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Let M be an open Riemann surface and n ≥ 3 be an integer. We prove that on any closed discrete subset
of M one can prescribe the values of a conformal minimal immersion M→ Rn. Our result also ensures
jet-interpolation of given finite order, and hence, in particular, one may in addition prescribe the values of
the generalized Gauss map. Furthermore, the interpolating immersions can be chosen to be complete,
proper into Rn if the prescription of values is proper, and injective if n ≥ 5 and the prescription of values
is injective. We may also prescribe the flux map of the examples.

We also show analogous results for a large family of directed holomorphic immersions M → Cn,
including null curves.

1. Introduction and main results

The theory of interpolation by holomorphic functions is a central topic in complex analysis which began
in the 19th century with the celebrated Weierstrass interpolation theorem [1876]: on a closed discrete
subset of a domain D ⊂ C, one can prescribe the values of a holomorphic function D→ C. Much later,
Florack [1948] extended the Weierstrass theorem to arbitrary open Riemann surfaces. In this paper we
prove an analogue of this classical result for conformal minimal surfaces in Euclidean spaces.

Theorem 1.1 (Weierstrass interpolation theorem for conformal minimal surfaces). Let 3 be a closed
discrete subset of an open Riemann surface M, and let n ≥ 3 be an integer. Every map 3→ Rn extends to
a conformal minimal immersion M→ Rn.

Let M be an open Riemann surface and n ≥ 3 be an integer. By the identity principle it is not possible
to prescribe values of a conformal minimal immersion M→Rn on a subset that is not closed and discrete;
hence the assumptions on 3 in Theorem 1.1 are necessary.

Recall that a conformal immersion X = (X1, . . . , Xn) : M → Rn is minimal if, and only if, X is a
harmonic map. If this is the case then, denoting by ∂ the C-linear part of the exterior differential d = ∂+ ∂̄
on M (here ∂̄ denotes the C-antilinear part of d), the 1-form ∂X = (∂X1, . . . , ∂Xn) with values in Cn is
holomorphic, has no zeros, and satisfies

∑n
j=1(∂X j )

2
= 0 everywhere on M. Therefore, ∂X determines

the Kodaira-type holomorphic map

G X : M→ CPn−1, M 3 p 7→ G X (p)= [∂X1(p) : · · · : ∂Xn(p)],
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which takes values in the complex hyperquadric

Qn−2 = {[z1 : · · · : zn] ∈ CPn−1
: z2

1+ · · ·+ z2
n = 0} ⊂ CPn−1

and is known as the generalized Gauss map of X . Conversely, every holomorphic map M→Qn−2⊂CPn−1

is the generalized Gauss map of a conformal minimal immersion M → Rn; see [Alarcón, Forstnerič
and López 2017]. The real part <(∂X) is an exact 1-form on M ; the flux map (or simply, the flux) of
X is the group homomorphism FluxX : H1(M;Z)→ Rn of the first homology group of M with integer
coefficients, given by

FluxX (γ )=

∫
γ

=(∂X)=−i
∫
γ

∂X, γ ∈ H1(M;Z),

where = denotes the imaginary part and i=
√
−1.

Conversely, every holomorphic 1-form 8= (φ1, . . . , φn) with values in Cn, vanishing nowhere on M,
satisfying the nullity condition

n∑
j=1

(φj )
2
= 0 everywhere on M, (1-1)

and whose real part <(8) is exact on M, determines a conformal minimal immersion X : M→ Rn with
∂X =8 by the classical Weierstrass formula

X (p)= x0+ 2
∫ p

p0

<(8), p ∈ M, (1-2)

for any fixed base point p0 ∈ M and initial condition X (p0)= x0 ∈ Rn. (We refer to [Osserman 1986]
for a standard reference on minimal surface theory.) This representation formula has greatly influenced
the study of minimal surfaces in Rn by providing powerful tools coming from complex analysis in one
and several variables. In particular, Runge and Mergelyan theorems for open Riemann surfaces (see
[Bishop 1958; Runge 1885; Mergelyan 1951]) and, more recently, the modern Oka theory (we refer
to the monograph [Forstnerič 2017] and to the surveys [Lárusson 2010; Forstnerič and Lárusson 2011;
Forstnerič 2013; Kutzschebauch 2014]) have been exploited in order to develop a uniform approximation
theory for conformal minimal surfaces in Euclidean spaces which is analogous to the one of holomorphic
functions in one complex variable and has found plenty of applications; see [Alarcón and López 2012;
2014; 2015; Alarcón and Forstnerič 2014; Drinovec Drnovšek and Forstnerič 2016; Alarcón, Forstnerič
and López 2016a; 2016b; Forstnerič and Lárusson 2016]. In this paper we extend some of the methods
invented for developing this approximation theory in order to provide also interpolation on closed discrete
subsets of the underlying complex structure.

Theorem 1.1 is a consequence of the following much more general result ensuring not only interpolation
but also jet-interpolation of given finite order, approximation on holomorphically convex compact subsets,
control on the flux, and global properties such as completeness and, under natural assumptions, properness
and injectivity. If A is a compact domain in an open Riemann surface, by a conformal minimal immersion
A→Rn of class C m(A), m ∈ Z+ = {0, 1, 2, . . .}, we mean an immersion A→Rn of class C m(A) whose
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restriction to the interior Å= A \bA is a conformal minimal immersion; we use the same notation if A is
a union of pairwise-disjoint such domains.

Theorem 1.2 (Runge approximation with jet-interpolation for conformal minimal surfaces). Let M be
an open Riemann surface, 3 ⊂ M be a closed discrete subset, and K ⊂ M be a smoothly bounded
compact domain such that M \ K has no relatively compact connected components. For each p ∈3 let
�p ⊂ M be a compact neighborhood of p in M, assume that �p ∩�q = ∅ for all p 6= q ∈ 3, and set
� :=

⋃
p∈3�p. Also let X : K ∪�→Rn (n ≥ 3) be a conformal minimal immersion of class C 1(K ∪�)

and let p : H1(M;Z)→ Rn be a group homomorphism satisfying

FluxX (γ )= p(γ ) for all closed curves γ ⊂ K .

Then, given k ∈ Z+, X may be approximated uniformly on K by complete conformal minimal immersions
X̃ : M→ Rn enjoying the following properties:

(I) X̃ and X have a contact of order k at every point in 3.

(II) FluxX̃ = p.

(III) If the map X |3 :3→ Rn is proper then we can choose X̃ : M→ Rn to be proper.

(IV) If n ≥ 5 and the map X |3 :3→ Rn is injective, then we can choose X̃ : M→ Rn to be injective.

Condition (I) in the above theorem is equivalent to X̃ |3 = X |3 and, if k > 0, the holomorphic 1-form
∂(X̃ − X), assuming values in Cn, has a zero of multiplicity (at least) k at all points in 3; in other
words, the maps X̃ and X have the same k-jet at every point in 3 (see Section 2B). This is reminiscent
of the generalization of the Weierstrass interpolation theorem provided by [Behnke and Stein 1949]
and asserting that on an open Riemann surface one may prescribe values to arbitrary finite order for a
holomorphic function at the points in a given closed discrete subset; see [Napier and Ramachandran 2011,
Theorem 2.15.1]. In particular, choosing k = 1 in Theorem 1.2 we obtain that on a closed discrete subset
of an open Riemann surface M, one can prescribe the values of a conformal minimal immersion M→ Rn

(n ≥ 3) and of its generalized Gauss map M→ Qn−2 ⊂ CPn−1 (see Corollary 7.1). The case 3=∅ in
Theorem 1.2 (that is, when one does not take care of the interpolation) was recently proved by Alarcón,
Forstnerič, and López [2016a, Theorem 1.2].

Note that the assumptions on X |3 in assertions (III) and (IV) in Theorem 1.2 are necessary. We also
point out that if 3 is infinite then there are injective maps 3→ Rn which do not extend to a topological
embedding M→ Rn; hence, in general, one cannot choose the conformal minimal immersion X̃ in (IV)
to be an embedding (i.e., a homeomorphism onto X̃(M) endowed with the subspace topology inherited
from Rn). On the other hand, since proper injective immersions M→Rn are embeddings, we can choose
X̃ in Theorem 1.2 to be a proper conformal minimal embedding provided that n ≥ 5 and X |3 :3→ Rn

is both proper and injective.
Let us now say a word about our methods of proof. Given a holomorphic 1-form θ on M with no zeros

(such a θ exists by the Oka–Grauert principle, see [Grauert 1957; 1958; Forstnerič 2017, Theorem 5.3.1]),
any holomorphic 1-form 8= (φ1, . . . , φn) on M with values in Cn and satisfying the nullity condition
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(1-1) can be written in the form 8= f θ where f : M→ Cn is a holomorphic function taking values in
the null quadric (also called the complex light cone)

A := {z=(z1, . . . , zn) ∈ Cn
: z2

1+ · · ·+ z2
n= 0}. (1-3)

Therefore, in order to prove Theorem 1.1 one needs to find a holomorphic map

f : M→ A \ {0} ⊂ Cn

such that <( f θ) is an exact real 1-form on M and

2
∫ p

p0

<( f θ)= Z(p) for all p ∈3,

where p0 ∈ M \3 is a fixed base point and Z :3→ Rn is the given map. Then the formula (1-2) with
x0 = 0 and 8= f θ provides a conformal minimal immersion satisfying the conclusion of the theorem.
The key in this approach is that the punctured null quadric

A∗ := A \ {0} (1-4)

is a complex homogeneous manifold and hence an Oka manifold [Alarcón and Forstnerič 2014, Exam-
ple 4.4]; thus, there are many holomorphic maps M→ A∗ (see Section 2C for more information).

The proof of Theorem 1.2 is much more involved and elaborate. It requires, in addition to the above,
a subtle use of the Runge–Mergelyan theorem with jet-interpolation for holomorphic maps from open
Riemann surfaces into Oka manifolds (see Theorem 2.6) to achieve condition (I). Additionally, it requires
a conceptually new intrinsic-extrinsic version of the technique from [Jorge and Xavier 1980] to ensure
completeness of the interpolating immersions (see Lemma 5.5 and Section 6B), and, in order to guarantee
assertion (III), we must extend the recently developed methods in [Alarcón and López 2012; Alarcón and
Forstnerič 2014; Alarcón, Forstnerič and López 2016a] for constructing proper minimal surfaces in Rn

with arbitrary complex structure (see Lemma 5.6 and Section 6C). Moreover, in order to prove (IV) we
adapt the transversality approach by Abraham [1963] in Theorem 5.3; see [Alarcón and Forstnerič 2014;
Alarcón, Drinovec Drnovšek, Forstnerič and López 2015; Alarcón, Forstnerič and López 2016a] for its
implementation in minimal surface theory.

The above-described method for constructing conformal minimal surfaces in Rn, based on Oka theory,
was introduced in [Alarcón and Forstnerič 2014] and it also works in the more general framework of
directed holomorphic immersions of open Riemann surfaces into complex Euclidean spaces. Directed
immersions have been the focus of interest in a number of classical geometries such as symplectic, contact,
Lagrangian, totally real, etc.; we refer for instance to the monograph [Gromov 1986], to [Eliashberg and
Mishachev 2002, Chapter 19], and to the introduction of [Alarcón and Forstnerič 2014] for motivation on
this subject. Given a (topologically) closed conical complex subvariety S of Cn (n ≥ 3), a holomorphic
immersion F : M → Cn of an open Riemann surface M into Cn is said to be directed by S, or an
S-immersion, if its complex derivative F ′ with respect to any local holomorphic coordinate on M
assumes values in

S∗ :=S \ {0};
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see [Alarcón and Forstnerič 2014, Definition 2.1]. If A is a compact domain in an open Riemann surface,
or a union of pairwise-disjoint such domains, by an S-immersion A→ Cn of class A m(A) (m ∈ Z+)

we mean an immersion A→ Cn of class C m(A) whose restriction to the interior, Å, is a (holomorphic)
S-immersion. Among others, general existence, approximation, and desingularization results were proved
in [Alarcón and Forstnerič 2014] for certain families of directed holomorphic immersions, including null
curves, i.e., holomorphic curves in Cn which are directed by the null quadric A⊂ Cn; see (1-3). It is well
known that the real and imaginary parts of a null curve M → Cn are conformal minimal immersions
M → Rn whose flux map vanishes everywhere on H1(M;Z); conversely, every conformal minimal
immersion M → Rn is locally, on every simply connected domain of M, the real part of a null curve
M→ Cn; see [Osserman 1986, Chapter 4].

The second main theorem of this paper is an analogue of Theorem 1.2 for a wide family of directed
holomorphic curves in Cn which includes null curves. Given integers 1≤ j ≤ n we denote by πj :C

n
→C

the coordinate projection πj (z1, . . . , zn)= z j .

Theorem 1.3 (Runge approximation with jet-interpolation for directed holomorphic curves). Let S be
an irreducible closed conical complex subvariety of Cn (n ≥ 3) which is contained in no hyperplane and
such that S∗ =S \ {0} is smooth and an Oka manifold. Let M, 3, K , and � be as in Theorem 1.2 and let
F : K ∪�→ Cn be an S-immersion of class A 1(K ∪�). Then, given k ∈ N, F may be approximated
uniformly on K by S-immersions F̃ : M→ Cn such that F̃ − F has a zero of multiplicity (at least) k at
every point in 3. Moreover, if the map F |3 :3→ Cn is injective, then we can choose F̃ : M→ Cn to be
injective.

Furthermore:

(I) If S ∩ {z1 = 1} is an Oka manifold and π1 : S→ C admits a local holomorphic section h near
ζ = 0 ∈ C with h(0) 6= 0, then we may choose F̃ to be complete.

(II) If S∩ {z j = 1} is an Oka manifold and πj : S→ C admits a local holomorphic section h j near
ζ = 0 ∈ C with h j (0) 6= 0 for all j ∈ {1, . . . , n}, and if the map F |3 : 3→ Cn is proper, then we
may choose F̃ : M→ Cn to be proper.

In particular, if we are given S, M, and 3 as in Theorem 1.3 then every map 3→ Cn extends to an
S-immersion M→ Cn. When the subset 3⊂ M is empty, the above theorem except for assertion (I) is
implied by [Alarcón and Forstnerič 2014, Theorems 7.2 and 8.1]. It is perhaps worth mentioning in this
respect that, if S is as in assertion (I) and F |3 :3→ Cn is not proper, Theorem 1.3 provides complete
S-immersions M→ Cn which are not proper maps; these seem to be the first known examples of such
apart from the case when S is the null quadric. Let us emphasize that the particular geometry of A allows
for the construction of complete null holomorphic curves in Cn and minimal surfaces in Rn with a number
of different asymptotic behaviors (other than proper in space); see [Alarcón and López 2013a; Alarcón
and Forstnerič 2015; Alarcón, Drinovec Drnovšek, Forstnerič and López 2015; ≥ 2019; Alarcón and
Castro-Infantes 2018].

Most of the technical parts in the proofs of Theorems 1.2 and 1.3 will be furnished by a general result
concerning periods of holomorphic 1-forms with values in a closed conical complex subvariety of Cn
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(see Theorem 4.4 for a precise statement). With this at hand, the proofs of Theorems 1.2 and 1.3 are
very similar; this is why, with brevity of exposition in mind, we shall spell out in detail the proof of
Theorem 1.3 (which is, in some sense, more general) but only briefly sketch the one of Theorem 1.2.

This paper is, to the best of our knowledge, the first contribution to the theory of interpolation by
conformal minimal surfaces and directed holomorphic curves in a Euclidean space.

Organization of the paper. In Section 2 we state some notation and the preliminaries which are needed
throughout the paper; we also show an observation which is crucial to ensure the jet-interpolation conditions
in Theorems 1.2 and 1.3 (see Lemma 2.2). Section 3 is devoted to the proof of several preliminary results
on the existence of period-dominating sprays of maps into conical complex subvarieties S∗ of Cn; we use
them in Section 4 to prove the noncritical case of a Mergelyan theorem with jet-interpolation and control
on the periods for holomorphic maps into such a S∗ being Oka (see Lemma 4.2), and the main technical
result of the paper (Theorem 4.4). In Section 5 we prove a general position theorem, a completeness
lemma, and a properness lemma for S-immersions, which enable us to complete the proof of Theorem 1.3
in Section 6. Finally, Section 7 is devoted to explaining how the methods in the proof of Theorem 1.3 can
be adapted to prove Theorem 1.2.

