �0.1// follows.
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Now we turn to proving that the second expression in (A-1) is negative for d � 8 and u 2 I . Since
g00.u/=g.u/ is positive for u 2 I and g.u/ > 0 for small positive values of u, we conclude that both g00

and g are positive on .0; �0.1/�. Consequently

g0.u/� 1D g0.u/�g0.0/D

Z u

0

g00.t/ dt > 0 for u 2 .0; �0.1/�:

Hence g0.u/2� 1 > 0 and therefore
1�g0.u/2

g.u/2
< 0

for u 2 .0; �0.1/�. Additionally, by direct computation we see that

1�g0.0/2

g.0/2
D�21 < 0:

Finally, for each d � 8 we infer the existence of " > 0 for which both expressions in (A-1) are negative
provided juj < �0.1/C ". For juj � �0.1/C ", the function g.u/ can be easily modified so that it
satisfies (1-2) and both expressions in (A-1) remain negative.

Appendix B: Estimate for ı7

Proposition B.1. For ı7 defined in (3-42) and � 2 H we have

jı7.�/j �
1
3
: (B-1)

Proof. Following the proof of Lemma 4.3 in [Costin et al. 2017] we show that r7 and . Qr7/�1 are analytic
in H. This implies that ı7 is also analytic there. Furthermore, being a rational function, ı7 is evidently
polynomially bounded in H. Therefore, according to the Phragmén–Lindelöf principle,2 it suffices to
prove that (B-1) holds on the imaginary line, i.e.,

jı7.is/j
2
�
1
9

for s 2 R: (B-2)

Note that the function s 7! jı7.is/j2 is even. It is therefore enough to prove (B-2) for nonnegative s only.
We show that for t � 0, ˇ̌̌̌

ı7

�
4t

t C 1
i

�ˇ̌̌̌2
�
1
9

and jı7..t C 4/i/j
2
�
1
9
: (B-3)

The first estimate above proves (B-2) for s 2 Œ0; 4/, while the second one covers the complementary
interval Œ4;1/. We prove both estimates in (B-3) in the same way and therefore illustrate the proof of
the second one only. Note that

jı7..t C 4/i/j
2
D
Q1.t/

Q2.t/
;

2We use the sectorial formulation of this principle; see, for example, [Titchmarsh 1939, p. 177].
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where Qj .t/ 2 ZŒt �, degQj D 32 and Q2 has all positive coefficients. Therefore, jı7..t C 4/i/j2 � 1
9

is
equivalent to Q2�9Q1 � 0 and a direct calculation shows that the polynomial Q2�9Q1 has manifestly
positive coefficients. �
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FRACTURE WITH HEALING: A FIRST STEP
TOWARDS A NEW VIEW OF CAVITATION

GILLES FRANCFORT, ALESSANDRO GIACOMINI AND OSCAR LOPEZ-PAMIES

Recent experimental evidence on rubber has revealed that the internal cracks that arise out of the process,
often referred to as cavitation, can actually heal.

We demonstrate that crack healing can be incorporated into the variational framework for quasistatic
brittle fracture evolution that has been developed in the last twenty years. This will be achieved for
two-dimensional linearized elasticity in a topological setting, that is, when the putative cracks are closed
sets with a preset maximum number of connected components.

Other important features of cavitation in rubber, such as near incompressibility and the evolution of the
fracture toughness as a function of the cumulative history of fracture and healing, have yet to be addressed
even in the proposed topological setting.

1. Introduction

A simplistic model for cavitation. Ever since the 1930s, ample experimental evidence points to the
specificity of the initiation and propagation of fracture in rubber, or more generally in soft organic solids;
see, e.g., [Busse 1938; Gent and Lindley 1959; Gent and Park 1984]. While metals, ceramics, and, more
generally, crystalline and glassy solids show well-defined crack patterns when subject to extreme loading
processes, fracture in rubber tends to initiate through the growth of microscopic defects arising in regions
under sufficiently high hydrostatic stress. Because of its fluidic elder counterpart, the phenomenon has
become known as cavitation.

It was initially thought that cavitation could be explained on pure elastic ground. In the mechanical
universe, the most notorious proponents of elastic cavitation were undoubtedly A. N. Gent and P. B. Lindley
[1959]. In their footsteps, J. M. Ball [1982] pioneered the first mathematical translation of that idea. There
he posited that hyperelasticity can, in and of itself, create cavities through solutions of the type x=jxj that
are good Sobolev functions, provided that the growth at infinity of the elastic energy be subcritical, that
is, less than the spatial dimension. In a more classical framework an equivalent viewpoint posits incipient
point defects that balloon up to cavities. This insight generated a slew of mathematical studies that did
show promise.

However, the spectacle of cavitation as a purely elastic phenomenon is in our opinion unrealistic. On
pure theoretical grounds, it strikes us as somewhat peculiar that an innate sense of self would raise material
awareness of its energetic elastic health under very large stretches, a prerequisite for any cogent statement

MSC2010: 74R10, 35Q74, 49J45, 28A75, 47J35.
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of its growth. On more practical grounds, it was recently shown in [Lefèvre et al. 2015] that, in the classical
poker-chip experiments of Gent and Lindley, as well as for a different experiment that uses a rubber
reinforced by filler particles [Poulain et al. 2017],1 a mere accounting of the elastic properties of the solids,
while leading to a superficially adequate qualitative agreement with a number of experimental observations,
fails to provide a complete qualitative and, most importantly quantitative, rendering of the evolution.

Our guiding principle is therefore that elasticity alone cannot account for the full complexity of the
phenomenon of cavitation in rubber. From a macroscopic point of view, one should at the least introduce
new internal surfaces within the solid to adequately describe the actual microscopic mechanisms behind
fracture, be it the spatial rearrangement of the underlying macromolecules, or the breakage of chemical
bonds. Such a viewpoint would seem to promote a fracture-type model in the vein of those adopted
for brittle solids, albeit in the context of finite elasticity, see, e.g., [Dal Maso et al. 2005], and with the
additional accounting of near or full incompressibility.2

Incompressibility notwithstanding, a refined fracture model was recently advocated in various mathe-
matical works of D. Henao and C. Mora-Corral [Henao and Mora-Corral 2010; Mora-Corral 2014]. There,
a surface energy proportional to the perimeter of the cavities in the deformed configuration is considered,
in the spirit of surface tension. It is then added to the elastic energy and subsequently viewed, at least in
[Mora-Corral 2014], as a conservative contribution. Adopting for a moment a common terminology in
the mechanics community,3 the only source of dissipation is born out of the irreversible creation of a
countable number of point discontinuities that will grow into cavities.

The idea of endowing created surfaces with an energy is original and potentially fruitful. This refined
viewpoint — or even a classical fracture viewpoint for that matter — may provide a good fit for some of
the poker-chip experiments. But both will most likely become exercises in alt-reality when it comes to
the filler particle experiments. Recent such experiments, carried out at high spatiotemporal resolution in
[Poulain et al. 2017], showed that some of the created cavities actually vanish during the loading process,
while others migrate away from the particles. Traditional or revamped theories of fracture do not sustain
disappearance or migration and, while arguably predicting the final location of the cavities, completely
fail in their depiction of the path that would lead to the final migrated state.

The full picture of the filler particle experiment is actually more intricate. The experiments in [Poulain
et al. 2017] have also shown that the regions of the rubber that experience healing appear to acquire
different fracture properties from those of the original rubber, thereby hinting at an evolution of the
underlying molecular rearrangement and/or chemical bonding due to the healing process.

A full account of such observations is not our purpose at this point. It would certainly involve a healing
process, together with a hardening or softening process in the fracture toughness, if such a notion makes

1We refer to that experiment as the filler-particle experiment.
2The addition of an incompressibility constraint is a huge mathematical hurdle from the standpoint of the variational theory

of (brittle) fracture and the reader should be alerted to the absence of any mathematically significant result that encompasses both
incompressibility and fracture.

3While a prevailing one, the postulate that fracture, or cavitation, should be described in terms of entropy production due to
some kind of dissipation is just that, see, a contrario, [Il’iushin 1961], and our casting of the cavitation model in those terms is
mere abidance by the majority view.
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sense. Further, near or full incompressibility would certainly be a major partner, although its role has yet
to be scripted.

Rather we propose in this contribution to focus solely on healing. The above quoted experiment
notwithstanding, there is ample independent evidence that healing does take place in soft organic solids;
see, e.g., [Madsen et al. 2016; Blaiszik et al. 2010; Cordier et al. 2008]. Now of course, as far as rubber
is concerned, healing and near incompressibility should not be viewed as independent agents. We will
woefully ignore their relationship in the following study. Mathematical impotence, rather than spite,
motivates our choice.

So, as an admittedly childish first step, we propose to incorporate healing in A. A. Griffith’s theory of
fracture [1921], suitably re-engineered through a variational lens [Francfort and Marigo 1998; Bourdin et al.
2008], for two-dimensional linear elasticity. At first glance such a task would seem simple enough, at least
from a modeling standpoint and provided that one is willing to view the healing process as rate-independent,
which is most likely not so.4 The naive recipe would be to dissipate some amount of surface energy for
crack repair. In other words one would pay, say c1 � length of � nK, c1 > 0, for changing the crack K

to a different crack � and would also pay c2� length of K n� , c2 > 0, for repairing some of K with � .
Such petulance must be tempered with the recognition that doing so would result in a model for which

healing would never take place because a healed part of the crack would increase the elastic energy
while dissipating some surface energy through healing. Thus the healing process, if rate-independent
and proportional to the length of the healed part must actually decrease the dissipated energy. A formal
account will be given at the onset of Section 2.

For now, just think of a preset connected crack path � in a domain ˝ and of a connected crack � .`/
of length ` starting from a set point — say the origin — along � (which should also contain the origin).
Denote by W.`/ the potential energy associated to the elastic equilibrium of˝n� .`/— the uncracked part
of the domain — under the current loading at time t . Then we impose fealty of the dual fracture/healing
process to that of Griffith’s fracture [1921].

It is thus assumed that the energy dissipated through any putative advancement of the crack is pro-
portional to the add-crack length with c1 as fracture toughness; similarly that gained through healing is
proportional to the subtract-crack length with c2 as healing toughness. Of course c1 > c2 so that there
indeed be a net dissipation.

To determine `.t/, a two-pronged formulation is espoused:

� First, a stability criterion à la Griffith is imposed: the energy release rate must satisfy

c2 � �
@W
@`
.`.t//� c1:

� Then the crack cannot extend unless the second inequality is an equality, while it cannot shrink
unless the first one is an equality.

4Rearranging the molecular structure of the rubber and/or forming new chemical bonds are in all likelihood viscosity-
driven processes that will shatter rate independence while potentially still variationally tractable; see the recent approach of
viscoplasticity using energy-dissipation-balance solutions [Mielke et al. 2018]. As for the problem at hand, the precise nature of
viscosity is very unclear as of yet.
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Further, because irreversibility is de facto abandoned, there is no impediment to surface energy contributing
to internal energy as well. In the above cartoon picture of the evolution, this amounts to adding a term
like c`, c � 0, to the elastic energy W.`/.

Sections 2–4 investigate the setting of antiplane shear linear elasticity, which is undoubtedly the
simplest available framework for fracture evolution. The resulting model is presented in Section 2 in
its variational reformulation. Section 3 is devoted to the proof of a stability result which is essential in
the success of the limit process when passing from a time-incremental to a time-continuous formulation.
Section 4 establishes the existence result for an evolution where both cracking and healing are allowed.
In Section 5 we generalize the results of Section 4 to the setting of planar elasticity (plane strain or plane
stress) in the footsteps of similar work on the fracture only case [Chambolle 2003].

From a mathematical standpoint, the first existence results for the variational theory of fracture were
obtained in [Dal Maso and Toader 2002] in the antiplane shear case under the topological restriction
that the cracks should have no more than m connected components, m being a preset connectivity
threshold. This restriction was subsequently alleviated in [Francfort and Larsen 2003]. The present study
unfortunately forces us to return to the topological setting of [Dal Maso and Toader 2002], mainly because
we do not know how to prove energy conservation in the fully “variational” framework, that is, with no
restriction on the topology of the cracks (see in particular Remark 1.5 below).

There is by now a vast literature on various aspects of the variational theory of fracture. We
trust that the potential readership for this work is well versed in the main tenet of that theory and
consequently refrain from any detailed explanation of the expounded formulation. We refer new-
comers to [Bourdin et al. 2008] for an exposition of that theory and in particular to Section 2 of
that work, where the link between the variational theory and the above two-pronged formulation is
unraveled.

At the close of this introduction, we see it fit to put forth the following disclaimer: the model that
is advocated below is not meant to be viewed as the final adjudication of cavitation. In view of recent
experimental evidence, we merely assert that fracture and healing are essential partners in the cavitation
process. We then proceed to incorporate healing into the variational theory of fracture in the mathematically
simplest possible manner. Doing so at this time does not preclude subsequent refinements or modifications
of the model. The paper [Kumar et al. 2018] presents a much more intricate phase field model that strives
to account for both incompressibility and hardening on top of healing.

But it would be presumptuous on our part to pretend that we know how to address the mathematical
hurdles that would accompany a rigorous analysis of more complex cavitation models such as that offered
in [Kumar et al. 2018]. So, from a mathematical standpoint, the analysis below is the sum total of what
lies within our reach for now.

Notation. Given x 2R2, r > 0 and � 2R2, we denote by Q�.x; r/�R2 the square of center x with one
side orthogonal to � and length r . When � is vertical, we will write simply Q.x; r/. B.x; r/ will denote
the disk of center x and radius r .

Given two sets A;B � R2, we denote their symmetric difference by A�B, while Ab B will mean
A� B.
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In all that follows M2
sym and M2

skew denote the families of symmetric and antisymmetric 2�2-matrices,
respectively, while Ls.M2

sym/ stands for the space of symmetric endomorphisms of M2
sym.

For any mapping u W R2 7! R2, e.u/ denotes the symmetrized gradient of u, that is, e.u/ WD
1
2
.ruCruT /.
Also, for any open set A, we define LD.A/ WD fu 2L2

loc.AIR
2/ W e.u/ 2L2.AIM2

sym/g:

Finally, we use standard notation for Sobolev spaces and for Hausdorff measures, specifically denoting
by k k the L2-norm and by k k1 the L1-norm. Also, for a Banach space X , we denote by AC.Œ0;T �IX /
the space of X -valued absolutely continuous functions.

Mathematical preliminariesW Hausdorff convergence of compact sets. In the sequel, Hausdorff conver-
gence will play an essential role. For the reader’s convenience, we recall a few properties that will be
used throughout.

The family K.RN / of closed sets in RN can be endowed with the Hausdorff metric dH defined by

dH .K1;K2/ WDmaxfsupx2K1
dist.x;K2/; supy2K2

dist.y;K1/g;

with the conventions dist.x;∅/DC1 and sup∅D 0, so that dH .∅;K/D 0 if KD∅ and dH .∅;K/D
C1 if K 6D∅.

The Hausdorff metric has good compactness properties; see [Ambrosio and Tilli 2004, Theorem 4.4.15].

Proposition 1.1 (compactness). Let .Kn/n2N be a sequence of compact sets contained in a fixed compact
set of RN. Then there exists a compact set K � RN such that up to a subsequence

Kn!K in the Hausdorff metric:

We will repeatedly make use of the following property due to Gołąb; for the proof we refer the reader
to [Falconer 1986, Theorem 3.18; Ambrosio and Tilli 2004, Theorem 4.4.17].

Theorem 1.2 (Gołąb). Let .Kn/n2N be a sequence of compact connected sets in RN such that

Kn!K in the Hausdorff metric.

Then K is connected and for every open set A� RN

H1.K\A/� lim inf
n!1

H1.Kn\A/:

Remark 1.3. The lower semicontinuity of Gołąb’s theorem still holds when Kn has a uniformly bounded
number of connected components.

Lemma 1.4. Let .Kn/n2N and .Hn/n2N be two sequences of compact sets in RN, each with a uniformly
bounded number of connected components. Assume that

Kn!K and Hn!H in the Hausdorff metric:

Then, for any open set A� RN,

H1..K nH /\A/� lim inf
n

H1..Kn nHn/\A/: (1-1)
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Proof. Let V � RN be an open neighborhood of H. For n large enough we have Hn � V , so that by
Goła̧b’s theorem

H1..K nV /\A/� lim inf
n

H1..Kn nV /\A/

� lim inf
n

H1..Kn nHn/\A/:

Since V is arbitrary, the conclusion follows. �

Remark 1.5. The topological setting for the cracks adopted in the paper, i.e., cracks which are closed
and with a preset number of connected components, is motivated precisely by Lemma 1.4. A larger
class of admissible cracks, as that adopted in [Dal Maso et al. 2005] where cracks are just rectifiable,
requires suitable convergences of variational type, under which inequality (1-1) is known to fail. But that
inequality is in particular an essential ingredient in the proof of the energy inequality (4-19) below to the
extent that it establishes that (4-16) holds true.

A simple example for which inequality (1-1) is violated under the variational convergences of [Dal Maso
et al. 2005] is the following: Let K be a segment of unit length, and let Hn be the dotted segment of
length 1

2
obtained from K by dividing it into 2n equal parts and retaining only every other subsegment. It

is easily proved that Hn!∅ in the variational sense, see [Dal Maso et al. 2005, Section 4.1], so that
choosing Kn DK,

H1.K nH /DH1.K/D 1; while H1.Kn nHn/D
1
2
:

2. Setting of the problem

The reference configuration is an open bounded set ˝ � R2 with Lipschitz boundary.

Admissible cracks. Let m 2 N with m� 1 be given. The class of admissible cracks is given by

Kfm.˝/ WD fK�˝ WK is compact, with at most m connected components and H1.K/ <C1g: (2-1)

Admissible configurations. Let @D˝ � @˝ be open in the relative topology. The class of admissible
boundary displacements g is given by the space H 1.˝/\L1.˝/. We say that the pair .u;K/ is an
admissible configuration of our system for g if

K 2 Kfm.˝/

and
u 2H 1.˝ nK/ with uD g on @D˝ nK:

We will write .u;K/ 2A.g/. Note that the pair .ru;u/ can be thought of as an element of L2.˝IR3/

since K has null Lebesgue measure.
The following compactness result will be used several times.

Lemma 2.1. Let gn;g 2H 1.˝/ be such that

gn! g strongly in H 1.˝/:



FRACTURE WITH HEALING: A FIRST STEP TOWARDS A NEW VIEW OF CAVITATION 423

Assume that .un;Kn/ 2A.gn/ with

.run;un/ * .ˆ;u/ weakly in L2.˝IR3/;

Kn!K in the Hausdorff metric:

Then .u;K/ 2A.g/, and ˆDru on ˝ nK.

Proof. Let ' 2 C1c .˝ nK/. Then, for n large,

' 2 C1c .˝ nKn/:

We can thus write, for i D 1; 2,Z
˝nK

ˆi' dx D lim
n

Z
˝nKn

@iun' dx D� lim
n

Z
˝nKn

un @i' dx D�

Z
˝nK

u @i' dx:

We deduce that u 2H 1.˝ nK/ with ruDˆ. Let us check that .u;K/ 2A.g/. Lest the result be trivial,
it is not restrictive to assume that

@D˝ nK 6D∅:

Since @D˝ is open in the relative topology, for every x0 2 @D˝ nK we can find an open neighborhood
U � R2 of x0 such that dist.U;K/ > 0 and U \˝ has a Lipschitz boundary in U given by @D˝ \U.
Since Kn\U D∅ for n large, we infer that un 2H 1.˝ \U / with

un * u weakly in H 1.˝ \U /;

so uD g on @D˝ \U. �

Remark 2.2. The choice of H 1.˝/\L1.˝/ as the class of admissible displacements allows one to work
in H 1.˝ nK/ when dealing with the variational constructions of Section 4. Without an L1-bound, the
arguments can be adapted provided that we choose the displacements in L1;2.˝ nK/, a Deny–Lions-type
space [1954]. Such will not be the case in Section 5 below (see Remark 5.5).

Energies. We associate to an admissible configuration .u;K/ the elastic energy

kruk2 D

Z
˝

jruj2 dx:

Here ru is viewed as an element of L2.˝IR2/.
Assume that the system goes from the configuration .u;K/ to the configuration .v; � /. Then�

� nK is the add-crack,
K n� is the healed zone.

We assume the energy dissipated through such a process is

c1H1
D.� nK/� c2H1

D.K n� /;

with c1; c2 > 0.
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In the expression above and throughout the rest of the paper H1
D

stands for H1b˝[@D˝ . This is so
because no energy should be dissipated for the part of the crack that lies on the free boundary @˝ n @D˝.

Summing up, the passage from .u;K/ to .v; � / involves a change in energy of the form

fkrvk2�kruk2gC c1H1
D.� nK/� c2H1

D.K n� /g:

Notice that the expression can be rewritten in the form

E.v; � /� E.u;K/C .c1� c2/H1
D.� nK/;

where

E.v; � / WD krvk2C c2H1
D.� /: (2-2)

Indeed,

H1
D.K n� /DH1

D.K/�H1
D.K\� /DH1

D.K/� .H
1
D.� /�H1

D.� nK//

so that

c1H1
D.� nK/� c2H1

D.K n� /D c2.H1
D.� /�H1

D.K//C .c1� c2/H1
D.� nK/:

In view of this new expression, we will assume that

c1 > c2 > 0: (2-3)

See Remark 2.4 below for the case c1 D c2.

Quasistatic evolutions. Let T > 0 and

g 2 AC.Œ0;T �IH 1.˝//; kg.t/k1 � C; t 2 Œ0;T �;

be a given time-dependent boundary displacement.
Given t 7!K.t/ 2 Kfm.˝/ we set, for t � T,

Diss.t/ WD .c1� c2/ sup
˚Pn

iD0 H
1
D
.K.siC1/ nK.si// W 0D s0 < s1 < � � �< snC1 D t

	
:

Definition 2.3 (quasistatic evolution). We say that ft 7! .u.t/;K.t//2A.g.t// W t 2 Œ0;T �g is a quasistatic
evolution provided that for every t 2 Œ0;T � the following items hold true:

(a) (global stability) For every .v; � / 2A.g.t//

E.u.t/;K.t//� E.v; � /C .c1� c2/H1
D.� nK.t//; (2-4)

where E is defined in (2-2).

(b) (energy balance) We have

E.u.t/;K.t//CDiss.t/D E.u.0/;K.0//C 2

Z t

0

Z
˝

ru.�/ � r Pg.�/ dx d�:
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Remark 2.4. In the spirit of our introductory remarks, we could modify the definition of E in (2-2)
through addition of a term of the form cH1

D
.� / with c � 0, that is, a stored surface energy term. The

analysis performed in the rest of the paper and Theorems 4.1, 5.4 would remain unchanged in this enlarged
setting.

If, in lieu of (2-3), c1D c2, the quasistatic evolution is conservative and consists in a time-parametrized
set of independent minimization problems: the term .c1 � c2/H1

D
.� nK.t// disappears in the global

stability statement, while Diss.t/ disappears in the energy balance statement of Definition 2.3. The
existence proofs leading to Theorems 4.1, 5.4 become straightforward.

3. Stability of the global minimality property

A crucial step in the proof of the existence of a quasistatic evolution concerns the stability of the global
minimality property (2-4) under Hausdorff convergence for the cracks. The proof is based on a topological
version of the jump transfer construction in [Francfort and Larsen 2003]. Similar ideas have been put
forth in [Acanfora and Ponsiglione 2006] in the case of the fracture problem for a flexural linear plate.

Theorem 3.1 (stability of the global minimality property). Let c; c0 be fixed positive constants. Let
gn;g 2H 1.˝/ be such that

gn! g strongly in H 1.˝/:

Assume that .un;Kn/ 2A.gn/ satisfy the following global stability condition: for every .v; � / 2A.gn/,

krunk
2
C cH1

D.Kn/� krvk
2
C cH1

D.� /C c0H1
D.� nKn/

and assume further that
Kn!K in the Hausdorff metric;

run * ru weakly in L2.˝IR2/

for some .u;K/ 2A.g/. Then .u;K/ is a globally stable configuration, that is, for every .v; � / 2A.g/,

kruk2C cH1
D.K/� krvk

2
C cH1

D.� /C c0H1
D.� nK/:

In order to prove Theorem 3.1, we need two geometric results concerning the blow-up behavior of sets
in the family Kf

1
.R2/ of compact connected sets in R2 with finite length.

Theorem 3.2. Let K 2 Kf
1
.R2/. The following items hold true:

(a) K is countably H1-rectifiable with

K DK0[

1[
nD1

n.In/;

where In � R is an open interval, n W In ! R2 are Lipschitz curves and H1.K0/ D 0. Further,
there exists N �K with H1.N /D 0 such that, for every x 62N, K admits an approximate tangent
line lx at x with normal �x .
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(b) Take x 2K nN. Then for r ! 0C

Kx;r WD
K�x

r
! lx locally in the Hausdorff metric. (3-1)

(c) There exists N1 �K with N � N1 and H1.N1/D 0 such that the following property holds. Take
x 2K nN1. Then, for every " > 0, there exists r0 > 0 such that for every r < r0 the rectangles

RC";r W DQ�x
.x; r/\fy 2 R2

W .y �x/ � �x > "rg;

R�";r W DQ�x
.x; r/\fy 2 R2

W .y �x/ � �x < �"rg

belong to different connected components of Q�x
.x; r/ nK.

Proof. The rectifiability property of point (a) is proved in [Falconer 1986, Lemma 3.13]. From the general
theory of rectifiable sets, we know that K admits an approximate tangent line lx at H1-a.e. x 2K; see
[Ambrosio et al. 2000, Theorem 2.83].

Now for point (b). Up to an isometry, we may assume x D 0 and that the approximate tangent line l is
horizontal. Then, by the very definition of an approximate tangent line,

H1
bKr

�
*H1

bl locally weakly� in Mb.R
2/ (3-2)

as r ! 0C, where Kr WD
1
r
K.

We claim that, for every R> 0,

Kr \Q.0;R/! l \Q.0;R/ in the Hausdorff metric: (3-3)

Indeed, given any sequence rn! 0, the compactness of Hausdorff convergence and a diagonal argument
imply the existence of a subsequence .rnh

/h2N such that for every m 2 N, m� 1,

Krnh
\Q.0;m/!Km

0 in the Hausdorff metric:

It is readily checked that, for every m� 1,

Km
0 �KmC1

0
and Km

0 \Q.0;m/DKmC1
0
\Q.0;m/: (3-4)

Set K0 WD
S1

mD1 Km
0

. We claim that

K0 D l: (3-5)

First, K0 � l . Indeed, assume by contradiction that � 2K0 n l with B�.�/\ l D∅ for some � > 0. Using
the measure convergence (3-2), we obtain that

H1.Krnh
\B�.�//! 0: (3-6)

But Krnh
is connected by arcs, see [Falconer 1986, Lemma 3.12], so that, taking �nh

2Krnh
such that

�nh
! �, we have �nh

is connected to 0 through an arc contained in Krnh
so, for h large enough,

H1.Krnh
\B�=2.�nh

//� 1
4
�:
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 r
n

��
�

3
2
; 3

2

��
RC";r

R�";r

Q�x .x; r/

K

"r

Figure 1. Illustration of item (c) in Theorem 3.2; the thick curve is  r
n

��
�

3
2
; 3

2

��
.

Thus

lim inf
h!1

H1.Krnh
\B�.�//� lim inf

h!1
H1.Krnh

\B�=2.�nh
//� 1

4
�;

in contradiction with (3-6).
Conversely, l �K0. Indeed, assume by contradiction that � 2 l nK0. Then there exists � > 0 such

that Krnh
\B�.�/D∅ for h large, against (3-2).

In view of (3-4) and (3-5) we deduce that for "! 0 and for every R> 0

Kr \Q.0;R/! l \Q.0;R/ in the Hausdorff metric;

that is, (3-3). This means that the local convergence of (3-1) holds true, and point (b) is proved.
Let us come to point (c). See Figure 1.
Notice that we can reparametrize each Lipschitz curve n by arc length. As a consequence, we may

assume that for a.e. t 2 In

n is differentiable at t with j 0n.t/j D 1: (3-7)

From point (a), we deduce that there exists N1�K with H1.N1/D0, N �N1, and such that if x 2KnN1,
then x D n.t0/ for some n, with t0 satisfying (3-7). It is not restrictive to assume that x D 0 with a
horizontal tangent line l , and that t0 D 0. By differentiability, for r ! 0C,

 r
n .s/ WD

1

r
n.rs/!  0n.0/s locally uniformly in s 2 R: (3-8)

In view of (3-1),  0n.0/ is horizontal, and we can assume that  0n.0/D .1; 0/.
Let " > 0. Because of (3-8) and since

 r
n

�
�

3
2

�
!
�
�

3
2
; 0
�

and  r
n

�
3
2

�
!
�

3
2
; 0
�
;
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we infer that, for r small enough, the (connected) arc  r
n

��
�

3
2
; 3

2

��
satisfies

 r
n

��
�

3
2
; 3

2

��
� f.x1;x2/ 2 R2

W jx2j< "g

and that Q.0; 1/ n  r
n

��
�

3
2
; 3

2

��
is disconnected. We deduce that the open rectangles

RC" WDQ.0; 1/\f.x1;x2/ 2 R2
W x2 > "g;

R�" WDQ.0; 1/\f.x1;x2/ 2 R2
W x2 < �"g

belong to different connected components of Q.0; 1/n
�

1
r
K
�
. The conclusion of point (c) now follows by

rescaling. �

The following result shows that the topological property of point (c) of Theorem 3.2 is essentially
stable under Hausdorff convergence. We will need this property for our topological version of the jump
transfer.

Proposition 3.3. Let .Kn/n2N be a sequence in Kf
1
.R2/ and K 2 Kf

1
.R2/ be such that

Kn!K in the Hausdorff metric:

Let N1 �K with H1.N1/D 0 be as in Theorem 3.2. For every x 62N1 and " > 0 we can find r0 > 0 and
�x 2 R2 with j�xj D 1 such that for every r < r0 there exists n0 2 N and . yKn/n2N a sequence in Kf

1
.R2/

with

Kn �
yKn; yKn nKn �Q�x

.x; r/; H1. yKn nKn/� 3"r

such that for n� n0 the rectangles

RC";r W DQ�x
.x; r/\fy 2 R2

W .y �x/ � �x > "rg; (3-9)

R�";r W DQ�x
.x; r/\fy 2 R2

W .y �x/ � �x < �"rg (3-10)

belong to different connected components of Q�x
.x; r/ n yKn.

Proof. In view of Theorem 3.2, for every x 62N1 points (b) and (c) hold true.
Let us fix x 62N1 and " > 0, and let r0 > 0 and �x 2 R2 be associated to x according to point (c) of

Theorem 3.2. Up to a rototranslation, we may assume

x D 0; �x D .0; 1/; lx D fx D .x1;x2/ W x2 D 0g:

Notice that, in view of item (b) in Theorem 3.2, we may also assume that

K nQ.0; r0/ 6D∅:

Since Kn ! K in the Hausdorff metric, from the corresponding property of K we deduce that there
exists n0 > 0 such that for every n� n0

Kn\Q.0; r/� f.x1;x2/ 2 R2
W jx2j< "rg (3-11)
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Kn

yKn DKn[ Œy
�
n ;y

C
n �

Q�x .x; r/

RC";r

R�";r

y�n
yCn

Figure 2. Construction of yKn in Proposition 3.3.

and
Kn nQ.0; r0/ 6D∅: (3-12)

Let zn 2Kn nQ.0; r0/.
Since Kn is connected by arcs, given x 2 Kn \Q.0; r/, we can find an arc contained in Kn with

extremes x and zn. In view of (3-11), (3-12), this arc has to intersect either S�r or SCr , where S˙r are the
vertical segments

S˙r WD f˙rg � Œ�"r; "r �:

Modulo reparametrization, we thus infer that there exists (at least) one arc Cx;r W Œ0; 1�! R2 or one
�x;r W Œ0; 1�! R2 with image contained in Kn\Q.0; r/ such that

˙x;r .0/D x and ˙x;r .1/ 2 S˙r :

Let us consider the intervals contained in Œ�r; r � given by

J�n;r WD
[

x2Kn\Q.0;r/

�1.
�
x;r .Œ0; 1�// and JCn;r WD

[
x2Kn\Q.0;r/

�1.
C
x;r .Œ0; 1�//;

obtained by projecting the curves constructed above onto the horizontal axis.
We claim that we can find ˛˙n 2 J˙n;r such that

j˛Cn �˛
�
n j ! 0: (3-13)

If this is the case, since by definition there exists

y˙n D .˛
˙
n ; ˇ

˙
n / 2Kn\Q.0; r/;

we then define yKn to be (see Figure 2)

yKn DKn[ Œy
�
n ;y

C
n �;
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where Œy�n ;y
C
n � is the segment joining y�n and yCn . In view of (3-11), we have

lim sup
n!1

H1.Œy�n ;y
C
n �/� 2r":

Finally, since
�y�n ;r .Œ0; 1�/[ Œy

�
n ;y

C
n �[ 

C

y
C
n ;r
.Œ0; 1�/� yKn;

we deduce that yKn 2 K
f
1
.R2/ satisfy the conclusion of the theorem.

Let us prove claim (3-13). If the relation is not satisfied, we get for n large

inf JCn;r � sup J�n;r � � > 0:

Since Kn ! K in the Hausdorff metric, we would infer that the projection of K \Q.0; r/ onto the
horizontal axis is composed of two distinct intervals contained in Œ�r; r �, against the fact that K disconnects
Q.0; r/. �

Remark 3.4. Let ˝ � R2 be open, bounded and with a Lipschitz boundary. Assume that the sets Kn;K

of Proposition 3.3 are such that Kn;K �˝. Notice that, for H1-a.e. x 2K\ @˝, the tangent lines to K

and @˝ at the point x coincide, so that the topological blow-up properties of Theorem 3.2 at the point x

hold simultaneously for K and @˝. Consequently, the proof of Proposition 3.3 shows that yKn can be
chosen such that in addition yKn �˝.

We can now prove Theorem 3.1.

Proof of Theorem 3.1. The global stability we need to prove can be rewritten in the form

kruk2C cH1
D.K n� /� krvk

2
C .cC c0/H1

D.� nK/

for every .v; � / 2A.g/ (see the computations in Section 2).
We divide the proof into two steps.

Step 1: Let us assume that K 2Kf
1
.˝/. Thanks to [Dal Maso and Toader 2002, Lemma 3.6], there exists

Hn 2 K
f
1
.˝/ with Kn �Hn,

H1.Hn nKn/! 0 and Hn!K in the Hausdorff metric: (3-14)

We need to introduce the connected sets Hn because it might be the case that, although K is connected,
the Kn are not since they are only restricted to be elements of Kfm.˝/.

Let V � R2 be open with � � V . Let then U � V be open with U � V and � \K � U. Let also
" > 0 be fixed. See Figure 3.

Note that, for H1-a.e. x 2 � \K, the tangent lines to � and K at the point x coincide. We can thus
find N � � \K with H1.N / D 0 and such that for x 2 .� \K/ nN the conclusions of point (c) in
Theorem 3.2 hold true with respect to both K and � simultaneously.

For x 2 .� \K/ nN, let r0.x/ > 0 and �x 2 R2 be given by Proposition 3.3. We may assume in
addition that

Q�x
.x; r0.x//� U
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�

K

V

U

Figure 3. Setting the geometry for the proof of Theorem 3.1.

and also, thanks to, e.g., [Ambrosio et al. 2000, Theorem 2.83(i)], that, for every r < r0.x/,

.1� "/r �H1.Q�x
.x; r/\ .K\� //� .1C "/r: (3-15)

By the Vitali–Besicovitch lemma, see, e.g., Theorem 2.19 of the above-quoted work, we can find a finite
number of disjoint such squares fQ�j .xj ;rj /gjD1;:::;m with xj 2K\� , �j WD �xj , rj < r0.xj /, such that

H1

�
.K\� / n

m[
jD1

Q�j .xj ; rj /

�
< ": (3-16)

It is no restriction to assume that either Q�j .xj ; rj /b˝ or xj 2 @˝, with @˝ \Q�j .xj ; rj / given by
the graph of a Lipschitz function with respect to a reference frame with �j as vertical direction.

We modify Hn in each square according to Proposition 3.3 and Remark 3.4 and find yHn 2 Kf
1
.˝/

with Hn �
yHn, such that for n large

yHn DHn outside
m[

jD1

Q�j .xj ; rj /;

and

H1. yHn nHn/� 3"

mX
iD1

ri : (3-17)

Moreover, we can assume that the rectangles R˙j associated to Q�j .xj ; rj / according to (3-9) and
(3-10) belong to different connected components A˙j ;n of Q�j .xj ; rj / n yHn. Let us denote by

v˙j 2H 1.Q�j .xj ; rj // (3-18)
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�
j

n

U

�

K

Figure 4. The sets �n defined in (3-19).

the extension of vbR˙j obtained through a reflection across the line lxj ˙ "r�j : notice that the Sobolev
regularity of v˙j is ensured because, by construction,

� \Q�j .xj ; rj /� fx 2 R2
W j.x�xj / � �j j< "rg:

Let us set

�n WD

�
� n

m[
jD1

Q�j .xj ; rj /

�
[

m[
jD1

� j
n ; (3-19a)

with
� j

n WD
�
yHn\Q�j .xj ; rj /

�
[
�
@Q�j .xj ; rj / \fj.y �xj / � �j j � "rj g\˝

�
: (3-19b)

See Figure 4.
Notice that �n 2 K

f
1
.˝/. Moreover thanks to (3-15)–(3-17),

H1
D.�n nKn/�H1

D.�n n
yHn/CH1. yHn nHn/CH1.Hn nKn/

�H1
D

�
� n

m[
jD1

Q�j .xj ; rj /

�
C 7"

mX
jD1

rj CH1.Hn nKn/

�H1
D.� nK/C "C 7"

1

1� "
H1.� /CH1.Hn nKn/; (3-20)

and, since �n � V ,
H1

D.Kn n�n/�H1
D.Kn nV /:

Let us define vn as follows:

(a) vn D v outside
Sm

jD1 Q�j .xj ; rj /;

(b) vn WD

�
vCj in ACj ;n;

v�j else
in each cube Q�j .xj ; rj /b ,̋ where the functions v˙j were defined in (3-18);

(c) vn WD

�
vCj in ACj ;n;

g otherwise
in each boundary cube Q�j .xj ; rj / (that is, those with xj 2 @˝).
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Remark that, by construction, .vn; �n/ 2A.g/. Moreover,

krvnk
2
� krvk2C 2

mX
jD1

Z
Q�j

.xj ;rj /\˝

jrvj2 dxC

mX
jD1

Z
Q�j

.xj ;rj /\˝

jrgj2 dx

� krvk2C 2

Z
U\˝

jrvj2 dxC

Z
U\˝

jrgj2 dx: (3-21)

Let us compare .un;Kn/ to .vn�gCgn; �n/ 2A.gn/. Since

krunk
2
C cH1

D.Kn n�n/� krvn�rgCrgnk
2
C .cC c0/H1

D.�n nKn/

D krvnk
2
C .cC c0/H1

D.�n nKn/C en;

where

jenj � krvnkkrgn�rgkCkrgn�rgk2! 0;

we infer in view of (3-20)–(3-21) that

krunk
2
C cH1

D.Kn nV /� krvk2C 2

Z
U\˝

jrvj2 dxC

Z
U\˝

jrgj2 dxC en

C .cC c0/

�
H1

D.� nK/C "C 7"
1

1� "
H1.� /CH1.Hn nKn/

�
:

Passing to the limit, we obtain, thanks to Gołąb’s theorem and to (3-14),

kruk2C cH1
D.K nV /� krvk2C .cC c0/H1

D.� nK/

C .cC c0/

�
"C

7"

1� "
H1.� /

�
C 2

Z
U\˝

jrvj2 dxC

Z
U\˝

jrgj2 dx:

Since V , U and " are arbitrary, we conclude that

kruk2C cH1
D.K n� /� krvk

2
C .cC c0/H1

D.� nK/;

so that the minimality condition follows.

Step 2: Let us consider the general case K 2 Kfm.˝/. If K1; : : :Kp with p � m are the connected
components of K, thanks to [Dal Maso and Toader 2002, Lemma 3.6] we can find Hn 2 K

f
m.˝/ with

exactly p connected components H 1
n ; : : : ;H

p
n such that Kn �Hn,

H j
n !Kj in the Hausdorff metric (3-22)

and

H1.Hn nKn/! 0:

Since the Kj are compact and disjoint, and

� \K D

p[
jD1

.� \Kj /;
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we can operate on each � \Kj as in Step 1 using the approximation (3-22) and localizing on disjoint
neighborhoods Uj of � \Kj. The modifications of � and v which take place on the family of squares
contained in Uj are independent from those taking place in the squares contained in Ui with i 6D j , so we
can glue them together to get an approximating configuration .vn�gCgn; �n/ 2A.gn/ and deduce as
in Step 1 the global minimality of .u;K/. �

4. Existence of a quasistatic evolution

In this section we derive the main result of the paper.

Theorem 4.1 (existence of a quasistatic evolution). Let ˝ � R2 be open, bounded, with Lipschitz bound-
ary, and let @D˝ � @˝ be open in the relative topology. Assume (2-3) and let g 2AC.Œ0;T �IH 1.˝// be
such that

supt2Œ0;T � kg.t/k1 <C1: (4-1)

Let finally .u0;K0/ 2A.g.0// be a globally stable configuration, i.e., satisfying property (2-4).
Then there exists a quasistatic evolution ft 7! .u.t/;K.t// W t 2 Œ0;T �g in the sense of Definition 2.3

such that .u.0/;K.0//D .u0;K0/.

Remark 4.2. The existence of at least one globally stable initial configuration .u0;K0/ 2 A.g.0// is
straightforward. It is enough to minimize E.v; � / over A.g.0// following, e.g., an argument identical to
that expounded in the proof of Lemma 4.3 below.

As usual, the existence of a quasistatic evolution is obtained by time discretization, establishing the
existence of a discrete-in-time evolution through the direct method of the calculus of variations, and then
studying its limit as the time-step discretization parameter vanishes.

Let ı > 0 be given, and let

0D tı0 < tı1 < � � �< tıNı D T

be a subdivision of the time interval Œ0;T � with

max
iD0;:::;Nı�1

.tıiC1� tıi / < ı:

We set

gıi WD g.tıi / and .uı0;K
ı
0/ WD .u0;K0/:

The following lemma deals with the existence of incremental configurations.

Lemma 4.3 (incremental configurations). Assume (2-3) and (4-1). Then for i D 1; : : : ;Nı there exists
.uıi ;K

ı
i / 2A.g

ı
i / with kuıi k1 � kg

ı
i k1, .uı

0
;Kı

0
/D .u0;K0/, such that

.uıi ;K
ı
i / 2 ArgminfE.v; � /C .c1� c2/H1

D.� nKı
i�1/ W .v; � / 2A.g

ı
i /g:

Proof. We proceed by induction, assuming that .uı
i�1
;Kı

i�1
/ has been constructed, and showing the

existence of .uıi ;K
ı
i /.
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Set
F ıi .u; � / WD E.v; � /C .c1� c2/H1

D.� nKı
i�1/:

and let f.vn; �n/gn2N be a minimizing sequence for F ıi on A.gıi /, that is,

I ıi WD infA.gı
i
/ F

ı
i � F ıi .vn; �n/� I ıi C

1

n
:

By truncation, it is not restrictive to assume

kvnk1 � kg
ı
i k1:

Comparing with the admissible configuration .gıi ;∅/ we get

E.vn; �n/C .c1� c2/H1
D.�n nKı

i�1/� krgıi k
2:

As a consequence, up to a subsequence we may assume

.rvn; vn/ * .ˆ; v/ weakly in L2.˝IR3/;

�n! � in the Hausdorff metric.

Thanks to Gołąb’s theorem, we infer � 2 Km
f
.˝/, and, by Lemma 2.1, we deduce that .v; � / 2A.gıi /,

with ˆDrv on ˝ n� . In particular

rvn * rv weakly in L2.˝IR2/:

Moreover, in view of Lemma 1.4

H1
D.� /� lim inf

n
H1

D.�n/ and H1
D.� nKı

i�1/� lim inf
n

H1
D.�n nKı

i�1/;

so that
F ıi .v; � /D I ıi :

The thesis follows by setting .uıi ;K
ı
i / WD .v; � /. �

For tıi � t < tı
iC1

, i D 0; : : : ;Nı, we set

uı.t/ WD uıi ; gı.t/ WD gıi and Kı.t/ WDKı
i : (4-2)

We denote by iı.t/ the index such that tı
iı.t/
� t < tı

iı.t/C1
.

The properties below follow directly from the construction of the incremental configurations.

Lemma 4.4. For every t 2 Œ0;T � the following items hold true:

(a) .uı.0/;Kı.0//D .u0;K0/.

(b) The pair .uı.t/;Kı.t// 2A.gı.t// satisfies the global stability condition (2-4).

(c) Setting

Dissı.t/ WD .c1� c2/

iı.t/X
jD1

H1
D.K

ı
j nKı

j�1/; (4-3)
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we have the energy inequality

E.uı.t/;Kı.t//CDissı.t/� E.u0;K0/C 2

Z tı
i

0

Z
˝

ruı.�/ � r Pg.�/ dx d� C e.ı/; (4-4)

where e.ı/! 0 as ı! 0.

Proof. Point (a) follows since .uı.0/;Kı.0//D .uı
0
;Kı

0
/D .u0;K0/.

On to point (b). By construction, for every i D 1; : : : ;Nı and .v; � / 2A.gıi /,

E.uıi ;K
ı
i /C .c1� c2/H1

D.K
ı
i nKı

i�1/� E.v; � /C .c1� c2/H1
D.� nKı

i�1/:

Since
H1

D.� nKı
i�1/�H1

D.� nKı
i /CH1

D.K
ı
i nKı

i�1/;

we deduce
E.uıi ;K

ı
i /� E.v; � /C .c1� c2/H1

D.� nKı
i /;

from which the global stability condition (2-4) follows.
Let us come to point (c). In view of Lemma 4.3 we may write, for every i D 1; : : : ;Nı,

E.uıi ;K
ı
i /C .c1� c2/H1

D.K
ı
i nKı

i�1/

� E.uıi�1Cgıi �gıi�1;K
ı
i�1/

� E.uıi�1;K
ı
i�1/C 2

Z tı
i

tı
i�1

Z
˝

ruı.�/ � r Pg.�/ dx d� C .tıi � tıi�1/

Z tı
i

tı
i�1

kr Pg.�/k2 d�:

Iterating this estimate we obtain for every t 2 Œ0;T �

E.uı.t/;Kı.t//C .c1� c2/

iı.t/X
jD1

H1
D.K

ı
j nKı

j�1/� E.u0;K0/C 2

Z tı
i

0

Z
˝

ruı.�/ � r Pg.�/ dx d� C e.ı/;

with e.ı/! 0 as ı! 0, which is precisely (4-4). �

In order to pass to the continuous-in-time evolution, we need the following bounds.

Lemma 4.5 (a priori bounds). Let ft 7! .uı.t/;Kı.t// W t 2 Œ0;T �g be the discrete-in-time evolution given
by (4-2). There exists C > 0 independent of ı such that, for every t 2 Œ0;T �,

kruı.t/kCkuı.t/k1CH1
D.K

ı.t//C zı.t/� C; (4-5)

where

zı.t/ WD

iı.t/X
jD1

H1
D.K

ı
j�Kı

j�1/: (4-6)

Proof. Since by construction and global minimality

kruı.t/k � krgı.t/k and kuı.t/k1 � kg
ı.t/k1; (4-7)
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we deduce from (4-4) that

H1
D.K

ı.t//C

iı.t/X
jD1

H1
D.K

ı
j nKı

j�1/� C1 (4-8)

for some C1 > 0. Since H1
D
.B nA/�H1

D
.A nB/DH1

D
.B/�H1

D
.A/,

iı.t/X
jD1

H1
D.K

ı
j nKı

j�1/�

iı.t/X
jD1

H1
D.K

ı
j�1 nKı

j /DH1
D.K

ı.t//�H1
D.K0/;

we also obtain from (4-8) that
iı.t/X
jD1

H1
D.K

ı
j�1 nKı

j /� C2 (4-9)

for some C2 > 0. The conclusion follows gathering (4-7)–(4-9). �

A crucial step in the ı& 0-analysis is the following

Proposition 4.6 (compactness of the cracks). There exist a sequence ın! 0 and a map ft 7! K.t/ 2

Kfm.˝/ W t 2 Œ0;T �g such that, if
Kn.t/ WDKın.t/; t 2 Œ0;T �;

then, for every t 2 Œ0;T �, any limit point H of .Kn.t//n2N in the Hausdorff metric is such that

H1
D.H�K.t//D 0:

Proof. Let ın! 0 be such that

zn WD zın ! z pointwise on Œ0;T �;

where zı is given in (4-6) and z W Œ0;T �! R is a suitable increasing function. The existence of .ın/n2N

is a consequence of the bound (4-5) and of Helly’s theorem.
Let D � Œ0;T � be a countable and dense set containing 0 and the discontinuity points of the function z.

Up to a further subsequence (that we will not relabel), we may assume, in view of the compactness of the
Hausdorff metric and of the bound (4-5), that for every t 2D there exists K.t/ 2 Kfm.˝/ such that

Kn.t/!K.t/ in the Hausdorff metric:

Let now s 62D, and let H be a limit point of the sequence .Kn.s//n2N, that is,

Knk
.s/!H in the Hausdorff metric

for a suitable subsequence .nk/k2N. By the definition of zn, for every t < s and t 2D,

H1
D.Knk

.s/�Knk
.t//� znk

.s/� znk
.t/:

Sending k!C1 and using Lemma 1.4 we obtain

H1
D.H�K.t//� z.s/� z.t/:
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Let now tk % s with tk 2D and such that

K.tk/! zK.s/ in the Hausdorff metric:

Recalling that s is a continuity point for z, we infer (using again Lemma 1.4) that

H1
D.H�

zK.s//D 0: (4-10)

Since .tk/k2N is arbitrary, we deduce that any limit point zK.s/ of the family fK.t/ W t 2Dg for t ! s�

satisfies (4-10). The proof now follows by choosing K.s/ as one of these limit points. �

Remark 4.7. Let H;K 2 Kfm.˝/ be such that

H1
D.K�H /D 0: (4-11)

Then:

(i) K and H differ by at most m points on ˝ [ @D˝.

(ii) If .v;H / 2A.g/, then also .v;K/ 2A.g/.

Indeed let Hj be a connected component of H which contains a point x not in K. Since Hj is
connected by arcs, (4-11) implies that Hj reduces to the point x, which proves point (i).

As far as point (ii) is concerned, we know that .rv; v/ can be interpreted as an element of L2.˝IR3/.
Let us first check that v 2W 1;2.˝ nK/ with gradient on ˝ nK given by rv. We can proceed locally
near every point x 2˝ nK:

(a) If x 62H, since u 2W 1;2.˝ nH / we deduce u 2W 1;2.B.x; r// for some r > 0 small enough, with
gradient given by rv.

(b) If x 2H, then, according to point (i), the connected component Hj of H that contains x reduces to
the point x. From u 2W 1;2.˝ nH / we then deduce that for some r > 0 small enough

u 2W 1;2.B.x; r/ nHj /DW 1;2.B.x; r/ n fxg/DW 1;2.B.x; r//;

with gradient given by rv.

Concerning the boundary condition, since uD g on @D˝ nH in the sense of traces, (4-11) then entails
that the equality also holds true on @D˝ nK. We thus conclude that .u;K/ 2A.g/.

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1. Let ın! 0 and ft 7!K.t/ W t 2 Œ0;T �g be given by Proposition 4.6. Set

.un.t/;Kn.t// WD .u
ın.t/;Kın.t// and Dissn.t/ WD Dissın.t/:

Up to a further subsequence, the a priori bounds of Lemma 4.5, imply that

Dissn!D pointwise on Œ0;T � (4-12)

for some increasing function D W Œ0;T �! Œ0;C1/.
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For every t 2 Œ0;T � take u.t/ 2H 1.˝ nK.t// to be a minimizer of

min
.v;K.t//2A.g.t//

krvk2:

By strict convexity, ru.t/ is uniquely determined by K.t/ and g.t/, while u.t/ is well-defined up to a
constant on the connected components of ˝ nK.t/ which do not touch @D˝.

We now prove that

ft 7! .u.t/;K.t// W t 2 Œ0;T �g

is a quasistatic evolution for the boundary displacement g such that .u.0/;K.0//D .u0;K0/ according
to Definition 2.3.

Step 1: global stability. Let us check that, for every t 2 Œ0;T �, the pair .u.t/;K.t// satisfies the global
stability condition (2-4), which reads

kru.t/k2C c2H1
D.K.t//� krvk

2
C c2H1

D.� /C .c1� c2/H1
D.� nK.t//: (4-13)

In view of the bound (4-5), by Lemma 2.1 and by the compactness of the Hausdorff convergence, we
may assume that, up to a subsequence,

Kn.t/!H 2 Kfm.˝/ in the Hausdorff metric;

.run.t/;un.t// * .ru;u/ weakly in L2.˝IR3/

for some .u;H / 2A.g.t//.
From item (b) in Lemma 4.4 and Theorem 3.1 we infer that .u;H / satisfies the global stability condition

kruk2C c2H1
D.H /� krvk2C c2H1

D.� /C .c1� c2/H1
D.� nH / (4-14)

for every .v; � / 2A.g.t//. Note that, by Proposition 4.6,

H1
D.H�K.t//D 0:

Then Remark 4.7 implies that .u;K.t// 2A.g.t//, so that the minimality property (4-14) becomes

kruk2C c2H1
D.K.t//� krvk

2
C c2H1

D.� /C .c1� c2/H1
D.� nK.t//

for every .v; � / 2A.g.t//. Comparing with the admissible configuration .u.t/;K.t// yields

kruk2 � kru.t/k2;

so that, by the very definition of u.t/, we get ru.t/Dru and conclude that (4-13) is satisfied.
From the arguments above, passing to subsequences is not necessary and we infer that

run.t/ * ru.t/ weakly in L2.˝IR2/ (4-15)

for every t 2 Œ0;T �.
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Step 2: energy balance. Let us first prove that, for every t 2 Œ0;T �,

Diss.t/�D.t/: (4-16)

Indeed, for every 0D s0 < s1 < � � �< skC1 D t ,

.c1� c2/

kX
hD0

H1
D.Kn.shC1/ nKn.sh//� Dissn.t/: (4-17)

According to Proposition 4.6, up to a further subsequence, we have

Kn.sj /!H.sj / in the Hausdorff metric;

with
H1

D.H.sj /�K.sj //D 0: (4-18)

Then, with the help of Lemma 1.4 and of (4-18) we pass to the limit in (4-17) and obtain, in view of
(4-12),

.c1� c2/

kX
hD0

H1
D.K.shC1/ nK.sh//�D.t/;

from which (4-16) easily follows.
Thanks to (4-15),(4-16) and to Gołąb’s theorem, we can pass to the limit in the discrete energy inequality

(4-4) and obtain

E.u.t/;K.t//CDiss.t/� E.u0;K0/C 2

Z t

0

Z
˝

ru.�/ � r Pg.�/ dx d�: (4-19)

The opposite inequality in (4-19) holds true, thanks to a by now standard Riemann sum argument; see
[Dal Maso et al. 2005, Section 4.4]. In a nutshell, the argument consists in choosing a specific sequence
of partitions fsn

i giD0;:::;k.n/ with k.n/
n
%1 of the interval Œ0; t � such that the Riemann sums

k.n/�1X
iD0

Z sn
iC1

sn
i

Z
˝

ru.sn
iC1/ � Pg.s/ dx ds

converge to Z t

0

Z
˝

ru.s/ � Pg.s/ dx ds:

Then one writes the minimality condition for .u.sn
i /;K.s

n
i // 2 A.g.sn

i // established in Step 1, tested
against .u.sn

iC1
/� g.sn

iC1
/C g.sn

i /;K.s
n
iC1

// 2 A.g.sn
i // and adds all resulting contributions for i D

0; : : : ; k.n/� 1; see [Dal Maso et al. 2005, Section 4.4] for the details.
The energy balance

E.u.t/;K.t//CDiss.t/D E.u0;K0/C 2

Z t

0

Z
˝

ru.�/ � r Pg.�/ dx d�

follows. We conclude that t 7! .u.t/;K.t// is a quasistatic evolution. �
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Remark 4.8 (improved convergences). The proof of Theorem 4.1 shows that, for every t 2 Œ0;T �,

run.t/!ru.t/ strongly in L2.˝IR2/; (4-20)

H1
D.Kn.t//!H1

D.K.t//; (4-21)

Dissn.t/! Diss.t/:

Indeed from the arguments of Step 2 and (4-4) we have

E.u0;K0/C 2

Z t

0

Z
˝

ru.�/ � r Pg.�/ dx d�

D E.u.t/;K.t//CDiss.t/

� lim inf
n

ŒE.un.t/;Kn.t//CDissn.t/�� lim sup
n

ŒE.un.t/;Kn.t//CDissn.t/�

� lim sup
n

�
E.u0;K0/C

Z t

0

Z
˝

run.�/ � r Pg.�/ dx d� C e.ın/

�
D E.u0;K0/C 2

Z t

0

Z
˝

ru.�/ � r Pg.�/ dx d�;

from which
lim

n
ŒE.un.t/;Kn.t//CDissn.t/�D E.u.t/;K.t//CDiss.t/:

We thus deduce that

lim
n

E.un.t/;Kn.t//D E.u.t/;K.t// and lim
n

Dissn.t/D Diss.t/;

and the first convergence gives immediately (4-20) and (4-21).

