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A UNIFIED FLOW APPROACH TO
SMOOTH, EVEN Lp-MINKOWSKI PROBLEMS

PAUL BRYAN, MOHAMMAD N. IVAKI AND JULIAN SCHEUER

We study long-time existence and asymptotic behavior for a class of anisotropic, expanding curvature
flows. For this we adapt new curvature estimates, which were developed by Guan, Ren and Wang to treat
some stationary prescribed curvature problems. As an application we give a unified flow approach to the
existence of smooth, even Lp-Minkowski problems in RnC1 for p > �n� 1.

1. Introduction

Consider a smooth, closed, strictly convex hypersurface M0 in Euclidean space RnC1, n � 2, given
by a smooth embedding F0 WM ! RnC1. Suppose the origin is in the interior of the region enclosed
by M0. We study the long-time behavior of a family of hypersurfaces fMtg given by smooth maps
F WM � Œ0;T /! RnC1 satisfying the initial value problem

@tF.x; t/D '.�.x; t//
.F.x; t/ � �.x; t//2�p

K.x; t/
�.x; t/; F. � ; 0/D F0. � /: (1-1)

Here K. � ; t/ and �. � ; t/ are the Gauss curvature and the outer unit normal vector of Mt D F.M; t/ and
' is a positive, smooth function on Sn. Furthermore, T is the maximal time for which the solution exists.

For p D 2, ' � 1, flow (1-1) was studied in [Schnürer 2006] in R3 and in [Gerhardt 2014] in higher
dimensions. Both works rely on the reflection principle of [Chow and Gulliver 1996; McCoy 2003].
Their result is as follows: the volume-normalized flow evolves any M0 in the C1-topology to an origin-
centered sphere. For p > 2, ' � 1, it follows from [Chow and Gulliver 1996, Theorem 3.1], see also
[Tsai 2005, Example 1], that (1-1) evolves M0, after rescaling to fixed volume, in the C 1-topology to
an origin-centered sphere. We refer the reader to [Ivaki 2016] regarding a rather comprehensive list of
previous works on this curvature flow. In particular, in either case ' ¤ 1 or ' � 1, �n� 1< p < 2, we
are not aware of any result in the literature on the asymptotic behavior of the flow. The following theorem
was proved in [Ivaki 2016] regarding the case p D �n� 1, ' � 1; in this case the flow belongs to a
family of centroaffine normal flows introduced in [Stancu 2012].

Let us write B for the unit ball of RnC1 and put

zKt WD

�
V .B/

V .Kt /

� 1
nC1

Kt ;
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where Kt denotes the convex body enclosed by Mt and V . � / is the .nC1/-dimensional Lebesgue
measure.

Theorem [Ivaki 2016]. Let n� 2, pD�n�1, '� 1 and suppose K0 has its Santaló point at the origin;
i.e., Z

Sn

u

hK0
.u/nC2

d�.u/D 0:

Then there exists a unique solution fMtg of flow (1-1) such that zMt converges in C1 to an origin-centered
ellipsoid.

Here hK0
is the support function of K0. A closed, convex hypersurface M0 can be described in terms

of its support function hK0
W Sn! R defined by

hK0
.u/D supfu �x W x 2M0g:

If M0 is smooth and strictly convex, then hK0
.u/D u �F0.�

�1.u//.
From the evolution equation of F. � ; t/ it follows that

h. � ; t/ WD hKt
. � / W Sn

� Œ0;T /! R

evolves by
@th.u; t/D '.u/.h

2�pSn/.u; t/; (1-2)

where Sn.u; t/D 1=K.��1.u; t/; t/. A homothetic self-similar solution of this flow satisfies

h1�p det.r2hC Id h/D
c

'
(1-3)

for some positive constant c. Here r is the covariant derivative on Sn. Note that Sn D det.r2hC Id h/.
We list the main results of the paper extending the previous-mentioned results.

Theorem 1. Let �n� 1< p <1 and ' be a positive, smooth function on Sn that is even, i.e., '.u/D
'.�u/. Suppose K0 is origin-symmetric. There exists a unique origin-symmetric solution fMtg of (1-1)
such that f zMtg converges for a subsequence of times in C 1 to a smooth, origin-symmetric, strictly convex
solution of (1-3). Also, when p � nC 1 the convergence is in C1, and if p � 1 the convergence holds for
the full sequence.

If �n�1< p ��n, we can extend the result of the previous theorem by dropping the assumption that
' is even.

Theorem 2. Let �n� 1< p � �n and K0 satisfyZ
Sn

u

'.u/hK0
.u/1�p

d�.u/D 0:

There exists a unique solution fMtg of flow (1-1) such that f zMtg converges for a subsequence of times in
C1 to a positive, smooth, strictly convex solution of (1-3).

Given any convex body K0, there exists a vector Ev such that K0C Ev has the origin in its interior and it
satisfies the assumption of the second theorem.
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For ' � 1 we prove the following theorem.

Theorem 3. Let 1¤ p > �n� 1, ' � 1 and K0 satisfyZ
Sn

u

hK0
.u/1�p

d�.u/D 0:

Then there exists a unique solution fMtg of (1-1) such that f zMtg converges in C 1 to the unit sphere. In
addition, for 1¤ p � nC 1 the convergence holds in C1.

For p ¤ nC 1, self-similar solutions to (1-1) are solutions of the Lp-Minkowski problem (1-4), and
for p D nC 1, a self-similar solution to (1-1) is a solution to the normalized LnC1-Minkowski problem
(1-5); we shall introduce them now.