2. Preliminaries

We define i=
√
−1, Z+ = {0, 1, 2, . . .}, and R+ = [0,+∞). Given an integer n ∈ N= {1, 2, 3, . . .} and

K ∈ {R,C}, we denote by | · |, dist( · , · ), and length( · ) the Euclidean norm, distance, and length in Kn,
respectively. If K is a compact topological space and f : K → Kn is a continuous map, we denote by

‖ f ‖0,K :=max{| f (p)| : p ∈ K }

the maximum norm of f on K . Likewise, given x = (x1, . . . , xn) in Kn we define

|x |∞ :=max{|x1|, . . . , |xn|} and ‖ f ‖∞,K :=max{| f (p)|∞ : p ∈ K }.

If K is a subset of a Riemann surface M, then for any r ∈ Z+ we shall denote by ‖ f ‖r,K the standard
C r norm of a function f : K → Kn of class C r (K ), where the derivatives are measured with respect to a
Riemannian metric on M (the precise choice of the metric will not be important).

Given a smooth connected surface S (possibly with nonempty boundary) and a smooth immersion
X : S→ Kn, we denote by distX : S× S→ R+ the Riemannian distance induced on S by the Euclidean
metric of Kn via X ; i.e.,

distX (p, q) := inf{length(X (γ )) : γ ⊂ S an arc connecting p and q}, p, q ∈ S.

Likewise, if K ⊂ S is a relatively compact subset we define

distX (p, K ) := inf{distX (p, q) : q ∈ K }, p ∈ S.

An immersed open surface X : S→Kn (n ≥ 3) is said to be complete if the image by X of any proper
path γ : [0, 1)→ S has infinite Euclidean length; equivalently, if the Riemannian metric on S induced by
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distX is complete in the classical sense. On the other hand, X : S→ Kn is said to be proper if the image
by X of every proper path γ : [0, 1)→ S is a divergent path in Kn.

2A. Riemann surfaces and spaces of maps. Throughout the paper every Riemann surface will be con-
sidered connected if the contrary is not indicated.

Let M be an open Riemann surface. Given a subset A ⊂ M we denote by O(A) the space of functions
A→ C which are holomorphic on an unspecified open neighborhood of A in M. If A is a smoothly
bounded compact domain, or a union of pairwise-disjoint such domains, and r ∈Z+, we denote by A r (A)
the space of C r functions A→ C which are holomorphic on the interior Å = A \ bA; for simplicity
we write A (A) for A 0(A). Likewise, we define the spaces O(A, Z) and A r (A, Z) of maps A→ Z
to any complex manifold Z . Thus, if S is a closed conical complex subvariety of Cn (n ≥ 3), by an
S-immersion A→ Cn of class A r (A) we simply mean an immersion of class A r (A) whose restriction
to Å is an S-immersion. In the same way, a conformal minimal immersion A→ Rn of class C r (A) will
be nothing but an immersion of class C r (A) whose restriction to Å is a conformal minimal immersion.

By a compact bordered Riemann surface we mean a compact Riemann surface M with nonempty
boundary bM consisting of finitely many pairwise-disjoint smooth Jordan curves. The interior M̊=M\bM
of M is called a bordered Riemann surface. It is well known that every compact bordered Riemann
surface M is diffeomorphic to a smoothly bounded compact domain in an open Riemann surface M̃. The
spaces A r (M) and A r (M, Z), for an integer r ∈ Z+ and a complex manifold Z , are defined as above.

A compact subset K in an open Riemann surface M is said to be Runge (also called holomorphically
convex or O(M)-convex) if every continuous function K → C, holomorphic in the interior K̊ , may
be approximated uniformly on K by holomorphic functions on M ; by the Runge–Mergelyan theorem
[Runge 1885; Mergelyan 1951; Bishop 1958] this is equivalent to M \ K having no relatively compact
connected components in M. The following particular kind of Runge subsets will play a crucial role in
our argumentation.

Definition 2.1. A nonempty compact subset S of an open Riemann surface M is called admissible if
it is Runge in M and of the form S = K ∪0, where K is the union of finitely many pairwise-disjoint
smoothly bounded compact domains in M and 0 := S \ K is a finite union of pairwise-disjoint smooth
Jordan arcs and closed Jordan curves meeting K only in their endpoints (or not at all) and such that their
intersections with the boundary bK of K are transverse.

If C and C ′ are oriented arcs in M, and the initial point of C ′ is the final one of C , we denote by C ∗C ′

the product of C and C ′, i.e., the oriented arc C ∪C ′ ⊂ M with initial point the initial point of C and
final point the final point of C ′.

Every open connected Riemann surface M contains a 1-dimensional embedded CW-complex C ⊂ M
such that there is a strong deformation retraction ρt : M→ M (t ∈ [0, 1]); i.e., ρ0 = IdM , ρt |C = Id|C for
all t ∈ [0, 1], and ρ1(M)= C . It follows that the complement M \C has no relatively compact connected
components in M and hence C is Runge. Such a CW-complex C ⊂ M represents the topology of M
and can be obtained, for instance, as the Morse complex of a Morse strongly subharmonic exhaustion
function on M. Recall that the first homology group satisfies H1(M;Z)= Zl for some l ∈ Z+ ∪ {∞}. It
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is not difficult to see that, if M is finitely connected (for instance, if it is a bordered Riemann surface),
i.e., if l ∈ Z+, then, given a point p0 ∈ M there is a CW-complex C ⊂ M as above which is a bouquet of
l circles with base point p0; i.e., {p0} is the only 0-cell of C , and C has l 1-cells C1, . . . ,Cl which are
closed Jordan curves on M that only meet at p0.

2B. Jets. Let M and N be smooth manifolds without boundary, x0 ∈M be a point, and f, g :M→N
be smooth maps. The maps f and g have, by definition, a contact of order k ∈ Z+ at the point x0 if their
Taylor series at this point coincide up to the order k. An equivalence class of maps M→N which have a
contact of order k at the point x0 is called a k-jet ; see, e.g., [Michor 1980, §1] for a basic reference. Recall
that the Taylor series at x0 of a smooth map f :M→N does not depend on the choice of coordinate
charts on M and N centered at x0 and f (x0) respectively. Therefore, fixing such a pair of coordinates,
we can identify the k-jet of f at x0, which is usually denoted by j k

x0
( f ), with the set of derivatives of f

at x0 of order up to and including k; under this identification of jets we have

j0
x0
( f )= f (x0), j1

x0
( f )=

(
f (x0),

∂ f
∂x

∣∣∣∣
x0

)
, j2

x0
( f )=

(
f (x0),

∂ f
∂x

∣∣∣∣
x0

,
∂2 f
∂x2

∣∣∣∣
x0

)
, . . .

Analogously, if M and N are complex manifolds then we consider the complex (holomorphic) derivatives
with respect to some local holomorphic coordinates. It is clear that the definition of the k-jet of a map at
a point is local and hence it can be made for germs of maps at the point. Moreover, if a pair of maps have
the same k-jet at a point then, obviously, they also have the same k ′-jet at the point for all k ′ ∈ Z+, k ′ ≤ k.

In particular, if � is a neighborhood of a point p in an open Riemann surface M and f, g :�→ Cn

are holomorphic functions, then they have a contact of order k ∈ Z+, or the same k-jet, at the point p if,
and only if, f − g has a zero of multiplicity (at least) k+ 1 at p; if this is the case then for any distance
function d : M ×M→ R+ on M (not necessarily conformal) we have

| f − g|(q)= O(d(q, p)k+1) as q→ p. (2-1)

If f, g : �→ Rn are harmonic maps (as, for instance, conformal minimal immersions), then we
say that they have a contact of order k ∈ Z+, or the same k-jet, at the point p if, assuming that � is
simply connected, there are harmonic conjugates f̃ of f and g̃ of g such that the holomorphic functions
f + i f̃ , g+ ig̃ :�→ Cn have a contact of order k at p; this is equivalent to f (p)= g(p) and, if k > 0,
the holomorphic 1-form ∂( f − g) has a zero of multiplicity (at least) k at p. Again, if such a pair of
maps f and g have the same k-jet at the point p ∈� then (2-1) formally holds.

The following observation will be crucial in order to ensure the jet-interpolation in the main results of
this paper.

Lemma 2.2. Let V be a holomorphic vector field in Cn (n ∈ N), vanishing at 0 ∈ Cn, and let φs denote
the flow of V for small values of time s ∈ C. Given an open Riemann surface M, a point p ∈ M, and
holomorphic functions f : M→ Cn and h : M→ C such that h has a zero of multiplicity k+ 1 at p for
some k ∈ Z+, then the holomorphic map

q 7→ f̃ (q)= φh(q)( f (q)),
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which is defined on a neighborhood of p in M, has a contact of order k with f at the point p; that is, f
and f̃ have the same k-jet at p.

Proof. The flow φs of the vector field V at a point z ∈ Cn may be expressed as

φs(z)= z+ sV (z)+ O(|s|2);

see, e.g., [Abraham, Marsden and Ratiu 1988, §4.1]. Since h has a zero of multiplicity k+ 1 at p, the
conclusion of the lemma follows. �

We shall use the following notation in several places throughout the paper.

Notation 2.3. Let n ≥ 3 be an integer and S be a (topologically) closed conical complex subvariety
of Cn; by conical we mean that tS =S for all t ∈ C∗ = C \ {0}. We also assume that S is contained
in no hyperplane of Cn, and S∗ :=S \ {0} is smooth and connected (hence irreducible). We also fix a
large integer N ≥ n and holomorphic vector fields V1, . . . , VN on Cn which are tangential to S along S,
vanish at 0 ∈S, and satisfy

span{V1(z), . . . , VN (z)} = TzS for all z ∈S∗. (2-2)

(Such vector fields exist by Cartan’s theorem A [1953].)

Let φ j
s denote the flow of the vector field Vj (2-3)

for j = 1, . . . , N and small values of the time s ∈ C.

Remark 2.4. Throughout the paper we shall say that a holomorphic function has a zero of multiplicity k ∈
N at a point to mean that the function has a zero of multiplicity at least k at the point. When the multiplicity
of the zero is exactly k, it will be explicitly mentioned. We will follow the same pattern when claiming
that two functions have the same k-jet or a contact of order k at a point.

2C. Oka manifolds. We recall the notion of Oka manifold and state some of the properties of such
manifolds which will be exploited in our argumentation. A comprehensive treatment of Oka theory can be
found in [Forstnerič 2017]; for a briefer introduction to the topic we refer to [Lárusson 2010; Forstnerič
and Lárusson 2011; Forstnerič 2013; Kutzschebauch 2014].

Definition 2.5. A complex manifold Z is said to be an Oka manifold if every holomorphic map from a
neighborhood of a compact convex set K ⊂ CN (N ∈ N) to Z can be approximated uniformly on K by
entire maps CN

→ Z .

The central result of Oka theory is that maps M → Z from a Stein manifold (as, for instance, an
open Riemann surface) to an Oka manifold satisfy all forms of the Oka principle; see [Forstnerič 2006].
In this paper we shall use as a fundamental tool the following version of the Mergelyan theorem with
jet-interpolation which trivially follows from [Forstnerič 2017, Theorems 3.8.1 and 5.4.4]; see also
[Forstnerič 2004, Theorem 3.2; Hörmander and Wermer 1968, Theorem 4.1].
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Theorem 2.6. Let Z be an Oka manifold, let M be an open Riemann surface, and let S = K ∪0 ⊂ M be
an admissible subset in the sense of Definition 2.1. Given a finite subset 3⊂ K̊ and an integer k ∈ Z+,
every continuous map f : S→ Z which is holomorphic on K̊ can be approximated uniformly on S by
holomorphic maps M→ Z having the same k-jet as f at all points in 3.

As we emphasized in the Introduction, the punctured null quadric A∗⊂Cn, see (1-3) and (1-4), directing
minimal surfaces in Rn and null curves in Cn is an Oka manifold for all n≥ 3; see [Alarcón and Forstnerič
2014, Example 4.4 Forstnerič 2017, Example 5.6.2]. Furthermore, for each j ∈ {1, . . . , n} the complex
manifold A∩ {z j = 1} is an embedded copy of the complex (n−2)-sphere

CSn−2
= {w=(w1, . . . , wn−1) ∈ Cn−1

: w2
1 + · · ·+w

2
n−1=1}.

Observe that CSn−2 is homogeneous relative to the complex Lie group SO(n− 1,C), and hence it is an
Oka manifold; see [Grauert 1957; Forstnerič 2017, Proposition 5.6.1]. For a more detailed discussion,
see [Forstnerič 2017, Example 6.15.7; Alarcón and Forstnerič 2014, Example 7.8]. Moreover, choosing
k ∈ {1, . . . , n}, k 6= j , the map h = (h1, . . . , hn) : C→ A given by

h j (ζ )= ζ, hk(ζ )=
√

1− ζ 2, hl(ζ )=
i

√
n− 2

for all l 6= j, k, ζ ∈ C,

is a local holomorphic section near ζ = 0∈C of the coordinate projection πj :A→C, πj (z1, . . . , zn)= z j ,
which satisfies h(0) 6= 0. Thus, the null quadric A⊂Cn meets the requirements in Theorem 1.3, including
the ones in assertions (I) and (II), for all n ≥ 3.

3. Paths in closed conical complex subvarieties of Cn

We now use Notation 2.3; in particular, S ⊂ Cn (n ≥ 3) denotes a closed conical complex subvariety
which is contained in no hyperplane of Cn and such that S∗ =S\ {0} is smooth and connected. We need
the following:

Definition 3.1. Let Q be a topological space and n ≥ 3 be an integer. A continuous map f : Q→ Cn is
said to be flat if f (Q)⊂ Cz0 = {ζ z0 : ζ ∈ C} for some z0 ∈ Cn , and nonflat otherwise. The map f is said
to be nowhere flat if f |A : A→ Cn is nonflat for all open subsets ∅ 6= A ⊂ Q.

It is easily seen that a continuous map f : [0, 1] →S∗ ⊂ Cn is nonflat if, and only if,

span{T f (t)S : t ∈ [0, 1]} = Cn.

3A. Paths on I := [0, 1]. We prove a couple of technical results for paths [0, 1] →S∗ which pave the
way to the construction of period-dominating sprays of holomorphic maps of an open Riemann surface
into S∗ (see Lemma 3.4 in the next subsection).

Lemma 3.2. Let f : I→S∗ and ϑ : I→C∗ be continuous maps. Let ∅ 6= I ′⊂ I be a closed subinterval
and assume that f is nowhere flat on I ′. There exist continuous functions h1, . . . , hN : I → C, with
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support on I ′, and a neighborhood U of 0 ∈ CN such that the period map P :U → Cn given by

P(ζ )=
∫ 1

0
φ1
ζ1h1(t) ◦ · · · ◦φ

N
ζN hN (t)( f (t))ϑ(t) dt, ζ = (ζ1, . . . , ζN ) ∈U,

see (2-3), is well-defined and has maximal rank equal to n at ζ = 0.

Proof. We choose continuous functions h1, . . . , hN : I → C, with support on I ′, which will be specified
later. Then we define for a small neighborhood U of 0 ∈ CN a map

8 :U × I →S

given by
8(ζ, t) := φ1

ζ1h1(t) ◦ · · · ◦φ
N
ζN hN (t)( f (t)), ζ = (ζ1, . . . , ζN ) ∈U, t ∈ I.

Note that 8(0, t)= f (t) for all t ∈ I ; recall that each Vj vanishes at 0 for all j ∈ {1, . . . , N }. Thus, since
f (I )⊂S∗ is compact, we may assume that U is small enough so that 8 is well-defined and takes values
in S∗. Furthermore, 8 is holomorphic in the variable ζ and its derivative with respect to ζj is

∂8(ζ, t)
∂ζj

∣∣∣∣
ζ=0
= h j (t)Vj ( f (t)), j = 1, . . . , N . (3-1)

(See (2-2) and (2-3).) Thus, the period map P :U → Cn in the statement of the lemma can be written as

P(ζ )=
∫ 1

0
8(ζ, t)ϑ(t) dt, ζ ∈U.