Remark 4.9 (the connected case). In the connected case, loss of Hausdorff convergence only takes place
at healing times, i.e., when K.t/ reduces to a point (or is the empty set) on ˝ [ @D˝. Indeed, assume
the existence of two different subsequences Knk

.t/;KQnk
.t/, with

Knk
.t/!H1 in the Hausdorff metric;

KQnk
.t/!H2 in the Hausdorff metric;

with H1 6DH2. Since, in view of Proposition 4.6,

H1
D.H1�K.t//DH1

D.H1�K.t//D 0;

it must be that H1
D
.H1�H2/D 0.

According to point (i) in Remark 4.7, those two sets, which are connected, must then reduce to at most
a single point on ˝ [ @D˝. Since K.t/ is also connected, it in turn reduces to at most a single point on
˝ [ @D˝.

Finally, taking into account Remark 4.8, at such a time,

H1
D.Kn.t//! 0

because H1
D
.K.t//D 0. So, if Hausdorff convergence does not take place at time t , the approximating

cracks are actually vanishing in length.
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The argument fails if m> 1. In that case, using similar arguments, we can merely assert the existence
of a subsequence of Kn.t/ such that one of its connected component heals in the limit, which is not
much. . . .

5. The case of two-dimensional elasticity

In this section, we show how to modify the previous arguments in the case of linearized two-dimensional
elasticity.

Admissible configurations. Let the reference configuration be an open bounded set˝�R2 with Lipschitz
boundary, while we consider H 1.˝IR2/ as the class of admissible boundary displacements.

Given @D˝�@˝ open in the relative topology, we say that the pair .u;K/ is an admissible configuration
for the boundary displacement g 2H 1.˝IR2/ if

K 2 Kfm.˝/ and u 2LD.˝ nK/; with uD g on @D˝ nK;

where m � 1 is a fixed number, and Kfm.˝/ is given in (2-1). We will write .u;K/ 2 A.g/. The pair
.u; e.u// can be thought of as an element of L2

loc.˝IR
2/�L2.˝IM2

sym/ since K has null Lebesgue
measure.

Remark 5.1. Let .u;K/2A.g/, and let H 2Kfm.˝/ be such that H1
D
.K�H /D 0. Then .u;H /2A.g/.

The proof follows precisely that in Remark 4.7: indeed the local arguments can be reproduced because,
in view of Korn’s inequality, elements of LD.˝ nK/ are locally in H 1.

The following compactness result plays the role of Lemma 2.1 in our context.

Lemma 5.2. Let gn;g 2H 1.˝IR2/ be such that

gn! g strongly in H 1.˝IR2/:

Assume that .un;Kn/ 2A.gn/ with

e.un/ * ˆ weakly in L2.˝IM2
sym/;

Kn!K in the Hausdorff metric:

Then there exists .u;K/ 2A.g/ such that ˆD e.u/ on ˝ nK.

Proof. Let A be a connected component of ˝ nK, and let B bA be a disk. Consider

R WD
˚
v 2LD.˝ nK/ W

R
B v � r dx D 0 for all r 2R

	
;

where R is the set of infinitesimally rigid motions, i.e.,

R WD fM xC b WM 2M2
skew; b 2 R2

g:

Define Oun to be the L2.B/-orthogonal projection of un onto R; clearly e. Oun/D e.un/.
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Since Kn Hausdorff-converges to K, any open Lipschitz connected subdomain G compactly embedded
in A and containing B is also included, for n large enough, in ˝ nKn. Thus, according to Korn’s
inequality, Oun 2H 1.GIR2/ and there exists CG;B > 0 such that

k OunkL2.GIR2/ � CG;Bke.un/kL2.GIM2
sym/
� C

for some C depending on G;B; hence, up to a subsequence,

Oun * uG weakly in H 1.GIR2/;

with
e.uG/Dˆ: (5-1)

But uG also belongs to R. In view of (5-1), it is thus uniquely defined so that the whole sequence Oun

converges to uG weakly in H 1.GIR2/, and hence strongly in L2.GIR2/. Then taking G to be an
increasing sequence of Lipschitz connected open sets with union A, we immediately conclude that
uG � u independent of G with u 2 L2

loc.AIR
2/ and e.u/ D ˆ. Since A is an arbitrary connected

component of ˝ nK, we infer that u 2LD.˝ nK/.
The proof that u D g on @D˝ nK is identical to that in Lemma 2.1 upon renewed use of Korn’s

inequality. �

Quasistatic evolutions. Let the Hooke’s law be given by an element C 2L1.˝ILs.M2
sym// such that

a1jM j
2
� C.x/M �M � a2jM j

2 for every M 2M2
sym; (5-2)

with a1; a2 > 0. Here � denotes the standard Frobenius matrix inner product.
We associate to an admissible configuration .u;K/ the elastic energy

Q.e.u// WD 1

2

Z
˝

C.x/e.u/.x/ � e.u/.x/ dx:

As in Section 2, let T > 0 and g 2AC.Œ0;T �IH 1.˝IR2// be a given time-dependent boundary displace-
ment, and let

c1 > c2 > 0 (5-3)

be two given constants. In analogy with the scalar case (see Definition 2.3), we define a quasistatic
evolution in the case of linearized elasticity as follows.

Definition 5.3 (quasistatic evolution). We say that ft 7! .u.t/;K.t//2A.g.t// W t 2 Œ0;T �g is a quasistatic
evolution provided that for every t 2 Œ0;T � the following items hold true:

(a) (global stability) For every .v; � / 2A.g.t//

E.u.t/;K.t//� E.v; � /C .c1� c2/H1
D.� nK.t//;

where, for .u;K/ 2A.g/,

E.u;K/ WDQ.e.u//C c2H1
D.K/:
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(b) (energy balance) We have

E.u.t/;K.t//CDiss.t/D E.u.0/;K.0//C
Z t

0

Z
˝

Ce.u.�// � e. Pg.�// dx d�;

where

Diss.t/ WD .c1� c2/ sup
˚Pn

iD0 H
1
D
.K.siC1/ nK.si// W 0D s0 < s1 < � � �< snC1 D t

	
:

Existence of quasistatic evolutions. The main result of the section is the following.

Theorem 5.4 (existence of a quasistatic evolution for two-dimensional elasticity). Let˝�R2 be an open,
bounded Lipschitz domain and @D˝�@˝ be open in the relative topology. Let g2AC.Œ0;T �IH 1.˝IR2//

and assume (5-2) and (5-3) hold true. Let finally .u0;K0/ 2A.g.0// be a globally stable configuration;
i.e., satisfying property (2-4).

Then, there exists a quasistatic evolution ft 7! .u.t/;K.t// W t 2 Œ0;T �g in the sense of Definition 5.3
such that .u.0/;K.0//D .u0;K0/.

Proof. We proceed as in Section 4 by constructing incremental configurations .uıi ;K
ı
i / 2 A.gıi /. We

consider
.uıi ;K

ı
i / 2 ArgminfE.v; � /C .c1� c2/H1

D.� nKı
i�1/ W .v; � / 2A.g

ı
i /g: (5-4)

The variational problems are well-posed thanks to Lemma 5.2 and to Gołąb’s theorem.
Interpolating in time, we obtain the discrete-in-time evolution

ft 7! .uı.t/;Kı.t// W t 2 Œ0;T �g

such that, defining Dissı as in (4-3),

E.uı.t/;Kı.t//CDissı.t/� E.u0;K0/C

Z tı
i

0

Z
˝

Ce.uı.�// � e. Pg.�// dx d� C e.ı/;

with e.ı/! 0 as ı! 0. In view of (5-2), this inequality yields the uniform bound

ke.uı.t//kCH1
D.K

ı.t//C zı.t/� C;

where zı is defined as in (4-6).
Thanks to Lemma 5.2, the proof is now completely analogous to that of Theorem 4.1, provided that

we adapt Theorem 3.1 to our context.
Specifically, it suffices to prove the following. Let c; c0 � 0, and let gn;g 2H 1.˝IR2/ be such that

gn! g strongly in H 1.˝IR2/:

Assume that .un;Kn/ 2A.gn/ satisfy the following global stability condition: for every .v; � / 2A.gn/,

Q.e.un//C cH1
D.Kn/�Q.e.v//C cH1

D.� /C c0H1
D.� nKn/

and assume further that
Kn!K in the Hausdorff metric;

e.un/ * e.u/ weakly in L2.˝IM2
sym/
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for some .u;K/2A.g/. Then .u;K/ is a globally stable configuration, that is that, for every .v; � /2A.g/,

Q.e.u//C cH1
D.K/�Q.e.v//C cH1

D.� /C c0H1
D.� nK/: (5-5)

Notice that, in view of [Chambolle 2003, Theorem 1], there exists vm 2H 1.˝ n� IR2/ with vm D g on
@D˝ and such that

e.vm/! e.v/ strongly in L2.˝IM2
sym/:

As a consequence, it is sufficient to establish (5-5) in the case .v; � / 2A.g/ with

v 2H 1.˝ n� IR2/: (5-6)

This is a great simplification, since we can employ the same construction as that in the proof of Theorem 3.1
working on each component.

Specifically, if v WD .v1; v2/, we fix U;V; " as in Step 1 of the proof of Theorem 3.1, and construct the
associated �n, v1

n; v
2
n (approximations of the scalar functions v1; v2). The crucial estimate (3-21) now

reads as follows (we can estimate in the squares the symmetrized gradient by the full gradient thanks
to (5-6)):

Q.e.vn//�Q.e.v//C 2a2

mX
jD1

Z
Q�j

.xj ;rj /\˝

jrvj2 dxC a2

mX
jD1

Z
Q�j

.xj ;rj /\˝

jrgj2 dx

�Q.e.v//C 2a2

Z
U\˝

jrvj2 dxC

Z
U\˝

jrgj2 dx;

where a2 is the coercivity constant in (5-2). Comparing .un;Kn/ with .vn �gCgn; �n/ 2 A.gn/ and
using the previous inequality we deduce that

Q.e.u//C cH1
D.K nV /�Q.e.v//C .cC c0/H1

D.� nK/

C .cC c0/

�
"C

7"

1� "
H1.� /

�
C 2a2

Z
U\˝

jrvj2 dxC a2

Z
U\˝

jrgj2 dx;

so that the global stability follows since V , U and " are arbitrary. �

Remark 5.5. Notice that even if an L1-bound for the boundary displacement g is assumed, the functional
framework for the displacement uıi in the incremental problems (5-4) cannot reduce to H 1.˝ nKı

i / since
truncation fails in the case of energies that depend on the symmetrized gradient.
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GENERAL CLARK MODEL FOR FINITE-RANK PERTURBATIONS

CONSTANZE LIAW AND SERGEI TREIL

All unitary (contractive) perturbations of a given unitary operator U by finite-rank-d operators with fixed
range can be parametrized by d � d unitary (contractive) matrices �; this generalizes unitary rank-one
(d D 1) perturbations, where the Aleksandrov–Clark family of unitary perturbations is parametrized by
the scalars on the unit circle T � C.

For a strict contraction � the resulting perturbed operator T� is (under the natural assumption about
star cyclicity of the range) a completely nonunitary contraction, so it admits the functional model.

We investigate the Clark operator, i.e., a unitary operator that intertwines T� (written in the spectral
representation of the nonperturbed operator U ) and its model. We make no assumptions on the spectral
type of the unitary operator U ; an absolutely continuous spectrum may be present.

We first find a universal representation of the adjoint Clark operator in the coordinate-free Nikolski–
Vasyunin functional model; the word “universal” means that it is valid in any transcription of the model.
This representation can be considered to be a special version of the vector-valued Cauchy integral operator.

Combining the theory of singular integral operators with the theory of functional models, we derive
from this abstract representation a concrete formula for the adjoint of the Clark operator in the Sz.-Nagy–
Foias, transcription. As in the scalar case, the adjoint Clark operator is given by a sum of two terms: one is
given by the boundary values of the vector-valued Cauchy transform (postmultiplied by a matrix-valued
function) and the second one is just the multiplication operator by a matrix-valued function.

Finally, we present formulas for the direct Clark operator in the Sz.-Nagy–Foias, transcription.
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0. Introduction

The contractive (or unitary) perturbations U CK of a unitary operator U on a Hilbert space H by
operators K of finite rank d with fixed range are parametrized by the d � d contractive (resp. unitary)
matrices �. Namely, if RanK�R, where R�H, dimRD d , is fixed, andB WCd!R is a fixed unitary
operator (which we call the coordinate operator), then K is represented as K DB.� � ICd /B

�U, where
� is a contraction (resp. a unitary operator) on Cd. Therefore, all such perturbations with RanK �R

are represented as T� D U CB.� � ICd /B
�U, where � runs over all d � d contractive (resp. unitary)

matrices.

Recall that T being a contraction (contractive) means that kT k � 1.

Focusing on the nontrivial part of the perturbation, we can assume that RanB DR is a star-cyclic
subspace for U, i.e., H D spanfU kR; .U �/kR W k 2ZCg. Below we will show that star-cyclicity together
with the assumption that � is a pure contraction ensures that the operator T� is what is called a completely
nonunitary contraction, meaning that T� does not have a nontrivial unitary part. Model theory informs us
that such T� is unitarily equivalent to its functional model M� , � D �� , that is, the compression of the
shift operator on the model space K� with the characteristic function � D �� of T� .

In this paper we investigate the so-called Clark operator, i.e., a unitary operator ˆ that intertwines the
contraction T� (in the spectral representation of the unperturbed operatorU ) with its model: M�ˆDˆT� ,
� D �� . The case of rank-one perturbations (d D 1) was treated by D. Clark [1972] when � is inner, and
later by D. Sarason [1994] under the assumption that � is an extreme point of the unit ball of H1. For
finite-rank perturbations with inner characteristic matrix-valued functions � , V. Kapustin and A. Poltoratski
[2006] studied boundary convergence of functions in the model space K� . The setting of inner characteristic
functions corresponds to the operators U that have purely singular spectrum (no a.c. component); see,
e.g., [Douglas and Liaw 2013].

In [Liaw and Treil 2016] we completely described the general case of rank-one perturbations (when the
measure can have absolutely continuous part, or equivalently, the characteristic function is not necessarily
inner).

In the present paper we extend the results from [Liaw and Treil 2016] to finite-rank perturbations
with general matrix-valued characteristic functions. We first find a universal representation of the adjoint
Clark operator, which features a special case of a matrix-valued Cauchy integral operator. By “universal”
we mean that our formula is valid in any transcription of the functional model. This representation is a
pretty straightforward, albeit more algebraically involved, generalization of the corresponding result from
[Liaw and Treil 2016]; it might look like “abstract nonsense”, since it is proved under the assumption
that we pick a model operator that “agrees” with the Clark model (more precisely that the corresponding
coordinate/parametrizing operators agree).

However, by careful investigation of the construction of the functional model, using the coordinate-free
Nikolski–Vasyunin model we were able to present a formula giving the parametrizing operators for the
model that agree with given coordinate operators for a general contraction T ; see Lemma 3.2. Moreover,
for the Sz.-Nagy–Foias, transcription of the model we get explicit formulas for the parametrizing operators
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in terms of the characteristic function; see Lemma 3.3. Similar formulas can be obtained for other
transcriptions of the model.

We also compute the characteristic function of the perturbed operator T� ; the formula involves the
Cauchy integral of the matrix-valued measure.

For the Sz.-Nagy–Foias, transcription of the model we give a more concrete representation of the adjoint
Clark operator in terms of the vector-valued Cauchy transform; see Theorem 8.1. This representation
looks more natural when one considers spectral representations of the nonperturbed operator U defined
with the help of matrix-valued measures; see Theorem 8.7.

0A. Plan of the paper. In Section 1 we set the stage by introducing finite-rank perturbations and studying
some of their basic properties. In particular, we discuss the concept of a star-cyclic subspace and find a
measure-theoretic characterization for it.

The main result of Section 2 is the universal representation formula for the adjoint Clark operator; see
Theorem 2.4. In this section we also introduce the notion of agreement of the coordinate/parametrizing
operators and make some preliminary observations about such an agreement.

Section 3 is devoted to the detailed investigation of the agreement of the coordinate/parametrizing
operators. Careful analysis of the construction of the model from the coordinate-free point of view of
Nikolski–Vasyunin allows us to get for a general contraction T -formulas for the parametrizing operators
for the model that agree with the coordinate operators; see Lemma 3.2. Explicit formulas (in terms of the
characteristic function) are presented for the case of Sz.-Nagy–Foias, transcription; see Lemma 3.3.

The characteristic function �� of the perturbed operator T� is the topic of Sections 4 and 5. Theorem 4.2
gives a formula for �� in terms of a Cauchy integral of a matrix-valued measure. In Section 5 we show
that, similarly to the rank-one case, the characteristic functions �� and �0 are related via a special linear
fractional transformation. Relations between defect functions �0 and �� are also described.

Section 6 contains a brief heuristic overview of what subtle techniques are to come in Sections 7 and 8.
In Section 7 we present results about regularizations of the Cauchy transform, and about uniform

boundedness of such generalizations, which we need to get the representation formulas in Section 8.
In Section 8 we give a formula for the adjoint Clark operator in the Sz.-Nagy–Foias, transcription

of the model. As in the scalar case, the adjoint Clark operator is given by the sum of two terms: one
is in essence a vector-valued Cauchy transform (postmultiplied by a matrix-valued function), and the
second one is just a multiplication operator by a matrix-valued function; see Theorem 8.1. In the case of
inner characteristic functions (purely singular spectral measure of U ) the second term disappears, and
the adjoint Clark operator is given by what can be considered a matrix-valued analogue of the scalar
normalized Cauchy transform; see Section 8E.

Section 9 is devoted to a description of the Clark operator ˆ; see Theorem 9.2.

1. Preliminaries

Consider the family of rank-d perturbations UCK of a unitary operator U on a separable Hilbert spaceH.
If we fix a subspace R�H, dimRD d , such that RanK �R, then all unitary perturbations of U CK
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of U can be parametrized as
T D U C .X � IR/PRU; (1-1)

where X runs over all possible unitary operators in R.
It is more convenient to factorize the representation of X through the fixed space D WD Cd by picking

an isometric operator B WD!H, RanB DR. Then any X in (1-1) can be represented as X DB�B�,
where � WD!D (i.e., � is a d � d matrix). The perturbed operator T D T� can be rewritten as

T D U CB.� � ID/B
�U: (1-2)

If we decompose the space H treated as the domain as H D U �R˚ .U �R/?, and the same space
treated as the target space as H DR˚R?, then the operator T can be represented with respect to this
decomposition as

T D

�
B�B�U 0

0 T1

�
; (1-3)

where block T1 is unitary.
From the above decomposition we can immediately see that if � is a contraction then T is a contraction

(and if � is unitary then T is unitary).
In this formula we slightly abuse notation, since formally the operator B�B�U is defined on the

whole space H. However, this operator clearly annihilates .U �R/?, and its range belongs to R, so we
can restrict its domain and target space to U �R and R respectively. So when such operators appear in
the block decomposition we will assume that its domain and target space are restricted.

In this paper we assume that the isometry B is fixed and that all the perturbations are parametrized by
the d � d matrix �.

1A. Spectral representation of U . By the spectral theorem the operator U is unitarily equivalent to the
multiplication M� by the independent variable � in the von Neumann direct integral

HD
Z ˚

T

E.�/ d�.�/; (1-4)

where � is a finite Borel measure on T (without loss of generality we can assume that � is a probability
measure, �.T/D 1).

Let us recall the construction of the direct integral; we present not the most general one, but one that is
sufficient for our purposes. Let E be a separable Hilbert space with an orthonormal basis feng1nD1, and
let N W T! N[f1g be a measurable function (the so-called dimension function). Define

E.�/D spanfen 2E W 1� n�N.�/g:

Then the direct integral H is the subspace of the E-valued space L2.�IE/D L2.T; �IE/ consisting of
the functions f such that f .�/ 2E.�/ for �-a.e. �.

Note, that the dimension function N and the spectral type Œ�� of � (i.e., the collection of all measures
that are mutually absolutely continuous with �) are spectral invariants of U, meaning that they define the
operator U up to unitary equivalence.
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So, without loss of generality, we assume that U is the multiplication M� by the independent variable �
in the direct integral (1-4).

An important particular case is the case when U is star-cyclic, meaning that there exists a vector h 2H
such that spanfU nh W n 2 Zg DH. In this case N.�/� 1, and the operator U is unitarily equivalent to
the multiplication operator M� in the scalar space L2.�/D L2.T; �/.

In the representation of U in the direct integral it is convenient to give a “matrix” representation of
the isometry B. Namely, for k D 1; 2; : : : ; d define functions bk 2H� L2.�IE/ by bk WDBek; here
fekg

d
kD1

is the standard orthonormal basis in Cd.
In this notation the operatorB, if we follow the standard rules of the linear algebra, is the multiplication

by a row B of vector-valued functions,

B.�/D .b1.�/; b2.�/; : : : ; bd .�//:

If we represent bk.�/ in the standard basis in E that we used to construct the direct integral (1-4), then B
is just the multiplication by the matrix-valued function of size .dimE/� d .

1B. Star-cyclic subspaces and completely nonunitary contractions.

Definition 1.1. As was previously mentioned, a subspace R is said to be star-cyclic for an operator T
on H if

H D spanfT kR; .T �/kR W k 2 ZCg:

For a perturbation (not necessarily unitary) T D T� of the unitary operator U given by (1-2) the
subspace

E D spanfU kR; .U �/kR W k 2 ZCg D spanfU kR W k 2 Zg (1-5)

is a reducing subspace for both U and T� (i.e., E and E? are invariant for both U and T� ).
Since T� jE? DU jE? , the perturbation does not influence the action of T� on E?, so nothing interesting

for perturbation theory happens on E?; all action happens on E . Therefore, we can restrict our attention
to T� jE , i.e., assume without loss of generality that RD RanB is a star-cyclic subspace for U.

We note the following result.

Lemma 1.2. Let R D RanB be a star-cyclic subspace for U and let � be unitary. Then R is also a
star-cyclic subspace for all perturbed unitary operators U� D T� given by (1-2).

We postpone for a moment a proof of this well-known fact.

Definition 1.3. A contraction T in a Hilbert space H is called completely nonunitary (c.n.u. for short) if
there is no nonzero reducing subspace on which T acts unitarily.

Recall that a contraction is called strict if kT xk< kxk for all x ¤ 0.

Lemma 1.4. If RD RanB is a star-cyclic subspace for U and � is a strict contraction, then T defined
by (1-2) is a c.n.u. contraction.
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Proof. Since � is a strict contraction, we get that B�B�U jU�R is also a strict contraction. Therefore
(1-3) implies

kT xk D kxk () x ? U�1R;

kT �xk D kxk () x ?R:

Moreover, we can see from (1-3) that if x ? U�1R then T x D Uf and if x ?R then T �x D U�1x.
Consider a reducing subspace G for T such that T jG is unitary. Then the above observations imply

G ?R and G ? U�1R, and that for any x 2G

T nx D U nx as well as .T �/nx D U�nx:

Since G is a reducing subspace for T it follows that U kx 2G for all integers k. But this implies that
U nx ?R, or equivalently x ? U nR for all n 2 Z. But R is a star-cyclic subspace for U, so we get a
contradiction. �

Proof of Lemma 1.2. Assume now that for unitary �, the subspace RanB is not a star-cyclic subspace for
U� D T� (but is a star-cyclic subspace for U ). Consider the perturbation T0,

T0 D U CB.0� ID/B�U:

We will show that

T0 D U� CB.0� ID/B�U� : (1-6)

By Lemma 1.4 the operator T0 is a c.n.u. contraction.
But, as we discussed in the beginning of this subsection, if RanB is not star-cyclic for U, then for E

defined by (1-5) the subspace E? is a reducing subspace for T� (with any �) on which T� acts unitarily.
Since by (1-6) the operator T0 is a perturbation of form (1-2) of the unitary operator T� , we conclude

that the operator T0 has a nontrivial unitary part, and arrive at a contradiction.
To prove (1-6) we notice that

T0 D U �BB
�U D U� �B�B

�U: (1-7)

Direct computations show that

U�U
�B D UU �BCB.� � ID/B

�UU �B DBCB.� � ID/DB�:

Taking the adjoint of this identity we get B�UU �� D �
�B�, and so �B�U DB�U� . Substituting B�U�

instead of �B�U in (1-7) we get (1-6). �

1C. Characterization of star-cyclic subspaces. Recall that for an isometry B W D!H, where H is the
direct integral (1-4), we denoted by bk 2H the “columns” of B,

bk DBek;

where e1; e2; : : : ; ed is the standard basis in Cd.
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Lemma 1.5. Let U be the multiplication M� by the independent variable � in the direct integral H given
by (1-4), and let B W Cd !H be as above. The space RanB D spanfbk W 1� k � dg is star-cyclic for U
if and only if spanfbk.�/ W 1� k � dg DE.�/ for �-a.e. �.

Proof. First assume that RanB is not a star-cyclic subspace for U. Then there exists f 2H� L2.�IE/,
f ¤ 0 �-a.e., such that

U lf ? bk for all l 2 Z and k D 1; : : : ; d;

or, equivalently Z
T

.f .�/; bk.�//E�
l d�.�/D 0 for all l 2 Z and k D 1; : : : ; d:

But that means for all k D 1; 2; : : : ; d we have

.f .�/; bk.�//E D 0 �-a.e.;

so on some set of positive �-measure (where f .�/¤ 0) we have

spanfbk.�/ W 1� k � dg¤E.�/: (1-8)

Vice versa, assume that (1-8) holds on some Borel subset A� T with �.A/ > 0. For nD 1; 2; : : : ;1
define sets An WD f� 2 A W dimE.�/ D ng. Then �.An/ > 0 for some n. Fix this n and denote the
corresponding space E.�/, � 2 An, by En.

We know that spanfbk.�/ W 1� k � dg¤En on An, so there exists e 2En such that

e … spanfbk.�/ W 1� k � dg

on a set of positive measure in An.
Trivially, if f 2 spanfU k RanB W k 2 Zg then

f .�/ 2 spanfbk.�/ W 1� k � dg �-a.e.;

and therefore f D 1Ane is not in spanfU k RanB W k 2 Zg. �

1D. The case of star-cyclicU. IfU is star-cyclic (i.e., it has a one-dimensional star-cyclic subspace/vector),
U is unitarily equivalent to the multiplication operator M� in the scalar space L2.�/; of course the scalar
space L2.�/ is a particular case of the direct integral, where all spaces E.�/ are one-dimensional.

Lemma 1.5 says that RanB is star-cyclic for U if and only if there is no measurable set A, �.A/ > 0,
on which all the functions bk vanish. If we consider the case when U is star-cyclic, i.e., when it has a
star-cyclic vector, we can ask the question:

Does a star-cyclic operator U have a star-cyclic vector that belongs to a prescribed (finite-dimensional)
star-cyclic subspace?

The following lemma answers “yes” to that question. Moreover, it implies that if RanB is star-cyclic
for U DM� on the scalar-valued space L2.�/, then almost all vectors b 2 RanB are star-cyclic for U.
As the result is measure-theoretic in nature, we formulate it in a general context.
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Lemma 1.6. Consider a �-finite scalar-valued measure � on a measure space X . Let b1; b2; : : : ; bd 2
L2.�/ be such that

dX
kD1

jbkj ¤ 0 � -a.e.

Then for almost all (with respect to the Lebesgue measure) ˛ D .˛1; ˛2; : : : ; ˛d / 2 Cd we have
dX
kD1

˛kbk ¤ 0 � -a.e. on X :

Remark. The above lemma also holds for almost all ˛ 2 Rd.

Proof of Lemma 1.6. Consider first the case �.X / <1.
We proceed by induction in d . Clearly, if jb1j ¤ 0 �-a.e. on X , then ˛b1 ¤ 0 �-a.e. on X for all

˛ 2 C n f0g.
Now assume the statement of the lemma for d D n for some n 2N. Deleting a set of � -measure 0, we

can assume that
PnC1
kD1jbkj ¤ 0 on X .

Let Y WD
˚
x2X W

Pn
kD1jbk.x/j>0

	
. By the induction assumption, for almost all ˛0D .˛1; ˛2; : : : ; ˛n/

b.˛0; x/ WD

nX
kD1

˛kbk.x/¤ 0 on Y:

Fix ˛0 D .˛1; ˛2; : : : ; ˛n/ such that b.˛0; x/¤ 0 on Y . We will show that for any such fixed ˛0

�

��
x 2 X W

nC1X
kD1

˛kbk.x/D 0

��
> 0 (1-9)

only for countably many values of ˛nC1.
To show this, define for ˇ D ˛nC1 2 C the set

Xˇ WD fx 2 X W b.˛0; x/CˇbnC1.x/D 0g:

Let Q̌ 2 C n f0g, Q̌ ¤ ˇ. We claim that the sets Xˇ and X Q̌ are disjoint.
Indeed, the assumption that

PnC1
kD1jbkj > 0 implies bnC1 ¤ 0 on X nY , so Xˇ ;X Q̌ 2 Y . Moreover,

solving for bnC1 we get that if ˇ ¤ 0, then

Xˇ D fx 2 Y W bnC1.x/D�b.˛0; x/=ˇg;

and similarly for X Q̌ . Since b.˛0; x/¤ 0 on Y , we get

b.˛0; x/=ˇ ¤ b.˛0; x/= Q̌ for all x 2 Y;

so if ˇ ¤ 0, then Xˇ and X Q̌ are disjoint as preimages of disjoint sets (points).
If ˇ D 0, then X0 D X nY , so the sets X Q̌ and X0 are disjoint.
The set X has finite measure, and X is the union of disjoint sets Xˇ , ˇ 2 C. So, only countably many

sets Xˇ can satisfy �.Xˇ / > 0. We have proved the lemma for �.X / <1.
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The rest can be obtained by Tonelli’s theorem. Namely, define

A WD
�
.x; ˛/ W x 2 X ; ˛ 2 CnC1;

nC1X
kD1

˛kbk.x/D 0

�
and let F D 1A. From Tonelli’s theorem we can see thatZ

1A.x; ˛/ dm.˛/ d�.x/ > 0 (1-10)

if and only if for the set of ˛ 2 CnC1 of positive Lebesgue measure

�

��
x 2 X W

nC1X
kD1

˛kbk.x/D 0

��
> 0:

It follows from (1-9) that for almost all ˛0 D .˛1; ˛2; : : : ; ˛n/ 2 CnZ
1A.x; ˛

0; ˛nC1/ dm.˛nC1/ d�.x/D 0;

so, by Tonelli, the integral in (1-10) equals 0. �

2. Abstract formula for the adjoint Clark operator

We now introduce necessary known facts about functional models and then give a general abstract formula
for the adjoint Clark operator. To do this we need a new notion of coordinate/parametrizing operators
for the model and their agreement: the abstract representation formula (Theorem 2.4) holds under the
assumption that the coordinate operators C and C� agree with the Clark model.

Later in Section 3 we construct the coordinate operators that agree with the Clark model, and in
Section 4 we compute the characteristic function, so the abstract Theorem 2.4 will give us concrete, albeit
complicated, formulas.

2A. Functional models.

Definition 2.1. Recall that for a contraction T its defect operators DT and DT � are defined as

DT WD .I �T
�T /1=2; DT � WD .I �T T

�/1=2:

The defect spaces DT and DT � are defined as

DT WD clos RanDT ; DT � WD clos RanDT � :

The characteristic function is an (explicitly computed from the contraction T ) operator-valued function
� 2H1.D!D�/, where D and D� are Hilbert spaces of appropriate dimensions,

dimDD dimDT ; dimD� D dimDT � :

Using the characteristic function � one can then construct the so-called model space K� , which
is a subspace of a weighted L2 space L2.T; W ID�˚D/D L2.W ID�˚D/ with an operator-valued
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weightW . The model operator M� WK�!K� is then defined as the compression of the multiplicationMz

by the independent variable z,

M�f D PK�Mzf; f 2 K� I

here Mzf .z/D zf .z/.
Let us remind the reader that the norm in the weighted space L2.T; W IH/ with an operator weight W

is given by

kf k2
L2.W IH/

D

Z
T

.W.z/f .z/; f .z//H dm.z/I

in the case dimH D1 there are some technical details, but in the finite-dimensional case considered in
this paper everything is pretty straightforward.

The best-known example of a model is the Sz.-Nagy–Foias, (transcription of a) model [Sz.-Nagy et al.
2010]. The Sz.-Nagy–Foias, model space K� is a subspace of a nonweighted space L2.D�˚D/ (here
W � I), given by

K� WD
�

H 2.D�/

clos�L2.D/

�
	

�
�

�

�
H 2.D/;

where

�.z/ WD .ID� �
�.z/�.z//1=2 and

�
�

�

�
H 2.D/D

��
�f

�f

�
W f 2H 2.D/

�
:

In the literature, the case when the vector-valued characteristic function � is inner (i.e., its boundary
values are isometries for a.e. z 2 T) is often considered. Then �.z/D 0 on T, so in that case the second
component of K� collapses completely and the Sz.-Nagy–Foias, model space reduces to the familiar space

K� DH 2.D�/	 �H
2.D/:

Also, in the literature, see [Sz.-Nagy et al. 2010], the characteristic function is defined up to multiplica-
tion by constant unitary factors from the right and from the left. Namely, two functions � 2H1.D!D�/

and Q� 2H1. zD! zD�/ are equivalent if there exist unitary operators U WD! zD and U� WD�! zD�
such that Q� D U��U �.

It is a well-known fact, see [Sz.-Nagy et al. 2010], that two c.n.u. contractions are unitarily equivalent if
and only if their characteristic functions are equivalent as described above. So, usually in the literature the
characteristic function is understood as the corresponding equivalence class, or an arbitrary representative
in this class. However, in this paper, to get correct formulas it is essential to track which representative is
chosen.

2B. Coordinate operators, parametrizing operators, and their agreement. Let T W H ! H be a con-
traction, and let D, D� be Hilbert spaces, dimD D dimDT, dimD� D dimDT � . Unitary operators
V W DT ! D and V� W DT � ! D� will be called coordinate operators for the corresponding defect
spaces; the reason for that name is that often spaces D and D� are spaces with a fixed orthonormal basis
(and one can introduce coordinates there), so the operators introduce coordinates on the defect spaces.
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The inverse operators V � WD!DT and V �� WD�!DT � will be called parametrizing operators. For
a contraction T we will use the symbols V and V� for the coordinate operators, but for its model M� the
parametrizing operators will be used, and we reserve letters C and C� for these operators.

Let T be a c.n.u. contraction with characteristic function � 2H1.D!D�/, and let M� W K� ! K�
be its model. Let also V WDT !D and V� WDT � !D� be coordinate operators for the defect spaces
of T, and C WD!DM�

and C� WD�!DM�
�

be the parametrizing operators for the defect spaces of
M� (this simply means that all four operators are unitary).

We say that the operators V , V� agree with operatorsC , C� if there exists a unitary operatorˆ WK�!H

intertwining T and M� ,
TˆDˆM� ;

and such that
C � D VˆjDM�

; C �� D V�ˆjDM�
�

: (2-1)

The above identities simply mean that the diagrams below are commutative:

DT D D� DT �

DM�
DM�

�

V V ��

ˆ C � ˆC ��

In this paper, when convenient, we always extend an operator between subspaces to the operator
between the whole spaces, by extending it by 0 on the orthogonal complement of the domain; slightly
abusing notation we will use the same symbol for both operators. Thus a unitary operator between
subspaces E and F can be treated as a partial isometry with initial space E and final space F, and vice
versa. With this convention (2-1) can be rewritten as

C � D Vˆ; C �� D V�ˆ:

2C. Clark operator. Consider a contraction T given by (1-2) with � being a strict contraction. We also
assume that RanB is a star-cyclic subspace for U, so T is a c.n.u. contraction; see Lemma 1.4.

We assume that U is given in its spectral representation, so U is the multiplication operator M� in the
direct integral H.

A Clark operator ˆ W K� ! H is a unitary operator, intertwining this special contraction T and its
model M� , ˆM� D Tˆ, or equivalently

ˆ�T DM�ˆ
�: (2-2)

We name it so after D. Clark, who in [Clark 1972] described it for rank-one perturbations of unitary
operators with purely singular spectrum.

We want to describe the operator ˆ (more precisely, its adjoint ˆ�) in our situation. In our case,
dimDT D dimDT � D d , and it will be convenient for us to consider models with DDD� D Cd.
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As discussed above, it can be easily seen from the representation (1-3) that the operators U �B WDD
Cd ! DT and B W D D Cd ! DT � are unitary operators canonically (for our setup) identifying D

with the corresponding defect spaces, i.e., the canonical parametrizing operators for these spaces. The
corresponding coordinate operators are given by V DB�U, V� DB�.

We say that parametrizing operators C WD!DM�
, C� WD!DM�

�
agree with the Clark model if

the above coordinate operators V DB�U, V�DB� agree with the parametrizing operators C , C� in the
sense of Section 2B. In other words, they agree if there exists a Clark operator ˆ such that the following
diagram commutes:

DT DD Cd DT �

DM�
DM�

�

B�U B

ˆ� C ˆ�C�

(2-3)

Note, that in this diagram one can travel in both directions: to change the direction, one just needs to
take the adjoint of the corresponding operator.

Slightly abusing notation, we use C to also denote the extension of C to the model space K� by the
zero operator, and similarly for C�.

Note that agreement of C and C� with the Clark model can be rewritten as

ˆ�.B�U/� D C ; ˆ�B D C�: (2-4)

And by taking restrictions (where necessary) we find

M�C D C�� and M��C� D C�
�: (2-5)

We express the action of the model operator and its adjoint in an auxiliary result. The result holds in
any transcription of the model. We will need the following simple fact.

Lemma 2.2. For a contraction T

TDT �DT � ; T �DT � �DT :

Proof. Since DT is a strict contraction on DT we get

kT xk D kxk () x ?DT ;

and similarly, since T � is a strict contraction on DT � ,

kT �xk D kxk () x ?DT � : (2-6)

Thus the operator T is an isometry on D?T , so the polarization identity implies T �T xD x for all x 2D?T .
Together with (2-6) this implies T .D?T /�D?T � , which is equivalent to the inclusion T �DT � �DT .

Replacing T by T � we get TDT �DT � . �
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Lemma 2.3. Let T be as defined in (1-2) with � being a strict contraction. Assume also that RanB is
star-cyclic (so T is completely nonunitary; see Lemma 1.4).

Let � 2H1.D!D�/, DDD� D Cd, be the characteristic function of T, and let M� W K� ! K�
be a model operator. Let C WD!DM�

and C� WD!DM�
�

be the parametrizing unitary operators that
agree with the Clark model.

Then
M� DMzC .C�� �MzC /C

� and M�� DM NzC .C�
�
�M NzC�/C

�
� :

Proof. Since the operator M� acts on K�	DM�
as the multiplication operator Mz , we can trivially write

M� DMz.I �PDM�
/CM�PDM�

:

Recalling that C WD! K� is an isometry with range DM�
, we can see that PDM�

D CC �, so

Mz.I �PDM�
/DMz.I �CC

�/: (2-7)

Using the identity PDM�
D CC � and the first equation of (2-5) we get

M�PDM�
DM�CC

�
D C��C

�;

which together with (2-7) gives us the desired formula for M� .
To get the formula for M�

�
we represent it as

M�� DM Nz.I �PDM�
�

/CM��PDM�
�

:

Using the identities
PDM�

�

D C�C
�
� ; M��PDM�

�

D C��C ��

(the first holds because DM�
�

is the range of the isometry C�, and the second one follows from the second
equation in (2-5)), we get the desired formula. �

2D. Representation theorem. For a (general) model operator M� , � 2H1.D!D�/, the parametrizing
operators C WD!DM�

, C� WD�!DM�
�

give rise to (uniquely defined) operator-valued functions C
and C� on T, where C.�/ WD!D˚D�, C�.�/ WD�!D˚D�, � 2 T, such that for almost all � 2 T

.C e/.�/D C.�/e for all e 2D; (2-8)

.C�e�/.�/D C�.�/e� for all e� 2D�I (2-9)

here C e;C�e� are elements of K� , i.e., functions with values in D˚D�, and .C e/.�/, .C�e�/.�/ are
the values of these functions at � 2 T.

If we fix orthonormal bases in D and D�, then the k-th column of the matrix of C.�/ is defined as
.C�ek/.�/, where ek is the k-th vector in the orthonormal basis in D, and similarly for C�.

If M� is a model for a contraction T DT� with � being a strict contraction on DDCd, we can see from
(1-3) that dimDT D dimDT � D d , so we can always pick a characteristic function � 2H1.D!D�/

(i.e., with D� DDD Cd ).
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The following formula for the adjoint ˆ� of the Clark operator ˆ generalizes the “universal” represen-
tation theorem [Liaw and Treil 2016, Theorem 3.1] to higher-rank perturbations.

Theorem 2.4 (representation theorem). Let T be as defined in (1-2) with � being a strict contraction
and U DM� in H� L2.�IE/. Let � D �T be a characteristic function of T , and let K� and M� be the
corresponding model space and model operator.

Let C WD!DM�
and C� WD!DM�

�
be the parametrizing unitary operators1 that agree with Clark

model, i.e., such that (2-4) is satisfied for some Clark operator ˆ. And let C.z/ and C�.z/ be given by
(2-8) and (2-9), respectively.

Then the action of the adjoint Clark operator ˆ� is given by

.ˆ�hb/.z/D h.z/C�.z/B
�bC .C�.z/� zC.z//

Z
T

h.�/� h.z/

1� z N�
B�.�/b.�/ d�.�/ (2-10)

for any b 2 RanB and for all h 2 C 1.T/; here

B�.�/D

0BBB@
b1.�/

�

b2.�/
�

:::

bd .�/
�

1CCCA
and B�b D

R
T
B�.�/b.�/ d�.�/, as explained more thoroughly in the proof below.

Remark. The above theorem looks like abstract nonsense because right now it is not clear how to find
the parametrizing operators C and C� that agree with the Clark model. However, Theorem 4.2 below
gives an explicit formula for the characteristic function � (one of the representative in the equivalence
class), and Lemma 3.3 gives explicit formulas for C and C� in the Sz.-Nagy–Foias, transcription that
agree with the Clark model for our � .

When d D 1 this formula agrees with the special case of the representation formula derived in [Liaw
and Treil 2016]. While some of the ideas of the following proof were originally developed there, the
current extension to rank-d perturbations requires several new ideas and a more abstract way of thinking.

Proof of Theorem 2.4. Recall that U DM� , so T DM� CB.� � ICd /B
�M� . The intertwining relation

ˆ�T DM�ˆ
� then can be rewritten as

ˆ�M� Cˆ
�B.� � ICd /B

�U Dˆ�T DM�ˆ
�
D ŒMzC .C�� �MzC /C

��ˆ�I (2-11)

here we used Lemma 2.3 to express the model operator in the right-hand side of (2-11).
By the commutation relations in (2-4), the term ˆ�B�B�U on the left-hand side of (2-11) cancels

with the term C��C
�ˆ� on the right-hand side of (2-11). Then (2-11) can be rewritten as

ˆ�M� DMzˆ
�
Cˆ�BICdB

�U �MzCC
�ˆ�

DMzˆ
�
C .C��MzC /B

�M� I (2-12)

the last identity holds because, by (2-4), we have ˆ�B D C� and C �ˆ� DB�U DB�M� .

1Note that here we set D� DD, which is possible because the dimensions of the defect spaces are equal.
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Right-multiplying (2-12) by M� and using (2-12) we get

ˆ�M 2
� DMzˆ

�M� C .C��MzC /B
�M 2

�

DM 2
zˆ
�
CMz.C��MzC /B

�M� C .C��MzC /B
�M 2

� :

Right-multiplying the above equation by M� and using (2-12) again we get the identity

ˆ�M n
� DM

n
z ˆ
�
C

nX
kD1

M k�1
z .C��MzC /B

�M n�kC1
�

; (2-13)

with nD 3. Right-multiplying by M� and applying (2-12) we get by induction that (2-13) holds for all
n� 0. (The case nD 0 trivially reads as ˆ� Dˆ�, and (2-12) is precisely the case nD 1.)

We now apply (2-13) to some b 2 RanB. By commutative diagram (2-3) we get ˆ�b D C�B�b, i.e.,
.ˆ�b/.z/D C�.z/B

�b. Using this identity we get

.ˆ�M n
� b/.z/D z

n.ˆ�b/.z/C

nX
kD1

zk�1.C�.z/� zC.z//B
�M n�kC1

�
b

D znC�.z/.B
�b/.z/C .C�.z/� zC.z//

nX
kD1

zk�1B�M n�kC1
�

b: (2-14)

To continue, we recall that B WCd !L2.�IE/ acts as multiplication by the matrix B.�/D .b1.�/; b2.�/;
: : : ; bd .�//, so its adjoint B� WH� L2.�IE/! Cd is given by

B�f D

Z
T

B�.�/f .�/ d�.�/ for f 2H;

where the integral can be expanded as

Z
T

B�.�/f .�/ d�.�/D

0BBB@
R

T
b1.�/

�f .�/ d�.�/R
T
b2.�/

�f .�/ d�.�/
:::R

T
bd .�/

�f .�/ d�.�/

1CCCA :
Using the sum of geometric progression formula we evaluate the sum in (2-14) to

nX
kD1

zk�1B�M n�kC1
�

b D

nX
kD1

zk�1
Z

T

�n�kC1B�.�/b.�/ d�.�/

D

Z
T

nX
kD1

zk�1�n�kC1B�.�/b.�/ d�.�/

D

Z
T

�n� zn

1� z N�
B�.�/b.�/ d�.�/: (2-15)

Thus, we have proved (2-10) for monomials h.�/ D �n, n � 0. And by the linearity of ˆ�, the
representation (2-10) holds for (analytic) polynomials h in �.
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The argument leading to the determination of the action of ˆ� on polynomials h in N� is similar. But
we found that the devil is in the details and therefore decided to include much of the argument.

First observe that the intertwining relation (2-2) is equivalent to M�
�
ˆ� D ˆ�T �. Recalling T � D

U �CU �B.���ICd /B
� and the resolution of the adjoint model operator M�

�
(see second statement of

Lemma 2.3), we obtain

M Nzˆ
�
C .C��� NzC�/C

�
�ˆ
�
DM��ˆ

�
Dˆ�T � Dˆ�U ��ˆ�U �B.��� ICd /B

�:

The terms involving �� on the left-hand side and the right-hand side cancel by the commutation
relations in (2-4) (actually by their adjoints). Now, rearrangement and another application of the adjoints
of the commutation relations in (2-4) yields

ˆ�M N� Dˆ
�U � DM Nzˆ

�
Cˆ�U �BICdB

�
� NzC�C

�
�ˆ
�
DM Nzˆ

�
C .C �M NzC�/B

�

DM Nzˆ
�
CM Nz.MzC �C�/B

�: (2-16)

In analogy to the above, we right-multiply (2-16) by M N� and apply (2-16) twice to obtain

ˆ�M 2
N�
DM 2

Nzˆ
�
C

2X
kD1

M k
Nz .MzC �C�/B

�M 2�k
N�

:

Inductively, we conclude

ˆ�M n
N�
DM n

Nz ˆ
�
�

nX
kD1

M k
Nz .C��MzC /B

�M n�k
N�

;

which differs in the exponents and in the sign from its counterpart expression in (2-13).
Through an application of this identity to b and by the commutative diagram (2-3), we see

.ˆ�M n
N�
b/.z/D Nzn.ˆ�b/.z/�

nX
kD1

Nzk.C�.z/� zC.z//B
�M n�k
N�

b

D NznC�.z/.B
�b/.z/� .C�.z/� zC.z//

nX
kD1

NzkB�M n�k
N�

b:

As in (2-15), but here with the geometric progression

�

nX
kD1

. Nz/k. N�/n�k D
. N�/n� . Nz/n

1� N�z
;

we can see (2-10) for monomials N�n, n 2 N. And by the linearity of ˆ�, we obtain the same formula
(2-10) for functions h that are polynomials in N� .

We have proved (2-10) for trigonometric polynomials f . The theorem now follows by a standard
approximation argument, developed in [Liaw and Treil 2009]. The application of this argument to the
current situation is a slight extension of the one used in [Liaw and Treil 2016]. Fix f 2 C 1.T/ and
let fpkg be a sequence of trigonometric polynomials with uniform-on-T approximations pk� f and
p0
k
� f 0. In particular, we have jp0

k
j is bounded (with bound independent of k) and pk! f as well as
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pkb! f b in L2.�IE/. Since ˆ� is a unitary operator, it is bounded and therefore we have convergence
on the left-hand side ˆ�pkb!ˆ�f b in K� .

To investigate convergence on the right-hand side, first recall that the model space is a subspace of the
weighted space L2.W ID�˚D/.

So convergence of the first term on the right-hand side happens, since pk� f and the operator norm
kC�B

�k D 1 implies pkC�.z/B�b D pkC�B�b! f C�B
�b D f C�.z/B

�b in K� .
Lastly, to see convergence of the second term on the right-hand side, consider auxiliary functions

fk WD f �pk . We have fk� 0 and f 0
k
� 0. Let I�;z � T denote the shortest arc connecting � and z.

Then by the intermediate value theorem

jfk.�/�fk.z/j � kf
0
kk1jI�;zj for all �; z 2 T:

By virtue of the geometric estimate jI�;zj � �
2
j� � zj, we obtainˇ̌̌̌

fk.�/�fk.z/

1� N�z

ˇ̌̌̌
�
�
2
kf 0kk1! 0 as k!1:

And since B� is bounded as a partial isometry, we conclude the componentwise uniform convergenceZ
pk.�/�pk.z/

1� N�z
B�.�/b.�/ d�.�/ �

Z
f .�/�f .z/

1� N�z
B�.�/b.�/ d�.�/; z 2 T:

By Lemma 3.4 below, the functions W 1=2C and W 1=2C� are bounded, and so is the function W 1=2C1,
C1.z/ WD C�.z/� zC.z/. That means the multiplication operator f 7! C1f is a bounded operator from
L2.D/ to L2.W ID�˚D/ (recall that in our case D D D� and we use D� here only for consistency
with the general model notation).

The uniform convergence implies the convergence in L2.D/, so the boundedness of the multiplication
by C1 implies the convergence in norm in the second term in the right-hand side of (2-10) (in the norm of
L2.W ID�˚D/). �

3. Model and agreement of operators

We want to explain how to get operators C and C� that agree with each other.
To do that we need to understand in more detail how the model is constructed, and what operator gives

the unitary equivalence of the function and its model.
Everything starts with the notion of unitary dilation. Recall that for a contraction T in a Hilbert

space H its unitary dilation is a unitary operator U on a bigger space H, H �H, such that for all n� 0

T n D PHUnjH : (3-1)

Taking the adjoint of this identity we immediately get

.T �/n D PHU�njH : (3-2)

A dilation is called minimal if it is impossible to replace U by its restriction to a reducing subspace and
still have the identities (3-1) and (3-2).
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The structure of minimal unitary dilations is well known.

Theorem 3.1 [Nikolski and Vasyunin 1998, Theorem 1.4; Nikolski 2002b, Theorem 1.1.16]. Let U W
H!H be a minimal unitary dilation of a contraction T . Then H can be decomposed as HDG�˚H˚G,
and with respect to this decomposition U can be represented as

U D

0@ E�� 0 0

DT �V
�
� T 0

�V T �V �� VDT E

1A ; (3-3)

where E WG!G and E� WG�!G� are pure isometries, V is a partial isometry with initial space DT
and final space ker E� and V� is a partial isometry with initial space DT � and final space ker E��.

Moreover, any minimal unitary dilation of T can be obtained this way. Namely if we pick auxiliary
Hilbert spacesG andG� and isometries E and E� there with dim ker E�DdimDT , dim ker E��DdimDT�
and then pick arbitrary partial isometries V and V� with initial and final spaces as above, then (3-3) will
give us a minimal unitary dilation of T.

The construction of the model then goes as follows. We take auxiliary Hilbert spaces D and D�,
dimD D dimDT , dimD� D dimDT�, and construct operators E and E� such that ker E� D D,
ker E�� DD�. We can do that by putting G D `2.D/D `2.ZCID/, and defining

E.x0; x1; x2; : : :/D .0; x0; x1; x2; : : :/; xk 2D;

and similarly for E�.
Picking arbitrary partial isometries V and V� with initial and final spaces as in (3-3), we get a minimal

unitary dilation U of T given by (3-3).

Remark. Above, we were speaking a bit informally, identifying x 2D with the sequence .x; 0; 0; 0; : : :/2
`2.D/, and x� 2D� with .x�; 0; 0; 0; : : :/ 2 `2.D/.

To be absolutely formal, we need to define canonical embeddings e WD! G D `2.D/, e� WD�!
G� D `

2.D�/ with

e.x/ WD .x; 0; 0; 0; : : :/; x 2D; (3-4)

e�.x�/ WD .x�; 0; 0; 0; : : :/; x 2D�: (3-5)

Then, picking arbitrary unitary operators V WDT !D, V� WDT � !D�, we rewrite (3-3) to define the
corresponding unitary dilation as

U D

0@ E�� 0 0

DT �V
�
� e
�
� T 0

�eV T �V �� e
�
� eVDT E

1A : (3-6)

The reason for being so formal is that if dimDT D dimDT � it is often convenient to put DDD�, but
we definitely want to be able to distinguish between the cases when D is identified with ker E and when
it is identified with ker E�.
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We then define functional embeddings � W L2.D/!H and �� W L2.D�/!H by

�

�X
k2Z

zkek

�
D

X
k2Z

Uke.ek/; ek 2D;

��

�X
k2Z

zkek

�
D

X
k2Z

UkC1e�.ek/; ek 2D�:

We refer the reader to [Nikolski and Vasyunin 1998, Section 1.6] or to [Nikolski 2002b, Section 1.2] for
the details. Note that there D and D� were abstract spaces, dimDD dim ker E� and dimD�D dim ker E��,
and the unitary operators v W D! ker E�, v� W D� ! ker E�� used in the formulas there are just the
canonical embeddings e and e� in our case.

Note that � and �� are isometries.
Note also that for k � 0

Uke.e/D Eke; e 2D;

U�ke�.e�/D Ek� e�; e� 2D�;
so

�.H 2.D//DG; ��.H
2
�.D�//DG�:

The characteristic function is then defined as follows. We consider the operator � D ���� W L
2.D/!

L2.D�/. It is easy to check that Mz� D �Mz , so � is multiplication by a function � 2 L1.D!D�/.
It is not hard to check that � is a contraction, so k�k1 � 1. Since

�.H 2.D//DG ?G� D ��.H
2
�.D�//;

we can conclude that � 2H1.D!D�/.
The characteristic function � D �T can be explicitly computed, see [Nikolski 2002b, Theorem 1.2.10],

�T .z/D V�.�T C zDT �.IH� zT
�/�1DT /V

�
jD; z 2 D: (3-7)

Note that the particular representation of � depends on the coordinate operators V and V� identifying
defect spaces DT and DT � with the abstract spaces D and D�.

To construct a model (more precisely its particular transcription), we need to construct a unitary map ‰
between the space H of the minimal unitary dilation U and its spectral representation.

Namely, we represent U as a multiplication operator in some subspace zKD zK� of L2.D�˚D/ or its
weighted version.

We need to construct a unitary operator ‰ WH! zK intertwining U and Mz on zK, i.e., such that

‰ U DMz‰: (3-8)

Note that if T is a completely nonunitary contraction, then �.L2.D//C��.L2.D�// is dense in H.
So, for ‰ to be unitary it is necessary and sufficient that ‰� acts isometrically on �.L2.D// and on

��.L
2.D�//, and that for all f 2 L2.D/, g 2 L2.D�/

.‰��f;‰��g/zK D .�f; ��g/H D .�f; g/L2.D�/I (3-9)

the last equality here is just the definition of � .
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Of course, we need ‰� to be onto, but that can be easily accomplished by restricting the target space zK
to Ran‰�.