The Minkowski problem deals with existence, uniqueness, regularity, and stability of closed convex hy-
persurfaces whose Gauss curvature (as a function of the outer normals) is preassigned. Major contributions
to this problem were made by Minkowski [1897; 1903], Aleksandrov [1938; 1939; 1942], Fenchel and
Jessen [1938], Lewy [1938a; 1938b], Nirenberg [1953], Calabi [1958], Pogorelov [1952; 1971], Cheng
and Yau [1976], Caffarelli, Nirenberg, and Spruck [Caffarelli et al. 1984], and others. A generalization of
the Minkowski problem known as the Lp-Minkowski problem was introduced in [Lutwak 1993], where
for any 1 < p ¤ nC 1 and a preassigned even Borel measure on Sn whose support does not lie in a
great sphere of Sn the existence and uniqueness of the solution were proved. This generalization for
1< p ¤ nC 1 was further studied in [Lutwak and Oliker 1995], where they obtained the C k;˛ regularity
of the solution. Solutions to many cases of these generalized problems followed later in [Ai et al. 2001;
Andrews 2000; 2002; 2003; Böröczky et al. 2013; Chen 2006; Chou and Wang 2006; Dou and Zhu 2012;
Gage 1993; Gage and Li 1994; Guan and Lin 2000; Huang and Lu 2013; Jiang 2010; Jiang et al. 2011; Lu
and Wang 2013; Lutwak et al. 2004; Stancu 1996; 2002; 2003; Umanskiy 2003; Zhu 2014; 2015a; 2015b].

For p ¤ nC 1, in the smooth category, the Lp-Minkowski problem asks, given a smooth, positive
function ' W Sn! R, if there exists a smooth, closed, strictly convex hypersurface M0 � RnC1 such that

h1�p.�.x//

K.x/
D

1

'.�.x//
; (1-4)

where x 2M0, h denotes the support function, K the Gauss curvature and � the Gauss map M0! Sn.
The even Lp-Minkowski problem requires, in addition, that ' is an even function. The case p D 1 is
the original Minkowski problem.

The special case of p D nC 1 is troubling since (1-4) might not have a solution. To remedy this,
Lutwak, Yang and Zhang [Lutwak et al. 2004] introduced a normalized formulation of the LnC1-
Minkowski problem and they proved the existence and uniqueness of the solution for any prescribed even
Borel measure on Sn whose support is not contained in a great sphere of Sn. In the smooth category,
the normalized LnC1-Minkowski problem asks for the existence of a smooth, closed, strictly convex
hypersurface M0 � RnC1 that solves

1

hn.�.x//K.x/
D

V .K0/

'.�.x//
; (1-5)
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where K0 is the convex body with the boundary M0. In the rest of the paper, the Lp-Minkowski problem
refers to either (1-4) or (1-5), and we avoid the word “normalized”.

The existence and regularity of solutions to the Lp-Minkowski problem are rather comprehensively
discussed in [Chou and Wang 2006] for p>�n�1. Our study on (1-1) provides an alternative variational
treatment (based on curvature flow) of the even Lp-Minkowski problem. For p D 1, Chou and Wang
[2000] treated the classical L1-Minkowski problem in the smooth category by a logarithmic Gauss
curvature flow. For nD 1 and 1¤ p > �3, the existence of solutions to the Lp-Minkowski problems
follows from Andrews’ results [1998] on the asymptotic behavior of a family of contracting and expanding
flows of curves. Also, in higher dimensions, the existence of solutions to the Lp-Minkowski problems
follows from [Andrews 2000] when �n� 1< p � �nC 1 (a short proof of this is also given in [Ivaki
2015]) or when ' is even (i.e., '.u/D '.�u/) and �nC 1< p < 1. See also [Andrews 1999; Andrews
et al. 2016; Guan and Ni 2017; Urbas 1998; 1999].

Using our results for the flows above, it is now a simple matter to give a new, unified proof of the
smooth, even Lp-Minkowski problem for all ranges of p > �n� 1.

Corollary 4. Let �n � 1 < p < 1 and ' be a positive, smooth function on Sn that is even, i.e.,
'.u/D '.�u/. Then for p ¤ nC 1 there exists an origin-symmetric, smooth, strictly convex body such
that (1-4) is satisfied. For p D nC 1, there exists an origin-symmetric, smooth, strictly convex body such
that (1-5) is satisfied.

Proof. By the first part of Theorem 1 (only the convergence for a subsequence of times is needed), there
exists a smooth, strictly convex body K with the volume of the unit ball and a constant c > 0 such that

h

K
D

chp

'
:

Hence c
R

Sn hp=' d� D .nC 1/V .Bn/. Thus there is a solution to

h1�p.�.x//

K.x/
D

�
.nC 1/V .B/R

Sn hp=' d�

�
1

'.�.x//
:

Now let us define

� WD

8̂̂̂̂
<̂
ˆ̂̂:

�R
Sn hp=' d�

.nC 1/V .B/

� 1
nC1�p

; p ¤ nC 1;�
.nC 1/V .B/

V .K/
R

Sn hnC1=' d�

� 1
nC1

; p D nC 1:

