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MAXIMAL GAIN OF REGULARITY IN VELOCITY AVERAGING LEMMAS

DIOGO ARSÉNIO AND NADER MASMOUDI

We investigate new settings of velocity averaging lemmas in kinetic theory where a maximal gain of
half a derivative is obtained. Specifically, we show that if the densities f and g in the transport equation
v � rxf D g belong to Lr

xLr 0

v , where 2n=.nC 1/ < r � 2 and n� 1 is the dimension, then the velocity
averages belong to H

1=2
x .

We further explore the setting where the densities belong to L
4=3
x L2

v and show, by completing the work
initiated by Pierre-Emmanuel Jabin and Luis Vega on the subject, that velocity averages almost belong
to W

n=.4.n�1//;4=3
x in this case, in any dimension n� 2, which strongly indicates that velocity averages

should almost belong to W
1=2;2n=.nC1/

x whenever the densities belong to L
2n=.nC1/
x L2

v .
These results and their proofs bear a strong resemblance to the famous and notoriously difficult

problems of boundedness of Bochner–Riesz multipliers and Fourier restriction operators, and to smoothing
conjectures for Schrödinger and wave equations, which suggests interesting links between kinetic theory,
dispersive equations and harmonic analysis.
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1. Introduction and main results

Velocity averaging lemmas are a category of regularity results concerning the kinetic transport equation

.@t C v � rx/f .t;x; v/D g.t;x; v/; (1-1)

where .t;x; v/ 2 Œ0;1/�Rn �Rn, or its stationary counterpart

v � rxf .x; v/D g.x; v/; (1-2)

where .x; v/ 2 Rn �Rn, with n� 1.
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by NSF grant no. DMS-1716466.
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Variants of the above equations are also relevant. Indeed, different spatial and velocity domains, as
well as nonlinear velocity fields (consider the relativistic case), are sometimes studied. Nevertheless,
for the sake of simplicity, we will focus exclusively on the Euclidean stationary setting (1-2), which,
we believe, captures the essential features of kinetic transport (at least as far as velocity averaging is
concerned). We refer the interested reader to Appendix C, where we establish an equivalence of velocity
averaging lemmas for velocities in Rn and in Sn�1. In particular, this provides a rather general method
to adapt the results contained in the present work to settings where velocities belong to a manifold of
codimension 1, which includes the nonstationary transport equation (1-1).

The classical velocity averaging lemma was established first in [Golse et al. 1988]. It asserts that if
f;g 2L2

x;v satisfy the transport relation (1-2), then the velocity averages of f enjoy the regularizationZ
Rn

f .x; v/ '.v/ dv 2H
1
2

x

for any given ' 2L1c .R
n/ (that is, any measurable function bounded almost everywhere with compact

support). Note that such regularity results had already been suggested in weaker forms in [Agoshkov
1984; Golse et al. 1985].

An extension of this fundamental result to the L
p
x;v setting, with 1 < p <1, was also obtained in

[Golse et al. 1988] and later substantially improved in [Bézard 1994; DeVore and Petrova 2001; DiPerna
et al. 1991]. Generally speaking, such generalizations are deduced by interpolating the preceding L2

x;v

case with the degenerate L1
x;v and L1x;v cases. In this setting, it is established that, for any ' 2L1c .R

n/,Z
Rn

f .x; v/ '.v/ dv 2W s;p
x

whenever f;g 2L
p
x;v, with s D 1� 1

p
if p � 2 and for any 0� s < 1

p
if p > 2.

When p � 2, the optimality of the regularity index s D 1� 1
p

in the preceding result was shown in
[Lions 1995] through a straightforward dimensional analysis. As for the case p > 2, it was also argued in
that paper that the regularity of velocity averages cannot be improved beyond the value s D 1

p
, but this

optimality argument remains incomplete, for it requires the use of a larger class of velocity weights '.v/
with unbounded support. In fact, it turns out that, in general, the value s D 1

p
is not optimal in the

range 2< p <1, for it is possible to largely improve this regularity index beyond the value s D 1
p

in
dimension nD 1, as stated in the following one-dimensional theorem.

Theorem 1.1. In dimension nD 1, let f;g 2L
p
x;v, with 2< p <1, be such that (1-2) holds true.

Then, Z
R

f .x; v/ '.v/ dv 2W s;p
x

for all 0� s < 1� 1
p

and any ' 2L1c .R/.

This result clearly follows from the more general Theorem 4.3, by setting p D r therein, which is
established later on in Section 4.
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The question of the optimality of the value s D 1
p

, when p > 2, in higher dimensions n � 2 was
finally definitely settled in [DeVore and Petrova 2001, Theorem 1.3], where a remarkable construction
of a convoluted counterexample shows the necessity of the constraint s � 1

p
whenever p > 2 and n� 2.

Note however that it remained so far unknown whether the endpoint value s D 1
p

is admissible or not. It
turns out that, as a byproduct of our methods, we are able to settle this question here by showing that the
endpoint value s D 1

p
is indeed admissible when p > 2 (see Theorem 3.6).

On the whole, the maximal gain of regularity, when n� 2, clearly happens for the value p D 2, where
half a derivative is gained by averaging in velocity.

It is to be emphasized that the refined interpolation methods used in [DeVore and Petrova 2001] yield
more precise results. Indeed, it is established therein that, for each 1 < p <1, the velocity averages
actually belong to the Besov space Bs

p;p.R
n/ with s Dmin

˚
1
p
; 1� 1

p

	
, which is smaller than W s;p.Rn/

for values 1< p � 2, and that this is optimal. Nevertheless, for the sake of simplicity, we will only focus
here on standard Sobolev spaces and we will omit the more precise formulations of velocity averaging
lemmas in Besov spaces, which can be easily deduced from our proofs if needed (we refer to the proof of
Proposition 3.2 in Section 3 for some more details on this matter).

Numerous generalizations of velocity averaging lemmas are available. For instance, several settings
where f and g belong to distinct spaces (possibly with different homogeneity) of different kinds (Besov,
Sobolev, etc.) with mixed integrability and regularity in space and velocity have been considered in
[Arsénio and Masmoudi 2014; Bézard 1994; DiPerna et al. 1991; Jabin and Vega 2004; Westdickenberg
2002]. Naturally, the ensuing gain of regularity on the velocity averages depends then on the different
parameters used to characterize these function spaces. In these more general settings, the phenomena of
dispersion (as discovered in [Castella and Perthame 1996]) and hypoellipticity (as discovered in [Bouchut
2002]; see also [Arsénio and Saint-Raymond 2011]) in kinetic transport equations come into play and,
loosely speaking, interact with the regularization due to velocity averaging to produce new interesting
results. We refer to [Arsénio and Masmoudi 2014; Westdickenberg 2002] and [Arsénio and Masmoudi
2014; Arsénio and Saint-Raymond 2011; Jabin and Vega 2004] for such results combining velocity
averaging with the dispersive and hypoelliptic effects, respectively. Note that none of these phenomena is
fully distinct from the others.

It was argued in [Arsénio and Masmoudi 2014; Westdickenberg 2002] that the influence of dispersion on
velocity averaging produces a gain of integrability which can be interpreted, through Sobolev embeddings,
as a regularity gain which is sometimes larger than half a derivative and even possibly close or equal
to a whole derivative (note that the gain of regularity can never be larger than a whole derivative, for the
transport operator is a differential operator of order 1). Furthermore, the hypoelliptic phenomenon may
also produce a regularity gain close or equal to a whole derivative on the velocity average, see [Arsénio and
Masmoudi 2014; Jabin and Vega 2004], but this requires assuming some regularity on f and g a priori.

In this article, we will exclusively focus on the gain of regularity due to velocity averaging, possibly
combined with dispersion (without interpreting the gain of regularity through Sobolev embeddings as
was done in [Arsénio and Masmoudi 2014; Westdickenberg 2002], though), and will mostly ignore
the aforementioned effects produced by hypoellipticity that were analyzed in [Arsénio and Masmoudi
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2014; Jabin and Vega 2004]. To this end, we will only consider settings where f and g belong to mixed
Lebesgue spaces and no a priori regularity is assumed. In this case, it is largely agreed that the gain
of regularity cannot exceed half a derivative in dimension n � 2 (but there is no proof of this general
assertion, yet).

Thus, so far, the maximal gain of half a derivative is only known to be attained when f and g both
belong to L2

x;v. In the present work, we explore new settings of velocity averaging lemmas where a
maximal gain of half a derivative is obtained. Our first main result shows that it is possible to gain exactly
half a derivative even if f and g do not belong to L2

x;v.

Theorem 1.2. In any dimension n� 1, let f;g 2Lr
xLr 0

v , with 2n
nC1

< r � 2, be such that (1-2) holds true.
Then, Z

Rn

f .x; v/ '.v/ dv 2H
1
2

x

for any ' 2L1c .R
n/.

This result clearly follows from the more general Theorem 3.6 by setting a D 2 therein, which is
established later on in Section 3. It is based on a T T �-argument combined with the dispersion due to
kinetic transport studied in Section 2 and velocity averaging.

Such a result had already been hinted at in [Jabin and Vega 2003; 2004], where it was established that,
in two dimensions only (nD 2), velocity averages of f belong to H s

x , for any 0 � s < 1
2

, provided f
and g belong to L

4
3
x L1v ; see [Jabin and Vega 2004, Theorem 1.3].

In fact, in [Jabin and Vega 2003; 2004], the authors further identified another case which could
potentially lead to a gain of almost half a derivative on the velocity averages. More precisely, they showed
that, in two dimensions only (nD 2), velocity averages of f belong to W

s; 4
3

x for any 0� s < 1
2

, provided
f and g belong to L

4
3
x L2

v and under the peculiar assumption that g.x; v/ '.v/ is an even function in v;
see [Jabin and Vega 2004, Theorem 1.2]. The latter assumption is rather unnatural and it remained unclear
whether this evenness condition could be removed or not.

By building upon the work from [Jabin and Vega 2004], combining our methods with the remarkable
proof of Theorem 1.2 therein, we are able to bring a definitive answer to this two-dimensional problem,
which is precisely the content of the following result.

Theorem 1.3. In dimension nD 2, let f;g 2L
4
3
x L2

v be such that (1-2) holds true.
Then, Z

R2

f .x; v/ '.v/ dv 2W
s; 4

3
x

for all 0� s < 1
2

and any ' 2L1c .R
2/.

This result clearly follows from the more general Theorem 5.4, by setting r D 4
3

therein, which
is proved later on in Section 5. Its proof follows from the analysis of the boundedness of some adjoint
transport operator on the dual space L4

x D .L
4
3
x /
0 and uses crucially the trivial fact that the exponent 4

is an even integer to control the square of this adjoint transport operator in L2
x rather than the operator

itself in L4
x . This fact, among other characteristics of the proof, is strikingly reminiscent of the proofs of
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boundedness of Bochner–Riesz multipliers and Fourier restriction operators in two dimensions. We refer
to [Grafakos 2009] for more on these subjects from harmonic analysis.

In higher dimensions, we extend the preceding result into the following theorem.

Theorem 1.4. In any dimension n� 3, let f;g 2L
4
3
x L2

v be such that (1-2) holds true.
Then, Z

Rn

f .x; v/ '.v/ dv 2W
s; 4

3
x

for all 0� s < n
4.n�1/

and any ' 2L1c .R
n/.

This result clearly follows from the more general Theorem 6.8 by setting r D 4
3

therein, which is
proved later on in Section 6.

Observe that, employing rather general interpolation methods, it is possible to deduce a large variety
of velocity averaging results, similar to those asserted in the above theorems, combining spaces for f
and g with distinct integrabilities. We refer to [Arsénio and Masmoudi 2014] (see in particular the very
general Theorem 4.7 therein) for such interpolation techniques.

It is likely that Theorem 1.4 may be largely improved. Indeed, note that a formal interpolation would
yield

.L1
xL2

v;L
2n

nC1
x L2

v/ n
2.n�1/

DL
4
3
x L2

v and .L1
x;W

1
2
; 2n

nC1
x / n

2.n�1/
DW

n
4.n�1/

; 4
3

x ; (1-3)

whence formally extrapolating the above regularity result has us believe that, for any ' 2L1c .R
n/,Z

Rn

f .x; v/ '.v/ dv 2W
s; 2n

nC1
x (1-4)

for all 0 � s < 1
2

, whenever f;g 2 L
2n

nC1
x L2

v (see [Arsénio 2015] for a survey of velocity averaging
lemmas and more on such conjectures; see also Figure 2 and the related comments following the proof of
Theorem 6.8, below). In other words, Theorem 1.4 would follow from a formal interpolation of (1-4)
with the degenerate L1 case.

However, we do not know how to prove this estimate. . .

Finally, we would like to emphasize that, in this work, we investigate velocity averaging for its own
sake, as a functional analytic study. Indeed, the search for maximal regularity in velocity averaging
lemmas has already proved a challenging and interesting endeavor requiring diverse and original methods
(extending beyond the classical settings of velocity averaging), producing interesting new results and
leading to exciting research perspectives.

However, it should not be overlooked that velocity averaging lemmas also enjoy concrete applications
to a wide variety of fundamental problems from kinetic theory. Such applications include, for instance,
the existence of renormalized solutions to the Boltzmann equation [DiPerna and Lions 1989] and the con-
vergence of such solutions to Leray solutions of the Navier–Stokes equations in a viscous incompressible
hydrodynamic regime [Golse and Saint-Raymond 2004].

The investigation of sharp versions of averaging lemmas, such as the ones presented in this work,
may lead to fundamental applications, as well. Indeed, we believe that such results may be very useful
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in establishing optimal regularity estimates in nonlinear conservation laws, through the study of their
corresponding kinetic formulations. In particular, averaging lemmas with mixed integrability in x and v
may be crucial in such attempts, for kinetic formulations are often based on densities which display
distinct integrability or regularity properties in each variable.

