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THE MUSKAT PROBLEM IN TWO DIMENSIONS:
EQUIVALENCE OF FORMULATIONS, WELL-POSEDNESS,

AND REGULARITY RESULTS

BOGDAN-VASILE MATIOC

We consider the Muskat problem describing the motion of two unbounded immiscible fluid layers with
equal viscosities in vertical or horizontal two-dimensional geometries. We first prove that the mathematical
model can be formulated as an evolution problem for the sharp interface separating the two fluids, which
turns out to be, in a suitable functional-analytic setting, quasilinear and of parabolic type. Based upon
these properties, we then establish the local well-posedness of the problem for arbitrary large initial data
and show that the solutions become instantly real-analytic in time and space. Our method allows us to
choose the initial data in the class H s, s ∈

( 3
2 , 2

)
, when neglecting surface tension, respectively in H s,

s ∈ (2, 3), when surface-tension effects are included. Besides, we provide new criteria for the global
existence of solutions.
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1. Introduction and the main results

The Muskat problem [1934] is a classical model describing the motion of two immiscible fluids in a
porous medium or a Hele-Shaw cell. We consider here the particular case when the fluids have equal
viscosities and we assume that the flows are two-dimensional. Furthermore, we consider an unbounded
geometry corresponding to fluid layers that occupy the entire space, the fluid motion being localized and
the fluid system close to the rest state far away from the origin. We further assume that the fluids are
separated by a sharp interface which flattens out at infinity, evolves in time, and is unknown. We consider
two different scenarios for this unconfined Muskat problem:

MSC2010: 35R37, 35K59, 35K93, 35Q35, 42B20.
Keywords: Muskat problem, surface tension, singular integral.

281

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2019.12-2
http://dx.doi.org/10.2140/apde.2019.12.281
http://msp.org


282 BOGDAN-VASILE MATIOC

(a) In the absence of surface-tension effects at the free boundary, the Hele-Shaw cell is vertical and the
fluid located below is more dense.

(b) In the presence of surface-tension effects, the Hele-Shaw cell is either vertical or horizontal and we
make no restrictions on the densities of the fluids.

One big advantage of considering this setting is that the equations of motion can be very elegantly
formulated as a single evolution equation for the interface between the fluids. Indeed, parametrizing
this interface as the graph [y= f (t, x)], the Muskat problem is equivalent in this setting to an evolution
problem for the unknown function f , see Section 2, and it can be written as

∂t f (t, x)=
σk

2πµ
f ′(t, x)PV

∫
R

f (t, x)− f (t, x − y)
y2+ ( f (t, x)− f (t, x − y))2

(κ( f ))′(t, x − y) dy

+
σk

2πµ
PV
∫

R

y
y2+ ( f (t, x)− f (t, x − y))2

(κ( f ))′(t, x − y) dy

+
1ρk
2πµ

PV
∫

R

y( f ′(t, x)− f ′(t, x − y))
y2+ ( f (t, x)− f (t, x − y))2

dy for t > 0, x ∈ R,

f (0, · )= f0.

(1-1)

For brevity we write f ′ for the spatial derivative ∂x f . We let k denote the permeability of the homogeneous
porous medium, µ is the viscosity coefficient of the fluids, σ is the surface-tension coefficient at the free
boundary, and

1ρ := g(ρ−− ρ+),

where g is the Earth’s gravity and ρ± is the density of the fluid which occupies the domain�±(t) defined by

�−(t) := [y< f (t, x)] and �+(t) := [y> f (t, x)].

Furthermore, κ( f (t)) is the curvature of the graph [y= f (t, x)] and PVdenotes the principal value which,
depending on the regularity of the functions under the integral, is taken at zero and/or at infinity. Our
analysis covers the following scenarios

(a) σ = 0, 1ρ > 0 and (b) σ > 0, 1ρ ∈ R,

meaning that (a) corresponds to the stable case when the denser fluid is located below.
Due to its physical relevance [Bear 1972], the Muskat problem has been widely studied in the last

decades in several geometries and physical settings and with various methods. When neglecting surface-
tension effects the well-posedness of the Muskat problem is in strong relationship with the Rayleigh–Taylor
condition, being implied by the latter. The Rayleigh–Taylor condition, which appears first in [Saffman
and Taylor 1958], is a sign restriction on the jump of the pressure gradient in normal direction at the free
boundary. For fluids with equal viscosities moving in a vertical geometry, it reduces to the simple relation

1ρ > 0;

see, e.g., [Córdoba and Gancedo 2010; Escher et al. 2018] and also (2-1a)–(2-1b). The first local existence
result was established in [Yi 1996] by using Newton’s iteration method; the analysis in [Ambrose 2004;
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Berselli et al. 2014; Cheng et al. 2016; Gómez-Serrano and Granero-Belinchón 2014; Constantin et al.
2017; Córdoba et al. 2011; 2013; 2014; Córdoba and Gancedo 2007; 2010] is based on energy estimates
and the energy method; the authors of [Siegel et al. 2004] use methods from complex analysis and a version
of the Cauchy–Kowalewski theorem; a fixed-point argument is employed in [Bazaliy and Vasylyeva 2014]
for nonregular initial data, and the approach in [Escher and Matioc 2011; Escher et al. 2012; 2018] relies
on the formulation of the problem as a nonlinear and nonlocal parabolic equation together with an abstract
well-posedness result from [Da Prato and Grisvard 1979] based on continuous maximal regularity. Other
papers study the qualitative aspects of solutions to the Muskat problem for fluids with equal viscosities,
such as global existence of strong and weak solutions [Constantin et al. 2013; 2017; Granero-Belinchón
2014], existence of initial data for which solutions turn over [Castro et al. 2011; 2012; 2013], and the
absence of squirt or splash singularities [Córdoba and Gancedo 2010; Gancedo and Strain 2014].

Compared to the zero-surface-tension case, the Muskat problem with surface tension is less well-studied.
When allowing for surface tension, the Rayleigh–Taylor condition is no longer needed and the problem is
well-posed for general initial data. While some of the references require quite high regularity from the
initial data, see [Ambrose 2014; Friedman and Tao 2003; Hong et al. 1997; Tofts 2017], optimal results
are established in bounded or periodic geometries under the observation that the Muskat problem with
surface tension can be formulated as a quasilinear parabolic evolution problem; see [Escher et al. 2018;
Prüss and Simonett 2016a].

The stability properties of equilibria which are, depending on the physical scenario, horizontal lines
[Cheng et al. 2016; Ehrnström et al. 2013; Escher et al. 2012; Escher and Matioc 2011], finger-shaped
[Ehrnström et al. 2013; Escher et al. 2012; Escher and Matioc 2011], circular [Friedman and Tao 2003], or
a union of disjoint circles/spheres [Prüss and Simonett 2016b] have been also addressed in the references
just mentioned.

In this paper we first rigorously prove in Section 2 that the Muskat problem in the classical formulation
(2-1) and the system (1-1) are equivalent for a certain class of solutions. Thereafter, the analysis of (1-1)
starts from the obvious observation that the right-hand side of the first equation of (1-1) is linear with
respect to the highest-order spatial derivative of f ; that is, this particular Muskat problem has a quasilinear
structure (also when neglecting surface tension). This property is not obvious in the particular geometry
considered in [Escher et al. 2018; Yi 1996] (when σ = 0). In a suitable functional-analytic setting we then
prove that (1-1) is additionally parabolic for general initial data. The parabolic character was established
previously for bounded geometries [Escher et al. 2012; 2018; Escher and Matioc 2011; Prüss and Simonett
2016a; 2016b] (in the absence of surface-tension effects only when the Rayleigh–Taylor condition holds),
but for (1-1) only for small initial data; see [Constantin et al. 2013; Córdoba and Gancedo 2007]. These
two aspects, that is, the quasilinearity and the parabolicity, enable us to use abstract results for quasilinear
parabolic problems due to H. Amann [1993, Section 12] to prove, by similar strategies, the well-posedness
of the Muskat problem with and without surface tension.

It is worth emphasizing that for this particular Muskat problem the local well-posedness is established,
in the zero-surface-tension case, only for initial data that are twice-weakly differentiable and which belong
to W 2

p(R) for some p ∈ (1,∞]; see [Constantin et al. 2017]. Our first main result, i.e., Theorem 1.1,
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extends the local well-posedness to general initial data in H s(R) with s ∈
( 3

2 , 2
)
. For the unconfined

Muskat problem with surface tension, the well-posedness is considered only in [Ambrose 2014; Tofts
2017] and in both papers the authors require that f0 ∈ H s(X), with X ∈ {R,T} and s ≥ 6. In our well-
posedness result, i.e., Theorem 1.2, the curvature of the initial data may be even unbounded as we allow for
general initial data f0 ∈ H s(R) with s ∈ (2, 3). Additionally, we also obtain new criteria for the existence
of global solutions to the Muskat problem with and without surface tension and, as a consequence of
the parabolic character of the equations, we show that the fluid interfaces become instantly real-analytic.

Our strategy is the following: we formulate, in a suitable functional-analytic setting, (1-1) as a
quasilinear evolution problem of the form1

ḟ =8σ ( f )[ f ], t > 0, f (0)= f0,

and then we study the properties of the operator 8σ . We differentiate between the case σ = 0, studied in
Sections 3–5, when we simply write 8σ =:8, and the case σ > 0, as in the first case 8( f ) is a nonlocal
operator of order 1 and in the second case 8σ ( f ) has order 3 (for f appropriately chosen). At the core of
our estimates lies the following deep result from harmonic analysis: given a Lipschitz function a :R→R,
the singular integral operator

h 7→
[

x 7→ PV
∫

R

h(x − y)
y

exp
(

i
a(x)− a(x − y)

y

)
dy
]

(1-2)

belongs to L(L2(R)) and its norm is bounded by C(1+‖a′‖∞), see [Murai 1986], with C denoting a
universal constant independent of a. Relying on (1-2), we study the mapping properties of 8σ and show,
for suitable f , that 8σ ( f ) is the generator of a strongly continuous and real-analytic semigroup. The
main results of this paper, that is, Theorems 1.1–1.3, are then obtained by employing abstract results
presented in [Amann 1993, Section 12], and which we briefly recall at the end of this section. The line of
approach is close to the one we followed in [Escher et al. 2018]; however, the functional-analytic setting
and the methods used to establish the needed estimates are substantially different. We expect that our
method extends to the general case when µ− 6= µ+ and we believe to obtain, for periodic flows, a similar
stability behavior of the — flat and finger shaped — equilibria, as in [Escher and Matioc 2011].

Our first main result is the following well-posedness theorem for the Muskat problem without surface-
tension effects.

Theorem 1.1 (well-posedness: no surface tension). Let σ = 0 and 1ρ > 0. The problem (1-1) possesses
for each f0 ∈ H s(R), s ∈

( 3
2 , 2

)
, a unique maximal classical solution

f := f ( · ; f0) ∈ C([0, T+( f0)), H s(R))∩C((0, T+( f0)), H 2(R))∩C1((0, T+( f0)), H 1(R)),

with T+( f0) ∈ (0,∞], and [(t, f0) 7→ f (t; f0)] defines a semiflow on H s(R). Additionally, if

sup
[0,T+( f0))∩[0,T ]

‖ f (t)‖H s <∞ for all T > 0,

then T+( f0)=∞.

1We write ḟ to denote the derivative d f/dt .
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The quasilinear character of the problem is enhanced by the presence of surface tension. For this
reason we may consider, when σ > 0, initial data with unbounded curvature. We show in Theorem 1.3,
however, that the curvature becomes instantly real-analytic and bounded.

Theorem 1.2 (well-posedness: with surface tension). Let σ > 0 and1ρ ∈R. The problem (1-1) possesses
for each f0 ∈ H s(R), s ∈ (2, 3), a unique maximal classical solution

f := f ( · ; f0) ∈ C([0, T+( f0)), H s(R))∩C((0, T+( f0)), H 3(R))∩C1((0, T+( f0)), L2(R)),

with T+( f0) ∈ (0,∞], and [(t, f0) 7→ f (t; f0)] defines a semiflow on H s(R). Additionally, if

sup
[0,T+( f0))∩[0,T ]

‖ f (t)‖H s <∞ for all T > 0,

then T+( f0)=∞.

These results reflect the fact that the Muskat problem without surface tension is a first-order evolution
problem, while the Muskat problem with surface tension is of third order. The solutions obtained in
Theorems 1.1 and 1.2 become instantly real-analytic.

Theorem 1.3. Let s ∈
( 3

2 , 2
)

if σ = 0 and 1ρ > 0, and let s ∈ (2, 3) if σ > 0. Given f0 ∈ H s(R), let
f = f ( · ; f0) denote the unique maximal solution to (1-1) found in Theorems 1.1 and 1.2, respectively.

Then

[(t, x) 7→ f (t, x)] : (0, T+( f0))×R→ R

is a real-analytic function. In particular, f (t, · ) is real-analytic for each t ∈ (0, T+( f0)). Moreover, given
k ∈ N, it holds that

f ∈ Cω((0, T+( f0)), H k(R)),

where Cω denotes real-analyticity.

As a direct consequence of Theorems 1.1 and 1.3 and of [Constantin et al. 2013, Theorem 3.1], see
also [Constantin et al. 2016, Remark 6.2], we obtain a global existence result for solutions to the Muskat
problem without surface tension that correspond to initial data of medium size in H s(R), s ∈

( 3
2 , 2

)
. In

the following F denotes the Fourier transform.

Corollary 1.4. There exists a constant c0 ≥
1
5 such that for all f0 ∈ H s(R), s ∈

(3
2 , 2

)
, with

‖| f0‖| :=

∫
R

|ξ ||F f0(ξ)| dξ < c0,

the solution found in Theorem 1.1 exists globally.

Proof. The claim follows from the inequality

‖| f ‖| =
∫

R

|ξ ||F f (ξ)| dξ ≤ ‖ f ‖H s

∫
R

1
(1+ |ξ |2)s−1 dξ ≤ C‖ f ‖H s

for s ∈
( 3

2 , 2
)

and f ∈ H s(R). �
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An abstract setting for quasilinear parabolic evolution equations. In Theorem 1.5 we collect abstract
results from [Amann 1993, Section 12] for a general class of abstract quasilinear parabolic evolution
equations, which we use in an essential way in our analysis.

Given Banach spaces E0, E1 with dense embedding E1 ↪→ E0, we define H(E1, E0) as the subset of
L(E1, E0) consisting of negative generators of strongly continuous analytic semigroups. More precisely,
A ∈H(E1, E0) if −A, considered as an unbounded operator in E0 with domain E1, generates a strongly
continuous and analytic semigroup in L(E0).

Theorem 1.5. Let E0, E1 be Banach spaces with dense embedding E1 ↪→ E0 and let Eθ := [E0, E1]θ for
0< θ < 1 be endowed with the ‖ · ‖θ -norm. Let further 0< β < α < 1 and assume that

−8 ∈ C1−(Oβ,H(E1, E0)), (1-3)

where Oβ denotes an open subset of Eβ and C1− stands for local Lipschitz continuity. The following
assertions hold for the quasilinear evolution problem

ḟ =8( f )[ f ], t > 0, f (0)= f0. (QP)

Existence: given f0 ∈Oα :=Oβ ∩ Eα, the problem (QP) possesses a maximal solution

f := f ( · ; f0) ∈ C([0, T+( f0)),Oα)∩C((0, T+( f0)), E1)∩C1((0, T+( f0)), E0)∩Cα−β([0, T ], Eβ)

for all T ∈ (0, T+( f0)), with T+( f0) ∈ (0,∞].

Uniqueness: if T̃ ∈ (0,∞], η ∈ (0, α−β], and f̃ ∈ C((0, T̃ ), E1)∩C1((0, T̃ ), E0) satisfies

f̃ ∈ Cη([0, T ], Eβ) for all T ∈ (0, T̃ )

and solves (QP), then T̃ ≤ T+( f0) and f̃ = f on [0, T̃ ).

Criterion for global existence: if f : [0, T ] ∩ [0, T+( f0))→ Oα is uniformly continuous for all T > 0,
then

T+( f0)=∞ or T+( f0) <∞ and dist( f (t), ∂Oα)→ 0 for t→ T+( f0).

Continuous dependence of initial data: the mapping [(t, f0) 7→ f (t; f0)] defines a semiflow on Oα and,
if 8 ∈ Cω(Oβ,L(E1, E0)), then

[(t, f0) 7→ f (t; f0)] : {(t, f0) : f0 ∈Oα, t ∈ (0, T+( f0))} → Eα

is a real-analytic map too.

As usual, [ · , · ]θ denotes the complex interpolation functor. We choose for our particular problem
Ei ∈ {H s(R) : 0≤ s ≤ 3}, i = 1, 2, and in this context we rely on the well-known interpolation property

[H s0(R), H s1(R)]θ = H (1−θ)s0+θs1(R), θ ∈ (0, 1), −∞< s0 ≤ s1 <∞; (1-4)

see, e.g., [Triebel 1978, Remark 2, Section 2.4.2].
The proof of Theorem 1.5 uses to a large extent the linear theory developed in [Amann 1995, Chapter II].

The main ideas of the proof of Theorem 1.5 can be found in [Amann 1986; 1988]. The uniqueness claim
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in Theorem 1.5 is slightly stronger compared to the result in [Amann 1993, Section 12] and it turns out
to be quite useful when establishing the uniqueness in Theorems 1.1–1.2. For this reason we present in
Appendix B the proof of Theorem 1.5.

In order to use Theorem 1.5 in the study of the Muskat problem (1-1), we have to write this evolution
problem in the form (QP) and to establish then the property (1-3). With respect to this goal, we use the
estimate provided in (1-2) and many techniques of nonlinear analysis.