Observe that P is holomorphic and, in view of (3-1),

∂P(ζ )
∂ζj

∣∣∣∣
ζ=0
=

∫ 1

0
h j (t)Vj ( f (t))ϑ(t) dt, j = 1, . . . , N . (3-2)

Since f is nowhere flat on I ′ (see Definition 3.1), (2-2) guarantees the existence of distinct points
t1, . . . , tN ∈ I ′ such that

span{V1( f (t1)), . . . , VN ( f (tN ))} = Cn. (3-3)

Now we specify the values of the function h j in I ′ ( j = 1, . . . , N ); recall that supp(h j ) ⊂ I ′. We
choose h j with support in a small neighborhood [tj − ε, tj + ε] of tj in I ′, for some ε > 0, and such that∫ 1

0
h j (t) dt =

∫ tj+ε

tj−ε

h j (t) dt = 1.

Then, for small ε > 0, we have∫ 1

0
h j (t)Vj ( f (t))ϑ(t) dt ≈ Vj ( f (tj ))ϑ(tj ), j = 1, . . . , N .

Since ϑ(t) 6= 0, (3-3) ensures that the vectors on the right side of the above display span Cn, and hence
the same is true for the vectors on the left side provided that ε > 0 is chosen sufficiently small. This
concludes the proof in view of (3-2). �
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Lemma 3.3. Let ϑ : I→C∗ be a continuous map. Given points u0, u1 ∈S∗ and x ∈Cn, and a domain �
in Cn containing 0 and x , there exists a continuous function g : I → S∗ which is nowhere flat on a
neighborhood of 0 in I and such that:

(I) g(0)= u0 and g(1)= u1.

(II)
∫ s

0 g(t)ϑ(t) dt ∈� for all s ∈ I .

(III)
∫ 1

0 g(t)ϑ(t) dt = x.

Proof. Set I0 :=
[
0, 1

2

]
and choose any continuous nowhere-flat map g0 : I0→S∗ such that

g0(0)= u0,

∫ s

0
g0(t)ϑ(t) dt ∈� for all s ∈ I0. (3-4)

Such a map can be constructed as follows. For any 0< δ < 1
2 let fδ : I0→ [δ, 1] be the continuous map

given by fδ(s) = 1− ((1− δ)/δ)s for s ∈ [0, δ] and fδ(s) = δ for s ∈
[
δ, 1

2

]
. Choose any continuous

nowhere-flat map g̃0 : I0→S∗ with g̃0(0)= u0. Then g0 := fδ g̃0 : I0→S∗ satisfies the requirements
for any δ > 0 sufficiently small.

Let ∅ 6= I ′ ⊂ I̊0 be a closed subinterval. Thus, Lemma 3.2 applied to g0 provides continuous functions
h1, . . . , hN : I→C, with support on I ′, and a neighborhood U of the origin in CN, such that the period map

U 3 ζ 7→ P(ζ )=
∫ 1/2

0
φ1
ζ1h1(t) ◦ · · · ◦φ

N
ζN hN (t)(g0(t))ϑ(t) dt, ζ = (ζ1, . . . , ζN ) ∈ CN ,

has maximal rank equal to n at ζ = 0. (See (2-3).) Set

8(ζ, t) := φ1
ζ1h1(t) ◦ · · · ◦φ

N
ζN hN (t)(g0(t)) ∈S, ζ ∈U, t ∈ I0,

and observe that 8(0, t)= g0(t) ∈S∗ for all t ∈ I0. Then, up to shrinking U if necessary, we have:

(a) 8(U × I0)⊂S∗ and P(U ) contains a ball in Cn with radius ε > 0 centered at

P(0)=
∫ 1/2

0
g0(t)ϑ(t) dt ∈�;

see (3-4).

(b) 8(ζ, t)= g0(t) for all (ζ, t) ∈U ×
{
0, 1

2

}
; recall that h j (0)= h j

( 1
2

)
= 0 for all j = 1, . . . , N.

(c)
∫ s

0 8(ζ, t)ϑ(t) dt ∈� for all ζ ∈U and s ∈ I0; see (3-4).

To conclude the proof we adapt the argument in [Alarcón and Forstnerič 2014, Lemma 7.3]. Since the
convex hull of S is Cn, see [Alarcón and Forstnerič 2014, Lemma 3.1], we may construct a polygonal path
0 ⊂� connecting P(0) and x ; to be more precise, 0 =

⋃m
j=1 0j where each 0j is a segment of the form

0j =wj+[0, 1]z j for somewj ∈Cn and z j ∈S∗, the initial pointw1 of01 is P(0), the final pointwm+zm of
0m is x , and the initial pointwj of 0j agrees with the final onewj−1+z j−1 of 0j−1 for all j=2, . . . ,m. Set

Ij :=

[
1
2
+

j − 1
2m

,
1
2
+

j
2m

]
, j = 1, . . . ,m,
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and observe that
⋃m

j=1 Ij =
[ 1

2 , 1
]
. For any number 0< λ < 1/(4m), set

I λj :=
[

1
2
+

j − 1
2m
+ λ,

1
2
+

j
2m
− λ

]
⊂ Ij , j = 1, . . . ,m.

Without loss of generality we may assume that m ∈ N is large enough so that

bj (λ) :=

∫
I λj

ϑ(t) dt 6= 0 for all 0< λ < 1
4m

, j = 1, . . . ,m; (3-5)

recall that ϑ has no zeros. Fix a number 0 < λ < 1/(4m) and set bj := bj (λ). Pick a constant
κ >max{|u0|, |u1|, |z1/b1|, . . . , |zm/bm |}. Also choose numbers 0< τ < µ < λ, which will be specified
later, and consider a continuous map g1 :

[ 1
2 , 1

]
→S∗ satisfying the following conditions:

(d) g1
( 1

2

)
= g0

( 1
2

)
and g1(1)= u1.

(e) g1(t)= z j/bj for all t ∈ I λj .

(f) |g1(t)| ≤ κ for all t ∈
[ 1

2 , 1
]
.

(g) |g1(t)| ≤ τ for all t ∈ I τj \ Iµj .

If τ > 0 is chosen sufficiently small, and if µ is close enough to λ, then (e), (f), (g), and (3-5) ensure that:

(h) The image of the map
[ 1

2 , 1
]
3 s 7→ P(0)+

∫ s
1/2 g1(t)ϑ(t) dt is close enough to 0 in the Hausdorff

distance so that it lies in �.

(i)
∣∣P(0)+ ∫ 1

1/2 g1(t)ϑ(t) dt − x
∣∣< ε, where ε > 0 is the number appearing in (a).

For ζ ∈U, let gζ : I→S∗ denote the function given by gζ (t)=8(ζ, t) for t ∈
[
0, 1

2

]
and gζ (t)= g1(t)

for t ∈
[ 1

2 , 1
]
. Properties (a) and (i) guarantee the existence of ζ0 ∈U such that∫ 1/2

0
gζ0(t)ϑ(t) dt = x −

∫ 1

1/2
g1(t)ϑ(t) dt,

and so
∫ 1

0 gζ0(t)ϑ(t) dt = x . Thus g := gζ0 meets (III). By (3-4), (b), and (d), we have that g is continuous
and satisfies (I), whereas (c) and (h) ensure (II). �

3B. Paths on open Riemann surfaces. Let us now state and prove the main result of this section; recall
that we are using Notation 2.3.

Lemma 3.4. Let M be an open Riemann surface and let θ be a holomorphic 1-form vanishing nowhere
on M. Let p0 ∈ M be a point, C1, . . . ,Cl (l ∈ N) be a family of oriented Jordan arcs or closed curves
in M that only meet at p0 (i.e., Ci ∩C j = {p0} for all i 6= j ∈ {1, . . . , l}) and such that C :=

⋃l
i=1 Ci

is Runge in M. Also let f : C → S∗ be a continuous map and assume that for each i ∈ {1, . . . , l}
there exists a subarc C̃i ⊂ Ci such that f is nowhere flat on C̃i . Then there exist continuous functions
hi,1, . . . , hi,N : C→ C, with support on C̃i , i = 1, . . . , l, and a neighborhood U of 0 ∈ (CN )l such that
the period map U → (Cn)l whose i-th component U → Cn is given by

U 3 ζ 7→
∫

Ci

φ1
ζ 1

1 h1,1(p)
◦ · · · ◦φN

ζ 1
N h1,N (p)

◦ · · · ◦φ1
ζ l

1hl,1(p)
◦ · · · ◦φN

ζ l
N hl,N (p)

( f (p))θ,
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see (2-2) and (2-3), where

ζ = (ζ 1, . . . , ζ l) ∈ (CN )l, ζ i
= (ζ i

1, . . . , ζ
i
N ) ∈ CN ,

are holomorphic coordinates, is well-defined and has maximal rank equal to nl at ζ = 0.

Proof. Consider the period map P = (P1, . . . ,Pl) : C (C,Cn)→ (Cn)l whose i-th component is defined
by

C (C,Cn) 3 g 7→ Pi (g)=
∫

Ci

gθ, i = 1, . . . , l. (3-6)

For each i = 1, . . . , l, let γi : I = [0, 1]→Ci be a smooth parametrization of Ci such that γi (0)= p0. If
Ci is closed then we choose γi with γi (1)= p0; further, up to changing the orientation of Ci if necessary,
we assume that the parametrization γi is compatible with the orientation of Ci . Thus,

Pi (g)=
∫ 1

0
g(γi (t))θ(γi (t), γ̇i (t)) dt, g ∈ C (C,Cn). (3-7)

Let ∅ 6= Ii ⊂ I̊ be a closed interval such that γi (Ii ) ⊂ C̃i . Lemma 3.2 applied to Ii , f ◦ γi , and
θ(γi ( · ), γ̇i ( · )) provides continuous functions hi

1, . . . , hi
N : I→C, supported on Ii , and a neighborhood Ui

of 0 ∈ CN such that the period map Pi :Ui → Cn given, for any ζ i
= (ζ i

1, . . . , ζ
i
Ni
) ∈Ui , by

Pi (ζ
i )=

∫ 1

0
φ1
ζ i

1hi
1(t)
◦ · · · ◦φN

ζ i
N hi

N (t)
( f (γi (t)))θ(γi (t), γ̇i (t)) dt, (3-8)

see (2-2) and (2-3), is well-defined and has maximal rank equal to n at ζ i
= 0. Let U be a ball centered at

the origin of (CN )l and contained in U1× · · ·×Ul . For each i ∈ {1, . . . , l} and j = 1, . . . , N, we define
hi, j : C→ C by hi, j (γi (t))= hi

j (t) for all t ∈ I , and hi, j (p)= 0 for all p ∈ C \Ci . Recall that hi
j (0)= 0

and so hi, j is continuous and hi, j (p0)= 0. Define 8 :U ×C→S by

8(ζ, p)= φ1
ζ 1

1 h1,1(p)
◦ · · · ◦φN

ζ 1
N h1,N (p)

◦ · · · ◦φ1
ζ l

1hl,1(p)
◦ · · · ◦φN

ζ l
N hl,N (p)

( f (p)),

and, up to shrinking U if necessary, assume that 8(U ×C)⊂S∗.
Let P :U → (Cn)l be the period map whose i-th component U → Cn, i = 1, . . . , l, is given by

U 3 ζ 7→
∫

Ci

8(ζ, · )θ = Pi (ζ
i ), ζ = (ζ 1, . . . , ζ l) ∈U ;

see (3-8) and recall that hi, j vanishes everywhere on C \Ci . It follows that P has maximal rank equal
to nl at ζ = 0. �

4. Jet-interpolation with approximation

We begin this section with some preparations.

Definition 4.1. Let M be an open Riemann surface. An admissible subset S = K ∪ 0 ⊂ M (see
Definition 2.1) will be called simple if K 6=∅, every component of 0 meets K , 0 does not contain closed
Jordan curves, and every closed Jordan curve in S meets only one component of K . Further, S will be



INTERPOLATION BY CONFORMAL MINIMAL SURFACES AND DIRECTED HOLOMORPHIC CURVES 575

S0

K0

Figure 1. A very simple admissible set.

called very simple if it is simple, K has at most one nonsimply connected component K0, which will be
called the kernel component of K , and every component of 0 has at least one endpoint in K0; in this case
we denote by S0 the component of S containing K0 and call it the kernel component of S.

A connected admissible subset S = K ∪ 0 in an open Riemann surface M is very simple if, and
only if, K has m ∈ N components K0, . . . , Km−1, where Ki is simply connected for every i > 0, and
0 = 0′ ∪0′′ ∪

(⋃m−1
i=1 γi

)
where 0′ consists of components of 0 with both endpoints in K0, 0′′ consists

of components of 0 with an endpoint in K0 and the other one in M \ K , and γi is a component of 0
connecting K0 and Ki for all i = 1, . . . ,m−1. Observe that, in this case, K0∪0

′ is a strong deformation
retract of S. In general, a very simple admissible subset S ⊂ M is of the form S = (K ∪0)∪ K ′ where
K ∪0 is a connected very simple admissible subset and K ′ ⊂ M \ (K ∪0) is a (possibly empty) union of
finitely many pairwise-disjoint smoothly bounded compact disks. (See Figure 1.)

If S = K ∪0 ⊂ M is admissible, we denote by A (S) the space of continuous functions S→ C which
are of class A (K ). Likewise, we define the space A (S, Z) for maps to any complex manifold Z .

In the remainder of this section we use Notation 2.3.

Lemma 4.2. Let M be an open Riemann surface and θ be a holomorphic 1-form vanishing nowhere on M.
Let S= K ∪0⊂M be a very simple admissible subset and L⊂M be a smoothly bounded compact domain
such that S ⊂ L̊ and the kernel component S0 of S is a strong deformation retract of L (see Definition 4.1).
Denote by l ′ ∈ Z+ the dimension of the first homology group H1(S;Z) = H1(S0;Z) ∼= H1(L;Z). Let
K0, . . . , Km , m ∈ Z+, denote the components of K contained in S0, where K0 is the kernel component
of K .

Let m′ ∈ Z+, m′ ≥m, and let p0, . . . , pm′ be distinct points in S such that pi ∈ K̊i for all i = 0, . . . ,m
and pi ∈ K̊0 for all i = m + 1, . . . ,m′, and let Ci , i = 1, . . . ,m′, be pairwise-disjoint oriented Jordan
arcs in S with initial point p0 and final point pi . Set l := l ′ +m′. Also let Ci , i = m′ + 1, . . . , l, be
smooth Jordan curves in S determining a homology basis of S and such that Ci ∩ C j = {p0} for all
i 6= j ∈ {1, . . . , l} and C :=

⋃l
i=1 Ci is Runge in M. (See Figure 2.)
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Figure 2. The sets in Lemma 4.2

Given k ∈ N and a map f : S→S∗ ⊂ Cn of class A (S) which is nonflat on K̊0 (see Definition 3.1),
the following hold:

(i) There exist functions hi,1, . . . , hi,N : L→ C, i = 1, . . . , l, of class A (L) and a neighborhood U of
0 ∈ (CN )l such that:

(i.1) hi, j has a zero of multiplicity k at pr for all j = 1, . . . , N and r = 1, . . . ,m′.

(i.2) Denoting by 8 f :U × S→S the map

8 f (ζ, p)= φ1
ζ 1

1 h1,1(p)
◦ · · · ◦φN

ζ 1
N h1,N (p)

◦ · · · ◦φ1
ζ l

1hl,1(p)
◦ · · · ◦φN

ζ l
N hl,N (p)

( f (p)),

see (2-2) and (2-3), where ζ = (ζ 1, . . . , ζ l) ∈ (CN )l and ζ i
= (ζ i

1, . . . , ζ
i
N ) ∈ CN, are holomorphic

coordinates, the period map U → (Cn)l whose i-th component U → Cn is given by

U 3 ζ 7→
∫

Ci

8 f (ζ, · )θ

has maximal rank equal to nl at ζ = 0.

Furthermore, there is a neighborhood V of g ∈ A (S,S∗) such that the map V 3 g 7→8g can be chosen
to depend holomorphically on g.

(ii) If S∗ is an Oka manifold, then f may be approximated uniformly on S by maps f̃ : L → S∗ of
class A (L) such that:

(ii.1) ( f̃ − f )θ is exact on S, equivalently,
∫

Cr
( f̃ − f )θ = 0 for all r = m′+ 1, . . . , l.