We refer to [Lions et al. 1994a] (see Theorem 4 therein; see also [Lions et al. 1994b, Proposition 7] in
the context of isentropic gas dynamics) for an early application of velocity averaging lemmas to kinetic
formulations of scalar conservation laws, showing the existence of a regularizing phenomena as a truly
nonlinear effect in hyperbolic equations. Nevertheless, the smoothness properties obtained through such
applications have so far fallen short of the expected optimal regularity. In fact, other methods have already
succeeded in establishing better results, see [Golse and Perthame 2013], which are sharp. However, one
should keep in mind that the versions of velocity averaging lemmas used in these works were not sharp in
the first place (for the kinetic formulation under consideration). In fact, it is likely that sharp versions of
velocity averaging lemmas would yield sharp regularity properties in conservation laws, when kinetic
formulations are available, which would largely expand the possibilities of reaching optimal regularity
results in nonlinear conservation laws.

However, such research would require significant efforts and we will therefore not delve any further
into this realm of applications, leaving it for subsequent works.

2. The transport operator and dispersive estimates

Let f .x; v/;g.x; v/ 2 S.Rn
x �Rn

v/ (S denotes the Schwartz space of rapidly decaying functions) be a
solution of the transport equation (1-2). Then, introducing some cutoff function � 2 S.R/ such that
�.0/D 1 and recalling the Fourier inversion formula

�.r/D
1

2�

Z
R

eirs
O�.s/ ds D

Z
R

e�irs
Q�.s/ ds;

where

O�.r/D

Z
R

e�irs�.s/ ds;

Q�.r/D
1

2�

Z
R

eirs�.s/ ds;

one can show that

f .x; v/DAtf .x; v/C tBtg.x; v/; (2-1)

with

Atf .x; v/D

Z
R

f .x� stv; v/ Q�.s/ ds;

Btg.x; v/D

Z
R

g.x� stv; v/ Q�.s/ ds;

where �.s/D .1� �.s//=.is/ and t 2 R is an interpolation parameter. We refer the reader to [Arsénio
and Masmoudi 2014, Section 3] for full details on the derivation of this decomposition formula.
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Further considering the Fourier transform in the space variable only,

Of .�; v/D Fxf .�; v/D

Z
Rn

e�i��xf .x; v/ dx;

it holds that
FxAtf .�; v/D �.t� � v/Fxf .�; v/;

FxBtg.�; v/D �.t� � v/Fxg.�; v/:
(2-2)

Notice that � is smooth near the origin, for �.0/D 1, and that

Q�.s/D
1

2�

Z
R

eisr 1� �.r/

i r
dr D 1fs�0g�

Z s

�1

Q�.�/ d�: (2-3)

In particular, Q� is bounded pointwise and, if Q� is compactly supported, so is Q� . Observe, however, that it
is not possible to isolate the origin from the support of Q� .

Generally speaking, the estimates established in this work clearly apply to both operators At and Bt .
Nevertheless, for the sake of simplicity, we only formulate our results in terms of the operator At . The
corresponding results for Bt are easily deduced by replacing � by � .

In this section, we study the dispersive properties of the operators At and Bt , which will serve in the
proof of Theorem 3.6 below. To this end, we will use the following basic dispersive estimate established
in [Castella and Perthame 1996]:

kf .x� tv; v/kLp
xLr

v
�

1

jt jn.
1
r
� 1

p
/
kf .x; v/kLr

xL
p
v

for all 1� r � p �1: (2-4)

Our first dispersive estimate on At below is an elementary application of (2-4) to the operator At . We
will not make any direct use of this simple result later on. It does, however, provide some insight into the
dispersive properties of At and, therefore, we list it here for completeness.

Proposition 2.1. For any given 1� r � p �1, the operator At satisfies the estimate

kAtf kLp
xLr

v
�

1

jt jn.
1
r
� 1

p
/






 Q�.s/

sn. 1
r
� 1

p
/







L1

kf kLr
xL

p
v

for all t ¤ 0.

Proof. This result is a simple extension of the standard dispersive estimate (2-4). Indeed, we have

kAtf kLp
xLr

v
�

Z
R

kf .x� stv; v/kLp
xLr

v
j Q�.s/j ds �

Z
R

1

jst jn.
1
r
� 1

p
/
kf .x; v/kLr

xL
p
v
j Q�.s/j ds: �

Next, combining the dispersion of the free transport flow (2-4) with a T T �-argument yields the
following proposition.

Proposition 2.2. Let 2� a�1, 2< q �1 and 1� r � p �1 be such that

2

a
D

1

p
C

1

r
and n

�
1

r
�

1

p

�
D

2

q
:
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Then, the operator At satisfies the estimate

kAtf kLa
x;v
�

C

jt j
1
q

k Q�kLq0kf kLr
xL

p
v

for all t ¤ 0, where C > 0 only depends on q.

Proof. First of all, notice that the case q D1, so that aD p D r , is obvious, with a constant C D 1. We
may therefore assume, without any loss of generality, that q <1.

Thus, we estimate, using the dispersion (2-4),

kAtf k
2
La

x;v
D kjAtf j

2
k

L
a=2
x;v

D





Z
R�R

f .x� stv; v/ Q�.s/f .x� � tv; v/ Q�.�/ ds d�






L

a=2
x;v

�

Z
R�R

kf .x; v/f .x� .� � s/tv; v/k
L

a=2
x;v
j Q�.s/ Q�.�/j ds d�

�

Z
R�R

kf .x; v/kLr
xL

p
v
kf .x� .� � s/tv; v/kLp

xLr
v
j Q�.s/ Q�.�/j ds d�

�
1

jt j
2
q

kf k2
Lr

xL
p
v

Z
R�R

1

j� � sj
2
q

j Q�.s/ Q�.�/j ds d�:

Hence, by virtue of the Hardy–Littlewood–Sobolev inequality,

kAtf kLa
x;v
�

C

jt j
1
q

k Q�kLq0kf kLr
xL

p
v
;

where C > 0 only depends on q. �

The preceding proposition only accepts parameters in the range 2 � a �1. The next proposition
handles the range 1� a� 2. It is obtained by interpolating the estimate from the preceding proposition
with the degenerate L1 case. Figure 1 represents the range of validity of the parameters 1

p
and 1

r
for both

Propositions 2.2 and 2.3. More precisely, the shaded region therein delimited by the points .0; 0/,
�

1
n
; 0
�
,�

nC1
2n
; n�1

2n

�
and

�
1
2
; 1

2

�
is handled by Proposition 2.2, whereas the shaded region bounded by the points�

1
2
; 1

2

�
,
�

nC1
2n
; n�1

2n

�
and .1; 1/ concerns Proposition 2.3.

Proposition 2.3. Let 1� a� 2, a0 < q �1 and 1� r � p �1 be such that

2

a
D

1

p
C

1

r
and n

�
1

r
�

1

p

�
D

2

q
:

Then, the operator At satisfies the estimate

kAtf kLa
x;v
�

C

jt j
1
q

k Q�kLq0kf kLr
xL

p
v

for all t ¤ 0, where C > 0 only depends on q and a.
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1
p

1
r1

n

1
2

,( (1
2

n+1
2n

,( (n −1
2n

2
n+1

1

0 1

Pro
po

sit
io

n 2
.2

Pro
po

sit
io

n 2
.3

Figure 1. Range of validity of the parameters 1
r

and 1
p

in Propositions 2.2 and 2.3.

Proof. This result will follow from the interpolation of the case aD 2 from Proposition 2.2 and the trivial
estimate

kAtf kL1
x;v
� k Q�kL1kf kL1

x;v
: (2-5)

Thus, without any loss of generality, we assume that 1< a< 2 and we define 0< � < 1, 2< q1 �1

and 1� r1 � p1 �1 by

� D
2

a0
D

1

p0
C

1

r 0
; p1 D � r 0; r1 D �p

0; q1 D �q;

so that
1

a
D

1��

1
C
�

2
;

1

p
D

1��

1
C
�

p1
;

1

q
D

1��

1
C
�

q1
;

1

r
D

1��

1
C
�

r1
;

and
1D

1

p1
C

1

r1
and n

�
1

r1
�

1

p1

�
D

2

q1
:

In particular, notice that, since 2
q1
< 1, necessarily 1< r1 � p1 <1. On Figure 1, the point

�
1
r1
; 1

p1

�
lies

somewhere on the half open segment
��

1
2
; 1

2

�
;
�

nC1
2n
; n�1

2n

��
.

It follows then from Proposition 2.2 that

kAtf kL2
x;v
�

C

jt j
1

q1

k Q�k
L

q0
1
kf k

L
r1
x L

p1
v
; (2-6)

where C > 0 only depends on q1.
Now, standard results from complex interpolation theory of Lebesgue spaces, see [Bergh and Löfström

1976, Section 5.1], establish that

.L1
x;v;L

2
x;v/Œ�� DLa

x;v; .L1
x;v;L

r1
x Lp1

v /Œ�� DLr
xLp

v and .L1;Lq0
1/Œ�� DLq0:
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Therefore, interpolating estimates (2-5) and (2-6) (these estimates remain valid for complex-valued
functions), which are multilinear in Q� and f (use the multilinear complex interpolation theorem [Bergh
and Löfström 1976, Theorem 4.4.1]), we arrive at

kAtf kLa
x;v
�

C

jt j
1
q

k Q�kLq0kf kLr
xL

p
v
;

where C > 0 only depends on q and a. �
Note that the adjoint operator of At satisfies A�t DA�t . Combining Propositions 2.2 and 2.3 with a

duality argument yields the following result.

Proposition 2.4. Let 1� a�1, maxf2; ag< q �1 and 1� r � p �1 be such that

2

a
D

1

p
C

1

r
and n

�
1

r
�

1

p

�
D

2

q
:

Then, the operator At satisfies the estimate

kAtf kLp
xLr

v
�

C

jt j
1
q

k Q�kLq0kf kLa
x;v

for all t ¤ 0, where C > 0 only depends on q and a.

Proof. This result easily follows from a duality argument. Indeed, by Proposition 2.2 (if 1� a� 2) or
Proposition 2.3 (if 2� a�1), we haveˇ̌̌̌Z

Rn�Rn

Atf .x; v/g.x; v/ dx dv

ˇ̌̌̌
D
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Rn�Rn

f .x; v/A�tg.x; v/ dx dv
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;

where C > 0 only depends on q and a. Then, taking the supremum over all g 2L
p0

x Lr 0

v easily concludes
the proof of the proposition. �

3. Dispersion and velocity averaging

We proceed now to combining the dispersive estimates from the previous section with the classical
regularizing effects due to velocity averaging. This will eventually lead to our first main result Theorem 3.6.

To this end, we consider, for any t ¤ 0 and '.v/2L1c .R
n/, the velocity averaging operator Tt defined,

for all f .x; v/ 2 S.Rn �Rn/, by

Ttf .x/D

Z
Rn

Atf .x; v/ '.v/ dv:

In particular, for all g.x/ 2 S.Rn/, one has, by duality,Z
Rn

Ttf .x/g.x/ dx D

Z
Rn�Rn

f .x; v/T �t g.x; v/ dx dv;
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where the adjoint operator T �t is defined by

T �t g.x; v/DA�t .g.x/ '.v//D

Z
R

g.xC stv/ Q�.s/ ds '.v/:

We will also consider the operators Tt and T �t defined with Bt instead of At .
For clarity, throughout this section, we will always consider the same given velocity weight '.v/ 2

L1c .R
n/ and we will assume that its support is contained inside a closed ball of radius R> 0 centered at

the origin.
We begin by applying the classical Hilbertian methods of velocity averaging from [Golse et al. 1988] to

the operator Tt and its adjoint T �t . The resulting estimates are recorded in the following proposition. For
the sake of completeness and convenience of the reader, we provide a complete justification of these results.

Proposition 3.1. The operator Tt and its adjoint T �t satisfy the estimates
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for all t ¤ 0, where C > 0 only depends on the dimension.

Proof. We deal with the estimate on the adjoint operator T �t first. Thus, it is readily seen, by Plancherel’s
theorem and using the Fourier representation (2-2) of At , that
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Furthermore, using again Plancherel’s theorem, we find that
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where we have rescaled the variable v by a factor j�j in the direction �
j�j

only.
Then, writing v0 D .v2; : : : ; vn/ and recalling that the support of ' is contained in a closed ball of

radius R> 0 centered at the origin, we deduce that
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(3-2)

Finally, combining estimates (3-1) and (3-2) establishes the estimate on T �t .
The estimate on Tt is then easily deduced from the estimate on T �t by a duality argument. �
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Interpolating the preceding result with the degenerate L1 case yields the following proposition.

Proposition 3.2. For any given 1� a� 2, the operator Tt and its adjoint T �t satisfy the estimates
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for all t ¤ 0, where s D 1� 1
a

and C > 0 only depends on a and the dimension.

Proof. We deal with the estimate on Tt first.
It was established in [DeVore and Petrova 2001, Theorem 3.2] that the real interpolation space

.L1;H
1
2 /2s;a, where s D 1� 1

a
with 1< a< 2, is precisely the Besov space Bs

a;a, which is continuously
embedded into the classical fractional Sobolev space W s;a; that is,

.L1
x;H

1
2

x /2s;a �W s;a
x :

Note that it would be possible to formulate a better result by using below the smaller Besov space Bs
a;a,

as in [DeVore and Petrova 2001]. However, for the sake of simplicity, we choose not to do so and stick to
Sobolev spaces. We refer to [DeVore and Petrova 2001] for more details on this.

Next, it is well known from the real interpolation theory of Lebesgue spaces, see [Bergh and Löfström
1976, Theorem 5.2.1], that

.L1
x;v;L

2
x;v/2s;a DLa

x;v:

Therefore, the first part of this result easily follows from the real interpolation of the classical estimate
on Tt from Proposition 3.1 with the case p D 1 of the simple estimate

kTtf kLp
x
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L
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v
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;

valid for any 1� p �1.
There only remains to establish the estimate on the adjoint operator T �t . To this end, note that T �t

commutes with the differentiation in x so that the estimate on T �t from Proposition 3.1 can be recast as
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where C > 0 only depends on the dimension.
We wish now to complex interpolate the preceding estimate with the elementary control
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x;v
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v
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v
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x
;

where h1 denotes the local Hardy space; see [Runst and Sickel 1996, Section 2.1.2] for a definition.
To this end, we use the results from complex interpolation theory, see [Bergh and Löfström 1976,

Theorem 5.1.1; Runst and Sickel 1996, Section 2.5.2],
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x ;
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to deduce that
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Finally, we easily conclude the proof of the proposition by using again that T �t commutes with the
differentiation in x and replacing g by .1��x/

s
2 g in the above estimate. �

Combining now the preceding proposition with a duality argument yields the following result.