Therefore, �K solves the smooth, even Lp-Minkowski problem. �

Let us close this section with a brief outline of this paper. The main difficulty in proving convergence
of the normalized solutions is in obtaining long-time existence. The issue arises from the time-dependent
anisotropic factor (the support function). We believe in such generality, (1-1) serves as the first example
where a time-dependent anisotropic factor is allowed. To prove long-time existence, we first obtain bounds
on the Gauss curvature in Section 3.1. Using the well-known standard technique of [Tso 1985] we obtain
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upper bounds. We obtain lower bounds by applying the same technique to the evolution of the polar body
as in [Ivaki 2015]. Controlling the principal curvatures requires estimates of higher derivatives of the
speed, which is generally quite difficult due to the nonlinearity of the flow. In Section 3.2 we obtain
these crucial estimates by adapting the remarkable C 2 estimates of Guan, Ren and Wang [Guan et al.
2015, (4.2)] for the prescribed curvature problem. Long-time existence then follows readily by standard
arguments. Once it is proved that solutions to the flow exist until they expand to infinity uniformly in all
directions, the method of [Ivaki 2016, Section 8] applies and yields convergence of the volume-normalized
solutions in C 1 to self-similar solutions provided p¤ 1. Further work is required to establish convergence
of normalized solutions if p D 1, and to prove convergence in C1 for p � nC 1. This is accomplished
in Section 4; see also Remark 10.

2. Basic evolution equations

Let g D fgij g and W D fwij g denote, in order, the induced metric and the second fundamental form
of M. At every point in the hypersurface M choose a local orthonormal frame fe1; : : : ; eng.

We use the standard notation

w
j
i D gmjwim; .w2/

j
i D gmj grswirwsm; jW j

2
D gij gklwikwlj D wijw

ij :

Here, fgij g is the inverse matrix of fgij g.
We use semicolons to denote covariant derivatives. The following geometric formulas are well-known:

�Ii D w
k
i ek ; hIi D w

k
i .F � ek/;

�Iij D gklwij Ilek �w
l
iwlj�; hIij D wij � hwl

iwlj CF � rwij :

Note that above we considered the support function as a function on the boundary of the hypersurface;
that is, at the point x 2M we have

h.x/D F.x/ � �.x/:

For convenience, let  .x/D h2�p.x/'.�.x//. The following evolution can be deduced in a standard
manner; see for example [Gerhardt 2006].

Lemma 5. The following evolution equations hold:

@t� D�r

�
 

K

�
;

@tw
j
i D�

�
 

K

�
Iik

gkj
�

�
 

K

�
wk

i w
j

k

D  
Kkl

K2
w

j

iIkl
C 

Kkl

K2
wkrw

r
l w

j
i � .nC 1/

 

K
wk

i w
j

k
C 

Kkl;rs

K2
gjmwklIiwrsIm

�
2 

K3
gjmKIiKImC

1

K2
gjkKIk Ii C

1

K2
gjk IkKIi �

1

K
gjk Iik ;

@thD  
Kij

K2
hIij C h

Kij

K2
wl

iwlj � .n� 1/
 

K
�

1

K
F � r :
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3. Long-time existence

3.1. Lower and upper bounds on Gauss curvature. The proofs of the following two lemmas are similar
to the proofs of [Ivaki 2015, Lemmas 4.1, 4.2]. For completeness, we give the proofs here. In this section
we use r to denote covariant derivatives on the sphere with respect to the standard metric.

The matrix of the radii of the curvature of a smooth, closed, strictly convex hypersurface is denoted by
rD Œrij � and the entries of r are considered as functions on the unit sphere. They can be expressed in terms
of the support function as rij WD r

2
ij hC Ngij h, where Œ Ngij � is the standard metric on Sn. Additionally, we

recall that Sn D detŒrij �= detŒ Ngij �.

Lemma 6. Let fMtg be a solution of (1-1) on Œ0; t1�. If c2 � hKt
� c1 on Œ0; t1�, then K � c4 on Œ0; t1�.

Here c4 depends on K0, c1; c2;p; ' and t1.

Proof. We apply the maximum principle to the following auxiliary function defined on the unit sphere:

‚D
 Sn

2c1� h
D

@th

2c1� h
:

At any minimum of ‚ we have

0Dri‚Dri

�
 Sn

2c1� h

�
and r

2
ij‚� 0:

Therefore, we get
ri. Sn/

2c1� h
D�

 Snrih

.2c1� h/2

and
r

2
ij . Sn/C Ngij Sn �

� Snrij C 2c1 Sn Ngij

2c1� h
: (3-1)

Differentiating ‚ with respect to time yields

@t‚D
 S

ij
n

2c1� h
.r2

ij . Sn/C Ngij Sn/C
 2S2

n

.2c1� h/2
.1C .2�p/h�1.2c1� h//;

where S
ij
n is the derivative of Sn with respect to the entry rij . By applying inequality (3-1) to the

preceding identity we deduce

@t‚�‚
2.1� nC 2c1H/� c‚2; (3-2)

where
HD S�1

n S ij
n Ngij :

Therefore, we arrive at

.h2�p=K/'
2c1� h

.t;u/�

 
ct C

1

min
u2Sn

.h2�p=K/'
2c1�h

.0;u/

!�1

�

 
ct1C

1

min
u2Sn

.h2�p=K/'
2c1�h

.0;u/

!�1

: �

Lemma 7. Let fMtg be a solution of (1-1) on Œ0; t1�. If c1�hKt
� c2 on Œ0; t1�, then K� 1=.aCbt�

n
nC1 /

on .0; t1�, where a and b depend only on c1; c2;p; '. In particular, K � c3 on Œ0; t1� for a positive
number c3 that depends on K0, c1; c2;p; ' and is independent of t1.
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Proof. Suppose K�t is the polar body1of Kt with respect to the origin. We furnish quantities associated
with polar bodies with �. The polar bodies evolve by