2. The equations of motion and the equivalent formulation

We present the equations governing the dynamic of the fluids system and we prove, for a certain class of
solutions, that the latter are equivalent to the system (1-1). The Muskat problem was originally proposed
as a model for the encroachment of water into an oil sand, and therefore it is natural to assume that
both fluids are incompressible, of Newtonian type, and immiscible. Since for flows in porous media the
conservation of momentum equation can be replaced by Darcy’s law, see, e.g., [Bear 1972], the equations
governing the dynamic of the fluids are{

div v±(t)= 0 in �±(t),
v±(t)=−(k/µ)(∇ p±(t)+ (0, ρ±g)) in �±(t)

(2-1a)

for t > 0, where, using the subscript± for the fluid located at�±(t), we denote by v±(t) := (v1
±
(t), v2

±
(t))

the velocity vector and p±(t) the pressure of the fluid ±. These equations are supplemented by the natural
boundary conditions at the free surface{

p+(t)− p−(t)= σκ( f (t)) on [y= f (t, x)],
〈v+(t) | ν(t)〉 = 〈v−(t) | ν(t)〉 on [y= f (t, x)],

(2-1b)

where ν(t) is the unit normal at [y= f (t, x)] pointing into �+(t) and 〈 · | · 〉 is the inner product on R2.
Furthermore, the far-field boundary conditions{

f (t, x)→ 0 for |x | →∞,
v±(t, x, y)→ 0 for |(x, y)| →∞

(2-1c)

state that the fluid motion is localized, the fluids being close to the rest state far away from the origin.
The motion of the interface [y= f (t, x)] is coupled to that of the fluids through the kinematic boundary
condition

∂t f (t)= 〈v±(t) | (− f ′(t), 1)〉 on [y= f (t, x)]. (2-1d)

Finally, the interface at time t = 0 is assumed to be known,

f (0) = f0. (2-1e)

The equations (2-1) are known as the Muskat problem and they determine completely the dynamic of
the system. We now show that the Muskat problem (2-1) is equivalent to the system (1-1) presented in
the Introduction. The proof uses classical results on Cauchy-type integrals defined on regular curves; see,
e.g., [Lu 1993]. More precisely, we establish the following equivalence result.
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Proposition 2.1 (equivalence of the two formulations). Let σ ≥ 0 and T ∈ (0,∞]. The following are
equivalent:

(i) The Muskat problem (2-1) for2

f ∈ C1((0, T ), L2(R))∩C([0, T ), L2(R)), f (t) ∈ H 5(R) for all t ∈ (0, T ),

v±(t) ∈ C(�±(t))∩C1(�±(t)), p±(t) ∈ C1(�±(t))∩C2(�±(t)) for all t ∈ (0, T ).

(ii) The evolution problem (1-1) for

f ∈ C1((0, T ), L2(R))∩C([0, T ), L2(R)), f (t) ∈ H 5(R) for all t ∈ (0, T ).

Proof. We first establish the implication (i)⇒ (ii). Assuming that we are given a solution to (2-1) as in (i),
we have to show that the first equation of (1-1) holds for each t ∈ (0, T ). Therefore, we fix t ∈ (0, T )
and we do not write in the arguments that follow the dependence of the physical variables of time t
explicitly. In the following, 1E is the characteristic function of the set E . Introducing the global velocity
field v := (v1, v2) := v−1[y≤ f (x)]+ v+1[y> f (x)], Stokes’ theorem together with (2-1a) and (2-1b) yields
that the vorticity, which for two-dimensional flows corresponds to the scalar function ω := ∂xv

2
− ∂yv

1,
is supported on the free boundary, that is,

〈ω, ϕ〉 =

∫
R

ω̄(x)ϕ(x, f (x)) dx for all ϕ ∈ C∞0 (R
2),

where
ω̄ :=

k
µ
[σκ( f )−1ρ f ]′.

We next prove that the velocity is defined by the Biot–Savart law, that is, v = ṽ in R2
\ [y= f (x)], where

ṽ(x, y) := 1
2π

∫
R

(−(y− f (s)), x − s)
(x − s)2+ (y− f (s))2

ω̄(s) ds in R2
\ [y= f (x)]. (2-2)

To this end we compute the limits ṽ−(x, f (x)) and ṽ+(x, f (x)) of ṽ at (x, f (x)) when we approach this
point from below the interface [y= f (x)] or from above, respectively. Using the well-known Plemelj
formula, see, e.g., [Lu 1993], due to the fact that f ∈ H 4(R) and after changing variables, we find the
expressions

ṽ±(x, f (x))= 1
2π

PV
∫

R

(−( f (x)− f (x − s)), s)
s2+ ( f (x)− f (x − s))2

ω̄(x − s) ds∓ 1
2
(1, f ′(x))ω̄(x)

1+ f ′2(x)
, x ∈ R, (2-3)

where the principal value needs to be taken only at 0. In view of Lemma A.2 and of f ∈ H 5(R), the
restrictions ṽ± of ṽ to �± satisfy ṽ± ∈ C(�±)∩C1(�±) and moreover ṽ± vanish at infinity. Next, we
define the pressures p̃± ∈ C1(�±)∩C2(�±) by the formula

p̃±(x, y) := c±−
µ

k

∫ x

0
ṽ1
±
(s,±d) ds−

µ

k

∫ y

±d
ṽ2
±
(x, s) ds− ρ±gy, (x, y) ∈�±, (2-4)

2The regularity f (t) ∈ H5(R), t ∈ (0, T ), is not optimal; that is, the two formulations are still equivalent if f (t) ∈ Hr (R),
t ∈ (0, T ), for r < 5 suitably chosen. In fact, if σ = 0, we may take r = 3. However, as stated in Theorem 1.3, f (t) ∈ H∞(R)
for all t ∈ (0, T ), and there is no reason for seeking the optimal range for r .
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where d is a positive constant satisfying d > ‖ f ‖∞ and c± ∈R. For a proper choice of the constants c±, it
is not difficult to see that the pair ( p̃±, ṽ±) satisfies (2-1a)–(2-1c). Let V± := v±− ṽ±, V := (V 1, V 2) :=

V−1[y≤ f (x)]+ V+1[y> f (x)] ∈ C(R2), and

ψ±(x, y) :=
∫ y

f (x)
V 1
±
(x, s) ds−

∫ x

0
〈V±(s, f (s))|(− f ′(s), 1)〉 ds for (x, y) ∈�±,

be the stream function associated to V±. Recalling (2-1a)–(2-1c), we deduce that the function ψ :=
ψ−1[y≤ f ]+ψ+1[y> f ] satisfies 1ψ = 0 in D′(R2). Hence, ψ is the real part of a holomorphic function
u : C→ C. Since u′ is also holomorphic and u′ = ∂xψ − i∂yψ =−(V 2, V 1) is bounded and vanishes for
|(x, y)| →∞ it follows that u′ = 0; hence V = 0. This proves that v± = ṽ±.

We now infer from (2-1d) and (2-3) that the dynamic of the free boundary separating the fluids is
described by the evolution equation

∂t f (t, x)=
k

2πµ
f ′(t, x)PV

∫
R

f (t, x)− f (t, x − s)
s2+ ( f (t, x)− f (t, x − s))2

[σκ( f )−1ρ f ]′(t, x − s) ds

+
k

2πµ
PV
∫

R

s
s2+ ( f (t, x)− f (t, x − s))2

[σκ( f )−1ρ f ]′(t, x − s) ds

for t > 0 and x ∈ R. This equation can be further simplified by using the formula∫
δ<|x |<1/δ

∂

∂s
(
ln(s2
+( f (x)− f (x−s))2)

)
ds = ln

1+δ2( f (x)− f (x−1/δ))2

1+δ2( f (x)− f (x+1/δ))2
1+( f (x)− f (x+δ))2/δ2

1+( f (x)− f (x−δ))2/δ2

for δ ∈ (0, 1) and x ∈ R. Letting δ→ 0, we get

0= 1
2 PV

∫
R

∂

∂s
(
ln(s2
+ ( f (x)− f (x − s))2)

)
ds

= PV
∫

R

s
s2+ ( f (t, x)− f (t, x − s))2

ds+PV
∫

R

( f (t, x)− f (t, x − s) f ′(t, x − s)
s2+ ( f (t, x)− f (t, x − s))2

ds,

and now the principal value needs to be taken in the first integral at zero and at infinity. Using this identity,
we have shown that the mapping [t→ f (t)] satisfies the evolution problem (1-1).

The implication (ii)⇒ (i) is now obvious. �

3. The Muskat problem without surface tension: mapping properties

In Sections 3 and 4 we consider the stable case (a) mentioned on page 282. In this regime, after rescaling
time, we may rewrite (1-1) in the abstract form

ḟ =8( f )[ f ], t > 0, f (0)= f0, (3-1)

where 8( f ) is the linear operator formally defined by

8( f )[h](x) := PV
∫

R

y(h′(x)− h′(x − y))
y2+ ( f (x)− f (x − y))2

dy. (3-2)
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We show in the next two sections that the mapping 8 satisfies all the assumptions of Theorem 1.5 if we
make the following choices: E0 := H 1(R), E1 := H 2(R), Eα = H s(R) with s ∈

( 3
2 , 2

)
, and Oβ := H s̄(R)

with s̄ ∈
( 3

2 , s
)
. The first goal is to prove that

8 ∈ C1−(H s(R),L(H 2(R), H 1(R))) (3-3)

for each s ∈
( 3

2 , 2
)
. Because the property (3-3) holds for all s ∈

( 3
2 , 2

)
, the parameter s̄ will appear only

in the proof of Theorem 1.1, which we present at the end of Section 4.
For the sake of brevity we set

δ[x,y] f := f (x)− f (x − y) for x, y ∈ R,

and therewith

8( f )[h](x)= PV
∫

R

δ[x,y]h′/y
1+ (δ[x,y] f/y)2

dy.

Boundedness of some multilinear singular integral operators. We first consider some multilinear oper-
ators which are related to 8.3 The estimates in Lemmas 3.1 and 3.4 enable us in particular to establish
the regularity property (3-3). Lemma 3.1 is reconsidered later on, see Lemma 5.3, in a particular context
when showing that 8 is in fact real-analytic.

Lemma 3.1. Given n,m ∈ N, r ∈
( 3

2 , 2
)
, a1, . . . , an+1, b1, . . . , bm ∈ H r (R), and a function c ∈ L2(R)

we define

Am,n(a1, . . . , an+1)[b1, . . . , bm, c](x) := PV
∫

R

∏m
i=1(δ[x,y]bi/y)∏n+1

i=1 [1+ (δ[x,y]ai/y)2]

δ[x,y]c
y

dy.

Then:

(i) There exists a constant C , depending only on r , n, m, and maxi=1,...,n+1 ‖ai‖H r , such that

‖Am,n(a1, . . . , an+1)[b1, . . . , bm, c]‖2 ≤ C‖c‖2
m∏

i=1

‖bi‖H r (3-4)

for all b1, . . . , bm ∈ H r (R) and c ∈ L2(R).

(ii) Am,n ∈ C1−
(
(H r (R))n+1,Lm+1((H r (R))m × L2(R), L2(R))

)
.

Remark 3.2. We note that

8( f )[h] = A0,0( f )[h′] (3-5)

for all f ∈ H s(R), s ∈
( 3

2 , 2
)
, and h ∈ H 2(R), and

A0,0(0)[c](x)= PV
∫

R

δ[x,y]c
y

dy =− PV
∫

R

c(x − y)
y

dy =−πHc(x),

where H denotes the Hilbert transform [Stein 1993].

3As usual, the empty product is set to be equal to 1.
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Remark 3.3. In the proof of Lemma 3.1 we split the operator Am,n := Am,n(a1, . . . , an+1) into two
operators

Am,n = A1
m,n − A2

m,n.

If we keep b1, . . . , bm fixed, then A1
m,n is a multiplication-type operator

A1
m,n[b1, . . . , bm, c](x) := c(x)PV

∫
R

1
y

∏m
i=1(δ[x,y]bi/y)∏n+1

i=1 [1+ (δ[x,y]ai/y)2]
dy,

while A2
m,n is the singular integral operator

A2
m,n[b1, . . . , bm, c](x) := PV

∫
R

K (x, y)c(x − y) dy,

with the kernel K defined by

K (x, y) :=
1
y

∏m
i=1(δ[x,y]bi/y)∏n+1

i=1 [1+ (δ[x,y]ai/y)2]
for x ∈ R, y 6= 0.

Our proof shows that both operators Ai
m,n , 1 ≤ i ≤ 2, satisfy (3-4). While the boundedness of A1

m,n

follows by direct computation, the boundedness of A2
m,n follows from the estimate on the norm of operator

defined in (1-2) and an argument due to Calderón as it appears in the proof of [Meyer and Coifman 1997,
Theorem 9.7.11]. In fact, the arguments in the proof of Lemma 3.1 show that given Lipschitz functions
a1, . . . , an+m : R→ R, the singular integral operator

Bn,m(a1, . . . , an+m)[h](x) := PV
∫

R

h(x − y)
y

∏n
i=1(δ[x,y]ai/y)∏n+m

i=n+1[1+ (δ[x,y]ai/y)2]
dy

belongs to L(L2(R)) and ‖Bn,m(a1, . . . , an+m)‖L(L2(R)) ≤ C
∏n

i=1 ‖a
′

i‖∞, where C is a constant depend-
ing only on n,m and maxi=n+1,...,n+m ‖a′i‖∞.

It is worth pointing out that B0,0 = B0,1(0)= πH.

Proof of Lemma 3.1. The multilinear operator A1
m,n is bounded provided that the mapping[

x 7→ PV
∫

R

1
y

∏m
i=1(δ[x,y]bi/y)∏n+1

i=1 [1+ (δ[x,y]ai/y)2]
dy
]

belongs to L∞(R). To establish this boundedness property we note that∫
δ<|y|<1/δ

1
y

∏m
i=1(δ[x,y]bi/y)∏n+1

i=1 [1+(δ[x,y]ai/y)2]
dy=

∫ 1/δ

δ

1
y

∏m
i=1(δ[x,y]bi/y)∏n+1

i=1 [1+(δ[x,y]ai/y)2]
−

1
y

∏m
i=1(−δ[x,−y]bi/y)∏n+1

i=1 [1+(δ[x,−y]ai/y)2]
dy

=:

∫ 1/δ

δ

I (x, y)dy
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for δ ∈ (0, 1) and x ∈ R, where

I (x, y) :=
1
y

1∏n+1
i=1 [1+ (δ[x,y]ai/y)2]

( m∏
i=1

(δ[x,y]bi/y)−
m∏

i=1

(−δ[x,−y]bi/y)
)

+
1
y

( m∏
i=1

(−δ[x,−y]bi/y)
)∏n+1

i=1 [1+ (δ[x,−y]ai/y)2] −
∏n+1

i=1 [1+ (δ[x,y]ai/y)2]∏n+1
i=1 [1+ (δ[x,y]ai/y)2][1+ (δ[x,−y]ai/y)2]

.

We further have

1
y

( m∏
i=1

(δ[x,y]bi/y)−
m∏

i=1

(−δ[x,−y]bi/y)
)

=
1
y

m∏
i=1

bi (x)− bi (x − y)
y

−
1
y

m∏
i=1

bi (x + y)− bi (x)
y

=−

m∑
i=1

bi (x + y)− 2bi (x)+ bi (x − y)
y2

[i−1∏
j=1

(δ[x,y]bj/y)
][ m∏

j=i+1

(−δ[x,−y]bj/y)
]
,

and similarly

1
y

(n+1∏
i=1

[1+(δ[x,−y]ai/y)2]−
n+1∏
i=1

[1+(δ[x,y]ai/y)2]
)

=

n+1∑
i=1

[i−1∏
j=1

[1+(δ[x,−y]aj/y)2]
][ n+1∏

j=i+1

[1+(δ[x,y]aj/y)2]
]

×
ai (x+y)−ai (x−y)

y
ai (x+y)−2ai (x)+ai (x−y)

y2 .

Let us now observe that

|I (x, y)| ≤
2m+1
[1+ 4(n+ 1)maxi=1,...,n+1 ‖ai‖

2
∞
]

y2

m∏
i=1

‖bi‖∞ for x ∈ R, y ≥ 1. (3-6)

Furthermore, since r − 1
2 ∈ (1, 2), we find, by taking advantage of H r (R) ↪→ BCr−1/2(R), that

| f (x + y)− 2 f (x)+ f (x − y)|
yr−1/2 ≤ 4[ f ′]r−3/2 ≤ C‖ f ‖H r for all f ∈ H r (R), x ∈ R, y > 0; (3-7)

see [Lunardi 1995, Relation (0.2.2)]. Here [ · ]r−3/2 denotes the usual Hölder seminorm. Using (3-7), it
follows that

|I (x, y)| ≤ Cyr−5/2
[ m∑

i=1

(
‖bi‖H r

m∏
j=1, j 6=i

‖b′j‖∞

)
+

( m∏
i=1

‖b′i‖∞

) n+1∑
i=1

‖a′i‖∞‖ai‖H r

]
(3-8)
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for x ∈ R, y ∈ (0, 1). Combining (3-6) and (3-8) yields

sup
x∈R

∫
∞

0
|I (x, y)| dy ≤ C

m∏
i=1

‖bi‖H r ,

where C depends only on r , n, m, and maxi=1,...,n+1 ‖ai‖H r . The latter estimate shows that (3-4) is
satisfied when Am,n is replaced by A1

m,n .
To deal with A2

m,n , we define the functions F : Rn+m+1
→ R and A : R→ Rn+m+1 by

F(u1, . . . , un+1, v1, . . . , vm)=

∏m
i=1 vi∏n+1

i=1 (1+ u2
i )

and A := (a1, . . . , an+1, b1, . . . , bm),

where bi ∈ H r (R) satisfy ‖b′i‖∞ ≤ 1, 1≤ i ≤m. The function F is smooth and A is Lipschitz continuous
with a Lipschitz constant L :=

√

m+ (n+ 1)maxi=1,n+1 ‖a′i‖
2
∞
≥ ‖A′‖∞. We further observe that

K (x, y)=
1
y

F
(
δ[x,y]A

y

)
,

with |δ[x,y]A/y| ≤ L . Let F̃ be a smooth function on Rn+m+1 which is 4L-periodic in each variable and
which matches F on [−L , L]n+m+1. Expanding F̃ by its Fourier series

F̃ =
∑

p∈Zn+m+1

αpei(π/2L)〈p|· 〉,

the associated sequence (αp)p is rapidly decreasing. Furthermore, we can write the kernel K as

K (x, y)=
∑

p∈Zn+m+1

αp K p(x, y), x ∈ R, y 6= 0,

with

K p(x, y) :=
1
y

exp
(

i
π

2L
δ[x,y]〈p | A〉

y

)
, x ∈ R, y 6= 0, p ∈ Zn+m+1.