Proposition 3.3. For any given 2� a�1, the operator Tt and its adjoint T �t satisfy the estimates

k.1��x/
s
2 Ttf kLa

x
� C.k Q�kL1 k'kL1

v
/1�2s

 
k�kL1 k'kL2

v
C

R
n�1

2

jt j
1
2

k�kL2 k'kL1v

!2s

kf kLa
x;v
;

k.1��x/
s
2 T �t gkLa

x;v
� C.k Q�kL1 k'kL1v /

1�2s

 
k�kL1 k'kL2

v
C

R
n�1

2

jt j
1
2

k�kL2 k'kL1v

!2s

kgkLa
x

for all t ¤ 0, where s D 1
a

and C > 0 only depends on a and the dimension.

Proof. These estimates follow straightforwardly from Proposition 3.2 through a duality argument.
Indeed, by Proposition 3.2, noticing that both Tt and T �t commute with differentiation in x, it holds thatˇ̌̌̌Z
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where C > 0 only depends on a and the dimension. Then, taking the supremum over all g 2La0

x easily
concludes the proof of the first estimate on Tt .

Similarly, using Proposition 3.2 again, it holds thatˇ̌̌̌Z
Rn�Rn
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where C > 0 only depends on a and the dimension. Finally, taking the supremum over all f 2 La0

x;v

easily concludes the proof of the proposition. �
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From now on, in this section, we assume that the cutoff function �.r/ may be decomposed as a product
�.r/D�1.r/�2.r/, so that Q�.s/D Q�1� Q�2.s/. Naturally, we will denote by Ai

t , T i
t and T i�

t , where iD1; 2,
the respective operators At , Tt and T �t where we replace the cutoff � by �i . It is then readily seen that

At DA1
t A2

t DA2
t A1

t ; Tt D T 1
t A2

t D T 2
t A1

t ; T �t DA2
�tT

1�
t DA1

�tT
2�
t : (3-3)

As shown below, this useful trick allows us to combine the previous regularity results from this section
with the dispersive estimates from Section 2 to obtain new estimates on the operators Tt and T �t .

Proposition 3.4. Let 1� a�1, maxf2; ag< q �1 and 1� r � p �1 be such that
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:

Then, the operator T �t satisfies the estimate
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for all t ¤ 0 such that jt j � 1, where s D min
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and C > 0 only depends on q, a, ' and the

dimension.

Proof. We treat the case 1 � a � 2 first, so that q > 2 and s D 1� 1
a

. Writing T �t DA1
�tT

2�
t and then

successively employing Propositions 2.4 and 3.2, we find, noticing A1
�t commutes with differentiation

in x, that
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where C > 0 only depends on q, a and the dimension. Since jt j � 1, this concludes the proof of the
proposition when a� 2.

The case a�2 is handled similarly. One now has that q>a and sD 1
a

. Therefore, applying successively
Propositions 2.4 and 3.3, we find that
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where C > 0 only depend on q, a and the dimension. Since jt j � 1, this concludes the proof of the
proposition. �

Combining the previous result with a duality argument yields estimates on the operator Tt , which are
contained in the following proposition.

Proposition 3.5. Let 1� a�1, maxf2; a0g< q �1 and 1� r � p �1 be such that
2

a
D

1

p
C

1

r
and n

�
1

r
�

1

p

�
D

2

q
:

Then, the operator Tt satisfies the estimate
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for all t ¤ 0 such that jt j � 1, where s D min
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and C > 0 only depends on q, a, ' and the

dimension.

Proof. This estimate follows straightforwardly from Proposition 3.4 through a duality argument.
Indeed, using Proposition 3.4, we find, since T �t commutes with differentiation in x, thatˇ̌̌̌Z
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where C > 0 only depends on q, a, ' and the dimension. Finally, taking the supremum over all g 2La0

x

easily concludes the proof of the proposition.
Note that, in order to deduce this result, we could just as well have applied here a combination of

Propositions 2.2 and 2.3 with Propositions 3.3 and 3.2, respectively. �

We proceed now to the main theorem of this section. It contains Theorem 1.2 presented in the
Introduction as special case (corresponding to the case aD 2 below) and provides a considerable extension
of the classical velocity averaging lemma in L2

x;v (corresponding to the case a D p D r D 2 below).
Indeed, observe that the case aD 2 therein yields a maximal gain of regularity of half a derivative on
velocity averages for a variety of parameters, which was previously known to occur only in the classical
L2

x;v setting.

Theorem 3.6. In any dimension n� 1, let 1� a�1, maxf2; a0g< q �1 and 1� r � p �1 be such
that
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for any ' 2L1c .R
n/, where s Dmin

˚
1� 1

a
; 1

a

	
. Furthermore, one has the estimate
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where C > 0 only depends on ' and constant parameters.

Proof. We consider first the refined interpolation formula (2-1), which is valid for solutions of the
transport equation (1-2), for some given cutoff � 2 S.R/. Clearly, further differentiating (2-1) in x and
then averaging in v yields
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We wish now to apply Proposition 3.5 to the preceding estimate. To this end, according to (3-3), we
take the decompositions

�.r/D �1.r/�2.r/ and �.r/D
1� �.r/

i r
D �1.r/�2.r/;
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for some fixed 1
q
< ˇ < 1

2
. In view of the technical Lemma B.1 from Appendix B, it then holds that

Q�1; Q�1 2Lq0 ; Q�2; Q�2 2L1 and �2; �2 2L1\L2:

All constants involving norms of the cutoff functions �1, �2, �1 and �2 in the right-hand side of (3-4) are
therefore finite.

Thus, applying Proposition 3.5 to estimate (3-5), we conclude, for any 0< t < 1, that
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where C > 0 only depends on constant parameters. �

4. The one-dimensional case

In the previous section, by combining kinetic dispersion with velocity averaging, we have established, in
Theorem 3.6, a whole new range of regularity results on the solutions of the kinetic transport equation (1-2).
The results from Theorem 3.6 are valid in any dimension n� 1. In one dimension (nD 1), it turns out that
it is possible to obtain more results for a wide range of parameters which are not covered by Theorem 3.6.
This is due to the fact that, in one dimension, spatial frequencies are always parallel to velocities.

In the present section, we explore this one-dimensional setting, which provides a good test case
for velocity averaging lemmas in mixed Lebesgue spaces and allows one to get familiar with the
decompositions used in this work in a much simpler setting. It does not, however, set a road map
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for the remaining more involved sections concerning higher dimensions, for it heavily relies on the
elementary structure of the transport equation in one dimension.

We use the same notation as in the previous sections.

Proposition 4.1. In dimension nD 1, let 1< p <1, 1� r <1, 0� s < 1
r

and � 2 S.R/ be such that
Q� has its support contained inside a ball of radius r0 > 0 centered at the origin.

Then, the operator T �t satisfies the estimate
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for all t ¤ 0 such that jt j � 1, where C > 0 only depends on p, s and '.

Proof. First, it is readily seen, for any 1� r � p �1, that
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When the restriction r � p is not satisfied, the above estimate fails and we need a more convoluted
estimate to handle this case. To this end, we write that
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where Mg denotes the Hardy–Littlewood maximal function of g defined by
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Recall that the Hardy–Littlewood maximal operator g 7!Mg is bounded over Lp.R/ for any 1<p<1,
and maps L1.R/ into the standard weak-L1 space L1;1.R/; see [Grafakos 2008, Theorem 2.1.6]. It
therefore easily follows from the previous estimate that
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for any 1< p <1 and 1� r �1, where C > 0 only depends on p.
Next, we further compute, exploiting the one-dimensional structure of the operators, for any 0< ˛ < 1,
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whence, for any 1� p �1,
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which, when combined with (4-1), yields
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where C > 0 only depends on p and ˛.
We wish now to interpolate the bound (4-2), where we set r D1, with (4-3). To this end, recalling

that T �t commutes with differentiation in x, we first recast (4-3) as
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; (4-4)

and then we use the standard results from complex interpolation theory, see [Bergh and Löfström 1976,
Sections 5.1 and 6.4], valid for any 1< p; r <1,

.Lp
xL1v ;L

p
xL1

v/Œ 1
r
� DLp

xLr
v and .Lp

x ;W
�˛;p

x /Œ 1
r
� DW

�˛
r
;p

x ;

to deduce from the interpolation of (4-2) and (4-4) that
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where C > 0 only depends on p and ˛. �

Note that it would be possible to improve the gain of regularity in the preceding proposition by assuming
that the support of the velocity weight '.v/ does not contain the origin. However, this is a rather unnatural
setting which we prefer to avoid here.

Combining the previous result with a duality argument yields estimates on the operator Tt , which are
contained in the following proposition.

Proposition 4.2. In dimension nD 1, let 1< p <1, 1< r �1, 0� s < 1� 1
r

and � 2 S.R/ be such
that Q� has its support contained inside a ball of radius r0 > 0 centered at the origin.

Then, the operator Tt satisfies the estimate

k.1��x/
s
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x
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C
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1
r .k Q�kL1 Ck.��/

sr 0

2 Q�kL1/1�
1
r kf kLp

xLr
v

(4-5)

for all t ¤ 0 such that jt j � 1, where C > 0 only depends on p, s and '.

Proof. This estimate follows straightforwardly from Proposition 4.1 through a duality argument.
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Indeed, using Proposition 4.1, we find, since T �t commutes with differentiation in x, thatˇ̌̌̌Z
R

.1��x/
s
2 Ttf .x/g.x/ dx
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D
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;

where C > 0 only depends on p, s and '. Finally, taking the supremum over all g 2L
p0

x easily concludes
the proof of the proposition. �

We proceed now to the main theorem of this section.

Theorem 4.3. In dimension nD 1, let 1< p <1 and 1< r �1.
Then, for any f;g 2L

p
x.RIL

r
v.R// such that (1-2) holds true, one hasZ

R

f .x; v/ '.v/ dv 2W s;p
x .R/

for any ' 2L1c .R/ and any 0� s < 1� 1
r

. Furthermore, one has the estimate
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where C > 0 only depends on ' and constant parameters.

Proof. We consider first the refined interpolation formula (2-1), which is valid for solutions of the
transport equation (1-2) for some given cutoff � 2 S.R/. Clearly, further differentiating (2-1) in x and
then averaging in v yields
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: (4-6)

We wish now to apply Proposition 4.2 to the preceding estimate. To this end, note that Q� and all of its
derivatives clearly are bounded pointwise and integrable. In order to apply that result, we also further
need to ask that Q� be compactly supported, which is always possible.

Next, in view of (2-3), notice that Q� also is bounded pointwise, integrable and compactly supported.
Therefore, there only remains to check that .��/

˛
2 Q� is integrable for any 0< ˛ < 1. This, in fact, easily

follows from a direct application of the technical Lemma B.2 from Appendix B to

F Œ.��/
˛
2 Q��D jr j˛

1� �.r/

i r
:

All constants involving norms of the cutoff functions � and � in the right-hand side of (4-5) are therefore
finite.

Thus, applying Proposition 4.2 to estimate (4-6), we conclude, for any 0< t < 1, that
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where C > 0 only depends on constant parameters. �
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5. The two-dimensional case

Our study of the one-dimensional case in the previous section showed that it is possible to largely improve
the classical velocity averaging results in that setting. In particular, we showed therein that the gain of
regularity of velocity averages is, in some cases, substantially improved beyond the value 1

2
.

While such a general improvement is not achievable in higher dimensions (n � 2), in view of the
counterexamples from [DeVore and Petrova 2001, Theorem 1.3] discussed in our Introduction, it is
nevertheless possible, as shown below, to obtain new cases displaying a gain of regularity of velocity
averages of almost half a derivative.

In two dimensions (nD 2), this was already strongly suggested in [Jabin and Vega 2004, Theorem 1.2].
Here, we build upon the work from that paper to obtain refined two-dimensional velocity averaging results
displaying an almost maximal gain of regularity of half a derivative. In the next section, we will generalize
these methods to higher dimensions (n� 3), without achieving a gain of half a derivative, though.

We define now, in any dimension n� 1, the velocity averaging operator on the sphere

Stf .x/D

Z
Sn�1

Atf .x; v/ dv D

Z
Sn�1

Z
R

f .x� stv; v/ Q�.s/ ds dv;

and its adjoint operator

S�t g.x; v/DA�t .g.x//.x; v/D

Z
R

g.xC stv/ Q�.s/ ds;

so that Z
Rn

Stf .x/g.x/ dx D

Z
Rn�Sn�1

f .x; v/S�t g.x; v/ dx dv:

We will also consider the operators St and S�t defined with Bt instead of At . These operators correspond
to the kinetic transport equation (1-2) with velocities restricted to the sphere v 2 Sn�1 and are introduced
here for mere convenience and simplicity of analysis later on.

This reduction to the sphere is possible here because the regularization phenomenon in the transport equa-
tion (1-2) comes from averaging in velocity directions rather than integration along velocity magnitudes. In
fact, any bound established on St and S�t will yield a corresponding bound on Tt and T �t , respectively, as
shown below in Proposition 5.3 (we also refer the reader to Appendix C for a discussion of the equivalence
of velocity averaging lemmas with velocities in the full Euclidean space Rn and on the sphere Sn�1).

Note that this is not true in general. For instance, in the two-dimensional time-dependent setting
(1-1) with velocities restricted to the sphere S1 and f;g 2 L2

x;v, it was identified in [Bournaveas and
Perthame 2001] that only a quarter of a derivative could be gained on the velocity average of f , whereas
half a derivative is gained when velocities range in an open subset of R2 (which corresponds to a three-
dimensional setting .t;x/ 2 R1C2 with velocities restricted to a manifold of dimension 2, much like the
stationary case x 2 R3 with v 2 S2).