(ii.2)
∫

Cr
( f̃ − f )θ = 0 for all r = 1, . . . ,m′.

(ii.3) f̃ − f has a zero of multiplicity k at pr for all r = 1, . . . ,m′.

(ii.4) No component function of f̃ vanishes everywhere on M.
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Notice that conditions (ii.1) and (ii.2) in the above lemma may be written as a single one in the form∫
Cr

( f̃ − f )θ = 0 for all r = 1, . . . , l.

However, we write them separately with the aim of emphasizing that they are useful for different purposes;
indeed, (ii.1) concerns the period problem, whereas (ii.2) deals with the problem of interpolation.

Proof. Choose k ∈ N and let f : S→S∗ be a map of class A (S) which is nonflat on K0. Consider the
period map P= (P1, . . . ,Pl) :C (C,Cn)→ (Cn)l whose i-th component Pi :C (C,Cn)→Cn is defined by

C (C,Cn) 3 g 7→ Pi (g)=
∫

Ci

gθ, i = 1, . . . , l. (4-1)

Since S is very simple and f is holomorphic and nonflat on K̊0, each Ci , i = 1, . . . , l, contains a
subarc C̃i ⊂ K̊0 \ {p0} such that f is nowhere flat on C̃i ; if i ∈ {m + 1, . . . ,m′} then we may choose
C̃i ⊂ Ci \ {p0, pi }. Thus, Lemma 3.4 applied to the map f |C : C → S∗, the base point p0, and the
curves C1, . . . ,Cl furnishes functions gi,1, . . . , gi,N : C → C, with support on C̃i , i = 1, . . . , l, and a
neighborhood U of 0∈ (CN )l such that the period map P :U→ (Cn)l whose i-th component Pi :U→Cn

is given by

Pi (ζ ) :=

∫
Ci

φ1
ζ 1

1 g1,1(p)
◦ · · · ◦φN

ζ 1
N g1,N (p)

◦ · · · ◦φ1
ζ l

1gl,1(p)
◦ · · · ◦φN

ζ l
N gl,N (p)

( f (p)) θ,

see (2-2) and (2-3), is well-defined and has maximal rank equal to nl at ζ = 0. Since C ⊂ M is
Runge, Theorem 2.6 enables us to approximate each gi, j by functions hi, j ∈ O(M) ⊂ A (L) ⊂ A (S)
satisfying condition (i.1); recall that every function gi j vanishes on a neighborhood of pr for all
r = 1, . . . ,m′. Furthermore, if the approximation of gi, j by hi, j is close enough then the period
map defined in (i.2) also has maximal rank at ζ = 0. Finally, by varying f locally (keeping the
functions hi, j fixed) we obtain a holomorphic family of maps f 7→8 f with the desired properties. This
proves (i).

Let us now prove assertion (ii), so assume that S∗ is an Oka manifold. Up to adding to S a smoothly
bounded compact disk D ⊂ M \ S and extending f to D as a function of class A (S) all of whose
components are different from the constant 0 on D, we may assume that no component function of f
vanishes everywhere on S. Consider the map 8 : U × S→S given in (i.2) and, up to shrinking U if
necessary, assume that 8(U × S) ∈S∗. Note that the functions hi, j are defined on L but f only on S.
By (i), the period map Q :U → (Cn)l with i-th component

Qi (ζ )=

∫
Ci

8(ζ, · )θ = Pi (8(ζ, · )), ζ ∈U,

see (4-1), has maximal rank equal to nl at ζ = 0. It follows that the image by Q of any open neighborhood
of 0 ∈ U ⊂ (CN )l contains an open ball in (Cn)l centered at Q(0) = P( f ); see (4-1). Since S ⊂ M is
Runge and S∗ is Oka, Theorem 2.6 allows us to approximate f by holomorphic maps f̂ : M→S∗ such
that

f̂ − f has a zero of multiplicity k at pr for all r = 1, . . . ,m′. (4-2)
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Define 8̂ :U × L→S by

8̂(ζ, p)= φ1
ζ 1

1 h1,1(p)
◦ · · · ◦φN

ζ 1
N h1,N (p)

◦ · · · ◦φ1
ζ l

1hl,1(p)
◦ · · · ◦φN

ζ l
N hl,N (p)

( f̂ (p)) (4-3)

and, up to shrinking U once again if necessary, assume that 8̂(U × L)⊂S∗. Consider now the period
map Q̂ :U → (Cn)l whose i-th component U → Cn is given by

U 3 ζ 7→
∫

Ci

8̂(ζ, · ) θ, i = 1, . . . , l.

Thus, for any open ball 0 ∈W ⊂U, if the approximation of f by f̂ is close enough, the range of Q̂(W )

also contains P( f ). Therefore, there is ζ0 ∈W ⊂U close to 0 ∈ (CN )l such that

f̃ := 8̂(ζ0, · ) : L→S∗ (4-4)

lies in A (L) and satisfies (ii.1) and (ii.2); recall that S0 is a strong deformation retract of L and so the
curves Ci , i = m′+ 1, . . . , l, determine a basis of H1(L;Z). To finish the proof, Lemma 2.2, (i.1), (4-3),
and (4-4) guarantee that f̃ − f̂ has a zero of multiplicity (at least) k at pr for all r = 1, . . . ,m′. This and
(4-2) ensure (ii.3). Finally, if the approximation of f by f̃ on S is close enough, since no component
function of f vanishes everywhere on S, no component function of f̃ vanishes everywhere on M, which
proves (ii.4) and concludes the proof.

�

We now show the following technical result which will considerably simplify the subsequent proofs.

Proposition 4.3. Let n ≥ 3 be an integer and S be an irreducible closed conical complex subvariety of
Cn which is not contained in any hyperplane. Let M = M̊ ∪ bM be a compact bordered Riemann surface,
θ be a holomorphic 1-form vanishing nowhere on M, and 3⊂ M̊ be a finite subset. Choose p0 ∈ M \3
and, for each p ∈3, let C p ⊂ M̊ be a smooth Jordan arc with initial point p0 and final point p such that
C p ∩Cq = {p0} for all p 6= q ∈3.

Let f : M→S∗ be a map of class A (M) which is flat (see Definition 3.1) and k ∈ N be an integer.
Then f may be approximated uniformly on M by nonflat maps f̃ : M→S∗ of class A (M) satisfying the
following properties:

(i) ( f̃ − f )θ is exact on M.

(ii)
∫

C p
( f̃ − f )θ = 0 for all p ∈3.

(iii) f̃ − f has a zero of multiplicity k at all points p ∈3.

Proof. Without loss of generality we assume that 3 6= ∅, write 3 = {p1, . . . , pl ′}, and set Ci := C pi ,
i = 1, . . . , l ′. Choose Cl ′+1, . . . ,Cl closed Jordan loops in M̊ forming a basis of H1(M,Z)∼= Zl−l ′ such
that Ci ∩C j = {p0} for all i, j ∈ {1, . . . , l}, i 6= j , and C :=

⋃l
j=1 C j is a Runge subset of M ; existence of

such loops is ensured by basic topological arguments. Consider smooth parametrizations γj : [0, 1] → C j

of the respective curves verifying γj (0) = p0 and γj (1) = pj for j = 1, . . . , l ′, and γj (0) = γj (1) = p0

for j = l ′+ 1, . . . , l.
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Since f is flat there exists z0 ∈ S∗ such that f (M) ⊂ C∗z0. Observe that Cz0 is a proper complex
subvariety of S. We consider the period map P = (P1, . . . ,Pl) : A (M)→ (Cn)l defined by

A (M) 3 g 7→ Pj (g) :=
∫

C j

gθ =
∫ 1

0
g(γj (t))θ(γj (t), γ̇j (t)) dt, j = 1, . . . , l. (4-5)

Note that a map g ∈ A (M) meets (i) and (ii) if, and only if, P(g) = P( f ). So, to finish the proof it
suffices to approximate f uniformly on M by nonflat maps f̃ ∈A (M) satisfying the latter condition and
also (iii).

Choose a holomorphic vector field V on Cn which is tangential to S along S, vanishes at 0, and is not
everywhere tangential to C∗z0 along f (M). Let φs(z) denote the flow of V for small values of time s ∈C.
Choose a nonconstant function h1 : M→ C of class A (M) such that h1(p0)= 0. Denote by f the space
of all functions h : M→ C of class A (M) having a zero of multiplicity k ∈ N at all points p ∈3. The
following map is well-defined and holomorphic on a small open neighborhood f∗ of the zero function
in f:

f∗ 3 h 7→ P(φh1( · )h( · )( f ( · ))) ∈ (Cn)l .

Each component Pj , j = 1, . . . , l, of this map at the point h = 0 equals

Pj (φ0( f ))= Pj ( f )

(recall that V vanishes at 0 ∈ Cn). Since f is infinite-dimensional, there is a function h ∈ f arbitrarily
close to the function 0 (in particular, we may take h ∈ f∗) and nonconstant on M, such that

P(φh1( · )h( · )( f ( · )))= P( f ).

Set f̃ (p)=φh1(p)h(p)( f (p)), p ∈M. Assume that ‖h‖0,M is sufficiently small so that f̃ is well-defined
and of class A (M), f̃ approximates f on M, and f̃ (p) ∈S∗ for all p ∈ M. By the discussion below
equation (4-5), f̃ satisfies (i) and (ii). On the other hand, since h has a zero of multiplicity k at every
point of 3 and h1 is not constant, we infer that hh1 also has a zero of multiplicity (at least) k at all points
of 3. Thus, Lemma 2.2 ensures that f̃ − f satisfies (iii). Finally, since h1(p0) = 0 and V vanishes at
0, we have f̃ (p0) = f (p0) ∈ C∗z0, whereas since hh1 is nonconstant on M and V is not everywhere
tangential to C∗z0 along f (M), there is a point q ∈ M such that f̃ (q) /∈ C∗z0. This proves that f̃ is
nonflat, which concludes the proof. �

The following is the main technical result of this paper.

Theorem 4.4. Let n ≥ 3 be an integer and S be an irreducible closed conical complex subvariety of Cn

which is not contained in any hyperplane and such that S∗ =S \ {0} is smooth and an Oka manifold.
Let M be an open Riemann surface, θ be a holomorphic 1-form vanishing nowhere on M, K ⊂ M be a
smoothly bounded Runge compact domain, and 3⊂ M be a closed discrete subset. Choose p0 ∈ K̊ \3
and, for each p ∈3, let C p ⊂ M be an oriented Jordan arc with initial point p0 and final point p such
that C p∩Cq ={p0} for all q 6= p ∈3 and C p ⊂K for all p ∈3∩K. Also, for each p ∈3, let�p ⊂M be
a compact neighborhood of p in M such that �p∩ (�q ∪Cq)=∅ for all q 6= p ∈3. Set � :=

⋃
p∈3�p.
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Let f : K∪�→S∗ be a map of class A (K∪�), let q : H1(M;Z)→ Cn be a group homomorphism,
and let Z :3→ Cn be a map, such that:

(a)
∫
γ

f θ = q(γ ) for all closed curves γ ⊂ K.

(b)
∫

C p
f θ = Z(p) for all p ∈3∩K.

Then, for any integer k ∈N, f may be approximated uniformly on K by holomorphic maps f̃ : M→S∗
satisfying the following conditions:

(A)
∫
γ

f̃ θ = q(γ ) for all closed curves γ ⊂ M.

(B) f̃ − f has a zero of multiplicity k at p for all p ∈3; equivalently, f̃ and f have the same (k−1)-jet
at every point p ∈3.

(C)
∫

C p
f̃ θ = Z(p) for all p ∈3.

(D) No component function of f̃ vanishes everywhere on M.

Proof. Up to slightly enlarging K if necessary, we may assume without loss of generality that 3∩bK=∅.
Further, up to shrinking the sets �p, we may also assume that, for each p ∈ 3, either �p ⊂ K̊ or
�p ∩K =∅. Finally, by Proposition 4.3 we may assume that f : K→S∗ is nonflat.

Set M0 := K and let {Mj }j∈N be a sequence of smoothly bounded Runge compact domains in M such
that

M0 b M1 b M2 b · · ·b
⋃
j∈N

Mj = M.

Assume also that the Euler characteristic χ(Mj\M̊j−1) of Mj\M̊j−1 is either 0 or−1, and that3∩bMj =∅
for all j ∈ N. Such a sequence can be constructed by basic topological arguments; see, e.g., [Alarcón
and López 2013b, Lemma 4.2]. Since 3 is closed and discrete, Mj is compact, and 3∩ bMj = ∅ for
all j ∈ Z+, we know 3j := 3∩Mj = 3∩ M̊j is either empty or finite. Without loss of generality we
assume that 30 6=∅ and 3j \3j−1 =3∩ (M̊j \Mj−1) 6=∅ for all j ∈ N, and hence 3 is infinite.

Set f0 := f |K and, for each p ∈30 6=∅, choose an oriented Jordan arc C p
⊂ M̊0 with initial point p

and final point p0, such that

C p
∩Cq

= {p0} for all p 6= q ∈30. (4-6)

Such curves trivially exist.
To prove the theorem we shall inductively construct a sequence of maps f j : Mj → S∗ ⊂ Cn and

a family of oriented Jordan arcs C p
⊂ M̊j , p ∈ 3j \3j−1 6= ∅, j ∈ N, with initial point p and final

point p0, satisfying the following properties:

(ij ) ‖ f j − f j−1‖0,Mj−1 < εj for a certain constant εj > 0 which will be specified later.

(iij )
∫
γ

f jθ = q(γ ) for all closed curves γ ⊂ Mj .

(iiij )
∫

C p f jθ = q(C p ∗C p)−Z(p) for all p ∈3j . (Recall that ∗ denotes the product of oriented arcs;
see Section 2A.)

(ivj ) f j − f has a zero of multiplicity k at p for all p ∈3j .
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Figure 3. The set K ⊂ M, the arcs C p, and the domains �p in Theorem 4.4.

(vj ) C p
∩Cq

= {p0} for all p 6= q ∈3j .

(vij ) No component function of f j vanishes everywhere on Mj .

(See Figure 3.) Assume for a moment that we have already constructed such sequence. Then choosing
the sequence {εj }j∈N decreasing to zero fast enough, (ij ) ensures that there is a limit holomorphic map

f̃ := lim
j→∞

f j : M→S∗

which is as close as desired to f uniformly on K, whereas properties (iij ), (iiij ), (ivj ), (vj ), and (vij )
guarantee (A), (B), (C), and (D). This would conclude the proof.

The basis of the induction is given by the nonflat map f0 = f |K and the already fixed oriented arcs
C p, p ∈30. Condition (i0) is vacuous, (ii0) = (a), (iii0) is implied by (a) and (b), (iv0) is trivial, and
(v0)= (4-6). For the inductive step, we assume that we already have a map f j−1 : Mj−1→S∗ and arcs
C p
⊂ M̊j−1, p ∈3j−1, satisfying properties (iij−1)–(vj−1) for some j ∈N, and let us construct a map f j

and arcs C p for p ∈3j \3j−1 =3∩ (M̊j \Mj−1), enjoying conditions (ij )–(vij ). We distinguish cases
depending on the Euler characteristic χ(Mj \ M̊j−1).

Case 1: the noncritical case. Assume that χ(Mj \ M̊j−1)= 0. In this case Mj−1 is a strong deformation
retract of Mj . Recall that 3j \3j−1 is a nonempty finite set. Choose, for each p ∈3j \3j−1, an oriented
Jordan arc C p

⊂ M̊j with initial point p and final point p0, so that condition (vj ) holds; such arcs trivially
exist. Up to shrinking �p if necessary, we assume without loss of generality that �p ⊂ M̊j \Mj−1 for all
p ∈3j \3j−1 and �p ∩Cq

=∅ for all q ∈3j \3j−1, q 6= p.
Set

K := Mj−1 ∪

( ⋃
p∈3j\3j−1

�p

)
, 0 :=

( ⋃
p∈3j\3j−1

C p
)
\ K̊ ,

and, up to slightly modifying the arcs C p, p ∈3j \3j−1, assume that S := K ∪0 ⊂ M̊j is an admissible
subset of M (see Definition 2.1). Notice that S is connected and a strong deformation retract of Mj ;
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moreover, as admissible set, S is very simple and the kernel component of K is Mj−1 (see Definition 4.1).
Thus, Lemma 3.3 furnishes a map ϕ : S→S∗ of class A (S) such that:

(I) ϕ = f j−1 on Mj−1.