The kernels K p, p ∈ Zn+m+1, define operators in L(L2(R)) of the type (1-2) and with norms bounded by

C
(

1+
π

2L
|p|‖A′‖∞

)
≤ C(1+ |p|), p ∈ Zn+m+1,

with a universal constant C independent of p. Hence, the associated series is absolutely convergent in
L(L2(R)), meaning that the operator A2

m,n(a1, . . . , an+1)[b1, . . . , bm, · ] belongs to L(L2(R)) and

‖A2
m,n(a1, . . . , an+1)[b1, . . . , bm, c]‖2 ≤ C

(
n,m, max

i=1,...,n+1
‖a′i‖∞

)
‖c‖2

for all c ∈ L2(R) and for all bi ∈ H r (R) that satisfy ‖b′i‖∞ ≤ 1. The desired estimate (3-4) follows now
by using the linearity of A2

m,n in each argument. The claim (i) is now obvious.
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Concerning (ii), we note that

Am,n(ã1, . . . , ãn+1)[b1, . . . , bm, c] − Am,n(a1, . . . , an+1)[b1, . . . , bm, c]

=

n+1∑
i=1

Am+2,n+1(ã1, . . . , ãi , ai , . . . , an+1)[ai + ãi , ai − ãi , b1, . . . , bm, c],

and the desired assertion follows now from (i). �

We consider once more the operators Am,n defined in Lemma 3.5 in the case when m ≥ 1, but defined
on a different Hilbert-space product where a weaker regularity of bm is balanced by a higher regularity of
the variable c. The estimates in Lemma 3.4 are slightly related to the ones announced in [Calderon et al.
1978, Theorem 4] and, except for that reference, we did not find similar results.

Lemma 3.4. Let n ∈N, 1≤m ∈N, r ∈
( 3

2 , 2
)
, τ ∈

( 5
2−r, 1

)
, and a1, . . . , an+1 ∈ H r (R) be given. Then:

(i) There exists a constant C , depending only on r and τ , such that

‖Am,n(a1, . . . , an+1)[b1, . . . , bm, c]‖2 ≤ C‖c‖H τ ‖bm‖H r−1

m−1∏
i=1

‖b′i‖∞

for all b1, . . . , bm ∈ H r (R) and all c ∈ H 1(R). In particular, Am,n(a1, . . . , an+1) extends to a
bounded operator

Am,n(a1, . . . , an+1) ∈ Lm+1((H r (R))m−1
× H r−1(R)× H τ (R), L2(R)).

(ii) Am,n ∈ C1−
(
(H r (R))n+1,Lm+1((H r (R))m−1

× H r−1(R)× H τ (R), L2(R))
)
.

Proof. The claim (ii) is again a direct consequence of (i), so that we are left to prove the first claim. To
this end we write

Am,n(a1, . . . , an+1)[b1, . . . , bm, c](x)=
∫

R

K (x, y) dy,

where

K (x, y) :=
∏m−1

i=1 (δ[x,y]bi/y)∏n+1
i=1 [1+ (δ[x,y]ai/y)2]

δ[x,y]bm

y
δ[x,y]c

y
for x ∈ R, y 6= 0.

Using Minkowski’s integral inequality, we compute(∫
R

∣∣∣∣∫
R

K (x, y) dy
∣∣∣∣2 dx

)1/2

≤

∫
R

(∫
R

|K (x, y)|2 dx
)1/2

dy,

and exploiting the fact H r−1(R) ↪→ BCr−3/2(R), we get∫
R

|K (x, y)|2 dx ≤
C

y7−2r ‖bm‖
2
H r−1

(m−1∏
i=1

‖b′i‖
2
∞

)∫
R

|c− τyc|2 dx

=
C

y7−2r ‖bm‖
2
H r−1

(m−1∏
i=1

‖b′i‖
2
∞

)∫
R

|Fc(ξ)|2|eiyξ
− 1|2 dξ.
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Since

|eiyξ
− 1|2 ≤ C[(1+ |ξ |2)τ y2τ1(−1,1)(y)+ 1[|y|≥1](y)], y, ξ ∈ R,

it follows that∫
R

|K (x, y)|2 dx ≤ C‖c‖2H τ ‖bm‖
2
H r−1

(m−1∏
i=1

‖b′i‖
2
∞

)[
y2(r+τ)−71(−1,1)(y)+

1
y7−2r 1[|y|≥1](y)

]
,

and we conclude that∫
R

(∫
R

|K (x, y)|2 dx
)1/2

dy ≤ C‖c‖H τ ‖bm‖H r−1

m−1∏
i=1

‖b′i‖∞.

The claim (i) follows at once. �

Mapping properties. We now use Lemmas 3.1 and 3.4 to prove that the mapping 8 defined by (3-2)
is well-defined and locally Lipschitz continuous as an operator from H s(R) into the Banach space
L(H 2(R), H 1(R)) for each s ∈

( 3
2 , 2

)
.

Lemma 3.5. Given s ∈
( 3

2 , 2
)
, it holds that

8 ∈ C1−(H s(R),L(H 2(R), H 1(R))).

Proof. We first prove that 8( f ) ∈ L(H 2(R), H 1(R)) for each f ∈ H s(R). Remark 3.2 and Lemma 3.1
(with r = s) yield that 8( f ) ∈ L(H 2(R), L2(R)). In order to establish that 8( f )[h] ∈ H 1(R), we let
{τε}ε∈R denote the C0-group of right translations on L2(R), that is, τε f (x) := f (x − ε) for f ∈ L2(R)

and x , ε ∈ R. Given ε ∈ (0, 1), it holds that

τε(8( f )[h])−8( f )[h]
ε

=
τε(A0,0[ f ][h′])− A0,0( f )[h′]

ε
=

A0,0(τε f )[τεh′] − A0,0( f )[h′]
ε

= A0,0(τε f )
[
τεh′− h′

ε

]
− A2,1(τε f, f )

[
τε f + f,

τε f − f
ε

, h′
]

and the convergences

τε f
ε→0−−→ f in H s(R),

τε f − f
ε ε→0−−→− f ′ in H s−1(R),

τεh− h
ε ε→0−−→−h′ in H 1(R),

together with Lemma 3.1 (with r = s) and Lemma 3.4
(
with r = s, τ ∈

( 5
2 − s, 1

))
imply that 8( f )[h] ∈

H 1(R) and

(8( f )[h])′ = A0,0( f )[h′′] − 2A2,1( f, f )[ f, f ′, h′]. (3-9)

This proves that 8( f ) ∈ L(H 2(R), H 1(R)). Finally, the local Lipschitz continuity of 8 follows from the
local Lipschitz continuity properties established in Lemmas 3.1 and 3.4. �
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4. The Muskat problem without surface tension: the generator property

We now fix f ∈ H s(R), s ∈
( 3

2 , 2
)
. The goal of this section is to prove that 8( f ), regarded as an

unbounded operator in H 1(R) with definition domain H 2(R), is the generator of a strongly continuous
and analytic semigroup in L(H 1(R)), that is,

−8( f ) ∈H(H 2(R), H 1(R)).

In order to establish this property we first approximate locally the operator 8( f ), in a sense to be made
precise in Theorem 4.2, by Fourier multipliers and carry then the desired generator property, which we
establish for the Fourier multipliers, back to the original operator, see Theorem 4.4. A similar approach
was followed in [Escher 1994; Escher et al. 2018; Escher and Simonett 1995; 1997] in the context of
spaces of continuous functions. The situation here is different as we consider Sobolev spaces on the line.
The method though can be adapted to this setting after exploiting the structure of the operator 8( f ),
especially the fact that the functions f and f ′ both vanish at infinity. As a result of this decay property
we can use localization families with a finite number of elements, and this fact enables us to introduce
for each localization family an equivalent norm on the Sobolev spaces H k(R), k ∈N, which is suitable
for the further analysis, see Lemma 4.1. We start by choosing for each ε ∈ (0, 1), a finite ε-localization
family, that is, a family

{π εj : −N + 1≤ j ≤ N } ⊂ C∞(R, [0, 1]),

with N = N (ε) ∈ N sufficiently large, such that

• suppπ εj is an interval of length less or equal to ε for all | j | ≤ N − 1; (4-1)

• suppπ εN ⊂ (−∞,−xN ] ∪ [xN ,∞) and xN ≥ ε
−1; (4-2)

• suppπ εj ∩ suppπ εl =∅ if [| j − l| ≥ 2,max{| j |, |l|} ≤ N − 1] or [|l| ≤ N − 2, j = N ]; (4-3)

•
∑N

j=−N+1(π
ε
j )

2
= 1; (4-4)

• ‖(π εj )
(k)
‖∞ ≤ Cε−k for all k ∈ N, −N + 1≤ j ≤ N. (4-5)

Such ε-localization families can be easily constructed. Additionally, we choose for each ε ∈ (0, 1) a
second family

{χ εj : −N + 1≤ j ≤ N } ⊂ C∞(R, [0, 1])

with the properties

• χ εj = 1 on suppπ εj ; (4-6)

• suppχ εj is an interval of length less or equal to 3ε for | j | ≤ N − 1; (4-7)

• suppχ εN ⊂ [|x | ≥ xN − ε]. (4-8)

Each ε-localization family {π εj : −N+1≤ j ≤ N } defines a norm on H k(R), k ∈N, which is equivalent
to the standard H k-norm.



THE MUSKAT PROBLEM IN TWO DIMENSIONS 297

Lemma 4.1. Given ε ∈ (0, 1), let {π εj : −N +1≤ j ≤ N } ⊂C∞(R, [0, 1]) be a family with the properties
(4-1)–(4-5). Then, for each k ∈ N, the mapping[

h 7→
N∑

j=−N+1

‖π εj h‖H k

]
: H k(R)→ [0,∞)

defines a norm on H k(R) which is equivalent to the standard H k-norm.

Proof. The proof is a simple exercise. �

We now consider the mapping

[τ 7→8(τ f )] : [0, 1] → L(H 2(R), H 1(R)).

As a consequence of Lemma 3.5, this mapping continuously transforms the operator 8( f ), for which we
want to establish the generator property, into the operator 8(0)=−π(−∂2

x )
1/2. Indeed, since the Hilbert

transform is a Fourier multiplier with symbol [ξ 7→ −i sign(ξ)], we obtain together with Remark 3.2 that

F(8(0)[h])(ξ)=−πF(Hh′)(ξ)= iπ sign(ξ)F(h′)(ξ)=−π |ξ |(Fh)(ξ)=−πF((−∂2
x )

1/2h)(ξ)

for ξ ∈ R. The parameter τ will allow us to use a continuity argument when showing that the resolvent
set of 8( f ) contains a positive real number; see the proof Theorem 4.4.

Our next goal is to prove that the operator 8(τ f ) can be locally approximated for each τ ∈ [0, 1] by
Fourier multipliers, as stated below. The estimate (4-9) with j = N uses to a large extent the fact that f
and f ′ vanish at infinity.

Theorem 4.2. Let f ∈ H s(R), s ∈
( 3

2 , 2
)
, and µ > 0 be given.

Then, there exist ε ∈ (0, 1), a finite ε-localization family {π εj : −N + 1≤ j ≤ N } satisfying (4-1)–(4-5),
a constant K = K (ε), and for each j ∈ {−N + 1, . . . , N } and τ ∈ [0, 1] there exist operators

A j,τ ∈ L(H 2(R), H 1(R))

such that

‖π εj 8(τ f )[h] −A j,τ [π
ε
j h]‖H1 ≤ µ‖π εj h‖H2 + K‖h‖H (11−2s)/4 (4-9)

for all j ∈ {−N + 1, . . . , N }, τ ∈ [0, 1], and h ∈ H 2(R). The operators A j,τ are defined by

A j,τ :=

[
PV
∫

R

1
y

1
1+ τ 2(δ[xεj ,y] f/y)2

dy
]
∂x −

π

1+ (τ f ′(xεj ))2
(−∂2

x )
1/2, | j | ≤ N − 1, (4-10)

where xεj is a point belonging to suppπ εj , and

A N ,τ := −π(−∂
2
x )

1/2. (4-11)

Proof. Let {π εj : −N + 1≤ j ≤ N } be an ε-localization family satisfying the properties (4-1)–(4-5) and
{χ εj : −N +1≤ j ≤ N } be an associated family satisfying (4-6)–(4-8), with ε ∈ (0, 1) which will be fixed
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below. We first infer from Lemma A.1 that for each τ ∈ [0, 1] the function

aτ (x) := PV
∫

R

1
y

1
1+ τ 2(δ[x,y] f/y)2

dy, x ∈ R,

belongs to BCα(R)∩C0(R), with α := 1
2 s− 3

4 . We now write

A j,τ := A1
j,τ −A2

j,τ ,

where
A1

j,τ := αj,τ∂x , A2
j,τ := βj,τ (−∂

2
x )

1/2,

and

αj,τ :=

{
aτ (xεj ), | j | ≤ N − 1,
0, j = N ,

βj,τ :=

{ π

1+(τ f ′(xεj ))2
, | j | ≤ N − 1,

π, j = N .
(4-12)

Let now h ∈ H 2(R) be arbitrary. In the following we shall denote by C constants which are independent
of ε (and, of course, of h ∈ H 2(R), τ ∈ [0, 1], and j ∈ {−N + 1, . . . , N }), while the constants that we
denote by K may depend only upon ε.

Step 1: We first infer from Lemma 3.5 that

‖π εj 8(τ f )[h] −A j,τ [π
ε
j h]‖H1 ≤ ‖π εj 8(τ f )[h] −A j,τ [π

ε
j h]‖2+‖(π εj 8(τ f )[h] −A j,τ [π

ε
j h])′‖2

≤ (1+‖(π εj )
′
‖∞)‖A0,0(τ f )[h′]‖2+‖A j,τ [π

ε
j h]‖2

+ 2‖A2,1(τ f, τ f )[ f, f ′, h′]‖2+‖π εj A0,0(τ f )[h′′] −A j,τ [(π
ε
j h)′]‖2.

Using Lemma 3.4
(
with r = s and τ = 7

4 −
1
2 s
)

and Lemma 3.1 (with r = s), it follows that

‖π εj 8(τ f )[h] −A j,τ [π
ε
j h]‖H1 ≤ K‖h‖H (11−2s)/4 +‖π εj A0,0(τ f )[h′′] −A j,τ [(π

ε
j h)′]‖2. (4-13)

We are left to estimate the L2-norm of the highest-order term π εj A0,0(τ f )[h′′] −A j,τ [(π
ε
j h)′], and for

this we need several steps.

Step 2: With the notation introduced in Remark 3.3 we have

A0,0(τ f )[h′′] = aτh′′− B0,1(τ f )[h′′],
and therewith
‖π εj A0,0(τ f )[h′′] −A j,τ [(π

ε
j h)′]‖2

≤ ‖π εj aτh′′−A1
j,τ [(π

ε
j h)′]‖2+‖π εj B0,1(τ f )[h′′] −A2

j,τ [(π
ε
j h)′]‖2. (4-14)

By virtue of Lemma A.1, in particular of the estimate (A-1), and of χ εj = 1 on suppπ εj , we get for
| j | ≤ N − 1

‖π εj aτh′′−A1
j,τ [(π

ε
j h)′‖2 = ‖aτπ εj h′′− aτ (xεj )(π

ε
j h)′′‖2

≤ ‖(aτ − aτ (xεj ))(π
ε
j h)′′‖2+ K‖h‖H1

= ‖(aτ − aτ (xεj ))χ
ε
j (π

ε
j h)′′‖2+ K‖h‖H1

= ‖(aτ − aτ (xεj ))χ
ε
j ‖∞‖(π

ε
j h)′′‖2+ K‖h‖H1

≤
1
2µ‖π

ε
j h‖H2 + K‖h‖H1, (4-15)
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provided that ε is sufficiently small. We have used here (and also later on without explicit mentioning)
the fact that | suppχ εj | ≤ 3ε. Since A1

N ,τ = 0, we obtain from (A-2) for ε sufficiently small that

‖π εN aτh′′−A1
N ,τ [(π

ε
N h)′‖2 = ‖π εN aτh′′‖2 ≤ ‖aτχ εN‖∞‖(π

ε
N h)′′‖2+ K‖h‖H1

≤
1
2µ‖π

ε
N h‖H2 + K‖h‖H1 . (4-16)

Step 3: We are left with the term ‖π εj B0,1(τ f )[h′′]−A2
j,τ [(π

ε
j h)′]‖2, and we consider first the case

| j | ≤ N − 1 (see Step 4 for j = N ). Observing that π(−∂2
x )

1/2
= B0,1(0) ◦ ∂x , it follows that

π εj B0,1(τ f )[h′′] −A2
j,τ [(π

ε
j h)′] = T1[h] − T2[h],

where
T1[h] := π εj B0,1(τ f )[h′′] −

1
1+ (τ f ′(xεj ))2

B0,1(0)[π εj h′′],

T2[h] :=
1

1+ (τ f ′(xεj ))2
B0,1(0)[(π εj )

′′h+ 2(π εj )
′h′].

Since by Remark 3.3
‖T2[h]‖2 ≤ K‖h‖H1, (4-17)

we are left to estimate T1[h], which is further decomposed as

T1[h] = T11[h] − T12[h],

with

T11[h](x) := PV
∫

R

[
1

1+ τ 2(δ[x,y] f/y)2
−

1
1+ (τ f ′(xεj ))2

]
(χ εj π

ε
j h′′)(x − y)

y
dy,

T12[h](x) := PV
∫

R

δ[x,y]π
ε
j /y

1+ τ 2(δ[x,y] f/y)2
h′′(x − y) dy.

Integrating by parts, we obtain the relation

T12[h] = B0,1(τ f )[(π εj )
′h′] − B1,1(π

ε
j , τ f )[h′] − 2τ 2 B2,2(π

ε
j , f, τ f, τ f )[ f ′h′]

+ 2τ 2 B3,2(π
ε
j , f, f, τ f, τ f )[h′],

and Remark 3.3 leads us to
‖T12[h]‖2 ≤ K‖h‖H1 . (4-18)

In order to deal with the term T11[h] we let Fj ∈ C(R) denote the Lipschitz function that satisfies

Fj = f on suppχ εj , F ′j = f ′(xεj ) on R \ suppχ εj , (4-19)

and we observe that

T11[h](x) := τ 2 PV
∫

R

[δ[x,y]( f ′(xεj )idR− f )/y][δ[x,y]( f ′(xεj )idR+ f )/y]

[1+ τ 2(δ[x,y] f/y)2][1+ (τ f ′(xεj ))2]

(χ εj π
ε
j h′′)(x − y)

y
dy

=
τ 2

1+ (τ f ′(xεj ))2
(T111[h] − T112[h])(x),
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where

T111[h] := χ εj B2,1( f ′(xεj )idR− f, f ′(xεj )idR+ f, τ f )[π εj h′′],

T112[h](x) := PV
∫

R

[δ[x,y]( f ′(xεj )idR− f )/y][δ[x,y]( f ′(xεj )idR+ f )/y](δ[x,y]χ εj /y)

1+ τ 2(δ[x,y] f/y)2
(π εj h′′)(x − y) dy.