For completeness, we begin our analysis of the operators St and S�t by establishing their smoothing
effect in L2 employing the classical Hilbertian methods of velocity averaging from [Golse et al. 1988]. This
result is valid in any dimension n�2 and will also be used in the next section on higher-dimensional results.
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Proposition 5.1. In any dimension n � 2, the operator St and its adjoint S�t satisfy the estimates, for
any 0� s � 1

2
,
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for all t ¤ 0, where C > 0 only depends on the dimension.

Proof. This proof is almost identical to the general case of Proposition 3.1. Nevertheless, for later appli-
cations of this result, it is important to carefully keep track of the dependence of the constants on t and �.

We deal with the estimate on the adjoint operator S�t first. Thus, it is readily seen, by Plancherel’s
theorem, that

kS�t gkL2
x;v
D

1

.2�/
n
2

k�.� t� � v/ Og.�/kL2
�;v
� k�kL1kgkL2

x
: (5-1)

Furthermore, using again Plancherel’s theorem, we find that
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with the convention that jS0j D 2 when nD 2.
Hence, if n� 3, we easily deduce that

k.��x/
s
2 T �t gkL2

x;v
�
jSn�2j

1
2

jt js






 �.r/

jr j
1
2
�s







L2

kg.x/kL2
x
:

In the two-dimensional case, the bound on the cutoff � is only slightly more involved. We estimate, in
this case, for any N > 0, that
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It therefore follows that, in any dimension n� 2,
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: (5-2)

Finally, combining estimates (5-1) and (5-2) establishes the estimate on S�t .
The estimate on St is then easily deduced from the estimate on S�t by a duality argument. �
At this stage, we need to further introduce a classical Littlewood–Paley decomposition, which will

be used in our proofs. To this end, let  0.�/;  .�/ 2 C1c .Rn/ be compactly supported smooth cutoff
functions, whose supports satisfy

supp 0 � fj�j � 1g and supp �
˚

1
2
� j�j � 2

	
;

and such that

 0.�/C

1X
kD0

 

�
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2k

�
D 1 for all � 2 Rn:

For any tempered distribution f .x/2S 0.Rn/, we define the dyadic blocks�0f .x/;�2kf .x/2S.Rn/,
for each k 2 Z, by

�0f D F�1 0.�/Ff and �2kf D F�1 

�
�

2k

�
Ff:

so that

f D�0f C

1X
kD0

�2kf in S 0.Rn/: (5-3)

As in Section 3, from now on, we assume that the cutoff function �.r/ may be decomposed as a
product �.r/D �1.r/�2.r/, so that Q�.s/D Q�1 � Q�2.s/. We recall from (3-3) that

At DA1
t A2

t DA2
t A1

t ; St D S1
t A2

t D S2
t A1

t ; S�t DA2
�tS

1�
t DA1

�tS
2�
t ; (5-4)

where Ai
t , S i

t and S i�
t , with i D 1; 2, denote the respective operators At , St and S�t with the cutoff �

replaced by �i .
As shown in the results below, a key idea here is to use this trick to gain integration in one dimension

along v through the straightforward estimate

jS�t g.x; v/j2 D jA1
�tS

2�
t g.x; v/j2

� k Q�1kL1

Z
R

jS2�
t g.xC stv; v/j2 j Q�1.s/j ds

� k Q�1kL1 k Q�1kL1

Z
Œ�r1;r1�

jS2�
t g.xC stv; v/j2 ds;

(5-5)

where supp Q�1 � Œ�r1; r1�, for some r1 > 0, and thus obtain new estimates on the adjoint operator S�t .
The next proposition contains an estimate which is central to the present two-dimensional setting. It

strongly relies on the clever and elegant proof of Theorem 1.2 from [Jabin and Vega 2004], which it
crucially improves by exploiting the structure of the operator At through the use of (5-5).



MAXIMAL GAIN OF REGULARITY IN VELOCITY AVERAGING LEMMAS 355

Proposition 5.2. In dimension nD 2, let 2� p � 4, 0� s < s0 <
1
2

and �1; �2 2 S.R/ be such that Q�1

and Q�2 have their supports contained inside balls of radii r1; r2 > 0, respectively, centered at the origin.
Then, the operator S�t satisfies the estimate
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for all t ¤ 0 such that jt j � 1, where C > 0 only depends on fixed parameters.

Proof. First, notice that, for any 2� p �1,
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As for the regularity estimate, we employ the bound (5-5) and the standard Littlewood–Paley dyadic
frequency decomposition previously introduced, to deduce, writing gk D�2k g for convenience, for any
k � 0, that
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Further using Proposition 5.1, we deduce that, for all t > 0 and any given 0< s < 1
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We claim now that
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where C > 0 only depends on fixed parameters. In order to establish (5-8), we employ the change of
variables .s1; s2/ 7! z D s1tv1C s2tv2 whenever v1 and v2 form a basis, which holds almost everywhere.
It is readily seen that the Jacobian determinant of this transformation is given by t2 sin � , where � 2 Œ0; ��
is the angle between v1 and v2 defined by cos � D v1 �v2. Thus, noticing that jzjD js1tv1Cs2tv2j� 2r1jt j,
we infer
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Recall now that Q�2 is supported inside a ball of radius r2 > 0 centered at the origin. Therefore, we find
that, in the last integrand above,
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Hence, considering a smooth cutoff function � 2 C1c .R/ such that 1fjsj�1g � �.s/� 1fjsj�2g, setting for
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we deduce from (5-9) that, using Proposition 5.1,
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where C > 0 is an independent constant.
Next, a direct application of the technical Lemma A.1 from Appendix A to the preceding estimate yields
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;

which establishes our claim (5-8).
Finally, combining estimates (5-7) and (5-8), we arrive at
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where C > 0 is an independent constant.
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In order to conclude, we write jg.x/j D
R1

0 1fjg.x/j�sg ds to deduce from the preceding estimate,
assuming g is nonnegative, that
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where L
4;1
x denotes a standard Lorentz space; see [Bergh and Löfström 1976, Section 1.3] or [Grafakos

2008, Section 1.4] for definitions and properties of Lorentz spaces. When, g is signed, we arrive at the
same estimate simply by decomposing g D gC�g� into its positive and negative parts, treating each
contribution separately, and then noticing that
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Moreover, by allowing an arbitrarily small loss of regularity, that is, by replacing 0< s < 1
2

by a slightly
smaller value, it is possible to replace the Lorentz space L

4;1
x by the standard Lebesgue space L4

x in the
right-hand side of the above estimate.

Therefore, on the whole, for any 0� s < s0 <
1
2

, we have established the estimate
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where C > 0 only depends on constant parameters, which, when combined with the easy bound (5-6)
for low frequencies, yields
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Finally, recalling from complex interpolation theory, see [Bergh and Löfström 1976, Section 5.1], that,
for any 2< p < 4,

.L2
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v;L
4
xL2

v/Œ2� 4
p
� DLp

xL2
v and .L2

x;L
4
x/Œ2� 4

p
� DLp

x ;

we conclude the proof of the proposition by interpolating the estimate (5-10) with the classical estimate
on S�t from Proposition 5.1. �

Next, we utilize the previous result on the adjoint operator S�t to deduce corresponding estimates on
Tt and T �t .

Proposition 5.3. In dimension nD 2, let 4
3
� r � 2, 2 � p � 4, 0 � s < s0 <

1
2

and �1; �2 2 S.R/ be
such that Q�1 and Q�2 have their supports contained inside balls of radii r1; r2 > 0, respectively, centered at
the origin.

Then, the operators Tt and T �t satisfy the estimates
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and
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for all t ¤ 0 such that jt j � 1, where C > 0 only depends on fixed parameters.

Proof. It is readily seen that
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Therefore, for any 2� p �1, we compute in polar coordinates, recalling that the support of the velocity
weight ' 2L1c .R

2/ is contained inside a closed ball of radius R> 0 centered at the origin,
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Then, combining Proposition 5.2 with the above estimate, we find
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where C > 0 is an independent constant, which establishes the estimate on T �t .
The estimate on Tt is then easily deduced from the estimate on T �t by a duality argument. �

We proceed now to the main theorem of this section. Note that an equivalent version of this result with
spherical averages and an identical regularity gain can be readily obtained by applying the methods from
Appendix C.

Theorem 5.4. In dimension nD 2, let 4
3
� r � 2.

Then, for any f;g 2Lr
x.R
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2// such that (1-2) holds true, one hasZ
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for any ' 2L1c .R
2/ and any 0� s < 1
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. Furthermore, one has the estimate
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where C > 0 only depends on ' and constant parameters.

Proof. We consider first the refined interpolation formula (2-1), which is valid for solutions of the
transport equation (1-2), for some given cutoff � 2 S.R/. Clearly, further differentiating (2-1) in x and
then averaging in v yields
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We wish now to apply Proposition 5.3 to the preceding estimate. To this end, according to (5-4), we
take the decompositions

�.r/D �1.r/�2.r/ and �.r/D
1� �.r/

i r
D �1.r/�2.r/;

where
Q�1.r/ 2 C1c .R/; �1.r/D

1

.1C r2/
1
4

;

Q�2.r/ 2 C1c .R/; �2.r/D .1C r2/
1
4 �.r/:

Clearly, all constants involving norms of the cutoff functions �1 and �2 in the right-hand side of (5-11)
are finite and we may therefore straightforwardly apply Proposition 5.3 to control the first term in the
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right-hand side of (5-12). However, the same is not so obviously true concerning the cutoff functions
�1 and �2. The application of Proposition 5.3 to the second term in the right-hand side of (5-12) will
therefore require some substantial technical work, which we present now.

To this end, we employ a homogeneous Littlewood–Paley frequency decomposition, see (5-3), of �1

and �2 to write

� D

�X
j2Z

�2j �1

��X
k2Z

�2k�2

�
D

X
j2Z

.�2j �1/�
j
3
C

X
j2Z

.�2j �2/�
j
4
;

where

�
j
3
D

X
k2Z
k�j

�2k�2 D F�1

�
 0

�
r

2jC1

��
� �2; �

j
4
D

X
k2Z
k<j

�2k�1 D F�1

�
 0

�
r

2j

��
� �1:

In view of the linearity of the operator Tt with respect to the cutoffs � or � , we only need to verify the
finiteness of the constants in (5-11) with �2j �1 and �j

3
playing the roles of �1 and �2, respectively, and

then with �2j �2 and �j
4

instead of �1 and �2, respectively. It is to be emphasized here that the ensuing
bounds on the cutoffs will then depend on j 2 Z. In order to guarantee the boundedness of Tt , we will
therefore need to make sure that our method eventually yields constants that are summable in j 2 Z.

We evaluate now the norms involved in the right-hand side of (5-11) where we replace �1 by �2j �1

(or �2j �2) and �2 by �j
3

(or �j
4

). The bounds on �2j �2 and �j
4

are handled in a strictly similar manner
and so we omit the corresponding details.

First, note that a direct application of Lemma B.3 from Appendix B together with the fact that �1 and
�2 are smooth so that their Fourier transforms decay faster than any inverse power at infinity, shows that
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for any arbitrarily large N > 0.
Furthermore, in view of Lemma B.4, it holds that each �j

3
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uniformly in j 2 Z.
Therefore, using the bounds (5-13) and (5-14) to evaluate the terms involving �1D�2j �1 and �2 D �

j
3

in the right-hand side of (5-11), we compute that the corresponding norm of the operator in (5-11) is no
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larger than a multiple of�
2
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2

1C 2jN

�1
2

 
1

2
j
2 .1C 2jN /

!1
2

2
j
4 .1C 2j /

1
2 � C

2
j
4

.1C 2j /N�
1
2

;

which is summable over j 2 Z, provided N > 3
4

.
Thus, we conclude, according to Proposition 5.3, that the operators in the right-hand side of (5-12) are

bounded.
It follows that, for any 0< t < 1,
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where C > 0 only depends on constant parameters. �

6. The higher-dimensional case

We move on now to the higher-dimensional case. More precisely, in the present section, we generalize the
methods leading to Theorem 5.4 to establish an analog result valid in any dimension. Unfortunately, the
ensuing result does not reach a maximal gain of regularity of half a derivative on the velocity averages,
but only a gain of n

4.n�1/
derivatives, where n� 3 is the dimension. This drawback mainly stems from

the fact that we work in the L4
x setting, because our methods exploit the trivial fact that the exponent 4 is

an even integer in order to control the square of some transport operator in L2
x rather than the operator

itself in L4
x .

We begin with a few technical results. Loosely speaking, a key idea behind Proposition 5.2 consisted
in noticing that S�t g.x; v/ is regular along the direction v and then using some duality argument in L4

x to
gain an integration variable in another nondegenerate direction. In higher dimensions, in order to carry
out a similar strategy, we need to gain integration variables in n� 1 nondegenerate directions. The next
few lemmas will allow us to achieve such a dimensional build up of integration variables.

The following lemma generalizes estimate (5-8) from the proof of Proposition 5.2 and corresponds to
a situation where we have already managed to build up the integration dimension all the way up to n

(notice the n-dimensional integration in S in the estimate below).