(II) ϕ = f on
⋃

p∈3j\3j−1
�p.

(III)
∫

C p ϕθ = q(C p ∗C p)−Z(p) for all p ∈3j \3j−1.

Now, given εj > 0, Lemma 4.2(ii) applied to S, Mj , the arcs C p, p ∈3j , the integer k ∈ N, and the
map ϕ, provides a map f j : Mj →S∗ of class A (Mj ) satisfying the following conditions:

(IV) ‖ f j −ϕ‖0,S < εj .

(V) ( f j −ϕ)θ is exact on S.

(VI)
∫

C p( f j −ϕ)θ = 0 for all p ∈3j .

(VII) f j −ϕ has a zero of multiplicity k at p for all p ∈3j .

(VIII) No component function of f j vanishes everywhere on Mj .

We claim the map f j satisfies properties (ij )–(ivj ); recall that (vj ) is already guaranteed. Indeed, (ij )
follows from (I) and (IV); (iij ) from (iij−1), (I), (V), and the fact that Mj−1 is a strong deformation retract
of Mj ; (iiij ) from (iiij−1), (I), (III), and (VI); (ivj ) from (ivj−1), (I), (II), and (VII); and (vij )= (VIII).

Case 2: the critical case. Assume that χ(Mj \ M̊j−1)=−1. Now, the change of topology is described by
attaching to Mj−1 a smooth arc α in M̊j \ M̊j−1 satisfying Mj−1 only at its endpoints. Thus, Mj−1 ∪α is
a strong deformation retract of Mj . Further, we may choose α such that α∩3=∅ and S := Mj−1∪α is
an admissible subset of M, which is very simple (see Definition 4.1). Since both endpoints of α lie in
bMj−1, there is a closed curve β ⊂ S which contains α as a subarc and is not in the homology of Mj−1.
Now, Lemma 3.3 furnishes a map ϕ : S→S∗ of class A (S) such that ϕ = f j−1 on Mj−1 and∫

β

ϕθ = q(β).

Choose a smoothly bounded compact domain L ⊂ M̊j such that S ⊂ L̊ , S is a strong deformation retract
of L , and L ∩ (3j \3j−1) = ∅. Given εj > 0, Lemma 4.2(ii) applied to S, L , the arcs C p, p ∈ 3j−1,
the integer k ∈ N, and the map ϕ, provides a map f̂ : L→S∗ of class A (L) satisfying the following
conditions:

(i) ‖ f̂ −ϕ‖0,S < 1
2εj .

(ii) ( f̂ −ϕ)θ is exact on S.

(iii)
∫

C p( f̂ −ϕ)θ = 0 for all p ∈3j−1.

(iv) f̂ −ϕ has a zero of multiplicity k at p for all p ∈3j−1.

Since the Euler characteristic satisfies χ(Mj \ L̊)= 0, this reduces the construction to the noncritical case.
This finishes the inductive process and concludes the proof of the theorem. �
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To finish this section we prove a Runge–Mergelyan-type theorem with jet-interpolation for holomorphic
maps into Oka subvarieties of Cn in which a component function is preserved provided that it holomor-
phically extends to the whole source Riemann surface. This will be an important tool to ensure conditions
(III) and (IV) in Theorem 1.2 and (I) and (II) in Theorem 1.3.

Lemma 4.5. Let n ≥ 3 be an integer and S be an irreducible closed conical complex subvariety of Cn

which is not contained in any hyperplane. Assume that S∗ =S \ {0} is smooth and an Oka manifold, and
that S∩ {z1 = 1} is also an Oka manifold and the coordinate projection π1 : S→ C onto the z1-axis
admits a local holomorphic section h near z1 = 0 with h(0) 6= 0. Let M be an open Riemann surface of
finite topology, θ be a holomorphic 1-form vanishing nowhere on M, S = K ∪0 ⊂ M be a connected
very simple admissible Runge subset (see Definition 4.1) which is a strong deformation retract of M.
Let 3 ⊂ K̊0 be a finite subset where K0 is the kernel component of S. Choose p0 ∈ K̊0 \3 and, for
each p ∈ 3, let C p ⊂ K̊0 be an oriented Jordan arc with initial point p0 and final point p such that
C p ∩Cq = {p0} for all q 6= p ∈3.

Let f = ( f1, . . . , fn) : S→ S∗ be a continuous map, holomorphic on K , such that f1 extends to a
holomorphic map M→ C which does not vanish everywhere on M. Assume also that f |K : K →S∗ is
nonflat. Then, for any integer k ∈ Z+, f may be approximated in the C 0(S)-topology by holomorphic
maps f̃ = ( f̃1, f̃2, . . . , f̃n) : M→S∗ such that:

(i) f̃1 = f1 everywhere on M.

(ii) f̃ − f has a zero of multiplicity k at p for all p ∈3.

(iii)
∫

C p
( f̃ − f )θ = 0 for all p ∈3.

(iv)
∫
γ
( f̃ − f )θ = 0 for all closed curves γ ⊂ S.

Proof. We adapt the ideas in [Alarcón and Forstnerič 2014, proof of Theorem 7.7]. Set S′ :=S∩{z1= 1}.
By dilations we see that S \ {z1 = 0} is biholomorphic to S′×C∗ (and hence is Oka), and the projection
π1 :S

′
→C is a trivial fiber bundle with Oka fiber S′ except over 0∈C. Write ( f1, f̂ )= ( f1, f2, . . . , fn);

that is, f̂ := ( f2, . . . , fn) : S → Cn−1. Since f1 is holomorphic and nonconstant on M, its zero set
f −1
1 (0) = {a1, a2, . . .} is a closed discrete subset of M. The pullback f ∗1 π1 : E = f ∗S→ M of the

projection π1 :S→ C is a trivial holomorphic fiber bundle with fiber S′ over M \ f −1
1 (0), but it may be

singular over the points aj ∈ f −1
1 (0). The map f̂ : S→ Cn−1 satisfies f̂ (x) ∈ π−1

1 ( f1(x)) for all x ∈ S,
so f̂ corresponds to a section of E→ M over the set S.

Now we need to approximate f̂ uniformly by a section E→ M solving the problem of periods and
interpolation. (Except for the period and interpolation conditions, a solution is provided by the Oka
principle for sections of ramified holomorphic maps with Oka fibers; see [Forstnerič 2003; 2017, §6.14].
We begin by choosing a local holomorphic solution on a small neighborhood of any point aj ∈ M \ S so
that f̂ (aj ) 6= 0, and we add these neighborhoods to the domain of holomorphicity of f̂ . Then we need to
approximate a holomorphic solution f̂ on a smoothly bounded compact set K ⊂ M by a holomorphic
one on a larger domain L ⊂ M assuming that K is a strong deformation retract of L and L \ K does not
contain any point aj . This can be done by applying the Oka principle for maps to the Oka fiber G ′ of
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π : G→ C over C∗. In the critical case we add a smooth Jordan arc α to the domain K ⊂ M disjoint
from the points aj and such that K ∪ α is a strong deformation retract of the next domain. Next, we
extend f̂ smoothly over α so that the integral

∫
α

f̂ θ takes the correct value by applying an analogous
result of Lemma 3.3 but keeping the first coordinate fixed; this reduces the proof to the noncritical case
and concludes the proof of the lemma. �

5. General position, completeness, and properness results

In this section we prove several results that pave the way to the proof of Theorem 1.3 in Section 6. Thus,
all the results in this section concern directed holomorphic immersions of open Riemann surfaces into Cn;
we point out that the methods of proof easily adapt to give analogous results for conformal minimal
immersions into Rn (see Section 7).

We begin with the following:

Definition 5.1. Let S be a closed conical complex subvariety of Cn (n ≥ 3), M be an open Riemann
surface, and S = K ∪0 ⊂ M be an admissible subset (see Definition 2.1). By a generalized S-immersion
S → Cn we mean a map F : S → Cn of class C 1(S) whose restriction to K is an S-immersion of
class A 1(S) and the derivative F ′(t) with respect to any local real parameter t on 0 belongs to S∗.

We now prove a Mergelyan-type theorem for generalizedS-immersions which follows from Lemmas 4.2
and 4.5; it will be very useful in the subsequent results.

Proposition 5.2. Let S⊂ Cn be as in Theorem 4.4. Let M be a compact bordered Riemann surface and
let S = K ∪0 ⊂ M̊ be a very simple admissible Runge compact subset such that the kernel component S0

of S (see Definition 4.1) is a strong deformation retract of M. Let3⊂ K̊ be a finite subset and assume that
3∩ K ′ consists of at most a single point for each component K ′ of K , K ′ 6= K0, where K0 is the kernel
component of K . Given an integer k∈N, every generalized S-immersion F= (F1, . . . , Fn) : S→Cn which
is nonflat on K̊0 may be approximated in the C 1(S)-topology by S-immersions F̃= (F̃1, . . . , F̃n) :M→Cn

such that F̃ − F has a zero of multiplicity k ∈ N at all points p ∈3 and F̃ has no constant component
function.

Furthermore, if S ∩ {z1 = 1} is an Oka manifold, the coordinate projection π1 : S→ C onto the
z1-axis admits a local holomorphic section h near z1 = 0 with h(0) 6= 0, 3 ⊂ K̊0, and F1 extends to a
nonconstant holomorphic function M→ C, then F̃ may be chosen with F̃1 = F1.

We point out that an analogous result of the above proposition remains true for arbitrary admissible
subsets; we shall not prove the most general statement for simplicity of exposition. Anyway, Proposition 5.2
will suffice for the aim of this paper.

Proof. Let θ be a holomorphic 1-form vanishing nowhere on M. Set f = d F/θ : S→S∗ and observe
that f is nonflat on K̊0 and of class A (S), and that f θ is exact on S. Fix a point p0 ∈ K̊0 \3. If S is
not connected then S \ S0 consists of finitely many pairwise-disjoint, smoothly bounded compact disks
K1, . . . , Km . For each i ∈ {1, . . . ,m} choose a smooth Jordan arc γi ⊂ M̊ with an endpoint in (bK0) \0,
the other endpoint in bKi , and otherwise disjoint from S. Choose these arcs so that S′ := S∪

(⋃m
i=1 γi

)
is an
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admissible subset of M. It follows that S′ is connected, very simple, and a strong deformation retract of M.
By Lemma 3.3 we may extend f to a map f ′ : S′→S∗ of class A (S′) such that F(p0)+

∫ p
p0

f θ = F(p)
for all p ∈ S′. From now on we remove the primes and assume without loss of generality that S is
connected.

For each p ∈3 choose a smooth Jordan arc C p ⊂ S joining p0 with p such that C p ∩Cq = {p0} for
all p 6= q ∈ 3. By Lemma 4.2(ii) applied to the set S ⊂ M, the map f , the integer k − 1 ≥ 0, and the
arcs C p, p ∈3, we may approximate f uniformly on S by a holomorphic map f̃ : M→S∗ such that:

(a) f̃ θ is exact; recall that f θ is exact on (S and hence on) S0 and that S0 is a strong deformation retract
of M.

(b) F(p0)+
∫

C p
f̃ θ = F(p0)+

∫
C p

f θ = F(p) for all p ∈3.

(c) f̃ − f has a zero of multiplicity k− 1 at all points p ∈3.

(d) No component function of f̃ vanishes everywhere on M.

Then, property (a) ensures that the map F̃ : M→ Cn defined by

F̃(p) := F(p0)+

∫ p

p0

f̃ θ, p ∈ M,

is a well-defined S-immersion and is as close as desired to F in the C 1(S)-topology. Moreover, properties
(b) and (c) guarantee that F̃ − F has a zero of multiplicity k at all points of 3, whereas (d) ensures that
F̃ has no constant component function. This concludes the first part of the proof.

The second part of the lemma is proved in an analogous way but using Lemma 4.5 instead of
Lemma 4.2(ii). Moreover, in order to reduce the proof to the case when S is connected, we need to extend
f to a map f ′ on S′ as above such that the first component of f ′ equals d F1/θ ; this is accomplished by a
suitable analogue of Lemma 3.3, we leave the obvious details to the interested reader. �

5A. A general position theorem. We prove a desingularization result with jet-interpolation for directed
immersions of class A 1 on a compact bordered Riemann surface. We use Notation 2.3.

Theorem 5.3. Let M be a compact bordered Riemann surface and3⊂ M̊ be a finite set. Let F :M→Cn

(n ≥ 3) be an S-immersion of class A 1(M) such that F |3 is injective. Then, given k ∈ N, F may be
approximated uniformly on M by a S-embedding F̃ : M→ Cn of class A 1(M) such that F̃ − F has a
zero of multiplicity k at p for all p ∈3.

Proof. Proposition 4.3 allows us to assume without loss of generality that F : M→ Cn is nonflat. We
assume that M is a smoothly bounded compact domain in an open Riemann surface R. We associate to
F the difference map

δF : M ×M→ Cn, δF(x, y)= F(y)− F(x).

Obviously, F is injective if and only if (δF)−1(0)= DM = {(x, x) : x ∈ M}.
Since F is an immersion and F |3 :3→ Cn is injective, there is an open neighborhood U ⊂ M ×M

of DM ∪ (3×3) such that δF 6= 0 everywhere on U \ DM . To prove the theorem it suffices to find
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arbitrarily close to F another S-immersion F̃ : M → Cn of class A 1(M) such that F̃ − F has a zero
of multiplicity k at all points of 3 whose difference map δ F̃ |M×M\U is transverse to the origin. Indeed,
since dimC M × M = 2 < n, this will imply that δ F̃ does not assume the value 0 on M × M \U, so
F̃(y) 6= F̃(x) when (x, y) ∈ M × M \U. On the other hand, if (x, y) ∈ U \ DM then F̃(y) 6= F̃(x)
provided that F̃ is sufficiently close to F .

To construct such an S-immersion we will use the standard transversality argument by Abraham
[1963]. We need to find a neighborhood V ⊂ CN of the origin in a complex Euclidean space and a map
H : V ×M→ Cn of class A 1(V ×M) such that:

(a) H(0, · )= F .

(b) H − F has a zero of multiplicity k at p for all p ∈3.

(c) The difference map δH : V ×M ×M→ Cn, defined by

δH(ζ, x, y)= H(ζ, y)− H(ζ, x), ζ ∈ V, x, y ∈ M,

is a submersive family of maps in the sense that the partial differential

dζ δH(ζ, x, y)|ζ=0 : T0CN ∼= CN
→ Cn

is surjective for any (x, y) ∈ M ×M \U.

By openness of the latter condition and compactness of M ×M \U it follows that the partial differential
dζ δH is surjective for all ζ in a neighborhood V ′ ⊂ V of the origin in CN. Hence, the map δH :
M × M \U → Cn is transverse to any submanifold of Cn, in particular, to the origin {0} ⊂ Cn. The
standard argument then shows that for a generic member H(ζ, · ) : M→ Cn of this family, the difference
map δH(ζ, · ) is also transverse to 0 ∈ Cn on M ×M \U. Choosing such a ζ sufficiently close to 0 we
then obtain the desired S-embedding F̃ := H(ζ, · ).

To construct a map H as above we fix a nowhere-vanishing holomorphic 1-form θ on R and write
d F = f θ , where f : M→S∗ is a map of class A 1(M). We begin with the following.

Lemma 5.4. For any point (p,q)∈M×M\(DM∪(3×3)) there is a deformation family H =H (p,q)(ζ, · )

satisfying conditions (a) and (b) above, with ζ ∈Cn, such that the differential dζ δH(ζ, p, q)|ζ=0 :C
n
→Cn

is an isomorphism.

For the proof we adapt the arguments in [Alarcón and Forstnerič 2014, Lemma 6.1] in order to guarantee
also the jet-interpolation, i.e., condition (b) of the map H .

Proof. Pick (p, q) ∈ M ×M \ (DM ∪ (3×3)). We distinguish cases.