Integrating by parts as in the case of T12[h], it follows from Remark 3.3 that

‖T112[h]‖2 ≤ K‖h‖H1 . (4-20)

On the other hand, (4-19), Remark 3.3 and the Hölder continuity of f ′ yield

‖T111[h]‖2 = ‖χ εj B2,1( f ′(xεj )idR− f, f ′(xεj )idR+ f, τ f )[π εj h′′]‖2

= ‖χ εj B2,1( f ′(xεj )idR− Fj , f ′(xεj )idR+ Fj , τ f )[π εj h′′]‖2

≤ C‖ f ′(xεj )− F ′j‖∞‖π
ε
j h′′‖2

= C‖ f ′(xεj )− f ′‖L∞(suppχεj )‖π
ε
j h′′‖2

≤
1
2µ‖π

ε
j h‖H2 + K‖h‖H1 . (4-21)

The desired estimate (4-9) follows for | j | ≤ N − 1 from (4-13)–(4-15) and (4-17), (4-18), (4-20), and
(4-21).

Step 4: We are left with the term ‖π εN B0,1(τ f )[h′′] −A2
N ,τ [(π

ε
N h)′]‖2, which we decompose as

(π εN B0,1(τ f )[h′′] −A2
N ,τ [(π

ε
N h)′])(x)

= π εN (x)PV
∫

R

h′′(x − y)
y

1
1+ τ 2(δ[x,y] f/y)2

dy−PV
∫

R

(π εN h)′′(x − y)
y

dy

=: T1[h](x)+ T2[h](x)− T3[h](x),

where
T1[h] := −τ 2 B2,1( f, f, τ f )[π εN h′′],

T2[h](x) := PV
∫

R

h′′(x − y)
δ[x,y]π

ε
N

y
1

1+ τ 2(δ[x,y] f/y)2
dy,

T3[h] := B0,1(0)[(π εN )
′′h+ 2(π εN )

′h′].

For the difference T2[h] − T3[h] we find, as in the previous step (see (4-17) and (4-18)), that

‖T2[h] − T3[h]‖2 ≤ K‖h‖H1 . (4-22)

When dealing with T1[h], we introduce the function FN ∈W 1
∞
(R) by the formula

FN (x) :=


f (x), |x | ≥ xN − ε,

x + xN − ε

2(xN − ε)
f (xN − ε)+

xN − ε− x

2(xN − ε)
f (−xN + ε), |x | ≤ xN − ε.
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The relation (4-2) implies ‖FN‖∞+‖F ′N‖∞→ 0 for ε→ 0. Moreover, it holds that

T1[h](x)=−τ 2 PV
∫

R

(χ εNπ
ε
N h′′)(x − y)

y
(δ[x,y] f/y)2

1+ τ 2(δ[x,y] f/y)2
=: T11[h](x)− T12[h](x),

where

T11[h](x) := τ 2 PV
∫

R

(π εN h′′)(x − y)
(δ[x,y] f/y)2(δ[x,y]χ εN/y)

1+ τ 2(δ[x,y] f/y)2
dy,

T12[h] := τ 2χ εN B2,1( f, f, τ f )[π εN h′′].

Recalling that suppπ εN ⊂ suppχ εN ⊂ [|x | ≥ xN−ε] and that f = FN on suppχ εN , it follows by Remark 3.3
that

‖T12[h]‖2 = ‖τ 2χ εN B2,1(FN , FN , τ f )[π εN h′′]‖2 ≤ ‖B2,1(FN , FN , τ f )[π εN h′′]‖2 ≤ C‖F ′N‖
2
∞
‖π εN h′′‖2

≤
1
2µ‖π

ε
j h‖H2 + K‖h‖H1 (4-23)

for small ε. As T11[h] can be estimated in the same manner as the term T112[h] in the previous step, we
obtain together with (4-22) and (4-23) that

‖π εN B0,1(τ f )[h′′] −A2
N ,τ [(π

ε
N h)′]‖2 ≤ 1

2µ‖π
ε
j h‖H2 + K‖h‖H1 (4-24)

if ε is sufficiently small. The claim (4-9) follows for j = N from (4-13)–(4-14), (4-16), and (4-24). �

The operators Aτ, j found in Theorem 4.2 are generators of strongly continuous analytic semigroups in
L(H 1(R)) and they satisfy resolvent estimates which are uniform with respect to xεj ∈ R and τ ∈ [0, 1];
see Proposition 4.3 below. To be more precise, in Proposition 4.3 and in the proof of Theorem 4.4, the
Sobolev spaces H k(R), k ∈ {1, 2}, consist of complex-valued functions and A j,τ are the natural extensions
(complexifications) of the operators introduced in Theorem 4.2.

Proposition 4.3. Let f ∈ H s(R), s ∈
( 3

2 , 2
)
, be fixed. Given x0 ∈ R and τ ∈ [0, 1], let

Ax0,τ := ατ∂x −βτ (−∂
2
x )

1/2,

where

ατ ∈ {0, aτ (x0)} and βτ ∈

{
π,

π

1+ (τ f ′(x0))2

}
,

with aτ denoting the function defined in Lemma A.1. Then, there exists a constant κ0 ≥ 1 such that

λ−Ax0,τ ∈ Isom(H 2(R), H 1(R)), (4-25)

κ0‖(λ−Ax0,τ )[h]‖H1 ≥ |λ| · ‖h‖H1 +‖h‖H2 (4-26)

for all x0 ∈ R, τ ∈ [0, 1], λ ∈ C with Re λ≥ 1, and h ∈ H 2(R).

Proof. The constants ατ , βτ defined above satisfy, in view of (A-3),

|ατ | ≤ 4
(
‖ f ‖2

∞
+

2‖ f ′‖∞[ f ′]s−3/2

s− 3
2

)
and βτ ∈

[
π

1+max | f ′|2
, π

]
. (4-27)



302 BOGDAN-VASILE MATIOC

Furthermore, the operator Ax0,τ is a Fourier multiplier with symbol

mτ (ξ) := −βτ |ξ | + iατ ξ, ξ ∈ R.

Given Re λ≥ 1, it is easy to see that the operator R(λ,Ax0,τ ) defined by

F(R(λ,Ax0,τ )[h])=
1

λ−mτ
Fh, h ∈ H 1(R),

belongs to L(H 1(R), H 2(R)) and that it is the inverse of λ−Ax0,τ . Moreover, for each Re λ ≥ 1 and
h ∈ H 2(R), we have

‖(λ−Ax0,τ )[h]‖
2
H1 =

∫
R

(1+ |ξ |2)|F((λ−Ax0,τ )[h])|
2(ξ) dξ =

∫
R

(1+ |ξ |2)|λ−mτ (ξ)|
2
|Fh|2(ξ) dξ

≥min{1, β2
τ }

∫
R

(1+ |ξ |2)2|Fh|2(ξ) dξ =min{1, β2
τ }‖h‖

2
H2 . (4-28)

Appealing to the inequality

|λ|2

|λ−mτ (ξ)|2
=

(Re λ)2

(Re λ+βτ |ξ |)2+ (Im λ−ατ ξ)2
+

(Im λ)2

(Re λ+βτ |ξ |)2+ (Im λ−ατ ξ)2

≤ 1+
2(Im λ−ατ ξ)

2
+ 2α2

τ ξ
2

(Re λ+βτ |ξ |)2+ (Im λ−ατ ξ)2
≤ 1+ 2

[
1+

(
ατ

βτ

)2]
≤ 3

[
1+

(
ατ

βτ

)2]
for λ ∈ C with Re λ≥ 1, the estimate (4-26) follows from the relations (4-27) and (4-28). �

We now establish the desired generation result.

Theorem 4.4. Let f ∈ H s(R), s ∈
( 3

2 , 2
)
, be given. Then

−8( f ) ∈H(H 2(R), H 1(R)). (4-29)

Proof. Let κ0 ≥ 1 be the constant determined in Proposition 4.3. Setting µ := 1
2κ0, we deduce from

Theorem 4.2 that there exists a constant ε ∈ (0, 1), an ε-localization family {π εj : −N + 1 ≤ j ≤ N }
that satisfies (4-1)–(4-5), a constant K = K (ε), and for each −N + 1≤ j ≤ N and τ ∈ [0, 1] operators
A j,τ ∈ L(H 2(R), H 1(R)) such that

‖π εj 8(τ f )[h] −A j,τ [π
ε
j h]‖H1 ≤

1
2κ0
‖π εj h‖H2 + K‖h‖H (11−2s)/4 (4-30)

for all −N + 1≤ j ≤ N, τ ∈ [0, 1], and h ∈ H 2(R). In view of Proposition 4.3, it holds that

κ0‖(λ−A j,τ )[π
ε
j h]‖H1 ≥ |λ| · ‖π εj h‖H1 +‖π εj h‖H2 (4-31)

for all −N + 1 ≤ j ≤ N, τ ∈ [0, 1], λ ∈ C with Re λ ≥ 1, and h ∈ H 2(R). The relations (4-30)–(4-31)
lead us to

κ0‖π
ε
j (λ−8(τ f ))[h]‖H1 ≥ κ0‖(λ−A j,τ )[π

ε
j h]‖H1 − κ0‖π

ε
j 8(τ f )[h] −A j,τ [π

ε
j h]‖H1

≥ |λ| · ‖π εj h‖H1 +
1
2‖π

ε
j h‖H2 − κ0K‖h‖H (11−2s)/4
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for all −N + 1 ≤ j ≤ N, τ ∈ [0, 1], λ ∈ C with Re λ ≥ 1, and h ∈ H 2(R). Summing up over
j ∈ {−N + 1, . . . , N }, we infer from Lemma 4.1 that there exists a constant C ≥ 1 with the property that

C‖h‖H (11−2s)/4 +C‖(λ−8(τ f ))[h]‖H1 ≥ |λ| · ‖h‖H1 +‖h‖H2

for all τ ∈ [0, 1], λ ∈ C with Re λ≥ 1, and h ∈ H 2(R). Using (1-4) together with Young’s inequality, we
may find constants κ ≥ 1 and ω > 0 such that

κ‖(λ−8(τ f ))[h]‖H1 ≥ |λ| · ‖h‖H1 +‖h‖H2 (4-32)

for all τ ∈ [0, 1], λ ∈ C with Re λ≥ ω, and h ∈ H 2(R). Furthermore, combining the property

(ω−8(τ f ))|τ=0 = ω−8(0)= ω+π(−∂2
x )

1/2
∈ Isom(H 2(R), H 1(R))

with (4-32), the method of continuity, see, e.g., [Gilbarg and Trudinger 1998, Theorem 5.2], yields that

ω−8( f ) ∈ Isom(H 2(R), H 1(R)). (4-33)

The relations (4-32) (with τ = 1), (4-33), and [Lunardi 1995, Corollary 2.1.3] lead us to the desired claim
(4-29). �

We are now in a position to prove the well-posedness result Theorem 1.1.

Proof of Theorem 1.1. Let s ∈
( 3

2 , 2
)

and s̄ ∈
( 3

2 , s
)

be given. Combining Lemma 3.5 and Theorem 4.4
yields

−8 ∈ C1−(H s̄(R),H(H 2(R), H 1(R))).

Setting α := s− 1 and β := s̄− 1, we have 0< β < α < 1 and (1-4) yields

H s̄(R)= [H 1(R), H 2(R)]β and H s(R)= [H 1(R), H 2(R)]α.

It follows now from Theorem 1.5 that (1-1), or equivalently (3-1), possesses a maximally defined solution

f := f ( · ; f0) ∈ C([0, T+( f0)), H s(R))∩C((0, T+( f0)), H 2(R))∩C1((0, T+( f0)), H 1(R))

with
f ∈ C s−s̄([0, T ], H s̄(R)) for all T < T+( f0).

Concerning uniqueness, we now show that any classical solution

f̃ ∈ C([0, T̃ ), H s(R))∩C((0, T̃ ), H 2(R))∩C1((0, T̃ )), H 1(R)), T̃ ∈ (0,∞],

satisfies
f̃ ∈ Cη([0, T ], H s̄(R)) for all T ∈ (0, T̃ ), (4-34)

where η := (s− s̄)/s ∈ (0, s− s̄). This proves then the uniqueness claim of Theorem 1.1. We pick thus
T ∈ (0, T̃ ) arbitrarily. Then it follows directly from Lemma 3.1(i) that

sup
(0,T ]
‖∂t f̃ ‖2 ≤ C;
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hence f̃ ∈BC1((0, T ], L2(R)). Since f̃ ∈C([0, T ], H s(R)), we conclude form (1-4), the previous bound,
and the mean value theorem, that

‖ f̃ (t)− f̃ (s)‖H s̄ ≤ ‖ f̃ (t)− f̃ (s)‖1−s̄/s
2 ‖ f̃ (t)− f̃ (s)‖s̄/sH s ≤ C |t − s|η, t, s ∈ [0, T ],

which proves (4-34).
Assume now that T+( f0) <∞ and

sup
[0,T+( f0))

‖ f (t)‖H s <∞.

Arguing as above, we find that

‖ f (t)− f (s)‖H (s+s̄)/2 ≤ C |t − s|(s−s̄)/2s, t, s ∈ [0, T+( f0)).

The criterion for global existence in Theorem 1.5 applied for α := (s+ s̄− 2)/2 and β := s̄− 1 implies
that the solution can be continued on an interval [0, τ ) with τ > T+( f0). Moreover, it holds that

f ∈ C (s−s̄)/2([0, T ], H s̄(R)) for all T ∈ (0, τ ).

The uniqueness claim in Theorem 1.5 leads us to a contradiction. Hence our assumption was false and
T+( f0)=∞. �

5. Instantaneous real-analyticity

We now improve the regularity of the solutions found in Theorems 1.1 and 1.2. To this end we first show
that the mapping 8 defined by (3-2) is actually real-analytic; see Proposition 5.1. As [ f 7→8( f )] is not
a Nemytskij-type operator, we cannot use classical results for such operators, as presented, e.g., in [Runst
and Sickel 1996]. Instead, we directly estimate the rest of the associated Taylor series. We conclude the
section with the proof of Theorem 1.3, which is obtained, via Proposition 5.1, from the real-analyticity
property of the semiflow as stated in Theorem 1.5, applied in the context of a nonlinear evolution problem
related to (1-1).

Proposition 5.1. Given s ∈
( 3

2 , 2
)
, it holds that

8 ∈ Cω(H s(R),L(H 2(R), H 1(R))). (5-1)

Proof. Let φ : R→ R be the map defined by φ(x) := (1+ x2)−1, x ∈ R. Then, given f0 ∈ H s(R), it
holds that

8( f0)[h](x)= PV
∫

R

δ[x,y]h′

y
φ

(
δ[x,y] f0

y

)
dy, h ∈ H 2(R).

Given n ∈ N, we let

∂n8( f0)[ f1, . . . , fn][h](x) := PV
∫

R

δ[x,y]h′

y

( n∏
i=1

δ[x,y] fi

y

)
φ(n)

(
δ[x,y] f0

y

)
dy

=

n∑
k=0, n+k∈2N

an
k An+k,n( f0, . . . , f0)[ f0, . . . , f0︸ ︷︷ ︸

k times

, f1, . . . , fn, h′](x)
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for fi ∈ H s(R), 1 ≤ i ≤ n, h ∈ H 2(R), and x ∈ R, where an
k , n ∈ N, 0 ≤ k ≤ n, are defined in

Lemma 5.2. Arguing as in the proof of Lemma 3.5, it follows from Lemmas 3.1 and 3.4 that ∂n8( f0) ∈

Ln
sym(H

s(R),L(H 2(R), H 1(R))); that is, ∂n8( f0) is a bounded n-linear and symmetric operator.
Moreover, given f0, f ∈ H s(R), n ∈N∗, and h ∈ H 2(R), Fubini’s theorem combined with Lebesgue’s

dominated convergence theorem and the continuity of the mapping[
τ 7→ PV

∫
R

δ[ · ,y]h′

y

(
δ[ · ,y] f

y

)n+1

φ(n+1)
(
δ[ · ,y]( f0+ τ f )

y

)
dy
]
: [0, 1] → H 1(R),

yield that

8( f0+ f )[h](x)−
n∑

k=0

∂k8( f0)[ f ]k[h](x)
k!

= PV
∫

R

δ[x,y]h′

y

(
δ[x,y] f

y

)n+1∫ 1

0

(1− τ)n

n!
φ(n+1)

(
δ[x,y]( f0+ τ f )

y

)
dτ dy

=

∫ 1

0

(1− τ)n

n!
PV
∫

R

δ[x,y]h′

y

(
δ[x,y] f

y

)n+1

φ(n+1)
(
δ[x,y]( f0+ τ f )

y

)
dy dτ,

and∥∥∥∥8( f0+ f )[h] −
n∑

k=0

∂k8( f0)[ f ]k[h]
k!