Lemma 6.1. In any dimension n� 2, let 0< s < 1
2

, r1 > 0 and �2 2 S.R/ be such that Q�2 has its support
contained inside a ball of radius r2 > 0 centered at the origin.
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for all t ¤ 0 such that jt j � 1, where C > 0 is independent of k, r1, r2 and �2.
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Proof. We assume that fv2; : : : ; vng is a linearly independent set of vectors, which holds almost everywhere,
and denote its span by H. Further let u1 2 Rn be a unit vector orthogonal to H. The specific choice
of unit vector is irrelevant, any such vector will do. Note that det.u1; v2; : : : ; vn/¤ 0. Moreover, since
v1 � .v1 � u1/u1 belongs to H and recalling that the determinant is linear with respect to each of its
column vectors, it holds that

det.v1; : : : ; vn/D v1 �u1 det.u1; v2; : : : ; vn/:

We wish now to perform the change of variable z D z.S/ D
Pn
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However, this operation becomes singular as v1 approaches H, that is, as v1 �u1 becomes small. Therefore,
in order to deal with this degeneracy, we consider the following partition in v1 of Sn�1:
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where C > 0 only depends on the dimension.
Now, on each domain Si , with 2i � r02k2s , the Jacobian determinant (6-1) remains bounded away

from zero. More precisely, for every v1 2 Si , it holds that
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where we have used that, for each S 2 Œ�r1; r1�
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and � 2 C1c .R/ is a smooth cutoff function such that 1fjsj�1g � �.s/� 1fjsj�2g.
Further integrating (6-4) in v1 2 Si and then applying Proposition 5.1, we find that
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where C > 0 only depends on the dimension. Moreover, a direct application of Lemma A.1 from
Appendix A on paradifferential calculus yields
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for every i; k 2 N such that 2i � r02k2s , where C > 0 is independent of i , k and r0, whence

jtn det.u1; v2; : : : ; vn/j

Z
Si

Z
Œ�r1;r1�n

ˇ̌̌̌
S2�

t gk

�
xC

nX
jD1

sj tvj ; v1

�ˇ̌̌̌2
dS dv1

� C
rn
0

jt j2s2k2s

 




 �2.r/

jr j
1
2
�s







2

L2

Ck.1Cjr js/�2.r/k
2
L1

!
kgk2L1 ; (6-5)

where C > 0 is independent of i , k, r0 and �2.
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On the whole, combining (6-2), which is valid when 2i > r02k2s, with (6-5), which is valid when
2i � r02k2s, we arrive atZ
Œ�r1;r1�n

Z
Sn�1

ˇ̌̌̌
S2�

t gk

�
xC

nX
jD1

sj tvj ; v1

�ˇ̌̌̌2
dv1 dS

D

X
2i�r02k2s

Z
Œ�r1;r1�n

Z
Si

ˇ̌̌̌
S2�

t gk

�
xC

nX
jD1

sjvj ; v1

�ˇ̌̌̌2
dv1 dS

C

Z
Œ�r1;r1�n

Z
S

2i>r02k2s Si

ˇ̌̌̌
S2�

t gk

�
xC

nX
jD1

sjvj ; v1

�ˇ̌̌̌2
dv1 dS

�
C

jdet.u1; v2; : : : ; vn/jjt j2s

 




 �2.r/

jr j
1
2
�s







2

L2

Ck.1Cjr js/�2.r/k
2
L1

!
�

X
2i�r02k2s

rn
0

jt jn2k2s
kgk2L1 C

C rn
1

r02k2s
k Q�2k

2
L1 kgk

2
L1

� C
.kC 1/.r1C r2/

n log.2C r1C r2/

jdet.u1; v2; : : : ; vn/jjt j2s2k2s

�

 




 �2.r/

jr j
1
2
�s







2

L2

Ck.1Cjr js/�2.r/k
2
L1

!
kgk2L1 C

C rn�1
1

jt j2k2s
k Q�2k

2
L1 kgk

2
L1 : (6-6)

Note that, when nD 2, the proof is then finished for jdet.u1; v2/j D 1. Therefore, when n� 3, there
only remains to show that

sup
vn2Sn�1

Z
Sn�1

� � �

Z
Sn�1

1

jdet.u1; v2; : : : ; vn/j
dv2 � � � dvn�1 <1; (6-7)

which will clearly conclude the proof of the lemma upon integrating (6-6) in velocities .v2; : : : ; vn�1/

and combining the resulting estimate with (6-7).
In fact, the control (6-7) easily follows from a careful use of integration in spherical coordinates.

Indeed, for each 2� j � n� 1 and any choice of orthonormal vectors fujC1; : : : ;ung, one has that (the
unit vector u1 is characterized here by the fact that it is orthogonal to the set fv2; : : : ; vj ;ujC1; : : : ;ung)Z

Sn�1

� � �

Z
Sn�1

1

jdet.u1; v2; : : : ; vj ;ujC1; : : : ;un/j
dv2 � � � dvj

D

Z
Sj�1?fujC1;:::;ung

�Z
Sn�1

� � �

Z
Sn�1

1

jdet.u1; v2; : : : ; vj�1;uj ; : : : ;un/j
dv2 � � � dvj�1

�
duj

�

Z �

0

� � �

Z �

0

sinn�3 �n � � � sinj�2 �jC1 d�jC1 � � � d�n

� C sup
uj2Sn�1

uj �uiD0
for all iDjC1;:::;n

Z
Sn�1

� � �

Z
Sn�1

1

jdet.u1; v2; : : : ; vj�1;uj ; : : : ;un/j
dv2 � � � dvj�1:
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Note that the unit vector u1 above is also characterized by the fact that it is orthogonal to the set
fv2; : : : ; vj�1;uj ; : : : ;ung. Hence, we deduce, for every 2� j � n� 1, that

sup
ujC1;:::;un2Sn�1

ui �ukD0 if i¤k

Z
Sn�1

� � �

Z
Sn�1

1

jdet.u1; v2; : : : ; vj ;ujC1; : : : ;un/j
dv2 � � � dvj

� C sup
uj ;:::;un2Sn�1

ui �ukD0 if i¤k

Z
Sn�1�����Sn�1

1

jdet.u1; v2; : : : ; vj�1;uj ; : : : ;un/j
dv2 � � � dvj�1:

Applying now the preceding estimate n� 2 times to reduce iteratively the number of integrations over
spheres, we find that

sup
vn2Sn�1

Z
Sn�1

� � �

Z
Sn�1

1

jdet.u1; v2; : : : ; vn/j
dv2 � � � dvn�1

� C sup
uj ;:::;un2Sn�1

ui �ukD0 if i¤k

Z
Sn�1�����Sn�1

1

jdet.u1; v2; : : : ; vj�1;uj ; : : : ;un/j
dv2 � � � dvj�1

� C sup
u2;:::;un2Sn�1

ui �ukD0 if i¤k

1

jdet.u1;u2; : : : ;un/j
;

where the unit vector u1 is orthogonal to fu2; : : : ;ung, which implies

jdet.u1;u2; : : : ;un/j D 1;

and thus establishes (6-7). �

For convenience, we introduce now, for any integer N � 2, setting S D .s2; : : : ; sN�1/ 2 RN�2 and
V D .v1; : : : ; vN�1/ 2 .S

n�1/N�1, the following nonlinear operator:

IN gD

Z
Rn

Z
Sn�1

jS�t g.x; vN /j
2

�Z
Œ�r1;r1�N�2

Z
.Sn�1/N�1

ˇ̌̌̌
S�t g

�
xC

N�1X
jD2

sj tvj ; v1

�ˇ̌̌̌2
dV dS

�
dvN dx:

In particular, when N D 2, we have I2g D kS�t gk4
L4

xL2
v

.
Recall that, employing (5-5), it is possible to extract a one-dimensional integration from S�t g.x; vN /

and S�t g
�
xC

PN�1
jD2 sj tvj ; v1

�
along vN and v1, respectively. Therefore, it is possible, at least formally,

to gain an N -dimensional spatial integration in the above integrand by exploiting the integration along
the variables sj . Thus, loosely speaking, the number N represents the expected gain of spatial dimension
on the domain of integration in IN .

Prior to delving any further into our proofs, we take some time now to explain the general strategy
behind the dimensional build up which will eventually allow us to apply Lemma 6.1 and establish the
boundedness of S�t WL

4
x!W

s;4
x L2

v for any 0� s < n
4.n�1/

, in Proposition 6.6, below.
More precisely, the aforementioned boundedness of S�t will be shown to follow from four properties

of the nonlinear operator IN :
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� For N D 2,

I2hD kS�t hk4
L4

xL2
v
: (6-8)

This property is a direct interpretation of the definition of I2.

� For N D n and any 0< s < 1
2

, assuming for simplicity that h.x/ has frequencies localized inside an
annulus of inner and outer radii comparable to 2k, with k 2 N,

Inh�
C

2k4s
khk2

L2
x
khk2L1x

; (6-9)

where C > 0 is independent of k. This estimate displays a gain of regularity, is a consequence of
Lemma 6.1 and is established in Lemma 6.2, below.

� For any N � 2,

.IN h/2 � kS�t hk4
L4

xL2
v
I2N�2h; (6-10)

which is a simple consequence of the Cauchy–Schwarz inequality (in x) followed by a careful change of
variable. This estimate is established in Lemma 6.3, below.

� For any N � 2,

.IN h/2 � CkS2�hk4
L4

x;v
I2N�1h; (6-11)

where C > 0 is an independent constant, which is a direct consequence of an application of (5-5) followed
by a careful use of the Cauchy–Schwarz inequality with a change of variable. This estimate is established
in Lemma 6.4, below.

The rule of the game of dimensional build up will then consist in employing estimates (6-10) and (6-11)
to go from (6-8) to (6-9). In other words, by exploiting the mappings N 7! 2N � 2 and N 7! 2N � 1,
for integers N � 2, we want to go from 2 to the dimension n. The fact that such a dimensional build up
is actually possible is explained by the simple yet tricky Lemma 6.5, below.

Eventually, the appropriate combination of these estimates (and the handling of more technical
difficulties) will give rise to the main result of this section, namely Theorem 6.8.

We proceed now with the actual preliminary results leading to Theorem 6.8.
For the sake of simplicity of notation, from now on, the variable S will denote the vector whose

components are any number of integration variables sj 2 Œ�r1; r1�, whereas the variable V will denote
the vector whose components are any number of integration variables vj 2 Sn�1. At each step of our
proofs, the exact meaning of S and V will be easily deduced from a careful inspection of the integrands
and domains of integration.

Applying the preceding lemma combined with Proposition 5.1 to the above nonlinear operator IN ,
when N D n is the dimension, yields the following result.

Lemma 6.2. In any dimension n� 2, let 0< s < 1
2

and �1; �2 2 S.R/ be such that Q�1 and Q�2 have their
supports contained inside balls of radii r1; r2 > 0, respectively, centered at the origin.
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Then, it holds that, for any k 2 N,

In�2k g �
C.kC 1/

t22k4s
k Q�1k

2
L1 k Q�1k

2
L1.r1C r2/

n�1.1C r1C r2/
2

�

 




 �2.r/

jr j
1
2
�s







L2

Ck.1Cjr js/�2.r/kL1 Ck Q�2kL1

!4

kgk2
L2

x
kgk2L1x

for all t ¤ 0 such that jt j � 1, where C > 0 only depends on fixed parameters.

Proof. In view of the simple estimate (5-5), it holds that

In�2k g � k Q�1k
2
L1 k Q�1k

2
L1

Z
Rn

Z
Sn�1

Z
Œ�r1;r1�

jS2�
t �2k g.xC sntvn; vn/j

2 dsn

�

�Z
Œ�r1;r1�n�1

Z
.Sn�1/n�1

ˇ̌̌̌
S2�

t �2k g

�
xC

n�1X
jD1

sj tvj ; v1

�ˇ̌̌̌2
dV dS

�
dvn dx

� k Q�1k
2
L1 k Q�1k

2
L1

Z
Rn

Z
Sn�1

jS2�
t �2k g.x; vn/j

2

�

�Z
Œ�r1;r1�n

Z
.Sn�1/n�1

ˇ̌̌̌
S2�

t �2k g

�
xC

nX
jD1

sj tvj ; v1

�ˇ̌̌̌2
dV dS

�
dvn dx

� k Q�1k
2
L1 k Q�1k

2
L1 kS

2�
t �2k gk2

L2
x;v

� sup
x2Rn

vn2Sn�1

Z
Œ�r1;r1�n

Z
.Sn�1/n�1

ˇ̌̌̌
S2�

t �2k g

�
xC

nX
jD1

sj tvj ; v1

�ˇ̌̌̌2
dV dS:

Therefore, applying Proposition 5.1 and Lemma 6.1 to the preceding estimate yields

In�2k g �
C.kC 1/

t22k4s
k Q�1k

2
L1 k Q�1k

2
L1.r1C r2/

n�1.1C r1C r2/
2

�

 




 �2.r/

jr j
1
2
�s







L2

Ck.1Cjr js/�2.r/kL1 Ck Q�2kL1

!4

kgk2
L2

x
kgk2L1x

: �

The next result explains how to increase the expected dimension of the domain of integration in the
nonlinear operator IN from N to 2N � 2.

Lemma 6.3. In any dimension n� 2, it holds that, for any integer N � 2,

.IN g/2 � kS�t gk4
L4

xL2
v
I2N�2g:

Proof. First, by the Cauchy–Schwarz inequality, we find

IN gD

Z
Rn

�Z
Sn�1

jS�t g.x;vN /j
2 dvN

��Z
Œ�r1;r1�N�2

Z
.Sn�1/N�1

ˇ̌̌̌
S�t g

�
xC

N�1X
jD2

sj tvj ;v1

�ˇ̌̌̌2
dV dS

�
dx

�kS�t gk2
L4

xL2
v





Z
Œ�r1;r1�N�2

Z
.Sn�1/N�1

ˇ̌̌̌
S�t g

�
xC

N�1X
jD2

sj tvj ;v1

�ˇ̌̌̌2
dV dS






L2

x

;
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whence

.IN g/2 � kS�t gk4
L4

xL2
v

Z
Rn

�Z
Œ�r1;r1�N�2

Z
.Sn�1/N�1

ˇ̌̌̌
S�t g

�
xC

2N�3X
jDN

sj tvj ; v2N�2

�ˇ̌̌̌2
dV dS

�

�

�Z
Œ�r1;r1�N�2

Z
.Sn�1/N�1

ˇ̌̌̌
S�t g

�
xC

N�1X
jD2

sj tvj ; v1

�ˇ̌̌̌2
dV dS

�
dx:

Then, exploiting the integration in x to transfer the term
P2N�3

jDN sj tvj in the above integrand, we deduce
that

.IN g/2�kS�t gk4
L4

xL2
v

Z
Rn

Z
Sn�1

jS�t g.x;v2N�2/j
2

�

�Z
Œ�r1;r1�2N�4

Z
.Sn�1/2N�3

ˇ̌̌̌
S�t g

�
xC

2N�3X
jD2

sj tvj ;v1

�ˇ̌̌̌2
dV dS

�
dv2N�2 dx: �

The next result explains how to increase the expected dimension of the domain of integration in the
nonlinear operator IN from N to 2N � 1.

Lemma 6.4. In any dimension n � 2, let �1 2 S.R/ be such that Q�1 has its support contained inside a
ball of radius r1 > 0 centered at the origin.