Summing up, we have
H D G ˚ H ˚ G�??y‰� ??y‰�jG ??y‰�jH ??y‰�jG�
zK D G ˚ K� ˚ G�

3A. Pavlov transcription. Probably the easiest way to construct the model is to take zK to be the weighted
space L2.D�˚D; W /, where the weight W is picked to make the simplest operator ‰� an isometry,
and is given by

W.z/D

�
ID� �.z/

�.z/� ID

�
: (3-10)

Now the operator ‰� is defined on �.L2.D// and on ��.L2.D�// as

‰�
�X
k2Z

Uke.ek/
�
D

X
k2Z

zk
�
0

ek

�
; ek 2D;

‰�
�X
k2Z

Uke�.ek/
�
D

X
k2Z

zk�1
�
ek
0

�
; ek 2D�;

(3-11)

or equivalently

‰�.�f /D

�
0

f

�
; f 2 L2.D/;

‰�.��f /D

�
f

0

�
; f 2 L2.D�/:

The incoming and outgoing spaces G� D‰�G�, G D‰�G are given by

G� WD closzK

��
f

0

�
W f 2H 2

�.D�/

�
; G WD closzK

��
0

f

�
W f 2H 2.D/

�
;

and the model space KD K� is defined as

K� D zK	 .G�˚G/:

3B. Sz.-Nagy–Foias, transcription. This transcription appears when one tries to make the operator ‰�

act into a nonweighted space L2.D�˚D/. We make the action of the operator ‰� on ��.L2.D�// as
simple as possible,

‰�
�X
k2Z

Uke�.ek/
�
D

X
k2Z

zk�1
�
ek
0

�
; ek 2D�I (3-12)

this is exactly as in (3-11). The action of ‰� on �.L2.D// is defined as

‰�
�X
k2Z

Uke.ek/
�
D

X
k2Z

zk
�
�ek
�ek

�
; ek 2D; (3-13)
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where �.z/D .I � �.z/��.z//1=2. Then (3-12) and (3-13) can clearly be rewritten as

‰�.�f /D

�
�f

�f

�
; f 2 L2.D/; (3-14)

‰�.��f /D

�
f

0

�
; f 2 L2.D�/: (3-15)

Note, that � in the top entries in (3-13) and (3-14) is necessary to get (3-9); after (3-12), equivalently
(3-15), is chosen, one does not have any choice here. The term� in the bottom entries of (3-13) and (3-14)
is there to make ‰� act isometrically on �.L2.D//. There is some freedom here; one can left-multiply
� by any operator-valued function � such that �.z/ acts isometrically on Ran�.z/. However, picking
just � is the canonical choice for the Sz.-Nagy–Foias, transcription, and we will follow it.

The incoming and outgoing spaces are given by

G� WD
�
H 2
�.D�/

0

�
; G WD

�
�

�

�
H 2.D/:

The model space is given by

K� WD
�

L2.D�/

clos�L2.D/

�
	 .G�˚G/D

�
H 2.D�/

clos�L2.D/

�
	

�
�

�

�
H 2.D/: (3-16)

Remark. While the orthogonal projection from�
L2.D�/

clos�L2.D/

�
to

�
L2.D�/

clos�L2.D/

�
	G�

is rather simple, the one from�
L2.D�/

clos�L2.D/

�
to

�
L2.D�/

clos�L2.D/

�
	G

involves the range of a Toeplitz operator.

3C. De Branges–Rovnyak transcription. This transcription looks very complicated, but its advantage
is that both coordinates are analytic functions. To describe this transcription, we use the auxiliary
weight W D W.z/ as in the Pavlov transcription; see (3-10). The model space is the subspace of
L2.D�˚D; W Œ�1�/, where for a self-adjoint operator A the symbol AŒ�1� denotes its Moore–Penrose
(pseudo)inverse, i.e., AŒ�1� D 0 on KerA and AŒ�1� is the left inverse of A on .KerA/?.

The operator ‰� WH! L2.D�˚D; W Œ�1�/ is defined by

‰�.�f /DW

�
0

f

�
D

�
�f

f

�
; f 2 L2.D/;

‰�.��f /DW

�
f

0

�
D

�
f

��f

�
; f 2 L2.D�/:
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The incoming and outgoing spaces are

G� WD
�
I

��

�
H 2.D�/; G WD

�
�

I

�
H 2.D/;

and the model space is defined as

K� WD
��
f

g

�
W f 2H 2.D�/; g 2H

2
�.D/; g� �

�f 2�L2.D/

�
I

see [Nikolski and Vasyunin 1998, Section 3.7] for the details (there is a typo in that paper; in the definition
of K� on p. 251 it should be f 2H 2.E�/, g 2H 2.E/).

3D. Parametrizing operators for the model, agreeing with coordinate operators. The parametrizing
operators that agree with the coordinate operators V and V� are described in the following lemma, which
holds for any transcription of the model.

Let T be a c.n.u. contraction, and let V WDT !D and V� WDT �!D� be coordinate operators for the
defect spaces of T. Let � D �T D �T;V;V� 2H

1.D!D�/ be the characteristic function of T, defined
by (3-7), and let M� be the corresponding model operator (in any transcription).

Recall that ‰ is a unitary operator intertwining the minimal unitary dilation U of T and the multi-
plication operator Mz in the corresponding function space; see (3-8). The operator ‰ determines the
transcription of the model, so for any particular transcription it is known.

Define
Qe WD‰�e; Qe� WD‰

�e�; (3-17)

where the embeddings e and e� are defined by (3-4), (3-5).

Lemma 3.2. Under the above assumptions the parametrizing operators C� WD�!DM�
�

and C WD!
DM�

given by
C�e� D .DM�

�
jDM�

�

/�1PK�Mz Qe�.e�/; e� 2D�; (3-18)

C e D .DM�
jDM�

/�1PK�M Nz Qe.e/; e 2D; (3-19)

agree with the coordinate operators V and V�.

Remark. It follows from (3-20) below thatPK�Mz Qe�.e�/2RanDM�
�

as well asPK�M Nz Qe.e/2RanDM�
,

so everything in (3-18), (3-19) is well defined.

Proof of Lemma 3.2. Right- and left-multiplying (3-6) by ‰ and ‰� respectively, we get

‰�U‰ D

0B@ zE�� 0 0

DM�
�
C� Qe

�
� M� 0

�QeC �M�
�
C� Qe

�
� QeC

�DM�
zE

1CA ; (3-20)

where zE D‰�E‰, zE� D‰E�‰, C � D V ‰, C �� D V�‰, Qe D‰�e, Qe� D‰�e�.
The operators Qe and Qe� are the canonical embeddings of D and D� into G and G� that agree with the

canonical embeddings e and e�. The operators C and C� are the parametrizing operators for the defect
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spaces of the model operator M� that agree with the coordinate operators V and V� for the defect spaces
of the operator T.

In any particular transcription of the model, the operator ‰�U‰ is known (it is just the multiplication
by z in an appropriate function space), so we get from the decomposition (3-20)

DM�
�
C� Qe

�
� D PK�MzjG� ; DM�

C Qe� D PK�M NzjG� :

Right- and left-multiplying the first identity by e� and .DM�
�
jDM�

�

/�1 respectively, we get (3-18). Simi-
larly, to get (3-19) we just right- and left-multiply the second identity by e and .DM�

jDM�
/�1. �

Applying the above Lemma 3.2 to a particular transcription of the model, we can get more concrete
formulas for C , C� just in terms of the characteristic function � . For example, the following lemma gives
formulas for C and C� in the Sz.-Nagy–Foias, transcription.

Lemma 3.3. Let T be a c.n.u. contraction, and let M� be its model in the Sz.-Nagy–Foias, transcription,
with the characteristic function � D �T;V;V� , � 2H

1.D!D�/.
Then the maps C� WD�!DM�

�
and C WD!DM�

given by

C�e� D

�
I � �.z/��.0/

��.z/��.0/

�
.I � �.0/��.0//�1=2e�; e� 2D�; (3-21)

C e D

�
z�1.�.z/� �.0//

z�1�.z/

�
.I � ��.0/�.0//�1=2e; e 2D; (3-22)

agree with the coordinate operators V and V�.

Proof. To prove (3-21) we will use (3-18). It follows from (3-12) that

Qe�.e�/D z
�1

�
e�
0

�
;

so by (3-18)

C�e� D .I �M�M�� /j
�1=2
DM�

�

PK�

�
e�
0

�
; e� 2D�: (3-23)

It is not hard to show that

PK�

�
e�
0

�
D

�
I � ��.0/�

���.0/�

�
e�: (3-24)

One also can compute

.I �M�M�� /
�
f

g

�
D

�
I � ��.0/�

���.0/�

�
f .0/;

�
f

g

�
2 K� : (3-25)

Combining the above identities we get

.I �M�M�� /PK�

�
e�
0

�
D

�
I � ��.0/�

���.0/�

�
.e�� �.0/�

�.0/e�/: (3-26)

As we discussed above just after (3-19), PK�
�
e�
0

�
2 RanDM�

�
, so in (3-26) we can replace .I �M�M�� /

by its restriction onto DM�
�

.
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Applying .I �M�M�� /jDM�
�

to (3-26) (with .I �M�M�� / replaced by its restriction onto DM�
) and

using (3-25) we get

..I �M�M�� /jDM�
�

/2PK�

�
e�
0

�
D

�
I � ��.0/�

���.0/�

�
.ID� � �.0/�

�.0//2e�:

Applying .I �M�M�� /jDM�
�

to the above identity, and using again (3-25), we get by induction that

'..I �M�M�� /jDM�
�

/PK�

�
e�
0

�
D

�
I � ��.0/�

���.0/�

�
'.ID� � �.0/�

�.0//e� (3-27)

for any monomial ', '.x/D xn, n� 0 (the case nD 0 is just the identity (3-24)).
Linearity implies that (3-27) holds for any polynomial '. Using standard approximation reasoning

we get that ' in (3-27) can be any measurable function. In particular, we can take '.x/D x�1=2, which
together with (3-23) gives us (3-21).

To prove (3-22) we proceed similarly. Equation (3-13) implies

Qe.e/D

�
�

�

�
e;

so by (3-19)

C e D ..I �M��M� /jDM�
/�1=2PK�M Nz

�
�

�

�
e; e 2D: (3-28)

One can see that
PK�M Nz

�
�

�

�
e DM Nz

�
� � �.0/

�

�
e;

so
M�PK�M Nz

�
�

�

�
e D PK�

�
� � �.0/

�

�
e D�PK�

�
�.0/

0

�
e:

Combining this with (3-24), we get

M�PK�M Nz

�
�

�

�
e D

�
��.0/�� I

��.0/�

�
�.0/e:

Using the fact that

M��

�
f

g

�
DM Nz

�
f �f .0/

g

�
;

we arrive at
M��M�PK�M Nz

�
�

�

�
e DM Nz

�
� � �.0/

�

�
�.0/��.0/e;

so
.I �M��M� /PK�M Nz

�
�

�

�
e DM Nz

�
� � �.0/

�

�
.I � �.0/��.0//e:

Using the same reasoning as in the above proof of (3-21) we get

'..I �M��M� /jDM�
/PK�M Nz

�
�

�

�
e DM Nz

�
� � �.0/

�

�
'.I � �.0/��.0//e; (3-29)

first with ' being a polynomial, and then any measurable function.
Using (3-29) with '.x/D x�1=2 and taking (3-28) into account, we get (3-22). �
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3E. An auxiliary lemma. We already used, and we will also need later, the following simple lemma.

Lemma 3.4. Let M D M� be model operator on a model space K� � L2.W ID� ˚ D/, and let
C WD�!DM�

, C� WD!DM�
�

be bounded operators.
If C and C� are the operator-valued functions defined by

C.z/e D C e.z/; z 2 T; e 2D;

C�.z/e� D C�e�.z/; z 2 T; e� 2D�;

then the functions W 1=2C and W 1=2C � are bounded,

kW 1=2CkL1 D kC k; kW
1=2C�kL1 D kC�k:

Proof. It is well known and is not hard to show that if T is a contraction and U is its unitary dilation, then
the subspaces UnDT , n 2 Z (where recall DT is the defect space of T ) are mutually orthogonal, and
similarly for subspaces UnDT � , n 2 Z.

Therefore, the subspaces znDM, n 2 Z, are mutually orthogonal in L2.W ID�˚D/, and the same
holds for the subspaces znDM� , n 2 Z.

The subspaces znD� L2.TID/ are mutually orthogonal, and since

C.z/
X
n2Z

zn Of .n/D
X
n2Z

znCfn; Of .n/ 2D;

we conclude that the operator f 7! Cf is a bounded operator acting from L2.D/ to L2.W ID�˚D/,
and its norm is exactly kC k.

But that means the multiplication operator f 7!W 1=2f between the nonweighted spaces L2.D/ and
L2.D�˚D/ is bounded with the same norm, which immediately implies kW 1=2CkL1 D kC k.

The proof for C� follows similarly. �

4. Characteristic function

We now derive formulas for the (matrix-valued) characteristic function �� ; see Theorem 4.2 below.

4A. An inverse of a perturbation. We begin with an auxiliary result.

Lemma 4.1. Let D be an operator in an auxiliary Hilbert space R and let B;C W R ! H. Then
IH � CDB

� is invertible if and only if IR �DB�C is invertible, and if and only if IR � B�CD is
invertible.

Moreover, in this case

.IH�CDB
�/�1 D IHCC.IR�DB

�C/�1DB�

D IHCCD.IR�B
�CD/�1B�: (4-1)

We will apply this lemma for D W Cd ! Cd, so in this case the inversion of IH�CDB is reduced to
inverting a d � d matrix.
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This lemma can be obtained from the Woodbury inversion formula [1950], although formally in
[Woodbury 1950] only the matrix case was treated.

Proof of Lemma 4.1. First let us note that it is sufficient to prove the lemma with D D IR, because D can
be incorporated either into C or into B�.

One could guess the formula by writing the power series expansion of IH�CDB�, and we can get
the result for the case when the series converges. This method can be made rigorous for finite-rank
perturbations by considering the family .IH��CDB�/�1, � 2 C, and using analytic continuation.

However, the simplest way to prove the formula is just by performing multiplication,

.IH�CB
�/.IHCC.IR�B

�C/�1B�/D IH�CB
�
CC.IR�B

�C/�1B��CB�C.IR�B
�C/�1B�

D IHCC.�IR.IR�B
�C/CIR�B

�C/.IR�B
�C/�1B�

D IH:

Thus, when IR�B�C is invertible, the operator IHCC.IR�B�C/�1B� is the right inverse of IH�CB�.
To prove that it is also a left inverse we even do not need to perform the multiplication: we can just take
the adjoint of the above identity and then interchange B and C .

So, the invertibility of IR�B�C implies the invertibility of IH�CB� and the formula for the inverse.
To prove the “if and only if” statement we just need to change the roles of H and R and express, using
the just proved formula, the inverse of IR�B�C in terms of .IH�CB�/�1. �

4B. Computation of the characteristic function. We turn to computing the characteristic function of
T D U CB.� � ICd /B

�U, k�k< 1, where U is the multiplication operator M� in L2.�IE/.
We will use formula (3-7) with V DB�U, V� DB�, DDD� D Cd.
Let us first calculate for jzj< 1,

.IH� zT
�/�1 D

�
.IH� zU

�/
�
IH� z.IH� zU

�/�1U �B.��� ICd /B
�
���1

D
�
IH� z.IH� zU

�/�1U �B.��� ICd /B
�
��1

.IH� zU
�/�1

DWX.z/.IH� zU
�/�1:

To compute the inverse X.z/ we use Lemma 4.1 with z.IH � zU �/�1U �B instead of C , �� � ICd

instead of D and B instead of B . Together with the first identity in (4-1) we get

X.z/D IHC z.IH� zU
�/�1U �B.ICd � zDB

�.IH� zU
�/�1U �B/�1DB�; (4-2)

where D D ��� ICd .
Now, let us express zB�.IH�zU �/�1U �B as a Cauchy integral of some matrix-valued measure.

Recall thatU is a multiplication by the independent variable � in H�L2.�IE/ and that b1; b2; : : : ; bd 2H
denote the “columns” of B (i.e., bk D Bek , where e1; e2; : : : ; ed is the standard basis in Cd ), and
B.�/D .b1.�/; b2.�/; : : : ; bd .�// is the matrix with columns bk.�/. Then

b�j .ICd � zU
�/�1U �bk D

Z
T

N�

1� z N�
bj .�/

�bk.�/ d�.�/;
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so

zB�.IH� zU
�/�1U �B D

Z
T

z N�

1� z N�
M.�/ d�.�/DW C1ŒM��.z/DW F1.z/; (4-3)

where M is the matrix-valued function M.�/ D B.�/�B.�/, or equivalently Mj;k.�/ D bj .�/�bk.�/,
1� j; k � d .

Using (4-3) and denoting D WD ��� ICd we get from the above calculations that

.IH� zT
�/�1 D .IH� zU

�/�1C z.IH� zU
�/�1U �B.ICd �DF1.z//

�1DB�.IH� zU
�/�1:

Applying formula (3-7), with V D B�U, V� D B�, D D D� D Cd, we see that the characteristic
function is an analytic function � D �T whose values are bounded linear operators acting on D, defined
by the formula

�T .z/DB
�.�T C zDT �.IH� zT

�/�1DT /U
�BjD; z 2 D: (4-4)

We can see from (1-3) that the defect operators DT and DT � are given by

DT D U
�BD�B

�U; DT � DBD��B
�:

We can also see from (1-3) that the term �T in (4-4) contributes �� to the matrix �T . The rest can be
obtained from the above representation formula for .IH� zT �/�1. Thus, recalling the definition (4-3) of
C1M� we get, defining F1.z/ WD .C1M�/.z/, that

�T .z/D��CD��
�
F1.z/CF1.z/

�
ID� .�

�
� ID/F1.z/

��1
.��� ID/F1.z/

�
D�

D��CD��F1.z/
�
ID� .�

�
� ID/F1.z/

��1
D� :

In the above computation to compute X.z/ we can use the second formula in (4-1). We get instead of
(4-2) an alternative representation

X.z/D IHC z.IH� zU
�/�1U �BD

�
ID� zB

�.IH� zU
�/�1U �BD

��1
B�:

Repeating the same computations as above we get another formula for �T ,

�T .z/D��CD��
�
ID�F1.z/.�

�
� ID/

��1
F1.z/D� :

To summarize we have proved two representations of the characteristic operator-valued function.

Theorem 4.2. Let T D T� be the operator given in (1-3), with � being a strict contraction. Then the
characteristic function �T D �T� 2 H

1.D ! D�/, with coordinate operators V D B�U, V� D B�

(and with DDD� D Cd ), is given by

�T� .z/D��CD��F1.z/
�
ID� .�

�
� ID/F1.z/

��1
D�

D��CD��
�
ID�F1.z/.�

�
� ID/

��1
F1.z/D� ;

where F1.z/ is the matrix-valued function given by (4-3).
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In these formulas, the inverse is taken of a d � d matrix-valued function, which is much simpler than
computing the inverse in (4-4).

4C. Characteristic function and the Cauchy integrals of matrix-valued measures. For a (possibly
complex-valued) measure � on T and z … T, define the Cauchy-type transforms C, C1 and C2,

C�.z/ WD
Z

T

d�.�/

1� N�z
; C1�.z/ WD

Z
T

N�z d�.�/

1� N�z
; C2�.z/ WD

Z
T

1C N�z

1� N�z
d�.�/:

Performing the Cauchy transforms componentwise we can define them for matrix-valued measures as
well.

Thus F1 from the above Theorem 4.2 is given by F1D C1ŒM��, whereM.�/DB�.�/B.�/. We would
like to give the representation of �T� in terms of function F2 WD C2ŒM��.

Slightly abusing notation we will write �� instead of �T� .

Corollary 4.3. For �0 WD �T0 we have

�0.z/D F1.z/.I CF1.z//
�1
D .I CF1.z//

�1F1.z/ (4-5)

D .F2.z/� I/.F2.z/C I/
�1
D .F2.z/C I/

�1.F2.z/� I/: (4-6)

Proof. The identity (4-5) is a direct application of Theorem 4.2. The identity (4-6) follows immediately
from the trivial relation

F2.z/D

Z
T

M d�C 2F1.z/D IDC 2F1.z/I

the equality
R

T
M d�D ID D ICd is just a restatement of the fact that the functions b1; b2; : : : ; bd form

an orthonormal basis in H. �

5. Relations between characteristic functions ��

5A. Characteristic functions and linear fractional transformations. When d D 1, it is known that the
characteristic functions are related by a linear fractional transformation

� .z/D
�0.z/� 

1� N�0.z/
I

see [Liaw and Treil 2016, equation (2.9)].
It turns out that a similar formula holds for finite-rank perturbations.

Theorem 5.1. Let T be the operator given in (1-3), with � being a strict contraction. Then the character-
istic functions �� WD �T� and �0 D �T0 are related via linear fractional transformation,

�� DD
�1
�� .�0��/.ID��

��0/
�1D� DD��.ID� �0�

�/�1.�0��/D
�1
� :

Remark. At first sight, this formula looks like a formula in [Nikolski and Vasyunin 1998, p. 234].
However, their result expresses the characteristic function in terms of a linear fractional transformation
in T, whereas, here we have a linear fractional transformation in �.
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Theorem 5.2. Under assumptions of the above Theorem 5.1

�0 DD��.I C ���
�/�1.�� C�/D

�1
� DD

�1
�� .�� C�/.I C�

���/
�1D� :

To prove Theorem 5.1 we start with the following simpler statement.

Proposition 5.3. The matrix-valued characteristic functions �� and �0 are related via

�� D��CD���0.ID��
��0/

�1D� D��CD��.ID� �0�
�/�1�0D� :

Proof. Solving (4-5) for F1 we get

F1.z/D �0.z/ŒI � �0.z/�
�1:

Substituting this expression into the formula for the characteristic function from Theorem 4.2, we see that

�� D��CD���0ŒID� �0�
�1
fID� .�

�
� ID/�0ŒID� �0�

�1
g
�1D� : (5-1)

We manipulate the term inside the curly brackets

ID� .�
�
� ID/�0ŒID� �0�

�1
D .ID� �0� .�

�
� ID/�0/ŒID� �0�

�1

D .ID��
��0/ŒID� �0�

�1;

so that
fID� .�

�
� ID/�0ŒID� �0�

�1
g
�1
D ŒID� �0�.ID��

��0/
�1:

Substituting this back into (5-1), we get the first equation in the proposition.
The second equation is obtained similarly. �

Lemma 5.4. For k�k< 1 we have for all ˛ 2 R

D˛��� D �D
˛
� ; (5-2)

D˛��
�
D ��D˛�� ; (5-3)

where, recall D� WD .I ����/1=2, D�� WD .I ����/1=2 are the defect operators.

Proof. Let us prove (5-2). It is trivially true for ˛ D 2, and by induction we get that it is true for ˛ D 2n,
n 2 N. Since k�k< 1, the spectrum of D� lies in the interval Œa; 1�, aD .1�k�k2/1=2 > 0.

Approximating '.x/D x˛ uniformly on Œa; 1� by polynomials of x2 we get (5-2).
Applying (5-2) to �� we get (5-3). �

Proof of Theorem 5.1. From (5-2) we get D�1���D
�1
� DD

�2
���, so

�� D��CD���0.ID��
��0/

�1D�

DD�� Œ�D
�2
���C �0.ID��

��0/
�1�D�

DD�1�� Œ��CD
2
���0.ID��

��0/
�1�D�

DD�1�� Œ��.ID��
��0/C .I ���

�/�0�.ID��
��0/

�1D�

DD�1�� Œ��C �0�.ID��
��0/

�1D� ;

which is exactly the first identity.
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The second identity is obtained similarly, using the formula D�1���D
�1
� D �D

�2
� and taking the factor

.ID��
��0/

�1 out of brackets on the left. �

Proof of Theorem 5.2. Right-multiplying the first identity in Theorem 5.1 by D�1� .I ����0/ we get

��D
�1
� � ��D

�1
� ���0 DD

�1
���0�D

�1
���:

Using identities D�1��� D �D
�1
� and D�1� �� D ��D�1�� , see Lemma 5.4, we rewrite the above equality

as
��D

�1
� C�D

�1
� D ���

�D�1���0CD
�1
���0:

Right-multiplying both sides by D��.����C I/�1 we get the first equality in the theorem.
The second one is proved similarly. �

5B. The defect functions�� and relations between them. Recall that every strict contraction � yields a
characteristic matrix-valued function �� through association with the c.n.u. contraction U� . The definition
of the Sz.-Nagy–Foias, model space, see, e.g., formula (3-16), reveals immediately that the defect functions
�� D .I � �

�
���/

1=2 are central objects in model theory. We express the defect function �� in terms of
�0 (and � and �0).

Theorem 5.5. The defect functions of �� and �0 are related by

�2� DD�.I � �
�
0 �/

�1�20.I ��
��0/

�1D� :

Proof. By Theorem 5.1
�� DD

�1
�� .�0��/.ID��

��0/
�1D� ;

so ����� D A
�BA, where

AD .I ����0/D� ; B D .��0 ��
�/D�2��.�0��/:

Then �� D I � ����� D A
�XA, where

X D .A�/�1A�1�B D .I � ��0 �/D
�2
� .I ����0/� .�

�
0 ��

�/D�2��.�0��/

DD�2� � �
�
0 �D

�2
� �D

�2
� ���0C �

�
0 �D

�2
� ���0� �

�
0 D
�2
���0C�

�D�2���0C �
�
0 D
�2
��� ��

�D�2���:

It follows from Lemma 5.4 that D�2� �� D ��D�2�� and that ��D�2� DD
�2
���, so in the above identity

we have cancellation of nonsymmetric terms,

���0 �D
�2
� �D

�2
� ���0C�

�D�2���0C �
�
0 D
�2
��� D 0:

Therefore
X DD�2� C �

�
0 �D

�2
� ���0� �

�
0 D
�2
���0��

�D�2���

DD�2� C �
�
0 D
�2
����

��0� �
�
0 D
�2
���0�D

�2
� ���

DD�2� .I ����/C ��0 D
�2
� .��� � I/�0 D I � �

�
0 �0 D�0:

Thus we get �� D A��0A, which is exactly the conclusion of the theorem. �
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5C. Multiplicity of the absolutely continuous spectrum. It is well known that the Sz.-Nagy–Foias, model
space reduces to the familiar one-story setting with K� DH 2.D�/	�H

2.D/ when � is inner. Indeed, for
inner � the nontangential boundary values of the defect �.�/D .I ���.�/�.�//1=2D 0 for Lebesgue a.e.
� 2 T. So, the second component of the Sz.-Nagy–Foias, model space collapses completely.

Here we provide a finer result that reveals the matrix-valued weight function and the multiplicity of
U ’s absolutely continuous part.

Before we formulate the statement, we recall some terminology. First, we Lebesgue decompose the
(scalar) measure d�D d�acC d�sing. The absolutely continuous part of U is unitarily equivalent to the
multiplication by the independent variable � on the von Neumann direct integral Hac D

R˚
T
E.�/ d�ac.�/.

Note that the dimension of E.�/ is the multiplicity function of the spectrum.
Let w denote the density of the absolutely continuous part of �, i.e., d�ac.�/D w.�/ dm.�/. Then

the matrix-valued function � 7! B�.�/B.�/w.�/ is the absolutely continuous part of the matrix-valued
measure B�B�.

Theorem 5.6. The defect function �0 of �0 and the absolutely continuous part B�Bw of the matrix-
valued measure B�B� are related by

.I � ��0 .�//B
�.�/B.�/w.�/.I � �0.�//D .�0.�//

2 (5-4)

for Lebesgue a.e. � 2 T.
The function I � �0 is invertible a.e. on T, so the multiplicity of the absolutely continuous part of � is

given by
dimE.�/D rank.I � ��0 .�/�0.�//D rank40.�/; (5-5)

of course, with respect to Lebesgue a.e. � 2 T.

Combining (5-5) with Theorem 5.5 we obtain:

Corollary 5.7. For Lebesgue a.e. � 2 T we have dimE.�/D rank4�.�/ for all strict contractions �.

Another immediate consequence is the following:

Corollary 5.8. The operator U has no absolutely continuous part on a Borel set B � T if and only if
�0.�/ (or, equivalently, ��.�/ for all strict contractions �) is unitary for Lebesgue a.e. � 2 B .

This corollary is closely related to the main result of [Douglas and Liaw 2013, Theorem 3.1]. Interest-
ingly, it appears that their proof of that result cannot be refined to yield our current result (Theorem 5.6).

Corollary 5.9. In particular, we confirm that the following are equivalent:

(i) U is purely singular.

(ii) ��.�/ is inner for one (equivalently any) strict contraction �.

(iii) �� � 0 for one (equivalently any) strict contraction �.

(iv) The second story of the Sz.-Nagy–Foias, model space collapses (and we are dealing with the model
space K�� DH

2.Cd /	 ��H
2.Cd / for one (equivalently any) strict contraction �).
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Proof of Theorem 5.6. Take � � 0. Solving (4-6) for F2 we see

F2.z/D ŒI C �0.z/�ŒI � �0.z/�
�1:

Let P.B�B�/ denote the Poisson extension of the matrix-valued measure B�B� to the unit disc D.
Since F2 D C2B�B�, we can see that P.B�B�/D ReF2 on D, so

P.B�B�/D ReF2 D ReŒ.I C �0/.I � �0/
�1�:

Standard computations yield

P.B�B�/D ReŒ.I C �0/.I � �0/
�1�D 1

2
Œ.I C �0/.I � �0/

�1
C .I � ��0 /

�1.I C ��0 /�

D
1
2
.I � ��0 /

�1Œ.I � ��0 /.I C �0/C .I C �
�
0 /.I � �0/�.I � �0/

�1

D
1
2
.I � ��0 /

�1ŒI � ��0 �0�.I � �0/
�1
D .I � ��0 /

�1 ReŒI � ��0 �0�.I � �0/
�1

D .I � ��0 /
�1ŒI � ��0 �0�.I � �0/

�1

on D. Note that for any characteristic function � and z 2 D the matrix �.z/ is a strict contraction, so in
our case I � �0 is invertible on D, and all computations are justified.

We can rewrite the above identity as

.I � �0/
�P.B�B�/.I � �0/D I � �

�
0 �0;

and taking the nontangential boundary values we get (5-4). Here we used the Fatou lemma, see, e.g.,
[Nikolski 2002a, Theorem 3.11.7], which says that for a complex measure � the nontangential boundary
values of its Poisson extension P� coincide a.e. with the density of the absolutely continuous part of � ;
applying this lemma entrywise we get what we need in the left-hand side.

To see that the boundary values of I � �0 are invertible a.e. on T we notice that z 7! det.I � �0.z// is
a bounded analytic function on D, so its boundary values are nonzero a.e. on T. �

6. What is wrong with the universal representation formula and what to do about it?

There are several things that are not completely satisfactory with the universal representation formula
given by Theorem 2.4.

First of all, it is defined only on functions of form hb, where h2C 1 is a scalar function and b 2RanB.
Of course, one can then define it on a dense set, for example on the dense set of linear combinations
f D

P
k hk; bk , where bk are columns of the matrix B , bk D Bek , and hk 2 C 1.T/. But the use

of functions b (or bk) in the representation is a bit bothersome, especially taking into account that the
representation f D

P
k hkbk is not always unique. So, it would be a good idea to get rid of the function b.

The second thing is that while the representation formula looks like a singular integral operator (Cauchy
transform), it is not represented as a classical singular integral operator, so it is not especially clear if the
(well-developed) theory of such operators applies in our case. So, we would like to represent the operator
in more classical way.
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Defining C1.z/ WD C�.z/� zC.z/ and using the formal Cauchy-type expression

.T B
��f /.z/D

Z
T

1

1� z N�
B�.�/f .�/ d�.�/;

we can, performing formal algebraic manipulations, rewrite (2-10) as

.ˆ�hb/.z/D C1.z/.T
B��hb/.z/C h.z/ŒC�.z/B

�b�C1.z/.T
B��b/.z/�; z 2 T: (6-1)

So, is it possible to turn these formal manipulations into meaningful mathematics? And the answer is
“yes”: the formula (6-1) gives the representation of ˆ� if one interprets T B

��f as the boundary values
of the Cauchy transform CŒB�f��.z/, z … T; see the definition in the next section.

In the next section (Section 7) we present necessary facts about the (vector-valued) Cauchy transform
and its regularization that will allow us to interpret and justify the formal expression (6-1). We will
complete this justification in Section 8; see (8-12). This representation is a universal one, meaning that it
works in any transcription of the model, but still involves the function b 2 RanB.

The function b is kind of eliminated in Proposition 8.4 below, and as it is usually happens in the theory
of singular integral operators, the operator ˆ� splits into the singular integral part (weighted boundary
values of the Cauchy transform) and the multiplication part. The function b becomes hidden in the
multiplication part, and at first glance it is not clear why this part is well-defined.

Thus the representation given by Proposition 8.4 is still not completely satisfactory (the price one pays
for the universality), but it is a step towards obtaining a nice representation for a fixed transcription of a
model. Thus we were able to obtain a precise and unambiguous representation ofˆ� in the Sz.-Nagy–Foias,
transcription; see Theorem 8.1 which is the main result of Section 8.

7. Singular integral operators

7A. Cauchy-type integrals. For a finite (signed or even complex-valued) measure � on T, its Cauchy
transform C� is defined as

C�.z/D CŒ��.z/D
Z

T

d�.�/

1� N�z
; z 2 C nT:

It is a classical fact that C�.z/ has nontangential boundary values a.e. on T as z ! z0 2 T from the
inside and from the outside of the disc D. So, given a finite positive Borel measure � one can define
operators T �

˙
from L1.�IE/ to the space of measurable functions on T as the nontangential boundary

values from inside and outside of the unit disc D,

.T
�
C
f /.z0/D n.t.- lim

z!z0
z2D

CŒf��.z/; .T �� f /.z0/D n.t.- lim
z!z0
z…D

CŒf��.z/:

One can also define the regularized operators T �r , r 2 .0;1/ n f1g, and the restriction of CŒf�� to the
circle of radius r ,

T �r f .z/D CŒf��.rz/:
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Everything can be extended to the case of vector- and matrix-valued measures; there are some technical
details that should be taken care of in the infinite-dimensional case, but in our case everything is finite-
dimensional (dimE � d <1), so the generalization is pretty straightforward.

So, given a (finite, positive) scalar measure � and a matrix-valued function B� (with entries in L2.�/)
and vector-valued function f 2 L2.�IE/ we can define T B

��
˙

f and T B
��

r f as the nontangential
boundary values and the restriction to the circle of radius r respectively of the Cauchy transform
CŒB�f��.z/. Modulo slight abuse of notation this notation agrees with the accepted notation for the
scalar case.

In what follows the function B� will be the function B� from Theorem 2.4.

7B. Uniform boundedness of the boundary Cauchy operator and its regularization. For a finite Borel
measure � on T and n 2 Z define

Pn�.z/D

�Pn
kD0 O�.k/z

k; n� 0;P�1
kDn O�.k/z

k; n < 0I

here O�.k/ is the Fourier coefficient of �, O�.k/D
R

T
��k d�.�/.

Recall that C1.z/ WD C�.z/� zC.z/, where C� and C are from Theorem 2.4.
Recall that if W is a matrix-valued weight (i.e., a function whose values W.�/ are positive semidefinite

operators on a finite-dimensional space H ), then the norm in the weighted space L2.W IH/ is defined as

kf k2
L2.W IH/

D

Z
T

.W.�/f .�/; f .�//H dm.�/:

We are working with the model space K� which is a subspace of a weighted space L2.W ID�˚D/

(the weight could be trivial, W � I , as in the case of Sz.-Nagy–Foias, model).
Define zC1 WDW 1=2C1. The function zC �1 zC1 is a matrix-valued weight, whose values are operators on

D�˚D, so we can define the weighted space L2. zC �1 zC1/D L
2. zC �1

zC1ID�˚D/. Note that

kf k
L2. zC�1

zC1/
D k zC1f kL2.D�˚D/ D kC1f kL2.W ID�˚D/:

Lemma 7.1. The operators PB
��

n WH� L2.�IE/! L2. zC �1
zC1ID�˚D/ defined by

PB
��

n f WD Pn.B
�f�/; n 2 Z;

are bounded uniformly in n with norm at most 2; i.e.,

k zC1Pn.B
��f /kL2.D�˚D/ � 2kf kL2.�IE/:

Proof. The columns bk ofB are in H�L2.�IE/, soB�f�2L1.�ID/, and therefore the operatorsPB
��

n

are bounded operators H ! L2.D/. It follows from Lemma 3.4 that k zC1k1 � 2, so the operators
f 7! zC1P

B��
n f are bounded operators H!L2.D�˚D/ (notice that we do not claim the uniform-in-n

bound here). Therefore, it is sufficient to check the uniform boundedness on a dense set.
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Take f Dhb, where b2RanB and h2C 1.T/ is scalar-valued. Then for n2Z we have by Theorem 2.4

ˆ�f � znˆ�. N�nf /D C1.z/

Z
T

h.�/� h.z/

1� N�z
B�b d�.�/� znC1.z/

Z
T

N�nh.�/� Nznh.z/

1� N�z
B�b d�.�/

D C1.z/

Z
T

1� . N�z/n

1� N�z
B�hb d�.�/:

Expressing .1� . N�z/n/=.1� N�z/ as a sum of geometric series we get that for f D hb, h 2 C1.T/,

ˆ�f � znˆ�. N�nf /D

�
C1Pn�1.B

�f�/; n� 1;

�C1Pn.B
�f�/; n < 0:

By linearity the above identity holds for a dense set of linear combinations f D
P
k hkbk , hk 2 C 1.T/.

The operators ˆ� WH! K� � L2.W ID�˚D/ are bounded (unitary) operators, so the desired estimate
holds on the above dense set. �

For a measure � on T let Tr� be the restriction of the Cauchy transform of � to the circle of radius r¤ 1,

Tr�.z/D

Z
T

d�.�/

1� r N�z
; z 2 T:

Define operators T B
��

r on L2.�IE/ as

T B
��

r f D Tr.B
�f�/:

The lemma below is an immediate corollary of the above Lemma 7.1.

Lemma 7.2. The operators T B
��

r WH� L2.�IE/! L2. zC �1
zC1ID�˚D/ are bounded uniformly in r

with norm at most 2; i.e.,

k zC1T
B��
r f kL2.D�˚D/ � 2kf kL2.�IE/:

Proof. The result follows immediately from Lemma 7.1, since the operators T B
��

r can be represented as
averages of operators PB

��
n ,

T B
��

r D

�P1
nD0.r

n� rnC1/P
B��
n ; 0 < r < 1;P1

nD1.r
�nC1� r�n/P

B��
�n ; r > 1: �

Using uniform boundedness of the operators zC1T
B��
r (Lemma 7.2) and existence of nontangential

boundary values T B
��
˙

f we can get the convergence of operators zC1T
B��
r in the weak operator topology.

Proposition 7.3. The operators zC1T
B��
˙

WH� L2.�IE/! L2.W ID�˚D/ are bounded and

C1T
B��
˙

D w.o.t.- lim
r!1�

C1T
B��
r :

Proof. We want to show that for any f 2H� L2.�IE/

C1T
B��
˙

f D w- lim
r!1�

C1T
B��
r f;
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where the limit is in the weak topology of L2.W ID�˚D/. This is equivalent to

zC1T
B��
˙

f D w- lim
r!1�

zC1T
B��
r f;

with the limit being in the weak topology of L2.D�˚D/.
Let us prove this identity for zC1T

B��
C

f . Assume that for some f 2 L2.�IE/

zC1T
B��
C

f ¤ w- lim
r!1�

zC1T
B��
r f:

Then for some h 2 L2.D�˚D/

. zC1T
B��
r f; h/L2.D�˚D/¹ . zC1T

B��
C

f; h/L2.D�˚D/ as r! 1�; (7-1)

so there exists a sequence rk% 1 such that

lim
k!1

. zC1T
B��
rk

f; h/L2.D�˚D/ ¤ .
zC1T

B��
C

f; h/L2.D�˚D/I

note that taking a subsequence we can assume without loss of generality that the limit in the left-hand
side exists.

Taking a subsequence again, we can assume without loss of generality that zC1T
B��
rk f ! g in the

weak topology, and (7-1) implies g ¤ zC1T
B��
C

f .
The existence of nontangential boundary values and the definition of T B

��
C

implies zC1T
B��
rk f !

zC1T
B��
C

f a.e. on T. But as [Liaw and Treil 2009, Lemma 3.3] asserts, if fn! f a.e. and fn! g in
the weak topology of L2, then f D g, so we arrive at a contradiction.

Note, that in [Liaw and Treil 2009, Lemma 3.3] everything was stated for scalar functions, but applying
this scalar lemma componentwise we immediately get the same result for L2.�IE/ with values in a
separable Hilbert space. �

8. Adjoint Clark operator in Sz.-Nagy–Foias, transcription

The main result of this section is Theorem 8.1 below, giving a formula for the adjoint Clark operator ˆ�.
Denote by F the Cauchy transform of the matrix-valued measure B�B�,

F.z/D CŒB�B��.z/D
Z

T

1

1� z N�
B�.�/B.�/ d�.�/; z 2 D; (8-1)

and let us use the same symbol for its nontangential boundary values, which exist a.e. on T. Using the
operator T B

��
C

introduced in the previous section, we give the following formula for ˆ�.

Theorem 8.1. The adjoint Clark operator in Sz.-Nagy–Foias, transcription reduces to

ˆ�f D

�
0

‰2

�
f C

�
.I C ���

�/D�1��F
�1

��D
�1
� .��� I/

�
T
B��
C

f; f 2H; (8-2)
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with ‰2.z/D z‰2.z/R.z/, where

z‰2.z/D��D
�1
� .��C .I ���/F.z//

D��D
�1
� .I ����0.z//F.z/ a.e. on T; (8-3)

and R is a measurable right inverse for the matrix-valued function B .

Remark. When d D 1, this result reduces to [Liaw and Treil 2016, equation (4.5)].

Remark 8.2. As one should expect, the matrix-valued function ‰2 does not depend on the choice of the
right inverse R. To prove this, it is sufficient to show that kerB.z/� ker z‰2.z/ a.e., which follows from
the proposition below.

Proposition 8.3. For z‰2 defined above in (8-16) and w being the density of �ac we have

z‰2.�/
� z‰2.�/D F.�/

��0.�/
2F.�/D B.�/�B.�/w.�/ �ac-a.e., (8-4)

and so
‰2.�/

�‰2.�/D w.�/IE.�/ �ac-a.e. (8-5)

Proof. Since ‰2 D z‰2R, (8-5) follows immediately from (8-4).
To prove (8-4), consider first the case, � D 0. In this case z‰ D�0F, so

z‰�2
z‰2 D F

��20F D .I � �
�
0 /
�1�20.I � �0/

�1

D B�Bw by (5-4). (8-6)

Consider now the case of general �. We get

z‰�2
z‰2 D F

�.I � ��0 �/D
�1
� �2�D

�1
� .I ����0/F

D F ��20F by Theorem 5.5

D B�Bw by (8-6). �

8A. A preliminary formula. We start proving Theorem 8.1 by first proving this preliminary result,
which holds for any transcription of the model. Below, the matrix-valued functions C� and C are from
Theorem 2.4, and C1.z/ WD C�.z/� zC.z/.

Proposition 8.4. The adjoint Clark operator is represented for f 2H� L2.�IE/ by

.ˆ�f /.z/D C1.z/.T
B��
˙

f /.z/C‰˙.z/f .z/; z 2 T; (8-7)

where the matrix-functions ‰˙, ‰˙.z/ WE.z/! C2d DD�˚D are defined via the identities

‰˙.z/b.z/ WD C�.z/B
�b�C1.z/.T

B��
˙

b/.z/; b 2 RanBI (8-8)

here two choices of sign (the same sign for all terms) give two different representation formulas.

Remark. When d D 1 and b � 1 this alternative representation formula reduces to a formula that occurs
in the proof of [Liaw and Treil 2016, Theorem 4.7].
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Remark. It is clear that relations (8-8) with bD bk , kD 1; 2; : : : ; d , completely define the matrix-valued
function ‰. However, it is not immediately clear that such a function ‰ exists; the existence of ‰ will be
shown in the proof.

Recalling the definition (8-1) of the function F, we can see that ‰.z/bk.z/ can be given as the
(nontangential) boundary values of the vector-valued function

C�.z/ek �C1.z/F.z/ek; z 2 D; (8-9)

where e1; e2; : : : ; ed is the standard orthonormal basis in Cd.

Proof of Proposition 8.4. Let us first show the result for functions of the form f D hb 2L2.�IE/, where
b 2 RanB and h is a scalar function. We want to show that

.ˆ�hb/.z/D C1.z/.T
B��
˙

hb/.z/C h.z/ ˙b .z/; z 2 T; (8-10)

where
 ˙b .z/ WD C�.z/B

�b�C1.z/.T
B��
˙

b/.z/:

First note that (2-10) implies that for b 2 RanB

ˆ�b.z/D C�.z/B
�b:

Observe that for (scalar) h 2 C 1 we have uniform-on-z convergence, z 2 T, as r! 1�:Z
T

h.�/� h.z/

1� rz N�
B�.�/b.�/ d�.�/�

Z
T

h.�/� h.z/

1� z N�
B�.�/b.�/ d�.�/: (8-11)

Multiplying both sides by C1.z/we get in the left-hand side C1.z/.T
B��
r hb/.z/�h.z/C1.z/.T

B��
r b/.z/,

and in the right-hand side the part with the integral in the representation (2-10).
Recall that the model space K�� is a subspace of a weighted space L2.W;D� ˚ D/. Uniform

convergence in (8-11) implies the convergence in L2.D�˚D/, and by Lemma 3.4 the multiplications by
C� and C1 are bounded operators from L2.D/ to L2.W ID�˚D/. Thus (because h is bounded)

hC�B
�bCC1T

B��
r hb� hC1T

B��
r b!ˆ�hb

as r! 1� in the norm of L2.W ID�˚D/. By Proposition 7.3, C1T
B��
r ! C1T

B��
˙

in weak operator
topology as r! 1�, so

ˆ�hb D C1T
B��
˙

hbC hC�B
�b� hC1T

B��
˙

b; (8-12)

which immediately implies (8-10). Thus, (8-10) is proved for h 2 C 1.T/.
To get (8-12), and so (8-10) for general h such that hb 2L2.�IE/ (recall that b 2 RanB), we use the

standard approximation argument: the operators ˆ�; C1T
B��
˙

WH! L2.W ID�˚D/ are bounded, and
therefore for a fixed b 2 RanB the operators hb 7! h ˙

b
(which are defined initially on a submanifold

of H consisting of functions of the form hb, h 2 C 1.T/) are bounded (as a difference of two bounded
operators). Approximating in L2.�IE/ the function hb by functions hnb, hn 2C 1.T/ we get (8-12) and
(8-10) for general h.
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Let us now prove the existence of ‰. Consider the (bounded) linear operator ˆ��C1T B
��. We know

that for f D hb 2 L2.�IE/ with b 2 RanB and scalar h

.ˆ��C1T
B��
˙

/hb D h ˙b ;

so on functions f D hb the operators ˆ��C1T
B��
˙

intertwine the multiplication operators M� and Mz .
Since linear combinations of functions hkbk are dense in H, we conclude that the operatorsˆ��C1T

B��
˙

intertwine M� and Mz on all H, and so these operators are the multiplications by some matrix func-
tions ‰˙.

Using (8-12) with hD 1 we can see that

‰˙b Dˆ
�b�C1T

B��
˙

b D C�B
�b�C1T

B��
˙

b;

so ‰˙ are defined exactly as stated in the proposition. �

8B. Some calculations. Let us start with writing more-detailed formulas for the matrix functions C�
and C1 from Proposition 8.4.

Lemma 8.5. We have

C�.z/D

�
I C ��.z/�

�

��.z/�
�

�
D�1�� ; C1.z/D

�
I

0

�
D�1�� .I ��/C

�
��.z/

��.z/

�
D�1� .��� I/:

Proof. The formula for C�.z/ is just (3-21) and the identity ��.0/D��. Similarly, equation (3-22) gives
us

C.z/D

�
z�1.��.z/C�/

z�1��.z/

�
D�1� :

Substituting these expressions into C1.z/D C�.z/� zC.z/ and applying the commutation relations from
Lemma 5.4 we see

C1.z/D

�
D�1�� C ���

�D�1�� � ��D
�1
� ��D

�1
�

���
�D�1�� ���D

�1
�

�
D

�
D�1�� C ��D

�1
� ��� ��D

�1
� �D

�1
���

��D
�1
� �����D

�1
�

�
D

�
D�1�� .I ��/C ��D

�1
� .��� I/

��D
�1
� .��� I/

�
D

�
I

0

�
D�1�� .I ��/C

�
��
��

�
D�1� .��� I/;

and the second statement in the lemma is verified. �

Recall that F.z/, z 2 D, is the matrix-valued Cauchy transform of the measure B�B�, see (8-1), and
that for z 2 T the symbol F.z/ denotes the nontangential boundary values of F. We need the following
simple relations between F and �0.
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Lemma 8.6. For all z 2 D and a.e. on T

F.z/D .I � �0.z//
�1
I

note that for all z 2 D the matrix �0.z/ is a strict contraction, so I � �0.z/ is invertible.

Proof. Recall that the function F1 was defined by F1.z/D C1ŒB�B��.z/. Since F.z/D I CF1.z/, we
get from (4-5) that

�0.z/D F1.z/.I CF1.z//
�1
D .F.z/� I/F.z/�1:

Solving for F we get the conclusion of the lemma. �

8C. Proof of Theorem 8.1. Let us first prove the second identity in (8-3). Using the identity F D
.I � �0/

�1 we compute

��C .I ���/F D .��.I � �0/C I ��
�/F D .I ����0/F;

which is exactly what we need.
We now prove that‰ from Proposition 8.4 is given by‰D

� 0
‰2

�
, with‰2 defined above in Theorem 8.1.

Since R.z/bk.z/D ek , it is sufficient to show that ‰ D
� 0
‰2

�
and that

‰2.z/bk.z/D��D
�1
� .��C .I ���/F.z//ek; k D 1; 2; : : : ; d: (8-13)

Using the formulas for C� and C1 provided in Lemma 8.5 we get from (8-9)

‰.z/bk.z/D C�.z/ek �C1.z/F.z/ek D

�
.I C ���

�/D�1�� � ŒD
�1
�� .I ��/C ��D

�1
� .��� I/�F

���
�D�1�� ���D

�1
� .��� I/F

�
ek :

Note that it is clear from the representation (8-7) that the top entry of ‰ should disappear, i.e., that

.I C ���
�/D�1�� D ŒD

�1
�� .I ��/C ��D

�1
� .��� I/�F: (8-14)

Indeed, by the definition of K� in the Sz.-Nagy–Foias, transcription the top entry of ˆ�f belongs to
H 2.D�/. One can see from Lemma 8.5, for example, that the top entry of C1 belongs to the matrix-
valued H1, so the top entry of C1T

B��
C

f is also in H 2.D�/. Therefore the top entry of ‰f must be in
H 2.D�/ for all f . But that is impossible, because f can be any function in L2.�IE/.

For a reader that is not comfortable with such “soft” reasoning, we present a “hard” computational
proof of (8-14). This computation also helps to assure the reader that the previous computations were
correct.

To do the computation, consider the term in the square brackets in the right-hand side of (8-14). Using
the commutation relations from Lemma 5.4 in the second equality, we get

D�1�� .I ��/C ��D
�1
� .��� I/DD�1�� C �D

�1
� ��� �D�1� �D

�1
���

DD�1�� C ��
�D�1�� � �D

�1
� ��D

�1
�

D .I C ���
�/D�1�� fI �D��.I C ���

�/�1.�� C�/D
�1
� g

D .I C ���
�/D�1�� fI � �0gI

the last equality holds by Theorem 5.2.
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By Lemma 8.6 we have I � �0 D F
�1, so we have for the term in the square brackets

ŒD�1�� .I ��/C ��D
�1
� .��� I/�D .I C ���

�/D�1��F
�1;

which proves (8-14).
To deal with the bottom entry of ‰ we use the commutation relations from Lemma 5.4,

���
�D�1�� ���D

�1
� .��� I/F D��D

�1
� �����D

�1
� ��F C��D

�1
� F

D��D
�1
� .��C .I ���/F /;

which gives the desired formula (8-13) for ‰2.
Finally, let us deal with the second term in the right-hand side of (8-2). We know from Proposition 8.4

that the term in front of T B
��
C

f is given by C1. From Lemma 8.5 we get

C1 D

�
D�1�� .I ��/C ��D

�1
� .��� I/

��D
�1
� .��� I/

�
:

But the top entry of C1 here is the expression in brackets in the right-hand side of (8-14), so it is equal to
.I C ���

�/D�1��F
�1. Therefore

C1 D

�
.I C ���

�/D�1��F
�1

��D
�1
� .��� I/

�
;

which is exactly what we have in (8-2). �

8D. Representation of ˆ� using matrix-valued measures. The above Theorem 8.1 is more transparent
if we represent the direct integral H as the weighted L2 space with a matrix-valued measure.

Namely, consider the weighted space L2.B�B�/,

kf k2
L2.B�B�/

D

Z
T

�
B.�/�B.�/f .�/; f .�/

�
Cd

d�.�/D
Z

T

kB.�/f .�/k2
Cd

d�.�/

(of course one needs to take the quotient space over the set of functions with norm 0).
Then for all scalar functions 'k we have dX

kD1

'kek


L2.B�B�/

D

 dX
kD1

'kbk


L2
I

recall that e1; e2; : : : ; ed is the standard basis in Cd and bk.�/D B.�/ek . Then the map U ,

U
� dX
kD1

'kek

�
D

dX
kD1

'kbk; or, equivalently, Uf D Bf;

defines a unitary operator from L2.B�B�/ to H.
The inverse operator U� is given by U�f .�/DR.�/f .�/, where, recall, R is a measurable pointwise

right inverse of B , B.�/R.�/D IE.�/ �-a.e.
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We define ẑ WD U�ˆ, so ẑ� Dˆ�U , and denote by T B
�B�
C

f the nontangential boundary values of
the Cauchy integral CŒB�Bf��.z/, z 2D. Substituting f D Bg into (8-2) we can restate Theorem 8.1
as follows.

Theorem 8.7. The adjoint Clark operator ẑ� W L2.B�B�/! K� in the Sz.-Nagy–Foias, transcription is
given by

ẑ�g D

�
0
z‰2

�
gC

�
.I C ���

�/D�1��F
�1

��D
�1
� .��� I/

�
T
B�B�
C

g; g 2 L2.B�B�/; (8-15)

where the matrix-valued function z‰2.z/ is defined as

z‰2.z/D��D
�1
� .��C .I ���/F.z//: (8-16)

8E. A generalization of the normalized Cauchy transform. Consider the case when the unitary operator
U has purely singular spectrum. By virtue of Corollary 5.9, the second component of the Sz.-Nagy–Foias,
model space collapses, i.e., K�� DH

2.Cd /	 ��H
2.Cd / for all strict contractions �.

The representation formula (8-2) then reduces to a generalization of the well-studied normalized
Cauchy transform.

Corollary 8.8. If � D �0 is inner, then

.ˆ�f /.z/D .I � �.z//.T
B��
C

f /.z/D .F.z//�1.T
B��
C

f /.z/

for z 2 D, f 2 L2.�IE/.

The first equation was also obtained in [Kapustin and Poltoratski 2006, Theorem 1].
Here we used � D 0 only for simplicity. With the linear fractional relation in Theorem 5.2, it is not

hard to write the result in terms of �� for any strict contraction �.

Proof. Theorem 8.1 for inner � and � D 0 immediately reduces to the first statement.
The equality of the second expression follows immediately from Lemma 8.6. �

9. The Clark operator

Let f 2H� L2.�IE/ and let

ˆ�f D hD

�
h1
h2

�
2 K� : (9-1)

From the representation (8-15) we get, subtracting from the second component the first component
multiplied by an appropriate matrix-valued function, that

‰2f D h2���D
�1
� .��� I/FD��.I C ���

�/�1h1:

Right-multiplying this identity by‰�2 , and using Proposition 8.3 and formulas for‰2, z‰2 from Theorem 8.1,
we get an expression for the density of the absolutely continuous part of �ac. Namely, we find that
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a.e. (with respect to Lebesgue measure on T)

wf DR�F �.I���0 �/D
�1
� ��h2R

�F �.I���0 �/D
�1
� �2�D

�1
� .���I/FD��.IC���

�/�1h1

DR�F �.I���0 �/D
�1
� ��h2�R

�F ��20.I��
��0/

�1.���I/FD��.IC���
�/�1h1: (9-2)

In the case � D 0 the above equation simplifies:

wf DR�F ��0h2CR
�F ��20Fh1

DR�F�0h2CwBh1I (9-3)

in the second equality we used (8-4).
The above formulas (9-2), (9-3) determine the absolutely continuous part of f .
The singular part of f was in essence computed in [Kapustin and Poltoratski 2006]. Formally it was

computed there only for inner functions � , but using the ideas and results from that paper it is easy to get
the general case from our Theorem 8.1.

For the convenience of the reader, we give a self-contained presentation.

Lemma 9.1. Let f 2L2.T; �ICd /. Then�s-a.e. the nontangential boundary values of CŒf��.z/=CŒ��.z/,
z 2 D, exist and equal f .�/, � 2 T.

This lemma was proved in [Kapustin and Poltoratski 2006] even for the more general case of f 2
L2.�IE/, where E is a separable Hilbert space. Note that our case E DCd follows trivially by applying
the corresponding scalar result (E D C) proved in [Poltoratskiı̆ 1993] to entries of the vector f .

Applying the above lemma to the representation giving by the first coordinate of (8-2) from Theorem 8.1,
we get that for f and h related by (9-1) we have

B�f D
1

CŒ��
FD��.I C ���

�/�1h1 �s-a.e.

Left-multiplying this identity by R� we get

ˆhD f D
1

CŒ��
R�FD��.I C ���

�/�1h1 �s-a.e. (9-4)

Summarizing, we get the following theorem, describing the direct Clark operator ˆ.