@th
�
D� �S��1

n ; h�. � ; t/D hK�t
. � /;

where

 � D
.h�2Cjrh�j2/

nC1Cp
2

h�nC1
'

�
h�uCrh�p
h�2Cjrh�j2

�
I

see Lemma 11 for the proof. In addition, we have c0
1
D 1=c2 � h� � 1=c1 D c0

2
. We will show that the

function

‚D
 �S��1

n

h�� c0
1
=2

remains bounded. At any maximal point of ‚,

0Dri‚Dri

�
 �S��1

n

h�� c0
1
=2

�
and r

2
ij‚� 0:

Hence, we obtain
ri. 

�S��1
n /

h�� c0
1
=2
D
 �S��1

n rih
�

.h�� c0
1
=2/2

; (3-3)

and consequently,

r
2
ij . 

�S��1
n /C Ngij 

�S��1
n �

 �S��1
n r�ij � .c

0
1
=2/ �S��1

n Ngij

h�� c0
1
=2

: (3-4)

Differentiating ‚ with respect to time yields

@t‚D
 �S��2

n

h�� c0
1
=2

S�ijn .r2
ij . 

�S��1
n /C Ngij 

�S��1
n /C

S��1
n

h�� c0
1
=2
@t 

�
C‚2:

On the other hand, in view of

j@th
�
j D  �S��1

n ; kr@th
�
k D kr. �S��1

n /k D
 �S��1

n krh�k

h�� c0
1
=2

; krh�k � c02;

where for the second equation we used (3-3), we have

S��1
n

h�� c0
1
=2
@t 

�
� c.n;p; c1; c2; '/‚

2:

Employing this last inequality and inequality (3-4) we infer that, at any point where the maximum of ‚
is reached, we have

@t‚�‚
2

�
c0�

c0
1

2
H�
�
: (3-5)

1The polar body of a convex body K with the origin of RnC1 in its interior is the convex body defined by K� D fx 2 RnC1 W

x �y � 1 for all y 2Kg.
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Moreover, we have

H� � n

�
h�� c0

1
=2

 �S��1
n

�� 1
n
�

 �

h�� c0
1
=2

�� 1
n

� n‚
1
n

�
c00

c0
1
� c0

1
=2

�� 1
n

:

Therefore, we can rewrite the inequality (3-5) as

@t‚�‚
2.c � c0‚

1
n /

for positive constants c and c0 depending only on p; c1; c2; '. Hence,

‚� cC c0t�
n

nC1 (3-6)

for some positive constants depending only on p; c1; c2; '. This follows from the claim below.

Claim. Suppose f is a positive smooth function of t on Œ0; t1� that satisfies

d

dt
f � c0C c1f C c2f

2
� c3f

2Cp; (3-7)

where c3;p are positive. There exist constant c; c0 > 0 independent of the solution and depending only on
c0; c1; c2; c3;p, such that f � cC c0t�1=.pC1/ on .0; t1�.

Proof of claim. Note that there exists x0 > 0 such that c0C c1xC c2x2 � c3x2Cp < �c3=2x2Cp for
x > x0. If f .0/� x0, then f may increase forward in time, but when f reaches x0, then f must start
decreasing (since the right-hand side of (3-7) becomes negative). Thus we may assume, without loss of
generality, that f .0/ > x0. Therefore, f > x0 on a maximal time interval Œ0; t0/. On Œ0; t0/ we can solve

d

dt
f � �

c3

2
f 2Cp

to obtain

f �

�
c3

pC 1

2t

�� 1
pC1

:

At t0 we have c0C c1f C c2f
2� c3f

1Cp D�.c3=2/f
2Cp and f D x0; therefore the right-hand side

of (3-7) is still negative. So f � f .t0/ on Œt0; t1�. In conclusion,

f �max
��

c3

pC 1

2t

�� 1
pC1

; x0 D f .t0/

�
� cC c0t�

1
1Cp ;

where c; c0 do not depend on solutions. �

The inequality (3-6) implies that

S��1
n � a0C b0t�

n
nC1 (3-8)

for some a0 and b0 depending only on p; c1; c2; '. Now we can use the argument given in [Ivaki and
Stancu 2013, Lemma 2.3] to obtain the desired lower bound: For every u 2 Sn, there exists a unique
u� 2 Sn such that

.SnhnC2/.u/.S�n h�nC2/.u�/D 1I
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see [Hug 1996]. In view of this identity and (3-8) we conclude that on .0; t1� we have

K �
1

aC bt�
n

nC1

for some a and b depending only on p; c1; c2; '. The lower bound for K on Œ0; ı� for a small enough
ı > 0 follows from the short-time existence of the flow. The lower bound for K on Œı; t1� follows from
the inequality K � 1=.aC bı�

n
nC1 /. �

3.2. Upper and lower bounds on principal curvatures. To obtain upper and lower bounds on the princi-
pal curvatures, denoted by f�ig

n
iD1

, we will consider the auxiliary function used by Guan, Ren and Wang
[Guan et al. 2015, (4.2)] for a prescribed curvature problem.