Then, it holds that, for any integer N � 2,

.IN g/2 � 4k Q�1k
2
L1 k Q�1k

2
L1 r1kS

2�
t gk4

L4
x;v

I2N�1g:

Proof. First, in view of the simple estimate (5-5), one has

IN g�k Q�1kL1 k Q�1kL1

Z
Rn

Z
Sn�1

Z
Œ�r1;r1�

jS2�
t g.xCsN tvN ;vN /j

2 dsN

�

�Z
Œ�r1;r1�N�2

Z
.Sn�1/N�1
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S�t g

�
xC

N�1X
jD2

sj tvj ;v1

�ˇ̌̌̌2
dV dS

�
dvN dx

Dk Q�1kL1 k Q�1kL1

Z
Rn

Z
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jS2�
t g.x;vN /j

2

�

�Z
Œ�r1;r1�N�1

Z
.Sn�1/N�1

ˇ̌̌̌
S�t g

�
xC

NX
jD2

sj tvj ;v1

�ˇ̌̌̌2
dV dS

�
dvN dx

Dk Q�1kL1 k Q�1kL1

Z
Rn

Z
Sn�1

�
jS2�

t g.x;vN /j
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CjS2�

t g.x;�vN /j
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Œ0;r1�
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Z
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�
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NX
jD2

sj tvj ;v1
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dV dS dsN

�
dvN dx:
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Hence, by the Cauchy–Schwarz inequality, we find

.IN g/2 � 4k Q�1k
2
L1 k Q�1k

2
L1 kS

2�
t gk4

L4
x;v

�
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Œ�r1;r1�N�2

Z
.Sn�1/N�1

ˇ̌̌̌
S�t g

�
xC

NX
jD2

sj tvj ; v1

�ˇ̌̌̌2
dV dS dsN





2

L2
x;vN

D 4k Q�1k
2
L1 k Q�1k

2
L1 kS
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t gk4

L4
x;v

�

Z
Rn

Z
Sn�1
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Z
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Z
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�
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2N�2X
jDN

sj tvj ; v2N�1

�ˇ̌̌̌2
dV dS dsN

�
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Z
Œ�r1;r1�N�2

Z
.Sn�1/N�1

ˇ̌̌̌
S�t g

�
xC

NX
jD2

sj tvj ; v1

�ˇ̌̌̌2
dV dS dsN

�
dvN dx:

Finally, exploiting the integration in x to transfer first the term sN tvN and then the term
P2N�2

jDNC1 sj tvj

in the above integrand, we deduce that

.IN g/2 � 4k Q�1k
2
L1 k Q�1k

2
L1r1kS

2�
t gk4

L4
x;v

�

Z
Rn

Z
Sn�1

�Z
Œ�r1;r1�N�2

Z
.Sn�1/N�2

ˇ̌̌̌
S�t g

�
xC

2N�2X
jDNC1

sj tvj ; v2N�1

�ˇ̌̌̌2
dV dS

�

�

�Z
Œ�r1;r1�N�1

Z
.Sn�1/N

ˇ̌̌̌
S�t g

�
xC

NX
jD2

sj tvj ; v1

�ˇ̌̌̌2
dV dS

�
dv2N�1 dx

D 4k Q�1k
2
L1 k Q�1k

2
L1r1kS

2�
t gk4

L4
x;v

�

Z
Rn

Z
Sn�1

jS�t g.x; v2N�1/j
2

�

�Z
Œ�r1;r1�2N�3

Z
.Sn�1/2N�2

ˇ̌̌̌
S�t g

�
xC

2N�2X
jD2

sj tvj ; v1

�ˇ̌̌̌2
dV dS

�
dv2N�1 dx: �

The following result is a simple technical lemma which, at first, may seem somewhat unrelated but
will prove very useful later on for building up dimensions in the proof of Proposition 6.6.

Lemma 6.5. Let the mappings ƒ0; ƒ1 W N n f0; 1g ! N n f0; 1g be defined by

ƒ0k D 2k � 2 and ƒ1k D 2k � 1:

Then, for any integer n� 3, there exists L 2 N and a0; a1; : : : ; aL 2 f0; 1g such that

nDƒa0
ƒa1
� � �ƒaL

2;

and

n� 2D

LX
kD0

ak2k :

Moreover, the above decomposition is unique provided aL D 1.
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Proof. We introduce first the auxiliary mappings zƒ0; zƒ1 W N! N defined by

zƒ0k D 2k and zƒ1k D 2kC 1:

In particular, for any k 2 N, it holds that

.zƒ0k/C 2Dƒ0.kC 2/ and .zƒ1k/C 2Dƒ1.kC 2/:

Next, let L 2 N and a0; a1; : : : ; aL 2 f0; 1g be the parameters appearing in the dyadic decomposition
of the positive integer n� 2:

n� 2D

LX
kD0

ak2k :

Note that, assuming aL D 1, the above choice of parameters is unique. Then, we have

n� 2D zƒa0

�L�1X
kD0

akC12k

�
D zƒa0

zƒa1

�L�2X
kD0

akC22k

�
D � � � D zƒa0

zƒa1
� � � zƒaL

0:

It finally follows that

nD 2C zƒa0
zƒa1
� � � zƒaL

0

Dƒa0
.2C zƒa1

� � � zƒaL
0/

Dƒa0
ƒa1

.2C zƒa2
� � � zƒaL

0/D � � � Dƒa0
ƒa1
� � �ƒaL

2: �

Notice that, using the language of Lemma 6.5, it is possible to unify Lemmas 6.3 and 6.4 in the
following estimate, for any N � 2:

.IN g/2 � .4k Q�1k
2
L1 k Q�1k

2
L1r1/

a
kS�t gk

4.1�a/

L4
xL2

v

kS2�
t gk4a

L4
x;v

IƒaN g; (6-12)

where a 2 f0; 1g.
Now, appropriately combining Lemmas 6.2, 6.3 and 6.4, with the help of Lemma 6.5, we arrive at our

main estimate on the operator S�t , which is recorded in the next proposition and generalizes Proposition 5.2
to higher dimensions.

Proposition 6.6. In any dimension n � 3, let 2 � p � 4, 0 � s < s0 <
1
2

and �1; �2 2 S.R/ be such
that Q�1 and Q�2 have their supports contained inside balls of radii r1; r2 > 0, respectively, centered at the
origin.

Then, the operator S�t satisfies the estimate

k.1��x/
.2nCp�4/s

2p.n�1/ S�t gkLp
xL2

v
�

C

jt j
n

4.n�1/

k Q�1k
1
2

L1 k Q�1k
1
2

L1
.r1C r2/

2n�3
4.n�1/ .1C r1C r2/

1
2.n�1/

�

�



 �2.r/

jr j
1
2
�s0






L2

Ck.1Cjr js0/�2.r/kL1 Ck Q�2kL1

�
kgkLp

x

for all t ¤ 0 such that jt j � 1, where C > 0 only depends on fixed parameters.
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Proof. First, notice that, for any 2� p �1,

kS�t gkLp
xL2

v
� kS�t gkL2

vL
p
x
� jSn�1

j
1
2 k Q�kL1 kgkLp

x
: (6-13)

As for the regularity estimate, we employ the standard Littlewood–Paley dyadic frequency decomposi-
tion previously introduced to estimate gk D�2k g for any k � 0.

To this end, we first decompose the dimension n� 3 according to Lemma 6.5,

nDƒa0
ƒa1
� � �ƒaL

2;

where L 2 N and a0; a1; : : : ; aL 2 f0; 1g, and then apply successively estimate (6-12) to deduce that

kS�t gkk
2LC1

L4
xL2

v
D .I2gk/
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� .4k Q�1k
2
L1 k Q�1k

2
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xL2
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Hence, it follows that
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Next, further applying Proposition 5.1 and Lemma 6.2 to the preceding bound yields
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where C > 0 is an independent constant.
The remainder of the demonstration follows the arguments from the end of the proof of Proposition 5.2,

which we adapt to the present setting for completeness and convenience of the reader.



MAXIMAL GAIN OF REGULARITY IN VELOCITY AVERAGING LEMMAS 373

Thus, in order to conclude, we write jg.x/j D
R1

0 1fjg.x/j�sg ds to deduce from the preceding estimate,
assuming g is nonnegative, that
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where L
4;1
x denotes a standard Lorentz space; see [Bergh and Löfström 1976, Section 1.3] or [Grafakos

2008, Section 1.4] for definitions and properties of Lorentz spaces. When, g is signed, we arrive at the
same estimate simply by decomposing g D gC�g� into its positive and negative parts, treating each
contribution separately, and then noticing that
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Moreover, by allowing an arbitrarily small loss of regularity, that is, by replacing 0< s < 1
2

by a slightly
smaller value, it is possible to replace the Lorentz space L

4;1
x by the standard Lebesgue space L4

x in the
right-hand side of the above estimate.

Therefore, on the whole, for any 0� s < s0 <
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, we have established the estimate
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where C > 0 only depends on constant parameters, which, when combined with the easy bound (6-13)
for low frequencies, yields
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Finally, since S�t commutes with differentiation in x and recalling from complex interpolation theory,
see [Bergh and Löfström 1976, Sections 5.1 and 6.4], that, for any 2< p < 4,
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we conclude the proof of the proposition by interpolating the estimate (6-14) with the classical estimate
on S�t from Proposition 5.1. �

Next, we utilize the previous result on the adjoint operator S�t to deduce corresponding estimates on
Tt and T �t .

Proposition 6.7. In any dimension n� 3, let 4
3
� r � 2, 2� p � 4, 0� s < s0 <

1
2

and �1; �2 2 S.R/
be such that Q�1 and Q�2 have their supports contained inside balls of radii r1; r2 > 0, respectively, centered
at the origin.

Then, the operators Tt and T �t satisfy the estimates
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and
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for all t ¤ 0 such that jt j � 1, where C > 0 only depends on fixed parameters.

Proof. It is readily seen that
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Therefore, for any 2� p �1, we compute in polar coordinates, recalling that the support of the velocity
weight ' 2L1c .R

n/ is contained inside a closed ball of radius R> 0 centered at the origin,
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Then, combining Proposition 6.6 with the above estimate, we find
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where C > 0 is an independent constant, which establishes the estimate on T �t .
The estimate on Tt is then easily deduced from the estimate on T �t by a duality argument, which

completes the proof of the proposition. �

We proceed now to the main theorem of this section.

Theorem 6.8. In any dimension n� 3, let 4
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Furthermore, one has the estimate



.1��x/
s
2

Z
Rn

f ' dv






Lr

x

� C.kf kLr
xL2

v
CkgkLr

xL2
v
/;

where C > 0 only depends on ' and constant parameters.

Proof. This demonstration follows the same ideas as the proof of Theorem 5.4. Nevertheless, for the sake
of clarity and convenience of the reader, we provide a complete justification of this result.

We consider first the refined interpolation formula (2-1), which is valid for solutions of the transport
equation (1-2), for some given cutoff � 2 S.R/. Clearly, further differentiating (2-1) in x and then
averaging in v yields
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We wish now to apply Proposition 6.7 to the preceding estimate. To this end, according to (5-4), we
take the decompositions

�.r/D �1.r/�2.r/ and �.r/D
1� �.r/

i r
D �1.r/�2.r/;

where
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1
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1
4

;

Q�2.r/ 2 C1c .R/; �2.r/D .1C r2/
1
4 �.r/:

Clearly, all constants involving norms of the cutoff functions �1 and �2 in the right-hand side of (5-11)
are finite and we may therefore straightforwardly apply Proposition 6.7 to control the first term in the
right-hand side of (6-16). However, the same is not so obviously true concerning the cutoff functions
�1 and �2. The application of Proposition 6.7 to the second term in the right-hand side of (6-16) will
therefore require some substantial technical work, which we present now.

To this end, we employ a homogeneous Littlewood–Paley frequency decomposition, see (5-3), of �1

and �2 to write that
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In view of the linearity of the operator Tt with respect to the cutoffs � or � , we only need to verify the
finiteness of the constants in (6-15) with �2j �1 and �j

3
playing the roles of �1 and �2, respectively, and

then with �2j �2 and �j
4

instead of �1 and �2, respectively. It is to be emphasized here that the ensuing
bounds on the cutoffs will then depend on j 2 Z. In order to guarantee the boundedness of Tt , we will
therefore need to make sure that our method eventually yields constants that are summable in j 2 Z.

We evaluate now the norms involved in the right-hand side of (6-15) where we replace �1 by �2j �1

(or �2j �2) and �2 by �j
3

(or �j
4

). The bounds on �2j �2 and �j
4

are handled in a strictly similar manner
and so we omit the corresponding details.

First, note that a direct application of Lemma B.3 from Appendix B together with the fact that �1 and
�2 are smooth so that their Fourier transforms decay faster than any inverse power at infinity, shows that
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(6-17)

for any arbitrarily large N > 0.
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Figure 2. Range of validity of the parameters 1
r

and s in Theorem 6.8 extended by
interpolation with the degenerate L1 case.

Furthermore, in view of Lemma B.4, it holds that each �j
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uniformly in j 2 Z.
Therefore, using the bounds (6-17) and (6-18) to evaluate the terms involving �1D�2j �1 and �2D �

j
3

in the right-hand side of (6-15), we compute that the corresponding norm of the operator in (6-15) is no
larger than a multiple of�
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which is summable over j 2 Z, provided N > 2n�1
4.n�1/

.
Thus, we conclude, according to Proposition 6.7, that the operators in the right-hand side of (6-16) are

bounded.
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It follows that, for any 0< t < 1,
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where C > 0 only depends on constant parameters. �

As already mentioned at the end of our Introduction, it is possible that Theorem 6.8 may be largely
improved. In fact, the formal interpolation result (1-3) seems to indicate that Theorem 6.8 should hold for
all parameters 2n

nC1
� r � 2 and 1� s < 1

2
. The range of parameters defined by 3

4
� r � 2 and
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would then be recovered by interpolation with the degenerate L1 case.