Theorem 9.2. If ˆ�f D h as in (9-1), so f Dˆh, then the absolutely continuous part of f is given by
(9-2) and the singular part of f is given by (9-4).
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ON THE MAXIMAL RANK PROBLEM FOR
THE COMPLEX HOMOGENEOUS MONGE–AMPÈRE EQUATION

JULIUS ROSS AND DAVID WITT NYSTRÖM

We give examples of regular boundary data for the Dirichlet problem for the complex homogeneous
Monge–Ampère equation over the unit disc, whose solution is completely degenerate on a nonempty open
set and thus fails to have maximal rank.

1. Introduction

Let (X, ω) be a compact Kähler manifold of dimension n and B be a Riemann surface with boundary ∂B.
Suppose (φτ )τ∈∂B is a smooth family of Kähler potentials on X ; so each φτ is a smooth function on X ,
varying smoothly in τ , that satisfies

ω+ ddcφτ > 0.

Then let 8 be the solution to the Dirichlet problem for the complex homogeneous Monge–Ampère
equation (HMAE) with this boundary data, so 8 is a function on X × B that satisfies

8( · , τ )= φτ ( · ) for τ ∈ ∂B,

π∗Xω+ ddc8≥ 0,

(π∗Xω+ ddc8)n+1
= 0,

(1)

where πX : X × B→ X is the projection. From standard pluripotential theory we know there exists a
unique weak solution 8 to this equation. The maximal rank problem in this setting asks whether the
current

π∗Xω+ ddc8

has maximal rank in the fibre directions, that is, whether the current ω+ ddc8( · , τ ) on X is strictly
positive for each τ ∈ B. Said another way, this asks if the rank of π∗Xω+ ddc8 is precisely n at every
point in X × B, which is the maximum possible since (π∗Xω+ ddc8)n+1

= 0. Similarly one has the
constant-rank problem in which one asks if the rank of π∗Xω+ ddc8 is the same at every point. The
purpose of this note is to answer this question negatively, giving an explicit example in which the rank
fails to be maximal.
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Theorem 1.1. Let B = D ⊂ C be the closed unit disc and (X, ω) = (P1, ωFS), where ωFS denotes the
Fubini–Study form. Then there exists a smooth family of Kähler potentials (φτ )τ∈∂D on P1 such that the
solution 8 to the HMAE (1) is completely degenerate on some nonempty open subset S ⊂ P1

×D, i.e.,

π∗
P1ωFS+ ddc8|S = 0.

A more precise version of this statement is provided in Theorem 2.1. The motivation and ideas build on
previous work of the authors [Ross and Witt Nyström 2015a; 2015b; 2015c] in which we understand the
solution to the HMAE of a certain kind through a free boundary problem in the plane called the Hele-Shaw
flow. But rather than expecting the reader to be an expert in this topic we have chosen to give a direct
proof, which can be found in Section 2, that is both self-contained and rather simple. Then in Section 3
we explain the motivation behind our construction, as well as give a second (but essentially equivalent)
proof that relies on more machinery. We then end with some questions and possible extensions.

Of course in the above theorem, π∗
P1ωFS+ ddc8 is not identically zero, and so does not have constant

rank. In fact we can say more, and it is possible to arrange so that there is a nonempty open set in P1
×D

on which π∗
P1ωFS+ddc8 is regular (i.e., smooth and of maximal rank). It is worth commenting from the

outset that we do not expect the solution we have here to be everywhere smooth, but it should be possible
to describe precisely where it is regular and where it is degenerate. All of this will be discussed in more
detail in Section 3.

1A. Comparison with other work. It is known that convex solutions to elliptic partial differential equa-
tions have a constant-rank property. Early works of this include [Caffarelli and Friedman 1985; Singer,
Wong, Yau, and Yau 1985]. These have since been built upon by many others, and it is now known that
the constant-rank property holds for a wide class of elliptic equations; see, for instance, [Korevaar and
Lewis 1987; Bian and Guan 2009; 2010; Caffarelli, Guan and Ma 2007; Székelyhidi and Weinkove 2016].
In this paper we are interested in the complex degenerate situation, about which much less has been
written. The most famous result along these lines, and in the positive direction, is that of Lempert [1981]
who proved that on a convex domain in Cn the solution to the complex HMAE with prescribed singularity
at an interior point (the pluricomplex Green function) is smooth and of maximal rank. The maximal rank
problem for other partial differential equations in the complex case has also been taken up by Guan, Li
and Zhang [2009] and by Li [2009].

The closest previous work to that of this paper is probably that of Guan and Phong [2012], who studied
the problem of finding uniform lower bounds for the eigenvalues of the solution to the (nondegenerate)
Monge–Ampère equation in the limit as the equation becomes degenerate. Moreover, they asked whether
solutions to the complex HMAE have maximal rank [Guan and Phong 2012, discussion after Theorem 4].
The idea of maximal rank for the complex HMAE also appears in the ideas of Chen and Tian [2008]
through the concept of an almost-regular solution to the HMAE, which fails to have maximal rank only
on a set which is small in a precise sense. The kinds of envelopes that we use in our proof also can be
defined more generally, and even in higher dimensions, which is the topic of previous work of the authors
[Ross and Witt Nyström 2017b], in which we prove a constant-rank theorem, Theorem 6.2 of that paper,
that we call “optimal regularity”.
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Questions concerning the regularity of the solution to the Dirichlet problem for the kind of complex
HMAE we consider here go back at least as far as [Semmes 1992; Donaldson 2002], and this HMAE has
been the focus of much interest due to it being the geodesic equation in the space of Kähler metrics. By
[Chen 2000] with complements by Błocki [2012] we know such a solution always has bounded Laplacian
(so in particular is C1,α for any α < 1). In fact in our case, since we are working on P1, the results of
[Błocki 2012] imply that 8 is C1,1. (We observe that we do not actually need to know this regularity for
the direct proof of our main theorem). Donaldson [2002] gives examples of boundary data for which the
solution is not regular, but the nature of the irregularity there is left unknown (for instance Donaldson’s
example may have maximal rank but fail to be everywhere smooth).

2. Main theorem

2A. Notation. We let Dr be the open disc of radius r in the complex plane about the origin, D = D1

and D× =D \ {0}. Throughout we consider the standard cover of P1 by two charts equal to the complex
plane with coordinates z and w = 1/z. We shall denote these two charts by Cz and Cw respectively. We
use the convention dc

=
1

2π (∂̄ − ∂) so ddc log |z|2 = δ0, and normalise the Fubini–Study form ωFS so∫
P1 ωFS = 1. Thus ωFS = ddc log(1+ |z|2) locally on Cz .

2B. Statement of the main theorem. The following is a precise version of our main theorem. By an arc
in C we mean the image γ of a smooth map [0, 1]→C that does not intersect itself. From now on B =D

is the closed unit disc and (X, ω)= (P1, ωFS).

Theorem 2.1. Suppose that φ ∈ C∞(P1) satisfies:

(1) ωFS+ ddcφ > 0.

(2) On Cw ⊂ P1 it holds that
φ(w)≥− ln(1+ |w|2)

with equality precisely on an arc in Cw.

Then setting
φτ (z) := φ(τ z) for τ ∈ ∂D,

the solution 8 to the HMAE (1) does not have maximal rank. In fact there is a nonempty open subset
S ⊂ P1

×D such that
π∗

P1ωFS+ ddc8|S = 0.

2C. Envelopes. For the proof we need some background concerning envelopes of subharmonic functions.
Fix a potential φ ∈ C∞(P1) so ωFS+ ddcφ > 0. For a topological space X let

USC(X)= {ψ : X→ R∪ {−∞} such that ψ is upper semicontinuous}.

Definition 2.2. For t ∈ (0, 1] set

ψt := sup{ψ ∈ USC(P1) : ψ ≤ φ and ωFS+ ddcψ ≥ 0 and νz=0(ψ)≥ t}.
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Here νz=0 denotes the Lelong number at the point z = 0, so νz=0(ψ)≥ t means ψ(z)≤ t ln |z|2+O(1)
near z = 0. As the upper-semicontinuous regularisation of ψt is itself a candidate for the envelope
defining ψt , we see that ψt is itself upper-semicontinuous.

Definition 2.3. For t ∈ (0, 1] set

�t :=�t(φ) := {z ∈ P1
: ψt(z) < φ(z)}. (2)

Clearly if t ≤ t ′ then ψt ′ ≤ ψt and so �t ⊂�t ′ . Now, unless one assumes some additional symmetry
of φ, it is generally quite hard to describe the sets �t . However, as the next lemma shows, it is possible,
under a suitable hypothesis, to describe the largest one �1 by looking at the level set on which φ takes its
minimum value.

Lemma 2.4. Let φ ∈ C∞(P1) be such that ωFS + ddcφ > 0 and φ(w) ≥ − ln(1+ |w|2) on Cw with
equality precisely on some nonempty subset γ ⊂ Cw containing w = 0. Then

ψ1(z)= ln
(
|z|2

1+ |z|2

)
and

�1(φ)= P1
\ γ.

Proof. Observe first that the only upper-semicontinuous ψ : P1
→ R∪ {−∞} with ωFS+ ddcψ ≥ 0 and

νz=0(ψ)≥ 1 is, up to an additive constant, equal to

ζ(z) := ln
(
|z|2

1+ |z|2

)
on Cz.

To see this observe first that we certainly cannot have νz=0(ψ)>1 since we have normalised so
∫

P1 ωFS=1.
Thus we may assume νz=0ψ = 1. Then observe that ζ is ωFS-harmonic on Cz \{0}, and that the difference
ψ− ζ is bounded near 0. Thus ψ− ζ extends to a bounded subharmonic function on all of Cz , and hence
is constant by the Liouville property. Thus the envelope ψ1 from Definition 2.2 must be

ψ1 = ζ +C,

where C is the largest constant one can choose so that ψ1 ≤ φ. Now on Cw we have

ψ1(w)=− ln(1+ |w|2)+C

and so as γ is nontrivial our hypothesis forces C = 0. Thus

�1 = {− ln(1+ |w|2) < φ(w)} = P1
\ γ. �

2D. Weak solutions to the HMAE. We now discuss the weak solution to two versions of the Dirichlet
problem for the complex HMAE, first over the disc and second over the punctured disc; this follows the
discussion in [Ross and Witt Nyström 2015b]. Again we let φ ∈ C∞(P1) be such that ωFS+ ddcφ > 0.
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Definition 2.5. Let

8 := sup
{
ψ ∈ USC(P1

×D) : π∗
P1ωFS+ ddcψ ≥ 0 and ψ(z, τ )≤ φ(τ z) for (z, τ ) ∈ P1

× ∂D
}
.

and

8̃ := sup
{
ψ ∈ USC(P1

×D) : π∗
P1ωFS+ ddcψ ≥ 0
and ψ(z, τ )≤ φ(z) for (z, τ ) ∈ P1

× ∂D and ν(z=0,τ=0)(ψ)≥ 1
}
. (3)

The function8 is the weak solution to the complex HMAE with boundary data φ(τ z) for τ ∈ ∂D, that is,
the solution to (1). Similarly 8̃ is the weak solution to the Dirichlet problem with boundary data φ(z), but
with the additional requirement of having a prescribed singularity at the point p := (0, 0)⊂Cz×D⊂P1

×D.
That is, 8̃ is upper-semicontinuous, π∗

P1ωFS+ ddc8̃≥ 0 and (π∗
P1ωFS+ ddc8̃)2 = 0 away from p and

8̃(z, τ )= φ(z) for τ ∈ ∂D. Moreover it is not hard to show that 8̃ is locally bounded away from p and
νp8̃= 1. These two quantities carry the same information, as given by:

Proposition 2.6. We have that

8(z, τ )+ ln |τ |2+ ln(1+ |z|2)= 8̃(τ z, τ )+ ln(1+ |τ z|2) for (z, τ ) ∈ P1
×D×.

Proof. It is easily seen from the definition that8(z, τ )+ ln |τ |2+ ln(1+|z|2)− ln(1+|τ z|2) is a candidate
for the envelope defining 8̃(τ z, τ ), giving one inequality and the other inequality is proved similarly. �

2E. Proof of Theorem 2.1. Without loss of generality we assume the arc γ goes through the point w= 0.
By Lemma 2.4

ψ1(z)= ln
(
|z|2

1+ |z|2

)
and

�1 = P1
\ γ.

Looking at the other coordinate patch Cz , we have that γ is a curve passing through infinity, and so Cz \γ

is an open, simply connected proper subset of Cz . Hence by the Riemann mapping theorem there is a
biholomorphism

f : D→ Cz \ γ with f (0)= 0.

For τ ∈ D× set
Aτ := f (D|τ |)⊂ Cz ⊂ P1.

Clearly each Aτ is a proper subset of Cz containing the origin, whose complement has nonempty interior.

Proposition 2.7. We have

8̃(z, τ )= ψ1(z) for all τ ∈ D× and z ∈ P1
\ Aτ .

Proof. By abuse of notation we write ψ1 also for the pullback of ψ1 to P1
×D. Then

8̃(z, τ )≥ ψ1(z) for (z, τ ) ∈ P1
×D (4)

since ψ1 is a candidate for the envelope (3) defining 8̃.
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We next claim that

8̃( f (τ ), τ )= ψ1( f (τ )) for all τ ∈ D. (5)

To see this, observe that τ 7→ 8̃( f (τ ), τ ) is f ∗ωFS-subharmonic and has Lelong number 1 at τ = 0.
On the other hand ψ1( f (τ )) is f ∗ωFS-harmonic except at τ = 0 where it has Lelong number 1. But
8̃( f (τ ), τ ) tends to ψ1( f (τ )) as |τ | tends to 1, and hence from the maximum principle along with (4),
we get (5).

Now fix some τ ∈ D× and set

φτ (z) := 8̃(z, τ ).

Then the above says that φτ = ψ1 on ∂Aτ . On the other hand by (4) we have φτ ≥ ψ1 everywhere.
Moreover φτ is ωFS-subharmonic on Ac

τ , whereas ψ1 is bounded and ωFS-harmonic on Ac
τ . Thus by the

maximum principle we deduce φτ = ψ1 on Ac
τ as required. �

Proof of Theorem 2.1. Set

S := {(z, τ ) ∈ P1
×D× : τ z ∈ (Ac

τ )
◦
},

which is nonempty and open in P1
×D×. Then by Proposition 2.6 and then Proposition 2.7 if (z, τ ) ∈ S

we have

8(z, τ )= 8̃(τ z, τ )+ ln
(

1+ |τ z|2

|τ |2(1+ |z|2)

)
= ψ1(τ z)+ ln

(
1+ |τ z|2

|τ |2(1+ |z|2)

)
.

Thus on S we have

πP1ωFS+ ddc8= πP1ωFS+ ddcψ1(τ z)= 0

as ψ1 is ωFS-harmonic away from z = 0. �

2F. A specific example. We now construct a specific potential φ that satisfies the hypotheses of Theorem 2.1.
Fix γ to be the interval [−1, 1] ⊂ R⊂ Cw. Our goal is to find a φ ∈ C∞(P1) such that ωFS+ ddcφ > 0
and φ ≥− ln(1+ |w|2) with equality precisely on γ .

To do so, let α : R→ R be a nonnegative smooth nondecreasing convex function with α(t) = 0 for
t ≤ 1 and α(t) > 0 for t > 1. Let

u(w) := α(|w|2)+ Im(w)2.

Thus u is a smooth strictly subharmonic function on Cw that vanishes precisely on γ . Then εu−ln(1+|w|2)
for some small constant ε > 0 is essentially the function that we want; we simply need to adjust it to have
the correct behaviour far away from γ .

To do so we shall use a regularised version of the maximum function, which can be explicitly
given as follows: Let | · |reg be a smooth convex function on R so that |t |reg = |t | for |t | ≥ 1. Set
maxreg(a, b) := 1

2(|a− b|reg+ a+ b) and for δ > 0 put

max
δ
(a, b) := δmax

reg
(δ−1a, δ−1b). (6)
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Then maxδ( · , · ) is smooth, and satisfies

max
δ
(a, b)=

{
a if a > b+ δ,
b if b > a+ δ.

Returning to the construction of φ, fix a sufficiently large constant C and a sufficiently small positive
constant ε so that

εu ≥ ln(1+ |w|2)−C + 1 on D2,

εu ≤ ln(1+ |w|2)−C − 1 on D4 \D3.

Then for 0< δ� 1 set
v :=max

δ
(εu, ln(1+ |w|2)−C).

So v is smooth, nonnegative, strictly subharmonic, equal to ln(1+ |w|2)−C on D4 \D3 and vanishes
precisely on γ . We then put

φ := v− ln(1+ |w|2)

and extend φ to take the constant value C in Cw \D4. So φ extends to a smooth function over P1 with
the desired properties.

3. Discussion

3A. Context. Fix a φ ∈ C∞(P1) such that ωFS+ddcφ > 0. Then associated to φ we have two construc-
tions:

(1) The solution 8̃ to the complex HMAE on P1
×D with boundary data given by φτ = φ for all τ ∈ ∂D

and the requirement of having Lelong number 1 at the point (z, τ )= (0, 0) ∈ Cz ×D⊂ P1
×D.

(2) The envelopes ψt for t ∈ (0, 1] and the associated sets �t(φ)= {ψt < φ}.

In previous work we showed that these sets of data are intimately connected. First, 8̃ and ψt are Legendre
dual to each other [Ross and Witt Nyström 2015b, Theorem 2.7] in that

ψt(z)= inf
|τ |>0
{8̃(z, τ )− (1− t) ln |τ |2} (7)

and
8̃(z, τ )= sup

t
{ψt(z)+ (1− t) ln |τ |2}. (8)

Second, the collection of sets �t(φ) that are biholomorphic to a disc describes the harmonic discs of 8̃.
That is, if t is such that�t(φ) is a proper simply connected subset of Cz and f :D→�t is a Riemann map
with f (0)= 0 then the restriction of 8̃ to the graph {( f (τ ), τ ) ∈ P1

×D} is ωFS-harmonic. Furthermore
it is shown in [Ross and Witt Nyström 2015b, Theorem 3.1] these are (essentially) the only harmonic
discs that occur.

We can say more. For τ ∈ D× set
φτ (z) := 8̃(z, τ ).
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If 8̃ is regular then each φτ will be a smooth Kähler potential, but in general this will not be the case.
Nevertheless, by [Błocki 2012] we know φτ is C1,1 and since π∗

P1ωFS+ddc8̃≥ 0, we know ωFS+ddcφτ

is semipositive. We can then define the associated sets �t(φτ ) in exactly the same way as before.

Proposition 3.1. Suppose t is such that�t(φ)⊂Cz is proper and simply connected and let ft :D→�t(φ)

be a Riemann map with f (0)= 0. Then for each τ ∈ D× we have

ft(D|τ |)=�t(φτ ).

We shall give a proof of this fact below, but assuming it for now we can give an alternative proof that,
under the hypotheses of Theorem 2.1, for each τ ∈ D× the current ωFS+ ddc8̃( · , τ ) is degenerate on
some nonempty open subset of P1. First Lemma 2.4 gives

�1(φ)= P1
\ γ,

which is a simply connected proper subset of Cz . We then take our Riemann map f : D→�1(φ) and
consider the image

Aτ := f (D|τ |)=�1(φτ ) for τ ∈ D×.

As observed before, Aτ is a proper subset of Cz whose complement has nonempty interior.
On the other hand, it is a general fact that for each t the set �t(φτ ) has measure t with respect to

the current ωFS+ ddcφτ . (If φτ is smooth and ωFS+ ddcφτ is strictly positive, this is a standard piece
of potential theory and is discussed in [Ross and Witt Nyström 2015b, Proposition 1.1]; when φτ is
merely C2 and t < 1 then this is proved in [Ross and Witt Nyström 2017a, Theorem 1.2] and the case
t = 1 follows from this by continuity as �1(φτ )=

⋃
t<1�t(φτ ); finally when φτ is merely C1,1 this is

given in [Berman and Demailly 2012, Remark 1.19, Corollary 2.5].)
Therefore ∫

Aτ
(ωFS+ ddcφτ )=

∫
�1(φτ )

(ωFS+ ddcφτ )= 1.

But our normalisation is that
∫

P1(ωFS+ ddcφτ )=
∫

P1 ωFS = 1 as well, and so the current ωFS+ ddcφτ

gives zero measure to the complement of Aτ , which is precisely what we were aiming to prove.

Proof of Proposition 3.1. Fix σ ∈ D× and set r := |σ |. Our aim is to show

ft(Dr )=�t(φσ ).

Consider the S1-action on P1
×D given by eiθ

· (z, τ )= (z, eiθτ), and observe that the boundary data
used to define 8̃ from (3) is S1-invariant, which implies 8̃ is S1-invariant as well. Thus we may as well
assume that σ is real, so φσ = φr .

For a function F on P1
× D and D ⊂ D we write F |D for the restriction of F to P1

× D. Then
8̃|Dr

is the solution to the Dirichlet problem for the HMAE with boundary data (φτ )τ∈∂Dr = φr and the
requirement that 8̃|Dr

has Lelong number 1 at the point (0, 0) ∈ Cz ×Dr ⊂ P1
×Dr .

Letting s := − ln |τ |2, consider the function on P1
×D× given by

H(z, τ ) := ∂

∂s
8̃(z, e−s/2)
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(when |τ | = 1 and thus s = 0, we take the right derivative). As 8̃ is C1,1 on P1
×D×, the function H is

well-defined and Lipschitz. Clearly this is compatible with restriction; i.e.,

H |D×r (z, τ )=
∂

∂s
8̃|Dr

(z, e−s/2).

Now, as discussed above, and proved in [Ross and Witt Nyström 2015b, Theorem 3.1], the graph
{( f (τ ), τ ) : τ ∈ D} of f is a harmonic disc for 8̃. What is also proved is that H takes the constant
value t − 1 along this disc so

H( f (τ ), τ )= t − 1 for τ ∈ D×.

Now H is also S1-invariant and so this in particular implies

H( f (reiθ ), r)= H( f (reiθ ), reiθ )= t − 1 for all θ ∈ [0, 2π ].

In other words, the function H( · , r) takes the value t − 1 on the boundary of f (Dr ). On the other hand,
we prove in [Ross and Witt Nyström 2015b, Proposition 2.9] that the function H( · , r) describes the
set �t(φr ), in that

H(z, r)+ 1= sup{s : z /∈�s(φr )}

(we remark that the proof of that proposition does not require any regularity or strict positivity assumptions
on the potential φσ ). Thus �t(φr ) is the interior component of the curve θ 7→ f (reiθ ) (that is, the
component containing z = 0), which gives �t(φr )= f (Dr ) as desired. �

3B. Extensions and questions. Under the hypotheses of Theorem 2.1 we have shown that the current
ωFS+ ddc8( · , τ ) fails to be strictly positive on any interior fibre (that is, for any τ with 0< |τ |< 1).
Furthermore we have no reason to expect our solution to be smooth everywhere. Thus the following two
questions are natural:

Question 3.2. Does there exist a smooth family of potentials (φτ )τ∈∂B for which the solution to the
complex HMAE (1) is everywhere smooth but not of maximal rank?

Question 3.3. Does there exist a smooth family of potentials (φτ )τ∈∂B for which the solution to the
complex HMAE (1) such that ω+ ddc8( · , τ ) is a Kähler form for some τ with 0< |τ |< 1 but not for
others.

We are not currently able to answer these questions. However, we believe that the degenerate solutions
we describe in this paper are actually regular in the interior of the complement of the degenerate set S
(that is, they are smooth there and of maximal rank). In fact from our previous work in [Ross and Witt
Nyström 2015b] we can understand the set on which our solution is regular in terms of the collection of
sets �t(φ) that are simply connected. Now, our specific potential φ (Section 2F) was constructed to have
curvature equal to ωFS far away from the arc γ = [−1, 1] ⊂Cw ⊂P1, from which one can see that �t(φ)

is a disc for sufficiently small t . This gives an open set of P1
×D for which the solution 8 is regular.

Furthermore, by construction, �1(φ) is simply connected. We think it likely that �t(φ) is actually simply
connected for all t , which would give rather precise information about the set on which our solution is
regular, but it does not seem easy to prove that this is the case.
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We furthermore believe that the fibrewise Laplacian of such a solution is uniformly bounded from
below on the complement of S, and so has a discontinuity on the boundary ∂S where it jumps to zero. A
somewhat bold conjecture would be that any solution to the HMAE is regular away from the set where it
fails to have maximal rank, and is smooth away from the boundary of this set.
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A VISCOSITY APPROACH TO THE DIRICHLET PROBLEM FOR
DEGENERATE COMPLEX HESSIAN-TYPE EQUATIONS
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A viscosity approach is introduced for the Dirichlet problem associated to complex Hessian-type equations
on domains in Cn. The arguments are modeled on the theory of viscosity solutions for real Hessian-type
equations developed by Trudinger (1990). As a consequence we solve the Dirichlet problem for the
Hessian quotient and special Lagrangian equations. We also establish basic regularity results for the
solutions.

1. Introduction 505
2. Preliminaries 508
3. Comparison principles 514
4. Dirichlet problems 518
5. Viscosity vs. pluripotential solutions 522
6. Dirichlet problem for the Lagrangian phase operator 531
Acknowledgements 533
References 533

1. Introduction

Partial differential equations play a pivotal role in modern complex geometric analysis. Their applications
typically involve a geometric problem which can be reduced to the solvability of an associated equation.
This solvability can be deduced by various methods, yet most of the basic approaches exploit a priori
estimates for suitably defined weak solutions. Thus although geometers work in the smooth category, the
associated weak theory plays an important role.

One of the most successful such theories is the pluripotential theory associated to the complex Monge–
Ampère equation developed by Bedford and Taylor [1976; 1982], Kołodziej [1998], Guedj and Zeriahi
[2005] and many others. Roughly speaking, pluripotential theory allows one to define (i∂∂̄u)k as a
measure-valued positive closed differential form (i.e., a closed positive current) for any locally bounded
plurisubharmonic function, which in turn allows one to deal with nonsmooth weak solutions of Monge–
Ampère equations. Unfortunately the pluripotential approach is applicable only for a limited class of
nonlinear operators, such as the m-Hessian equations — see [Dinew and Kołodziej 2014; Lu 2013].

Dinew was supported by the NCN grant 2013/08/A/ST1/00312. Do was funded by the Vietnam National Foundation for Science
and Technology Development (NAFOSTED) under grant number 101.02-2017.306. Tô was supported by the CFM foundation.
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Keywords: nonlinear elliptic PDEs, viscosity solutions, pluripotential theory.
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Some of the most important examples of nonlinear operators for which pluripotential tools do not
seem to apply directly are the complex Hessian quotient operators. These are not only interesting for
themselves but also appear in interesting geometrical problems. One such example is the Donaldson
equation, which we describe below.

Given a compact Kähler manifold (X, ω) equipped with another Kähler form χ , one seeks a Kähler
form χ̃ cohomologous to χ such that

ω∧ χ̃n−1
= cχ̃n, (1)

with the constant c dependent only on the cohomology classes of χ and ω.
Donaldson [1999] introduced this equation in order to study the properness of the Mabuchi functional.

Its parabolic version, known as the J -flow, was introduced independently by Donaldson [1999] and Chen
[2000] and investigated afterwards by Song and Weinkove [Weinkove 2004; 2006; Song and Weinkove
2008]. It is known that (1) is not always solvable. It was shown in [Song and Weinkove 2008] that a
necessary and sufficient condition for the solvability of (1) is that there exists a metric χ ′ in [χ ], the
Kähler class of χ , satisfying

(ncχ ′− (n− 1)ω)∧χ ′n−2 > 0 (2)

in the sense of (n−1, n−1)-forms. A conjecture of Lejmi and Székelyhidi [2015] predicts that the solvabil-
ity is linked to positivity of certain integrals which can be viewed as geometric stability conditions. It was
also proved that, in general, these positivity conditions are equivalent to the existence of C-subsolutions
introduced by Székelyhidi [2018]. They are also equivalent to the existence of parabolic C-subsolutions
for the corresponding flows; see [Phong and Tô 2017]. It would be helpful to study the boundary case
when we only have nonnegativity conditions; see [Fang et al. 2014] for Donaldson equation on surfaces.
It is expected that in this boundary case the equation admits suitably defined singular solutions which are
smooth except on some analytic set. This has been confirmed in complex dimension two in [Fang et al.
2014] but the proof cannot be generalized to higher dimensions. In fact a major part of the problem is to
develop the associated theory of weak solutions for the given Hessian quotient equation. An essential
problem in applying some version of pluripotential theory for this equation is that one has to define the
quotient of two measure-valued operators.

In order to circumvent this difficulty one can look for a possibly different theory of weak solutions.
One such approach, known as the viscosity method, was invented long ago in the real setting [Crandall
et al. 1992], but was only recently introduced for complex Monge–Ampère equations by Eyssidieux,
Guedj and Zeriahi [Eyssidieux et al. 2011], Wang [2012] and Harvey and Lawson [2009].

In the current note we initiate the viscosity theory for general complex nonlinear elliptic PDEs. As the
manifold case is much harder we focus only on the local theory; i.e., we deal with functions defined over
domains in Cn. Precisely, let �⊂ Cn be a bounded domain. We consider the equation

F[u] := f (λ(Hu))= ψ(x, u), (3)

where λ(Hu) denotes the vector of the eigenvalues of the complex Hessian Hu of the real-valued
function u and ψ :�×R→R+ is a given nonnegative function which is weakly increasing in the second
variable. We wish to point out that nonlinear PDEs appear also in geometric problems which are defined
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over domains in Cn — see for example [Collins et al. 2017], where a Dirichlet problem for the special
Lagrangian-type equation is studied. These are the equations defined for a given function h by

F[u] :=
n∑

i=1

arctan λi = h(z),

with λi denoting the eigenvalues of the Hessian of u at z. In the real case, the special Lagrangian equations
were introduced by Harvey and Lawson [1982] in the study of calibrated geometries. More precisely the
graphs of gradients of the solutions correspond to calibrated minimal submanifolds. We show in Section 6
that our method can be applied to solve the Dirichlet problem for the special degenerate Lagrangian-type
equation.

In our investigations we heavily rely on the corresponding real theory developed by Trudinger [1990].
It is worth pointing out that the real theory of Hessian and Hessian quotient equations is much better
understood thanks to the fundamental results of [Trudinger 1995] and [Chou and Wang 2001]. Some of
our results can be seen as complex analogues of the real results that can be found there. In particular we
have focused on various comparison principles in Section 3. Our first major result can be summarized as
follows (we refer to the next section for the definitions of the objects involved):

Theorem 1 (comparison principle). Let 0 be the ellipticity cone associated to (3). Assume that the
operator F[u] = f (λ(Hu)) in (3) satisfies

f ∈ C0(0), f > 0 on 0, f = 0 on ∂0,

f (λ+µ)≥ f (λ) for all λ ∈ 0, µ ∈ 0n.

Assume moreover that either
n∑

i=1

∂ f
∂λi

λi =

n∑
i=1

fiλi ≥ ν( f ) in 0 and inf
z∈�

ψ(z, · ) > 0

for some positive increasing function ν, or

f is concave and homogeneous.

Then any bounded subsolution u and supersolution v in � to (3) satisfy

sup
�

(u− v)≤max
∂�
{(u− v)∗, 0}.

We use later on this seemingly technical result to study existence, uniqueness and regularity of the
associated Dirichlet problems. One of our main results is the solvability and sharp regularity for viscosity
solutions to the Dirichlet problem for a very general class of operators including Hessian quotient-type
equations.

Theorem 2. The Dirichlet problem{
F[w] = f (λ(Hw))= ψ(z, w(z)),
w = ϕ on ∂�

admits a continuous solution for any bounded 0-pseudoconvex domain �. Under natural growth assump-
tions on ψ , the solution is Hölder continuous for any Hölder continuous boundary data ϕ.
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Another interesting topic is the comparison between viscosity and pluripotential theory whenever the
latter can be reasonably defined. A guiding principle for us is the basic observation made by Eyssidieux,
Guedj and Zeriahi [Eyssidieux et al. 2011] that plurisubharmonic functions correspond to viscosity
subsolutions to the complex Monge–Ampère equation. We prove several analogous results for general
complex nonlinear operators. It has to be stressed that the notion of a supersolution, which does not
appear in pluripotential theory, is a very subtle one for nonlinear elliptic PDEs, and several alternative
definitions are possible. We in particular compare these and introduce a notion of supersolution that
unifies the previously known approaches.

A large part of the note is devoted to complex Hessian quotient equations in domains in Cn. One of
our goals in this case was to initiate the construction of the undeveloped pluripotential theory associated
to such equations. We rely on connections with the corresponding viscosity theory. Our findings yield in
particular that the natural domain of definition of these operators is strictly smaller than what standard
pluripotential theory would predict. We prove the following theorem:

Theorem 3. Assume that 0<ψ ∈ C0(�) and u ∈ PSH(�)∩ L∞loc(�) is a viscosity subsolution of

(ddcu)n

(ddcu)n−k ∧ωk = ψ(z) in �.

Then

(ddcu)n ≥ ψ(ddcu)n−k
∧ωk

and

(ddcu)k ≥
(n

k

)−1
ψωk

in the pluripotential sense.

We guess that this observation, rather obvious in the case of smooth functions, will play an important
role in the resolution of the issue caused by the division of measures.

The note is organized as follows: in the next section we collect the basic notions from linear algebra,
viscosity and pluripotential theory. Then we investigate the various notions of supersolutions in [Eyssidieux
et al. 2011; Lu 2013] and compare them with the complex analogue of Trudinger’s supersolutions. Section 3
is devoted to the proof of a very general comparison principle. Then in Section 4 we restrict our attention
to operators depending on the eigenvalues of the complex Hessian matrix of the unknown function. We
show existence and uniqueness of viscosity solutions under fairly mild conditions. One subsection is
devoted to the regularity of these weak solutions. Using classical methods due to Walsh [1968], see also
[Bedford and Taylor 1976], we show the optimal Hölder regularity for sufficiently regular data. Section 5
is devoted to comparisons between viscosity and pluripotential subsolutions and supersolutions. Finally
in Section 6 we solve the Dirichlet problem for the Lagrangian phase operator.

2. Preliminaries

In this section we collect the notation and the basic results and definitions that will be used throughout
the note.
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2.1. Linear algebra toolkit. We begin by introducing the notion of an admissible cone that will be used
throughout the note:

Definition 4. A cone 0 in Rn with vertex at the origin is called admissible if:

(1) 0 is open and convex, 0 6= Rn .

(2) 0 is symmetric; i.e., if x = (x1, . . . , xn) ∈ 0 then for any permutation of indices i = (i1, . . . , in), the
vector (xi1, . . . , xin ) also belongs to 0.

(3) 0n ⊂ 0, where 0n := {x ∈ Rn
| xi > 0, i ∈ 1, . . . , n}.

From the very definition it follows that 0n is an admissible cone. Other examples involve the 0k cones
that we describe below:

Consider the m-th elementary symmetric polynomial defined by

σm(x)=
∑

1≤ j1<···< jm≤n

x j1 x j2 · · · x jm .

We shall use also the normalized version

Sm(x) :=
( n

m

)−1
σm .

Definition 5. For any m = 1, . . . n, the positive cone 0m of vectors x = (x1, . . . , xn) ∈ Rn is defined by

0m = {x ∈ Rn
| σ1(x) > 0, . . . , σm(x) > 0}. (4)

It is obvious that these cones are open and symmetric with respect to a permutation of the xi ’s. It is a
nontrivial but classical fact that 0m is also convex.

Exploiting the symmetry of 0, it is possible to discuss 0-positivity for Hermitian matrices:

Definition 6. A Hermitian n×n matrix A is called 0-positive (respectively, 0-semipositive) if the vector
of eigenvalues λ(A) := (λ1(A), . . . , λn(A)) belongs to 0 (respectively, to the Euclidean closure 0 of 0).
The definition is independent of the ordering of the eigenvalues.

Finally one can define, following [Li 2004], the notion of 0-admissible and 0-subharmonic functions
through the following definitions:

Definition 7. A C2 function u defined on a domain �⊂ C is called 0-admissible if for any z ∈� the
complex Hessian Hu(z) := [∂2/(∂z j ∂ z̄k)]

n
j,k=1 is 0-positive.

In particular, if 0 is an admissible cone, then 0 ⊂ 01, see [Caffarelli et al. 1985], and hence we have
the following corollary:

Corollary 8. Any 0-admissible function is subharmonic.

Definition 9. An upper semicontinuous function v defined on a domain �⊂ Cn is called 0-subharmonic
if near any z ∈� it can be written as a decreasing limit of local 0-admissible functions.

We refer to [Harvey and Lawson 2009] for a detailed discussion and potential-theoretic properties of
general 0-subharmonic functions.
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2.2. Viscosity sub- and supersolutions. Let � be a bounded domain in Cn. Consider the equation

F[u] := F(x, u, Du, Hu)= 0 on �, (5)

where Du = (∂z1u, . . . , ∂zn u), Hu = (u j k̄) is the Hessian matrix of u and F is continuous on �×R×

Cn
×Hn. The operator F is called degenerate elliptic at a point (z, s, p,M) if

F(z, s, p,M + N )≥ F(z, s, p,M) for all N ≥ 0, N ∈Hn, (6)

where Hn is the set of Hermitian matrices of size n× n. We remark that in our case F(z, s, p,M) is not
necessarily degenerate elliptic everywhere on �×R×Cn

×Hn. Motivated by [Trudinger 1990], we pose
the following definition:

Definition 10. A function u ∈ L∞(�) is a viscosity subsolution of (5) if it is upper semicontinuous in �
and for any z0 ∈�, and any C2 smooth function q defined in some neighborhood of z0 and satisfying
u ≤ q , u(z0)= q(z0), the inequality

F[q](z0)≥ 0 (7)

holds. We also say that F[u] ≥ 0 in the viscosity sense and q is an upper (differential) test for u at z0.

A function v ∈ L∞(�) is a viscosity supersolution of (5) if it is lower semicontinuous and there are no
points z0 ∈� and C2 smooth functions defined locally around z0 such that v ≥ q in �, v(z0)= q(z0) and

inf
N≥0

F
(
z0, q(z0), Dq(z0), N + Hq(z0)

)
> 0. (8)

We also say that F[u] ≤ 0 in the viscosity sense and q is a lower (differential) test for u at z0.

For fixed (z, s, p) ∈�×R×Cn, the set of all Hermitian matrices M such that F is degenerate elliptic
at (z, s, p,M) is called the ellipticity set A(z, s, p) for the data (z, s, p). Note that the ellipticity set has
the property that

A(z, s, p)+0n ⊂A(z, s, p),

but it may not be a cone. Throughout the note we shall however focus on the situation when the ellipticity
set is a cone which is moreover constant for all the possible data sets. We then define the ellipticity cone
associated to the operator F which is modeled on the notion of a subequation coined by Harvey and
Lawson [2009]:

Definition 11. An operator F(z, s, p,M) has an ellipticity cone 0 if for any M in the ellipticity set the
vector λ(M) of the eigenvalues of M belongs to the closure 0 of 0. Furthermore 0 is the minimal cone
with such properties.

Throughout the note we consider only the situation when 0 is an admissible cone in the sense of
Definition 4. We shall make also the following additional assumption (compare with the condition (2) in
Section 4.1):

for all λ ∈ ∂0, for all (z, s, p) ∈�×R×Cn, F(z, s, p, λ)≤ 0. (9)
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This condition arises naturally whenever one seeks solutions to

F
(
z, u(z), Du(z), Hu(z)

)
= 0

with pointwise Hessian eigenvalues in 0 (recall that F increases in the 0n-directions).
It is evident that in Definition 10 the notion of a supersolution is different and substantially more difficult

than the notion of a subsolution. The reason for this is that there is no analogue for the role of the positive
cone 0n from the case of subsolutions in the supersolutions’ case. As an illustration we recall that while
any plurisubharmonic function is a subsolution for F(u) := det(H(u))= 0, see [Eyssidieux et al. 2011],
it is far from true that all supersolutions can be written as the negative of a plurisubharmonic function.

Below we also give another notion of a supersolution that was coined in [Eyssidieux et al. 2011] for the
Monge–Ampère equation; see also [Lu 2013] for the case of the m-Hessian operator. It can be generalized
for all operators admitting an elliptic admissible cone:

Definition 12. A lower semicontinuous function u is said to be a supersolution for the operator F(z,s, p,M)
with the associated ellipticity cone 0 if and only if for any z0 ∈� and every lower differential test q at z0

for which λ(Hq(z0)) ∈ 0 one has

F
(
z, q(z0), Dq(z0), Hq(z0)

)
≤ 0.

Note that in the definition we limit the differential tests only to those for which λ(Hq(z0)) ∈ 0.
The next proposition shows that under the assumption (9) the definition above coincides with the one

from Definition 10.

Proposition 13. Suppose that the operator F(z, s, p,M) satisfies (9). Then a lower semicontinuous
function u defined on a domain � is a supersolution for F(z, s, p,M)= 0 in the sense of Definition 12 if
and only if it is a supersolution in the sense of Definition 10.

Proof. Suppose first that u is a supersolution in the sense of Definition 12. Fix any z0 in � and q a lower
differential test for u at z0. If λ(Hq(z0)) ∈ 0 then

F
(
z, q(z0), Dq(z0), Hq(z0)

)
≤ 0;

hence taking N = 0 in Definition 10 we see that the condition is fulfilled. If λ(Hq(z0)) fails to be in 0
then there is a positive definite matrix N and a positive number t such that λ(Hq(z0)+ t N )∈ ∂0. But this
implies that F(z, q(z0), Dq(z0), Hq(z0)+ t N )≤ 0, which fulfills the condition in Definition 10 again.

Suppose now that u is a supersolution in the sense of Definition 10. Again choose z0 in � and q a
lower differential test for u at z0. We can assume that λ(Hq(z0)) is in 0, for otherwise such a differential
test cannot be applied in Definition 12. But then by ellipticity

F
(
z, q(z0), Dq(z0), Hq(z0)

)
≤ F

(
z, q(z0), Dq(z0), Hq(z0)+ N

)
for all N ≥ 0, N ∈Hn.

The infimum over N for the right-hand side is nonpositive by definition, which implies

F
(
z, q(z0), Dq(z0), Hq(z0)

)
≤ 0,

which was to be proved. �
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2.3. Aleksandrov–Bakelman–Pucci maximum principle. We now recall a variant of the Aleksandrov–
Bakelman–Pucci (ABP) maximum principle following [Jensen 1988]. We first recall the following
definition; see [Jensen 1988]:

Definition 14. Let � be a bounded domain in Rn centered at the origin and u ∈ C(�). We define

Eδ = {x ∈� | for some p ∈ B(0, δ), u(z)≤ u(x)+ p.(z− x) for all z ∈�}.

Then we have the following lemma due to Jensen [1988], which will be used in the proof of Lemma 21.
Recall that a function u is said to be semiconvex if u+ k|z|2 is convex for a sufficiently large constant k.

Lemma 15. Let u ∈ C(�) be semiconvex for some constant k > 0. If u has an interior maximum and
sup� u− sup∂� u = δ0d > 0, where d = diam(�), then there is a constant C = C(n, k) > 0 such that

|Eδ| ≥ Cδn for all δ ∈ (0, δ0). (10)

Proof. As in [Jensen 1988], by regularization, we can reduce to the case when u ∈ C2(�). Now, suppose
that u has an interior maximum at x0 and

δ0 =
sup� u− sup∂� u

d
=

u(x0)− sup∂� u
d

,

where d = diam(�).

We now prove that for δ < δ0 we have B(0, δ)⊂ Du(Eδ). Indeed, for any p ∈ B(0, δ), consider the
hyperplane `p(x)= h+〈p, x〉, where h = supy∈�(u(y)−〈p, y〉). Then we have u(x)≤ `p(x) on � and
u(x1)= `p(x1) for some x1 ∈�. If we can prove that x1 ∈�, then Du(x1)= p, so B(0, δ)⊂ Du(Eδ).
Suppose by contradiction that x1 ∈ ∂�, then

sup
�

u = u(x0)

≤ `p(x1)+〈p, x0− x1〉

= u(x1)+〈p, x0− x1〉 ≤ sup
∂�

u+ δd < sup
∂�

u+ δ0d = sup
�

u,

and hence we get a contradiction.

Next, as we have proved that B(0, δ)⊂ Du(Eδ), by comparing volumes we infer that

c(n)δn
≤

∫
Eδ
|det(D2u)|. (11)

Since u is semiconvex with the constant k > 0 and D2u ≤ 0 in Eδ, we have |det(D2u)| ≤ kn. It follows
that |Eδ| ≥ c(n)k−nδn. �

2.4. 0-subharmonic functions. We have defined 0-subharmonic functions as limits of admissible ones.
Below we present the alternative viscosity and pluripotential points of view:

Let �⊂ Cn be a bounded domain. Define ω = ddc
|z|2, where d := i(∂̄ + ∂) and dc

:=
i

2π (∂̄ − ∂) so
that ddc

=
i
π
∂∂̄ . Let 0 ( Rn be an admissible cone as in Definition 4. We first recall the definition of

k-subharmonic function:
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Definition 16. We call a function u ∈ C2(�) k-subharmonic if for any z ∈�, the Hessian matrix (ui j̄ )

has eigenvalues forming a vector in the closure of the cone 0k .

Following the ideas of Bedford and Taylor [1982], Błocki [2005] introduced the pluripotential definition
of the k-subharmonic function.

Definition 17. Let u be subharmonic function on a domain � ⊂ Cn. Then u is called k-subharmonic
(k-sh for short) if for any collection of C2 smooth k-sh functions v1, . . . , vk−1, the inequality

ddcu ∧ ddcv1 ∧ · · · ∧ ddcvk−1 ∧ω
n−k
≥ 0

holds in the weak sense of currents.

For a general cone 0, we have the following definition in the spirit of viscosity theory:

Definition 18. An upper semicontinuous function u is called 0-subharmonic (respectively, strictly 0-
subharmonic) if for any z ∈�, and any upper test function q of u at z, we have

λ(Hq(z)) ∈ 0 (respectively, λ(Hq(z)) ∈ 0).

By definition, if u is a 0-subharmonic function, it is a 0-subsolution in the sense of [Székelyhidi 2018].
In particular, when 0 = 0k for k = 1, . . . , n, we have u is a viscosity subsolution of the equation

Sk(λ(Hu))= 0,

where

Sk(λ(Hu))=
(ddcu)k ∧ωn−k

ωn .

Then it follows from [Eyssidieux et al. 2011; Lu 2013] that u is a k-subharmonic function on �; hence u
is a subharmonic function if k = 1 and a plurisubharmonic function if k = n.

We also have the following definition generalizing the pseudoconvex domains; see also [Li 2004] for a
similar definition for smooth domains:

Definition 19. Let � be a bounded domain in Cn. We say that � is a 0-pseudoconvex domain if there is
a constant C� > 0 depending only on � so that −d(z)+C�d2(z) is 0-subharmonic on ∂�, where

d(z) := dist(z, ∂�).

We recall the following lemma, which was proved in [Li 2004, Theorem 3.1].

Lemma 20. Let � be bounded domain in Cn with C2 smooth boundary. Let ρ ∈ C2(�) be a defining
function of � so that λ(Hρ) ∈ 0 on ∂�. Then there exists a defining function ρ̃ ∈ C2(�) for � such that
λ(H ρ̃) ∈ 0 on �.

Finally we wish to recall the survey article [Zeriahi 2013] where the reader may find a thorough
discussion of the viscosity theory associated to complex Monge–Ampère-type equations.
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3. Comparison principles

Comparison principles are basic tools in pluripotential theory — we refer to [Kołodziej 1998; Guedj and
Zeriahi 2017] for a thorough discussion of these inequalities. In viscosity theory one compares sub- and
supersolutions to the same equation. It is a crucial observation, see [Eyssidieux et al. 2011], that even
though supersolutions may fail to have nice pluripotential properties, a version of the comparison principle
holds for the complex Monge–Ampère equation. In this section we discuss under what assumptions such
comparison principles hold for general operators.

3.1. A preliminary comparison principle. Let � be a bounded domain in Cn. In this subsection we
prove a comparison principle for viscosity solutions of the equation

F[u] := F(x, u, Du, Hu)= 0. (12)

It is well known that mere ellipticity is insufficient to guarantee a comparison-type result. Hence we add
some natural structural conditions for (12).

First of all we assume that F is decreasing in the s-variable, namely

for all r > 0, F(z, s, p,M)− F(z, s+ r, p,M)≥ 0. (13)

This is a natural assumption in the theory, see [Zeriahi 2013], as it yields an inequality in the “right”
direction for the maximum principle.

Next we assume a particular continuity property with respect to the z- and p-variables:

|F(z1, s, p1,M)− F(z2, s, p2,M)| ≤ αz(|z1− z2|)+αp(|p1− p2|) (14)

for all z1, z2 ∈ �, σ ∈ R, p1, p2 ∈ Cn , M ∈Hn. Here αz and αp are certain moduli of continuity, i.e.,
increasing functions defined for nonnegative reals which tend to zero as the parameter decreases to zero.

We can now state the following general comparison principle for (12).

Lemma 21. Suppose u ∈ L∞(�) (respectively, v ∈ L∞(�)) satisfies F[u] ≥ δ (respectively, F[v] ≤ 0)
in � in the viscosity sense for some δ > 0. Then

sup
�

(u− v)≤max
∂�
{(u− v)∗, 0}, (15)

with ∗ denoting the standard upper semicontinuous regularization.

Proof. The idea comes from [Trudinger 1990]. We use Jensen’s approximation [1988] for u, v, which is
defined by

uε(z)= sup
z′∈�

{
u(z′)−

C0

ε
|z′− z|2

}
, vε(z)= inf

z′∈�

{
v(z′)+

C0

ε
|z′− z|2

}
, (16)

where ε > 0 and C0 = max{osc� u, osc� v} with osc(u) = sup u� − inf� u. Then the supremum and
infimum in (16) are achieved at points z∗, z∗ ∈ � with |z − z∗|, |z − z∗| < ε provided that z ∈ �ε =
{z ∈ � | dist(z, ∂�) > ε}. It follows from [Caffarelli and Cabré 1995] (see also [Wang 2012] for an
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adaptation in the complex case) that uε (respectively, vε) is Lipschitz and semiconvex (respectively,
semiconcave) in �ε, with

|Duε|, |Dvε| ≤
2C0

ε
, Huε,−Hvε ≥−

2C0

ε2 Id, (17)

whenever these derivatives are well-defined.
Exploiting the definition of viscosity subsolution one can show that uε satisfies

F
(
z∗, uε(z), Duε(z), Huε(z)

)
≥ δ (18)

in the viscosity sense for all z ∈�ε. Indeed, let q be an upper test of uε at z0. Then the function

q̃(z) := q(z+ z0− z∗0)+
1
ε
|z0− z∗0|

2

is an upper test for u at z∗0. Therefore we get (18) as u is a viscosity subsolution. This also implies that

F
(
z∗, uε(z), Duε(z), N + Huε(z)

)
≥ δ (19)

in the viscosity sense for any fixed matrix N ≥ 0. Since any locally semiconvex (semiconcave) function
is twice differentiable almost everywhere by Aleksandrov’s theorem, we infer that for almost all z ∈�ε,
F is degenerate elliptic at (z∗, uε(z), Duε(z), Huε(z)) and

F
(
z∗, uε(z), Duε(z), N + Huε(z)

)
≥ δ (20)

for all N ∈Hn such that N ≥ 0.

We assume by contradiction that sup�(u − v) = u(z0)− v(z0) = a > 0 for some z0 ∈ �. For any ε
sufficiently small, the function wε := uε − vε has a positive maximum on �ε at some point zε ∈�ε such
that zε→ z0 as ε→ 0. So we can choose ε0 > 0 such that for any ε < ε0, we know wε := uε − vε has
a positive maximum on �ε at some point zε ∈ � with d(zε, ∂�) > ε0. Applying the ABP maximum
principle (Lemma 15), for the function wε on �ε0 and for any λ > 0 sufficiently small, there exists a
set Eλ ⊂ �ε0 containing zε with |Eλ| ≥ cλn, where c is c(n)ε2n, such that |Dwε| ≤ λ and Hwε ≤ 0
almost everywhere in Eλ. Since wε(zε) > 0, we can choose λ small enough such that wε ≥ 0 in Eλ.
The condition (13) and the fact that F is degenerate elliptic at (z∗, uε(z), Duε(z), Huε(z)) for almost all
z ∈ Eλ imply that

F
(
z∗, uε(z), Duε(z), N + Huε(z)

)
≤ F

(
z∗, vε(z), Duε(z), N + Hvε(z)

)
. (21)

Using (14) and the fact that |D(uε − vε)| ≤ λ, we get

F
(
z∗, vε(z), Duε(z), N + Hvε(z)

)
≤ F

(
z∗, vε(z), Dvε(z), N + Hvε(z)

)
+αp(λ).

Combining with (14), (20), (21) and |z∗− z∗|< ε for almost all z ∈ Eλ,

F
(
z∗, vε(z), Dvε(z), N + Hvε(z)

)
≥ δ−αz(ε)−αp(λ). (22)
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By taking λ, and then ε sufficiently small and using the fact that vε is twice differentiable almost
everywhere on �, we can find at a fixed point z1 ∈ Eλ a lower test q of v at z1 such that

F
(
z0, q(z0), Dq(z0), N + Hq(z0)

)
≥

1
2δ (23)

for all N ≥ 0. This contradicts the definition of viscosity supersolution. Therefore we get (15). �

Remark. By assuming more properties of F, it is possible to obtain δ = 0 in the previous result. This is
the case for the Monge–Ampère equation. Otherwise we need to adjust the function u to achieve a strict
inequality in order to use Lemma 21.

3.2. Comparison principle for Hessian-type equations. We now consider the Hessian-type equation of
the form

F[u] = ψ(z, u), (24)

where ψ ∈ C0(�×R) and F[u] = f (λ(Hu)) such that

s 7→ ψ( · , s) is weakly increasing, (25)

f ∈ C0(0), f > 0 on 0, f = 0 on ∂0, (26)

f (λ+µ)≥ f (λ) for all λ ∈ 0, µ ∈ 0n. (27)

First, in order to use Lemma 21, we extend f continuously on Rn by taking f (λ)= 0 for all λ∈Rn
\0.

For a δ-independent comparison principle, we need more assumptions on F. Similarly to [Trudinger
1990], we can assume that the operator F[u] = f (λ(Hu)) satisfies

n∑
i=1

∂ f
∂λi

λi =

n∑
i=1

fiλi ≥ ν( f ) in 0, inf
z∈�

ψ(z, · ) > 0 (28)

for some positive increasing function ν.
This condition is satisfied for example in the case of the complex Hessian equations F[u] :=σk(λ(Hu)),

k ∈ {1, . . . , n}.
We also study a new condition, namely

f is concave and homogeneous; (29)

i.e., f (tλ)= t f (λ) for all t ∈ R+.

Theorem 22. Let u, v ∈ L∞(�) be a viscosity subsolution and a viscosity supersolution of (24) in �.
Assume that either f satisfies either (28) or (29). Then

sup
�

(u− v)≤max
∂�
{(u− v)∗, 0}. (30)

Proof. Assume first that f satisfies (28). Then following [Trudinger 1990], we set for any t ∈ (1, 2),

ut(z)= tu(z)−C(t − 1),
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where C = sup� u. Therefore we have ut(z) ≤ u(z) on � for all t ∈ (1, 2). Then for any z0 ∈ � and
an upper test function qt(z) of ut at z0, we have q(z) := t−1qt(z)− C(t−1

− 1) is also an upper test
for u at z0. Set λ = λ[q](z0); then λ[qt ](z0) = tλ and q(z0) ≥ qt(z0). We also recall that the function
s 7→ f (sλ) is increasing on R+, by (28), and f (λ)≥ ψ(z, u(z0)) since q is an upper test for u at z0. It
follows that at z0,

F[qt ] = f (λ[qt ])= f (tλ)

≥ f (λ)+ (t − 1)
∑

λi fi (t∗λ)

≥ ψ(z0, q(z0))+ (t − 1)
∑

λi fi (t∗λ)

≥ ψ(z0, qt(z0))+
1
2(t − 1)ν(inf

�
ψ(z, inf

�
u))

for 1≤ t∗ < t , sufficiently close to 1. Therefore we have for some δ > 0

F[ut ] ≥ ψ(z, ut)+ δ

in the viscosity sense in �. Thus the inequality (30) follows from Lemma 21.

Next, consider the second case when f is concave and homogeneous. Suppose, without loss of
generality, that 0 ∈�. We set

uτ (z)= u(z)+ τ(|z|2− R),

where R = diam(�). Then for any qτ ∈ C2(�) such that qτ ≥ uτ near z0 and qτ (z0)= uτ (z0), we have
q = qτ − τ(|z|2− R)≥ qτ , and q is also an upper test for u at z0. Therefore, we have at z0,

F[qτ ] = 2d f
(
λ(Hq)+ τ1

2

)
≥ f (λ(Hq))+ f (τ1)≥ ψ(z0, qτ )+ δ. (31)

Therefore F[uτ ] ≥ ψ + δ in the viscosity sense. Applying Lemma 21 we get (30). �

By definition, we have the following properties of sub- and supersolutions. Their proofs follow in a
straightforward way from [Crandall et al. 1992, Proposition 4.3].

Lemma 23. (a) Let {u j } be viscosity subsolutions of (24) in � which are uniformly bounded from above.
Then (lim sup� u j )

∗ is also a viscosity subsolution of (24) in �.