Case 1: assume that {p, q} ∩3 6= ∅. Assume that p ∈ 3 and hence q /∈ 3; otherwise we reason in a
symmetric way. Write 3= {p = p1, . . . , pl ′}. Pick a point p0 ∈ M \ (3∪ {q}) and choose closed loops
C j ⊂ M \3, j = 1, . . . , l ′′, forming a basis of H1(M,Z)= Zl ′′, and smooth Jordan arcs Cl ′′+ j joining p0

with pj , j = 1, . . . , l ′, such that setting l := l ′+ l ′′, we have that Ci ∩C j = {p0} for any i, j ∈ {1, . . . , l}
and that C :=

⋃l
j=1 C j is a Runge set in M. Also choose another smooth Jordan arc Cq joining p0 with q

and verifying C ∩Cq = {p0}. Finally let γj : [0, 1] → C j , j = 1, . . . , l, and γ : [0, 1] → Cq be smooth
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parametrizations of the respective curves verifying γj (0)= γj (1)= p0 for j = 1, . . . , l ′′, γj (0)= p0 and
γj (1)= pj for j = l ′′+ 1, . . . , l, and γ (0)= p0 and γ (1)= q .

Since F is nonflat, there exist tangential fields V1, . . . , Vn on S, vanishing at 0, and points x1, . . . , xn ∈

Cq \ {p0, q} such that, setting zi = f (xi ) ∈S∗, the vectors V1(z1), . . . , Vn(zn) span Cn. Let ti ∈ (0, 1)
be such that γ (ti ) = xi and φi

t be the flow of the vector field Vi for small values of t ∈ C in the sense
of Notation 2.3. Consider for any i = 1, . . . , n a smooth function hi : C ∪Cq → R+ ⊂ C vanishing on
C ∪ {q}; its values on the relative interior of Cq will be specified later. As in the proof of Lemma 4.2, set
ζ = (ζ1, . . . , ζn) ∈ Cn and consider the map

ψ(ζ, x)= φ1
ζ1h1(x) ◦ · · · ◦φ

n
ζnhn(x)( f (x)) ∈S, x ∈ C ∪Cq ,

which is holomorphic in ζ ∈ Cn. Note that ψ(0, · )= f : M→S∗ (hence ψ(ζ, · ) does not vanish for ζ
in a small neighborhood of the origin) and ψ(ζ, x)= f (x) for all x ∈ C ∪ {q}. It follows that

∂ψ(ζ, x)
∂ζi

∣∣∣∣
ζ=0
= hi (x)Vi ( f (x)), i = 1, . . . , n.

We choose hi with support on a small compact neighborhood of ti ∈ (0, 1) in such a way that∫ 1

0
hi (γ (t))Vi ( f (γ (t)))θ(γ (t), γ̇ (t)) dt ≈ Vi (zi ) θ(γ (ti ), γ̇ (ti )). (5-1)

Assuming that the neighborhoods are sufficiently small, the approximation in (5-1) is close enough so
that, since the vectors on the right side above form a basis of Cn, the ones in the left side also do.

Fix a number ε > 0. Theorem 2.6 furnishes holomorphic functions gi : M→ C such that

gi has a zero of multiplicity k− 1 at all points of 3 (5-2)

and
sup

C∪Cq

|gi − hi |< ε, i = 1, . . . , n.

Following the arguments in the proof of Lemma 4.2, we define holomorphic maps

9(ζ, x, z)= φ1
ζ1g1(x) ◦ · · · ◦φ

n
ζn gn(x)(z) ∈S,

9 f (ζ, x)=9(ζ, x, f (x)) ∈S∗,

where x ∈ M, z ∈S, and ζ belongs to a sufficiently small neighborhood of the origin in Cn. Observe that
9 f (0, · )= f . In view of (5-1), if ε > 0 is small enough then we have that the vectors

∂

∂ζi

∣∣∣∣
ζ=0

∫ 1

0
9 f (ζ, γ (t))θ(γ (t), γ̇ (t)) dt =

∫ 1

0
gi (γ (t))Vi ( f (γ (t)))θ(γ (t), γ̇ (t)) dt, (5-3)

i = 1, . . . , n, are close enough to Vi (zi )θ(γ (ti ), γ̇ (ti )) so that they also form a basis of Cn.
To finish the proof it remains to perturb 9 f in order to solve the period problem and ensure the

jet-interpolation at the points of 3. From the Taylor expansion of the flow of a vector field it follows that

9 f (ζ, x)= f (x)+
n∑

i=1

ζi gi (x)Vi ( f (x))+ O(|ζ |2).
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Since |gi | < ε on C (recall that hi = 0 on C), the integral of 9 f over the curves C1, . . . ,Cl can be
estimated by ∣∣∣∣∫

C j

(9 f (ζ, · )− f )θ
∣∣∣∣= ∣∣∣∣∫

C j

9 f (ζ, · )θ

∣∣∣∣≤ η0ε|ζ |, j = 1, . . . , l ′′ (5-4)

(recall that
∫

C j
f θ =

∫
C j

d F = 0 for all j = 1, . . . , l ′′, since these curves are closed),∣∣∣∣∫
C j

(9 f (ζ, · )− f )θ
∣∣∣∣= ∣∣∣∣F(p0)−

(
F(pj )−

∫
C j

9 f (ζ, · )θ

)∣∣∣∣≤ η0ε|ζ |, j = l ′′+ 1, . . . , l, (5-5)

for some constant η0 > 0 and sufficiently small ζ ∈ Cn. Furthermore, (5-2) guarantees that

9 f (ζ, · )− f has a zero of multiplicity k− 1 at all points of 3 (5-6)

for ζ in a small neighborhood of the origin (see Lemma 2.2).
Now, Lemma 4.2(i) furnishes holomorphic maps 8(ζ̃ , x, z) and 8 f (ζ̃ , x)=8(ζ̃ , x, f (x)) with the

parameter ζ̃ in a small neighborhood of 0∈CÑ for some large Ñ ∈N and x ∈M such that8(0, x, z)= z∈S
for all x ∈ M and

8 f (0, · )=89 f (0,· )(0, · )= f, (5-7)

and the differential of the associated period map ζ̃ 7→ P(8 f (ζ̃ , · )) ∈ Cln , see (4-1), at the point ζ̃ = 0
has maximal rank equal to ln. The same is true if we allow that f vary locally near the given initial map.
Thus, replacing f by 9 f (ζ, · ) and considering the map

CÑ
×Cn

×M 3 (ζ̃ , ζ, x) 7→8(ζ̃ , x, 9 f (ζ, x)) ∈S∗

defined for x ∈M and (ζ̃ , ζ ) in some sufficiently small neighborhood of 0∈CÑ
×Cn, the implicit function

theorem provides a holomorphic map ζ̃ = ρ(ζ ) near ζ = 0 ∈ Cn with ρ(0)= 0 ∈ CÑ such that the map
defined by 8(ρ(ζ ), x, 9 f (ζ, x)) satisfies:

(i) P(8(ρ(ζ ), · , 9 f (ζ, · )))= P(8(0, · , 9 f (0, · )))= P(9 f (0, · ))= P( f ).

(ii) 8(ρ(ζ ), · , 9 f (ζ, · ))−9 f (ζ, · ) has a zero of multiplicity k− 1 at all points of 3.

Condition (ii) together with (5-6) ensure that

8(ρ(ζ ), · , 9 f (ζ, · ))− f has a zero of multiplicity k− 1 at all points of 3 (5-8)

for all ζ in a small neighborhood of 0 ∈ Cn. Obviously the map ρ = (ρ1, . . . , ρn) also depends on f . It
follows that the integral

HF (ζ, x)= F(p0)+

∫ x

p0

8(ρ(ζ ), · , 9 f (ζ, · ))θ (5-9)

is independent of the choice of the arc from p0 to x ∈ M. Moreover,

HF (0, · )= F, (5-10)
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see (5-7), and HF (ζ, · ) is an S-immersion of class A 1(M) for every ζ ∈ Cn sufficiently close to zero
such that

HF (ζ, · )= F on 3; (5-11)

see (i). In addition, from (5-4) and (5-5) we have

|ρ(ζ )|< η1ε|ζ |

for some η1 > 0. If we call Ṽj the vector fields and g̃j the functions involved in the construction of the
map 8 (see Lemma 4.2), the above estimate gives

|8(ρ(ζ ), x, 9 f (ζ, x))−9 f (ζ, x)| =
∣∣∣∑ ρj (ζ )g̃j (x)Ṽj (9 f (ζ, x))+ O(|ζ |2)

∣∣∣< η2ε|ζ |

for some η2 > 0 and all x ∈ M and all ζ near the origin in Cn. Clearly, applying this estimate to the
arc Cq we have∣∣∣∣∫ 1

0
8(ρ(ζ ), γ (t),9 f (ζ, γ (t)))θ(γ (t), γ̇ (t))−

∫ 1

0
9 f (ζ, γ (t))θ(γ (t), γ̇ (t))

∣∣∣∣< η3ε|ζ |

for some η3 > 0. Finally, choosing ε > 0 small enough, the derivatives

∂

∂ζi

∣∣∣∣
ζ=0

∫ 1

0
8(ρ(ζ ), γ (t),9 f (ζ, γ (t))) θ(γ (t), γ̇ (t)) ∈ Cn, i = 1, . . . , n,

are so close to the vectors (5-3) that they also form a basis of Cn. From the definition of HF , (5-9), and
(5-11), we have

δHF (ζ, p, q)= HF (ζ, q)− HF (ζ, p)

= HF (ζ, q)− F(p)

= F(p0)− F(p)+
∫ 1

0
8(ρ(ζ ), γ (t),9 f (ζ, γ (t)))θ(γ (t), γ̇ (t)),

and hence the partial differential

∂

∂ζ

∣∣∣∣
ζ=0
δH(ζ, p, q) : Cn

→ Cn

is an isomorphism. This, (5-10), (ii), and (5-11) show that H satisfies the conclusion of the lemma.

Case 2: assume that {p, q} ∩3=∅. In this case setting 3′ :=3∪ {p} reduces the proof to Case 1. This
proves the lemma. �

The family HF depending on F given in (5-9) is holomorphically dependent also on F on a neighbor-
hood of a given initial S-immersion F0. In particular, if F(ξ, · ) : M→ Cn is a family of holomorphic
S-immersions depending holomorphically on ξ ∈C such that F(ξ, · )−F has a zero of multiplicity k at all
points p ∈3 for any ξ , then HF(ξ,· )(ζ, · ) depends holomorphically on (ζ, ξ). This allows us to compose
any finite number of such deformation families by an inductive process. For the case of two families
suppose that H = HF (ζ, · ) and G = G F (ξ, · ) are deformation families with HF (0, · )= G F (0, · )= F
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and such that HF (ζ, · )− F and G F (ξ, · )− F have a zero of multiplicity k ∈ N at all points of 3 for all
ζ and ξ respectively. Then, we define the composed deformation family by

(H # G)F (ζ, ξ, x) := G HF (ζ,· )(ξ, x), x ∈ M.

Obviously, we have (H # G)F (0, ξ, · )= G F (ξ, · ) and (H # G)F (ζ, 0, · )= HF (ζ, · ), and H # G− F has
a zero of multiplicity k at p for all p ∈3. The operation # is associative but not commutative.

To finish the proof of Theorem 5.3, Lemma 5.4 gives a finite open covering {Ui }
m
i=1 of the compact

set M × M \U and deformation families H i
= H i (ζ i , · ) : M → Cn, with H i (0, · ) = F , where ζ i

=

(ζ i
1, . . . , ζ

i
ηi
) ∈ �i ⊂ Cηi for positive integers ηi ∈ N and i = 1, . . . ,m. It follows that the difference

map δH i (ζ i , p, q) is submersive at ζ i
= 0 for all p, q ∈ Ui . By taking ζ = (ζ 1, . . . , ζm) ∈ CN, with

N =
∑m

i=1 ηi , and setting

H(ζ, x) := (H 1 # H 2 # · · · # H m)(ζ 1, . . . , ζm, x),

we obtain a deformation family such that H(0, · ) = F , H(q, · )− F has a zero of multiplicity k at p
for all p ∈3, and δH is submersive everywhere on M ×M \U for all ζ ∈ CN sufficiently close to the
origin. �

5B. A completeness lemma. We develop an intrinsic-extrinsic version of the arguments from [Jorge and
Xavier 1980] in order to prove the following

Lemma 5.5. Let S⊂ Cn (n ≥ 3) be as in Lemma 4.5. Let M be a compact bordered Riemann surface
and K ⊂ M̊ be a smoothly bounded compact domain which is Runge and a strong deformation retract
of M. Also let 3 ⊂ K̊ be a finite subset and p0 ∈ K̊ \3 be a point. Then, given an integer k ∈ N and
a positive number τ > 0, every S-immersion F : K → Cn of class A 1(K ) may be approximated in the
C 1(K )-topology by S-immersions F̃ : M→ Cn of class A (M) satisfying the following conditions:

(I) F̃ − F has a zero of multiplicity k at all points p ∈3.

(II) distF̃ (p0, bM) > τ .

Proof. Without loss of generality we assume that M is a smoothly bounded compact domain in an open
Riemann surface M̃. By Proposition 5.2 we may assume that F is holomorphic on M and that its first
component has no critical points on M. Fix a holomorphic 1-form θ vanishing nowhere on M̃ and set
d F = f θ , where f = ( f1, . . . , fn) : M→S∗ is a holomorphic map.

Since K is a strong deformation retract of M , we know M̊ \ K consists of a finite family of pairwise-
disjoint open annuli. Thus, there exists a finite family of pairwise-disjoint, smoothly bounded, compact
disks L1, . . . , Lm in M̊ \ K satisfying the following property: if α ⊂ M \

⋃m
j=1 L j is a arc connecting p0

with bM then ∫
α

| f1θ |> τ. (5-12)

Recall that f1 6= 0. (Such disks can be found as pieces of labyrinths of Jorge–Xavier-type [1980] on the
annuli forming M̊ \ K ; see [Alarcón, Fernández and López 2013, proof of Lemma 4.1] for a detailed
explanation). Set L :=

⋃m
j=1 L j .
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For each j = 1, . . . ,m, choose a Jordan arc γj ⊂ M̊ with an endpoint in K , the other endpoint in L j ,
and otherwise disjoint from K ∪ L , such that γi ∩ γj =∅ for all i 6= j ∈ {1, . . . ,m} and the set

S := K ∪ L ∪0,

where 0 :=
⋃m

j=1 γj , is an admissible subset of M. It follows that S is a connected very simple admissible
subset of M with kernel component K (see Definition 4.1) such that K is a deformation retract of S
(hence of M). Take a map h = (h1, . . . , hn) : S→S∗ of class A (S) satisfying the following conditions:

(a) h1 = f1|S .

(b) h|K = f |K .

(c)
∣∣∫
α

hθ
∣∣> τ for all arcs α ⊂ S with initial point p0 and final point in L .

Existence of such a map is clear; we may for instance choose h close to 0 ∈ Cn on each component
of L and such that

∣∣∫
γj

hθ
∣∣ is very large for every component γj of 0. Also choose for each p ∈ 3 a

smooth Jordan arc C p ⊂ K̊ with initial point p0 and final one p, and assume that C p ∩Cq = {p0} for all
p 6= q ∈3. Then, Lemma 4.5 provides a holomorphic map f̃ = ( f̃1, f̃2, . . . , f̃n) : M→S∗ such that:

(i) f̃ approximates h on S.

(ii) f̃1 = f1 everywhere on M.

(iii) f̃ − h has a zero of multiplicity k− 1 at p for all p ∈3.

(iv)
∫

C p
( f̃ − h)θ = 0 for all p ∈3.

(v)
∫
γ
( f̃ − h)θ = 0 for all closed curves γ ⊂ S.