Lemma 8. Let fMtg be a solution of (1-1) on Œ0; t1�. If c1 � hKt
� c2 on Œ0; t1�, then c5 � �i � c6 on

Œ0; t1�, where c5 and c6 depend on K0, c1; c2;p; ' and t1.

Proof. In view of Lemmas 6 and 7, it suffices to show that kW k remains bounded on Œ0; t1�. Consider the
auxiliary function

‚D 1
2

log.kW k2/�˛ log h:

Assume without loss of generality that c1 > 1, for otherwise we replace h by 2h=c1, which does not effect
the evolution equation of ‚. Using the parabolic maximum principle we show that for some ˛ large
enough ‚. � ; t/ is always negative on Œ0; t1�. If the conclusion of the theorem is false, we may choose
.x0; t0/ with t0 > 0 and such that ‚.x0; t0/D 0, ‚.x; t0/� 0, and ‚.x; t/ < 0 for t < t0. Then,

0� P‚� 
Kkl

K2
‚Ikl

D�
 

kW k2
Kkl

K2
w

j

iIk
wi

j Il C
2 

kW k4
Kkl

K2
w

j
i w

s
rw

i
j Ikw

r
sIl C 

Kkl

K2
wkrw

r
l � .nC 1/ 

.w2/
j
i w

i
j

KkW k2

C
 wi

j

kW k2

�
Kkl;rs

K2
wklIig

jpwrsIp � 2
gjpKIiKIp

K3

�
C

�
2

K2
gjp IiKIp �

1

K
gjp Iip

�
wi

j

kW k2

C .n� 1/
˛ 

hK
C

˛

hK
.F � r /�

˛ 

h2

Kkl

K2
hIkhIl �˛ 

Kkl

K2
wkrw

r
l :

Pick normal coordinates around x0 such that in .x0; t0/ it holds that

gij D ıij ; wij D wiiıij :

At .x0; t0/ we may write

Kkl;rswklIiwrsIi D Kkk;l lwkkIiwl lIi �Kkk;l lw2
klIi ;

due to the relation

Kkl;rswklIiwrsIjw
ij
D

X
i
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�X
p;q

@2K
@�p@�q

wppIiwqqIi C

X
p¤q

@K
@�p
�
@K
@�q

�p � �q
w2

pqIi

�
I (3-9)



268 PAUL BRYAN, MOHAMMAD N. IVAKI AND JULIAN SCHEUER

see for example [Gerhardt 2006, Lemma 2.1.14]. We obtain after multiplication by K2 that

0��
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X
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w2
l lIi�
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X
p¤q

w2
pqIiC
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Kii
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C Kiiw2
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X
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C
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X
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.KIi/2

K

�
C

X
i

.2 IiKIi�K Iii/
wii

kW k2
C.n�1/

˛ K
h
C
˛K
h
.F �r /�

˛ 

h2
KklhIkhIl�˛ Kiiw2

ii :

At .x0; t0/ we have

0D‚Ik D
X

i

wiiwiiIk

kW k2
�˛

hIk

h
: (3-10)

We may assume at x0 that w11 Dmaxfwii W 1� i � ng. Therefore,

‚.x0; t0/D 0 D)
c˛

1
p

n
� w11 � c˛2 : (3-11)

On the other hand, since  is bounded above and below in view of the hypotheses of the lemma, we
obtain

 Ii � C0wii D) 2 IiKIi �
" 

c4

.KIi/2C
c4C 2

0

 "
w2

ii

� " 
.KIi/2

K
CC.";K0; '; t1/ w

2
ii ; (3-12)

where c4 (depending on t1) is from Lemma 6, and

 Iii � �C �Cwii �Cw2
ii C

X
k

wiiIkd� .@k/: (3-13)

Using (3-10) in (3-13) we obtain
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wii Iii �
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wii.C CCwii CCw2
ii/�

˛K
h

X
k

hIkd� .@k/

D
K
kW k2

X
i

wii.C CCwii CCw2
ii/�

˛K
h

X
i

wii.@i �F /d� .@i/

�
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wii.C CCw2
ii/�

˛K
h

X
i

wii.@i �F /d� .@i/: (3-14)

For the last inequality, we used that K is bounded above and  is bounded below (so the constant C

depends on K0; '; t1).
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Combining (3-10), (3-12) and (3-14) implies
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ii

kW k2
; (3-15)

where C depends on ";K0; '; t1, and

Ai D
2� "

kW k2K
wii.KIi/2�

wii

kW k2

X
p;q

Kpp;qqwppIiwqqIi ;

Bi D
2
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wjjKjj ;iiw2
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:

The terms Bi and Ci deserve some explanation. Ci comes from the second term in (3-15), which is
given by

�
 

kW k2

X
i

Kii
X
p¤q

w2
pqIi � �

 

kW k2

X
p¤q

Kppw2
pqIp �

 

kW k2

X
p¤q

Kqqw2
pqIq;

which is exactly Ci due to the Codazzi equation.
The third line of (3-15) arises from (3-9). Since the second term in the bracket of (3-9) is negative and

the hypersurface is convex, we can proceed in the same way as we derived Ci and just throw away all
indices i which are neither p nor q. This gives term Bi . The first term in the big bracket goes into Ai .