Indeed, Figure 2 represents the range of validity of the parameters 1
r

and s in Theorem 6.8 extended
by interpolation with the degenerate L1 case. More precisely, Theorem 6.8 handles the region bounded
by the points
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; 0
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,
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3
4
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,
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and
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, which yields the shaded region in Figure 2 when

interpolated with the trivial L1 case corresponding to the point .1; 0/. Observe that the points
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and .1; 0/ are all supported by the same line. It seems therefore natural to conjecture that

a similar result should hold for all parameters encompassed by the area delimited by the points
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,
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�
and
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�
; see [Arsénio 2015] for more on such conjectures. This situation strongly

resembles the corresponding existing conjectures for the boundedness of Bochner–Riesz multipliers and
Fourier restriction operators.

Appendix A. Some paradifferential calculus

In this appendix, we record for reference a useful technical lemma. The proof of this lemma is based on
classical methods from paradifferential calculus and paraproduct decompositions.

Lemma A.1. Let �1 2 S.Rn�1/ and �2 2 S.R/. For each i 2 N and L> 0, we define
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Proof. We first write a standard paraproduct decomposition (see (5-3) for the definition of dyadic blocks
and the Littlewood–Paley decomposition):
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It is then easy to see that in the right-hand side above

(1) the first term has frequencies localized inside an annulus of inner radius 2k�2 and outer radius 9�2k�2,

(2) the second term has frequencies localized inside a ball of radius 5 � 2kC1,

(3) each summand in the third term has frequencies localized inside an annulus of inner radius 2j�2 and
outer radius 9 � 2j�2.

Accordingly, we estimate that
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There only remains to control the terms k�2j hL
i kL2 above. To this end, noticing that
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Hence, recalling that both O�1 and O�2 decay faster than any inverse power at infinity, we find, for any
given large N1;N2 > 0,
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so that, choosing N1 and N2 such that

N1�
n�1

2
DN2�

1

2
�

s

1��
;

we get

k�2j hL
i kL2 � C

L
n
2

2
i
2 2ks

; (A-2)

where C > 0 is independent of i , k and L.
On the whole, incorporating (A-2) into (A-1) yields

k.1��/�
s
2 ..�2k g/hL

i /kL2 �
CL

n
2

2
i
2 2ks
kgkL1 : �

Appendix B. Boundedness of Fourier transforms in Lp, with 1 � p < 2

For reference, we show here a few handy criteria for establishing the boundedness in Lebesgue spaces Lp,
with 1� p < 2, of Fourier transforms of given functions.

Lemma B.1. Let f .x/ 2 C ˛.Rn/, for some given ˛ 2 N, be such that

sup

2Nn

j
 j�˛

jxjj
 jj@
xf .x/j �
C

.1Cjxj/�
for all x 2 Rn; (B-1)

for some � > 0.
Then, the Fourier transform Of belongs to Lp.Rn/ for any 1� p < 2 satisfying

˛ > n
�

1

p
�

1

2

�
and � > n

�
1�

1

p

�
: (B-2)

In particular, for any given 1� p < 2 and any ˇ > 1
p0

, the Fourier transform of .1Cjxj2/�
nˇ
2 belongs

to Lp.Rn/.

Proof. Let  0.x/;  .x/ 2 C1c .Rn/ be compactly supported smooth cutoff functions, whose supports
satisfy

supp 0 � fjxj � 1g and supp �
˚

1
2
� jxj � 2

	
;

and such that

 0.x/C

1X
jD0

 

�
x

2j

�
D 1 for all x 2 Rn:

We define g.�/; hj .�/ 2 S.Rn/, for each j 2 N, by the inverse Fourier transforms

Qg.x/D  0.x/f .x/ and Qhj .x/D  

�
x

2j

�
f .x/;

so that
Of .�/D g.�/C

1X
jD0

hj .�/ in S 0.Rn/: (B-3)
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Then, for any 1�p< 2 satisfying (B-2), so that .2p˛/=.2�p/>n, and by Hölder’s inequality, we haveZ
Rn

jg.�/jp d�D

Z
Rn

.1Cj�j/p˛jg.�/jp
1

.1Cj�j/p˛
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;

and, similarly,Z
Rn
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Z
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p 1
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2

;

where C > 0 only depends on p, ˛ and the dimension.
Next, since

.1C 2j
j�j/˛ � C

�
1C 2j˛

nX
iD1

j�i j
˛

�
;

it follows from Plancherel’s theorem that
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and, further using (B-1),
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Hence, for any large N 2 N, since �� n
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N2N





g.�/C

NX
jD0

hj .�/






Lp

� C

1X
jD0

2jn.1� 1
p
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Therefore, according to (B-3), we deduce that the tempered distribution Of coincides with the weak limit
of functions uniformly bounded in Lp, which implies that Of 2Lp for any 1� p < 2 satisfying (B-2). �

Lemma B.2. Let f .x/ 2 C ˛.Rn n f0g/, for some given ˛ 2 N, be such that

sup

2Nn

j
 j�˛

jxjj
 jj@
xf .x/j �
C jxj�

.1Cjxj/�C�
for all x 2 Rn

n f0g; (B-4)

for some � > 0 and � > ��.
Then, the Fourier transform Of belongs to Lp.Rn/ for any 1� p < 2 satisfying

˛ > n
�

1

p
�

1

2

�
and � > n

�
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1

p

�
> ��: (B-5)

In particular, for any given 1�p<2 and any ˇ> 1
p0
>�ı, the Fourier transform of jxjnı.1Cjxj2/�

n.ˇCı/
2

belongs to Lp.Rn/.

Proof. Let  .x/ 2 C1c .Rn/ be a compactly supported smooth cutoff function whose support satisfies

supp �
˚

1
2
� jxj � 2

	
;

and such that X
j2Z

 

�
x

2j

�
D 1 for all x 2 Rn

n f0g:

We define hj .�/ 2 S.Rn/, for each j 2 Z, by the inverse Fourier transforms

Qhj .x/D  

�
x

2j

�
f .x/;

so that
Of .�/D

X
j2Z

hj .�/ in S 0.Rn/: (B-6)

Then, for any 1� p < 2 satisfying (B-5), so that .2p˛/=.2�p/ > n, and by Hölder’s inequality, we
have Z

Rn

jhj .�/j
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Z
Rn
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;

where C > 0 only depends on p, ˛ and the dimension.
Next, since

.1C 2j
j�j/˛ � C

�
1C 2j˛

nX
iD1

j�i j
˛

�
;
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it follows from Plancherel’s theorem and (B-4) that
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Hence, for any large N 2 N, since �� n
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<1:

Therefore, according to (B-6), we deduce that the tempered distribution Of coincides with the weak limit
of functions uniformly bounded in Lp, which implies that Of 2Lp for any 1� p < 2 satisfying (B-5). �

Lemma B.3. Let f .x/ 2 C 1.R n f0g/ be such that

jf .x/j; jxf 0.x/j �
C

jxj�
for all x 2 Rn

n f0g;

for some 0< � < 1.
Then, the Fourier transform Of belongs to L1CL1 and satisfies

j Of .�/j �
C

j�j1��
for almost every � 2 Rn;

for some independent constant C > 0.

Proof. Consider a cutoff � 2 C1c .R/ such that 1fjxj�1g � �.x/ � 1fjxj�2g. Then, on the one hand,
the function �.x/f .x/ clearly is integrable so that its Fourier transform is bounded pointwise almost
everywhere. On the other hand, the function .1��/.x/f .x/ clearly verifies the hypotheses of Lemma B.1
so that its Fourier transform always coincides with an integrable function. This establishes that Of 2
L1CL1.

Next, for any t > 0, we have the estimate

j Of .�/jD

ˇ̌̌̌Z
R

e�i�xf .x/dx

ˇ̌̌̌
�

ˇ̌̌̌Z
R

e�i�x�

�
x

t

�
f .x/dx

ˇ̌̌̌
C

ˇ̌̌̌Z
R

e�i�x.1��/

�
x

t

�
f .x/dx

ˇ̌̌̌



384 DIOGO ARSÉNIO AND NADER MASMOUDI
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Therefore, optimizing the preceding estimate in t > 0, which amounts to setting t D 1
j�j

above, yields

j Of .�/j �
C

j�j1��
: �

Lemma B.4. Let f 2L1.R/ be such that

jf .x/j �
C

1Cjxj˛
for all x 2 R;

for some 0� ˛ < 1, and consider the convolution
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Proof. Note first that
kfRkL1 � k�kL1 kf kL1 :

Therefore, we only have to consider values jxj � 1, say. Furthermore, by possibly replacing � and f by
j�j and jf j, respectively, we may assume that � and f are both nonnegative.

Then, for any N > 1, we estimate that
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Further noticing that
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we deduce
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Appendix C. Velocities restricted to a manifold of codimension 1

In this final independent appendix section, we explore the connection between averaging lemmas for the
stationary transport equation (1-2) for velocities in the Euclidean space v 2 Rn and averaging lemmas
for the same equation for velocities lying in an appropriate manifold of codimension 1 in Rn. Here, for
simplicity, we only consider the case v 2 Sn�1. However, the elementary methods developed here can be
used to establish similar connections with settings in other manifolds of codimension 1. In particular, this
approach includes the time dependent case (1-1) where .t;x/ 2 RnC1 and v 2 Rn and, thus, allows us to
translate the main results contained in this work to several other interesting and relevant situations.

Proposition C.1. Let n� 2, s > 0 and 1� p; q; r �1 be such that

p � r; sC n
�

1

p
�

1

r

�
� 1 and 1

q
C sC

�
1

p
�

1

r

�
� 1; (C-1)

and suppose that, for any ' 2L1c .R
n/, there exists C > 0 such that one has the estimate
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v
/ (C-2)

for any f;g 2L
p
x.R

nIL
q
v.R

n// such that (1-2) holds true.
Then, for some other constant C > 0, one has the estimate
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for any f;g 2L
p
x.R

nIL
q
v.S

n�1// such that (1-2) holds true.

It is possible to show, though a dimensional analysis, that the restrictions (C-1) are in fact necessary in
order that (C-2) may hold; see [Arsénio 2015, Section 4] for details.

Proof. We employ a strategy similar to the one used in [Arsénio and Saint-Raymond 2011, Appendix C]
to go from the stationary case to a time-dependent setting. To this end, for any f;g 2L

p
x.R

nIL
q
v.S

n�1//

such that (1-2) holds true, we introduce an artificial radial dimension by defining, for all .x; v/ 2Rn�Rn,
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�
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v
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�
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for some given nonnegative cutoff function � 2L1c .R/.
Assuming that '.v/� 1 on the support of �.jvj/, it is then readily seen thatZ
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Z
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Further observe that (1-2) also holds with Qf and Qg in place of f and g, respectively. Therefore, by
plugging Qf and Qg into (C-2), we deduce the validity of estimate (C-3). �

A converse to the preceding proposition is also available.

Proposition C.2. Let n� 2, s > 0 and 1� p; q; r �1 be such that

p � r; sC n
�

1

p
�

1

r

�
� 1 and 1

q
C sC

�
1
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�

1

r

�
� 1; (C-4)

and suppose that there exists C > 0 such that one has the estimate
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(C-6)

for any f;g 2L
p
x.R

nIL
q
v.R

n// if p � q, or f;g 2L
q
v.R

nIL
p
x.R

n// if p � q, such that (1-2) holds true.

Proof. We first assume that p � q. For any f;g 2L
p
x.R

nIL
q
v.R

n// such that (1-2) holds true, we define,
for all .x; v/ 2 Rn �Sn�1, � > 0 and ' 2L1c .R

n/,
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It is then readily seen that
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Further observe that (1-2) also holds with Qf� and Qg� in place of f and g, respectively. Therefore, by
plugging Qf and Qg into (C-5), we deduce that
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Next, recalling that ' is compactly supported within some large ball B.0;R/, say, noticing that
�
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q0
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.Œ0;R�/, by (C-4), and then integrating the preceding estimate in � over Œ0;R�, we

find
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which concludes the proof of (C-6), when p � q.
The case p � q is obtained similarly. �

References

[Agoshkov 1984] V. I. Agoshkov, “Spaces of functions with differential-difference characteristics and the smoothness of
solutions of the transport equation”, Dokl. Akad. Nauk SSSR 276:6 (1984), 1289–1293. In Russian; translated in Sov. Math.
Dokl. 29 (1984), 662–666. MR Zbl

[Arsénio 2015] D. Arsénio, “Recent progress in velocity averaging”, exposé no. 1, 17 pp. in Journées équations aux dérivées
partielles (Roscoff, France, 2015), Cedram, Grenoble, 2015.