(b) Let {vj } be viscosity supersolutions of (24) in �, which are uniformly bounded from below. Then
(lim inf� vj )∗ is also a viscosity supersolution of (24) in �.

Now using Perron’s method, see for instance [Crandall et al. 1992], we obtain the next result:

Lemma 24. Suppose u, u ∈ L∞(�) are a subsolution and a supersolution of (24) on �. Suppose that
u∗(z)= u∗(z) on the boundary of �. Then the function

u := sup{v ∈ L∞(�)∩USC(�) | v is a subsolution of (24), u ≤ v ≤ u}

satisfies u ∈ C0(�) and
F[u] = ψ(x, u) in �

is the viscosity sense.
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Proof. It is straightforward that u∗ is a viscosity subsolution of (24). We next prove that u∗ is a
supersolution of (24). Assume by contradiction that u∗ is not a supersolution of (24). Then there exists a
point z0 ∈� and a lower differential test q for u∗ at z0 such that

F[q](z0) > ψ(z0, q(z0)). (32)

Set q̃(z)= q(z)+b−a|z− z0|
2, where b= 1

6ar2 with a, r > 0 small enough so that F[q̃] ≥ψ(x, q̃) for
all |z− z0| ≤ r . Since u∗ ≥ q for |z− z0| ≤ r , we get u∗ ≥ u∗ > q̃ for 1

2r ≤ |z− z0|< r . Then the function

w(z)=
{

max{u∗(z), q̃(z)} if |z− z0| ≤ r,
u∗(z) otherwise

is a viscosity subsolution of (24). By choosing a sequence zn → z0 so that u(zn)→ u∗(z0), we have
q̃(zn)→ u∗(z0)+ b. Therefore, for n sufficiently large, we have w(zn) > u(zn) and this contradicts
the definition of u. Thus we have u∗ is also a supersolution. Then it follows from Theorem 22 and
u∗(z)= u∗(z) for z ∈ ∂� that u∗ ≤ u∗ on �; hence u = u∗ = u∗. �

4. Dirichlet problems

4.1. Viscosity solutions in 0-pseudoconvex domains. Let � ⊂ Cn be a C2 bounded domain. In this
section, we study the Dirichlet problem{

F[u] = f (λ(Hu))= ψ(x, u) on �,
u = ϕ on ∂�,

(33)

where ϕ ∈ C0(∂�) and ψ ∈ C0(�×R) such that ψ > 0 and

s 7→ ψ( · , s) is weakly increasing.

Let 0 ( Rn be an admissible cone. We assume further that f ∈ C0(0) satisfies:

(1) f is concave and f (λ+µ)≥ f (λ) for all λ ∈ 0, µ ∈ 0n .

(2) sup∂0 f = 0, and f > 0 in 0.

(3) f is homogeneous on 0.

We remark that the conditions (2) and (3) imply that for any λ ∈ 0 we have

lim
t→∞

f (tλ)=+∞. (34)

We now can solve (33) in the viscosity sense:

Theorem 25. Let � be a C2 bounded 0-pseudoconvex domain in Cn. Then the Dirichlet problem

f (λ[u])= ψ(x, u) in �, u = ϕ on ∂�

admits a unique admissible solution u ∈ C0(�).

In particular, we have an L∞ bound for u which only depends on ‖ϕ‖L∞ and ‖ψ(x,C)‖L∞ and �,
where C is a constant depending on �.
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Proof. By Lemma 20, there is a defining function ρ ∈ C2(�) for � such that λ(Hρ) ∈ 0 on �. The
C2-smoothness of the boundary implies the existence of a harmonic function h on � for arbitrary given
continuous boundary data ϕ. Set

u = (A1ρ+ h)+ A2ρ,

where A1 > 0 is chosen so that A1ρ+ h is admissible and A2 will be chosen later.

By the concavity of f and (34), for A2 sufficiently large we get

f (λ[u])≥ 1
2 f (2λ[A1ρ+ h])+ 1

2 f (2A2λ[ρ])

≥max
�

ψ(x, h)≥ ψ(x, u).

Therefore u is a subsolution of (33).

Since h is harmonic, for each z ∈� there is a Hermitian matrix N ≥ 0 such that λ(N +H(h)(z)) ∈ ∂0.
But then f (λ(N + H(h)(z)))= 0. Therefore, v̄ := h is a supersolution of (33).

Finally, the existence of solution follows from Perron’s method. We set

u := sup{w is subsolution of (33) on �, u ≤ w ≤ v̄}.

As in the argument from Lemma 24 we have u∗ (respectively, u∗) is a subsolution (respectively, super-
solution) of (33). It follows from the comparison principle (Theorem 22) that

u∗(z)− u∗(z)≤ lim sup
w→∂�

(u∗− u∗)+(w).

Since u and v̄ are continuous and u = v̄ = ϕ on ∂� we infer that u∗ ≤ u∗ on � and u∗ = u∗ on ∂�.
Therefore u = u∗ = u∗ is a viscosity solution of (33). The uniqueness follows from the comparison
principle (Theorem 22). �

As a corollary of Theorem 25, we solve the following Dirichlet problem for Hessian quotient equations:{
Sk,`(λ(Hu)) := (Sk/S`)(λ(Hu))= ψ(x, u) on �,
u = ϕ on ∂�,

(35)

where �⊂ Cn is a smooth bounded 0k-pseudoconvex domain, 1≤ ` < k ≤ n, and

Sk(λ(Hu))=
(ddcu)k ∧ωn−k

ωn .

Note that the operator S1/(k−l)
k,` is concave and homogeneous; see [Spruck 2005].

Corollary 26. The Dirichlet problem (35) admits a unique viscosity solution u∈C0(�) for any continuous
data ϕ.

We also remark that a viscosity subsolution is always a 0-subharmonic function.

Lemma 27. Any viscosity subsolution of the equation f (λ(Hu))= ψ(z, u) is a 0-subharmonic function.
In particular, if u is a viscosity subsolution of the equation

Sk,`(λ(Hu))= ψ(z, u), (36)
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then u is k-subharmonic.

Proof. Let z0 ∈ � and q ∈ C2
loc({z0}) such that u− q attains its maximum at z0 and u(z0) = q(z0). By

definition we have
f (λ(Hq)(z0)) > 0.

Observe that for any semipositive Hermitian matrix N, the function

q̃(z) := q(z)+〈N (z− z0), z− z0〉

is also an upper test function for u at z0. By the definition of viscosity subsolutions we have

f (λ(Hq̃)(z0)) > 0. (37)

Suppose that λ(Hq)(z0) /∈ 0. Then we can find N ≥ 0 such that λ(Hq̃)(z0) ∈ ∂0, so f (λ(Hq̃)(z0))= 0
by the condition (3) above, and this contradicts (37). Hence we always have λ[q](z0) ≥ 0, and so u is
0-subharmonic. �

4.2. Hölder continuity of Hessian-type equations. In this subsection, we study the Hölder continuity of
the viscosity solution obtained in Section 4.1 to the Dirichlet problem{

F[u] = f (λ(Hu))= ψ(x, u) on �,
u = ϕ on ∂�,

(38)

where f, ϕ and ψ satisfy the conditions spelled out in the previous subsection. We prove the following
result:

Theorem 28. Let� be a strictly 0-pseudoconvex domain. Let u be the viscosity solution of (38). Suppose
that ϕ ∈ C2α(∂�) for some α ∈ (0, 1). If additionally ψ(z, s) satisfies

(1) |ψ(z, s)| ≤ M1(s) for some L∞loc function M1,

(2) |ψ(z, s)−ψ(w, s)| ≤ M2(s)|z−w|α for some L∞loc function M2,

then u ∈ Cα(�).

Remark. Classical examples, see [Bedford and Taylor 1976], show that the claimed regularity cannot be
improved. Conditions (1) and (2) can be regarded as weak growth conditions and seem to be optimal. If
ψ does not depend on the second variable then these conditions mean that ψ is globally bounded and
contained in Cα.

Proof. The proof relies on the classical idea of Walsh [1968]. A similar argument was used by Bedford and
Taylor [1976], who dealt with the complex Monge–Ampère operator. We shall apply a small adjustment
in the construction of the local barriers which is due to Charabati [2016].

Suppose for definiteness that 0∈�. Assume without loss of generality that the 0-subharmonic function
ρ =− dist(z, ∂�)+C� dist(z, ∂�)2 satisfies F(ρ)≥ 2 (multiply ρ by a constant if necessary and exploit
the homogeneity of F). Recall that ρ vanishes on ∂�. As ∂� ∈ C2 we know that ρ ∈ C2 near the
boundary. Then it is easy to find a continuation of ρ in the interior of � (still denoted by ρ), so that ρ is
0-subharmonic and satisfies F(ρ)≥ 1.
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Fix ξ ∈ ∂�. There is a uniform C � 1 (dependent on �, but independent of ξ ) such that the function

gξ (z) := Cρ(z)− |z− ξ |2

is 0-sh. In particular gξ ≤ 0 in �.
By definition there is a constant C̃ such that for any z ∈ ∂�

ϕ(z)≥ ϕ(ξ)− C̃ |z− ξ |2α.

Consider the function hξ (z) := −C̃(−gξ (z))α. Then

H(hξ (z))≥ C̃α(1−α)(−gξ (z))α−2 H(gξ (z)), (39)

where λ(H(gξ (z))) ∈ 0; thus hξ is 0-subharmonic.
Observe that

hξ (z)≤−C̃ |z− ξ |2α ≤ ϕ(z)−ϕ(ξ).

Thus hξ (z)+ϕ(ξ) are local boundary barriers constructed following the method of [Charabati 2016] (in
[Bedford and Taylor 1976], where the Monge–Ampère case was considered, hξ was simply chosen as
−(xn)

α in a suitable coordinate system, but this is not possible in the general case).
At this stage we recall that u is bounded a priori by Theorem 25. Hence we know that for some uniform

constant A one has F[u] ≤ A in the viscosity sense.
From the gathered information, one can produce a global barrier for u in a standard way; see [Bedford

and Taylor 1976]. Indeed, consider the function h̃(z) := supξ {ahξ (z)+ ϕ(ξ)} for a large but uniform
constant a. Using the balayage procedure it is easy to show that F(h̃(z))≥ A in the viscosity sense once
a is taken large enough. Thus h̃ majorizes u by the comparison principle and so is a global barrier for u
matching the boundary data given by ϕ. By construction h̃ is globally α-Hölder continuous.

Note on the other hand that u is subharmonic as 0 ⊂ 01; thus the harmonic extension uϕ of ϕ in �
majorizes u from above. Recall that uϕ is α-Hölder continuous by classical elliptic regularity.

Coupling the information for both the lower and the upper barrier one obtains

for all z ∈�, for all ξ ∈ ∂�, |u(z)− u(ξ)| ≤ K |z− ξ |α. (40)

Denote by K1 the quantity K2 diam2(�)max{1, f (1)}+ K , where 1= (1, . . . , 1) ∈ Rn is the vector
of the eigenvalues of the identity matrix, while K2 := C̃ f (1)−1 and finally C̃ is the α-Lipschitz constant
of ψ . Consider for a small vector τ ∈ Cn the function

v(z) := u(z+ τ)+ K2|τ |
α
|z|2− K1|τ |

α

defined over �τ := {z ∈� | z+ τ ∈�}.
It is easy to see by using the barriers that if z+ τ ∈ ∂� or z ∈ ∂� then

v(z)≤ u(z)+ K |τ |α + K2 diam2�|τ |α − K1|τ |
α
≤ u(z).

We now claim that v(z)≤ u(z) in �τ . By the previous inequality this holds on ∂(�τ ). Suppose the
claim is false and consider the open subdomain U of �τ defined by Uτ = {z ∈�τ | v(z) > u(z)}.
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We will now prove that v is a subsolution to F[u] = f (λ(Hu))= ψ(z, u(z)) in U. To this end pick a
point z0 and an upper differential test q for v at z0. Observe then that q̃(z) := q(z)−K2|τ |

α
|z|2−K1|τ |

α

is then an upper differential test for u(τ + · ) at the point z0. Hence

F[q(z0)] = f
(
λ(Hq̃(z0))+ K2|τ |

α1
)

≥ f (λ(Hq̃(z0)))+ K2|τ |
α f (1)

≥ ψ(z0+ τ, u(z0+ τ))+ K2|τ |
α f (1),

where we have used the concavity and homogeneity of f in the first inequality and the fact that q̃ is an
upper differential test for u(τ + · ) for the second one.

Next

ψ(z0+ τ, u(z0+ τ))+ K2|τ |
α f (1)≥ ψ

(
z0+ τ, u(z0+ τ)+ K2|τ |

α
|z0|

2
− K1|τ |

α
)
+ K2|τ |

α f (1)

= ψ(z0+ τ, v(z0))+ K2|τ |
α f (1)

≥ ψ(z0+ τ, u(z0))+ K2|τ |
α f (1),

where we have exploited twice the monotonicity of ψ with respect to the second variable (and the fact
that z0 ∈Uτ ).

Exploiting now the Hölder continuity of ψ with respect to the first variable we obtain

ψ(z0+ τ, u(z0+ τ))+ K2|τ |
α f (1)≥ ψ(z0+ τ, u(z0))+ K2|τ |

α f (1)≥ ψ(z0, u(z0)).

This proves that F[q(z0)] ≥ ψ(z0, u(z0)) and hence F[v(z)] ≥ ψ(z, v(z)) in the viscosity sense.
Thus over Uτ , we know v is subsolution and u is a solution, which implies by comparison principle

that v ≤ u there, a contradiction unless the set Uτ is empty.
We have thus proven that

for all z ∈�τ , u(z+ τ)+ K2|τ |
α
|z|2− K1|τ |

α
≤ u(z),

which implies the claimed α-Hölder continuity. �

5. Viscosity vs. pluripotential solutions

Let � be a bounded smooth strictly pseudoconvex domain in Cn. Let 0<ψ ∈ C(�×R) be a continuous
function nondecreasing in the last variable. In this section, we study the relations between viscosity
concepts with respect to the inverse σk-equations

(ddcu)n

(ddcu)n−k ∧ωk = ψ(z, u) in � (41)

and pluripotential concepts with respect to the equation

(ddcu)n = ψ(z, u)(ddcu)n−k
∧ωk in �. (42)

For the regular case, the following result was shown in [Guan and Sun 2015]:
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Theorem 29 (Guan–Sun). Let 0 < h ∈ C∞(�) and ϕ ∈ C∞(∂�). Then, there exists a smooth strictly
plurisubharmonic function u in � such that

(ddcu)n

(ddcu)n−k ∧ωk = h(z) in �, u = ϕ in ∂�. (43)

Note that the function u in Theorem 29 is a viscosity solution of (41) in the case when ψ(z, u)= h(z).
Using Theorem 29, we obtain:

Proposition 30. If u ∈ C(�) ∩ PSH(�) is a viscosity solution of (41) then there exists a sequence
of smooth plurisubharmonic functions u j in � such that u j is decreasing to u and the function
(ddcu j )

n/((ddcu j )
n−k
∧ωk) converges uniformly to ψ(z, u) as j→∞. In particular, u is a solution of

(42) in the pluripotential sense.

Proof. Let ϕj ∈ C∞(∂�) and 0<ψj ∈ C∞(�) be sequences of smooth functions such that ϕj ↘ ϕ and
ψj ↗ ψ(z, u) as j →∞. Then, by Theorem 29, for any j = 1, 2, . . . , there exists a smooth strictly
plurisubharmonic function u j in � such that

(ddcu j )
n

(ddcu j )n−k ∧ωk = ψj (z) in �, u j = ϕj in ∂�. (44)

By the comparison principle, we have

u1 ≥ u2 ≥ · · · ≥ u j ≥ · · · ≥ u.

Let C > sup� |z|
2. By the homogeneity and the concavity of S1/k

n,n−k , we have

(ddc(u j + ε|z|2))n

(ddc(u j + ε|z|2))n−k ∧ωk ≥
(ddcu j )

n

(ddcu j )n−k ∧ωk + ε
k .

Then, by the comparison principle, for any ε > 0, there exists N > 0 such that

u j + ε(|z|2−C)≤ u

for any j > N. Hence, u j is decreasing to u as j→∞. �

Observe that a continuous solution of (42) in the pluripotential sense may not be a viscosity solution of
(41). For example, if a continuous plurisubharmonic function u :�→R depends only on n−k−1 variables
then u is a solution of (42) in the pluripotential sense but u is not a viscosity solution of (41). Moreover,
by Theorem 34, we know that a viscosity solution of (41) has to satisfy (ddcu)k ≥ aωk for some a > 0.
The following question is natural:

Question 31. If u ∈ PSH(�)∩C(�) satisfies (42) in the pluripotential sense and

(ddcu)k ≥ aωk (45)

for some a > 0, does u satisfy (41) in the viscosity sense?
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At the end of this section, we will give the answer to a special case of this question. Now, we
consider the relation between viscosity subsolutions of (41) and pluripotential subsolutions of (42).
Recall that according to the definition in Section 2.1 for any n× n complex matrix A and k ∈ {1, . . . , n},
Sk(A) denotes the coefficient with respect to tn−k of the polynomial

(n
k

)−1 det(A+ t Idn).
Next we prove the following technical result:

Lemma 32. Assume that A, B are n× n complex matrices and k ∈ {1, . . . , n}. Then

Sk(AA∗)Sk(B B∗)≥ |Sk(AB∗)|2.

Proof. Denote by a1, . . . , an and b1, . . . , bn , respectively, the row vectors of A and B. Then

Sk(AA∗)=
((n

k

))−1 ∑
]J=k

det(〈ap, aq〉)p,q∈J ,

Sk(B B∗)=
((n

k

))−1 ∑
]J=k

det(〈bp, bq〉)p,q∈J ,

Sk(AB∗)=
((n

k

))−1 ∑
]J=k

det(〈ap, bq〉)p,q∈J .

We will show that, for any J = {p1, . . . , pk} with 1≤ p1 < · · ·< pk ≤ n,

det(〈ap, aq〉)p,q∈J · det(〈bp, bq〉)p,q∈J ≥ |det(〈ap, bq〉)p,q∈J |
2. (46)

Indeed, if either {ap1, . . . , apk } or {bp1, . . . , bpk } are linearly dependent then both sides of (46) are
equal to 0. Otherwise, exploiting the Gram–Schmidt process, we can assume that {ap1, . . . , apk } and
{bp1, . . . , bpk } are orthogonal systems (observe that the quantities in question do not change during the or-
thogonalization process). Next normalizing the vectors apj and bpj , j = 1, . . . , n, to unit length, both sides
change by the same factor. Hence it suffices to prove the statement for two collections of orthonormal bases.

Under this assumption we have

(〈ap, aq〉)p,q∈J = (〈bp, bq〉)p,q∈J = Idk . (47)

Let M = (〈ap, bq〉)p,q∈J . Then M M∗ is a semipositive Hermitian matrix, and

Tr(M M∗)=
k∑

l=1

k∑
j=1

|〈bpj , apl 〉|
2
=

k∑
j=1

〈
bpj ,

k∑
l=1

〈bpj , apl 〉apl

〉
≤

k∑
j=1

‖bpj‖
2
= k.

Therefore, |det(M)| =
√

det(M M∗) ≤ 1; hence we obtain (46). Finally, using (46) and the Cauchy–
Schwarz inequality, we infer that

Sk(AA∗)Sk(B B∗)≥ |Sk(AB∗)|2,

as required. �

For any n× n Hermitian matrix A = (aj ¯̀), we define

ωA =

n∑
j,`=1

aj ¯̀
i
π

dz j ∧ dz̄`
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and

B(A, k) :=
{

B ∈Hn
+

∣∣∣∣ ωk
B ∧ω

n−k
A

ωn = 1
}
,

where k = 1, 2 . . . , n.

Theorem 33. Let u ∈ PSH(�)∩ L∞loc(�) and 0< g ∈ C(�). Then the following are equivalent:

(i) (ddcu)n/((ddcu)n−k
∧ωk)≥ gk(z) in the viscosity sense.

(ii) For all B ∈ B(Id, n− k),

(ddcu)k ∧ωn−k
B2 ≥ gk(z)ωn

in the viscosity sense.

(iii) For any open set U b �, there are smooth plurisubharmonic functions uε and functions 0 < gε ∈
C∞(U ) such that uε are decreasing to u and gε converge uniformly to g as ε↘ 0, and

(ddcuε)∧ωA1 ∧ · · · ∧ωAk−1 ∧ω
n−k
B2 ≥ gεωn (48)

pointwise in U for any B ∈ B(Id, n− k) and A1, . . . , Ak−1 ∈ B(B2, k).

(iv) For any open set U b �, there are smooth strictly plurisubharmonic functions uε and functions
0< gε ∈ C∞(U ) such that the sequence uε is decreasing to u and the sequence gε converges uniformly to
g as ε↘ 0, and

(ddcuε)n

(ddcuε)n−k ∧ωk ≥ (g
ε)k (49)

pointwise in U for any B ∈ B(Id, n− k).

Proof. (iv)⇒ (i) is obvious. It remains to show (i)⇒ (ii)⇒ (iii)⇒ (iv).

(i)⇒ (ii): Assume that q ∈ C2 is an upper test for u at z0 ∈�. Then q is strictly plurisubharmonic in a
neighborhood of z0 and

(ddcq)n

(ddcq)n−k ∧ωk ≥ gk

at z0.
By using Lemma 32 for

√
Hq and (

√
Hq)−1 B, we have

(ddcq)n−k
∧ωk

(ddcq)n
(ddcq)k ∧ωn−k

B2

ωn =
(ddcq)n−k

∧ωk

ωn

(ddcq)k ∧ωn−k
B2

(ddcq)n

≥

(
ωn−k

B ∧ωk

ωn

)2
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for any B ∈Hn
+

(observe that

Sn−k(CC∗)=
(ddcq)k ∧ωn−k

B2

(ddcq)n
and Sn−k(

√
HqC∗)=

ωn−k
B ∧ωk

ωn

for C = (
√

Hq)−1 B).
Then, for any B ∈ B(Id, n− k) we have

(ddcq)k ∧ωn−k
B2 ≥ gkωn

at z0. Hence

(ddcu)k ∧ωn−k
B2 ≥ gkωn

in the viscosity sense.

(ii)⇒ (iii): Assume that q ∈ C2 touches u from above at z0 ∈�. Then, for any B ∈ B(Id, n− k),

(ddcq)k ∧ωn−k
B2 ≥ gkωn

at z0. By the same arguments as in [Lu 2013], we have

(ddcq)∧ωA1 ∧ · · · ∧ωAk−1 ∧ω
n−k
B2 ≥ gωn

for any B ∈ B(Id, n− k), A1, . . . , Ak−1 ∈ B(B2, k). Hence

(ddcu)∧ωA1 ∧ · · · ∧ωAk−1 ∧ω
n−k
B2 ≥ gωn (50)

in the viscosity sense for any B ∈ B(Id, n− k), A1, . . . , Ak−1 ∈ B(B2, k).
Let gj be a sequence of smooth functions in � such that gj ↗ g as j→∞. Then

(ddcu)∧ωA1 ∧ · · · ∧ωAk−1 ∧ω
n−k
B2 ≥ gjω

n (51)

in the viscosity sense for any j ∈ N, B ∈ B(Id, n − k) and A1, . . . , Ak−1 ∈ B(B2, k). By the same
arguments as in [Eyssidieux et al. 2011, the proof of Proposition 1.5], u satisfies (51) in the sense of
positive Radon measures. Using convolution to regularize u and setting uε = u ∗ ρε, we see that uε is
smooth strictly plurisubharmonic and

(ddcuε)∧ωA1 ∧ · · · ∧ωAk−1 ∧ω
n−k
B2 ≥ (gj )εω

n

pointwise in �ε. Choosing gε := (g[1/ε])ε, we obtain (48).

(iii)⇒ (iv): At z0 ∈�ε, choosing

B =
Huε(z0)

(Sn−k(Huε(z0)))1/(n−k)

and

A1 = A2 = · · · = Ak−1 =

(
(ddcuε(z0))

k
∧ωn−k

B2

ωn

)−1/k

Huε(z0),
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we get

gε ≤
(
(ddcuε(z0))

k
∧ωn−k

B2

ωn

)1/k

=

(
(ddcuε(z0))

n

ωn

1
Sn−k(Huε(z0))

)1/k

=

(
(ddcuε(z0))

n

ωn

ωn

(ddcuε)n−k ∧ωk

)1/k

=

(
(ddcuε)n

(ddcuε)n−k ∧ωk

)1/k

pointwise in �ε. Then
(ddcuε)n

(ddcuε)n−k ∧ωk ≥ (g
ε)k . �

As a consequence, our result implies that a viscosity subsolution is a pluripotential subsolution.

Theorem 34. Assume that ψ(z, s) = ψ(z) with ψ ∈ C0(�) and u ∈ PSH(�) ∩ L∞loc(�) is a viscosity
subsolution of (41). Then

(ddcu)n ≥ ψ(ddcu)n−k
∧ωk (52)

and

(ddcu)k ≥
(n

k

)−1
ψωk (53)

in the pluripotential sense. If u is continuous then the conclusion still holds in the case where ψ depends
on both variables.

Proof. By Theorem 33, for any open set U b�, there are strictly plurisubharmonic functions uε ∈C∞(U )
and functions 0< hε ∈C∞(U ) such that uε is decreasing to u and hε converges uniformly to ψ as ε↘ 0,
and

(ddcuε)n

(ddcuε)n−k ∧ωk ≥ hε (54)

pointwise in U. Choosing B = Idn and letting ε→ 0, we obtain (52).

It also follows from Theorem 33 that we can choose uε and hε so that

(ddcuε)k ∧ωn−k
B2 ≥ hεωn (55)

pointwise in U for any B ∈ B(Id, n− k). Fix z0 ∈U and 0< ε� 1. We can choose complex coordinates
so that Huε(z0)= diag(λ1, . . . , λn), where 0≤ λ1 ≤ · · · ≤ λn . Choosing

B =
(n

k

)1/(n−k)
diag(0, . . . , 0︸︷︷︸

k-th

, 1, . . . , 1),

we get

λ1 · · · λk ≥

(n
k

)−1
hε.
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Then
(ddcuε)k ≥

(n
k

)−1
hεωk

pointwise in U. Letting ε→ 0, we obtain (53). �

Remark. Note that for strictly positive ψ , (53) implies that the natural space of functions to consider
for the Hessian quotient problem (41) is not the space of bounded plurisubharmonic functions but a
considerably smaller one.

By assuming some additional conditions, we can also prove that a pluripotential subsolution is a
viscosity one.

Proposition 35. Assume that ψ(z, s)= ψ(z) > 0 with ψ ∈ C0(�) and u is a local bounded plurisubhar-
monic function in � satisfying

(ddcu)k ≥ ψωk

in the pluripotential sense. Then
(ddcu)n

(ddcu)n−k ∧ωk ≥ ψ

in the viscosity sense.

Proof. By the assumption, for any A ∈Hn
+

,

(ddcu)k ∧ωn−k
A ≥ ψωk

∧ωn−k
A (56)

in the pluripotential sense. By [Lu 2013], (56) also holds in the viscosity sense. If A = B2 for some
B ∈ B(Id, n− k) then, by using Lemma 32, we have

ωk
∧ωn−k

B2 ≥

(
ωn−k

B ∧ωk

ωn

)2

ωn
= ωn.

Then
(ddcu)k ∧ωn−k

B2 ≥ ψω
n

in the viscosity sense, for any B ∈ B(Id, n− k). Applying Theorem 33, we obtain

(ddcu)n

(ddcu)n−k ∧ωk ≥ ψ

in the viscosity sense. �

We now discuss the notion of a supersolution. By the same argument as in [Guedj et al. 2017], relying
on the idea from [Berman 2013], we obtain the following relation between viscosity supersolutions of
(41) and pluripotential supersolutions of (42):

Proposition 36. Let u ∈ PSH(�) ∩ C(�) be a viscosity supersolution of (41). Then there exists an
increasing sequence of strictly plurisubharmonic functions u j ∈C∞(�) such that u j converges in capacity
to u as j→∞, and

(ddcu j )
n

(ddcu j )n−k ∧ωk ≤ ψ(z, u)
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pointwise in �. In particular,

(ddcu)n ≤ ψ(z, u)(ddcu)n−k
∧ωk

in the pluripotential sense.
If there exists a > 0 such that (ddcu)k ≥ aωk then u j can be chosen such that

(ddcu j )
n

(ddcu j )n−k ∧ωk ≥ b

pointwise in � for some b > 0.

For the definition of convergence in capacity, we refer to [Guedj and Zeriahi 2017].

Proof. Define ϕ = u|∂� and g(z) = ψ(z, u(z)). Then, for any j ≥ 1, there exists a unique viscosity
solution vj of {

(ddcvj )
n/((ddcvj )

n−k
∧ωk)= e j (vj−u)g(z) in �,

vj = ϕ in ∂�.
(57)

Applying the comparison principle to the equation

(ddcv)n

(ddcv)n−k ∧ωk = e j (v−u)g(z),

we get u ≥ vj and vj+1 ≥ vj for any j ≥ 1.
Note that, by Proposition 30,

(ddcvj )
n
= e j (vj−u)g(z)(ddcvj )

n−k
∧ωk

in the pluripotential sense. For any h ∈ PSH(�) such that −1≤ h ≤ 0, we have

εn
∫
{vj<u−2ε}

(ddch)n ≤
∫
{vj<u+εh−ε}

(ddc(u+ εh))n

≤

∫
{vj<u+εh−ε}

(ddcvj )
n

≤

∫
{vj<u−ε}

e j (vj−u)g(z)(ddcvj )
n−k
∧ωk

≤ e− jε
∫
{v1<u−ε}

g(z)(ddcvj )
n−k
∧ωk

≤ Ce− jε,

where C > 0 is independent of j . The last inequality holds by the Chern–Levine–Nirenberg inequalities;
see [Guedj and Zeriahi 2017]. This implies that vj converges to u in capacity.

If there exists a > 0 such that (ddcu)k ≥ aωk then, by Proposition 35,

(ddcu)n

(ddcu)n−k ∧ωk ≥ a
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in the viscosity sense. Choosing M � 1 such that e−M sup� g < a, we get

(ddcvj )
n

(ddcvj )n−k ∧ωk ≤ ae j (vj−u)+M .

Applying the comparison principle to the equation

(ddcv)n

(ddcv)n−k ∧ωk = ae j (v−u),

we get vj +M/j ≥ u for any j ≥ 1. Then

(ddcvj )
n

(ddcvj )n−k ∧ωk = e j (vj−u)g(z)≥ e−M g(z)

for any j ≥ 1. Hence, by Theorem 34,

(ddcvj )
k
≥

(n
k

)−1
e−M g(z)≥

(n
k

)−1
e−M min

�

g

for any j ≥ 1.
Now, by Proposition 30, for any j we can choose a strictly plurisubharmonic function u j ∈ C∞(�)

such that

vj −
1
2 j ≤ u j ≤ vj −

1
2 j+1

and

−
1
2 j ≤

(ddcu j )
n

(ddcu j )n−k ∧ωk − e j (vj−u)g(z)≤ 0.

It is easy to see that u j satisfies the required properties. �

The next result gives the answer to a special case of Question 31:

Theorem 37. Let u ∈ PSH(�)∩C(�) such that

(ddcu)n

(ddcu)n−k ∧ωk ≤ ψ(z, u) (58)

in the viscosity sense and

(ddcu)n ≥ ψ(z, u)(ddcu)n−k
∧ωk (59)

in the pluripotential sense. If there exists a > 0 such that (ddcu)k ≥ aωk then u is a viscosity solution of
the equation

(ddcu)n

(ddcu)n−k ∧ωk = ψ(z, u). (60)

Proof. It remains to show that u is a viscosity subsolution of (60) in any smooth strictly pseudoconvex
domain U b�.
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Let V be a smooth strictly pseudoconvex domain such that U b V b �. By Proposition 36, there
exists an increasing sequence of strictly plurisubharmonic functions u j ∈ C∞(V ) such that u j converges
in capacity to u as j→∞, and

b ≤
(ddcu j )

n

(ddcu j )n−k ∧ωk ≤ ψ(z, u)

pointwise in V , where b > 0. By Theorem 34, we have (ddcu j )
k
≥
(n

k

)−1bωk. Then, there exists C > 0
such that

(ddcu j )
n−k
∧ωk
≥

1
ψ(z, u)

(ddcu j )
n
≥ Cωn.

Define

f j (z) :=
(ddcu j )

n

(ddcu j )n−k ∧ωk .

Then f j (z) ≤ ψ(z, u) for any z ∈ V, and (ψ − f j )(ddcu j )
n−k
∧ωk

≥ C(ψ − f j )ω
n converges weakly

to 0. Hence f j converges in Lebesgue measure to ψ in V as j→∞.
Now, by Theorem 33, we have

(ddcu j )∧ωA1 ∧ · · · ∧ωAk−1 ∧ω
n−k
B2 ≥ ( f j )

1/kωn

pointwise in V for any B ∈ B(Id, n− k) and A1, . . . , Ak−1 ∈ B(B2, k). Letting j→∞, we get

(ddcu)∧ωA1 ∧ · · · ∧ωAk−1 ∧ω
n−k
B2 ≥ ψ

1/kωn

in the sense of Radon measures. It follows from [Lu 2013] that

(ddcu)k ∧ωn−k
B2 ≥ ψ

1/kωn

in the viscosity sense. Using Theorem 33, we get that u is a viscosity subsolution of (60) in U. �

6. Dirichlet problem for the Lagrangian phase operator

In this section, we prove the existence of a unique viscosity solution to the Dirichlet problem for the
Lagrangian phase operator. The existence and uniqueness of the smooth version was obtained recently by
Collins, Picard and Wu [Collins et al. 2017]. Let �⊂ Cn be a bounded domain. Consider the Dirichlet
problem {

F[u] :=
∑n

i=1 arctan λi = h(z) on �,
u = ϕ on ∂�,

(LA)

where λ1, . . . , λn are the eigenvalues of the complex Hessian Hu. We can also write F[u] = f (λ(Hu)).
We assume that ϕ ∈ C0(∂�) and h :�→

[
(n− 2)π2 + δ, n π2

)
is continuous for some δ > 0.

The Lagrangian phase operator F in (LA) arises in geometry and mathematical physics. We refer to
[Collins et al. 2015; 2017; Harvey and Lawson 1982; Jacob and Yau 2017; Yuan 2006; Wang and Yuan
2013; 2014] for the details.



532 SŁAWOMIR DINEW, HOANG-SON DO AND TAT DAT TÔ

Since h ≥ (n− 2)π2 , this case is called the supercritical phase following [Yuan 2006; Jacob and Yau
2017; Collins et al. 2015; 2017]. Recall first the following properties; see [Yuan 2006; Wang and Yuan
2014; Collins et al. 2017].

Lemma 38. Suppose λ1 ≥ λ2 ≥ · · · ≥ λn satisfy
∑

i arctan λi ≥ (n− 2)π2 + δ for some δ > 0. Then we
have:

(1) λ1 ≥ λ2 ≥ · · · ≥ λn−1 > 0 and |λn| ≤ λn−1.

(2)
∑

i λi ≥ 0 and λn ≥−C(δ).

(3)
∑
λ−1

i ≤− tan(δ) when λn < 0.

(4) For any σ ∈
(
(n− 2)π2 , n π2

)
, the set 0σ :=

{
λ ∈ Rn

∣∣ ∑
i arctan λi > σ

}
is a convex set and ∂0σ is a

smooth convex hypersurface.

It follows from Lemma 38 that the function f can be defined on a cone 0 satisfying 0n ⊂ 0 ⊂ 01. We
also remark that if h≥ (n−1)π2 , then F is concave, while F has concave level sets if (n−2)π2 h≤ (n−1)π2 ,
but in general F may not be concave; see [Collins et al. 2017]. Therefore we cannot apply Theorem 22
directly. Fortunately, we still have a comparison principle for the Lagrangian operator using Lemma 21.

Lemma 39. Let u, v ∈ L∞(�) be a viscosity subsolution and a viscosity supersolution of the equation
F[u] = f (λ(Hu))= h on �. Then

sup
�

(u− v)≤max
∂�
{(u− v)∗, 0}. (61)

Proof. We first define ε > 0 by max� h = n π2 − ε. Now for any 0< τ ≤ 1
2ε, set uτ = u+ τ |z|2. Let qτ be

any upper test for uτ at any point z0 ∈ �; then q = qτ − τ |z|2 is also an upper test for u at z0. By the
definition we have

F[q](z0)=

n∑
i=1

arctan λi (z0)≥ h(z0),

where λ(z0)= λ(Hq(z0)). We also have

F[qτ ](z0)=

n∑
i=1

arctan(λi (z0)+ τ). (62)

Next, if F[q](z0)≥ n π2 −
ε
2 , then F[q](z0)≥ h(z0)+

ε
2 ; hence

F[qτ ](z0)≥ h(z0)+
ε

2
. (63)

Conversely, if F[q](z0)<n π2−
ε
2 , this implies that arctan(λn(z0))≤

π
2−

ε
2n . Combining with Lemma 38(2),

we get −C(δ) ≤ λn(z0) ≤ C(ε). Using the mean value theorem, there exists λ̂n ∈ (λn(z0), λn(z0)+ τ)

such that
arctan(λn(z0)+ τ)− arctan λn(z0)=

1

1+ λ̂2
n

τ ≥ C(δ, ε, τ ) > 0.

It follows that
F[qτ ](z0)≥ F[q](z0)+C(δ, ε, τ )≥ h(z0)+C(δ, ε, τ ). (64)
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Combing with (63) yields
F[qτ ](z0)≥ h(z0)+C,

where C > 0 depends only on δ, ε, τ . We thus infer that uτ satisfies F[uτ ] ≥ h(z)+C in the viscosity
sense. Therefore applying Lemma 21 to uτ and v, then letting τ→ 0, we obtain the desired inequality. �

Theorem 40. Suppose � is a bounded C2 domain. Let u be a bounded upper semicontinuous function on
� satisfying F[u] ≥ h(z) in � in the viscosity sense and u = ϕ on ∂�. Then the Dirichlet equation (LA)
admits a unique viscosity solution u ∈ C0(�).

Proof. It suffices to find a viscosity supersolution u for the equation F[u] = h(z) satisfying u = ϕ on ∂�.
The C2-boundary implies the existence of a harmonic function φ on � for arbitrary given continuous
boundary data ϕ. Since

∑
i λi (Hφ)= 0, it follows from Lemma 38 that we have F[φ]<(n−2)π2 +δ≤ h;

hence φ is a supersolution for (LA). The rest of the proof is similar to the one of Theorem 25, by using
Lemma 39. �
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RESOLVENT ESTIMATES FOR SPACETIMES
BOUNDED BY KILLING HORIZONS

ORAN GANNOT

We show that the resolvent grows at most exponentially with frequency for the wave equation on a class of
stationary spacetimes which are bounded by nondegenerate Killing horizons, without any assumptions on
the trapped set. Correspondingly, there exists an exponentially small resonance-free region, and solutions
of the Cauchy problem exhibit logarithmic energy decay.

1. Introduction

1A. Statement of results. Let (M, g) be a connected (n+1)-dimensional Lorentzian manifold of signa-
ture (1, n) with connected boundary ∂M, satisfying the following assumptions:

(1) ∂M is a Killing horizon generated by a complete Killing vector field T, whose surface gravity is a
positive constant κ > 0 (see Section 2C for details).

(2) M is stationary in the sense that there is a compact spacelike hypersurface X with boundary such
that each integral curve of T intersects X exactly once.

(3) T is timelike in M◦.

Consider a formally self-adjoint (with respect to the volume density) operator L ∈ Diff2(M) commuting
with T, such that L −�g ∈ Diff1(M). Thus we can write

L =�g +W +V,

where W is a smooth vector field and V ∈ C∞(M). In addition, assume that W is tangent to ∂M.
Identify M = Rt × X under the flow of T. Since T commutes with L , the composition

P(ω)= eiωt Le−iωt (1-1)

descends to a differential operator on X depending on ω ∈ C. Fredholm properties of P(ω) were first
examined in a robust fashion by Vasy [2013] using methods of microlocal analysis, and subsequently by
Warnick [2015] via physical space arguments; see also [Gannot 2018].

Here we summarize a simple version of these results, which applies in any strip of fixed width near the
real axis. For k ∈ N, let

X k
= {u ∈ H k+1(X) : P(0)u ∈ H k(X)}, (1-2)

MSC2010: 35L05, 35P25, 35R01, 83C57.
Keywords: logarithmic decay, resolvent bounds, Killing horizons, Carleman estimates.
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equipped with the graph norm. Since P(ω)−P(0)∈Diff1(X), the operator P(ω) is bounded X k
→H k(X)

for each ω ∈ C.

Proposition 1.1 [Vasy 2013; Warnick 2015]. The operator P(ω) : X k
→ H k(X) is Fredholm of index 0

in the half-plane
{
Imω >−κ

(
k+ 1

2

)}
and is invertible for Imω > 0 sufficiently large.

The inverse P(ω)−1
: H k(X)→X k forms a meromorphic family of operators in

{
Imω >−κ

(
k+ 1

2

)}
,

called the resolvent family, which is independent of k in a suitable sense [Vasy 2013, Remark 2.9]. Its
complex poles in

{
Imω > −κ

(
k + 1

2

)}
are known as resonances, and correspond to nontrivial mode

solutions v = e−iωt u of the equation �gv = 0, where u ∈ C∞(M) satisfies T u = 0. Thus mode solutions
with Imω > 0 grow exponentially in time, whereas those with Imω < 0 exhibit exponential decay.

Given ω0,C0 > 0, define the region

�= {|Imω| ≤ e−C0|Reω|
} ∩ {|ω|> ω0}.

These parameters are fixed in the next theorem, which is the main result of this paper.

Theorem 1. There exist ω0,C0 > 0 such that P(ω) has no resonances in �. Furthermore, there exists
C > 0 such that if ω ∈�, then

‖P(ω)−1 f ‖H k+1 ≤ eC |Reω|
‖ f ‖H k (1-3)

for each k ∈ N and f ∈ H k(X).

Theorem 1 is also true when ∂M consists of several Killing horizons generated by T, each of which has
a positive, constant surface gravity. In particular, Theorem 1 applies to any stationary perturbation of the
Schwarzschild–de Sitter spacetime (which is bounded by two nondegenerate Killing horizons [Vasy 2013,
Section 6]) that preserves the timelike nature of T, and for which the horizons remain nondegenerate Killing
horizons. Other examples are even asymptotically hyperbolic spaces in the sense of [Guillarmou 2005].

1B. Energy decay. Theorem 1 can be used to prove logarithmic decay to constants for solutions of the
Cauchy problem

�gv = 0, v|X = v0, T v|X = v1. (1-4)

Given initial data (v0, v1) ∈ H k+1(X)× H k(X), the equation (1-4) admits a unique solution

v ∈ C0(R+; H k+1(X))∩ C1(R+; H k(X)).

If N denotes the future-pointing unit normal to the level sets of t and Q[v] is the stress-energy tensor
(see Section 4C) associated to v, define the energy

E[v](s)=
∫
{t=s}

Q[v](N , N ) d SX .

Here d SX is the induced volume density on X = {t = 0}, which is isometric to each time slice {t = s}.
Since N is timelike, it is well known that E[v](s) is positive definite in dv. One consequence of the
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positivity of κ is the energy-boundedness statement

E[v](t)≤ CE[v](0); (1-5)

see for instance [Warnick 2015, Corollary 3.9]. One can also define an energy Ek[v] controlling all
derivatives up to order k, with E[v] = E1[v], which is similarly uniformly bounded. This can be improved
to a logarithmic energy-decay statement uniformly up to the horizon, with a loss of derivatives.

Corollary 1.2. Given k ∈ N, there exists C > 0 such that

Ek[v](t)1/2 ≤
C

log(2+ t)
‖(v0, v1)‖X k×H k+1

for each v ∈ C0(R+; H k+1(X)) ∩ C1(R+; H k(X)) solving the Cauchy problem (1-4) with initial data
(v0, v1) ∈ X k

× H k+1(X).

We can also improve Corollary 1.2 by showing that v decays logarithmically to a constant as follows.
Given (v0, v1) ∈ X k

× H k+1(X), define the constant

v∞ = vol(∂X)−1
∫

X

(
A−2v1− 2A−2Wv0− divg(A−2W )v0

)
A d SX .

Here A > 0 is the lapse function and W is the shift vector as described in Section 2D.

Corollary 1.3. Given k ∈ N, there exists C > 0 such that

‖v(t)− v∞‖H k+1 +‖∂tv(t)‖H k ≤
C

log(2+ t)
‖(v0, v1)‖X k×H k+1

for each v ∈ C0(R+; H k+1(X)) ∩ C1(R+; H k(X)) solving the Cauchy problem (1-4) with initial data
(v0, v1) ∈ X k

× H k+1(X).

By Sobolev embedding, Corollary 1.3 can be used to deduce pointwise decay estimates as well.

1C. Relationship with previous work. The analogue of Theorem 1 was first established for compactly
supported perturbations of the Euclidean Laplacian in the landmark paper [Burq 1998]. There have
been subsequent improvements and simplifications in the asymptotically Euclidean setting [Burq 2002;
Vodev 2000; Datchev 2014], while Rodnianski and Tao [2015] considered asymptotically conic spaces.
In a different direction, Holzegel and Smulevici [2013] established logarithmic energy decay on slowly
rotating Kerr–AdS spacetimes, which contain a Killing horizon of the type described here in addition to a
conformally timelike boundary. However, their approach made heavy use of the symmetries of Kerr–AdS,
and is not adaptable to our setting.

Most relevant to the setting considered here are [Moschidis 2016; Cardoso and Vodev 2002]. The
former reference shows logarithmic energy decay on Lorentzian spacetimes which may contain Killing
horizons, but importantly also contain at least one asymptotically flat end. There, the mechanism of decay
is radiation into the asymptotically flat region. In contrast, asymptotically flat ends are not considered
in the present paper, but we do allow spacetimes which contain Killing horizons as their only boundary
components. We therefore stress that the results of [Moschidis 2016] are disjoint from those of this paper.
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Meanwhile, [Cardoso and Vodev 2002] applies to a wide class of Riemannian metrics, including those
with hyperbolic ends. There is a close connection between asymptotically hyperbolic manifolds and
black holes spacetimes, first exploited in the study of resonances by Sá Barreto and Zworski [1997]. This
relationship has attracted a great deal of interest, especially following the paper [Vasy 2013]; for a survey
of recent developments, see [Zworski 2017].

Common to the works described above is the use of Carleman estimates in the interior of the geometry,
which is then combined with some other (typically more complicated) analysis near infinity. Although the
proof of Theorem 1 adopts techniques from [Burq 1998; Moschidis 2016; Rodnianski and Tao 2015], one
novelty (and simplifying feature) is that the Carleman estimate employed here is valid up to and including
the horizon. In particular, this avoids the use of separation of variables and special function methods [Burq
1998; Holzegel and Smulevici 2013; Vodev 2000], Mourre-type estimates [Burq 2002], and spherical
energies [Cardoso and Vodev 2002; Datchev 2014; Moschidis 2016; Rodnianski and Tao 2015].

2. Preliminaries

2A. Semiclassical rescaling. It is conceptually convenient to rescale the operator by

P(z)= h2 P(h−1z). (2-1)

Thus ω= h−1z, and uniform bounds on P(z) for ±z in a compact set [a, b] ⊂ (0,∞) give high-frequency
bounds for P(ω) as |ω| →∞. Theorem 1 is easily seen to be equivalent to the following.

Theorem 1′. Given [a, b] ⊂ (0,∞), there exist C,C1 > 0 such that

‖u‖H k+1
h
≤ eC/h

‖P(z)u‖H k
h

(2-2)

for each u ∈ X k and ±z ∈ [a, b] + ie−C1/h
[−1, 1].

The norms in (2-2) are semiclassically rescaled Sobolev norms. For detailed expositions on semiclassical
analysis, the reader is referred to [Zworski 2012] and [Dyatlov and Zworski 2018, Appendix E].

2B. Stationarity. A tensor on M will be called stationary if it is annihilated by the Lie derivative LT .
The definition of stationarity can be extended to T ∗M by observing that T lifts to a vector field on T ∗M
via the identification

T ∗M = T ∗R⊕ T ∗X.

Any covector $ ∈ T ∗q M at a point q = (t, x) can be decomposed as $ = ξ + τ dt , where ξ ∈ T ∗x X and
τ dt ∈ T ∗t R. Thus a function F ∈ C∞(T ∗M) is stationary if it depends only on ξ ∈ T ∗x X and τ ∈R, which
we sometimes denote by F(x, ξ, τ ). Furthermore, if τ = τ0 is fixed, then F induces a function F( · , τ0)

on T ∗X . This is compatible with the Poisson bracket in the sense that for stationary F1, F2 ∈ C∞(T ∗M),
there is the equality

{F1, F2}(x, ξ, τ0)= {F1( · , τ0), F2( · , τ0)}(x, ξ). (2-3)

On the left is the Poisson bracket on T ∗M, and on the right the Poisson bracket on T ∗X .
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In particular, this discussion applies to the dual metric function G ∈ C∞(T ∗M), whose value at
$ ∈ T ∗q M is given by

G(x,$)= g−1
x ($,$)= gαβ(x)$α$β .

The semiclassical principal symbol p = σh(P(z)) is given by p(x, ξ ; z)=−G(x, ξ − z dt).

Lemma 2.1. The quadratic form (x, ξ) 7→ G(x, ξ) is negative definite on T ∗X◦.

Proof. The condition τ = 0 implies that $ = ξ + 0 dt is orthogonal to T [. But T [ is timelike on M◦,
whence the result follows. �

If τ0 ∈ R is fixed and K ⊂ X◦ is compact, then by Lemma 2.1 there exist c, R > 0 such that if
G(x, ξ)≥ R, then

G(x, ξ + τ0 dt)≥ cG(x, ξ)

for each ξ ∈ T ∗K X◦, where the constants c, R are locally uniform in τ0. In particular, given a compact
interval I ⊂ R, the set

{ξ ∈ T ∗K X◦ : G(ξ + τ dt)= 0 for some τ ∈ I }

is a compact subset of T ∗X◦. This also implies that if Q is a stationary quadratic form on T ∗M, then
there exists C > 0 such that

|Q(x, ξ + τ dt)| ≤ C(1+ |G(x, ξ + τ dt)|)

for each ξ ∈ T ∗K X◦ and τ ∈ I .

2C. Killing horizons and surface gravity. Recall the hypotheses on (M, g) described in Section 1A and set

µ= g(T, T ).

The key property of (M, g) is that ∂M is a Killing horizon generated by T. By definition, this means
that ∂M is a null hypersurface which agrees with a connected component of the set {µ= 0, T 6= 0}. Of
course in this case T is nowhere-vanishing. Since orthogonal null vectors are collinear, there is a smooth
function κ : ∂M→ R, called the surface gravity, such that

∇gµ=−2κT (2-4)

on ∂M. The nondegeneracy assumption means that κ > 0, and for simplicity it is assumed that κ is in
fact constant along ∂M.

2D. Properties of the metric. Let N denote the future-pointing unit normal to the level sets of t , and
define the lapse function A > 0 by A−2

= g−1(dt, dt). The shift vector is given by the formula

W = T − AN ,

which by construction is tangent to the level sets of t . Let k denote the induced (positive definite) metric
on X . If (x i ) are local coordinates on X , then

g = (A2
− ki j W i W j ) dt2

− 2ki j W i dx j dt − ki j dx i dx j .
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Inverting this form of the metric gives

g−1
= A−2(∂t −W i ∂i )

2
− ki j ∂i ∂ j . (2-5)

Note that k(W,W )= A2
−µ, and hence W 6= 0 near ∂M.

Now use the condition that ∂M is a Killing horizon generated by T. The covariant form of (2-4) reads

∂iµ= 2κW j ki j . (2-6)

By assumption κ > 0, so W is a nonzero inward-pointing normal to X along ∂X whose length with
respect to k is A.

Introduce geodesic normal coordinates (r, y A) on X near ∂X , so r is the distance to ∂X (uppercase
indices will always range over A = 2, . . . , n). By construction, ∂r is an inward-pointing unit normal
along ∂X , so

W r
= A, W A

= 0 (2-7)

along the boundary. Also by construction, the components of the induced metric in (r, y A)-coordinates
satisfy krr

= 1 and kr A
= 0.

Lemma 2.2. The function r satisfies g−1(dr, dr)=−2κA−1r + r2C∞(M).

Proof. First observe that kAB W AW B
∈ r2C∞(M) by (2-7), and since k(W,W )= A2

−µ,

A2
−µ= (W r )2+ kAB W AW B.

Nowµ and r are both boundary-defining functions, soµ= f r for some f ∈C∞(M), and hence dµ= f dr
on ∂X . But on the boundary 〈dµ〉 = 2κA2 from (2-6), while 〈W, dr〉 =W r

= A from (2-7). Thus

µ= f r = 2κAr + r2C∞(M).

Plugging this back into the equation for k(W,W ) yields

(W r )2 = A2
− 2κAr + r2C∞(M),

and therefore g−1(dr, dr)=−krr
+ A−2(W r )2 =−2κA−1r + r2C∞(M) as desired. �

Observe that the surface gravity depends on the choice of null generator T. Consider the rescaled
vector field

T̂ =
T
2κ
,

which changes the time coordinate by the transformation t̂ = 2κt . If P̂(ω̂) is now defined as in (1-1) but
with t replacing t̂ , then

P(ω)= P̂
(
ω

2κ

)
.

It suffices to prove Theorem 1 for P̂(ω) then, since rescaling the frequency only changes the constants
ω0,C0,C . Dropping the hat notation, it will henceforth be assumed that κ = 1

2 .
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Next, consider a conformal change g = f g̃, where f > 0 is stationary. The operator L can then be
written as

L = f −1�g̃ + (n− 1) f −2
∇g̃ f +W +V. (2-8)

Thus we can write L = f −1 L̃ , where L̃ has the same form as L but with g̃ replacing g, provided that the
vector field ∇g̃ f is tangent to ∂M. But this follows from the stationarity of f , since

g(T,∇g f )= 0

and T is normal to ∂M. Thus it suffices to prove Theorem 1 with L̃ replacing L . Observe that ∂M remains
a Killing horizon generated by T with respect to g̃, and the surface gravity is unchanged.

By making a conformal change and dropping the tilde notation, it will also be assumed that

g−1(dr, dr)=−r. (2-9)

If (τ, ρ, ηA) are dual variables to (t, r, y A), define a stationary quadratic form G0 ∈ C∞(T ∗M) by

G0 =−rρ2
− 2ρτ − k AB

0 ηAηB . (2-10)

Here k0 is the restriction of k to ∂M, which is then extended to a neighborhood of ∂M by requiring that
L∂r k0 = 0. In the next section, the difference G−G0 will be analyzed.

2E. Negligible tensors. We now define a class of tensors which will arise as errors throughout the proof
of Theorem 1′.

Definition 2.3. (1) A stationary 1-tensor Fα ∂α is said to be negligible if its components in a coordinate
system (t, r, y A) satisfy

F t
∈ r C∞(M), Fr

∈ r2C∞(M), F A
∈ r C∞(M).

(2) A stationary 2-tensor Hαβ ∂α ∂β is said to be negligible if its components in a coordinate system
(t, r, y A) satisfy

H t t
∈ C∞(M), H rr

∈ r2C∞(M), H AB
∈ r C∞(M),

H t A
∈ C∞(M), H tr

∈ r C∞(M), H r A
∈ r C∞(M).

Observe that negligibility is invariant under those coordinate changes which leave (t, r) invariant.
Denote by N1 and N2 all C∞(T ∗M) functions of the forms Fα$α and Hαβ$α$β , respectively.

Recall the definition of G0 in (2-10). The notion of negligibility is motivated by the fact that

G = G0+N2.

This follows directly from (2-5), (2-7), and (2-9). We will also repeatedly reference the auxiliary functions

Y = (rρ)2+ τ 2, Z = rρ2
+ k ABηAηB . (2-11)
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It follows immediately from the Cauchy–Schwarz inequality 2ab < δa2
+ b2/δ that there exists C > 0

satisfying

Z ≤ C
(
|G0| +

τ 2

r

)
. (2-12)

The next two lemmas also follow from judicious applications of the Cauchy–Schwarz inequality and the
trivial observation that (rρ)2 = r(rρ2) is small relative to rρ2 for small values of r .

Lemma 2.4. Let F ∈N1. Then, for each γ > 0 there exists Cγ such that

r−1
|τ ||F | ≤ Cγ τ 2

+ γ Z .

Furthermore, ρN1 ⊂N2 and N1 ·N1 ⊂ rN2.

Lemma 2.5. Let H ∈N2. Then, for each γ > 0 there exist Cγ , rγ > 0 such that

|H | ≤ CγY + γ k ABηAηB, |H | ≤ Cγ τ 2
+ γ Z

for r ∈ [0, rγ ].

Now combine Lemma 2.5 with the bound (2-12) and the relation G = G0 +N2. Thus there exists
R > 0 and C > 0 such that

Z ≤ C
(
|G| + τ

2

r

)
(2-13)

for r ∈ [0, R].
The next goal is to compute the Poisson brackets {G, r} and {G, {G, r}}. To begin, observe that

{G0, r} = −2(rρ+ τ), {G0, {G0, r}} = 2(rρ2
+ 2τρ). (2-14)

In order to replace G0 with G we also need to consider the Poisson brackets of functions in N1 and N2.