In Corollary 14 of the Appendix we will present an adaption of the method developed in [Guan et al.
2015] to deal with the curvature derivative terms Ai ;Bi ;Ci ;Di ;Ei . There we prove that we obtain the
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following alternative: there exist positive numbers ı2; : : : ; ın, which only depend on the dimension and
bounds on the Gauss curvature, such that either

wii > ıiw11 for all 2� i � n

or
Ai CBi CCi CDi �Ei � 0 for all 1� i � n:

By taking ˛ large in (3-11), in the first case we get a contradiction to the bound on the Gauss curvature.
In the second case, using also Kiiw2

ii D K
P

i wii , (3-15) yields
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wl l.C CCw2
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�
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K
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K
h2

X
i

wii.@i �F /
2
C

K
h 

X
l

.@l �F /dF .@l/

�
:

Consequently we obtain

0�
C.";K0; '; t1/w

3
11

kW k2
� .˛� 1/K w11CC.K0; '; t1/˛;

where we discarded �.˛ � 1/K 
P

i¤1wii � 0 and used the bounds on h;  and K to bound w11 in
terms of w3

11
.

Now take ˛ such that .˛� 1/K � C.";K0; '; t1/C 1. Therefore, in view of (3-11)

0�
C.";K0; '; t1/w

3
11

kW k2
� .˛� 1/K w11CC.K0; '; t1/˛

� C.";K0; '; t1/

�
w2

11

kW k2
� 1

�
w11�w11CC.K0; '; t1/˛

� �
c˛

1
p

n
CC.K0; '; t1/˛: (3-16)

Taking ˛ large enough yields a contradiction. �

Proposition 9. The solution to (1-1) satisfies limt!T max hKt
D1.

Proof. First, let p � nC 1. In this case, by comparing with suitable outer balls, the flow exists on Œ0;1/.
For p > nC 1, consider an origin-centered ball Br such that K0 � Br . Then Kt � Br.t/, where

r.t/D ..min hK0
/p�n�1

C t.p� n� 1/min'/
1

p�n�1

and Br.t/ expands to infinity as t approaches1. For pD nC1, Kt �Br.t/ with r.t/D et min' min hK0

and Br.t/ expands to infinity as t approaches1.
Second, if p < nC 1, then the flow exists only on a finite-time interval. If max hKt

<1, then by
Lemmas 6, 7 and 8, the evolution equation (1-1) is uniformly parabolic on Œ0;T /. Thus, the result of
[Krylov and Safonov 1980] and standard parabolic theory allow us to extend the solution smoothly past
time T, contradicting its maximality. �
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4. Convergence of normalized solutions

4.1. Convergence in C 1; 1¤ p > �n� 1. By the proof of [Ivaki 2016, Corollary 7.5], there exist r;R

such that

0< r � h zKt
�R<1: (4-1)

Therefore, a subsequence of f zKtk
g converges in the Hausdorff distance to a limiting shape zK1 with the

origin in its interior. The argument of [Ivaki 2016, Section 8.1] implies

'h
1�p

zK1
f zK1

D c;

where f zK1 is the positive continuous curvature function of zK1 and c is some positive constant. By [Chou
and Wang 2006, Proposition 1.2], zK1 is smooth and strictly convex. The C 1 convergence follows, which
is purely geometric and does not depend on the evolution equation, from [Andrews 1997, Lemma 13].

Remark 10. Section 4.1 completes the discussion on the existence of solutions to the smooth, even
Lp-Minkowski problems in RnC1 for 1¤ p > �n� 1. The next section discusses the C1 convergence
when 1¤ p � nC 1, and also when p D 1 and solutions are origin-symmetric. We mention that in the
latter case, by the proof of [Ivaki 2016, Corollary 7.5], the estimate (4-1) still holds.

4.2. Convergence in C 1. By [Ivaki 2016, Lemma 9.2], there is a uniform upper bound on the Gauss
curvature of the normalized solution when p � nC 1. In the following, we first obtain a uniform lower
bound on the Gauss curvature of the normalized solution zKt .

Let h W Sn � Œ0;T /! RnC1 be a solution of (1-2). Then for each � > 0, Nh defined by

Nh W Sn
� Œ0;T=�

1Cn�p
nC1 /! RnC1;

Nh.u; t/D �
1

nC1 h.u; �
1Cn�p

nC1 t/;

is also a solution of evolution equation (1-2) but with the initial data �
1

nC1 h. � ; 0/.
For each fixed time t 2 Œ0;T /, define Nh a solution of (1-2) as follows:

Nh.u; �/D

�
V .B/

V .Kt /

� 1
nC1

h

�
u; t C

�
V .B/

V .Kt /

�1Cn�p
nC1

�

�
:

Note that Nh. � ; 0/ is the support function of .V .B/=V .Kt //
1

nC1 Kt ; therefore,

r � Nh.u; 0/�R:

Write K� for the convex body associated with Nh. � ; �/ and let Bc denote the ball of radius c centered
at the origin. Since BR encloses K0, the comparison principle implies that B2R will enclose K� for
� 2 Œ0; ı�, where ı depends only on p;R;  . By the first statement of Lemma 7 applied to Nh, there is a
uniform lower bound (depending only on r;R;p; ') on the Gauss curvature of K ı

2
.
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On the other hand, the volume of K ı
2

is bounded above by V .B2R/; therefore,

V .B/

V .B2R/
� ct WD

V .Kt /

V .K
tC. V .B/

V .Kt /
/
.1Cn�p/=.nC1/ ı

2

/
� 1

for all t 2 Œ0;T /. Consequently,�
V .B/

V .K
tC. V .B/

V .Kt /
/
.1Cn�p/=.nC1/ ı

2

/

� 1
nC1

h

�
u; t C

�
V .B/

V .Kt /

�1Cn�p
nC1 ı

2

�
D c

1
nC1

t
Nh

�
� ;
ı

2

�

has Gauss curvature bounded below for all t 2 Œ0;T /.
Now we show that for every Qt 2