Since f θ = d F is exact, properties (b) and (v) and the fact that K is a strong deformation retract of M
guarantee that f̃ θ is exact on M as well. Therefore, the map F̃ = (F̃1, F̃2, . . . , F̃n) : M→ Cn defined by

F̃(p) := F(p0)+

∫ p

p0

f̃ θ, p ∈ M,

is well-defined and an S-immersion of class A 1(M). We claim that if the approximation in (i) is close
enough then F̃ satisfies the conclusion of the lemma. Indeed, properties (i) and (b) guarantee that F̃
approximates F as close as desired in the C 1(K )-topology. On the other hand, (iii), (iv), and (b) ensure
that F̃ − F has a zero of multiplicity k at all points of 3, which proves (I). Finally, in order to check
condition (II), let α ⊂ M be an arc with initial point p0 and final one in bM. Assume first that α∩ L 6=∅
and let α̃ ⊂ α be a subarc with initial point p0 and final point q for some q ∈ L . Then we have

length(F̃(α)) > length(F̃(α̃))≥ |F̃(q)− F̃(p0)| =

∣∣∣∣∫ q

p0

f̃ θ
∣∣∣∣ (i)
≈

∣∣∣∣∫ q

p0

hθ
∣∣∣∣ (c)
> τ.

Assume that, on the contrary, α ∩ L =∅. In this case,

length(F̃(α))=
∫
α

| f̃ θ | ≥
∫
α

| f̃1θ |
(ii)
=

∫
α

| f1θ |
(5-12)
> τ.

This proves (II) and completes the proof. �
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5C. A properness lemma. Recall that given a vector x = (x1, . . . , xn) in Rn or Cn we define |x |∞ =
max{|x1|, . . . , |xn|}; see Section 2 for notation.

Lemma 5.6. Let n ≥ 3 be an integer and S be an irreducible closed conical complex subvariety of Cn

which is not contained in any hyperplane. Assume that S∗ =S \ {0} is smooth and an Oka manifold, and
that S∩ {z j = 1} is an Oka manifold and the coordinate projection πj :S→ C onto the z j -axis admits
a local holomorphic section h j near z j = 0 with h j (0) 6= 0 for all j = 1, . . . , n. Let M be a compact
bordered Riemann surface and K ⊂ M̊ be a smoothly bounded compact domain which is Runge and a
strong deformation retract of M. Also let 3⊂ K̊ be a finite subset, F : K → Cn be an S-immersion of
class A 1(K ), let τ > ρ > 0 be numbers, and assume that

|F(p)|∞ > ρ for all p ∈ bK . (5-13)

Then, given an integer k ∈ N, F may be approximated in the C 1(K )-topology by S-immersions
F̃ : M→ Cn of class A 1(M) satisfying the following conditions:

(I) F̃ − F has a zero of multiplicity k at all points p ∈3.

(II) |F̃(p)|∞ > ρ for all p ∈ M \ K̊ .

(III) |F̃(p)|∞ > τ for all p ∈ bM.

Proof. Without loss of generality we assume that M is a smoothly bounded compact domain in an
open Riemann surface M̃. By Proposition 5.2 we may assume that F = (F1, . . . , Fn) is holomorphic
on M̃. Since K is a strong deformation retract of M, we have that M \ K̊ consists of finitely many
pairwise-disjoint compact annuli. For simplicity of exposition we assume that A := M \ K̊ is connected
(and hence a single annulus); the same proof applies in general by working separately on each connected
component of M \ K̊ . We denote by α the boundary component of A contained in bK and by β the one
contained in bM ; both α and β are smooth Jordan curves.

From inequality (5-13) there exist an integer l ≥ 3, subsets I1, . . . , In of Zl (where Zl ={0, 1, . . . , l−1}
denotes the additive cyclic group of integers modulus l), and a family of compact connected subarcs
{αj : j ∈ Zl} of bK , satisfying the following properties:

(a1)
⋃

j∈Zl
αj = α.

(a2) αj and αj+1 have a common endpoint pj and are otherwise disjoint.

(a3)
⋃n

a=1 Ia = Zl and Ia ∩ Ib =∅ for all a 6= b ∈ {1, . . . , n}.

(a4) If j ∈ Ia then |Fa(p)|> ρ for all p ∈ αj , a = 1, . . . , n.

(Possibly Ia =∅ for some a ∈ {1, . . . , n}.)
Consider for each j ∈ Zl a smooth embedded arc γj ⊂A with the following properties:

• γj joins α ⊂ bK with β ⊂ bM and intersects them transversely.

• γj ∩α = {pj }.

• γj ∩β consists of a single point, namely, qj .

• The arcs γj , j ∈ Zl , are pairwise disjoint.
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Consider the admissible set

S := K ∪
(⋃

j∈Zl

γj

)
⊂ M

and fix a point x0 ∈ K̊ \3. Let z = (z1, . . . , zn) be the coordinates on Cn and recall that πa : C
n
→ C is

the a-th coordinate projection πa(z)= za for all a = 1, . . . , n. Let θ be a holomorphic 1-form vanishing
nowhere on M̃, and let f : S→ S∗ be a map of class A (S) such that f = d F/θ on K and the map
G̃ : S→ Cn given by

G̃(p)= F(p0)+

∫ p

x0

f θ,

which is well-defined since K is a deformation retract of S, satisfies the following conditions:

(b1) G̃ = F on K and on a neighborhood of pj for all j ∈ Zl .

(b2) If j ∈ Ia then |πa(G̃(z))|> ρ for all z ∈ γj−1 ∪ γj , a = 1, . . . , n.

(b3) If j ∈ Ia then |πa(G̃(qj−1))|> τ and |πa(G̃(qj ))|> τ , a = 1, . . . , n.

Existence of such an f is guaranteed by (a4). Theorem 4.4 provides a map g :M→S∗ of class A (M)
such that gθ is exact on M, and the S-immersion G = (G1, . . . ,Gn) : M→ Cn of class A 1(M) given
by G(p)= F(x0)+

∫ p
x0

gθ enjoys the following properties:

(c1) G approximates G̃ in the C 1(K )-topology.

(c2) G− G̃ has a zero of multiplicity k at all points of 3.

(c3) If j ∈ Ia then |Ga(p)|> ρ for all p ∈ γj−1 ∪αj ∪ γj , a = 1, . . . , n.

(c4) If j ∈ Ia then |Ga(p)|> τ for p ∈ {qj−1, qj }, a = 1, . . . , n.

Property (c3) follows from (a4) and (b2), whereas (c4) follows from (b3), provided that the approximation
of f by g is close enough.

For each j ∈ Zl let βj ⊂ β denote the subarc of β with endpoints qj−1 and qj which does not contain
qi for any i ∈ Zl \ { j − 1, j}. It is clear that ⋃

j∈Zl

βj = β. (5-14)

Also denote by Dj ⊂A the closed disk bounded by the arcs γj−1, αj , γj , and βj ; see Figure 4. It follows
that

A=
⋃
j∈Zl

Dj . (5-15)

Call H0 := G = (H0,1, . . . , H0,n) and I0 := ∅. We shall construct a sequence of S-immersions
Hb = (Hb,1, . . . , Hb,n) : M→ Cn, b = 1, . . . , n, of class A 1(M) satisfying the following requirements
for all b ∈ {1, . . . , n}:

(d1b) Hb approximates Hb−1 in the C 1-topology on M \
(⋃

j∈Ib
D̊j
)
.

(d2b) Hb− Hb−1 has a zero of multiplicity k at all points of 3.
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Figure 4. The annulus A.

(d3b) If j ∈
⋃b

i=1 Ii then |Hb(p)|∞ > ρ for all p ∈ Dj .

(d4b) If j ∈
⋃b

i=1 Ii then |Hb(p)|∞ > τ for all p ∈ βj .

(d5b) If j ∈ Ia then |Hb,a(p)|> ρ for all p ∈ γj−1 ∪αj ∪ γj , a = 1, . . . , n.

(d6b) If j ∈ Ia then |Hb,a(p)|> τ for p ∈ {qj−1, qj }, a = 1, . . . , n.

We claim that the S-immersion F̃ := Hn : M → Cn satisfies the conclusion of the lemma. Indeed,
F̃ approximates F in the C 1(K )-topology by properties (b1), (c1) and (d11)–(d1n); condition (I) is
guaranteed by (d2), (c2), and (b1); condition (II) by (d3n), (a3), and (5-15); and condition (III) by (d4n),
(a3), and (5-14). So, to conclude the proof it suffices to construct the sequence H1, . . . , Hn satisfying
the above properties. We proceed by induction. Assume that we already have H0, . . . , Hb−1 for some
b∈ {1, . . . , n} with the desired properties and let us construct Hb. Notice that (d50)= (c3) and (d60)= (c4)
formally hold. By the continuity of Hb−1 and conditions (d5b−1) and (d6b−1), for each j ∈ Ib there exists
a closed disk �j ⊂ Dj \ (γj−1 ∪αj ∪ γj ) such that the following hold:

(i) �j ∩βj is a compact connected Jordan arc.

(ii) |Hb−1,b(p)|> ρ for all p ∈ ϒj := Dj \�j .

(iii) |Hb−1,b(p)|> τ for all p ∈ βj \�j .

Next, for each j ∈ Ib choose a smooth embedded arc λj ⊂ϒj \ (γj−1∪γj ) with an endpoint in αj and the
other one in �j and otherwise disjoint from bϒj (see Figure 4). Moreover, choose each λj so that the set

Sb :=

(
M \

⋃
j∈Ib

ϒ̊j

)
∪

(⋃
j∈Ib

λj

)
is admissible. Notice that Sb is connected and very simple in the sense of Definition 4.1.

Set h= (h1, . . . , hn)= d Hb−1/θ and let h̃= (h̃1, . . . , h̃n) : Sb→S∗ be a map of class A (Sb) such that:

(iv) h̃ = h on M \
(⋃

j∈Ib
D̊j
)
.
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(v) h̃b = hb on Sb.

(vi) The map H̃ : Sb→ Cn given by

H̃(p)= Hb−1(x0)+

∫ p

x0

h̃θ, p ∈ Sb,

satisfies |H̃(p)|∞ > τ for all p ∈
⋃

j∈Ib
�j .

To construct such a map h̃ we may for instance choose h̃ = h on M \
⋃

j∈Ib
ϒ̊j and suitably define it

on
⋃

j∈Ib
λj . Now, Lemma 4.5 furnishes a map φ : M→S∗ of class A (M) such that φθ is exact on M

(take into account that h̃θ = hθ = d Hb−1 on K and that K is a deformation retract of M) and the map
Hb : M→ Cn given by

Hb(p)= Hb−1(x0)+

∫ p

x0

φθ, p ∈ M,

is an S-immersion of class A 1(M) enjoying the following properties:

(vii) Hb is as close as desired to H̃ in the C 1-topology on M \
(⋃

j∈Ib
D̊j
)
.

(viii) Hb,b = Hb−1,b (take into account (v)).

(ix) Hb− H̃ has a zero of multiplicity k at all points of 3.

Since H̃ =Hb−1 on M\
(⋃

j∈Ib
D̊j
)
⊃3∪

(⋃
j∈Zl

γj−1∪αj∪γj
)
, we have (d1b)= (vii), (d2b)= (ix), and,

if the approximation in (vii) is close enough, (d5b) and (d6b) follow from (d5b−1) and (d6b−1), respectively.
Pick j ∈

⋃b
i=1 Ii and p ∈ Dj . If j /∈ Ib then (d3b−1) and (vii) ensure that |Hb(p)|∞ > ρ. On the other

hand, if j ∈ Ib then (ii) and (viii) ensure that |Hb(p)| ≥ |Hb,b(p)| > ρ provided that p ∈ ϒj , whereas
(vi) and (vii) guarantee that |Hb(p)|> τ > ρ provided that p ∈�j . This proves (d3b).

Finally, choose j ∈
⋃b

i=1 Ii and p∈βj . As above, if j /∈ Ib then (d4b−1) and (vii) give that |Hb(p)|∞>τ .
Likewise, if j ∈ Ib then (iii) and (viii) ensure that |Hb(p)| ≥ |Hb,b(p)| > τ provided that p ∈ βj \�j ,
whereas (vi) and (vii) imply that |Hb(p)|> τ provided that p ∈ βj ∩�j . This proves (d4b) and concludes
the proof of the lemma. �

6. Proof of Theorem 1.3

As in the proof of Theorem 4.4 we can assume that 3∩ bK =∅ and also that for each p ∈3 we have
either �p ⊂ K̊ or �p ∩ K =∅.

Set M0 := K and let {Mj }j∈N be an exhaustion of M by smoothly bounded Runge compact domains
in M such that:

• M0 b M1 b · · ·b
⋃

j∈N Mj = M.

• χ(Mj \ M̊j−1) ∈ {−1, 0} for all j ∈ N.

• bMj ∩3 = ∅ for all j ∈ N and so, up to shrinking the sets �p if necessary, we may assume that
�p ⊂ M̊j or �p ∩Mj =∅ for all p ∈3.
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The existence of such a sequence is guaranteed as in the proof of Theorem 4.4. The set 3j :=3∩Mj =

3 ∩ M̊j , j ∈ Z+, is empty or finite; without loss of generality we may assume that 30 6= ∅ and
3j \3j−1 6= ∅ for all j ∈ N, and hence 3 is infinite. Observe that 3j−1 ( 3j for all j ∈ N. Fix a
sequence {εj }j∈N↘ 0 which will be specified later, set

F0 := F |M0 : M0→ Cn

and, by Proposition 4.3 and Theorem 5.3, assume without loss of generality that F0 is nonflat and, if F |3
is injective, an embedding.

6A. Proof of the first part of the theorem. For the first part of the theorem we shall construct a sequence
{Fj }j∈N of nonflat S-immersions Fj : Mj → Cn of class A 1(Mj ) satisfying:

(ij ) ‖Fj − Fj−1‖1,Mj−1 < εj .

(iij ) Fj − F has a zero of multiplicity k ∈ N at every point p ∈3j .

(iiij ) If F |3 is injective then Fj is an embedding.

We proceed by induction. The basis is given by the S-immersion F0, which clearly satisfies (ii0)
and (iii0); condition (i0) is vacuous. For the inductive step assume that we have an S-immersion
Fj−1 : Mj−1→ Cn of class A 1(Mj−1) satisfying (ij−1), (iij−1), and (iiij−1) for some j ∈ N, and let us
furnish Fj :Mj→Cn enjoying the corresponding properties. We distinguish two different cases depending
on the Euler characteristic of Mj \ M̊j−1.

Noncritical case: assume that χ(Mj \ M̊j−1) = 0. It follows that Mj−1 is a strong deformation retract
of Mj , and then Proposition 5.2 applied to the data

S = Mj−1 ∪

( ⋃
p∈3j\3j−1

�p

)
, S0 = Mj−1, 3=3j , k,

and the generalized S-immersion S→ Cn agreeing with Fj−1 on Mj−1 and with F on
⋃

p∈3j\3j−1
�p,

provides an S-immersion Fj : Mj → Cn of class A 1(Mj ) that satisfies (ij ) and (iij ). Finally, if F |3 is
injective then Theorem 5.3 enables us to choose Fj being an embedding; this ensures (iiij ).

Critical case: assume that χ(Mj \ M̊j−1)=−1. We then have that the change of topology is described by
attaching to Mj−1 a smooth arc α in M̊j \ M̊j−1 satisfying Mj−1 only at its endpoints. Thus, Mj−1 ∪α is
a strong deformation retract of Mj . Further, we may choose α such that α ∩3=∅; and S := Mj−1 ∪α

is an admissible subset of M, which is clearly very simple (see Definition 4.1). We use Lemma 3.3 to
extend Fj−1 to S as a generalized S-immersion. By Proposition 5.2, we may approximate Fj−1 in the
C 1(Mj−1 ∪α)-topology by nonflat S-immersions on a small compact tubular neighborhood M ′j b Mj of
Mj−1 ∪α having a contact of order k with F at all points of 3j . Since χ(Mj \ M̊ ′j )= 0, this reduces the
proof to the previous case and hence concludes the recursive construction of the sequence {Fj }j∈N.

Finally, if the number εj > 0 is chosen sufficiently small at each step in the recursive construction,
properties (ij ), (iij ), and (iiij ) ensure that the sequence {Fj }j∈N converges uniformly on compacta in M to
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an S-immersion
F̃ := lim

j→∞
Fj : M→ Cn,

which is as close as desired to F uniformly on K , is injective if F |3 is injective, and is such that F̃ − F
has a zero of multiplicity k at all points of 3.

6B. Proof of assertion (I). Suppose that the assumptions in assertion (I) hold. Fix a point p0 ∈ K̊ \3.
We shall now construct a sequence of S-immersions Fj : Mj → Cn of class A 1(Mj ), j ∈ N, satisfying
conditions (ij )–(iiij ) above and also:

(ivj ) distFj (p0, bMj ) > j for all j ∈ N.