Lemma 2.6. The Poisson bracket satisfies {N2, r} ⊂N1 and {N2,N1} ⊂N2, as well as {G0,N1} ⊂N2

and {{G0, r},N2} ⊂N2. Therefore,

{G, r} = −2(rρ+ τ)+N1, {G, {G, r}} = 2(rρ2
+ 2τρ)+N2. (2-15)

Furthermore, {G, {G, r}} = −2rρ2
+N2 whenever {G, r} = 0.

Proof. The first part is a direct calculation, while (2-15) follows from the first part and (2-14). The last
statement follows from the inclusion ρN1 ⊂N2. �

3. Carleman estimates in the interior

3A. Statement of result. We now prove a Carleman estimate valid in the interior X◦, but with uniform
control over the exponential weight near ∂X .

Recall that r denotes the distance on X to the boundary with respect to the induced metric. Although
this function is only well-defined in a small neighborhood of ∂X , for notational convenience we will
assume that [0, 3] is contained in the range of r (otherwise it is just a matter of replacing 3 with 3ε for an
appropriate ε > 0).
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Proposition 3.1. Given [a, b] ⊂ (0,∞), there exists r1 ∈ (0, 1) and ϕ1, ϕ2 ∈ C∞(X) such that

• on {r ≤ 1} the functions ϕ1, ϕ2 are equal and depend only on r ,

• ϕ′i (r) < 0 is constant on {r ≤ r1} for i = 1, 2,

with the following property: given a compact set K ⊂ X◦ there exists C > 0 such that

‖(eϕ1/h
+ eϕ2/h)u‖H2

h (X)
≤ Ch−1/2

‖(eϕ1/h
+ eϕ2/h)P(z)u‖L2(X)

for each u ∈ C∞c (K ◦) and ±z ∈ [a, b].

It clearly suffices to prove Proposition 3.1 for the operator L =�g, since the lower-order terms can be
absorbed as errors. In order to prove Theorem 1′, an additional estimate is needed near the boundary; this
is achieved in Section 4 below.

3B. The conjugated operator. Given ϕ ∈ C∞(X), define the conjugated operator

Pϕ(z)= eϕ/h P(z)e−ϕ/h .

Let pϕ(z) denote its semiclassical principal symbol. Define L2(X) with respect to the density A · d SX ,
where recall d SX is the induced volume density on X , and A > 0 is the lapse function as in Section 2C.
Defining Re Pϕ(z) and Im Pϕ(z) with respect to this inner product, integrate by parts to find

‖Pϕ(ω)u‖2L2(X) = 〈Pϕ(ω)Pϕ(ω)
∗u, u〉L2(X)+ i〈[Re Pϕ(ω), Im Pϕ(ω)]u, u〉L2(X) (3-1)

for u ∈ C∞c (X◦). The idea is to find ϕ which satisfies Hörmander’s hypoellipticity condition

{Re pϕ, Im pϕ}> 0 (3-2)

on the characteristic set {pϕ = 0}.
In order to apply the results of Section 2E without introducing additional notation, it is convenient to

work with the dual metric function G directly. Define

Gϕ(x,$)= G(x,$ + i dϕ),

so since we are assuming that τ is real, Re Gϕ(x,$) = G(x,$) − G(x, dϕ), and Im Gϕ(x,$) =
(HGϕ)(x,$). We will then construct ϕ (viewed as a stationary function on M) such that

{Re Gϕ, Im Gϕ}(x,$)= (H 2
Gϕ)(x,$)+ (H

2
Gϕ)(x, dϕ) > 0 (3-3)

on {Gϕ = 0} ∩ {a ≤±τ ≤ b}. This will imply the original hypoellipticity condition from the discussion
surrounding (2-3) and the identifications

pϕ(x, ξ ; z)=−Gϕ(x, ξ − z dt), z =−τ.

Note that the dual variable τ is now playing the role of a rescaled time frequency.
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3C. Constructing the phase in a compact set. To avoid any undue topological restrictions, we will
actually construct two weights ϕ1, ϕ2 in the interior which agree outside a large compact set. This appears
already in [Burq 1998], but we will follow the closely related presentation in [Moschidis 2016; Rodnianski
and Tao 2015].

Lemma 3.2. There exist positive functions ψ1, ψ2 ∈ C∞(X) with the following properties:

(1) ψ1, ψ2 have finitely many nondegenerate critical points, all of which are contained in {r > 2}.

(2) ψ2 >ψ1 on {dψ1 = 0}, and ψ1 >ψ2 on {dψ2 = 0}.

(3) The functions ψ1, ψ2 are equal and depend only on r in {r ≤ 2}. Furthermore ∂rψ1 and ∂rψ2 are
negative in this region.

Proof. Let ζ ∈ C∞({r ≥ 2}) solve the boundary value problem

1k ζ = 1, ζ |{r=2} = 1.

Here 1k is the nonpositive Laplacian with respect to the induced metric k. Since 1k ζ > 0, none of the
critical points of ζ in {r > 2} are local maxima. In addition, since ζ clearly achieves its maximum at each
point of {r = 2}, its outward-pointing normal derivative is strictly positive by Hopf’s lemma [Gilbarg and
Trudinger 1983, Lemma 3.4]. By construction, the outward-pointing unit normal is −∂r ; hence ζ ′ < 0
near {r = 2} (for the remainder of the proof, prime will denote differentiation with respect to r ).

The first step is to replace ζ by a Morse function. We may for instance embed {r ≥ 2} into a compact
manifold X0 without boundary, and approximate an arbitrary smooth extension of ζ to X0 by a Morse
function in the C∞(X0) topology. Restricting to {r ≥ 2} and again calling this replacement ζ , we still
have that ζ has no local maximum in {r > 2} and ζ ′ < 0 near {r = 2}. In particular, all critical points of ζ
are nondegenerate and lie in a compact subset of {r > 2}.

Now fix any function ζ̄ = ζ̄ (r)∈ C∞({r < 3}) such that ζ̄ ′< 0 everywhere, and ζ̄ ≥ ζ on their common
domain of definition {2≤ r < 3}. Choose a cutoff H = H(r) ∈ C∞(X; [0, 1]) such that

H = 1 for r < 2+ γ, supp H ⊂ {r ≤ 2+ 2γ },

and H ′ ≤ 0. Set ψ1 = H ζ̄ + (1− H)ζ , and compute ψ ′1 = H ′(ζ̄ − ζ )+ H ζ̄ ′+ (1− H)ζ ′. If γ > 0 is
sufficiently small, then ψ ′1 < 0 in a neighborhood of supp H , since the sum of the last two terms is strictly
positive on supp H . On the other hand, outside of such a neighborhood the only critical points of ψ1 are
those of ζ .

Let p1, . . . , pn enumerate the necessarily finite number of critical points of ψ1, and choose γ > 0 such
that the closed geodesic balls B(p1, γ ), . . . , B(pn, γ ) are mutually disjoint and B(p j , γ )⊂ {r > 2} for
each j . Since p j is not a local maximum, for each j there is a point q j ∈ B(p j , r) such that

ψ1(q j ) > ψ1(p j ).

Now choose a diffeomorphism g : X → X which is the identity outside the union of the B(q j , r) and
exchanges p j with q j . Then, set ψ2=ψ1◦g. By construction the only critical points of ψ2 are q1, . . . , qn ,
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and furthermore

ψ2(p j ) > ψ1(p j ), ψ1(q j ) > ψ2(q j )

for each j . Since outside of {r > 2} the functions ψ1 = ψ2 depend on r only, the proof is complete,
adding an appropriate constant if necessary to ensure that both functions are positive. �

Let B1 ⊂ {r > 2} be a closed neighborhood of {dψ1 = 0} such that ψ2 >ψ1 on B1, and likewise for B2,
exchanging the roles of ψ1 and ψ2. Also, let Ui ⊂ Bi be additional neighborhoods of {dψi = 0}. Now
define

ϕi = exp(αψi ), i = 1, 2, (3-4)

where α > 0 is a parameter. The following lemma is a standard computation which is included for the
sake of completeness.

Lemma 3.3. Given ε > 0 and τ0 > 0, there exists α0 > 0 such that if α ≥ α0, then

{Re Gϕi , Im Gϕi }> 0

on ({Gϕi = 0} ∩ {r ≥ ε} ∩ {|τ | ≤ τ0}) \ T ∗Ui
M for i = 1, 2.

Proof. The subscript i = 1, 2 will be suppressed. Use the definition (3-4) to compute

HGϕ = αeαψHGψ, H 2
Gϕ = α

2eαψ(HGψ)
2
+αeαψH 2

Gψ.

Assume that Gϕ(x,$) = 0. It follows from Im Gϕ(x,$) = 0 that (HGϕ)(x,$) = 0, and hence
(HGψ)(x,$)= 0. Therefore by (3-3),

{G−G(x, dϕ), HGϕ}(x,$)= αeαψ(H 2
Gψ)(x,$)+α

3e3αψ(H 2
Gψ)(x, dψ)+α4e3αψ

|G(x, dψ)|2.

Next, use the condition (Re Gϕ)(x,$)=0, which implies G(x,$)=α2e2αψG(x, dψ). By the discussion
following Lemma 2.1, there exists C > 0 such that

|(H 2
Gψ)(x,$)| ≤ C(1+ |G(x,$)|)

on {r ≥ ε} ∩ {|τ | ≤ τ0}. Thus on the set {Gϕ = 0} ∩ {r ≥ ε} ∩ {|τ | ≤ τ0},

|αeαψ(H 2
Gψ)(x,$)| + |α

3e3αψ(H 2
Gψ)(x, dψ)| ≤ Cα3e3αψ .

On the other hand, as soon as dψ 6= 0 the third term α4e3αψ
|G(x, dψ)|2 is positive by Lemma 2.1, and

dominates the previous two terms for large α > 0. Since dψ 6= 0 away from B, the proof is complete. �

3D. Constructing the phase outside of a compact set. The most delicate part of the argument is the
construction of the phase outside of a compact set. Since g−1(dr, dr)=−r and ϕ is a function only of r
in this region,

Gϕ = G+ r(ϕ′)2+ iϕ′HGr.



548 ORAN GANNOT

Now compute the Poisson bracket

{Re Gϕ, Im Gϕ} = {G+ r(ϕ′)2, ϕ′HGr}

= ϕ′H 2
Gr +ϕ′′(HGr)2− ((ϕ′)3+ 2r(ϕ′)2ϕ′′) ∂ρHGr.

Assume that ϕ′ < 0, in which case Im Gϕ = 0 is equivalent to HGr = 0. The goal is then to arrange
negativity of the term

H 2
Gr − ((ϕ′)2+ 2rϕ′ϕ′′) ∂ρHGr (3-5)

on the set {Re Gϕ = 0}. Recall the definition of Z from (2-11).

Lemma 3.4. There exists C > 0 and R> 0 such that Z ≤C(r(φ′)2+τ 2/r) on {Re Gϕ = 0}∩{0< r ≤ R}.

Proof. Apply (2-13), using that Re Gϕ = 0 implies G =−r(ϕ′)2. �

Putting everything together, it is now easy compute H 2
Gr on {Gϕ = 0} near the boundary.

Lemma 3.5. For each δ > 0 there exists Rδ > 0 such that∣∣∣H 2
Gr + 2τ 2

r

∣∣∣≤ δ(r(φ′)2+ τ 2

r

)
on {Gϕ = 0} ∩ {0< r ≤ Rδ}.

Proof. From the expression (2-15) for H 2
Gr and Lemma 2.5, find Cγ > 0 and rγ > 0 such that

|H 2
Gr + 2rρ2

|< Cγ |τ |2+ γ Z (3-6)

for r ∈ (0, rγ ). Now multiply HGr by ρ, and use that ρN1 ⊂N2. Therefore by Lemma 2.5, there exist
C ′γ > 0 and r ′γ > 0 such that

|2rρ2
+ 2τρ|< C ′γ |τ |

2
+ γ Z (3-7)

for r ∈ (0, r ′γ ). On the other hand, from HGr = 0, deduce that −τρ = τ 2/r + τr−1N1. By Lemma 2.4,
there exists C ′′γ > 0 such that ∣∣∣2τρ+ 2τ 2

r

∣∣∣< C ′′γ |τ |
2
+ γ Z . (3-8)

Combine (3-6), (3-7), and (3-8) via the triangle inequality with Lemma 3.4 to find that∣∣∣H 2
Gr + 2τ 2

r

∣∣∣< 3γC
(
r(φ′)2+ τ

2

r

)
+ (Cγ +C ′γ +C ′′γ )τ

2

for r ∈ (0,min{rγ , r ′γ , R}); here C > 0 and R > 0 are provided by Lemma 3.4. Finally, choose γ
sufficiently small depending on δ and a corresponding Rδ > 0 such that the conclusion of the lemma
holds for r ∈ (0, Rδ). �

Next, observe that −∂ρHGr = 2r + r2C∞(M). Given a > 0, it follows from (3-5) and Lemma 3.5 that
there exists R1 > 0 such that

(ϕ′)−1
{Re Gϕ, Im Gϕ}<−

3a2

2r
+ 3r(ϕ′)2+ 3r2ϕ′ϕ′′ (3-9)

on {Gϕ = 0} ∩ {0< r ≤ R1} ∩ {|τ | ≥ a}, provided that ϕ′′ ≥ 0.
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Shrinking R1 if necessary, it may be assumed that ψ = ψi as in Lemma 3.2 satisfies ψ ′ < 0 on
[0, R1+ 1]. Recalling that ϕi = exp(αψi ), choose α > 0 satisfying the conclusion of Lemma 3.3 with
ε = R1. By further increasing α, (but keeping a > 0 fixed), it may also be assumed that ϕ = ϕi satisfies

3(ϕ′(R1)R1)
2 > a2, ϕ′′(r)≥−

ϕ′(r)
r

for r ∈ [R1, R1+ 1]. (3-10)

Although ϕ is already defined on all of X , the following lemma allows one to redefine ϕ on {r < R1+ 1}
in such a way that its derivative is controlled; this new extension will still be denoted by ϕ. The idea
comes from [Burq 1998, Section 3.1.2], but of course the form of the operator there is quite different.

Lemma 3.6. There exists an extension of ϕ = ϕi from {r ≥ R1+ 1} to {r < R1+ 1} such that

{Re Gϕ, Im Gϕ}> 0

on {Gϕ = 0} ∩ {0 < r ≤ R1} ∩ {|τ | ≥ a}. Furthermore, there exists r1 ∈ (0, R1) such that ϕ′(r) < 0 is
constant for r ∈ [0, r1].

Proof. Motivated by (3-9), consider the differential equation

−
a2

r
+ 3rk2

+ 3r2kk ′ = 0, k(R1)= ϕ
′(R1) < 0.

This is a Bernoulli equation whose solution is given by

k(r)=−r−1
(
(ϕ′(R1)R1)

2
+

2
3

a2 log
(

r
R1

))1/2

.

The solution is certainly meaningful for r ∈ [R0, R1], where we define R0 by

R0 = R1 exp
(

1
2
−

3
2

(
ϕ′(R1)

R1

a

)2)
.

Note that we indeed have R0 < R1 by the assumption (3-10). The value R0 was chosen such that
k ′(R0)= 0, and it is easy to see that k ′(r) > 0 for r ∈ (R0, R1]. In addition, k(R0) < 0. Let θ = θ(r) be
defined on [0, R1+ 1] by

θ(r)=


ϕ′(r), r ∈ [R1, R1+ 1],
k(r), r ∈ [R0, R1],

k(R0), r ∈ [0, R0].

The function θ is strictly negative, and the piecewise continuous function θ ′ satisfies

−
a2

r
+ 3rθ2

+ 3r2θθ ′ ≤ 0

for r ∈ (0, R1+ 1]. Indeed, by the construction of k and R0, the inequality holds for r ∈ (0, R1), and it is
also true for r ∈ (R1, R1+ 1] by (3-10). Rearranging,

θ ′ ≥
a2

3r3θ
−
θ

r
(3-11)

for r ∈ (0, R1+ 1].
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We now proceed to mollify θ in such a way that the hypotheses of the lemma hold. Let ηε(r) =
(1/ε)η(r/ε) denote a standard mollifier, where η ∈ C∞c ((−1, 1)) has integral one. In addition, choose a
cutoff H = H(r) ∈ C∞(X; [0, 1]) such that

H = 1 for r < R1+
1
4 , H = 0 for r > R1+

1
2 ,

and H ′ ≤ 0. Now define

θε = (1− H)θ + ηε ∗ (Hθ).

Clearly θε is smooth, and θε→ θ uniformly for r ∈ [0, R1+ 1]. Furthermore, there exists ε0 > 0 such
that if ε ∈ (0, ε0), then the following properties are satisfied:

• θε(r) < 0 and θ ′ε(r)≥ 0 for r ∈ [0, R1+ 1].

• θε(r)= ϕ′(r) for r ∈
[
R1+

3
4 , R1+ 1

]
,

• There exists r1 ∈ (0, R0] such that θε(r)= k(R0) for r ∈ [0, r1].

Since θ is continuous and piecewise smooth,

θ ′ε = (1− H)θ ′− H ′θ + ηε ∗ (H ′θ + Hθ ′). (3-12)

Therefore by (3-11),

θ ′ε ≥−H ′θ + ηε ∗ (H ′θ)+ (1− H)
(

a2

3r3θ
−
θ

r

)
+ ηε ∗

(
H
(

a2

3r3θ
−
θ

r

))
for r ∈ (0, R1+1]. The right-hand side converges uniformly to a2/(3r3θ)−θ/r for r ∈ [r1, R1+1] since
the latter function is continuous there. Since θε→ θ uniformly for r ∈ [r1, R1+ 1] as well, there exists
ε ∈ (0, ε0) such that

−
3a2

2r
+ 3rθ2

ε + 3r2θεθ
′

ε ≤ 0

for r ∈ [r1, R1+ 1]. This inequality is also true for r ∈ (0, r1), since θε = k(R0) on that interval. Now
extend ϕ from {r ≥ R1+ 1} to {r < R1+ 1} by the formula

ϕ(r)= ϕ(R1+ 1)+
∫ r

R1+1
θε(s) ds.

This completes the proof according to (3-9) by observing that the ϕ just constructed satisfies ϕ′′(r)≥ 0. �

As a remark, if τ 6= 0, then the hypoellipticity condition also holds along {r = 0}, simply because
Im Gϕ 6= 0 in that case. However, since (x, ξ) 7→ G(x, ξ) is not elliptic along {r = 0}, the hypoellipticity
condition alone, stated here in the semiclassical setting, is not sufficient to prove a Carleman estimate;
see [Hörmander 1963, Section 8.4].

Now that the phases ϕ1, ϕ2 have been constructed globally, we are ready to finish the proof of
Proposition 3.1. Here we come back to the operator Pϕ(z) on X . Fix a norm | · | on the fibers of T ∗X
(for instance using the induced metric k) and let 〈ξ〉 = (1+ |ξ |2)1/2.
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Proof of Proposition 3.1. Recall that we are given [a, b] ⊂ (0,∞) and a compact set K ⊂ X◦. Without
loss, we may assume that K = {r ≥ ε} for some ε > 0. Let Bi ,Ui be as in the discussion preceding
Lemma 3.3. In particular,

{Re pϕi , Im pϕi }> 0

on ({pϕi = 0} ∩ {r ≥ ε/2}) \ T ∗Ui
X . Let χi ∈ C∞c (B◦i ) be such that χi = 1 near Ui . If ϕ = ϕi , then

|pϕ|2+χ2
+ h{Re pϕ, Im pϕ} ≥ h(M |pϕ|2+Mχ2

+{Re pϕ, Im pϕ})

for any M > 0, provided that h> 0 is sufficiently small. On the other hand, the set {Re pϕ = 0}∩{r ≥ ε/2}
is compact by Lemma 2.1, uniformly for ±z ∈ [a, b]. Therefore,

〈ξ〉−4(M |pϕ|2+Mχ2
+{Re pϕ, Im pϕ}) > 0

near T ∗X ∩ {r ≥ ε/2} for M > 0 sufficiently large. By (3-1) and the semiclassical Gårding inequality
applied to eϕi/hu,

h‖eϕi/hu‖2H2
h (X)
≤ C‖eϕi/h P(z)u‖2L2(X)+C‖eϕi/hu‖2L2(Bi )

(3-13)

for u ∈ C∞c (K ◦) and i = 1, 2. Since ϕ1 > ϕ2 on B2 and ϕ2 > ϕ1 on B1, there is γ > 0 such that

eϕi/h
≤ e−γ /h(eϕ1/h

+ eϕ2/h)

on Bi . Now add (3-13) for i = 1, 2 to absorb the integral over B1 ∪ B2 into the left-hand side. �

4. Degenerate Carleman estimates near the boundary

4A. Statement of result. We now complement Proposition 3.1 with a result valid up to the boundary.
Recall that the phases ϕ1, ϕ2 are equal on {r ≤ 1}. Since we are working near ∂X , we will thus drop the
subscript and simply write ϕ.

Proposition 4.1. Given [a, b] ⊂ (0,∞) there exists r0 > 0 and C > 0 such that

‖eϕ/hu‖H1
b,h
≤ C

(
h−1/2

‖eϕ/h P(z)u‖L2 + eϕ(0)/h
‖u‖L2(∂X)

)
(4-1)

for u ∈ C∞c ({r < r0}) and ±z ∈ [a, b].

The Sobolev space appearing on the left-hand side of (4-1) is modeled on the space of vector fields Vb(X)
which are tangent to the boundary; see [Melrose 1993]. Thus u ∈ H 1

b (X) if u ∈ L2(X) and K u ∈ L2(X)
for any K ∈ Vb(X). If u ∈ H 1

b (X) and supp u ⊂ {r < 1}, we can set

‖u‖2H1
b,h
=

∫
X
|u|2+ h2

|r ∂r u|2+ h2k AB(∂Au · ∂B ū) d SX .

Of course away from ∂X this is equivalent to the full H 1
h norm. Observe that it is enough to prove

Proposition 4.1 for the operator L = �g, since the estimate (4-1) is stable under perturbations B ∈
h Diff1

h(X) provided that the vector field part of B is tangent to ∂X . The latter condition is satisfied by
the hypothesis that W is tangent to ∂M made in the Introduction.
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Proposition 4.1 is proved through integration by parts. A convenient way of carrying out this procedure
is by constructing an appropriate multiplier for the wave operator and applying the divergence theorem.
This approach to Carleman estimates for certain geometric operators is partly inspired by [Alexakis and
Shao 2015; Ionescu and Klainerman 2009].

4B. The divergence theorem. We will use the divergence theorem in the time-differentiated form

d
dt

∫
X

g(K , N ) d SX +

∫
∂X

g(K , T ) d S∂X =

∫
X
(divg K )A d SX , (4-2)

valid for any vector field K , see [Warnick 2015, Lemma 3.1] for instance, where recall X = {t = 0}. Thus
the first term on the left-hand side of (4-2) is short-hand for

d
ds

∫
{t=s}

g(K , N ) d SX evaluated at s = 0.

Here d S∂X is the volume density on ∂X induced by k (the latter is Riemannian, and hence the induced
volume density is well-defined).

4C. Stress-energy tensor. Given v ∈ C∞(M), let Q = Q[v] denote the usual stress-energy tensor asso-
ciated to v with components

Qαβ = Re(∂αv · ∂β v̄)− 1
2 g−1(dv, d v̄)gαβ .

This tensor has the property that (∇βQαβ)Sα = Re(�v · Sv̄) for any vector field S. Given such a vector
field and a function w, define the modified vector field J = J [v] with components

Jα = Qα
βSβ + 1

2w · ∂
α(|v|2)− 1

2(∂
αw)|v|2.

The relevant choices in this context are

S =∇gr, w = λ+ 1
2�gr, (4-3)

where λ = λ(r) is an undetermined function to be chosen in Lemma 4.4 below. Also, introduce the
tensor 5 with components

5αβ
=−∇

αβr − λg αβ .

The divergence of J satisfies

Re(�gu · (Sv̄+wv̄))= divg J +5(dv, d v̄)+ 1
2(�gw)|v|

2, (4-4)

which is verified by a direct calculation.

4D. The conjugated operator. Near ∂M, consider the conjugated operator L8 = e8�ge−8, where
8=8(r). Then, L8 has the expression

L8 =�g − 28′S+ ((8′)2−8′′)g−1(dr, dr)−8′�gr

=�g − 28′S+ V0.
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Now g−1(dr, dr)=−r by assumption, and consequently the potential term V0 satisfies

V0 = r(8′′− (8′)2)−8′�gr.

Set V1 = V0− 28′w, multiply L8v by Sv̄+wv̄, and take the real part to find that

Re(L8v · (Sv̄+wv̄))= Re(�gv · (Sv̄+wv̄))− 28′|Sv|2+Re V1v · Sv̄+ V0w|v|
2. (4-5)

It is also convenient to write Re(V1v · Sv̄) as a divergence,

Re(V1v · Sv̄)= 1
2 divg(V1|v|

2S)− 1
2(S(V1)+ V1�gr)|v|2.

In view of this expression, define the vector field K = J + 1
2 V1|v|

2S. For future use, also define the
modified potential V by

V = 1
2(�gw)+ V0w−

1
2 S(V1)−

1
2 V1�gr +8′w2. (4-6)

On one hand, integrating the divergence of K yields boundary integrals; the following special case of this
will suffice.

Lemma 4.2. Let v ∈ C∞(M) be given by v = e−i zt/hu, where u is stationary and z ∈ R. Then,∫
X
(divg K )A d SX =−

∣∣∣ z
h

∣∣∣2 ∫
∂X
|u|2 d S∂X .

Proof. Apply the divergence theorem (4-2). Since z ∈R, the vector field K is stationary, and hence there is
no contribution from the time derivative. As for the integral over ∂M, observe that T is null and S =−T
on the horizon. Since T v =−i(z/h)v, it follows that g(T, K )=−|T v|2 =−|z/h|2|u|2 on ∂M. �

Note that the boundary contribution from Lemma 4.2 has an unfavorable sign, which will account for
the boundary term in Proposition 4.1. On the other hand, the divergence of K can also be expressed in
terms of (4-5).

Lemma 4.3. If 8′ < 0, then the divergence of K satisfies

(2|8′|)−1
|L8v|2 ≥ divg K +5(dv, d v̄)−8′|Sv|2+ V |v|2, (4-7)

where V is given by (4-6).

Proof. Combine (4-5) with (4-4), and then use the Cauchy–Schwarz inequality to find

Re(L8v · (Sv̄+wv̄))≤ (2|8′|)−1
|L8v|2−8′(|Sv|2+w2

|v|2),

recalling that 8′ < 0. �

4E. Pseudoconvexity. To examine positivity properties of 5(dv, d v̄)−8′|Sv|2, we establish a certain
pseudoconvexity condition. A criterion of this type first appeared in work of Alinhac [1984] on unique
continuation, and was also employed in [Ionescu and Klainerman 2009; Alexakis and Shao 2015]. Recall
that the Poisson bracket is related to the Hessian via the formula

{G, {G, f }}(x,$)= 4$α$β∇
αβ f, (4-8)

valid for any f ∈ C∞(M).
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Lemma 4.4. There exists M, c, R0 > 0, and a function λ= λ(r) such that

M{G, r}2−{G, {G, r}}− 4λG ≥ c((rρ)2+ τ 2
+ k ABηAηB) (4-9)

for r ∈ [0, R0].

Proof. Throughout, assume that M ≥ 1. Let r ≤ (4M)−1, and define the function λ by

λ= 1
2 − (1− δ)r M,

where δ > 0 will be chosen sufficiently small. Observe that 1
4 ≤ λ≤

1
2 uniformly in M ≥ 1 for r ≤ (4M)−1.

Denote the left-hand side of (4-9) by 4E , and the corresponding quantity by 4E0 if G is replaced with G0.
Dividing through by 4,

E0 = M((rρ)2+ 2rρτ + τ 2)− 1
2(rρ

2
+ 2ρτ)− λG0. (4-10)

Use the expression for λG0 and the lower bound λ≥ 1
4 on {r ≤ (4M)−1

} to find that

E0 ≥ Mδ((rρ)2+ 2rρτ)+Mτ 2
+

1
4 k AB

0 ηAηB .

Therefore E0 ≥ c(MY + k ABηAηB) if δ > 0 is sufficiently small, where recall Y = (rρ)2+ τ 2.
Now consider the error E − E0 incurred by replacing G with G0. Replacing M{G, r}2 with M{G0, r}2

produces an error
2M{G0, r}{G−G0, r}+M{G−G0, r}2.

Using Cauchy–Schwarz on the first term to absorb a small multiple of M{G0, r}2 into E0 (in other words,
changing the constant c > 0 in the lower bound for E0 above) leaves an overall error of the form

M(N1 ·N1)⊂ (r M)N2.

The factor of r M is harmless since r M ≤ 1
4 ; thus the right-hand side is certainly in N2 uniformly in

M ≥ 1. Using that λ is uniformly bounded in M ≥ 1 on {r ≤ (4M)−1
}, the remaining errors λ(G−G0)

and
{G−G0, {G−G0, r}}+ {G−G0, {G0, r}}+ {G0, {G−G0, r}}

are also in N2 by Lemma 2.6, uniformly in M ≥ 1. Now apply the first bound in Lemma 2.5, choosing
γ > 0 sufficiently small but independent of M so that γ k ABηAηB can be absorbed by ck ABηAηB on the
right-hand side for r ∈ [0, rγ ]. This leaves a large multiple of Y, which is then absorbed by MY on the
right-hand side by taking M sufficiently large. It then suffices to take R0 =min{(4M)−1, rγ }. �

Fix M > 0 such that Lemma 4.4 is valid. This fixes the function λ, and therefore the function w in
(4-3). Lemma 4.3 will be applied with the weight 8= ϕi/h, viewed as a stationary function on M. In
particular, 8′ =−C/h on {r ≤ r1} for some constant C > 0 (recall the statement of Proposition 3.1).

Before proceeding, consider the potential term V from Lemma 4.3. Instead of analyzing its sign, we
more simply note that for F ′ =−C/h one has

V = f0+ h−1 f1+ h−2 f2, (4-11)
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where f0, f1 ∈ C∞(M) and f2 ∈ r C∞(M). The small coefficient of f2 means V can be treated as an error.
To be precise, we have the following positivity result for the bulk terms.

Lemma 4.5. Given a > 0, there exists c, r0 ≥ 0 such that if |z| ≥ a, then

5(dv, d v̄)−8′|Sv|2+ V |v|2 ≥ c(h−2
|u|2+ |r ∂r u|2+ k AB ∂Au ∂B ū) (4-12)

on {r ≤ r0} for each v ∈ C∞(M) of the form v = e−i zt/hu, where u is stationary.

Proof. Since 8′ =−C/h, an inequality of the form (4-12) is true for sufficiently small h > 0 if the term
V |v|2 is dropped from the left-hand side; this follows from Lemma 4.4 and (4-8). On the other hand, for
a potential V satisfying (4-11), there is clearly r0 > 0 such that V |v|2 can be absorbed by ch−2

|v|2 for
r ∈ [0, r0] and h > 0 sufficiently small. �

The proof of Proposition 4.1 is now immediate:

Proof of Proposition 4.1. Given [a, b] ⊂ (0,∞), apply Lemmas 4.2, 4.3, and 4.5 to functions of the form
v = e−i zt/heϕ/hu, where ±z ∈ [a, b] and supp u ⊂ {r < r0}. �

5. Proof of Theorem 1

We prove the equivalent Theorem 1′. Assume that [a, b] ⊂ (0,∞) has been fixed. Choose a cutoff
function χ ∈ C∞(X) such that

suppχ ⊂ {r < r0}, χ = 1 near {r ≤ r0/2},

where r0 is provided by Lemma 4.5. Then, apply Proposition 4.1 to χu and Proposition 3.1 to (1−χ)u,
where u ∈ C∞(X). Since the commutator [P(z), χ] is supported away from ∂X , the error terms can be
absorbed even though the left-hand side is only estimated in the H 1

b,h norm. Bounding eϕ1/h
+ eϕ2/h from

below on the left and from above on the right yields

‖u‖H1
b,h
≤ eC/h(‖P(z)u‖L2 +‖u‖L2(∂X)) (5-1)

for u ∈ C∞(X) and ±z ∈ [a, b].
Next, we remove the boundary term on the right-hand side of (5-1). In order to estimate the boundary

term, we use that L is formally self-adjoint and that W is tangent to ∂M. Apply the divergence theorem
(4-2) to the vector field v̄∇gv− v∇g v̄+ |v|

2
·W with v = e−i zt/hu. Since L is formally self-adjoint, we

obtain Green’s formula

(hz)
∫
∂X
|u|2 d S∂X =− Im

∫
X

P(z)u · ū A d SX .

There is no boundary contribution coming from W since we assumed g(T,W) vanishes on ∂M. Applying
Cauchy–Schwarz to the right-hand side implies

eC/h
‖u‖L2(∂X) ≤ Cεh−1e2C/h

‖P(z)u‖L2 + ε‖u‖L2
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for some Cε and every ±z ∈ [a, b]. Therefore the boundary term on the right-hand side of (5-1) can be
absorbed into the left-hand side by taking ε sufficiently small, at the expense of increasing the constant in
the exponent eC/h . We then have

‖u‖H1
b,h
≤ eC/h

‖P(z)u‖L2 .

The final step is to apply a bound of the form

‖u‖H k+1
h
≤ Ch−1(‖P(z)u‖H k

h
+‖u‖L2) (5-2)

for u ∈ C∞(X) and ±z ∈ [a, b]. The most conceptual way of understanding this estimate is in terms of
the semiclassical trapping present in the interior of M. For an appropriate pseudodifferential complex
absorbing operator Q ∈ 9−∞h (X◦) with compact support in X◦, the nontrapping framework of [Vasy
2013, Section 2.8] shows that P(z)− i Q satisfies the nontrapping bound

‖u‖H k
h
≤ Ch−1

‖(P(z)− i Q)u‖H k
h

for z ∈ [a, b]. Here Q is chosen to be elliptic (with the correct choice of sign) on the trapped set. In this
case Q can be chosen to have compact microsupport in X◦, and hence Q : C−∞(X)→ C∞(X), and in
particular

‖Qu‖H k
h
≤ C‖u‖L2 .

This clearly implies (5-2) for z ∈ [a, b], with a similar argument when −z ∈ [a, b].
This completes the proof of Theorem 1′ in the case when u ∈ C∞(X) and ±z ∈ [a, b]. By perturbation,

this extends to a region ±z ∈ [a, b] + ie−C1/h
[−1, 1]. Simply write

P(z)− P(Re z)= Im z · B(z),

where B(z) ∈ Diff1
h(X) is bounded H k+1

h (X)→ H k
h (X) uniformly for z ∈ [a, b] (although B(z) is not

holomorphic in z). Thus the difference can be absorbed into the left-hand side if |Im z| ≤ e−C1/h for
C1 > 0 sufficiently large. Finally, C∞(X) is dense in X k, see [Dyatlov and Zworski 2018, Lemma E.47],
so (2-2) is valid for u ∈ X k as well, thus completing the proof of Theorem 1′.

6. Logarithmic energy decay

6A. A semigroup formulation. In this section we outline how Corollary 1.2 can be deduced from the
resolvent estimate (1-3) via semigroup theory. The starting point is that the Cauchy problem (1-4) is
associated with a C0 semigroup U (t)= e−i t B on Hk

= H k+1(X)× H k(X) satisfying

‖U (t)‖Hk→Hk ≤ Ceνt (6-1)

for some C, ν > 0 [Warnick 2015, Corollary 3.14]. Recalling the lapse function A = g−1(dt, dt)−1/2,
write

�g = L2+ L1 ∂t + A−2 ∂2
t ,
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where L j is identified with a differential operator on X of order j . Thus L2 = P(0) and L1 = i ∂ωP(0).
More explicitly,

L1 =−2A−2W − divg(A−2W ),

where W is the shift vector from Section 2D. The infinitesimal generator is then given by

−i B =
(

0 1
−A2L2 −A2L1

)
. (6-2)

Indeed, applying U (t) to initial data in C∞c (X◦) shows that −i B is given by (6-2) in the sense of
distributions. Now the resolvent set of B is nonempty, and indeed σ(B)⊂ {Imω≤ ν} by (6-1). Therefore
the domain D(B) of B is characterized as those distributions (v0, v1) ∈Hk such that

v1 ∈ H k+1(X), L2v0+ L1v1 ∈ H k(X).

Since L2 = P(0) and L1 ∈ Diff1(X), this shows that the domain of B is

D(B)= X k
× H k+1(X),

where X k is defined by (1-2). It is also easy to see that the graph norm on D(B) satisfies

‖B(v0, v1)‖Hk +‖(v0, v1)‖Hk ≤ C‖(v0, v1)‖X k×H k+1;

hence the two norms on D(B) are equivalent by the open mapping theorem. Furthermore, the spectrum
of B in

{
Imω >−κ

(
k+ 1

2

)}
coincides with poles of P(ω)−1, and the resolvent estimate (1-3) translates

into the bound ‖(B−ω)−1
‖Hk→Hk ≤ eC |Reω| for ω ∈�.

6B. Logarithmic stabilization of semigroups. The goal now is to apply a theorem on the logarithmic
stabilization of certain bounded semigroups:

Theorem 2 [Burq 1998, Theorem 3, Batty and Duyckaerts 2008, Theorem 1.5]. Let U (t)= e−i t B be a
bounded C0 semigroup on a Hilbert space H. If σ(B)∩R=∅ and ‖(B−ω)−1

‖H→H ≤ eC |ω| for ω ∈ R,
then there exists C > 0 such that

‖U (t)v‖H ≤
C

log(2+ t)
‖(B− i)v‖H

for each v ∈ D(B).

A priori the semigroup U (t) from Section 6A is not uniformly bounded in time on Hk , since the
energy Ek[v](t) does not control the L2 norm of v(t). Instead, observe that span{(1, 0)} ⊂Hk is invariant
under U (t), which therefore descends to a semigroup Û (t) on the quotient space

Ĥk
=Hk/ span{(1, 0)}.

If π :Hk
→ Ĥk is the natural projection, then, the infinitesimal generator of Û (t) is simply the operator B̂

induced by B on π(D(B)). It follows from (1-5) and the Poincaré inequality that Û (t) is a bounded C0

semigroup.
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Since span{(0, 1)} is finite-dimensional, the spectrum of B̂ is contained in the spectrum of B, and
furthermore the bound

‖(B̂−ω)−1
‖Ĥ→Ĥ ≤ eC |Reω|

also holds for ω ∈�. The final step is to show σ(B̂)∩R=∅. If ω ∈R\0, this follows from the fact that
P(ω)−1 has no nonzero real poles [Warnick 2015, Lemma A.1].

Finally, consider the spectrum at ω = 0. If ω0 is a pole of (B − ω)−1 acting on Hk with Imω0 >

−κ
(
k+ 1

2

)
, then its Laurent coefficients all map into C∞(X)× C∞(X) [Vasy 2013, Section 2.6]. Thus

ker B ⊂ X k
× H k+1(X) is in one-to-one correspondence with smooth stationary solutions of �gv = 0.

If �gv = 0 for v smooth and stationary, then (4-2) applied to the vector field v̄∇gv+ v∇g v̄ shows that
g−1(dv, d v̄) = 0 on X . Again using that v is stationary, Lemma 2.1 implies dv = 0, and hence v is
constant. Thus ker B = span{(1, 0)}, so 0 /∈ σ(B̂).

The hypotheses of Theorem 2 are therefore satisfied by Û (t), which yields the bound

‖Û (t) ◦π(v0, v1)‖Ĥk ≤
C

log(2+ t)
‖(B− i)(v0, v1)‖Hk (6-3)

for each (v0, v1) ∈ X k
×H k+1(X). This establishes Corollary 1.2, since the norm on the left-hand side of

(6-3) is equivalent to Ek[v](t)1/2, where v solves the Cauchy problem (1-4) with initial data (v0, v1).

6C. Decay to a constant. To prove Corollary 1.3, consider the Laurent expansion of (B−ω)−1 about
ω = 0. The range of the corresponding residue 50 consists of all generalized eigenvectors, and contains
span{(1, 0)}.

If the algebraic multiplicity of ω = 0 was greater than 1, then there would exist a solution of �gv = 0
of the form

v(t, x)= u(x)+ t,

where u ∈ C∞(M) is stationary. This is compatible with energy boundedness, but not with the logarithmic
energy decay established above. Thus ω = 0 is a simple pole with algebraic multiplicity 1.

By standard spectral theory, 50 is the projection onto span{(1, 0)} along range(B), so

50 = 〈 · , ψ〉(1, 0)

for some ψ ∈ (ker B)′, which we identify with (Hk)′/ range(B∗)= ker(B∗). Furthermore, ψ is uniquely
determined by requiring that 〈(1, 0), ψ〉 = 1. Here the duality between Hk and

(Hk)′ = Ḣ−k−1(X)× Ḣ−k(X)

is induced by the L2(X) inner product described in Section 3B, where Ḣ s(X) is the Sobolev space of
supported distributions in the sense of [Hörmander 1985, Appendix B.2].

The domain of B∗ consists of all w ∈ Ḣ−k−1(X)× Ḣ−k(X) for which there exists v ∈ Ḣ−k−1(X)×
Ḣ−k(X) satisfying (w, Bu)= (v, u) for every u ∈ D(B)= X k

× H k+1(X). Thus

D(B∗)= Ḣ−k−1(X)× Ẋ−k,
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where we define
Ẋ−k
= {u ∈ Ḣ−k(X) : P(0) ∈ Ḣ−k−1(X)}.

The action of B∗ is given by

i B∗ =
(

0 −L2 A2

1 L1 A2

)
,

using that L1 is skew-adjoint.
Now we compute the kernel of B∗, which again by abstract spectral theory is one-dimensional. Let

ψ1= vol(∂X)−1 A−2
∈ L2(X), viewed as an element of Ḣ−k(X) via the L2(X) inner product, and then set

ψ0 =− vol(∂X)−1L1(1) ∈ Ḣ−k−1(X)

in the sense of supported distributions. If we set ψ = (ψ0, ψ1), then B∗ψ = 0. Furthermore,

vol(∂X)〈1, ψ0〉 = 〈L1(1), 1〉 = −
∫

X
divg(A−2W ) A d SX

=−

∫
∂X

A−2g(W, T ) d S∂X =

∫
∂X

d S∂X = vol(∂X),

since g(W, T )=−g(AN , T )=−A2 on ∂X . Thus ψ ∈ ker B∗ has the appropriate normalization.
Finally, let E = range(I −50), which is thus invariant under U (t), and U (t)|E =U (t)(I −50). Since

Hk
= E +̇ span{(1, 0)},

with +̇ denoting a topological direct sum, it follows that E is isomorphic to the quotient Ĥk as a Banach
space. Given (v0, v1) ∈ D(B), define the constant v∞ = 〈v0, ψ0〉+ 〈v1, ψ1〉. Then

‖U (t)(v0− v∞, v1)‖Hk = ‖U (t)(v0, v1)− (v∞, 0)‖Hk ≤ C‖Û (t) ◦π(v0, v1)‖Ĥk ,

which completes the proof of Corollary 1.3.
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Let M be an open Riemann surface and n ≥ 3 be an integer. We prove that on any closed discrete subset
of M one can prescribe the values of a conformal minimal immersion M→ Rn. Our result also ensures
jet-interpolation of given finite order, and hence, in particular, one may in addition prescribe the values of
the generalized Gauss map. Furthermore, the interpolating immersions can be chosen to be complete,
proper into Rn if the prescription of values is proper, and injective if n ≥ 5 and the prescription of values
is injective. We may also prescribe the flux map of the examples.

We also show analogous results for a large family of directed holomorphic immersions M → Cn,
including null curves.

1. Introduction and main results

The theory of interpolation by holomorphic functions is a central topic in complex analysis which began
in the 19th century with the celebrated Weierstrass interpolation theorem [1876]: on a closed discrete
subset of a domain D ⊂ C, one can prescribe the values of a holomorphic function D→ C. Much later,
Florack [1948] extended the Weierstrass theorem to arbitrary open Riemann surfaces. In this paper we
prove an analogue of this classical result for conformal minimal surfaces in Euclidean spaces.

Theorem 1.1 (Weierstrass interpolation theorem for conformal minimal surfaces). Let 3 be a closed
discrete subset of an open Riemann surface M, and let n ≥ 3 be an integer. Every map 3→ Rn extends to
a conformal minimal immersion M→ Rn.

Let M be an open Riemann surface and n ≥ 3 be an integer. By the identity principle it is not possible
to prescribe values of a conformal minimal immersion M→Rn on a subset that is not closed and discrete;
hence the assumptions on 3 in Theorem 1.1 are necessary.

Recall that a conformal immersion X = (X1, . . . , Xn) : M → Rn is minimal if, and only if, X is a
harmonic map. If this is the case then, denoting by ∂ the C-linear part of the exterior differential d = ∂+ ∂̄
on M (here ∂̄ denotes the C-antilinear part of d), the 1-form ∂X = (∂X1, . . . , ∂Xn) with values in Cn is
holomorphic, has no zeros, and satisfies

∑n
j=1(∂X j )

2
= 0 everywhere on M. Therefore, ∂X determines

the Kodaira-type holomorphic map

G X : M→ CPn−1, M 3 p 7→ G X (p)= [∂X1(p) : · · · : ∂Xn(p)],

MSC2010: 53A10, 32E30, 32H02, 53A05.
Keywords: minimal surface, directed holomorphic curve, Weierstrass theorem, Riemann surface, Oka manifold.
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which takes values in the complex hyperquadric

Qn−2 = {[z1 : · · · : zn] ∈ CPn−1
: z2

1+ · · ·+ z2
n = 0} ⊂ CPn−1

and is known as the generalized Gauss map of X . Conversely, every holomorphic map M→Qn−2⊂CPn−1

is the generalized Gauss map of a conformal minimal immersion M → Rn; see [Alarcón, Forstnerič
and López 2017]. The real part <(∂X) is an exact 1-form on M ; the flux map (or simply, the flux) of
X is the group homomorphism FluxX : H1(M;Z)→ Rn of the first homology group of M with integer
coefficients, given by

FluxX (γ )=

∫
γ

=(∂X)=−i
∫
γ

∂X, γ ∈ H1(M;Z),

where = denotes the imaginary part and i=
√
−1.

Conversely, every holomorphic 1-form 8= (φ1, . . . , φn) with values in Cn, vanishing nowhere on M,
satisfying the nullity condition

n∑
j=1

(φj )
2
= 0 everywhere on M, (1-1)

and whose real part <(8) is exact on M, determines a conformal minimal immersion X : M→ Rn with
∂X =8 by the classical Weierstrass formula

X (p)= x0+ 2
∫ p

p0

<(8), p ∈ M, (1-2)

for any fixed base point p0 ∈ M and initial condition X (p0)= x0 ∈ Rn. (We refer to [Osserman 1986]
for a standard reference on minimal surface theory.) This representation formula has greatly influenced
the study of minimal surfaces in Rn by providing powerful tools coming from complex analysis in one
and several variables. In particular, Runge and Mergelyan theorems for open Riemann surfaces (see
[Bishop 1958; Runge 1885; Mergelyan 1951]) and, more recently, the modern Oka theory (we refer
to the monograph [Forstnerič 2017] and to the surveys [Lárusson 2010; Forstnerič and Lárusson 2011;
Forstnerič 2013; Kutzschebauch 2014]) have been exploited in order to develop a uniform approximation
theory for conformal minimal surfaces in Euclidean spaces which is analogous to the one of holomorphic
functions in one complex variable and has found plenty of applications; see [Alarcón and López 2012;
2014; 2015; Alarcón and Forstnerič 2014; Drinovec Drnovšek and Forstnerič 2016; Alarcón, Forstnerič
and López 2016a; 2016b; Forstnerič and Lárusson 2016]. In this paper we extend some of the methods
invented for developing this approximation theory in order to provide also interpolation on closed discrete
subsets of the underlying complex structure.

Theorem 1.1 is a consequence of the following much more general result ensuring not only interpolation
but also jet-interpolation of given finite order, approximation on holomorphically convex compact subsets,
control on the flux, and global properties such as completeness and, under natural assumptions, properness
and injectivity. If A is a compact domain in an open Riemann surface, by a conformal minimal immersion
A→Rn of class C m(A), m ∈ Z+ = {0, 1, 2, . . .}, we mean an immersion A→Rn of class C m(A) whose
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restriction to the interior Å= A \bA is a conformal minimal immersion; we use the same notation if A is
a union of pairwise-disjoint such domains.

Theorem 1.2 (Runge approximation with jet-interpolation for conformal minimal surfaces). Let M be
an open Riemann surface, 3 ⊂ M be a closed discrete subset, and K ⊂ M be a smoothly bounded
compact domain such that M \ K has no relatively compact connected components. For each p ∈3 let
�p ⊂ M be a compact neighborhood of p in M, assume that �p ∩�q = ∅ for all p 6= q ∈ 3, and set
� :=

⋃
p∈3�p. Also let X : K ∪�→Rn (n ≥ 3) be a conformal minimal immersion of class C 1(K ∪�)

and let p : H1(M;Z)→ Rn be a group homomorphism satisfying

FluxX (γ )= p(γ ) for all closed curves γ ⊂ K .

Then, given k ∈ Z+, X may be approximated uniformly on K by complete conformal minimal immersions
X̃ : M→ Rn enjoying the following properties:

(I) X̃ and X have a contact of order k at every point in 3.

(II) FluxX̃ = p.

(III) If the map X |3 :3→ Rn is proper then we can choose X̃ : M→ Rn to be proper.

(IV) If n ≥ 5 and the map X |3 :3→ Rn is injective, then we can choose X̃ : M→ Rn to be injective.

Condition (I) in the above theorem is equivalent to X̃ |3 = X |3 and, if k > 0, the holomorphic 1-form
∂(X̃ − X), assuming values in Cn, has a zero of multiplicity (at least) k at all points in 3; in other
words, the maps X̃ and X have the same k-jet at every point in 3 (see Section 2B). This is reminiscent
of the generalization of the Weierstrass interpolation theorem provided by [Behnke and Stein 1949]
and asserting that on an open Riemann surface one may prescribe values to arbitrary finite order for a
holomorphic function at the points in a given closed discrete subset; see [Napier and Ramachandran 2011,
Theorem 2.15.1]. In particular, choosing k = 1 in Theorem 1.2 we obtain that on a closed discrete subset
of an open Riemann surface M, one can prescribe the values of a conformal minimal immersion M→ Rn

(n ≥ 3) and of its generalized Gauss map M→ Qn−2 ⊂ CPn−1 (see Corollary 7.1). The case 3=∅ in
Theorem 1.2 (that is, when one does not take care of the interpolation) was recently proved by Alarcón,
Forstnerič, and López [2016a, Theorem 1.2].

Note that the assumptions on X |3 in assertions (III) and (IV) in Theorem 1.2 are necessary. We also
point out that if 3 is infinite then there are injective maps 3→ Rn which do not extend to a topological
embedding M→ Rn; hence, in general, one cannot choose the conformal minimal immersion X̃ in (IV)
to be an embedding (i.e., a homeomorphism onto X̃(M) endowed with the subspace topology inherited
from Rn). On the other hand, since proper injective immersions M→Rn are embeddings, we can choose
X̃ in Theorem 1.2 to be a proper conformal minimal embedding provided that n ≥ 5 and X |3 :3→ Rn

is both proper and injective.
Let us now say a word about our methods of proof. Given a holomorphic 1-form θ on M with no zeros

(such a θ exists by the Oka–Grauert principle, see [Grauert 1957; 1958; Forstnerič 2017, Theorem 5.3.1]),
any holomorphic 1-form 8= (φ1, . . . , φn) on M with values in Cn and satisfying the nullity condition
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(1-1) can be written in the form 8= f θ where f : M→ Cn is a holomorphic function taking values in
the null quadric (also called the complex light cone)

A := {z=(z1, . . . , zn) ∈ Cn
: z2

1+ · · ·+ z2
n= 0}. (1-3)

Therefore, in order to prove Theorem 1.1 one needs to find a holomorphic map

f : M→ A \ {0} ⊂ Cn

such that <( f θ) is an exact real 1-form on M and

2
∫ p

p0

<( f θ)= Z(p) for all p ∈3,

where p0 ∈ M \3 is a fixed base point and Z :3→ Rn is the given map. Then the formula (1-2) with
x0 = 0 and 8= f θ provides a conformal minimal immersion satisfying the conclusion of the theorem.
The key in this approach is that the punctured null quadric

A∗ := A \ {0} (1-4)

is a complex homogeneous manifold and hence an Oka manifold [Alarcón and Forstnerič 2014, Exam-
ple 4.4]; thus, there are many holomorphic maps M→ A∗ (see Section 2C for more information).

The proof of Theorem 1.2 is much more involved and elaborate. It requires, in addition to the above,
a subtle use of the Runge–Mergelyan theorem with jet-interpolation for holomorphic maps from open
Riemann surfaces into Oka manifolds (see Theorem 2.6) to achieve condition (I). Additionally, it requires
a conceptually new intrinsic-extrinsic version of the technique from [Jorge and Xavier 1980] to ensure
completeness of the interpolating immersions (see Lemma 5.5 and Section 6B), and, in order to guarantee
assertion (III), we must extend the recently developed methods in [Alarcón and López 2012; Alarcón and
Forstnerič 2014; Alarcón, Forstnerič and López 2016a] for constructing proper minimal surfaces in Rn

with arbitrary complex structure (see Lemma 5.6 and Section 6C). Moreover, in order to prove (IV) we
adapt the transversality approach by Abraham [1963] in Theorem 5.3; see [Alarcón and Forstnerič 2014;
Alarcón, Drinovec Drnovšek, Forstnerič and López 2015; Alarcón, Forstnerič and López 2016a] for its
implementation in minimal surface theory.

The above-described method for constructing conformal minimal surfaces in Rn, based on Oka theory,
was introduced in [Alarcón and Forstnerič 2014] and it also works in the more general framework of
directed holomorphic immersions of open Riemann surfaces into complex Euclidean spaces. Directed
immersions have been the focus of interest in a number of classical geometries such as symplectic, contact,
Lagrangian, totally real, etc.; we refer for instance to the monograph [Gromov 1986], to [Eliashberg and
Mishachev 2002, Chapter 19], and to the introduction of [Alarcón and Forstnerič 2014] for motivation on
this subject. Given a (topologically) closed conical complex subvariety S of Cn (n ≥ 3), a holomorphic
immersion F : M → Cn of an open Riemann surface M into Cn is said to be directed by S, or an
S-immersion, if its complex derivative F ′ with respect to any local holomorphic coordinate on M
assumes values in

S∗ :=S \ {0};
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see [Alarcón and Forstnerič 2014, Definition 2.1]. If A is a compact domain in an open Riemann surface,
or a union of pairwise-disjoint such domains, by an S-immersion A→ Cn of class A m(A) (m ∈ Z+)

we mean an immersion A→ Cn of class C m(A) whose restriction to the interior, Å, is a (holomorphic)
S-immersion. Among others, general existence, approximation, and desingularization results were proved
in [Alarcón and Forstnerič 2014] for certain families of directed holomorphic immersions, including null
curves, i.e., holomorphic curves in Cn which are directed by the null quadric A⊂ Cn; see (1-3). It is well
known that the real and imaginary parts of a null curve M → Cn are conformal minimal immersions
M → Rn whose flux map vanishes everywhere on H1(M;Z); conversely, every conformal minimal
immersion M → Rn is locally, on every simply connected domain of M, the real part of a null curve
M→ Cn; see [Osserman 1986, Chapter 4].

The second main theorem of this paper is an analogue of Theorem 1.2 for a wide family of directed
holomorphic curves in Cn which includes null curves. Given integers 1≤ j ≤ n we denote by πj :C

n
→C

the coordinate projection πj (z1, . . . , zn)= z j .

Theorem 1.3 (Runge approximation with jet-interpolation for directed holomorphic curves). Let S be
an irreducible closed conical complex subvariety of Cn (n ≥ 3) which is contained in no hyperplane and
such that S∗ =S \ {0} is smooth and an Oka manifold. Let M, 3, K , and � be as in Theorem 1.2 and let
F : K ∪�→ Cn be an S-immersion of class A 1(K ∪�). Then, given k ∈ N, F may be approximated
uniformly on K by S-immersions F̃ : M→ Cn such that F̃ − F has a zero of multiplicity (at least) k at
every point in 3. Moreover, if the map F |3 :3→ Cn is injective, then we can choose F̃ : M→ Cn to be
injective.

Furthermore:

(I) If S ∩ {z1 = 1} is an Oka manifold and π1 : S→ C admits a local holomorphic section h near
ζ = 0 ∈ C with h(0) 6= 0, then we may choose F̃ to be complete.

(II) If S∩ {z j = 1} is an Oka manifold and πj : S→ C admits a local holomorphic section h j near
ζ = 0 ∈ C with h j (0) 6= 0 for all j ∈ {1, . . . , n}, and if the map F |3 : 3→ Cn is proper, then we
may choose F̃ : M→ Cn to be proper.