[Arsénio and Masmoudi 2014] D. Arsénio and N. Masmoudi, “A new approach to velocity averaging lemmas in Besov spaces”,
J. Math. Pures Appl. .9/ 101:4 (2014), 495–551. MR Zbl

[Arsénio and Saint-Raymond 2011] D. Arsénio and L. Saint-Raymond, “Compactness in kinetic transport equations and
hypoellipticity”, J. Funct. Anal. 261:10 (2011), 3044–3098. MR Zbl

[Bergh and Löfström 1976] J. Bergh and J. Löfström, Interpolation spaces: an introduction, Grundlehren der Mathematischen
Wissenschaften 223, Springer, 1976. MR Zbl

[Bézard 1994] M. Bézard, “Régularité Lp précisée des moyennes dans les équations de transport”, Bull. Soc. Math. France
122:1 (1994), 29–76. MR Zbl

[Bouchut 2002] F. Bouchut, “Hypoelliptic regularity in kinetic equations”, J. Math. Pures Appl. .9/ 81:11 (2002), 1135–1159.
MR Zbl

[Bournaveas and Perthame 2001] N. Bournaveas and B. Perthame, “Averages over spheres for kinetic transport equations;
hyperbolic Sobolev spaces and Strichartz inequalities”, J. Math. Pures Appl. .9/ 80:5 (2001), 517–534. MR Zbl

[Castella and Perthame 1996] F. Castella and B. Perthame, “Estimations de Strichartz pour les équations de transport cinétique”,
C. R. Acad. Sci. Paris Sér. I Math. 322:6 (1996), 535–540. MR Zbl

[DeVore and Petrova 2001] R. DeVore and G. Petrova, “The averaging lemma”, J. Amer. Math. Soc. 14:2 (2001), 279–296. MR
Zbl

[DiPerna and Lions 1989] R. J. DiPerna and P.-L. Lions, “On the Cauchy problem for Boltzmann equations: global existence
and weak stability”, Ann. of Math. .2/ 130:2 (1989), 321–366. MR Zbl

http://msp.org/idx/mr/753365
http://msp.org/idx/zbl/0599.35009
http://dx.doi.org/10.5802/jedp.630
http://dx.doi.org/10.1016/j.matpur.2013.06.012
http://msp.org/idx/mr/3179752
http://msp.org/idx/zbl/1293.35192
http://dx.doi.org/10.1016/j.jfa.2011.07.020
http://dx.doi.org/10.1016/j.jfa.2011.07.020
http://msp.org/idx/mr/2832590
http://msp.org/idx/zbl/1231.42023
http://dx.doi.org/10.1007/978-3-642-66451-9
http://msp.org/idx/mr/0482275
http://msp.org/idx/zbl/0344.46071
http://dx.doi.org/10.24033/bsmf.2222
http://msp.org/idx/mr/1259108
http://msp.org/idx/zbl/0798.35025
http://dx.doi.org/10.1016/S0021-7824(02)01264-3
http://msp.org/idx/mr/1949176
http://msp.org/idx/zbl/1045.35093
http://dx.doi.org/10.1016/S0021-7824(00)01191-0
http://dx.doi.org/10.1016/S0021-7824(00)01191-0
http://msp.org/idx/mr/1831433
http://msp.org/idx/zbl/1036.82023
http://msp.org/idx/mr/1383431
http://msp.org/idx/zbl/0848.35095
http://dx.doi.org/10.1090/S0894-0347-00-00359-3
http://msp.org/idx/mr/1815213
http://msp.org/idx/zbl/1001.35079
http://dx.doi.org/10.2307/1971423
http://dx.doi.org/10.2307/1971423
http://msp.org/idx/mr/1014927
http://msp.org/idx/zbl/0698.45010


388 DIOGO ARSÉNIO AND NADER MASMOUDI

[DiPerna et al. 1991] R. J. DiPerna, P.-L. Lions, and Y. Meyer, “Lp regularity of velocity averages”, Ann. Inst. H. Poincaré
Anal. Non Linéaire 8:3-4 (1991), 271–287. MR Zbl

[Golse and Perthame 2013] F. Golse and B. Perthame, “Optimal regularizing effect for scalar conservation laws”, Rev. Mat.
Iberoam. 29:4 (2013), 1477–1504. MR Zbl

[Golse and Saint-Raymond 2004] F. Golse and L. Saint-Raymond, “The Navier–Stokes limit of the Boltzmann equation for
bounded collision kernels”, Invent. Math. 155:1 (2004), 81–161. MR Zbl

[Golse et al. 1985] F. Golse, B. Perthame, and R. Sentis, “Un résultat de compacité pour les équations de transport et application
au calcul de la limite de la valeur propre principale d’un opérateur de transport”, C. R. Acad. Sci. Paris Sér. I Math. 301:7
(1985), 341–344. MR Zbl

[Golse et al. 1988] F. Golse, P.-L. Lions, B. Perthame, and R. Sentis, “Regularity of the moments of the solution of a transport
equation”, J. Funct. Anal. 76:1 (1988), 110–125. MR Zbl

[Grafakos 2008] L. Grafakos, Classical Fourier analysis, 2nd ed., Graduate Texts in Mathematics 249, Springer, 2008. MR Zbl

[Grafakos 2009] L. Grafakos, Modern Fourier analysis, 2nd ed., Graduate Texts in Mathematics 250, Springer, 2009. MR Zbl

[Jabin and Vega 2003] P.-E. Jabin and L. Vega, “Averaging lemmas and the X-ray transform”, C. R. Math. Acad. Sci. Paris 337:8
(2003), 505–510. MR Zbl

[Jabin and Vega 2004] P.-E. Jabin and L. Vega, “A real space method for averaging lemmas”, J. Math. Pures Appl. .9/ 83:11
(2004), 1309–1351. MR Zbl

[Lions 1995] P.-L. Lions, “Régularité optimale des moyennes en vitesses”, C. R. Acad. Sci. Paris Sér. I Math. 320:8 (1995),
911–915. MR Zbl

[Lions et al. 1994a] P.-L. Lions, B. Perthame, and E. Tadmor, “A kinetic formulation of multidimensional scalar conservation
laws and related equations”, J. Amer. Math. Soc. 7:1 (1994), 169–191. MR Zbl

[Lions et al. 1994b] P.-L. Lions, B. Perthame, and E. Tadmor, “Kinetic formulation of the isentropic gas dynamics and
p-systems”, Comm. Math. Phys. 163:2 (1994), 415–431. MR Zbl

[Runst and Sickel 1996] T. Runst and W. Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial
differential equations, De Gruyter Series in Nonlinear Analysis and Applications 3, de Gruyter, Berlin, 1996. MR Zbl

[Westdickenberg 2002] M. Westdickenberg, “Some new velocity averaging results”, SIAM J. Math. Anal. 33:5 (2002), 1007–1032.
MR Zbl

Received 16 Jan 2017. Revised 4 Dec 2017. Accepted 14 Mar 2018.

DIOGO ARSÉNIO: diogo.arsenio@imj-prg.fr
Institut de Mathématiques de Jussieu–Paris Rive Gauche, Université Paris Diderot, Paris, France
Current address: New York University Abu Dhabi, Abu Dhabi, United Arab Emirates

NADER MASMOUDI: masmoudi@cims.nyu.edu
Courant Institute of Mathematical Sciences, New York University, New York, NY, United States
Current address: New York University Abu Dhabi, Abu Dhabi, United Arab Emirates

mathematical sciences publishers msp

http://dx.doi.org/10.1016/S0294-1449(16)30264-5
http://msp.org/idx/mr/1127927
http://msp.org/idx/zbl/0763.35014
http://dx.doi.org/10.4171/RMI/765
http://msp.org/idx/mr/3148612
http://msp.org/idx/zbl/1288.35343
http://dx.doi.org/10.1007/s00222-003-0316-5
http://dx.doi.org/10.1007/s00222-003-0316-5
http://msp.org/idx/mr/2025302
http://msp.org/idx/zbl/1060.76101
http://msp.org/idx/mr/808622
http://msp.org/idx/zbl/0591.45007
http://dx.doi.org/10.1016/0022-1236(88)90051-1
http://dx.doi.org/10.1016/0022-1236(88)90051-1
http://msp.org/idx/mr/923047
http://msp.org/idx/zbl/0652.47031
http://dx.doi.org/10.1007/978-0-387-09432-8
http://msp.org/idx/mr/2445437
http://msp.org/idx/zbl/1220.42001
http://dx.doi.org/10.1007/978-0-387-09434-2
http://msp.org/idx/mr/2463316
http://msp.org/idx/zbl/1158.42001
http://dx.doi.org/10.1016/j.crma.2003.09.004
http://msp.org/idx/mr/2017127
http://msp.org/idx/zbl/1030.35005
http://dx.doi.org/10.1016/j.matpur.2004.03.004
http://msp.org/idx/mr/2096303
http://msp.org/idx/zbl/1082.35043
http://dx.doi.org/10.1016/S0764-4442(98)80119-5
http://msp.org/idx/mr/1328710
http://msp.org/idx/zbl/0827.35110
http://dx.doi.org/10.2307/2152725
http://dx.doi.org/10.2307/2152725
http://msp.org/idx/mr/1201239
http://msp.org/idx/zbl/0820.35094
http://dx.doi.org/10.1007/BF02102014
http://dx.doi.org/10.1007/BF02102014
http://msp.org/idx/mr/1284790
http://msp.org/idx/zbl/0799.35151
http://dx.doi.org/10.1515/9783110812411
http://dx.doi.org/10.1515/9783110812411
http://msp.org/idx/mr/1419319
http://msp.org/idx/zbl/0873.35001
http://dx.doi.org/10.1137/S0036141000380760
http://msp.org/idx/mr/1897699
http://msp.org/idx/zbl/1067.35021
mailto:diogo.arsenio@imj-prg.fr
mailto:masmoudi@cims.nyu.edu
http://msp.org


Analysis & PDE
msp.org/apde

EDITORS

EDITOR-IN-CHIEF

Patrick Gérard
patrick.gerard@math.u-psud.fr

Université Paris Sud XI
Orsay, France

BOARD OF EDITORS

Massimiliano Berti Scuola Intern. Sup. di Studi Avanzati, Italy
berti@sissa.it

Sun-Yung Alice Chang Princeton University, USA
chang@math.princeton.edu

Michael Christ University of California, Berkeley, USA
mchrist@math.berkeley.edu

Alessio Figalli ETH Zurich, Switzerland
alessio.figalli@math.ethz.ch

Charles Fefferman Princeton University, USA
cf@math.princeton.edu

Ursula Hamenstaedt Universität Bonn, Germany
ursula@math.uni-bonn.de

Vaughan Jones U.C. Berkeley & Vanderbilt University
vaughan.f.jones@vanderbilt.edu

Vadim Kaloshin University of Maryland, USA
vadim.kaloshin@gmail.com

Herbert Koch Universität Bonn, Germany
koch@math.uni-bonn.de

Izabella Laba University of British Columbia, Canada
ilaba@math.ubc.ca

Gilles Lebeau Université de Nice Sophia Antipolis, France
lebeau@unice.fr

Richard B. Melrose Massachussets Inst. of Tech., USA
rbm@math.mit.edu

Frank Merle Université de Cergy-Pontoise, France
Frank.Merle@u-cergy.fr

William Minicozzi II Johns Hopkins University, USA
minicozz@math.jhu.edu

Clément Mouhot Cambridge University, UK
c.mouhot@dpmms.cam.ac.uk

Werner Müller Universität Bonn, Germany
mueller@math.uni-bonn.de

Gilles Pisier Texas A&M University, and Paris 6
pisier@math.tamu.edu

Tristan Rivière ETH, Switzerland
riviere@math.ethz.ch

Igor Rodnianski Princeton University, USA
irod@math.princeton.edu

Sylvia Serfaty New York University, USA
serfaty@cims.nyu.edu

Yum-Tong Siu Harvard University, USA
siu@math.harvard.edu

Terence Tao University of California, Los Angeles, USA
tao@math.ucla.edu

Michael E. Taylor Univ. of North Carolina, Chapel Hill, USA
met@math.unc.edu

Gunther Uhlmann University of Washington, USA
gunther@math.washington.edu

András Vasy Stanford University, USA
andras@math.stanford.edu

Dan Virgil Voiculescu University of California, Berkeley, USA
dvv@math.berkeley.edu

Steven Zelditch Northwestern University, USA
zelditch@math.northwestern.edu

Maciej Zworski University of California, Berkeley, USA
zworski@math.berkeley.edu

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2019 is US $310/year for the electronic version, and $520/year (+$60, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Uni-
versity of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and
additional mailing offices.

APDE peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

http://msp.org/apde
mailto:patrick.gerard@math.u-psud.fr
mailto:berti@sissa.it
mailto:chang@math.princeton.edu
mailto:mchrist@math.berkeley.edu
mailto:alessio.figalli@math.ethz.ch
mailto:cf@math.princeton.edu
mailto:ursula@math.uni-bonn.de
mailto:vaughan.f.jones@vanderbilt.edu
mailto:vadim.kaloshin@gmail.com
mailto:koch@math.uni-bonn.de
mailto:ilaba@math.ubc.ca
mailto:lebeau@unice.fr
mailto:rbm@math.mit.edu
mailto:Frank.Merle@u-cergy.fr
mailto:minicozz@math.jhu.edu
mailto:c.mouhot@dpmms.cam.ac.uk
mailto:mueller@math.uni-bonn.de
mailto:pisier@math.tamu.edu
mailto:riviere@math.ethz.ch
mailto:irod@math.princeton.edu
mailto:serfaty@cims.nyu.edu
mailto:siu@math.harvard.edu
mailto:tao@math.ucla.edu
mailto:met@math.unc.edu
mailto:gunther@math.washington.edu
mailto:andras@math.stanford.edu
mailto:dvv@math.berkeley.edu
mailto:zelditch@math.northwestern.edu
mailto:zworski@math.berkeley.edu
mailto:production@msp.org
http://msp.org/apde
http://msp.org/
http://msp.org/


ANALYSIS & PDE
Volume 12 No. 2 2019

259A unified flow approach to smooth, even L p-Minkowski problems
PAUL BRYAN, MOHAMMAD N. IVAKI and JULIAN SCHEUER

281The Muskat problem in two dimensions: equivalence of formulations, well-posedness, and
regularity results

BOGDAN-VASILE MATIOC

333Maximal gain of regularity in velocity averaging lemmas
DIOGO ARSÉNIO and NADER MASMOUDI

389On the existence and stability of blowup for wave maps into a negatively curved target
ROLAND DONNINGER and IRFAN GLOGIĆ

417Fracture with healing: A first step towards a new view of cavitation
GILLES FRANCFORT, ALESSANDRO GIACOMINI and OSCAR LOPEZ-PAMIES

449General Clark model for finite-rank perturbations
CONSTANZE LIAW and SERGEI TREIL

493On the maximal rank problem for the complex homogeneous Monge–Ampère equation
JULIUS ROSS and DAVID WITT NYSTRÖM

505A viscosity approach to the Dirichlet problem for degenerate complex Hessian-type equations
SŁAWOMIR DINEW, HOANG-SON DO and TAT DAT TÔ

537Resolvent estimates for spacetimes bounded by Killing horizons
ORAN GANNOT

561Interpolation by conformal minimal surfaces and directed holomorphic curves
ANTONIO ALARCÓN and ILDEFONSO CASTRO-INFANTES

A
N

A
LY

SIS
&

PD
E

Vol.12,
N

o.2
2019


	1. Introduction and main results
	2. The transport operator and dispersive estimates
	3. Dispersion and velocity averaging
	4. The one-dimensional case
	5. The two-dimensional case
	6. The higher-dimensional case
	Appendix A. Some paradifferential calculus
	Appendix B. Boundedness of Fourier transforms in L^p, with 1<=p<2
	Appendix C. Velocities restricted to a manifold of codimension 1
	References
	
	