�
.V .B/=V .K0//

1Cn�p
nC1 ı

2
;T
�
, we can find t 2 Œ0;T / such that

Qt D t C

�
V .B/

V .Kt /

�1Cn�p
nC1 ı

2
:

Define f .t/D t C .V .B/=V .Kt //
1Cn�p

nC1 ı
2
� Qt on Œ0;T /. Then f is continuous, and8<:

f .T /D T � Qt > 0; p < nC 1;

f .1/D1; p D nC 1;

f .0/� 0; p � nC 1:

The claim follows.
Next we obtain uniform lower and upper bounds on the principal curvatures of the normalized solution.
Consider the convex bodies zK� WD .V .B/=V .Kt //

1
nC1 Kt , where

�.t/ WD

Z t

0

�
V .Ks/

V .B/

�1Cn�p
nC1

ds:

Let us furnish all geometric quantities associated with zK� by a tilde. The evolution equation of Qh� is
given by

@� Qh� D ' Qh
2�p zSn�

R
Sn ' Qh

2�p zS2
n d�

.nC 1/V .B/
Qh:

Since .
R

Sn ' Qh
2�p zS2

n d�/=..nC 1/V .B// is uniformly bounded above, applying the maximum principle
to ‚D 1

2
log.k zW k2/�˛ log Qh, and arguing as in the proof of Lemma 8, we see that k zW k has a uniform

upper bound. This in turn, in view of our lower and upper bounds on the Gauss curvature of zK� , implies
that we have uniform lower and upper bounds on the principal curvatures of zK� . Higher-order regularity
estimates and convergence in C1 for a subsequence of f zK�g follow from [Krylov and Safonov 1980],
standard parabolic theory and the Arzelà-Ascoli theorem. The convergence for the full sequence when
p � 1 follows from the uniqueness of the self-similar solutions to (1-3); see [Lutwak 1993; Chou and
Wang 2006]. Moreover, note that when ' � 1 and �n� 1< p < 1, by the result of [Brendle et al. 2017],
the limit is the unit sphere.
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Appendix

Evolution of polar bodies. Let K be a smooth, strictly convex body with the origin in its interior.
Suppose @K, the boundary of K, is parametrized by the radial function r D r.u/ W Sn ! R. The
metric Œgij �, unit normal �, support function h, and the second fundamental form Œwij � of @K can be
written in terms of r and its partial derivatives as follows:

(a) gij D r2 Ngij Crirrj r .

(b) � D .ru�rr/=
p

r2Ckrrk2.

(c) hD r2=
p

r2Ckrrk2.

(d) wij D .�rr2
ij r C 2rirrj r C r2 Ngij /=

p
r2Ckrrk2.

Since 1=r is the support function of K�, see, e.g., [Schneider 2014, p. 57], we can calculate the entries
of Œr�ij �:

r�ij Dr
2
ij

1

r
C

1

r
Ngij D

�rr2
ij r C 2rirrj r C r2 Ngij

r3
:

Thus, using (d) we get

r�ij D

p
r2Ckrrk2

r3
wij :

Lemma 11. As Kt evolve by (1-2), their polars K�t evolve as follows:

@th
�
D�'

�
h�uCrh�p
h�2Cjrh�j2

�
.h�2Cjrh�j2/

nC1Cp
2

h�nC1S�n
; h�. � ; t/ WD hK�t

. � /:

Proof. To obtain the evolution equation of hK�t
, we first need to parametrize Mt over the unit sphere

F D r.u. � ; t/; t/u. � ; t/ W Sn
! RnC1;

where r.u. � ; t/; t/ is the radial function of Mt in the direction u. � ; t/. Note that

@t r D '
h2�p

K

p
r2Ckrrk2

r
;

and

KD
detwij

det gij
;

1

S�n
D

det Ngij

det r�ij
;

det Ngij

det gij
D

1

r2n�2.r2Ckrrk2/
; hD

1p
h�2Ckrh�k2

:

Now we calculate

@th
�
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1

r
D�

h2�p

K

p
r2Ckrrk2

r3
'.�/

D�h2�p

p
r2Ckrrk2

r3

det gij

detwij
'.�/
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D�h2�p

p
r2Ckrrk2

r3

det Ngij

det r�ij

det gij

det Ngij

det r�ij
detwij

'.�/

D�

�p
r2Ckrrk2

r3

�nC1
r2n�2.r2Ckrrk2/

.h�2Ckrh�k2/
2�p

2

'.�/

S�n
:

Replacing r by 1=h� and taking into account (b) finishes the proof. �

Estimates for curvature derivatives. For convenience we present some of the main ideas regarding how
one can prove the alternative in Lemma 8 about balancing the curvature derivatives. This method was
used in [Guan et al. 2015] for a similar stationary prescribed curvature equation. Recall that

Ai D
2� "

kW k2K
wii.KIi/2�

wii

kW k2

X
p;q

Kpp;qqwppIiwqqIi ;

Bi D
2

kW k2

X
j

wjjKjj ;iiw2
jj Ii ; Ci D

2

kW k2

X
j¤i

Kjjw2
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Di D
1

kW k2
Kii

X
j

w2
jj Ii ; Ei D

2

kW k4
Kii

�X
j

wjjwjj Ii

�2

:

Note that the term Ai looks slightly different from the term Ai in [Guan et al. 2015, p. 1309], where
the K is not present in the denominator. We have to define Ai in the way we did, because due to the
inverse nature of the curvature flow equation we obtain an extra good derivative term. This allows us to
choose the constant in Ai as 2� ", whereas a large constant was required in [Guan et al. 2015] (denoted
by K there). Fortunately the proofs of Lemmas 4.2 and 4.3 in that paper also work for sufficiently small ".
The remaining terms Bi ;Ci ;Di ;Ei are all identical to those in [Guan et al. 2015].