In particular, if we are given S, M, and 3 as in Theorem 1.3 then every map 3→ Cn extends to an
S-immersion M→ Cn. When the subset 3⊂ M is empty, the above theorem except for assertion (I) is
implied by [Alarcón and Forstnerič 2014, Theorems 7.2 and 8.1]. It is perhaps worth mentioning in this
respect that, if S is as in assertion (I) and F |3 :3→ Cn is not proper, Theorem 1.3 provides complete
S-immersions M→ Cn which are not proper maps; these seem to be the first known examples of such
apart from the case when S is the null quadric. Let us emphasize that the particular geometry of A allows
for the construction of complete null holomorphic curves in Cn and minimal surfaces in Rn with a number
of different asymptotic behaviors (other than proper in space); see [Alarcón and López 2013a; Alarcón
and Forstnerič 2015; Alarcón, Drinovec Drnovšek, Forstnerič and López 2015; ≥ 2019; Alarcón and
Castro-Infantes 2018].

Most of the technical parts in the proofs of Theorems 1.2 and 1.3 will be furnished by a general result
concerning periods of holomorphic 1-forms with values in a closed conical complex subvariety of Cn
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(see Theorem 4.4 for a precise statement). With this at hand, the proofs of Theorems 1.2 and 1.3 are
very similar; this is why, with brevity of exposition in mind, we shall spell out in detail the proof of
Theorem 1.3 (which is, in some sense, more general) but only briefly sketch the one of Theorem 1.2.

This paper is, to the best of our knowledge, the first contribution to the theory of interpolation by
conformal minimal surfaces and directed holomorphic curves in a Euclidean space.

Organization of the paper. In Section 2 we state some notation and the preliminaries which are needed
throughout the paper; we also show an observation which is crucial to ensure the jet-interpolation conditions
in Theorems 1.2 and 1.3 (see Lemma 2.2). Section 3 is devoted to the proof of several preliminary results
on the existence of period-dominating sprays of maps into conical complex subvarieties S∗ of Cn; we use
them in Section 4 to prove the noncritical case of a Mergelyan theorem with jet-interpolation and control
on the periods for holomorphic maps into such a S∗ being Oka (see Lemma 4.2), and the main technical
result of the paper (Theorem 4.4). In Section 5 we prove a general position theorem, a completeness
lemma, and a properness lemma for S-immersions, which enable us to complete the proof of Theorem 1.3
in Section 6. Finally, Section 7 is devoted to explaining how the methods in the proof of Theorem 1.3 can
be adapted to prove Theorem 1.2.

2. Preliminaries

We define i=
√
−1, Z+ = {0, 1, 2, . . .}, and R+ = [0,+∞). Given an integer n ∈ N= {1, 2, 3, . . .} and

K ∈ {R,C}, we denote by | · |, dist( · , · ), and length( · ) the Euclidean norm, distance, and length in Kn,
respectively. If K is a compact topological space and f : K → Kn is a continuous map, we denote by

‖ f ‖0,K :=max{| f (p)| : p ∈ K }

the maximum norm of f on K . Likewise, given x = (x1, . . . , xn) in Kn we define

|x |∞ :=max{|x1|, . . . , |xn|} and ‖ f ‖∞,K :=max{| f (p)|∞ : p ∈ K }.

If K is a subset of a Riemann surface M, then for any r ∈ Z+ we shall denote by ‖ f ‖r,K the standard
C r norm of a function f : K → Kn of class C r (K ), where the derivatives are measured with respect to a
Riemannian metric on M (the precise choice of the metric will not be important).

Given a smooth connected surface S (possibly with nonempty boundary) and a smooth immersion
X : S→ Kn, we denote by distX : S× S→ R+ the Riemannian distance induced on S by the Euclidean
metric of Kn via X ; i.e.,

distX (p, q) := inf{length(X (γ )) : γ ⊂ S an arc connecting p and q}, p, q ∈ S.

Likewise, if K ⊂ S is a relatively compact subset we define

distX (p, K ) := inf{distX (p, q) : q ∈ K }, p ∈ S.

An immersed open surface X : S→Kn (n ≥ 3) is said to be complete if the image by X of any proper
path γ : [0, 1)→ S has infinite Euclidean length; equivalently, if the Riemannian metric on S induced by
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distX is complete in the classical sense. On the other hand, X : S→ Kn is said to be proper if the image
by X of every proper path γ : [0, 1)→ S is a divergent path in Kn.

2A. Riemann surfaces and spaces of maps. Throughout the paper every Riemann surface will be con-
sidered connected if the contrary is not indicated.

Let M be an open Riemann surface. Given a subset A ⊂ M we denote by O(A) the space of functions
A→ C which are holomorphic on an unspecified open neighborhood of A in M. If A is a smoothly
bounded compact domain, or a union of pairwise-disjoint such domains, and r ∈Z+, we denote by A r (A)
the space of C r functions A→ C which are holomorphic on the interior Å = A \ bA; for simplicity
we write A (A) for A 0(A). Likewise, we define the spaces O(A, Z) and A r (A, Z) of maps A→ Z
to any complex manifold Z . Thus, if S is a closed conical complex subvariety of Cn (n ≥ 3), by an
S-immersion A→ Cn of class A r (A) we simply mean an immersion of class A r (A) whose restriction
to Å is an S-immersion. In the same way, a conformal minimal immersion A→ Rn of class C r (A) will
be nothing but an immersion of class C r (A) whose restriction to Å is a conformal minimal immersion.

By a compact bordered Riemann surface we mean a compact Riemann surface M with nonempty
boundary bM consisting of finitely many pairwise-disjoint smooth Jordan curves. The interior M̊=M\bM
of M is called a bordered Riemann surface. It is well known that every compact bordered Riemann
surface M is diffeomorphic to a smoothly bounded compact domain in an open Riemann surface M̃. The
spaces A r (M) and A r (M, Z), for an integer r ∈ Z+ and a complex manifold Z , are defined as above.

A compact subset K in an open Riemann surface M is said to be Runge (also called holomorphically
convex or O(M)-convex) if every continuous function K → C, holomorphic in the interior K̊ , may
be approximated uniformly on K by holomorphic functions on M ; by the Runge–Mergelyan theorem
[Runge 1885; Mergelyan 1951; Bishop 1958] this is equivalent to M \ K having no relatively compact
connected components in M. The following particular kind of Runge subsets will play a crucial role in
our argumentation.

Definition 2.1. A nonempty compact subset S of an open Riemann surface M is called admissible if
it is Runge in M and of the form S = K ∪0, where K is the union of finitely many pairwise-disjoint
smoothly bounded compact domains in M and 0 := S \ K is a finite union of pairwise-disjoint smooth
Jordan arcs and closed Jordan curves meeting K only in their endpoints (or not at all) and such that their
intersections with the boundary bK of K are transverse.

If C and C ′ are oriented arcs in M, and the initial point of C ′ is the final one of C , we denote by C ∗C ′

the product of C and C ′, i.e., the oriented arc C ∪C ′ ⊂ M with initial point the initial point of C and
final point the final point of C ′.

Every open connected Riemann surface M contains a 1-dimensional embedded CW-complex C ⊂ M
such that there is a strong deformation retraction ρt : M→ M (t ∈ [0, 1]); i.e., ρ0 = IdM , ρt |C = Id|C for
all t ∈ [0, 1], and ρ1(M)= C . It follows that the complement M \C has no relatively compact connected
components in M and hence C is Runge. Such a CW-complex C ⊂ M represents the topology of M
and can be obtained, for instance, as the Morse complex of a Morse strongly subharmonic exhaustion
function on M. Recall that the first homology group satisfies H1(M;Z)= Zl for some l ∈ Z+ ∪ {∞}. It
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is not difficult to see that, if M is finitely connected (for instance, if it is a bordered Riemann surface),
i.e., if l ∈ Z+, then, given a point p0 ∈ M there is a CW-complex C ⊂ M as above which is a bouquet of
l circles with base point p0; i.e., {p0} is the only 0-cell of C , and C has l 1-cells C1, . . . ,Cl which are
closed Jordan curves on M that only meet at p0.

2B. Jets. Let M and N be smooth manifolds without boundary, x0 ∈M be a point, and f, g :M→N
be smooth maps. The maps f and g have, by definition, a contact of order k ∈ Z+ at the point x0 if their
Taylor series at this point coincide up to the order k. An equivalence class of maps M→N which have a
contact of order k at the point x0 is called a k-jet ; see, e.g., [Michor 1980, §1] for a basic reference. Recall
that the Taylor series at x0 of a smooth map f :M→N does not depend on the choice of coordinate
charts on M and N centered at x0 and f (x0) respectively. Therefore, fixing such a pair of coordinates,
we can identify the k-jet of f at x0, which is usually denoted by j k

x0
( f ), with the set of derivatives of f

at x0 of order up to and including k; under this identification of jets we have

j0
x0
( f )= f (x0), j1

x0
( f )=

(
f (x0),

∂ f
∂x

∣∣∣∣
x0

)
, j2

x0
( f )=

(
f (x0),

∂ f
∂x

∣∣∣∣
x0

,
∂2 f
∂x2

∣∣∣∣
x0

)
, . . .

Analogously, if M and N are complex manifolds then we consider the complex (holomorphic) derivatives
with respect to some local holomorphic coordinates. It is clear that the definition of the k-jet of a map at
a point is local and hence it can be made for germs of maps at the point. Moreover, if a pair of maps have
the same k-jet at a point then, obviously, they also have the same k ′-jet at the point for all k ′ ∈ Z+, k ′ ≤ k.

In particular, if � is a neighborhood of a point p in an open Riemann surface M and f, g :�→ Cn

are holomorphic functions, then they have a contact of order k ∈ Z+, or the same k-jet, at the point p if,
and only if, f − g has a zero of multiplicity (at least) k+ 1 at p; if this is the case then for any distance
function d : M ×M→ R+ on M (not necessarily conformal) we have

| f − g|(q)= O(d(q, p)k+1) as q→ p. (2-1)

If f, g : �→ Rn are harmonic maps (as, for instance, conformal minimal immersions), then we
say that they have a contact of order k ∈ Z+, or the same k-jet, at the point p if, assuming that � is
simply connected, there are harmonic conjugates f̃ of f and g̃ of g such that the holomorphic functions
f + i f̃ , g+ ig̃ :�→ Cn have a contact of order k at p; this is equivalent to f (p)= g(p) and, if k > 0,
the holomorphic 1-form ∂( f − g) has a zero of multiplicity (at least) k at p. Again, if such a pair of
maps f and g have the same k-jet at the point p ∈� then (2-1) formally holds.

The following observation will be crucial in order to ensure the jet-interpolation in the main results of
this paper.

Lemma 2.2. Let V be a holomorphic vector field in Cn (n ∈ N), vanishing at 0 ∈ Cn, and let φs denote
the flow of V for small values of time s ∈ C. Given an open Riemann surface M, a point p ∈ M, and
holomorphic functions f : M→ Cn and h : M→ C such that h has a zero of multiplicity k+ 1 at p for
some k ∈ Z+, then the holomorphic map

q 7→ f̃ (q)= φh(q)( f (q)),
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which is defined on a neighborhood of p in M, has a contact of order k with f at the point p; that is, f
and f̃ have the same k-jet at p.

Proof. The flow φs of the vector field V at a point z ∈ Cn may be expressed as

φs(z)= z+ sV (z)+ O(|s|2);

see, e.g., [Abraham, Marsden and Ratiu 1988, §4.1]. Since h has a zero of multiplicity k+ 1 at p, the
conclusion of the lemma follows. �

We shall use the following notation in several places throughout the paper.

Notation 2.3. Let n ≥ 3 be an integer and S be a (topologically) closed conical complex subvariety
of Cn; by conical we mean that tS =S for all t ∈ C∗ = C \ {0}. We also assume that S is contained
in no hyperplane of Cn, and S∗ :=S \ {0} is smooth and connected (hence irreducible). We also fix a
large integer N ≥ n and holomorphic vector fields V1, . . . , VN on Cn which are tangential to S along S,
vanish at 0 ∈S, and satisfy

span{V1(z), . . . , VN (z)} = TzS for all z ∈S∗. (2-2)

(Such vector fields exist by Cartan’s theorem A [1953].)

Let φ j
s denote the flow of the vector field Vj (2-3)

for j = 1, . . . , N and small values of the time s ∈ C.

Remark 2.4. Throughout the paper we shall say that a holomorphic function has a zero of multiplicity k ∈
N at a point to mean that the function has a zero of multiplicity at least k at the point. When the multiplicity
of the zero is exactly k, it will be explicitly mentioned. We will follow the same pattern when claiming
that two functions have the same k-jet or a contact of order k at a point.

2C. Oka manifolds. We recall the notion of Oka manifold and state some of the properties of such
manifolds which will be exploited in our argumentation. A comprehensive treatment of Oka theory can be
found in [Forstnerič 2017]; for a briefer introduction to the topic we refer to [Lárusson 2010; Forstnerič
and Lárusson 2011; Forstnerič 2013; Kutzschebauch 2014].

Definition 2.5. A complex manifold Z is said to be an Oka manifold if every holomorphic map from a
neighborhood of a compact convex set K ⊂ CN (N ∈ N) to Z can be approximated uniformly on K by
entire maps CN

→ Z .

The central result of Oka theory is that maps M → Z from a Stein manifold (as, for instance, an
open Riemann surface) to an Oka manifold satisfy all forms of the Oka principle; see [Forstnerič 2006].
In this paper we shall use as a fundamental tool the following version of the Mergelyan theorem with
jet-interpolation which trivially follows from [Forstnerič 2017, Theorems 3.8.1 and 5.4.4]; see also
[Forstnerič 2004, Theorem 3.2; Hörmander and Wermer 1968, Theorem 4.1].
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Theorem 2.6. Let Z be an Oka manifold, let M be an open Riemann surface, and let S = K ∪0 ⊂ M be
an admissible subset in the sense of Definition 2.1. Given a finite subset 3⊂ K̊ and an integer k ∈ Z+,
every continuous map f : S→ Z which is holomorphic on K̊ can be approximated uniformly on S by
holomorphic maps M→ Z having the same k-jet as f at all points in 3.

As we emphasized in the Introduction, the punctured null quadric A∗⊂Cn, see (1-3) and (1-4), directing
minimal surfaces in Rn and null curves in Cn is an Oka manifold for all n≥ 3; see [Alarcón and Forstnerič
2014, Example 4.4 Forstnerič 2017, Example 5.6.2]. Furthermore, for each j ∈ {1, . . . , n} the complex
manifold A∩ {z j = 1} is an embedded copy of the complex (n−2)-sphere

CSn−2
= {w=(w1, . . . , wn−1) ∈ Cn−1

: w2
1 + · · ·+w

2
n−1=1}.

Observe that CSn−2 is homogeneous relative to the complex Lie group SO(n− 1,C), and hence it is an
Oka manifold; see [Grauert 1957; Forstnerič 2017, Proposition 5.6.1]. For a more detailed discussion,
see [Forstnerič 2017, Example 6.15.7; Alarcón and Forstnerič 2014, Example 7.8]. Moreover, choosing
k ∈ {1, . . . , n}, k 6= j , the map h = (h1, . . . , hn) : C→ A given by

h j (ζ )= ζ, hk(ζ )=
√

1− ζ 2, hl(ζ )=
i

√
n− 2

for all l 6= j, k, ζ ∈ C,

is a local holomorphic section near ζ = 0∈C of the coordinate projection πj :A→C, πj (z1, . . . , zn)= z j ,
which satisfies h(0) 6= 0. Thus, the null quadric A⊂Cn meets the requirements in Theorem 1.3, including
the ones in assertions (I) and (II), for all n ≥ 3.

3. Paths in closed conical complex subvarieties of Cn

We now use Notation 2.3; in particular, S ⊂ Cn (n ≥ 3) denotes a closed conical complex subvariety
which is contained in no hyperplane of Cn and such that S∗ =S\ {0} is smooth and connected. We need
the following:

Definition 3.1. Let Q be a topological space and n ≥ 3 be an integer. A continuous map f : Q→ Cn is
said to be flat if f (Q)⊂ Cz0 = {ζ z0 : ζ ∈ C} for some z0 ∈ Cn , and nonflat otherwise. The map f is said
to be nowhere flat if f |A : A→ Cn is nonflat for all open subsets ∅ 6= A ⊂ Q.

It is easily seen that a continuous map f : [0, 1] →S∗ ⊂ Cn is nonflat if, and only if,

span{T f (t)S : t ∈ [0, 1]} = Cn.

3A. Paths on I := [0, 1]. We prove a couple of technical results for paths [0, 1] →S∗ which pave the
way to the construction of period-dominating sprays of holomorphic maps of an open Riemann surface
into S∗ (see Lemma 3.4 in the next subsection).

Lemma 3.2. Let f : I→S∗ and ϑ : I→C∗ be continuous maps. Let ∅ 6= I ′⊂ I be a closed subinterval
and assume that f is nowhere flat on I ′. There exist continuous functions h1, . . . , hN : I → C, with
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support on I ′, and a neighborhood U of 0 ∈ CN such that the period map P :U → Cn given by

P(ζ )=
∫ 1

0
φ1
ζ1h1(t) ◦ · · · ◦φ

N
ζN hN (t)( f (t))ϑ(t) dt, ζ = (ζ1, . . . , ζN ) ∈U,

see (2-3), is well-defined and has maximal rank equal to n at ζ = 0.

Proof. We choose continuous functions h1, . . . , hN : I → C, with support on I ′, which will be specified
later. Then we define for a small neighborhood U of 0 ∈ CN a map

8 :U × I →S

given by
8(ζ, t) := φ1

ζ1h1(t) ◦ · · · ◦φ
N
ζN hN (t)( f (t)), ζ = (ζ1, . . . , ζN ) ∈U, t ∈ I.

Note that 8(0, t)= f (t) for all t ∈ I ; recall that each Vj vanishes at 0 for all j ∈ {1, . . . , N }. Thus, since
f (I )⊂S∗ is compact, we may assume that U is small enough so that 8 is well-defined and takes values
in S∗. Furthermore, 8 is holomorphic in the variable ζ and its derivative with respect to ζj is

∂8(ζ, t)
∂ζj

∣∣∣∣
ζ=0
= h j (t)Vj ( f (t)), j = 1, . . . , N . (3-1)

(See (2-2) and (2-3).) Thus, the period map P :U → Cn in the statement of the lemma can be written as

P(ζ )=
∫ 1

0
8(ζ, t)ϑ(t) dt, ζ ∈U.

Observe that P is holomorphic and, in view of (3-1),

∂P(ζ )
∂ζj

∣∣∣∣
ζ=0
=

∫ 1

0
h j (t)Vj ( f (t))ϑ(t) dt, j = 1, . . . , N . (3-2)

Since f is nowhere flat on I ′ (see Definition 3.1), (2-2) guarantees the existence of distinct points
t1, . . . , tN ∈ I ′ such that

span{V1( f (t1)), . . . , VN ( f (tN ))} = Cn. (3-3)

Now we specify the values of the function h j in I ′ ( j = 1, . . . , N ); recall that supp(h j ) ⊂ I ′. We
choose h j with support in a small neighborhood [tj − ε, tj + ε] of tj in I ′, for some ε > 0, and such that∫ 1

0
h j (t) dt =

∫ tj+ε

tj−ε

h j (t) dt = 1.

Then, for small ε > 0, we have∫ 1

0
h j (t)Vj ( f (t))ϑ(t) dt ≈ Vj ( f (tj ))ϑ(tj ), j = 1, . . . , N .

Since ϑ(t) 6= 0, (3-3) ensures that the vectors on the right side of the above display span Cn, and hence
the same is true for the vectors on the left side provided that ε > 0 is chosen sufficiently small. This
concludes the proof in view of (3-2). �
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Lemma 3.3. Let ϑ : I→C∗ be a continuous map. Given points u0, u1 ∈S∗ and x ∈Cn, and a domain �
in Cn containing 0 and x , there exists a continuous function g : I → S∗ which is nowhere flat on a
neighborhood of 0 in I and such that:

(I) g(0)= u0 and g(1)= u1.

(II)
∫ s

0 g(t)ϑ(t) dt ∈� for all s ∈ I .

(III)
∫ 1

0 g(t)ϑ(t) dt = x.

Proof. Set I0 :=
[
0, 1

2

]
and choose any continuous nowhere-flat map g0 : I0→S∗ such that

g0(0)= u0,

∫ s

0
g0(t)ϑ(t) dt ∈� for all s ∈ I0. (3-4)

Such a map can be constructed as follows. For any 0< δ < 1
2 let fδ : I0→ [δ, 1] be the continuous map

given by fδ(s) = 1− ((1− δ)/δ)s for s ∈ [0, δ] and fδ(s) = δ for s ∈
[
δ, 1

2

]
. Choose any continuous

nowhere-flat map g̃0 : I0→S∗ with g̃0(0)= u0. Then g0 := fδ g̃0 : I0→S∗ satisfies the requirements
for any δ > 0 sufficiently small.

Let ∅ 6= I ′ ⊂ I̊0 be a closed subinterval. Thus, Lemma 3.2 applied to g0 provides continuous functions
h1, . . . , hN : I→C, with support on I ′, and a neighborhood U of the origin in CN, such that the period map

U 3 ζ 7→ P(ζ )=
∫ 1/2

0
φ1
ζ1h1(t) ◦ · · · ◦φ

N
ζN hN (t)(g0(t))ϑ(t) dt, ζ = (ζ1, . . . , ζN ) ∈ CN ,

has maximal rank equal to n at ζ = 0. (See (2-3).) Set

8(ζ, t) := φ1
ζ1h1(t) ◦ · · · ◦φ

N
ζN hN (t)(g0(t)) ∈S, ζ ∈U, t ∈ I0,

and observe that 8(0, t)= g0(t) ∈S∗ for all t ∈ I0. Then, up to shrinking U if necessary, we have:

(a) 8(U × I0)⊂S∗ and P(U ) contains a ball in Cn with radius ε > 0 centered at

P(0)=
∫ 1/2

0
g0(t)ϑ(t) dt ∈�;

see (3-4).

(b) 8(ζ, t)= g0(t) for all (ζ, t) ∈U ×
{
0, 1

2

}
; recall that h j (0)= h j

( 1
2

)
= 0 for all j = 1, . . . , N.

(c)
∫ s

0 8(ζ, t)ϑ(t) dt ∈� for all ζ ∈U and s ∈ I0; see (3-4).

To conclude the proof we adapt the argument in [Alarcón and Forstnerič 2014, Lemma 7.3]. Since the
convex hull of S is Cn, see [Alarcón and Forstnerič 2014, Lemma 3.1], we may construct a polygonal path
0 ⊂� connecting P(0) and x ; to be more precise, 0 =

⋃m
j=1 0j where each 0j is a segment of the form

0j =wj+[0, 1]z j for somewj ∈Cn and z j ∈S∗, the initial pointw1 of01 is P(0), the final pointwm+zm of
0m is x , and the initial pointwj of 0j agrees with the final onewj−1+z j−1 of 0j−1 for all j=2, . . . ,m. Set

Ij :=

[
1
2
+

j − 1
2m

,
1
2
+

j
2m

]
, j = 1, . . . ,m,
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and observe that
⋃m

j=1 Ij =
[ 1

2 , 1
]
. For any number 0< λ < 1/(4m), set

I λj :=
[

1
2
+

j − 1
2m
+ λ,

1
2
+

j
2m
− λ

]
⊂ Ij , j = 1, . . . ,m.

Without loss of generality we may assume that m ∈ N is large enough so that

bj (λ) :=

∫
I λj

ϑ(t) dt 6= 0 for all 0< λ < 1
4m

, j = 1, . . . ,m; (3-5)

recall that ϑ has no zeros. Fix a number 0 < λ < 1/(4m) and set bj := bj (λ). Pick a constant
κ >max{|u0|, |u1|, |z1/b1|, . . . , |zm/bm |}. Also choose numbers 0< τ < µ < λ, which will be specified
later, and consider a continuous map g1 :

[ 1
2 , 1

]
→S∗ satisfying the following conditions:

(d) g1
( 1

2

)
= g0

( 1
2

)
and g1(1)= u1.

(e) g1(t)= z j/bj for all t ∈ I λj .

(f) |g1(t)| ≤ κ for all t ∈
[ 1

2 , 1
]
.

(g) |g1(t)| ≤ τ for all t ∈ I τj \ Iµj .

If τ > 0 is chosen sufficiently small, and if µ is close enough to λ, then (e), (f), (g), and (3-5) ensure that:

(h) The image of the map
[ 1

2 , 1
]
3 s 7→ P(0)+

∫ s
1/2 g1(t)ϑ(t) dt is close enough to 0 in the Hausdorff

distance so that it lies in �.

(i)
∣∣P(0)+ ∫ 1

1/2 g1(t)ϑ(t) dt − x
∣∣< ε, where ε > 0 is the number appearing in (a).

For ζ ∈U, let gζ : I→S∗ denote the function given by gζ (t)=8(ζ, t) for t ∈
[
0, 1

2

]
and gζ (t)= g1(t)

for t ∈
[ 1

2 , 1
]
. Properties (a) and (i) guarantee the existence of ζ0 ∈U such that∫ 1/2

0
gζ0(t)ϑ(t) dt = x −

∫ 1

1/2
g1(t)ϑ(t) dt,

and so
∫ 1

0 gζ0(t)ϑ(t) dt = x . Thus g := gζ0 meets (III). By (3-4), (b), and (d), we have that g is continuous
and satisfies (I), whereas (c) and (h) ensure (II). �

3B. Paths on open Riemann surfaces. Let us now state and prove the main result of this section; recall
that we are using Notation 2.3.

Lemma 3.4. Let M be an open Riemann surface and let θ be a holomorphic 1-form vanishing nowhere
on M. Let p0 ∈ M be a point, C1, . . . ,Cl (l ∈ N) be a family of oriented Jordan arcs or closed curves
in M that only meet at p0 (i.e., Ci ∩C j = {p0} for all i 6= j ∈ {1, . . . , l}) and such that C :=

⋃l
i=1 Ci

is Runge in M. Also let f : C → S∗ be a continuous map and assume that for each i ∈ {1, . . . , l}
there exists a subarc C̃i ⊂ Ci such that f is nowhere flat on C̃i . Then there exist continuous functions
hi,1, . . . , hi,N : C→ C, with support on C̃i , i = 1, . . . , l, and a neighborhood U of 0 ∈ (CN )l such that
the period map U → (Cn)l whose i-th component U → Cn is given by

U 3 ζ 7→
∫

Ci

φ1
ζ 1

1 h1,1(p)
◦ · · · ◦φN

ζ 1
N h1,N (p)

◦ · · · ◦φ1
ζ l

1hl,1(p)
◦ · · · ◦φN

ζ l
N hl,N (p)

( f (p))θ,
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see (2-2) and (2-3), where

ζ = (ζ 1, . . . , ζ l) ∈ (CN )l, ζ i
= (ζ i

1, . . . , ζ
i
N ) ∈ CN ,

are holomorphic coordinates, is well-defined and has maximal rank equal to nl at ζ = 0.

Proof. Consider the period map P = (P1, . . . ,Pl) : C (C,Cn)→ (Cn)l whose i-th component is defined
by

C (C,Cn) 3 g 7→ Pi (g)=
∫

Ci

gθ, i = 1, . . . , l. (3-6)

For each i = 1, . . . , l, let γi : I = [0, 1]→Ci be a smooth parametrization of Ci such that γi (0)= p0. If
Ci is closed then we choose γi with γi (1)= p0; further, up to changing the orientation of Ci if necessary,
we assume that the parametrization γi is compatible with the orientation of Ci . Thus,

Pi (g)=
∫ 1

0
g(γi (t))θ(γi (t), γ̇i (t)) dt, g ∈ C (C,Cn). (3-7)

Let ∅ 6= Ii ⊂ I̊ be a closed interval such that γi (Ii ) ⊂ C̃i . Lemma 3.2 applied to Ii , f ◦ γi , and
θ(γi ( · ), γ̇i ( · )) provides continuous functions hi

1, . . . , hi
N : I→C, supported on Ii , and a neighborhood Ui

of 0 ∈ CN such that the period map Pi :Ui → Cn given, for any ζ i
= (ζ i

1, . . . , ζ
i
Ni
) ∈Ui , by

Pi (ζ
i )=

∫ 1

0
φ1
ζ i

1hi
1(t)
◦ · · · ◦φN

ζ i
N hi

N (t)
( f (γi (t)))θ(γi (t), γ̇i (t)) dt, (3-8)

see (2-2) and (2-3), is well-defined and has maximal rank equal to n at ζ i
= 0. Let U be a ball centered at

the origin of (CN )l and contained in U1× · · ·×Ul . For each i ∈ {1, . . . , l} and j = 1, . . . , N, we define
hi, j : C→ C by hi, j (γi (t))= hi

j (t) for all t ∈ I , and hi, j (p)= 0 for all p ∈ C \Ci . Recall that hi
j (0)= 0

and so hi, j is continuous and hi, j (p0)= 0. Define 8 :U ×C→S by

8(ζ, p)= φ1
ζ 1

1 h1,1(p)
◦ · · · ◦φN

ζ 1
N h1,N (p)

◦ · · · ◦φ1
ζ l

1hl,1(p)
◦ · · · ◦φN

ζ l
N hl,N (p)

( f (p)),

and, up to shrinking U if necessary, assume that 8(U ×C)⊂S∗.
Let P :U → (Cn)l be the period map whose i-th component U → Cn, i = 1, . . . , l, is given by

U 3 ζ 7→
∫

Ci

8(ζ, · )θ = Pi (ζ
i ), ζ = (ζ 1, . . . , ζ l) ∈U ;

see (3-8) and recall that hi, j vanishes everywhere on C \Ci . It follows that P has maximal rank equal
to nl at ζ = 0. �

4. Jet-interpolation with approximation

We begin this section with some preparations.

Definition 4.1. Let M be an open Riemann surface. An admissible subset S = K ∪ 0 ⊂ M (see
Definition 2.1) will be called simple if K 6=∅, every component of 0 meets K , 0 does not contain closed
Jordan curves, and every closed Jordan curve in S meets only one component of K . Further, S will be
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S0

K0

Figure 1. A very simple admissible set.

called very simple if it is simple, K has at most one nonsimply connected component K0, which will be
called the kernel component of K , and every component of 0 has at least one endpoint in K0; in this case
we denote by S0 the component of S containing K0 and call it the kernel component of S.

A connected admissible subset S = K ∪ 0 in an open Riemann surface M is very simple if, and
only if, K has m ∈ N components K0, . . . , Km−1, where Ki is simply connected for every i > 0, and
0 = 0′ ∪0′′ ∪

(⋃m−1
i=1 γi

)
where 0′ consists of components of 0 with both endpoints in K0, 0′′ consists

of components of 0 with an endpoint in K0 and the other one in M \ K , and γi is a component of 0
connecting K0 and Ki for all i = 1, . . . ,m−1. Observe that, in this case, K0∪0

′ is a strong deformation
retract of S. In general, a very simple admissible subset S ⊂ M is of the form S = (K ∪0)∪ K ′ where
K ∪0 is a connected very simple admissible subset and K ′ ⊂ M \ (K ∪0) is a (possibly empty) union of
finitely many pairwise-disjoint smoothly bounded compact disks. (See Figure 1.)

If S = K ∪0 ⊂ M is admissible, we denote by A (S) the space of continuous functions S→ C which
are of class A (K ). Likewise, we define the space A (S, Z) for maps to any complex manifold Z .

In the remainder of this section we use Notation 2.3.

Lemma 4.2. Let M be an open Riemann surface and θ be a holomorphic 1-form vanishing nowhere on M.
Let S= K ∪0⊂M be a very simple admissible subset and L⊂M be a smoothly bounded compact domain
such that S ⊂ L̊ and the kernel component S0 of S is a strong deformation retract of L (see Definition 4.1).
Denote by l ′ ∈ Z+ the dimension of the first homology group H1(S;Z) = H1(S0;Z) ∼= H1(L;Z). Let
K0, . . . , Km , m ∈ Z+, denote the components of K contained in S0, where K0 is the kernel component
of K .

Let m′ ∈ Z+, m′ ≥m, and let p0, . . . , pm′ be distinct points in S such that pi ∈ K̊i for all i = 0, . . . ,m
and pi ∈ K̊0 for all i = m + 1, . . . ,m′, and let Ci , i = 1, . . . ,m′, be pairwise-disjoint oriented Jordan
arcs in S with initial point p0 and final point pi . Set l := l ′ +m′. Also let Ci , i = m′ + 1, . . . , l, be
smooth Jordan curves in S determining a homology basis of S and such that Ci ∩ C j = {p0} for all
i 6= j ∈ {1, . . . , l} and C :=

⋃l
i=1 Ci is Runge in M. (See Figure 2.)
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Figure 2. The sets in Lemma 4.2

Given k ∈ N and a map f : S→S∗ ⊂ Cn of class A (S) which is nonflat on K̊0 (see Definition 3.1),
the following hold:

(i) There exist functions hi,1, . . . , hi,N : L→ C, i = 1, . . . , l, of class A (L) and a neighborhood U of
0 ∈ (CN )l such that:

(i.1) hi, j has a zero of multiplicity k at pr for all j = 1, . . . , N and r = 1, . . . ,m′.

(i.2) Denoting by 8 f :U × S→S the map

8 f (ζ, p)= φ1
ζ 1

1 h1,1(p)
◦ · · · ◦φN

ζ 1
N h1,N (p)

◦ · · · ◦φ1
ζ l

1hl,1(p)
◦ · · · ◦φN

ζ l
N hl,N (p)

( f (p)),

see (2-2) and (2-3), where ζ = (ζ 1, . . . , ζ l) ∈ (CN )l and ζ i
= (ζ i

1, . . . , ζ
i
N ) ∈ CN, are holomorphic

coordinates, the period map U → (Cn)l whose i-th component U → Cn is given by

U 3 ζ 7→
∫

Ci

8 f (ζ, · )θ

has maximal rank equal to nl at ζ = 0.

Furthermore, there is a neighborhood V of g ∈ A (S,S∗) such that the map V 3 g 7→8g can be chosen
to depend holomorphically on g.

(ii) If S∗ is an Oka manifold, then f may be approximated uniformly on S by maps f̃ : L → S∗ of
class A (L) such that:

(ii.1) ( f̃ − f )θ is exact on S, equivalently,
∫

Cr
( f̃ − f )θ = 0 for all r = m′+ 1, . . . , l.

(ii.2)
∫

Cr
( f̃ − f )θ = 0 for all r = 1, . . . ,m′.

(ii.3) f̃ − f has a zero of multiplicity k at pr for all r = 1, . . . ,m′.

(ii.4) No component function of f̃ vanishes everywhere on M.
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Notice that conditions (ii.1) and (ii.2) in the above lemma may be written as a single one in the form∫
Cr

( f̃ − f )θ = 0 for all r = 1, . . . , l.

However, we write them separately with the aim of emphasizing that they are useful for different purposes;
indeed, (ii.1) concerns the period problem, whereas (ii.2) deals with the problem of interpolation.

Proof. Choose k ∈ N and let f : S→S∗ be a map of class A (S) which is nonflat on K0. Consider the
period map P= (P1, . . . ,Pl) :C (C,Cn)→ (Cn)l whose i-th component Pi :C (C,Cn)→Cn is defined by

C (C,Cn) 3 g 7→ Pi (g)=
∫

Ci

gθ, i = 1, . . . , l. (4-1)

Since S is very simple and f is holomorphic and nonflat on K̊0, each Ci , i = 1, . . . , l, contains a
subarc C̃i ⊂ K̊0 \ {p0} such that f is nowhere flat on C̃i ; if i ∈ {m + 1, . . . ,m′} then we may choose
C̃i ⊂ Ci \ {p0, pi }. Thus, Lemma 3.4 applied to the map f |C : C → S∗, the base point p0, and the
curves C1, . . . ,Cl furnishes functions gi,1, . . . , gi,N : C → C, with support on C̃i , i = 1, . . . , l, and a
neighborhood U of 0∈ (CN )l such that the period map P :U→ (Cn)l whose i-th component Pi :U→Cn

is given by

Pi (ζ ) :=

∫
Ci

φ1
ζ 1

1 g1,1(p)
◦ · · · ◦φN

ζ 1
N g1,N (p)

◦ · · · ◦φ1
ζ l

1gl,1(p)
◦ · · · ◦φN

ζ l
N gl,N (p)

( f (p)) θ,

see (2-2) and (2-3), is well-defined and has maximal rank equal to nl at ζ = 0. Since C ⊂ M is
Runge, Theorem 2.6 enables us to approximate each gi, j by functions hi, j ∈ O(M) ⊂ A (L) ⊂ A (S)
satisfying condition (i.1); recall that every function gi j vanishes on a neighborhood of pr for all
r = 1, . . . ,m′. Furthermore, if the approximation of gi, j by hi, j is close enough then the period
map defined in (i.2) also has maximal rank at ζ = 0. Finally, by varying f locally (keeping the
functions hi, j fixed) we obtain a holomorphic family of maps f 7→8 f with the desired properties. This
proves (i).

Let us now prove assertion (ii), so assume that S∗ is an Oka manifold. Up to adding to S a smoothly
bounded compact disk D ⊂ M \ S and extending f to D as a function of class A (S) all of whose
components are different from the constant 0 on D, we may assume that no component function of f
vanishes everywhere on S. Consider the map 8 : U × S→S given in (i.2) and, up to shrinking U if
necessary, assume that 8(U × S) ∈S∗. Note that the functions hi, j are defined on L but f only on S.
By (i), the period map Q :U → (Cn)l with i-th component

Qi (ζ )=

∫
Ci

8(ζ, · )θ = Pi (8(ζ, · )), ζ ∈U,

see (4-1), has maximal rank equal to nl at ζ = 0. It follows that the image by Q of any open neighborhood
of 0 ∈ U ⊂ (CN )l contains an open ball in (Cn)l centered at Q(0) = P( f ); see (4-1). Since S ⊂ M is
Runge and S∗ is Oka, Theorem 2.6 allows us to approximate f by holomorphic maps f̂ : M→S∗ such
that

f̂ − f has a zero of multiplicity k at pr for all r = 1, . . . ,m′. (4-2)
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Define 8̂ :U × L→S by

8̂(ζ, p)= φ1
ζ 1

1 h1,1(p)
◦ · · · ◦φN

ζ 1
N h1,N (p)

◦ · · · ◦φ1
ζ l

1hl,1(p)
◦ · · · ◦φN

ζ l
N hl,N (p)

( f̂ (p)) (4-3)

and, up to shrinking U once again if necessary, assume that 8̂(U × L)⊂S∗. Consider now the period
map Q̂ :U → (Cn)l whose i-th component U → Cn is given by

U 3 ζ 7→
∫

Ci

8̂(ζ, · ) θ, i = 1, . . . , l.

Thus, for any open ball 0 ∈W ⊂U, if the approximation of f by f̂ is close enough, the range of Q̂(W )

also contains P( f ). Therefore, there is ζ0 ∈W ⊂U close to 0 ∈ (CN )l such that

f̃ := 8̂(ζ0, · ) : L→S∗ (4-4)

lies in A (L) and satisfies (ii.1) and (ii.2); recall that S0 is a strong deformation retract of L and so the
curves Ci , i = m′+ 1, . . . , l, determine a basis of H1(L;Z). To finish the proof, Lemma 2.2, (i.1), (4-3),
and (4-4) guarantee that f̃ − f̂ has a zero of multiplicity (at least) k at pr for all r = 1, . . . ,m′. This and
(4-2) ensure (ii.3). Finally, if the approximation of f by f̃ on S is close enough, since no component
function of f vanishes everywhere on S, no component function of f̃ vanishes everywhere on M, which
proves (ii.4) and concludes the proof.

�

We now show the following technical result which will considerably simplify the subsequent proofs.

Proposition 4.3. Let n ≥ 3 be an integer and S be an irreducible closed conical complex subvariety of
Cn which is not contained in any hyperplane. Let M = M̊ ∪ bM be a compact bordered Riemann surface,
θ be a holomorphic 1-form vanishing nowhere on M, and 3⊂ M̊ be a finite subset. Choose p0 ∈ M \3
and, for each p ∈3, let C p ⊂ M̊ be a smooth Jordan arc with initial point p0 and final point p such that
C p ∩Cq = {p0} for all p 6= q ∈3.

Let f : M→S∗ be a map of class A (M) which is flat (see Definition 3.1) and k ∈ N be an integer.
Then f may be approximated uniformly on M by nonflat maps f̃ : M→S∗ of class A (M) satisfying the
following properties:

(i) ( f̃ − f )θ is exact on M.

(ii)
∫

C p
( f̃ − f )θ = 0 for all p ∈3.

(iii) f̃ − f has a zero of multiplicity k at all points p ∈3.

Proof. Without loss of generality we assume that 3 6= ∅, write 3 = {p1, . . . , pl ′}, and set Ci := C pi ,
i = 1, . . . , l ′. Choose Cl ′+1, . . . ,Cl closed Jordan loops in M̊ forming a basis of H1(M,Z)∼= Zl−l ′ such
that Ci ∩C j = {p0} for all i, j ∈ {1, . . . , l}, i 6= j , and C :=

⋃l
j=1 C j is a Runge subset of M ; existence of

such loops is ensured by basic topological arguments. Consider smooth parametrizations γj : [0, 1] → C j

of the respective curves verifying γj (0) = p0 and γj (1) = pj for j = 1, . . . , l ′, and γj (0) = γj (1) = p0

for j = l ′+ 1, . . . , l.
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Since f is flat there exists z0 ∈ S∗ such that f (M) ⊂ C∗z0. Observe that Cz0 is a proper complex
subvariety of S. We consider the period map P = (P1, . . . ,Pl) : A (M)→ (Cn)l defined by

A (M) 3 g 7→ Pj (g) :=
∫

C j

gθ =
∫ 1

0
g(γj (t))θ(γj (t), γ̇j (t)) dt, j = 1, . . . , l. (4-5)

Note that a map g ∈ A (M) meets (i) and (ii) if, and only if, P(g) = P( f ). So, to finish the proof it
suffices to approximate f uniformly on M by nonflat maps f̃ ∈A (M) satisfying the latter condition and
also (iii).

Choose a holomorphic vector field V on Cn which is tangential to S along S, vanishes at 0, and is not
everywhere tangential to C∗z0 along f (M). Let φs(z) denote the flow of V for small values of time s ∈C.
Choose a nonconstant function h1 : M→ C of class A (M) such that h1(p0)= 0. Denote by f the space
of all functions h : M→ C of class A (M) having a zero of multiplicity k ∈ N at all points p ∈3. The
following map is well-defined and holomorphic on a small open neighborhood f∗ of the zero function
in f:

f∗ 3 h 7→ P(φh1( · )h( · )( f ( · ))) ∈ (Cn)l .

Each component Pj , j = 1, . . . , l, of this map at the point h = 0 equals

Pj (φ0( f ))= Pj ( f )

(recall that V vanishes at 0 ∈ Cn). Since f is infinite-dimensional, there is a function h ∈ f arbitrarily
close to the function 0 (in particular, we may take h ∈ f∗) and nonconstant on M, such that

P(φh1( · )h( · )( f ( · )))= P( f ).

Set f̃ (p)=φh1(p)h(p)( f (p)), p ∈M. Assume that ‖h‖0,M is sufficiently small so that f̃ is well-defined
and of class A (M), f̃ approximates f on M, and f̃ (p) ∈S∗ for all p ∈ M. By the discussion below
equation (4-5), f̃ satisfies (i) and (ii). On the other hand, since h has a zero of multiplicity k at every
point of 3 and h1 is not constant, we infer that hh1 also has a zero of multiplicity (at least) k at all points
of 3. Thus, Lemma 2.2 ensures that f̃ − f satisfies (iii). Finally, since h1(p0) = 0 and V vanishes at
0, we have f̃ (p0) = f (p0) ∈ C∗z0, whereas since hh1 is nonconstant on M and V is not everywhere
tangential to C∗z0 along f (M), there is a point q ∈ M such that f̃ (q) /∈ C∗z0. This proves that f̃ is
nonflat, which concludes the proof. �

The following is the main technical result of this paper.

Theorem 4.4. Let n ≥ 3 be an integer and S be an irreducible closed conical complex subvariety of Cn

which is not contained in any hyperplane and such that S∗ =S \ {0} is smooth and an Oka manifold.
Let M be an open Riemann surface, θ be a holomorphic 1-form vanishing nowhere on M, K ⊂ M be a
smoothly bounded Runge compact domain, and 3⊂ M be a closed discrete subset. Choose p0 ∈ K̊ \3
and, for each p ∈3, let C p ⊂ M be an oriented Jordan arc with initial point p0 and final point p such
that C p∩Cq ={p0} for all q 6= p ∈3 and C p ⊂K for all p ∈3∩K. Also, for each p ∈3, let�p ⊂M be
a compact neighborhood of p in M such that �p∩ (�q ∪Cq)=∅ for all q 6= p ∈3. Set � :=

⋃
p∈3�p.
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Let f : K∪�→S∗ be a map of class A (K∪�), let q : H1(M;Z)→ Cn be a group homomorphism,
and let Z :3→ Cn be a map, such that:

(a)
∫
γ

f θ = q(γ ) for all closed curves γ ⊂ K.

(b)
∫

C p
f θ = Z(p) for all p ∈3∩K.

Then, for any integer k ∈N, f may be approximated uniformly on K by holomorphic maps f̃ : M→S∗
satisfying the following conditions:

(A)
∫
γ

f̃ θ = q(γ ) for all closed curves γ ⊂ M.

(B) f̃ − f has a zero of multiplicity k at p for all p ∈3; equivalently, f̃ and f have the same (k−1)-jet
at every point p ∈3.

(C)
∫

C p
f̃ θ = Z(p) for all p ∈3.

(D) No component function of f̃ vanishes everywhere on M.

Proof. Up to slightly enlarging K if necessary, we may assume without loss of generality that 3∩bK=∅.
Further, up to shrinking the sets �p, we may also assume that, for each p ∈ 3, either �p ⊂ K̊ or
�p ∩K =∅. Finally, by Proposition 4.3 we may assume that f : K→S∗ is nonflat.

Set M0 := K and let {Mj }j∈N be a sequence of smoothly bounded Runge compact domains in M such
that

M0 b M1 b M2 b · · ·b
⋃
j∈N

Mj = M.

Assume also that the Euler characteristic χ(Mj\M̊j−1) of Mj\M̊j−1 is either 0 or−1, and that3∩bMj =∅
for all j ∈ N. Such a sequence can be constructed by basic topological arguments; see, e.g., [Alarcón
and López 2013b, Lemma 4.2]. Since 3 is closed and discrete, Mj is compact, and 3∩ bMj = ∅ for
all j ∈ Z+, we know 3j := 3∩Mj = 3∩ M̊j is either empty or finite. Without loss of generality we
assume that 30 6=∅ and 3j \3j−1 =3∩ (M̊j \Mj−1) 6=∅ for all j ∈ N, and hence 3 is infinite.

Set f0 := f |K and, for each p ∈30 6=∅, choose an oriented Jordan arc C p
⊂ M̊0 with initial point p

and final point p0, such that

C p
∩Cq

= {p0} for all p 6= q ∈30. (4-6)

Such curves trivially exist.
To prove the theorem we shall inductively construct a sequence of maps f j : Mj → S∗ ⊂ Cn and

a family of oriented Jordan arcs C p
⊂ M̊j , p ∈ 3j \3j−1 6= ∅, j ∈ N, with initial point p and final

point p0, satisfying the following properties:

(ij ) ‖ f j − f j−1‖0,Mj−1 < εj for a certain constant εj > 0 which will be specified later.

(iij )
∫
γ

f jθ = q(γ ) for all closed curves γ ⊂ Mj .

(iiij )
∫

C p f jθ = q(C p ∗C p)−Z(p) for all p ∈3j . (Recall that ∗ denotes the product of oriented arcs;
see Section 2A.)

(ivj ) f j − f has a zero of multiplicity k at p for all p ∈3j .
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Figure 3. The set K ⊂ M, the arcs C p, and the domains �p in Theorem 4.4.

(vj ) C p
∩Cq

= {p0} for all p 6= q ∈3j .

(vij ) No component function of f j vanishes everywhere on Mj .

(See Figure 3.) Assume for a moment that we have already constructed such sequence. Then choosing
the sequence {εj }j∈N decreasing to zero fast enough, (ij ) ensures that there is a limit holomorphic map

f̃ := lim
j→∞

f j : M→S∗

which is as close as desired to f uniformly on K, whereas properties (iij ), (iiij ), (ivj ), (vj ), and (vij )
guarantee (A), (B), (C), and (D). This would conclude the proof.

The basis of the induction is given by the nonflat map f0 = f |K and the already fixed oriented arcs
C p, p ∈30. Condition (i0) is vacuous, (ii0) = (a), (iii0) is implied by (a) and (b), (iv0) is trivial, and
(v0)= (4-6). For the inductive step, we assume that we already have a map f j−1 : Mj−1→S∗ and arcs
C p
⊂ M̊j−1, p ∈3j−1, satisfying properties (iij−1)–(vj−1) for some j ∈N, and let us construct a map f j

and arcs C p for p ∈3j \3j−1 =3∩ (M̊j \Mj−1), enjoying conditions (ij )–(vij ). We distinguish cases
depending on the Euler characteristic χ(Mj \ M̊j−1).

Case 1: the noncritical case. Assume that χ(Mj \ M̊j−1)= 0. In this case Mj−1 is a strong deformation
retract of Mj . Recall that 3j \3j−1 is a nonempty finite set. Choose, for each p ∈3j \3j−1, an oriented
Jordan arc C p

⊂ M̊j with initial point p and final point p0, so that condition (vj ) holds; such arcs trivially
exist. Up to shrinking �p if necessary, we assume without loss of generality that �p ⊂ M̊j \Mj−1 for all
p ∈3j \3j−1 and �p ∩Cq

=∅ for all q ∈3j \3j−1, q 6= p.
Set

K := Mj−1 ∪

( ⋃
p∈3j\3j−1

�p

)
, 0 :=

( ⋃
p∈3j\3j−1

C p
)
\ K̊ ,

and, up to slightly modifying the arcs C p, p ∈3j \3j−1, assume that S := K ∪0 ⊂ M̊j is an admissible
subset of M (see Definition 2.1). Notice that S is connected and a strong deformation retract of Mj ;
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moreover, as admissible set, S is very simple and the kernel component of K is Mj−1 (see Definition 4.1).
Thus, Lemma 3.3 furnishes a map ϕ : S→S∗ of class A (S) such that:

(I) ϕ = f j−1 on Mj−1.

(II) ϕ = f on
⋃

p∈3j\3j−1
�p.

(III)
∫

C p ϕθ = q(C p ∗C p)−Z(p) for all p ∈3j \3j−1.

Now, given εj > 0, Lemma 4.2(ii) applied to S, Mj , the arcs C p, p ∈3j , the integer k ∈ N, and the
map ϕ, provides a map f j : Mj →S∗ of class A (Mj ) satisfying the following conditions:

(IV) ‖ f j −ϕ‖0,S < εj .

(V) ( f j −ϕ)θ is exact on S.

(VI)
∫

C p( f j −ϕ)θ = 0 for all p ∈3j .

(VII) f j −ϕ has a zero of multiplicity k at p for all p ∈3j .

(VIII) No component function of f j vanishes everywhere on Mj .

We claim the map f j satisfies properties (ij )–(ivj ); recall that (vj ) is already guaranteed. Indeed, (ij )
follows from (I) and (IV); (iij ) from (iij−1), (I), (V), and the fact that Mj−1 is a strong deformation retract
of Mj ; (iiij ) from (iiij−1), (I), (III), and (VI); (ivj ) from (ivj−1), (I), (II), and (VII); and (vij )= (VIII).

Case 2: the critical case. Assume that χ(Mj \ M̊j−1)=−1. Now, the change of topology is described by
attaching to Mj−1 a smooth arc α in M̊j \ M̊j−1 satisfying Mj−1 only at its endpoints. Thus, Mj−1 ∪α is
a strong deformation retract of Mj . Further, we may choose α such that α∩3=∅ and S := Mj−1∪α is
an admissible subset of M, which is very simple (see Definition 4.1). Since both endpoints of α lie in
bMj−1, there is a closed curve β ⊂ S which contains α as a subarc and is not in the homology of Mj−1.
Now, Lemma 3.3 furnishes a map ϕ : S→S∗ of class A (S) such that ϕ = f j−1 on Mj−1 and∫

β

ϕθ = q(β).

Choose a smoothly bounded compact domain L ⊂ M̊j such that S ⊂ L̊ , S is a strong deformation retract
of L , and L ∩ (3j \3j−1) = ∅. Given εj > 0, Lemma 4.2(ii) applied to S, L , the arcs C p, p ∈ 3j−1,
the integer k ∈ N, and the map ϕ, provides a map f̂ : L→S∗ of class A (L) satisfying the following
conditions:

(i) ‖ f̂ −ϕ‖0,S < 1
2εj .

(ii) ( f̂ −ϕ)θ is exact on S.

(iii)
∫

C p( f̂ −ϕ)θ = 0 for all p ∈3j−1.

(iv) f̂ −ϕ has a zero of multiplicity k at p for all p ∈3j−1.

Since the Euler characteristic satisfies χ(Mj \ L̊)= 0, this reduces the construction to the noncritical case.
This finishes the inductive process and concludes the proof of the theorem. �
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To finish this section we prove a Runge–Mergelyan-type theorem with jet-interpolation for holomorphic
maps into Oka subvarieties of Cn in which a component function is preserved provided that it holomor-
phically extends to the whole source Riemann surface. This will be an important tool to ensure conditions
(III) and (IV) in Theorem 1.2 and (I) and (II) in Theorem 1.3.

Lemma 4.5. Let n ≥ 3 be an integer and S be an irreducible closed conical complex subvariety of Cn

which is not contained in any hyperplane. Assume that S∗ =S \ {0} is smooth and an Oka manifold, and
that S∩ {z1 = 1} is also an Oka manifold and the coordinate projection π1 : S→ C onto the z1-axis
admits a local holomorphic section h near z1 = 0 with h(0) 6= 0. Let M be an open Riemann surface of
finite topology, θ be a holomorphic 1-form vanishing nowhere on M, S = K ∪0 ⊂ M be a connected
very simple admissible Runge subset (see Definition 4.1) which is a strong deformation retract of M.
Let 3 ⊂ K̊0 be a finite subset where K0 is the kernel component of S. Choose p0 ∈ K̊0 \3 and, for
each p ∈ 3, let C p ⊂ K̊0 be an oriented Jordan arc with initial point p0 and final point p such that
C p ∩Cq = {p0} for all q 6= p ∈3.

Let f = ( f1, . . . , fn) : S→ S∗ be a continuous map, holomorphic on K , such that f1 extends to a
holomorphic map M→ C which does not vanish everywhere on M. Assume also that f |K : K →S∗ is
nonflat. Then, for any integer k ∈ Z+, f may be approximated in the C 0(S)-topology by holomorphic
maps f̃ = ( f̃1, f̃2, . . . , f̃n) : M→S∗ such that:

(i) f̃1 = f1 everywhere on M.

(ii) f̃ − f has a zero of multiplicity k at p for all p ∈3.

(iii)
∫

C p
( f̃ − f )θ = 0 for all p ∈3.

(iv)
∫
γ
( f̃ − f )θ = 0 for all closed curves γ ⊂ S.

Proof. We adapt the ideas in [Alarcón and Forstnerič 2014, proof of Theorem 7.7]. Set S′ :=S∩{z1= 1}.
By dilations we see that S \ {z1 = 0} is biholomorphic to S′×C∗ (and hence is Oka), and the projection
π1 :S

′
→C is a trivial fiber bundle with Oka fiber S′ except over 0∈C. Write ( f1, f̂ )= ( f1, f2, . . . , fn);

that is, f̂ := ( f2, . . . , fn) : S → Cn−1. Since f1 is holomorphic and nonconstant on M, its zero set
f −1
1 (0) = {a1, a2, . . .} is a closed discrete subset of M. The pullback f ∗1 π1 : E = f ∗S→ M of the

projection π1 :S→ C is a trivial holomorphic fiber bundle with fiber S′ over M \ f −1
1 (0), but it may be

singular over the points aj ∈ f −1
1 (0). The map f̂ : S→ Cn−1 satisfies f̂ (x) ∈ π−1

1 ( f1(x)) for all x ∈ S,
so f̂ corresponds to a section of E→ M over the set S.

Now we need to approximate f̂ uniformly by a section E→ M solving the problem of periods and
interpolation. (Except for the period and interpolation conditions, a solution is provided by the Oka
principle for sections of ramified holomorphic maps with Oka fibers; see [Forstnerič 2003; 2017, §6.14].
We begin by choosing a local holomorphic solution on a small neighborhood of any point aj ∈ M \ S so
that f̂ (aj ) 6= 0, and we add these neighborhoods to the domain of holomorphicity of f̂ . Then we need to
approximate a holomorphic solution f̂ on a smoothly bounded compact set K ⊂ M by a holomorphic
one on a larger domain L ⊂ M assuming that K is a strong deformation retract of L and L \ K does not
contain any point aj . This can be done by applying the Oka principle for maps to the Oka fiber G ′ of
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π : G→ C over C∗. In the critical case we add a smooth Jordan arc α to the domain K ⊂ M disjoint
from the points aj and such that K ∪ α is a strong deformation retract of the next domain. Next, we
extend f̂ smoothly over α so that the integral

∫
α

f̂ θ takes the correct value by applying an analogous
result of Lemma 3.3 but keeping the first coordinate fixed; this reduces the proof to the noncritical case
and concludes the proof of the lemma. �

5. General position, completeness, and properness results

In this section we prove several results that pave the way to the proof of Theorem 1.3 in Section 6. Thus,
all the results in this section concern directed holomorphic immersions of open Riemann surfaces into Cn;
we point out that the methods of proof easily adapt to give analogous results for conformal minimal
immersions into Rn (see Section 7).