∥∥∥∥
H1

≤
1
n!

max
τ∈[0,1]

∥∥∥∥PV
∫

R

δ[ · ,y]h′

y

(
δ[ · ,y] f

y

)n+1

φ(n+1)(δ[ · ,y] fτ/y) dy
∥∥∥∥

H1
, (5-2)

where fτ := f0+ τ f , 0≤ τ ≤ 1. In order to estimate the right-hand side of (5-2) we note that∥∥∥∥PV
∫

R

δ[ · ,y]h′

y

(
δ[ · ,y] f

y

)n+1

φ(n+1)(δ[ · ,y] fτ/y)dy
∥∥∥∥

H1

≤

n+1∑
k=0,n+k+1∈2N

|an+1
k |

∥∥An+k+1,n+1( fτ , . . . , fτ )[ fτ , . . . , fτ︸ ︷︷ ︸
k times

, f, . . . , f︸ ︷︷ ︸
n+1 times

,h′]
∥∥

H1

≤

n+1∑
k=0,n+k+1∈2N

|an+1
k |

∥∥An+k+1,n+1( fτ , . . . , fτ )[ fτ , . . . , fτ︸ ︷︷ ︸
k times

, f, . . . , f︸ ︷︷ ︸
n+1 times

,h′]
∥∥

2

+

n+1∑
k=0,n+k+1∈2N

|an+1
k |

∥∥An+k+1,n+1( fτ , . . . , fτ )[ fτ , . . . , fτ︸ ︷︷ ︸
k times

, f, . . . , f︸ ︷︷ ︸
n+1 times

,h′′]
∥∥

2

+k
n+1∑

k=0,n+k+1∈2N

|an+1
k |

∥∥An+k+1,n+1( fτ , . . . , fτ )[ fτ , . . . , fτ︸ ︷︷ ︸
k−1 times

, f, . . . , f︸ ︷︷ ︸
n+1 times

, f ′τ ,h
′
]
∥∥

2

−2(n+2)
n+1∑

k=0,n+k+1∈2N

|an+1
k |

∥∥An+k+3,n+2( fτ , . . . , fτ )[ fτ , . . . , fτ︸ ︷︷ ︸
k+1 times

, f, . . . , f︸ ︷︷ ︸
n+1 times

, f ′τ ,h
′
]
∥∥

2. (5-3)
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Combining the results of Lemmas 5.2–5.4, we conclude that there exists an integer p > 0 and a positive
constant C (depending only on ‖ f0‖H s ) such that for all f ∈ H s(R) with ‖ f ‖H s ≤ 1 and all n ≥ 3 we
have ∥∥∥∥8( f0+ f )−

n∑
k=0

∂k8( f0)[ f ]k

k!

∥∥∥∥
L(H2(R),H1(R))

≤ Cn+1n p
‖ f ‖n+1

H s .

The claim follows. �

The following technical results are used in the proof of Proposition 5.1.

Lemma 5.2. Let φ : R→ R be defined by φ(x) := (1+ x2)−1, x ∈ R. Given n ∈ N, it holds that

φ(n)(x)=
1

(1+ x2)n+1

n∑
k=0

an
k xk,

where the coefficients an
k ∈ R satisfy |an

k | ≤ 4n(n+ 2)! for all 0≤ k ≤ n. Moreover, an
k = 0 if n+ k 6∈ 2N.

Proof. The claim for n ∈ {0, 1, 2, 3} is obvious. Assume that the claim holds for some integer n ≥ 3.
Since

(1+ x2)n+2φ(n+1)(x)= (1+ x2)

n∑
k=1

kan
k xk−1

− 2(n+ 1)x
n∑

k=0

an
k xk,

the coefficient an+1
k , 0≤ k ≤ n+ 1, of xk satisfies

|an+1
n+1 | ≤ n|an

n | + 2(n+ 1)|an
n | ≤ 4(n+ 1)|an

n | ≤ 4n+1(n+ 3)! ,

|an+1
n | ≤ (n− 1)|an

n−1| + 2(n+ 1)|an
n−1| = 0,

and for n− 1≥ k ≥ 2 we have

|an+1
k | ≤ (k+ 1)|an

k+1| + (k− 1)|an
k−1| + 2(n+ 1)|an

k−1| ≤ 4n+1(n+ 3)! ,

while
|an+1

1 | ≤ 2|an
2 | + 2(n+ 1)|an

0 | ≤ 4n+1(n+ 3)! ,

|an+1
0 | ≤ |an

1 | ≤ 4n+1(n+ 3)! .

The conclusion is now obvious. �

In the next lemma we estimate the first two terms that appear on the right-hand side of (5-3).

Lemma 5.3. Let n, k ∈ N satisfy n ≥ 3 and 0 ≤ k ≤ n+ 1, and let s ∈
(3

2 , 2
)
. Given f, fτ ∈ H s(R), it

holds that∥∥An+k+1,n+1( fτ , . . . , fτ )[ fτ , . . . , fτ︸ ︷︷ ︸
k times

, f, . . . , f︸ ︷︷ ︸
n+ 1 times

, · ]
∥∥
L(L2(R))

≤ Cnn4 max{1, ‖ fτ‖4H s }‖ f ‖n+1
H s , (5-4)

with a constant C ≥ 1 independent of n, k, f, and fτ .

Proof. Much as in the proof of Lemma 3.1 we write

An+k+1,n+1( fτ , . . . , fτ )[ fτ , . . . , fτ , f, . . . , f, · ] = M − S,
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where M is the multiplication operator

M[h](x) := h(x)PV
∫

R

1
y

(
δ[x,y] f

y

)n+1
(δ[x,y] fτ/y)k

[1+ (δ[x,y] fτ/y)2]n+2 dy

and S is the singular integral operator

S[h](x) := PV
∫

R

(
δ[x,y] f

y

)n+1
(δ[x,y] fτ/y)k

[1+ (δ[x,y] fτ/y)2]n+2

h(x − y)
y

dy

for h ∈ L2(R). Arguing as in proof of Lemma 3.1, it follows that

‖M‖L(L2(R)) ≤ nCn max{1, ‖ fτ‖H s }‖ f ‖n+1
H s (5-5)

with a constant C ≥ 1 independent of n, k, f, and fτ .
In order to deal with the operator S we consider the functions F : R2

→ R and A : R→ R2 defined by

F(x1, x2) :=
xn+1

1 xk
2

(1+ x2
2)

n+2
, A := (A1, A2) := ( f, fτ ).

The function F is smooth, A is Lipschitz continuous, and we set

aj := ‖A′j‖∞, 1≤ j ≤ 2.

Since S is the singular integral operator with kernel

K (x, y) :=
1
y

F
(
δ[x,y]A

y

)
, x ∈ R, y 6= 0,

and |δ[x,y]Aj/y| ≤ aj for 1≤ j ≤ 2, it is natural to introduce a smooth periodic function F̃ on R2, which
is 4aj -periodic in the variable x j , 1≤ j ≤ 2, and which matches F on

∏2
j=1[−aj , aj ]. More precisely,

we choose ϕ ∈ C∞0 (R, [0, 1]) with ϕ = 1 on [|x | ≤ 1] and ϕ = 0 on [|x | ≥ 2] and we define F̃ to be the
periodic extension of [

(x1, x2) 7→ F(x1, x2)

2∏
j=1

ϕ

(
x j

aj

)]
: Q→ R,

where Q :=
∏2

j=1[−2aj , 2aj ]. We now expand F̃ by its Fourier series

F̃(x1, x2)=
∑
p∈Z2

αp exp
(

i
2∑

j=1

pj x j

Tj

)
,

where

Tj :=
2aj

π
, αp :=

1
42a1a2

∫
Q

F̃(x1, x2) exp
(
−i

2∑
j=1

pj x j

Tj

)
d(x1, x2), p ∈ Z2,

and observe that

K (x, y)=
1
y

F̃
(
δ[x,y]A

y

)
=

∑
p∈Z2

αp K p(x, y), x ∈ R, y 6= 0,
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with

K p(x, y) :=
1
y

exp
(

i
δ[x,y]

(∑2
j=1(pj/Tj )Aj

)
y

)
, x ∈ R, y 6= 0, p ∈ Z2.

The kernels K p define operators in L(L2(R)) of type (1-2) and the norms of these operators can be
estimated from above by

C
(

1+
∥∥∥∥ 2∑

j=1

pj

Tj
A′j

∥∥∥∥
∞

)
≤ C(1+ |p|), p ∈ Z2.

Since
∑

p∈Z2(1+ |p|3)−1 <∞ we get

‖S‖L(L2(R)) ≤ C
∑
p∈Z2

|αp|(1+ |p|)≤ C sup
p∈Z2
[(1+ |p|4)|αp|].

We estimate next the quantity supp∈Z2(1+ |p|4)|αp|. To this end we write

αp =
1
42

2∏
j=1

Ij

aj
,

where

I1 :=

∫ 2a1

−2a1

xn+1
1 ϕ

(
x1

a1

)
e−i p1x1/T1 dx1, I2 :=

∫ 2a2

−2a2

xk
2

(1+ x2
2)

n+2
ϕ

(
x2

a2

)
e−i p2x2/T2 dx2.

Since ϕ = 0 in [|x | ≥ 2] and n ≥ 3, integration by parts leads us, in the case when p1 6= 0, to

|I1| ≤

(
T1

|p1|

)4 ∫ 2a1

−2a1

∣∣∣∣(xn+1
1 ϕ

(
x1

a1

))(4)∣∣∣∣ dx1 ≤ C
2nn4an+2

1

p4
1

, (5-6)

and similarly, since x2 ≤ 1+ x2
2 , we find for p2 6= 0 that

|I2| ≤ C
n4 max{a2, a5

2}

p4
2

. (5-7)

The estimates
|I1| ≤ C2nan+2

1 , |I2| ≤ Ca2, (5-8)

are valid for all p ∈ Z2. Combining (5-6)–(5-8), we arrive at

sup
p∈Z2

(1+ |p|4)|αp| ≤ C2nn4 max{1, a4
2}a

n+1
1 ,

which leads us to

‖S‖L(L2(R)) ≤ C2nn4 max{1, ‖ f ′τ‖
4
∞
}‖ f ′‖n+1

∞
≤ n4Cn max{1, ‖ fτ‖4H s }‖ f ‖n+1

H s .

This inequality together with (5-5) proves the desired claim. �

In the next lemma we estimate the last two terms on the right-hand side of (5-3) in the proof of
Proposition 5.1.
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Lemma 5.4. Let n, k ∈ N satisfy n ≥ 1 and 0 ≤ k ≤ n+ 1. Let further l ∈ {0, 1} and s ∈
( 3

2 , 2
)
. Given

f, fτ ∈ H s(R), it holds that∥∥An+k+1+2l,n+1+l( fτ , . . . , fτ )[ fτ , . . . , fτ︸ ︷︷ ︸
k− 1+ 2l times

, f, . . . , f︸ ︷︷ ︸
n+ 1 times

, f ′τ , · ]
∥∥
L(H1(R),L2(R))

≤Cn
‖ fτ‖H s‖ f ‖n+1

H s , (5-9)

with a constant C ≥ 1 independent of n, k, f , and fτ .

Proof. The proof is similar to that of Lemma 3.4. �

We are now in a position to prove Theorem 1.3 when σ = 0, where we use a parameter trick which
appears, in other forms, also in [Angenent 1990; Escher and Simonett 1996; Prüss et al. 2015]. We
present a new idea which uses only the abstract result Theorem 1.5 in the context of an evolution problem
related to (1-1), and not explicitly the maximal regularity property as in the above-mentioned papers.
The proof when σ > 0 is almost identical and is also discussed below, but it relies on some properties
established in Section 6.

Proof of Theorem 1.3. Assume first that σ = 0. We then pick f0 ∈ H s(R), s ∈
( 3

2 , 2
)
, and we let

f = f ( · ; f0) : [0, T+( f0))→ H s(R) denote the unique maximal solution to (1-1), whose existence is
guaranteed by Theorem 1.1. We further choose λ1, λ2 ∈ (0,∞) and we define

fλ1,λ2(t, x) := f (λ1t, x + λ2t), x ∈ R, 0≤ t < T+ := T+( f0)/λ1.

Classical arguments show that

fλ1,λ2 ∈ C([0, T+), H s(R))∩C((0, T+), H 2(R))∩C1((0, T+), H 1(R)).

We next introduce the function u := (u1, u2, u3) : [0, T+)→ R2
× H s(R), where

(u1, u2)(t) := (λ1, λ2), u3(t) := fλ1,λ2(t), 0≤ t < T+,

and we note that u solves the quasilinear evolution problem

u̇ =9(u)[u], t > 0, u(0)= (λ1, λ2, f0), (5-10)

with 9 : (0,∞)2× H s(R)→ L(R2
× H 2(R),R2

× H 1(R)) denoting the operator defined by

9((v1, v2, v3))[(u1, u2, u3)] := (0, 0, v18(v3)[u3] + v2∂x u3). (5-11)

Proposition 5.1 immediately yields

9 ∈ Cω
(
(0,∞)2× H s(R),L(R2

× H 2(R),R2
× H 1(R))

)
for all s ∈

( 3
2 , 2

)
.

Given v := (v1, v2, v3) ∈ (0,∞)2× H s(R), the operator 9(v) can be represented as a matrix

9(v)=

(
0 0
0 v18(v3)+v2∂x

)
: R2
× H 2(R)→ R2

× H 1(R),
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and we infer from [Amann 1995, Corollary I.1.6.3] that −9(v) ∈H(R2
× H 2(R),R2

× H 1(R)) if and
only if

−(v18(v3)+ v2∂x) ∈H(H 2(R), H 1(R)). (5-12)

We note that v2∂x is a first-order Fourier multiplier and its symbol is purely imaginary. Therefore, obvious
modifications of the arguments presented in the proofs of Theorem 4.2 and Proposition 4.3 enable us
to conclude that the property (5-12) is satisfied for each (v1, v2, v3) ∈ (0,∞)2× H s(R) and s ∈

( 3
2 , 2

)
.

Setting F0 := R2
× H 1(R) and F1 := R2

× H 2(R), it holds that

[F0, F1]θ = R2
× H 1+θ (R), θ ∈ (0, 1),

and we may now apply Theorem 1.5 in the context of the quasilinear parabolic problem (5-10) to conclude
(much as in the proof of Theorem 1.1), for each u0 = (λ1, λ2, f0) ∈ (0,∞)2× H s(R), s ∈

( 3
2 , 2

)
, the

existence of a unique maximal solution

u := u( · ; u0) ∈ C([0, T+(u0)), (0,∞)2× H s(R))∩C((0, T+(u0)), F1)∩C1((0, T+(u0)), F0).

Additionally, the set

� := {(λ1, λ2, f0, t) : t ∈ (0, T+((λ1, λ2, f0)))}

is open in (0,∞)2× H s(R)× (0,∞) and

[(λ1, λ2, f0, t) 7→ u(t; (λ1, λ2, f0))] :�→ R2
× H s(R)

is a real-analytic map.
So, if we fix f0 ∈ H s(R), then we may conclude that

T+( f0)

λ1
= T+((λ1, λ2, f0)) for all (λ1, λ2) ∈ (0,∞)2.

As we want to prove that f = f ( · ; f0) is real-analytic in (0, T+( f0))×R, it suffices to establish the
real-analyticity property in a small ball around (t0, x0) for each x0 ∈ R and t0 ∈ (0, T+( f0)). Let thus
(t0, x0) ∈ (0, T+( f0))× R be arbitrary. For (λ1, λ2) ∈ B((1, 1), ε) ⊂ (0,∞)2, with ε chosen suitably
small, we have that

t0 < T+((λ1, λ2, f0)) for all (λ1, λ2) ∈ B((1, 1), ε),

and therewith

B((1, 1), ε)×{ f0}× {t0} ⊂�.

Moreover, since u3( · ; u0)= fλ1,λ2 , the restriction

[(λ1, λ2) 7→ fλ1,λ2(t0)] : B((1, 1), ε)→ H s(R) (5-13)

is a real-analytic map. Since [h 7→ h(x0− t0)] : H s(R)→ R is a linear operator, the composition

[(λ1, λ2) 7→ f (λ1t0, x0− t0+ λ2t0)] : B((1, 1), ε)→ R (5-14)
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is real-analytic too. Furthermore, for δ > 0 small, the mapping ϕ : B((t0, x0), δ)→ B((1, 1), ε) with

ϕ(t, x) :=
(

t
t0
,

x − x0+ t0
t0

)
(5-15)

is well-defined and real-analytic, and therefore the composition of the functions defined by (5-14) and
(5-15), that is, the mapping

[(t, x) 7→ f (t, x)] : B((t0, x0), δ)→ R,

is also real-analytic. This proves the first claim.
Finally, the property f ∈ Cω((0, T+( f0)), H k(R)) for arbitrary k ∈N, is an immediate consequence of

(5-13).
The arguments presented above carry over to the case when σ > 0 (with the obvious modifications). If

σ > 0, the operator v2∂x appearing in (5-12) can be regarded as being a lower-order perturbation and
therefore the generator property of 9(v) follows in this case directly from the corresponding property of
the original operator; see Theorem 6.3. �

6. The Muskat problem with surface tension and gravity effects

We now consider surface-tension forces acting at the interface between the fluids; that is, we take σ > 0.
The motion of the fluids may also be influenced by gravity, but we make no restrictions on 1ρ , which is
now an arbitrary real number. If we model flows in a vertical Hele-Shaw cell, this means in particular
that the lower fluid may be less dense than the fluid above. Since 1ρ can be zero, (1-1) is also a model
for fluid motions in a horizontal Hele-Shaw cell as for these flows the effects due to gravity are usually
neglected, that is, g = 0. Again, we rescale the time appropriately and rewrite (1-1) as the system

∂t f (t, x)= f ′(t, x)PV
∫

R

f (t, x)− f (t, x − y)
y2+ ( f (t, x)− f (t, x − y))2

(κ( f ))′(t, x − y) dy

+PV
∫

R

y
y2+ ( f (t, x)− f (t, x − y))2

(κ( f ))′(t, x − y) dy

+2PV
∫

R

y( f ′(t, x)− f ′(t, x − y))
y2+ ( f (t, x)− f (t, x − y))2

dy for t > 0, x ∈ R,

f (0, · )= f0,

(6-1)

with

2 :=
1ρ

σ
∈ R.

Since

(κ( f ))′ =
f ′′′

(1+ f ′2)3/2
− 3

f ′ f ′′2

(1+ f ′2)5/2
,

we observe that the first equation of (6-1) is again quasilinear, but now this property is due to the fact that
(κ( f ))′ is an affine function in the variable f ′′′.