In the following �k denotes the k-th elementary symmetric function of principal curvatures. We begin
by recalling the following special case (k D n) of inequality (2.4) from [Guan et al. 2015, Lemma 2.2],
which can be deduced easily by differentiating

G D

�
�n

�l

� 1
n�l

twice, using the concavity of G and applying the Schwarz inequality. For any ı > 0, 1 � i � n and
1� l < n we have

�Kpp;qqwppIiwqqIiC

�
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n� l
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.n� l/ı
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K..�l/Ii/

2

�2
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K
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�
pp;qq

l
wppIiwqqIi :

In particular, by taking ı D 1=.2� "/, we have

.2� "/
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K
�Kpp;qqwppIiwqqIi �
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1� "

.n� 1/.2� "/

�
K..�l/Ii/

2

�2
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�
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�l

; (A-1)

provided .2� "/ > 1, i.e., 0< " < 1.
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Lemma 12. For each i ¤ 1, if
p

3�i � �1, we have

Ai CBi CCi CDi �Ei � 0:

Proof. Note that from (A-1) with l D 1, it follows that Ai � 0 since �pp;qq
1

D 0. The proof that
BiCCiCDi �Ei � 0 can literally be taken from [Guan et al. 2015, Lemma 4.2], starting with (4.10) of
that paper. �

In the following proof we will write �n D K for better comparability with [Guan et al. 2015,
Lemma 4.3]. Also denote by �k.� j i/ the k-th elementary symmetric polynomial in the variables
�1; : : : ; �i�1; �iC1; : : : ; �n and �k.� j ij / accordingly.

Lemma 13. For �D 1; : : : ; n� 1 suppose there exists some ı � 1 such that ��=�1 � ı. There exists a
sufficiently small positive constant ı0 depending on ı, " and the bounds for K such that if ��C1=�1 � ı

0,
we have

Ai CBi CCi CDi �Ei � 0 for i D 1; : : : ; �:

Proof. This corresponds to [Guan et al. 2015, Lemma 4.3]. We highlight the main estimates in this proof.
First of all, from [Guan et al. 2015, (4.16), (4.17)] one can extract the following estimate:
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since �n�1.� j ij /D 0.
Now we show the right-hand side of (A-2) is dominated by kW k4Ai . From (A-1) we get for all

1� � < n and for all 1� i � nW
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For sufficiently small ı0 and �D 1 the simple estimates [Guan et al. 2015, (4.19), (4.20)] give

kW k4Ai � w
2
ii�

ii
n w

2
11Ii �C�wii

X
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w2
aaIi : (A-4)
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Combining this with (A-2) for i D 1 yields,
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which is nonnegative for ı0 sufficiently small. Hence the lemma is true in the case �D 1.
For � > 1 the series of elementary estimates [Guan et al. 2015, (4.22)–(4.27)] gives
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after adapting � if necessary and choosing ı0 sufficiently small again. Combining this last inequality with
(A-2) for 1� i � � yields

kW k2.Ai CBi CCi CDi �Ei/�
X
j¤i

�n�1.� j j /w
2
jj Ii �

C�

wiiı2

X
j>�

w2
jj Ii

�

X
j>�

�
�n�1.� j j /�

C�

wiiı2

�
w2

jj Ii

�

X
j>�

�
�n

w11ı0
�

C�

wiiı2

�
w2

jj Ii ; (A-6)

which is nonnegative for small ı0 for the same reason as in (A-5). �

Corollary 14. There exist positive numbers ı2; : : : ; ın, depending only on the dimension, on � and on the
bounds for the Gauss curvature, such that either

�i > ıi�1 for all 2� i � n (A-7)

or

Ai CBi CCi CDi �Ei � 0 for all 1� i � n: (A-8)

Proof. Choosing �D 1 and ı D 1 in Lemma 13 yields the existence of ı0 with the following property: if
�2=�1 � ı

0, then

A1CB1CC1CD1�E1 � 0:

Note that �i � �2 for i � 2. Choose ı2 Dminfı0; 1=
p

3g. Therefore, in view of Lemma 12, �2=�1 � ı2

implies

Ai CBi CCi CDi �Ei � 0 for all i � 2:
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We now apply induction, assuming we have constructed ı2; : : : ; ıj . We may assume �i > ıi�1 for
2� i � j ; otherwise AiCBiCCiCDi�Ei � 0 is already true for 2� i � n. Choose ıD ıj and �D j

in Lemma 13 to get a ı0 so that if �jC1� ı
0�1, then AiCBiCCiCDi�Ei � 0 holds for 1� i � j . Now

in view of Lemma 12, taking ıjC1Dminfı0; 1=
p

3g gives AiCBiCCiCDi�Ei � 0 for j � i � n. �
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