We begin with the following:

Definition 5.1. Let S be a closed conical complex subvariety of Cn (n ≥ 3), M be an open Riemann
surface, and S = K ∪0 ⊂ M be an admissible subset (see Definition 2.1). By a generalized S-immersion
S → Cn we mean a map F : S → Cn of class C 1(S) whose restriction to K is an S-immersion of
class A 1(S) and the derivative F ′(t) with respect to any local real parameter t on 0 belongs to S∗.

We now prove a Mergelyan-type theorem for generalizedS-immersions which follows from Lemmas 4.2
and 4.5; it will be very useful in the subsequent results.

Proposition 5.2. Let S⊂ Cn be as in Theorem 4.4. Let M be a compact bordered Riemann surface and
let S = K ∪0 ⊂ M̊ be a very simple admissible Runge compact subset such that the kernel component S0

of S (see Definition 4.1) is a strong deformation retract of M. Let3⊂ K̊ be a finite subset and assume that
3∩ K ′ consists of at most a single point for each component K ′ of K , K ′ 6= K0, where K0 is the kernel
component of K . Given an integer k∈N, every generalized S-immersion F= (F1, . . . , Fn) : S→Cn which
is nonflat on K̊0 may be approximated in the C 1(S)-topology by S-immersions F̃= (F̃1, . . . , F̃n) :M→Cn

such that F̃ − F has a zero of multiplicity k ∈ N at all points p ∈3 and F̃ has no constant component
function.

Furthermore, if S ∩ {z1 = 1} is an Oka manifold, the coordinate projection π1 : S→ C onto the
z1-axis admits a local holomorphic section h near z1 = 0 with h(0) 6= 0, 3 ⊂ K̊0, and F1 extends to a
nonconstant holomorphic function M→ C, then F̃ may be chosen with F̃1 = F1.

We point out that an analogous result of the above proposition remains true for arbitrary admissible
subsets; we shall not prove the most general statement for simplicity of exposition. Anyway, Proposition 5.2
will suffice for the aim of this paper.

Proof. Let θ be a holomorphic 1-form vanishing nowhere on M. Set f = d F/θ : S→S∗ and observe
that f is nonflat on K̊0 and of class A (S), and that f θ is exact on S. Fix a point p0 ∈ K̊0 \3. If S is
not connected then S \ S0 consists of finitely many pairwise-disjoint, smoothly bounded compact disks
K1, . . . , Km . For each i ∈ {1, . . . ,m} choose a smooth Jordan arc γi ⊂ M̊ with an endpoint in (bK0) \0,
the other endpoint in bKi , and otherwise disjoint from S. Choose these arcs so that S′ := S∪

(⋃m
i=1 γi

)
is an
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admissible subset of M. It follows that S′ is connected, very simple, and a strong deformation retract of M.
By Lemma 3.3 we may extend f to a map f ′ : S′→S∗ of class A (S′) such that F(p0)+

∫ p
p0

f θ = F(p)
for all p ∈ S′. From now on we remove the primes and assume without loss of generality that S is
connected.

For each p ∈3 choose a smooth Jordan arc C p ⊂ S joining p0 with p such that C p ∩Cq = {p0} for
all p 6= q ∈ 3. By Lemma 4.2(ii) applied to the set S ⊂ M, the map f , the integer k − 1 ≥ 0, and the
arcs C p, p ∈3, we may approximate f uniformly on S by a holomorphic map f̃ : M→S∗ such that:

(a) f̃ θ is exact; recall that f θ is exact on (S and hence on) S0 and that S0 is a strong deformation retract
of M.

(b) F(p0)+
∫

C p
f̃ θ = F(p0)+

∫
C p

f θ = F(p) for all p ∈3.

(c) f̃ − f has a zero of multiplicity k− 1 at all points p ∈3.

(d) No component function of f̃ vanishes everywhere on M.

Then, property (a) ensures that the map F̃ : M→ Cn defined by

F̃(p) := F(p0)+

∫ p

p0

f̃ θ, p ∈ M,

is a well-defined S-immersion and is as close as desired to F in the C 1(S)-topology. Moreover, properties
(b) and (c) guarantee that F̃ − F has a zero of multiplicity k at all points of 3, whereas (d) ensures that
F̃ has no constant component function. This concludes the first part of the proof.

The second part of the lemma is proved in an analogous way but using Lemma 4.5 instead of
Lemma 4.2(ii). Moreover, in order to reduce the proof to the case when S is connected, we need to extend
f to a map f ′ on S′ as above such that the first component of f ′ equals d F1/θ ; this is accomplished by a
suitable analogue of Lemma 3.3, we leave the obvious details to the interested reader. �

5A. A general position theorem. We prove a desingularization result with jet-interpolation for directed
immersions of class A 1 on a compact bordered Riemann surface. We use Notation 2.3.

Theorem 5.3. Let M be a compact bordered Riemann surface and3⊂ M̊ be a finite set. Let F :M→Cn

(n ≥ 3) be an S-immersion of class A 1(M) such that F |3 is injective. Then, given k ∈ N, F may be
approximated uniformly on M by a S-embedding F̃ : M→ Cn of class A 1(M) such that F̃ − F has a
zero of multiplicity k at p for all p ∈3.

Proof. Proposition 4.3 allows us to assume without loss of generality that F : M→ Cn is nonflat. We
assume that M is a smoothly bounded compact domain in an open Riemann surface R. We associate to
F the difference map

δF : M ×M→ Cn, δF(x, y)= F(y)− F(x).

Obviously, F is injective if and only if (δF)−1(0)= DM = {(x, x) : x ∈ M}.
Since F is an immersion and F |3 :3→ Cn is injective, there is an open neighborhood U ⊂ M ×M

of DM ∪ (3×3) such that δF 6= 0 everywhere on U \ DM . To prove the theorem it suffices to find
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arbitrarily close to F another S-immersion F̃ : M → Cn of class A 1(M) such that F̃ − F has a zero
of multiplicity k at all points of 3 whose difference map δ F̃ |M×M\U is transverse to the origin. Indeed,
since dimC M × M = 2 < n, this will imply that δ F̃ does not assume the value 0 on M × M \U, so
F̃(y) 6= F̃(x) when (x, y) ∈ M × M \U. On the other hand, if (x, y) ∈ U \ DM then F̃(y) 6= F̃(x)
provided that F̃ is sufficiently close to F .

To construct such an S-immersion we will use the standard transversality argument by Abraham
[1963]. We need to find a neighborhood V ⊂ CN of the origin in a complex Euclidean space and a map
H : V ×M→ Cn of class A 1(V ×M) such that:

(a) H(0, · )= F .

(b) H − F has a zero of multiplicity k at p for all p ∈3.

(c) The difference map δH : V ×M ×M→ Cn, defined by

δH(ζ, x, y)= H(ζ, y)− H(ζ, x), ζ ∈ V, x, y ∈ M,

is a submersive family of maps in the sense that the partial differential

dζ δH(ζ, x, y)|ζ=0 : T0CN ∼= CN
→ Cn

is surjective for any (x, y) ∈ M ×M \U.

By openness of the latter condition and compactness of M ×M \U it follows that the partial differential
dζ δH is surjective for all ζ in a neighborhood V ′ ⊂ V of the origin in CN. Hence, the map δH :
M × M \U → Cn is transverse to any submanifold of Cn, in particular, to the origin {0} ⊂ Cn. The
standard argument then shows that for a generic member H(ζ, · ) : M→ Cn of this family, the difference
map δH(ζ, · ) is also transverse to 0 ∈ Cn on M ×M \U. Choosing such a ζ sufficiently close to 0 we
then obtain the desired S-embedding F̃ := H(ζ, · ).

To construct a map H as above we fix a nowhere-vanishing holomorphic 1-form θ on R and write
d F = f θ , where f : M→S∗ is a map of class A 1(M). We begin with the following.

Lemma 5.4. For any point (p,q)∈M×M\(DM∪(3×3)) there is a deformation family H =H (p,q)(ζ, · )

satisfying conditions (a) and (b) above, with ζ ∈Cn, such that the differential dζ δH(ζ, p, q)|ζ=0 :C
n
→Cn

is an isomorphism.

For the proof we adapt the arguments in [Alarcón and Forstnerič 2014, Lemma 6.1] in order to guarantee
also the jet-interpolation, i.e., condition (b) of the map H .

Proof. Pick (p, q) ∈ M ×M \ (DM ∪ (3×3)). We distinguish cases.

Case 1: assume that {p, q} ∩3 6= ∅. Assume that p ∈ 3 and hence q /∈ 3; otherwise we reason in a
symmetric way. Write 3= {p = p1, . . . , pl ′}. Pick a point p0 ∈ M \ (3∪ {q}) and choose closed loops
C j ⊂ M \3, j = 1, . . . , l ′′, forming a basis of H1(M,Z)= Zl ′′, and smooth Jordan arcs Cl ′′+ j joining p0

with pj , j = 1, . . . , l ′, such that setting l := l ′+ l ′′, we have that Ci ∩C j = {p0} for any i, j ∈ {1, . . . , l}
and that C :=

⋃l
j=1 C j is a Runge set in M. Also choose another smooth Jordan arc Cq joining p0 with q

and verifying C ∩Cq = {p0}. Finally let γj : [0, 1] → C j , j = 1, . . . , l, and γ : [0, 1] → Cq be smooth
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parametrizations of the respective curves verifying γj (0)= γj (1)= p0 for j = 1, . . . , l ′′, γj (0)= p0 and
γj (1)= pj for j = l ′′+ 1, . . . , l, and γ (0)= p0 and γ (1)= q .

Since F is nonflat, there exist tangential fields V1, . . . , Vn on S, vanishing at 0, and points x1, . . . , xn ∈

Cq \ {p0, q} such that, setting zi = f (xi ) ∈S∗, the vectors V1(z1), . . . , Vn(zn) span Cn. Let ti ∈ (0, 1)
be such that γ (ti ) = xi and φi

t be the flow of the vector field Vi for small values of t ∈ C in the sense
of Notation 2.3. Consider for any i = 1, . . . , n a smooth function hi : C ∪Cq → R+ ⊂ C vanishing on
C ∪ {q}; its values on the relative interior of Cq will be specified later. As in the proof of Lemma 4.2, set
ζ = (ζ1, . . . , ζn) ∈ Cn and consider the map

ψ(ζ, x)= φ1
ζ1h1(x) ◦ · · · ◦φ

n
ζnhn(x)( f (x)) ∈S, x ∈ C ∪Cq ,

which is holomorphic in ζ ∈ Cn. Note that ψ(0, · )= f : M→S∗ (hence ψ(ζ, · ) does not vanish for ζ
in a small neighborhood of the origin) and ψ(ζ, x)= f (x) for all x ∈ C ∪ {q}. It follows that

∂ψ(ζ, x)
∂ζi

∣∣∣∣
ζ=0
= hi (x)Vi ( f (x)), i = 1, . . . , n.

We choose hi with support on a small compact neighborhood of ti ∈ (0, 1) in such a way that∫ 1

0
hi (γ (t))Vi ( f (γ (t)))θ(γ (t), γ̇ (t)) dt ≈ Vi (zi ) θ(γ (ti ), γ̇ (ti )). (5-1)

Assuming that the neighborhoods are sufficiently small, the approximation in (5-1) is close enough so
that, since the vectors on the right side above form a basis of Cn, the ones in the left side also do.

Fix a number ε > 0. Theorem 2.6 furnishes holomorphic functions gi : M→ C such that

gi has a zero of multiplicity k− 1 at all points of 3 (5-2)

and
sup

C∪Cq

|gi − hi |< ε, i = 1, . . . , n.

Following the arguments in the proof of Lemma 4.2, we define holomorphic maps

9(ζ, x, z)= φ1
ζ1g1(x) ◦ · · · ◦φ

n
ζn gn(x)(z) ∈S,

9 f (ζ, x)=9(ζ, x, f (x)) ∈S∗,

where x ∈ M, z ∈S, and ζ belongs to a sufficiently small neighborhood of the origin in Cn. Observe that
9 f (0, · )= f . In view of (5-1), if ε > 0 is small enough then we have that the vectors

∂

∂ζi

∣∣∣∣
ζ=0

∫ 1

0
9 f (ζ, γ (t))θ(γ (t), γ̇ (t)) dt =

∫ 1

0
gi (γ (t))Vi ( f (γ (t)))θ(γ (t), γ̇ (t)) dt, (5-3)

i = 1, . . . , n, are close enough to Vi (zi )θ(γ (ti ), γ̇ (ti )) so that they also form a basis of Cn.
To finish the proof it remains to perturb 9 f in order to solve the period problem and ensure the

jet-interpolation at the points of 3. From the Taylor expansion of the flow of a vector field it follows that

9 f (ζ, x)= f (x)+
n∑

i=1

ζi gi (x)Vi ( f (x))+ O(|ζ |2).
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Since |gi | < ε on C (recall that hi = 0 on C), the integral of 9 f over the curves C1, . . . ,Cl can be
estimated by ∣∣∣∣∫

C j

(9 f (ζ, · )− f )θ
∣∣∣∣= ∣∣∣∣∫

C j

9 f (ζ, · )θ

∣∣∣∣≤ η0ε|ζ |, j = 1, . . . , l ′′ (5-4)

(recall that
∫

C j
f θ =

∫
C j

d F = 0 for all j = 1, . . . , l ′′, since these curves are closed),∣∣∣∣∫
C j

(9 f (ζ, · )− f )θ
∣∣∣∣= ∣∣∣∣F(p0)−

(
F(pj )−

∫
C j

9 f (ζ, · )θ

)∣∣∣∣≤ η0ε|ζ |, j = l ′′+ 1, . . . , l, (5-5)

for some constant η0 > 0 and sufficiently small ζ ∈ Cn. Furthermore, (5-2) guarantees that

9 f (ζ, · )− f has a zero of multiplicity k− 1 at all points of 3 (5-6)

for ζ in a small neighborhood of the origin (see Lemma 2.2).
Now, Lemma 4.2(i) furnishes holomorphic maps 8(ζ̃ , x, z) and 8 f (ζ̃ , x)=8(ζ̃ , x, f (x)) with the

parameter ζ̃ in a small neighborhood of 0∈CÑ for some large Ñ ∈N and x ∈M such that8(0, x, z)= z∈S
for all x ∈ M and

8 f (0, · )=89 f (0,· )(0, · )= f, (5-7)

and the differential of the associated period map ζ̃ 7→ P(8 f (ζ̃ , · )) ∈ Cln , see (4-1), at the point ζ̃ = 0
has maximal rank equal to ln. The same is true if we allow that f vary locally near the given initial map.
Thus, replacing f by 9 f (ζ, · ) and considering the map

CÑ
×Cn

×M 3 (ζ̃ , ζ, x) 7→8(ζ̃ , x, 9 f (ζ, x)) ∈S∗

defined for x ∈M and (ζ̃ , ζ ) in some sufficiently small neighborhood of 0∈CÑ
×Cn, the implicit function

theorem provides a holomorphic map ζ̃ = ρ(ζ ) near ζ = 0 ∈ Cn with ρ(0)= 0 ∈ CÑ such that the map
defined by 8(ρ(ζ ), x, 9 f (ζ, x)) satisfies:

(i) P(8(ρ(ζ ), · , 9 f (ζ, · )))= P(8(0, · , 9 f (0, · )))= P(9 f (0, · ))= P( f ).

(ii) 8(ρ(ζ ), · , 9 f (ζ, · ))−9 f (ζ, · ) has a zero of multiplicity k− 1 at all points of 3.

Condition (ii) together with (5-6) ensure that

8(ρ(ζ ), · , 9 f (ζ, · ))− f has a zero of multiplicity k− 1 at all points of 3 (5-8)

for all ζ in a small neighborhood of 0 ∈ Cn. Obviously the map ρ = (ρ1, . . . , ρn) also depends on f . It
follows that the integral

HF (ζ, x)= F(p0)+

∫ x

p0

8(ρ(ζ ), · , 9 f (ζ, · ))θ (5-9)

is independent of the choice of the arc from p0 to x ∈ M. Moreover,

HF (0, · )= F, (5-10)
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see (5-7), and HF (ζ, · ) is an S-immersion of class A 1(M) for every ζ ∈ Cn sufficiently close to zero
such that

HF (ζ, · )= F on 3; (5-11)

see (i). In addition, from (5-4) and (5-5) we have

|ρ(ζ )|< η1ε|ζ |

for some η1 > 0. If we call Ṽj the vector fields and g̃j the functions involved in the construction of the
map 8 (see Lemma 4.2), the above estimate gives

|8(ρ(ζ ), x, 9 f (ζ, x))−9 f (ζ, x)| =
∣∣∣∑ ρj (ζ )g̃j (x)Ṽj (9 f (ζ, x))+ O(|ζ |2)

∣∣∣< η2ε|ζ |

for some η2 > 0 and all x ∈ M and all ζ near the origin in Cn. Clearly, applying this estimate to the
arc Cq we have∣∣∣∣∫ 1

0
8(ρ(ζ ), γ (t),9 f (ζ, γ (t)))θ(γ (t), γ̇ (t))−

∫ 1

0
9 f (ζ, γ (t))θ(γ (t), γ̇ (t))

∣∣∣∣< η3ε|ζ |

for some η3 > 0. Finally, choosing ε > 0 small enough, the derivatives

∂

∂ζi

∣∣∣∣
ζ=0

∫ 1

0
8(ρ(ζ ), γ (t),9 f (ζ, γ (t))) θ(γ (t), γ̇ (t)) ∈ Cn, i = 1, . . . , n,

are so close to the vectors (5-3) that they also form a basis of Cn. From the definition of HF , (5-9), and
(5-11), we have

δHF (ζ, p, q)= HF (ζ, q)− HF (ζ, p)

= HF (ζ, q)− F(p)

= F(p0)− F(p)+
∫ 1

0
8(ρ(ζ ), γ (t),9 f (ζ, γ (t)))θ(γ (t), γ̇ (t)),

and hence the partial differential

∂

∂ζ

∣∣∣∣
ζ=0
δH(ζ, p, q) : Cn

→ Cn

is an isomorphism. This, (5-10), (ii), and (5-11) show that H satisfies the conclusion of the lemma.

Case 2: assume that {p, q} ∩3=∅. In this case setting 3′ :=3∪ {p} reduces the proof to Case 1. This
proves the lemma. �

The family HF depending on F given in (5-9) is holomorphically dependent also on F on a neighbor-
hood of a given initial S-immersion F0. In particular, if F(ξ, · ) : M→ Cn is a family of holomorphic
S-immersions depending holomorphically on ξ ∈C such that F(ξ, · )−F has a zero of multiplicity k at all
points p ∈3 for any ξ , then HF(ξ,· )(ζ, · ) depends holomorphically on (ζ, ξ). This allows us to compose
any finite number of such deformation families by an inductive process. For the case of two families
suppose that H = HF (ζ, · ) and G = G F (ξ, · ) are deformation families with HF (0, · )= G F (0, · )= F
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and such that HF (ζ, · )− F and G F (ξ, · )− F have a zero of multiplicity k ∈ N at all points of 3 for all
ζ and ξ respectively. Then, we define the composed deformation family by

(H # G)F (ζ, ξ, x) := G HF (ζ,· )(ξ, x), x ∈ M.

Obviously, we have (H # G)F (0, ξ, · )= G F (ξ, · ) and (H # G)F (ζ, 0, · )= HF (ζ, · ), and H # G− F has
a zero of multiplicity k at p for all p ∈3. The operation # is associative but not commutative.

To finish the proof of Theorem 5.3, Lemma 5.4 gives a finite open covering {Ui }
m
i=1 of the compact

set M × M \U and deformation families H i
= H i (ζ i , · ) : M → Cn, with H i (0, · ) = F , where ζ i

=

(ζ i
1, . . . , ζ

i
ηi
) ∈ �i ⊂ Cηi for positive integers ηi ∈ N and i = 1, . . . ,m. It follows that the difference

map δH i (ζ i , p, q) is submersive at ζ i
= 0 for all p, q ∈ Ui . By taking ζ = (ζ 1, . . . , ζm) ∈ CN, with

N =
∑m

i=1 ηi , and setting

H(ζ, x) := (H 1 # H 2 # · · · # H m)(ζ 1, . . . , ζm, x),

we obtain a deformation family such that H(0, · ) = F , H(q, · )− F has a zero of multiplicity k at p
for all p ∈3, and δH is submersive everywhere on M ×M \U for all ζ ∈ CN sufficiently close to the
origin. �

5B. A completeness lemma. We develop an intrinsic-extrinsic version of the arguments from [Jorge and
Xavier 1980] in order to prove the following

Lemma 5.5. Let S⊂ Cn (n ≥ 3) be as in Lemma 4.5. Let M be a compact bordered Riemann surface
and K ⊂ M̊ be a smoothly bounded compact domain which is Runge and a strong deformation retract
of M. Also let 3 ⊂ K̊ be a finite subset and p0 ∈ K̊ \3 be a point. Then, given an integer k ∈ N and
a positive number τ > 0, every S-immersion F : K → Cn of class A 1(K ) may be approximated in the
C 1(K )-topology by S-immersions F̃ : M→ Cn of class A (M) satisfying the following conditions:

(I) F̃ − F has a zero of multiplicity k at all points p ∈3.

(II) distF̃ (p0, bM) > τ .

Proof. Without loss of generality we assume that M is a smoothly bounded compact domain in an open
Riemann surface M̃. By Proposition 5.2 we may assume that F is holomorphic on M and that its first
component has no critical points on M. Fix a holomorphic 1-form θ vanishing nowhere on M̃ and set
d F = f θ , where f = ( f1, . . . , fn) : M→S∗ is a holomorphic map.

Since K is a strong deformation retract of M , we know M̊ \ K consists of a finite family of pairwise-
disjoint open annuli. Thus, there exists a finite family of pairwise-disjoint, smoothly bounded, compact
disks L1, . . . , Lm in M̊ \ K satisfying the following property: if α ⊂ M \

⋃m
j=1 L j is a arc connecting p0

with bM then ∫
α

| f1θ |> τ. (5-12)

Recall that f1 6= 0. (Such disks can be found as pieces of labyrinths of Jorge–Xavier-type [1980] on the
annuli forming M̊ \ K ; see [Alarcón, Fernández and López 2013, proof of Lemma 4.1] for a detailed
explanation). Set L :=

⋃m
j=1 L j .
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For each j = 1, . . . ,m, choose a Jordan arc γj ⊂ M̊ with an endpoint in K , the other endpoint in L j ,
and otherwise disjoint from K ∪ L , such that γi ∩ γj =∅ for all i 6= j ∈ {1, . . . ,m} and the set

S := K ∪ L ∪0,

where 0 :=
⋃m

j=1 γj , is an admissible subset of M. It follows that S is a connected very simple admissible
subset of M with kernel component K (see Definition 4.1) such that K is a deformation retract of S
(hence of M). Take a map h = (h1, . . . , hn) : S→S∗ of class A (S) satisfying the following conditions:

(a) h1 = f1|S .

(b) h|K = f |K .

(c)
∣∣∫
α

hθ
∣∣> τ for all arcs α ⊂ S with initial point p0 and final point in L .

Existence of such a map is clear; we may for instance choose h close to 0 ∈ Cn on each component
of L and such that

∣∣∫
γj

hθ
∣∣ is very large for every component γj of 0. Also choose for each p ∈ 3 a

smooth Jordan arc C p ⊂ K̊ with initial point p0 and final one p, and assume that C p ∩Cq = {p0} for all
p 6= q ∈3. Then, Lemma 4.5 provides a holomorphic map f̃ = ( f̃1, f̃2, . . . , f̃n) : M→S∗ such that:

(i) f̃ approximates h on S.

(ii) f̃1 = f1 everywhere on M.

(iii) f̃ − h has a zero of multiplicity k− 1 at p for all p ∈3.

(iv)
∫

C p
( f̃ − h)θ = 0 for all p ∈3.

(v)
∫
γ
( f̃ − h)θ = 0 for all closed curves γ ⊂ S.

Since f θ = d F is exact, properties (b) and (v) and the fact that K is a strong deformation retract of M
guarantee that f̃ θ is exact on M as well. Therefore, the map F̃ = (F̃1, F̃2, . . . , F̃n) : M→ Cn defined by

F̃(p) := F(p0)+

∫ p

p0

f̃ θ, p ∈ M,

is well-defined and an S-immersion of class A 1(M). We claim that if the approximation in (i) is close
enough then F̃ satisfies the conclusion of the lemma. Indeed, properties (i) and (b) guarantee that F̃
approximates F as close as desired in the C 1(K )-topology. On the other hand, (iii), (iv), and (b) ensure
that F̃ − F has a zero of multiplicity k at all points of 3, which proves (I). Finally, in order to check
condition (II), let α ⊂ M be an arc with initial point p0 and final one in bM. Assume first that α∩ L 6=∅
and let α̃ ⊂ α be a subarc with initial point p0 and final point q for some q ∈ L . Then we have

length(F̃(α)) > length(F̃(α̃))≥ |F̃(q)− F̃(p0)| =

∣∣∣∣∫ q

p0

f̃ θ
∣∣∣∣ (i)
≈

∣∣∣∣∫ q

p0

hθ
∣∣∣∣ (c)
> τ.

Assume that, on the contrary, α ∩ L =∅. In this case,

length(F̃(α))=
∫
α

| f̃ θ | ≥
∫
α

| f̃1θ |
(ii)
=

∫
α

| f1θ |
(5-12)
> τ.

This proves (II) and completes the proof. �
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5C. A properness lemma. Recall that given a vector x = (x1, . . . , xn) in Rn or Cn we define |x |∞ =
max{|x1|, . . . , |xn|}; see Section 2 for notation.

Lemma 5.6. Let n ≥ 3 be an integer and S be an irreducible closed conical complex subvariety of Cn

which is not contained in any hyperplane. Assume that S∗ =S \ {0} is smooth and an Oka manifold, and
that S∩ {z j = 1} is an Oka manifold and the coordinate projection πj :S→ C onto the z j -axis admits
a local holomorphic section h j near z j = 0 with h j (0) 6= 0 for all j = 1, . . . , n. Let M be a compact
bordered Riemann surface and K ⊂ M̊ be a smoothly bounded compact domain which is Runge and a
strong deformation retract of M. Also let 3⊂ K̊ be a finite subset, F : K → Cn be an S-immersion of
class A 1(K ), let τ > ρ > 0 be numbers, and assume that

|F(p)|∞ > ρ for all p ∈ bK . (5-13)

Then, given an integer k ∈ N, F may be approximated in the C 1(K )-topology by S-immersions
F̃ : M→ Cn of class A 1(M) satisfying the following conditions:

(I) F̃ − F has a zero of multiplicity k at all points p ∈3.

(II) |F̃(p)|∞ > ρ for all p ∈ M \ K̊ .

(III) |F̃(p)|∞ > τ for all p ∈ bM.

Proof. Without loss of generality we assume that M is a smoothly bounded compact domain in an
open Riemann surface M̃. By Proposition 5.2 we may assume that F = (F1, . . . , Fn) is holomorphic
on M̃. Since K is a strong deformation retract of M, we have that M \ K̊ consists of finitely many
pairwise-disjoint compact annuli. For simplicity of exposition we assume that A := M \ K̊ is connected
(and hence a single annulus); the same proof applies in general by working separately on each connected
component of M \ K̊ . We denote by α the boundary component of A contained in bK and by β the one
contained in bM ; both α and β are smooth Jordan curves.

From inequality (5-13) there exist an integer l ≥ 3, subsets I1, . . . , In of Zl (where Zl ={0, 1, . . . , l−1}
denotes the additive cyclic group of integers modulus l), and a family of compact connected subarcs
{αj : j ∈ Zl} of bK , satisfying the following properties:

(a1)
⋃

j∈Zl
αj = α.

(a2) αj and αj+1 have a common endpoint pj and are otherwise disjoint.

(a3)
⋃n

a=1 Ia = Zl and Ia ∩ Ib =∅ for all a 6= b ∈ {1, . . . , n}.

(a4) If j ∈ Ia then |Fa(p)|> ρ for all p ∈ αj , a = 1, . . . , n.

(Possibly Ia =∅ for some a ∈ {1, . . . , n}.)
Consider for each j ∈ Zl a smooth embedded arc γj ⊂A with the following properties:

• γj joins α ⊂ bK with β ⊂ bM and intersects them transversely.

• γj ∩α = {pj }.

• γj ∩β consists of a single point, namely, qj .

• The arcs γj , j ∈ Zl , are pairwise disjoint.
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Consider the admissible set

S := K ∪
(⋃

j∈Zl

γj

)
⊂ M

and fix a point x0 ∈ K̊ \3. Let z = (z1, . . . , zn) be the coordinates on Cn and recall that πa : C
n
→ C is

the a-th coordinate projection πa(z)= za for all a = 1, . . . , n. Let θ be a holomorphic 1-form vanishing
nowhere on M̃, and let f : S→ S∗ be a map of class A (S) such that f = d F/θ on K and the map
G̃ : S→ Cn given by

G̃(p)= F(p0)+

∫ p

x0

f θ,

which is well-defined since K is a deformation retract of S, satisfies the following conditions:

(b1) G̃ = F on K and on a neighborhood of pj for all j ∈ Zl .

(b2) If j ∈ Ia then |πa(G̃(z))|> ρ for all z ∈ γj−1 ∪ γj , a = 1, . . . , n.

(b3) If j ∈ Ia then |πa(G̃(qj−1))|> τ and |πa(G̃(qj ))|> τ , a = 1, . . . , n.

Existence of such an f is guaranteed by (a4). Theorem 4.4 provides a map g :M→S∗ of class A (M)
such that gθ is exact on M, and the S-immersion G = (G1, . . . ,Gn) : M→ Cn of class A 1(M) given
by G(p)= F(x0)+

∫ p
x0

gθ enjoys the following properties:

(c1) G approximates G̃ in the C 1(K )-topology.

(c2) G− G̃ has a zero of multiplicity k at all points of 3.

(c3) If j ∈ Ia then |Ga(p)|> ρ for all p ∈ γj−1 ∪αj ∪ γj , a = 1, . . . , n.

(c4) If j ∈ Ia then |Ga(p)|> τ for p ∈ {qj−1, qj }, a = 1, . . . , n.

Property (c3) follows from (a4) and (b2), whereas (c4) follows from (b3), provided that the approximation
of f by g is close enough.

For each j ∈ Zl let βj ⊂ β denote the subarc of β with endpoints qj−1 and qj which does not contain
qi for any i ∈ Zl \ { j − 1, j}. It is clear that ⋃

j∈Zl

βj = β. (5-14)

Also denote by Dj ⊂A the closed disk bounded by the arcs γj−1, αj , γj , and βj ; see Figure 4. It follows
that

A=
⋃
j∈Zl

Dj . (5-15)

Call H0 := G = (H0,1, . . . , H0,n) and I0 := ∅. We shall construct a sequence of S-immersions
Hb = (Hb,1, . . . , Hb,n) : M→ Cn, b = 1, . . . , n, of class A 1(M) satisfying the following requirements
for all b ∈ {1, . . . , n}:

(d1b) Hb approximates Hb−1 in the C 1-topology on M \
(⋃

j∈Ib
D̊j
)
.

(d2b) Hb− Hb−1 has a zero of multiplicity k at all points of 3.
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M

A

qj +1

qj −1

p3 x0

pj

pj −1

qj

aj +1

aj −1

ajD

K

j +1

βj +1

βj −1

βj

Ωj −1

Ωj

λ j

λ j −1

γj −1

γj

Figure 4. The annulus A.

(d3b) If j ∈
⋃b

i=1 Ii then |Hb(p)|∞ > ρ for all p ∈ Dj .

(d4b) If j ∈
⋃b

i=1 Ii then |Hb(p)|∞ > τ for all p ∈ βj .

(d5b) If j ∈ Ia then |Hb,a(p)|> ρ for all p ∈ γj−1 ∪αj ∪ γj , a = 1, . . . , n.

(d6b) If j ∈ Ia then |Hb,a(p)|> τ for p ∈ {qj−1, qj }, a = 1, . . . , n.

We claim that the S-immersion F̃ := Hn : M → Cn satisfies the conclusion of the lemma. Indeed,
F̃ approximates F in the C 1(K )-topology by properties (b1), (c1) and (d11)–(d1n); condition (I) is
guaranteed by (d2), (c2), and (b1); condition (II) by (d3n), (a3), and (5-15); and condition (III) by (d4n),
(a3), and (5-14). So, to conclude the proof it suffices to construct the sequence H1, . . . , Hn satisfying
the above properties. We proceed by induction. Assume that we already have H0, . . . , Hb−1 for some
b∈ {1, . . . , n} with the desired properties and let us construct Hb. Notice that (d50)= (c3) and (d60)= (c4)
formally hold. By the continuity of Hb−1 and conditions (d5b−1) and (d6b−1), for each j ∈ Ib there exists
a closed disk �j ⊂ Dj \ (γj−1 ∪αj ∪ γj ) such that the following hold:

(i) �j ∩βj is a compact connected Jordan arc.

(ii) |Hb−1,b(p)|> ρ for all p ∈ ϒj := Dj \�j .

(iii) |Hb−1,b(p)|> τ for all p ∈ βj \�j .

Next, for each j ∈ Ib choose a smooth embedded arc λj ⊂ϒj \ (γj−1∪γj ) with an endpoint in αj and the
other one in �j and otherwise disjoint from bϒj (see Figure 4). Moreover, choose each λj so that the set

Sb :=

(
M \

⋃
j∈Ib

ϒ̊j

)
∪

(⋃
j∈Ib

λj

)
is admissible. Notice that Sb is connected and very simple in the sense of Definition 4.1.

Set h= (h1, . . . , hn)= d Hb−1/θ and let h̃= (h̃1, . . . , h̃n) : Sb→S∗ be a map of class A (Sb) such that:

(iv) h̃ = h on M \
(⋃

j∈Ib
D̊j
)
.



INTERPOLATION BY CONFORMAL MINIMAL SURFACES AND DIRECTED HOLOMORPHIC CURVES 595

(v) h̃b = hb on Sb.

(vi) The map H̃ : Sb→ Cn given by

H̃(p)= Hb−1(x0)+

∫ p

x0

h̃θ, p ∈ Sb,

satisfies |H̃(p)|∞ > τ for all p ∈
⋃

j∈Ib
�j .

To construct such a map h̃ we may for instance choose h̃ = h on M \
⋃

j∈Ib
ϒ̊j and suitably define it

on
⋃

j∈Ib
λj . Now, Lemma 4.5 furnishes a map φ : M→S∗ of class A (M) such that φθ is exact on M

(take into account that h̃θ = hθ = d Hb−1 on K and that K is a deformation retract of M) and the map
Hb : M→ Cn given by

Hb(p)= Hb−1(x0)+

∫ p

x0

φθ, p ∈ M,

is an S-immersion of class A 1(M) enjoying the following properties:

(vii) Hb is as close as desired to H̃ in the C 1-topology on M \
(⋃

j∈Ib
D̊j
)
.

(viii) Hb,b = Hb−1,b (take into account (v)).

(ix) Hb− H̃ has a zero of multiplicity k at all points of 3.

Since H̃ =Hb−1 on M\
(⋃

j∈Ib
D̊j
)
⊃3∪

(⋃
j∈Zl

γj−1∪αj∪γj
)
, we have (d1b)= (vii), (d2b)= (ix), and,

if the approximation in (vii) is close enough, (d5b) and (d6b) follow from (d5b−1) and (d6b−1), respectively.
Pick j ∈

⋃b
i=1 Ii and p ∈ Dj . If j /∈ Ib then (d3b−1) and (vii) ensure that |Hb(p)|∞ > ρ. On the other

hand, if j ∈ Ib then (ii) and (viii) ensure that |Hb(p)| ≥ |Hb,b(p)| > ρ provided that p ∈ ϒj , whereas
(vi) and (vii) guarantee that |Hb(p)|> τ > ρ provided that p ∈�j . This proves (d3b).

Finally, choose j ∈
⋃b

i=1 Ii and p∈βj . As above, if j /∈ Ib then (d4b−1) and (vii) give that |Hb(p)|∞>τ .
Likewise, if j ∈ Ib then (iii) and (viii) ensure that |Hb(p)| ≥ |Hb,b(p)| > τ provided that p ∈ βj \�j ,
whereas (vi) and (vii) imply that |Hb(p)|> τ provided that p ∈ βj ∩�j . This proves (d4b) and concludes
the proof of the lemma. �

6. Proof of Theorem 1.3

As in the proof of Theorem 4.4 we can assume that 3∩ bK =∅ and also that for each p ∈3 we have
either �p ⊂ K̊ or �p ∩ K =∅.

Set M0 := K and let {Mj }j∈N be an exhaustion of M by smoothly bounded Runge compact domains
in M such that:

• M0 b M1 b · · ·b
⋃

j∈N Mj = M.

• χ(Mj \ M̊j−1) ∈ {−1, 0} for all j ∈ N.

• bMj ∩3 = ∅ for all j ∈ N and so, up to shrinking the sets �p if necessary, we may assume that
�p ⊂ M̊j or �p ∩Mj =∅ for all p ∈3.
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The existence of such a sequence is guaranteed as in the proof of Theorem 4.4. The set 3j :=3∩Mj =

3 ∩ M̊j , j ∈ Z+, is empty or finite; without loss of generality we may assume that 30 6= ∅ and
3j \3j−1 6= ∅ for all j ∈ N, and hence 3 is infinite. Observe that 3j−1 ( 3j for all j ∈ N. Fix a
sequence {εj }j∈N↘ 0 which will be specified later, set

F0 := F |M0 : M0→ Cn

and, by Proposition 4.3 and Theorem 5.3, assume without loss of generality that F0 is nonflat and, if F |3
is injective, an embedding.

6A. Proof of the first part of the theorem. For the first part of the theorem we shall construct a sequence
{Fj }j∈N of nonflat S-immersions Fj : Mj → Cn of class A 1(Mj ) satisfying:

(ij ) ‖Fj − Fj−1‖1,Mj−1 < εj .

(iij ) Fj − F has a zero of multiplicity k ∈ N at every point p ∈3j .

(iiij ) If F |3 is injective then Fj is an embedding.

We proceed by induction. The basis is given by the S-immersion F0, which clearly satisfies (ii0)
and (iii0); condition (i0) is vacuous. For the inductive step assume that we have an S-immersion
Fj−1 : Mj−1→ Cn of class A 1(Mj−1) satisfying (ij−1), (iij−1), and (iiij−1) for some j ∈ N, and let us
furnish Fj :Mj→Cn enjoying the corresponding properties. We distinguish two different cases depending
on the Euler characteristic of Mj \ M̊j−1.

Noncritical case: assume that χ(Mj \ M̊j−1) = 0. It follows that Mj−1 is a strong deformation retract
of Mj , and then Proposition 5.2 applied to the data

S = Mj−1 ∪

( ⋃
p∈3j\3j−1

�p

)
, S0 = Mj−1, 3=3j , k,

and the generalized S-immersion S→ Cn agreeing with Fj−1 on Mj−1 and with F on
⋃

p∈3j\3j−1
�p,

provides an S-immersion Fj : Mj → Cn of class A 1(Mj ) that satisfies (ij ) and (iij ). Finally, if F |3 is
injective then Theorem 5.3 enables us to choose Fj being an embedding; this ensures (iiij ).

Critical case: assume that χ(Mj \ M̊j−1)=−1. We then have that the change of topology is described by
attaching to Mj−1 a smooth arc α in M̊j \ M̊j−1 satisfying Mj−1 only at its endpoints. Thus, Mj−1 ∪α is
a strong deformation retract of Mj . Further, we may choose α such that α ∩3=∅; and S := Mj−1 ∪α

is an admissible subset of M, which is clearly very simple (see Definition 4.1). We use Lemma 3.3 to
extend Fj−1 to S as a generalized S-immersion. By Proposition 5.2, we may approximate Fj−1 in the
C 1(Mj−1 ∪α)-topology by nonflat S-immersions on a small compact tubular neighborhood M ′j b Mj of
Mj−1 ∪α having a contact of order k with F at all points of 3j . Since χ(Mj \ M̊ ′j )= 0, this reduces the
proof to the previous case and hence concludes the recursive construction of the sequence {Fj }j∈N.

Finally, if the number εj > 0 is chosen sufficiently small at each step in the recursive construction,
properties (ij ), (iij ), and (iiij ) ensure that the sequence {Fj }j∈N converges uniformly on compacta in M to
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an S-immersion
F̃ := lim

j→∞
Fj : M→ Cn,

which is as close as desired to F uniformly on K , is injective if F |3 is injective, and is such that F̃ − F
has a zero of multiplicity k at all points of 3.

6B. Proof of assertion (I). Suppose that the assumptions in assertion (I) hold. Fix a point p0 ∈ K̊ \3.
We shall now construct a sequence of S-immersions Fj : Mj → Cn of class A 1(Mj ), j ∈ N, satisfying
conditions (ij )–(iiij ) above and also:

(ivj ) distFj (p0, bMj ) > j for all j ∈ N.

Observe that F0 = F |M0 satisfies (iv0) since it is an immersion and p0 ∈ K̊ . For the inductive step
assume that we already have Fj−1 satisfying (ij )–(ivj ) for some j ∈ N and, reasoning as above, construct
an S-immersion F ′j : Mj → Cn satisfying (ij ), (iij ), and (iiij ). Let M ′j ⊂ M̊j be a smoothly bounded
compact domain which is Runge and a strong deformation retract of Mj and contains Mj−1 ∪3j in its
relative interior. Then, Lemma 5.5 applied to the data

M = Mj , K = M ′j , 3=3j , k, τ = j, and F = F ′j |M ′j ,

gives an S-immersion Fj : Mj → Cn of class A 1(Mj ) satisfying (iij ), (ivj ), and also (ij ) provided that
the approximation of F ′j by Fj on M ′j is close enough; Theorem 5.3 enables us to assume that Fj also
satisfies (iiij ). This closes the induction and concludes the construction of the sequence {Fj }j∈N with the
desired properties.

As above, if the number εj > 0 is chosen sufficiently small at each step in the recursive construction,
properties (ij )–(iiij ) ensure that the sequence {Fj }j∈N converges uniformly on compacta in M to an
S-immersion F̃ := limj→∞ Fj : M→ Cn which is as close as desired to F uniformly on K , is injective
if F is injective, and is such that F̃ − F has a zero of multiplicity k at all points of 3. In addition,
property (ivj ) ensures that

lim
j→∞

distF̃ (p0, bMj )=+∞

whenever the number εj > 0 is chosen small enough at each step in the recursive process. This implies
that F̃ is complete and concludes the proof of assertion (I).

6C. Proof of assertion (II). Suppose the assumptions in assertion (II) hold. Observe that F |3 :3→Cn

is a proper map if, and only if, (F |3)−1(C) is finite for any compact set C ⊂Cn, or, equivalently, if either
the closed discrete set 3 is finite or for some (and hence for any) ordering 3= {p1, p2, p3, . . .} of 3, the
sequence {F(p1), F(p2), F(p3), . . .} is divergent in Cn. Since we are assuming that 3 is infinite, there
is j0 ∈ N such that

F(p) 6= 0 for all p ∈3 \3j0 . (6-1)

In a first step we construct for each j ∈ {0, . . . , j0} an S-immersion Fj : Mj → Cn of class A 1(Mj )

satisfying conditions (ij )–(iiij ) above; we reason as in Section 6A. Now, up to a small deformation of Mj0
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if necessary, we may assume without loss of generality that Fj0 does not vanish anywhere on bMj0 , and
hence there exists ρj0 > 0 such that

|Fj0(p)|∞ > ρj0 > 0 for all p ∈ bMj0 . (6-2)

Set

ρj :=min{|F(p)|∞ : p ∈3j \3j−1} for all j ≥ j0+ 1. (6-3)

Recall that 3j \3j−1 6= ∅ for all j ∈ N. In view of (6-1) and (6-2) we have ρj > 0 for all j ≥ j0.
Moreover, since F |3 is proper,

lim
j→+∞

ρj =+∞. (6-4)

In a second step, we shall construct a sequence of S-immersions Fj : Mj → Cn of class A 1(Mj ), for
j ≥ j0+ 1, enjoying conditions (ij )–(iiij ) and also:

(vj .1) |Fj (p)|∞ > 1
2 min{ρj−1, ρj } for all p ∈ Mj \ M̊j−1.

(vj .2) |Fj (p)|∞ > ρj for all p ∈ bMj .

We proceed in an inductive way. The basis of the induction is accomplished by Fj0 ; recall that it
satisfies (ij0)–(iiij0), whereas property (vj0 .1) is vacuous and property (vj0 .2) follows from (6-2). For
the inductive step, assume that we already have Fj−1 : Mj−1 → Cn for some j ≥ j0 + 1 satisfying
(ij−1)–(iiij−1), (vj−1.1), and (vj−1.2) and let us construct an S-immersion Fj : Mj→Cn of class A 1(Mj )

with the corresponding requirements.
By (6-3) and up to a shrinking of the set �p if necessary, we may assume that

|F(q)|∞ > 1
2ρj for all points q in � j

:=

⋃
p∈3j\3j−1

�p 6=∅. (6-5)

Next, choose a smooth Jordan arc C p for each p ∈3j \3j−1 with the initial point in bMj−1, the final
point in b�p, and otherwise disjoint from Mj−1 ∪�

j , and such that

S′ := Mj−1 ∪�
j
∪

( ⋃
p∈3j\3j−1

C p

)

is a very simple admissible subset of Mj ; in particular C p ∩Cq = ∅ if p 6= q. If χ(Mj \ M̊j−1) = −1
we then also choose another smooth Jordan arc α ⊂ M̊j with its two endpoints in bMj−1 and otherwise
disjoint from S′ such that S′∪α is admissible and a strong deformation retract of Mj . If χ(Mj \ M̊j−1)= 0
we set α :=∅. In any case, the set

S := S′ ∪α ⊂ M̊j

is admissible in M and a strong deformation retract of Mj . Set

C := α ∪
( ⋃

p∈3j\3j−1

C p

)
,
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and observe that S = (Mj−1∪�
j )∪C . Consider a generalized S-immersion F̃j : S→Cn of class A 1(S)

such that:

(A.1) F̃j |Mj−1 = Fj−1.

(A.2) F̃j |� j = F |� j .

(A.3) |F̃j (q)|∞ > 1
2 min{ρj−1, ρj } for all q ∈ C .

To ensure (A.3) we use Lemma 3.3; take into account (vj−1.2) and (6-5). Thus, (vj−1.2), (6-5), and (A.3)
guarantee that:

(A.4) |F̃j (p)|∞ > 1
2 min{ρj−1, ρj }> 0 for all p ∈ S \ M̊j−1 = (bMj−1)∪�

j
∪C .

Since S ⊂ M̊j is Runge and a strong deformation retract of Mj , Proposition 5.2 applied to the data

M = Mj , S, 3=3j , k, and F = F̃j

gives a nonflat S-immersion F̂j : Mj → Cn of class A 1(Mj ) such that:

(B.1) F̂j is as close as desired to F̃j in the C 1(S)-topology.

(B.2) F̂j − F̃j has a zero of multiplicity k ∈ N at every point p ∈3j .

If the approximation in (B.1) is close enough then, in view of (A.4), there exists a small compact
neighborhood N of S in M̊j , being a smoothly bounded compact domain and a strong deformation retract
of Mj , and such that:

(B.3) |F̂j (p)|∞ > 1
2 min{ρj−1, ρj }> 0 for all p ∈ N \ M̊j−1.

Notice that 3∩ (Mj \ N̊ )=∅ and hence we may apply Lemma 5.6 to the data

M = Mj , K = N , 3=3j , F = F̂j , ρ = 1
2 min{ρj−1, ρj }, τ = ρj , k,

obtaining an S-immersion Fj : Mj → Cn of class A 1(Mj ) such that:

(C.1) Fj is as close as desired to F̂j in the C 1(N )-topology.

(C.2) Fj − F̂j has a zero of multiplicity k at every point p ∈3j ⊂ N̊.

(C.3) |Fj (p)|∞ > 1
2 min{ρj−1, ρj } for all p ∈ Mj \ N̊.

(C.4) |Fj (p)|∞ > ρj for all p ∈ bMj .

We claim that, if the approximations in (B.1) and (C.1) are close enough, the S-immersion Fj :Mj→Cn

satisfies properties (ij )–(iiij ), (vj .1), and (vj .2). Indeed, (A.1) ensures (ij ); properties (A.2), (B.2), and
(C.2) guarantee (iij ); condition (vj .1) follows from (A.4), (B.3), and (C.3); and condition (vj .2) is implied
by (C.4). Finally, if F |3 is injective then, by Theorem 5.3, we may assume without loss of generality
that Fj is an embedding. This closes the inductive step and concludes the recursive construction of the
sequence {Fj }j≥ j0+1 meeting the desired requirements.

As above, choosing the number εj > 0 ( j ∈ N) small enough at each step in the construction,
properties (ij )–(iiij ) ensure that the sequence {Fj }j∈N converges uniformly on compact subsets of M to an
S-immersion F̃ := limj→∞ Fj : M→ Cn which is as close as desired to F uniformly on K , is injective
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if F |3 is injective, and is such that F̃ − F has a zero of multiplicity k at all points of 3. Furthermore,
properties (vj .1) and (6-4) imply that F̃ is a proper map. Indeed, take a number R > 0 and a sequence
{qm}m∈N that diverges on M, and let us check that there is m0 ∈N such that |F̃(qm)|∞> R for all m ≥m0.
Indeed, set

ε :=
∑
j≥1

εj <+∞

and observe that, by properties (ij ),

‖F̃ − Fj‖1,Mj < ε for all j ∈ Z+. (6-6)

On the other hand, in view of (6-4) there is an integer j1 ≥ j0+ 1 such that

ρj−1 > 2(R+ ε) for all j ≥ j1. (6-7)

Now, since the sequence {pm}m∈N diverges on M and {Mj }j∈N is an exhaustion of M, there is m0 ∈ N

such that
pm ∈ M \Mj1 for all m ≥ m0.

Thus, for any m ≥ m0 there is an integer jm ≥ j1 such that qm ∈ Mjm \ M̊jm−1, and so

|F̃(qm)|∞ ≥ |Fjm (qm)|∞− |Fjm (qm)− F̃(qm)|∞
(vjm .1), (6-6)

> 1
2 min{ρ jm−1, ρjm }− ε

(6-7)
> R.

This proves that F̃ : M→ Cn is a proper map and concludes the proof of Theorem 1.3.

7. Sketch of the proof of Theorem 1.2 and the proof of Theorem 1.1

We briefly explain how the arguments in Sections 5 and 6 which enabled us to prove Theorem 1.3 may be
adapted in order to guarantee Theorem 1.2; we shall leave the obvious details of the proof to the interested
reader. Afterward, we will use Theorem 1.2 to prove Theorem 1.1.

First of all recall that, as pointed out in Section 2C, for any integer n ≥ 3 the punctured null quadric
A∗ ⊂ Cn , see (1-3) and (1-4), directing minimal surfaces in Rn is an Oka manifold and satisfies the
assumptions in assertions (I) and (II) in Theorem 1.3. Thus, Theorem 4.4 and Lemma 4.5 hold for S=A.

The first step in the proof of Theorem 1.2 consists of providing an analogue of Proposition 5.2
for generalized conformal minimal immersions in the sense of [Alarcón, Forstnerič and López 2016a,
Definition 5.2]. In particular we need to show that if we are given M, S, and 3 as in Proposition 5.2 then,
for any integer k ∈ Z+, every generalized conformal minimal immersion X : S→ Rn (n ≥ 3) may be
approximated in the C 1(S)-topology by conformal minimal immersions X̃ : M→ Rn of class C 1(M)
such that X̃ and X have a contact of order k at every point in 3 and the flux map FluxX̃ equals FluxX

everywhere in the first homology group H1(M;Z). To do that we reason as in the proof of Proposition 5.2
but working with the map f := ∂X/θ : S→ A∗. Since f θ does not need to be exact (only its real part
does) we replace conditions (a) and (b) in the proof of the proposition by the following ones:

• ( f̃ − f )θ is exact on S.

• X (p0)+ 2
∫

C p
<( f̃ θ)= X (p0)+ 2

∫
C p
<( f θ)= X (p) for all p ∈3.
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It can then be easily seen that the conformal minimal immersion X̃ : M→ Rn of class C 1(M) given by

X̃(p) := X (p)+ 2
∫

C p

<( f̃ θ), p ∈ M,

is well-defined and enjoys the desired properties.
In a second step and following the same spirit, we need to furnish a general position theorem, a

completeness lemma, and a properness lemma for conformal minimal immersions of class C 1 on a
compact bordered Riemann surface, which are analogues of Theorem 5.3, Lemma 5.5, and Lemma 5.6,
respectively. In this case the general position of conformal minimal surfaces is embedded in Rn for
all integers n ≥ 5; to adapt the proof of Theorem 5.3 to the minimal surfaces framework we combine
the argument in [Alarcón, Forstnerič and López 2016a, proof of Theorem 1.1] with the new ideas in
Section 5A which allow us to ensure the interpolation condition. Likewise, the analogues of Lemmas 5.5
and 5.6 for conformal minimal surfaces can be proved by adapting the proofs of the cited lemmas in
Sections 5B and 5C, respectively; the required modifications follow the pattern described in the previous
paragraph: at each step in the proofs we ensure that the real part of the 1-forms is exact and that the periods
of the imaginary part agree with the flux map of the initial conformal minimal immersion. Furthermore,
obviously, we are allowed to use only the real part in order to ensure the increasing of the intrinsic
diameter of the surface to achieve completeness, see Lemma 5.5 (II), and the increasing of the | · |∞-norm
near the boundary to guarantee properness, see Lemma 5.6 (II) and (III). For the former we just replace
condition (c) in the proof of Lemma 5.5 (which determines an extrinsic bound) by the following one:

• |2
∫
α
<(hθ)|> τ for all arcs α ⊂ S with initial point p0 and final point in L .

For the latter, the adaptation is done straightforwardly since all the bounds are of the same nature, namely,
extrinsic.

Finally, granted the analogues for conformal minimal surfaces in Rn of Proposition 5.2, Theorem 5.3,
Lemma 5.5, and Lemma 5.6, the proof of Theorem 1.2 follows word for word, up to trivial modifications
similar to the ones discussed in the previous paragraphs, the one of Theorem 1.3 in Section 6. It is perhaps
worth pointing out that in the noncritical case in the recursive construction (see Section 6A) we now
have to extend a conformal minimal immersion of class C 1(Mj−1) to a generalized conformal minimal
immersion on the admissible set S = Mj−1 ∪ α ⊂ M̊j whose flux map equals p for every closed curve
in S (here p : H1(M;Z)→ Rn denotes the group homomorphism given in the statement of Theorem 1.2,
whereas Mj−1, α, and Mj are as in Section 6A); this can be easily done as in [Alarcón, Forstnerič and
López 2016a, proof of Theorem 1.2]. This concludes the sketch of the proof of Theorem 1.2; as we
announced at the very beginning of this section, we leave the details to the interested reader.

To finish the paper we show how Theorem 1.2 can be used in order to prove the following extension to
Theorem 1.1 in the Introduction.

Corollary 7.1. Let M be an open Riemann surface and 3 ⊂ M be a closed discrete subset. Consider
also an integer n ≥ 3 and maps Z :3→ Rn and

G :3→ Qn−2 = {[z1 : · · · : zn] ∈ CPn−1
: z2

1+ · · ·+ z2
n = 0} ⊂ CPn−1.
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Then there is a conformal minimal immersion X̃ : M→ Rn satisfying X̃ |3 = Z and whose generalized
Gauss map G X̃ : M→ CPn−1 equals G on 3.

Proof. For each p ∈ 3 let �p be a smoothly bounded, simply connected compact neighborhood of p
in M, and assume that �p ∩�q =∅ whenever p 6= q ∈3. Set � :=

⋃
p∈3�p and let X :�→ Rn be

any conformal minimal immersion of class C 1(�) such that X |3 = Z and the generalized Gauss map
satisfies G X |3 = G. (Such an X always exists; we may for instance choose X |�p to be a suitable planar
disk for each p ∈3). Also fix a smoothly bounded simply connected compact domain K ⊂ M \3, up
to shrinking the sets �p if necessary, assume that K ⊂ M \�, and extend X to �∪ K → Rn such that
X |K : K → Rn is any conformal minimal immersion of class C 1(K ∪�). Applying Theorem 1.2 to
these data, any group homomorphism H1(M;Z)→ Rn, and the integer k = 1, we obtain a conformal
minimal immersion X̃ : M → Rn which has a contact of order 1 with X |� at every point in 3. Thus,
X̃ |3 = X |3 = Z and the generalized Gauss map satisfies G X̃ |3 = [∂ X̃ ]|3 = [∂X ]|3 = G X |3 = G. �
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