312 BOGDAN-VASILE MATIOC

To be more precise we set

8σ ( f )[h](x) := f ′(x)PV
∫

R

δ[x,y] f
y2+ (δ[x,y] f )2

(
h′′′

(1+ f ′2)3/2
− 3

f ′ f ′′h′′

(1+ f ′2)5/2

)
(x − y) dy

+PV
∫

R

y
y2+ (δ[x,y] f )2

(
h′′′

(1+ f ′2)3/2
− 3

f ′ f ′′h′′

(1+ f ′2)5/2

)
(x − y) dy

+2PV
∫

R

y(δ[x,y]h′)
y2+ (δ[x,y] f )2

dy, (6-2)

and we recast the problem (6-1) in the compact form

ḟ =8σ ( f )[ f ], t > 0, f (0)= f0. (6-3)

We emphasize that there are also other ways to write (6-1) as a quasilinear problem. For example the
terms containing only f (l), 0≤ l ≤ 2, can be viewed as a nonlinear function [ f 7→ F( f )] which would
appear as an additive term to the right-hand side of (6-3), with 8σ ( f )[h] modified accordingly. However,
the formulation (6-2)–(6-3) appears to us as being optimal as it allows us to consider the largest set of
initial data among all formulations. To be more precise, the operator introduced by (6-2) satisfies, with
the notation in Lemma 3.1 and Remark 3.3, the relation

8σ ( f )[h]

= f ′B1,1( f, f )
[

h′′′

(1+ f ′2)3/2
−3

f ′ f ′′h′′

(1+ f ′2)5/2

]
+B0,1( f )

[
h′′′

(1+ f ′2)3/2
−3

f ′ f ′′h′′

(1+ f ′2)5/2

]
+2A0,0( f )[h′],

and we now claim, based on the results in Section 5, that

8σ ∈ Cω(H 2(R),L(H 3(R), L2(R))). (6-4)

Indeed, arguing as in Section 5, it follows that[
f 7→

[
h 7→ PV

∫
R

δ[ · ,y] f
y2+ (δ[ · ,y] f )2

h(· − y) dy
]]
∈ Cω(H 2(R),L(L2(R))),[

f 7→
[

h 7→ PV
∫

R

y
y2+ (δ[ · ,y] f )2

h(· − y) dy
]]
∈ Cω(H 2(R),L(L2(R))),[

f 7→
[

h 7→ PV
∫

R

y(δ[ · ,y]h′)
y2+ (δ[ · ,y] f )2

dy
]]
∈ Cω(H 2(R),L(H 3(R), L2(R))).

(6-5)

Moreover, classical arguments, see, e.g., [Runst and Sickel 1996, Theorem 5.5.3/4], yield that[
f 7→

[
h 7→

h′′′

(1+ f ′2)3/2
− 3

f ′ f ′′h′′

(1+ f ′2)5/2

]]
∈ Cω(H 2(R),L(H 3(R), L2(R))). (6-6)

The relations (6-5)–(6-6) immediately imply (6-4).
In the following, we prove that 8σ ( f ) is, for each f ∈ H 2(R), the generator of a strongly continuous

and analytic semigroup in L(L2(R)), that is,

−8σ ( f ) ∈H(H 3(R), L2(R)).
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To this end we write
8σ =8σ,1+8σ,2, (6-7)

where

8σ,1( f )[h] := f ′B1,1( f, f )
[

h′′′

(1+ f ′2)3/2

]
+ B0,1( f )

[
h′′′

(1+ f ′2)3/2

]
, (6-8)

8σ,2( f )[h] := −3 f ′B1,1( f, f )
[

f ′ f ′′h′′

(1+ f ′2)5/2

]
− 3B0,1( f )

[
f ′ f ′′h′′

(1+ f ′2)5/2

]
+2A0,0( f )[h′] (6-9)

for f ∈ H 2(R), h ∈ H 3(R). Since 8σ,2( f ) ∈ L(H 8/3(R), L2(R)) and [L2(R), H 3(R)]8/9 = H 8/3(R),
we can view 8σ,2( f ) as being a lower-order perturbation, see [Lunardi 1995, Proposition 2.4.1], and we
only need to establish the generator property for the leading-order term 8σ,1( f ). Much as in Section 4,
we consider a continuous mapping

[τ 7→8σ,1(τ f )] : [0, 1] → L(H 3(R), L2(R)),

which transforms the operator 8σ,1( f ) into the operator

8σ,1(0)= B0,1(0) ◦ ∂3
x =−π(∂

4
x )

3/4,

where (∂4
x )

3/4 is the Fourier multiplier with symbol [ξ 7→ |ξ |3]. We now establish the following result.

Theorem 6.1. Let f ∈ H 2(R) and µ > 0 be given.
Then, there exist ε ∈ (0, 1), a finite ε-localization family {π εj : −N + 1≤ j ≤ N } satisfying (4-1)–(4-5),

a constant K = K (ε), and for each j ∈ {−N + 1, . . . , N } and τ ∈ [0, 1] there exist operators

A j,τ ∈ L(H 3(R), L2(R))

such that
‖π εj 8σ,1(τ f )[h] −A j,τ [π

ε
j h]‖2 ≤ µ‖π εj h‖H3 + K‖h‖H2 (6-10)

for all j ∈ {−N + 1, . . . , N }, τ ∈ [0, 1], and h ∈ H 3(R). The operators A j,τ are defined by

A j,τ := −
π

(1+ τ 2 f ′2(xεj ))3/2
(∂4

x )
3/4, | j | ≤ N − 1, (6-11)

where xεj is a point belonging to suppπ εj , and

A N ,τ := −π(∂
4
x )

3/4. (6-12)

Proof. Let {π εj : −N + 1≤ j ≤ N } be an ε-localization family satisfying the properties (4-1)–(4-5) and
{χ εj : −N +1≤ j ≤ N } be an associated family satisfying (4-6)–(4-8), with ε ∈ (0, 1) which will be fixed
below.

To deal with both terms of 8σ,1(τ f ), see (6-8), at once, we consider the operator

Ka(τ f )[h] := f ′a,τ B1,1( fa,τ , τ f )
[

h′′′

(1+ τ 2 f ′2)3/2

]
,
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where, for a ∈ {0, 1}, we set

fa,τ := (1− a)τ f + a idR.

For a = 0 we recover the first term in the definition of 8σ,1(τ f )[h], while for a = 1 the expression
matches the second one.

In the following, h ∈ H 3(R) is arbitrary. Again, constants which are independent of ε (and, of course,
of h ∈ H 3(R), τ ∈ [0, 1], a ∈ {0, 1}, and j ∈ {−N + 1, . . . , N }) are denoted by C , while the constants
that we denote by K may depend only upon ε. We further let

Aa
j,τ := −π

f ′2a,τ (x
ε
j )

(1+ τ 2 f ′2(xεj ))5/2
(∂4

x )
3/4 for | j | ≤ N − 1,

and

Aa
N ,τ := −πa2(∂4

x )
3/4.

We analyze the cases j = N and | j | ≤ N − 1 separately.

The case | j | ≤ N − 1. For | j | ≤ N − 1 we write

π εj Ka(τ f )[h] −Aa
j,τ [π

ε
j h] := T1[h] + T2[h] + T3[h], (6-13)

where

T1[h] := π εj Ka(τ f )[h] − f ′a,τ (x
ε
j )B1,1( fa,τ , τ f )

[
π εj h′′′

(1+ τ 2 f ′2)3/2

]
,

T2[h] := f ′a,τ (x
ε
j )B1,1( fa,τ , τ f )

[
π εj h′′′

(1+ τ 2 f ′2)3/2

]
−

f ′a,τ (x
ε
j )

(1+ τ 2 f ′2(xεj ))3/2
B1,1( fa,τ , τ f )[π εj h′′′],

T3[h] :=
f ′a,τ (x

ε
j )

(1+ τ 2 f ′2(xεj ))3/2
B1,1( fa,τ , τ f )[π εj h′′′] −Aa

j,τ [π
ε
j h].

We consider first the term T1[h]. The identity χ εj π
ε
j = 1 on suppπ εj and integration by parts lead us to

the relation

T1[h] = χ εj ( f ′a,τ− f ′a,τ (x
ε
j ))B1,1( fa,τ ,τ f )

[
π εj h′′′

(1+τ 2 f ′2)3/2

]
+(1−χ εj )( f ′a,τ (x

ε
j )− f ′a,τ )B1,1( fa,τ ,τ f )

[
π εj
′h′′

(1+τ 2 f ′2)3/2
−3τ 2

π εj f ′ f ′′h′′

(1+τ 2 f ′2)5/2

]
+( f ′a,τ (x

ε
j )− f ′a,τ )

{
B1,1(χ

ε
j ,τ f )

[
π εj f ′a,τh′′

(1+τ 2 f ′2)3/2

]
−2B2,1( fa,τ ,χ

ε
j ,τ f )

[
π εj h′′

(1+τ 2 f ′2)3/2

]}
−2τ 2( f ′a,τ (x

ε
j )− f ′a,τ )B3,2( fa,τ ,χ

ε
j , f,τ f,τ f )

[
π εj f ′h′′

(1+τ 2 f ′2)3/2

]
+2τ 2( f ′a,τ (x

ε
j )− f ′a,τ )B4,2( fa,τ ,χ

ε
j , f, f,τ f,τ f )

[
π εj h′′

(1+τ 2 f ′2)3/2

]
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+3τ 2 f ′a,τ

{
π εj B1,1( fa,τ ,τ f )

[
f ′ f ′′h′′

(1+τ 2 f ′2)5/2

]
−B1,1( fa,τ ,τ f )

[
π εj f ′ f ′′h′′

(1+τ 2 f ′2)5/2

]}
+ f ′a,τ

{
B1,1(π

ε
j ,τ f )

[
f ′a,τh′′

(1+τ 2 f ′2)3/2

]
+B1,1( fa,τ ,τ f )

[
π εj
′h′′

(1+τ 2 f ′2)3/2

]}
−2 f ′a,τ B2,1(π

ε
j , fa,τ ,τ f )

[
h′′

(1+τ 2 f ′2)3/2

]
−2τ 2 f ′a,τ B3,2(π

ε
j , fa,τ , f,τ f,τ f )

[
f ′h′′

(1+τ 2 f ′2)3/2

]
+2τ 2 f ′a,τ B4,2(π

ε
j , fa,τ , f, f,τ f,τ f )

[
h′′

(1+τ 2 f ′2)3/2

]
.

Using Remark 3.3, the interpolation property (1-4), Young’s inequality, and the Hölder continuity of f ′a,τ ,
it follows that

‖T1[h]‖2 ≤ C[‖χ εj ( f ′a,τ − f ′a,τ (x
ε
j ))‖∞‖π

ε
j h′′′‖2+‖π εj h′′‖∞] + K‖h‖H2

≤
1
3µ‖π

ε
j h‖H3 + K‖h‖H2 (6-14)

provided that ε is sufficiently small.
Furthermore, we have

T2[h] =
τ 2 f ′a,τ (x

ε
j )

(1+ τ 2 f ′2(xεj ))3/2
B1,1( fa,τ , τ f )[Q( f ′(xεj )− f ′)π εj h′′′],

where

Q :=
( f ′(xεj )+ f ′)[(1+ τ 2 f ′2)2+ (1+ τ 2 f ′2)(1+ τ 2 f ′2(xεj ))+ (1+ τ

2 f ′2(xεj ))
2
]

(1+ τ 2 f ′2)3/2[(1+ τ 2 f ′2)3/2+ (1+ τ 2 f ′2(xεj ))3/2]
,

and therewith

‖T2[h]‖2 ≤ C‖χ εj ( f ′a,τ − f ′a,τ (x
ε
j ))‖∞‖π

ε
j h′′′‖2 ≤ 1

3µ‖π
ε
j h‖H3 + K‖h‖H2 (6-15)

if ε is sufficiently small.
Finally, arguing as in Step 3 of the proof of Theorem 4.4, we deduce that for ε sufficiently small we

have
‖T3[h]‖2 ≤ 1

3µ‖π
ε
j h‖H3 + K‖h‖H2 . (6-16)

Gathering (6-13)–(6-16), we have established the desired estimate (6-10) for | j | ≤ N − 1.

The case j = N. For j = N we write

π εN Ka(τ f )[h] −Aa
N ,τ [π

ε
N h] =: S1[h] + S2[h] + S3[h] + S4[h], (6-17)

where

S1[h] := π εN Ka(τ f )[h] − aB1,1( fa,τ , τ f )
[

π εN h′′′

(1+ τ 2 f ′2)3/2

]
,

S2[h] := aB1,1( fa,τ , τ f )
[

π εN h′′′

(1+ τ 2 f ′2)3/2

]
− aB1,1( fa,τ , τ f )[π εN h′′′],



316 BOGDAN-VASILE MATIOC

S3[h] := aB1,1( fa,τ , τ f )[π εN h′′′] − a2 B0,1(0)[π εN h′′′],

S4[h] := a2 B0,1(0)[π εN h′′′] −Aa
N ,τ [π

ε
N h].

Much as for T1[h], we derive the identity

S1[h] = τ(1−a)χ εN f ′B1,1( fa,τ , τ f )
[

π εN h′′′

(1+τ 2 f ′2)3/2

]
−τ(1−a) f ′(1−χ εN )B1,1( fa,τ , τ f )

[
π εN
′h′′

(1+τ 2 f ′2)3/2
−3τ 2 π εN f ′ f ′′h′′

(1+τ 2 f ′2)5/2

]
−τ(1−a) f ′

{
B1,1(χ

ε
N , τ f )

[
π εN f ′a,τh′′

(1+τ 2 f ′2)3/2

]
−2B2,1( fa,τ , χ

ε
N , τ f )

[
π εN h′′

(1+τ 2 f ′2)3/2

]}
+2τ 3(1−a) f ′B3,2( fa,τ , χ

ε
N , f, τ f, τ f )

[
π εN f ′h′′

(1+τ 2 f ′2)3/2

]
−2τ 3(1−a) f ′B4,2( fa,τ , χ

ε
N , f, f, τ f, τ f )

[
π εN h′′

(1+τ 2 f ′2)3/2

]
+3τ 2 f ′a,τ

{
π εN B1,1( fa,τ , τ f )

[
f ′ f ′′h′′

(1+τ 2 f ′2)5/2

]
−B1,1( fa,τ , τ f )

[
π εN f ′ f ′′h′′

(1+τ 2 f ′2)5/2

]}
+ f ′a,τ

{
B1,1(π

ε
N , τ f )

[
f ′a,τh′′

(1+τ 2 f ′2)3/2

]
+B1,1( fa,τ , τ f )

[
π εN
′h′′

(1+τ 2 f ′2)3/2

]}
−2 f ′a,τ B2,1(π

ε
N , fa,τ , τ f )

[
h′′

(1+τ 2 f ′2)3/2

]
−2τ 2 f ′a,τ B3,2(π

ε
N , fa,τ , f, τ f, τ f )

[
f ′h′′

(1+τ 2 f ′2)3/2

]
+2τ 2 f ′a,τ B4,2(π

ε
N , fa,τ , f, f, τ f, τ f )

[
h′′

(1+τ 2 f ′2)3/2

]
.

Recalling that f ′ vanishes at infinity, we obtain by virtue of Remark 3.3, the interpolation property (1-4),
and Young’s inequality that

‖S1[h]‖2 ≤ 1
3µ‖π

ε
j h‖H3 + K‖h‖H2 (6-18)

provided that ε is sufficiently small. Furthermore, Remark 3.3 implies that for ε sufficiently small

‖S2[h]‖2 = a
∥∥∥∥B11( fa,τ , τ f )

[
π εN h′′′

(1+ τ 2 f ′2)3/2
[1− (1+ τ 2 f ′2)3/2]

]∥∥∥∥
2

≤ C‖π εN h′′′‖2‖χ εN [1− (1+ τ
2 f ′2)3/2]‖∞ ≤ 1

3µ‖π
ε
j h‖H3 + K‖h‖H2 . (6-19)

Since a(1− a)= 0, we compute that

S3[h] = −a2 B2,1( f, f, τ f )[π N
ε h′′′],

and the arguments presented in Step 4 of the proof of Theorem 4.2 yield

‖S3[h]‖2 ≤ 1
3µ‖π

ε
j h‖H3 + K‖h‖H2 (6-20)
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for ε sufficiently small. Finally,

‖S4[h]‖2 = a2
‖B0,1(0)[3(π εN )

′h′′+ 3(π εN )
′′h′+ (π εN )

′′′h]‖2 ≤ K‖h‖H2, (6-21)

and combining (6-17)–(6-21) we obtain the estimate (6-10) for j = N. �

The Fourier multipliers defined by (6-11)–(6-12) are generators of strongly continuous analytic semi-
groups in L(L2(R)) and they satisfy resolvent estimates which are uniform with respect to xεj ∈ R and
τ ∈ [0, 1]. More precisely, we have the following result.

Proposition 6.2. Let f ∈ H 2(R) be fixed. Given x0 ∈ R and τ ∈ [0, 1], let

Ax0,τ := −
π

(1+ τ 2 f ′2(x0))3/2
(∂4

x )
3/4.

Then, there exists a constant κ0 ≥ 1 such that

λ−Ax0,τ ∈ Isom(H 3(R), L2(R)), (6-22)

κ0‖(λ−Ax0,τ )[h]‖2 ≥ |λ| · ‖h‖2+‖h‖H3 (6-23)

for all x0 ∈ R, τ ∈ [0, 1], λ ∈ C with Re λ≥ 1, and h ∈ H 3(R).

Proof. The proof is similar to that of Proposition 4.3 and therefore we omit it. �

We now conclude with the following general result.

Theorem 6.3. Let f ∈ H 2(R) be given. Then

−8σ ( f ) ∈H(H 3(R), L2(R)).

Proof. As mentioned in the discussion preceding Theorem 6.1, we only need to prove the claim for the
leading-order term 8σ,1( f ). Let κ0 ≥ 1 be the constant determined in Proposition 6.2 and let µ := 1

2κ0.
By virtue of Theorem 6.1 there exist constants ε ∈ (0, 1) and K = K (ε) > 0, an ε-localization family
{π εj : −N + 1≤ j ≤ N } that satisfies (4-1)–(4-5), and for each −N + 1≤ j ≤ N and τ ∈ [0, 1] operators
A j,τ ∈ L(H 3(R), L2(R)) such that

‖π εj 8σ,1(τ f )[h] −A j,τ [π
ε
j h]‖2 ≤

1
2κ0
‖π εj h‖H3 + K‖h‖H2 (6-24)

for all −N + 1≤ j ≤ N, τ ∈ [0, 1], and h ∈ H 3(R). Furthermore, Proposition 6.2 implies

κ0‖(λ−A j,τ )[π
ε
j h]‖2 ≥ |λ| · ‖π εj h‖2+‖π εj h‖H3 (6-25)

for all −N + 1≤ j ≤ N, τ ∈ [0, 1], λ ∈ C with Re λ≥ 1, and h ∈ H 3(R). Combining (6-24)–(6-25), we
find

κ0‖π
ε
j (λ−8σ,1(τ f ))[h]‖2 ≥ κ0‖(λ−A j,τ )[π

ε
j h]‖2− κ0‖π

ε
j 8σ,1(τ f )[h] −A j,τ [π

ε
j h]‖2

≥ |λ| · ‖π εj h‖2+ 1
2‖π

ε
j h‖H3 − κ0K‖h‖H2
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for all −N + 1 ≤ j ≤ N, τ ∈ [0, 1], λ ∈ C with Re λ ≥ 1, and h ∈ H 3(R). Summing up over
j ∈ {−N + 1, . . . , N }, we infer from Lemma 4.1 that there exists a constant C ≥ 1 with the property that

C‖h‖H2 +C‖(λ−8(τ f ))[h]‖2 ≥ |λ| · ‖h‖2+‖h‖H3

for all τ ∈ [0, 1], λ ∈ C with Re λ ≥ 1, and h ∈ H 3(R). Using (1-4) and Young’s inequality, it follows
that there exist constants κ ≥ 1 and ω > 0 with the property that

κ‖(λ−8σ,1(τ f ))[h]‖2 ≥ |λ| · ‖h‖2+‖h‖H3 (6-26)

for all τ ∈ [0, 1], λ ∈ C with Re λ ≥ ω, h ∈ H 3(R). Since (ω−8σ,1(τ f ))|τ=0 ∈ Isom(H 3(R), L2(R)),
the method of continuity together with (6-26) yields that

ω−8σ,1( f ) ∈ Isom(H 3(R), L2(R)). (6-27)

The claim follows from (6-26) (with τ = 1), (6-27), and [Lunardi 1995, Proposition 2.4.1 and Corol-
lary 2.1.3]. �

We are now in a position to prove the well-posedness for the Muskat problem with surface tension.