Observe that F0 = F |M0 satisfies (iv0) since it is an immersion and p0 ∈ K̊ . For the inductive step
assume that we already have Fj−1 satisfying (ij )–(ivj ) for some j ∈ N and, reasoning as above, construct
an S-immersion F ′j : Mj → Cn satisfying (ij ), (iij ), and (iiij ). Let M ′j ⊂ M̊j be a smoothly bounded
compact domain which is Runge and a strong deformation retract of Mj and contains Mj−1 ∪3j in its
relative interior. Then, Lemma 5.5 applied to the data

M = Mj , K = M ′j , 3=3j , k, τ = j, and F = F ′j |M ′j ,

gives an S-immersion Fj : Mj → Cn of class A 1(Mj ) satisfying (iij ), (ivj ), and also (ij ) provided that
the approximation of F ′j by Fj on M ′j is close enough; Theorem 5.3 enables us to assume that Fj also
satisfies (iiij ). This closes the induction and concludes the construction of the sequence {Fj }j∈N with the
desired properties.

As above, if the number εj > 0 is chosen sufficiently small at each step in the recursive construction,
properties (ij )–(iiij ) ensure that the sequence {Fj }j∈N converges uniformly on compacta in M to an
S-immersion F̃ := limj→∞ Fj : M→ Cn which is as close as desired to F uniformly on K , is injective
if F is injective, and is such that F̃ − F has a zero of multiplicity k at all points of 3. In addition,
property (ivj ) ensures that

lim
j→∞

distF̃ (p0, bMj )=+∞

whenever the number εj > 0 is chosen small enough at each step in the recursive process. This implies
that F̃ is complete and concludes the proof of assertion (I).

6C. Proof of assertion (II). Suppose the assumptions in assertion (II) hold. Observe that F |3 :3→Cn

is a proper map if, and only if, (F |3)−1(C) is finite for any compact set C ⊂Cn, or, equivalently, if either
the closed discrete set 3 is finite or for some (and hence for any) ordering 3= {p1, p2, p3, . . .} of 3, the
sequence {F(p1), F(p2), F(p3), . . .} is divergent in Cn. Since we are assuming that 3 is infinite, there
is j0 ∈ N such that

F(p) 6= 0 for all p ∈3 \3j0 . (6-1)

In a first step we construct for each j ∈ {0, . . . , j0} an S-immersion Fj : Mj → Cn of class A 1(Mj )

satisfying conditions (ij )–(iiij ) above; we reason as in Section 6A. Now, up to a small deformation of Mj0
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if necessary, we may assume without loss of generality that Fj0 does not vanish anywhere on bMj0 , and
hence there exists ρj0 > 0 such that

|Fj0(p)|∞ > ρj0 > 0 for all p ∈ bMj0 . (6-2)

Set

ρj :=min{|F(p)|∞ : p ∈3j \3j−1} for all j ≥ j0+ 1. (6-3)

Recall that 3j \3j−1 6= ∅ for all j ∈ N. In view of (6-1) and (6-2) we have ρj > 0 for all j ≥ j0.
Moreover, since F |3 is proper,

lim
j→+∞

ρj =+∞. (6-4)

In a second step, we shall construct a sequence of S-immersions Fj : Mj → Cn of class A 1(Mj ), for
j ≥ j0+ 1, enjoying conditions (ij )–(iiij ) and also:

(vj .1) |Fj (p)|∞ > 1
2 min{ρj−1, ρj } for all p ∈ Mj \ M̊j−1.

(vj .2) |Fj (p)|∞ > ρj for all p ∈ bMj .

We proceed in an inductive way. The basis of the induction is accomplished by Fj0 ; recall that it
satisfies (ij0)–(iiij0), whereas property (vj0 .1) is vacuous and property (vj0 .2) follows from (6-2). For
the inductive step, assume that we already have Fj−1 : Mj−1 → Cn for some j ≥ j0 + 1 satisfying
(ij−1)–(iiij−1), (vj−1.1), and (vj−1.2) and let us construct an S-immersion Fj : Mj→Cn of class A 1(Mj )

with the corresponding requirements.
By (6-3) and up to a shrinking of the set �p if necessary, we may assume that

|F(q)|∞ > 1
2ρj for all points q in � j

:=

⋃
p∈3j\3j−1

�p 6=∅. (6-5)

Next, choose a smooth Jordan arc C p for each p ∈3j \3j−1 with the initial point in bMj−1, the final
point in b�p, and otherwise disjoint from Mj−1 ∪�

j , and such that

S′ := Mj−1 ∪�
j
∪

( ⋃
p∈3j\3j−1

C p

)

is a very simple admissible subset of Mj ; in particular C p ∩Cq = ∅ if p 6= q. If χ(Mj \ M̊j−1) = −1
we then also choose another smooth Jordan arc α ⊂ M̊j with its two endpoints in bMj−1 and otherwise
disjoint from S′ such that S′∪α is admissible and a strong deformation retract of Mj . If χ(Mj \ M̊j−1)= 0
we set α :=∅. In any case, the set

S := S′ ∪α ⊂ M̊j

is admissible in M and a strong deformation retract of Mj . Set

C := α ∪
( ⋃

p∈3j\3j−1

C p

)
,
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and observe that S = (Mj−1∪�
j )∪C . Consider a generalized S-immersion F̃j : S→Cn of class A 1(S)

such that:

(A.1) F̃j |Mj−1 = Fj−1.

(A.2) F̃j |� j = F |� j .

(A.3) |F̃j (q)|∞ > 1
2 min{ρj−1, ρj } for all q ∈ C .

To ensure (A.3) we use Lemma 3.3; take into account (vj−1.2) and (6-5). Thus, (vj−1.2), (6-5), and (A.3)
guarantee that:

(A.4) |F̃j (p)|∞ > 1
2 min{ρj−1, ρj }> 0 for all p ∈ S \ M̊j−1 = (bMj−1)∪�

j
∪C .

Since S ⊂ M̊j is Runge and a strong deformation retract of Mj , Proposition 5.2 applied to the data

M = Mj , S, 3=3j , k, and F = F̃j

gives a nonflat S-immersion F̂j : Mj → Cn of class A 1(Mj ) such that:

(B.1) F̂j is as close as desired to F̃j in the C 1(S)-topology.

(B.2) F̂j − F̃j has a zero of multiplicity k ∈ N at every point p ∈3j .

If the approximation in (B.1) is close enough then, in view of (A.4), there exists a small compact
neighborhood N of S in M̊j , being a smoothly bounded compact domain and a strong deformation retract
of Mj , and such that:

(B.3) |F̂j (p)|∞ > 1
2 min{ρj−1, ρj }> 0 for all p ∈ N \ M̊j−1.

Notice that 3∩ (Mj \ N̊ )=∅ and hence we may apply Lemma 5.6 to the data

M = Mj , K = N , 3=3j , F = F̂j , ρ = 1
2 min{ρj−1, ρj }, τ = ρj , k,

obtaining an S-immersion Fj : Mj → Cn of class A 1(Mj ) such that:

(C.1) Fj is as close as desired to F̂j in the C 1(N )-topology.

(C.2) Fj − F̂j has a zero of multiplicity k at every point p ∈3j ⊂ N̊.

(C.3) |Fj (p)|∞ > 1
2 min{ρj−1, ρj } for all p ∈ Mj \ N̊.

(C.4) |Fj (p)|∞ > ρj for all p ∈ bMj .

We claim that, if the approximations in (B.1) and (C.1) are close enough, the S-immersion Fj :Mj→Cn

satisfies properties (ij )–(iiij ), (vj .1), and (vj .2). Indeed, (A.1) ensures (ij ); properties (A.2), (B.2), and
(C.2) guarantee (iij ); condition (vj .1) follows from (A.4), (B.3), and (C.3); and condition (vj .2) is implied
by (C.4). Finally, if F |3 is injective then, by Theorem 5.3, we may assume without loss of generality
that Fj is an embedding. This closes the inductive step and concludes the recursive construction of the
sequence {Fj }j≥ j0+1 meeting the desired requirements.

As above, choosing the number εj > 0 ( j ∈ N) small enough at each step in the construction,
properties (ij )–(iiij ) ensure that the sequence {Fj }j∈N converges uniformly on compact subsets of M to an
S-immersion F̃ := limj→∞ Fj : M→ Cn which is as close as desired to F uniformly on K , is injective
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if F |3 is injective, and is such that F̃ − F has a zero of multiplicity k at all points of 3. Furthermore,
properties (vj .1) and (6-4) imply that F̃ is a proper map. Indeed, take a number R > 0 and a sequence
{qm}m∈N that diverges on M, and let us check that there is m0 ∈N such that |F̃(qm)|∞> R for all m ≥m0.
Indeed, set

ε :=
∑
j≥1

εj <+∞

and observe that, by properties (ij ),

‖F̃ − Fj‖1,Mj < ε for all j ∈ Z+. (6-6)

On the other hand, in view of (6-4) there is an integer j1 ≥ j0+ 1 such that

ρj−1 > 2(R+ ε) for all j ≥ j1. (6-7)

Now, since the sequence {pm}m∈N diverges on M and {Mj }j∈N is an exhaustion of M, there is m0 ∈ N

such that
pm ∈ M \Mj1 for all m ≥ m0.

Thus, for any m ≥ m0 there is an integer jm ≥ j1 such that qm ∈ Mjm \ M̊jm−1, and so

|F̃(qm)|∞ ≥ |Fjm (qm)|∞− |Fjm (qm)− F̃(qm)|∞
(vjm .1), (6-6)

> 1
2 min{ρ jm−1, ρjm }− ε

(6-7)
> R.

This proves that F̃ : M→ Cn is a proper map and concludes the proof of Theorem 1.3.

7. Sketch of the proof of Theorem 1.2 and the proof of Theorem 1.1

We briefly explain how the arguments in Sections 5 and 6 which enabled us to prove Theorem 1.3 may be
adapted in order to guarantee Theorem 1.2; we shall leave the obvious details of the proof to the interested
reader. Afterward, we will use Theorem 1.2 to prove Theorem 1.1.

First of all recall that, as pointed out in Section 2C, for any integer n ≥ 3 the punctured null quadric
A∗ ⊂ Cn , see (1-3) and (1-4), directing minimal surfaces in Rn is an Oka manifold and satisfies the
assumptions in assertions (I) and (II) in Theorem 1.3. Thus, Theorem 4.4 and Lemma 4.5 hold for S=A.

The first step in the proof of Theorem 1.2 consists of providing an analogue of Proposition 5.2
for generalized conformal minimal immersions in the sense of [Alarcón, Forstnerič and López 2016a,
Definition 5.2]. In particular we need to show that if we are given M, S, and 3 as in Proposition 5.2 then,
for any integer k ∈ Z+, every generalized conformal minimal immersion X : S→ Rn (n ≥ 3) may be
approximated in the C 1(S)-topology by conformal minimal immersions X̃ : M→ Rn of class C 1(M)
such that X̃ and X have a contact of order k at every point in 3 and the flux map FluxX̃ equals FluxX

everywhere in the first homology group H1(M;Z). To do that we reason as in the proof of Proposition 5.2
but working with the map f := ∂X/θ : S→ A∗. Since f θ does not need to be exact (only its real part
does) we replace conditions (a) and (b) in the proof of the proposition by the following ones:

• ( f̃ − f )θ is exact on S.

• X (p0)+ 2
∫

C p
<( f̃ θ)= X (p0)+ 2

∫
C p
<( f θ)= X (p) for all p ∈3.
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It can then be easily seen that the conformal minimal immersion X̃ : M→ Rn of class C 1(M) given by

X̃(p) := X (p)+ 2
∫

C p

<( f̃ θ), p ∈ M,

is well-defined and enjoys the desired properties.
In a second step and following the same spirit, we need to furnish a general position theorem, a

completeness lemma, and a properness lemma for conformal minimal immersions of class C 1 on a
compact bordered Riemann surface, which are analogues of Theorem 5.3, Lemma 5.5, and Lemma 5.6,
respectively. In this case the general position of conformal minimal surfaces is embedded in Rn for
all integers n ≥ 5; to adapt the proof of Theorem 5.3 to the minimal surfaces framework we combine
the argument in [Alarcón, Forstnerič and López 2016a, proof of Theorem 1.1] with the new ideas in
Section 5A which allow us to ensure the interpolation condition. Likewise, the analogues of Lemmas 5.5
and 5.6 for conformal minimal surfaces can be proved by adapting the proofs of the cited lemmas in
Sections 5B and 5C, respectively; the required modifications follow the pattern described in the previous
paragraph: at each step in the proofs we ensure that the real part of the 1-forms is exact and that the periods
of the imaginary part agree with the flux map of the initial conformal minimal immersion. Furthermore,
obviously, we are allowed to use only the real part in order to ensure the increasing of the intrinsic
diameter of the surface to achieve completeness, see Lemma 5.5 (II), and the increasing of the | · |∞-norm
near the boundary to guarantee properness, see Lemma 5.6 (II) and (III). For the former we just replace
condition (c) in the proof of Lemma 5.5 (which determines an extrinsic bound) by the following one:

• |2
∫
α
<(hθ)|> τ for all arcs α ⊂ S with initial point p0 and final point in L .

For the latter, the adaptation is done straightforwardly since all the bounds are of the same nature, namely,
extrinsic.

Finally, granted the analogues for conformal minimal surfaces in Rn of Proposition 5.2, Theorem 5.3,
Lemma 5.5, and Lemma 5.6, the proof of Theorem 1.2 follows word for word, up to trivial modifications
similar to the ones discussed in the previous paragraphs, the one of Theorem 1.3 in Section 6. It is perhaps
worth pointing out that in the noncritical case in the recursive construction (see Section 6A) we now
have to extend a conformal minimal immersion of class C 1(Mj−1) to a generalized conformal minimal
immersion on the admissible set S = Mj−1 ∪ α ⊂ M̊j whose flux map equals p for every closed curve
in S (here p : H1(M;Z)→ Rn denotes the group homomorphism given in the statement of Theorem 1.2,
whereas Mj−1, α, and Mj are as in Section 6A); this can be easily done as in [Alarcón, Forstnerič and
López 2016a, proof of Theorem 1.2]. This concludes the sketch of the proof of Theorem 1.2; as we
announced at the very beginning of this section, we leave the details to the interested reader.

To finish the paper we show how Theorem 1.2 can be used in order to prove the following extension to
Theorem 1.1 in the Introduction.

Corollary 7.1. Let M be an open Riemann surface and 3 ⊂ M be a closed discrete subset. Consider
also an integer n ≥ 3 and maps Z :3→ Rn and

G :3→ Qn−2 = {[z1 : · · · : zn] ∈ CPn−1
: z2

1+ · · ·+ z2
n = 0} ⊂ CPn−1.
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Then there is a conformal minimal immersion X̃ : M→ Rn satisfying X̃ |3 = Z and whose generalized
Gauss map G X̃ : M→ CPn−1 equals G on 3.

Proof. For each p ∈ 3 let �p be a smoothly bounded, simply connected compact neighborhood of p
in M, and assume that �p ∩�q =∅ whenever p 6= q ∈3. Set � :=

⋃
p∈3�p and let X :�→ Rn be

any conformal minimal immersion of class C 1(�) such that X |3 = Z and the generalized Gauss map
satisfies G X |3 = G. (Such an X always exists; we may for instance choose X |�p to be a suitable planar
disk for each p ∈3). Also fix a smoothly bounded simply connected compact domain K ⊂ M \3, up
to shrinking the sets �p if necessary, assume that K ⊂ M \�, and extend X to �∪ K → Rn such that
X |K : K → Rn is any conformal minimal immersion of class C 1(K ∪�). Applying Theorem 1.2 to
these data, any group homomorphism H1(M;Z)→ Rn, and the integer k = 1, we obtain a conformal
minimal immersion X̃ : M → Rn which has a contact of order 1 with X |� at every point in 3. Thus,
X̃ |3 = X |3 = Z and the generalized Gauss map satisfies G X̃ |3 = [∂ X̃ ]|3 = [∂X ]|3 = G X |3 = G. �
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