Proof of Theorem 1.2. Let s ∈ (2, 3), s̄ = 2, 1>α := 1
3 s >β := 2

3 > 0. Combining (6-4) and Theorem 6.3,
it follows that

−8σ ∈ Cω(H 2(R),H(H 3(R), L2(R))).

Since
H 2(R)= [L2(R), H 3(R)]β and H s(R)= [L2(R), H 3(R)]α,

we now infer from Theorem 1.5 that (1-1), or equivalently (6-3), possesses a maximally defined solution

f := f ( · ; f0) ∈ C([0, T+( f0)), H s(R))∩C((0, T+( f0)), H 3(R))∩C1((0, T+( f0)), L2(R))

with
f ∈ C (s−2)/3([0, T ], H 2(R)) for all T < T+( f0).

Concerning the uniqueness of solutions, we next show that any classical solution

f̃ ∈ C([0, T̃ ), H s(R))∩C((0, T̃ ), H 3(R))∩C1((0, T̃ )), L2(R)), T̃ ∈ (0,∞],

to (6-3) satisfies
f̃ ∈ Cη([0, T ], H 2(R)) for all T ∈ (0, T̃ ), (6-28)

where η := (s− 2)/(s+ 1). To this end, we recall that

8σ ( f )[ f ] = f ′B1,1( f, f )[(κ( f ))′] + B0,1( f )[(κ( f ))′] +2A0,0( f )[ f ′] for f ∈ H 3(R). (6-29)

Let T ∈ (0, T̃ ) be fixed. Lemma 3.1(i) implies that

sup
[0,T ]
‖A0,0( f̃ )[ f̃ ′]‖2 ≤ C. (6-30)
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We now consider the highest-order terms in (6-29). Arguing as in Lemma 3.5, it follows from
Remark 3.3 that B0,1( f )[κ( f )], B1,1( f, f )[κ( f )] ∈ H 1(R) for all f ∈ H 3(R), with

(B0,1( f )[κ( f )])′ = B0,1( f )[(κ( f ))′] − 2B2,2( f ′, f, f, f )[κ( f )],

(B1,1( f, f )[κ( f )])′ = B1,1( f, f )[(κ( f ))′] + B1,1( f ′, f )[κ( f )] − 2B3,2( f ′, f, f, f, f )[κ( f )].

Furthermore, given t ∈ (0, T ] and ϕ ∈ H 1(R), integration by parts together with f̃ ∈ C([0, T ], H s(R))

leads us to∣∣∣∣∫
R

f̃ ′(t)(B1,1( f̃ (t), f̃ (t))[κ( f̃ (t))])′ϕ dx
∣∣∣∣

=

∣∣∣∣∫
R

f̃ ′′(t)B1,1( f̃ (t), f̃ (t))[κ( f̃ (t))]ϕ dx
∣∣∣∣+ ∣∣∣∣∫

R

f̃ ′(t)B1,1( f̃ (t), f̃ (t))[κ( f̃ (t))]ϕ′ dx
∣∣∣∣≤ C‖ϕ‖H1,

so that
sup
(0,T ]
‖ f̃ ′(B1,1( f̃ , f̃ )[κ( f̃ )])′‖H−1 ≤ C, (6-31)

and similarly
sup
(0,T ]
‖(B0,1( f̃ )[κ( f̃ )])′‖H−1 ≤ C. (6-32)

We now estimate the term f ′B1,1( f ′, f )[κ( f )] with f ∈ H 3(R) in the H−1(R)-norm. To this end, we
rely on the formula

B1,1( f ′, f )[κ( f )] = T1( f )− T2( f )− T3( f ),

where

T1( f )(x) :=
∫
∞

0

κ( f )(x − y)− κ( f )(x + y)
y

f ′(x)− f ′(x − y)
y

1
1+ (δ[x,y] f/y)2

dy,

T2( f )(x) :=
∫
∞

0

κ( f )(x + y)
y

f ′(x + y)− 2 f ′(x)+ f ′(x − y)
y

1
1+ (δ[x,y] f/y)2

dy,

T3( f )(x) :=
∫
∞

0

κ( f )(x + y)
y

f ′(x)− f ′(x + y)
y

1
[1+ (δ[x,y] f/y)2][1+ (δ[x,−y] f/y)2]

×
f (x + y)− f (x − y)

y
f (x + y)− 2 f (x)+ f (x − y)

y
dy.

We estimate the terms f̃ ′Ti ( f̃ ), 1≤ i ≤ 3, separately. Given t ∈ (0, T ] and ϕ ∈ H 1(R), we compute∣∣∣∣∫
R

f̃ ′(t)T1( f̃ (t))ϕ dx
∣∣∣∣

≤ C‖ϕ‖∞

∫
∞

0

∫
R

|κ( f̃ (t))(x−y)−κ( f̃ (t))(x+y)|
y

| f̃ ′(t, x)− f̃ ′(t, x−y)|
y

dx dy

≤ C‖ϕ‖∞

∫
∞

0

1
y2

(∫
R

|κ( f̃ (t))(x−y)−κ( f̃ (t))(x+y)|2 dx
)1/2(∫

R

| f̃ ′(t, x)− f̃ ′(t, x−y)|2 dx
)1/2

dy

= C‖ϕ‖∞

∫
∞

0

1
y2

(∫
R

|F(κ( f̃ (t)))|2(ξ)|ei2ξ y
−1|2 dξ

)1/2(∫
R

|F( f̃ ′(t))|2(ξ)|eiyξ
−1|2 dξ

)1/2

dy,
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and since

|eiyξ
− 1|2 ≤ C(1+ |ξ |2)[y21(0,1)(y)+ 1[y≥1](y)],

|ei2yξ
− 1|2 ≤ C(1+ |ξ |2)s−2

[y2(s−2)1(0,1)(y)+ 1[y≥1](y)],
y > 0, ξ ∈ R,

it follows that∣∣∣∣∫
R

f̃ ′(t)T1( f̃ (t))ϕ dx
∣∣∣∣≤ C‖ϕ‖∞‖κ( f̃ (t))|H s−2‖ f̃ (t)‖H1

∫
∞

0
ys−31(0,1)(y)+ y−21[y≥1](y) dy

≤ C‖ϕ‖H1 . (6-33)

To bound the curvature term in the H s−2(R)-norm we have use the inequality

‖κ( f )‖H s−2 ≤ C‖(1+ f ′2)−3/2
‖BCs−3/2‖ f ‖H s for all f ∈ H s(R).

Similarly we have∣∣∣∣∫
R

f̃ ′(t)T2( f̃ (t))ϕ dx
∣∣∣∣≤ C‖ϕ‖∞

∫
∞

0

1
y2

(∫
R

|κ( f̃ (t))(x + y)|2 dx
)1/2

×

(∫
R

| f̃ ′(t, x + y)− 2 f̃ ′(t, x)+ f̃ ′(t, x − y)|2 dx
)1/2

dy

≤ C‖ϕ‖∞

∫
∞

0

1
y2

(∫
R

|F( f̃ ′(t))|2(ξ)|eiyξ
− 2+ e−iyξ

|
2 dξ

)1/2

dy

≤ C‖ϕ‖∞

∫
∞

0
ys−31(0,1)(y)+ y−21[y≥1](y) dy

≤ C‖ϕ‖H1 (6-34)

by virtue of

|eiyξ
− 2+ e−iyξ

|
2
≤ C(1+ |ξ |2)s−1

[y2(s−1)1(0,1)(y)+ 1[y≥1](y)], y > 0, ξ ∈ R.

Lastly, since H s−1(R) ↪→ BCs−3/2(R) for s 6= 5
2

(
the estimate (6-35) holds though also for s = 5

2

)
and

H s(R) ↪→ BC1(R), the inequality

|eiyξ
− 2+ e−iyξ

|
2
≤ C(1+ |ξ |2)2[y41(0,1)(y)+ 1[y≥1](y)], y > 0, ξ ∈ R,

leads us to∣∣∣∣∫
R

f̃ ′(t)T3( f̃ (t))ϕ dx
∣∣∣∣≤ C‖ϕ‖∞

∫
∞

0

ymin{1,s−3/2}

y3

(∫
R

|F( f̃ (t))|2(ξ)|eiyξ
− 2+ e−iyξ

|
2 dξ

)1/2

dy

≤ C‖ϕ‖∞

∫
∞

0
ymin{0,s−5/2}1(0,1)(y)+ y−21[y≥1](y) dy

≤ C‖ϕ‖H1 . (6-35)

Gathering (6-33)–(6-35), we conclude that

sup
(0,T ]
‖ f̃ ′B1,1( f̃ ′, f̃ )[κ( f̃ )]‖H−1 ≤ C, (6-36)
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and similarly we obtain

sup
(0,T ]

[
‖ f̃ ′B3,2( f̃ ′, f̃ , f̃ , f̃ , f̃ )[κ( f̃ )]‖H−1 +‖B2,2( f̃ ′, f̃ , f̃ , f̃ )[κ( f̃ )]‖H−1

]
≤ C. (6-37)

Combining (6-30)–(6-32), (6-36), and (6-37), it follows that f̃ ∈ BC1((0, T ], H−1(R)). Recalling that
η = (s− 2)/(s+ 1), (1-4) together with the mean value theorem yields

‖ f̃ (t)− f̃ (s)‖H2 ≤ ‖ f̃ (t)− f̃ (s)‖ηH−1‖ f̃ (t)− f̃ (s)‖1−ηH s ≤ C |t − s|η, t, s ∈ [0, T ],

which proves (6-28) and the uniqueness claim in Theorem 1.2.
Finally, let us assume that T+( f0) <∞ and that

sup
[0,T+( f0))

‖ f (t)‖H s <∞.

Arguing as above, we find that

‖ f (t)− f (s)‖H (s+2)/2 ≤ C |t − s|(s−2)/(2s+2), t, s ∈ [0, T+( f0)).

The criterion for global existence in Theorem 1.5 applied for α := 1
6(s+ 2) and β := 2

3 implies that the
solution can be continued on an interval [0, τ ) with τ > T+( f0) and that

f ∈ C (s−2)/6([0, T ], H 2(R)) for all T ∈ (0, τ ).

The uniqueness claim in Theorem 1.5 leads us to a contradiction. Hence our assumption was false and
T+( f0)=∞. �

Appendix A: Some technical results

The following lemma is used in the proof of Theorem 4.2.

Lemma A.1. Given f ∈ H s(R), s ∈
( 3

2 , 2
)
, and τ ∈ [0, 1], let aτ : R→ R be defined by

aτ (x) := PV
∫

R

y
y2+ τ 2(δ[x,y] f )2

dy, x ∈ R.

Let further α := 1
2 s− 3

4 ∈ (0, 1). Then, aτ ∈ BCα(R)∩C0(R),

sup
τ∈[0,1]

‖aτ‖BCα <∞, (A-1)

and, given ε0 > 0, there exists η > 0 such that

sup
τ∈[0,1]

sup
|x |≥η
|aτ (x)| ≤ ε0. (A-2)

Proof. It holds that

aτ (x)= τ 2 lim
δ→0

∫ 1/δ

δ

f (x + y)− 2 f (x)+ f (x − y)
y2

f (x + y)− f (x − y)
y

y4

5(x, y)
dy, x ∈ R,
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with

5(x, y) := [y2
+ τ 2(δ[x,−y] f )2][y2

+ τ 2(δ[x,y] f )2].

Letting

I (x, y) := τ 2 f (x + y)− 2 f (x)+ f (x − y)
y2

f (x + y)− f (x − y)
y

y4

5(x, y)
, (x, y) ∈ R× (0,∞),

it follows that

|I (x, y)| ≤ 8
(
‖ f ‖2

∞

1
y3 1[1,∞)(y)+‖ f ′‖∞[ f ′]s−3/2

1
y5/2−s 1(0,1)(y)

)
, (x, y) ∈ R× (0,∞). (A-3)

The latter estimate was obtained by using the fact that f ∈ BCs−1/2(R), s − 1
2 ∈ (1, 2), together with

(3-7). Hence,

aτ (x)=
∫
∞

0
I (x, y) dy, x ∈ R,

and supτ∈[0,1] ‖aτ‖∞ <∞. To estimate the Hölder seminorm of aτ , we compute for x, x ′ ∈ R that

|aτ (x)− aτ (x ′)| ≤
∫
∞

0
|I (x, y)− I (x ′, y)| dy ≤ T1+ T2+ T3, (A-4)

where

T1 :=

∫
∞

0

| f (x+ y)−2 f (x)+ f (x− y)|
y2

|[ f (x+ y)− f (x− y)]−[ f (x ′+ y)− f (x ′− y)]|
y

y4

5(x, y)
dy,

T2 :=

∫
∞

0

|[ f (x+ y)−2 f (x)+ f (x− y)]−[ f (x ′+ y)−2 f (x ′)+ f (x ′− y)]|
y2

×
| f (x ′+ y)− f (x ′− y)|

y
y4

5(x, y)
dy,

T3 :=

∫
∞

0

| f (x ′+ y)−2 f (x ′)+ f (x ′− y)|
y2

| f (x ′+ y)− f (x ′− y)|
y

|5(x, y)−5(x ′, y)|
y4 dy.

Using the mean value theorem, we have

|[ f (x+y)− f (x−y)]−[ f (x ′+y)− f (x ′−y)]|
y

≤ 2
∫ 1

0
| f ′(x+(2τ−1)y)− f ′(x ′+(2τ−1)y)| dτ

≤ 2[ f ′]s−3/2|x−x ′|s−3/2, y > 0,

and, much as above, we find that

|T1| ≤ C‖ f ‖2H s |x − x ′|2α. (A-5)

To deal with the second term we appeal to the formula

f (x + y)− 2 f (x)+ f (x − y)= y[ f ′(x + y)− f ′(x − y)] + y
∫ 1

0
f ′(x + τ y)− f ′(x + y) dτ

− y
∫ 1

0
f ′(x − τ y)− f ′(x − y) dτ for x , y ∈ R,
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and we get

|[ f (x + y)− 2 f (x)+ f (x − y)] − [ f (x ′+ y)− 2 f (x ′)+ f (x ′− y)]|
y2 ≤ T2a + T2b+ T2c,

where

T2a :=
|[ f ′(x + y)− f ′(x − y)] − [ f ′(x ′+ y)− f ′(x ′− y)]|

y

≤ 2[ f ′]2α

(
1
y

1[1,∞)(y)|x − x ′|2α + 2
1

y1−α 1(0,1)(y)|x − x ′|α
)
,

T2b :=
1
y

∫ 1

0

∣∣[ f ′(x + τ y)− f ′(x + y)] − [ f ′(x ′+ τ y)− f ′(x ′+ y)]
∣∣ dτ

≤ 2[ f ′]2α

(
1
y

1[1,∞)(y)|x − x ′|2α +
1

y1−α 1(0,1)(y)|x − x ′|α
)
,

T2c :=
1
y

∫ 1

0

∣∣[ f ′(x − τ y)− f ′(x − y)] − [ f ′(x ′− τ y)− f ′(x ′− y)]
∣∣ dτ

≤ 2[ f ′]2α

(
1
y

1[1,∞)(y)|x − x ′|2α +
1

y1−α 1(0,1)(y)|x − x ′|α
)
,

and therewith
|T2| ≤ C‖ f ‖2H s (|x − x ′|α + |x − x ′|2α). (A-6)

Finally, since
|5(x, y)−5(x ′, y)|

y4 ≤ 4‖ f ′‖∞(1+‖ f ′‖2
∞
)[ f ′]2α|x − x ′|2α,

we infer from (A-3) that

|T3| ≤ C‖ f ‖4H s (1+‖ f ‖2H s )(|x − x ′|α + |x − x ′|2α). (A-7)

The relation (A-1) is a simple consequence of (A-4)–(A-7) and of supτ∈[0,1] ‖aτ‖∞ <∞.
To prove that aτ vanishes at infinity, let ε0 > 0 be arbitrary. We write

aτ (x)=
∫ M

0
I (x, y) dy+

∫
∞

M
I (x, y) dy, x ∈ R,

for some M > 1 with
4‖ f ‖2

∞

M2 ≤
ε0

2
.

Recalling (A-3), it follows that for all x ∈ R we have∫
∞

M
|I (x, y)| dy ≤ 8‖ f ‖2

∞

∫
∞

M

1
y3 dy =

4‖ f ‖2
∞

M2 ≤
ε0

2
.

Let β ∈ (0, 1) be chosen such that 3
2 +β < s. Since f ∈ C0(R), there exists η > M with

| f (y)| ≤
[ (

s− 3
2 −β

)
ε0 M3/2+β−s

32([ f ′]s−3/2‖ f ′‖1−β∞ + 1)

]1/β

for all |y| ≥ η−M .
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Using this inequality, it follows that for all |x | ≥ η we have

|aτ (x)| ≤
∫ M

0
|I (x, y)| dy+ 1

2ε0 ≤
1
2ε0+ 8[ f ′]s−3/2‖ f ′‖1−β

∞

∫ M

0

| f (x + y)− f (x − y)|β

y5/2+β−s dy ≤ ε0;

hence aτ ∈ C0(R) and (A-2) holds true. �

The next result is used in Proposition 2.1.

Lemma A.2. Given f ∈ H 5(R) and ω̄ ∈ H 2(R), set

ṽ(x, y) := 1
2π

∫
R

(−(y− f (s), x − s)
(x − s)2+ (y− f (s))2

ω̄(s) ds in R2
\ [y= f (x)]. (A-8)

Let further �− := [y< f (x)], �+ := [y> f (x)], and ṽ± := ṽ|�± . Then, ṽ± ∈ C(�±)∩C1(�±) and

ṽ±(x, y)→ 0 for |(x, y)| →∞. (A-9)

Proof. It is easy to see that ṽ± ∈ C1(�±). Plemelj’s formula further shows that ṽ± ∈ C(�±) and

ṽ±(x, f (x))= 1
2π

PV
∫

R

(−( f (x)− f (x − s)), s)
s2+ ( f (x)− f (x − s))2

ω̄(x − s) ds∓ 1
2
(1, f ′(x))ω̄(x)

1+ f ′2(x)
, x ∈ R,

or equivalently, with the notation in Remark 3.3,

ṽ±|[y= f (x)] =±
1
2
(1, f ′)ω̄

1+ f ′2
−

1
2π

B1,1( f, f )[ω̄] + i
2π

B0,1( f )[ω̄].

Recalling that f ∈ H 5(R) and ω̄ ∈ H 2(R), the arguments in the proof of Lemma 3.5 show that
B1,1( f, f )[ω̄] and B0,1( f )[ω̄] belong to H 1(R); thus

ṽ±(x, f (x))→ 0 for |x | →∞. (A-10)

Furthermore, since f and ω̄ vanish at infinity, we find, much as in the proof of (A-2), that

sup
[y≥n]
|ṽ+| + sup

[y≤−n]
|ṽ−| → 0 for n→∞ (A-11)

and that, for arbitrary 0< a < b,

sup
[a≤y≤b]∩[|x |≥n]

|ṽ+| + sup
[−b≤y≤−a]∩[|x |≥n]

|ṽ−| → 0 for n→∞. (A-12)

Finally, arguing along the lines of the proof of Privalov’s theorem, see [Lu 1993, Theorem 3.1.1]
(the lengthy details, which for ω̄ ∈ W 1

∞
(R) are simpler than in that book, are left to the interested

reader), it follows that there exists a constant C , which depends only on f and ω̄, such that for each
z = (x, y) ∈ R2

\ [y= f (x)] with y ∈ [−‖ f ‖∞− 1, ‖ f ‖∞+ 1] the following inequalities hold:

|ṽ+(z)− ṽ+(x, f (x))| ≤ C |y− f (x)|1/2 if y > f (x),

|ṽ−(z)− ṽ−(x, f (x))| ≤ C |y− f (x)|1/2 if y < f (x).
(A-13)

The relation (A-9) is an obvious consequence of (A-10)–(A-13). �



THE MUSKAT PROBLEM IN TWO DIMENSIONS 325

Appendix B: The proof of Theorem 1.5

This section is dedicated to the proof of Theorem 1.5. In the following E0 and E1 denote complex Banach
spaces4 and we assume that the embedding E1 ↪→ E0 is dense. In view of [Amann 1995, Theorem I.1.2.2],
we may represent the set H(E1, E0) of negative analytic generators as

H(E1, E0)=
⋃
κ≥1
ω>0

H(E1, E0, κ, ω),

where, given κ ≥ 1 and ω > 0, the class H(E1, E0, κ, ω) consists of the operators A ∈ L(E1, E0) having
the properties

• ω+A ∈ Isom(E1, E0), and

• κ−1
≤
‖(λ+A)x‖0
|λ| · ‖x‖0+‖x‖1

≤ κ for all 0 6= x ∈ E1 and all Re λ≥ ω.

Given A ∈H(E1, E0, κ, ω) and r ∈ (0, κ−1), it follows from [Amann 1995, Theorem I.1.3.1(i)] that

A+ B ∈H(E1, E0, κ/(1− κr), ω) for all ‖B‖L(E1,E0) ≤ r . (B-1)

This property shows in particular that H(E1, E0) is an open subset of L(E1, E0).
The proof of Theorem 1.5 uses to a large extent the powerful theory of parabolic evolution oper-

ators developed in [Amann 1995]. The following result is a direct consequence of Theorem II.5.1.1,
Lemma II.5.1.3 and Lemma II.5.1.4 in that paper.

Proposition B.1. Let T > 0, ρ ∈ (0, 1), L ≥ 0, κ ≥ 1, and ω > 0 be given constants. Moreover, let
A⊂ Cρ([0, T ],H(E1, E0)) be a family satisfying

• [A]ρ,[0,T ] := sup
t 6=s∈[0,T ]

‖A(t)−A(s)‖
|t − s|ρ

≤ L for all A ∈A, and

• A(t) ∈H(E1, E0, κ, ω) for all A ∈A and t ∈ [0, T ].

Then, given A ∈ A, there exists a unique parabolic evolution operator5 UA for A possessing E1 as a
regularity subspace. Moreover, the following hold:

(i) There exists a constant C > 0 such that

‖UA(t, s)‖L(Ej )+ (t − s)‖UA(t, s)‖L(E0,E1) ≤ C (B-2)

for all (t, s) ∈1∗T := {(t, s) ∈ [0, T ]2 : 0≤ s < t ≤ T }, j ∈ {0, 1}, and all A ∈A.

(ii) Let 1T := {(t, s) ∈ [0, T ]2 : 0 ≤ s ≤ t ≤ T } and 0 ≤ β ≤ α ≤ 1. Then, given x ∈ Eα, it holds that
UA( · , · )x ∈C(1T , Eα). Moreover, UA ∈C(1∗T ,L(Eβ, Eα)), and there exists a constant C > 0 such
that

(t − s)α−β‖UA(t, s)‖L(Eβ ,Eα) ≤ C (B-3)

for all (t, s) ∈1∗T and all A ∈A.

4The proof of Theorem 1.5 in the context of real Banach spaces is identical.
5In the sense of [Amann 1995, Section II].
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(iii) Given 0≤ β < 1 and 0< α ≤ 1, there exists a constant C > 0 such that

(t − s)β−α‖(UA−UB)(t, s)‖L(Eα,Eβ ) ≤ C max
τ∈[s,t]

‖A(τ )−B(τ )‖L(E1,E0) (B-4)

for all (t, s) ∈1∗T and all A, B ∈A.

Let now A be a family as in Proposition B.1. Given A ∈A and x ∈ E0, we consider the linear problem

u̇+A(t)u = 0, t ∈ (0, T ], u(0)= x . (B-5)

Using the fundamental properties of the parabolic evolution operator UA associated to A, it follows from
[Amann 1995, Remark II.2.1.2] that (B-5) has a unique classical solution u := u( · ; x,A), that is,

u := u( · ; x,A) ∈ C1((0, T ], E0)∩C((0, T ], E1)∩C([0, T ], E0)

and u satisfies the equation of (B-5) pointwise. This solution is given by the expression

u(t)=UA(t, 0)x, t ∈ [0, T ].

If x ∈ Eα for some α ∈ (0, 1), we may use the relations (B-2)–(B-4) to derive additional regularity
properties for the solution, as stated below.

Proposition B.2. Let A be a family as in Proposition B.1. The following hold true:

(i) Let 0≤ β ≤ α < 1 and x ∈ Eα. Then u ∈ Cα−β([0, T ], Eβ) and there exists C > 0 such that

‖u(t)− u(s)‖β ≤ C(t − s)α−β‖x‖α (B-6)

for all (t, s) ∈1T , x ∈ Eα, and A ∈A.

(ii) Let 0≤ β < α ≤ 1. Then, there exists C > 0 such that

‖u(t; x,A)− u(t; x,B)‖β ≤ Ctα−β max
τ∈[0,t]

‖A(τ )−B(τ )‖L(E1,E0)‖x‖α (B-7)

for all t ∈ [0, T ], x ∈ Eα, and A, B ∈A.

Proof. The claim (i) follows from [Amann 1995, Theorem II.5.3.1], while (ii) is a consequence of
Theorem II.5.2.1 of the same book. �

By means of a contraction argument we now obtain as a preliminary result the following (uniform)
local existence theorem, which stays at the basis of Theorem 1.5.

Proposition B.3. Let the assumptions of Theorem 1.5 be satisfied and let f̄ ∈Oα :=Oβ ∩Eα . Then, there
exist constants δ = δ( f̄ ) > 0 and r = r( f̄ ) > 0 with the property that for all f0 ∈Oα with ‖ f0− f̄ ‖α ≤ r
the problem

ḟ =8( f )[ f ], t > 0, f (0)= f0, (QP)

possesses a classical solution

f ∈ C([0, δ],Oα)∩C((0, δ], E1)∩C1((0, δ], E0)∩Cα−β([0, δ], Eβ).
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Moreover, if h is a further solution to (QP) with

h ∈ C((0, δ], E1)∩C1((0, δ], E0)∩Cη([0, δ],Oβ) for some η ∈ (0, α−β],

then f ≡ h.

Proof. Existence: We first note that Oα is an open subset of Eα; see, e.g., [Amann 1995, Section I.2.11].
Since by assumption −8 ∈ C1−(Oβ,H(E1, E0)), it follows from (B-1) there exist constant R > 0, L > 0,
κ ≥ 1, and ω > 0 such that

‖8( f )−8(g)‖L(E1,E0) ≤ L‖ f − g‖β for all f, g ∈ BEβ ( f̄ , R)⊂Oβ, (B-8)

−8( f ) ∈H(E1, E0, κ, ω) for all f ∈ BEβ ( f̄ , R). (B-9)

Let ρ ∈ (0, α−β) be fixed. If r > 0 is sufficiently small, it holds that

BEα ( f̄ , r)⊂ BEβ ( f̄ , R)∩Oα. (B-10)

Given δ > 0, r > 0 such that (B-10) holds (r and δ will be fixed later on) and f0 ∈ BEα ( f̄ , r), we define
the set

M :=
{

f ∈ C([0, δ],BEβ ( f̄ , R)) : f (0)= f0 and ‖ f (t)− f (s)‖β ≤ |t − s|ρ for all t, s ∈ [0, δ]
}
.

Since M is a closed subset of C([0, δ], Eβ), it is also a (nonempty) complete metric space. Given f ∈M,
we define

A f (t) := −8( f (t)), t ∈ [0, δ].

As a direct consequence of (B-8) and of the definition of M, it follows that

‖A f (t)−A f (s)‖L(E1,E0) ≤ L‖ f (t)− f (s)‖β ≤ L|t − s|ρ, t, s ∈ [0, δ],

and (B-9) yields that A f (t) ∈H(E1, E0, κ, ω) for all f ∈M and all t ∈ [0, δ]. Proposition B.1 ensures the
existence of a parabolic evolution operator UA f for A f . Given f ∈M, it is natural to consider the linear
evolution problem

ġ+A f (t)g = 0, t ∈ (0, δ], g(0)= f0, (B-11)

which has, in view of Proposition B.2, a unique classical solution

g := 0( f ) :=UA f ( · , 0) f0 ∈ Cα−β([0, δ], Eβ)∩C([0, δ], Eα).

The existence part of Proposition B.1 reduces to proving that 0 :M→M is a strict contraction for suitable
r and δ. Clearly 0( f )(0)= f0. Moreover, (B-6) yields

‖0( f )(t)−0( f )(s)‖β ≤C |t−s|α−β‖ f0‖α ≤Cδα−β−ρ(‖ f̄ ‖α+r)|t−s|ρ ≤ |t−s|ρ for all t, s ∈ [0, δ],

provided that

Cδα−β−ρ(‖ f̄ ‖α + r)≤ 1. (B-12)
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The latter estimate (with s = 0) yields

‖0( f )(t)− f̄ ‖β ≤ ‖0( f )(t)−0( f )(0)‖β+‖ f0− f̄ ‖β ≤ δρ+r‖iEα↪→Eβ‖L(Eα,Eβ ) ≤ R for all t ∈ [0, δ],

if we additionally require that
δρ + r‖iEα↪→Eβ‖L(Eα,Eβ ) ≤ R. (B-13)

We now assume that r and δ are chosen such that (B-12)–(B-13) hold true. It then follows that 0 :M→M

is a well-defined map. Furthermore, given f, h ∈M, the estimate (B-7) together with (B-8) yields

‖0( f )(t)−0(h)(t)‖β = ‖UA f (t, 0) f0−UAh (t, 0) f0‖β

≤ Ctα−β max
τ∈[0,t]

‖A f (τ )−Ah(τ )‖L(E1,E0)‖ f0‖α

≤ Cδα−βL(‖ f̄ ‖α + r) max
t∈[0,δ]

‖ f (t)− h(t)‖β

≤
1
2 max

t∈[0,δ]
‖ f (t)− h(t)‖β for all t ∈ [0, δ],

provided that
Cδα−βL(‖ f̄ ‖α + r)≤ 1

2 . (B-14)

Hence, if r and δ are chosen such that also (B-14) is satisfied, then 0 is a strict contraction and Banach’s
fixed-point theorem ensures that 0 has a fixed point. This proves the existence part.

Uniqueness: Let f be a solution to (QP) as found above and let h 6≡ f be a further classical solution
such that h ∈ Cη([0, δ], Eβ) for some η ∈ (0, α−β]. The real number

t0 :=max{t ∈ [0, δ] : f |[0,t] = h|[0,t]}

satisfies 0≤ t0 < δ and f = h on [0, t0]. Since f (t0) ∈Oα, there exist R > 0, L > 0, κ ≥ 1, and ω > 0
such that

‖8(u)−8(v)‖L(E1,E0) ≤ L‖u− v‖β for all u, v ∈ BEβ ( f (t0), R)⊂Oβ,

−8(u) ∈H(E1, E0, κ, ω) for all u ∈ BEβ ( f (t0), R).

Given δ0 ∈ (t0, δ], the set

M0 :=

{
h∈C([0, δ0−t0],BEβ ( f (t0), R)) :h(0)= f (t0),

‖h(t)− h(s)‖β
|t − s|η/2

≤ 1 for all t 6= s ∈ [0, δ0− t0]
}

is a (nonempty) complete metric space. Letting Ah(t) := −8(h(t)) for h ∈M0 and t ∈ [0, δ0− t0], we
may argue as in the existence part of this proof to conclude that the linear problem

u̇+Ah(t)u = 0, t ∈ (0, δ0− t0], h(0)= f (t0)

has a unique classical solution 00(h) ∈ Cα−β([0, δ0 − t0], Eβ) ∩ C([0, δ0 − t0], Eα). Furthermore,
00 : M0 → M0 is a 1

2 -contraction provided that δ0 is sufficiently close to t0; hence 00 has a unique
fixed point. But, if δ0 − t0 is sufficiently small, then it can be easily seen that f ( · + t0)|[0,δ0−t0] and
h( · +t0)|[0,δ0−t0] both belong to M0 and these functions are therefore fixed points of 00. This implies f =h
on [0, δ0] for some δ0 > t0, in contradiction with the definition of t0. This proves the uniqueness claim. �
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We are now in a position to prove Theorem 1.5.

Proof of Theorem 1.5. Let f0 ∈Oα be given. According to Proposition B.3 (with f̄ := f0), there exists
δ > 0 and a classical solution

f ∈ C([0, δ],Oα)∩C((0, δ], E1)∩C1((0, δ], E0)∩Cα−β([0, δ], Eβ)

to (QP). This solution can be continued as follows. Applying Proposition B.3 (with f̄ := f (δ)), we find
r > 0 and δ1 > 0 such that

ḣ =8(h)[h], t ∈ (0, δ1], h(0)= f1 (B-15)

has a classical solution h ∈ C([0, δ1],Oα)∩C((0, δ1], E1)∩C1((0, δ1], E0)∩Cα−β([0, δ1], Eβ) for each
f1 ∈Oα with ‖ f1− f (t0)‖α ≤ r . Let t0 ∈ (0, δ) be such that

t0+ δ1 > δ and ‖ f (t0)− f̄ ‖α ≤ r.

Hence it is possible to choose f1 := f (t0) as an initial value in (B-15). Since f ( · + t0) : [0, δ− t0]→Oα
and h : [0, δ− t0] →Oα are both classical solutions to

ḣ =8(h)[h], t ∈ (0, δ− t0], h(0)= f (t0),

by Proposition B.3 they must coincide. Consequently, the function F : [0, t0+ δ1] →Oα defined by

F(t) :=
{

f (t), t ∈ [0, δ],
h(t − t0), t ∈ [δ, t0+ δ1]

is a classical solution to (QP) which extends f . The maximal solution f = f ( · ; f0) : I ( f0)→ Oα in
Theorem 1.5 is defined by setting

I ( f0) :=
⋃{
[0, δ] : (QP) has a classical solution fδ on [0, δ] with fδ ∈ Cα−β([0, δ], Eβ)

}
,

f (t) := fδ(t) for t ∈ [0, δ].

The construction above shows that f is well-defined and that I ( f0)= [0, T+( f0)) with T+( f0)≤∞. This
proves the existence claim in Theorem 1.5. The uniqueness assertion is an immediate consequence of
Proposition B.3.

We now prove the criterion for global existence. Hence, let us assume that the unique classical maximal
solution f = f ( · ; f0) : [0, T+( f0))→Oα to (QP) is uniformly continuous when restricted to each interval
[0, T ] ∩ [0, T+( f0)), with T > 0 arbitrary. We further assume that τ := T+( f0) <∞; otherwise we are
done. Then, since f is uniformly continuous on [0, τ ), it is straightforward to see that the limit

f (τ ) := lim
t↗τ

f (t)

exists in Oα. If dist( f (t), ∂Oα) 6→ 0 for t→ τ , it must hold that f (τ ) ∈Oα. Proceeding as above, we
may extend in view of Proposition B.3 this maximal solution to an interval [0, τ + δ1) for some δ1 > 0,
which is a contradiction and we are done.
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Finally, the semiflow property of the solution map [(t, f0) 7→ f (t; f0)] stated at the end of Theorem 1.5
is proven in detail in [Amann 1988, Theorem 8.1]. Furthermore, if 8 is additionally smooth, then
proceeding as in Theorem 11.3 of the same paper one may show that the semiflow map is also smooth. For
real-analytic 8, the real-analyticity of [(t, f0) 7→ f (t; f0)] follows by estimating the Fréchet derivatives
of the flow map, which is a rather tedious and lengthy procedure which we refrain from presenting
here. �
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